Sample records for fiber building boards

  1. Literature review on use of nonwood plant fibers for building materials and panels

    Treesearch

    John A. Youngquist; Brent E. English; Roger C. Scharmer; Poo Chow; Steven R. Shook

    1994-01-01

    The research studies included in this review focus on the use of nonwood plant fibers for building materials and panels. Studies address (1) methods for efficiently producing building materials and panels from nonwood plant fibers; (2) treatment of fibers prior to board production; (3) process variables, such as press time and temperature, press pressure, and type of...

  2. Modification of Wood Fiber for Use in Cement Board

    NASA Astrophysics Data System (ADS)

    Han, F. Q.; Tan, X.; Zhao, F. Q.

    2017-12-01

    When ordinary Portland cement is used for wood fiber cement (WFC) board, the setting time is too long, even hard to solidify. Three methods can be used for wood fiber modification, i.e., soaking in water, treated with alkali solution and coated with some substances on the fiber surface. The results show that the proper water-cement ratio of WFC paste is 1:1.3 in the case of wood cement ratio being 1:1. The WFC board from modified wood fiber and cement is better than the control samples, in which the combined treatment, i.e. soaking in hot water and then coating with alkali-BFS-EVA slurry, behaves best. It is proved that ordinary Portland cement can be used to produce WFC board, with the modified wood fiber, which can greatly reduce production costs.

  3. Influence of fiber treatment on dimensional stabilities of rattan waste composite boards

    NASA Astrophysics Data System (ADS)

    Zuraida, A.; Insyirah, Y.; Maisarah, T.; Zahurin, H.

    2018-01-01

    The main drawback of using natural fibers in composite boards is its hydrophilic properties which absorb a high volume of moisture. This results in low dimensional stability of the produced composite boards. Hence, the purpose of this study is to investigate the effects of fibers’ treatment processes of the rattan waste fibers on the dimensional stabilities of composite boards. The collected fibers underwent two types of retting processes, namely a water treatment and alkaline treatment retting processes; where the fibers were soaked in water and a 1% sodium hydroxide (NaOH) solution, respectively. The fibers were dried and mixed with poly(lactic) acid (PLA) pellets with ratio of 30% fibers: 70% matrix; before being fabricated into composite boards via a hot-pressing process and were labelled as RF/PLA, WRF/PLA, CRF/PLA for untreated rattan, rattan treated by water retting, rattan treated by chemical retting, respectively. The produced composite boards were cut and soaked in water for 24 hours for dimensional stability in terms of water absorption and thickness swelling tests. The results showed that WRF/PLA has the lowest water absorption (3.2%), and the CRF/PLA had the highest water absorption (23.2%). The thickness swelling showed a similar trend as water absorption. The presence of void contents and fibers damaged the insides of the boards, which contributed to low dimensional stabilities of the composite boards. It can be concluded that water retting facilitated in improving dimensional stability of the produced composite board.

  4. On-Board Fiber-Optic Network Architectures for Radar and Avionics Signal Distribution

    NASA Technical Reports Server (NTRS)

    Alam, Mohammad F.; Atiquzzaman, Mohammed; Duncan, Bradley B.; Nguyen, Hung; Kunath, Richard

    2000-01-01

    Continued progress in both civil and military avionics applications is overstressing the capabilities of existing radio-frequency (RF) communication networks based on coaxial cables on board modem aircrafts. Future avionics systems will require high-bandwidth on- board communication links that are lightweight, immune to electromagnetic interference, and highly reliable. Fiber optic communication technology can meet all these challenges in a cost-effective manner. Recently, digital fiber-optic communication systems, where a fiber-optic network acts like a local area network (LAN) for digital data communications, have become a topic of extensive research and development. Although a fiber-optic system can be designed to transport radio-frequency (RF) signals, the digital fiber-optic systems under development today are not capable of transporting microwave and millimeter-wave RF signals used in radar and avionics systems on board an aircraft. Recent advances in fiber optic technology, especially wavelength division multiplexing (WDM), has opened a number of possibilities for designing on-board fiber optic networks, including all-optical networks for radar and avionics RF signal distribution. In this paper, we investigate a number of different novel approaches for fiber-optic transmission of on-board VHF and UHF RF signals using commercial off-the-shelf (COTS) components. The relative merits and demerits of each architecture are discussed, and the suitability of each architecture for particular applications is pointed out. All-optical approaches show better performance than other traditional approaches in terms of signal-to-noise ratio, power consumption, and weight requirements.

  5. Glass Fibers for Printed Circuit Boards

    NASA Astrophysics Data System (ADS)

    Longobardo, Anthony V.

    Fiberglass imparts numerous positive benefits to modern printed circuit boards. Reinforced laminate composites have an excellent cost-performance relationship that makes sense for most applications. At the leading edge of the technology, new glass fibers with improved properties, in combination with the best resin systems available, are able to meet very challenging performance, cost, and regulatory demands while remaining manufacturable.

  6. Fiber optical sensing on-board communication satellites

    NASA Astrophysics Data System (ADS)

    Hurni, A.; Lemke, N. M. K.; Roner, M.; Obermaier, J.; Putzer, P.; Kuhenuri Chami, N.

    2017-11-01

    Striving constantly to reduce mass, AIT effort and overall cost of the classical point-to-point wired temperature sensor harness on-board telecommunication satellites, OHB System (formerly Kayser-Threde) has introduced the Hybrid Sensor Bus (HSB) system. As a future spacecraft platform element, HSB relies on electrical remote sensor units as well as fiber-optical sensors, both of which can serially be connected in a bus architecture. HSB is a modular measurement system with many applications, also thanks to the opportunities posed by the digital I²C bus. The emphasis, however, is on the introduction of fiber optics and especially fiber-Bragg grating (FBG) temperature sensors as disruptive innovation for the company's satellite platforms. The light weight FBG sensors are directly inscribed in mechanically robust and radiation tolerant fibers, reducing the need for optical fiber connectors and splices to a minimum. Wherever an FBG sensor shall be used, the fiber is glued together with a corresponding temperature transducer to the satellites structure or to a subsystem. The transducer is necessary to provide decoupling of mechanical stress, but simultaneously ensure a high thermal conductivity. HSB has been developed in the frame of an ESA-ARTES program with European and German co-funding and will be verified as flight demonstrator on-board the German Heinrich Hertz satellite (H2Sat). In this paper the Engineering Model development of HSB is presented and a Fiber-optical Sensor Multiplexer for a more flexible sensor bus architecture is introduced. The HSB system aims at telecommunication satellite platforms with an operational life time beyond 15 years in geostationary orbit. It claims a high compatibility in terms of performance and interfaces with existing platforms while it was designed with future applications with increased radiation exposure already in mind. In its basic configuration HSB consists of four modules which are the Power Supply Unit, the HSB

  7. Leading Change: How Boards and Presidents Build Exceptional Academic Institutions

    ERIC Educational Resources Information Center

    MacTaggart, Terrence

    2011-01-01

    In a time of transformation in higher education, "Leading Change: How Boards and Presidents Build Exceptional Institutions" fills a significant void in leadership literature and focuses on the changing level of board engagement. This book examines 18 institutions, across the spectrum of higher education, at which the board played a…

  8. The Buildings and Grounds Committee. Effective Committees. Board Basics.

    ERIC Educational Resources Information Center

    Flinn, Ronald T.

    1997-01-01

    The committee on buildings and grounds of a college or university governing board is charged with the broad responsibility for overseeing an institution's physical assets: land, buildings, and equipment. Specific tasks include ensuring the adequacy and condition of capital assets, developing and periodically reviewing policies, advocating for new…

  9. Technology Solutions Case Study: Cladding Attachment Over Mineral Fiber Insulation Board

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2015-03-01

    Exterior insulating sheathing for high performance building enclosures is an important strategy for meeting energy efficiency requirements in many climates and can position an existing building to perform at the level of best-in-class new construction. Insulation board is also important in high performance building retrofit situations where minimal disruption at the interior is typically desired.

  10. Nine Ways to Build Better Relations with Your Board.

    ERIC Educational Resources Information Center

    Fuller, Sam; Martin, Glenda

    1991-01-01

    Interviews with 18 South Carolina superintendents provide the background for 9 ways superintendents can build positive relations with their boards, along with comments about knowing when to move on. (MLF)

  11. Measure Guideline: Three High Performance Mineral Fiber Insulation Board Retrofit Solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neuhauser, K.

    2015-01-01

    This Measure Guideline describes a high performance enclosure retrofit package that uses mineral fiber insulation board, and is intended to serve contractors and designers seeking guidance for non-foam exterior insulation retrofit processes. The guideline describes retrofit assembly and details for wood frame roof and walls and for cast concrete foundations.

  12. Measure Guideline: Three High Performance Mineral Fiber Insulation Board Retrofit Solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neuhauser, Ken

    2015-01-01

    This Measure Guideline describes a high performance enclosure retrofit package that uses mineral fiber insulation board. The Measure Guideline describes retrofit assembly and details for wood frame roof and walls and for cast concrete foundations. This Measure Guideline is intended to serve contractors and designers seeking guidance for non-foam exterior insulation retrofit.

  13. Test build from Robotic Fiber Placement Machine

    NASA Image and Video Library

    2015-10-01

    MAJID BABAI, LEFT, CHIEF OF THE NONMETALLIC MANUFACTURING BRANCH AT MARSHALL, AND STEPHEN RICHARDSON, LEAD FOR THE STRUCTURAL DEVELOPMENT TEAM, TAKE A CLOSER LOOK AT ONE OF THE FIRST TEST BUILDS MADE BY THE NEW ROBOTIC FIBER PLACEMENT MACHINE BEHIND THEM.

  14. Building Relationships, Yielding Results: How Superintendents Can Work with School Boards to Create Productive Teams

    ERIC Educational Resources Information Center

    Hackett, Julie L.

    2015-01-01

    In "Building Relationships, Yielding Results," the seasoned superintendent of an urban school district provides a clear road map for effective collaboration with school boards and the type of relationship-building required to achieve long-term, sustainable reforms. Instead of keeping school board members at arm's length or inundating…

  15. Preparation of High Mechanical Performance Nano-Fe3O4/Wood Fiber Binderless Composite Boards for Electromagnetic Absorption via a Facile and Green Method

    PubMed Central

    Dang, Baokang; Chen, Yipeng; Wang, Hanwei; Chen, Bo; Jin, Chunde; Sun, Qingfeng

    2018-01-01

    Fe3O4/wood fiber composites are prepared with a green mechanical method using only distilled water as a solvent without any chemical agents, and then a binderless composite board with high mechanical properties is obtained via a hot-press for electromagnetic (EM) absorption. The fibers are connected by hydrogen bonds after being mechanically pretreated, and Fe3O4 nanoparticles (NPs) are attached to the fiber surface through physical adsorption. The composite board is bonded by an adhesive, which is provided by the reaction of fiber composition under high temperature and pressure. The Nano-Fe3O4/Fiber (NFF) binderless composite board shows remarkable microwave absorption properties and high mechanical strength. The optional reflection loss (RL) of the as-prepared binderless composite board is −31.90 dB. The bending strength of the NFF binderless composite board is 36.36 MPa with the addition of 6% nano-Fe3O4, the modulus of elasticity (MOE) is 6842.16 MPa, and the internal bond (IB) strength is 0.81 MPa. These results demonstrate that magnetic nanoparticles are deposited in binderless composite board by hot pressing, which is the easiest way to produce high mechanical strength and EM absorbers. PMID:29361726

  16. Detection and localization of building insulation faults using optical-fiber DTS system

    NASA Astrophysics Data System (ADS)

    Papes, Martin; Liner, Andrej; Koudelka, Petr; Siska, Petr; Cubik, Jakub; Kepak, Stanislav; Jaros, Jakub; Vasinek, Vladimir

    2013-05-01

    Nowadays the trends in the construction industry are changing at an incredible speed. The new technologies are still emerging on the market. Sphere of building insulation is not an exception as well. One of the major problems in building insulation is usually its failure, whether caused by unwanted mechanical intervention or improper installation. The localization of these faults is quite difficult, often impossible without large intervention into the construction. As a proper solution for this problem might be utilization of Optical-Fiber DTS system based on stimulated Raman scattering. Used DTS system is primary designed for continuous measurement of the temperature along the optical fiber. This system is using standard optical fiber as a sensor, which brings several advantages in its application. First, the optical fiber is relatively inexpensive, which allows to cover a quite large area for a small cost. The other main advantages of the optical fiber are electromagnetic resistance, small size, safety operation in inflammable or explosive area, easy installation, etc. This article is dealing with the detection and localization of building insulation faults using mentioned system.

  17. Building No. 918, detail of skirt board and concrete post ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Building No. 918, detail of skirt board and concrete post foundation with termite shield - Presidio of San Francisco, Enlisted Men's Barracks Type, West end of Crissy Field, between Pearce & Maudlin Streets, San Francisco, San Francisco County, CA

  18. The Role of the Superintendent and School Board Chair in Building Relational Trust with Newly Elected Board Members in Small Rural Washington School Districts

    ERIC Educational Resources Information Center

    Ament, Thu H.

    2013-01-01

    Trust and trusting relationships appear to be critical resources for schools helping superintendents and their school board members build teamwork within their district's vision, mission, and goals. This study examined and analyzed data of the superintendents, board chairs, and newly-inducted board members of the three school districts in small…

  19. The usage of carbon fiber reinforcement polymer and glass fiber reinforcement polymer for retrofit technology building

    NASA Astrophysics Data System (ADS)

    Tarigan, Johannes; Meka, Randi; Nursyamsi

    2018-03-01

    Fiber Reinforcement Polymer has been used as a material technology since the 1970s in Europe. Fiber Reinforcement Polymer can reinforce the structure externally, and used in many types of buildings like beams, columns, and slabs. It has high tensile strength. Fiber Reinforcement Polymer also has high rigidity and strength. The profile of Fiber Reinforcement Polymer is thin and light, installation is simple to conduct. One of Fiber Reinforcement Polymer material is Carbon Fiber Reinforcement Polymer and Glass Fiber Reinforcement Polymer. These materials is tested when it is installed on concrete cylinders, to obtain the comparison of compressive strength CFRP and GFRP. The dimension of concrete is diameter of 15 cm and height of 30 cm. It is amounted to 15 and divided into three groups. The test is performed until it collapsed to obtain maximum load. The results of research using CFRP and GFRP have shown the significant enhancement in compressive strength. CFRP can increase the compressive strength of 26.89%, and GFRP of 14.89%. For the comparison of two materials, CFRP is more strengthening than GFRP regarding increasing compressive strength. The usage of CFRP and GFRP can increase the loading capacity.

  20. Reduced Gravity Zblan Optical Fiber

    NASA Technical Reports Server (NTRS)

    Tucker, Dennis S.; Workman, Gary L.; Smith, Guy A.

    2000-01-01

    Two optical fiber pullers have been designed for pulling ZBLAN optical fiber in reduced gravity. One fiber puller was designed, built and flown on board NASA's KC135 reduced gravity aircraft. A second fiber puller has been designed for use on board the International Space Station.

  1. Center of gravity estimation using a reaction board instrumented with fiber Bragg gratings

    NASA Astrophysics Data System (ADS)

    Oliveira, Rui; Roriz, Paulo; Marques, Manuel B.; Frazão, Orlando

    2018-03-01

    The purpose of the present work is to construct a reaction board based on fiber Bragg gratings (FBGs) that could be used for estimation of the 2D coordinates of the projection of center of gravity (CG) of an object. The apparatus is consisted of a rigid equilateral triangular board mounted on three supports at the vertices, two of which have cantilevers instrumented with FBGs. When an object of known weight is placed on the board, the bending strain of the cantilevers is measured by a proportional wavelength shift of the FBGs. Applying the equilibrium conditions of a rigid body and proper calibration procedures, the wavelength shift is used to estimate the vertical reaction forces and moments of force at the supports and the coordinates of the object's CG projection on the board. This method can be used on a regular basis to estimate the CG of the human body or objects with complex geometry and density distribution. An example is provided for the estimation of the CG projection coordinates of two orthopaedic femur bone models, one intact, and the other with a hip stem implant encased. The clinical implications of changing the normal CG location by means of a prosthesis have been discussed.

  2. Design and optimization of a fiber optic data link for new generation on-board SAR processing architectures

    NASA Astrophysics Data System (ADS)

    Ciminelli, Caterina; Dell'Olio, Francesco; Armenise, Mario N.; Iacomacci, Francesco; Pasquali, Franca; Formaro, Roberto

    2017-11-01

    A fiber optic digital link for on-board data handling is modeled, designed and optimized in this paper. Design requirements and constraints relevant to the link, which is in the frame of novel on-board processing architectures, are discussed. Two possible link configurations are investigated, showing their advantages and disadvantages. An accurate mathematical model of each link component and the entire system is reported and results of link simulation based on those models are presented. Finally, some details on the optimized design are provided.

  3. Fiber-Optic Communication Links Suitable for On-Board Use in Modern Aircraft

    NASA Technical Reports Server (NTRS)

    Nguyen, Hung; Ngo, Duc; Alam, Mohammad F.; Atiquzzaman, Mohammed; Sluse, James; Slaveski, Filip

    2004-01-01

    The role of the Advanced Air Transportation Technologies program undertaken at the NASA Glenn Research Centers has been focused mainly on the improvement of air transportation safety, with particular emphasis on air transportation communication systems in on-board aircraft. The conventional solutions for digital optical communications systems specifically designed for local/metro area networks are, unfortunately, not capable of transporting the microwave and millimeter RF signals used in avionics systems. Optical networks capable of transporting RF signals are substantially different from the standard digital optical communications systems. The objective of this paper is to identify a number of different communication link architectures for RF/fiber optic transmission using a single backbone fiber for carrying VHF and UHF RF signals in the aircraft. To support these architectures, two approaches derived from both hybrid RF-optical and all-optical processing methodologies are discussed with single and multiple antennas for explicitly transporting VHF and UHF signals, while the relative merits and demerits of each architecture are also addressed. Furthermore, the experimental results of wavelength division multiplexing (WDM) link architecture from our test-bed platform, configured for aircraft environment to support simultaneous transmission of multiple RF signals over a single optical fiber, exhibit no appreciable signal degradation at wavelengths of both 1330 and 1550 nm, respectively. Our measurements of signal to noise ratio carried out for the transmission of FM and AM analog modulated signals at these wavelengths indicate that WDM is a fiber optic technology which is potentially suitable for avionics applications.

  4. Building a Board that Sticks Together

    ERIC Educational Resources Information Center

    Wilson, E. B.

    2006-01-01

    High-performing boards operating at a distinguishable level of excellence, all exhibit a culture of cohesiveness. And a compelling codicil is that these boards did not deliberately set out to become cohesive and perhaps do not even know they are cohesive. This article examines the value of cohesion to university governing boards, explicitly…

  5. Optical-fiber-to-waveguide coupling using carbon-dioxide-laser-induced long-period fiber gratings.

    PubMed

    Bachim, Brent L; Ogunsola, Oluwafemi O; Gaylord, Thomas K

    2005-08-15

    Optical fibers are expected to play a role in chip-level and board-level optical interconnects because of limitations on the bandwidth and level of integration of electrical interconnects. Therefore, methods are needed to couple optical fibers directly to waveguides on chips and on boards. We demonstrate optical-fiber-to-waveguide coupling using carbon-dioxide laser-induced long-period fiber gratings (LPFGs). Such gratings can be written in standard fiber and offer wavelength multiplexing-demultiplexing performance. The coupler fabrication process and the characterization apparatus are presented. The operation and the wavelength response of a LPFG-based optical-fiber-to-waveguide directional coupler are demonstrated.

  6. On the measurement of fiber orientation in fiberboard

    Treesearch

    Otto Suchsland; Charles W. McMillin

    1983-01-01

    An attempt to measure the vertical component of fiber orientation in fiberboard is described. The experiment is based on the obvious reduction of the furnish fiber length which occurs by cutting thin microtome sections of the board parallel to the board plane. Only when no vertical fiber orientation component is present will the fibers contained in these sections have...

  7. Automated determination of fibrillar structures by simultaneous model building and fiber diffraction refinement.

    PubMed

    Potrzebowski, Wojciech; André, Ingemar

    2015-07-01

    For highly oriented fibrillar molecules, three-dimensional structures can often be determined from X-ray fiber diffraction data. However, because of limited information content, structure determination and validation can be challenging. We demonstrate that automated structure determination of protein fibers can be achieved by guiding the building of macromolecular models with fiber diffraction data. We illustrate the power of our approach by determining the structures of six bacteriophage viruses de novo using fiber diffraction data alone and together with solid-state NMR data. Furthermore, we demonstrate the feasibility of molecular replacement from monomeric and fibrillar templates by solving the structure of a plant virus using homology modeling and protein-protein docking. The generated models explain the experimental data to the same degree as deposited reference structures but with improved structural quality. We also developed a cross-validation method for model selection. The results highlight the power of fiber diffraction data as structural constraints.

  8. Illustrative Bylaws for Public College and University Governing Boards. Board Basics

    ERIC Educational Resources Information Center

    Ingram, Tom; Johnson, Neal

    2005-01-01

    Bylaws constitute one of the most important legal documents in the portfolio of a public college or university board. They articulate the board?s responsibilities and establish the "rules" by which the board organizes itself to do its work. Bylaws begin where a public institution's statutes or constitutional provisions leave off. They build on…

  9. Advisory Boards: Gateway to Business Engagement

    ERIC Educational Resources Information Center

    Meeder, Hans; Pawlowski, Brett

    2012-01-01

    Interest has been growing in how to build or manage an effective business advisory board. Developing an advisory board is crucial to keeping CTE programs relevant and viable by engaging the support of business and industry. This article delves into how to build and manage a board, and how to re-energize boards that already exist but may be lacking.

  10. AVIRIS foreoptics, fiber optics and on-board calibrator

    NASA Technical Reports Server (NTRS)

    Chrisp, Michael P.; Chrien, Thomas G.; Steimle, L.

    1987-01-01

    The foreoptics, fiber optic system and calibration source of the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) are described. The foreoptics, based on a modified Kennedy scanner, is coupled by optical fibers to the four spectrometers. The optical fibers allow convenient positioning of the spectrometers in the limited space and enable simple compensation of the scanner's thermal defocus (at the -23 C operating temp) by active control of the fiber focal plane position. A challenging requirement for the fiber optic system was the transmission to the spectral range 1.85 to 2.45 microns at .45 numerical aperture. This was solved with custom fluoride glass fibers from Verre Fluore. The onboard calibration source is also coupled to the spectrometers by the fibers and provides two radiometric levels and a reference spectrum to check the spectrometers' alignment. Results of the performance of the assembled subsystems are presented.

  11. Fiber optic sensor based on Mach-Zehnder interferometer for securing entrance areas of buildings

    NASA Astrophysics Data System (ADS)

    Nedoma, Jan; Fajkus, Marcel; Martinek, Radek; Mec, Pavel; Novak, Martin; Bednarek, Lukas; Vasinek, Vladimir

    2017-10-01

    Authors of this article focused on the utilization of fiber optic sensors based on interferometric measurements for securing entrance areas of buildings such as windows and doors. We described the implementation of the fiber-optic interferometer (type Mach-Zehnder) into the window frame or door, sensor sensitivity, analysis of the background noise and methods of signal evaluation. The advantage of presented solution is the use of standard telecommunication fiber standard G.652.D, high sensitivity, immunity of sensor to electromagnetic interference (EMI) and passivity of the sensor regarding power supply. Authors implemented the Graphical User Interface (GUI) which offers the possibility of remote monitoring presented sensing solution.

  12. Building a Better Board.

    ERIC Educational Resources Information Center

    Crowther, Connie

    1989-01-01

    Guidelines for establishing an effective fund-raising board include knowing the group's and the institution's mission, getting expert help, recruiting helpful individuals, making expectations clear, giving trustees honest information, promoting trustee self-examination, getting a key leader to direct recruitment, welcoming new leadership, having…

  13. Flexural strength using Steel Plate, Carbon Fiber Reinforced Polymer (CFRP) and Glass Fiber Reinforced Polymer (GFRP) on reinforced concrete beam in building technology

    NASA Astrophysics Data System (ADS)

    Tarigan, Johannes; Patra, Fadel Muhammad; Sitorus, Torang

    2018-03-01

    Reinforced concrete structures are very commonly used in buildings because they are cheaper than the steel structures. But in reality, many concrete structures are damaged, so there are several ways to overcome this problem, by providing reinforcement with Fiber Reinforced Polymer (FRP) and reinforcement with steel plates. Each type of reinforcements has its advantages and disadvantages. In this study, researchers discuss the comparison between flexural strength of reinforced concrete beam using steel plates and Fiber Reinforced Polymer (FRP). In this case, the researchers use Carbon Fiber Reinforced Polymer (CFRP) and Glass Fiber Reinforced Polymer (GFRP) as external reinforcements. The dimension of the beams is 15 x 25 cm with the length of 320 cm. Based on the analytical results, the strength of the beam with CFRP is 1.991 times its initial, GFRP is 1.877 times while with the steel plate is 1.646 times. Based on test results, the strength of the beam with CFRP is 1.444 times its initial, GFRP is 1.333 times while the steel plate is 1.167 times. Based on these test results, the authors conclude that beam with CFRP is the best choice for external reinforcement in building technology than the others.

  14. Health monitoring system for a tall building with Fiber Bragg grating sensors

    NASA Astrophysics Data System (ADS)

    Li, D. S.; Li, H. N.; Ren, L.; Guo, D. S.; Song, G. B.

    2009-03-01

    Fiber Bragg grating (FBG) sensors demonstrate great potentials for structural health monitoring of civil structures to ensure their structural integrity, durability and reliability. The advantages of applying fiber optic sensors to a tall building include their immunity of electromagnetic interference and multiplexing ability to transfer optical signals over a long distance. In the work, FBG sensors, including strain and temperature sensors, are applied to the construction monitoring of an 18-floor tall building starting from its construction date. The main purposes of the project are: 1) monitoring the temperature evolution history within the concrete during the pouring process; 2) measuring the variations of the main column strains on the underground floor while upper 18 floors were subsequently added on; and 3) monitoring the relative displacements between two foundation blocks. The FBG sensors have been installed and interrogated continuously for more than five months. Monitoring results of temperature and strains during the period are presented in the paper. Furthermore, the lag behavior between the concrete temperature and its surrounding air temperature is investigated.

  15. Cellulose nanofiber board.

    PubMed

    Yousefi, Hossein; Azad, Sona; Mashkour, Mahdi; Khazaeian, Abolghasem

    2018-05-01

    A cellulose nanofiber board (CNF-board) with a nominal thickness of 3 mm was fabricated without adhesive or additive. To provide comparison, a cellulose fiber board (CF-board) was also fabricated. A novel cold pre-press apparatus was made to dewater highly absorbent CNF gel prior to drying. A mild drying condition in the vacuum oven at 70 °C and 0.005 MPa was enough to provide the CNF-board with a density of 1.3 g/cm 3 thanks to its self-densification capability. Unlike the CF-board, the fabricated CNF-board had a high water-activated dimensional recovery ratio (averagely 96%) during the five cyclic wetting-drying process. The flexural and tensile strengths of CNF-board obtained were 162 MPa and 85 MPa, respectively. The corresponding values for CF-board were 28 MPa and 11 MPa, respectively. The specific flexural and tensile strengths of CNF-board obtained were higher than those of CF-board as well as some other traditional wood-based composites, polymers and structural ASTM A36 steel. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Novel Application of Glass Fibers Recovered From Waste Printed Circuit Boards as Sound and Thermal Insulation Material

    NASA Astrophysics Data System (ADS)

    Sun, Zhixing; Shen, Zhigang; Ma, Shulin; Zhang, Xiaojing

    2013-10-01

    The aim of this study is to investigate the feasibility of using glass fibers, a recycled material from waste printed circuit boards (WPCB), as sound absorption and thermal insulation material. Glass fibers were obtained through a fluidized-bed recycling process. Acoustic properties of the recovered glass fibers (RGF) were measured and compared with some commercial sound absorbing materials, such as expanded perlite (EP), expanded vermiculite (EV), and commercial glass fiber. Results show that RGF have good sound absorption ability over the whole tested frequency range (100-6400 Hz). The average sound absorption coefficient of RGF is 0.86, which is prior to those of EP (0.81) and EV (0.73). Noise reduction coefficient analysis indicates that the absorption ability of RGF can meet the requirement of II rating for sound absorbing material according to national standard. The thermal insulation results show that RGF has a fair low thermal conductivity (0.046 W/m K), which is comparable to those of some insulation materials (i.e., EV, EP, and rock wool). Besides, an empirical dependence of thermal conductivity on material temperature was determined for RGF. All the results showed that the reuse of RGF for sound and thermal insulation material provided a promising way for recycling WPCB and obtaining high beneficial products.

  17. School Capital Manual. An Interim Guide for School Boards, Administrators, Facility Planners and Consultants Who Engage in School Building Projects.

    ERIC Educational Resources Information Center

    Alberta Dept. of Education, Edmonton.

    This manual is intended for use by the Alberta, Canada, school boards, administrators, consultants, education staff, and other individuals involved in school building projects. The purpose of the School Capital Plan, funding, and Alberta Education's funding framework are detailed. The school building project components of the School Capital Plan…

  18. Laccase-Catalyzed Surface Modification of Thermo-Mechanical Pulp (TMP) for the Production of Wood Fiber Insulation Boards Using Industrial Process Water

    PubMed Central

    Schubert, Mark; Ruedin, Pascal; Civardi, Chiara; Richter, Michael; Hach, André; Christen, Herbert

    2015-01-01

    Low-density wood fiber insulation boards are traditionally manufactured in a wet process using a closed water circuit (process water). The water of these industrial processes contains natural phenolic extractives, aside from small amounts of admixtures (e.g., binders and paraffin). The suitability of two fungal laccases and one bacterial laccase was determined by biochemical characterization considering stability and substrate spectra. In a series of laboratory scale experiments, the selected commercial laccase from Myceliophtora thermophila was used to catalyze the surface modification of thermo-mechanical pulp (TMP) using process water. The laccase catalyzed the covalent binding of the phenolic compounds of the process water onto the wood fiber surface and led to change of the surface chemistry directly via crosslinking of lignin moieties. Although a complete substitution of the binder was not accomplished by laccase, the combined use of laccase and latex significantly improved the mechanical strength properties of wood fiber boards. The enzymatically-treated TMP showed better interactions with the synthetic binder, as shown by FTIR-analysis. Moreover, the enzyme is extensively stable in the process water and the approach requires no fresh water as well as no cost-intensive mediator. By applying a second-order polynomial model in combination with the genetic algorithm (GA), the required amount of laccase and synthetic latex could be optimized enabling the reduction of the binder by 40%. PMID:26046652

  19. How School Administrators and Board Members Are Improving Learning and Saving Money. Energy-Smart Building Choices.

    ERIC Educational Resources Information Center

    Department of Energy, Washington, DC.

    This guide shows ways that school administrators and board members can contribute to energy choice decisions for educational facilities, and it discusses how reducing operating costs also can create better learning environments. The guide reveals how design guidelines help create high-performance school buildings. It explains the use of energy…

  20. Composition of heavy metals and airborne fibers in the indoor environment of a building during renovation.

    PubMed

    Latif, Mohd Talib; Baharudin, Nor Hafizah; Velayutham, Puvaneswary; Awang, Normah; Hamdan, Harimah; Mohamad, Ruqyyah; Mokhtar, Mazlin B

    2011-10-01

    The renovation of a building will certainly affect the quality of air in the vicinity of where associated activities were undertaken, this includes the quality of air inside the building. Indoor air pollutants such as particulate matter, heavy metals, and fine fibers are likely to be emitted during renovation work. This study was conducted to determine the concentration of heavy metals, asbestos and suspended particulates in the Biology Building, at the Universiti Kebangsaan, Malaysia (UKM). Renovation activities were carried out widely in the laboratories which were located in this building. A low-volume sampler was used to collect suspended particulate matter of a diameter size less than 10 μm (PM₁₀) and an air sampling pump, fitted with a cellulose ester membrane filter, were used for asbestos sampling. Dust was collected using a small brush and scope. The concentration of heavy metals was determined through the use of inductively coupled plasma-mass spectroscopy and the fibers were counted through a phase contrast microscope. The concentrations of PM₁₀ recorded in the building during renovation action (ranging from 166 to 542 μg m⁻³) were higher than the value set by the Department of Safety and Health for respirable dust (150 μg m⁻³). Additionally, they were higher than the value of PM₁₀ recorded in indoor environments from other studies. The composition of heavy metals in PM₁₀ and indoor dust were found to be dominated by Zn and results also showed that the concentration of heavy metals in indoor dust and PM₁₀ in this study was higher than levels recorded in other similar studies. The asbestos concentration was 0.0038 ± 0.0011 fibers/cc. This was lower than the value set by the Malaysian Department of Occupational, Safety and Health (DOSH) regulations of 0.1 fibers/cc, but higher than the background value usually recorded in indoor environments. This study strongly suggests that renovation issues need to be considered seriously

  1. Fiber-handling robot and optical connection mechanisms for automatic cross-connection of multiple optical connectors

    NASA Astrophysics Data System (ADS)

    Mizukami, Masato; Makihara, Mitsuhiro

    2013-07-01

    Conventionally, in intelligent buildings in a metropolitan area network and in small-scale facilities in the optical access network, optical connectors are joined manually using an optical connection board and a patch panel. In this manual connection approach, mistakes occur due to discrepancies between the actual physical settings of the connections and their management because these processes are independent. Moreover, manual cross-connection is time-consuming and expensive because maintenance personnel must be dispatched to remote places to correct mistakes. We have developed a fiber-handling robot and optical connection mechanisms for automatic cross-connection of multiple optical connectors, which are the key elements of automatic optical fiber cross-connect equipment. We evaluate the performance of the equipment, such as its optical characteristics and environmental specifications. We also devise new optical connection mechanisms that enable the automated optical fiber cross-connect module to handle and connect angled physical contact (APC) optical connector plugs. We evaluate the performance of the equipment, such as its optical characteristics. The evaluation results confirm that the automated optical fiber cross-connect equipment can connect APC connectors with low loss and high return loss, indicating that the automated optical fiber cross-connect equipment is suitable for practical use in intelligent buildings and optical access networks.

  2. The recycling of comminuted glass-fiber-reinforced resin from electronic waste.

    PubMed

    Duan, Huabo; Jia, Weifeng; Li, Jinhui

    2010-05-01

    The reuse of comminuted glass-fiber-reinforced resin with various granularities gathered from printed circuit manufacturing residues was investigated. As fillers, these residues were converted into polymeric composite board by an extrusion and injection process using polypropylene as a bonding agent. The mechanical properties of the reproduced composite board were examined by considering the effects of mass fraction and glass-fiber distribution. Interfacial-layer micrograph analysis of the composite material fracture surface was used to study the fiber reinforcement mechanism. Results showed that using comminuted glass-fiber-reinforced resin as a filler material greatly enhanced the performance properties of the composite board. Although the length and diameter of filler varied, these variations had no appreciable effect on the mechanical properties of the processed board. Maximum values of 48.30 MPa for flexural strength, 31.34 MPa for tensile strength, and 31.34 J/m for impact strength were achieved from a composite board containing mass fractions of 30, 10, and 20% glass-fiber-reinforced resin waste, respectively. It was found that the maximum amount of recyclate that could be added to a composite board was 30% of weight. Beyond these percentages, the materials blend became unmanageable and the mixture less amenable to impregnation with fiber. Presented studies indicated that comminuted glass-fiber-reinforced resin waste-filled polypropylene composites are promising candidates for structural applications where high stiffness and fracture resistance are required.

  3. AFEII Analog Front End Board Design Specifications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rubinov, Paul; /Fermilab

    2005-04-01

    This document describes the design of the 2nd iteration of the Analog Front End Board (AFEII), which has the function of receiving charge signals from the Central Fiber Tracker (CFT) and providing digital hit pattern and charge amplitude information from those charge signals. This second iteration is intended to address limitations of the current AFE (referred to as AFEI in this document). These limitations become increasingly deleterious to the performance of the Central Fiber Tracker as instantaneous luminosity increases. The limitations are inherent in the design of the key front end chips on the AFEI board (the SVXIIe and themore » SIFT) and the architecture of the board itself. The key limitations of the AFEI are: (1) SVX saturation; (2) Discriminator to analog readout cross talk; (3) Tick to tick pedestal variation; and (4) Channel to channel pedestal variation. The new version of the AFE board, AFEII, addresses these limitations by use of a new chip, the TriP-t and by architectural changes, while retaining the well understood and desirable features of the AFEI board.« less

  4. Optical waveguide circuit board with a surface-mounted optical receiver array

    NASA Astrophysics Data System (ADS)

    Thomson, J. E.; Levesque, Harold; Savov, Emil; Horwitz, Fred; Booth, Bruce L.; Marchegiano, Joseph E.

    1994-03-01

    A photonic circuit board is fabricated for potential application to interchip and interboard parallel optical links. The board comprises photolithographically patterned polymer optical waveguides on a conventional glass-epoxy electrical circuit board and a surface-mounted integrated circuit (IC) package that optically and electrically couples to an optoelectronic IC. The waveguide circuits include eight-channel arrays of straights, cross-throughs, curves, self- aligning interconnects to multi-fiber ribbon, and out-of-plane turning mirrors. A coherent, fused bundle of optical fibers couples light between 45-deg waveguide mirrors and a GaAs receiver array in the IC package. The fiber bundle is easily aligned to the mirrors and the receivers and is amenable to surface mounting and hermetic sealing. The waveguide-receiver- array board achieved error-free data rates up to 1.25 Gbits/s per channel, and modal noise was shown to be negligible.

  5. Toxic Effects of Man-Made Mineral Fibers with Particular Reference to Ceramic Fibers

    DTIC Science & Technology

    1987-09-01

    Mineral Wool , Rock Wool, Sarcoma, Slag Wool. BEST AVAILABLE COPY PREFACE This document presents information on the toxic effects of man-made mineral fibers...Naturally Synthetic Occurring Asbestos Others Man-Made OthersMineral Fibers Chrysotile Others Fibrous Ceramic Glass Crocidolite Mineral Wool Rock Slag...In recent years both ceramic fiber and mineral wool have been used to replace asbestos on board many U.S. Navy ships. In particular, material

  6. Moisture sorption properties of composite boards from esterified aspen fiber

    Treesearch

    C. Clemons; R. A. Young; R. M. Rowell

    1992-01-01

    One barrier to producing wood-plastic composites with wood fiber is the poor thermoplasticity of wood fiber. The objective of our study was to determine the plasticization of chemically modified wood fiber through tests on unmodified and esterified fiberboards. Attrition-milled aspen fiber was esterified with neat acetic, maleic, or succinic anhydride. Fourier...

  7. Deposition velocities and impact of physical properties on ozone removal for building materials

    NASA Astrophysics Data System (ADS)

    Lin, Chi-Chi; Hsu, Shu-Chen

    2015-01-01

    This study aims to estimate the ozone deposition velocities of eight commonly used building materials (BMs) which include calcium silicate board (CSB), green calcium silicate board (GCSB), mineral fiber ceiling (MFC), green mineral fiber ceiling (GMFC), gypsum board (GB), green gypsum board (GGB), wooden flooring (WF) and green wooden flooring (GWF). In addition, the impact of physical properties (specific surface area and total pore volume of BM) on ozone removal ability was also explored and discussed. Studies were conducted in a small-scale environmental stainless steel chamber. CSB and GCSB showed the highest ozone deposition velocities, while WF and GWF showed the lowest ozone deposition velocities among test BMs materials. All reaction probabilities were estimated to fall within the order of magnitude of 10-6. Green BMs showed lower reaction probabilities with ozone comparing with non-green BMs except for GGB. Consistent with the trends for deposition velocity, fleecy and porous materials exhibit higher reaction probabilities than smooth, non-porous surfaces. Specific surface area of BM is more closely related to ozone removal than total pore volume of BM with R2 of 0.93 vs. R2 of 0.84. Discussion of Thiele modulus for all test BMs indicates surface reactions are occurring quickly relative to internal diffusion and ozone removal is internal diffusion-limited.

  8. IEEE 1393 Spaceborne Fiber Optic Data Bus: A Standard Approach to On-Board Payload Data Handling Networks for the AIAA Space Technology Conference and Exposition "Partnering in the 21th Century"

    NASA Technical Reports Server (NTRS)

    Andrucyk, Dennis J.; Orlando, Fred J.; Chalfant, Charles H.

    1999-01-01

    The Spaceborne Fiber Optic Data Bus (SFODB) is the next generation in on-board data handling networks. It will do for high speed payloads what SAE 1773 has done for on-board command and telemetry systems. That is, it will significantly reduce the cost of payload development, integration and test through interface standardization. As defined in IEEE 1393, SFODB is a 1 Gb/s, fiber optic network specifically designed to support the real-time, on-board data handling requirements of remote sensing spacecraft. The network is highly reliable, fault tolerant, and capable of withstanding the rigors of launch and the harsh space environment. SFODB achieves this operational and environmental performance while maintaining the small size, light weight, and low power necessary for spaceborne applications. SFODB was developed jointly by DoD and NASA GSFC to meet the on-board data handling needs of Remote Sensing satellites. This jointly funded project produced a complete set of flight transmitters, receivers and protocol ASICS; a complete Development & Evaluation System; and, the IEEE 1393 standard.

  9. Building Relationships: It's Not Always Easy, but Juggling Relationships with Board Members and Community Stakeholders Is Essential to Making Needed Campus Reforms

    ERIC Educational Resources Information Center

    Collett, Stacy

    2014-01-01

    Building relationships is the essence of the community college. Higher education administrators learned long ago that building rapport with businesses, state and local government, and constituents is the best way to represent the interests of the community. But that does not make it easy. Board members come and go and the shifting dynamics of…

  10. Industrial Applications of Graphite Fluoride Fibers

    NASA Technical Reports Server (NTRS)

    Hung, Ching-Cheh; Kucera, Donald

    1991-01-01

    Based on fluorination technology developed during 1934 to 1959, and the fiber technology developed during the 1970s, a new process was developed to produce graphite fluoride fibers. In the process, pitch based graphitized carbon fibers are at first intercalated and deintercalated several times by bromine and iodine, followed by several cycles of nitrogen heating and fluorination at 350 to 370 C. Electrical, mechanical, and thermal properties of this fiber depend on the fluorination process and the fluorine content of the graphite fluoride product. However, these properties are between those of graphite and those of PTFE (Teflon). Therefore, it is considered to be a semiplastic. The physical properties suggest that this new material may have many new and unexplored applications. For example, it can be a thermally conductive electrical insulator. Its coefficient of thermal expansion (CTE) can be adjusted to match that of silicon, and therefore, it can be a heat sinking printed circuit board which is CTE compatible with silicon. Using these fibers in printed circuit boards may provide improved electrical performance and reliability of the electronics on the board over existing designs. Also, since it releases fluorine at 300 C or higher, it can be used as a material to store fluorine and to conduct fluorination. This application may simplify the fluorination process and reduce the risk of handling fluorine.

  11. 77 FR 73978 - Foreign-Trade Zone 148-Knoxville, TN, Toho Tenax America, Inc. (Carbon Fiber Manufacturing...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-12

    ...--Knoxville, TN, Toho Tenax America, Inc. (Carbon Fiber Manufacturing Authority), Opening of Comment Period on... manufacture carbon fiber for export and oxidized polyacrylonitrile fiber (Board Order 1868, 77 FR 69435, 11/19/2012). Board Order 1868 did not include authority to manufacture carbon fiber for the U.S. market; the...

  12. Suggested Steps for Planning and Building a New School Building.

    ERIC Educational Resources Information Center

    Oregon State Board of Education, Salem.

    Many school board members are inexperienced in the construction process and unaware of the steps to be taken in school building construction. For this reason, this step-by-step outline attempts in a few short paragraphs under each step in the planning, bonding, and building stages to offer suggestions and advice to the school board members.…

  13. Development of an Adjustable board and a Rotational Board for Scaffold

    NASA Astrophysics Data System (ADS)

    Jang, Myunghoun

    2017-06-01

    Scaffold is widely used in high work-places inside and outside of a building construction site. It is inexpensive and is installed and dismantled easily. Although standards and ledgers of a steel tube and coupler scaffold are installed in a regular distance, the distances of transoms are not equal in some places. Sometimes a working platform or a board is absent in the corner of scaffold. This may cause safety accidents because a foothold is not stable on the transoms. An adjustable safety board and a rotational safety board are suggested in this paper. The adjustable board consists of two footholds. The small one is inserted into the large one. The rotational board covers not only right angle but also acute or obtuse angles. These safety boards for scaffold help to decrease safety accidents in construction sites.

  14. Board oversight of executive performance and compensation.

    PubMed

    Curran, Connie R; Totten, Mary K

    2010-01-01

    Making sure the relative roles of the board and management are clear and agreed upon is becoming more important as market and regulatory forces compel boards to govern at levels of detail once considered micromanagement, but are now required and necessary in the current environment of heightened governance accountability. A clear understanding of each other's roles and responsibilities is step one in building a solid partnership between the board and chief executive. A second element of building a strong foundation for the board-CEO relationship is taking time early on to establish mutual expectations about working together. The board's responsibilities in CEO performance management and compensation include setting performance expectations and goals that are clear and measurable and coaching and motivating the CEO. When a CEO fails, one of the most important steps for the board to take is to look in the mirror and commit to the rigorous due diligence needed to avoid future mistakes. Boards should always have CEO succession on their agenda.

  15. New fiber laser for lidar developments in disaster management

    NASA Astrophysics Data System (ADS)

    Besson, C.; Augere, B.; Canat, G.; Cezard, N.; Dolfi-Bouteyre, A.; Fleury, D.; Goular, D.; Lombard, L.; Planchat, C.; Renard, W.; Valla, M.

    2014-10-01

    Recent progress in fiber technology has enabled new laser designs along with all fiber lidar architectures. Their asset is to avoid free-space optics, sparing lengthy alignment procedures and yielding compact setups that are well adapted for field operations and on board applications thanks to their intrinsic vibration-resistant architectures. We present results in remote sensing for disaster management recently achieved with fiber laser systems. Field trials of a 3-paths lidar vibrometer for the remote study of modal parameters of buildings has shown that application-related constraints were fulfilled and that the obtained results are consistent with simultaneous in situ seismic sensors measurements. Remote multi-gas detection can be obtained using broadband infrared spectroscopy. Results obtained on methane concentration measurement using an infrared supercontinuum fiber laser and analysis in the 3-4 μm band are reported. For gas flux retrieval, air velocity measurement is also required. Long range scanning all-fiber wind lidars are now available thanks to innovative laser architectures. High peak power highly coherent pulses can be extracted from Er3+:Yb3+ and Tm3+ active fibers using methods described in the paper. The additional laser power provides increased coherent lidar capability in range and scanning of large areas but also better system resistance to adverse weather conditions. Wind sensing at ranges beyond 10 km have been achieved and on-going tests of a scanning system dedicated to airport safety is reported.

  16. Asbestos release from whole-building demolition of buildings with asbestos-containing material.

    PubMed

    Perkins, Robert A; Hargesheimer, John; Fourie, Walter

    2007-12-01

    The whole-building demolition method, which entails one-or two-story buildings pushed down by heavy equipment, loaded into trucks, and hauled away, is generally the most cost-effective means to remove small buildings. For taller buildings, a crane and wrecking ball may be used initially to reduce the height of the building. Demolitions might release asbestos fibers from friable asbestos-containing material (ACM). Fibers also might be released from nominally nonfriable ACM (Categories I and II nonfriable ACM) if it becomes friable after rough handling throughout the whole-building demolition process. This paper reports on asbestos air monitoring from two demolition projects involving ACM. In one building, Category II nonfriable ACM was present because it could not be removed safely prior to demolition. Both projects had large quantities of gypsum wallboard with ACM joint compound and ACM flooring. One building had large quantities of ACM spray-on ceiling material. During the demolitions personal air monitoring of the workers and area air monitoring downwind and around the sites were conducted. The monitoring found the concentrations of fibers detected by phase contrast microscopy were generally well below the permissible exposure limits (PEL) of workers. Electron microcopy analysis of samples at or near the PEL indicated most of the fibers were not asbestos, and the actual asbestos exposure was often below the detection limit of the procedure. The buildings were kept wet with fire hoses during the demolition and that required large quantities of water, 20,000-60,000 gal/day (75-225 m(3)/day). Earlier studies found little asbestos release from buildings containing only nonfriable ACM demolished by this method. This project found a negligible release of asbestos fibers, despite the presence of nonfriable materials that might become friable, such as ACM joint compound and spray-on ACM ceiling coating.

  17. Superintendents' Entry Periods: Strategies and Behaviors That Successful Superintendents Use to Build Strong Relationships and Trust with Their School Boards during Their Entry Period

    ERIC Educational Resources Information Center

    Howland, Sean J.

    2012-01-01

    The purpose of the study was to identify strategies/behaviors that successful superintendents used to build strong relationships and trust with their school boards during their entry periods. Three research questions guided the study: (1) What strategies/behaviors are successful superintendents using to build strong relationships and trust with…

  18. Engineering Management Board Tour VAB

    NASA Image and Video Library

    2017-03-22

    Members of NASA’s Engineering Management Board tour of the Vehicle Assembly Building at Kennedy Space Center in Florida. The platforms in High Bay 3, including the one on which the board members are standing, were designed to surround and provide access to NASA’s Space Launch System and Orion spacecraft. The Engineering Management Board toured integral areas of Kennedy to help the agencywide group reach its goal of unifying engineering work across NASA.

  19. 100 GHz ultra-wideband (UWB) fiber-to-the-antenna (FTTA) system for in-building and in-home networks.

    PubMed

    Chow, C W; Kuo, F M; Shi, J W; Yeh, C H; Wu, Y F; Wang, C H; Li, Y T; Pan, C L

    2010-01-18

    Fiber-to-the-antenna (FTTA) system can be a cost-effective technique for distributing high frequency signals from the head-end office to a number of remote antenna units via passive optical splitter and propagating through low-loss and low-cost optical fibers. Here, we experimentally demonstrate an optical ultra-wideband (UWB) - impulse radio (IR) FTTA system for in-building and in-home applications. The optical UWB-IR wireless link is operated in the W-band (75 GHz - 110 GHz) using our developed near-ballistic unitraveling-carrier photodiode based photonic transmitter (PT) and a 10 GHz mode-locked laser. 2.5 Gb/s UWB-IR FTTA systems with 1,024 high split-ratio and transmission over 300 m optical fiber are demonstrated using direct PT modulation.

  20. Building Better Boards: A Handbook for Board Members in Catholic Education.

    ERIC Educational Resources Information Center

    Sheehan, Lourdes

    Boards and commissions, an important part of Catholic education since the late 1800s, experienced a significant revival in the decades following the Vatican Council II. Today, approximately 68 percent of the Catholic schools in the United States have some form of educational governance structure. Although the primary focus of this handbook, which…

  1. Applications Of Graphite Fluoride Fibers In Outer Space

    NASA Technical Reports Server (NTRS)

    Hung, Ching-Cheng; Long, Martin; Dever, Therese

    1993-01-01

    Report characterizes graphite fluoride fibers made from commercially available graphitized carbon fibers and discusses some potential applications of graphite fluoride fibers in outer space. Applications include heat-sinking printed-circuit boards, solar concentrators, and absorption of radar waves. Other applications based on exploitation of increased resistance to degradation by atomic oxygen, present in low orbits around Earth.

  2. 26. SITE BUILDING 002 SCANNER BUILDING OPERATIONS CENTER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    26. SITE BUILDING 002 - SCANNER BUILDING - OPERATIONS CENTER - MWOC IN OPERATION AT 1945 ZULU TIME, 26 OCTOBER, 1999. "SPACE TRACK BOARD" DATA SHOWING ITEMS #16609 MIR (RUSSIA) AND #25544 ISS (INTERNATIONAL SPACE STATION) BEING TRACKED. - Cape Cod Air Station, Technical Facility-Scanner Building & Power Plant, Massachusetts Military Reservation, Sandwich, Barnstable County, MA

  3. Engineering Management Board Tour VAB

    NASA Image and Video Library

    2017-03-22

    Members of NASA’s Engineering Management Board pause for a group photo during a tour of the Vehicle Assembly Building at Kennedy Space Center in Florida. The platforms in High Bay 3, including the one on which the board members are standing, were designed to surround and provide access to NASA’s Space Launch System and Orion spacecraft. The Engineering Management Board toured integral areas of Kennedy to help the agencywide group reach its goal of unifying engineering work across NASA.

  4. Mechanical properties of gypsum board at elevated temperatures

    Treesearch

    S.M. Cramer; O.M. Friday; R.H. White; G. Sriprutkiat

    2003-01-01

    Gypsum board is a common fire barrier used in house and general building construction. Recently, evaluation of the collapses of the World Trade Center Towers highlighted the potential role and failure of gypsum board in containing the fires and resisting damage. The use of gypsum board as primary fire protection of light-flame wood or steel construction is ubiquitous....

  5. Exposure to airborne asbestos in buildings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, R.J.; Van Orden, D.R.; Corn, M.

    The concentration of airborne asbestos in buildings and its implication for the health of building occupants is a major public health issue. A total of 2892 air samples from 315 public, commercial, residential, school, and university buildings has been analyzed by transmission electron microscopy. The buildings that were surveyed were the subject of litigation related to suits alleging the general building occupants were exposed to a potential health hazard as a result of exposure to the presence of asbestos containing materials (ACM). The average concentration of all asbestos structures was 0.02 structures/ml (s/ml) and the average concentration of asbestos greatermore » than or equal to 5 microns long was 0.00013 fibers/ml (f/ml). The concentration of asbestos was higher in schools than in other buildings. In 48% of indoor samples and 75% of outdoor samples, no asbestos fibers were detected. The observed airborne concentration in 74% of the indoor samples and 96% of the outdoor samples is below the Asbestos Hazard Emergency Response Act clearance level of 0.01 s/ml. Finally, using those fibers which could be seen optically, all indoor samples and all outdoor samples are below the Occupational Safety and Health Administration permissible exposure level of 0.1 f/ml for fibers greater than or equal to 5 microns in length. These results provide substantive verification of the findings of the U.S. Environmental Protection Agency public building study which found very low ambient concentrations of asbestos fibers in buildings with ACM, irrespective of the condition of the material in the buildings.« less

  6. Preparation, Mechanical and Thermal Properties of Cement Board with Expanded Perlite Based Composite Phase Change Material for Improving Buildings Thermal Behavior

    PubMed Central

    Ye, Rongda; Fang, Xiaoming; Zhang, Zhengguo; Gao, Xuenong

    2015-01-01

    Here we demonstrate the mechanical properties, thermal conductivity, and thermal energy storage performance of construction elements made of cement and form-stable PCM-Rubitherm® RT 28 HC (RT28)/expanded perlite (EP) composite phase change materials (PCMs). The composite PCMs were prepared by adsorbing RT28 into the pores of EP, in which the mass fraction of RT28 should be limited to be no more than 40 wt %. The adsorbed RT28 is observed to be uniformly confined into the pores of EP. The phase change temperatures of the RT28/EP composite PCMs are very close to that of the pure RT28. The apparent density and compression strength of the composite cubes increase linearly with the mass fraction of RT28. Compared with the thermal conductivity of the boards composed of cement and EP, the thermal conductivities of the composite boards containing RT28 increase by 15%–35% with the mass fraction increasing of RT28. The cubic test rooms that consist of six boards were built to evaluate the thermal energy storage performance, it is found that the maximum temperature different between the outside surface of the top board with the indoor temperature using the composite boards is 13.3 °C higher than that of the boards containing no RT28. The thermal mass increase of the built environment due to the application of composite boards can contribute to improving the indoor thermal comfort and reducing the energy consumption in the buildings. PMID:28793671

  7. Preparation, Mechanical and Thermal Properties of Cement Board with Expanded Perlite Based Composite Phase Change Material for Improving Buildings Thermal Behavior.

    PubMed

    Ye, Rongda; Fang, Xiaoming; Zhang, Zhengguo; Gao, Xuenong

    2015-11-13

    Here we demonstrate the mechanical properties, thermal conductivity, and thermal energy storage performance of construction elements made of cement and form-stable PCM-Rubitherm® RT 28 HC (RT28)/expanded perlite (EP) composite phase change materials (PCMs). The composite PCMs were prepared by adsorbing RT28 into the pores of EP, in which the mass fraction of RT28 should be limited to be no more than 40 wt %. The adsorbed RT28 is observed to be uniformly confined into the pores of EP. The phase change temperatures of the RT28/EP composite PCMs are very close to that of the pure RT28. The apparent density and compression strength of the composite cubes increase linearly with the mass fraction of RT28. Compared with the thermal conductivity of the boards composed of cement and EP, the thermal conductivities of the composite boards containing RT28 increase by 15%-35% with the mass fraction increasing of RT28. The cubic test rooms that consist of six boards were built to evaluate the thermal energy storage performance, it is found that the maximum temperature different between the outside surface of the top board with the indoor temperature using the composite boards is 13.3 °C higher than that of the boards containing no RT28. The thermal mass increase of the built environment due to the application of composite boards can contribute to improving the indoor thermal comfort and reducing the energy consumption in the buildings.

  8. Ten-year monitoring of high-rise building columns using long-gauge fiber optic sensors

    NASA Astrophysics Data System (ADS)

    Glisic, B.; Inaudi, D.; Lau, J. M.; Fong, C. C.

    2013-05-01

    A large-scale lifetime building monitoring program was implemented in Singapore in 2001. The monitoring aims of this unique program were to increase safety, verify performance, control quality, increase knowledge, optimize maintenance costs, and evaluate the condition of the structures after a hazardous event. The first instrumented building, which has now been monitored for more than ten years, is presented in this paper. The long-gauge fiber optic strain sensors were embedded in fresh concrete of ground-level columns, thus the monitoring started at the birth of both the construction material and the structure. Measurement sessions were performed during construction, upon completion of each new story and the roof, and after the construction, i.e., in-service. Based on results it was possible to follow and evaluate long-term behavior of the building through every stage of its life. The results of monitoring were analyzed at a local (column) and global (building) level. Over-dimensioning of one column was identified. Differential settlement of foundations was detected, localized, and its magnitude estimated. Post-tremor analysis was performed. Real long-term behavior of concrete columns was assessed. Finally, the long-term performance of the monitoring system was evaluated. The researched monitoring method, monitoring system, rich results gathered over approximately ten years, data analysis algorithms, and the conclusions on the structural behavior and health condition of the building based on monitoring are presented in this paper.

  9. Better Buildings Neighborhood Program: BetterBuildings Lowell Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heslin, Thomas

    the local Historic Board, which has jurisdiction in the NHP. The Historic Board was cooperative with any exterior renovations as long as they were not changing the existing aesthetics of the property. If we were replacing a rooftop condenser it needed to be placed where the existing rooftop condenser was located. Receiving proper approval from the Historic Board for any external energy conservation measures was known by all the participating contractors. One area of the retrofits that was contentious regarded venting of the new HVAC equipment. Installing external stacks was not allowed so the contractors had to negotiate with the Historic Board regarding the proper way to vent the equipment that met the needs mechanically and aesthetically. Overall BetterBuildings Lowell was successful at implementing energy and cost saving measures into 31 commercial properties located within the NHP. The 31 retrofits had 1,554,768 square feet of commercial and multifamily housing and a total predicted energy savings exceeding 22,869 a year. Overall the City of Lowell achieved its target goals and is satisfied with the accomplishments of the BetterBuildings program. The City will continue to pursue energy efficient programs and projects.« less

  10. Assessment of Carbon Fiber Electrical Effects

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The risks associated with the use of carbon fiber composites in civil aircraft are discussed along with the need for protection of civil aircraft equipment from fire-released carbon fibers. The size and number of carbon fibers released in civil aircraft crash fires, the downwind dissemination of the fibers, their penetration into buildings and equipment, and the vulnerability of electrical/electronic equipment to damage by the fibers are assessed.

  11. Design of a highly parallel board-level-interconnection with 320 Gbps capacity

    NASA Astrophysics Data System (ADS)

    Lohmann, U.; Jahns, J.; Limmer, S.; Fey, D.; Bauer, H.

    2012-01-01

    A parallel board-level interconnection design is presented consisting of 32 channels, each operating at 10 Gbps. The hardware uses available optoelectronic components (VCSEL, TIA, pin-diodes) and a combination of planarintegrated free-space optics, fiber-bundles and available MEMS-components, like the DMD™ from Texas Instruments. As a specific feature, we present a new modular inter-board interconnect, realized by 3D fiber-matrix connectors. The performance of the interconnect is evaluated with regard to optical properties and power consumption. Finally, we discuss the application of the interconnect for strongly distributed system architectures, as, for example, in high performance embedded computing systems and data centers.

  12. Effect of carbon fiber addition on the electromagnetic shielding properties of carbon fiber/polyacrylamide/wood based fiberboards

    NASA Astrophysics Data System (ADS)

    Dang, Baokang; Chen, Yipeng; Yang, Ning; Chen, Bo; Sun, Qingfeng

    2018-05-01

    Carbon fiber (CF) reinforced polyacrylamide/wood fiber composite boards are fabricated by mechanical grind-assisted hot-pressing, and are used for electromagnetic interference (EMI) shielding. CF with an average diameter of 150 nm is distributed on wood fiber, which is then encased by polyacrylamide. The CF/polyacrylamide/wood fiber (CPW) composite exhibits an optimal EMI shielding effectiveness (SE) of 41.03 dB compared to that of polyacrylamide/wood fiber composite (0.41 dB), which meets the requirements of commercial merchandise. Meanwhile, the CPW composite also shows high mechanical strength. The maximum modulus of rupture (MOR) and modulus of elasticity (MOE) of CPW composites are 39.52 MPa and 5823.15 MPa, respectively. The MOR and MOE of CPW composites increased by 38% and 96%, respectively, compared to that of polyacrylamide/wood fiber composite (28.64 and 2967.35 MPa).

  13. Effect of carbon fiber addition on the electromagnetic shielding properties of carbon fiber/polyacrylamide/wood based fiberboards.

    PubMed

    Dang, Baokang; Chen, Yipeng; Yang, Ning; Chen, Bo; Sun, Qingfeng

    2018-05-11

    Carbon fiber (CF) reinforced polyacrylamide/wood fiber composite boards are fabricated by mechanical grind-assisted hot-pressing, and are used for electromagnetic interference (EMI) shielding. CF with an average diameter of 150 nm is distributed on wood fiber, which is then encased by polyacrylamide. The CF/polyacrylamide/wood fiber (CPW) composite exhibits an optimal EMI shielding effectiveness (SE) of 41.03 dB compared to that of polyacrylamide/wood fiber composite (0.41 dB), which meets the requirements of commercial merchandise. Meanwhile, the CPW composite also shows high mechanical strength. The maximum modulus of rupture (MOR) and modulus of elasticity (MOE) of CPW composites are 39.52 MPa and 5823.15 MPa, respectively. The MOR and MOE of CPW composites increased by 38% and 96%, respectively, compared to that of polyacrylamide/wood fiber composite (28.64 and 2967.35 MPa).

  14. Strengthening Board Capacity for Strategic Financial Oversight

    ERIC Educational Resources Information Center

    Wellman, Jane V.

    2008-01-01

    This paper is the last in a series of reports and initiatives in AGB's Cost Project. The project was designed to build governing board capacity to monitor institutional costs effectively and strategically. Costs and productivity are not new issues in higher education. AGB and its member governing boards have long recognized the importance of…

  15. Strengthening Board Capacity for Overseeing College Costs

    ERIC Educational Resources Information Center

    Wellman, Jane V.

    2005-01-01

    This paper is the first in a series of reports and initiatives that will constitute AGB's Cost Project. The project is designed to build governing board capacity to monitor institutional costs effectively and strategically. Costs and productivity are not new issues in higher education. AGB and its member governing boards have long recognized the…

  16. 802.11ac WLAN MIMO radio-over-fiber distributed antenna system for in-building networks based on multicore fiber

    NASA Astrophysics Data System (ADS)

    Morant, Maria; Llorente, Roberto

    2017-01-01

    In this work we propose and evaluate experimentally the performance of IEEE 802.11ac WLAN standard signals in radio-over-fiber (RoF) distributed-antenna systems based on multicore fiber (MCF) for in-building WLAN connectivity. The RoF performance of WLAN signals with different bandwidth is investigated considering up to IEEE 802.11ac maximum of 160 MHz per user. We evaluate experimentally the performance of WLAN signals employing different modulation and coding schemes achieving bitrates from 78 Mbps to 1404 Mbps per user in distances up to 300 m in a 4-core MCF. The performance of the wireless standard multiple-input multiple-output (MIMO) processing algorithms included in WLAN signals applied to the RoF transmission in MCF optical systems is also evaluated. The impact on the quality of the signal from one of the cores in the MIMO processing is investigated and compared with the results achieved with single-input single-output (SISO) transmission in each core. We measured the error vector magnitude (EVM) and the OFDM data burst information of the received WLAN signals after RoF transmission for different distributed-antenna systems with uni- and bi-directional MCF communication. Finally, we compare the received EVM of a single-antenna system (SISO arrangement) with WLAN systems using two antennas (2×2 MIMO) and four antennas (4×4 MIMO).

  17. Oriented-strand-board- the wave of the future- for the building trade

    Treesearch

    Linda Ashton

    1984-01-01

    Move over, plywood. Oriented-strand board is here. It's less expensive. It's as durable. It has as many uses. And it is the wave of the future. "Oriented-strand board is a direct substitute for plywood" said Jerry Buckner, plant manager for the Martco oriented-strand board plant in Lemoyen. OSB, as it is commonly called, is a structural panel made...

  18. Buildings That Teach.

    ERIC Educational Resources Information Center

    Wiebenson, John

    1998-01-01

    Teachers can use "built teaching aids" or elements of the school building itself to expand teaching and enhance learning. Possibilities include bulletin boards, display cases, murals painted by local artists, permanent information panels, interior windows to classrooms, flags, and bas-reliefs on building exteriors. Playground pavement…

  19. A Practical Guide to Effective School Board Meetings

    ERIC Educational Resources Information Center

    Townsend, Rene S.; Brown, James R.; Buster, Walter L.

    2005-01-01

    As superintendent, and with the support of this detailed book, board meetings can now be turned into productive, results-getting events that help one focus on teaching, learning, and achieving district goals. The authors, having chaired over 1,000 board meetings among them, discuss: (1) Creating role clarity and building the superintendent-based…

  20. Machine Tests Optical Fibers In Flexure

    NASA Technical Reports Server (NTRS)

    Darejeh, Hadi; Thomas, Henry; Delcher, Ray

    1993-01-01

    Machine repeatedly flexes single optical fiber or cable or bundle of optical fibers at low temperature. Liquid nitrogen surrounds specimen as it is bent back and forth by motion of piston. Machine inexpensive to build and operate. Tests under repeatable conditions so candidate fibers, cables, and bundles evaluated for general robustness before subjected to expensive shock and vibration tests.

  1. [Desmin content and transversal stiffness of the left ventricle mouse cardiomyocytes and skeletal muscle fibers after a 30-day space flight on board "BION-M1" biosatellite].

    PubMed

    Ogneva, I V; Maximova, M V; Larina, I M

    2014-01-01

    The aim of this study was to determine the transversal stiffness of the cortical cytoskeleton and the cytoskeletal protein desmin content in the left ventricle cardiomyocytes, fibers of the mouse soleus and tibialis anterior muscle after a 30-day space flight on board the "BION-M1" biosatellite (Russia, 2013). The dissection was made after 13-16.5 h after landing. The transversal stiffness was measured in relaxed and calcium activated state by, atomic force microscopy. The desmin content was estimated by western blotting, and the expression level of desmin-coding gene was detected using real-time PCR. The results indicate that, the transversal stiffness of the left ventricle cardiomyocytes and fibers of the soleus muscle in relaxed and activated states did not differ from the control. The transversal stiffness of the tibialis muscle fibers in relaxed and activated state was increased in the mice group after space flight. At the same time, in all types of studied tissues the desmin content and the expression level of desmin-coding gene did not differ from the control level.

  2. Fiberboards from loblolly pine refiner groundwood: effects of gross wood characteristics and board density

    Treesearch

    Charles W. McMillin

    1968-01-01

    Boards for insulation and and structural uses are being manufactured in increasing quantities. The coarse fiber required for these products can be disk-refined from untreated wood chips. Since such fiber is produced in essentially one mechanical operation, continuous control is required of the raw material as well as the refining process.

  3. Single-mode glass waveguide technology for optical interchip communication on board level

    NASA Astrophysics Data System (ADS)

    Brusberg, Lars; Neitz, Marcel; Schröder, Henning

    2012-01-01

    The large bandwidth demand in long-distance telecom networks lead to single-mode fiber interconnects as result of low dispersion, low loss and dense wavelength multiplexing possibilities. In contrast, multi-mode interconnects are suitable for much shorter lengths up to 300 meters and are promising for optical links between racks and on board level. Active optical cables based on multi-mode fiber links are at the market and research in multi-mode waveguide integration on board level is still going on. Compared to multi-mode, a single-mode waveguide has much more integration potential because of core diameters of around 20% of a multi-mode waveguide by a much larger bandwidth. But light coupling in single-mode waveguides is much more challenging because of lower coupling tolerances. Together with the silicon photonics technology, a single-mode waveguide technology on board-level will be the straight forward development goal for chip-to-chip optical interconnects integration. Such a hybrid packaging platform providing 3D optical single-mode links bridges the gap between novel photonic integrated circuits and the glass fiber based long-distance telecom networks. Following we introduce our 3D photonic packaging approach based on thin glass substrates with planar integrated optical single-mode waveguides for fiber-to-chip and chip-to-chip interconnects. This novel packaging approach merges micro-system packaging and glass integrated optics. It consists of a thin glass substrate with planar integrated singlemode waveguide circuits, optical mirrors and lenses providing an integration platform for photonic IC assembly and optical fiber interconnect. Thin glass is commercially available in panel and wafer formats and characterizes excellent optical and high-frequency properties. That makes it perfect for microsystem packaging. The paper presents recent results in single-mode waveguide technology on wafer level and waveguide characterization. Furthermore the integration in a

  4. Opportunities and Challenges for Boards in Times of Change.

    ERIC Educational Resources Information Center

    Martin, Montez C., Jr.

    1997-01-01

    Argues that change is the rule rather than the exception for community college boards and provides suggestions for reducing the negative consequences of change. Discusses strategies for building effective teams and maintaining board unity and reviews the role of the chair during change. Describes a quality-based strategy for forming effective…

  5. Surveys for sensitivity to fibers and potential impacts from fiber induced failures

    NASA Technical Reports Server (NTRS)

    Butterfield, A. J.

    1979-01-01

    The surveys for sensitivities to fibers and potential impacts from fiber induced failures begins with a review of the survey work completed to date and then describes an impact study involving four industrial installations located in Virginia. The observations and results from both the surveys and the study provide guidelines for future efforts. The survey work was done with three broad objectives: (1) identify the pieces of potentially vulnerable equipment as candidates for test; (2) support the transfer function work by gaining an understanding of how fibers could get into a building; and (3) support the economic analysis by understanding what would happen if fibers precipitated a failure in an item of equipment.

  6. Multi-criteria thermal evaluation of wall enclosures of high-rise buildings insulated products based on modified fibers

    NASA Astrophysics Data System (ADS)

    Pavlov, Alexey; Pavlova, Larisa; Pavlova, Lyudmila

    2018-03-01

    In article results of research of versions of offered types of heaters on the basis of products from the modified fibers for designing energy efficient building enclosures residential high-rise buildings are presented. Traditional building materials (reinforced concrete, brick, wood) are not able to provide the required value of thermal resistance in areas with a temperate and harsh Russia climate in a single-layered enclosing structure. It can be achieved in a multi-layered enclosing structure, where the decisive role is played by new insulating materials with high thermal properties. In general, modern design solutions for external walls are based on the use of new effective thermal insulation materials with the use of the latest technology. The relevance of the proposed topic is to research thermoinsulation properties of new mineral heaters. Theoretical researches of offered heaters from mineral wool on slime-colloidal binder, bentocolloid and microdispersed binders are carried out. In addition, theoretical studies were carried out with several types of facade systems. Comprehensive studies were conducted on the resistance to heat transfer, resistance to vapor permeation and air permeability. According to the received data, recommendations on the use of insulation types depending on the number of storeys of buildings are proposed.

  7. Advanced optical fiber communication systems

    NASA Astrophysics Data System (ADS)

    Kazovsky, Leonid G.

    1994-03-01

    Our research is focused on three major aspects of advanced optical fiber communication systems: dynamic wavelength division multiplexing (WDM) networks, fiber nonlinearities, and high dynamic range coherent analog optical links. In the area of WDM networks, we have designed and implemented two high-speed interface boards and measured their throughput and latency. Furthermore, we designed and constructed an experimental PSK/ASK transceiver that simultaneously transmits packet-switched ASK data and circuit-switched PSK data on the same optical carrier. In the area of fiber nonlinearities, we investigated the theoretical impact of modulation frequency on cross-phase modulation (XPM) in dispersive fibers. In the area of high dynamic range coherent analog optical links, we developed theoretical expressions for the RF power transfer ratio (or RF power gain) and the noise figure (NF) of angle-modulated links. We then compared the RF power gains and noise figures of these links to that of an intensity modulated direct detection (DD) link.

  8. Strategies and Tactics: The Art of Working with a Board of Trustees

    ERIC Educational Resources Information Center

    Polonio, Narcisa

    2004-01-01

    Boards of Trustees are as varied as the individuals that comprise them. There is not one simple golden nugget of advice that can guarantee a successful relationship with a board. Success with boards comes from understanding the complexity of tacit goals and the need to work constantly on building, sustaining and maintaining relationships. The…

  9. The Audit Committee. Board Basics

    ERIC Educational Resources Information Center

    Ostrom, John S.

    2004-01-01

    The Effective Committees set of booklets comprises publications on the following committees: investment, buildings and grounds, academic affairs, student affairs, finance, development, trustees, audit, compensation, and executive. It is part of the AGB Board Basics Series. This report describes the primary role of an audit committee. The primary…

  10. Cellulosic building insulation versus mineral wool, fiberglass or perlite: installer's exposure by inhalation of fibers, dust, endotoxin and fire-retardant additives.

    PubMed

    Breum, N O; Schneider, T; Jørgensen, O; Valdbjørn Rasmussen, T; Skibstrup Eriksen, S

    2003-11-01

    A task-specific exposure matrix was designed for workers installing building insulation materials. A priori, a matrix element was defined by type of task (installer or helper), type of work area (attic spaces or wall cavities) and type of insulation material (slabs from mineral wool, fiberglass or flax; loose-fill cellulosic material or perlite). In the laboratory a mock-up (full scale) of a one-family house was used for simulated installation of insulation materials (four replicates per matrix element). Personal exposure to dust and fibers was measured. The dust was analyzed for content of endotoxin and some trace elements (boron and aluminum) from fire-retardant or mold-resistant additives. Fibers were characterized as WHO fibers or non-WHO fibers. In support of the exposure matrix, the dustiness of all the materials was measured in a rotating drum tester. For installers in attic spaces, risk of exposure was low for inhalation of dust and WHO fibers from slab materials of mineral wool or fiberglass. Slab materials from flax may cause high risk of exposure to endotoxin. The risk of exposure by inhalation of dust from loose-fill materials was high for installers in attic spaces and for some of the materials risk of exposure was high for boron and aluminum. Exposure by inhalation of cellulosic WHO fibers was high but little is known about the health effects and a risk assessment is not possible. For the insulation of walls, the risk of installers' exposure by inhalation of dust and fibers was low for the slab materials, while a high risk was observed for loose-fill materials. The exposure to WHO fibers was positively correlated to the dust exposure. A dust level of 6.1 mg/m3 was shown to be useful as a proxy for screening exposure to WHO fibers in excess of 10(6) fibers/m3. In the rotating drum, slabs of insulation material from mineral wool or fiberglass were tested as not dusty. Cellulosic loose-fill materials were tested as very dusty, and perlite proved to be

  11. Building Blueprints: Looking Toward the Future.

    ERIC Educational Resources Information Center

    College Planning & Management, 2001

    2001-01-01

    Highlights Kent State University's (Ohio) conversion of its physical education building to a technology building that features fiber optics and advanced cabling systems. Photos and a floor plan are included. (GR)

  12. Carbon fiber behavior in an enclosed volume

    NASA Technical Reports Server (NTRS)

    Harvey, M. C.

    1979-01-01

    Tests were performed to evaluate the behavior of single carbon fibers existing in an enclosed space such as a room of a building. Three general phenomena were explored: the concentration decay rate of a fiber-charged room, the degree of uniform mixing of fibers within a room, and the effects of fibers being redisseminated off deposition surfaces within a room. The results were required in understanding the ratio of total indoor fiber exposure to total outdoor fiber exposure, a quantity essential to risk analysis. Results indicate that decay rate is predictable within acceptable limits and that homogeneous mixing can always be assumed. Some factors of redissemination are identified and effects discussed.

  13. [Development and perspective of bio-based chemical fiber industry].

    PubMed

    Li, Zengjun

    2016-06-25

    Bio-based fiber is environment friendly, reproducible, easily biodegradable. Therefore, rapid development of bio-based fiber industry is an obvious in progress to replace petrochemical resources, develop sustainable economy, build resource saving and environment friendly society. This article describes the current development of bio-based fiber industry, analyzes existing problems, indicates the trends and objectives of bio-based fiber materials technology innovation and recommends developing bio-based fibers industry of our country.

  14. Effect of microgravity on crystallization of ZBLAN fibers

    NASA Technical Reports Server (NTRS)

    Tucker, Dennis S.

    1994-01-01

    ZrF4-BaF2-LaF3-AIF3-NaF (ZBLAN) optical fiber was flown on board the NASA's KC-135 microgravity aircraft to determine the effects of microgravity on crystal growth in this material. Fiber samples were placed in evacuated quartz ampoules and heated to the crystallization temperature in 0g, 1g, and 2g. The 1g and 2g samples were observed to slump and crystallize. The 0g samples showed no evidence of crystallization.

  15. New CATV fiber-to-the-subscriber architectures

    NASA Astrophysics Data System (ADS)

    Kim, Gary

    1991-01-01

    Although the cable television industry has seriously proposed the widespread use of optical fiber technology as the foundation of its networks only since 1988 an important financial watershed already has been reached. Based on stunningly rapid AM technology developments and new research by industry engineers the CATV industry has already reached the point where building new optical trunk is cheaper than building conventional coaxial cable plant. Although as recently as 1988 it might have seemed preposterous to suggest that the financial crossover point between optical media and copper media would soon be reached that indeed has occurred. Using a topology dubbed the " fiber trunk and feeder engineers at American Television Communications the second-largest U. S. CATV operator have demonstrated that it is currently feasible to build new optical fiber trunking networks at costs equal to or less than conventional 450-MHz coaxial cable plant. Installation of the first such network already is underway and it is expected that the significant change in fiber economics will further spur the already-heady pace of fiber introduction in the CATV industry. That in turn will create new types of networks with topologies resembling telephone " star" networks more than conventional " tree-and-branch" systems. The new optically-based networks will be far more reliable more flexible and better adapted to signal switching than conventional CATV networks have been. Although the new networks will be put into place

  16. 24 CFR 200.947 - Building product standards and certification program for polystyrene foam insulation board.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... certification program for polystyrene foam insulation board. 200.947 Section 200.947 Housing and Urban... program for polystyrene foam insulation board. (a) Applicable standards. (1) All polystyrene foam... visit the manufacturer's facility to select a sample of each certified polystyrene foam insulation board...

  17. Stretch-tuning optical fiber Bragg gratings using macro-fiber composite (MFC) piezoelectric actuators

    NASA Astrophysics Data System (ADS)

    Allison, Sidney G.; Shams, Qamar A.; Geddis, Demetris L.

    2005-11-01

    The demand for high safety and reliability standards for aerospace vehicles has resulted in time-consuming periodic on-ground inspections. These inspections usually call for the disassembling and reassembling of the vehicle, which can lead to damage or degradation of structures or auxiliary systems. In order to increase aerospace vehicle safety and reliability while reducing the cost of inspection, an on-board real-time structural health monitoring sensing system is required. There are a number of systems that can be used to monitor the structures of aerospace vehicles. Fiber optic sensors have been at the forefront of the health monitoring sensing system research. Most of the research has been focused on the development of Bragg grating-based fiber optic sensors. Along with the development of fiber Bragg grating sensors has been the development of a grating measurement technique based on the principle of optical frequency domain reflectometry (OFDR), which enables the interrogation of hundreds of low reflectivity Bragg gratings. One drawback of these measurement systems is the 1 - 3 Hz measurement speed, which is limited by commercially available tunable lasers. The development of high-speed fiber stretching mechanisms to provide high rate tunable Erbium-doped optical fiber lasers can alleviate this drawback. One successful approach used a thin-layer composite unimorph ferroelectric driver and sensor (THUNDER) piezoelectric actuator, and obtained 5.3-nm wavelength shift. To eliminate the mechanical complexity of the THUNDER actuator, the research reported herein uses the NASA Langley Research Center (LaRC) Macro-Fiber Composite (MFC) actuator to tune Bragg grating based optical fibers.

  18. The Board's Role in Selecting the Administrative Team. The Administrative Team Career Development Series, Book 3.

    ERIC Educational Resources Information Center

    American Association of School Administrators, Arlington, VA.

    As an aid for school board members, this handbook offers advice on selecting central-office and building administrators. The introduction discusses the board's role in administrator selection, lists 16 areas in which board policies are needed, and suggests criteria and information needed for board policies. Chapter 1 reviews recent changes in the…

  19. Natural Fiber Cut Machine Semi-Automatic Linear Motion System for Empty Fiber Bunches: Re-designing for Local Use

    NASA Astrophysics Data System (ADS)

    Asfarizal; Kasim, Anwar; Gunawarman; Santosa

    2017-12-01

    Empty Palm bunches of fiber is local ingredient in Indonesia that easy to obtain. Empty Palm bunches of fiber can be obtained from the palm oil industry such as in West Pasaman. The character of the empty Palm bunches of fiber that is strong and pliable has high-potential for particle board. To transform the large quantities of fiber become particles in size 0-10 mm requires a specially designed cut machine. Therefore, the machine is designed in two-stage system that is mechanical system, structure and cutting knife. Components that have been made, assembled and then tested to reveal the ability of the machine to cut. The results showed that the straight back and forth motion cut machine is able to cut out the empty oil palm bunches of fiber with a length 0-1 cm, 2 cm, 8 cm and the surface of the cut is not stringy. The cutting capacity is at a length of 2 cm in the result 24.4 (kg/h) and 8 cm obtained results of up to 84 (kg/h)

  20. Optical Fiber Protection

    NASA Technical Reports Server (NTRS)

    1999-01-01

    F&S Inc. developed and commercialized fiber optic and microelectromechanical systems- (MEMS) based instrumentation for harsh environments encountered in the aerospace industry. The NASA SBIR programs have provided F&S the funds and the technology to develop ruggedized coatings and coating techniques that are applied during the optical fiber draw process. The F&S optical fiber fabrication facility and developed coating methods enable F&S to manufacture specialty optical fiber with custom designed refractive index profiles and protective or active coatings. F&S has demonstrated sputtered coatings using metals and ceramics and combinations of each, and has also developed techniques to apply thin coatings of specialized polyimides formulated at NASA Langley Research Center. With these capabilities, F&S has produced cost-effective, reliable instrumentation and sensors capable of withstanding temperatures up to 800? C and continues building commercial sales with corporate partners and private funding. More recently, F&S has adapted the same sensing platforms to provide the rapid detection and identification of chemical and biological agents

  1. Durability of pulp fiber-cement composites

    NASA Astrophysics Data System (ADS)

    Mohr, Benjamin J.

    Wood pulp fibers are a unique reinforcing material as they are non-hazardous, renewable, and readily available at relatively low cost compared to other commercially available fibers. Today, pulp fiber-cement composites can be found in products such as extruded non-pressure pipes and non-structural building materials, mainly thin-sheet products. Although natural fibers have been used historically to reinforce various building materials, little scientific effort has been devoted to the examination of natural fibers to reinforce engineering materials until recently. The need for this type of fundamental research has been emphasized by widespread awareness of moisture-related failures of some engineered materials; these failures have led to the filing of national- and state-level class action lawsuits against several manufacturers. Thus, if pulp fiber-cement composites are to be used for exterior structural applications, the effects of cyclical wet/dry (rain/heat) exposure on performance must be known. Pulp fiber-cement composites have been tested in flexure to examine the progression of strength and toughness degradation. Based on scanning electron microscopy (SEM), environmental scanning electron microscopy (ESEM), energy dispersive spectroscopy (EDS), a three-part model describing the mechanisms of progressive degradation has been proposed: (1) initial fiber-cement/fiber interlayer debonding, (2) reprecipitation of crystalline and amorphous ettringite within the void space at the former fiber-cement interface, and (3) fiber embrittlement due to reprecipitation of calcium hydroxide filling the spaces within the fiber cell wall structure. Finally, as a means to mitigate kraft pulp fiber-cement composite degradation, the effects of partial portland cement replacement with various supplementary cementitious materials (SCMs) has been investigated for their effect on mitigating kraft pulp fiber-cement composite mechanical property degradation (i.e., strength and toughness

  2. 78 FR 77132 - Notification of a Public Meeting of the Government Accountability and Transparency Board

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-20

    ... the Recovery Accountability and Transparency Board (RATB) to build on lessons learned and apply the... the envelope. Presentations: The GAT Board will provide the necessary visual equipment to project the...

  3. Invention, design and performance of coconut agrowaste fiberboards for ecologically efficacious buildings

    NASA Astrophysics Data System (ADS)

    Lokko, Mae-ling Jovenes

    As global quantities of waste by-products from food production as well as the range of their applications increase, researchers are realizing critical opportunities to transform the burden of underutilized wastes into ecological profits. Within the tropical hot-humid region, where half the world's current and projected future population growth is concentrated, there is a dire demand for building materials to meet ambitious development schemes and rising housing deficits. However, the building sector has largely overlooked the potential of local agricultural wastes to serve as alternatives to energy-intensive, imported building technologies. Industrial ecologists have recently investigated the use of agrowaste biocomposites to replace conventional wood products that use harmful urea-formaldehyde, phenolic and isocyanate resins. Furthermore, developments in the performance of building material systems with respect to cost, energy, air quality management and construction innovation have evolved metrics about what constitutes material 'upcycling' within building life cycle. While these developments have largely been focused on technical and cost performance, much less attention has been paid to addressing deeply-seated social and cultural barriers to adoption that have sedimented over decades of importation. This dissertation evaluates the development coconut agricultural building material systems in four phases: (i) non-toxic, low-energy production of medium-high density boards (500-1200 kg/m3) from coconut fibers and emerging biobinders; (ii) characterization and evaluation of coconut agricultural building materials hygrothermal performance (iii) scaled-up design development of coconut modular building material systems and (iv) development of a value translation framework for the bottom-up distribution of value to stakeholders within the upcycling framework. This integrated design methodological approach is significant to develop ecological thinking around agrowaste

  4. 77 FR 17001 - Notice of Meeting: Board for International Food and Agricultural Development

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-23

    ... Meeting: Board for International Food and Agricultural Development Pursuant to the Federal Advisory Committee Act, notice is hereby given of the public meeting of the Board for International Food and... the U.S. Agency for International Development, Ronald Reagan Building, Bureau for Food Security, 1300...

  5. Abestos in Buildings: The State Role.

    ERIC Educational Resources Information Center

    Neilander, Dennis K.; Sacarto, Douglas M.

    1988-01-01

    The widespread use of asbestos for several decades in building construction has created major public health concerns for state governments. If asbestos is not thoroughly bound in cement, plaster, resin or some other stable material, it will flake and powder, releasing countless microscopic fibers into the air. Asbestos fibers penetrate deep into…

  6. Energy Edge Post-Occupancy Evaluation Project: The Eugene Water and Electric Board Building (EWEB) Eugene, Oregon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1990-06-01

    The Workspace Satisfaction Survey measures occupant satisfaction with the thermal, lighting, acoustical, and air quality aspects of the work environment. In addition to ratings of these ambient environmental features, occupants also rate their satisfaction with a number of functional and aesthetic features of the office environment as well as their satisfaction with specific kinds of workspaces (e.g., computer rooms, the lobby, employee lounge, etc.) Each section on ambient conditions includes questions on the frequency with which people experience particular kinds of discomforts or problems, how much the discomfort bothers them, and how much it interferes with their work. Occupants aremore » also asked to identify how they cope with discomfort or environmental problems, and to what extent these behaviors enable them to achieve more satisfactory conditions. Results of this survey of occupants of the four story Eugene Water Electric Boards (EWEB) main office building on the banks of the Wilamette River in Eugene, Oregon are the subject of this report.« less

  7. Structure of cortical cytoskeleton in fibers of mouse muscle cells after being exposed to a 30-day space flight on board the BION-M1 biosatellite.

    PubMed

    Ogneva, I V; Maximova, M V; Larina, I M

    2014-05-15

    The aim of the work was to analyze changes in the organization of the cortical cytoskeleton in fibers of the mouse soleus muscle, tibialis anterior muscle and left ventricular cardiomyocytes after completion of a 30-day space flight on board the BION-M1 biosatellite (Russia, 2013). The transversal stiffness of the cortical cytoskeleton of the cardiomyocytes and fibers of the skeletal muscles did not differ significantly within the study groups compared with the vivarium control group. The content of beta- and gamma-actin in the membranous fraction of proteins in the left ventricular cardiomyocytes did not differ significantly within all study groups and correlated with the transversal stiffness. A similar situation was revealed in fibers of the soleus muscle and tibialis anterior muscle. At the same time, the content of beta-actin in the cytoplasmic fraction of proteins was found to be decreased in all types of studied tissues compared with the control levels in the postflight group, with lowered beta-actin gene expression rates in the postflight group. After completion of the space flight, the content of alpha-actinin-4 was found to be reduced in the membranous fraction of proteins from the mouse cardiomyocytes, while its content in the cytoplasmic fraction of proteins did not change significantly. Furthermore, gene expression rates of this protein were decreased at the time of dissection (it was started after 13 h after landing). At the same time, the content of alpha-actinin-1 decreased in the membranous fraction and increased in the cytoplasmic fraction of proteins from the soleus muscle fibers. Copyright © 2014 the American Physiological Society.

  8. The vulnerability of commercial aircraft avionics to carbon fibers

    NASA Technical Reports Server (NTRS)

    Meyers, J. A.; Salmirs, S.

    1980-01-01

    Avionics components commonly used in commercial aircraft were tested for vulnerability to failure when operated in an environment with a high density of graphite fibers. The components were subjected to a series of exposures to graphite fibers of different lengths. Lengths used for the tests were (in order) 1 mm, 3 mm, and 10 mm. The test procedure included subjecting the equipment to characteristic noise and shock environments. Most of the equipment was invulnerable or did not fail until extremely high average exposures were reached. The single exception was an air traffic control transponder produced in the early 1960's. It had the largest case open area through which fibers could enter and it had no coated boards.

  9. Radiation hardening of optical fibers and fiber sensors for space applications: recent advances

    NASA Astrophysics Data System (ADS)

    Girard, S.; Ouerdane, Y.; Pinsard, E.; Laurent, A.; Ladaci, A.; Robin, T.; Cadier, B.; Mescia, L.; Boukenter, A.

    2017-11-01

    In these ICSO proceedings, we review recent advances from our group concerning the radiation hardening of optical fiber and fiber-based sensors for space applications and compare their benefits to state-of-the-art results. We focus on the various approaches we developed to enhance the radiation tolerance of two classes of optical fibers doped with rare-earths: the erbium (Er)-doped ones and the ytterbium/erbium (Er/Yb)-doped ones. As a first approach, we work at the component level, optimizing the fiber structure and composition to reduce their intrinsically high radiation sensitivities. For the Erbium-doped fibers, this has been achieved using a new structure for the fiber that is called Hole-Assisted Carbon Coated (HACC) optical fibers whereas for the Er/Ybdoped optical fibers, their hardening was successfully achieved adding to the fiber, the Cerium element, that prevents the formation of the radiation-induced point defects responsible for the radiation induced attenuation in the infrared part of the spectrum. These fibers are used as part of more complex systems like amplifiers (Erbium-doped Fiber Amplifier, EDFA or Yb-EDFA) or source (Erbium-doped Fiber Source, EDFS or Yb- EDFS), we discuss the impact of using radiation-hardened fibers on the system radiation vulnerability and demonstrate the resistance of these systems to radiation constraints associated with today and future space missions. Finally, we will discuss another radiation hardening approach build in our group and based on a hardening-by-system strategy in which the amplifier is optimized during its elaboration for its future mission considering the radiation effects and not in-lab.

  10. Automated fiber pigtailing machine

    DOEpatents

    Strand, Oliver T.; Lowry, Mark E.

    1999-01-01

    The Automated Fiber Pigtailing Machine (AFPM) aligns and attaches optical fibers to optoelectonic (OE) devices such as laser diodes, photodiodes, and waveguide devices without operator intervention. The so-called pigtailing process is completed with sub-micron accuracies in less than 3 minutes. The AFPM operates unattended for one hour, is modular in design and is compatible with a mass production manufacturing environment. This machine can be used to build components which are used in military aircraft navigation systems, computer systems, communications systems and in the construction of diagnostics and experimental systems.

  11. Automated fiber pigtailing machine

    DOEpatents

    Strand, O.T.; Lowry, M.E.

    1999-01-05

    The Automated Fiber Pigtailing Machine (AFPM) aligns and attaches optical fibers to optoelectronic (OE) devices such as laser diodes, photodiodes, and waveguide devices without operator intervention. The so-called pigtailing process is completed with sub-micron accuracies in less than 3 minutes. The AFPM operates unattended for one hour, is modular in design and is compatible with a mass production manufacturing environment. This machine can be used to build components which are used in military aircraft navigation systems, computer systems, communications systems and in the construction of diagnostics and experimental systems. 26 figs.

  12. Fiber-based laser MOPA transmitter packaging for space environment

    NASA Astrophysics Data System (ADS)

    Stephen, Mark; Yu, Anthony; Chen, Jeffrey; Numata, Kenji; Wu, Stewart; Gonzales, Brayler; Han, Lawrence; Fahey, Molly; Plants, Michael; Rodriguez, Michael; Allan, Graham; Abshire, James; Nicholson, Jeffrey; Hariharan, Anand; Mamakos, William; Bean, Brian

    2018-02-01

    NASA's Goddard Space Flight Center has been developing lidar to remotely measure CO2 and CH4 in the Earth's atmosphere. The ultimate goal is to make space-based satellite measurements with global coverage. We are working on maturing the technology readiness of a fiber-based, 1.57-micron wavelength laser transmitter designed for use in atmospheric CO2 remote-sensing. To this end, we are building a ruggedized prototype to demonstrate the required power and performance and survive the required environment. We are building a fiber-based master oscillator power amplifier (MOPA) laser transmitter architecture. The laser is a wavelength-locked, single frequency, externally modulated DBR operating at 1.57-micron followed by erbium-doped fiber amplifiers. The last amplifier stage is a polarization-maintaining, very-large-mode-area fiber with 1000 μm2 effective area pumped by a Raman fiber laser. The optical output is single-frequency, one microsecond pulses with >450 μJ pulse energy, 7.5 KHz repetition rate, single spatial mode, and < 20 dB polarization extinction.

  13. Building healthy communities. Six steps for the board.

    PubMed

    Goodspeed, S W

    1998-01-01

    Many trustees believe that health care reform must begin in the communities that their organizations serve. To become the visionary leaders that health care needs, trustees must reexamine many long-held beliefs and values, adopt 21st-century principles of governance, embrace the concept of a healthy community, and develop a systematic plan for change. Based on the collective knowledge of boards that have successfully led their organizations through change, the plan described here consists of a systematic six-step process. The process begins with techniques for creating awareness of the need to change and ends with techniques for measuring and sustaining gains (see figure 1 at right).

  14. Situational Governance: A Continuum of Board Types

    ERIC Educational Resources Information Center

    Domenech, Daniel A.

    2005-01-01

    An effective and stable school district requires a superintendent and board who work well together. Such collaboration builds positive momentum and public confidence. It also minimizes the turnover that can slow district progress, encourage "flavor of the year" reform agendas and impede academic achievement. Too seldom school governance…

  15. School Board Advocacy: Ready, Aim, Inspire!

    ERIC Educational Resources Information Center

    Dowd, Karen

    2010-01-01

    It is said that "all politics are local," and the same can be said about advocacy and school boards. Advocacy is essential for retaining the progress that's been made in the past, and for building a foundation and network for the future. Advocating for preferred programs, curricula and initiatives has always been important. As a starting point,…

  16. A design of an interface board between a MRC thermistor probe and a personal computer.

    DOT National Transportation Integrated Search

    2013-09-01

    The main purpose of this project was to design and build a prototype of an interface board between an MRC temperature probe : (thermistor array) and a personal laptop computer. This interface board replaces and significantly improve the capabilities ...

  17. What Factors Influence a Teacher's Decision to Renew National Board Certification?

    ERIC Educational Resources Information Center

    Teague, Kelly Lynne

    2017-01-01

    Building on the research of National Board Certification and its effect on teacher quality, student achievement, and professional development, this dissertation seeks to explore the factors that influence teachers when it is time to renew their National Board Certification. Using a qualitative methodology, this study seeks to describe the process…

  18. 77 FR 75972 - Foreign-Trade Zone 148-Knoxville, Tennessee, Toho Tenax America, Inc., Subzone 148C (Carbon Fiber...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-26

    ... DEPARTMENT OF COMMERCE Foreign-Trade Zones Board [Docket 57-2010] Foreign-Trade Zone 148--Knoxville, Tennessee, Toho Tenax America, Inc., Subzone 148C (Carbon Fiber Manufacturing Authority... manufacture carbon fiber for the U.S. market at this time, is being extended to February 11, 2013, to allow...

  19. Compact multiwavelength transmitter module for multimode fiber optic ribbon cable

    DOEpatents

    Deri, Robert J.; Pocha, Michael D.; Larson, Michael C.; Garrett, Henry E.

    2002-01-01

    A compact multiwavelength transmitter module for multimode fiber optic ribbon cable, which couples light from an M.times.N array of emitters onto N fibers, where the M wavelength may be distributed across two or more vertical-cavity surface-emitting laser (VCSEL) chips, and combining emitters and multiplexer into a compact package that is compatible with placement on a printed circuit board. A key feature is bringing together two emitter arrays fabricated on different substrates--each array designed for a different wavelength--into close physical proximity. Another key feature is to compactly and efficiently combine the light from two or more clusters of optical emitters, each in a different wavelength band, into a fiber ribbon.

  20. Yb-doped polarizing fiber

    NASA Astrophysics Data System (ADS)

    Gillooly, A.; Webb, A. S.; Favero, F. C.; Bouchan, T.; Cooper, L. J.; Read, D.; Hill, M.

    2017-02-01

    An ytterbium (Yb) doped polarizing fiber is demonstrated. The fiber offers the opportunity to build all-fiber lasers with single polarization output and without the need for free-space polarizing components. Traditional single polarization fiber lasers utilize polarization-maintaining (PM) gain fiber with a single polarization stimulation signal. Whilst this results in an approximation to a single polarization laser, the spontaneous emission from the unstimulated polarization state limits the polarization extinction ratio (PER). The PER is further limited as the stimulated signal is prone to crosstalk. Furthermore, controlling amplitude modulation of the stimulated signal is critical for maximizing the peak power of an optical pulse, particularly for high energy lasers. If light is allowed to leak in to the unstimulated axis it will travel at a different velocity to the stimulated axis and can cross-couple back into the signal axis, creating an interference effect which leads to amplitude modulation on the signal pulse. Single-polarization Yb-doped fiber ensures that light on the fast axis is constantly attenuated; ensuring that light on the unstimulated axis cannot propagate and thus cannot degrade the PER or create amplitude modulation. In this paper we report on, to the best of our knowledge, the first demonstration of a single polarization Yb-doped bowtie optical fiber manufactured using a combination of Modified Chemical Vapor Deposition (MCVD) and rare-earth solution doping technology. The fiber has a single-polarization window of 80nm at the operating wavelength of 1060nm and a PER of >18dB. The fabrication and characterization of the fiber is reported.

  1. Effect of ultraviolet light irradiation period on bond strengths between fiber-reinforced composite post and core build-up composite resin.

    PubMed

    Asakawa, Yuya; Takahashi, Hidekazu; Iwasaki, Naohiko; Kobayashi, Masahiro

    2014-01-01

    The aim of the present study was to characterize the effects of the ultraviolet light (UV) irradiation period on the bond strength of fiber-reinforced composite (FRC) posts to core build-up resin. Three types of FRC posts were prepared using polymethyl methacrylate, urethane dimethacrylate, and epoxy resin. The surfaces of these posts were treated using UV irradiation at a distance of 15 mm for 0 to 600 s. The pull-out bond strength was measured and analyzed with the Dunnett's comparison test (α=0.05). The bond strengths of the post surfaces without irradiation were 6.9 to 7.4 MPa; those after irradiation were 4.2 to 26.1 MPa. The bond strengths significantly increased after 15 to 120-s irradiation. UV irradiation on the FRC posts improved the bond strengths between the FRC posts and core build-up resin regardless of the type of matrix resin.

  2. 78 FR 55057 - Authority To Manufacture Carbon Fiber for the U.S. Market Not Approved; Foreign-Trade Subzone...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-09

    ... behalf of Toho Tenax America, Inc. (TTA), to manufacture carbon fiber under zone procedures for the U.S... approve the application requesting authority to manufacture carbon fiber for the U.S. market under zone... DEPARTMENT OF COMMERCE Foreign-Trade Zones Board [Order No. 1914] Authority To Manufacture Carbon...

  3. Utilization of Infrared Fiber Optic in the Automotive Industry

    NASA Technical Reports Server (NTRS)

    Tucker, Dennis S.; Brantley, Lott W. (Technical Monitor)

    2001-01-01

    Fiber optics are finding a place in the automotive industry. Illumination is the primary application today. Soon, however, fiber optics will be used for data communications and sensing applications. Silica fiber optics and plastic fibers are sufficient for illumination and communication applications however, sensing applications involving high temperature measurement and remote gas analysis would benefit from the use of infrared fiber optics. Chalcogonide and heavy metal fluoride glass optical fibers are two good candidates for these applications. Heavy metal fluoride optical fibers are being investigated by NASA for applications requiring transmission in the infrared portion of the electromagnetic spectrum. Zirconium-Barium-Lanthanum-Aluminum-Sodium-Fluoride (ZBLAN) is one such material which has been investigated. This material has a theoretical attenuation coefficient 100 times lower than that of silica and transmits into the mid-IR. However, the measured attenuation coefficient is higher than silica due to impurities and crystallization. Impurities can be taken care of by utilizing cleaner experimental protocol. It has been found that crystallization can be suppressed by processing in reduced gravity. Fibers processed in reduced gravity on the KC135 reduced gravity aircraft were found to be free of crystals while those processed on the ground were found to have crystals. These results will be presented along with plans for producing continuous lengths of ZBLAN optical fiber on board the International Space Station.

  4. Photovoltaic fibers

    NASA Astrophysics Data System (ADS)

    Gaudiana, Russell; Eckert, Robert; Cardone, John; Ryan, James; Montello, Alan

    2006-08-01

    It was realized early in the history of Konarka that the ability to produce fibers that generate power from solar energy could be applied to a wide variety of applications where fabrics are utilized currently. These applications include personal items such as jackets, shirts and hats, to architectural uses such as awnings, tents, large covers for cars, trucks and even doomed stadiums, to indoor furnishings such as window blinds, shades and drapes. They may also be used as small fabric patches or fiber bundles for powering or recharging batteries in small sensors. Power generating fabrics for clothing is of particular interest to the military where they would be used in uniforms and body armor where portable power is vital to field operations. In strong sunlight these power generating fabrics could be used as a primary source of energy, or they can be used in either direct sunlight or low light conditions to recharge batteries. Early in 2002, Konarka performed a series of proof-of-concept experiments to demonstrate the feasibility of building a photovoltaic cell using dye-sensitized titania and electrolyte on a metal wire core. The approach taken was based on the sequential coating processes used in making fiber optics, namely, a fiber core, e.g., a metal wire serving as the primary electrode, is passed through a series of vertically aligned coating cups. Each of the cups contains a coating fluid that has a specific function in the photocell. A second wire, used as the counter electrode, is brought into the process prior to entering the final coating cup. The latter contains a photopolymerizable, transparent cladding which hardens when passed through a UV chamber. Upon exiting the UV chamber, the finished PV fiber is spooled. Two hundred of foot lengths of PV fiber have been made using this process. When the fiber is exposed to visible radiation, it generates electrical power. The best efficiency exhibited by these fibers is 6% with an average value in the 4

  5. Fiber-optic security monitoring sensor

    NASA Astrophysics Data System (ADS)

    Englund, Marja; Ipatti, Ari; Karioja, Pentti

    1997-09-01

    In security monitoring, fiber-optic sensors are advantageous because strong and rugged optical fibers are thin, light, flexible and immune to electromagnetic interference. Optical fibers packaged into cables, such as, building and underground cables, can be used to detect even slightest disturbances, movements, vibrations, pressure changes and impacts along their entire length. When running an optical cable around a structure, and when using speckle pattern recognition technique for alarm monitoring, the distributed monitoring of the structure is possible. The sensing cable can be strung along fences, buried underground, embedded into concrete, mounted on walls, floors and ceilings, or wrapped around the specific components. In this paper, a fiber-optic security monitoring sensor based on speckle pattern monitoring is described. The description of the measuring method and the results of the experimental fiber installations are given. The applicability of embedded and surface mounted fibers to monitor the pressure and impact induced vibrations of fences and concrete structures as well as the loosening of critical parts in a power plant machinery were demonstrated in field and laboratory conditions. The experiences related to the applications and optical cable types are also discussed.

  6. Fiber optic security monitoring sensor

    NASA Astrophysics Data System (ADS)

    Englund, Marja; Ipatti, Ari; Karioja, Pentti

    1997-09-01

    In security monitoring, fiber-optic sensors are advantageous because strong and rugged optical fibers are thin, light, flexible and immune to electromagnetic interference. Optical fibers packaged into cables, such as, building and underground cables, can be used to detect even slightest disturbances, movements, vibrations, pressure changes and impacts along their entire length. When running an optical cable around a structure, and when using speckle pattern recognition technique for alarm monitoring, the distributed monitoring of the structure is possible. The sensing cable can be strung along fences, buried underground, embedded into concrete, mounted on walls, floors and ceilings, or wrapped around the specific components. In this paper, a fiber-optic security monitoring sensor based on speckle pattern monitoring is described. The description of the measuring method and the results of the experimental fiber installations are given. The applicability of embedded and surface mounted fibers to monitor the pressure and impact induced vibrations of fences and concrete structures as well as the loosening of critical parts in a power plant machinery were demonstrated in field and laboratory conditions. The experiences related to the applications and optical cable types are also discussed.

  7. Influence of fiber packing structure on permeability

    NASA Technical Reports Server (NTRS)

    Cai, Zhong; Berdichevsky, Alexander L.

    1993-01-01

    The study on the permeability of an aligned fiber bundle is the key building block in modeling the permeability of advanced woven and braided preforms. Available results on the permeability of fiber bundles in the literature show that a substantial difference exists between numerical and analytical calculations on idealized fiber packing structures, such as square and hexagonal packing, and experimental measurements on practical fiber bundles. The present study focuses on the variation of the permeability of a fiber bundle under practical process conditions. Fiber bundles are considered as containing openings and fiber clusters within the bundle. Numerical simulations on the influence of various openings on the permeability were conducted. Idealized packing structures are used, but with introduced openings distributed in different patterns. Both longitudinal and transverse flow are considered. The results show that openings within the fiber bundle have substantial effect on the permeability. In the longitudinal flow case, the openings become the dominant flow path. In the transverse flow case, the fiber clusters reduce the gap sizes among fibers. Therefore the permeability is greatly influenced by these openings and clusters, respectively. In addition to the porosity or fiber volume fraction, which is commonly used in the permeability expression, another fiber bundle status parameter, the ultimate fiber volume fraction, is introduced to capture the disturbance within a fiber bundle.

  8. Fire performance of fiber board coated with nano kaolin-clay film

    Treesearch

    Zhijia Liu; John F. Hunt; Zhiyong Cai

    2013-01-01

    Fiberboard is a common interior material used both in China and the United States of America. The increase in demand for interior materials has raised concerns regarding combustibility of the materials. The pyrolysis characteristics of fiber, phenolic resin (PF), and nano kaolin-clay (NK) were investigated using thermogravimetry. The fire performances of samples coated...

  9. Plasma vitrification of asbestos fibers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Camacho, S.L.

    Asbestos is a mineral in the form of long, thread-like fibers. Asbestos fibers have been among the best insulators of pipes, boilers, ducts, tanks, etc., in buildings, ships, and industrial furnaces. Over 150,000 metric tons of asbestos were consumed in the United States in 1984. The Environmental Protection Agency has declared asbestos fibers a known human carcinogen. And today, asbestos insulators are being replaced by manmade non-hazardous fibers. Millions of tons of replaced asbestos fiber insulators are in storage, awaiting the demonstration of effective alternative disposal technologies. Plasma vitrification has been demonstrated during May, June and July 1995 as amore » viable, cost-effective, safe technology for asbestos fiber disposal. A low-mass plasma arc heater is submerged under the waste asbestos insulating materials, and the intense heat of the plasma flame heats and melts the fibers. The by-product is dark, non-hazardous glass pellets. The vitrification process renders the asbestos waste safe for use as road construction aggregates or other fill materials. This paper will describe the results of start-up of a 1 ton-per-hour Plasma Mobile Asbestos Vitrification (MAV) Plant at a DOD Site in Port Clinton, Ohio. The Plasma MAV Plant is being demonstrated for the on-site disposal of 1.5 million pounds of Amosite asbestos fibers.« less

  10. Fiber and colorectal diseases: separating fact from fiction.

    PubMed

    Tan, Kok-Yang; Seow-Choen, Francis

    2007-08-21

    Whilst fruits and vegetables are an essential part of our dietary intake, the role of fiber in the prevention of colorectal diseases remains controversial. The main feature of a high-fiber diet is its poor digestibility. Soluble fiber like pectins, guar and ispaghula produce viscous solutions in the gastrointestinal tract delaying small bowel absorption and transit. Insoluble fiber, on the other hand, pass largely unaltered through the gut. The more fiber is ingested, the more stools will have to be passed. Fermentation in the intestines results in build up of large amounts of gases in the colon. This article reviews the physiology of ingestion of fiber and defecation. It also looks into the impact of dietary fiber on various colorectal diseases. A strong case cannot be made for a protective effect of dietary fiber against colorectal polyp or cancer. Neither has fiber been found to be useful in chronic constipation and irritable bowel syndrome. It is also not useful in the treatment of perianal conditions. The fiber deficit - diverticulosis theory should also be challenged. The authors urge clinicians to keep an open mind about fiber. One must be aware of the truths and myths about fiber before recommending it.

  11. Architectures of fiber optic network in telecommunications

    NASA Astrophysics Data System (ADS)

    Vasile, Irina B.; Vasile, Alexandru; Filip, Luminita E.

    2005-08-01

    The operators of telecommunications have targeted their efforts towards realizing applications using broad band fiber optics systems in the access network. Thus, a new concept related to the implementation of fiber optic transmission systems, named FITL (Fiber In The Loop) has appeared. The fiber optic transmission systems have been extensively used for realizing the transport and intercommunication of the public telecommunication network, as well as for assuring the access to the telecommunication systems of the great corporations. Still, the segment of the residential users and small corporations did not benefit on large scale of this technology implementation. For the purpose of defining fiber optic applications, more types of architectures were conceived, like: bus, ring, star, tree. In the case of tree-like networks passive splitters (that"s where the name of PON comes from - Passive Optical Network-), which reduce significantly the costs of the fiber optic access, by separating the costs of the optical electronic components. That's why the passive fiber optics architectures (PON represent a viable solution for realizing the access at the user's loop. The main types of fiber optics architectures included in this work are: FTTC (Fiber To The Curb); FTTB (Fiber To The Building); FTTH (Fiber To The Home).

  12. FIBER-TEX 1991: The Fifth Conference on Advanced Engineering Fibers and Textile Structures for Composites

    NASA Technical Reports Server (NTRS)

    Buckley, John D. (Editor)

    1992-01-01

    This document is a compilation of papers presented at a joint NASA/North Carolina State University/DoD/Clemson University/Drexel University conference on Fibers, Textile Technology, and Composites Structures held at the College of Textiles Building on Centennial Campus of North Carolina State University, Raleigh, North Carolina on October 15-17, 1991. Conference papers presented information on advanced engineering fibers, textile processes and structures, structural fabric production, mechanics and characteristics of woven composites, pultruded composites, and the latest requirements for the use of textiles in the production of composite materials and structures.

  13. DOE's Environmental Management Site-Specific Advisory Board: The Roles, Work, and Assessment of the Constituent Local Boards - 13587

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alexander, Catherine; Freeman, Jenny; Cantrell, Yvette

    2013-07-01

    effectiveness, the agency draws on the experience of members to create best practices for the EM SSAB, as a unique form of public involvement. Four areas that have been identified by local board Chairpersons as important to their local board operations are - Enhancing communication between technical and non-technical board members; - Building on common ground toward recommendations; - Public involvement in EM SSAB local board activities; - The EM SSAB annual work plan process. The first three areas are addressed below by current or former chairpersons of the EM SSAB: Ralph Phelps, former Chairperson of the Northern New Mexico Citizens' Advisory Board; Susan Leckband, former Chairperson and current Vice Chairperson of the Hanford Advisory Board; and Val Francis, Vice Chairperson of the Portsmouth (PORTS) SSAB. In addition, Eric Roberts, facilitator of the PORTS SSAB, has contributed to the section on public involvement. In a separate paper for this session, Ralph Young, Chairperson of the Paducah Citizens' Advisory Board addresses the EM SSAB annual work plan process. (authors)« less

  14. Boards at background, left are displays of parts for Edison ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Boards at background, left are displays of parts for Edison phonographs which were used in management of production and sales promotions. - Thomas A. Edison Laboratories, Building No. 5, Main Street & Lakeside Avenue, West Orange, Essex County, NJ

  15. Optical fiber sensors based on novel polyimide for humidity monitoring of building materials

    NASA Astrophysics Data System (ADS)

    Chai, Jing; Liu, Qi; Liu, Jinxuan; Zhang, Dingding

    2018-03-01

    This paper presents novel preparation methods of polyimide and coupling agent, coated on the fiber Bragg grating (FBG) sensor for monitoring relative humidity (RH). The sensing mechanism that the volume change of the moisture-sensitive polyimide induces the shift of the Bragg wavelength of FBG is used in the RH sensor. The performance of the polymer-coated RH sensor was evaluated under laboratory conditions of temperature over a range of values (20.0-80.0 °C) and humidity over a range of RH values (25.0-95.0%). The time response and RH sensitivity of the sensor based on novel polyimide and coupling agent was improved, compared to the previous. A new packaged RH sensor was designed, which was used in detecting the moisture diffusion and evolutions inside of sample made of building materials which exposed to a controlled environment in the lab after casting. Relative humidity inside of sample with time was 100% in the first phase of vapor-saturated, slowly reduced in the latter phase. The results indicate the RH sensor developed provides a feasible method to detect the influence of environment on moisture inside the material in the drying process.

  16. Principles of Good Principals: Effective Leadership Brings a Board's Vision to the School Level

    ERIC Educational Resources Information Center

    Martineau, Pamela

    2012-01-01

    The importance of effective principals to school reform is well-documented. But what makes a school principal an effective change agent, and how can a school board and district administrators assist in pushing their top site leaders to excellence? Many district and board leaders say it's all about vision, building trust with staff, and developing…

  17. Miniature fiber Bragg grating sensor interrogator (FBG-Transceiver) system

    NASA Astrophysics Data System (ADS)

    Mendoza, Edgar A.; Kempen, Cornelia; Lopatin, Craig

    2007-04-01

    This paper describes recent progress conducted towards the development of a miniature fiber Bragg grating sensor interrogator (FBG-Transceiver TM) system based on multi-channel integrated optic sensor (InOSense TM) microchip technology. The hybrid InOSense TM microchip technology enables the integration of all of the functionalities, both passive and active, of conventional bench top FBG sensor interrogator systems, packaged in a miniaturized, low power operation, 2-cm x 5-cm package suitable for the long-term structural health monitoring in applications where size, weight, and power are critical for operation. The FBG-Transceiver system uses active optoelectronic components monolithically integrated to the InOSense TM microchip, a microprocessor controlled signal processing electronics board capable of processing the FBG sensors signals related to stress-strain and temperature as well as vibration and acoustics. The FBG-Transceiver TM system represents a new, reliable, highly robust technology that can be used to accurately monitor the status of an array of distributed fiber optic Bragg grating sensors installed in critical infrastructures. Its miniature package, low power operation, and state-of-the-art data communications architecture, all at a very affordable price makes it a very attractive solution for a large number of SHM/NDI applications in aerospace, naval and maritime industry, civil structures like bridges, buildings and dams, the oil and chemical industry, and for homeland security applications. The miniature, cost-efficient FBG-Transceiver TM system is poised to revolutionize the field of structural health monitoring and nondestructive inspection market. The sponsor of this program is NAVAIR under a DOD SBIR contract.

  18. Inscription of first order fiber Bragg gratings in sapphire fibers by 400 nm femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Elsmann, Tino; Habisreuther, Tobias; Graf, Albrecht; Rothhardt, Manfred; Bartelt, Hartmut

    2013-05-01

    We demonstrate the inscription of fiber Bragg gratings in single crystalline sapphire using the second harmonic of a Ti:Sa-amplified femtosecond laser system. With the laser wavelength of 400 nm first order gratings were fabricated. The interferometric inscription was performed out using the Talbot interferometer. This way, not only single gratings but also multiplexed sensor arrays were realized. For evaluating of the sensor signals an adapted multimodal interrogation setup was build up, because the sapphire fiber is an extreme multimodal air clad fiber. Due to the multimodal reflection spectrum, different peak functions have been tested to evaluate the thermal properties of the grating. The temperature sensors were tested for high temperature applications up to 1200°C with a thermal sensitivity in the order of 25 pm/K which is more than the doubled of that one reached with Bragg gratings in conventional silica fibers.

  19. Micromachined mirrors for raster-scanning displays and optical fiber switches

    NASA Astrophysics Data System (ADS)

    Hagelin, Paul Merritt

    Micromachines and micro-optics have the potential to shrink the size and cost of free-space optical systems, enabling a new generation of high-performance, compact projection displays and telecommunications equipment. In raster-scanning displays and optical fiber switches, a free-space optical beam can interact with multiple tilt- up micromirrors fabricated on a single substrate. The size, rotation angle, and flatness of the mirror surfaces determine the number of pixels in a raster-display or ports in an optical switch. Single-chip and two-chip optical raster display systems demonstrate static mirror curvature correction, an integrated electronic driver board, and dynamic micromirror performance. Correction for curvature caused by a stress gradient in the micromirror leads to resolution of 102 by 119 pixels in the single-chip display. The optical design of the two-chip display features in-situ mirror curvature measurement and adjustable image magnification with a single output lens. An electronic driver board synchronizes modulation of the optical source with micromirror actuation for the display of images. Dynamic off-axis mirror motion is shown to have minimal influence on resolution. The confocal switch, a free-space optical fiber cross- connect, incorporates micromirrors having a design similar to the image-refresh scanner. Two micromirror arrays redirect optical beams from an input fiber array to the output fibers. The switch architecture supports simultaneous switching of multiple wavelength channels. A 2x2 switch configuration, using single-mode optical fiber at 1550 mn, is demonstrated with insertion loss of -4.2 dB and cross-talk of -50.5 dB. The micromirrors have sufficient size and angular range for scaling to a 32x32 cross-connect switch that has low insertion-loss and low cross-talk.

  20. Fungal Microbiomes Associated with Green and Non-Green Building Materials

    PubMed Central

    Coombs, Kanistha; Vesper, Stephen; Green, Brett J.; Yermakov, Mikhail; Reponen, Tiina

    2018-01-01

    Water-damaged buildings can lead to fungal growth and occupant health problems. Green building materials, derived from renewable sources, are increasingly utilized in construction and renovations. However, the question as to what fungi will grow on these green compared to non-green materials, after they get wet, has not been adequately studied. By determining what fungi grow on each type of material, the potential health risks can be more adequately assessed. In this study, we inoculated green and non-green pieces of ceiling tile, composite board, drywall, and flooring with indoor dust containing a complex mixture of naturally occurring fungi. The materials were saturated with water and incubated for two months in a controlled environment. The resulting fungal microbiomes were evaluated using ITS amplicon sequencing. Overall, the richness and diversity of the mycobiomes on each pair of green and non-green pieces were not significantly different. However, different genera dominated on each type of material. For example, Aspergillus spp. had the highest relative abundance on green and non-green ceiling tiles and green composite boards, but Peniophora spp. dominated the non-green composite board. In contrast, Penicillium spp. dominated green and non-green flooring samples. Green gypsum board was dominated by Phialophora spp. and Stachybotrys spp., but non-green gypsum board by Myrothecium spp. These data suggest that water-damaged green and non-green building materials can result in mycobiomes that are dominated by fungal genera whose member species pose different potentials for health risks. PMID:29681691

  1. Fungal Microbiomes Associated with Green and Non-Green Building Materials.

    PubMed

    Coombs, Kanistha; Vesper, Stephen; Green, Brett J; Yermakov, Mikhail; Reponen, Tiina

    2017-01-01

    Water-damaged buildings can lead to fungal growth and occupant health problems. Green building materials, derived from renewable sources, are increasingly utilized in construction and renovations. However, the question as to what fungi will grow on these green compared to non-green materials, after they get wet, has not been adequately studied. By determining what fungi grow on each type of material, the potential health risks can be more adequately assessed. In this study, we inoculated green and non-green pieces of ceiling tile, composite board, drywall, and flooring with indoor dust containing a complex mixture of naturally occurring fungi. The materials were saturated with water and incubated for two months in a controlled environment. The resulting fungal microbiomes were evaluated using ITS amplicon sequencing. Overall, the richness and diversity of the mycobiomes on each pair of green and non-green pieces were not significantly different. However, different genera dominated on each type of material. For example, Aspergillus spp. had the highest relative abundance on green and non-green ceiling tiles and green composite boards, but Peniophora spp. dominated the non-green composite board. In contrast, Penicillium spp. dominated green and non-green flooring samples. Green gypsum board was dominated by Phialophora spp. and Stachybotrys spp., but non-green gypsum board by Myrothecium spp. These data suggest that water-damaged green and non-green building materials can result in mycobiomes that are dominated by fungal genera whose member species pose different potentials for health risks.

  2. Fiber and colorectal diseases: Separating fact from fiction

    PubMed Central

    Tan, Kok-Yang; Seow-Choen, Francis

    2007-01-01

    Whilst fruits and vegetables are an essential part of our dietary intake, the role of fiber in the prevention of colorectal diseases remains controversial. The main feature of a high-fiber diet is its poor digestibility. Soluble fiber like pectins, guar and ispaghula produce viscous solutions in the gastrointestinal tract delaying small bowel absorption and transit. Insoluble fiber, on the other hand, pass largely unaltered through the gut. The more fiber is ingested, the more stools will have to be passed. Fermentation in the intestines results in build up of large amounts of gases in the colon. This article reviews the physiology of ingestion of fiber and defecation. It also looks into the impact of dietary fiber on various colorectal diseases. A strong case cannot be made for a protective effect of dietary fiber against colorectal polyp or cancer. Neither has fiber been found to be useful in chronic constipation and irritable bowel syndrome. It is also not useful in the treatment of perianal conditions. The fiber deficit - diverticulosis theory should also be challenged. The authors urge clinicians to keep an open mind about fiber. One must be aware of the truths and myths about fiber before recommending it. PMID:17696243

  3. A New Arduino Datalogger Board for Simple, Low Cost Environmental Monitoring and the EnviroDIY Web Community

    NASA Astrophysics Data System (ADS)

    Hicks, S. D.; Aufdenkampe, A. K.; Montgomery, D. S.; Damiano, S. G.; Brooks, H. P.

    2015-12-01

    Scientists and educators around the world have been building their own dataloggers and devices using a variety of boards based on the Arduino open source electronics platform. While there have been several useful boards on the market in the past few years, they still required significant modification or additional components in order to use them with various sensors or deploy them in remote areas. Here we introduce our new custom datalogger board that makes it very easy to build a rugged environmental monitoring system. These custom boards contain all of the essential features of a solar-powered datalogger with radio telemetry, plus they have a very convenient and modular method for attaching a wide variety of sensors and devices. Various deployment options and installations are shown, as well as the online database that is used for capturing the live streaming data from the loggers and displaying graphs on custom web pages. Following the introduction last year of the EnviroDIY online community (http://enviroDIY.org), it continues to gain new members and share new ideas about open-source hardware and software solutions for observing our environment. EnviroDIY members can showcase their gadgets or describe their projects, ask questions, or follow along with helpful tutorials. Our new datalogger board, together with the EnviroDIY website, will make it easy for anyone to build and deploy their own environmental monitoring stations.

  4. Manufacturing and process optimization of porous rice straw board

    NASA Astrophysics Data System (ADS)

    Liu, Dejun; Dong, Bing; Bai, Xuewei; Gao, Wei; Gong, Yuanjuan

    2018-03-01

    Development and utilization of straw resources and the production of straw board can dramatically reduce straw waste and environmental pollution associated with straw burning in China. However, the straw board production faces several challenges, such as improving the physical and mechanical properties, as well as eliminating its formaldehyde content. The recent research was to develop a new straw board compound adhesive containing both inorganic (MgSO4, MgCO3, active silicon and ALSiO4) and organic (bean gum and modified Methyl DiphenylDiisocyanate, MDI) gelling materials, to devise a new high frequency straw board hot pressing technique and to optimize the straw board production parameters. The results indicated that the key hot pressing parameters leading to porous straw board with optimal physical and mechanical properties. These parameters are as follows: an adhesive containing a 4:1 ratio of inorganic-to-organic gelled material, the percentage of adhesive in the total mass of preload straw materials is 40%, a hot-pressing temperature in the range of 120 °C to 140 °C, and a high frequency hot pressing for 10 times at a pressure of 30 MPa. Finally, the present work demonstrated that porous straw board fabricated under optimal manufacturing condition is an environmentally friendly and renewable materials, thereby meeting national standard of medium density fiberboard (MDF) with potential applications in the building industry.

  5. The Master Clock Building at USNO Infrastructure

    DTIC Science & Technology

    2008-12-01

    type finish on top of about 3.5 inches of foam insulation. This along with cinder block, fiber glass insulation, and 5/8-inch-X drywall provides a...keep the building on temperature. The outside surface of the building is an “Exterior Finish Insulation Systems” (EFIS). This is made up of a stucco

  6. Fiber-Optic Distribution Of Pulsed Power To Multiple Sensors

    NASA Technical Reports Server (NTRS)

    Kirkham, Harold

    1996-01-01

    Optoelectronic systems designed according to time-sharing scheme distribute optical power to multiple integrated-circuit-based sensors in fiber-optic networks. Networks combine flexibility of electronic sensing circuits with advantage of electrical isolation afforded by use of optical fibers instead of electrical conductors to transmit both signals and power. Fiber optics resist corrosion and immune to electromagnetic interference. Sensor networks of this type useful in variety of applications; for example, in monitoring strains in aircraft, buildings, and bridges, and in monitoring and controlling shapes of flexible structures.

  7. 7 CFR 1250.304 - Egg Board or Board.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 10 2010-01-01 2010-01-01 false Egg Board or Board. 1250.304 Section 1250.304... AGREEMENTS AND ORDERS; MISCELLANEOUS COMMODITIES), DEPARTMENT OF AGRICULTURE EGG RESEARCH AND PROMOTION Egg Research and Promotion Order Definitions § 1250.304 Egg Board or Board. Egg Board or Board or other...

  8. 7 CFR 1250.304 - Egg Board or Board.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 10 2011-01-01 2011-01-01 false Egg Board or Board. 1250.304 Section 1250.304... AGREEMENTS AND ORDERS; MISCELLANEOUS COMMODITIES), DEPARTMENT OF AGRICULTURE EGG RESEARCH AND PROMOTION Egg Research and Promotion Order Definitions § 1250.304 Egg Board or Board. Egg Board or Board or other...

  9. Use of rubble from building demolition in mortars.

    PubMed

    Corinaldesi, V; Giuggiolini, M; Moriconi, G

    2002-01-01

    Because of increasing waste production and public concerns about the environment, it is desirable to recycle materials from building demolition. If suitably selected, ground, cleaned and sieved in appropriate industrial crushing plants, these materials can be profitably used in concrete. Nevertheless, the presence of masonry instead of concrete rubble is particularly detrimental to the mechanical performance and durability of recycled-aggregate concrete and the same negative effect is detectable when natural sand is replaced by fine recycled aggregate fraction. An alternative use of both masonry rubble and fine recycled material fraction could be in mortars. These could contain either recycled instead of natural sand or powder obtained by bricks crushing as partial cement substitution. In particular, attention is focused on the modification that takes place when either polypropylene or stainless steel fibers are added to these mortars. Polypropylene fibers are added in order to reduce shrinkage of mortars, stainless steel fibers for improving their flexural strength. The combined use of polypropylene fibers and fine recycled material from building demolition could allow the preparation of mortars showing good performance, in particular when coupled with bricks. Furthermore, the combined use of stainless steel fibers and mortars containing brick powder seems to be an effective way to guarantee a high flexural strength.

  10. Monolithic integrated optic fiber Bragg grating sensor interrogator

    NASA Astrophysics Data System (ADS)

    Mendoza, Edgar A.; Esterkin, Yan; Kempen, Cornelia; Sun, Songjian

    2010-04-01

    Fiber Bragg gratings (FBGs) are a mature sensing technology that has gained rapid acceptance in civil, aerospace, chemical and petrochemical, medicine, aviation and automotive industries. Fiber Bragg grating sensors can be use for a variety of measurements including strain, stress, vibration, acoustics, acceleration, pressure, temperature, moisture, and corrosion distributed at multiple locations within the structure using a single fiber element. The most prominent advantages of FBGs are: small size and light weight, multiple FBG transducers on a single fiber, and immunity to radio frequency interference. A major disadvantage of FBG technology is that conventional state-of-the-art fiber Bragg grating interrogation systems are typically bulky, heavy, and costly bench top instruments that are assembled from off-the-shelf fiber optic and optical components integrated with a signal electronics board into an instrument console. Based on the need for a compact FBG interrogation system, this paper describes recent progress towards the development of a miniature fiber Bragg grating sensor interrogator (FBG-TransceiverTM) system based on multi-channel monolithic integrated optic sensor microchip technology. The integrated optic microchip technology enables the monolithic integration of all of the functionalities, both passive and active, of conventional bench top FBG sensor interrogators systems, packaged in a miniaturized, low power operation, 2-cm x 5-cm small form factor (SFF) package suitable for the long-term structural health monitoring in applications where size, weight, and power are critical for operation.

  11. 77 FR 43583 - DOE Response to Recommendation 2012-1 of the Defense Nuclear Facilities Safety Board, Savannah...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-25

    ... DEPARTMENT OF ENERGY DOE Response to Recommendation 2012-1 of the Defense Nuclear Facilities Safety Board, Savannah River Site Building 235-F Safety AGENCY: Department of Energy. ACTION: Notice. SUMMARY: On May 8, 2012, the Defense Nuclear Facilities Safety Board submitted Recommendation 2012-1...

  12. 1. GENERAL VIEW OF CROSS ROW BUILDING (in background), LOOKING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. GENERAL VIEW OF CROSS ROW BUILDING (in background), LOOKING SOUTHWEST. The building at right is Brick Row (Old Beersheba Inn, Brick Row, HABS No. TN-54 B) - Old Beersheba Inn, Cross Row (Boarding Cabin), Armsfield Avenue, Beersheba Springs, Grundy County, TN

  13. Fiber optic multiplex optical transmission system

    NASA Technical Reports Server (NTRS)

    Bell, C. H. (Inventor)

    1977-01-01

    A multiplex optical transmission system which minimizes external interference while simultaneously receiving and transmitting video, digital data, and audio signals is described. Signals are received into subgroup mixers for blocking into respective frequency ranges. The outputs of these mixers are in turn fed to a master mixer which produces a composite electrical signal. An optical transmitter connected to the master mixer converts the composite signal into an optical signal and transmits it over a fiber optic cable to an optical receiver which receives the signal and converts it back to a composite electrical signal. A de-multiplexer is coupled to the output of the receiver for separating the composite signal back into composite video, digital data, and audio signals. A programmable optic patch board is interposed in the fiber optic cables for selectively connecting the optical signals to various receivers and transmitters.

  14. Effect of coupling agents on the weathering characteristics of bio-fiber composites

    USDA-ARS?s Scientific Manuscript database

    Bio-fiber polymer composites (BFPC) are composite materials made from a thermoplastic or thermoset resin (substrate) with cellulosic fibers as fillers or reinforcement. BFPC have shown a significant growth in the last decade as a building product, automotive parts, and landscaping products. BFPC com...

  15. Strength Analysis of Coconut Fiber Stabilized Earth for Farm Structures

    NASA Astrophysics Data System (ADS)

    Enokela, O. S.; P. O, Alada

    2012-07-01

    Investigation of the strength characteristic of soil from alluvial deposit of River Benue in makurdi stabilized with coconut fiber as a stabilizer was carried as local building material for farm structure. Processed coconut fibers were mixed with the soil at four different mix ratios of 1% fiber, 2% fiber, 3% fiber and 4% fiber by percentage weight with 0% fiber as control. Compaction test and compressive strength were carried out on the various stabilizing ratio. From the compaction test, the correlation between the maximum dry density and optimum moisture content is a second order polynomial with a coefficient of 63% obtained at1.91kg/m3and 20.0% respectively while the compressive strength test shows an optimum failure load of 8.62N/mm2 at 2%fibre:100% soil mix ratio at 2.16 maximum dry density.

  16. Airflow Resistance of Loose-Fill Mineral Fiber Insulations in Retrofit Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schumacher, C. J.; Fox, M. J.; Lstiburek, J.

    2015-02-01

    This report expands on Building America Report 1109 by applying the experimental apparatus and test method to dense-pack retrofit applications using mineral fiber insulation materials. Three fiber glass insulation materials and one stone wool insulation material were tested, and the results compared to the cellulose results from the previous study.

  17. Fluid Power Multi-actuator Circuit Board with Microcomputer Control Option.

    ERIC Educational Resources Information Center

    McKechnie, R. E.; Vickers, G. W.

    1981-01-01

    Describes a portable fluid power engineering laboratory and class demonstration apparatus designed to enable students to design, build, and test multi-actuator circuits. Features a variety of standard pneumatic values and actuators fitted with quick disconnect couplings. Discusses sequencing circuit boards, microcomputer control, cost, and…

  18. Optical fiber curvature sensor based on MMF-SCF-MMF structure

    NASA Astrophysics Data System (ADS)

    Wang, Qi; Liu, Yu

    2018-07-01

    A sensitive curvature sensor based on MMF-SCF-MMF (MMF: multimode fiber; SCF: seven core fiber) structure is proposed. The multimode fiber (MMF) are used to improve the light coupling efficiency between the input singlemode fiber (SMF) and the seven-core fiber (SCF), and the seven-core fiber is used as the main element for curvature measurement. Experimental results show that the best curvature sensitivity reaches 41.46453 nm/m-1 in the range of 0.094 m-1-0.567 m-1. The temperature sensitivity is up to 59.02 pm/°C in the range of 20 °C-55 °C. The optical curvature sensors are widely used for buildings structure health monitoring and mechanical engineering due to the advantages of compact structure, anti-electromagnetic interference, and low cost.

  19. Fiber-coupled THz spectroscopy for monitoring polymeric compounding processes

    NASA Astrophysics Data System (ADS)

    Vieweg, N.; Krumbholz, N.; Hasek, T.; Wilk, R.; Bartels, V.; Keseberg, C.; Pethukhov, V.; Mikulics, M.; Wetenkamp, L.; Koch, M.

    2007-06-01

    We present a compact, robust, and transportable fiber-coupled THz system for inline monitoring of polymeric compounding processes in an industrial environment. The system is built on a 90cm x 90cm large shock absorbing optical bench. A sealed metal box protects the system against dust and mechanical disturbances. A closed loop controller unit is used to ensure optimum coupling of the laser beam into the fiber. In order to build efficient and stable fiber-coupled antennas we glue the fibers directly onto photoconductive switches. Thus, the antenna performance is very stable and it is secured from dust or misalignment by vibrations. We discuss fabrication details and antenna performance. First spectroscopic data obtained with this system is presented.

  20. Airflow Resistance of Loose-Fill Mineral Fiber Insulations in Retrofit Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schumacher, C. J.; Fox, M. J.; Lstiburek, J.

    2015-02-01

    This report expands on Building America Report 1109 by applying the experimental apparatus and test method to dense-pack retrofit applications using mineral fiber insulation materials. Three (3) fiber glass insulation materials and one (1) stone wool insulation material were tested, and the results compared to the cellulose results from the previous study.

  1. An fMRI Study of the Impact of Block Building and Board Games on Spatial Ability

    PubMed Central

    Newman, Sharlene D.; Hansen, Mitchell T.; Gutierrez, Arianna

    2016-01-01

    Previous studies have found that block play, board games, and puzzles result in better spatial ability. This study focused on examining the differential impact of structured block play and board games on spatial processing. Two groups of 8-year-old children were studied. One group participated in a five session block play training paradigm and the second group had a similar training protocol but played a word/spelling board game. A mental rotation task was assessed before and after training. The mental rotation task was performed during fMRI to observe the neural changes associated with the two play protocols. Only the block play group showed effects of training for both behavioral measures and fMRI measured brain activation. Behaviorally, the block play group showed improvements in both reaction time and accuracy. Additionally, the block play group showed increased involvement of regions that have been linked to spatial working memory and spatial processing after training. The board game group showed non-significant improvements in mental rotation performance, likely related to practice effects, and no training related brain activation differences. While the current study is preliminary, it does suggest that different “spatial” play activities have differential impacts on spatial processing with structured block play but not board games showing a significant impact on mental rotation performance. PMID:27621714

  2. Fiber in the Local Loop: The Role of Electric Utilities

    NASA Astrophysics Data System (ADS)

    Meehan, Charles M.

    1990-01-01

    Electric utilities are beginning to make heavy use of fiber for a number of applications beyond transmission of voice and data among operating centers and plant facilities which employed fiber on the electric transmission systems. These additional uses include load management and automatic meter reading. Thus, utilities are beginning to place fiber on the electric distribution systems which, in many cases covers the same customer base as the "local loop". This shift to fiber on the distribution system is due to the advantages offered by fiber and because of congestion in the radio bands used for load management. This shift to fiber has been facilitated by a regulatory policy permitting utilities to lease reserve capacity on their fiber systems on an unregulated basis. This, in turn, has interested electric utilities in building fiber to their residential and commercial customers for voice, data and video. This will also provide for sophisticated load management systems and, possibly, generation of revenue.

  3. Study of the mechanical properties of Ziziphus nummularia (ber) fibers for formation of fiber reinforced composites

    NASA Astrophysics Data System (ADS)

    Joshi, Akshay; Mangal, R.; Bhojak, N.

    2018-05-01

    Ziziphus is the one of the most abundant plant of arid region of Rajasthan and rest part of desert land in world. There are a lots of research work going on and has been done on medical applications of this plant and it is playing very important role in economy of desert areas. In this paper our discussion will bring the attention its physical properties so that we can find the possibility of its applications in the various field of fiber reinforced composites which either can be used in such as interior & exterior part of automotive so it can reduce their overall weight, cost and improve its fuel efficiency without compromising in strength or can be used in flywheel technology for energy saving in automobiles or in building materials and so on. In this paper our approach is to extract the fiber from this plant, analyze the mechanical properties of the fiber and then discuss the various possibility of its application in appropriate field of composites. To find the possibility in FRC for Ziziphus fiber our next step is to compare it with other fibers whose composites have already been formed and studied.

  4. 9. Historic American Buildings Survey; Jack E. Boucher, photographer; Sept. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. Historic American Buildings Survey; Jack E. Boucher, photographer; Sept. 1969 Copy of measured drawing, 1st floor plan, 1925 (From file of Wash. D.C. Board of Education, office of buildings and grounds) - Jackson (Public) School, R Street & Avon Place Northwest, Washington, District of Columbia, DC

  5. Nde of Lumber and Natural Fiber Based Products with Air Coupled Ultrasound

    NASA Astrophysics Data System (ADS)

    Hsu, David K.; Utrata, David; Kuo, Monlin

    2010-02-01

    Due to the porous nature of wood and natural fiber based products, conventional fluid or gel coupled ultrasonic inspection is unsuitable. Air-coupled ultrasonic transmission scanning, being non-contact, is ideally suited for inspecting lumber, wood and natural fiber based products. We report here several successful applications of air-coupled ultrasound for the inspection of wood. Air-coupled ultrasonic scan at 120 kHz can easily detect "sinker-stock" lumber in which bacterial damage of ray tissue cells had occurred during anaerobic pond storage. Channels in ash lumber board caused by insect bore were imaged in transmission scan. Delamination and material inhomogeneities were mapped out in manufactured wood and natural fiber products including medium density fiberboards, compression molded shredded waste wood with formaldehyde resin, and acoustic panels molded with kenaf fibers. The study has demonstrated some of the capabilities of air-coupled ultrasound in the NDE of forest products.

  6. Summary record of presentations to the Federal Telecommunication Standards Committee/Fiber optics task group

    NASA Astrophysics Data System (ADS)

    Hanson, A. G.

    1987-03-01

    The learning experience of a group of Federal-agency planners who face upgrading or augmenting existing on-premises communication systems and building wiring is documented. In July 1984, an interagency Fiber Optics Task Group was formed under the aegis of the Federal Telecommunication Standards Committee to study on-premises distribution systems, with emphasis on optical fiber implementation, sharing mutual problems and potential solutions for them. Chronological summary records of technical content of 11 Task Group meetings through September 1986 are summarized. Also condensed are the engineering presentations to the Task Group by industry on applicable state-of-the-art technology, including local area networks, private automatic branch exchanges, building wiring architecture, and optic fiber systems and components.

  7. Building Budgets and Trust through the Alchemy of Superintendent Leadership

    ERIC Educational Resources Information Center

    Bird, James J.

    2010-01-01

    Superintendents have the burden and the opportunity to exert leadership through the budget-building process. This article details a dozen tenets which can be implemented by practicing superintendents. Doing so increases the chances of building trust among the stakeholders of administrators, staff, community, and school board members. The district…

  8. Quantification of short and long asbestos fibers to assess asbestos exposure: a review of fiber size toxicity

    PubMed Central

    2014-01-01

    The fibrogenicity and carcinogenicity of asbestos fibers are dependent on several fiber parameters including fiber dimensions. Based on the WHO (World Health Organization) definition, the current regulations focalise on long asbestos fibers (LAF) (Length: L ≥ 5 μm, Diameter: D < 3 μm and L/D ratio > 3). However air samples contain short asbestos fibers (SAF) (L < 5 μm). In a recent study we found that several air samples collected in buildings with asbestos containing materials (ACM) were composed only of SAF, sometimes in a concentration of ≥10 fibers.L−1. This exhaustive review focuses on available information from peer-review publications on the size-dependent pathogenetic effects of asbestos fibers reported in experimental in vivo and in vitro studies. In the literature, the findings that SAF are less pathogenic than LAF are based on experiments where a cut-off of 5 μm was generally made to differentiate short from long asbestos fibers. Nevertheless, the value of 5 μm as the limit for length is not based on scientific evidence, but is a limit for comparative analyses. From this review, it is clear that the pathogenicity of SAF cannot be completely ruled out, especially in high exposure situations. Therefore, the presence of SAF in air samples appears as an indicator of the degradation of ACM and inclusion of their systematic search should be considered in the regulation. Measurement of these fibers in air samples will then make it possible to identify pollution and anticipate health risk. PMID:25043725

  9. Practical Aspects of Access Network Indoor Extensions Using Multimode Glass and Plastic Optical Fibers

    NASA Astrophysics Data System (ADS)

    Keiser, Gerd; Liu, Hao-Yu; Lu, Shao-Hsi; Devi Pukhrambam, Puspa

    2012-07-01

    Low-cost multimode glass and plastic optical fibers are attractive for high-capacity indoor telecom networks. Many existing buildings already have glass multimode fibers installed for local area network applications. Future indoor applications will use combinations of glass multimode fibers with plastic optical fibers that have low losses in the 850-nm-1,310-nm range. This article examines real-world link losses when randomly interconnecting glass and plastic fiber segments having factory-installed connectors. Potential interconnection issues include large variations in connector losses among randomly selected fiber segments, asymmetric link losses in bidirectional links, and variations in bandwidths among different types of fibers.

  10. Communication architecture system for fiber positioning of DESI spectrograph

    NASA Astrophysics Data System (ADS)

    Kaci, Karim; Glez-de-Rivera, Guillermo; Lopez-Colino, Fernando; Martinez-Garcia, M. Sofia; Masa, Jose L.; Garrido, Javier; Sanchez, Justo; Prada, Francisco

    2016-07-01

    This paper presents a design proposal for controlling the five thousand fiber positioners within the focal plate of the DESI instrument. Each of these positioners is a robot which allows positioning its optic fiber with a resolution within the range of few microns. The high number and density of these robots poses a challenge for handling the communication from a central control device to each of these five thousand. Furthermore, an additional restriction applies as the required time to communicate to every robot of its position must be smaller than a second. Additionally. a low energy consumption profile is also desired. Both wireless and wired communication protocols have been evaluated, proposing single-technology-based architectures and hybrid ones (a combination of them). Among the wireless solutions, ZigBee and CyFi have been considered. Using simulation tools these wireless protocols have been discarded as they do not allow an efficient communication. The studied wired protocols comprise I2C, CAN and Ethernet. The best solution found is a hybrid multilayer architecture combining both Ethernet and I2C. A 100 Mbps Ethernet based network is used to communicate the central control unit with ten management boards. Each of these boards is a low-cost, low-power embedded device that manages a thirty six degrees sector of the sensing plate. Each of these boards receives the positioning data for five hundred robots and communicate with each one through a fast mode plus I2C bus. This proposal allows to communicate the positioning information for all five thousand robots in 350 ms total.

  11. Mode instability in a Yb-doped stretched core fiber

    NASA Astrophysics Data System (ADS)

    Xia, N.; Yoo, S.

    2017-02-01

    In this work we present the theoretical study of transverse mode instability (TMI) in ytterbium (Yb)-doped rectangular core fibers with different core aspect ratios using the fast Fourier transform (FFT) beam propagation method (BPM). As expected, the rectangular core fiber with larger aspect ratio (AR.) offers more efficient heat dissipation than a circular core fiber. However, it is found that the rectangular core fiber does not benefit from the better heat dissipation to suppress the TMI when compared to the circular core counterpart. The temperature building in the rectangular core fiber decreases by up to 24.6% with a 10:1 aspect ratio core, while threshold pump power drops by up to 38.3% when compared with a circular core fiber with the same core area. Our study reveals that a smaller effective refractive index difference between modes and a weaker gain saturation effect compensate the thermal advantage from more efficient heat dissipation.

  12. Real-time color image processing for forensic fiber investigations

    NASA Astrophysics Data System (ADS)

    Paulsson, Nils

    1995-09-01

    This paper describes a system for automatic fiber debris detection based on color identification. The properties of the system are fast analysis and high selectivity, a necessity when analyzing forensic fiber samples. An ordinary investigation separates the material into well above 100,000 video images to analyze. The system is based on standard techniques such as CCD-camera, motorized sample table, and IBM-compatible PC/AT with add-on-boards for video frame digitalization and stepping motor control as the main parts. It is possible to operate the instrument at full video rate (25 image/s) with aid of the HSI-color system (hue- saturation-intensity) and software optimization. High selectivity is achieved by separating the analysis into several steps. The first step is fast direct color identification of objects in the analyzed video images and the second step analyzes detected objects with a more complex and time consuming stage of the investigation to identify single fiber fragments for subsequent analysis with more selective techniques.

  13. Building a Culture of Reading

    ERIC Educational Resources Information Center

    Makatche, Kathryn; Oberlin, Jessica Urick

    2011-01-01

    Building a culture of reading in a school requires the participation of the entire school community--students, teachers, administrators, staff, parents, and patrons. To be successful, the whole community must be on board with books--not just the helpful librarian in the school library. Implementing library programs to encourage students to read…

  14. Passively aligned multichannel fiber-pigtailing of planar integrated optical waveguides

    NASA Astrophysics Data System (ADS)

    Kremmel, Johannes; Lamprecht, Tobias; Crameri, Nino; Michler, Markus

    2017-02-01

    A silicon device to simplify the coupling of multiple single-mode fibers to embedded single-mode waveguides has been developed. The silicon device features alignment structures that enable a passive alignment of fibers to integrated waveguides. For passive alignment, precisely machined V-grooves on a silicon device are used and the planar lightwave circuit board features high-precision structures acting as a mechanical stop. The approach has been tested for up to eight fiber-to-waveguide connections. The alignment approach, the design, and the fabrication of the silicon device as well as the assembly process are presented. The characterization of the fiber-to-waveguide link reveals total coupling losses of (0.45±0.20 dB) per coupling interface, which is significantly lower than the values reported in earlier works. Subsequent climate tests reveal that the coupling losses remain stable during thermal cycling but increases significantly during an 85°C/85 Rh-test. All applied fabrication and bonding steps have been performed using standard MOEMS fabrication and packaging processes.

  15. Shear transfer in concrete reinforced with carbon fibers

    NASA Astrophysics Data System (ADS)

    El-Mokadem, Khaled Mounir

    2001-10-01

    Scope and method of study. The research started with preliminary tests and studies on the behavior and effect of carbon fibers in different water solutions and mortar/concrete mixes. The research work investigated the use of CF in the production of concrete pipes and prestressed concrete double-tee sections. The research then focused on studying the effect of using carbon fibers on the direct shear transfer of sand-lightweight reinforced concrete push-off specimens. Findings and conclusions. In general, adding carbon fibers to concrete improved its tensile characteristics but decreased its compressive strength. The decrease in compressive strength was due to the decrease in concrete density as fibers act as three-dimensional mesh that entrapped air. The decrease in compressive strength was also due to the increase in the total surface area of non-cementitious material in the concrete. Sand-lightweight reinforced concrete push-off specimens with carbon fibers had lower shear carrying capacity than those without carbon fibers for the same cement content in the concrete. Current building codes and specifications estimate the shear strength of concrete as a ratio of the compressive strength. If applying the same principals then the ratio of shear strength to compressive strength for concrete reinforced with carbon fibers is higher than that for concrete without carbon fibers.

  16. Gas-phase optical fiber photocatalytic reactors for indoor air application: a preliminary study on performance indicators

    NASA Astrophysics Data System (ADS)

    Palmiste, Ü.; Voll, H.

    2017-10-01

    The development of advanced air cleaning technologies aims to reduce building energy consumption by reduction of outdoor air flow rates while keeping the indoor air quality at an acceptable level by air cleaning. Photocatalytic oxidation is an emerging technology for gas-phase air cleaning that can be applied in a standalone unit or a subsystem of a building mechanical ventilation system. Quantitative information on photocatalytic reactor performance is required to evaluate the technical and economic viability of the advanced air cleaning by PCO technology as an energy conservation measure in a building air conditioning system. Photocatalytic reactors applying optical fibers as light guide or photocatalyst coating support have been reported as an approach to address the current light utilization problems and thus, improve the overall efficiency. The aim of the paper is to present a preliminary evaluation on continuous flow optical fiber photocatalytic reactors based on performance indicators commonly applied for air cleaners. Based on experimental data, monolith-type optical fiber reactor performance surpasses annular-type optical fiber reactors in single-pass removal efficiency, clean air delivery rate and operating cost efficiency.

  17. Advanced in In Situ Inspection of Automated Fiber Placement Systems

    NASA Technical Reports Server (NTRS)

    Juarez, Peter D.; Cramer, K. Elliott; Seebo, Jeffrey P.

    2016-01-01

    Automated Fiber Placement (AFP) systems have been developed to help take advantage of the tailorability of composite structures in aerospace applications. AFP systems allow the repeatable placement of uncured, spool fed, preimpregnated carbon fiber tape (tows) onto substrates in desired thicknesses and orientations. This automated process can incur defects, such as overlapping tow lines, which can severely undermine the structural integrity of the part. Current defect detection and abatement methods are very labor intensive, and still mostly rely on human manual inspection. Proposed is a thermographic in situ inspection technique which monitors tow placement with an on board thermal camera using the preheated substrate as a through transmission heat source. An investigation of the concept is conducted, and preliminary laboratory results are presented. Also included will be a brief overview of other emerging technologies that tackle the same issue. Keywords: Automated Fiber Placement, Manufacturing defects, Thermography

  18. Automated atlas-based clustering of white matter fiber tracts from DTMRI.

    PubMed

    Maddah, Mahnaz; Mewes, Andrea U J; Haker, Steven; Grimson, W Eric L; Warfield, Simon K

    2005-01-01

    A new framework is presented for clustering fiber tracts into anatomically known bundles. This work is motivated by medical applications in which variation analysis of known bundles of fiber tracts in the human brain is desired. To include the anatomical knowledge in the clustering, we invoke an atlas of fiber tracts, labeled by the number of bundles of interest. In this work, we construct such an atlas and use it to cluster all fiber tracts in the white matter. To build the atlas, we start with a set of labeled ROIs specified by an expert and extract the fiber tracts initiating from each ROI. Affine registration is used to project the extracted fiber tracts of each subject to the atlas, whereas their B-spline representation is used to efficiently compare them to the fiber tracts in the atlas and assign cluster labels. Expert visual inspection of the result confirms that the proposed method is very promising and efficient in clustering of the known bundles of fiber tracts.

  19. Manual of Regulations and Recommendations for School Building Planning and Construction.

    ERIC Educational Resources Information Center

    Engelking, D. F.

    Recommendations and suggestions, as well as statutory provisions and state board regulations, are presented regarding school building construction in Idaho. The material is organized into the following sections--(1) school building planning, (2) the school site, (3) construction planning and requirements, (4) secondary school planning, (5)…

  20. Design of graded refractive index profile for silica multimode optical fibers with improved effective modal bandwidth for short-distance laser-based multi-Gigabit data transmission over "O"-band

    NASA Astrophysics Data System (ADS)

    Bourdine, Anton V.; Zhukov, Alexander E.

    2017-04-01

    High bit rate laser-based data transmission over silica optical fibers with enlarged core diameter in comparison with standard singlemode fibers is found variety infocommunication applications. Since IEEE 802.3z standard was ratified on 1998 this technique started to be widely used for short-range in-premises distributed multi-Gigabit networks based on new generation laser optimized multimode fibers 50/125 of Cat. OM2…OM4. Nowadays it becomes to be in demand for on-board cable systems and industrial network applications requiring 1Gps and more bit rates over fibers with extremely enlarged core diameter up to 100 μm. This work presents an alternative method for design the special refractive index profiles of silica few-mode fibers with extremely enlarged core diameter, that provides modal bandwidth enhancing under a few-mode regime of laser-based data optical transmission. Here some results are presented concerning with refractive index profile synthesis for few-mode fibers with reduced differential mode delay for "O"-band central region, as well as computed differential mode delay spectral curves corresponding to profiles for fibers 50/125 and 100/125 for in-premises and on-board/industrial cable systems.

  1. The polymorphisms of the chromatin fiber

    NASA Astrophysics Data System (ADS)

    Boulé, Jean-Baptiste; Mozziconacci, Julien; Lavelle, Christophe

    2015-01-01

    In eukaryotes, the genome is packed into chromosomes, each consisting of large polymeric fibers made of DNA bound with proteins (mainly histones) and RNA molecules. The nature and precise 3D organization of this fiber has been a matter of intense speculations and debates. In the emerging picture, the local chromatin state plays a critical role in all fundamental DNA transactions, such as transcriptional control, DNA replication or repair. However, the molecular and structural mechanisms involved remain elusive. The purpose of this review is to give an overview of the tremendous efforts that have been made for almost 40 years to build physiologically relevant models of chromatin structure. The motivation behind building such models was to shift our representation and understanding of DNA transactions from a too simplistic ‘naked DNA’ view to a more realistic ‘coated DNA’ view, as a step towards a better framework in which to interpret mechanistically the control of genetic expression and other DNA metabolic processes. The field has evolved from a speculative point of view towards in vitro biochemistry and in silico modeling, but is still longing for experimental in vivo validations of the proposed structures or even proof of concept experiments demonstrating a clear role of a given structure in a metabolic transaction. The mere existence of a chromatin fiber as a relevant biological entity in vivo has been put into serious questioning. Current research is suggesting a possible reconciliation between theoretical studies and experiments, pointing towards a view where the polymorphic and dynamic nature of the chromatin fiber is essential to support its function in genome metabolism.

  2. 42. View of CSMR room equipment status board and operators ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    42. View of CSMR room equipment status board and operators console with two phone links to MWOC in transmitter building no. 102. - Clear Air Force Station, Ballistic Missile Early Warning System Site II, One mile west of mile marker 293.5 on Parks Highway, 5 miles southwest of Anderson, Anderson, Denali Borough, AK

  3. Neural networks within multi-core optic fibers.

    PubMed

    Cohen, Eyal; Malka, Dror; Shemer, Amir; Shahmoon, Asaf; Zalevsky, Zeev; London, Michael

    2016-07-07

    Hardware implementation of artificial neural networks facilitates real-time parallel processing of massive data sets. Optical neural networks offer low-volume 3D connectivity together with large bandwidth and minimal heat production in contrast to electronic implementation. Here, we present a conceptual design for in-fiber optical neural networks. Neurons and synapses are realized as individual silica cores in a multi-core fiber. Optical signals are transferred transversely between cores by means of optical coupling. Pump driven amplification in erbium-doped cores mimics synaptic interactions. We simulated three-layered feed-forward neural networks and explored their capabilities. Simulations suggest that networks can differentiate between given inputs depending on specific configurations of amplification; this implies classification and learning capabilities. Finally, we tested experimentally our basic neuronal elements using fibers, couplers, and amplifiers, and demonstrated that this configuration implements a neuron-like function. Therefore, devices similar to our proposed multi-core fiber could potentially serve as building blocks for future large-scale small-volume optical artificial neural networks.

  4. Laboratory measurements of modal noise on optical fiber

    NASA Astrophysics Data System (ADS)

    Iuzzolino, M.; Sanna, N.; Tozzi, A.; Oliva, E.

    Many scientific instruments are nowadays coupled to the telescope through optical fibers. This is also the case of the current configuration of GIANO, the high resolution near infrared echelle spectrograph installed at the TNG telescope. As experienced and frequent users of the IR optical fiber, the GIANO building team decided to go deep in the characterization of the optical fiber in the IR band, and in particular to understand and analyze the fiber modal noise. This work is also a preparatory study for the future HIRES@E-ELT instrument design. This paper consists in the description of the fiber laboratory tests, and in the explanation of the results. The whole job defines a wider comprehension of the modal noise, and demonstrates the existence of two aspects influencing this noise. The first one, well known in literature, refers to the interferences between the fiber modes at the exit endface of the fiber, and it can be mitigated by mechanical scrambling techniques. The second one, unknown before, is entirely dependent on the way in which light is injected at the entrance of the fiber, and no mitigation have been observed with any classical scrambling technique (e.g. double-scramblers). These considerations apply to both ZBLAN or fused silica optical fiber, and to both circular and octagonal core shape.

  5. Development of a cylindrical tracking detector with multichannel scintillation fibers and pixelated photon detector readout

    NASA Astrophysics Data System (ADS)

    Akazawa, Y.; Miwa, K.; Honda, R.; Shiozaki, T.; Chiga, N.

    2015-07-01

    We are developing a cylindrical tracking detector for a Σp scattering experiment in J-PARC with scintillation fibers and the Pixelated Photon Detector (PPD) readout, which is called as cylindrical fiber tracker (CFT), in order to reconstruct trajectories of charged particles emitted inside CFT. CFT works not only as a tracking detector but also a particle identification detector from energy deposits. A prototype CFT consisting of two straight layers and one spiral layer was constructed. About 1100 scintillation fibers with a diameter of 0.75 mm (Kuraray SCSF-78 M) were used. Each fiber signal was read by Multi-Pixel Photon Counter (MPPC, HPK S10362-11-050P, 1×1 mm2, 400 pixels) fiber by fiber. MPPCs were handled with Extended Analogue Silicon Photomultipliers Integrated ReadOut Chip (EASIROC) boards, which were developed for the readout of a large number of MPPCs. The energy resolution of one layer was 28% for a 70 MeV proton where the energy deposit in fibers was 0.7 MeV.

  6. Advanced risk assessment of the effects of graphite fibers on electronic and electric equipment

    NASA Technical Reports Server (NTRS)

    Pocinki, L.; Cornell, M.; Kaplan, L.

    1980-01-01

    An assessment of the risk associated with accidents involving aircraft with carbon fiber composite structural components is examined. The individual fiber segments cause electrical and electronic equipment to fail under certain operating conditions. A Monte Carlo simulation model was used to computer the risk. Aircraft accidents with fire, release of carbon fiber material, entrainment of carbon fibers in a smoke plume transport of fibers downwind, transfer of some fibers/into the the interior of buildings, failures of electrical and electronic equipment, and economic impact of failures are discussed. Risk profiles were prepared for individual airports and the Nation. The vulnerability of electrical transmission equipment to carbon fiber incursion and aircraft accident total costs is investigated.

  7. A filter circuit board for the Earthworm Seismic Data Acquisition System

    USGS Publications Warehouse

    Jensen, Edward Gray

    2000-01-01

    The Earthworm system is a seismic network data acquisition and processing system used by the Northern California Seismic Network as well as many other seismic networks. The input to the system is comprised of many realtime electronic waveforms fed to a multi-channel digitizer on a PC platform. The digitizer consists of one or more National Instruments Corp. AMUX–64T multiplexer boards attached to an A/D converter board located in the computer. Originally, passive filters were installed on the multiplexers to eliminate electronic noise picked up in cabling. It was later discovered that a small amount of crosstalk occurred between successive channels in the digitizing sequence. Though small, this crosstalk will cause what appear to be small earthquake arrivals at the wrong time on some channels. This can result in erroneous calculation of earthquake arrival times, particularly by automated algorithms. To deal with this problem, an Earthworm filter board was developed to provide the needed filtering while eliminating crosstalk. This report describes the tests performed to find a suitable solution, and the design of the circuit board. Also included are all the details needed to build and install this board in an Earthworm system or any other system using the AMUX–64T board. Available below is the report in PDF format as well as an archive file containing the circuit board manufacturing information.

  8. 1.65 mm diameter forward-viewing confocal endomicroscopic catheter using a flip-chip bonded electrothermal MEMS fiber scanner.

    PubMed

    Seo, Yeong-Hyeon; Hwang, Kyungmin; Jeong, Ki-Hun

    2018-02-19

    We report a 1.65 mm diameter forward-viewing confocal endomicroscopic catheter using a flip-chip bonded electrothermal MEMS fiber scanner. Lissajous scanning was implemented by the electrothermal MEMS fiber scanner. The Lissajous scanned MEMS fiber scanner was precisely fabricated to facilitate flip-chip connection, and bonded with a printed circuit board. The scanner was successfully combined with a fiber-based confocal imaging system. A two-dimensional reflectance image of the metal pattern 'OPTICS' was successfully obtained with the scanner. The flip-chip bonded scanner minimizes electrical packaging dimensions. The inner diameter of the flip-chip bonded MEMS fiber scanner is 1.3 mm. The flip-chip bonded MEMS fiber scanner is fully packaged with a 1.65 mm diameter housing tube, 1 mm diameter GRIN lens, and a single mode optical fiber. The packaged confocal endomicroscopic catheter can provide a new breakthrough for diverse in-vivo endomicroscopic applications.

  9. Contribution study to the thermal insulation of the builders in the desert regions of exploiting gypsum fiber reinforced palm

    NASA Astrophysics Data System (ADS)

    Hafsi, Fouad; Kriker, Abdelouahed; Abani, Said

    2017-02-01

    Algerian Desert areas were characterized by very hot climate in summer and very cold in winter. The most widely used building material in these areas are concrete, mortar cement, which has a bad thermal insulation, causing a significant increase in cooling and heating costs; in order to avoid this problem it become a must to replace these materials with a good thermal isolation material and lower production cost. This work is part of the evaluation of local materials by improving their performance in the field of thermal insulation, which is considered a first step in the development of new local materials to be used in the construction field, the material used in this study is the gypsum reinforced with date palm fiber. In fact, Algeria has extraordinary resources in natural fibers (from Palm, Abaca, Hemp…) but without any large valorization in building materials. The aim of this work is then to characterization of those date palm fibers in new building materials approved for use in the construction of buildings in the desert areas. The date palm fibers were added to samples of the gypsum material in the form of cutting layers at different volume fraction, so as to determine the extent of their impact in the improvement of the thermal performance. The results were very satisfactory, reaching improvement rate of 16% for samples gypsum reinforced with single cut fiber form, and 32% of the samples reinforced with fiber in the form of layers.

  10. Tapered photonic crystal fiber for simplified Yb:fiber laser frequency comb with low pulse energy and robust f ceo singals.

    PubMed

    Jiang, Tongxiao; Wang, Aimin; Wang, Guizhong; Zhang, Wei; Niu, Fuzeng; Li, Chen; Zhang, Zhigang

    2014-01-27

    A tapered silica photonic crystal fiber was designed and fabricated to generate more than one octave spanning supercontinuum (from 550 nm to 1400 nm at -30 dB level), by an input pulse of 40 fs 200 pJ directly from an Yb:fiber ring laser. The low pulse energy spectrum broadening are favorable to generate the high contrast f ceo signals with low noise. The f ceo signal with 40 dB signal-to-noise ratio was detected, which helps to build a compact real-world frequency comb.

  11. Building Nanoporous Metal-Organic Frameworks "Armor" on Fibers for High-Performance Composite Materials.

    PubMed

    Yang, Xiaobin; Jiang, Xu; Huang, Yudong; Guo, Zhanhu; Shao, Lu

    2017-02-15

    The nanoporous metal-organic frameworks (MOFs) "armor" is in situ intergrown onto the surfaces of carbon fibers (CFs) by nitric acid oxidization to supply nucleation sites and serves as a novel interfacial linker between the fiber and polymer matrix and a smart cushion to release interior and exterior applied forces. Simultaneous enhancements of the interfacial and interlaminar shear strength as well as the tensile strength of CFs were achieved. With the aid of an ultrasonic "cleaning" process, the optimized surface energy and tensile strength of CFs with a MOF "armor" are 83.79 mN m -1 and 5.09 GPa, for an increase of 102% and 11.6%, respectively. Our work finds that the template-induced nucleation of 3D MOF onto 1D fibers is a general and promising approach toward advanced composite materials for diverse applications to meet scientific and technical demands.

  12. A Five-Year School Building and Future Sites Program 1966-1970.

    ERIC Educational Resources Information Center

    1965

    Five-year school building and site needs and related financial requirements are summarized for Milwaukee's schools. Educational policies concerning the school building program are stated, and consideration is given to factors affecting school board needs such as birth rate, public housing projects, urban renewal, highways, and expressways. School…

  13. Structural wood products in onshore buildings at Naval Station Norfolk, 2000.

    Treesearch

    David B. McKeever

    2003-01-01

    As of December 31, 2000, there were 603 buildings at Naval Station (NAVSTA) Norfolk with a combined floor area of nearly 17.3 million ft2. In one-third of these buildings, structural wood products were used in one or more major structural building applications, utilizing an estimated 11.6 million board feet of lumber, 0.4 million ft2 (3/8-in. basis) of structural...

  14. Development of fly ash boards with thermal, acoustic and fire insulation properties.

    PubMed

    Leiva, C; Arenas, C; Vilches, L F; Alonso-Fariñas, B; Rodriguez-Galán, M

    2015-12-01

    This paper presents an experimental analysis on a new board composed of gypsum and fly ashes from coal combustion, which are mutually compatible. Physical and mechanical properties, sound absorption coefficient, thermal properties and leaching test have been obtained. The mechanical properties showed similar values to other commercial products. As far as the acoustic insulation characteristics are concerned, sound absorption coefficients of 0.3 and 0.8 were found. The board presents a low thermal conductivity and a fire resistance higher than 50 min (for 4 cm of thickness). The leaching of trace elements was below the leaching limit values. These boards can be considered as suitable to be used in building applications as partitions. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. The Evolution of the American Board of Ophthalmology Written Qualifying Examination.

    PubMed

    Wilson, David J; Tasman, William S; Skuta, Gregory L; Sheth, Bhavna P

    2016-09-01

    Since the inception of board certification in ophthalmology in 1916, a written assessment of candidates' knowledge base has been an integral part of the certification process. Although the committee structure and technique for writing examination questions has evolved over the past 100 years, the written qualifying examination remains an essential tool for assessing the competency of physicians entering the workforce. To develop a fair and valid examination, the American Board of Ophthalmology builds examination questions using evidence-based, peer-reviewed literature and adheres to accepted psychometric assessment standards. Copyright © 2016 American Academy of Ophthalmology. All rights reserved.

  16. Report of the HDA building Task Force.

    PubMed

    Scheerer, Ernest W

    2006-01-01

    The Building Task Force, after researching the many options, recommended to the Board of Trustees that, at this time, it is in the best interest of the association and its members to keep the building. In addition to the reasons outlined in the preceding paragraphs, the conclusions drawn by the Task Force can be summarized as follows: 1) This is not the time to make a change as both land and construction costs are high; 2) There is little inventory at this time that would provide a significant improvement over the present building; 3) There is no urgent need to act now; and 4) Cost-effective changes can be made to make the building more valuable to the association.

  17. Textile electrodes woven by carbon nanotube-graphene hybrid fibers for flexible electrochemical capacitors.

    PubMed

    Cheng, Huhu; Dong, Zelin; Hu, Chuangang; Zhao, Yang; Hu, Yue; Qu, Liangti; Chen, Nan; Dai, Liming

    2013-04-21

    Functional graphene-based fibers are promising as new types of flexible building blocks for the construction of wearable architectures and devices. Unique one-dimensional (1D) carbon nanotubes (CNTs) and 2D graphene (CNT/G) hybrid fibers with a large surface area and high electrical conductivity have been achieved by pre-intercalating graphene fibers with Fe3O4 nanoparticles for subsequent CVD growth of CNTs. The CNT/G hybrid fibers can be further woven into textile electrodes for the construction of flexible supercapacitors with a high tolerance to the repeated bending cycles. Various other applications, such as catalysis, separation, and adsorption, can be envisioned for the CNT/G hybrid fibers.

  18. Real-Time On-Board Airborne Demonstration of High-Speed On-Board Data Processing for Science Instruments (HOPS)

    NASA Technical Reports Server (NTRS)

    Beyon, Jeffrey Y.; Ng, Tak-Kwong; Davis, Mitchell J.; Adams, James K.; Bowen, Stephen C.; Fay, James J.; Hutchinson, Mark A.

    2015-01-01

    The project called High-Speed On-Board Data Processing for Science Instruments (HOPS) has been funded by NASA Earth Science Technology Office (ESTO) Advanced Information Systems Technology (AIST) program since April, 2012. The HOPS team recently completed two flight campaigns during the summer of 2014 on two different aircrafts with two different science instruments. The first flight campaign was in July, 2014 based at NASA Langley Research Center (LaRC) in Hampton, VA on the NASA's HU-25 aircraft. The science instrument that flew with HOPS was Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) CarbonHawk Experiment Simulator (ACES) funded by NASA's Instrument Incubator Program (IIP). The second campaign was in August, 2014 based at NASA Armstrong Flight Research Center (AFRC) in Palmdale, CA on the NASA's DC-8 aircraft. HOPS flew with the Multifunctional Fiber Laser Lidar (MFLL) instrument developed by Excelis Inc. The goal of the campaigns was to perform an end-to-end demonstration of the capabilities of the HOPS prototype system (HOPS COTS) while running the most computationally intensive part of the ASCENDS algorithm real-time on-board. The comparison of the two flight campaigns and the results of the functionality tests of the HOPS COTS are presented in this paper.

  19. Hollow fiber: a biophotonic implant for live cells

    NASA Astrophysics Data System (ADS)

    Silvestre, Oscar F.; Holton, Mark D.; Summers, Huw D.; Smith, Paul J.; Errington, Rachel J.

    2009-02-01

    The technical objective of this study has been to design, build and validate biocompatible hollow fiber implants based on fluorescence with integrated biophotonics components to enable in fiber kinetic cell based assays. A human osteosarcoma in vitro cell model fiber system has been established with validation studies to determine in fiber cell growth, cell cycle analysis and organization in normal and drug treated conditions. The rationale for implant development have focused on developing benchmark concepts in standard monolayer tissue culture followed by the development of in vitro hollow fiber designs; encompassing imaging with and without integrated biophotonics. Furthermore the effect of introducing targetable biosensors into the encapsulated tumor implant such as quantum dots for informing new detection readouts and possible implant designs have been evaluated. A preliminary micro/macro imaging approach has been undertaken, that could provide a mean to track distinct morphological changes in cells growing in a 3D matrix within the fiber which affect the light scattering properties of the implant. Parallel engineering studies have showed the influence of the optical properties of the fiber polymer wall in all imaging modes. Taken all together, we show the basic foundation and the opportunities for multi-modal imaging within an in vitro implant format.

  20. Guidelines for Assessment and Abatement of Asbestos-Containing Materials in Buildings.

    ERIC Educational Resources Information Center

    Pielert, James H.; Mathey, Robert G.

    This report presents guidelines, based on available information, for the assessment and abatement of asbestos-containing materials in buildings. Section 1 provides background information on the history and use of asbestos-containing products in buildings, the characteristics of asbestos fibers, products and materials containing asbestos, and…

  1. Build the Station Simulation. Educator's Guide

    ERIC Educational Resources Information Center

    National Aeronautics and Space Administration (NASA), 2013

    2013-01-01

    With just a few materials, building a paper model of the International Space Station (ISS) can become an excellent group, troop, or class project. This publication contains a brief overview of the ISS, its parts, the science that occurs on board, instructions, and extensions for an interdisciplinary technology experience. Discover more about the…

  2. Position of the Academy of Nutrition and Dietetics: Health Implications of Dietary Fiber.

    PubMed

    Dahl, Wendy J; Stewart, Maria L

    2015-11-01

    It is the position of the Academy of Nutrition and Dietetics that the public should consume adequate amounts of dietary fiber from a variety of plant foods. Dietary fiber is defined by the Institute of Medicine Food Nutrition Board as "nondigestible carbohydrates and lignin that are intrinsic and intact in plants." Populations that consume more dietary fiber have less chronic disease. Higher intakes of dietary fiber reduce the risk of developing several chronic diseases, including cardiovascular disease, type 2 diabetes, and some cancers, and have been associated with lower body weights. The Adequate Intake for fiber is 14 g total fiber per 1,000 kcal, or 25 g for adult women and 38 g for adult men, based on research demonstrating protection against coronary heart disease. Properties of dietary fiber, such as fermentability and viscosity, are thought to be important parameters influencing the risk of disease. Plant components associated with dietary fiber may also contribute to reduced disease risk. The mean intake of dietary fiber in the United States is 17 g/day with only 5% of the population meeting the Adequate Intake. Healthy adults and children can achieve adequate dietary fiber intakes by increasing their intake of plant foods while concurrently decreasing energy from foods high in added sugar and fat, and low in fiber. Dietary messages to increase consumption of whole grains, legumes, vegetables, fruits, and nuts should be broadly supported by food and nutrition practitioners. Copyright © 2015 Academy of Nutrition and Dietetics. Published by Elsevier Inc. All rights reserved.

  3. 7. Historic American Buildings Survey Lanny Miyamoto, Photographer October 1958 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. Historic American Buildings Survey Lanny Miyamoto, Photographer October 1958 SECOND FLOOR BOARD ROOM, NORTH AND EAST SIDES, WITH FIREPLACE - Aged Women's Home, 1400 West Lexington Street, Baltimore, Independent City, MD

  4. Design and fabrication of advanced fiber alignment structures for field-installable fiber connectors

    NASA Astrophysics Data System (ADS)

    Van Erps, Jürgen; Vervaeke, Michael; Sánchez Martínez, Alberto; Beri, Stefano; Debaes, Christof; Watté, Jan; Thienpont, Hugo

    2012-06-01

    Fiber-To-The-Home (FTTH) networks have been adopted as a potential replacement of traditional electrical connections for the 'last mile' transmission of information at bandwidths over 1Gb/s. However, the success and adoption of optical access networks critically depend on the quality and reliability of connections between optical fibers. In particular a further reduction of insertion loss of field-installable connectors must be achieved without a significant increase in component cost. This requires precise alignment of fibers that can differ in terms of ellipticity, eccentricity or diameter and seems hardly achievable using today's widespread ferrule-based alignment systems. Novel low-cost structures for bare fiber alignment with outstanding positioning accuracies are strongly desired as they would allow reducing loss beyond the level achievable with ferrule-bore systems. However, the realization of such alignment system is challenging as it should provide sufficient force to position the fiber with sub-micron accuracy required in positioning the fiber. In this contribution we propose, design and prototype a bare-fiber alignment system which makes use of deflectable/compressible micro-cantilevers. Such cantilevers behave as springs and provide self-centering functionality to the structure. Simulations of the mechanical properties of the cantilevers are carried out in order to get an analytical approximation and a mathematical model of the spring constant and stress in the structure. Elastic constants of the order of 104 to 105N/m are found out to be compatible with a proof stress of 70 MPa. Finally a first self-centering structure is prototyped in PMMA using our Deep Proton Writing technology. The spring constants of the fabricated cantilevers are in the range of 4 to 6 × 104N/m and the stress is in the range 10 to 20 MPa. These self-centering structures have the potential to become the basic building blocks for a new generation of field-installable connectors.

  5. Neural networks within multi-core optic fibers

    PubMed Central

    Cohen, Eyal; Malka, Dror; Shemer, Amir; Shahmoon, Asaf; Zalevsky, Zeev; London, Michael

    2016-01-01

    Hardware implementation of artificial neural networks facilitates real-time parallel processing of massive data sets. Optical neural networks offer low-volume 3D connectivity together with large bandwidth and minimal heat production in contrast to electronic implementation. Here, we present a conceptual design for in-fiber optical neural networks. Neurons and synapses are realized as individual silica cores in a multi-core fiber. Optical signals are transferred transversely between cores by means of optical coupling. Pump driven amplification in erbium-doped cores mimics synaptic interactions. We simulated three-layered feed-forward neural networks and explored their capabilities. Simulations suggest that networks can differentiate between given inputs depending on specific configurations of amplification; this implies classification and learning capabilities. Finally, we tested experimentally our basic neuronal elements using fibers, couplers, and amplifiers, and demonstrated that this configuration implements a neuron-like function. Therefore, devices similar to our proposed multi-core fiber could potentially serve as building blocks for future large-scale small-volume optical artificial neural networks. PMID:27383911

  6. Bamboo fiberboards and attapulgite : does it lead to an improvement of humidity control in buildings?

    NASA Astrophysics Data System (ADS)

    Nguyen, D. M.; Grillet, A. C.; Goldin, T.; Hanh Diep, T. M.; Woloszyn, M.

    2018-04-01

    In order to save energy used to heat or cool buildings and to improve the inhabitants comfort, control of humidity inside buildings must be improved. This can be done by using buffering materials able to absorb and release moisture when necessary. Natural fibers and mineral absorbent are good candidates to manufacture such materials. The aim of this research is to mix bamboo fibers with attapulgite to evaluate the influence of this mineral absorbent on the hygric behavior of the fiberboards. The hygric properties are slightly improved by the attapulgite and thus bamboo fiberboards can be used as building insulation materials able to participate to the indoor moisture control.

  7. Strategies for Relationship and Trust Building by Successful Superintendents: A Case Study

    ERIC Educational Resources Information Center

    Huang, Leann L.

    2012-01-01

    The purpose of this study was to identify strategies and behaviors that successful superintendents used to build strong relationships and trust with their boards within their entry period. The three research questions were developed to guide this study: 1. What strategies and behaviors were successful superintendents using to build strong…

  8. CREATION OF MUSIC WITH FIBER REINFORCED CONCRETE

    NASA Astrophysics Data System (ADS)

    Kato, Hayato; Takeuchi, Masaki; Ogura, Naoyuki; Kitahara, Yukiko; Okamoto, Takahisa

    This research focuses on the Fiber Reinforcement Concrete(FRC) and its performance on musical tones. Thepossibility of future musical instruments made of this concrete is discussed. Recently, the technical properties of FRC had been improved and the different production styles, such as unit weight of binding material and volume of fiber in the structure, hardly affects the results of the acoustics. However, the board thickness in the FRC instruments is directly related with the variety of musical tone. The FRC musical effects were compared with those produced with wood on wind instruments. The sounds were compared with those produced with woodwind instruments. The sound pressure level was affected by the material and it becomes remarkably notorious in the high frequency levels. These differences had great influence on the spectrum analysis of the tone in the wind instruments and the sensory test. The results from the sensory test show dominant performances of brightness, beauty and power in the FRC instruments compared with those made of wood.

  9. Board Games in the Business Classroom: How to Play "Business Decisions"

    ERIC Educational Resources Information Center

    Clausen, Daniel

    2017-01-01

    Games have long been a staple of active learning environments. They are a fantastic way to reduce anxiety, promote competition, and energize classrooms. Board games, in particular, can be very useful in building real-world skills in a fun and non-threatening environment. Therefore, the author uses them extensively for Business English classes and…

  10. Photonic crystal fiber sensing characteristics research based on alcohol asymmetry filling

    NASA Astrophysics Data System (ADS)

    Shi, Fu-quan; Luo, Yan; Li, Hai-tao; Peng, Bao-jin

    2018-02-01

    A new type of Sagnac fiber temperature sensor based on alcohol asymmetric filling photonic crystal fiber is proposed. First, the corrosion of photonic crystal fiber and the treatment of air hole collapse are carried out. Then, the asymmetric structure of photonic crystal fiber is filled with alcohol, and then the structure is connected to the Sagnac interference ring. When the temperature changes, the thermal expansion effect of filling alcohol will lead to the change of birefringence of photonic crystal fiber, so that the interference spectrum of the sensor will drift along with the change of temperature. The experimental results show that the interference red shift will occur with the increase of temperature, and the temperature sensitivity is 0.1864nm/ °C. The sensor has high sensitivity to temperature. At the same time, the structure has the advantages of high stability, anti electromagnetic interference and easy to build. It provides a new method for obtaining birefringence in ordinary photonic crystal fibers.

  11. Investigations on Thermal Conductivities of Jute and Banana Fiber Reinforced Epoxy Composites

    NASA Astrophysics Data System (ADS)

    Pujari, Satish; Ramakrishna, Avasarala; Balaram Padal, Korabu Tulasi

    2017-04-01

    The Jute and Banana fibers are used as reinforcement in epoxy resin matrix for making partially green biodegradable material composite via hand lay-up technique. The thermal conductivity of the jute fiber epoxy composites and banana fiber epoxy composites at different volume fraction of the fiber is determined experimentally by using guarded heat flow meter method. The experimental results had shown that thermal conductivity of the composites decrease with an increase in the fiber content. Experimental results are compared with theoretical models (Series model, Hashin model and Maxwell model) to describe the variation of the thermal conductivity versus the volume fraction of the fiber. Good agreement between theoretical and experimental results is observed. Thermal conductivity of Banana fiber composite is less when compared to that of Jute composite which indicates banana is a good insulator and also the developed composites can be used as insulating materials in building, automotive industry and in steam pipes to save energy by reducing rate of heat transfer.

  12. Board-to-board optical interconnection using novel optical plug and slot

    NASA Astrophysics Data System (ADS)

    Cho, In K.; Yoon, Keun Byoung; Ahn, Seong H.; Kim, Jin Tae; Lee, Woo Jin; Shin, Kyoung Up; Heo, Young Un; Park, Hyo Hoon

    2004-10-01

    A novel optical PCB with transmitter/receiver system boards and optical bakcplane was prepared, which is board-to-board interconnection by optical plug and slot. We report an 8Gb/s PRBS NRZ data transmission between transmitter system board and optical backplane embedded multimode polymeric waveguide arrays. The basic concept of ETRI's optical PCB is as follows; 1) Metal optical bench is integrated with optoelectronic devices, driver and receiver circuits, polymeric waveguide and access line PCB module. 2) Multimode polymeric waveguide inside an optical backplane, which is embedded into PCB. 3) Optical slot and plug for high-density(channel pitch : 500um) board-to-board interconnection. The polymeric waveguide technology can be used for transmission of data on transmitter/ receiver system boards and for backplane interconnections. The main components are low-loss tapered polymeric waveguides and a novel optical plug and slot for board-to-board interconnections, respectively. The optical PCB is characteristic of low coupling loss, easy insertion/extraction of the boards and, especially, reliable optical coupling unaffected from external environment after board insertion.

  13. An Approach for On-Board Software Building Blocks Cooperation and Interfaces Definition

    NASA Astrophysics Data System (ADS)

    Pascucci, Dario; Campolo, Giovanni; Candia, Sante; Lisio, Giovanni

    2010-08-01

    This paper provides an insight on the Avionic SW architecture developed by Thales Alenia Space Italy (TAS-I) to achieve structuring of the OBSW as a set of self-standing and re-usable building blocks. It is initially described the underlying framework for building blocks cooperation, which is based on ECSSE-70 packets forwarding (for services request to a building block) and standard parameters exchange for data communication. Subsequently it is discussed the high level of flexibility and scalability of the resulting architecture, reporting as example an implementation of the Failure Detection, Isolation and Recovery (FDIR) function which exploits the proposed architecture. The presented approach evolves from avionic SW architecture developed in the scope of the project PRIMA (Mult-Purpose Italian Re-configurable Platform) and has been adopted for the Sentinel-1 Avionic Software (ASW).

  14. Performance Using Bamboo Fiber Ash Concrete as Admixture Adding Superplasticizer

    NASA Astrophysics Data System (ADS)

    Vasudevan, Gunalaan

    2017-06-01

    The increasing demand on natural resources for housing provisions in developing countries have called for sourcing and use of sustainable local materials for building and housing delivery. Natural materials to be considered sustainable for building construction should be ‘green’ and obtained from local sources, including rapidly renewable plant materials like palm fronds and bamboo, recycled materials and other products that are reusable and renewable. Each year, tens of millions of tons of bamboo are utilized commercially, generating a vast amount of waste. Besides that, bamboo fiber is easy availability, low density, low production cost and satisfactory mechanical properties. One solution is to activate this waste by using it as an additive admixture in concrete to keep it out of landfills and save money on waste disposal. The research investigates the mechanical and physical properties of bamboo fiber powder in a blended Portland cement. The structural value of the bamboo fiber powder in a blended Portland cement was evaluated with consideration for its suitability in concrete. Varied percentage of bamboo fiber powder (BFP) at 0%, 5%, 10%, 15%, and 20% as an admixture in 1:2:4 concrete mixes. The workability of the mix was determined through slump; standard consistency test was carried on the cement. Compressive strength of hardened cured (150 x 150 x 150) mm concrete cubes at 7days, 14days and 28days were tested.

  15. Novel route of synthesis for cellulose fiber-based hybrid polyurethane

    NASA Astrophysics Data System (ADS)

    Ikhwan, F. H.; Ilmiati, S.; Kurnia Adi, H.; Arumsari, R.; Chalid, M.

    2017-07-01

    Polyurethanes, obtained by the reaction of a diisocyanate compound with bifunctional or multifunctional reagent such as diols or polyols, have been studied intensively and well developed. The wide range modifier such as chemical structures and molecular weight to build polyurethanes led to designs of materials that may easily meet the functional product demand and to the extraordinary spreading of these materials in market. Properties of the obtained polymer are related to the chemical structure of polyurethane backbone. A number polyurethanes prepared from biomass-based monomers have been reported. Cellulose fiber, as a biomass material is containing abundant hydroxyl, promising material as chain extender for building hybrid polyurethanes. In previous researches, cellulose fiber was used as filler in synthesis of polyurethane composites. This paper reported a novel route of hybrid polyurethane synthesis, which a cellulose fiber was used as chain extender. The experiment performed by reacting 4,4’-Methylenebis (cyclohexyl isocyanate) (HMDI) and polyethylene glycol with variation of molecular weight to obtained pre-polyurethane, continued by adding micro fiber cellulose (MFC) with variation of type and composition in the mixture. The experiment was evaluated by NMR, FTIR, SEM and STA measurement. NMR and FTIR confirmed the reaction of the hybrid polyurethane. STA showed hybrid polyurethane has good thermal stability. SEM showed good distribution and dispersion of sorghum-based MFC.

  16. The Impact Of Multimode Fiber Chromatic Dispersion On Data Communications

    NASA Astrophysics Data System (ADS)

    Hackert, Michael J.

    1990-01-01

    Capability for the lowest cost is the goal of contemporary communications managers. With all of the competitive pressures that modern businesses are experiencing these days, communications needs must be met with the most information carrying capacity for the lowest cost. Optical fiber communication systems meet these requirements while providing reliability, system integrity, and potential future upgradability. Consequently, optical fiber is finding numerous applications in addition to its traditional telephony plant. Fiber based systems are meeting these requirements in building networks and computer interconnects at a lower cost than copper based systems. A fiber type being chosen by industry to meet these needs in standard systems such as FDDI, is multimode fiber. Multimode fiber systems offer cost advantages over single-mode fiber through lower fiber connection costs. Also, system designers can gain savings by using low cost, high reliability, wide spectral width sources such as LEDs instead of lasers and by operating at higher bit rates than used for multimode systems in the past. However, in order to maximize the cost savings while ensuring the system will operate as intended, the chromatic dispersion of the fiber must be taken into account. This paper explains how to do that and shows how to calculate multimode chromatic dispersion for each of the standard fiber sizes (50 μm, 62.5 μm, 85 μm, and 100μm core diameter).

  17. Transformer partial discharge monitoring based on optical fiber sensing

    NASA Astrophysics Data System (ADS)

    Wang, Kun; Tong, Xinglin; Zhu, Xiaolong

    2014-06-01

    The power transformer is the most important equipment of the high voltage power grid, however, some traditional methods of online partial discharge monitoring have some limitations. Based on many advantages of the optical fiber sensing technology, we have done some research on fiber optics Fabry-Perot (FP) sensing which can be useful for the transformer on online partial discharge monitoring. This research aimed at improving the reliability of power system safety monitoring. We have done some work as follows: designing a set for fiber optics FP sensor preparation, according to the fabrication procedure strictly making out the sensors, building a reasonable signal demodulation system for fiber optics FP sensing, doing a preliminary analysis about online partial discharge signal monitoring, including the research on different discharge intensities with the same measuring distance and different measuring distances with the same discharge intensity, and then making a detailed analysis of the experimental results.

  18. WASTE HANDLING BUILDING ELECTRICAL SYSTEM DESCRIPTION DOCUMENT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    S.C. Khamamkar

    2000-06-23

    The Waste Handling Building Electrical System performs the function of receiving, distributing, transforming, monitoring, and controlling AC and DC power to all waste handling building electrical loads. The system distributes normal electrical power to support all loads that are within the Waste Handling Building (WHB). The system also generates and distributes emergency power to support designated emergency loads within the WHB within specified time limits. The system provides the capability to transfer between normal and emergency power. The system provides emergency power via independent and physically separated distribution feeds from the normal supply. The designated emergency electrical equipment will bemore » designed to operate during and after design basis events (DBEs). The system also provides lighting, grounding, and lightning protection for the Waste Handling Building. The system is located in the Waste Handling Building System. The system consists of a diesel generator, power distribution cables, transformers, switch gear, motor controllers, power panel boards, lighting panel boards, lighting equipment, lightning protection equipment, control cabling, and grounding system. Emergency power is generated with a diesel generator located in a QL-2 structure and connected to the QL-2 bus. The Waste Handling Building Electrical System distributes and controls primary power to acceptable industry standards, and with a dependability compatible with waste handling building reliability objectives for non-safety electrical loads. It also generates and distributes emergency power to the designated emergency loads. The Waste Handling Building Electrical System receives power from the Site Electrical Power System. The primary material handling power interfaces include the Carrier/Cask Handling System, Canister Transfer System, Assembly Transfer System, Waste Package Remediation System, and Disposal Container Handling Systems. The system interfaces with the MGR

  19. Investigation of the Building M6-794 Roofing Fatality, Type A Mishap

    NASA Technical Reports Server (NTRS)

    Casper, John H.; French, Kristie; Tipton, David A.; Bennardo, C. P.; Miller, Darcy H.; Facemire, David L.

    2006-01-01

    The Building M6-794 Roofing Fatality Mishap Investigation Board (Board) was commissioned to gather information; analyze the facts; identify the proximate causes, root causes, and contributing factors relating to the mishap; and recommend appropriate actions to prevent a similar mishap from occurring in the future. During the investigation of this mishap, the Board also examined the fall protection policies of other NASA Centers and operating locations to gain an understanding of how those entities conduct fall protection, as well as the degree to which fall protection is standardized across the Agency.

  20. Optical gateway for intelligent buildings: a new open-up window to the optical fibre sensors market?

    NASA Astrophysics Data System (ADS)

    Fernandez-Valdivielso, Carlos; Matias, Ignacio R.; Arregui, Francisco J.; Bariain, Candido; Lopez-Amo, Manuel

    2004-06-01

    This paper presents the first optical fiber sensor gateway for integrating these special measurement devices in Home Automation Systems, concretely in those buildings that use the KNX European Intelligent Buildings Standard.

  1. SU-F-T-93: Breast Surface Dose Enhancement Using a Clinical Prone Breast Board

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guerra, M; Jozsef, G

    Purpose: The use of specialized patient set-up devices in radiotherapy, such as prone breast boards, may have unwanted dosimetric effects. The goal of this study was to evaluate the effect of a clinically used prone breast board on skin dose due to buildup. Methods: GafChromic film (EBT3) was used for dose measurements on the surface of a solid water phantom shaped to mimic the curvature of the breast. We investigated two setup scenarios: the medial field border placed at the medial edge of the board and 1 cm contralaterally from that edge. A strip of film was taped to themore » medial surface of the phantom. Gantry angles varied from 10 to 30 degrees below the lateral gantry position, representing anterior oblique fields. The measurements were performed with and without the presence of the board; the ratio of their corresponding doses (dose enhancement) was evaluated. Results: For the cases where the field edge is at the edge of the board, the dose enhancement is negligible for all the tested angles. When the field edge is 1 cm inside the board, the maximum surface dose enhancement varies depending on the gantry angle between 2.2 for 30 degrees and 3.2 for 20 degrees. The length on the film at which the presence of the board is detectable (i.e. where there is dose enhancement) is longer for the shallower angles. Conclusion: Even the low-density, thin carbon fiber board with a thin soft foam pad on the top can produce significant dose enhancement on the skin in prone breast treatment due to loss of buildup. However, it happens only when the patient mid-sternum is over the board, i.e. the medial edge of the field traverses through the board and pad. Even then, the effect occurs only at the field edge, i.e. the penumbral region.« less

  2. Systemwide board assessment.

    PubMed

    Hafertepe, E C

    1987-01-01

    The Sisters of Charity Health Care System (SCHCS), Inc., Cincinnati, undertook a systemwide board evaluation project to support and enhance effective aspects of governance and to deal with obstacles that often arise due to differing beliefs and role confusion. A task force of chief executive officers developed the questionnaire, which was then administered to members of individual facilities' boards and the system's board. The documented highlighted value issues important to SCHCS's ministry and business activities: overall board responsibilities, financial responsibilities, strategic planning, the board's role, committee structures, the board's operating process, board education, and overall board effectiveness. The responses from each member were returned to the local boards, who analyzed them and developed an action plan. A summary of each facility's responses and action plans were forwarded to the system's corporate office. The CEO committee critiqued the process and reported on significant issues and action plans. In general, survey results revealed a strong influence of mission and philosophy in decision making, support for current processes, and effective interaction among board members. The system's corporate office will use the responses to respond to a dynamic environment and strengthen their role in the delivery of Catholic health care services.

  3. Industry involvement in IPAD through the Industry Technical Advisory Board

    NASA Technical Reports Server (NTRS)

    Swanson, W. E.

    1980-01-01

    In 1976 NASA awarded The Boeing Company a contract to develop IPAD (Integrated Programs for Aerospace-Vehicle Design). This contract included a requirement for Boeing to form an Industrial Technical Advisory Board (ITAB), with members representing major aerospace and computer companies. The purpose of this board was to guide the development of IPAD. The specific goal of IPAD is to increase United States aerospace industry productivity through the application of computers to manage engineering data. This goal clearly is attainable; in fact, IPAD's influence can reach beyond the aerospace industry to many businesses where product development is based on the design-building process. An enhanced IPAD, therefore, is a national asset of significance. The role of ITAB in guiding the development of this system is described.

  4. Asbestos exposure during renovation and demolition of asbestos-cement clad buildings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, S.K.

    External asbestos cement (AC) claddings become weathered after many years by the gradual loss of cement from exposed surfaces; as a result, loosely bound layers enriched with asbestos fibers are formed. Asbestos fibers on such weathered surfaces may be mixtures of chrysotile with amosite or crocidolite. Renovation and demolition of old AC clad buildings could cause asbestos fiber emission, but this has not been investigated in the past. The exposure of workers to asbestos dust during these operations and precautions to minimize exposure now have been investigated at several building sites. Asbestos dust concentrations during water jet cleaning or paintingmore » of weathered AC roofing were approximately 0.1 to 0.2 fibers per milliliter (f/mL). Limited results suggest that concentrations may be reduced substantially by avoiding abrasion of surfaces. Concentrations during AC roof replacement averaged approximately 0.1 f/mL and were reduced markedly by employing more careful work procedures. Asbestos dust concentrations during demolition by removal of whole sheets averaged 0.3 to 0.6 f/mL for roofs and less than 0.1 f/mL for walls, reflecting the significant differences in extent of weathering between these elements. Suppression of asbestos emissions from roof sheets by wetting or sealing of weathered surfaces was not predictable because of the occurrence of asbestos fibers in dust trapped under sheet laps.« less

  5. Improving building efficiency in developing countries: Case study of insulation for northern Pakistan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Glicksman, L.R.; Norford, L.; Charlson, J.

    1998-07-01

    There is a need to improve building envelopes in many parts of the developing world. In cold climates, scarce fuel is consumed in an attempt to maintain reasonable indoor temperatures. In Northern Pakistan, traditional houses are made with stone walls while newer buildings, houses and schools, use uninsulated concrete block that has even lower thermal resistance. Evaluation and improvement of these buildings were undertaken with a regional non-governmental organization. Measurements were made of the thermal resistance of typical exterior walls. An energy analysis showed that using 1.0 kg of straw in an insulation board would save about 5 kg ofmore » firewood over a winter in a Pakistani school. Recent research has focused on development of an insulation that can be retrofitted over existing walls. The insulation board must be sufficiently strong to support itself during construction and resist damage at its surface. Several methods of containing and binding straw were examined; the most promising adhesive was commercially available methane di-isocyanate. Good mechanical properties were obtained at resin contents as low as 2% by weight. At densities of 128 and 160 kg/m{sup 3} (8 and 10 lb/ft{sup 3}), these boards have thermal conductivities of 0.039--0.041 W/m-K (R-values of 3.7 and 3.45 per inch), respectively. The boards have an estimated materials cost per unit thermal resistance that is roughly half the delivered cost of competing insulations available in Pakistan. Straw insulation boards have the added advantage that they can be made on site with semi-skilled local labor and local materials.« less

  6. Lectures on School Building, Furniture and Equipment.

    ERIC Educational Resources Information Center

    Geursen, Thijs J.; Kamp, Kees

    1978-01-01

    The Information Centre for School Building (ICS) in the Netherlands works on commissions of the central authorities, but also for local authorities, school boards, and sometimes commercial firms. This publication contains papers by Thijs J. Geursen, the managing director of the ICS and by Kees Kamp, the deputy director. In "School Building…

  7. Graphite fluoride fibers and their applications in the space industry

    NASA Technical Reports Server (NTRS)

    Hung, Ching-Chen; Long, Martin; Dever, Therese

    1990-01-01

    Characterization and potential space applications of graphite fluoride fibers from commercially available graphitized carbon fibers are presented. Graphite fluoride fibers with fluorine to carbon ratios of 0.65 and 0.68 were found to have electrical resistivity values of 10(exp 4) and 10(exp 11) Ohms-cm, respectively, and thermal conductivity values of 24 and 5 W/m-K, respectively. At this fluorine content range, the fibers have tensile strength of 0.25 + or - 0.10 GPa (36 + or - 14 ksi), Young's modulus of 170 + or - 30 GPa (25 + or - 5 Msi). The coefficient of thermal expansion value of a sample with fluorine to carbon ratio of 0.61 was found to be 7 ppm/C. These properties change and approach the graphite value as the fluorine content approach 0. Electrically insulative graphite fluoride fiber is at least five times more thermally conductive than fiberglass. Therefore, it can be used as a heat sinking printed circuit board material for low temperature, long life power electronics in spacecraft. Also, partially fluorinated fiber with tailor-made physical properties to meet the requirements of certain engineering design can be produced. For example, a partially fluorinated fiber could have a predetermined CTE value in -1.5 to 7 ppm/C range and would be suitable for use in solar concentrators in solar dynamic power systems. It could also have a predetermined electrical resistivity value suitable for use as a low observable material. Experimental data indicate that slightly fluorinated graphite fibers are more durable in the atomic oxygen environment than pristine graphite. Therefore, fluorination of graphite used in the construction of spacecraft that would be exposed to the low Earth orbit atomic oxygen may protect defect sites in atomic oxygen protective coatings and therefore decrease the rate of degradation of graphite.

  8. Interferometric sensor based on the polarization-maintaining fibers

    NASA Astrophysics Data System (ADS)

    Cubik, Jakub; Kepak, Stanislav; Doricak, Jan; Vašinek, Vladimir; Liner, Andrej; Papes, Martin

    2012-01-01

    The interferometers composed of optical fibers are due to its high sensitivity capable of to measure various influences affecting the fiber. These influences may be bending or different sorts of fiber deformations, vibration, temperature, etc. In this case the vibration is the measured quantity, which is evaluated by analyzing the interference fringes representing changes in the fiber. Was used a Mach-Zehnder interferometer composed of the polarization maintaining elements. The polarization maintaining elements were used because of high sensitivity to polarization state inside the interferometer. The light was splitted into the two optical paths, where the first one is the reference fiber and it is separated from the actual phenomenon, and the second one is measuring fiber, which is directly exposed to vibration transmission from the underlying surface. The light source was narrowband DFB laser serating at a wavelength of 1550nm and as a detector an InGaAs PIN photodiode were used in this measurement. The electrical signal from the photodiode was amplified and fed into the measuring card. On the incoming signal the FFT was applied, which performs the transformation into the frequency domain and the results were further evaluated by software. We were evaluating the characteristic frequencies and their amplitude ratios. The frequency responses are unique for a given phenomenon, thus it is possible to identify recurring events by the characteristic frequencies and their amplitude ratios. The frequency range was limited by the properties of the used speaker, by the frequency characteristics of the filter in the amplifier and used resonant element. For the experiment evaluation the repeated impact of the various spherical objects on the surface board was performed and measured. The stability of amplitude and frequency and also the frequency range was verified in this measurement.

  9. Lightweight Fiber Optic Gas Sensor for Monitoring Regenerative Food Production

    NASA Technical Reports Server (NTRS)

    Schmidlin, Edward; Goswami, Kisholoy

    1995-01-01

    In this final report, Physical Optics Corporation (POC) describes its development of sensors for oxygen, carbon dioxide, and relative humidity. POC has constructed a phase fluorometer that can detect oxygen over the full concentration range from 0 percent to 100 percent. Phase-based measurements offer distinct advantages, such as immunity to source fluctuation, photobleaching, and leaching. All optics, optoelectronics, power supply, and the printed circuit board are included in a single box; the only external connections to the fluorometer are the optical fiber sensor and a power cord. The indicator-based carbon dioxide sensor is also suitable for short-term and discrete measurements over the concentration range from 0 percent to 100 percent. The optical fiber-based humidity sensor contains a porous core for direct interaction of the light beam with water vapor within fiber pores; the detection range for the humidity sensor is 10 percent to 100 percent, and response time is under five minutes. POC is currently pursuing the commercialization of these oxygen and carbon dioxide sensors for environmental applications.

  10. Robust optical fiber patch-cords for in vivo optogenetic experiments in rats.

    PubMed

    Trujillo-Pisanty, Ivan; Sanio, Christian; Chaudhri, Nadia; Shizgal, Peter

    2015-01-01

    In vivo optogenetic experiments commonly employ long lengths of optical fiber to connect the light source (commonly a laser) to the optical fiber implants in the brain. Commercially available patch cords are expensive and break easily. Researchers have developed methods to build these cables in house for in vivo experiments with rodents [1-4]. However, the half-life of those patch cords is greatly reduced when they are used with behaving rats, which are strong enough to break the delicate cable tip and to bite through the optical fiber and furcation tubing. Based on [3] we have strengthened the patch-cord tip that connects to the optical implant, and we have incorporated multiple layers of shielding to produce more robust and resistant cladding. Here, we illustrate how to build these patch cords with FC or M3 connectors. However, the design can be adapted for use with other common optical-fiber connectors. We have saved time and money by using this design in our optical self-stimulation experiments with rats, which are commonly several months long and last four to eleven hours per session. The main advantages are: •Long half-life.•Resistant to moderate rodent bites.•Suitable for long in vivo optogenetic experiments with large rodents.

  11. 26. Photographic copy of plant engineer's handdrawn buildings function chart, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    26. Photographic copy of plant engineer's hand-drawn buildings function chart, dated 1967; Ink and pencil on tracing paper; Attributed to GWN, Original in collection of Rath drawings and blueprints owned by Waterloo Community Development Board, Waterloo, Iowa; SHEET THREE; OUTLINES ACTIVITIES TAKING PLANE ON EACH FLOOR OF MAJOR BUILDINGS IN THE RATH COMPLEX - Rath Packing Company, Sycamore Street between Elm & Eighteenth Streets, Waterloo, Black Hawk County, IA

  12. 24. Photographic copy of plant engineer's handdrawn buildings function chart, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    24. Photographic copy of plant engineer's hand-drawn buildings function chart, dated 1967; Ink and pencil on tracing paper; Attributed to GWN, Original in collection of Rath drawings and blueprints owned by Waterloo Community Development Board, Waterloo, Iowa; SHEET ONE; OUTLINES ACTIVITIES TAKING PLANE ON EACH FLOOR OF MAJOR BUILDINGS IN THE RATH COMPLEX - Rath Packing Company, Sycamore Street between Elm & Eighteenth Streets, Waterloo, Black Hawk County, IA

  13. 25. Photographic copy of plant engineer's handdrawn buildings function chart, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    25. Photographic copy of plant engineer's hand-drawn buildings function chart, dated 1967; Ink and pencil on tracing paper; Attributed to GWN, Original in collection of Rath drawings and blueprints owned by Waterloo Community Development Board, Waterloo, Iowa; SHEET TWO; OUTLINES ACTIVITIES TAKING PLANE ON EACH FLOOR OF MAJOR BUILDINGS IN THE RATH COMPLEX - Rath Packing Company, Sycamore Street between Elm & Eighteenth Streets, Waterloo, Black Hawk County, IA

  14. Getting boards on board a major challenge for integrated systems.

    PubMed

    Egger, E

    1998-12-01

    Among the challenges an integrated health care system faces is helping its board members make the transition away from a historic community philanthropic board toward a board with more of a business approach.

  15. Fabrication and photoluminescence properties of graphite fiber/ZnO nanorod core-shell structures.

    PubMed

    Liu, Xianbin; Du, Hejun; Liu, Bo; Wang, Jianxiong; Sun, Xiao Wei; Sun, Handong

    2011-08-01

    Graphite fiber/ZnO nanorod core-shell structures were synthesized by thermal evaporation process. The core-shell hybrid architectures were comprised of ZnO nanorods grown on the surface of graphite fiber. In addition, Hollow ZnO hierarchical structure can be obtained by oxidizing the graphite fiber. Room temperature photoluminescence (PL) of the as-made graphite fiber/ZnO nanorod structures shows two UV peaks at around 3.274 eV and 3.181 eV. The temperature-dependent photoluminescence spectra demonstrate the two UV emissions are attributed to the intrinsic optical transitions and extrinsic defect-related emissions in ZnO. These hybrid structures may be used as the building block for fabrication of nanodevices.

  16. Supersymmetric Transformations in Optical Fibers

    NASA Astrophysics Data System (ADS)

    Macho, Andrés; Llorente, Roberto; García-Meca, Carlos

    2018-01-01

    Supersymmetry (SUSY) has recently emerged as a tool to design unique optical structures with degenerate spectra. Here, we study several fundamental aspects and variants of one-dimensional SUSY in axially symmetric optical media, including their basic spectral features and the conditions for degeneracy breaking. Surprisingly, we find that the SUSY degeneracy theorem is partially (totally) violated in optical systems connected by isospectral (broken) SUSY transformations due to a degradation of the paraxial approximation. In addition, we show that isospectral constructions provide a dimension-independent design control over the group delay in SUSY fibers. Moreover, we find that the studied unbroken and isospectral SUSY transformations allow us to generate refractive-index superpartners with an extremely large phase-matching bandwidth spanning the S +C +L optical bands. These singular features define a class of optical fibers with a number of potential applications. To illustrate this, we numerically demonstrate the possibility of building photonic lanterns supporting broadband heterogeneous supermodes with large effective area, a broadband all-fiber true-mode (de)multiplexer requiring no mode conversion, and different mode-filtering, mode-conversion, and pulse-shaping devices. Finally, we discuss the possibility of extrapolating our results to acoustics and quantum mechanics.

  17. Mechanical Demolition of Buildings with Concrete Asbestos Board Siding: Methodology, Precautions, and Results at the Hanford Central Plateau - 12417

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kehler, Kurt

    Since the start of its contract in 2008, the CH2M Hill Plateau Remediation Company (CH2M HILL) has demolished 25 buildings with concrete asbestos board (CAB) siding using mechanical means. While the asbestos contained in CAB siding is not friable in its manufactured form, concerns persist that mechanical methods of demolition have the potential to render the asbestos friable and airborne, therefore posing a health risk to demolition workers and the public. CH2M HILL's experience demonstrates that when carefully managed, mechanical demolition of CAB siding can be undertaken safely, successfully, and in compliance with regulatory requirements for the disposal of Classmore » II Asbestos-Containing Material (ACM). While the number of buildings demolished at Hanford and the number of samples collected does not make a conclusive argument that CAB cannot be made friable with normal demolition techniques, it certainly provides a significant body of evidence for the success of the approach. Of course, there are many factors that affect how to demolish a structure and dispose of the waste. These factors will impact the success depending on each site. The most obvious factors which contribute to this success at Hanford are: 1. The availability of onsite waste disposal where the handling and cost of asbestos-containing waste is not much different than other potentially contaminated waste. Therefore, segregation of demolition debris from the potential asbestos contamination is not necessary from a debris handling or asbestos disposal aspect. 2. The space between structures is typically significant enough to allow for large exclusion zones. There are not many restrictions due to cohabitation issues or potential contamination of adjacent facilities. 3. The willingness of the regulators and client to understand the industrial safety issues associated with manual CAB removal. (authors)« less

  18. Development and application of nonflammable, high-temperature beta fibers

    NASA Technical Reports Server (NTRS)

    Dawn, Frederic S.

    1989-01-01

    Recent advances in fiber technology have contributed to the success of the U.S. space program. The inorganic fiber Beta, developed as a result of efforts begun in the early 1960's and heightened following the January 27, 1967 Apollo fire is unique among inorganic and organic fibers. It has been developed into woven, nonwoven, knitted, braided, coated and printed structures. All of these were used extensively for the Apollo, Skylab, Apollo-Soyuz test project, space shuttle, Spacelab, and satellite programs. In addition to being used successfully in the space program, Beta fibers are being used commercially as firesafe fabrics in homes, hospitals, institutions, public buildings, aircraft, and public transportation, wherever total nonflammability is required. One of the most unique applications of the Beta composite structure is the roofing material for the 80,000-seat Detroit Lion's Silverdome and 5 square miles of the Jeddah International Airport in Saudi Arabia. This fiber has been successfully incorporated into 165 major public construction projects around the globe. The United States alone has used more than 12 million square yards of the material. Beta fiber has been used successfully to date and has a promising future with unlimited potential for both space and commercial application. Efforts are currently underway to improve Beta fiber to meet the requirements of extended service life for the Space Station Freedom, lunar outpost, and Mars exploration missions.

  19. Self-centering fiber alignment structures for high-precision field installable single-mode fiber connectors

    NASA Astrophysics Data System (ADS)

    Van Erps, Jürgen; Ebraert, Evert; Gao, Fei; Vervaeke, Michael; Berghmans, Francis; Beri, Stefano; Watté, Jan; Thienpont, Hugo

    2014-05-01

    structure. Elastic constants of the order of 104N=m are found to be compatible with a proof stress of 70 M Pa. We show the successful prototyping of 3-spring fiber alignment structures using deep proton writing and investigate their compatibility with replication techniques such as hot embossing and injection moulding. Fiber insertion in our self-centering alignment structures is achieved by means of a dedicated interferometric setup allowing assessment of the fiber facet quality, of the fiber's position in relation to the connector's front and of the spring deformation during fiber insertion. These self-centering structures have the potential to become the basic building blocks for a new generation of field-installable connectors, ultimately breaking the current paradigm of ferrule-based connectivity requiring extensive pre-engineering and highly specialized manpower for field deployment.

  20. 29. Historic American Buildings Survey Photocopy of C. Howard Crane ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    29. Historic American Buildings Survey Photocopy of C. Howard Crane Office Drawing of 1919. Courtesy Smith, Hinchman & Grylls Associates, Inc., Detroit, 1973 ORNAMENTAL IRON DETAILS: POSTER BOARDS AND STORE FRONTS, ETC. - Orchestra Hall, 3711 Woodward Avenue, Detroit, MI

  1. The tension sensor of Photonic Crystal Fiber based on core-offset splicing and waist-enlarged fiber taper

    NASA Astrophysics Data System (ADS)

    Fu, Guangwei; Li, Qifeng; Li, Yunpu; Yang, Jiandong; Fu, Xinghu; Bi, Weihong; Li, Yanjun

    2016-10-01

    A tension sensor of Photonic Crystal Fiber(PCF) is presented based on core-offset splicing and waist-enlarged fiber taper. The tension response characteristics of the sensor are studied experimentally. To analyzing the modal interference, many samples with different PCF lengths between the two splicing areas, different core-offset distances and different waist-enlarged fiber taper diameters are fabricated and tested. When the tension range is 0 to 4000μɛ, the results show that the spectrum is blue shift with the increasing of the axial tension. The sensitivity is-2.1 pm/μɛ. The experimental results show that the tension sensitivity can be not influenced by the PCF lengths, the core-offset distances.The waist-enlarged fiber taper diameters and the tension sensor is very sensitive to axial tension and the relationship between the wavelength shift and tension is linearity. To determine the number of the interfering modes, the transmission spectra of these sensor is transformed by the fast fourier transform (FFT) method. There are several peaks in the spatial frequency spectra at these sensors. Only one cladding mode is dominantly excited, while the other cladding modes are weak. The spatial frequency is proportional to the differential mode group index. Compared with the traditional fiber sensor, this sensor has some advantages including the easily fabricated, simple structure and high sensitivity. It can be used in industrial production, building monitoring, aerospace and other fields.

  2. Hospital board effectiveness: relationships between board training and hospital financial viability.

    PubMed

    Molinari, C; Morlock, L; Alexander, J; Lyles, C A

    1992-01-01

    This study examined whether hospital governing boards that invest in board education and training are more informed and effective decision-making bodies. Measures of hospital financial viability (i.e., selected financial ratios and outcomes) are used as indicators of hospital board effectiveness. Board participation in educational programs was significantly associated with improved profitability, liquidity, and occupancy levels, suggesting that investment in the education of directors is likely to enhance hospital viability and thus increase board effectiveness.

  3. UNC-Utah NA-MIC framework for DTI fiber tract analysis.

    PubMed

    Verde, Audrey R; Budin, Francois; Berger, Jean-Baptiste; Gupta, Aditya; Farzinfar, Mahshid; Kaiser, Adrien; Ahn, Mihye; Johnson, Hans; Matsui, Joy; Hazlett, Heather C; Sharma, Anuja; Goodlett, Casey; Shi, Yundi; Gouttard, Sylvain; Vachet, Clement; Piven, Joseph; Zhu, Hongtu; Gerig, Guido; Styner, Martin

    2014-01-01

    Diffusion tensor imaging has become an important modality in the field of neuroimaging to capture changes in micro-organization and to assess white matter integrity or development. While there exists a number of tractography toolsets, these usually lack tools for preprocessing or to analyze diffusion properties along the fiber tracts. Currently, the field is in critical need of a coherent end-to-end toolset for performing an along-fiber tract analysis, accessible to non-technical neuroimaging researchers. The UNC-Utah NA-MIC DTI framework represents a coherent, open source, end-to-end toolset for atlas fiber tract based DTI analysis encompassing DICOM data conversion, quality control, atlas building, fiber tractography, fiber parameterization, and statistical analysis of diffusion properties. Most steps utilize graphical user interfaces (GUI) to simplify interaction and provide an extensive DTI analysis framework for non-technical researchers/investigators. We illustrate the use of our framework on a small sample, cross sectional neuroimaging study of eight healthy 1-year-old children from the Infant Brain Imaging Study (IBIS) Network. In this limited test study, we illustrate the power of our method by quantifying the diffusion properties at 1 year of age on the genu and splenium fiber tracts.

  4. I90/94 fiber backbone network and spurs build-out. Phase II

    DOT National Transportation Integrated Search

    2006-09-05

    The Wisconsin Department of Transportation (WisDOT) received 36 strands of dark fiber located on I-94 right of way, running the entire length of the corridor in Wisconsin. This was the result of a right of way exchange WisDOT executed in 2000. Althou...

  5. Excitation of resonances of microspheres on an optical fiber

    NASA Astrophysics Data System (ADS)

    Serpengüzel, A.; Arnold, S.; Griffel, G.

    1995-04-01

    Morphology-dependent resonances (MDR's) of solid microspheres are excited by using an optical fiber coupler. The narrowest measured MDR linewidths are limited by the excitation laser linewidth ( < 0.025 nm). Only MDR's, with an on-resonance to off-resonance intensity ratio of 104, contribute to scattering. The intensity of various resonance orders is understood by the localization principle and the recently developed generalized Lorentz-Mie theory. The microsphere fiber system has potential for becoming a building block in dispersive microphotonics. The basic physics underlying our approach may be considered a harbinger for the coupling of active photonic microstructures such as microdisk lasers.

  6. Excitation of resonances of microspheres on an optical fiber.

    PubMed

    Serpengüzel, A; Arnold, S; Griffel, G

    1995-04-01

    Morphology-dependent resonances (MDR's) of solid microspheres are excited by using an optical fiber coupler. The narrowest measured MDR linewidths are limited by the excitation laser linewidth (<0.025 nm). Only MDR's, with an on-resonance to off-resonance intensity ratio of 10(4), contribute to scattering. The intensity of various resonance orders is understood by the localization principle and the recently developed generalized Lorentz-Mie theory. The microsphere fiber system has potential for becoming a building block in dispersive microphotonics. The basic physics underlying our approach may be considered a harbinger for the coupling of active photonic microstructures such as microdisk lasers.

  7. SpaceX CRS-13 What's on Board Science Briefing

    NASA Image and Video Library

    2017-12-11

    During the SpaceX CRS-13 "What's On Board?" Science Briefing inside the Kennedy Space Center Press Site Auditorium, members of social media learned about the science headed to the International Space Station aboard the Dragon spacecraft. The briefing focused on several research projects including Biorasis Glucose Biosensor; Launchpad Medical; Space Debris Sensor; Total & Spectral solar Irradiance Sensor (TSIS); Fiber Optic Payload (Made in Space); Rodent Research 6; and Plant Gravity Perception. The Dragon spacecraft is scheduled to be launched from Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida atop a SpaceX Falcon 9 rocket on the company's 13th Commercial Resupply Services mission to the space station.

  8. Superintendent Communication Strategies and Experiences That Promote Trust and Positive Relationships with the School Board during the Entry Period: A Case Study

    ERIC Educational Resources Information Center

    Jimenez, Alfonso

    2012-01-01

    Superintendents have vast demands placed upon them by their school boards and via the political pipeline. The purpose of the study was to identify strategies/behaviors that successful superintendents used to build strong relationships and trust with their school boards within their entry period. It is during the entry period that determines…

  9. Piezoelectric paper fabricated via nanostructured barium titanate functionalization of wood cellulose fibers.

    PubMed

    Mahadeva, Suresha K; Walus, Konrad; Stoeber, Boris

    2014-05-28

    We have successfully developed hybrid piezoelectric paper through fiber functionalization that involves anchoring nanostructured BaTiO3 into a stable matrix with wood cellulose fibers prior to the process of making paper sheets. This is realized by alternating immersion of wood fibers in a solution of poly(diallyldimethylammonium chloride) PDDA (+), followed by poly(sodium 4-styrenesulfonate) PSS (-), and once again in PDDA (+), resulting in the creation of a positively charged surface on the wood fibers. The treated wood fibers are then immersed in a BaTiO3 suspension, resulting in the attachment of BaTiO3 nanoparticles to the wood fibers due to a strong electrostatic interaction. Zeta potential measurements, X-ray diffraction, and microscopic and spectroscopic analysis imply successful functionalization of wood fibers with BaTiO3 nanoparticles without altering the hydrogen bonding and crystal structure of the wood fibers. The paper has the largest piezoelectric coefficient, d33 = 4.8 ± 0.4 pC N(-1), at the highest nanoparticle loading of 48 wt % BaTiO3. This newly developed piezoelectric hybrid paper is promising as a low-cost substrate to build sensing devices.

  10. Prefinishing of Exterior Building Components. Proceedings of a Conference of the Building Research Institute, Division of Engineering and Industrial Research (Fall 1961).

    ERIC Educational Resources Information Center

    National Academy of Sciences - National Research Council, Washington, DC.

    Current trends in architectural design and construction are described which may affect the prefinishing of exterior building components. Contents include--(1) prefinishing of ferrous metals, (2) prefinishing of nonferrous metals, (3) prefinishing of wood and composition board, (4) prefinishing of masonry concrete block, (5) prefinishing of…

  11. 28. Historic American Buildings Survey L. C. Durette, Photographer SOUTH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    28. Historic American Buildings Survey L. C. Durette, Photographer SOUTH WINDOW OF EAST ROOM (See Description) First Floor, SPLIT BOARDS USED FOR LATHS ARE OLD OUTSIDE FINISH USED OVER. - Doe Garrison, Lamprey River & Great Bay, Newmarket, Rockingham County, NH

  12. Use of wood in buildings and bridges

    Treesearch

    James P. Wacker

    2010-01-01

    In this chapter, the features of various types of building systems are described. Emphasis is placed on how these systems have adapted to the use of modern materials and techniques. For example, where floor, wall, and roof sheathing for light-frame construction were once commonly made from wood boards, sheathing is now commonly made from structural panel products, such...

  13. The Audacity of Fiber-Wireless (FiWi) Networks

    NASA Astrophysics Data System (ADS)

    Maier, Martin; Ghazisaidi, Navid; Reisslein, Martin

    A plethora of enabling optical and wireless technologies have been emerging that can be used to build future-proof bimodal fiber-wireless (FiWi) broadband access networks. After overviewing key enabling radio-over-fiber (RoF) and radio-and-fiber (R&F) technologies and briefly surveying the state of the art of FiWi networks, we introduce an Ethernet-based access-metro FiWi network, called SuperMAN, that integrates next-generation WiFi and WiMAX networks with WDM-enhanced EPON and RPR networks. Throughout the paper we pay close attention to the technical challenges and opportunities of FiWi networks, but also elaborate on their societal benefits and potential to shift the current research focus from optical-wireless networking to the exploitation of personal and in-home computing facilities to create new unforeseen services and applications as we are about to enter the Petabyte age.

  14. Advances in in situ inspection of automated fiber placement systems

    NASA Astrophysics Data System (ADS)

    Juarez, Peter D.; Cramer, K. Elliott; Seebo, Jeffrey P.

    2016-05-01

    Automated Fiber Placement (AFP) systems have been developed to help take advantage of the tailorability of composite structures in aerospace applications. AFP systems allow the repeatable placement of uncured, spool fed, preimpregnated carbon fiber tape (tows) onto substrates in desired thicknesses and orientations. This automated process can incur defects, such as overlapping tow lines, which can severely undermine the structural integrity of the part. Current defect detection and abatement methods are very labor intensive, and still mostly rely on human manual inspection. Proposed is a thermographic in situ inspection technique which monitors tow placement with an on board thermal camera using the preheated substrate as a through transmission heat source. An investigation of the concept is conducted, and preliminary laboratory results are presented. Also included will be a brief overview of other emerging technologies that tackle the same issue.

  15. Mobile clusters of single board computers: an option for providing resources to student projects and researchers.

    PubMed

    Baun, Christian

    2016-01-01

    Clusters usually consist of servers, workstations or personal computers as nodes. But especially for academic purposes like student projects or scientific projects, the cost for purchase and operation can be a challenge. Single board computers cannot compete with the performance or energy-efficiency of higher-value systems, but they are an option to build inexpensive cluster systems. Because of the compact design and modest energy consumption, it is possible to build clusters of single board computers in a way that they are mobile and can be easily transported by the users. This paper describes the construction of such a cluster, useful applications and the performance of the single nodes. Furthermore, the clusters' performance and energy-efficiency is analyzed by executing the High Performance Linpack benchmark with a different number of nodes and different proportion of the systems total main memory utilized.

  16. Optical system components for navigation grade fiber optic gyroscopes

    NASA Astrophysics Data System (ADS)

    Heimann, Marcus; Liesegang, Maximilian; Arndt-Staufenbiel, Norbert; Schröder, Henning; Lang, Klaus-Dieter

    2013-10-01

    Interferometric fiber optic gyroscopes belong to the class of inertial sensors. Due to their high accuracy they are used for absolute position and rotation measurement in manned/unmanned vehicles, e.g. submarines, ground vehicles, aircraft or satellites. The important system components are the light source, the electro optical phase modulator, the optical fiber coil and the photodetector. This paper is focused on approaches to realize a stable light source and fiber coil. Superluminescent diode and erbium doped fiber laser were studied to realize an accurate and stable light source. Therefor the influence of the polarization grade of the source and the effects due to back reflections to the source were studied. During operation thermal working conditions severely affect accuracy and stability of the optical fiber coil, which is the sensor element. Thermal gradients that are applied to the fiber coil have large negative effects on the achievable system accuracy of the optic gyroscope. Therefore a way of calculating and compensating the rotation rate error of a fiber coil due to thermal change is introduced. A simplified 3 dimensional FEM of a quadrupole wound fiber coil is used to determine the build-up of thermal fields in the polarization maintaining fiber due to outside heating sources. The rotation rate error due to these sources is then calculated and compared to measurement data. A simple regression model is used to compensate the rotation rate error with temperature measurement at the outside of the fiber coil. To realize a compact and robust optical package for some of the relevant optical system components an approach based on ion exchanged waveguides in thin glass was developed. This waveguides are used to realize 1x2 and 1x4 splitter with fiber coupling interface or direct photodiode coupling.

  17. Intelligent building system for airport

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ancevic, M.

    1997-11-01

    The Munich airport uses a state-of-the-art intelligent building management system to control systems such as HVAC, runway lights, baggage handling, etc. Planning the new Munich II international airport provided a unique opportunity to use the latest state-of-the-art technical systems, while integrating their control through a single intelligent building management system. Opened in 1992, the airport is Germany`s second-largest airport after Frankfurt. The airport is staffed by 16,000 employees and can handle 17 million passengers a year. The sprawling site encompasses more than 120 buildings. The airport`s distributed control system is specifically designed to optimize the complex`s unique range of functions,more » while providing a high degree of comfort, convenience and safety for airport visitors. With the capacity to control 200,000 points, this system controls more than 112,000 points and integrates 13 major subsystems from nine different vendors. It provides convenient, accessible control of everything including the complex`s power plant, HVAC Control, the terminal`s people-moving functions, interior lighting controls, runway lights, baggage forwarding systems, elevators, and boarding bridges. The airport was named 1993 intelligent building of the year by the Intelligent Buildings Institute Foundation. Its building management system is a striking example of the degree to which a building complex`s functions can be integrated for greater operational control and efficiency.« less

  18. 20. Historic American Buildings Survey Photocopy of old view, date ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    20. Historic American Buildings Survey Photocopy of old view, date unknown From collection of the Kansas City Museum of History and Science, Kansas City, Mo. INTERIOR LOOKING NORTHEAST INTO DINING ROOM - Longview Farm, Boarding House, Lees Summit, Jackson County, MO

  19. Thulium fiber laser lithotripsy using tapered fibers.

    PubMed

    Blackmon, Richard L; Irby, Pierce B; Fried, Nathaniel M

    2010-01-01

    The Thulium fiber laser has recently been tested as a potential alternative to the Holmium:YAG laser for lithotripsy. This study explores use of a short taper for expanding the Thulium fiber laser beam at the distal tip of a small-core fiber. Thulium fiber laser radiation with a wavelength of 1,908 nm, 10 Hz pulse rate, 70 mJ pulse energy, and 1-millisecond pulse duration was delivered through a 2-m-length fiber with 150-microm-core-input-end, 300-microm-core-output-end, and 5-mm-length taper, in contact with human uric acid (UA) and calcium oxalate monohydrate (COM) stones, ex vivo (n = 10 each). Stone mass loss, stone crater depths, fiber transmission losses, fiber burn-back, irrigation rates, and deflection through a flexible ureteroscope were measured for the tapered fiber and compared with conventional fibers. After delivery of 1,800 pulses through the tapered fiber, mass loss measured 12.7+/-2.6 mg for UA and 7.2+/-0.8 mg COM stones, comparable to conventional 100-microm-core fibers (12.6+/-2.5 mg for UA and 6.8+/-1.7 mg for COM stones). No transmission losses or burn-back occurred for the tapered fiber after 36,000 pulses, while a conventional 150-microm fiber experienced significant tip degradation after only 1,800 pulses. High irrigation rates were measured with the tapered fiber inserted through the working port of a flexible ureteroscope without hindering its deflection, mimicking that of a conventional 150 microm fiber. The short tapered distal fiber tip allows expansion of the laser beam, resulting in decreased fiber tip damage compared to conventional small-core fibers, without compromising fiber bending, stone vaporization efficiency, or irrigation rates.

  20. Design Guide: Designing and Building High Voltage Power Supplies. Volume 2

    DTIC Science & Technology

    1988-08-01

    and edges. * Isolation system: * One layer ol’ Tedlar: or type 120 glass fabric with a compatible resin : or finish. 199 5.4.2 Composite Joints...plastics Cellulose esters Asphalt Cork Chloride flux Epoxy resins Copper (bare) Masonite Fiber board Melamine resins Greases Nylon Polyvinyl chloride resins ...cycloaliphatic epoxy to a level inferior to the porcelain. In one application having a glass -cloth epoxy- based laminate coated with cycloaliphatic epoxy the

  1. Structural health monitoring of civil infrastructure using optical fiber sensing technology: a comprehensive review.

    PubMed

    Ye, X W; Su, Y H; Han, J P

    2014-01-01

    In the last two decades, a significant number of innovative sensing systems based on optical fiber sensors have been exploited in the engineering community due to their inherent distinctive advantages such as small size, light weight, immunity to electromagnetic interference (EMI) and corrosion, and embedding capability. A lot of optical fiber sensor-based monitoring systems have been developed for continuous measurement and real-time assessment of diversified engineering structures such as bridges, buildings, tunnels, pipelines, wind turbines, railway infrastructure, and geotechnical structures. The purpose of this review article is devoted to presenting a summary of the basic principles of various optical fiber sensors, innovation in sensing and computational methodologies, development of novel optical fiber sensors, and the practical application status of the optical fiber sensing technology in structural health monitoring (SHM) of civil infrastructure.

  2. Research of movement process of fiber suspension in accelerating unit of wet grinding disintegrator

    NASA Astrophysics Data System (ADS)

    Mykhaylichenko, S. A.; Dubinin, N. N.; Kachaev, A. E.; Goncharov, S. I.; Farafonov, A. A.

    2018-03-01

    At the present stage of development of building material science, products reinforced with fibers of various origin (mineral, organic, metal and others) are commonly used. Determination of the optimal structure and the chemical composition of the fiber depends on a number of requirements for filler, binder, and other miscellaneous additives, etc. The rational combination of physical and chemical composition of the primary matrix of the product (e.g., binders, cement) with dispersion of anisotropic fiber of filler not only contributes to the strength of products, but also stabilizes their internal structure: prevents the occurrence of internal stress of the cement stone, increases the adhesive interaction of particles of cement at the contact boundary with fibers, etc.

  3. THE PLANNING AND CONSTRUCTION OF LOUISIANA SCHOOL BUILDINGS.

    ERIC Educational Resources Information Center

    HOLLY, C.E.

    THIS REPORT REPRESENTS A GENERALIZED ANALYSIS OF FACTORS RELATED TO PLANNING AND BUILDING STATE SCHOOLS. THE FIRST SURVEY PHASE IS USED FOR DETERMINATION OF EDUCATIONAL NEEDS AND PROGRAMS. THE RELATIONSHIPS OF THE SCHOOL BOARD TO THE ARCHITECT AS WELL AS PUBLIC SUPPORT AND FINANCE CRITERIA ARE EXPLAINED IN THIS CHAPTER. SITE SELECTION AND…

  4. Building Ramps and Hovercrafts and Improving Math Skills.

    ERIC Educational Resources Information Center

    Bottge, Brian A.

    2001-01-01

    This article describes a video- and computer-based program used to motivate and develop mathematics skills in middle school students with disabilities. The program emphasizes real-life problems such as building a cage for a pet, a skate boarding ramp, and a "hovercraft" frame. Case studies illustrate the program's effectiveness with individual…

  5. Multi-material micro-electromechanical fibers with bendable functional domains

    NASA Astrophysics Data System (ADS)

    Nguyen-Dang, Tung; Page, Alexis G.; Qu, Yunpeng; Volpi, Marco; Yan, Wei; Sorin, Fabien

    2017-04-01

    The integration of increasingly complex functionalities within thermally drawn multi-material fibers is heralding a novel path towards advanced soft electronics and smart fabrics. Fibers capable of electronic, optoelectronic, piezoelectric or energy harvesting functions are created by assembling new materials in intimate contact within increasingly complex architectures. Thus far, however, the opportunities associated with the integration of cantilever-like structures with freely moving functional domains within multi-material fibers have not been explored. Used extensively in the micro-electromechanical system (MEMS) technology, electro-mechanical transductance from moving and bendable domains is used in a myriad of applications. In this article we demonstrate the thermal drawing of micro-electromechanical fibers (MEMF) that can detect and localize pressure with high accuracy along their entire length. This ability results from an original cantilever-like design where a freestanding electrically conductive polymer composite film bends under an applied pressure. As it comes into contact with another conducting domain, placed at a prescribed position in the fiber cross-section, an electrical signal is generated. We show that by a judicious choice of materials and electrical connectivity, this signal can be uniquely related to a position along the fiber axis. We establish a model that predicts the position of a local touch from the measurement of currents generated in the 1D MEMF device, and demonstrate an excellent agreement with the experimental data. This ability to detect and localize touch over large areas, curved surfaces and textiles holds significant opportunities in robotics and prosthetics, flexible electronic interfaces, and medical textiles. , which features invited work from the best early-career researchers working within the scope of J. Phys. D. This project is part of the Journal of Physics series’ 50th anniversary celebrations in 2017. Fabien Sorin

  6. Simple and accurate temperature correction for moisture pin calibrations in oriented strand board

    Treesearch

    Charles Boardman; Samuel V. Glass; Patricia K. Lebow

    2017-01-01

    Oriented strand board (OSB) is commonly used in the residential construction market in North America and its moisture-related durability is a critical consideration for building envelope design. Measurement of OSB moisture content (MC), a key determinant of durability, is often done using moisture pins and relies on a correlation between MC and the electrical...

  7. Building Energy Management Open Source Software

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    This is the repository for Building Energy Management Open Source Software (BEMOSS), which is an open source operating system that is engineered to improve sensing and control of equipment in small- and medium-sized commercial buildings. BEMOSS offers the following key features: (1) Open source, open architecture – BEMOSS is an open source operating system that is built upon VOLTTRON – a distributed agent platform developed by Pacific Northwest National Laboratory (PNNL). BEMOSS was designed to make it easy for hardware manufacturers to seamlessly interface their devices with BEMOSS. Software developers can also contribute to adding additional BEMOSS functionalities and applications.more » (2) Plug & play – BEMOSS was designed to automatically discover supported load controllers (including smart thermostats, VAV/RTUs, lighting load controllers and plug load controllers) in commercial buildings. (3) Interoperability – BEMOSS was designed to work with load control devices form different manufacturers that operate on different communication technologies and data exchange protocols. (4) Cost effectiveness – Implementation of BEMOSS deemed to be cost-effective as it was built upon a robust open source platform that can operate on a low-cost single-board computer, such as Odroid. This feature could contribute to its rapid deployment in small- or medium-sized commercial buildings. (5) Scalability and ease of deployment – With its multi-node architecture, BEMOSS provides a distributed architecture where load controllers in a multi-floor and high occupancy building could be monitored and controlled by multiple single-board computers hosting BEMOSS. This makes it possible for a building engineer to deploy BEMOSS in one zone of a building, be comfortable with its operation, and later on expand the deployment to the entire building to make it more energy efficient. (6) Ability to provide local and remote monitoring – BEMOSS provides both local and remote

  8. Two Fiber Optical Fiber Thermometry

    NASA Technical Reports Server (NTRS)

    Jones, Mathew R.; Farmer, Jeffery T.; Breeding, Shawn P.

    2000-01-01

    An optical fiber thermometer consists of an optical fiber whose sensing tip is given a metallic coating. The sensing tip of the fiber is essentially an isothermal cavity, so the emission from this cavity will be approximately equal to the emission from a blackbody. Temperature readings are obtained by measuring the spectral radiative heat flux at the end of the fiber at two wavelengths. The ratio of these measurements and Planck's Law are used to infer the temperature at the sensing tip. Optical fiber thermometers have high accuracy, excellent long-term stability and are immune to electromagnetic interference. In addition, they can be operated for extended periods without requiring re-calibration. For these reasons. it is desirable to use optical fiber thermometers in environments such as the International Space Station. However, it has recently been shown that temperature readings are corrupted by emission from the fiber when extended portions of the probe are exposed to elevated temperatures. This paper will describe several ways in which the reading from a second fiber can be used to correct the corrupted temperature measurements. The accuracy and sensitivity to measurement uncertainty will be presented for each method.

  9. Direct writing of half-meter long CNT based fiber for flexible electronics.

    PubMed

    Huang, Sihan; Zhao, Chunsong; Pan, Wei; Cui, Yi; Wu, Hui

    2015-03-11

    Rapid construction of flexible circuits has attracted increasing attention according to its important applications in future smart electronic devices. Herein, we introduce a convenient and efficient "writing" approach to fabricate and assemble ultralong functional fibers as fundamental building blocks for flexible electronic devices. We demonstrated that, by a simple hand-writing process, carbon nanotubes (CNTs) can be aligned inside a continuous and uniform polymer fiber with length of more than 50 cm and diameters ranging from 300 nm to several micrometers. The as-prepared continuous fibers exhibit high electrical conductivity as well as superior mechanical flexibility (no obvious conductance increase after 1000 bending cycles to 4 mm diameter). Such functional fibers can be easily configured into designed patterns with high precision according to the easy "writing" process. The easy construction and assembly of functional fiber shown here holds potential for convenient and scalable fabrication of flexible circuits in future smart devices like wearable electronics and three-dimensional (3D) electronic devices.

  10. The optimal fiber volume fraction and fiber-matrix property compatibility in fiber reinforced composites

    NASA Technical Reports Server (NTRS)

    Pan, Ning

    1992-01-01

    Although the question of minimum or critical fiber volume fraction beyond which a composite can then be strengthened due to addition of fibers has been dealt with by several investigators for both continuous and short fiber composites, a study of maximum or optimal fiber volume fraction at which the composite reaches its highest strength has not been reported yet. The present analysis has investigated this issue for short fiber case based on the well-known shear lag (the elastic stress transfer) theory as the first step. Using the relationships obtained, the minimum spacing between fibers is determined upon which the maximum fiber volume fraction can be calculated, depending on the fiber packing forms within the composites. The effects on the value of this maximum fiber volume fraction due to such factors as fiber and matrix properties, fiber aspect ratio and fiber packing forms are discussed. Furthermore, combined with the previous analysis on the minimum fiber volume fraction, this maximum fiber volume fraction can be used to examine the property compatibility of fiber and matrix in forming a composite. This is deemed to be useful for composite design. Finally some examples are provided to illustrate the results.

  11. Fiber optic sensor system for entrance areas monitoring

    NASA Astrophysics Data System (ADS)

    Fajkus, Marcel; Nedoma, Jan; Kepak, Stanislav; Cubik, Jakub; Jargus, Jan; Zboril, Ondřej; Martinek, Radek; Vasinek, Vladimir

    2017-10-01

    Authors of this article present the fiber-optic system based on fiber Bragg gratings (FBGs) which are used to secure the entrance areas such as buildings, halls, warehouses, etc. The system uses the specially encapsulated sensory array of fiber Bragg gratings which are implemented into the floor or on the floor and allows for monitoring the area of 1 m2 up to 100 m2 depending on the number of FBG sensors. The sensory array is characterized by immunity to electromagnetic interference (EMI), passivity regarding electrical power supply, the possibility of remote evaluation (up to units of km) and high sensitivity. Proposed sensor system has detection capability greater than 99 % and furthermore, provides information about the weight load to an accuracy of +/- 5 kg. The concept has been tested in a real environment within the test polygon for several weeks. As the reference devices, we used the CCTV (Closed Circuit Television).

  12. Generation of sub-micron particles and secondary pollutants from building materials by ozone reaction

    NASA Astrophysics Data System (ADS)

    Aoki, Taisuke; Tanabe, Shin-ichi

    This study reports results from two different experiments examining reactions between ozone and common building materials that can lead to the formation of secondary products and particulate-phase materials. Monitored species include sub-micron particles and volatile organic compounds (VOCs). In the first set of experiments, various building materials were placed in a 20 L stainless-steel chamber and exposed to ozone. The materials included expanded polystyrene, a natural rubber adhesive, cedar board, Japanese Cyprus board and silver fir board, as well as d-limonene, which is a known constituent of certain woods and cleaning products. The combination of ozone and either d-limonene, cedar board or cypress board produced sub-micron particles, with most of the increase occurring in the size range of 0.01- 0.5μm diameter. This was not observed for the other materials. In the case of cedar board, the consequence of ozone exposure over an extended time interval was monitored. As the exposure time elapsed, the concentration of sub-micron particles moderately decreased. In the second set of experiments, unwaxed or waxed plastic tiles were placed in the 20 L chamber and exposed to ozone. Sub-micron particles and organic compounds were measured during the course of the experiments. In the case of the waxed tile, the number of 0.01- 1.0μm size particles grew about 50×108particlesm-3; particle growth was significantly less for the un-waxed tile. For both the waxed and un-waxed tiles, the emission rates of heptane, nonane, nonanal, and decanal increased after ozone was added to the supply air. (However, it is not clear if some or all of this production was due to ozone reacting with the sorbent used for sampling or with compounds captured by the sorbent.) This study provides further evidence that ozone-initiated reactions with building materials can be a significant source of both sub-micron particles and secondary organic compounds in indoor environments.

  13. Towards the use of bioresorbable fibers in time-domain diffuse optics.

    PubMed

    Di Sieno, Laura; Boetti, Nadia G; Dalla Mora, Alberto; Pugliese, Diego; Farina, Andrea; Konugolu Venkata Sekar, Sanathana; Ceci-Ginistrelli, Edoardo; Janner, Davide; Pifferi, Antonio; Milanese, Daniel

    2018-01-01

    In the last years bioresorbable materials are gaining increasing interest for building implantable optical components for medical devices. In this work we show the fabrication of bioresorbable optical fibers designed for diffuse optics applications, featuring large core diameter (up to 200 μm) and numerical aperture (0.17) to maximize the collection efficiency of diffused light. We demonstrate the suitability of bioresorbable fibers for time-domain diffuse optical spectroscopy firstly checking the intrinsic performances of the setup by acquiring the instrument response function. We then validate on phantoms the use of bioresorbable fibers by applying the MEDPHOT protocol to assess the performance of the system in measuring optical properties (namely, absorption and scattering coefficients) of homogeneous media. Further, we show an ex-vivo validation on a chicken breast by measuring the absorption and scattering spectra in the 500-1100 nm range using interstitially inserted bioresorbable fibers. This work represents a step toward a new way to look inside the body using optical fibers that can be implanted in patients. These fibers could be useful either for diagnostic (e. g. for monitoring the evolution after surgical interventions) or treatment (e. g. photodynamic therapy) purposes. Picture: Microscopy image of the 100 μm core bioresorbable fiber. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. All-Fiber Airborne Coherent Doppler Lidar to Measure Wind Profiles

    NASA Astrophysics Data System (ADS)

    Liu, Jiqiao; Zhu, Xiaopeng; Diao, Weifeng; Zhang, Xin; Liu, Yuan; Bi, Decang; Jiang, Liyuan; Shi, Wei; Zhu, Xiaolei; Chen, Weibiao

    2016-06-01

    An all-fiber airborne pulsed coherent Doppler lidar (CDL) prototype at 1.54μm is developed to measure wind profiles in the lower troposphere layer. The all-fiber single frequency pulsed laser is operated with pulse energy of 300μJ, pulse width of 400ns and pulse repetition rate of 10kHz. To the best of our knowledge, it is the highest pulse energy of all-fiber eye-safe single frequency laser that is used in airborne coherent wind lidar. The telescope optical diameter of monostatic lidar is 100 mm. Velocity-Azimuth-Display (VAD) scanning is implemented with 20 degrees elevation angle in 8 different azimuths. Real-time signal processing board is developed to acquire and process the heterodyne mixing signal with 10000 pulses spectra accumulated every second. Wind profiles are obtained every 20 seconds. Several experiments are implemented to evaluate the performance of the lidar. We have carried out airborne wind lidar experiments successfully, and the wind profiles are compared with aerological theodolite and ground based wind lidar. Wind speed standard error of less than 0.4m/s is shown between airborne wind lidar and balloon aerological theodolite.

  15. UNC-Utah NA-MIC framework for DTI fiber tract analysis

    PubMed Central

    Verde, Audrey R.; Budin, Francois; Berger, Jean-Baptiste; Gupta, Aditya; Farzinfar, Mahshid; Kaiser, Adrien; Ahn, Mihye; Johnson, Hans; Matsui, Joy; Hazlett, Heather C.; Sharma, Anuja; Goodlett, Casey; Shi, Yundi; Gouttard, Sylvain; Vachet, Clement; Piven, Joseph; Zhu, Hongtu; Gerig, Guido; Styner, Martin

    2014-01-01

    Diffusion tensor imaging has become an important modality in the field of neuroimaging to capture changes in micro-organization and to assess white matter integrity or development. While there exists a number of tractography toolsets, these usually lack tools for preprocessing or to analyze diffusion properties along the fiber tracts. Currently, the field is in critical need of a coherent end-to-end toolset for performing an along-fiber tract analysis, accessible to non-technical neuroimaging researchers. The UNC-Utah NA-MIC DTI framework represents a coherent, open source, end-to-end toolset for atlas fiber tract based DTI analysis encompassing DICOM data conversion, quality control, atlas building, fiber tractography, fiber parameterization, and statistical analysis of diffusion properties. Most steps utilize graphical user interfaces (GUI) to simplify interaction and provide an extensive DTI analysis framework for non-technical researchers/investigators. We illustrate the use of our framework on a small sample, cross sectional neuroimaging study of eight healthy 1-year-old children from the Infant Brain Imaging Study (IBIS) Network. In this limited test study, we illustrate the power of our method by quantifying the diffusion properties at 1 year of age on the genu and splenium fiber tracts. PMID:24409141

  16. Fly-By-Light/Power-By-Wire Fault-Tolerant Fiber-Optic Backplane

    NASA Technical Reports Server (NTRS)

    Malekpour, Mahyar R.

    2002-01-01

    The design and development of a fault-tolerant fiber-optic backplane to demonstrate feasibility of such architecture is presented. The simulation results of test cases on the backplane in the advent of induced faults are presented, and the fault recovery capability of the architecture is demonstrated. The architecture was designed, developed, and implemented using the Very High Speed Integrated Circuits (VHSIC) Hardware Description Language (VHDL). The architecture was synthesized and implemented in hardware using Field Programmable Gate Arrays (FPGA) on multiple prototype boards.

  17. Recent development in blast performance of fiber-reinforced concrete

    NASA Astrophysics Data System (ADS)

    Hajek, R.; Foglar, M.; Kohoutkova, A.

    2017-09-01

    The paper presents an overview of the recent development in blast performance of fiber reinforced concrete. The paper builds on more than ten years’ history of the research in this field by the team of the Department of Concrete and Masonry Structures of the Faculty of Civil Engineering of the Czech Technical University in Prague.

  18. Latest developments on fibered MOPA in mJ range with hollow-core fiber beam delivery and fiber beam shaping used as seeder for large scale laser facilities (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Gleyze, Jean-François; Scol, Florent; Perrin, Arnaud; Gouriou, Pierre; Valentin, Constance; Bouwmans, Géraud; Hugonnot, Emmanuel

    2017-05-01

    The Laser Megajoule (LMJ) is a French large scale laser facility dedicated to inertial fusion and plasma physics research. LMJ front-ends are based on fiber laser technology at nanojoule range [1]. Scaling the energy of those fiber seeders to the millijoule range is a way to upgrade LMJ's front ends architecture and could also be used as seeder for lasers for ELI project for example. However, required performances are so restrictive (optical-signal-to-noise ratio higher than 50 dB, temporally-shaped nanosecond pulses and spatial single-mode top-hat beam output) that such fiber systems are very tricky to build. High-energy fiber amplifiers In 2015, we have demonstrated, an all-fiber MOPA prototype able to produce a millijoule seeder, but unfortunately not 100% conform for all LMJ's performances. A major difficulty was to manage the frequency modulation used to avoid stimulated Brillouin scattering, to amplitude modulation (FM-AM) conversion, this limits the energy at 170µJ. For upgrading the energy to the millijoule range, it's necessary to use an amplifier with a larger core fiber. However, this fiber must still be flexible; polarization maintaining and exhibit a strictly single-mode behaviour. We are thus developing a new amplifier architecture based on an Yb-doped tapered fiber: its core diameter is from a narrow input to a wide output (MFD 8 to 26 µm). A S² measurement on a 2,5m long tapered fiber rolled-up on 22 cm diameter confirmed that this original geometry allows obtaining strictly single-mode behaviour. In a 1 kHz repetition rate regime, we already obtain 750 µJ pulses, and we are on the way to mJ, respecting LMJ performances. Beam delivery In LMJ architecture the distance between the nanojoule fiber seeder and the amplifier stages is about 16 m. Beam delivery is achieved with a standard PM fiber, such a solution is no longer achievable with hundreds of kilowatt peak powers. An efficient way to minimize nonlinear effects is to use hollow-core (HC

  19. The Short, Productive Board Meeting

    ERIC Educational Resources Information Center

    McAdams, Donald R.

    2005-01-01

    Board meetings are the time and place where school boards act. In fact, only when coming together as a body in a legal meeting do school board members become a board. Effective board meetings are the first prerequisite for an effective board. Furthermore, what parents and voters see at board meetings determines largely what they think about their…

  20. Experimental demonstration of the switching dose-rate method on doped optical fibers

    NASA Astrophysics Data System (ADS)

    Thomas, J.; Myara, M.; Troussellier, L.; Régnier, E.; Burov, E.; Gilard, O.; Sottom, M.; Signoret, P.

    2017-11-01

    Optical technology developed for ground and submarine telecommunications is becoming of strong interest for next generation satellites. In addition to inter-satellite laser communications and LIDAR's, new applications are being considered such as on-board distribution and processing of microwave signals, fiber sensors or gyroscopes as well. Whereas common optical / optoelectronic components are known to be weakly sensitive to radiations, the essential optical amplifiers are strongly degraded in such an environment because of the RIA (Radio-Induced-Absorption) experienced by the Erbium-Doped Fiber (EDF) itself [1-3]. This degradation is mainly caused by the presence of co-doping ions, such as Aluminium or Germanium, inserted in the fibre to assist the inclusion of the Erbium ions in the silica matrix or to provide to the optical fibre its guiding properties.

  1. Effects of high-speed homogenization and high-pressure homogenization on structure of tomato residue fibers.

    PubMed

    Hua, Xiao; Xu, Shanan; Wang, Mingming; Chen, Ying; Yang, Hui; Yang, Ruijin

    2017-10-01

    Tomato residue fibers obtained after derosination and deproteinization were processed by high-speed homogenization (HSH) and high-pressure homogenization (HPH), and their effects on fiber structure was investigated, respectively. Characterizations including particle size distribution, SEM, TEM and XRD were performed. HSH could break raw fibers to small particles of around 60μm, while HPH could reshape fibers to build network structure. Microfibrils were released and their nanostructure consisting of elementary fibrils was observed by TEM. XRD patterns indicated both HSH and HPH could hardly alter the nanostructure of the fibers. Physicochemical properties including expansibility, WHC and OHC were determined. Both HSH and HPH could increase the soluble fiber content by about 8%, but HSH-HPH combined processing did not show better result. Acid (4mol/L HCl) was used in replacement of water medium and the acidic degradation of fibers could be promoted by high speed shearing or high pressure processing. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Ultrafine fibers of zein and anthocyanins as natural pH indicator.

    PubMed

    Prietto, Luciana; Pinto, Vania Zanella; El Halal, Shanise Lisie Mello; de Morais, Michele Greque; Costa, Jorge Alberto Vieira; Lim, Loong-Tak; Dias, Alvaro Renato Guerra; Zavareze, Elessandra da Rosa

    2018-05-01

    pH-sensitive indicator membranes, which are useful for pharmaceutical, food, and packaging applications, can be formed by encapsulating halochromic compounds within various solid supports. Accordingly, electrospinning is a versatile technique for the development of these indicators, by entrapping pH dyes within ultrafine polymer fibers. The ultrafine zein fibers, containing 5% (w/v) anthocyanins, had an average diameter of 510 nm. The pH-sensitive membrane exhibited color changes from pink to green when exposed to acidic and alkaline buffers, respectively. The contact angle was negligible after 10 and 2 s for neat and 5% anthocyanin-loaded zein membranes, respectively. The pH membranes exhibited color changes in a board pH range, which can potentially be used in various active packaging applications. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  3. Structural Health Monitoring of Civil Infrastructure Using Optical Fiber Sensing Technology: A Comprehensive Review

    PubMed Central

    Ye, X. W.; Su, Y. H.; Han, J. P.

    2014-01-01

    In the last two decades, a significant number of innovative sensing systems based on optical fiber sensors have been exploited in the engineering community due to their inherent distinctive advantages such as small size, light weight, immunity to electromagnetic interference (EMI) and corrosion, and embedding capability. A lot of optical fiber sensor-based monitoring systems have been developed for continuous measurement and real-time assessment of diversified engineering structures such as bridges, buildings, tunnels, pipelines, wind turbines, railway infrastructure, and geotechnical structures. The purpose of this review article is devoted to presenting a summary of the basic principles of various optical fiber sensors, innovation in sensing and computational methodologies, development of novel optical fiber sensors, and the practical application status of the optical fiber sensing technology in structural health monitoring (SHM) of civil infrastructure. PMID:25133250

  4. Virtual Instrumentation for a Fiber-Optics-Based Artificial Nerve

    NASA Technical Reports Server (NTRS)

    Lyons, Donald R.; Kyaw, Thet Mon; Griffin, DeVon (Technical Monitor)

    2001-01-01

    A LabView-based computer interface for fiber-optic artificial nerves has been devised as a Masters thesis project. This project involves the use of outputs from wavelength multiplexed optical fiber sensors (artificial nerves), which are capable of producing dense optical data outputs for physical measurements. The potential advantages of using optical fiber sensors for sensory function restoration is the fact that well defined WDM-modulated signals can be transmitted to and from the sensing region allowing networked units to replace low-level nerve functions for persons desirous of "intelligent artificial limbs." Various FO sensors can be designed with high sensitivity and the ability to be interfaced with a wide range of devices including miniature shielded electrical conversion units. Our Virtual Instrument (VI) interface software package was developed using LabView's "Laboratory Virtual Instrument Engineering Workbench" package. The virtual instrument has been configured to arrange and encode the data to develop an intelligent response in the form of encoded digitized signal outputs. The architectural layout of our nervous system is such that different touch stimuli from different artificial fiber-optic nerve points correspond to gratings of a distinct resonant wavelength and physical location along the optical fiber. Thus, when an automated, tunable diode laser sends scans, the wavelength spectrum of the artificial nerve, it triggers responses that are encoded with different touch stimuli by way wavelength shifts in the reflected Bragg resonances. The reflected light is detected and a resulting analog signal is fed into ADC1 board and DAQ card. Finally, the software has been written such that the experimenter is able to set the response range during data acquisition.

  5. Becoming a Better Board Member. A Guide to Effective School Board Service.

    ERIC Educational Resources Information Center

    National School Boards Association, Washington, DC.

    This guide to effective school board service is a "how-to" manual for school board members. The objective of the book is to condense the time board members need to become more effective school leaders, but it also contains information and advice intended to be helpful to experienced board members. Consisting of 17 chapters, the book is…

  6. EVALUATION OF AEROSOLIZATION OF ASBESTOS AND RELATED FIBERS FROM BULK MATERIALS

    EPA Science Inventory

    1. Status Report on the Evaluation of the Alternative Asbestos Control Method – A Comparison to the NESHAP Method of Demolition of Asbestos Containing Buildings; and, 2. Update on the Evaluation of Aerosolization of Asbestos and Related Fibers from Bulk Materials. This abstract a...

  7. National Best Practices Manual for Building High Performance Schools

    ERIC Educational Resources Information Center

    US Department of Energy, 2007

    2007-01-01

    The U.S. Department of Energy's Rebuild America EnergySmart Schools program provides school boards, administrators, and design staff with guidance to help make informed decisions about energy and environmental issues important to school systems and communities. "The National Best Practices Manual for Building High Performance Schools" is a part of…

  8. Building Green: Construction for the 21st Century

    ERIC Educational Resources Information Center

    Phillipson, Todd

    2012-01-01

    At Jefferson County Vocational School (JCVS) in Bloomingdale, Ohio, students get a lesson on building green with the construction of a home in the school's subdivision. The home is being built using Energy Star guidelines so that it may be identified as an Energy Star home. The goal for the Jefferson County Vocational Schools Board of Education…

  9. ISS Fiber Optic Failure Investigation Root Cause Report

    NASA Technical Reports Server (NTRS)

    Leidecker, Henning; Plante, Jeannette

    2000-01-01

    In August of 1999, Boeing Corporation (Boeing) engineers began investigating failures of optical fiber being used on International Space Station flight hardware. Catastrophic failures of the fiber were linked to a defect in the glass fiber. Following several meetings of Boeing and NASA engineers and managers, Boeing created and led an investigation team, which examined the reliability of the cable installed in the U.S. Lab. NASA Goddard Space Flight Center's Components Technologies and Radiation Effects Branch (GSFC) led a team investigating the root cause of the failures. Information was gathered from: regular telecons and other communications with the investigation team, investigative trips to the cable distributor's plant, the cable manufacturing plant and the fiber manufacturing plant (including a review of build records), destructive and non-destructive testing, and expertise supplied by scientists from Dupont, and Lucent-Bell Laboratories. Several theories were established early on which were not able to completely address the destructive physical analysis and experiential evidence. Lucent suggested hydrofluoric acid (HF) etching of the glass and successfully duplicated the "rocket engine" defect. Strength testing coupled with examination of the low strength break sites linked features in the polyimide coating with latent defect sites. The information provided below explains what was learned about the susceptibility of the pre-cabled fiber to failure when cabled as it was for Space Station and the nature of the latent defects.

  10. Development of an anti-flood board to protect the interiors and exteriors of the infrastructure

    NASA Astrophysics Data System (ADS)

    Petru, Michal; Srb, Pavel; Sevcik, Ladislav; Martinec, Tomas; Kulhavy, Petr

    2018-06-01

    This article deals with the development of an anti-flood board to protect the interior and exterior of various infrastructures, such a houses, cottages or industrial buildings. It was designed prototypes and assembled numerical simulations. In Central Europe and in particular in the Czech Republic, floods are an integral part of the natural water cycle and cause great loss of life and great property damage. The development of new types of mobile anti-flood boards is very important as the design solution is developed for flood protection with regard to minimizing weight, cost of production, easy manipulation, simplicity and speed of installation.

  11. Strategies/Behaviors That Successful Superintendents Use to Build Strong Relationships and Trust during Their Entry Period

    ERIC Educational Resources Information Center

    Green, C. K.

    2012-01-01

    The purpose of the study was to identify strategies/behaviors that successful superintendents used to build strong relationships and trust with their school boards within their entry period. The following research questions guided the study: (1) What strategies/behaviors are successful superintendents using to build strong relationships and trust…

  12. Interior. Apparatus used in crushing and processing plant fibers to ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Interior. Apparatus used in crushing and processing plant fibers to extract latex from the sap during experiments to find native North American plant which would yield sufficiently high percentage of latex to produce natural rubber. - Thomas A. Edison Laboratories, Building No. 2, Main Street & Lakeside Avenue, West Orange, Essex County, NJ

  13. Fiber feed for the CFHT Gecko spectrograph

    NASA Astrophysics Data System (ADS)

    Baudrand, Jacques; Vitry, Rene

    2000-08-01

    Motivated by a strong concern to keep maintenance work as low as possible the direction of the CFHT had for some times contemplated the possibility to replace the original mirror train f/20 focus feeding their Gecko High Resolution Coude Spectrograph by a more convenient fiber link coupled to the f/8 Cassegrain focus. A decision supporting that idea was ultimately taken two years ago and our group at the OPM was contacted to build such a system according to precise specifications. This telescope facility, baptized CAFÉ for Cassegrain Fiber Environment, has now arrived to near completion and we are able to present here its main characteristics and the technical solutions that were adopted to meet the CFHT requirements and to provide the system with the best performances in terms of robustness and efficiency.

  14. The Vanishing School Board.

    ERIC Educational Resources Information Center

    Chalker, Donald M.; Haynes, Richard M.

    1997-01-01

    Now that school boards have been replaced by parent advisory councils, there is virtually no local school governance in New Brunswick, Canada. Factors leading to school boards' demise include neglected democratic institutions, failure to understand local boards' needs, less qualified members, boards' failure to protect their special…

  15. Impact of Thermomechanical Fiber Pre-Treatment Using Twin-Screw Extrusion on the Production and Properties of Renewable Binderless Coriander Fiberboards.

    PubMed

    Uitterhaegen, Evelien; Labonne, Laurent; Merah, Othmane; Talou, Thierry; Ballas, Stéphane; Véronèse, Thierry; Evon, Philippe

    2017-07-17

    The aim of this study consisted of manufacturing renewable binderless fiberboards from coriander straw and a deoiled coriander press cake, thus at the same time ensuring the valorization of crop residues and process by-products. The press cake acted as a natural binder inside the boards owing to the thermoplastic behavior of its protein fraction during thermopressing. The influence of different fiber-refining methods was evaluated and it was shown that a twin-screw extrusion treatment effectively improved fiber morphology and resulted in fiberboards with enhanced performance as compared to a conventional grinding process. The best fiberboard was produced with extrusion-refined straw using a 0.4 liquid/solid (L/S) ratio and with 40% press cake addition. The water sensitivity of the boards was effectively reduced by 63% through the addition of an extrusion raw material premixing operation and thermal treatment of the panels at 200 °C, resulting in materials with good performance showing a flexural strength of 29 MPa and a thickness swelling of 24%. Produced without the use of any chemical adhesives, these fiberboards could thus present viable, sustainable alternatives for current commercial wood-based materials such as oriented strand board, particleboard and medium-density fiberboard, with high cost-effectiveness.

  16. Impact of Thermomechanical Fiber Pre-Treatment Using Twin-Screw Extrusion on the Production and Properties of Renewable Binderless Coriander Fiberboards

    PubMed Central

    Uitterhaegen, Evelien; Labonne, Laurent; Merah, Othmane; Talou, Thierry; Ballas, Stéphane; Véronèse, Thierry

    2017-01-01

    The aim of this study consisted of manufacturing renewable binderless fiberboards from coriander straw and a deoiled coriander press cake, thus at the same time ensuring the valorization of crop residues and process by-products. The press cake acted as a natural binder inside the boards owing to the thermoplastic behavior of its protein fraction during thermopressing. The influence of different fiber-refining methods was evaluated and it was shown that a twin-screw extrusion treatment effectively improved fiber morphology and resulted in fiberboards with enhanced performance as compared to a conventional grinding process. The best fiberboard was produced with extrusion-refined straw using a 0.4 liquid/solid (L/S) ratio and with 40% press cake addition. The water sensitivity of the boards was effectively reduced by 63% through the addition of an extrusion raw material premixing operation and thermal treatment of the panels at 200 °C, resulting in materials with good performance showing a flexural strength of 29 MPa and a thickness swelling of 24%. Produced without the use of any chemical adhesives, these fiberboards could thus present viable, sustainable alternatives for current commercial wood-based materials such as oriented strand board, particleboard and medium-density fiberboard, with high cost-effectiveness. PMID:28714928

  17. 7 CFR 1160.105 - Board.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... and Orders; Milk), DEPARTMENT OF AGRICULTURE FLUID MILK PROMOTION PROGRAM Fluid Milk Promotion Order Definitions § 1160.105 Board. Board means the National Processor Advertising and Promotion Board established... Promotion Board or Board). ...

  18. [Fiber reinforced composite posts: literature review].

    PubMed

    Frydman, G; Levatovsky, S; Pilo, R

    2013-07-01

    FRC (Fiber-reinforced composite) posts have been used since the beginning of the 90s with the introduction of carbon fiber posts. Fiber posts are widely used to restore endodontically treated teeth that have insufficient coronal tooth structure. Many in vitro and in vivo studies have shown the advantage of using FRC over prefabricated and cast metal post especially indicated in narrow root canals which are prone to vertically root fracture. The most frequent failure of FRC is debonding of a post at the resin cement/dentin interface. Bonding to dentin may be achieved by using etch-and-rinse and self-etch adhesives. The bond strength formed by self-adhesive cements is noticeably lower in comparison to the bond strength formed with resin cements applied in combination with etch-and-rinse adhesives. In an attempt to maximize resin bonding to fiber posts, several surface treatments have been suggested. Sandblasting with alumina particles results in an increased surface roughness and surface area without affecting the integrity of the post as long as it is applied by 50 microm alumina particles at 2.5 bars for maximally 5 seconds at a distance of 30 mm. The efficiency of post salinization is controversial and its contribution to the retention is of minor importance. Hydrofluoric acid has recently been proposed for etching glass fiber posts but this technique produced substantial damage to the glass fibers and affected the integrity of the post. Delayed cementation of fiber post (at least 24h post endodontic treatment) resulted in higher retentive strengths in comparison to immediate cementation and the best results were obtained when the luting agent was brought into the post space with lentulo spirals or specific syringes. The resin cement film thickness also influences the pullout strengths of fiber-reinforced posts .The highest bond strength values were obtained when the cement layer oversized the post spaces but not larger than 0.3 mm. The use of core build

  19. Structural Health Monitoring Using High-Density Fiber Optic Strain Sensor and Inverse Finite Element Methods

    NASA Technical Reports Server (NTRS)

    Vazquez, Sixto L.; Tessler, Alexander; Quach, Cuong C.; Cooper, Eric G.; Parks, Jeffrey; Spangler, Jan L.

    2005-01-01

    In an effort to mitigate accidents due to system and component failure, NASA s Aviation Safety has partnered with industry, academia, and other governmental organizations to develop real-time, on-board monitoring capabilities and system performance models for early detection of airframe structure degradation. NASA Langley is investigating a structural health monitoring capability that uses a distributed fiber optic strain system and an inverse finite element method for measuring and modeling structural deformations. This report describes the constituent systems that enable this structural monitoring function and discusses results from laboratory tests using the fiber strain sensor system and the inverse finite element method to demonstrate structural deformation estimation on an instrumented test article

  20. US DOE Perspectives on Advisory Board Effectiveness - 13539

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adler, David

    2013-07-01

    Federal missions on the Oak Ridge Reservation began with the Manhattan Project, and continues today with major facilities supporting the Nation's Science and National Security missions. While most of the land area on the Oak Ridge Reservation is free of environmental impacts from these activities, significant legacy contamination is associated with specific facilities and past waste management areas. In 1989, the Oak Ridge Reservation (ORR) was placed on National Priorities List, and DOE established its Office of Environmental Management that same year. Three years later, in 1992, the Federal Facility Agreement for the reservation was signed. Three years afterward, themore » Oak Ridge Site Specific Advisory Board was established to augment ongoing public involvement activities related to Oak Ridge Reservation cleanup activities. One of the early and most impactful decisions the board made was to organize the End Use Working Group. This broad-based group of board members, DOE representatives, and members of the public was formed in 1997 to study future uses for contaminated areas of the reservation. The group was instrumental in building consensus in the Oak Ridge community regarding the long-term end state of reservation lands. The group's recommendations were a fundamental input into Record's of Decision subsequently developed to establish cleanup requirements across the ORR, and they continue to influence decisions being made today. In developing its recommendations on end states, the End Use Working Group came to the realization that long-term stewardship of contaminated areas of the reservation would be necessary, in some cases in perpetuity. It was from this concept that the Oak Ridge SSAB's 15-year involvement in stewardship would begin. A stewardship committee formed by the End Use Working Group wrote Volume 1 of the Stakeholder Report on Stewardship. This document-and its companion Volume 2, which was written a year later-form a crucial foundation for

  1. Nanowire modified carbon fibers for enhanced electrical energy storage

    NASA Astrophysics Data System (ADS)

    Shuvo, Mohammad Arif Ishtiaque; (Bill) Tseng, Tzu-Liang; Ashiqur Rahaman Khan, Md.; Karim, Hasanul; Morton, Philip; Delfin, Diego; Lin, Yirong

    2013-09-01

    The study of electrochemical super-capacitors has become one of the most attractive topics in both academia and industry as energy storage devices because of their high power density, long life cycles, and high charge/discharge efficiency. Recently, there has been increasing interest in the development of multifunctional structural energy storage devices such as structural super-capacitors for applications in aerospace, automobiles, and portable electronics. These multifunctional structural super-capacitors provide structures combining energy storage and load bearing functionalities, leading to material systems with reduced volume and/or weight. Due to their superior materials properties, carbon fiber composites have been widely used in structural applications for aerospace and automotive industries. Besides, carbon fiber has good electrical conductivity which will provide lower equivalent series resistance; therefore, it can be an excellent candidate for structural energy storage applications. Hence, this paper is focused on performing a pilot study for using nanowire/carbon fiber hybrids as building materials for structural energy storage materials; aiming at enhancing the charge/discharge rate and energy density. This hybrid material combines the high specific surface area of carbon fiber and pseudo-capacitive effect of metal oxide nanowires, which were grown hydrothermally in an aligned fashion on carbon fibers. The aligned nanowire array could provide a higher specific surface area that leads to high electrode-electrolyte contact area thus fast ion diffusion rates. Scanning Electron Microscopy and X-Ray Diffraction measurements are used for the initial characterization of this nanowire/carbon fiber hybrid material system. Electrochemical testing is performed using a potentio-galvanostat. The results show that gold sputtered nanowire carbon fiber hybrid provides 65.9% higher energy density than bare carbon fiber cloth as super-capacitor.

  2. PUS Services Software Building Block Automatic Generation for Space Missions

    NASA Astrophysics Data System (ADS)

    Candia, S.; Sgaramella, F.; Mele, G.

    2008-08-01

    The Packet Utilization Standard (PUS) has been specified by the European Committee for Space Standardization (ECSS) and issued as ECSS-E-70-41A to define the application-level interface between Ground Segments and Space Segments. The ECSS-E- 70-41A complements the ECSS-E-50 and the Consultative Committee for Space Data Systems (CCSDS) recommendations for packet telemetry and telecommand. The ECSS-E-70-41A characterizes the identified PUS Services from a functional point of view and the ECSS-E-70-31 standard specifies the rules for their mission-specific tailoring. The current on-board software design for a space mission implies the production of several PUS terminals, each providing a specific tailoring of the PUS services. The associated on-board software building blocks are developed independently, leading to very different design choices and implementations even when the mission tailoring requires very similar services (from the Ground operative perspective). In this scenario, the automatic production of the PUS services building blocks for a mission would be a way to optimize the overall mission economy and improve the robusteness and reliability of the on-board software and of the Ground-Space interactions. This paper presents the Space Software Italia (SSI) activities for the development of an integrated environment to support: the PUS services tailoring activity for a specific mission. the mission-specific PUS services configuration. the generation the UML model of the software building block implementing the mission-specific PUS services and the related source code, support documentation (software requirements, software architecture, test plans/procedures, operational manuals), and the TM/TC database. The paper deals with: (a) the project objectives, (b) the tailoring, configuration, and generation process, (c) the description of the environments supporting the process phases, (d) the characterization of the meta-model used for the generation, (e) the

  3. JTAG-based remote configuration of FPGAs over optical fibers

    DOE PAGES

    Deng, B.; Xu, H.; Liu, C.; ...

    2015-01-28

    In this study, a remote FPGA-configuration method based on JTAG extension over optical fibers is presented. The method takes advantage of commercial components and ready-to-use software such as iMPACT and does not require any hardware or software development. The method combines the advantages of the slow remote JTAG configuration and the fast local flash memory configuration. The method has been verified successfully and used in the Demonstrator of Liquid-Argon Trigger Digitization Board (LTDB) for the ATLAS liquid argon calorimeter Phase-I trigger upgrade. All components on the FPGA side are verified to meet the radiation tolerance requirements.

  4. Solar Heating System for Recreation Building at Scattergood School.

    ERIC Educational Resources Information Center

    Scattergood School, West Branch, IA.

    This report describes the solar heating of two adjoining buildings, a gymnasium and a locker room, at a coeducational boarding school. Federal assistance was obtained from the Energy Research and Development Administration (ERDA) as part of the Solar Heating and Cooling Demonstration Program. The system uses a 2,500-square-foot array of…

  5. Two Nations Underground: Building Schools to Survive Nuclear War and Desegregation in the 1960s

    ERIC Educational Resources Information Center

    Preston, John

    2017-01-01

    In the 1960s federal agencies in the US encouraged the building of protected schools designed to survive a nuclear attack. A number of designs, including underground schools, were constructed. In order to promote the building of protected schools, the US government produced a number of propaganda films for school boards and governors. In addition…

  6. Board task performance: An exploration of micro- and macro-level determinants of board effectiveness

    PubMed Central

    Minichilli, Alessandro; Zattoni, Alessandro; Nielsen, Sabina; Huse, Morten

    2012-01-01

    This paper addresses recent calls to narrow the micro–macro gap in management research (Bamberger, 2008), by incorporating a macro-level context variable (country) in exploring micro-level determinants of board effectiveness. Following the integrated model proposed by Forbes and Milliken (1999), we identify three board processes as micro-level determinants of board effectiveness. Specifically, we focus on effort norms, cognitive conflicts and the use of knowledge and skills as determinants of board control and advisory task performance. Further, we consider how two different institutional settings influence board tasks, and how the context moderates the relationship between processes and tasks. Our hypotheses are tested on a survey-based dataset of 535 medium-sized and large industrial firms in Italy and Norway, which are considered to substantially differ along legal and cultural dimensions. The findings show that: (i) Board processes have a larger potential than demographic variables to explain board task performance; (ii) board task performance differs significantly between boards operating in different contexts; and (iii) national context moderates the relationships between board processes and board task performance. Copyright © 2010 John Wiley & Sons, Ltd. PMID:23365485

  7. Specialty fibers for fiber optic sensor application

    NASA Astrophysics Data System (ADS)

    Bennett, K.; Koh, J.; Coon, J.; Chien, C. K.; Artuso, A.; Chen, X.; Nolan, D.; Li, M.-J.

    2007-09-01

    Over the last several years, Fiber Optic Sensor (FOS) applications have seen an increased acceptance in many areas including oil & gas production monitoring, gyroscopes, current sensors, structural sensing and monitoring, and aerospace applications. High level optical and mechanical reliability of optical fiber is necessary to guarantee reliable performance of FOS. In this paper, we review recent research and development activities on new specialty fibers. We discuss fiber design concepts and present both modeling and experimental results. The main approaches to enhancing fiber attributes include new index profile design and fiber coating modification.

  8. The impact of the board's strategy-setting role on board-management relations and hospital performance.

    PubMed

    Büchner, Vera Antonia; Schreyögg, Jonas; Schultz, Carsten

    2014-01-01

    The appropriate governance of hospitals largely depends on effective cooperation between governing boards and hospital management. Governing boards play an important role in strategy-setting as part of their support for hospital management. However, in certain situations, this active strategic role may also generate discord within this relationship. The objective of this study is to investigate the impact of the roles, attributes, and processes of governing boards on hospital performance. We examine the impact of the governing board's strategy-setting role on board-management collaboration quality and on financial performance while also analyzing the interaction effects of board diversity and board activity level. The data are derived from a survey that was sent simultaneously to German hospitals and their associated governing board, combined with objective performance information from annual financial statements and quality reports. We use a structural equation modeling approach to test the model. The results indicate that different board characteristics have a significant impact on hospital performance (R = .37). The strategy-setting role and board-management collaboration quality have a positive effect on hospital performance, whereas the impact of strategy-setting on collaboration quality is negative. We find that the positive effect of strategy-setting on performance increases with decreasing board diversity. When board members have more homogeneous backgrounds and exhibit higher board activity levels, the negative effect of the strategy-setting on collaboration quality also increases. Active strategy-setting by a governing board may generally improve hospital performance. Diverse members of governing boards should be involved in strategy-setting for hospitals. However, high board-management collaboration quality may be compromised if managerial autonomy is too highly restricted. Consequently, hospitals should support board-management collaboration about

  9. Scrum Board Game

    NASA Astrophysics Data System (ADS)

    van den Oord, Stefan; van de Goor, Wim

    The Scrum Board Game is a workshop for beginners. It is for people with any role (customer, developer, tester, etc.), who don’t exactly know what a Scrum Board is, or how to create one themselves. The workshop teaches the benefits of a Scrum Board, how to use it, and how to introduce it in projects.

  10. All-fiber Faraday Devices Based on Terbium-doped Fiber

    NASA Astrophysics Data System (ADS)

    Sun, Lei

    Surface damage is one of the most problematic power limits in high-power fiber laser systems. All-fiber Faraday components are demonstrated as a solution to this problem, since they can be completely fusion-spliced into existing systems, eliminating all glass-air interfaces. Beam filamentation due to self-focusing places another limit on the peak power attainable from fiber laser systems. The limits imposed by this phenomenon are analyzed for the first time. The concept of an effective Verdet constant is proposed and experimentally validated. The effective Verdet constant of light propagation in a fiber includes contributions from the materials in both the core and the cladding. It is measured in a 25-wt% terbium-doped-core phosphate fiber to be --6.2 rad/(Tm) at 1053 nm, which is six times larger than silica fiber. The result agrees well with Faraday rotation theory in optical fiber. A compact all-fiber Faraday isolator and a Faraday mirror are demonstrated. At the core of each of these components is an all-fiber Faraday rotator made of a 4cm-long, 65-wt%-terbium-doped silicate fiber. The effective Verdet constant of the terbium-doped fiber is measured to be -32 rad/(Tm), which is 27x larger than that of silica fiber. This effective Verdet constant is the largest value measured to date in any fiber and is 83% of the Verdet constant of commercially available crystals used in bulk-optics-based isolators. Combining the all-fiber Faraday rotator with fiber polarizers results in a fully fusion-spliced all-fiber isolator whose isolation is measured to be 19 dB. Combining the all-fiber Faraday rotator with a fiber Bragg grating results in an all-fiber Faraday mirror that rotates the polarization state of the reflected light by 88 +/- 4°. An all-fiber optical magnetic field sensor is also demonstrated. It consists of a fiber Faraday rotator and a fiber polarizer. The fiber Faraday rotator uses a 2-cm-long section of 56-wt%-terbium-doped silicate fiber with a Verdet

  11. Low Cost Plastic Optical Fiber Pressure Sensor Embedded in Mattress for Vital Signal Monitoring.

    PubMed

    Sartiano, Demetrio; Sales, Salvador

    2017-12-13

    The aim of this paper is to report the design of a low-cost plastic optical fiber (POF) pressure sensor, embedded in a mattress. We report the design of a multipoint sensor, a cheap alternative to the most common fiber sensors. The sensor is implemented using Arduino board, standard LEDs for optical communication in POF (λ = 645 nm) and a silicon light sensor. The Super ESKA ® plastic fibers were used to implement the fiber intensity sensor, arranged in a 4 × 4 matrix. During the breathing cycles, the force transmitted from the lungs to the thorax is in the order of tens of Newtons, and the respiration rate is of one breath every 2-5 s (0.2-0.5 Hz). The sensor has a resolution of force applied on a single point of 2.2-4.5%/N on the normalized voltage output, and a bandwidth of 10 Hz, it is then suitable to monitor the respiration movements. Another issue to be addressed is the presence of hysteresis over load cycles. The sensor was loaded cyclically to estimate the drift of the system, and the hysteresis was found to be negligible.

  12. Fiber-based wearable electronics: a review of materials, fabrication, devices, and applications.

    PubMed

    Zeng, Wei; Shu, Lin; Li, Qiao; Chen, Song; Wang, Fei; Tao, Xiao-Ming

    2014-08-20

    Fiber-based structures are highly desirable for wearable electronics that are expected to be light-weight, long-lasting, flexible, and conformable. Many fibrous structures have been manufactured by well-established lost-effective textile processing technologies, normally at ambient conditions. The advancement of nanotechnology has made it feasible to build electronic devices directly on the surface or inside of single fibers, which have typical thickness of several to tens microns. However, imparting electronic functions to porous, highly deformable and three-dimensional fiber assemblies and maintaining them during wear represent great challenges from both views of fundamental understanding and practical implementation. This article attempts to critically review the current state-of-arts with respect to materials, fabrication techniques, and structural design of devices as well as applications of the fiber-based wearable electronic products. In addition, this review elaborates the performance requirements of the fiber-based wearable electronic products, especially regarding the correlation among materials, fiber/textile structures and electronic as well as mechanical functionalities of fiber-based electronic devices. Finally, discussions will be presented regarding to limitations of current materials, fabrication techniques, devices concerning manufacturability and performance as well as scientific understanding that must be improved prior to their wide adoption. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Adsorption Properties of Lignin-derived Activated Carbon Fibers (LACF)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Contescu, Cristian I.; Gallego, Nidia C.; Thibaud-Erkey, Catherine

    The object of this CRADA project between Oak Ridge National Laboratory (ORNL) and United Technologies Research Center (UTRC) is the characterization of lignin-derived activated carbon fibers (LACF) and determination of their adsorption properties for volatile organic compounds (VOC). Carbon fibers from lignin raw materials were manufactured at Oak Ridge National Laboratory (ORNL) using the technology previously developed at ORNL. These fibers were physically activated at ORNL using various activation conditions, and their surface area and pore-size distribution were characterized by gas adsorption. Based on these properties, ORNL did down-select five differently activated LACF materials that were delivered to UTRC formore » measurement of VOC adsorption properties. UTRC used standard techniques based on breakthrough curves to measure and determine the adsorption properties of indoor air pollutants (IAP) - namely formaldehyde and carbon dioxide - and to verify the extent of saturated fiber regenerability by thermal treatments. The results are summarized as follows: (1) ORNL demonstrated that physical activation of lignin-derived carbon fibers can be tailored to obtain LACF with surface areas and pore size distributions matching the properties of activated carbon fibers obtained from more expensive, fossil-fuel precursors; (2) UTRC investigated the LACF potential for use in air cleaning applications currently pursued by UTRC, such as building ventilation, and demonstrated their regenerability for CO2 and formaldehyde, (3) Both partners agree that LACF have potential for possible use in air cleaning applications.« less

  14. 77 FR 24480 - U.S. Air Force Academy Board of Visitors Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-24

    ... (USAFA) Board of Visitors (BoV) will hold a meeting in Capitol Building House Visitor Center Conference.... 552b. Public attendance at the open portions of this USAFA BoV meeting shall be accommodated on a first... member of the public wishing to provide input to the USAFA BoV should submit a written statement in...

  15. Treatment of waste printed circuit board by green solvent using ionic liquid.

    PubMed

    Zhu, P; Chen, Y; Wang, L Y; Zhou, M

    2012-10-01

    Recycling of waste printed circuit boards (WPCBs) is an important subject not only for the protection of environment but also for the recovery of valuable materials. A feasibility study was conducted to dissolve bromine epoxy resins of WPCBs using ionic liquid (IL) of 1-ethyl-3-methylimizadolium tetrafluoroborate [EMIM(+)][BF(4)(-)] (nonaqueous green solvent) for recovering copper foils and glass fibers. Experimental results indicated that the initial delamination had seen from the cross-section of the WPCBs by mean of metallographic microscope and digital camera when WPCBs were heated in [EMIM(+)][BF(4)(-)] at 240°C for a duration of 30 min. When temperature was increased to 260°C for a duration of 10 min, the bromine epoxy resins of WPCBs were throughout dissolved into [EMIM(+)][BF(4)(-)] and the separations of copper foils and glass fibers from WPCBs were completed. This clean and non-polluting technology offers a new way to recycle valuable materials from WPCBs and prevent the environmental pollution of WPCBs effectively. Crown Copyright © 2012. Published by Elsevier Ltd. All rights reserved.

  16. Motives and Power of School Board Members: Implications for School Board-Superintendent Relationships

    ERIC Educational Resources Information Center

    Mountford, Meredith

    2004-01-01

    The qualitative study presented in this article explores motivations for school board membership and conceptions of power held by school board members. The findings of the study suggest a relationship exists between the way board members define power and the type of motivation board members have for service. The implications of these findings for…

  17. Natural Kenaf Fiber Reinforced Composites as Engineered Structural Materials

    NASA Astrophysics Data System (ADS)

    Dittenber, David B.

    The objective of this work was to provide a comprehensive evaluation of natural fiber reinforced polymer (NFRP)'s ability to act as a structural material. As a chemical treatment, aligned kenaf fibers were treated with sodium hydroxide (alkalization) in different concentrations and durations and then manufactured into kenaf fiber / vinyl ester composite plates. Single fiber tensile properties and composite flexural properties, both in dry and saturated environments, were assessed. Based on ASTM standard testing, a comparison of flexural, tensile, compressive, and shear mechanical properties was also made between an untreated kenaf fiber reinforced composite, a chemically treated kenaf fiber reinforced composite, a glass fiber reinforced composite, and oriented strand board (OSB). The mechanical properties were evaluated for dry samples, samples immersed in water for 50 hours, and samples immersed in water until saturation (~2700 hours). Since NFRPs are more vulnerable to environmental effects than synthetic fiber composites, a series of weathering and environmental tests were conducted on the kenaf fiber composites. The environmental conditions studied include real-time outdoor weathering, elevated temperatures, immersion in different pH solutions, and UV exposure. In all of these tests, degradation was found to be more pronounced in the NFRPs than in the glass FRPs; however, in nearly every case the degradation was less than 50% of the flexural strength or stiffness. Using a method of overlapping and meshing discontinuous fiber ends, large mats of fiber bundles were manufactured into composite facesheets for structural insulated panels (SIPs). The polyisocyanurate foam cores proved to be poorly matched to the strength and stiffness of the NFRP facesheets, leading to premature core shear or delamination failures in both flexure and compressive testing. The NFRPs were found to match well with the theoretical stiffness prediction methods of classical lamination

  18. Fiber Bragg grating inscription in optical multicore fibers

    NASA Astrophysics Data System (ADS)

    Becker, Martin; Elsmann, Tino; Lorenz, Adrian; Spittel, Ron; Kobelke, Jens; Schuster, Kay; Rothhardt, Manfred; Latka, Ines; Dochow, Sebastian; Bartelt, Hartmut

    2015-09-01

    Fiber Bragg gratings as key components in telecommunication, fiber lasers, and sensing systems usually rely on the Bragg condition for single mode fibers. In special applications, such as in biophotonics and astrophysics, high light coupling efficiency is of great importance and therefore, multimode fibers are often preferred. The wavelength filtering effect of Bragg gratings in multimode fibers, however is spectrally blurred over a wide modal spectrum of the fiber. With a well-designed all solid multicore microstructured fiber a good light guiding efficiency in combination with narrow spectral filtering effect by Bragg gratings becomes possible.

  19. The role of rapid solidification processing in the fabrication of fiber reinforced metal matrix composites

    NASA Technical Reports Server (NTRS)

    Locci, Ivan E.; Noebe, Ronald D.

    1989-01-01

    Advanced composite processing techniques for fiber reinforced metal matrix composites require the flexibility to meet several widespread objectives. The development of uniquely desired matrix microstructures and uniformly arrayed fiber spacing with sufficient bonding between fiber and matrix to transmit load between them without degradation to the fiber or matrix are the minimum requirements necessary of any fabrication process. For most applications these criteria can be met by fabricating composite monotapes which are then consolidated into composite panels or more complicated components such as fiber reinforced turbine blades. Regardless of the end component, composite monotapes are the building blocks from which near net shape composite structures can be formed. The most common methods for forming composite monotapes are the powder cloth, foil/fiber, plasma spray, and arc spray processes. These practices, however, employ rapid solidification techniques in processing of the composite matrix phase. Consequently, rapid solidification processes play a vital and yet generally overlooked role in composite fabrication. The future potential of rapid solidification processing is discussed.

  20. 77 FR 2541 - Board Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-18

    ... FARM CREDIT SYSTEM INSURANCE CORPORATION Board Meeting AGENCY: Farm Credit System Insurance Corporation Board; Regular Meeting. SUMMARY: Notice is hereby given of the regular meeting of the Farm Credit System Insurance Corporation Board (Board). DATE AND TIME: The meeting of the Board will be held at the...

  1. Modeling scintillator and WLS fiber signals for fast Monte Carlo simulations

    NASA Astrophysics Data System (ADS)

    Sánchez, F. A.; Medina-Tanco, G.

    2010-08-01

    In this work we present a fast, robust and flexible procedure to simulate electronic signals of scintillator units: plastic scintillator material embedded with a wavelength shifter optical fiber coupled to a photo-multiplier tube which, in turn, is plugged to a front-end electronic board. The simple rationale behind the simulation chain allows to adapt the procedure to a broad range of detectors based on that kind of units. We show that, in order to produce realistic results, the simulation parameters can be properly calibrated against laboratory measurements and used thereafter as input of the simulations. Simulated signals of atmospheric background cosmic ray muons are presented and their main features analyzed and validated using actual measured data. Conversely, for any given practical application, the present simulation scheme can be used to find an adequate combination of photo-multiplier tube and optical fiber at the prototyping stage.

  2. Fiber optic oxygen sensor leak detection system for space applications

    NASA Astrophysics Data System (ADS)

    Kazemi, Alex A.; Goswami, Kish; Mendoza, Edgar A.; Kempen, Lothar U.

    2007-09-01

    This paper describes the successful test of a multi-point fiber optic oxygen sensor system during the static firing of an Evolved Expandable Launch Vehicle (EELV)/Delta IV common booster core (CBC) rocket engine at NASA's Stennis Flight Center. The system consisted of microsensors (optrodes) using an oxygen gas sensitive indicator incorporated onto an optically transparent porous substrate. The modular optoelectronics and multiplexing network system was designed and assembled utilizing a multi-channel opto-electronic sensor readout unit that monitored the oxygen and temperature response of the individual optrodes in real-time and communicated this information via a serial communication port to a remote laptop computer. The sensor packaging for oxygen consisted of two optrodes - one doped with an indicator sensitive to oxygen, and the other doped with an indicator sensitive to temperature. The multichannel oxygen sensor system is fully reversible. It has demonstrated a dynamic response to oxygen gas in the range of 0% to 100% with 0.1% resolution and a response time of <=10 seconds. The sensor package was attached to a custom fiber optic ribbon cable, which was then connected to a fiber optic trunk communications cable (standard telecommunications-grade fiber) that connected to the optoelectronics module. Each board in the expandable module included light sources, photo-detectors, and associated electronics required for detecting oxygen and temperature. The paper illustrates the sensor design and performance data under field deployment conditions.

  3. Building blocks for successful patient and family advisory boards: collaboration, communication, and commitment.

    PubMed

    Taloney, Linda; Flores, Gabriela

    2013-01-01

    The mission of our hospital states: "Patients and their families are treated with compassion in a family-centered care environment that recognizes their physical, emotional, financial, and spiritual needs." Family-centered care is an approach to health care that shapes policies, programs, facility design, and day-to-day interactions among patients and their families, physicians, nurses, and other health care professionals. Health care professionals across all disciplines and in all care environments have the opportunity to advance the practice of patient- and family-centered care. They do so by welcoming patients and their families as partners in care-acknowledging patient and family expertise and strengths, encouraging their input, and acknowledging the value of their observations and perceptions. There is a growing recognition of the importance of patient and family care experiences as a key part of quality care. Through this partnership, patients and their families are viewed as valuable sources of information that can impact the quality of the care they receive. Their perspective on the care they receive can be used to shape effective solutions and target practice improvements in the care delivery experience. As an organization, we have been focused on implementing patient- and family-centered care for many years. We are unique in that we have parents of patients on the hospital staff and regularly seek their input, along with that of our Family Advisory Boards (English and Spanish speaking) and Teen Advisory Board. You have to ask yourself the question, "Are you ready to incorporate patient- and family-centered care into your practice?"

  4. Advance study of fiber-reinforced self-compacting concrete

    NASA Astrophysics Data System (ADS)

    Mironova, M.; Ivanova, M.; Naidenov, V.; Georgiev, I.; Stary, J.

    2015-10-01

    Incorporation in concrete composition of steel macro- and micro - fiber reinforcement with structural function increases the degree of ductility of typically brittle cement-containing composites, which in some cases can replace completely or partially conventional steel reinforcement in the form of rods and meshes. Thus, that can reduce manufacturing, detailing and placement of conventional reinforcement, which enhances productivity and economic efficiency of the building process. In this paper, six fiber-reinforced with different amounts of steel fiber cement-containing self-compacting compositions are investigated. The results of some of their main strength-deformation characteristics are presented. Advance approach for the study of structural and material properties of these type composites is proposed by using the methods of industrial computed tomography. The obtained original tomography results about the microstructure and characteristics of individual structural components make it possible to analyze the effective macro-characteristics of the studied composites. The resulting analytical data are relevant for the purposes of multi-dimensional modeling of these systems. Multifactor structure-mechanical analysis of the obtained with different methods original scientific results is proposed. It is presented a conclusion of the capabilities and effectiveness of complex analysis in the studies to characterize the properties of self-compacting fiber-reinforced concrete.

  5. Advance study of fiber-reinforced self-compacting concrete

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mironova, M., E-mail: mirona@imbm.bas.bg; Ivanova, M., E-mail: magdalena.ivanova@imbm.bas.bg; Naidenov, V., E-mail: valna53@mail.bg

    2015-10-28

    Incorporation in concrete composition of steel macro- and micro – fiber reinforcement with structural function increases the degree of ductility of typically brittle cement-containing composites, which in some cases can replace completely or partially conventional steel reinforcement in the form of rods and meshes. Thus, that can reduce manufacturing, detailing and placement of conventional reinforcement, which enhances productivity and economic efficiency of the building process. In this paper, six fiber-reinforced with different amounts of steel fiber cement-containing self-compacting compositions are investigated. The results of some of their main strength-deformation characteristics are presented. Advance approach for the study of structural andmore » material properties of these type composites is proposed by using the methods of industrial computed tomography. The obtained original tomography results about the microstructure and characteristics of individual structural components make it possible to analyze the effective macro-characteristics of the studied composites. The resulting analytical data are relevant for the purposes of multi-dimensional modeling of these systems. Multifactor structure-mechanical analysis of the obtained with different methods original scientific results is proposed. It is presented a conclusion of the capabilities and effectiveness of complex analysis in the studies to characterize the properties of self-compacting fiber-reinforced concrete.« less

  6. Analysis of Building 839: Carlisle Barracks, Pennsylvania

    DTIC Science & Technology

    2013-09-01

    within prehistory or history is made clear.”101 A historic property is determined as either significant or not significant by applying standardized...yielded, or is likely to yield, information important in prehistory or history. 3.3 Significance Eligibility to the NRHP is based upon...given period in history or prehistory . The workmanship of Building 839 is evident in the mortar joints of the brick walls (Figure 53), the rake boards

  7. Hybrid Fiber Layup and Fiber-Reinforced Polymeric Composites Produced Therefrom

    NASA Technical Reports Server (NTRS)

    Barnell, Thomas J. (Inventor); Garrigan, Sean P. (Inventor); Rauscher, Michael D. (Inventor); Dietsch, Benjamin A. (Inventor); Cupp, Gary N. (Inventor)

    2018-01-01

    Embodiments of a hybrid fiber layup used to form a fiber-reinforced polymeric composite, and a fiber-reinforced polymeric composite produced therefrom are disclosed. The hybrid fiber layup comprises one or more dry fiber strips and one or more prepreg fiber strips arranged side by side within each layer, wherein the prepreg fiber strips comprise fiber material impregnated with polymer resin and the dry fiber strips comprise fiber material without impregnated polymer resin.

  8. 75 FR 11210 - Public Company Accounting Oversight Board; Order Approving Proposed Amendment to Board Rules...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-10

    ... Accounting Oversight Board; Order Approving Proposed Amendment to Board Rules Relating to Inspections March 4, 2010. I. Introduction On July 2, 2009, the Public Company Accounting Oversight Board (the ``Board'' or...'') relating to the Board's rules governing inspections of registered public accounting firms. Notice of the...

  9. Integrating quantum key distribution with classical communications in backbone fiber network.

    PubMed

    Mao, Yingqiu; Wang, Bi-Xiao; Zhao, Chunxu; Wang, Guangquan; Wang, Ruichun; Wang, Honghai; Zhou, Fei; Nie, Jimin; Chen, Qing; Zhao, Yong; Zhang, Qiang; Zhang, Jun; Chen, Teng-Yun; Pan, Jian-Wei

    2018-03-05

    Quantum key distribution (QKD) provides information-theoretic security based on the laws of quantum mechanics. The desire to reduce costs and increase robustness in real-world applications has motivated the study of coexistence between QKD and intense classical data traffic in a single fiber. Previous works on coexistence in metropolitan areas have used wavelength-division multiplexing, however, coexistence in backbone fiber networks remains a great experimental challenge, as Tbps data of up to 20 dBm optical power is transferred, and much more noise is generated for QKD. Here we present for the first time, to the best of our knowledge, the integration of QKD with a commercial backbone network of 3.6 Tbps classical data at 21 dBm launch power over 66 km fiber. With 20 GHz pass-band filtering and large effective core area fibers, real-time secure key rates can reach 4.5 kbps and 5.1 kbps for co-propagation and counter-propagation at the maximum launch power, respectively. This demonstrates feasibility and represents an important step towards building a quantum network that coexists with the current backbone fiber infrastructure of classical communications.

  10. Hospital boards and hospital strategic focus: the impact of board involvement in strategic decision making.

    PubMed

    Ford-Eickhoff, Karen; Plowman, Donde Ashmos; McDaniel, Reuben R

    2011-01-01

    Despite pressures to change the role of hospital boards, hospitals have made few changes in board composition or director selection criteria. Hospital boards have often continued to operate in their traditional roles as either "monitors" or "advisors." More attention to the direct involvement of hospital boards in the strategic decision-making process of the organizations they serve, the timing and circumstances under which board involvement occurs, and the board composition that enhances their abilities to participate fully is needed. We investigated the relationship between broader expertise among hospital board members, board involvement in the stages of strategic decision making, and the hospital's strategic focus. We surveyed top management team members of 72 nonacademic hospitals to explore the participation of critical stakeholder groups such as the board of directors in the strategic decision-making process. We used hierarchical regression analysis to explore our hypotheses that there is a relationship between both the nature and involvement of the board and the hospital's strategic orientation. Hospitals with broader expertise on their boards reported an external focus. For some of their externally-oriented goals, hospitals also reported that their boards were involved earlier in the stages of decision making. In light of the complex and dynamic environment of hospitals today, those charged with developing hospital boards should match the variety in the external issues that the hospital faces with more variety in board makeup. By developing a board with greater breadth of expertise, the hospital responds to its complex environment by absorbing that complexity, enabling a greater potential for sensemaking and learning. Rather than acting only as monitors and advisors, boards impact their hospitals' strategic focus through their participation in the strategic decision-making process.

  11. Chemical-assisted femtosecond laser writing of lab-in-fibers.

    PubMed

    Haque, Moez; Lee, Kenneth K C; Ho, Stephen; Fernandes, Luís A; Herman, Peter R

    2014-10-07

    The lab-on-chip (LOC) platform has presented a powerful opportunity to improve functionalization, parallelization, and miniaturization on planar or multilevel geometries that has not been possible with fiber optic technology. A migration of such LOC devices into the optical fiber platform would therefore open the revolutionary prospect of creating novel lab-in-fiber (LIF) systems on the basis of an efficient optical transport highway for multifunctional sensing. For the LIF, the core optical waveguide inherently offers a facile means to interconnect numerous types of sensing elements along the optical fiber, presenting a radical opportunity for optimizing the packaging and densification of diverse components in convenient geometries beyond that available with conventional LOCs. In this paper, three-dimensional patterning inside the optical fiber by femtosecond laser writing, together with selective chemical etching, is presented as a powerful tool to form refractive index structures such as optical waveguides and gratings as well as to open buried microfluidic channels and optical resonators inside the flexible and robust glass fiber. In this approach, optically smooth surfaces (~12 nm rms) are introduced for the first time inside the fiber cladding that precisely conform to planar nanograting structures when formed by aberration-free focusing with an oil-immersion lens across the cylindrical fiber wall. This process has enabled optofluidic components to be precisely embedded within the fiber to be probed by either the single-mode fiber core waveguide or the laser-formed optical circuits. We establish cladding waveguides, X-couplers, fiber Bragg gratings, microholes, mirrors, optofluidic resonators, and microfluidic reservoirs that define the building blocks for facile interconnection of inline core-waveguide devices with cladding optofluidics. With these components, more advanced, integrated, and multiplexed fiber microsystems are presented demonstrating

  12. Effects of weathering on color loss of natural fiber thermoplastic composites

    Treesearch

    R.H. Falk; C. Felton; T. Lundin

    2001-01-01

    The technology currently exists to manufacture natural fiber thermoplastic composites from recycled materials. Development of commodity-building products from these composites would open up huge markets for waste-based materials in the US. To date, the construction industry has only accepted wood thermoplastic composite lumber (and only for limited applications). In...

  13. Effects of weathering on color loss of natural fiber : thermoplastic composites

    Treesearch

    Robert H. Falk; Colin Felton; Thomas Lundin

    2000-01-01

    The technology currently exists to manufacture natural fiber-thermoplastic composites from recycled materials. Development of commodity building products from these composites would open huge markets for waste-based materials in the United States. To date, the construction industry has only accepted wood-thermoplastic composite lumber and only for limited applications...

  14. Experimental Analysis of Steel Beams Subjected to Fire Enhanced by Brillouin Scattering-Based Fiber Optic Sensor Data.

    PubMed

    Bao, Yi; Chen, Yizheng; Hoehler, Matthew S; Smith, Christopher M; Bundy, Matthew; Chen, Genda

    2017-01-01

    This paper presents high temperature measurements using a Brillouin scattering-based fiber optic sensor and the application of the measured temperatures and building code recommended material parameters into enhanced thermomechanical analysis of simply supported steel beams subjected to combined thermal and mechanical loading. The distributed temperature sensor captures detailed, nonuniform temperature distributions that are compared locally with thermocouple measurements with less than 4.7% average difference at 95% confidence level. The simulated strains and deflections are validated using measurements from a second distributed fiber optic (strain) sensor and two linear potentiometers, respectively. The results demonstrate that the temperature-dependent material properties specified in the four investigated building codes lead to strain predictions with less than 13% average error at 95% confidence level and that the Europe building code provided the best predictions. However, the implicit consideration of creep in Europe is insufficient when the beam temperature exceeds 800°C.

  15. Boarding Schools.

    ERIC Educational Resources Information Center

    Boarding Schools, Boston, MA.

    This booklet has been prepared to provide students, parents, and counselors with information about America's boarding schools and to help them with the application process. It includes brief descriptions of 139 boarding schools--junior schools, boys' schools, girls' schools, military academies, and coeducational schools. It is offered solely as an…

  16. Exploring the effects of electrospinning processing protocols on fiber surface morphology and polymer chain conformation

    NASA Astrophysics Data System (ADS)

    Stephens, Jean S.

    Electrospinning is a fiber formation technique that uses electrostatic forces to create continuous, nanometer diameter fibers. The work presented here focuses on the continuing efforts to build a stronger fundamental understanding of electrospinning by exploring structure/property/process relationships by investigating the effects of process protocols on fiber surface morphology and polymer chain conformation. By varying the processing parameters it has been possible to produce fibers with unique surface features, microtextured/nanoporous fibers and nanowebs. In the microtextured/nanoporous fiber studies, changing the solution concentration, solvent volatility, and relative humidity was found to alter the size, shape, and distribution of pores on the fiber surface. The mechanisms that can explain the pore formation and texturing on the surface of the fibers are phase separation (aggregation into polymer rich and polymer lean regions) and breath figures (evaporative cooling and vapor condensation). Through a judicious choice of the electrospinning processing parameters we have also been able to create "web" like structures of nanofibers (5--25 nm) from collagen, dragline silk analog, nylon, and denatured collagen. Electrostatic repulsion and thin film dewetting are thought to be responsible for the formation of the nanowebs. These unique structures were characterized using FESEM, TEM, OM, and AFM. Raman spectroscopy, initially developed as a "real time" characterization technique to study electrospun fiber formation, has also been used to investigate the effect of electrospinning on the chain conformation of bioinspired polymers. Comparing the spectrum of the bulk material to that of the electrospun material identified conformational changes in nylon 6 and dragline silk analog. The conformational change in nylon 6 (alpha-form to gamma-form) results from the stresses induced on the electrospinning jet during fiber formation, whereas the conformational change in the

  17. Fiber webs

    Treesearch

    Roger M. Rowell; James S. Han; Von L. Byrd

    2005-01-01

    Wood fibers can be used to produce a wide variety of low-density three-dimensional webs, mats, and fiber-molded products. Short wood fibers blended with long fibers can be formed into flexible fiber mats, which can be made by physical entanglement, nonwoven needling, or thermoplastic fiber melt matrix technologies. The most common types of flexible mats are carded, air...

  18. How Properties of Kenaf Fibers from Burkina Faso Contribute to the Reinforcement of Earth Blocks

    PubMed Central

    Millogo, Younoussa; Aubert, Jean-Emmanuel; Hamard, Erwan; Morel, Jean-Claude

    2015-01-01

    Physicochemical characteristics of Hibiscus cannabinus (kenaf) fibers from Burkina Faso were studied using X-ray diffraction (XRD), infrared spectroscopy, thermal gravimetric analysis (TGA), chemical analysis and video microscopy. Kenaf fibers (3 cm long) were used to reinforce earth blocks, and the mechanical properties of reinforced blocks, with fiber contents ranging from 0.2 to 0.8 wt%, were investigated. The fibers were mainly composed of cellulose type I (70.4 wt%), hemicelluloses (18.9 wt%) and lignin (3 wt%) and were characterized by high tensile strength (1 ± 0.25 GPa) and Young’s modulus (136 ± 25 GPa), linked to their high cellulose content. The incorporation of short fibers of kenaf reduced the propagation of cracks in the blocks, through the good adherence of fibers to the clay matrix, and therefore improved their mechanical properties. Fiber incorporation was particularly beneficial for the bending strength of earth blocks because it reinforces these blocks after the failure of soil matrix observed for unreinforced blocks. Blocks reinforced with such fibers had a ductile tensile behavior that made them better building materials for masonry structures than unreinforced blocks.

  19. A longitudinal social network analysis of the editorial boards of medical informatics and bioinformatics journals.

    PubMed

    Malin, Bradley; Carley, Kathleen

    2007-01-01

    The goal of this research is to learn how the editorial staffs of bioinformatics and medical informatics journals provide support for cross-community exposure. Models such as co-citation and co-author analysis measure the relationships between researchers; but they do not capture how environments that support knowledge transfer across communities are organized. In this paper, we propose a social network analysis model to study how editorial boards integrate researchers from disparate communities. We evaluate our model by building relational networks based on the editorial boards of approximately 40 journals that serve as research outlets in medical informatics and bioinformatics. We track the evolution of editorial relationships through a longitudinal investigation over the years 2000 through 2005. Our findings suggest that there are research journals that support the collocation of editorial board members from the bioinformatics and medical informatics communities. Network centrality metrics indicate that editorial board members are located in the intersection of the communities and that the number of individuals in the intersection is growing with time. Social network analysis methods provide insight into the relationships between the medical informatics and bioinformatics communities. The number of editorial board members facilitating the publication intersection of the communities has grown, but the intersection remains dependent on a small group of individuals and fragile.

  20. Refinement of boards' role required.

    PubMed

    Umbdenstock, R J

    1987-01-01

    The governing board's role in health care is not changing, but new competitive forces necessitate a refinement of the board's approach to fulfilling its role. In a free-standing, community, not-for-profit hospital, the board functions as though it were the "owner." Although it does not truly own the facility in the legal sense, the board does have legal, fiduciary, and financial responsibilities conferred on it by the state. In a religious-sponsored facility, the board fulfills these same obligations on behalf of the sponsoring institute, subject to the institute's reserved powers. In multi-institutional systems, the hospital board's power and authority depend on the role granted it by the system. Boards in all types of facilities are currently faced with the following challenges: Fulfilling their basic responsibilities, such as legal requirements, financial duties, and obligations for the quality of care. Encouraging management and the board itself to "think strategically" in attacking new competitive market forces while protecting the organization's traditional mission and values. Assessing recommended strategies in light of consequences if constituencies think the organization is abandoning its commitments. Boards can take several steps to match their mode of operation with the challenges of the new environment. Boards must rededicate themselves to the hospital's mission. Trustees must expand their understanding of health care trends and issues and their effect on the organization. Boards must evaluate and help strengthen management's performance, rather than acting as a "watchdog" in an adversarial position. Boards must think strategically, rather than focusing solely on operational details. Boards must evaluate the methods they use for conducting business.

  1. DEMINERALIZER BUILDING,TRA608. CAMERA FACES EAST ALONG SOUTH WALL. INSTRUMENT PANEL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DEMINERALIZER BUILDING,TRA-608. CAMERA FACES EAST ALONG SOUTH WALL. INSTRUMENT PANEL BOARD IS IN RIGHT HALF OF VIEW, WITH FOUR PUMPS BEYOND. SMALLER PUMPS FILL DEMINERALIZED WATER TANK ON SOUTH SIDE OF BUILDING. CARD IN LOWER RIGHT WAS INSERTED BY INL PHOTOGRAPHER TO COVER AN OBSOLETE SECURITY RESTRICTION PRINTED ON ORIGINAL NEGATIVE. INL NEGATIVE NO. 3997A. Unknown Photographer, 12/28/1951 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  2. Progressive Fracture of Fiber Composite Build-Up Structures

    NASA Technical Reports Server (NTRS)

    Gotsis, Pascal K.; Chamis, C. C.; Minnetyan, Levon

    1997-01-01

    Damage progression and fracture of built-up composite structures is evaluated by using computational simulation. The objective is to examine the behavior and response of a stiffened composite (0/ +/- 45/90)(sub s6) laminate panel by simulating the damage initiation, growth, accumulation, progression and propagation to structural collapse. An integrated computer code, CODSTRAN, was augmented for the simulation of the progressive damage and fracture of built-up composite structures under mechanical loading. Results show that damage initiation and progression have significant effect on the structural response. Influence of the type of loading is investigated on the damage initiation, propagation and final fracture of the build-up composite panel.

  3. Progressive Fracture of Fiber Composite Build-Up Structures

    NASA Technical Reports Server (NTRS)

    Minnetyan, Levon; Gotsis, Pascal K.; Chamis, C. C.

    1997-01-01

    Damage progression and fracture of built-up composite structures is evaluated by using computational simulation. The objective is to examine the behavior and response of a stiffened composite (0 +/-45/90)(sub s6) laminate panel by simulating the damage initiation, growth, accumulation, progression and propagation to structural collapse. An integrated computer code CODSTRAN was augmented for the simulation of the progressive damage and fracture of built-up composite structures under mechanical loading. Results show that damage initiation and progression to have significant effect on the structural response. Influence of the type of loading is investigated on the damage initiation, propagation and final fracture of the build-up composite panel.

  4. Robust fiber clustering of cerebral fiber bundles in white matter

    NASA Astrophysics Data System (ADS)

    Yao, Xufeng; Wang, Yongxiong; Zhuang, Songlin

    2014-11-01

    Diffusion tensor imaging fiber tracking (DTI-FT) has been widely accepted in the diagnosis and treatment of brain diseases. During the rendering pipeline of specific fiber tracts, the image noise and low resolution of DTI would lead to false propagations. In this paper, we propose a robust fiber clustering (FC) approach to diminish false fibers from one fiber tract. Our algorithm consists of three steps. Firstly, the optimized fiber assignment continuous tracking (FACT) is implemented to reconstruct one fiber tract; and then each curved fiber in the fiber tract is mapped to a point by kernel principal component analysis (KPCA); finally, the point clouds of fiber tract are clustered by hierarchical clustering which could distinguish false fibers from true fibers in one tract. In our experiment, the corticospinal tract (CST) in one case of human data in vivo was used to validate our method. Our method showed reliable capability in decreasing the false fibers in one tract. In conclusion, our method could effectively optimize the visualization of fiber bundles and would help a lot in the field of fiber evaluation.

  5. 24 CFR 200.947 - Building product standards and certification program for polystyrene foam insulation board.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... INTRODUCTION TO FHA PROGRAMS Minimum Property Standards § 200.947 Building product standards and certification... product, the administrator's certification of compliance with the applicable standards and the type of... 24 Housing and Urban Development 2 2010-04-01 2010-04-01 false Building product standards and...

  6. Technical Review Board Chairperson Guidelines for Conducting Technical Review Boards for Rocket Testing

    DTIC Science & Technology

    2011-08-17

    to create a guide for technical review board chairperson conducting technical review boards for rocket testing performed by the Air Force Research ...BOARDS FOR ROCKET TESTING   TABLE OF CONTENTS List of Acronyms 1 Abstract 2 Chapter 1. Introduction 3 Introduction and Research Question 3...boards for rocket testing performed by the Air Force Research Laboratory’s Space Missile Propulsion Division located at Edwards Air Force Base in

  7. Large public display boards: a case study of an OR board and design implications.

    PubMed

    Lasome, C E; Xiao, Y

    2001-01-01

    A compelling reason for studying artifacts in collaborative work is to inform design. We present a case study of a public display board (12 ft by 4 ft) in a Level-I trauma center operating room (OR) unit. The board has evolved into a sophisticated coordination tool for clinicians and supporting personnel. This paper draws on study findings about how the OR board is used and organizes the findings into three areas: (1) visual and physical properties of the board that are exploited for collaboration, (2) purposes the board was configured to serve, and (3) types of physical and perceptual interaction with the board. Findings and implications related to layout, size, flexibility, task management, problem-solving, resourcing, shared awareness, and communication are discussed in an effort to propose guidelines to facilitate the design of electronic, computer driven display boards in the OR environment.

  8. What makes great boards great.

    PubMed

    Sonnenfeld, Jeffrey A

    2002-09-01

    In the wake of meltdowns at WorldCom, Tyco, and Enron, enormous attention has been focused on the companies' boards. It seems inconceivable that business disasters of such magnitude could happen without gross or even criminal negligence on the part of board members. And yet a close examination of those boards reveals no broad pattern of incompetence or corruption. In fact, they followed most of the accepted standards for board operations: Members showed up for meetings; they had money invested in the company; audit committees, compensation committees, and codes of ethics were in place; the boards weren't too small or too big, nor were they dominated by insiders. In other words, they passed the tests that would normally be applied to determine whether a board of directors was likely to do a good job. And that's precisely what's so scary, according to corporate governance expert Jeffrey Sonnenfeld, who suggests that it's time for some new thinking about how corporate boards operate and are evaluated. He proposes thinking not only about how to structure the board's work but also about how to manage it as a social system. Good boards are, very simply, high-functioning work groups. They're distinguished by a climate of respect, trust, and candor among board members and between the board and management. Information is shared openly and on time; emergent political factions are quickly eliminated. Members feel free to challenge one another's assumptions and conclusions, and management encourages lively discussion of strategic issues. Directors feel a responsibility to contribute meaningfully to the board's performance. In addition, good boards assess their own performance, both collectively and individually.

  9. Reduced muscle fiber force production and disrupted myofibril architecture in patients with chronic rotator cuff tears.

    PubMed

    Mendias, Christopher L; Roche, Stuart M; Harning, Julie A; Davis, Max E; Lynch, Evan B; Sibilsky Enselman, Elizabeth R; Jacobson, Jon A; Claflin, Dennis R; Calve, Sarah; Bedi, Asheesh

    2015-01-01

    A persistent atrophy of muscle fibers and an accumulation of fat, collectively referred to as fatty degeneration, commonly occur in patients with chronic rotator cuff tears. The etiology of fatty degeneration and function of the residual rotator cuff musculature have not been well characterized in humans. We hypothesized that muscles from patients with chronic rotator cuff tears have reduced muscle fiber force production, disordered myofibrils, and an accumulation of fat vacuoles. The contractility of muscle fibers from biopsy specimens of supraspinatus muscles of 13 patients with chronic full-thickness posterosuperior rotator cuff tears was measured and compared with data from healthy vastus lateralis muscle fibers. Correlations between muscle fiber contractility, American Shoulder and Elbow Surgeons (ASES) scores, and tear size were analyzed. Histology and electron microscopy were also performed. Torn supraspinatus muscles had a 30% reduction in maximum isometric force production and a 29% reduction in normalized force compared with controls. Normalized supraspinatus fiber force positively correlated with ASES score and negatively correlated with tear size. Disordered sarcomeres were noted, along with an accumulation of lipid-laden macrophages in the extracellular matrix surrounding supraspinatus muscle fibers. Patients with chronic supraspinatus tears have significant reductions in muscle fiber force production. Force production also correlates with ASES scores and tear size. The structural and functional muscle dysfunction of the residual muscle fibers is independent of the additional area taken up by fibrotic tissue. This work may help establish future therapies to restore muscle function after the repair of chronically torn rotator cuff muscles. Copyright © 2015 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.

  10. Glass fiber effect on mechanical properties of Eco-SCC

    NASA Astrophysics Data System (ADS)

    Prasad M. L., V.; Loksesh, G.; Ramanjaneyulu, B.; Venkatesh, S.; Mousumi, K.

    2017-07-01

    Sustainable Construction encouraging the use of recycled materials and implies adoption of fewer natural resources in buildings and other infrastructure. In this paper Quarry Dust (QD) is used as partial replacement for River Sand (RS) to make Self Compacting Concrete (SCC) of grade M40. Glass fiber is used as strengthening material to the developed concrete. The present study mainly focused to develop Eco-SCC using QD. In this study it was found that, for developing Eco-SCC, what is the optimum dosage of replacement of QD in RS. Fresh properties of SCC are satisfying the EFNARC specifications and also target strength is achieved. Further it is concluded that, with the glass fiber addition there is an improvement in the split and flexural strength values.

  11. Formulation and characterization of date palm fibers mortar by addition of silica fume

    NASA Astrophysics Data System (ADS)

    Mokhtari, A.; Kriker, A.; Ouaggad, H.; Merad, N.

    2018-05-01

    This paper presents the results of experimental investigations of the formulated and characterization of date palm fibers mortar by addition of silica fume. The use of addition mineral is widely used in the production of cements through the world. The objective of this work is to bring our contribution to the recovery of local resources in the occurrence vegetable fibers of date palm to weak cost and from renewable source and integrate it in the filled of building. Date palm fiber are from Ouargla town in south of Algeria. Different mortar mixtures were prepared in which the cement was substitute by 10% of silica fume. The mechanical characteristics (compressive and flexural strength) of date palm fibers mortar by treatment of the matrix by the adding of silica fume were examined. The results obtained have shown that the mortar workability as well as the compressive and flexural strength decreases with increasing the silica fume replacement. The results showed that the use of silica fume enabled to evaluate the flexural strength. However, another treatment of fibers and matrix will be recommended for Improved the characteristics.

  12. The Role of School Board Social Capital in District Governance: Effects on Financial and Academic Outcomes

    ERIC Educational Resources Information Center

    Saatcioglu, Argun; Moore, Suzanne; Sargut, Gokce; Bajaj, Aarti

    2011-01-01

    Social capital refers to the nature of ties within a social unit, as well as the unit's external relationships. We draw from organizational sociology and political science, and also build upon existing insights in school board research, to offer an approach that address the effects of "bonding" (internal ties) and "bridging"…

  13. Hybrid Effect Evaluation of Steel Fiber and Carbon Fiber on the Performance of the Fiber Reinforced Concrete

    PubMed Central

    Song, Weimin; Yin, Jian

    2016-01-01

    Fiber reinforcement is an important method to enhance the performance of concrete. In this study, the compressive test and impact test were conducted, and then the hybrid effect between steel fiber (SF) and carbon fiber (CF) was evaluated by employing the hybrid effect index. Compressive toughness and impact toughness of steel fiber reinforced concrete (SFRC), carbon fiber reinforced concrete (CFRC) and hybrid fiber reinforced concrete (HFRC) were explored at steel fiber volume fraction 0.5%, 1%, 1.5% and carbon fiber 0.1%, 0.2%, 0.3%. Results showed that the addition of steel fiber and carbon fiber can increase the compressive strength. SF, CF and the hybridization between them could increase the compressive toughness significantly. The impact test results showed that as the volume of fiber increased, the impact number of the first visible crack and the ultimate failure also increased. The improvement of toughness mainly lay in improving the crack resistance after the first crack. Based on the test results, the positive hybrid effect of steel fiber and carbon fiber existed in hybrid fiber reinforced concrete. The relationship between the compressive toughness and impact toughness was also explored. PMID:28773824

  14. Hybrid Effect Evaluation of Steel Fiber and Carbon Fiber on the Performance of the Fiber Reinforced Concrete.

    PubMed

    Song, Weimin; Yin, Jian

    2016-08-18

    Fiber reinforcement is an important method to enhance the performance of concrete. In this study, the compressive test and impact test were conducted, and then the hybrid effect between steel fiber (SF) and carbon fiber (CF) was evaluated by employing the hybrid effect index. Compressive toughness and impact toughness of steel fiber reinforced concrete (SFRC), carbon fiber reinforced concrete (CFRC) and hybrid fiber reinforced concrete (HFRC) were explored at steel fiber volume fraction 0.5%, 1%, 1.5% and carbon fiber 0.1%, 0.2%, 0.3%. Results showed that the addition of steel fiber and carbon fiber can increase the compressive strength. SF, CF and the hybridization between them could increase the compressive toughness significantly. The impact test results showed that as the volume of fiber increased, the impact number of the first visible crack and the ultimate failure also increased. The improvement of toughness mainly lay in improving the crack resistance after the first crack. Based on the test results, the positive hybrid effect of steel fiber and carbon fiber existed in hybrid fiber reinforced concrete. The relationship between the compressive toughness and impact toughness was also explored.

  15. Environmental and Sustainable Technology Evaluations (ESTE): Verification of Microbial Resistant Building Materials

    EPA Science Inventory

    This is an ESTE project summary brief. Many of the finished interior surfaces of homes and buildings are composed of materials that are prone to mold growth. These surfaces include gypsum board, wood flooring, insulation, and components of the heating and air conditioning system...

  16. Automated fiber placement composite manufacturing: The mission at MSFC's Productivity Enhancement Complex

    NASA Technical Reports Server (NTRS)

    Vickers, John H.; Pelham, Larry I.

    1993-01-01

    Automated fiber placement is a manufacturing process used for producing complex composite structures. It is a notable leap to the state-of-the-art in technology for automated composite manufacturing. The fiber placement capability was established at the Marshall Space Flight Center's (MSFC) Productivity Enhancement Complex in 1992 in collaboration with Thiokol Corporation to provide materials and processes research and development, and to fabricate components for many of the Center's Programs. The Fiber Placement System (FPX) was developed as a distinct solution to problems inherent to other automated composite manufacturing systems. This equipment provides unique capabilities to build composite parts in complex 3-D shapes with concave and other asymmetrical configurations. Components with complex geometries and localized reinforcements usually require labor intensive efforts resulting in expensive, less reproducible components; the fiber placement system has the features necessary to overcome these conditions. The mechanical systems of the equipment have the motion characteristics of a filament winder and the fiber lay-up attributes of a tape laying machine, with the additional capabilities of differential tow payout speeds, compaction and cut-restart to selectively place the correct number of fibers where the design dictates. This capability will produce a repeatable process resulting in lower cost and improved quality and reliability.

  17. Method for the preparation of carbon fiber from polyolefin fiber precursor, and carbon fibers made thereby

    DOEpatents

    Naskar, Amit Kumar; Hunt, Marcus Andrew; Saito, Tomonori

    2015-08-04

    Methods for the preparation of carbon fiber from polyolefin fiber precursor, wherein the polyolefin fiber precursor is partially sulfonated and then carbonized to produce carbon fiber. Methods for producing hollow carbon fibers, wherein the hollow core is circular- or complex-shaped, are also described. Methods for producing carbon fibers possessing a circular- or complex-shaped outer surface, which may be solid or hollow, are also described.

  18. Mechanical and water soaking properties of medium density fiberboard with wood fiber and soybean protein adhesive.

    PubMed

    Li, Xin; Li, Yonghui; Zhong, Zhikai; Wang, Donghai; Ratto, Jo A; Sheng, Kuichuan; Sun, Xiuzhi Susan

    2009-07-01

    Soybean protein is a renewable and abundant material that offers an alternative to formaldehyde-based resins. In this study, soybean protein was modified with sodium dodecyl sulfate (SDS) as an adhesive for wood fiber medium density fiberboard (MDF) preparation. Second-order response surface regression models were used to study the effects and interactions of initial moisture content (IMC) of coated wood fiber, press time (PT) and temperature on mechanical and water soaking properties of MDF. Results showed that IMC of coated fiber was the dominant influencing factor. Mechanical and soaking properties improved as IMC increased and reached their highest point at an IMC of 35%. Press time and temperature also had a significant effect on mechanical and water soaking properties of MDF. Second-order regression results showed that there were strong relationships between mechanical and soaking properties of MDF and processing parameters. Properties of MDF made using soybean protein adhesive are similar to those of commercial board.

  19. Single-longitudinal mode distributed-feedback fiber laser with low-threshold and high-efficiency

    NASA Astrophysics Data System (ADS)

    Jiang, Man; Zhou, Pu; Gu, Xijia

    2018-01-01

    Single-frequency fiber laser has attracted a lot of interest in recent years due to its numerous application potentials in telecommunications, LIDAR, high resolution sensing, atom frequency standard, etc. Phosphate glass fiber is one of the candidates for building compact high gain fiber lasers because of its capability of high-concentration of rare-earth ions doping in fiber core. Nevertheless, it is challenging for the integration of UV-written intra-core fiber Bragg gratings into the fiber laser cavity due to the low photosensitivity of phosphate glass fiber. The research presented in this paper will focus on demonstration of UV-written Bragg gratings in phosphate glass fiber and its application in direct-written short monolithic single-frequency fiber lasers. Strong π-phase shift Bragg grating structure is direct-inscribed into the Er/Yb co-doped gain fiber using an excimer laser, and a 5-cm-long phase mask is used to inscribe a laser cavity into the Er/Yb co-doped phosphate glass fibers. The phase mask is a uniform mask with a 50 μm gap in the middle. The fiber laser device emits output power of 10.44 mW with a slope efficiency of 21.5% and the threshold power is about 42.8 mW. Single-longitudinal mode operation is validated by radio frequency spectrum measurement. Moreover, the output spectrum at the highest power shows an excellent optical signal to noise ratio of about 70 dB. These results, to the best of our knowledge, show the lowest power threshold and highest efficiency among the reports that using the same structure to achieve single-longitudinal mode laser output.

  20. Effects of fiber manipulation methods on optical fiber properties

    NASA Astrophysics Data System (ADS)

    Reynolds, Robert O.; Bechter, Andrew; Crass, Jonathan

    2016-07-01

    Optical fibers are routinely used to couple high-resolution spectrographs to modern telescopes, enabling important advantages in areas such as the search for extrasolar planets using spectroscopic radial velocity measurements of candidate stars. Optical fibers partially scramble the input illumination, and this feature enables a fiber feed to provide more uniform illumination to the spectrograph optics, thereby reducing systematic errors in radial velocity measurements. However fibers suffer from focal ratio degradation (FRD), a spreading of the beam at the output of the fiber with respect to that at the fiber input, which results in losses in throughput and resolution. Modal noise, a measurement uncertainty caused by inherent fiber properties and evident as a varying spatial intensity at the fiber exit plane, reduces the signal to noise ratio in the data. Devices such as double scramblers are often used to improve scrambling, and better fiber end preparation can mitigate FRD. Many instruments agitate the fiber during an observation to reduce modal noise, and stretching the fiber during use has been shown to offer a greater reduction in that noise. But effects of agitation and stretching on fiber parameters such as total transmission and focal ratio degradation have not been adequately studied. In this paper we present measurements of transmission loss and focal ratio degradation for both agitated and stretched fibers.

  1. 77 FR 55837 - Board Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-11

    ... FARM CREDIT SYSTEM INSURANCE CORPORATION Board Meeting AGENCY: Farm Credit System Insurance Corporation. ACTION: Regular meeting. SUMMARY: Notice is hereby given of the regular meeting of the Farm Credit System Insurance Corporation Board (Board). Date and Time: The meeting of the Board will be held...

  2. 49 CFR 1011.2 - The Board.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... TRANSPORTATION GENERAL RULES AND REGULATIONS BOARD ORGANIZATION; DELEGATIONS OF AUTHORITY § 1011.2 The Board. (a... submitted for decision except those assigned to an individual Board Member or employee or an employee board...) The Board may bring before it any matter assigned to an individual Board Member or employee or...

  3. Advanced Optical Fibers for High power Fiber lasers

    DTIC Science & Technology

    2015-08-24

    crystal fiber cladding . Advanced Optical Fibers for High Power Fiber Lasers http://dx.doi.org/10.5772/58958 223 lengths above the second-order mode cut...brightness multimode diode lasers for a given pump waveguide dimen‐ sion. In conventional double- clad fibers, low-index polymer coatings are typically used to...was below 0.2. The fiber was passive and there was no laser demonstration in this first attempt. The first cladding - pumping demonstration in an

  4. 76 FR 52997 - Public Company Accounting Oversight Board; Order Approving Proposed Board Funding Final Rules for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-24

    ... Accounting Oversight Board; Order Approving Proposed Board Funding Final Rules for Allocation of the Board's Accounting Support Fee Among Issuers, Brokers, and Dealers, and Other Amendments to the Board's Funding Rules August 18, 2011. I. Introduction On June 21, 2011, the Public Company Accounting Oversight Board (the...

  5. All-Fiber Laser Curvature Sensor Using an In-Fiber Modal Interferometer Based on a Double Clad Fiber and a Multimode Fiber Structure

    PubMed Central

    Durán-Sánchez, Manuel; Prieto-Cortés, Patricia; Salceda-Delgado, Guillermo; Castillo-Guzmán, Arturo A.; Selvas-Aguilar, Romeo; Ibarra-Escamilla, Baldemar; Kuzin, Evgeny A.

    2017-01-01

    An all-fiber curvature laser sensor by using a novel modal interference in-fiber structure is proposed and experimentally demonstrated. The in-fiber device, fabricated by fusion splicing of multimode fiber and double-clad fiber segments, is used as wavelength filter as well as the sensing element. By including a multimode fiber in an ordinary modal interference structure based on a double-clad fiber, the fringe visibility of the filter transmission spectrum is significantly increased. By using the modal interferometer as a curvature sensitive wavelength filter within a ring cavity erbium-doped fiber laser, the spectral quality factor Q is considerably increased. The results demonstrate the reliability of the proposed curvature laser sensor with advantages of robustness, ease of fabrication, low cost, repeatability on the fabrication process and simple operation. PMID:29182527

  6. All-Fiber Laser Curvature Sensor Using an In-Fiber Modal Interferometer Based on a Double Clad Fiber and a Multimode Fiber Structure.

    PubMed

    Álvarez-Tamayo, Ricardo I; Durán-Sánchez, Manuel; Prieto-Cortés, Patricia; Salceda-Delgado, Guillermo; Castillo-Guzmán, Arturo A; Selvas-Aguilar, Romeo; Ibarra-Escamilla, Baldemar; Kuzin, Evgeny A

    2017-11-28

    An all-fiber curvature laser sensor by using a novel modal interference in-fiber structure is proposed and experimentally demonstrated. The in-fiber device, fabricated by fusion splicing of multimode fiber and double-clad fiber segments, is used as wavelength filter as well as the sensing element. By including a multimode fiber in an ordinary modal interference structure based on a double-clad fiber, the fringe visibility of the filter transmission spectrum is significantly increased. By using the modal interferometer as a curvature sensitive wavelength filter within a ring cavity erbium-doped fiber laser, the spectral quality factor Q is considerably increased. The results demonstrate the reliability of the proposed curvature laser sensor with advantages of robustness, ease of fabrication, low cost, repeatability on the fabrication process and simple operation.

  7. 7 CFR 984.6 - Board.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 8 2010-01-01 2010-01-01 false Board. 984.6 Section 984.6 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing Agreements and... Handling Definitions § 984.6 Board. Board means the California Walnut Board established pursuant to § 934...

  8. 7 CFR 984.6 - Board.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 8 2011-01-01 2011-01-01 false Board. 984.6 Section 984.6 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing Agreements and... Handling Definitions § 984.6 Board. Board means the California Walnut Board established pursuant to § 934...

  9. Single mode fiber and twin-core fiber connection technique for in-fiber integrated interferometer

    NASA Astrophysics Data System (ADS)

    Yuan, Tingting; Zhang, Xiaotong; Guan, Chunying; Yang, Xinghua; Yuan, Libo

    2015-09-01

    A novel twin-core fiber connector has been made by two side-polished fibers. By using side polishing technique, we present a connector based on the twin-core fiber (TCF) and two D-shaped single-core fibers. After simple alignment and splicing, all fiber miniaturizing connector can be obtained. Two cores can operate independently and are non-interfering. The coupling loss of this connector is low and the fabrication technologies are mature. The connector device could be used for sensors or particle trapping.

  10. Building Capacity for Ethical Leadership in Graduate Educational Leadership Preparation Programs

    ERIC Educational Resources Information Center

    Houle, Judith C.; Gimas, Priscilla C.

    2006-01-01

    A 2003 study of faculty and students in two NCATE-accredited New England universities sought to understand the kinds of learning opportunities the respondents perceived helped them build the capacity for ethical practice as defined by the National Policy Board for Educational Administration (NPBEA), and the role of reflection in developing…

  11. Experimental Analysis of Steel Beams Subjected to Fire Enhanced by Brillouin Scattering-Based Fiber Optic Sensor Data

    PubMed Central

    Bao, Yi; Chen, Yizheng; Hoehler, Matthew S.; Smith, Christopher M.; Bundy, Matthew; Chen, Genda

    2016-01-01

    This paper presents high temperature measurements using a Brillouin scattering-based fiber optic sensor and the application of the measured temperatures and building code recommended material parameters into enhanced thermomechanical analysis of simply supported steel beams subjected to combined thermal and mechanical loading. The distributed temperature sensor captures detailed, nonuniform temperature distributions that are compared locally with thermocouple measurements with less than 4.7% average difference at 95% confidence level. The simulated strains and deflections are validated using measurements from a second distributed fiber optic (strain) sensor and two linear potentiometers, respectively. The results demonstrate that the temperature-dependent material properties specified in the four investigated building codes lead to strain predictions with less than 13% average error at 95% confidence level and that the Europe building code provided the best predictions. However, the implicit consideration of creep in Europe is insufficient when the beam temperature exceeds 800°C. PMID:28239230

  12. 32 CFR 865.4 - Board actions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 6 2010-07-01 2010-07-01 false Board actions. 865.4 Section 865.4 National... PERSONNEL REVIEW BOARDS Air Force Board for Correction of Military Records § 865.4 Board actions. (a) Board... serves as its chair. The panel's actions and decisions constitute the actions and decisions of the Board...

  13. 78 FR 4847 - Board Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-23

    ... FARM CREDIT SYSTEM INSURANCE CORPORATION Board Meeting AGENCY: Farm Credit System Insurance Corporation. SUMMARY: Notice is hereby given of the regular meeting of the Farm Credit System Insurance Corporation Board (Board). DATE AND TIME: The meeting of the Board will be held at the offices of the Farm...

  14. Fiber optic muzzle brake tip for reducing fiber burnback and stone retropulsion during thulium fiber laser lithotripsy

    NASA Astrophysics Data System (ADS)

    Hutchens, Thomas C.; Gonzalez, David A.; Irby, Pierce B.; Fried, Nathaniel M.

    2017-01-01

    The experimental thulium fiber laser (TFL) is being explored as an alternative to the current clinical gold standard Holmium:YAG laser for lithotripsy. The near single-mode TFL beam allows coupling of higher power into smaller optical fibers than the multimode Holmium laser beam profile, without proximal fiber tip degradation. A smaller fiber is desirable because it provides more space in the ureteroscope working channel for increased saline irrigation rates and allows maximum ureteroscope deflection. However, distal fiber tip burnback increases as fiber diameter decreases. Previous studies utilizing hollow steel sheaths around recessed distal fiber tips reduced fiber burnback but increased stone retropulsion. A "fiber muzzle brake" was tested for reducing both fiber burnback and stone retropulsion by manipulating vapor bubble expansion. TFL lithotripsy studies were performed at 1908 nm, 35 mJ, 500 μs, and 300 Hz using a 100-μm-core fiber. The optimal stainless steel muzzle brake tip tested consisted of a 1-cm-long, 560-μm-outer-diameter, 360-μm-inner-diameter tube with a 275-μm-diameter through hole located 250 μm from the distal end. The fiber tip was recessed a distance of 500 μm. Stone phantom retropulsion, fiber tip burnback, and calcium oxalate stone ablation studies were performed ex vivo. Small stones with a mass of 40±4 mg and 4-mm-diameter were ablated over a 1.5-mm sieve in 25±4 s (n=10) without visible distal fiber tip burnback. Reduction in stone phantom retropulsion distance by 50% and 85% was observed when using muzzle brake tips versus 100-μm-core bare fibers and hollow steel tip fibers, respectively. The muzzle brake fiber tip simultaneously provided efficient stone ablation, reduced stone retropulsion, and minimal fiber degradation during TFL lithotripsy.

  15. Thulium fiber laser lithotripsy using a muzzle brake fiber tip

    NASA Astrophysics Data System (ADS)

    Hutchens, Thomas C.; Gonzalez, David A.; Irby, Pierce B.; Fried, Nathaniel M.

    2017-02-01

    The Thulium fiber laser (TFL) is being explored as an alternative to Holmium:YAG laser for lithotripsy. TFL beam profile allows coupling of higher power into smaller fibers than multimode Holmium laser beam, without proximal fiber tip degradation. A smaller fiber provides more space in ureteroscope working channel for increased saline irrigation and allows maximum ureteroscope flexion. However, distal fiber tip burnback increases as fiber diameter decreases. Previous studies utilizing hollow steel sheaths around recessed distal fiber tips reduced fiber burnback, but increased retropulsion. In this study, a "fiber muzzle brake" was tested for reducing fiber burnback and stone retropulsion. TFL lithotripsy studies were performed at 1908 nm, 35 mJ, 500 μs, and 300 Hz using a 100-μm-core fiber. The optimal stainless steel muzzle brake tip tested consisted of a 1-cm-long, 560-μm-OD, 360-μm-ID tube with 275-μm thru hole located 250-μm from the distal end. The fiber tip was recessed a distance of 500 μm. Stone phantom retropulsion, fiber tip burnback, and calcium oxalate stone ablation studies were performed, ex vivo. Small stones with a mass of 40 +/- 4 mg and 4-mm-diameter were ablated over a 1.5-mm sieve in 25 +/- 4 s (n=10), without distal fiber tip burnback. Reduction in stone phantom retropulsion distance by 50% and 85% was observed when using muzzle brake tips versus 100-μm-core bare fibers and hollow steel tip fibers. The muzzle brake fiber tip provided efficient stone ablation, reduced stone retropulsion, and minimal fiber degradation during TFL lithotripsy.

  16. Designing and Integrating a Fiber Optic Network with an Existing Copper Network.

    ERIC Educational Resources Information Center

    Knapp, Wallace C.

    The process that Catonsville Community College (Maryland) went through in moving from a copper to a fiber network is outlined. The discussion addresses the following: describing the need in real terms; building consensus for the project; gaining support by college management; justifying the need for consultant support; writing the request for…

  17. Natural fibers

    Treesearch

    Craig M. Clemons

    2010-01-01

    The term “natural fibers” covers a broad range of vegetable, animal, and mineral fibers. However, in the composites industry, it usually refers to wood fiber and plant-based bast, leaf, seed, and stem fibers. These fibers often contribute greatly to the structural performance of the plant and, when used in plastic composites, can provide significant reinforcement....

  18. Natural fibers

    Treesearch

    Craig M. Clemons; Daniel F. Caulfield

    2005-01-01

    The term “natural fibers” covers a broad range of vegetable, animal, and mineral fibers. However, in the composites industry, it usually refers to wood fiber and agrobased bast, leaf, seed, and stem fibers. These fibers often contribute greatly to the structural performance of the plant and, when used in plastic composites, can provide significant reinforcement. Below...

  19. Board Certification in Counseling Psychology

    ERIC Educational Resources Information Center

    Crowley, Susan L.; Lichtenberg, James W.; Pollard, Jeffrey W.

    2012-01-01

    Although specialty board certification by the American Board of Professional Psychology (ABPP) has been a valued standard for decades, the vast majority of counseling psychologists do not pursue board certification in the specialty. The present article provides a brief history of board certification in general and some historical information about…

  20. High fiber-low matrix composites: kenaf fiber/polypropylene.

    Treesearch

    Anand R. Sanadi; J.F. Hunt; D.F. Caulfield; G. Kovacsvolgyi; B. Destree

    2002-01-01

    Considerable interest has been generated in the use of lignocellulosic fibers and wastes (both agricultural and wood based) as fillers and reinforcements in thermoplastics. In general, present technologies limit fiber loading in thermoplastics to about 60 percent by weight of fiber. To produce high fiber content composites for commercial use while maintaining adequate...

  1. Turnarounds require team building and rebuilding. Interview by Donald E. L. Johnson.

    PubMed

    Knoble, J K

    1989-11-01

    James K. Knoble, president of the 369-bed JFK Medical Center, Atlantis, Fla., and former president of Methodist Medical Center of Illinois, Peoria, is in the midst of his third turnaround situation since he became a hospital CEO in 1965. Knoble is known as a CEO who keeps close track of the business environment, works closely with his board and medical staff and is effective at building a staff and delegating significant operating responsibilities. At JFK, whose previous administrator stole large sums of money and left it with serious financial and operating problems, Knoble is back in the operating mode. He is again a hands-on hospital operator, working closely with department heads as well as with the board and medical staff. In this interview with Health Care Strategic Management's editor and publisher, Donald E.L. Johnson, Knoble discusses his team building and turnaround strategy and JFK's progress during the last 18 months.

  2. Embedded Active Fiber Optic Sensing Network for Structural Health Monitoring in Harsh Environments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Anbo

    This report summarizes technical progress on the program “Embedded Active Fiber Optic Sensing Network for Structural Health Monitoring in Harsh Environments” funded by the National Energy Technology Laboratory of the U.S. Department of Energy, and performed by the Center for Photonics Technology at Virginia Tech. The objective of this project is to develop a first-of-a-kind technology for remote fiber optic generation and detection of acoustic waves for structural health monitoring in harsh environments. During the project period, which is from April 1, 2013 to Septemeber 30, 2016, three different acoustic generation mechanisms were studied in detail for their applications inmore » building a fiber optic acoustic generation unit (AGU), including laser induced plasma breakdown (LIP), Erbium-doped fiber laser absorption, and metal laser absorption. By comparing the performance of the AGUs designed based on these three mechanisms and analyzing the experimental results with simulations, the metal laser absorption method was selected to build a complete fiber optic structure health monitoring (FO-SHM) system for the proposed high temperature multi-parameter structure health monitoring application. Based on the simulation of elastic wave propagation and fiber Bragg grating acoustic pulse detection, an FO-SHM element together with a completed interrogation system were designed and built. This system was first tested on an aluminum piece in the low-temperature range and successfully demonstrated its capability of multi-parameter monitoring and multi-point sensing. In the later stages of the project, the research was focused on improving the surface attachment design and preparing the FO-SHM element for high temperature environment tests. After several upgrades to the surface attachment methods, the FO-SHM element was able to work reliably up to 600oC when attached to P91 pipes, which are the target material of this project. In the final stage of this project, this FO

  3. Optical fiber sensors measurement system and special fibers improvement

    NASA Astrophysics Data System (ADS)

    Jelinek, Michal; Hrabina, Jan; Hola, Miroslava; Hucl, Vaclav; Cizek, Martin; Rerucha, Simon; Lazar, Josef; Mikel, Bretislav

    2017-06-01

    We present method for the improvement of the measurement accuracy in the optical frequency spectra measurements based on tunable optical filters. The optical filter was used during the design and realization of the measurement system for the inspection of the fiber Bragg gratings. The system incorporates a reference block for the compensation of environmental influences, an interferometric verification subsystem and a PC - based control software implemented in LabView. The preliminary experimental verification of the measurement principle and the measurement system functionality were carried out on a testing rig with a specially prepared concrete console in the UJV Řež. The presented system is the laboratory version of the special nuclear power plant containment shape deformation measurement system which was installed in the power plant Temelin during last year. On the base of this research we started with preparation other optical fiber sensors to nuclear power plants measurement. These sensors will be based on the microstructured and polarization maintaining optical fibers. We started with development of new methods and techniques of the splicing and shaping optical fibers. We are able to made optical tapers from ultra-short called adiabatic with length around 400 um up to long tapers with length up to 6 millimeters. We developed new techniques of splicing standard Single Mode (SM) and Multimode (MM) optical fibers and splicing of optical fibers with different diameters in the wavelength range from 532 to 1550 nm. Together with development these techniques we prepared other techniques to splicing and shaping special optical fibers like as Polarization-Maintaining (PM) or hollow core Photonic Crystal Fiber (PCF) and theirs cross splicing methods with focus to minimalize backreflection and attenuation. The splicing special optical fibers especially PCF fibers with standard telecommunication and other SM fibers can be done by our developed techniques. Adjustment

  4. Applying fiber optical methods for toxicological testing in vitro

    NASA Astrophysics Data System (ADS)

    Maerz, Holger K.; Buchholz, Rainer; Emmrich, Frank; Fink, Frank; Geddes, Clive L.; Pfeifer, Lutz; Raabe, Ferdinand; Scheper, Thomas-Helmut; Ulrich, Elizabeth; Marx, Uwe

    1999-04-01

    The new medical developments, e.g. immune therapy, patient oriented chemotherapy or even gene therapy, create a questionable doubt to the further requirement of animal test. Instead the call for humanitarian reproductive in vitro models becomes increasingly louder. Pharmaceutical usage of in vitro has a long proven history. In cancer research and therapy, the effect of chemostatica in vitro in the so-called oncobiogram is being tested; but the assays do not always correlate with in vivo-like drug resistance and sensitivity. We developed a drug test system in vitro, feasible for therapeutic drug monitoring by the combination of tissue cultivation in hollow fiber bioreactors and fiber optic sensors for monitoring the pharmaceutical effect. Using two fiber optic sensors - an optical oxygen sensor and a metabolism detecting Laserfluoroscope, we were able to successfully monitor the biological status of tissue culture and the drug or toxic effects of in vitro pharmaceutical testing. Furthermore, we developed and patented a system for monitoring the effect of minor toxic compounds which can induce Sick Building Syndrome.

  5. School Board Study Programs: Board Member's Manual Series 1.

    ERIC Educational Resources Information Center

    Brent, Daniel; Jurkowitz, Carolyn

    This document provides eight lessons intended to improve the functioning of school boards and education committees for Catholic schools. Each lesson consists of three parts: a reading or activity to be done by the members in preparation for the lesson, a study activity to be done at the board meeting, and a reading or exercise to be done after the…

  6. To evaluate and compare the effect of different Post Surface treatments on the Tensile Bond Strength between Fiber Posts and Composite Resin.

    PubMed

    Shori, Deepa; Pandey, Swapnil; Kubde, Rajesh; Rathod, Yogesh; Atara, Rahul; Rathi, Shravan

    2013-10-01

    Fiber posts are widely used for restoration of mutilated teeth that lack adequate coronal tooth structure to retain a core for definitive restoration, bond between the fiber post and composite material depends upon the chemical reaction between the post surface and the resin material used for building up the core. In attempt to maximize the resin bonding with fiber post, different post surface conditioning is advocated. Therefore the purpose of the study is to examine the interfacial strength between fiber post and composite, as core build-up material after different surface treatments of fiber posts. Twenty fiber posts were split into four groups off five each according to different surface treatments viz. Group I-(Negative Control), Group II-Silanization (Positive control), Group III-(37% Phosphoric Acid & Silanization) ,Group IV- (10% Hydrogen Peroxide and Silanization). With the preformed plastic mould, a core of dual cure composite resin around the fiber post having the uniform thickness was created. Tensile bond strength of each specimen was measured under Universal Testing Machine (UTM) at the cross head speed of 3mm/min. The results achieved with 10% Hydrogen peroxide had a marked effect on micro tensile bond strength values between the tested materials. Immense enhancement in the silanization efficiency of quartz fiber phase was observed with different surface chemical treatment of the resin phase of fiber posts with the marked increase in the micro-tensile bond strength between fiber post and composite core. Shori D, Pandey S, Kubde R, Rathod Y, Atara R, Rathi S. To evaluate and compare the effect of different Post Surface treatments on the Tensile Bond Strength between Fiber Posts and Composite Resin. J Int Oral Health 2013; 5(5):27-32.

  7. Board-to-Board Free-Space Optical Interconnections Passing through Boards for a Bookshelf-Assembled Terabit-Per-Second-Class ATM Switch.

    PubMed

    Hirabayashi, K; Yamamoto, T; Matsuo, S; Hino, S

    1998-05-10

    We propose free-space optical interconnections for a bookshelf-assembled terabit-per-second-class ATM switch. Thousands of arrayed optical beams, each having a rate of a few gigabits per second, propagate vertically to printed circuit boards, passing through some boards, and are connected to arbitrary transmitters and receivers on boards by polarization controllers and prism arrays. We describe a preliminary experiment using a 1-mm-pitch 2 x 2 beam-collimator array that uses vertical-cavity surface-emitting laser diodes. These optical interconnections can be made quite stable in terms of mechanical shock and temperature fluctuation by the attachment of reinforcing frames to the boards and use of an autoalignment system.

  8. Effective School Board Governance Behaviors of Montana School Board Members: A Delphi Study

    ERIC Educational Resources Information Center

    Rocksund, Jill Ann

    2017-01-01

    School board governance matters. Past research has demonstrated that effective school boards are associated with higher student achievement. However, this research has been less clear about what those agreed upon effective practices are. The current study set out to identify effective school board governance practices and to determine the extent…

  9. Why Boards Go Bad

    ERIC Educational Resources Information Center

    Chait, Richard P.

    2006-01-01

    This article addresses the problem of inept, ineffective, and mediocre governing boards at America's colleges and universities. It maintains that substandard governance can almost always be traced to one of two culprits, or both: (1) most boards are orchestras of soloists; and (2) many boards tend to either lionize or trivialize the president.…

  10. First AGU Board of Directors

    NASA Astrophysics Data System (ADS)

    McPhaden, Michael J.

    2010-08-01

    On 1 July 2010, the first AGU Board of Directors took office. The board is composed of the president, president-elect, immediate past president, general secretary, international secretary, development board chair, six members elected by the Union membership, vice chair of the AGU Council, and the executive director. Two additional members may be nominated by the AGU president and approved by the board. The creation of the board is a result of the new governance structure approved by the AGU membership in November 2009. The board is responsible for the business aspects of the Union, while an expanded AGU Council will focus on science issues. Council members will be introduced in a future issue of Eos.

  11. A Mini Review on Nanocarbon-Based 1D Macroscopic Fibers: Assembly Strategies and Mechanical Properties

    NASA Astrophysics Data System (ADS)

    Kou, Liang; Liu, Yingjun; Zhang, Cheng; Shao, Le; Tian, Zhanyuan; Deng, Zengshe; Gao, Chao

    2017-10-01

    Nanocarbon-based materials, such as carbon nanotubes (CNTs) and graphene have been attached much attention by scientific and industrial community. As two representative nanocarbon materials, one-dimensional CNTs and two-dimensional graphene both possess remarkable mechanical properties. In the past years, a large amount of work have been done by using CNTs or graphene as building blocks for constructing novel, macroscopic, mechanically strong fibrous materials. In this review, we summarize the assembly approaches of CNT-based fibers and graphene-based fibers in chronological order, respectively. The mechanical performances of these fibrous materials are compared, and the critical influences on the mechanical properties are discussed. Personal perspectives on the fabrication methods of CNT- and graphene-based fibers are further presented.

  12. Hierarchical Macro-meso-microporous ZSM-5 Zeolite Hollow Fibers With Highly Efficient Catalytic Cracking Capability

    PubMed Central

    Liu, Jia; Jiang, Guiyuan; Liu, Ying; Di, Jiancheng; Wang, Yajun; Zhao, Zhen; Sun, Qianyao; Xu, Chunming; Gao, Jinsen; Duan, Aijun; Liu, Jian; Wei, Yuechang; Zhao, Yong; Jiang, Lei

    2014-01-01

    Zeolite fibers have attracted growing interest for a range of new applications because of their structural particularity while maintaining the intrinsic performances of the building blocks of zeolites. The fabrication of uniform zeolite fibers with tunable hierarchical porosity and further exploration of their catalytic potential are of great importance. Here, we present a versatile and facile method for the fabrication of hierarchical ZSM-5 zeolite fibers with macro-meso-microporosity by coaxial electrospinning. Due to the synergistic integration of the suitable acidity and the hierarchical porosity, high yield of propylene and excellent anti-coking stability were demonstrated on the as-prepared ZSM-5 hollow fibers in the catalytic cracking reaction of iso-butane. This work may also provide good model catalysts with uniform wall thickness and tunable porosity for studying a series of important catalytic reactions. PMID:25450726

  13. School Boards: Emerging Governance Challenges

    ERIC Educational Resources Information Center

    Bradshaw, Patricia; Osborne, Rachel

    2010-01-01

    The governance role of school boards is not new. Local school boards have governed education in Canada since the 19th century. However, significant forces are impacting on school boards and how they enact their roles and responsibilities. In this article, the authors want to look at the growing pressures on school boards, to actively acknowledge…

  14. Asbestos-containing materials and airborne asbestos levels in industrial buildings in Korea.

    PubMed

    Choi, Sangjun; Suk, Mee-Hee; Paik, Nam Won

    2010-03-01

    Recently in Korea, the treatment of asbestos-containing materials (ACM) in building has emerged as one of the most important environmental health issues. This study was conducted to identify the distribution and characteristics of ACM and airborne asbestos concentrations in industrial buildings in Korea. A total of 1285 presumed asbestos-containing material (PACM) samples were collected from 80 workplaces across the nation, and 40% of the PACMs contained more than 1% of asbestos. Overall, 94% of the surveyed workplaces contained ACM. The distribution of ACM did not show a significant difference by region, employment size, or industry. The total ACM area in the buildings surveyed was 436,710 m2. Ceiling tile ACM accounted for 61% (267,093 m2) of the total ACM area, followed by roof ACM (32%), surfacing ACM (6.1%), and thermal system insulation (TSI). In terms of asbestos type, 98% of total ACM was chrysotile, while crocidolite was not detected. A comparison of building material types showed that the material with the highest priority for regular management is ceiling tile, followed by roof, TSI, and surfacing material. The average airborne concentration of asbestos sampled without disturbing in-place ACM was 0.0028 fibers/cc by PCM, with all measurements below the standard of recommendation for indoor air quality in Korea (0.01 fibers/cc).

  15. Modeling and characteristic of the SMT Board Plug connector in high speed optical communication system

    NASA Astrophysics Data System (ADS)

    Wu, Haoran; Dong, Zhenzhen; Wang, Tanglin; Zhao, Heng; Feng, Junbo; Cui, Naidi; Teng, Jie; Guo, Jin

    2015-04-01

    Modeling and characteristic of the SMT Board Plug connector, which is used to connect micro optical transceiver to the main board, are proposed and analyzed in this paper. When the high speed signal transfers from the PCB of transceiver to main board through SMT Board Plug connector, the structure and material discontinuity of the connector causes insertion losses and impedance mismatches. This makes the performance of high speed digital system exacerbated. So it is essential to analyze the signal transfer characteristics of the connector and find out what factors affected the signal quality at the design stage of the digital system. To solve this problem, Ansoft's High Frequency Structure Simulator (HFSS), based on the finite element method, was employed to build accurate 3D models, analyze the effects of various structure parameters, and obtain the full-wave characteristics of the SMT Board Plug connectors in this paper. Then an equivalent circuit model was developed. The circuit parameters were extracted precisely in the frequency range of interests by using the curve fitting method in ADS software, and the result was in good agreement with HFSS simulations up to 8GHz with different structure parameters. At last, the measurement results of S-parameter and eye diagram were given and the S-parameters showed good coincidence between the measurement and HFSS simulation up to 4GHz.

  16. Alaska Board of Forestry

    Science.gov Websites

    Natural Resources / Division of Forestry Alaska Board of Forestry The nine-member Alaska Board of Forestry advises the state on forest practices issues and provides a forum for discussion and resolution of forest management issues on state land. The board also reviews all proposed changes to the Alaska Forest Resources

  17. Hospital board effectiveness: relationships between governing board composition and hospital financial viability.

    PubMed Central

    Molinari, C; Morlock, L; Alexander, J; Lyles, C A

    1993-01-01

    OBJECTIVE. Two theories--agency and managerialism--are compared with respect to their usefulness in explaining the role of insiders on the hospital board: whether their participation enhances or impairs board financial decision making. DATA SOURCES/STUDY SETTING. The study used 1985 hospital financial and governing board data for a representative sample of acute care California hospitals. STUDY DESIGN. Relationships were examined cross-sectionally between the presence or absence of insiders on the board and measures of hospital financial viability while controlling for the organizational factors of system affiliation, ownership, size, region, and corporate restructuring. PRINCIPAL FINDINGS. Multiple regression analysis found significant relationships between insider (CEO, medical staff) participation and hospital viability. CONCLUSIONS. These results support the managerial theory of governance by suggesting that the CEO and medical staff provide informational advantages to the hospital governing board. However, the cross-sectional design points to the need for future longitudinal studies in order to sequence these relationships between insider participation and improved hospital viability. PMID:8344824

  18. Study on basalt fiber parameters affecting fiber-reinforced mortar

    NASA Astrophysics Data System (ADS)

    Orlov, A. A.; Chernykh, T. N.; Sashina, A. V.; Bogusevich, D. V.

    2015-01-01

    This article considers the effect of different dosages and diameters of basalt fibers on tensile strength increase during bending of fiberboard-reinforced mortar samples. The optimal dosages of fiber, providing maximum strength in bending are revealed. The durability of basalt fiber in an environment of cement, by means of microscopic analysis of samples of fibers and fiberboard-reinforced mortar long-term tests is examined. The article also compares the behavior of basalt fiber in the cement stone environment to a glass one and reveals that the basalt fiber is not subject to destruction.

  19. 49 CFR 1011.5 - Employee boards.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 8 2010-10-01 2010-10-01 false Employee boards. 1011.5 Section 1011.5... OF TRANSPORTATION GENERAL RULES AND REGULATIONS BOARD ORGANIZATION; DELEGATIONS OF AUTHORITY § 1011.5 Employee boards. This section covers matters assigned to the Accounting Board, a board of employees of the...

  20. NASA Automated Fiber Placement Capabilities: Similar Systems, Complementary Purposes

    NASA Technical Reports Server (NTRS)

    Wu, K. Chauncey; Jackson, Justin R.; Pelham, Larry I.; Stewart, Brian K.

    2015-01-01

    New automated fiber placement systems at the NASA Langley Research Center and NASA Marshall Space Flight Center provide state-of-art composites capabilities to these organizations. These systems support basic and applied research at Langley, complementing large-scale manufacturing and technology development at Marshall. These systems each consist of a multi-degree of freedom mobility platform including a commercial robot, a commercial tool changer mechanism, a bespoke automated fiber placement end effector, a linear track, and a rotational tool support structure. In addition, new end effectors with advanced capabilities may be either bought or developed with partners in industry and academia to extend the functionality of these systems. These systems will be used to build large and small composite parts in support of the ongoing NASA Composites for Exploration Upper Stage Project later this year.

  1. An Implantable Neural Sensing Microsystem with Fiber-Optic Data Transmission and Power Delivery

    PubMed Central

    Park, Sunmee; Borton, David A.; Kang, Mingyu; Nurmikko, Arto V.; Song, Yoon-Kyu

    2013-01-01

    We have developed a prototype cortical neural sensing microsystem for brain implantable neuroengineering applications. Its key feature is that both the transmission of broadband, multichannel neural data and power required for the embedded microelectronics are provided by optical fiber access. The fiber-optic system is aimed at enabling neural recording from rodents and primates by converting cortical signals to a digital stream of infrared light pulses. In the full microsystem whose performance is summarized in this paper, an analog-to-digital converter and a low power digital controller IC have been integrated with a low threshold, semiconductor laser to extract the digitized neural signals optically from the implantable unit. The microsystem also acquires electrical power and synchronization clocks via optical fibers from an external laser by using a highly efficient photovoltaic cell on board. The implantable unit employs a flexible polymer substrate to integrate analog and digital microelectronics and on-chip optoelectronic components, while adapting to the anatomical and physiological constraints of the environment. A low power analog CMOS chip, which includes preamplifier and multiplexing circuitry, is directly flip-chip bonded to the microelectrode array to form the cortical neurosensor device. PMID:23666130

  2. Sub-pm{{\\sqrt{Hz}^{-1}}} non-reciprocal noise in the LISA backlink fiber

    NASA Astrophysics Data System (ADS)

    Fleddermann, Roland; Diekmann, Christian; Steier, Frank; Tröbs, Michael; Heinzel, Gerhard; Danzmann, Karsten

    2018-04-01

    The future space-based gravitational wave detector laser interferometer space antenna (LISA) requires bidirectional exchange of light between its two optical benches on board of each of its three satellites. The current baseline foresees a polarization-maintaining single-mode fiber for this backlink connection. Phase changes which are common in both directions do not enter the science measurement, but differential (‘non-reciprocal’) phase fluctuations directly do and must thus be guaranteed to be small enough. We have built a setup consisting of a Zerodur baseplate with fused silica components attached to it using hydroxide-catalysis bonding and demonstrated the reciprocity of a polarization-maintaining single-mode fiber at the 1 pm \\sqrt{Hz}-1 level as is required for LISA. We used balanced detection to reduce the influence of parasitic optical beams on the reciprocity measurement and a fiber length stabilization to avoid nonlinear effects in our phase measurement system (phase meter). For LISA, a different phase meter is planned to be used that does not show this nonlinearity. We corrected the influence of beam angle changes and temperature changes on the reciprocity measurement in post-processing.

  3. The Role of the Foundation Board. Foundation Relations. Board Basics.

    ERIC Educational Resources Information Center

    Simic, Curtis R.

    1998-01-01

    This booklet for trustees of institutions of higher education addresses the role of boards of related non-profit fund-raising foundations. The booklet begins with an explanation of four advantages of such foundations to host institutions, such as separating gift funds from public funds. Suggestions for making foundation boards more effective…

  4. 7 CFR 981.22 - Board.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Orders; Fruits, Vegetables, Nuts), DEPARTMENT OF AGRICULTURE ALMONDS GROWN IN CALIFORNIA Order Regulating Handling Definitions § 981.22 Board. Board means the Almond Board of California which is the administrative...

  5. Bonding Properties of Basalt Fiber and Strength Reduction According to Fiber Orientation.

    PubMed

    Choi, Jeong-Il; Lee, Bang Yeon

    2015-09-30

    The basalt fiber is a promising reinforcing fiber because it has a relatively higher tensile strength and a density similar to that of a concrete matrix as well as no corrosion possibility. This study investigated experimentally the bonding properties of basalt fiber with cementitious material as well as the effect of fiber orientation on the tensile strength of basalt fiber for evaluating basalt fiber's suitability as a reinforcing fiber. Single fiber pullout tests were performed and then the tensile strength of fiber was measured according to fiber orientation. The test results showed that basalt fiber has a strong chemical bond with the cementitious matrix, 1.88 times higher than that of polyvinyl alcohol fibers with it. However, other properties of basalt fiber such as slip-hardening coefficient and strength reduction coefficient were worse than PVA and polyethylene fibers in terms of fiber bridging capacity. Theoretical fiber-bridging curves showed that the basalt fiber reinforcing system has a higher cracking strength than the PVA fiber reinforcing system, but the reinforcing system showed softening behavior after cracking.

  6. Extending fiber resources : fiber loading recycled fiber and mechanical pulps for lightweight, high opacity paper

    Treesearch

    Marguerite Sykes; John Klungness; Freya Tan; Mathew Stroika; Said Abubakr

    1999-01-01

    Production of a lightweight, high opacity printing paper is a common goal of papermakers using virgin or recycled fibers. Fiber loading is an innovative, commercially viable process that can substantially upgrade and extend most types of wood fibers. Fiber loading, a process carried out at high consistency and high alkalinity, precipitates calcium carbonate (PCC) in...

  7. The Board's Role in Fund-Raising. The Fundamentals. Board Basics.

    ERIC Educational Resources Information Center

    Legon, Richard D.

    1997-01-01

    Fund-raising is one of the college or university governing board's most basic and important responsibilities: The annual fund is the platform from which all other fund-raising activities flow, and the board plays a key role in planning, implementing, and monitoring comprehensive campaigns, which are major efforts, focused on long-range financial…

  8. Fiber optic muzzle brake tip for reducing fiber burnback and stone retropulsion during thulium fiber laser lithotripsy.

    PubMed

    Hutchens, Thomas C; Gonzalez, David A; Irby, Pierce B; Fried, Nathaniel M

    2017-01-01

    The experimental thulium fiber laser (TFL) is being explored as an alternative to the current clinical gold standard Holmium:YAG laser for lithotripsy. The near single-mode TFL beam allows coupling of higher power into smaller optical fibers than the multimode Holmium laser beam profile, without proximal fiber tip degradation. A smaller fiber is desirable because it provides more space in the ureteroscope working channel for increased saline irrigation rates and allows maximum ureteroscope deflection. However, distal fiber tip burnback increases as fiber diameter decreases. Previous studies utilizing hollow steel sheaths around recessed distal fiber tips reduced fiber burnback but increased stone retropulsion. A “fiber muzzle brake” was tested for reducing both fiber burnback and stone retropulsion by manipulating vapor bubble expansion. TFL lithotripsy studies were performed at 1908 nm, 35 mJ, 500 ?? ? s , and 300 Hz using a 100 - ? m -core fiber. The optimal stainless steel muzzle brake tip tested consisted of a 1-cm-long, 560 - ? m -outer-diameter, 360 - ? m -inner-diameter tube with a 275 - ? m -diameter through hole located 250 ?? ? m from the distal end. The fiber tip was recessed a distance of 500 ?? ? m . Stone phantom retropulsion, fiber tip burnback, and calcium oxalate stone ablation studies were performed ex vivo. Small stones with a mass of 40 ± 4 ?? mg and 4-mm-diameter were ablated over a 1.5-mm sieve in 25 ± 4 ?? s

  9. Optical fiber science and technology: Novel fibers and fiber sensors

    NASA Astrophysics Data System (ADS)

    Morse, T. F.

    1988-02-01

    This equipment grant has permitted the purchase of a complete optical fiber draw facility and auxilliary equipment for our fiber characterization laboratory. The draw tower has been erected in a specially prepared laboratory. It is a 7.8 m automated tower with a 20 kw carbon induction furnace, and sufficient room for two UV coating stages, or a UV coating stage, and a thermal curing stage. The tower installation took perhaps somewhat more time than initially anticipated, largely due to difficulties in the site preparation. The tower itself has been installed on a reinforced concrete pad, with appropriate vibration isolation. For about six months, we have been gaining experience in the use of the tower, and have been drawing kilometer lengths of fiber that range in diameter from 50 microns to 250 microns with a tolerance of the order of a few microns. In anticipation of expanding the coating capabilities of our draw tower, a vacuum system was purchased for use with radio frequency sputtering on-line on the tower. This will be particularly useful for ceramic coated fibers in the study of the behavior of fiber strengthened composite materials.

  10. 36 CFR 1151.5 - Board meetings.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 36 Parks, Forests, and Public Property 3 2010-07-01 2010-07-01 false Board meetings. 1151.5... BOARD BYLAWS § 1151.5 Board meetings. (a) Number. The Chair shall schedule five regular meetings of the.... Regular meetings of the Board and at least one Board sponsored event shall ordinarily be held on the...

  11. [Identification of varieties of textile fibers by using Vis/NIR infrared spectroscopy technique].

    PubMed

    Wu, Gui-Fang; He, Yong

    2010-02-01

    The aim of the present paper was to provide new insight into Vis/NIR spectroscopic analysis of textile fibers. In order to achieve rapid identification of the varieties of fibers, the authors selected 5 kinds of fibers of cotton, flax, wool, silk and tencel to do a study with Vis/NIR spectroscopy. Firstly, the spectra of each kind of fiber were scanned by spectrometer, and principal component analysis (PCA) method was used to analyze the characteristics of the pattern of Vis/NIR spectra. Principal component scores scatter plot (PC1 x PC2 x PC3) of fiber indicated the classification effect of five varieties of fibers. The former 6 principal components (PCs) were selected according to the quantity and size of PCs. The PCA classification model was optimized by using the least-squares support vector machines (LS-SVM) method. The authors used the 6 PCs extracted by PCA as the inputs of LS-SVM, and PCA-LS-SVM model was built to achieve varieties validation as well as mathematical model building and optimization analysis. Two hundred samples (40 samples for each variety of fibers) of five varieties of fibers were used for calibration of PCA-LS-SVM model, and the other 50 samples (10 samples for each variety of fibers) were used for validation. The result of validation showed that Vis/NIR spectroscopy technique based on PCA-LS-SVM had a powerful classification capability. It provides a new method for identifying varieties of fibers rapidly and real time, so it has important significance for protecting the rights of consumers, ensuring the quality of textiles, and implementing rationalization production and transaction of textile materials and its production.

  12. Bonding Properties of Basalt Fiber and Strength Reduction According to Fiber Orientation

    PubMed Central

    Choi, Jeong-Il; Lee, Bang Yeon

    2015-01-01

    The basalt fiber is a promising reinforcing fiber because it has a relatively higher tensile strength and a density similar to that of a concrete matrix as well as no corrosion possibility. This study investigated experimentally the bonding properties of basalt fiber with cementitious material as well as the effect of fiber orientation on the tensile strength of basalt fiber for evaluating basalt fiber’s suitability as a reinforcing fiber. Single fiber pullout tests were performed and then the tensile strength of fiber was measured according to fiber orientation. The test results showed that basalt fiber has a strong chemical bond with the cementitious matrix, 1.88 times higher than that of polyvinyl alcohol fibers with it. However, other properties of basalt fiber such as slip-hardening coefficient and strength reduction coefficient were worse than PVA and polyethylene fibers in terms of fiber bridging capacity. Theoretical fiber-bridging curves showed that the basalt fiber reinforcing system has a higher cracking strength than the PVA fiber reinforcing system, but the reinforcing system showed softening behavior after cracking. PMID:28793595

  13. Advanced degradation of brominated epoxy resin and simultaneous transformation of glass fiber from waste printed circuit boards by improved supercritical water oxidation processes.

    PubMed

    Liu, Kang; Zhang, Zhiyuan; Zhang, Fu-Shen

    2016-10-01

    This work investigated various supercritical water oxidation (SCWO) systems, i.e. SCWO1 (only water), SCWO2 (water+H2O2) and SCWO3 (water+H2O2/NaOH), for waste printed circuit boards (PCBs) detoxification and recycling. Response surface methodology (RSM) was applied to optimize the operating conditions of the optimal SCWO3 systems. The optimal reaction conditions for debromination were found to be the NaOH of 0.21g, the H2O2 volume of 9.04mL, the time of 39.7min, maximum debromination efficiency of 95.14%. Variance analysis indicated that the factors influencing debromination efficiency was in the sequence of NaOH>H2O2>time. Mechanism studies indicated that the dissociated ions from NaOH in supercritical water promoted the debromination of brominated epoxy resins (BERs) through an elimination reaction and nucleophilic substitution. HO2, produced by H2O2 could induce the oxidation of phenol ring to open (intermediates of BERs), which were thoroughly degraded to form hydrocarbons, CO2, H2O and NaBr. In addition, the alkali-silica reaction between OH(-) and SiO2 induced the phase transformation of glass fibers, which were simultaneously converted into anorthite and albite. Waste PCBs in H2O2/NaOH improved SCWO system were fully degraded into useful products and simultaneously transformed into functional materials. These findings are helpful for efficient recycling of waste PCBs. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. WeaselBoard :

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mulder, John C.; Schwartz, Moses Daniel; Berg, Michael J.

    2013-10-01

    Critical infrastructures, such as electrical power plants and oil refineries, rely on programmable logic controllers (PLCs) to control essential processes. State of the art security cannot detect attacks on PLCs at the hardware or firmware level. This renders critical infrastructure control systems vulnerable to costly and dangerous attacks. WeaselBoard is a PLC backplane analysis system that connects directly to the PLC backplane to capture backplane communications between modules. WeaselBoard forwards inter-module traffic to an external analysis system that detects changes to process control settings, sensor values, module configuration information, firmware updates, and process control program (logic) updates. WeaselBoard provides zero-daymore » exploit detection for PLCs by detecting changes in the PLC and the process. This approach to PLC monitoring is protected under U.S. Patent Application 13/947,887.« less

  15. Wood-framed building deconstruction : a source of lumber for construction?

    Treesearch

    Bob Falk

    2002-01-01

    The sounds are much like those found at any building site. Hammers pounding. Saws whining. Lumber in motion. However, everything here seems to be in reverse ... windows and doors are being unhung rather than set in place, nails are being pounded out of boards instead of into them, lumber is being stacked up, banded, and hauled away rather than delivered and unstacked....

  16. 77 FR 60146 - SES Performance Review Board

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-02

    ... NATIONAL TRANSPORTATION SAFETY BOARD SES Performance Review Board AGENCY: National Transportation... National Transportation Safety Board, Performance Review Board (PRB). FOR FURTHER INFORMATION CONTACT... Performance Review Boards. The board reviews and evaluates the initial appraisal of a senior executive's...

  17. 76 FR 70169 - SES Performance Review Board

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-10

    ... NATIONAL TRANSPORTATION SAFETY BOARD SES Performance Review Board AGENCY: National Transportation... National Transportation Safety Board, Performance Review Board (PRB). FOR FURTHER INFORMATION CONTACT... Performance Review Boards. The board reviews and evaluates the initial appraisal of a senior executive's...

  18. 75 FR 69706 - SES Performance Review Board

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-15

    ... NATIONAL TRANSPORTATION SAFETY BOARD SES Performance Review Board AGENCY: National Transportation... National Transportation Safety Board Performance Review Board (PRB). FOR FURTHER INFORMATION CONTACT: Emily... Review Boards. The board reviews and evaluates the initial appraisal of a senior executive's performance...

  19. Volatile metabolites produced by three strains of Stachybotrys chartarum cultivated on rice and gypsum board.

    PubMed

    Gao, Pengfei; Martin, Jennifer

    2002-06-01

    Stachybotrys chartarum (atra) is a toxigenic fungus frequently found in water-damaged buildings. Although microbial volatile organic compounds (MVOCs) produced by Aspergillus, Penicillium, and other fungi have been investigated extensively, little information exists on what MVOCs can be produced by S. chartarum. In this study, three strains of S. chartarum isolated from water-damaged residential homes in Cleveland, Ohio, were cultivated on rice and gypsum board. Air samples were collected after one, two, three, four, and six weeks of cultivation using Tenax TA tubes. Unique MVOCs were determined and other alcohols, ketones, and terpenes were also investigated using gas chromatography/mass spectrometry after thermal desorption from the sampling tube. Four unique MVOCs, 1-butanol, 3-methyl-1-butanol, 3-methyl-2-butanol, and thujopsene, were detected on rice cultures, and only one of them (1-butanol) was detected on gypsum board cultures. For a given strain, volatiles were considerably different with different cultivation media. Concentration profiles of the volatile compounds varied among compounds; however, each compound exhibited corresponding concentration trends between the strains. In comparison with our previous studies of five Aspergillus species on gypsum board under the same experimental conditions, fewer unique MVOCs were produced by S. chartarum, and they were quite different. It thus may be possible to use marker-unique MVOCs as a fingerprint to distinguish fungi in indoor environments once enough information becomes available. Our findings also indicate that volatiles produced by S. chartarum may represent a relatively small fraction of the total volatiles present in problem buildings where Aspergillus spp., Penicillium spp., and other fungi usually coexist.

  20. Evidence Value of Textile Fiber - Transfer and Persistence of Fibers.

    PubMed

    Siegel, J A

    1997-12-01

    Fibers comprise probably the most common form of trace evidence in forensic science today. They occur in perhaps one-quarter of all cases that involve trace evidence and a large majority of crime laboratories routinely characterize textile fibers. Although a great deal of research has been done on how to best characterize and compare fibers, relatively little time has been spent on determining the significance of fiber evidence. This article presents a summary of the studies of fiber transfer and persistence and determination of the significance of fiber evidence. This accumulated research and analysis will enable fiber examiners to better interpret evidence in cases where foreign fibers have been transferred during contact between victims and perpetrators of crimes. Copyright © 1997 Central Police University.

  1. 7 CFR 1215.2 - Board.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... ORDERS; MISCELLANEOUS COMMODITIES), DEPARTMENT OF AGRICULTURE POPCORN PROMOTION, RESEARCH, AND CONSUMER INFORMATION Popcorn Promotion, Research, and Consumer Information Order Definitions § 1215.2 Board. Board means the Popcorn Board established under section 575(b) of the Act. ...

  2. 7 CFR 1215.2 - Board.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... ORDERS; MISCELLANEOUS COMMODITIES), DEPARTMENT OF AGRICULTURE POPCORN PROMOTION, RESEARCH, AND CONSUMER INFORMATION Popcorn Promotion, Research, and Consumer Information Order Definitions § 1215.2 Board. Board means the Popcorn Board established under section 575(b) of the Act. ...

  3. 7 CFR 1215.2 - Board.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... ORDERS; MISCELLANEOUS COMMODITIES), DEPARTMENT OF AGRICULTURE POPCORN PROMOTION, RESEARCH, AND CONSUMER INFORMATION Popcorn Promotion, Research, and Consumer Information Order Definitions § 1215.2 Board. Board means the Popcorn Board established under section 575(b) of the Act. ...

  4. 7 CFR 1215.2 - Board.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... ORDERS; MISCELLANEOUS COMMODITIES), DEPARTMENT OF AGRICULTURE POPCORN PROMOTION, RESEARCH, AND CONSUMER INFORMATION Popcorn Promotion, Research, and Consumer Information Order Definitions § 1215.2 Board. Board means the Popcorn Board established under section 575(b) of the Act. ...

  5. 7 CFR 1215.2 - Board.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... ORDERS; MISCELLANEOUS COMMODITIES), DEPARTMENT OF AGRICULTURE POPCORN PROMOTION, RESEARCH, AND CONSUMER INFORMATION Popcorn Promotion, Research, and Consumer Information Order Definitions § 1215.2 Board. Board means the Popcorn Board established under section 575(b) of the Act. ...

  6. Direct writing of fiber optic components in photonic crystal fibers and other specialty fibers

    NASA Astrophysics Data System (ADS)

    Fernandes, Luis Andre; Sezerman, Omur; Best, Garland; Ng, Mi Li; Kane, Saidou

    2016-04-01

    Femtosecond direct laser writing has recently shown great potential for the fabrication of complex integrated devices in the cladding of optical fibers. Such devices have the advantage of requiring no bulk optical components and no breaks in the fiber path, thus reducing the need for complicated alignment, eliminating contamination, and increasing stability. This technology has already found applications using combinations of Bragg gratings, interferometers, and couplers for the fabrication of optical filters, sensors, and power monitors. The femtosecond laser writing method produces a local modification of refractive index through non-linear absorption of the ultrafast laser pulses inside the dielectric material of both the core and cladding of the fiber. However, fiber geometries that incorporate air or hollow structures, such as photonic crystal fibers (PCFs), still present a challenge since the index modification regions created by the writing process cannot be generated in the hollow regions of the fiber. In this work, the femtosecond laser method is used together with a pre-modification method that consists of partially collapsing the hollow holes using an electrical arc discharge. The partial collapse of the photonic band gap structure provides a path for femtosecond laser written waveguides to couple light from the core to the edge of the fiber for in-line power monitoring. This novel approach is expected to have applications in other specialty fibers such as suspended core fibers and can open the way for the integration of complex devices and facilitate miniaturization of optical circuits to take advantage of the particular characteristics of the PCFs.

  7. A Refractive Index Sensor Based on the Resonant Coupling to Cladding Modes in a Fiber Loop

    PubMed Central

    Reyes, Mauricio; Monzón-Hernández, David; Martínez-Ríos, Alejandro; Silvestre, Enrique; Díez, Antonio; Cruz, José Luis; Andrés, Miguel V.

    2013-01-01

    We report an easy-to-build, compact, and low-cost optical fiber refractive index sensor. It consists of a single fiber loop whose transmission spectra exhibit a series of notches produced by the resonant coupling between the fundamental mode and the cladding modes in a uniformly bent fiber. The wavelength of the notches, distributed in a wavelength span from 1,400 to 1,700 nm, can be tuned by adjusting the diameter of the fiber loop and are sensitive to refractive index changes of the external medium. Sensitivities of 170 and 800 nm per refractive index unit for water solutions and for the refractive index interval 1.40–1.442, respectively, are demonstrated. We estimate a long range resolution of 3 × 10−4 and a short range resolution of 2 × 10−5 for water solutions. PMID:23979478

  8. Fiber-optic control and thermometry of single-cell thermosensation logic.

    PubMed

    Fedotov, I V; Safronov, N A; Ermakova, Yu G; Matlashov, M E; Sidorov-Biryukov, D A; Fedotov, A B; Belousov, V V; Zheltikov, A M

    2015-11-13

    Thermal activation of transient receptor potential (TRP) cation channels is one of the most striking examples of temperature-controlled processes in cell biology. As the evidence indicating the fundamental role of such processes in thermosensation builds at a fast pace, adequately accurate tools that would allow heat receptor logic behind thermosensation to be examined on a single-cell level are in great demand. Here, we demonstrate a specifically designed fiber-optic probe that enables thermal activation with simultaneous online thermometry of individual cells expressing genetically encoded TRP channels. This probe integrates a fiber-optic tract for the delivery of laser light with a two-wire microwave transmission line. A diamond microcrystal fixed on the fiber tip is heated by laser radiation transmitted through the fiber, providing a local heating of a cell culture, enabling a well-controlled TRP-assisted thermal activation of cells. Online local temperature measurements are performed by using the temperature-dependent frequency shift of optically detected magnetic resonance, induced by coupling the microwave field, delivered by the microwave transmission line, to nitrogen--vacancy centers in the diamond microcrystal. Activation of TRP channels is verified by using genetically encoded fluorescence indicators, visualizing an increase in the calcium flow through activated TRP channels.

  9. Primary Manufacturing Processes for Fiber Reinforced Composites: History, Development & Future Research Trends

    NASA Astrophysics Data System (ADS)

    Tapan Bhatt, Alpa; Gohil, Piyush P.; Chaudhary, Vijaykumar

    2018-03-01

    Composite Materials are becoming more popular gradually replacing traditional material with extra strength, lighter weight and superior property. The world is exploring use of fiber reinforced composites in all application which includes air, land and water transport, construction industry, toys, instrumentation, medicine and the list is endless. Based on application and reinforcement used, there are many ways to manufactures parts with fiber reinforced composites. In this paper various manufacturing processes have been discussed at length, to make fiber reinforced composites components. The authors have endeavored to include all the processes available recently in composite industry. Paper first highlights history of fiber reinforced composites manufacturing, and then the comparison of different manufacturing process to build composites have been discussed, to give clear understanding on, which process should be selected, based on reinforcement, matrix and application. All though, there are several advantages to use such fiber reinforcement composites, still industries have not grown at par and there is a lot of scope to improve these industries. At last, where India stands today, what are the challenges in market has been highlighted and future market and research trend of exploring such composite industries have been discussed. This work is carried out as a part of research project sanctioned by GUJCOST, Gandhinagar.

  10. In-Line Fiber Optic Interferometric Sensors in Single-Mode Fibers

    PubMed Central

    Zhu, Tao; Wu, Di; Liu, Min; Duan, De-Wen

    2012-01-01

    In-line fiber optic interferometers have attracted intensive attention for their potential sensing applications in refractive index, temperature, pressure and strain measurement, etc. Typical in-line fiber-optic interferometers are of two types: Fabry-Perot interferometers and core-cladding-mode interferometers. It's known that the in-line fiber optic interferometers based on single-mode fibers can exhibit compact structures, easy fabrication and low cost. In this paper, we review two kinds of typical in-line fiber optic interferometers formed in single-mode fibers fabricated with different post-processing techniques. Also, some recently reported specific technologies for fabricating such fiber optic interferometers are presented. PMID:23112608

  11. 7 CFR 1220.102 - Board.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... AND ORDERS; MISCELLANEOUS COMMODITIES), DEPARTMENT OF AGRICULTURE SOYBEAN PROMOTION, RESEARCH, AND CONSUMER INFORMATION Soybean Promotion and Research Order Definitions § 1220.102 Board. The term Board means the United Soybean Board established under § 1220.201 of this subpart. ...

  12. 7 CFR 1220.102 - Board.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... AND ORDERS; MISCELLANEOUS COMMODITIES), DEPARTMENT OF AGRICULTURE SOYBEAN PROMOTION, RESEARCH, AND CONSUMER INFORMATION Soybean Promotion and Research Order Definitions § 1220.102 Board. The term Board means the United Soybean Board established under § 1220.201 of this subpart. ...

  13. 7 CFR 1280.102 - Board.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... AND ORDERS; MISCELLANEOUS COMMODITIES), DEPARTMENT OF AGRICULTURE LAMB PROMOTION, RESEARCH, AND INFORMATION ORDER Lamb Promotion, Research, and Information Order Definitions § 1280.102 Board. Board means the Lamb Promotion, Research, and Information Board established pursuant to § 1280.201. ...

  14. Multimaterial Acoustic Fibers

    NASA Astrophysics Data System (ADS)

    Chocat, Noemie

    The emergence of multimaterial fibers that combine a multiplicity of solid materials with disparate electrical, optical, and mechanical properties into a single fiber presents new opportunities for extending fiber applications well beyond optical transmission. Fiber reflectors, thermal detectors, photodetectors, chemical sensors, surface-emitting fiber lasers, fiber diodes, and other functional fiber devices have been demonstrated with this approach. Yet, throughout this development and indeed the development of fibers in general, a key premise has remained unchanged : that fibers are essentially static devices incapable of controllably changing their properties at high frequencies. Unique opportunities would arise if a rapid, electrically-driven mechanism for changing fiber properties existed. A wide spectrum of hitherto passive fiber devices could at once become active with applications spanning electronics, mechanics, acoustics, and optics, with the benefits of large surface-area, structural robustness, and mechanical flexibility. This thesis addresses the challenges and opportunities associated with the realization of electromechanical transduction in fibers through the integration of internal piezoelectric and electrostrictive domains. The fundamental challenges related to the fabrication of piezoelectric devices in fiber form are analyzed from a materials perspective, and candidate materials and geometries are selected that are compatible with the thermal drawing process. The first realization of a thermally drawn piezoelectric fiber device is reported and its piezoelectric response is established over a wide range of frequencies. The acoustic properties of piezoelectric fiber devices are characterized and related to their mechanical and geometric properties. Collective effects in multi-fiber constructs are discussed and demonstrated by the realization of a linear phased array of piezoelectric fibers capable of acoustic beam steering. High strain actuation

  15. Moving Large Wiring-Harness Boards

    NASA Technical Reports Server (NTRS)

    Shepherd, Samuel D.; Gurman, Isaac

    1990-01-01

    Carrier for wiring-harness fabrication boards enables lone operator to move board easily and safely. Holds harness while operator fabricating, while being stored, and being transported to equipment frame for mounting. When positioned for assembly of wiring harness, board and carrier give operator easy and convenient access to wires and cables, when positioned for transfer of wiring harness to or from storage area, carrier holds board securely while moved by one person.

  16. All-fiber passively Q-switched thulium-doped fiber laser by using a holmium-doped fiber as saturable absorber

    NASA Astrophysics Data System (ADS)

    Durán Sánchez, M.; Álvarez-Tamayo, R. I.; Posada-Ramírez, B.; Alaniz-Baylón, J.; Bravo-Huerta, E.; Santiago-Hernández, H.; Hernández-Arriaga, M. V.; Bello-Jiménez, Miguel; Ibarra-Escamilla, B.; Kuzin, E. A.

    2018-02-01

    We report a linear cavity all-fiber passive Q-switched thulium-doped fiber laser operating at the 2 μm wavelength range. The laser configuration is based on a thulium-doped fiber used as a gain medium and an unpumped segment of holmium-doped fiber which acts as a fiber saturable absorber. The cavity is formed by a fiber optical loop mirror and the flat end facet of the holmium-doped fiber. The fiber segments as saturable absorber is a 1-m long single mode doubleclad holmium-doped fiber. Q-switched pulses are obtained at the wavelength of 2024.5 nm with a pulse width of 1.1 μs. The pulse repetition rate increases as a linear function of the applied pump power. The maximum pulse repetition rate of 100 kHz was obtained with a pump power of 2.4 W.

  17. Thulium fiber laser lithotripsy using small spherical distal fiber tips

    NASA Astrophysics Data System (ADS)

    Wilson, Christopher R.; Hardy, Luke A.; Kennedy, Joshua D.; Irby, Pierce B.; Fried, Nathaniel M.

    2016-02-01

    This study tests a 100-μm-core fiber with 300-μm-diameter ball tip during Thulium fiber laser (TFL) lithotripsy. The TFL was operated at 1908 nm wavelength with 35-mJ pulse energy, 500-μs pulse duration, and 300-Hz pulse rate. Calcium oxalate/phosphate stone samples were weighed, laser procedure times measured, and ablation rates calculated for ball tip fibers, with comparison to bare tip fibers. Photographs of ball tips were taken before and after each procedure to observe ball tip degradation and determine number of procedures completed before need to replace fiber. Saline irrigation rates and ureteroscope deflection were measured with and without TFL fiber present. There was no statistical difference (P > 0.05) between stone ablation rates for single-use ball tip fiber (1.3 +/- 0.4 mg/s) (n=10), multiple-use ball tip fiber (1.3 +/- 0.5 mg/s) (n=44), and conventional single-use bare tip fibers (1.3 +/- 0.2 mg/s) (n=10). Ball tip durability varied widely, but fibers averaged > 4 stone procedures before decline in stone ablation rates due to mechanical damage at front surface of ball tip. The small fiber diameter did not impact ureteroscope deflection or saline flow rates. The miniature ball tip fiber may provide a cost-effective design for safe fiber insertion through the ureteroscope working channel and the ureter without risk of scope damage or tissue perforation, and without compromising stone ablation efficiency during TFL ablation of kidney stones.

  18. 7 CFR 1216.4 - Board.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... ORDERS; MISCELLANEOUS COMMODITIES), DEPARTMENT OF AGRICULTURE PEANUT PROMOTION, RESEARCH, AND INFORMATION ORDER Peanut Promotion, Research, and Information Order Definitions § 1216.4 Board. Board means the administrative body referred to as the National Peanut Board established pursuant to § 1216.40. ...

  19. 7 CFR 1216.4 - Board.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... ORDERS; MISCELLANEOUS COMMODITIES), DEPARTMENT OF AGRICULTURE PEANUT PROMOTION, RESEARCH, AND INFORMATION ORDER Peanut Promotion, Research, and Information Order Definitions § 1216.4 Board. Board means the administrative body referred to as the National Peanut Board established pursuant to § 1216.40. ...

  20. Increasing power and amplified spontaneous emission suppression for weak signal amplification in pulsed fiber amplifier

    NASA Astrophysics Data System (ADS)

    Luo, Yi; Zhang, Hanwei; Wang, Xiaolin; Su, Rongtao; Ma, Pengfei; Zhou, Pu; Jiang, Zongfu

    2017-10-01

    In the pulsed fiber amplifiers with repetition frequency of several tens kHz, amplified spontaneous emission (ASE) is easy to build up because of the low repetition frequency and weak pulse signal. The ASE rises the difficulty to amplify the weak pulse signal effectively. We have demonstrated an all-fiber preamplifier stage structure to amplify a 40 kHz, 10 ns bandwidth (FWHM) weak pulse signal (299 μW) with center wavelength of 1062 nm. Compared synchronous pulse pump with continuous wave(CW) pump, the results indicate that synchronous pulse pump shows the better capability of increasing the output power than CW pump. In the condition of the same pump power, the output power of synchronous pulse pump is twice as high as CW pump. In order to suppress ASE, a longer gain fiber is utilized to reabsorb the ASE in which the wavelength is shorter than 1062nm. We amplified weak pulse signal via 0.8 m and 2.1 m gain fiber in synchronous pulse pump experiments respectively, and more ASE in the output spectra are observed in the 0.8 m gain fiber system. Due to the weaker ASE and consequent capability of higher pump power, the 2.1 m gain fiber is capable to achieve higher output power than shorter fiber. The output power of 2.1 m gain fiber case is limited by pump power.

  1. NPS Transit System Passenger Boardings Study: Converting Ticket Sales to Passenger Boardings.

    DOT National Transportation Integrated Search

    2016-01-01

    This report examines the reporting of passenger boardings (unlinked passenger trips) by NPS transit systems that use a ticket sales conversion methodology. By studying and validating the park units' passenger boarding methodology from converting tick...

  2. Ultrathin Coaxial Fiber Supercapacitors Achieving High Energy and Power Densities.

    PubMed

    Shen, Caiwei; Xie, Yingxi; Sanghadasa, Mohan; Tang, Yong; Lu, Longsheng; Lin, Liwei

    2017-11-15

    Fiber-based supercapacitors have attracted significant interests because of their potential applications in wearable electronics. Although much progress has been made in recent years, the energy and power densities, mechanical strength, and flexibility of such devices are still in need of improvement for practical applications. Here, we demonstrate an ultrathin microcoaxial fiber supercapacitor (μCFSC) with high energy and power densities (2.7 mW h/cm 3 and 13 W/cm 3 ), as well as excellent mechanical properties. The prototype with the smallest reported overall diameter (∼13 μm) is fabricated by successive coating of functional layers onto a single micro-carbon-fiber via a scalable process. Combining the simulation results via the electrochemical model, we attribute the high performance to the well-controlled thin coatings that make full use of the electrode materials and minimize the ion transport path between electrodes. Moreover, the μCFSC features high bending flexibility and large tensile strength (more than 1 GPa), which make it promising as a building block for various flexible energy storage applications.

  3. 7 CFR 1214.2 - Board.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... ORDERS; MISCELLANEOUS COMMODITIES), DEPARTMENT OF AGRICULTURE CHRISTMAS TREE PROMOTION, RESEARCH, AND INFORMATION ORDER Christmas Tree Promotion, Research, and Information Order Definitions § 1214.2 Board. Board or the Christmas Tree Promotion Board means the administrative body established pursuant to § 1214.40. ...

  4. 7 CFR 1214.2 - Board.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... ORDERS; MISCELLANEOUS COMMODITIES), DEPARTMENT OF AGRICULTURE CHRISTMAS TREE PROMOTION, RESEARCH, AND INFORMATION ORDER Christmas Tree Promotion, Research, and Information Order Definitions § 1214.2 Board. Board or the Christmas Tree Promotion Board means the administrative body established pursuant to § 1214.40. ...

  5. 7 CFR 1214.2 - Board.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... ORDERS; MISCELLANEOUS COMMODITIES), DEPARTMENT OF AGRICULTURE CHRISTMAS TREE PROMOTION, RESEARCH, AND INFORMATION ORDER Christmas Tree Promotion, Research, and Information Order Definitions § 1214.2 Board. Board or the Christmas Tree Promotion Board means the administrative body established pursuant to § 1214.40. ...

  6. Single-mode annular chirally-coupled core fibers for fiber lasers

    NASA Astrophysics Data System (ADS)

    Zhang, Haitao; Hao, He; He, Linlu; Gong, Mali

    2018-03-01

    Chirally-coupled core (CCC) fiber can transmit single fundamental mode and effectively suppresses higher-order mode (HOM) propagation, thus improve the beam quality. However, the manufacture of CCC fiber is complicated due to its small side core. To decrease the manufacture difficulty in China, a novel fiber structure is presented, defined as annular chirally-coupled core (ACCC) fiber, replacing the small side core by a larger side annulus. In this paper, we designed the fiber parameters of this new structure, and demonstrated that the new structure has a similar property of single mode with traditional CCC fiber. Helical coordinate system was introduced into the finite element method (FEM) to analyze the mode field in the fiber, and the beam propagation method (BPM) was employed to analyze the influence of the fiber parameters on the mode loss. Based on the result above, the fiber structure was optimized for efficient single-mode transmission, in which the core diameter is 35 μm with beam quality M2 value of 1.04 and an optical to optical conversion efficiency of 84%. In this fiber, fundamental mode propagates in an acceptable loss, while the HOMs decay rapidly.

  7. Fiber-optic photoelastic pressure sensor with fiber-loss compensation

    NASA Technical Reports Server (NTRS)

    Beheim, G.; Anthan, D. J.

    1987-01-01

    A new fiber-optic pressure sensor is described that has high immunity to the effects of fiber-loss variations. This device uses the photoelastic effect to modulate the proportion of the light from each of two input fibers that is coupled into each of two output fibers. This four-fiber link permits two detectors to be used to measure the sensor's responses to the light from each of two independently controlled sources. These four detector outputs are processed to yield a loss-compensated signal that is a stable and sensitive pressure indicator.

  8. Assessment of the risk due to release of carbon fiber in civil aircraft accidents, phase 2

    NASA Technical Reports Server (NTRS)

    Pocinki, L.; Cornell, M. E.; Kaplan, L.

    1980-01-01

    The risk associated with the potential use of carbon fiber composite material in commercial jet aircraft is investigated. A simulation model developed to generate risk profiles for several airports is described. The risk profiles show the probability that the cost due to accidents in any year exceeds a given amount. The computer model simulates aircraft accidents with fire, release of fibers, their downwind transport and infiltration of buildings, equipment failures, and resulting ecomomic impact. The individual airport results were combined to yield the national risk profile.

  9. 77 FR 39677 - Performance Review Board Membership

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-05

    ... ARCHITECTURAL AND TRANSPORTATION BARRIERS COMPLIANCE BOARD Performance Review Board Membership AGENCY: Architectural and Transportation Barriers Compliance Board. ACTION: Notice. SUMMARY: Notice is... Transportation Barriers Compliance Board (Access Board). FOR FURTHER INFORMATION CONTACT: David M. Capozzi...

  10. SMART Boards Rock

    ERIC Educational Resources Information Center

    Giles, Rebecca M.; Shaw, Edward L.

    2011-01-01

    SMART Board is a technology that combines the functionality of a whiteboard, computer, and projector into a single system. The interactive nature of the SMART Board offers many practical uses for providing an introduction to or review of material, while the large work area invites collaboration through social interaction and communication. As a…

  11. Method for the preparation of carbon fiber from polyolefin fiber precursor

    DOEpatents

    Naskar, Amit Kumar; Hunt, Marcus Andrew; Saito, Tomonori

    2017-11-28

    Methods for the preparation of carbon fiber from polyolefin fiber precursor, wherein the polyolefin fiber precursor is partially sulfonated and then carbonized to produce carbon fiber. Methods for producing hollow carbon fibers, wherein the hollow core is circular- or complex-shaped, are also described. Methods for producing carbon fibers possessing a circular- or complex-shaped outer surface, which may be solid or hollow, are also described.

  12. 7 CFR 1210.304 - Board.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 10 2010-01-01 2010-01-01 false Board. 1210.304 Section 1210.304 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (MARKETING AGREEMENTS... PLAN Watermelon Research and Promotion Plan Definitions § 1210.304 Board. Board means the National...

  13. Fiber Bragg grating filter using evaporated induced self assembly of silica nano particles

    NASA Astrophysics Data System (ADS)

    Hammarling, Krister; Zhang, Renyung; Manuilskiy, Anatoliy; Nilsson, Hans-Erik

    2014-03-01

    In the present work we conduct a study of fiber filters produced by evaporation of silica particles upon a MM-fiber core. A band filter was designed and theoretically verified using a 2D Comsol simulation model of a 3D problem, and calculated in the frequency domain in respect to refractive index. The fiber filters were fabricated by stripping and chemically etching the middle part of an MM-fiber until the core was exposed. A mono layer of silica nano particles were evaporated on the core using an Evaporation Induced Self-Assembly (EISA) method. The experimental results indicated a broader bandwidth than indicated by the simulations which can be explained by the mismatch in the particle size distributions, uneven particle packing and finally by effects from multiple mode angles. Thus, there are several closely connected Bragg wavelengths that build up the broader bandwidth. The experimental part shows that it is possible by narrowing the particle size distributing and better control of the particle packing, the filter effectiveness can be greatly improved.

  14. Characterization and modeling of microstructured chalcogenide fibers for efficient mid-infrared wavelength conversion.

    PubMed

    Xing, Sida; Grassani, Davide; Kharitonov, Svyatoslav; Billat, Adrien; Brès, Camille-Sophie

    2016-05-02

    We experimentally demonstrate wavelength conversion in the 2 µm region by four-wave mixing in an AsSe and a GeAsSe chalcogenide photonic crystal fibers. A maximum conversion efficiency of -25.4 dB is measured for 112 mW of coupled continuous wave pump in a 27 cm long fiber. We estimate the dispersion parameters and the nonlinear refractive indexes of the chalcogenide PCFs, establishing a good agreement with the values expected from simulations. The different fiber geometries and glass compositions are compared in terms of performance, showing that GeAsSe is a more suited candidate for nonlinear optics at 2 µm. Building from the fitted parameters we then propose a new tapered GeAsSe PCF geometry to tailor the waveguide dispersion and lower the zero dispersion wavelength (ZDW) closer to the 2 µm pump wavelength. Numerical simulations shows that the new design allows both an increased conversion efficiency and bandwidth, and the generation of idler waves further in the mid-IR regions, by tuning the pump wavelength in the vicinity of the fiber ZDW.

  15. White matter pathways for prosodic structure building: A case study.

    PubMed

    Sammler, Daniela; Cunitz, Katrin; Gierhan, Sarah M E; Anwander, Alfred; Adermann, Jens; Meixensberger, Jürgen; Friederici, Angela D

    2018-05-11

    The relevance of left dorsal and ventral fiber pathways for syntactic and semantic comprehension is well established, while pathways for prosody are little explored. The present study examined linguistic prosodic structure building in a patient whose right arcuate/superior longitudinal fascicles and posterior corpus callosum were transiently compromised by a vasogenic peritumoral edema. Compared to ten matched healthy controls, the patient's ability to detect irregular prosodic structure significantly improved between pre- and post-surgical assessment. This recovery was accompanied by an increase in average fractional anisotropy (FA) in right dorsal and posterior transcallosal fiber tracts. Neither general cognitive abilities nor (non-prosodic) syntactic comprehension nor FA in right ventral and left dorsal fiber tracts showed a similar pre-post increase. Together, these findings suggest a contribution of right dorsal and inter-hemispheric pathways to prosody perception, including the right-dorsal tracking and structuring of prosodic pitch contours that is transcallosally informed by concurrent syntactic information. Copyright © 2018 Elsevier Inc. All rights reserved.

  16. 77 FR 1956 - National Science Board; Notice of Opportunity for Public Comment on the National Science Board...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-12

    ... NATIONAL SCIENCE FOUNDATION National Science Board; Notice of Opportunity for Public Comment on the National Science Board Data Policies Report AGENCY: National Science Board (NSB), NSF. ACTION: Request for public comments. SUMMARY: The National Science Board seeks comments from the public on the...

  17. Design principles and realization of electro-optical circuit boards

    NASA Astrophysics Data System (ADS)

    Betschon, Felix; Lamprecht, Tobias; Halter, Markus; Beyer, Stefan; Peterson, Harry

    2013-02-01

    The manufacturing of electro-optical circuit boards (EOCB) is based to a large extent on established technologies. First products with embedded polymer waveguides are currently produced in series. The range of applications within the sensor and data communication markets is growing with the increasing maturity level. EOCBs require design flows, processes and techniques similar to existing printed circuit board (PCB) manufacturing and appropriate for optical signal transmission. A key aspect is the precise and automated assembly of active and passive optical components to the optical waveguides which has to be supported by the technology. The design flow is described after a short introduction into the build-up of EOCBs and the motivation for the usage of this technology within the different application fields. Basis for the design of EOCBs are the required optical signal transmission properties. Thereafter, the devices for the electro-optical conversion are chosen and the optical coupling approach is defined. Then, the planar optical elements (waveguides, splitters, couplers) are designed and simulated. This phase already requires co-design of the optical and electrical domain using novel design flows. The actual integration of an optical system into a PCB is shown in the last part. The optical layer is thereby laminated to the purely electrical PCB using a conventional PCB-lamination process to form the EOCB. The precise alignment of the various electrical and optical layers is thereby essential. Electrical vias are then generated, penetrating also the optical layer, to connect the individual electrical layers. Finally, the board has to be tested electrically and optically.

  18. Printed wiring board system programmer's manual

    NASA Technical Reports Server (NTRS)

    Brinkerhoff, C. D.

    1973-01-01

    The printed wiring board system provides automated techniques for the design of printed circuit boards and hybrid circuit boards. The system consists of four programs: (1) the preprocessor program combines user supplied data and pre-defined library data to produce the detailed circuit description data; (2) the placement program assigns circuit components to specific areas of the board in a manner that optimizes the total interconnection length of the circuit; (3) the organizer program assigns pin interconnections to specific board levels and determines the optimal order in which the router program should attempt to layout the paths connecting the pins; and (4) the router program determines the wire paths which are to be used to connect each input pin pair on the circuit board. This document is intended to serve as a programmer's reference manual for the printed wiring board system. A detailed description of the internal logic and flow of the printed wiring board programs is included.

  19. Batako Quality Optimization with Addition of Palm Oil Stem Fiber from Kampar District and Dumai City

    NASA Astrophysics Data System (ADS)

    Zainuri; Yanti, Gusneli; Wahyuni Megasari, Shanti

    2017-12-01

    The waste of dry palm oil produced by 148 trees per hectare is 3,108 ton/month or 37,296 ton/year as calculated. Riau province has oil palm plantations covering an area of 2.399.172 hectares (BPS Riau Province, 2014). It can be estimated the amount of waste generated. Palm stem waste can be utilized, one of which is the utilization of midrib fiber as an added material in the manufacture of batako. Batako- fiber that is made still must be examined feasibility as building materials. The purpose of this study was to determine the optimization of the quality of batako works by the addition of palm stem fiber originated from the districts of Kampar and Dumai. This research used experimental method with laboratory research. Batako-fiber with the addition of palm fiber stem 1% of the weight of cement can increase the value of compressive strength above the normal batako and a batako with first quality according to SNI 03-0349-1989 standard. The use of palm stem fiber originating from the Kampar district resulted in better batakos with higher average compressive strength values than the dumai-derived fibers, especially in the addition of 1% fiber by weight of cement. The finding of this research is that the batakos originating from Kampar district are better than those from Dumai city. The most optimal addition of palm fiber burrs to batako-fiber products is 1% of the weight of cement.

  20. FIBER OPTICS: Polarization phase nonreciprocity in all-fiber ring interferometers

    NASA Astrophysics Data System (ADS)

    Andreev, A. Ts; Vasilev, V. D.; Kozlov, V. A.; Kuznetsov, A. V.; Senatorov, A. A.; Shubochkin, R. L.

    1993-08-01

    The polarization phase nonreciprocity in all-fiber ring interferometers based on single-mode optical fibers was studied experimentally. The results confirm existing theoretical models. Experimentally, it was possible to use fiber ring interferometers to measure the extinction coefficients of optical fiber polarizers. The largest extinction coefficients found for optical-fiber polarizers were 84 dB (for the wavelength 0.82 μm) and 86 dB (1.3 μm).

  1. Fiber optic connector

    DOEpatents

    Rajic, Slobodan; Muhs, Jeffrey D.

    1996-01-01

    A fiber optic connector and method for connecting composite materials within which optical fibers are imbedded. The fiber optic connector includes a capillary tube for receiving optical fibers at opposing ends. The method involves inserting a first optical fiber into the capillary tube and imbedding the unit in the end of a softened composite material. The capillary tube is injected with a coupling medium which subsequently solidifies. The composite material is machined to a desired configuration. An external optical fiber is then inserted into the capillary tube after fluidizing the coupling medium, whereby the optical fibers are coupled.

  2. Fiber optic connector

    DOEpatents

    Rajic, S.; Muhs, J.D.

    1996-10-22

    A fiber optic connector and method for connecting composite materials within which optical fibers are imbedded are disclosed. The fiber optic connector includes a capillary tube for receiving optical fibers at opposing ends. The method involves inserting a first optical fiber into the capillary tube and imbedding the unit in the end of a softened composite material. The capillary tube is injected with a coupling medium which subsequently solidifies. The composite material is machined to a desired configuration. An external optical fiber is then inserted into the capillary tube after fluidizing the coupling medium, whereby the optical fibers are coupled. 3 figs.

  3. Experimental research on continuous basalt fiber and basalt-fibers-reinforced polymers

    NASA Astrophysics Data System (ADS)

    Zhang, Xueyi; Zou, Guangping; Shen, Zhiqiang

    2008-11-01

    The interest for continuous basalt fibers and reinforced polymers has recently grown because of its low price and rich natural resource. Basalt fiber was one type of high performance inorganic fibers which were made from natural basalt by the method of melt extraction. This paper discusses basic mechanical properties of basalt fiber. The other work in this paper was to conduct tensile testing of continuous basalt fiber-reinforced polymer rod. Tensile strength and stress-strain curve were obtained in this testing. The strength of rod was fairly equal to rod of E-glass fibers and weaker than rod of carbon fibers. Surface of crack of rod was studied. An investigation of fracture mechanism between matrix and fiber was analyzed by SEM (Scanning electron microscopy) method. A poor adhesion between the matrix and fibers was also shown for composites analyzing SEM photos. The promising tensile properties of the presented basalt fibers composites have shown their great potential as alternative classical composites.

  4. Parallel Information Processing (Image Transmission Via Fiber Bundle and Multimode Fiber

    NASA Technical Reports Server (NTRS)

    Kukhtarev, Nicholai

    2003-01-01

    Growing demand for visual, user-friendly representation of information inspires search for the new methods of image transmission. Currently used in-series (sequential) methods of information processing are inherently slow and are designed mainly for transmission of one or two dimensional arrays of data. Conventional transmission of data by fibers requires many fibers with array of laser diodes and photodetectors. In practice, fiber bundles are also used for transmission of images. Image is formed on the fiber-optic bundle entrance surface and each fiber transmits the incident image to the exit surface. Since the fibers do not preserve phase, only 2D intensity distribution can be transmitted in this way. Each single mode fiber transmit only one pixel of an image. Multimode fibers may be also used, so that each mode represent different pixel element. Direct transmission of image through multimode fiber is hindered by the mode scrambling and phase randomization. To overcome these obstacles wavelength and time-division multiplexing have been used, with each pixel transmitted on a separate wavelength or time interval. Phase-conjugate techniques also was tested in, but only in the unpractical scheme when reconstructed image return back to the fiber input end. Another method of three-dimensional imaging over single mode fibers was demonstrated in, using laser light of reduced spatial coherence. Coherence encoding, needed for a transmission of images by this methods, was realized with grating interferometer or with the help of an acousto-optic deflector. We suggest simple practical holographic method of image transmission over single multimode fiber or over fiber bundle with coherent light using filtering by holographic optical elements. Originally this method was successfully tested for the single multimode fiber. In this research we have modified holographic method for transmission of laser illuminated images over commercially available fiber bundle (fiber endoscope, or

  5. In-fiber modal interferometer based on multimode and double cladding fiber segments for tunable fiber laser applications

    NASA Astrophysics Data System (ADS)

    Prieto-Cortés, P.; Álvarez-Tamayo, R. I.; Durán-Sánchez, M.; Castillo-Guzmán, A.; Salceda-Delgado, G.; Ibarra-Escamilla, B.; Kuzin, E. A.; Barcelata-Pinzón, A.; Selvas-Aguilar, R.

    2018-02-01

    We report an in-fiber structure based on the use of a multimode fiber segment and a double cladding fiber segment, and its application as spectral filter in an erbium-doped fiber laser for selection and tuning of the laser line wavelength. The output transmission of the proposed device exhibit spectrum modulation of the input signal with free spectral range of 21 nm and maximum visibility enhanced to more than 20 dB. The output spectrum of the in-fiber filter is wavelength displaced by bending application which allows a wavelength tuning of the generated laser line in a range of 12 nm. The use of the proposed in-fiber structure is demonstrated as a reliable, simple, and low-cost wavelength filter for tunable fiber lasers design and optical instrumentation applications.

  6. Strength and deformability of compressed concrete elements with various types of non-metallic fiber and rods reinforcement under static loading

    NASA Astrophysics Data System (ADS)

    Nevskii, A. V.; Baldin, I. V.; Kudyakov, K. L.

    2015-01-01

    Adoption of modern building materials based on non-metallic fibers and their application in concrete structures represent one of the important issues in construction industry. This paper presents results of investigation of several types of raw materials selected: basalt fiber, carbon fiber and composite fiber rods based on glass and carbon. Preliminary testing has shown the possibility of raw materials to be effectively used in compressed concrete elements. Experimental program to define strength and deformability of compressed concrete elements with non-metallic fiber reinforcement and rod composite reinforcement included design, manufacture and testing of several types of concrete samples with different types of fiber and longitudinal rod reinforcement. The samples were tested under compressive static load. The results demonstrated that fiber reinforcement of concrete allows increasing carrying capacity of compressed concrete elements and reducing their deformability. Using composite longitudinal reinforcement instead of steel longitudinal reinforcement in compressed concrete elements insignificantly influences bearing capacity. Combined use of composite rod reinforcement and fiber reinforcement in compressed concrete elements enables to achieve maximum strength and minimum deformability.

  7. 41. View of electro/mechanical fiber optic system panel in transmitter ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    41. View of electro/mechanical fiber optic system panel in transmitter building no. 102. Images projected to screen (panel at upper left) are projected to back side of screen located in MWOC to display changing information. - Clear Air Force Station, Ballistic Missile Early Warning System Site II, One mile west of mile marker 293.5 on Parks Highway, 5 miles southwest of Anderson, Anderson, Denali Borough, AK

  8. Latest development of high-power fiber lasers in SPI

    NASA Astrophysics Data System (ADS)

    Norman, Stephen; Zervas, Mikhail N.; Appleyard, Andrew; Durkin, Michael K.; Horley, Ray; Varnham, Malcolm P.; Nilsson, Johan; Jeong, Yoonchan

    2004-06-01

    High Power Fiber Lasers (HPFLs) and High Power Fiber Amplifiers (HPFAs) promise a number of benefits in terms of their high optical efficiency, degree of integration, beam quality, reliability, spatial compactness and thermal management. These benefits are driving the rapid adoption of HPFLs in an increasingly wide range of applications and power levels ranging from a few Watts, in for example analytical applications, to high-power >1kW materials processing (machining and welding) applications. This paper describes SPI"s innovative technologies, HPFL products and their performance capabilities. The paper highlights key aspects of the design basis and provides an overview of the applications space in both the industrial and aerospace domains. Single-fiber CW lasers delivering 1kW output power at 1080nm have been demonstrated and are being commercialized for aerospace and industrial applications with wall-plug efficiencies in the range 20 to 25%, and with beam parameter products in the range 0.5 to 100 mm.mrad (corresponding to M2 = 1.5 to 300) tailored to application requirements. At power levels in the 1 - 200 W range, SPI"s proprietary cladding-pumping technology, GTWaveTM, has been employed to produce completely fiber-integrated systems using single-emitter broad-stripe multimode pump diodes. This modular construction enables an agile and flexible approach to the configuration of a range of fiber laser / amplifier systems for operation in the 1080nm and 1550nm wavelength ranges. Reliability modeling is applied to determine Systems martins such that performance specifications are robustly met throughout the designed product lifetime. An extensive Qualification and Reliability-proving programme is underway to qualify the technology building blocks that are utilized for the fiber laser cavity, pump modules, pump-driver systems and thermo-mechanical management. In addition to the CW products, pulsed fiber lasers with pulse energies exceeding 1mJ with peak pulse

  9. Transverse mode instability of fiber oscillators in comparison with fiber amplifiers

    NASA Astrophysics Data System (ADS)

    Hejaz, Kamran; Shayganmanesh, Mahdi; Azizi, Saeed; Abedinajafi, Ali; Roohforouz, Ali; Rezaei-Nasirabad, Reza; Vatani, Vahid

    2018-05-01

    Transverse mode instability (TMI) is experimentally investigated in a fiber oscillator and a fiber amplifier. For a reasonable comparison of TMI in these two configurations, the same optical components and design parameters are applied to both. Our experimental results show that the TMI power threshold in a fiber oscillator is lower than in a corresponding fiber amplifier. By using simulation software, a fiber oscillator and an amplifier are designed with similar characteristics, to provide identical conditions for all effective parameters on TMI in both of them. Since the signal propagation in fiber oscillators is different from that of single-pass fiber amplifiers, and also since both forward and backward propagating signals in fiber oscillators can generate thermo-optic index gratings, the observed lower TMI threshold in the fiber oscillator is due to its different interaction of light with index gratings.

  10. 22 CFR 908.3 - Board recommendations.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 22 Foreign Relations 2 2010-04-01 2010-04-01 true Board recommendations. 908.3 Section 908.3 Foreign Relations FOREIGN SERVICE GRIEVANCE BOARD REMEDIES § 908.3 Board recommendations. (a) If the Board... disciplinary action against any employee of an Agency, it shall make an appropriate recommendation to the head...

  11. 22 CFR 908.3 - Board recommendations.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 22 Foreign Relations 2 2011-04-01 2009-04-01 true Board recommendations. 908.3 Section 908.3 Foreign Relations FOREIGN SERVICE GRIEVANCE BOARD REMEDIES § 908.3 Board recommendations. (a) If the Board... disciplinary action against any employee of an Agency, it shall make an appropriate recommendation to the head...

  12. 22 CFR 909.3 - Board recommendation.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 22 Foreign Relations 2 2011-04-01 2009-04-01 true Board recommendation. 909.3 Section 909.3 Foreign Relations FOREIGN SERVICE GRIEVANCE BOARD DECISIONMAKING § 909.3 Board recommendation. Where the Board's decision is a recommendation, it shall be directed to the head of the Agency. A copy of the...

  13. 22 CFR 909.3 - Board recommendation.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 22 Foreign Relations 2 2010-04-01 2010-04-01 true Board recommendation. 909.3 Section 909.3 Foreign Relations FOREIGN SERVICE GRIEVANCE BOARD DECISIONMAKING § 909.3 Board recommendation. Where the Board's decision is a recommendation, it shall be directed to the head of the Agency. A copy of the...

  14. 22 CFR 401.28 - Advisory boards.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 22 Foreign Relations 2 2010-04-01 2010-04-01 true Advisory boards. 401.28 Section 401.28 Foreign Relations INTERNATIONAL JOINT COMMISSION, UNITED STATES AND CANADA RULES OF PROCEDURE References § 401.28 Advisory boards. (a) The Commission may appoint a board or boards, composed of qualified persons, to...

  15. 22 CFR 902.3 - Board staff.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 22 Foreign Relations 2 2011-04-01 2009-04-01 true Board staff. 902.3 Section 902.3 Foreign Relations FOREIGN SERVICE GRIEVANCE BOARD ORGANIZATION § 902.3 Board staff. The chairperson shall select the Board's executive secretary and other staff provided for in the Act. The executive secretary and staff...

  16. 22 CFR 902.3 - Board staff.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 22 Foreign Relations 2 2010-04-01 2010-04-01 true Board staff. 902.3 Section 902.3 Foreign Relations FOREIGN SERVICE GRIEVANCE BOARD ORGANIZATION § 902.3 Board staff. The chairperson shall select the Board's executive secretary and other staff provided for in the Act. The executive secretary and staff...

  17. 22 CFR 902.3 - Board staff.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 22 Foreign Relations 2 2013-04-01 2009-04-01 true Board staff. 902.3 Section 902.3 Foreign Relations FOREIGN SERVICE GRIEVANCE BOARD ORGANIZATION § 902.3 Board staff. The chairperson shall select the Board's executive secretary and other staff provided for in the Act. The executive secretary and staff...

  18. 22 CFR 902.3 - Board staff.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 22 Foreign Relations 2 2012-04-01 2009-04-01 true Board staff. 902.3 Section 902.3 Foreign Relations FOREIGN SERVICE GRIEVANCE BOARD ORGANIZATION § 902.3 Board staff. The chairperson shall select the Board's executive secretary and other staff provided for in the Act. The executive secretary and staff...

  19. 22 CFR 902.3 - Board staff.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 22 Foreign Relations 2 2014-04-01 2014-04-01 false Board staff. 902.3 Section 902.3 Foreign Relations FOREIGN SERVICE GRIEVANCE BOARD ORGANIZATION § 902.3 Board staff. The chairperson shall select the Board's executive secretary and other staff provided for in the Act. The executive secretary and staff...

  20. What Makes School Boards Effective?

    ERIC Educational Resources Information Center

    Zeigler, L. Harmon

    Two models may be used to describe school board governance. The democratic model defines effectiveness in terms of democratic criteria. It is characterized by vigorous competition for school board positions; board members are responsive to their constituencies; the superintendent acts as policy implementor rather than policy originator, and a…

  1. The Application of Coconut Fiber as Dissipative Silencer

    NASA Astrophysics Data System (ADS)

    Madlan, M. A.; Ghazali, M. I.; Zaman, I.; Kasron, M. Z.; Ying, T. C.

    2017-01-01

    Heat ventilation air conditioning system (HVAC) is one of the ducting systems that broadly applied in the building. There are HVAC silencers in the market, however the sound absorptive material commonly used is mineral wool. In this research study, a sound absorptive material made of coconut fiber was tested to identify its performance as a potential replacement of green material for ducting silencer. The experiment was carried out in a testing apparatus that follows the BS EN ISO 11691:2009 standard. Different configurations of sound absorptive material and contents of coconut fiber were investigated in the study. The trend of insertion loss at 1/3 octave frequency was identified where at frequency below 3000Hz, the insertion loss of dissipative silencer is observed high at certain frequency with a very narrow range. At 3000Hz, the insertion loss of 4dB to 6dB is constant until 4000Hz and drops until 5000Hz before it increases again steadily up to 13dB at 10000Hz. A similar trend was observed for different configuration of sound absorptive material. Despite the configuration different, the outcome shows that the insertion loss is increasing with higher content of coconut fiber.

  2. Board Saver for Use with Developmental FPGAs

    NASA Technical Reports Server (NTRS)

    Berkun, Andrew

    2009-01-01

    A device denoted a board saver has been developed as a means of reducing wear and tear of a printed-circuit board onto which an antifuse field programmable gate array (FPGA) is to be eventually soldered permanently after a number of design iterations. The need for the board saver or a similar device arises because (1) antifuse-FPGA design iterations are common and (2) repeated soldering and unsoldering of FPGAs on the printed-circuit board to accommodate design iterations can wear out the printed-circuit board. The board saver is basically a solderable/unsolderable FPGA receptacle that is installed temporarily on the printed-circuit board. The board saver is, more specifically, a smaller, square-ring-shaped, printed-circuit board (see figure) that contains half via holes one for each contact pad along its periphery. As initially fabricated, the board saver is a wider ring containing full via holes, but then it is milled along its outer edges, cutting the via holes in half and laterally exposing their interiors. The board saver is positioned in registration with the designated FPGA footprint and each via hole is soldered to the outer portion of the corresponding FPGA contact pad on the first-mentioned printed-circuit board. The via-hole/contact joints can be inspected visually and can be easily unsoldered later. The square hole in the middle of the board saver is sized to accommodate the FPGA, and the thickness of the board saver is the same as that of the FPGA. Hence, when a non-final FPGA is placed in the square hole, the combination of the non-final FPGA and the board saver occupy no more area and thickness than would a final FPGA soldered directly into its designated position on the first-mentioned circuit board. The contact leads of a non-final FPGA are not bent and are soldered, at the top of the board saver, to the corresponding via holes. A non-final FPGA can readily be unsoldered from the board saver and replaced by another one. Once the final FPGA design

  3. 12 CFR 905.10 - Board of Directors.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ..., functioning and organization of the Finance Board; (iii) Ensuring effective coordination and communication... and Banking FEDERAL HOUSING FINANCE BOARD FEDERAL HOUSING FINANCE BOARD ORGANIZATION AND OPERATIONS DESCRIPTION OF ORGANIZATION AND FUNCTIONS General Organization § 905.10 Board of Directors. (a) Board of...

  4. 12 CFR 905.10 - Board of Directors.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ..., functioning and organization of the Finance Board; (iii) Ensuring effective coordination and communication... and Banking FEDERAL HOUSING FINANCE BOARD FEDERAL HOUSING FINANCE BOARD ORGANIZATION AND OPERATIONS DESCRIPTION OF ORGANIZATION AND FUNCTIONS General Organization § 905.10 Board of Directors. (a) Board of...

  5. Bioinspired design and macroscopic assembly of poly(vinyl alcohol)-coated graphene into kilometers-long fibers

    NASA Astrophysics Data System (ADS)

    Kou, Liang; Gao, Chao

    2013-05-01

    Nacre is characterized by its excellent mechanical performance due to the well-recognized ``brick and mortar'' structure. Many efforts have been applied to make nacre-mimicking materials, but it is still a big challenge to realize their continuous production. Here, we prepared sandwich-like building blocks of poly(vinyl alcohol) (PVA)-coated graphene, and achieved high-nanofiller-content kilometers-long fibers by continuous wet-spinning assembly technology. The fibers have a strict ``brick and mortar'' layered structure, with graphene sheet as rigid brick and PVA as soft mortar. The mortar thickness can be precisely tuned from 2.01 to 3.31 nm by the weight feed ratio of PVA to graphene, as demonstrated by both atomic force microscopy and X-ray diffraction measurements. The mechanical strength of the nacre-mimicking fibers increases with increasing the content of PVA, and it rises gradually from 81 MPa for the fiber with 53.1 wt% PVA to 161 MPa for the fiber with 65.8 wt% PVA. The mechanical performance of our fibers was independent of the molecular weight (MW) of PVA in the wide range of 2-100 kDa, indicating that low MW polymers can also be used to make strong nanocomposites. The tensile stress of fibers immersed in PVA 5 wt% solution reached ca. 200 MPa, surpassing the values of nacre and most of other nacre-mimicking materials. The nacre-mimicking fibers are highly electrically conductive (~350 S m-1) after immersing in hydroiodic acid, enabling them to connect a circuit to illuminate an LED lamp.Nacre is characterized by its excellent mechanical performance due to the well-recognized ``brick and mortar'' structure. Many efforts have been applied to make nacre-mimicking materials, but it is still a big challenge to realize their continuous production. Here, we prepared sandwich-like building blocks of poly(vinyl alcohol) (PVA)-coated graphene, and achieved high-nanofiller-content kilometers-long fibers by continuous wet-spinning assembly technology. The fibers

  6. Advanced specialty fiber designs for high power fiber lasers

    NASA Astrophysics Data System (ADS)

    Gu, Guancheng

    The output power of fiber lasers has increased rapidly over the last decade. There are two major limiting factors, namely nonlinear effects and transverse mode instability, prohibiting the power scaling capability of fiber lasers. The nonlinear effects, originating from high optical intensity, primarily limit the peak power scaling. The mode instability, on the other hand, arises from quantum-defect driven heating, causing undesired mode coupling once the power exceeds the threshold and degradation of beam quality. The mode instability has now become the bottleneck for average output power scaling of fiber lasers. Mode area scaling is the most effective way to mitigate nonlinear effects. However, the use of large mode area may increase the tendency to support multiple modes in the core, resulting in lower mode instability threshold. Therefore, it is critical to maintain single mode operation in a large mode area fiber. Sufficient higher order mode suppression can lead to effective single-transverse-mode propagation. In this dissertation, we explore the feasibility of using specialty fiber to construct high power fiber lasers with robust single-mode output. The first type of fiber discussed is the resonantly-enhanced leakage channel fiber. Coherent reflection at the fiber outer boundary can lead to additional confinement especially for highly leaky HOM, leading to lower HOM losses than what are predicted by conventional finite element mothod mode solver considering infinite cladding. In this work, we conducted careful measurements of HOM losses in two leakage channel fibers (LCF) with circular and rounded hexagonal boundary shapes respectively. Impact on HOM losses from coiling, fiber boundary shapes and coating indexes were studied in comparison to simulations. This work demonstrates the limit of the simulation method commonly used in the large-mode-area fiber designs and the need for an improved approach. More importantly, this work also demonstrates that a

  7. Effective Superintendent-School Board Practices: Strategies for Developing and Maintaining Good Relationships with Your Board

    ERIC Educational Resources Information Center

    Townsend, Rene S.; Johnston, Gloria L.; Gross, Gwen E.; Lynch, Peggy; Garcy, Lorraine M.; Roberts, Benita B.; Novotney, Patricia B.

    2006-01-01

    Foster a strong superintendent-school board relationship centered on quality teaching and learning! This book helps current and future superintendents and school board members develop an effective governance team that prioritizes quality teaching and learning. Designed for practicing and aspiring superintendents and school board members, this…

  8. Bringing out the Best Board Behavior

    ERIC Educational Resources Information Center

    Caruso, Nicholas

    2004-01-01

    The author's advice for for a school board superintendent is to assume incompetence instead of malevolence. Board members who behave inappropriately are a minority, and those with malicious intent are extremely rare. Most misbehaving board members act out of frustration. They may not understand the appropriate role of a board member.…

  9. The Influence of the General Board of the Navy on Interwar Destroyer Design

    DTIC Science & Technology

    2011-06-10

    how the Board refers to using commissioned and crewed new designs and learing from ―experience,‖ this was an obvious reference to the annual Fleet...but also on the stability of the Gleaves-class of 2000 plus tons. Admiral Ernest J. King , the next CNO for the Navy and Commander in Chief of the...over the next few years.186 Admiral King outlined the priorities in the Navy’s two-ocean building program in an important memorandum to the

  10. Report of the 2002 Texas Public School Technology Survey Prepared for the Telecommunications Infrastructure Fund Board and Texas Public Schools.

    ERIC Educational Resources Information Center

    Denton, Jon; Davis, Trina; Strader, Arlen; Durbin, Brooke

    Over the past four legislative sessions, the Texas State Legislature enacted laws that have accelerated the integration of technology into public education. The significant effort to build technology infrastructure in Texas is evident through the thousands of public school awards provided by the Telecommunications Infrastructure Fund (TIF) Board,…

  11. Report of the 2000 Texas Public School Technology Survey Prepared for the Telecommunications Infrastructure Fund Board and Texas Public Schools.

    ERIC Educational Resources Information Center

    Denton, Jon; Davis, Trina; Strader, Arlen

    Over the past three legislative sessions, the Texas State Legislature enacted laws that have accelerated the integration of technology into public education. Significant efforts to build technology infrastructure in Texas are evident through the thousands of public school awards provided by the Telecommunications Infrastructure Fund Board (TIF),…

  12. Optoelectronic Fibers via Selective Amplification of In-Fiber Capillary Instabilities.

    PubMed

    Wei, Lei; Hou, Chong; Levy, Etgar; Lestoquoy, Guillaume; Gumennik, Alexander; Abouraddy, Ayman F; Joannopoulos, John D; Fink, Yoel

    2017-01-01

    Thermally drawn metal-insulator-semiconductor fibers provide a scalable path to functional fibers. Here, a ladder-like metal-semiconductor-metal photodetecting device is formed inside a single silica fiber in a controllable and scalable manner, achieving a high density of optoelectronic components over the entire fiber length and operating at a bandwidth of 470 kHz, orders of magnitude larger than any other drawn fiber device. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Comparison of fiber lasers based on distributed side-coupled cladding-pumped fibers and double-cladding fibers.

    PubMed

    Huang, Zhihe; Cao, Jianqiu; Guo, Shaofeng; Chen, Jinbao; Xu, Xiaojun

    2014-04-01

    We compare both analytically and numerically the distributed side-coupled cladding-pumped (DSCCP) fiber lasers and double cladding fiber (DCF) lasers. We show that, through optimization of the coupling and absorbing coefficients, the optical-to-optical efficiency of DSCCP fiber lasers can be made as high as that of DCF lasers. At the same time, DSCCP fiber lasers are better than the DCF lasers in terms of thermal management.

  14. Applying 4-H Judging Strategies to Board, Dice, and Card Games: Developing Skills in Urban and Suburban Youths

    ERIC Educational Resources Information Center

    Brandt, Brian; Stowe, James

    2017-01-01

    Most 4-H judging events involve livestock or other traditional 4-H projects. Consequently, many urban and suburban youths miss out on building life skills developed through judging. In a nontraditional approach to 4-H judging, such youths play board, dice, and card games and then judge the games using the practice of giving oral reasons. The…

  15. Random fiber laser based on artificially controlled backscattering fibers.

    PubMed

    Wang, Xiaoliang; Chen, Daru; Li, Haitao; She, Lijuan; Wu, Qiong

    2018-01-10

    The random fiber laser (RFL), which is a milestone in laser physics and nonlinear optics, has attracted considerable attention recently. Most previously reported RFLs are based on distributed feedback of Rayleigh scattering amplified through the stimulated Raman-Brillouin scattering effect in single-mode fibers, which require long-distance (tens of kilometers) single-mode fibers and high threshold, up to watt level, due to the extremely small Rayleigh scattering coefficient of the fiber. We proposed and demonstrated a half-open-cavity RFL based on a segment of an artificially controlled backscattering single-mode fiber with a length of 210 m, 310 m, or 390 m. A fiber Bragg grating with a central wavelength of 1530 nm and a segment of artificially controlled backscattering single-mode fiber fabricated by using a femtosecond laser form the half-open cavity. The proposed RFL achieves thresholds of 25 mW, 30 mW, and 30 mW, respectively. Random lasing at a wavelength of 1530 nm and extinction ratio of 50 dB is achieved when a segment of 5 m erbium-doped fiber is pumped by a 980 nm laser diode in the RFL. A novel RFL with many short cavities has been achieved with low threshold.

  16. Oxynitride glass fibers

    NASA Technical Reports Server (NTRS)

    Patel, Parimal J.; Messier, Donald R.; Rich, R. E.

    1991-01-01

    Research at the Army Materials Technology Laboratory (AMTL) and elsewhere has shown that many glass properties including elastic modulus, hardness, and corrosion resistance are improved markedly by the substitution of nitrogen for oxygen in the glass structure. Oxynitride glasses, therefore, offer exciting opportunities for making high modulus, high strength fibers. Processes for making oxynitride glasses and fibers of glass compositions similar to commercial oxide glasses, but with considerable enhanced properties, are discussed. We have made glasses with elastic moduli as high as 140 GPa and fibers with moduli of 120 GPa and tensile strengths up to 2900 MPa. AMTL holds a U.S. patent on oxynitride glass fibers, and this presentation discusses a unique process for drawing small diameter oxynitride glass fibers at high drawing rates. Fibers are drawn through a nozzle from molten glass in a molybdenum crucible at 1550 C. The crucible is situated in a furnace chamber in flowing nitrogen, and the fiber is wound in air outside of the chamber, making the process straightforward and commercially feasible. Strengths were considerably improved by improving glass quality to minimize internal defects. Though the fiber strengths were comparable with oxide fibers, work is currently in progress to further improve the elastic modulus and strength of fibers. The high elastic modulus of oxynitride glasses indicate their potential for making fibers with tensile strengths surpassing any oxide glass fibers, and we hope to realize that potential in the near future.

  17. 4 CFR 27.1 - The Board.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 4 Accounts 1 2010-01-01 2010-01-01 false The Board. 27.1 Section 27.1 Accounts GOVERNMENT... § 27.1 The Board. The Government Accountability Office Personnel Appeals Board, hereinafter the Board... of 31 U.S.C. 751. For purposes of the regulations in this part and 4 CFR part 28, a simple majority...

  18. 76 FR 40950 - Public Company Accounting Oversight Board; Notice of Filing of Proposed Board Funding Final Rules...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-12

    ... Accounting Oversight Board; Notice of Filing of Proposed Board Funding Final Rules for Allocation of the...'' means the portion of the accounting support fee established by the Board that is to be allocated among... support fee'' means the portion of the accounting support fee established by the Board that is to be...

  19. Life cycle assessment of hemp cultivation and use of hemp-based thermal insulator materials in buildings.

    PubMed

    Zampori, Luca; Dotelli, Giovanni; Vernelli, Valeria

    2013-07-02

    The aim of this research is to assess the sustainability of a natural fiber, such as hemp (Cannabis sativa), and its use as thermal insulator for building applications. The sustainability of hemp was quantified by life cycle assessment (LCA) and particular attention was given to the amount of CO2eq of the whole process, and the indicator greenhouse gas protocol (GGP) was selected to quantify CO2eq emissions. In this study also CO2 uptake of hemp was considered. Two different allocation procedures (i.e., mass and economic) were adopted. Other indicators, such as Cumulative Energy Demand (CED) and EcoIndicator99 H were calculated. The production of 1 ha yielded 15 ton of hemp, whose global warming potential (GWP100) was equal to about -26.01 ton CO2eq: the amount allocated to the technical fiber (20% of the total amount of hemp biomass) was -5.52 ton CO2eq when mass allocation was used, and -5.54 ton CO2eq when economic allocation was applied. The sustainability for building applications was quantified by considering an insulation panel made by hemp fiber (85%) and polyester fiber (15%) in 1 m(2) of wall having a thermal transmittance (U) equal to 0.2 W/m(2)_K. The environmental performances of the hemp-based panel were compared to those of a rockwool-based one.

  20. Development of a scintillating optical fiber ionization calorimeter

    NASA Astrophysics Data System (ADS)

    Takahashi, Y.

    1990-10-01

    A design study of a scintillation fiber (SF) calorimeter for a cosmic ray observation is made. An evaluation of various fibers and design configuration was made. The proposed design has a dimension of 1 m (W) x 1 m (L) x 16 cm (H) contains 1000 fibers at each of 40 x- or 40 y-layers interleaved with 1mm thick leadplates. Two or four CCD Particle Track Imaging Systems are connected to a bundle of SF edges at x- and y-ends. The overall weight of a calorimeter is 1,200 kg including read-out systems and supporting boards. The designed calorimeter can measure cosmic ray nuclei and gamma-rays with position, angles and energy information suitable for detailed spectrum analysis. The system is particularly beneficial at very high energies where the flux is extremely low and it requires a very long exposure over many years in space. Emulsion chambers have an advantage for cosmic ray measurements if the exposure is limited to several months in space. In fact, the most important energy region for the current cosmic ray studies is at around 1,000 TeV where a drastic change of elemental composition is indicated by various indirect observations. A detector whose size is in the order of 1 m(sup 2) requires several years of exposure in space accumulate sufficient statistics near 1,000 TeV. Emulsions will be strongly contaminated by background radiation for such a long duration flight, while SF calorimeter is totally immune from this concern. This is particularly important for long-duration experiments. The SF calorimeter also allows time-tagging of individual events, extending the experimental capability in various ways.