Sample records for fiber coated prepreg

  1. Multipurpose Prepregging Machine

    NASA Technical Reports Server (NTRS)

    Johnston, N. J.; Wilkinson, Steven; Marchello, J. M.; Dixon, D.

    1995-01-01

    Machine designed and built for variety of uses involving coating or impregnating ("prepregging") fibers, tows, yarns, or webs or tapes made of such fibrous materials with thermoplastic or thermosetting resins. Prepreg materials produced used to make matrix/fiber composite materials. Comprises modules operated individually, sequentially, or simultaneously, depending on nature of specific prepreg material and prepregging technique used. Machine incorporates number of safety features.

  2. Thermally sprayed prepregs for thixoforging of UD fiber reinforced light metal MMCs

    NASA Astrophysics Data System (ADS)

    Silber, Martin; Wenzelburger, Martin; Gadow, Rainer

    2007-04-01

    Low density and good mechanical properties are the basic requirements for lightweight structures in automotive and aerospace applications. With their high specific strength and strain to failure values, aluminum alloys could be used for such applications. Only the insufficient stiffness and thermal and fatigue strength prevented their usage in high-end applications. One possibility to solve this problem is to reinforce the light metal with unidirectional fibers. The UD fiber allows tailoring of the reinforcement to meet the direction of the component's load. In this study, the production of thermally sprayed prepregs for the manufacturing of continuous fiber reinforced MMC by thixoforging is analysed. The main aim is to optimize the winding procedure, which determines the fiber strand position and tension during the coating process. A method to wind and to coat the continuous fibers with an easy-to-use handling technique for the whole manufacturing process is presented. The prepregs were manufactured by producing arc wire sprayed AlSi6 coatings on fibers bundles. First results of bending experiments showed appropriate mechanical properties.

  3. Thermoplastic coating of carbon fibers

    NASA Technical Reports Server (NTRS)

    Edie, D. D.; Lickfield, G. C.; Allen, L. E.; Mccollum, J. R.

    1989-01-01

    A continuous powder coating system was developed for coating carbon fiber with LaRC-TPI (Langley Research Center-Thermoplastic Polyimide), a high-temperature thermoplastic polymide invented by NASA-Langley. The coating line developed used a pneumatic fiber spreader to separate the individual fibers. The polymer was applied within a recirculating powder coating chamber then melted using a combination of direct electrical resistance and convective heating to make it adhere to the fiber tow. The tension and speed of the line were controlled with a dancer arm and an electrically driven fiber wind-up and wind-off. The effects of heating during the coating process on the flexibility of the prepreg produced were investigated. The uniformity with which the fiber tow could be coated with polymer also was examined. Composite specimens were fabricated from the prepreg and tested to determine optimum process conditions. The study showed that a very uniform and flexible prepeg with up to 50 percent by volume polymer could be produced with this powder coating system. The coating line minimized powder loss and produced prepeg in lengths of up to 300 m. The fiber spreading was found to have a major effect on the coating uniformity and flexibility. Though test results showed low composite tensile strengths, analysis of fracture surfaces under scanning electron microscope indicated that fiber/matrix adhesion was adequate.

  4. Combining LaRC-TPI powder with carbon fiber by electrostatic fluidized bed coating

    NASA Technical Reports Server (NTRS)

    Varughese, Babu; Muzzy, John; Baucom, Robert M.

    1989-01-01

    Thermoplastic polyimide prepreg tow is produced rapidly and efficiently by applying the LaRC-TPI matrix as an electrostatically charged and fluidized powder to electrically grounded and spread carbon fiber tow. The powder is melted after coating to insure adhesion to the fibers and to reduce tow friction. Excellent wetout in towpreg samples is obtained resulting in very flexible prepregs. Processing conditions of this towpreg produced with LaRC-TPI powders from Rogers Corp. and Mitsui Toatsu Chemicals are described. Mechanical properties of the towpreg and unidirectional laminates are presented in detail.

  5. Thermoplastic coating of carbon fibers

    NASA Technical Reports Server (NTRS)

    Edie, D. D.; Lickfield, G. C.; Drews, M. J.; Ellison, M. S.; Gantt, B. W.

    1989-01-01

    A process is being developed which evenly coats individual carbon fibers with thermoplastic polymers. In this novel, continuous coating process, the fiber tow bundle is first spread cover a series of convex rollers and then evenly coated with a fine powder of thermoplastic matrix polymer. Next, the fiber is heated internally by passing direct current through the powder coated fiber. The direct current is controlled to allow the carbon fiber temperature to slightly exceed the flow temperature of the matrix polymer. Analysis of the thermoplastic coated carbon fiber tows produced using this continuous process indicates that 30 to 70 vol pct fiber prepregs can be obtained.

  6. System Applies Polymer Powder To Filament Tow

    NASA Technical Reports Server (NTRS)

    Baucom, Robert M.; Snoha, John J.; Marchello, Joseph M.

    1993-01-01

    Polymer powder applied uniformly and in continuous manner. Powder-coating system applies dry polymer powder to continuous fiber tow. Unique filament-spreading technique, combined with precise control of tension on fibers in system, ensures uniform application of polymer powder to web of spread filaments. Fiber tows impregnated with dry polymer powders ("towpregs") produced for preform-weaving and composite-material-molding applications. System and process valuable to prepreg industry, for production of flexible filament-windable tows and high-temperature polymer prepregs.

  7. Method for Coating a Tow with an Electrospun Nanofiber

    NASA Technical Reports Server (NTRS)

    Kohlman, Lee W. (Inventor); Roberts, Gary D. (Inventor)

    2015-01-01

    Method and apparatus for enhancing the durability as well as the strength and stiffness of prepreg fiber tows of the sort used in composite materials are disclosed. The method involves adhering electrospun fibers onto the surface of such composite materials as filament-wound composite objects and the surface of prepreg fiber tows of the sort that are subsequently used in the production of composite materials of the filament-wound, woven, and braided sorts. The apparatus performs the methods described herein.

  8. Fabrication Of Carbon-Boron Reinforced Dry Polymer Matrix Composite Tape

    NASA Technical Reports Server (NTRS)

    Belvin, Harry L.; Cano, Roberto J.; Treasure, Monte; Shahood, Thomas W.

    1999-01-01

    Future generation aerospace vehicles will require specialized hybrid material forms for component structure fabrication. For this reason, high temperature composite prepregs in both dry and wet forms are being developed at NASA Langley Research Center (LaRC). In an attempt to improve compressive properties of carbon fiber reinforced composites, a hybrid carbon-boron tape was developed and used to fabricate composite laminates which were subsequently cut into flexural and compression specimens and tested. The hybrid material, given the designation HYCARB, was fabricated by modifying a previously developed process for the manufacture of dry polymer matrix composite (PMC) tape at LaRC. In this work, boron fibers were processed with IM7/LaRC(TradeMark)IAX poly(amide acid) solution-coated prepreg to form a dry hybrid tape for Automated Tow Placement (ATP). Boron fibers were encapsulated between two (2) layers of reduced volatile, low fiber areal weight poly(amide acid) solution-coated prepreg. The hybrid prepreg was then fully imidized and consolidated into a dry tape suitable for ATP. The fabrication of a hybrid boron material form for tow placement aids in the reduction of the overall manufacturing cost of boron reinforced composites, while realizing the improved compression strengths. Composite specimens were press-molded from the hybrid material and exhibited excellent mechanical properties.

  9. Polymer Infiltration Studies

    NASA Technical Reports Server (NTRS)

    Marchello, Joseph M.

    1991-01-01

    Progress was made on the preparation of carbon fiber composites using advanced polymer resins. Processes reported include powder towpreg process, weaving towpreg made from dry powder prepreg, composite from powder coated towpreg, and toughening of polyimide resin (PMR) composites by semi-interpenetrating networks. Several important areas of polymer infiltration into fiber bundles will be researched. Preparation to towpreg for textile preform weaving and braiding and for automated tow placement is a major goal, as are the continued development of prepregging technology and the various aspects of composite part fabrication.

  10. Polymer infiltration studies

    NASA Technical Reports Server (NTRS)

    Marchello, Joseph M.

    1993-01-01

    During the past three months, significant progress has been made on the preparation of carbon fiber composites using advanced polymer resins. The results are set forth in recent reports and publications, and will be presented at forthcoming national and international meetings. Current and ongoing research activities reported herein include: textile composites from powder-coated towpreg; role of surface coating in braiding; prepregger hot sled operation; ribbonizing powder-impregenated towpreg; textile composites from powder-coated towpreg; role of bulk factor powder curtain prepreg process advanced tow placement (ATP) open-section part warpage control. During the coming months research will be directed toward further development of the new powder curtain prepregging method and on ways to customize dry powder towpreg for textile and robotic applications in aircraft part fabrication. Studies of multi-tow powder prepregging and ribbon preparation will be conducted in conjunction with continued development of prepregging technology and the various aspects of composite part fabrication using customized towpreg. Also, during the period ahead work will continue on the analysis of the performance of the new solution prepregger.

  11. Vacuum Powder Injector

    NASA Technical Reports Server (NTRS)

    Working, Dennis C.

    1991-01-01

    Method developed to provide uniform impregnation of bundles of carbon-fiber tow with low-solubility, high-melt-flow polymer powder materials to produce composite prepregs. Vacuum powder injector expands bundle of fiber tow, applies polymer to it, then compresses bundle to hold powder. System provides for control of amount of polymer on bundle. Crystallinity of polymer maintained by controlled melt on takeup system. All powder entrapped, and most collected for reuse. Process provides inexpensive and efficient method for making composite materials. Allows for coating of any bundle of fine fibers with powders. Shows high potential for making prepregs of improved materials and for preparation of high-temperature, high-modulus, reinforced thermoplastics.

  12. Thermoplastic coating of carbon fibers

    NASA Technical Reports Server (NTRS)

    Edie, D. D.; Lickfield, G. C.

    1991-01-01

    Using a continuous powder coating process, more than 1500 meters of T 300/LaRC-TPI prepreg were produced. Two different types of heating sections in the coating line, namely electrical resistance and convection heating, were utilized. These prepregs were used to fabricate unidirectional composites. During composite fabrication the cure time of the consolidation was varied, and composites samples were produced with and without vacuum. Under these specimens, the effects of the different heating sections and of the variation of the consolidation parameters on mechanical properties and void content were investigated. The void fractions of the various composites were determined from density measurements, and the mechanical properties were measured by tensile testing, short beam shear testing and dynamic mechanical analysis.

  13. Thermoplastic coating of carbon fibers

    NASA Technical Reports Server (NTRS)

    Edie, D. D.; Lickfield, G. C.; Drews, M. J.; Ellison, M. S.; Allen, L. E.; Mccollum, J. R.; Thomas, H. L.

    1988-01-01

    Now that quantities of prepreg were made on the thermoplastic coating line, they are being formed into both textile preform structures and directly into composite samples. The textile preforms include both woven and knitted structures which will be thermoformed into a finished part. In order to determine if the matrix resin is properly adhering to the fibers or if voids are being formed in the coating process, the tensile strength and modulus of these samples will be tested. The matrix uniformity of matrix distribution in these samples is also being determined using an image analyzer.

  14. A Fundamental Study of the Electromagnetic Properties of Advanced Composite Materials

    DTIC Science & Technology

    1978-07-01

    MKDC), Space and Missile Systems Organization (SAMSO). Aeronautical System Division (ASD), Electronic Systems Division ( ESD ), Air Force Avionics...discussions, the work reported involved only one fiber type--Thornel T300 as used in Narmco 5208 pre-preg tapes . Individual graphite fibers have radii... teflon coated tweezers to separate individual fibers from the bundle. Microscopic observation and a steady hand during this procedure improved the

  15. The development and evaluation of an alternative powder prepregging technique for use with LaRC-TPI/graphite composites

    NASA Technical Reports Server (NTRS)

    Ogden, Andrea L.; Hyer, Michael W.; Wilkes, Garth L.; Loos, Alfred C.; St.clair, Terry L.

    1991-01-01

    An alternative powder prepregging method for use with LaRC-TPI (a thermoplastic polyimide)/graphite composites is investigated. The alternative method incorporates the idea of moistening the fiber prior to powder coating. Details of the processing parameters are given and discussed. The material was subsequently laminated into small coupons which were evaluated for processing defects using electron microscopy. After the initial evaluation of the material, no major processing defects were encountered but there appeared to be an interfacial adhesion problem. As a result, prepregging efforts were extended to include an additional fiber system, XAS, and a semicrystalline form of the matrix. The semicrystalline form of the matrix was the result of a complex heat treating cycle. Using scanning electron microscopy (SEM), the fiber/matrix adhesion was evaluated in these systems relative to the amorphous/XAS coupons. Based on these results, amorphous and semicrystalline/AS-4 and XAS materials were prepregged and laminated for transverse tensile testing. The results of these tests are presented, and in an effort to obtain more information on the effect of the matrix, remaining semicrystalline transverse tensile coupons were transformed back to the amorphous state and tested. The mechanical properties of the transformed coupons returned to the values observed for the original amorphous coupons, and the interfacial adhesion, as observed by SEM, was better than in any previous sample.

  16. Polymer Infiltration Studies

    NASA Technical Reports Server (NTRS)

    Marchello, Joseph M.

    1993-01-01

    Significant progress has been made on the preparation of carbon fiber composites using advanced polymer resins during the past three months. Current and ongoing research activities reported herein include: (1) Prepregger Hot Sled Operation; (2) Ribbonizing Powder-Impregnated Towpreg; (3) Textile Composites from Powder-Coated Towpreg: Role of Bulk Factor; and (4) Powder Curtain Prepreg Process. During the coming months research will be directed toward further development of the new powder curtain prepregging method and on ways to customize dry powder towpreg for textile and robotic applications in aircraft part fabrication. Studies of multi-tow powder prepregging and ribbon preparation will be conducted in conjunction with continued development of prepegging technology and the various aspects of composite part fabrication using customized towpreg. Also, work will continue on the analysis of the new solution prepegger.

  17. Polymer infiltration studies

    NASA Technical Reports Server (NTRS)

    Marchello, Joseph M.

    1994-01-01

    During the past three months, significant progress has been made on the preparation of carbon fiber composites using advanced polymer resins. The results are set forth in recent reports and publications, and will be presented at forthcoming national and international meetings. Current and ongoing research activities reported herein include: textile composites from powder-coated towpreg - role of surface coating in braiding; prepregger hot sled operation in making tape from powder coated tow; ribbonizing powder-impregnated towpreg; textile composites from powder-coated towpreg - role of bulk factor in consolidation; powder curtain prepreg process improvements in doctoring of powder; and hot/cold shoe for ATP open-section part warpage control.

  18. Flexible thermoset towpregs by electrostatic powder fusion coating

    NASA Technical Reports Server (NTRS)

    Yang, Pei-Hua; Varughese, Babu; Muzzy, John D.

    1991-01-01

    Thermoset prepregs of expoxy and polyimide have been produced by electrostatic deposition of charged fluidized polymer powders on spread continuous fiber tows. The powders are melted onto the fibers by radiant heating to adhere the polymer to the fiber. This process produces towpreg uniformly and rapidly without imposing severe stresses on the fibers. The towpregs produced by this novel process were consolidated to make unidirectional laminates for mechanical testing. Low void content samples have been made and demonstrated by C-scan and scanning electron microscopy. The mechanical properties of unidirectional laminates are equivalent to composites fabricated by conventional techniques.

  19. NASA/aircraft industry standard specification for graphite fiber toughened thermoset resin composite material

    NASA Technical Reports Server (NTRS)

    1985-01-01

    A standard specification for a selected class of graphite fiber/toughened thermoset resin matrix material was developed through joint NASA/Aircraft Industry effort. This specification was compiled to provide uniform requirements and tests for qualifying prepreg systems and for acceptance of prepreg batches. The specification applies specifically to a class of composite prepreg consisting of unidirectional graphite fibers impregnated with a toughened thermoset resin that produce laminates with service temperatures from -65 F to 200 F when cured at temperatures below or equal to 350 F. The specified prepreg has a fiber areal weight of 145 g sq m. The specified tests are limited to those required to set minimum standards for the uncured prepreg and cured laminates, and are not intended to provide design allowable properties.

  20. Innovative Approach for High Strength, High Thermal Conductive Composite Materials: Data Base

    DTIC Science & Technology

    2013-11-01

    pitch fiber types, from which we were able to down select K6356U pitch fiber with balanced TC and strength properties. A prepreg processing line was...Creating a robust prepreg processing line to infuse unidirectional pitch fiber tape that can be used with other fibers…Pan-based carbon or glass...pitch fiber composites • Compression molding process outperforms autoclaving in mechanical and thermal properties using the same prepreg material and

  1. A Dry Powder Process for Preparing Uni-Tape Prepreg from Polymer Powder Coated Filamentary Towpregs

    NASA Technical Reports Server (NTRS)

    Wilkinson, Steven P. (Inventor); Johnston, Norman J. (Inventor); Marchello, Joseph M. (Inventor)

    1995-01-01

    A process for preparing uni-tape prepreg from polymer powder coated filamentary towpregs is provided. A plurality of polymer powder coated filamentary towpregs are provided. The towpregs are collimated so that each towpreg is parallel. The sandwich is heated to a temperature wherein the polymer flows and intimately contacts the filaments and pressure is repeatedly applied perpendicularly to the sandwich with a longitudinal oscillating action wherein the filaments move apart and the polymer wets the filaments forming a uni-tape prepreg. The uni-tape prepreg is subsequently cooled.

  2. Structural Foaming at the Nano-, Micro-, and Macro-Scales of Continuous Carbon Fiber Reinforced Polymer Matrix Composites

    DTIC Science & Technology

    2012-10-29

    up to 40%. Approach: Our approach was to work with conventional composite systems manufactured through the traditional prepreg and autoclave...structural porosity at MNM scales could be introduced into the matrix, the carbon fiber reinforcement, and during prepreg lamination processing, without...areas, including fibers. Furthermore, investigate prepreg thickness and resin content effects on the thermomechanical performance of laminated

  3. Application of small-diameter FBG sensors for detection of damages in composites

    NASA Astrophysics Data System (ADS)

    Okabe, Yoji; Mizutani, Tadahito; Yashiro, Shigeki; Takeda, Nobuo

    2001-08-01

    Small-diameter fiber Bragg grating (FBG) sensors have been developed by Hitachi Cable Ltd. and the authors. Since the outside diameter of polyimide coating is 52 micrometers , embedding of the sensors into carbon fiber reinforced plastic (CFRP) composites prepregs of 125 micrometers in thickness does not deteriorate the mechanical properties of the composite laminates. In this research, the small-diameter FBG sensor was applied for the detection of transverse cracks in CFRP composites. The FBG sensor was embedded in 0 degree(s) ply of a CFRP cross-ply laminate.

  4. Processing parameters for filament winding thick-section PEEK/carbon fiber composites

    NASA Astrophysics Data System (ADS)

    Colton, J.; Leach, D.

    1992-12-01

    The consolidation pressure and winding speed for thermoplastic filament winding were studied. Thermoplastic composite parts were manufactured from tape prepreg (APC-2); powder-coated, semi-consolidated towpreg; and commingled fiber towpreg. The material used was carbon fiber (AS-4) (60 vol pct) in a PEEK matrix. The parts made were open-ended cylinders of the three materials, 177.8-mm ID, 228.6 mm long, 17 plies thick with a 0 deg lay-up angle; and rings, 50 plies of APC-2 thick, 6.35 mm wide (one strip wide), 177.8-mm ID, and a lay-up of 0 deg. Their quality was determined by surface finish and void percentage. The tubes made from APC-2 appeared to have the best quality of the three prepregs. For the rings, the speed of lay-down had a significant effect on both the final width of the parts and on the percentage of voids. The pressure of the roller had a significant effect on the final widths at a 99 percent confidence level, but a significant effect on the percentage of voids at only a 95 percent confidence level.

  5. Hybrid Fiber Layup and Fiber-Reinforced Polymeric Composites Produced Therefrom

    NASA Technical Reports Server (NTRS)

    Barnell, Thomas J. (Inventor); Garrigan, Sean P. (Inventor); Rauscher, Michael D. (Inventor); Dietsch, Benjamin A. (Inventor); Cupp, Gary N. (Inventor)

    2018-01-01

    Embodiments of a hybrid fiber layup used to form a fiber-reinforced polymeric composite, and a fiber-reinforced polymeric composite produced therefrom are disclosed. The hybrid fiber layup comprises one or more dry fiber strips and one or more prepreg fiber strips arranged side by side within each layer, wherein the prepreg fiber strips comprise fiber material impregnated with polymer resin and the dry fiber strips comprise fiber material without impregnated polymer resin.

  6. Dry powder process for preparing uni-tape prepreg from polymer powder coated filamentary towpregs

    NASA Technical Reports Server (NTRS)

    Wilkinson, Steven P. (Inventor); Johnston, Norman J. (Inventor); Marchello, Joseph M. (Inventor)

    1997-01-01

    A process for preparing uni-tape prepreg from polymer powder coated filamentary towpregs is provided. A plurality of polymer powder coated filamentary towpregs are provided. The towpregs are collimated so that each towpreg is parallel. A material is applied to each side of the towpreg to form a sandwich. The sandwich is heated to a temperature wherein the polymer flows and intimately contacts the filaments and pressure is repeatedly applied perpendicularly to the sandwich with a longitudinal oscillating action wherein the filaments move apart and the polymer wets the filaments forming a uni-tape prepreg. The uni-tape prepreg is subsequently cooled.

  7. LARC powder prepreg system

    NASA Technical Reports Server (NTRS)

    Baucom, Robert M.; Marchello, Joseph M.

    1990-01-01

    Thermoplastic prepregs of LARC-TPI have been produced in a fluidized bed unit on spread continuous fiber tows. The powders are melted on the fibers by radiant heating to adhere the polymer to the fiber. This process produces tow prepreg uniformly without imposing severe stress on the fibers or requiring long high temperature residence times for the polymer. Unit design theory and operating correlations have been developed to provide the basis for scale up to commercial operation. Special features of the operation are the pneumatic tow spreader, fluidized bed and resin feed systems.

  8. Self-sensing E-glass-fiber-reinforced composites

    NASA Astrophysics Data System (ADS)

    Brooks, David; Hayes, Simon A.; Khan, N. A.; Zolfaghar, K.; Fernando, Gerard F.

    1997-06-01

    Conventional E-glass fibers were surface treated to enable them to act as light guides for short distances. The reinforcing fiber light guides were embedded in glass fiber reinforced epoxy prepregs and processed into composites. The resultant composite was termed the self-sensing composite as any damage to these fibers or its interface would result in the attenuation of the transmitted light. Epoxy, silicone, fluoropolymer and sol-gel derived cladding materials were evaluated as potential cladding materials. RFLGs with a silicone coating was found to give the best light transmission. The self-sensing fibers were capable of detecting a 0.5 J direct impact. The feasibility of using the RFLGs for impact damage location was also demonstrated successfully as bleeding-light could be seen in the vicinity of the impact.

  9. PMR-15 polyimide modifications for improved prepreg tack

    NASA Technical Reports Server (NTRS)

    Vannucci, R. D.

    1982-01-01

    The use of mixed solvents and of modified monomeric ester reactants was investigated as a means of improving the tack and drape retention characteristics of PMR-15 polyimide prepreg. Methanol, ethanol, 1-propanol and 1-butanol were used to prepare the esters, prepreg solutions, and T-300 graphite fabric and Celion 6000 unidirectional fiber prepregs. The tack retention characteristics of the T-300 fabric prepreg after exposure to simulated use conditions were determined using a simple lap shear test. Drape was qualitatively assessed by visually monitoring the deformability of the prepreg. Thermo-oxidative stability and mechanical properties retention of the Celion 6000 grahite fiber composites were determined as a function of exposure time in air at 600 F.

  10. Space Environmentally Durable Polyimides and Copolyimides

    NASA Technical Reports Server (NTRS)

    Connell, John W. (Inventor); Smith, Joseph G. (Inventor); Hergenrother, Paul M. (Inventor); Watson, Kent A. (Inventor); Thompson, Craig M. (Inventor)

    2006-01-01

    Polyimides displaying low color in thin films, atomic oxygen resistance, vacuum ultraviolet radiation resistance, solubility in organic solvents in the imide form, high glass transition (T(sub g)) temperatures, and high thermal stability are provided. The poly(amide acid)s, copoly(amide acid)s, polyimides and copolyimides are prepared by the reaction of stoichiometric ratios of an aromatic &anhydride with diamines which contain phenylphosphine oxide groups in polar aprotic solvents. Controlled molecular weight oligomeric (amide acid)s and imides can be prepared by offsetting the stoichiometry according to the Carothers equation using excess diamine and endcapping with aromatic anhydrides. The polyimide materials can be processed into various material forms such as thin films, fibers, foams, threads, adhesive film, coatings, dry powders, and fiber coated prepreg, and uses include thin film membranes on antennas, second-surface mirrors, thermal optical coatings, and multilayer thermal insulation (MLI) blanket materials.

  11. Space Environmentally Durable Polyimides and Copolyimides

    NASA Technical Reports Server (NTRS)

    Connell, John W. (Inventor); Smith, Joseph G., Jr. (Inventor); Hergenrother, Paul M. (Inventor); Watson, Kent A. (Inventor); Thompson, Craig M. (Inventor)

    2005-01-01

    Polyimides displaying low color in thin films, atomic oxygen resistance, vacuum ultraviolet radiation resistance, solubility in organic solvents in the imide form, high glass transition (T(sub g)) temperatures, and high thermal stability are provided. The poly(amide acid)s, copoly(amide acid)s, polyimides and copolyimides are prepared by the reaction of stoichiometric ratios of an aromatic dianhydride with diamines which contain phenylphosphine oxide groups in polar aprotic solvents. Controlled molecular weight oligomeric (amide acid)s and imides can be prepared by offsetting the stoichiometry according to the Carothers equation using excess diamine and endcapping with aromatic anhydrides The polyimide materials can be processed into various material forms such as thin films, fibers, foams, threads, adhesive film, coatings, dry powders, and fiber coated prepreg, and uses include thin film membranes on antennas, second-surface mirrors, thermal optical coatings, and multilayer thermal insulation (MLI) blanket materials.

  12. Noncontact analysis of the fiber weight per unit area in prepreg by near-infrared spectroscopy.

    PubMed

    Jiang, B; Huang, Y D

    2008-05-26

    The fiber weight per unit area in prepreg is an important factor to ensure the quality of the composite products. Near-infrared spectroscopy (NIRS) technology together with a noncontact reflectance sources has been applied for quality analysis of the fiber weight per unit area. The range of the unit area fiber weight was 13.39-14.14mgcm(-2). The regression method was employed by partial least squares (PLS) and principal components regression (PCR). The calibration model was developed by 55 samples to determine the fiber weight per unit area in prepreg. The determination coefficient (R(2)), root mean square error of calibration (RMSEC) and root mean square error of prediction (RMSEP) were 0.82, 0.092, 0.099, respectively. The predicted values of the fiber weight per unit area in prepreg measured by NIRS technology were comparable to the values obtained by the reference method. For this technology, the noncontact reflectance sources focused directly on the sample with neither previous treatment nor manipulation. The results of the paired t-test revealed that there was no significant difference between the NIR method and the reference method. Besides, the prepreg could be analyzed one time within 20s without sample destruction.

  13. Study of interface influence on bending performance of CFRP with embedded optical fibers

    NASA Astrophysics Data System (ADS)

    Liu, Rong-mei; Liang, Da-kai

    2008-11-01

    Studies showed that the bending strength of composite would be affected by embedded optical fibers. Interface strength between the embedded optical fiber and the matrix was studied in this paper. Based on the single fiber pull out tests, the interfacial shear strength between the coating and the clad is the weakest. The shear strength of the optical fiber used in this study is near to 0.8MPa. In order to study the interfacial effect on bending property of generic smart structure, a quasi-isotropic composite laminates were produced from Toray T300C/ epoxy prepreg. Optical fibers were embedded within different orientation plies of the plates, with the optical fibers embedded in the same direction. Accordingly, five different types of plates were produced. Impact tests were carried out on the 5 different plate types. It is shown that when the fiber was embedded at the upper layer, the bending strength drops mostly. The bending normal stress on material arrives at the maximum. So does the normal stress applied on the optical fiber at the surface. Therefore, destructions could originate at the interface between the coating and the clad foremost. The ultimate strength of the smart structure will be affected furthest.

  14. Processing Robustness for A Phenylethynyl Terminated Polyimide Composite

    NASA Technical Reports Server (NTRS)

    Hou, Tan-Hung

    2004-01-01

    The processability of a phenylethynyl terminated imide resin matrix (designated as PETI-5) composite is investigated. Unidirectional prepregs are made by coating an N-methylpyrrolidone solution of the amide acid oligomer (designated as PETAA-5/NMP) onto unsized IM7 fibers. Two batches of prepregs are used: one is made by NASA in-house, and the other is from an industrial source. The composite processing robustness is investigated with respect to the prepreg shelf life, the effect of B-staging conditions, and the optimal processing window. Prepreg rheology and open hole compression (OHC) strengths are found not to be affected by prolonged (i.e., up to 60 days) ambient storage. Rheological measurements indicate that the PETAA-5/NMP processability is only slightly affected over a wide range of B-stage temperatures from 250 deg C to 300 deg C. The OHC strength values are statistically indistinguishable among laminates consolidated using various B-staging conditions. An optimal processing window is established by means of the response surface methodology. IM7/PETAA-5/NMP prepreg is more sensitive to consolidation temperature than to pressure. A good consolidation is achievable at 371 deg C (700 deg F)/100 Psi, which yields an RT OHC strength of 62 Ksi. However, processability declines dramatically at temperatures below 350 deg C (662 deg F), as evidenced by the OHC strength values. The processability of the IM7/LARC(TM) PETI-5 prepreg was found to be robust.

  15. PMR Polyimide prepreg with improved tack characteristics. [Polymerization of Monomer Reactants applications to fiber reinforced plastics

    NASA Technical Reports Server (NTRS)

    Serafini, T. T.; Delvigs, P.

    1978-01-01

    Current PMR Polyimide prepreg technology utilizes methanol or ethanol solvents for preparation of the PMR prepreg solutions. The volatility of these solvents limits the tack and drape retention characteristics of unprotected prepreg exposed to ambient conditions. Studies conducted to achieve PMR 15 Polyimide prepreg with improved tack and drape characteristics are described. Improved tack and drape retention were obtained by incorporation of an additional monomer. The effects of various levels of the added monomer on the thermo-oxidative stability and mechanical properties of graphite fiber reinforced PMR 15 composites exposed and tested at 316 C (600 F) are discussed.

  16. Integration of Carbon Fiber Composite Materials into Air-Cooled Reciprocating Piston Engines for UA V Applications

    DTIC Science & Technology

    2012-05-04

    Wrapping Pre-impregnated CFRP unidirectional and +/-45° woven carbon fiber fabric prepreg was used for the loop. Pre-impregnated material was a...viable application for the connecting rod because there are no complex geometries for the CFRP to negotiate. Prepreg aids in maintaining proper fiber

  17. Electrically conductive, optically transparent polymer/carbon nanotube composites

    NASA Technical Reports Server (NTRS)

    Smith, Jr., Joseph G. (Inventor); Connell, John W. (Inventor); Ounaies, Zoubeida (Inventor); Park, Cheol (Inventor); Harrison, Joycelyn S. (Inventor); Watson, Kent A. (Inventor)

    2011-01-01

    The present invention is directed to the effective dispersion of carbon nanotubes (CNTs) into polymer matrices. The nanocomposites are prepared using polymer matrices and exhibit a unique combination of properties, most notably, high retention of optical transparency in the visible range (i.e., 400-800 nm), electrical conductivity, and high thermal stability. By appropriate selection of the matrix resin, additional properties such as vacuum ultraviolet radiation resistance, atomic oxygen resistance, high glass transition (T.sub.g) temperatures, and excellent toughness can be attained. The resulting nanocomposites can be used to fabricate or formulate a variety of articles such as coatings on a variety of substrates, films, foams, fibers, threads, adhesives and fiber coated prepreg. The properties of the nanocomposites can be adjusted by selection of the polymer matrix and CNT to fabricate articles that possess high optical transparency and antistatic behavior.

  18. Sensor assembly

    DOEpatents

    Bennett, Thomas E.; Nelson, Drew V.

    2004-04-13

    A ribbon-like sensor assembly is described wherein a length of an optical fiber embedded within a similar lengths of a prepreg tow. The fiber is ""sandwiched"" by two layers of the prepreg tow which are merged to form a single consolidated ribbon. The consolidated ribbon achieving a generally uniform distribution of composite filaments near the embedded fiber such that excess resin does not ""pool"" around the periphery of the embedded fiber.

  19. Development of lightweight graphite/polyimide sandwich panels. Phase 2: Thin gage material manufacture

    NASA Technical Reports Server (NTRS)

    Merlette, J. B.

    1972-01-01

    Thin gage materials selected and the rationale for their basic requirements are discussed. The resin used in all prepreg manufacture is Monsanto RS-6234 polyimide. The selected fiber for core manufacture is Hercules HT-S, and the selected fiber for face sheets is Hercules HM-S. The technique for making thin gage prepreg was to wind spread carbon fiber tows into a resin film on a large drum. This technique was found to be superior to others investigated. A total of 22 pounds of 1 to 2 mil/ply prepreg was fabricated for use on the program.

  20. Processing parameters for thermoplastic filament winding

    NASA Astrophysics Data System (ADS)

    Colton, J.; Leach, D.

    The consolidation pressure and winding speed for thermoplastic filament winding were studied. Thermoplastic composite parts were manufactured from tape prepreg (APC-2); powder-coated, semiconsolidated towpreg; and commingled fiber towpeg. The material used was carbon fiber (AS-4) (60 vol pct) in a PEEK matrix. The parts made were open-ended cylinders of the three materials, 177.8 mmID, 228.6 mm long, 17 plies thick with a 0 deg lay-up angle; and rings, 50 plies of APC-2 thick, 6.35 mm wide (one strip wide), 177.8 mm ID, and a lay-up of 0 deg. Their quality was determined by surface finish and void percentage. The tubes made from APC-2 appeared to have the best quality of the three prepregs. For the rings, the speed of lay down had a significant effect on both the final width of the parts and on the percentage of voids. The pressure of the roller had a significant effect on the final widths at a 99 percent confidence level, but only a significant effect on the percentage of voids at a 95 percent confidence level.

  1. Processing and Properties of Fiber Reinforced Polymeric Matrix Composites. Part 2; Processing Robustness of IM7/PETI Polyimide Composites

    NASA Technical Reports Server (NTRS)

    Hou, Tan-Hung

    1996-01-01

    The processability of a phenylethynyl terminated imide (PETI) resin matrix composite was investigated. Unidirectional prepregs were made by coating an N-methylpyrrolidone solution of the amide acid oligomer onto unsized IM7. Two batches of prepregs were used: one was made by NASA in-house, and the other was from an industrial source. The composite processing robustness was investigated with respect to the effect of B-staging conditions, the prepreg shelf life, and the optimal processing window. Rheological measurements indicated that PETI's processability was only slightly affected over a wide range of B-staging temperatures (from 250 C to 300 C). The open hole compression (OHC) strength values were statistically indistinguishable among specimens consolidated using various B-staging conditions. Prepreg rheology and OHC strengths were also found not to be affected by prolonged (i.e., up to 60 days) ambient storage. An optimal processing window was established using response surface methodology. It was found that IM7/PETI composite is more sensitive to the consolidation temperature than to the consolidation pressure. A good consolidation was achievable at 371 C/100 Psi, which yielded an OHC strength of 62 Ksi at room temperature. However, processability declined dramatically at temperatures below 350 C.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crabtree, D.J.

    Three types of boron/epoxy prepreg tape were prestressed to fracture weak sites along the fiber by winding over 0.3- to 0.6-inch diameter rollers prior to lamination. The prestressed prepreg was then laminated, and design allowable testing was conducted to determine if mechanical strength properties are increased and data scatter is reduced by prestressing. The types of prepreg studied were standard 'Rigidite' 5505/4 prepreg, carbon substrate boron fiber prepreg, and a prepreg made from 'defect' tungsten substrate boron that was manufactured in a high-speed, low-cost, production process. The strength of angleply composites of both 'Rigidite' 5505/4 and carbon substrate boron compositesmore » were unaffected by prestressing. A study was made to determine if prepreg costs could be reduced by manufacturing low-cost 'defect' boron fiber and prestressing it to improve its properties. The results of this study were inconclusive. The test results show prestressing marginally improved some composite properties while others were reduced. On 'Rigidite' 5505/4 unidirectional composites, fatigue strength was significantly improved by prestressing, while longitudinal tensile strength was reduced at room temperature and 350 F. On unidirectional carbon substrate boron composites, the longitudinal tensile strength at room temperature and 350F was increased with attendant variability, while fatigue strength at high stress levels was reduced but not affected at low stress levels.« less

  3. The development of an alternative thermoplastic powder prepregging technique

    NASA Technical Reports Server (NTRS)

    Ogden, A. L.; Hyer, M. W.; Wilkes, G. L.; Loos, A. C.

    1992-01-01

    An alternative powder prepregging technique is discussed that is based on the deposition of powder onto carbon fibers that have been moistened using an ultrasonic humidifier. The dry fiber tow is initially spread to allow a greater amount of the fiber surface to be exposed to the powder, thus ensuring a significant amount of intimate contact between the fiber and the matrix. Moisture in the form of ultrafine water droplets is then deposited onto the spread fiber tow. The moisture promotes adhesion to the fiber until the powder can be tacked to the fibers by melting. Powdered resin is then sieved onto the fibers and then tacked onto the fibers by quick heating in a convective oven. This study focuses on the production of prepregs and laminates made with LaRC-TPI (thermoplastic polyimide) using this process. Although the process appears to be successful, early evaluation was hampered by poor interfacial adhesion. The adhesion problem, however, seems to be the result of a material system incompatibility, rather than being influenced by the process.

  4. Mechanics of Multifunctional Materials and Microsystems

    DTIC Science & Technology

    2013-03-07

    unlimited 46  Successfully processed the 1st self-healing prepreg in continuous production mode SEM image of E-glass fiber tow (200 count) with 3.3...healing composite with well dispersed microcapsules were fabricated from prepreg . E-glass fiber/epoxy resin Matrix: EPON862/EPIKURE3274

  5. Development of Optimized Piezoelectric Bending Actuators for Use in an Insect Sized Flapping Wing Micro Air Vehicle

    DTIC Science & Technology

    2013-03-01

    of microelectromechanical systems (MEMS) [37], and the epoxy in uncured pre-impregnated ( prepreg ) carbon fiber has also been used in bending [42] and...to assemble due to challenges in working with the carbon fiber. When the epoxy in the prepreg carbon fiber is used as a bonding agent, there is no

  6. Study of flexural rigidity of weavable powder-coated towpreg

    NASA Technical Reports Server (NTRS)

    Hirt, Douglas E.; Marchello, Joseph M.; Baucom, Robert M.

    1990-01-01

    An effort has been made to weave powder-impregnated tow into a two-dimensional preform, controlling process variables to obtain high flexural rigidity in the warp direction and greater flexibility in the fill direction. The resulting prepregs have been consolidated into laminates with LaRC-TPI matrices. Complementary SEM and DSC studies have been performed to deepen understanding of the relationship between tow flexibility and heat treatment. Attention is also given to the oven temperature and residence time variables' effects on power/fiber fusion.

  7. Testing procedures for carbon fiber reinforced plastic components

    NASA Technical Reports Server (NTRS)

    Gosse, H. J.; Kaitatzidi, M.; Roth, S.

    1977-01-01

    Tests for studying the basic material are considered and quality control investigations involving preimpregnated materials (prepreg) are discussed. Attention is given to the prepreg area weight, the fiber area weight of prepregs, the resin content, volatile components, the effective thickness, resin flow, the resistance to bending strain, tensile strength, and shear strength. A description of tests conducted during the manufacturing process is also presented, taking into account X-ray methods, approaches of neutron radiography, ultrasonic procedures, resonance methods and impedance studies.

  8. Electrically conductive, optically transparent polymer/carbon nanotube composites and process for preparation thereof

    NASA Technical Reports Server (NTRS)

    Watson, Kent A. (Inventor); Connell, John W. (Inventor); Harrison, Joycelyn S. (Inventor); Park, Cheol (Inventor); Ounaies, Zoubeida (Inventor); Smith, Joseph G. (Inventor)

    2009-01-01

    The present invention is directed to the effective dispersion of carbon nanotubes (CNTs) into polymer matrices. The nanocomposites are prepared using polymer matrices and exhibit a unique combination of properties, most notably, high retention of optical transparency in the visible range (i.e., 400 800 nm), electrical conductivity, and high thermal stability. By appropriate selection of the matrix resin, additional properties such as vacuum ultraviolet radiation resistance, atomic oxygen resistance, high glass transition (T.sub.g) temperatures, and excellent toughness can be attained. The resulting nanocomposites can be used to fabricate or formulate a variety of articles such as coatings on a variety of substrates, films, foams, fibers, threads, adhesives and fiber coated prepreg. The properties of the nanocomposites can be adjusted by selection of the polymer matrix and CNT to fabricate articles that possess high optical transparency and antistatic behavior.

  9. Electrically Conductive, Optically Transparent Polymer/Carbon Nanotube Composites and Process for Preparation Thereof

    NASA Technical Reports Server (NTRS)

    Park, Cheol (Inventor); Connell, John W. (Inventor); Smith, Joseph G. (Inventor); Harrison, Joycelyn S. (Inventor); Watson, Kent A. (Inventor); Ounaies, Zoubeida (Inventor)

    2011-01-01

    The present invention is directed to the effective dispersion of carbon nanotubes (CNTs) into polymer matrices. The nanocomposites are prepared using polymer matrices and exhibit a unique combination of properties, most notably, high retention of optical transparency in the visible range (i.e., 400-800 nm), electrical conductivity, and high thermal stability. By appropriate selection of the matrix resin, additional properties such as vacuum ultraviolet radiation resistance, atomic oxygen resistance, high glass transition (T.sub.g) temperatures, and excellent toughness can be attained. The resulting nanocomposites can be used to fabricate or formulate a variety of articles such as coatings on a variety of substrates, films, foams, fibers, threads, adhesives and fiber coated prepreg. The properties of the nanocomposites can be adjusted by selection of the polymer matrix and CNT to fabricate articles that possess high optical transparency and antistatic behavior.

  10. Electrically Conductive, Optically Transparent Polymer/Carbon Nanotube Composites and Process for Preparation Thereof

    NASA Technical Reports Server (NTRS)

    Park, Cheol (Inventor); Watson, A. (Inventor); Ounales, Zoubeida (Inventor); Connell, John W. (Inventor); Smith, Joseph G. (Inventor); Harrison, Joycelyn S. (Inventor)

    2009-01-01

    The present invention is directed to the effective dispersion of carbon nanotubes (CNTs) into polymer matrices. The nanocomposites are prepared using polymer matrices and exhibit a unique combination of properties, most notably, high retention of optical transparency in the visible range (i.e., 400-800 nm), electrical conductivity, and high thermal stability. By appropriate selection of the matrix resin, additional properties such as vacuum ultraviolet radiation resistance, atomic oxygen resistance, high glass transition (T(sub g)) temperatures, and excellent toughness can be attained. The resulting nanocomposites can be used to fabricate or formulate a variety of articles such as coatings on a variety of substrates, films, foams, fibers, threads, adhesives and fiber coated prepreg. The properties of the nanocomposites can be adjusted hy selection of the polymer matrix and CNT to fabricate articles that possess high optical transparency and antistatic behavior.

  11. Process Makes Thermoplastic Prepreg Ribbon

    NASA Technical Reports Server (NTRS)

    Wilson, Maywood L.; Johnson, Gary S.

    1995-01-01

    Manufacturing process produces ribbon of composite material (prepreg) consisting of continuous lengthwise fibers impregnated with thermoplastic resin. Ribbon can later be cut into sheets of required sizes and shapes, stacked, then heated under pressure to form composite-material structural components. Process accommodates variety of thermoplastic resins and variety of fibers.

  12. Experimental and Numerical Studies on Fiber Deformation and Formability in Thermoforming Process Using a Fast-Cure Carbon Prepreg: Effect of Stacking Sequence and Mold Geometry.

    PubMed

    Bae, Daeryeong; Kim, Shino; Lee, Wonoh; Yi, Jin Woo; Um, Moon Kwang; Seong, Dong Gi

    2018-05-21

    A fast-cure carbon fiber/epoxy prepreg was thermoformed against a replicated automotive roof panel mold (square-cup) to investigate the effect of the stacking sequence of prepreg layers with unidirectional and plane woven fabrics and mold geometry with different drawing angles and depths on the fiber deformation and formability of the prepreg. The optimum forming condition was determined via analysis of the material properties of epoxy resin. The non-linear mechanical properties of prepreg at the deformation modes of inter- and intra-ply shear, tensile and bending were measured to be used as input data for the commercial virtual forming simulation software. The prepreg with a stacking sequence containing the plain-woven carbon prepreg on the outer layer of the laminate was successfully thermoformed against a mold with a depth of 20 mm and a tilting angle of 110°. Experimental results for the shear deformations at each corner of the thermoformed square-cup product were compared with the simulation and a similarity in the overall tendency of the shear angle in the path at each corner was observed. The results are expected to contribute to the optimization of parameters on materials, mold design and processing in the thermoforming mass-production process for manufacturing high quality automotive parts with a square-cup geometry.

  13. Experimental and Numerical Studies on Fiber Deformation and Formability in Thermoforming Process Using a Fast-Cure Carbon Prepreg: Effect of Stacking Sequence and Mold Geometry

    PubMed Central

    Bae, Daeryeong; Kim, Shino; Lee, Wonoh; Yi, Jin Woo; Um, Moon Kwang; Seong, Dong Gi

    2018-01-01

    A fast-cure carbon fiber/epoxy prepreg was thermoformed against a replicated automotive roof panel mold (square-cup) to investigate the effect of the stacking sequence of prepreg layers with unidirectional and plane woven fabrics and mold geometry with different drawing angles and depths on the fiber deformation and formability of the prepreg. The optimum forming condition was determined via analysis of the material properties of epoxy resin. The non-linear mechanical properties of prepreg at the deformation modes of inter- and intra-ply shear, tensile and bending were measured to be used as input data for the commercial virtual forming simulation software. The prepreg with a stacking sequence containing the plain-woven carbon prepreg on the outer layer of the laminate was successfully thermoformed against a mold with a depth of 20 mm and a tilting angle of 110°. Experimental results for the shear deformations at each corner of the thermoformed square-cup product were compared with the simulation and a similarity in the overall tendency of the shear angle in the path at each corner was observed. The results are expected to contribute to the optimization of parameters on materials, mold design and processing in the thermoforming mass-production process for manufacturing high quality automotive parts with a square-cup geometry. PMID:29883413

  14. Method of Fabricating Chopped-Fiber Composite Piston

    NASA Technical Reports Server (NTRS)

    Rivers, H. Kevin (Inventor); Ransone, Philip O. (Inventor); Northam, G. Burton (Inventor)

    1999-01-01

    A three-dimensional piston molding is fabricated from a mixture of chopped, carbon tow filaments of variable length, which are prepregged with carbonaceous organic resins and/or pitches and molded by conventional molding processes into a near net shape, to form a carbon-fiber reinforced organic-matrix composite part. Continuous reinforcement in the form of carbon-carbon composite tapes or pieces of fabric can be also laid in the mold before or during the charging of the mold with the chopped-fiber mixture, to enhance the strength in the crown and wrist-pin areas. The molded chopped-fiber reinforced organic-matrix composite parts are then pyrolized in an inert atmosphere, to convert the organic matrix materials to carbon. These pyrolized parts are then densified by reimpregnation with resins or pitches, which are subsequently carbonized. Densification is also accomplished by direct infiltration with carbon by vapor deposition processes. Once the desired density has been achieved, the piston molds are machined to final piston dimensions, and piston ring grooves are added. To prevent oxidation and/or to seal the piston surface or near surface, the chopped-fiber piston is coated with ceramic and/or metallic sealants: and/or coated with a catalyst.

  15. Dry Process for Making Polyimide/ Carbon-and-Boron-Fiber Tape

    NASA Technical Reports Server (NTRS)

    Belvin, Harry L.; Cano, Roberto J.; Johnston, Norman J.; Marchello, Joseph M.

    2003-01-01

    A dry process has been invented as an improved means of manufacturing composite prepreg tapes that consist of high-temperature thermoplastic polyimide resin matrices reinforced with carbon and boron fibers. Such tapes are used (especially in the aircraft industry) to fabricate strong, lightweight composite-material structural components. The inclusion of boron fibers results in compression strengths greater than can be achieved by use of carbon fibers alone. The present dry process is intended to enable the manufacture of prepreg tapes (1) that contain little or no solvent; (2) that have the desired dimensions, fiber areal weight, and resin content; and (3) in which all of the fibers are adequately wetted by resin and the boron fibers are fully encapsulated and evenly dispersed. Prepreg tapes must have these properties to be useable in the manufacture of high-quality composites by automated tape placement. The elimination of solvent and the use of automated tape placement would reduce the overall costs of manufacturing.

  16. Development of lightweight THUNDER with fiber composite layers

    NASA Astrophysics Data System (ADS)

    Yoon, Kwang J.; Shin, Sukjoon; Kim, Jusik; Park, Hoon C.; Kwak, Moon K.

    2000-06-01

    This paper is concerned with design, manufacturing and performance test of lightweight THUNDER using a top fiber composite layer with near-zero CTE, a PZT ceramic wafer and a bottom glass/epoxy layer with high CTE. The main point of this design is to replace the heavy metal layers of THUNDER by the lightweight fiber reinforced plastic layers without losing capabilities to generate high force and displacement. It is possible to save weight up to about 30 percent if we replace the metallic backing materials by the light fiber composite layer. We can also have design flexibility by selecting the fiber direction and the size of prepreg layers. In addition to the lightweight advantage and design flexibility, the proposed device can be manufactured without adhesive layers when we use epoxy resin prepreg system. Glass/epoxy prepregs, a ceramic wafer with electrode surfaces, and a graphite/epoxy prepreg were simply stacked and cured at an elevated temperature by following autoclave bagging process. It was found that the manufactured composite laminate device had a sufficient curvature after detaching form a flat mold. From experimental actuation tests, it was observed that the developed actuator could generate larger actuation displacement than THUNDER.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baucom, R.M.; Marchello, J.M.

    Thermoplastic prepregs of LARC-TPI have been produced in a fluidized bed unit on spread continuous fiber tows. The powders are melted on the fibers by radiant heating to adhere the polymer to the fiber. This process produces tow prepreg uniformly without imposing severe stress on the fibers or requiring long high temperature residence times for the polymer. Unit design theory and operating correlations have been developed to provide the basis for scale up to commercial operation. Special features of the operation are the pneumatic tow spreader, fluidized bed and resin feed systems.

  18. Influence of Fiber Orientation on Single-Point Cutting Fracture Behavior of Carbon-Fiber/Epoxy Prepreg Sheets.

    PubMed

    Wei, Yingying; An, Qinglong; Cai, Xiaojiang; Chen, Ming; Ming, Weiwei

    2015-10-02

    The purpose of this article is to investigate the influences of carbon fibers on the fracture mechanism of carbon fibers both in macroscopic view and microscopic view by using single-point flying cutting method. Cutting tools with three different materials were used in this research, namely, PCD (polycrystalline diamond) tool, CVD (chemical vapor deposition) diamond thin film coated carbide tool and uncoated carbide tool. The influence of fiber orientation on the cutting force and fracture topography were analyzed and conclusions were drawn that cutting forces are not affected by cutting speeds but significantly influenced by the fiber orientation. Cutting forces presented smaller values in the fiber orientation of 0/180° and 15/165° but the highest one in 30/150°. The fracture mechanism of carbon fibers was studied in different cutting conditions such as 0° orientation angle, 90° orientation angle, orientation angles along fiber direction, and orientation angles inverse to the fiber direction. In addition, a prediction model on the cutting defects of carbon fiber reinforced plastic was established based on acoustic emission (AE) signals.

  19. Influence of Fiber Orientation on Single-Point Cutting Fracture Behavior of Carbon-Fiber/Epoxy Prepreg Sheets

    PubMed Central

    Wei, Yingying; An, Qinglong; Cai, Xiaojiang; Chen, Ming; Ming, Weiwei

    2015-01-01

    The purpose of this article is to investigate the influences of carbon fibers on the fracture mechanism of carbon fibers both in macroscopic view and microscopic view by using single-point flying cutting method. Cutting tools with three different materials were used in this research, namely, PCD (polycrystalline diamond) tool, CVD (chemical vapor deposition) diamond thin film coated carbide tool and uncoated carbide tool. The influence of fiber orientation on the cutting force and fracture topography were analyzed and conclusions were drawn that cutting forces are not affected by cutting speeds but significantly influenced by the fiber orientation. Cutting forces presented smaller values in the fiber orientation of 0/180° and 15/165° but the highest one in 30/150°. The fracture mechanism of carbon fibers was studied in different cutting conditions such as 0° orientation angle, 90° orientation angle, orientation angles along fiber direction, and orientation angles inverse to the fiber direction. In addition, a prediction model on the cutting defects of carbon fiber reinforced plastic was established based on acoustic emission (AE) signals. PMID:28793597

  20. Studies on Hot-Melt Prepregging on PRM-II-50 Polyimide Resin with Graphite Fibers

    NASA Technical Reports Server (NTRS)

    Shin, E. Eugene; Sutter, James K.; Juhas, John; Veverka, Adrienne; Klans, Ojars; Inghram, Linda; Scheiman, Dan; Papadopoulos, Demetrios; Zoha, John; Bubnick, Jim

    2004-01-01

    A second generation PMR (in situ Polymerization of Monomer Reactants) polyimide resin PMR-II-50, has been considered for high temperature and high stiffness space propulsion composites applications for its improved high temperature performance. As part of composite processing optimization, two commercial prepregging methods: solution vs. hot-melt processes were investigated with M40J fabrics from Toray. In a previous study a systematic chemical, physical, thermal and mechanical characterization of these composites indicated the poor resin-fiber interfacial wetting, especially for the hot-melt process, resulted in poor composite quality. In order to improve the interfacial wetting, optimization of the resin viscosity and process variables were attempted in a commercial hot-melt prepregging line. In addition to presenting the results from the prepreg quality optimization trials, the combined effects of the prepregging method and two different composite cure methods, i.e. hot press vs. autoclave on composite quality and properties are discussed.

  1. Studies on Hot-Melt Prepregging of PMR-II-50 Polyimide Resin with Graphite Fibers

    NASA Technical Reports Server (NTRS)

    Shin, E. Eugene; Sutter, James K.; Juhas, John; Veverka, Adrienne; Klans, Ojars; Inghram, Linda; Scheiman, Dan; Papadopoulos, Demetrios; Zoha, John; Bubnick, Jim

    2003-01-01

    A Second generation PMR (in situ Polymerization of Monomer Reactants) polyimide resin, PMR-II-50, has been considered for high temperature and high stiffness space propulsion composites applications for its improved high temperature performance. As part of composite processing optimization, two commercial prepregging methods: solution vs. hot-melt processes were investigated with M40J fabrics from Toray. In a previous study a systematic chemical, physical, thermal and mechanical characterization of these composites indicated that poor resin-fiber interfacial wetting, especially for the hot-melt process, resulted in poor composite quality. In order to improve the interfacial wetting, optimization of the resin viscosity and process variables were attempted in a commercial hot-melt prepregging line. In addition to presenting the results from the prepreg quality optimization trials, the combined effects of the prepregging method and two different composite cure methods, i.e., hot press vs. autoclave on composite quality and properties are discussed.

  2. The industrial processing of unidirectional fiber prepregs

    NASA Technical Reports Server (NTRS)

    Laird, B.

    1981-01-01

    Progress made in the industrial processing of preimpregnated composites with unidirectional fibers is discussed, with particular emphasis on applications within the aerospace industry. Selection of industrial materials is considered. Attention is given to the conditions justifying the use of composites and the properties required of industrial prepregs. The hardening cycle is examined for the cases of nonmodified and polymer modified resins, with attention given to the stabilization of flow, the necessary changes of state, viscosity control, and the elimination of porosity. The tooling necessary for the fabrication of a laminated plate is illustrated, and the influence of fabrication and prepreg properties on the mechanical characteristics of a laminate are indicated. Finally, the types of prepregs available and the processing procedures necessary for them are summarized.

  3. Continuous fiber thermoplastic prepreg

    NASA Technical Reports Server (NTRS)

    Wilson, Maywood L. (Inventor); Johnson, Gary S. (Inventor)

    1993-01-01

    A pultrusion machine employing a corrugated impregnator vessel to immerse multiple, continuous strand, fiber tow in an impregnating material, and an adjustable metered exit orifice for the impregnator vessel to control the quantity of impregnating material retained by the impregnated fibers, is provided. An adjustable height insert retains transverse rod elements within each depression of the corrugated vessel to maintain the individual fiber tows spread and in contact with the vessel bottom. A series of elongated heating dies, transversely disposed on the pultrusion machine and having flat heating surfaces with radiused edges, ensure adequate temperature exposed dwell time and exert adequate pressure on the impregnated fiber tows, to provide the desired thickness and fiber/resin ratio in the prepreg formed. The prepreg passing through the pulling mechanism is wound on a suitable take-up spool for subsequent use. A formula is derived for determining the cross sectional area opening of the metering device. A modification in the heating die system employs a heated nip roller in lieu of one of the pressure applying flat dies.

  4. Engineered Polymer Composites Through Electrospun Nanofiber Coating of Fiber Tows

    NASA Technical Reports Server (NTRS)

    Kohlman, Lee W.

    2013-01-01

    Toughening and other property enhancements of composite materials are typically implemented by-modifying the bulk properties of the constituents, either the fiber or matrix materials. This often leads to difficulties in processing and higher material costs. Many composites consist of tows or yarns (thousands of individual fibers) that are either filament wound or processed into a fabric by weaving or braiding. The matrix material can be added to the tow or fabric before final processing, resulting in a prepreg material, or infused into the fiber material during final processing by a variety of methods. By using a direct electrospun deposition method to apply thermoplastic nanofiber to the surface of the tows, the tow-tow interface in the resulting composite can be modified while using otherwise conventional materials and handling processes. Other materials of interest could also be incorporated into the electrospun precursor.

  5. Influence of Interleaved Films on the Mechanical Properties of Carbon Fiber Fabric/Polypropylene Thermoplastic Composites

    PubMed Central

    Kim, Jong Won; Lee, Joon Seok

    2016-01-01

    A laminated composite was produced using a thermoplastic prepreg by inserting an interleaved film with the same type of matrix as the prepreg during the lay-up process to improve the low interlaminar properties, which is a known weakness of laminated composites. Carbon fiber fabric (CFF) and polypropylene (PP) were used to manufacture the thermoplastic prepregs. Eight prepregs were used to produce the laminated composites. Interleaved films with different thicknesses were inserted into each prepreg. The physical properties of the composite, such as thickness, density, fiber volume fraction (Vf), and void content (Vc), were examined. The tensile strength, flexural strength, interlaminar shear strength (ILSS), impact property, and scanning electron microscopy (SEM) were used to characterize the mechanical properties. Compared to the composite without any inserted interleaved film, as the thickness of the inserted interleaved resin film was increased, Vc decreased by 51.45%. At the same time, however, the tensile strength decreased by 8.75%. Flexural strength increased by 3.79% and flexural modulus decreased by 15.02%. Interlaminar shear strength increased by 11.05% and impact strength increased by 15.38%. Fracture toughness of the laminated composite was improved due to insertion of interleaved film. PMID:28773467

  6. Influence of Interleaved Films on the Mechanical Properties of Carbon Fiber Fabric/Polypropylene Thermoplastic Composites.

    PubMed

    Kim, Jong Won; Lee, Joon Seok

    2016-05-06

    A laminated composite was produced using a thermoplastic prepreg by inserting an interleaved film with the same type of matrix as the prepreg during the lay-up process to improve the low interlaminar properties, which is a known weakness of laminated composites. Carbon fiber fabric (CFF) and polypropylene (PP) were used to manufacture the thermoplastic prepregs. Eight prepregs were used to produce the laminated composites. Interleaved films with different thicknesses were inserted into each prepreg. The physical properties of the composite, such as thickness, density, fiber volume fraction ( V f ), and void content ( V c ), were examined. The tensile strength, flexural strength, interlaminar shear strength (ILSS), impact property, and scanning electron microscopy (SEM) were used to characterize the mechanical properties. Compared to the composite without any inserted interleaved film, as the thickness of the inserted interleaved resin film was increased, V c decreased by 51.45%. At the same time, however, the tensile strength decreased by 8.75%. Flexural strength increased by 3.79% and flexural modulus decreased by 15.02%. Interlaminar shear strength increased by 11.05% and impact strength increased by 15.38%. Fracture toughness of the laminated composite was improved due to insertion of interleaved film.

  7. Experience-based training of students on concretes reinforced by recycled carbon fibers

    NASA Astrophysics Data System (ADS)

    Cosgun, Cumhur; Patlolla, Vamsidhar R.; Alzahrani, Naif; Zeineddine, Hatim F.; Asmatulu, Eylem

    2017-04-01

    Fiber reinforcement increases many properties of the concretes, such as toughness, strength, abrasion, and resistance to corrosion. Use of recycled carbon fibers from industrial waste offers many advantages because it will reduce the waste, contribute the economy, protect natural resources and improve the property of structural units. The City of Wichita, KS is known to be "Air Capital of the World" where many aircraft companies have been producing aircraft, parts and components. Due to the superior properties of composites (e.g., light weight, low density, high impact resistance), they have been highly used by aircraft industry. Prepreg is the most preferred combination of the fiber and resin due to the easy application, but it has a limited shelf life (e.g., three months to one year at most) and scrap has no use after all in the same industry. Every year tons of un-used prepreg or after use scrap are being collected in Wichita, KS. Recycling prepreg from the post-consumer waste offers great advantages of waste reduction and resource conservation in the city. Reusing the carbon fibers obtained from outdated prepreg composites for concrete reinforcement will offer double advantages for our environment and concrete structures. In this study, recycled carbon fibers of the outdated prepreg composites were collected, and then incorporated with concretes at different ratios prior to the molding and mechanical testing. An undergraduate student was involved in the project and observed all the process during the laboratory studies, as well as data collection, analysis and presentation. We believe that experience based learning will enhance the students' skills and interest into the scientific and engineering studies.

  8. Electrostatic dry powder prepregging of carbon fiber

    NASA Technical Reports Server (NTRS)

    Throne, James L.; Sohn, Min-Seok

    1990-01-01

    Ultrafine, 5-10 micron polymer-matrix resin powders are directly applied to carbon fiber tows by passing then in an air or nitrogen stream through an electrostatic potential; the particles thus charged will strongly adhere to grounded carbon fibers, and can be subsequently fused to the fiber in a continuously-fed radiant oven. This electrostatic technique derived significant end-use mechanical property advantages from the obviation of solvents, binders, and other adulterants. Additional matrix resins used to produce prepregs to date have been PMR-15, Torlon 40000, and LaRC TPI.

  9. Dynamics-based Nondestructive Structural Monitoring Teclrniques

    DTIC Science & Technology

    2012-05-21

    plate made from AS4/8552-2 carbon epoxy prepregs . The layup sequence: was [(0/45/90/-45)S]2 as illustrated in Figure 3.37. Each layer had the...at Penn State. Hexcel AS4/8552 unidirectional carbon/epoxy prepregs were used in the fabrication as raw materials. The prepregs were cut in pieces...with different fiber orientations and 132 stacked together following different stacking sequences. The stacked prepregs then went into a vacuum

  10. Dynamics-based Nondestructive Structural Monitoring Techniques

    DTIC Science & Technology

    2012-06-21

    made from AS4/8552-2 carbon epoxy prepregs . The layup sequence: was [(0/45/90/-45)S]2 as illustrated in Figure 3.37. Each layer had the thickness of...using facilities available at Penn State. Hexcel AS4/8552 unidirectional carbon/epoxy prepregs were used in the fabrication as raw materials. The... prepregs were cut in pieces with different fiber orientations and 132 stacked together following different stacking sequences. The stacked prepregs

  11. Properties of autoclaved Gr/PI composites made from improved tack PMR-15 prepreg

    NASA Technical Reports Server (NTRS)

    Vannucci, R. D.

    1985-01-01

    Autoclave processing studies were conducted, using improved tack PMR-15 prepreg, to determine the effect of tack enhancing PMR resin modifications on composite processability and mechanical properties. Improved tack graphite fiber reinforced PMR-15 prepregs were prepared and exposed to ambient conditions for various times and then autoclave molded into composites. Composite specimens were prepared and tested for flexural and interlaminar shear strengths at room temperature and 316 C. The retention of flexural and interlaminar shear strength as a function of exposure in air at 316 C was also determined. The results show that the modified PMR resin solutions provide prepreg with improved tack and drape retention characteristics without adversely affecting processability or mechanical properties of autoclave molded graphite fiber reinforced PMR-15 composites.

  12. Investigation of a carbon fiber/epoxy prepreg curing behavior for thick composite materials production: An industrial case-study

    NASA Astrophysics Data System (ADS)

    Giorgini, Loris; Mazzocchetti, Laura; Minak, Giangiacomo; Dolcini, Enrico

    2012-07-01

    A case-study is presented, in cooperation with RI-BA Composites srl, where the industrial production of a thick part for primary structural application is analysed. The final product is a bulk carbon fiber reinforced object characterized by great dimensions, with thickness ranging between 10mm and 35mm and obtained by Hand-Lay-Up of prepregs. The study shows that prepregs age along the time required for the process work up. Moreover, the isothermal curing investigation of the prepreg used in the production gives some useful hint for the design of a new thermal curing cycle, in order to avoid exotherm problems along the thickness of the object. The effect of the applied curing cycle on thermal properties of the object are reported.

  13. Films, Preimpregnated Tapes and Composites Made from Polyimide "Salt-Like" Solutions

    NASA Technical Reports Server (NTRS)

    Cano, Roberto J. (Inventor); Weiser, Erik S. (Inventor); St.Clair, Terry L. (Inventor); Echigo, Yoshiaki (Inventor); Kaneshiro, Hisayasu (Inventor)

    2001-01-01

    High quality films, preimpregnated tape (prepegs), and composites have been fabricated from polyimide precursor 'saltlike' solutions. These salt-like solutions have a low viscosity (5,000 to 10,000 cp) and a high solids content (50-65% by weight) and can be coated onto reinforcing fiber to produce prepegs with excellent tack and drape at 12-15% residual solvent (approximately 4-6% water from thermal imidization reaction). The processing of these types of prepegs significantly overcomes solvent removal problems and allows excellent fiber wet out. In addition, the physical characteristics of the polyimide precursor salt-like solutions permits processing into high-performance materials through the use of standard prepregging and composite fabrication equipment. The resultant composites are of high quality.

  14. Thermally Conductive Structural 2D Composite Materials

    DTIC Science & Technology

    2012-08-14

    through-thickness thermal conductivity of up to 20 W/m.K. This novel structural prepreg material will be developed through engineering of an optimal fiber...with an EPON 862/Epikure W epoxy resin system to form unidirectional prepreg tapes. Each prepreg was then cut to 6 inch by 6 inch plies and...impregnated with an EPON 862/Epikure W epoxy resin system. The unidirectional prepreg tape was then cut into twelve 6 inch by 6 inch plies and

  15. A new NASA LaRC Multi-Purpose Prepregging Unit

    NASA Technical Reports Server (NTRS)

    Wilkinson, S. P.; Marchello, J. M.; Dixon, D.; Johnston, N. J.

    1993-01-01

    A multi-purpose prepregging machine has been designed and built for NASA Langley Research Center. The machine has numerous advantages over existing units due to its various modular components. Each of these can be used individually or simultaneously depending on the required prepregging method. A reverse roll coater provides the ability to prepare thin films from typical hot-melt thermoset formulations. Also, if necessary, the design allows direct fiber impregnation within the reverse roll coater gap. Included in the impregnation module is a solution dip tank allowing the fabrication of thermoplastic prepregs from solution. The proceeding modules within the unit consist of four nip stations, two hot-plates, a hot-sled option and a high temperature oven. This paper describes the advantages of such a modular construction and discusses the various processing combinations available to the prepregger. A variety of high performance prepreg material systems were produced on IM7 (Hercules) carbon fiber. These included LaRC RP46, a PMR-type resin processed from methanol and two polyamide acids, LaRC IA and LaRC ITPI, prpregged from N-methyl pyrrolidinone (NMP). Parameters involved in the production of these prepreg materials are presented as are the mechanical properties of the resulting good quality laminates. A brief introduction into the existing prepregging science is presented. Topics relating to solution prepregging are identified with a focus on the current research effort and its future development.

  16. In-plane shearing of a UD prepreg modeled as transversely isotropic fluid: Comparison between continuous and discontinuous fiber tension approaches

    NASA Astrophysics Data System (ADS)

    Sorba, Grégoire; Binetruy, Christophe; Chinesta, Francisco

    2016-10-01

    In this paper a model of Transversely Isotropic Fluid (TIF), developed by Pipkin in [1], is presented and used for example to model in 2D the in-plane shearing of UD prepreg. This problem demonstrates the need to have a continuous fiber tension field over the elements, with the final objective of detecting the wrinkling of fibers during the forming process, at the price of a lower accuracy of the velocity field.

  17. A Theoretical Model for Estimation of Yield Strength of Fiber Metal Laminate

    NASA Astrophysics Data System (ADS)

    Bhat, Sunil; Nagesh, Suresh; Umesh, C. K.; Narayanan, S.

    2017-08-01

    The paper presents a theoretical model for estimation of yield strength of fiber metal laminate. Principles of elasticity and formulation of residual stress are employed to determine the stress state in metal layer of the laminate that is found to be higher than the stress applied over the laminate resulting in reduced yield strength of the laminate in comparison with that of the metal layer. The model is tested over 4A-3/2 Glare laminate comprising three thin aerospace 2014-T6 aluminum alloy layers alternately bonded adhesively with two prepregs, each prepreg built up of three uni-directional glass fiber layers laid in longitudinal and transverse directions. Laminates with prepregs of E-Glass and S-Glass fibers are investigated separately under uni-axial tension. Yield strengths of both the Glare variants are found to be less than that of aluminum alloy with use of S-Glass fiber resulting in higher laminate yield strength than with the use of E-Glass fiber. Results from finite element analysis and tensile tests conducted over the laminates substantiate the theoretical model.

  18. Fiber study involving a polyimide matrix

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cano, R.J.; Rommel, M.; Hinkley, J.A.

    1996-12-31

    Mechanical properties are presented for eight different intermediate modulus carbon fiber/ polyimide matrix composites. Two unsized carbon fibers (Thornel T650-42 and Hercules IM9) and two sized carbon fibers (high temperature sized Thornel T650-42 HTS and epoxy sized Toray T1000) were prepregged on the NASA LaRC Multipurpose Tape Machine using the NASA LaRC developed polyimide resin matrix, LaRC{trademark}-PETI-5, and the DuPont developed Avitnid{reg_sign} R1-16. Composite panels fabricated from these prepregs were evaluated to determine their mechanical properties. The data show the effects of using sized fibers on the processing and mechanical properties of polyimide composites.

  19. PMR polyimide prepreg with improved tack characteristics

    NASA Technical Reports Server (NTRS)

    Serafini, T. T.; Delvigs, P.

    1976-01-01

    Current PMR Polyimide prepreg technology utilizes methanol or ethanol solvents for preparation of the PMR prepreg solutions. The volatility of these solvents limits the tack and drape retention characteristics of unprotected prepreg exposed to ambient conditions. Studies conducted to achieve PMR 15 Polyimide prepreg with improved tack and drape characteristics were described. Improved tack and drape retention were obtained by incorporation of an additional monomer. The effects of various levels of the added monomer on the thermo-oxidative stability and mechanical properties of graphite fiber reinforced PMR 15 composites exposed and tested at 316 C (600 F) were discussed.

  20. Enhancement of Gas Barrier Properties of CFRP Laminates Fabricated Using Thin-Ply Prepregs

    NASA Astrophysics Data System (ADS)

    横関, 智弘; 高木, 智宏; 吉村, 彰記; Ogasawara, Toshio; 荻原, 慎二

    Composite laminates manufactured using thin-ply prepregs are expected to have superior resistance properties against microcracking compared to those using standard prepregs. In this study, comparative investigations are presented on the microcrack accumulation and gas leakage characteristics of CFRP laminates fabricated using standard and thin-ply prepregs, consisting of high-performance carbon fiber and toughened epoxy, as a fundamental research on the cryogenic composite tanks for future space vehicles. It was shown that laminates using thin-ply prepregs exhibited much higher strain at microcrack initiation compared to those using standard prepregs at room and cryogenic temperatures. In addition, helium gas leak tests using CFRP laminated tubular specimens subjected to quasi-static tension loadings were performed. It was demonstrated that CFRP laminates using thin-ply prepregs have higher gas barrier properties than those using standard prepregs.

  1. Effects of Processing Parameters on the Forming Quality of C-Shaped Thermosetting Composite Laminates in Hot Diaphragm Forming Process

    NASA Astrophysics Data System (ADS)

    Bian, X. X.; Gu, Y. Z.; Sun, J.; Li, M.; Liu, W. P.; Zhang, Z. G.

    2013-10-01

    In this study, the effects of processing temperature and vacuum applying rate on the forming quality of C-shaped carbon fiber reinforced epoxy resin matrix composite laminates during hot diaphragm forming process were investigated. C-shaped prepreg preforms were produced using a home-made hot diaphragm forming equipment. The thickness variations of the preforms and the manufacturing defects after diaphragm forming process, including fiber wrinkling and voids, were evaluated to understand the forming mechanism. Furthermore, both interlaminar slipping friction and compaction behavior of the prepreg stacks were experimentally analyzed for showing the importance of the processing parameters. In addition, autoclave processing was used to cure the C-shaped preforms to investigate the changes of the defects before and after cure process. The results show that the C-shaped prepreg preforms with good forming quality can be achieved through increasing processing temperature and reducing vacuum applying rate, which obviously promote prepreg interlaminar slipping process. The process temperature and forming rate in hot diaphragm forming process strongly influence prepreg interply frictional force, and the maximum interlaminar frictional force can be taken as a key parameter for processing parameter optimization. Autoclave process is effective in eliminating voids in the preforms and can alleviate fiber wrinkles to a certain extent.

  2. Fabrication of Fiber-Reinforced Celsian Matrix Composites

    NASA Technical Reports Server (NTRS)

    Bansal, Narottam P.; Setlock, John A.

    2000-01-01

    A method has been developed for the fabrication of small diameter, multifilament tow fiber reinforced ceramic matrix composites. Its application has been successfully demonstrated for the Hi-Nicalon/celsian system. Strong and tough celsian matrix composites, reinforced with BN/SiC-coated Hi-Nicalon fibers, have been fabricated by infiltrating the fiber tows with the matrix slurry, winding the tows on a drum, cutting and stacking of the prepreg tapes in the desired orientation, and hot pressing. The monoclinic celsian phase in the matrix was produced in situ, during hot pressing, from the 0.75BaO-0.25SrO-Al2O3-2SiO2 mixed precursor synthesized by solid state reaction from metal oxides. Hot pressing resulted in almost fully dense fiber-reinforced composites. The unidirectional composites having approx. 42 vol% of fibers exhibited graceful failure with extensive fiber pullout in three-point bend tests at room temperature. Values of yield stress and strain were 435 +/- 35 MPa and 0.27 +/- 0.01 percent, respectively, and ultimate strengths of 900 +/- 60 MPa were observed. The Young's modulus of the composites was measured to be 165 +/- 5 GPa.

  3. Shear behavior of thermoformed woven-textile thermoplastic prepregs: An analysis combining bias-extension test and X-ray microtomography

    NASA Astrophysics Data System (ADS)

    Gassoumi, M.; Rolland du Roscoat, S.; Casari, P.; Dumont, P. J. J.; Orgéas, L.; Jacquemin, F.

    2017-10-01

    Thermoforming allows the manufacture of structural parts for the automotive and aeronautical domains using long fiber thermoplastic prepregs with short cycle times. During this operation, several sheets of molten prepregs are stacked and subjected to large macroscale strains, mainly via in-plane shear, out-of-plane consolidation or dilatation, and bending of the fibrous reinforcement. These deformation modes and the related meso and microstructure evolutions are still poorly understood. However, they can drastically alter the end-use macroscale properties of fabricated parts. To better understand these phenomena, bias extension tests were performed using specimens made of several stacked layers of glass woven fabrics and polyamide matrix. The macroscale shear behavior of these prepregs was investigated at various temperatures. A multiscale analysis of deformed samples was performed using X-ray microtomography images of the deformed specimens acquired at two different spatial resolutions. The low-resolution images were used to analyze the deformation mechanisms and the structural characteristics of prepregs at the macroscale and bundle scales. It was possible to analyze the 3D shapes of deformed samples and, in particular, the spatial variations of their thickness so as to quantify the out-of-plane dilatancy or consolidation phenomena induced by the in-plane shear of prepregs. At a lower scale, the analysis of the high-resolution images showed that these mechanisms were accompanied by the growth of pores and the deformation of fiber bundles. The orientation of the fiber bundles and its through-thickness evolution were measured along the weft and warp directions in the deformed samples, allowing the relevance of geometrical models currently used to analyze bias extension tests to be discussed. Results can be used to enhance the current rheological models for the prediction of thermoforming of thermoplastic prepregs.

  4. Processable Aromatic Polyimide Thermoplastic Blends

    NASA Technical Reports Server (NTRS)

    Baucom, Robert M; Johnston, Norman J.; St. Clair, Terry L.; Nelson, James B.; Gleason, John R.; Proctor, K. Mason

    1988-01-01

    Method developed for preparing readily-processable thermoplastic polyimides by blending linear, high-molecular-weight, polyimic acid solutions in ether solvents with ultrafine, semicrystalline, thermoplastic polyimide powders. Slurries formed used to make prepregs. Consolidation of prepregs into finsihed composites characterized by excellent melt flow during processing. Applied to film, fiber, fabric, metal, polymer, or composite surfaces. Used to make various stable slurries from which prepregs prepared.

  5. Space environmental effects on LDEF composites: A leading edge coated graphite epoxy panel

    NASA Technical Reports Server (NTRS)

    George, Pete E.; Dursch, Harry W.; Hill, Sylvester G.

    1993-01-01

    The electronics module cover for the leading edge (Row D 9) experiment M0003-8 was fabricated from T300 graphite/934 epoxy unidirectional prepreg tape in a (O(sub 2), +/- 45, O(sub 2), +/- 45, 90, 0)(sub s) layup. This 11.75 in x 16.75 in panel was covered with thermal control coatings in three of the four quadrants with the fourth quadrant uncoated. The composite panel experienced different thermal cycling extremes in each quadrant due to the different optical properties of the coatings and bare composite. The panel also experienced ultraviolet (UV) and atomic oxygen (AO) attack as well as micrometeoroid and space debris impacts. An AO reactivity of 0.99 x 10(exp -24) cm(sup 3)/atom was calculated for the bare composite based on thickness loss. The white urethane thermal control coatings (A276 and BMS 1060) prevented AO attack of the composite substrate. However, the black urethane thermal control coating (Z306) was severely eroded by AO, allowing some AO attack of the composite substrate. An interesting banding pattern on the AO eroded bare composite surface was investigated and found to match the dimensions of the graphite fiber tow widths as prepregged. Also, erosion depths were greater in the darker bands. Five micrometeoroid/space debris impacts were cross sectioned to investigate possible structural damage as well as impact/AO interactions. Local crushing and delaminations were found to some extent in all of the impacts. No signs of coating undercutting were observed despite the extensive AO erosion patterns seen in the exposed composite material at the impact sites. An extensive microcrack study was performed on the panel along with modeling of the thermal environment to estimate temperature extremes and thermal shock. The white coated composite substrate displayed almost no microcracking while the black coated and bare composite showed extensive microcracking. Significant AO erosion was seen in many of the cracks in the bare composite.

  6. Evaluation of Graphite Fiber/Polyimide PMCs from Hot Melt vs Solution Prepreg

    NASA Technical Reports Server (NTRS)

    Shin, E. Eugene; Sutter, James K.; Eakin, Howard; Inghram, Linda; McCorkle, Linda; Scheiman, Dan; Papadopoulos, Demetrios; Thesken, John; Fink, Jeffrey E.

    2002-01-01

    Carbon fiber reinforced high temperature polymer matrix composites (PMC) have been extensively investigated as potential weight reduction replacements of various metallic components in next generation high performance propulsion rocket engines. The initial phase involves development of comprehensive composite material-process-structure-design-property-in-service performance correlations and database, especially for a high stiffness facesheet of various sandwich structures. Overview of the program plan, technical approaches and current multi-team efforts will be presented. During composite fabrication, it was found that the two large volume commercial prepregging methods (hot-melt vs. solution) resulted in considerably different composite cure behavior. Details of the process-induced physical and chemical modifications in the prepregs, their effects on composite processing, and systematic cure cycle optimization studies will be discussed. The combined effects of prepregging method and cure cycle modification on composite properties and isothermal aging performance were also evaluated.

  7. Evaluation of Graphite Fiber/Polyimide PMCs from Hot Melt versus Solution Prepreg

    NASA Technical Reports Server (NTRS)

    Shin, Eugene E.; Sutter, James K.; Eakin, Howard; Inghram, Linda; McCorkle, Linda; Scheiman, Dan; Papadopoulos, Demetrios; Thesken, John; Fink, Jeffrey E.; Gray, Hugh R. (Technical Monitor)

    2002-01-01

    Carbon fiber reinforced high temperature polymer matrix composites (PMC) have been extensively investigated as potential weight reduction replacements of various metallic components in next generation high performance propulsion rocket engines. The initial phase involves development of comprehensive composite material-process-structure-design-property in-service performance correlations and database, especially for a high stiffness facesheet of various sandwich structures. Overview of the program plan, technical approaches and current multi-team efforts will be presented. During composite fabrication, it was found that the two large volume commercial prepregging methods (hot-melt vs. solution) resulted in considerably different composite cure behavior. Details of the process-induced physical and chemical modifications in the prepregs, their effects on composite processing, and systematic cure cycle optimization studies will be discussed. The combined effects of prepregging method and cure cycle modification on composite properties and isothermal aging performance were also evaluated.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Weizhao; Zhang, Zixuan; Lu, Jie

    Carbon fiber composites have received growing attention because of their high performance. One economic method to manufacturing the composite parts is the sequence of forming followed by the compression molding process. In this sequence, the preforming procedure forms the prepreg, which is the composite with the uncured resin, to the product geometry while the molding process cures the resin. Slip between different prepreg layers is observed in the preforming step and this paper reports a method to characterize the properties of the interaction between different prepreg layers, which is critical to predictive modeling and design optimization. An experimental setup wasmore » established to evaluate the interactions at various industrial production conditions. The experimental results were analyzed for an in-depth understanding about how the temperature, the relative sliding speed, and the fiber orientation affect the tangential interaction between two prepreg layers. The interaction factors measured from these experiments will be implemented in the computational preforming program.« less

  9. Comparison of the thermomechanical characteristics of porcher carbon fabric-based composites for orthopaedic applications

    NASA Astrophysics Data System (ADS)

    Molchanov, E. S.; Yudin, V. E.; Kydralieva, K. A.; Elokhovskii, V. Yu.

    2012-07-01

    Prepregs of fiber-reinforced plastics based on a PORCHER-43200 carbon twill-weave fabric and two types of binders — thermoreactive and thermoplastic — were fabricated using electrostatic spraying, followed by rolling the prepregs in temperature-controlled calenders. A solid epoxy olygomer with dicyandiamine as a hardener and Fortron® polyphenylene sulfide were used as the thermoreactive and thermoplastic binders. The thermomechanical properties of carbon-fiber-reinforced plastics processed from these prepregs, as well as commercial Sigranex® PREPREGCE8201-200-45 S prepregs as model ones, and composites manufactured from them were investigated for comparison. The latter ones are being used for the design of orthopaedic products. It is shown that the composites based on polyphenylene sulfide are characterized by higher values of flexural strength, flexural and shear moduli, and interlaminar fracture toughness ( G IC), the latter being the most important parameter.

  10. Inkjet Assisted Creation of Self-Healing Layers Between Composite Plies

    DTIC Science & Technology

    2013-07-29

    technology into a prepreg manufacturing process. The approach consisted of depositing novel thermoplastic low-viscosity microdroplets with chemically and...mechanically comparable properties to epoxy matrix in aerospace grade composites onto fiber-reinforced epoxy prepregs before curing using an ink-jet... prepreg Cycom977-2. Double cantilever beam (DCB) and short beam shear (SBS) tests were used to evaluate the self-healing efficiency. It was shown

  11. Monitoring Prepregs As They Cure

    NASA Technical Reports Server (NTRS)

    Young, P. R.; Gleason, J. R.; Chang, A. C.

    1986-01-01

    Quality IR spectra obtained in dynamic heating environment. New technique obtains quality infrared spectra on graphite-fiber-reinforced, polymeric-matrix-resin prepregs as they cure. Technique resulted from modification of diffuse reflectance/Fourier transform infrared (DR/FTIR) technique previously used to analyze environmentally exposed cured graphite composites. Technique contribute to better understanding of prepreg chemistry/temperature relationships and development of more efficient processing cycles for advanced materials.

  12. Improved compression molding technology for continuous fiber reinforced composite laminates. Part 2: AS-4/Polyimidesulfone prepreg system

    NASA Technical Reports Server (NTRS)

    Baucom, Robert M.; Hou, Tan-Hung; Kidder, Paul W.; Reddy, Rakasi M.

    1991-01-01

    AS-4/polyimidesulfone (PISO2) composite prepreg was utilized for the improved compression molding technology investigation. This improved technique employed molding stops which advantageously facilitate the escape of volatile by-products during the B-stage curing step, and effectively minimize the neutralization of the consolidating pressure by intimate interply fiber-fiber contact within the laminate in the subsequent molding cycle. Without the modifying the resin matrix properties, composite panels with both unidirectional and angled plies with outstanding C-scans and mechanical properties were successfully molded using moderate molding conditions, i.e., 660 F and 500 psi, using this technique. The size of the panels molded were up to 6.00 x 6.00 x 0.07 in. A consolidation theory was proposed for the understanding and advancement of the processing science. Processing parameters such as vacuum, pressure cycle design, prepreg quality, etc. were explored.

  13. Flow properties of a series of experimental thermoplastic polymides

    NASA Technical Reports Server (NTRS)

    Burks, H. D.; Nelson, J. B.; Price, H. L.

    1981-01-01

    The softening temperature to degradation temperature range of the polymers was about 440 to 650 K. All of the polymers retained small amounts of solvent as indicated by an increase in T(sub g) as the polymers were dried. The flow properties showed that all three polymers had very high apparent viscosities and would require high pressures and/or high temperatures and/or long times to obtain adequate flow in prepregging and molding. Although none was intended for such application, two of the polymers were combined with carbon fibers by solution prepregging. The prepregs were molded into laminates at temperatures and times, the selection of which was guided by the results from the flow measurements. These laminates had room temperature short beam shear strength similar to that of carbon fiber laminates with a thermosetting polyimide matrix. However, the strength had considerable scatter, and given the difficult processing, these polymides probably would not be suitable for continuous fiber composites.

  14. Analytical and Experimental Characterization of Thick-Section Fiber-Metal Laminates

    DTIC Science & Technology

    2013-06-01

    individual metal layers as loading increases. The off-axis deformation properties of the prepreg layers were modeled by using equivalent constraint models...the degraded stiffness of the prepreg layer is found. At each loading step the stiffness properties of individual layers are calculated. These...predicts stress-strain curves on-axis, additional work is needed to study the local interactions between metal and prepreg layers as damage occurs in each

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahn, K.J.; Seferis, J.C.; Pelton, T.

    A compression to tension apparatus and a methodology capable of measuring prepreg tack have been analyzed in detail in order to establish fundamental material and operating characteristics. Both intrinsic and extrinsic parameters influencing prepreg tack were identified and analyzed using commercially available carbon fiber/epoxy prepregs and mechanical testing equipment. Two different factors, (1) contact (or wetting) area of adjacent prepreg plies and (2) viscoelastic properties of the prepreg, were found to control prepreg tack. At low temperatures, contact area was the main deformation controlling step, while at high temperatures, the viscoelastic property of the prepreg was found to be dominant.more » Both interlaminar and intralaminar deformations were observed depending on the prepreg systems examined as well as the operating conditions of the test. In addition, hold time, hold pressure, loading rate, resin content, and out-time were also found to affect prepreg tack. Energy of separation, which may be viewed as a descriptor of prepreg tack, was observed to increase with increasing hold time, hold pressure, and loading rate. Energy of separation also showed a maximum value at a specific resin content for a specific prepreg system, while it decreased with increasing prepreg out-time due to prepreg surface characteristic change rather than bulk physical aging. Conclusively, it was observed that prepreg tack must be viewed as an extrinsic, bulk, but surface-sensitive, viscoelastic property which depends on material as well as operating conditions.« less

  16. Experimental study of optical fibers influence on composite

    NASA Astrophysics Data System (ADS)

    Liu, Rong-Mei; Liang, Da-Kai

    2010-03-01

    Bending strength and elasticity modulus of composite, with and without embedded optical fibers, were experimentally studied. Two kinds of laminates, which were denoted as group 1 and group 2, were fabricated from an orthogonal woven glass/epoxy prepreg. Since the normal stress value becomes the biggest at the surface of a beam, the optical fibers were embedded at the outmost layer and were all along the loading direction. Four types of materials, using each kind of laminated prepreg respectively, were manufactured. The embedded optical fibers for the 4 material types were 0, 10, 30 and 50 respectively. Three-point bending tests were carried out on the produced specimens to study the influence of embedded optical fiber on host composite. The experimental results indicated that the materials in group 2 were more sensitive to the embedded optical fibers.

  17. Fabrication of a First Article Lightweight Composite Technology Demonstrator - Exospine

    DTIC Science & Technology

    2014-01-01

    core, (b) 0/90, and (c) ± 45 ply cuts of ACG-MTM 45-1/CF0526 prepreg fabric...onboard diagnostics. 2. Experimental 2.1 Materials Plain woven carbon fiber/epoxy prepreg and a low-density foam core were provided to ARL for the...fabrication of the exospine technology demonstrator by UD-CCM. The prepreg was ACG - MTM∗ 45-1/CF0526 and has a cured ply thickness of 0.201 mm. It is

  18. An Experimental Study of the Influence of in-Plane Fiber Waviness on Unidirectional Laminates Tensile Properties

    NASA Astrophysics Data System (ADS)

    Zhao, Cong; Xiao, Jun; Li, Yong; Chu, Qiyi; Xu, Ting; Wang, Bendong

    2017-12-01

    As one of the most common process induced defects of automated fiber placement, in-plane fiber waviness and its influences on mechanical properties of fiber reinforced composite lack experimental studies. In this paper, a new approach to prepare the test specimen with in-plane fiber waviness is proposed in consideration of the mismatch between the current test standard and actual fiber trajectory. Based on the generation mechanism of in-plane fiber waviness during automated fiber placement, the magnitude of in-plane fiber waviness is characterized by axial compressive strain of prepreg tow. The elastic constants and tensile strength of unidirectional laminates with in-plane fiber waviness are calculated by off-axis and maximum stress theory. Experimental results show that the tensile properties infade dramatically with increasing magnitude of the waviness, in good agreement with theoretical analyses. When prepreg tow compressive strain reaches 1.2%, the longitudinal tensile modulus and strength of unidirectional laminate decreased by 25.5% and 57.7%, respectively.

  19. Carbon-Carbon Piston Architectures

    NASA Technical Reports Server (NTRS)

    Rivers, H. Kevin (Inventor); Ransone, Philip O. (Inventor); Northam, G. Burton (Inventor); Schwind, Francis A. (Inventor)

    2000-01-01

    An improved structure for carbon-carbon composite piston architectures is disclosed. The improvement consists of replacing the knitted fiber, three-dimensional piston preform architecture described in U.S. Pat.No. 4,909,133 (Taylor et al.) with a two-dimensional lay-up or molding of carbon fiber fabric or tape. Initially, the carbon fabric of tape layers are prepregged with carbonaceous organic resins and/or pitches and are laid up or molded about a mandrel, to form a carbon-fiber reinforced organic-matrix composite part shaped like a "U" channel, a "T"-bar, or a combination of the two. The molded carbon-fiber reinforced organic-matrix composite part is then pyrolized in an inert atmosphere, to convert the organic matrix materials to carbon. At this point, cylindrical piston blanks are cored from the "U"-channel, "T"-bar, or combination part. These blanks are then densified by reimpregnation with resins or pitches which are subsequently carbonized. Densification is also accomplished by direct infiltration with carbon by vapor deposition processes. Once the desired density has been achieved, the piston billets are machined to final piston dimensions; coated with oxidation sealants; and/or coated with a catalyst. When compared to conventional steel or aluminum alloy pistons, the use of carbon-carbon composite pistons reduces the overall weight of the engine; allows for operation at higher temperatures without a loss of strength; allows for quieter operation; reduces the heat loss; and reduces the level of hydrocarbon emissions.

  20. Carbon-Carbon Piston Architectures

    NASA Technical Reports Server (NTRS)

    Rivers, H. Kevin (Inventor); Ransone, Philip O. (Inventor); Northam, G. Burton (Inventor); Schwind, Francis A. (Inventor)

    1999-01-01

    An improved structure for carbon-carbon composite piston architectures consists of replacing the knitted fiber, three-dimensional piston preform architecture described in U.S. Pat. No. 4.909,133 (Taylor et al.) with a two-dimensional lay-up or molding of carbon fiber fabric or tape. Initially. the carbon fabric or tape layers are prepregged with carbonaceous organic resins and/or pitches and are laid up or molded about a mandrel. to form a carbon-fiber reinforced organic-matrix composite part shaped like a "U" channel, a "T"-bar. or a combination of the two. The molded carbon-fiber reinforced organic-matrix composite part is then pyrolized in an inert atmosphere, to convert the organic matrix materials to carbon. At this point, cylindrical piston blanks are cored from the "U" channel, "T"-bar, or combination part. These blanks are then densified by reimpregnation with resins or pitches which are subsequently carbonized. Densification is also be accomplished by direct infiltration with carbon by vapor deposition processes. Once the desired density has been achieved, the piston billets are machined to final piston dimensions; coated with oxidation sealants; and/or coated with a catalyst. When compared to conventional steel or aluminum-alloy pistons, the use of carbon-carbon composite pistons reduces the overall weight of the engine; allows for operation at higher temperatures without a loss of strength; allows for quieter operation; reduces the heat loss; and reduces the level of hydrocarbon emissions.

  1. Static and Dynamic Behavior of High Modulus Hybrid Boron/Glass/Aluminum Fiber Metal Laminates

    NASA Astrophysics Data System (ADS)

    Yeh, Po-Ching

    2011-12-01

    This dissertation presents the investigation of a newly developed hybrid fiber metal laminates (FMLs) which contains commingled boron fibers, glass fibers, and 2024-T3 aluminum sheets. Two types of hybrid boron/glass/aluminum FMLs are developed. The first, type I hybrid FMLs, contained a layer of boron fiber prepreg in between two layers of S2-glass fiber prepreg, sandwiched by two aluminum alloy 2024-T3 sheets. The second, type II hybrid FMLs, contained three layer of commingled hybrid boron/glass fiber prepreg layers, sandwiched by two aluminum alloy 2024-T3 sheets. The mechanical behavior and deformation characteristics including blunt notch strength, bearing strength and fatigue behavior of these two types of hybrid boron/glass/aluminum FMLs were investigated. Compared to traditional S2-glass fiber reinforced aluminum laminates (GLARE), the newly developed hybrid boron/glass/aluminum fiber metal laminates possess high modulus, high yielding stress, and good blunt notch properties. From the bearing test result, the hybrid boron/glass/aluminum fiber metal laminates showed outstanding bearing strength. The high fiber volume fraction of boron fibers in type II laminates lead to a higher bearing strength compared to both type I laminates and traditional GLARE. Both types of hybrid FMLs have improved fatigue crack initiation lives and excellent fatigue crack propagation resistance compared to traditional GLARE. The incorporation of the boron fibers improved the Young's modulus of the composite layer in FMLs, which in turn, improved the fatigue crack initiation life and crack propagation rates of the aluminum sheets. Moreover, a finite element model was established to predict and verify the properties of hybrid boron/glass/aluminum FMLs. The simulated results showed good agreement with the experimental results.

  2. Apparatus for consolidating a pre-impregnated, filament-reinforced polymeric prepreg material

    NASA Technical Reports Server (NTRS)

    Sandusky, Donald A. (Inventor)

    1995-01-01

    An apparatus and method were developed for providing a uniform, consolidated, unidirectional, continuous, fiber-reinforced polymeric material. The apparatus comprises a supply means, a forming means, a shaping means, and a take-up means. The forming means further comprises a pre-melting chamber and a stationary bar assembly. The shaping means is a loaded cooled nip-roller apparatus. Forming takes place by heating a polymeric prepreg material to a temperature where the polymer becomes viscous and applying pressure gradients at separate locations along the prepreg material. Upon exiting the forming means, the polymeric prepreg material is malleable, consolidated, and flattened. Shaping takes place by passing the malleable, consolidated, flattened prepreg material through a shaped, matched groove in a loaded, cooled nip-roller apparatus to provide the final solid product.

  3. Solventless LARC-160 Polyimide Matrix Resin. [applied for use in aerospace engineering

    NASA Technical Reports Server (NTRS)

    Stclair, T. L.; Jewell, R. A.

    1978-01-01

    The addition polyimide, LARC-160, which was originally synthesized from low cost liquid monomers as a laminating resin in ethanol, was prepared as a solventless, high viscosity, neat liquid resin. The resin was processed by hot-melt coating techniques into graphite prepreg with excellent tack and drape. Comparable data on graphite reinforced laminates made from solvent-coated and various hot-melt coated prepreg were generated. LARC-160, because of its liquid nature, can be easily autoclave processed to produce low void laminates. Liquid chromatographic fingerprints indicate good reaction control on resin scale ups. Minor changes in monomer ratios were also made to improve the thermal aging performance of graphite laminates.

  4. Graphite nanoplatelet enabled embeddable fiber sensor for in situ curing monitoring and structural health monitoring of polymeric composites.

    PubMed

    Luo, Sida; Liu, Tao

    2014-06-25

    A graphite nanoplatelet (GNP) thin film enabled 1D fiber sensor (GNP-FibSen) was fabricated by a continuous roll-to-roll spray coating process, characterized by scanning electron microscopy and Raman spectroscopy and evaluated by coupled electrical-mechanical tensile testing. The neat GNP-FibSen sensor shows very high gauge sensitivity with a gauge factor of ∼17. By embedding the sensor in fiberglass prepreg laminate parts, the dual functionalities of the GNP-FibSen sensor were demonstrated. In the manufacturing process, the resistance change of the embedded sensor provides valuable local resin curing information. After the manufacturing process, the same sensor is able to map the strain/stress states and detect the failure of the host composite. The superior durability of the embedded GNP-FibSen sensor has been demonstrated through 10,000 cycles of coupled electromechanical tests.

  5. Out-of-Autoclave Cure Composites

    NASA Technical Reports Server (NTRS)

    Hayes, Brian S.

    2015-01-01

    As the size of aerospace composite parts exceeds that of even the largest autoclaves, the development of new out-of-autoclave processes and materials is necessary to ensure quality and performance. Many out-of-autoclave prepreg systems can produce high-quality composites initially; however, due to long layup times, the resin advancement commonly causes high void content and variations in fiber volume. Applied Poleramic, Inc. (API), developed an aerospace-grade benzoxazine matrix composite prepreg material that offers more than a year out-time at ambient conditions and provides exceptionally low void content when out-of-autoclave cured. When compared with aerospace epoxy prepreg systems, API's innovation offers significant improvements in terms of out-time at ambient temperature and the corresponding tack retention. The carbon fiber composites developed with the optimized matrix technology have significantly better mechanical performance in terms of hot-wet retention and compression when compared with aerospace epoxy matrices. These composites also offer an excellent overall balance of properties. This matrix system imparts very low cure shrinkage, low coefficient of thermal expansion, and low density when compared with most aerospace epoxy prepreg materials.

  6. Embedding of MEMS pressure and temperature sensors in carbon fiber composites: a manufacturing approach

    NASA Astrophysics Data System (ADS)

    Javidinejad, Amir; Joshi, Shiv P.

    2000-06-01

    In this paper embedding of surface mount pressure and temperature sensors in the Carbon fiber composites are described. A commercially available surface mount pressure and temperature sensor are used for embedding in a composite lay- up of IM6/HST-7, IM6/3501 and AS4/E7T1-2 prepregs. The fabrication techniques developed here are the focus of this paper and provide for a successful embedding procedure of pressure sensors in fibrous composites. The techniques for positioning and insulating, the sensor and the lead wires, from the conductive carbon prepregs are described and illustrated. Procedural techniques are developed and discussed for isolating the sensor's flow-opening, from the exposure to the prepreg epoxy flow and exposure to the fibrous particles, during the autoclave curing of the composite laminate. The effects of the autoclave cycle (if any) on the operation of the embedded pressure sensor are discussed.

  7. Effects of solvent on solution prepregging of the resin system LaRC{trademark}-IAX-2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cano, R.J.; Massey, C.P.; St. Clair, T.L.

    1996-12-31

    This work assesses the feasibility of using an alternative solvent for the production of composites from polyimide resin systems via solution prepregging. Previous work on solution prepregging of polyimide systems at NASA Langley Research Center has concentrated on the use of the solvent N-methylpyrrolidinone. An alternative solvent with a similar boiling point, -{gamma}-Butyrolactone, was used to prepare the poly(amide acid) version of LaRC{trademark}-IAX-2. These solutions were subsequently used to prepare prepreg and graphite-reinforced composites. Mechanical properties are presented for the resin system LaRC{trademark}-IAX-2 (4% and 5% offset in stoichiometry and endcapped with phthalic anhydride) impregnated onto Hercules IM7 carbon fiber.more » Results from this work were compared to data obtained on the same resin system which had been solution prepregged with the solvent N-methylpyrrolidinone.« less

  8. A New Silarylene-Siloxane Monomeric Resin for Structural Composites: Cure-Chemistry Insight and Thermal Properties of the Cured Matrix

    DTIC Science & Technology

    2013-03-01

    remain nonvolatile during the entire fiber-infusion process and curing operation. The resin must offer several days of storage life before the prepreg ...shipboard handling and in-flight cyclic loading. The raw materials for the new resin and the process for making and curing the prepreg must be affordable

  9. Guidelines for Developing and Inserting Material Properties into the Code 65 Composite Material Database

    DTIC Science & Technology

    2011-12-01

    kind of base fiber used Fab-ric uni, stitched, weave, woven roving, textile form, tape, prepreg Laminate Schedu le [0]10 [0]14 [0]36 Manufacturing...roving, textile form, tape, prepreg Laminate Schedule [0]10 [0]14 [0]36 Manufacturing Date 2006 Test Facility/Date 2007 Program of Record AHM&ST...9 Laminate Schedule .......................................................................................................10 Cure

  10. A theoretical study of resin flows for thermosetting materials during prepreg processing

    NASA Technical Reports Server (NTRS)

    Hou, T. H.

    1984-01-01

    A flow model which describes the process of resin consolidation during prepreg lamination was developed. The salient features of model predictions were explored. It is assumed that resin flows in all directions originate from squeezing action between two approaching adjacent fiber/fabric layers. In the horizontal direction, a squeezing flow between two nonporous parallel plates is analyzed, while in the vertical direction a poiseuille type pressure flow through porous media is assumed. Proper force and mass balance was established for the whole system which is composed of these two types of flow. A flow parameter, CF, shows to be a measure of processibility for the curing resin. For a given external load-F the responses of resin flow during prepreg lamination, as measured by CF, are categorized into three regions: (1) the low CF region where resin flows are inhibited by the high chemoviscosity during initial curing stages; (2) the median CF region where resin flows are properly controllable; and (3) the high CF region where resin flows are ceased due to fiber/fabric compression effects. Resin losses in both directions are calculated. Potential uses of this model and quality control of incoming prepreg material are discussed.

  11. Design and manufacture of a lightweight piezo-composite curved actuator

    NASA Astrophysics Data System (ADS)

    Yoon, K. Joon; Shin, Seokjun; Park, Hoon C.; Goo, Nam Seo

    2002-02-01

    In this paper we are concerned with the design, manufacture and performance test of a lightweight piezo-composite curved actuator (called LIPCA) using a top carbon fiber composite layer with near-zero coefficient of thermal expansion (CTE), a middle PZT ceramic wafer, and a bottom glass/epoxy layer with a high CTE. The main point of the design for LIPCA is to replace the heavy metal layers of THUNDERTM by lightweight fiber reinforced plastic layers without losing the capabilities for generating high force and large displacement. It is possible to save up to about 40% of the weight if we replace the metallic backing material by the light fiber composite layer. We can also have design flexibility by selecting the fiber direction and the size of prepreg layers. In addition to the lightweight advantage and design flexibility, the proposed device can be manufactured without adhesive layers when we use an epoxy resin prepreg system. Glass/epoxy prepregs, a ceramic wafer with electrode surfaces, and a carbon prepreg were simply stacked and cured at an elevated temperature (177 °C) after following an autoclave bagging process. We found that the manufactured composite laminate device had a sufficient curvature after being detached from a flat mould. An analysis method using the classical lamination theory is presented to predict the curvature of LIPCA after curing at an elevated temperature. The predicted curvatures are in quite good agreement with the experimental values. In order to investigate the merits of LIPCA, performance tests of both LIPCA and THUNDERTM have been conducted under the same boundary conditions. From the experimental actuation tests, it was observed that the developed actuator could generate larger actuation displacement than THUNDERTM.

  12. Biotransformation of an uncured composite material

    NASA Technical Reports Server (NTRS)

    Welsh, Clement J.; Glass, Michael J.; Cheslack, Brian; Pryor, Robert; Tran, Duan K.; Bowers-Irons, Gail

    1994-01-01

    The feasibility of biologically degrading prepreg wastes was studied. The work was conducted with the intention of obtaining baseline data that would facilitate the achievement of two long-range goals. These goals are: (1) the biological remediation of the hazardous components in the prepreg wastes, and (2) providing the potential for recycling the prepreg waste fibers. The experiments examined a prepreg that employs an bismaleimide resin system. Initial results demonstrated an obvious deterioration of the prepreg material when incubated with several bacterial strains. The most active cultures were identified as a mixture of 'Bacillus cereus' and 'Pseudomonas sp'. Gas chromatography analyses revealed seven primary compounds in the resin mixture. Biotransformation studies, using the complete prepreg material, demonstrated on obvious loss of all seven organic compounds. Gas chromatography-mass spectrometry analyses resulted in structure assignments for the two primary components of the resin. Both were analogs of Bisphenol A; one being bismaleimide, and the other being Bisphenol A containing a diglycidyl moiety. The 'diglycidyl analog' was purified using thin-layer chromatography and the biotransformation of this compound (at 27 ug/ml bacterial culture) was monitored. After a seven-day incubation, approximately 40% of the organic compound was biotransformed. These results demonstrate the biotransformation of the prepreg resin and indicate that biological remediation of the prepreg wastes is feasible.

  13. Multi-step cure kinetic model of ultra-thin glass fiber epoxy prepreg exhibiting both autocatalytic and diffusion-controlled regimes under isothermal and dynamic-heating conditions

    NASA Astrophysics Data System (ADS)

    Kim, Ye Chan; Min, Hyunsung; Hong, Sungyong; Wang, Mei; Sun, Hanna; Park, In-Kyung; Choi, Hyouk Ryeol; Koo, Ja Choon; Moon, Hyungpil; Kim, Kwang J.; Suhr, Jonghwan; Nam, Jae-Do

    2017-08-01

    As packaging technologies are demanded that reduce the assembly area of substrate, thin composite laminate substrates require the utmost high performance in such material properties as the coefficient of thermal expansion (CTE), and stiffness. Accordingly, thermosetting resin systems, which consist of multiple fillers, monomers and/or catalysts in thermoset-based glass fiber prepregs, are extremely complicated and closely associated with rheological properties, which depend on the temperature cycles for cure. For the process control of these complex systems, it is usually required to obtain a reliable kinetic model that could be used for the complex thermal cycles, which usually includes both the isothermal and dynamic-heating segments. In this study, an ultra-thin prepreg with highly loaded silica beads and glass fibers in the epoxy/amine resin system was investigated as a model system by isothermal/dynamic heating experiments. The maximum degree of cure was obtained as a function of temperature. The curing kinetics of the model prepreg system exhibited a multi-step reaction and a limited conversion as a function of isothermal curing temperatures, which are often observed in epoxy cure system because of the rate-determining diffusion of polymer chain growth. The modified kinetic equation accurately described the isothermal behavior and the beginning of the dynamic-heating behavior by integrating the obtained maximum degree of cure into the kinetic model development.

  14. Fracture characteristics of angleplied laminates fabricated from overaged graphite/epoxy prepreg

    NASA Technical Reports Server (NTRS)

    Ginty, C. A.; Chamis, C. C.

    1985-01-01

    A series of angleplied graphite/epoxy laminates was fabricated from overaged prepreg and tested in tension to investigate the effects of overaged or advanced cure material on the degradation of laminate strength. Results, which include fracture stresses, indicate a severe degradation in strength. In addition, the fracture surfaces and microstructural characteristics are distinctly unlike any features observed in previous tests of this prepreg and laminate configuration. Photographs of the surfaces and microstructures reveal flat morphologies consisting of alternate rows of fibers and hackles. These fracture surface characteristics are independent of the laminate configurations. The photomicrographs are presented and compared with data from similar studies to show the unique characteristics produced by the overage prepreg. Analytical studies produced results which agreed with those from the experimental investigations.

  15. Fracture characteristics of angleplied laminates fabricated from overaged graphite/epoxy prepreg

    NASA Technical Reports Server (NTRS)

    Ginty, Carol A.; Chamis, Christos C.

    1987-01-01

    A series of angleplied graphite/epoxy laminates was fabricated from overaged prepreg and tested in tension to investigate the effects of overaged or advanced cure material on the degradation of laminate strength. Results, which include fracture stresses, indicate a severe degradation in strength. In addition, the fracture surfaces and microstructural characteristics are distinctly unlike any features observed in previous tests of this prepreg and laminate configuration. Photographs of the surfaces and microstructures reveal flat morphologies consisting of alternate rows of fibers and hackles. These fracture surface characteristics are independent of the laminate configurations. The photomicrographs are presented and compared with data from similar studies to show the unique characteristics produced by the overage prepreg. Analytical studies produced results which agreed with those from the experimental investigations.

  16. Process for application of powder particles to filamentary materials

    NASA Technical Reports Server (NTRS)

    Baucom, Robert M. (Inventor); Snoha, John J. (Inventor); Marchello, Joseph M. (Inventor)

    1991-01-01

    This invention is a process for the uniform application of polymer powder particles to a filamentary material in a continuous manner to form a uniform composite prepreg material. A tow of the filamentary material is fed under carefully controlled tension into a spreading unit, where it is spread pneumatically into an even band. The spread filamentary tow is then coated with polymer particles from a fluidized bed, after which the coated filamentary tow is fused before take-up on a package for subsequent utilization. This process produces a composite prepreg uniformly without imposing severe stress on the filamentary material, and without requiring long, high temperature residence times for the polymer.

  17. Filament winding - Waking the sleeping giant

    NASA Technical Reports Server (NTRS)

    Freeman, W. T., Jr.; Stein, B. A.

    1985-01-01

    The use of filament winding (FW) in the production of aerospace composite structures is examined. The FW process applies spools of fiber and prepreg tow or prepreg tape to a male mandrel; the process is more efficient and cost effective than metallic construction. The fibers used in FW and the curing process are explained. The reduced storage and fabrication costs that result from FW are discussed. The use of FW to produce a filament-wound case for a solid rocket motor and the substructure and skin of an aircraft fuselage are described. Areas which require further development in order to expand the use of FW are listed and discussed.

  18. Differential Curing In Fiber/Resin Laminates

    NASA Technical Reports Server (NTRS)

    Webster, Charles N.

    1989-01-01

    Modified layup schedule counteracts tendency toward delamination. Improved manufacturing process resembles conventional process, except prepregs partially cured laid on mold in sequence in degree of partial cure decreases from mold side to bag side. Degree of partial cure of each layer at time of layup selected by controlling storage and partial-curing temperatures of prepreg according to Arrhenius equation for rate of gel of resin as function of temperature and time from moment of mixing. Differential advancement of cure in layers made large enough to offset effect of advance bag-side heating in oven or autoclave. Technique helps prevent entrapment of volatile materials during manufacturing of fiber/resin laminates.

  19. Toughening of PMR composites by semi-interpenetrating networks

    NASA Technical Reports Server (NTRS)

    Tiwari, S. N.; Srinivansan, K.

    1991-01-01

    Polymerization of monomer reactants (PMR-15) type polyimide and RP46 prepregs were drum wound using IM-7 fibers. Prepregging and processing conditions were optimized to yield good quality laminates with fiber volume fractions of 60 percent (+/- 2 percent). Samples were fabricated and tested to determine comprehensive engineering properties of both systems. These included 0 deg flexure, short beam shear, transverse flexure and tension, 0 deg tension and compression, intralaminar shear, short block compression, mode 1 and 2 fracture toughness, and compression after impact properties. Semi-2-IPN (interpenetrating polymer networks) toughened PMR-15 and RP46 laminates were also fabricated and tested for the same properties.

  20. Properties of Two Carbon Composite Materials Using LTM25 Epoxy Resin

    NASA Technical Reports Server (NTRS)

    Cruz, Juan R.; Shah, C. H.; Postyn, A. S.

    1996-01-01

    In this report, the properties of two carbon-epoxy prepreg materials are presented. The epoxy resin used in these two materials can yield lower manufacturing costs due to its low initial cure temperature, and the capability of being cured using vacuum pressure only. The two materials selected for this study are MR50/LTM25, and CFS003/LTM25 with Amoco T300 fiber; both prepregs are manufactured by The Advanced Composites Group. MR50/LTM25 is a unidirectional prepreg tape using Mitsubishi MR50 carbon fiber impregnated with LTM25 epoxy resin. CRS003/LTM25 is a 2 by 2 twill fabric using Amoco T300 fiber and impregnated with LTM25 epoxy resin. Among the properties presented in this report are strength, stiffness, bolt bearing, and damage tolerance. Many of these properties were obtained at three environmental conditions: cold temperature/dry (CTD), room temperature/dry (RTD), and elevated temperature/wet (ETW). A few properties were obtained at room temperature/wet (RTW), and elevated temperature/dry (ETD). The cold and elevated temperatures used for testing were -125 F and 180 F, respectively. In addition, several properties related to processing are presented.

  1. Effect of natural fiber types and sodium silicate coated on natural fiber mat/PLA composites: Tensile properties and rate of fire propagation

    NASA Astrophysics Data System (ADS)

    Thongpin, C.; Srimuk, J.; hipkam, N.; Wachirapong, P.

    2015-07-01

    In this study, 3 types of natural fibres, i.e. jute, sisal and abaca, were plain weaved to fibre mat. Before weaving, the fibres were treated with 5% NaOH to remove hemi cellulose and lignin. The weaving was performed by hand using square wooden block fit with nails for weaving using one and two types of natural fibres as weft and warp fibre to produce natural fibre mat. The fibre mat was also impregnated in sodium silicate solution extracted from rich husk ash. The pH of the solution was adjusted to pH 7 using H2SO4 before impregnation. After predetermined time, sodium silicate was gelled and deposited on the mat. The fabric mat and sodium silicate coated mat were then impregnated with PLA solution to produce prepreg. Dried pepreg was laminated with PLA sheet using compressing moulding machine to obtain natural fibre mat/PLA composite. The composite containing abaca aligned in longitudinal direction with respect to tension force enhanced Young's modulus more than 300%. Fibre mat composites with abaca aligned in longitudinal direction also showed tensile strength enhancement nearly 400% higher than neat PLA. After coating with sodium silicate, the tensile modulus of the composites was found slightly increased. The silicate coating was disadvantage on tensile strength of the composite due to the effect of sodium hydroxide solution that was used as solvent for silicate extraction from rice husk ash. However, sodium silicate could retard rate of fire propagation about 50%compare to neat PLA and about 10% reduction compared to fibre mat composites without sodium silicate coated fibre mat.

  2. Prepreg cure monitoring using diffuse reflectance-FTIR. [Fourier Transform Infrared Technique

    NASA Technical Reports Server (NTRS)

    Young, P. R.; Chang, A. C.

    1984-01-01

    An in situ diffuse reflectance-Fourier transform infrared technique was developed to determine infrared spectra of graphite fiber prepregs as they were being cured. A bismaleimide, an epoxy, and addition polyimide matrix resin prepregs were studied. An experimental polyimide adhesive was also examined. Samples were positioned on a small heater at the focal point of diffuse reflectance optics and programmed at 15 F/min while FTIR spectra were being scanned, averaged, and stored. An analysis of the resulting spectra provided basic insights into changes in matrix resin molecular structure which accompanied reactions such as imidization and crosslinking. An endo-exothermal isomerization involving reactive end-caps was confirmed for the addition polyimide prepregs. The results of this study contribute to a fundamental understanding of the processing of composites and adhesives. Such understanding will promote the development of more efficient cure cycles.

  3. Airborne occupational allergic contact dermatitis from triglycidyl-p-aminophenol and tetraglycidyl-4,4'-methylene dianiline in preimpregnated epoxy products in the aircraft industry.

    PubMed

    Kanerva, L; Jolanki, R; Estlander, T; Henriks-Eckerman, M; Tuomi, M; Tarvainen, K

    2000-01-01

    Very little is known about allergic contact dermatitis (ACD) from preimpregnated epoxy products (prepregs). To describe a patient with occupational ACD from prepregs, and report new quantitative data on the content of prepregs. A laminator developed work-related vesicular hand dermatitis. He worked in an aircraft plant assembling aircraft parts, being exposed to preimpregnated carbon fiber and fiberglass sheets (prepregs), and epoxy adhesive tapes and foams. Triglycidyl-p-aminophenol (TGPAP; 1-0.25%, 2+; 0.05%, 1+) and tetraglycidyl-4,4'-methylene dianiline (TGMDA; 1%, 3+; 0.5-0.05%, 2+) provoked allergic patch test reactions, whereas o-diglycidyl phthalate was negative (1-0.05% pet) and standard epoxy provoked a weak (?+) reaction. Six prepreg products provoking allergic patch test reactions were analyzed for their TGPAP, TGMDA and diglycidyl ether of bisphenol A (DGEBA) content using gas and liquid chromatographic methods, showing up to 10% of TGPAP, 19% of TGMDA and 5% of DGEBA in the prepregs. An epoxy primer contained 61% of TGPAP. TGPAP and TGMDA caused occupational ACD. These chemicals need to be used when patch testing patients are exposed to prepregs, because patch testing with DGEBA may be negative. Copyright 2000 S. Karger AG, Basel.

  4. Effect of Lamina Thickness of Prepreg on the Surface Accuracy of Carbon Fiber Composite Space Mirrors

    NASA Astrophysics Data System (ADS)

    Yang, Zhiyong; Tang, Zhanwen; Xie, Yongjie; Shi, Hanqiao; Zhang, Boming; Guo, Hongjun

    2018-02-01

    Composite space mirror can completely replicate the high-precision surface of mould by replication process, but the actual surface accuracy of the replication composite mirror always decreases. Lamina thickness of prepreg affects the layers and layup sequence of composite space mirror, and which would affect surface accuracy of space mirror. In our research, two groups of contrasting cases through finite element analyses (FEA) and comparative experiments were studied; the effect of different lamina thicknesses of prepreg and corresponding lay-up sequences was focused as well. We describe a special analysis model, validated process and result analysis. The simulated and measured surface figures both get the same conclusion. Reducing lamina thickness of prepreg used in replicating composite space mirror is propitious to optimal design of layup sequence for fabricating composite mirror, and could improve its surface accuracy.

  5. Processing, properties and applications of composites using powder-coated epoxy towpreg technology

    NASA Technical Reports Server (NTRS)

    Bayha, T. D.; Osborne, P. P.; Thrasher, T. P.; Hartness, J. T.; Johnston, N. J.; Marchello, J. M.; Hugh, M. K.

    1993-01-01

    Composite manufacturing using the current prepregging technology of impregnating liquid resin into three-dimensionally reinforced textile preforms can be a costly and difficult operation. Alternatively, using polymer in the solid form, grinding it into a powder, and then depositing it onto a carbon fiber tow prior to making a textile preform is a viable method for the production of complex textile shapes. The powder-coated towpreg yarn is stable, needs no refrigeration, contains no solvents and is easy to process into various woven and braided preforms for later consolidation into composite structures. NASA's Advanced Composites Technology (ACT) program has provided an avenue for developing the technology by which advanced resins and their powder-coated preforms may be used in aircraft structures. Two-dimensional braiding and weaving studies using powder-coated towpreg have been conducted to determine the effect of resin content, towpreg size and twist on textile composite properties. Studies have been made to customize the towpreg to reduce friction and bulk factor. Processing parameters have been determined for three epoxy resin systems on eight-harness satin fabric, and on more advanced 3-D preform architectures for the downselected resin system. Processing effects and the resultant mechanical properties of these textile composites will be presented and compared.

  6. Comparison of load-bearing capacity of direct resin-bonded fiber-reinforced composite FPDs with four framework designs.

    PubMed

    Xie, Qiufei; Lassila, Lippo V J; Vallittu, Pekka K

    2007-07-01

    This in vitro study was aimed to compare the fracture resistance of directly fabricated inlay-retained fiber-reinforced composite (FRC) fixed partial dentures (FPDs) with four types of framework designs. Forty-eight directly fabricated inlay retained FPDs were made of FRC and particulate resin composite (everStick/Tetric flow and Ceram). Extracted human mandibular first premolars and first molars were as abutments. The following framework designs were tested: in the Group A (control group), the framework was made of two prepregs of unidirectional glass FRC; the Group B, two prepregs in pontic portion were covered with one layer of multidirectional fiber veil FRC; the Group C, the FRC prepregs were covered in pontic portion with four short unidirectional FRC pieces along the main prepregs; in Group D, one short unidirectional FRC prepregs were placed on the main prepregs in 90 degrees angle to the main framework. After thermal cycling, FPDs of each group (n=12) were randomly divided into two subgroups (n=6). Fracture test was performed at the universal testing machine (1mm/min) where FPDs were loaded from the occlusal direction to the occlusal fossa or to the buccal cusp. Failure patterns were observed with stereomicroscope. Median and 25%/75% percentile values were calculated and nonparametric analysis was performed. Compared with three other framework designs, the FPDs in Group D showed the highest resistance when loading to the occlusal fossa, with maximum load of 2,353.8N (25%/75%: 2,155.5/2,500.0) (p=0.000, 0.000, and 0.005 for compared with Group A, B, and C). The same group showed also higher resistance when loaded to the buccal cusp (1,416.3N (1,409.2/1,480.8)) if compared to the FPDs of the Group A and Group C (p=0.044, 0.010). In general the FPDs showed higher resistant to loading at the occlusal fossa (p<0.05). This in vitro study showed that inlay-retained FRC FPD constructed with direct technique provided high fracture resistance. The framework design that provided support for the veneering composite of the pontic contributed to the highest load-bearing capacity even when loaded to the buccal cusp.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gregory Corman; Krishan Luthra

    This report covers work performed under the Continuous Fiber Ceramic Composites (CFCC) program by GE Global Research and its partners from 1994 through 2005. The processing of prepreg-derived, melt infiltrated (MI) composite systems based on monofilament and multifilament tow SiC fibers is described. Extensive mechanical and environmental exposure characterizations were performed on these systems, as well as on competing Ceramic Matrix Composite (CMC) systems. Although current monofilament SiC fibers have inherent oxidative stability limitations due to their carbon surface coatings, the MI CMC system based on multifilament tow (Hi-Nicalon ) proved to have excellent mechanical, thermal and time-dependent properties. Themore » materials database generated from the material testing was used to design turbine hot gas path components, namely the shroud and combustor liner, utilizing the CMC materials. The feasibility of using such MI CMC materials in gas turbine engines was demonstrated via combustion rig testing of turbine shrouds and combustor liners, and through field engine tests of shrouds in a 2MW engine for >1000 hours. A unique combustion test facility was also developed that allowed coupons of the CMC materials to be exposed to high-pressure, high-velocity combustion gas environments for times up to {approx}4000 hours.« less

  8. Processing effects in production of composite prepreg by hot melt impregnation

    NASA Astrophysics Data System (ADS)

    Chmielewski, C.; Jayaraman, K.; Petty, C. A.

    1993-06-01

    The hot melt impregnation process for producing composite prepreg has been studied. The role of the exit die is highlighted by operating without impregnation bars. Experimental results show that when a fiber tow is pulled through a resin bath and then through a wedge shaped die, the total resin mass fraction and the extent of resin impregnation in the tow increase with the processing viscosity. The penetration of resin into a fiber bundle is greater when the resin viscosity is higher. This trend is unchanged over a range of tow speeds up to the breaking point. A theoretical model is developed to describe the effect of processing conditions and die geometry on the degree of impregnation. Calculations with this model indicate that for a given die geometry, the degree of impregnation increases from 58 percent to 90 percent as the ratio of the clearance between the tow and the die wall, to the total die gap is decreased from 0.15 to 0.05. Physical arguments related to the effective viscosity of the prepreg show that the clearance ratio is independent of the tow speed, but decreases as the ratio of the effective shear viscosity of the prepreg to the resin viscosity increases. This provides a connection between the experimental results obtained with varying resin viscosity and the computational results obtained with varying clearance values at the die inlet.

  9. Utilization of Induction Bonding for Automated Fabrication of TIGR

    NASA Technical Reports Server (NTRS)

    Hinkley, Jeffrey A.; Johnston, Norman J.; Hulcher, A. Bruce; Marchello, Joseph M.; Messier, Bernadette C.

    1999-01-01

    A laboratory study of magnetic induction heat bonding of titanium foil and graphite fiber reinforced polymer prepreg tape, TiGr, demonstrated that the process is a viable candidate for low cost fabrication of aircraft structure made of this new material form. Data were obtained on weld bonding of PIXA and PETI-5 prepreg to titanium. Both the foil and honeycomb forms of titanium were investigated. The process relies on magnetic susceptor heating of titanium, not on high frequency heating of graphite fiber. The experiments showed that with a toroid magnet configuration, good weld bonds might be obtained with heating times of a few seconds. These results suggest the potential is good for the induction heating process to achieve acceptable commercial production rates.

  10. Quartz and E-glass fiber self-sensing composites

    NASA Astrophysics Data System (ADS)

    Zolfaghar, K.; Khan, N. A.; Brooks, David; Hayes, Simon A.; Liu, Tonguy; Roca, J.; Lander, J.; Fernando, Gerard F.

    1998-04-01

    This paper reports on developments in the field of self- sensing fiber reinforced composites. The reinforcing fibers have been surface treated to enable them to act as light guides for short distances. The reinforcing fiber light guides were embedded in carbon fiber reinforced epoxy prepregs and processed into composites. The resultant composite was termed the self-sensing composite as any damage to these fibers or its interface would result in the attenuation of the transmitted light. The self-sensing fibers were capable of detecting a 2 J impact.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Happe, J.A.; Morgan, R.J.; Walkup, C.M.

    The chemical composition of commercial BF/sub 3/:amine complexes are variable and contain BF/sub 4//sup -/ and BF/sub 3/(OH)/sup -/ salts together with other unidentified highly reactive species. The BF/sub 3/:amine complexes, which are susceptible to hydrolysis, also partially convert to the BF/sub 4//sup -/ salt (i.e. BF/sub 4//sup -/NH/sub 3//sup +/C/sub 2/H/sub 5/) upon heating. This salt formation is accelerated in dimethyl sulfoxide solution and in the presence of the epoxides that are present in commercial prepregs. Commercial C fiber-epoxy prepregs are shown to contain either BF/sub 3/:NH/sub 2/C/sub 2/H/sub 5/ or BF/sub 3/:NHC/sub 5/H/sub 10/ species together with theirmore » BF/sub 4//sup -/ salts and a variety of boron-fluorine or carbon-fluorine prepreg species. Considerable variation in the relative quantities of BF/sub 3/:amine to its BF/sub 4//sup -/ salt was observed from prepreg lot to lot, which will cause variable viscosity-time-temperature prepreg cure profiles. It is concluded that the chemically stable and mobile BF/sub 4//sup -/ salt is the pre-dominant catalytic species, acting as a cationic catalyst for the prepreg cure reactions. During the early stages of cure the BF/sub 3/:amine catalyst converts to the BF/sub 4//sup -/ salt in the presence of epoxides, whereas the BF/sub 3/-prepreg species are susceptible to catalytic deactivation and immobilization.« less

  12. Prepreg effects on honeycomb composite manufacturing

    NASA Astrophysics Data System (ADS)

    Martin, Cary Joseph

    Fiber reinforced composites offer many advantages over traditional materials and are widely utilized in aerospace applications. Advantages include a high stiffness to weight ratio and excellent fatigue resistance. However, the pace of new implementation is slow. The manufacturing processes used to transform composite intermediates into final products are poorly understood and are a source of much variability. This limits new implementation and increases the manufacturing costs of existing designs. One such problem is honeycomb core crush, in which a core-stiffened structure collapses during autoclave manufacture, making the structure unusable and increasing the overall manufacturing cost through increased scrap rates. Consequently, the major goal of this research was to investigate the scaling of core crush from prepreg process-structure-property relations to commercial composite manufacture. The material dependent nature of this defect was of particular interest. A methodology and apparatus were developed to measure the frictional resistance of prepreg materials under typical processing conditions. Through a characterization of commercial and experimental prepregs, it was found that core crush behavior was the result of differences in prepreg frictional resistance. This frictional resistance was related to prepreg morphology and matrix rheology and elasticity. Resin composition and prepreg manufacturing conditions were also found to affect manufacturing behavior. Mechanical and dimensional models were developed and demonstrated utility for predicting this crushing behavior. Collectively, this work explored and identified the process-structure-property relations as they relate to the manufacture of composite materials and suggested several avenues by which manufacturing-robust materials may be developed.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cole, K.C.; Noel, D.; Hechler, J.-J.

    Samples of Narmco Rigidite 5208/WC3000 carbon-epoxy composite prepreg were exposed to ambient temperature and 50 percent relative humidity for different periods up to 66 days. The aging has a significant effect on prepreg physical properties such as tack, volatiles content, and gel time. A set of four-ply laminates made from aged prepreg was subjected to tensile testing, ultrasonic inspection, and optothermal inspection. No relationship could be discerned between laminate properties and prepreg aging time. However, variations in panel homogeneity were observed, and these correlated with thermal diffusivity and tensile modulus measurements, but not with ultimate tensile strength or elongation. Amore » set of six-ply laminates was used to measure compressive properties, interlaminar shear strength, and physical properties. These panels also showed variations in porosity, again unrelated to aging, but in addition, the fiber-resin ratio was observed to decrease with aging time. Both factors were found to affect mechanical properties. The implications concerning the importance of monitoring the aging by physicochemical methods are discussed. 30 refs.« less

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nelson, K.M.; Manson, J.A.E.; Seferis, J.C.

    Consolidation of thermoplastic prepregs was measured with an integrally-heated parallel platen apparatus attached to a servo-hydraulic mechanical testing machine. The apparatus was designed as a small-scale, well-instrumented press. The lamination or consolidation process was viewed as a superposition of three distinctly occurring events identified as void volume reduction, fiber spreading, and autohesion. Consolidation was measured in relation to the original prepreg thickness and was reported as compressive or consolidation strain as a function of temperature. The derivative of the consolidation strain, the consolidation strain rate, was found to be qualitatively descriptive of viscoelastic phenomena occurring in the prepreg stack duringmore » consolidation. The apparatus was sensitive enough to identify glass and melt transitions of the polymer matrix, and to provide a measure of the net consolidation for a given processing cycle. The strain and the strain rate data were compared to thermoanalytical prepreg data obtained by Differential Scanning Calorimetry, and Dynamic Mechanical Analysis. Three different thermoplastic matrix composite systems were examined with this apparatus: Poly (etheretherketone), Poly(etherimide), and Poly(ethylene terephthalate). 21 refs.« less

  15. Study of Out-Time on the Processing and Properties of IM7/977-3 Composites

    NASA Technical Reports Server (NTRS)

    Miller, Sandi G.; Sutter, James K.; Scheiman, Daniel A.; Maryanski, Michael; Schlea, Michelle

    2010-01-01

    The capability to manufacture large structures leads to weight savings and reduced risk relative to joining smaller components. However, manufacture of increasingly large composite components is pushing the out-life limits of epoxy/ carbon fiber prepreg. IM7/977-3 is an autoclave processable prepreg material, commonly used in aerospace structures. The out-life limit is reported as 30 days by the manufacturer. The purpose of this work was to evaluate the material processability and composite properties of 977-3 resin and IM7/977-3 prepreg that had been aged at room temperature for up to 60 days. The neat resin was evaluated by differential scanning calorimetry, DSC, to characterize cure behavior of the aged material, as well as any change in activation energy. The rise in the modulus of the uncured prepreg was monitored throughout the 60 days by dynamic mechanical analysis, DMA. Composite panels made of the fresh and aged prepreg material were also characterized by DMA. The overall test results suggested that IM7/977-3 was a robust material that offered quality laminates throughout this aging process when processed by autoclave.

  16. Out-Life Characteristics of IM7/977-3 Composites

    NASA Technical Reports Server (NTRS)

    Miller, Sandi G.; Sutter, James K.; Hou, Tan-Hung; Scheiman, Daniel A.; Martin, Richard E.; Maryanski, Michael; Schlea, Michelle; Gardner, John M.; Schiferl, Zack R.

    2010-01-01

    The capability to manufacture large structures leads to weight savings and reduced risk relative to joining smaller components. However, manufacture of increasingly large composite components is pushing the out-time limits of epoxy/ carbon fiber prepreg. IM7/977-3 is an autoclave processable prepreg material, commonly used in aerospace structures. The out-time limit is reported as 30 days by the manufacturer. The purpose of this work was to evaluate the material processability and composite properties of 977-3 resin and IM7/977-3 prepreg that had been aged at room temperature for up to 60 days. The effects of room temperature aging on the thermal and visco-elastic properties of the materials were investigated. Neat resin was evaluated by differential scanning calorimetry to characterize thermal properties and change in activation energy of cure. Neat resin was also evaluated by rheometry to characterize its processability in composite fabrication. IM7/977-3 prepreg was evaluated by dynamic mechanical analysis to characterize the curing behavior. Prepreg tack was also evaluated over 60 days. The overall test results suggested that IM7/977-3 was a robust material that offered quality laminates throughout this aging process when processed by autoclave.

  17. Liquid crystal polyester-carbon fiber composites

    NASA Technical Reports Server (NTRS)

    Chung, T. S.

    1984-01-01

    Liquid crystal polymers (LCP) have been developed as a thermoplastic matrix for high performance composites. A successful melt impregnation method has been developed which results in the production of continuous carbon fiber (CF) reinforced LCP prepreg tape. Subsequent layup and molding of prepreg into laminates has yielded composites of good quality. Tensile and flexural properties of LCP/CF composites are comparable to those of epoxy/CF composites. The LCP/CF composites have better impact resistance than the latter, although epoxy/CF composites possess superior compression and shear strength. The LCP/CF composites have good property retention until 200 F (67 % of room temperature value). Above 200 F, mechanical properties decrease significantly. Experimental results indicate that the poor compression and shear strength may be due to the poor interfacial adhesion between the matrix and carbon fiber as adequate toughness of the LCP matrix. Low mechanical property retention at high temperatures may be attributable to the low beta-transition temperature (around 80 C) of the LCP matrix material.

  18. A Comparison of the Properties of Carbon Fiber Epoxy Composites Produced by Non-autoclave with Vacuum Bag Only Prepreg and Autoclave Process

    NASA Astrophysics Data System (ADS)

    Park, Sang Yoon; Choi, Chi Hoon; Choi, Won Jong; Hwang, Seong Soon

    2018-05-01

    The non-autoclave curing technique with vacuum bag only (VBO) prepreg has been conceived as a cost-effective manufacturing method for producing high-quality composite part. This study demonstrated the feasibility of improving composite part's performances and established the effective mitigation strategies for manufacturing induced defects, such as internal voids and surface porosity. The experimental results highlighted the fact that voids and surface porosity were clearly dependent on the resin viscosity state at an intermediate dwell stage of the curing process. Thereafter, the enhancement of resin flow could lead to achieving high quality parts with minimal void content (1.3%) and high fiber fraction (53 vol.%). The mechanical testing showed comparable in-plane shear and compressive strength to conventional autoclave. The microscopic observations also supported the evidence of improved interfacial bonding in terms of excellent fiber wet-out and minimal void content for the optimized cure cycle condition.

  19. Characterization of cure kinetics and physical properties of a high performance, glass fiber-reinforced epoxy prepreg and a novel fluorine-modified, amine-cured commercial epoxy

    NASA Astrophysics Data System (ADS)

    Bilyeu, Bryan

    Kinetic equation parameters for the curing reaction of a commercial glass fiber reinforced high performance epoxy prepreg composed of the tetrafunctional epoxy tetraglycidyl 4,4-diaminodiphenyl methane (TGDDM), the tetrafunctional amine curing agent 4,4'-diaminodiphenylsulfone (DDS) and an ionic initiator/accelerator, are determined by various thermal analysis techniques and the results compared. The reaction is monitored by heat generated determined by differential scanning calorimetry (DSC) and by high speed DSC when the reaction rate is high. The changes in physical properties indicating increasing conversion are followed by shifts in glass transition temperature determined by DSC, temperature-modulated DSC (TMDSC), step scan DSC and high speed DSC, thermomechanical (TMA) and dynamic mechanical (DMA) analysis and thermally stimulated depolarization (TSD). Changes in viscosity, also indicative of degree of conversion, are monitored by DMA. Thermal stability as a function of degree of cure is monitored by thermogravimetric analysis (TGA). The parameters of the general kinetic equations, including activation energy and rate constant, are explained and used to compare results of various techniques. The utilities of the kinetic descriptions are demonstrated in the construction of a useful time-temperature-transformation (TTT) diagram and a continuous heating transformation (CHT) diagram for rapid determination of processing parameters in the processing of prepregs. Shrinkage due to both resin consolidation and fiber rearrangement is measured as the linear expansion of the piston on a quartz dilatometry cell using TMA. The shrinkage of prepregs was determined to depend on the curing temperature, pressure applied and the fiber orientation. Chemical modification of an epoxy was done by mixing a fluorinated aromatic amine (aniline) with a standard aliphatic amine as a curing agent for a commercial Diglycidylether of Bisphenol-A (DGEBA) epoxy. The resulting cured network was tested for wear resistance using tribological techniques. Of the six anilines, 3-fluoroaniline and 4-fluoroaniline were determined to have lower wear than the unmodified epoxy, while the others showed much higher wear rates.

  20. Ultrasonic NDE and mechanical testing of fiber placement composites

    NASA Astrophysics Data System (ADS)

    Liu, Zhanjie; Fei, Dong; Hsu, David K.; Dayal, Vinay; Hale, Richard D.

    2002-05-01

    A fiber placed composite, especially with fiber steering, has considerably more complex internal structure than a laminate laid up from unidirectional prepreg tapes. In this work, we performed ultrasonic imaging of ply interfaces of fiber placed composite laminates, with an eye toward developing a tool for evaluating their quality. Mechanical short-beam shear tests were also conducted on both nonsteered and steered specimens to examine their failure behavior and its relationship to the structural defects indicated by ultrasonic imaging.

  1. Phenolic cutter for machining foam insulation

    NASA Technical Reports Server (NTRS)

    Blair, T. A.; Miller, A. C.; Price, B. W.; Stiles, W. S.

    1970-01-01

    Pre-pregged fiber glass is an efficient abrasive for machining polystyrene and polyurethane foams. It bonds easily to any cutter base made of aluminum, steel, or phenolic, is inexpensive, and is readily available.

  2. Low pressure process for continuous fiber reinforced polyamic acid resin matrix composite laminates

    NASA Technical Reports Server (NTRS)

    Druyun, Darleen A. (Inventor); Hou, Tan-Hung (Inventor); Kidder, Paul W. (Inventor); Reddy, Rakasi M. (Inventor); Baucom, Robert M. (Inventor)

    1994-01-01

    A low pressure processor was developed for preparing a well-consolidated polyimide composite laminate. Prepreg plies were formed from unidirectional fibers and a polyamic acid resin solution. Molding stops were placed at the sides of a matched metal die mold. The prepreg plies were cut shorter than the length of the mold in the in-plane lateral direction and were stacked between the molding stops to a height which was higher than the molding stops. The plies were then compressed to the height of the stops and heated to allow the volatiles to escape and to start the imidization reaction. After removing the stops from the mold, the heat was increased and 0 - 500 psi was applied to complete the imidization reaction. The heat and pressure were further increased to form a consolidated polyimide composite laminate.

  3. Fabrication and characterization of aerosol-jet printed strain sensors for multifunctional composite structures

    NASA Astrophysics Data System (ADS)

    Zhao, Da; Liu, Tao; Zhang, Mei; Liang, Richard; Wang, Ben

    2012-11-01

    Traditional multifunctional composite structures are produced by embedding parasitic parts, such as foil sensors, optical fibers and bulky connectors. As a result, the mechanical properties of the composites, especially the interlaminar shear strength (ILSS), could be largely undermined. In the present study, we demonstrated an innovative aerosol-jet printing technology for printing electronics inside composite structures without degrading the mechanical properties. Using the maskless fine feature deposition (below 10 μm) characteristics of this printing technology and a pre-cure protocol, strain sensors were successfully printed onto carbon fiber prepregs to enable fabricating composites with intrinsic sensing capabilities. The degree of pre-cure of the carbon fiber prepreg on which strain sensors were printed was demonstrated to be critical. Without pre-curing, the printed strain sensors were unable to remain intact due to the resin flow during curing. The resin flow-induced sensor deformation can be overcome by introducing 10% degree of cure of the prepreg. In this condition, the fabricated composites with printed strain sensors showed almost no mechanical degradation (short beam shearing ILSS) as compared to the control samples. Also, the failure modes examined by optical microscopy showed no difference. The resistance change of the printed strain sensors in the composite structures were measured under a cyclic loading and proved to be a reliable mean strain gauge factor of 2.2 ± 0.06, which is comparable to commercial foil metal strain gauge.

  4. Fatigue damage development of various CFRP-laminates

    NASA Technical Reports Server (NTRS)

    Schulte, K.; Baron, CH.

    1988-01-01

    The chronic strength and fatigue behavior of a woven carbon-fiber reinforced laminate in a balanced eight-shaft satin weave style was compared to nonwoven laminates with an equivalent cross-ply layup. Half the fibers were arranged in the direction of the load and the other half perpendicular to it. Two types of nonwoven laminates consisting of continuous fibers and aligned discontinuous fibers, both produced from carbon fiber prepregs, were studied. The cross-ply laminate with continuous fiber showed the best characteristics with regard to both static strength and fatigue. The similarities and differences in damage mechanisms in the laminates are described.

  5. Viscoelastic processing and characterization of high-performance polymeric composite systems

    NASA Astrophysics Data System (ADS)

    Buehler, Frederic Ulysse

    2000-10-01

    Fiber reinforced composites, a combination of reinforcing fiber and resin matrix, offer many advantages over traditional materials, and have therefore found wide application in the aerospace and sporting goods industry. Among the advantages that composite materials offer, the most often cited are weight saving, high modulus, high strength-to-weight ratio, corrosion resistance, and fatigue resistance. As much as their attributes are desirable, composites are difficult to process due to their heterogeneous, anisotropic, and viscoelastic nature. It is therefore not surprising that the interrelationship between structure, property, and process is not fully understood. Consequently, the major purpose of this research work was to investigate this interrelationship, and ways to scale it to utilization. First, four prepreg materials, which performed differently in the manufacturing of composite parts, but were supposedly identical, were characterized. The property variations that were found among these prepregs in terms of tack and frictional resistance assessed the need for improved understanding of the prepregging process. Therefore, the influence of the processing parameters on final prepreg quality were investigated, and led to the definition of more adequate process descriptors. Additionally, one of the characterization techniques used in this work, temperature modulated differential scanning calorimetry, was examined in depth with the development of a mathematical model. This model, which enabled the exploration of the relationship between user parameters, sample thermophysical properties, and final results, was then compared to literature data. Collectively, this work explored and identified the key connectors between process, structure, and property as they relate to the manufacturing, design, and performance of composite materials.

  6. An improved compression molding technology for continuous fiber reinforced composite laminate. Part 1: AS-4/LaRC-TPI 1500 (HFG) Prepreg system

    NASA Technical Reports Server (NTRS)

    Hou, Tan-Hung; Kidder, Paul W.; Reddy, Rakasi M.

    1991-01-01

    Poor processability of fiber reinforced high performance polyimide thermoplastic resin composites is a well recognized issue which, in many cases, prohibits the fabrication of composite parts with satisfactorily consolidated quality. Without modifying the resin matrix chemistry, improved compression modeling procedures were proposed and investigated with the AS-4/LaRC-TPI 1500 High Flow Grade (HFG) prepreg system. Composite panels with excellent C-scans can be consistently molded by this method under 700 F and a consolidation pressure as low as 100 psi. A mechanism for the consolidation of the composite under this improved molding technique is discussed. This mechanism reveals that a certain degree of matrix shear and tow filament slippage and nesting between plies occur during consolidation, which leads to a reduction of the consolidating pressure necessary to offset the otherwise intimate inter fiber-fiber contact and consequently achieves a better consolidation quality. Outstanding short beam shear strength and flexural strength were obtained from the molded panels. A prolonged consolidation step under low pressure, i.e., 100 psi at 700 F for 75 minutes, was found to significantly enhance the composite mechanical properties.

  7. Fabrication of Polyimide-Matrix/Carbon and Boron-Fiber Tape

    NASA Technical Reports Server (NTRS)

    Belvin, Harry L.; Cano, Roberto J.; Treasure, Monte; Shahood, Thomas W.

    2007-01-01

    The term HYCARB denotes a hybrid composite of polyimide matrices reinforced with carbon and boron fibers. HYCARB and an improved process for fabricating dry HYCARB tapes have been invented in a continuing effort to develop lightweight, strong composite materials for aerospace vehicles. Like other composite tapes in this line of development, HYCARB tapes are intended to be used to build up laminated structures having possibly complex shapes by means of automated tow placement (ATP) - a process in which a computer-controlled multiaxis machine lays down prepreg tape or tows. The special significance of the present process for making dry HYCARB for ATP is that it contributes to the reduction of the overall cost of manufacturing boron-reinforced composite-material structures while making it possible to realize increased compression strengths. The present process for making HYCARB tapes incorporates a "wet to dry" process developed previously at Langley Research Center. In the "wet to dry" process, a flattened bundle of carbon fiber tows, pulled along a continuous production line between pairs of rollers, is impregnated with a solution of a poly(amide acid) in N-methyl-2-pyrrolidinone (NMP), then most of the NMP is removed by evaporation in hot air. In the present case, the polyamide acid is, more specifically, that of LaRC. IAX (or equivalent) thermoplastic polyimide, and the fibers are, more specifically, Manganite IM7 (or equivalent) polyacrylonitrile- based carbon filaments that have a diameter of 5.2 m and are supplied in 12,000-filament tows. The present process stands in contrast to a prior process in which HYCARB tape was made by pressing boron fibers into the face of a wet carbon-fiber/ poly(amide acid) prepreg tape . that is, a prepreg tape from which the NMP solvent had not been removed. In the present process, one or more layer(s) of side-by-side boron fibers are pressed between dry prepreg tapes that have been prepared by the aforementioned gwet to dry h process. The multilayer tape is then heated to imidize the matrix material and remove most of the remaining solvent, and is pressed to consolidate the multiple layers into a dense tape. For tests, specimens of HYCARB tapes and laminated composite panels made from HYCARB tape were prepared as follows: HYCARB tapes were fabricated as described above. Each panel was made by laying down ten layers of tape, containing, variously, one, two, or three boron-fiber plies and the remainder carbon- fiber-only plies (see figure). Each panel was made by laying down ten layers of tape. Each panel was then cured by heating to a temperature of 225 C for 15 minutes, then pressing at 200 psi (A1.4 MPa) while heating to 371 C, holding at 371 C for 1 hour, then continuing to hold pressure during cooling. Control specimens that were otherwise identical except that they did not contain boron fibers also were prepared. In room-temperature flexural tests, the HYCARB specimens performed comparably to the control specimens; in room-temperature, open-hole compression tests, the HYCARB specimens performed slightly better, by amounts that increased with boron content.

  8. Polymer infiltration studies

    NASA Technical Reports Server (NTRS)

    Marchello, Joseph M.

    1992-01-01

    Significant progress has been made during the past three months on the preparation of carbon fiber composites using advanced polymer resins. The results are set forth in recent reports and publications, and will be presented at forthcoming national and international meetings. Current and ongoing research activities reported herein include: powdered tow ribbonizing; unitape from powdered tow; customized towpreg for textiles and ATP; and textile composite research. During the period ahead research will be directed toward further development of the new powder curtain prepregging method and on ways to customize dry powder towpreg for textile and robotic applications in aircraft part fabrication. Studies of multi-tow powder prepregging and ribbon preparation will be initiated in conjunction with continued development of prepregging technology and the various aspects of composite part fabrication using customized towpreg. Also, a major effort during the coming months will be participating in the analysis of the performance of the new solution prepregger.

  9. Processing and properties of fiber reinforced polymeric matrix composites: I. IM7/LARC(TM)-PETI-7 polyimide composites

    NASA Technical Reports Server (NTRS)

    Hou, Tan-Hung

    1995-01-01

    A phenylethynyl terminated imide oligomer formed from the reaction of benzophenone tetracarboxylic acid dianhydride, an 75:25 molar ratio of 4,4'-oxydianiline and meta-phenylenediamine and 4-phenylethynylphthalic anhydride as the endcapper at a theoretical number average molecular weight (Mn) of approximately 3,700 g/mol was evaluated as a composite resin matrix. A glass transition temperature (Tg) of 315 deg C was reached after 250 deg C/1 hr annealing of the matrix resin. Unidirectional prepreg was made by coating an N-methylpyrrolidinone solution of the amide acid oligomer onto unsized IM7 graphite fibers. The thermal and rheological properties and the solvent/volatile depletion rates of the amide acid/NMP system were determined. This information was used to successfully design a molding cycle for composite fabrication. Composites molded under 800 Psi at 371 C consistently yielded good consolidation as measured by C-scan and optical photomicrography. The composite's short beam shear strength (SBS), longitudinal and transverse flexural strengths and moduli were measured at various temperatures. These composites exhibited excellent room temperature (RT) longitudinal flexural strength and modulus and RT SBS strength retention at 177 C.

  10. Deformation Behavior during Processing in Carbon Fiber Reinforced Plastics

    NASA Astrophysics Data System (ADS)

    Ogihara, Shinji; Kobayashi, Satoshi

    In this study, we manufacture the device for measuring the friction between the prepreg curing process and subjected to pull-out tests with it The prepreg used in this study is a unidirectional carbon/epoxy, produced by TORAY designation of T700SC/2592.When creating specimens 4-ply prepregs are prepared and laminated. The 2-ply prepregs in the middle are shifted 50mm. In order to measure the friction between the prepreg during the cure process, we simulate the environment in the autoclave in the device, and we experiment in pull-out test. Test environment simulating temperature and pressure. The speed of displacement should be calculated by coefficient of thermal expansions (CTE). By calculation, 0.05mm/min gives the order of magnitude of displacement speed. In this study, 3 pull-out speeds are used: 0.01, 0.05 and 0.1mm/min. The specimen was heated by a couple of heaters, and we controlled the heaters with a temperature controller along the curing conditions of the prepreg. We put pressure using 4 bolts. Two strain gages were put on the bolt. We can understand the load applied to the specimen from the strain of the bolt. Pressure was adjusted the tightness of the bolt according to curing conditions. By using such a device, the pull-out test performed by tensile testing machine while adding temperature and pressure. During the 5 hours, we perform experiments while recording the load and stroke. The shear stress determined from the load and the stroke, and evaluated.

  11. Fabrication of graphite/epoxy cases for orbit insertion motors

    NASA Technical Reports Server (NTRS)

    Schmidt, W. W.

    1973-01-01

    The fabrication procedures are described for filament-wound rocket motor cases, approximately 26.25 inches long by 25.50 inches diameter, utilizing graphite fibers. The process utilized prepreg tape which consists of Fortafil 4-R fibers in the E-759 epoxy resin matrix. This fabrication effect demonstrated an ability to fabricate high quality graphite/epoxy rocket motor cases in the 26.25 inch by 25.50 inch size range.

  12. Analytical design model for a piezo-composite unimorph actuator and its verification using lightweight piezo-composite curved actuators

    NASA Astrophysics Data System (ADS)

    Yoon, K. J.; Park, K. H.; Lee, S. K.; Goo, N. S.; Park, H. C.

    2004-06-01

    This paper describes an analytical design model for a layered piezo-composite unimorph actuator and its numerical and experimental verification using a LIPCA (lightweight piezo-composite curved actuator) that is lighter than other conventional piezo-composite type actuators. The LIPCA is composed of top fiber composite layers with high modulus and low CTE (coefficient of thermal expansion), a middle PZT ceramic wafer, and base layers with low modulus and high CTE. The advantages of the LIPCA design are to replace the heavy metal layer of THUNDER by lightweight fiber-reinforced plastic layers without compromising the generation of high force and large displacement and to have design flexibility by selecting the fiber direction and the number of prepreg layers. In addition to the lightweight advantage and design flexibility, the proposed device can be manufactured without adhesive layers when we use a resin prepreg system. A piezo-actuation model for a laminate with piezo-electric material layers and fiber composite layers is proposed to predict the curvature and residual stress of the LIPCA. To predict the actuation displacement of the LIPCA with curvature, a finite element analysis method using the proposed piezo-actuation model is introduced. The predicted deformations are in good agreement with the experimental ones.

  13. Influence of screw holes and gamma sterilization on properties of phosphate glass fiber-reinforced composite bone plates.

    PubMed

    Han, Na; Ahmed, Ifty; Parsons, Andrew J; Harper, Lee; Scotchford, Colin A; Scammell, Brigitte E; Rudd, Chris D

    2013-05-01

    Polymers prepared from polylactic acid (PLA) have found a multitude of uses as medical devices. For a material that degrades, the main advantage is that an implant would not necessitate a second surgical event for removal. In this study, fibers produced from a quaternary phosphate-based glass (PBG) in the system 50P2O5-40CaO-5Na2O-5Fe2O3 were used to reinforce PLA polymer. The purpose of this study was to assess the effect of screw holes in a range of PBG-reinforced PLA composites with varying fiber layup and volume fraction. The flexural properties obtained showed that the strength and modulus values increased with increasing fiber volume fraction; from 96 MPa to 320 MPa for strength and between 4 GPa and 24 GPa for modulus. Furthermore, utilizing a larger number of thinner unidirectional (UD) fiber prepreg layers provided a significant increase in mechanical properties, which was attributed to enhanced wet out and thus better fiber dispersion during production. The effect of gamma sterilization via flexural tests showed no statistically significant difference between the sterilized and nonsterilized samples, with the exception of the modulus values for samples with screw holes. Degradation profiles revealed that samples with screw holes degraded faster than those without screw holes due to an increased surface area for the plates with screw holes in PBS up to 30 days. Scanning electron microscope (SEM) analysis revealed fiber pullout before and after degradation. Compared with various fiber impregnation samples, with 25% volume fraction, 8 thinner unidirectional prepreg stacked samples had the shortest fiber pull-out lengths in comparison to the other samples investigated.

  14. Building Block Approach' for Structural Analysis of Thermoplastic Composite Components for Automotive Applications

    NASA Astrophysics Data System (ADS)

    Carello, M.; Amirth, N.; Airale, A. G.; Monti, M.; Romeo, A.

    2017-12-01

    Advanced thermoplastic prepreg composite materials stand out with regard to their ability to allow complex designs with high specific strength and stiffness. This makes them an excellent choice for lightweight automotive components to reduce mass and increase fuel efficiency, while maintaining the functionality of traditional thermosetting prepreg (and mechanical characteristics) and with a production cycle time and recyclability suited to mass production manufacturing. Currently, the aerospace and automotive sectors struggle to carry out accurate Finite Elements (FE) component analyses and in some cases are unable to validate the obtained results. In this study, structural Finite Elements Analysis (FEA) has been done on a thermoplastic fiber reinforced component designed and manufactured through an integrated injection molding process, which consists in thermoforming the prepreg laminate and overmolding the other parts. This process is usually referred to as hybrid molding, and has the provision to reinforce the zones subjected to additional stresses with thermoformed themoplastic prepreg as required and overmolded with a shortfiber thermoplastic resin in single process. This paper aims to establish an accurate predictive model on a rational basis and an innovative methodology for the structural analysis of thermoplastic composite components by comparison with the experimental tests results.

  15. Reduced toxicity polyester resins and microvascular pre-preg tapes for advanced composites manufacturing

    NASA Astrophysics Data System (ADS)

    Poillucci, Richard

    Advanced composites manufacturing broadly encapsulates topics ranging from matrix chemistries to automated machines that lay-up fiber-reinforced materials. Environmental regulations are stimulating research to reduce matrix resin formulation toxicity. At present, composites fabricated with polyester resins expose workers to the risk of contact with and inhalation of styrene monomer, which is a potential carcinogen, neurotoxin, and respiratory irritant. The first primary goal of this thesis is to reduce the toxicity associated with polyester resins by: (1) identification of potential monomers to replace styrene, (2) determination of monomer solubility within the polyester, and (3) investigation of approaches to rapidly screen a large resin composition parameter space. Monomers are identified based on their ability to react with polyester and their toxicity as determined by the Globally Harmonized System (GHS) and a green screen method. Solubilities were determined by the Hoftyzer -- Van Krevelen method, Hansen solubility parameter database, and experimental mixing of monomers. A combinatorial microfluidic mixing device is designed and tested to obtain distinct resin compositions from two input chemistries. The push for safer materials is complemented by a thrust for multifunctional composites. The second primary goal of this thesis is to design and implement the manufacture of sacrificial fiber materials suitable for use in automated fiber placement of microvascaular multifunctional composites. Two key advancements are required to achieve this goal: (1) development of a roll-to-roll method to place sacrificial fibers onto carbon fiber pre-preg tape; and (2) demonstration of feasible manufacture of microvascular carbon fiber plates with automated fiber placement. An automated method for placing sacrificial fibers onto carbon fiber tapes is designed and a prototype implemented. Carbon fiber tows with manual placement of sacrificial fibers is implemented within an automated fiber placement machine and the successful fabrication of a carbon fiber plate with an integrated microvascular channel is demonstrated.

  16. Improving Interlaminar Shear Strength

    NASA Technical Reports Server (NTRS)

    Jackson, Justin

    2015-01-01

    To achieve NASA's mission of space exploration, innovative manufacturing processes are being applied to the fabrication of complex propulsion elements.1 Use of fiber-reinforced, polymeric composite tanks are known to reduce weight while increasing performance of propulsion vehicles. Maximizing the performance of these materials is needed to reduce the hardware weight to result in increased performance in support of NASA's missions. NASA has partnered with the Mississippi State University (MSU) to utilize a unique scalable approach of locally improving the critical properties needed for composite structures. MSU is responsible for the primary development of the concept with material and engineering support provided by NASA. The all-composite tank shown in figure 1 is fabricated using a prepreg system of IM7 carbon fiber/CYCOM 5320-1 epoxy resin. This is a resin system developed for out-of-autoclave applications. This new technology is needed to support the fabrication of large, all composite structures and is currently being evaluated on a joint project with Boeing for the Space Launch System (SLS) program. In initial efforts to form an all composite pressure vessel using this prepreg system, a 60% decrease in properties was observed in scarf joint regions. Inspection of these areas identified interlaminar failure in the adjacent laminated structure as the main failure mechanism. This project seeks to improve the interlaminar shear strength (ILSS) within the prepreg layup by locally modifying the interply region shown in figure 2.2

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vu-khanh, T.; Denault, J.

    The effects of the conditions of the processing of PEEK/carbon prepregs and comingled fabric on the microstructure and mechanical characteristics of the resulting composites were investigated. Results showed that, in the comingled fabric system, the fiber/matrix adhesion depends on the molding temperature, the residence time at the melt temperature, and the cooling rate. Too high molding temperature resulted in degradation of the PEEK matrix, which affected the crystallization behavior of the composites, the fiber/matrix adhesion, and the matrix properties. This effect was most important in the case of comingled systems containing sized carbon fibers. 17 refs.

  18. Development and fabrication of an autoclave molded PES/Quartz sandwich radome

    NASA Astrophysics Data System (ADS)

    Stanton, Leonard E.; Levin, Stephen D.

    1993-04-01

    A cohesively bonded, thermoplastic composite sandwich radome for a leading edge supersonic aircraft has been built using autoclave processing with PES/Quartz prepreg and a PES coated honeycomb core. Processes were developed for solvent removal, thermoplastic laminate consolidation, surface etching to improve adhesion, honeycomb coating and forming, and ultrasound testing of bond integrity. Environmental testing was also conducted to verify the structural integrity of the radome for its intended application.

  19. Improved Graphite Fiber/Acetylene Terminated Matrix Resin Prepreg Products

    DTIC Science & Technology

    1988-03-01

    AFWAL-TR-80-4151, "The Synthesis of Polymer Precursor and Exploratory Research Based on Acetylene Displacement Reaction," E.T. Sabourin , Gulf...Acetylene Terminated Quinoxalines," E.T. Sabourin , Gulf Research and Development Co., July 1982. ACETYLENE TERMINATED TECHNOLOGY BIBLIOGRAPHY SYNTHESIS AND

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Price, H.L.

    Much of the polymer composites industry is built around the thermochemical conversion of raw material into useful composites. The raw materials (molding compound, prepreg) often are made up of thermosetting resins and small fibers or particles. While this conversion can follow a large number of paths, only a few paths are efficient, economical and lead to desirable composite properties. Processing instrument (P/I) technology enables a computer to sense and interpret changes taking place during the cure of prepreg or molding compound. P/I technology has been used to make estimates of gel time and cure time, thermal diffusivity measurements and transitionmore » temperature measurements. Control and sensing software is comparatively straightforward. The interpretation of results with appropriate software is under development.« less

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mills, G.J.; Brown, G.G.; Waterman, D.D.

    The feasibility of prestressing commercial boron/epoxy and graphite/epoxy prepreg material to higher strengths and lower property dispersions is demonstrated. Its practical application as an on-line process for improving quality levels is possible with minor modifications to current experimental practice. The mechanics of the bendstressing method affects a controlled alteration in the fiber defect content to the extent that composite improvements can be achieved approaching the inherent fiber quality with dispersions in properties reduced to the 1 to 2% range. (Author, modified-PL)

  2. Filament-wound graphite/epoxy rocket motor case

    NASA Technical Reports Server (NTRS)

    Humphrey, W. D.; Schmidt, W. W.

    1972-01-01

    The fabrication procedures are described for a filament-wound rocket motor case, approximately 56 cm long x 71 cm diameter, utilizing high tensile strength graphite fibers. The process utilized Fiberite Hy-E-1330B prepreg tape which consists of Courtaulds HTS fibers in a temperature-sensitive epoxy matrix. This fabrication effort, with resultant design, material and process recommendations, substantiates the manufacturing feasibility of graphite/epoxy rocket motor cases in the 56 cm x 71 cm size range.

  3. Structural Laminate Aluminum-Glass-Fiber Materials 1441-Sial

    NASA Astrophysics Data System (ADS)

    Shestov, V. V.; Antipov, V. V.; Senatorova, O. G.; Sidel'nikov, V. V.

    2014-01-01

    The structure, composition and set of properties of specimens and components, and some parameters of the process of production of a promising FML class of metallic polymers based on sheets of high-modulus ( E 79 GPa) alloy 1441 with reduced density ( d 2.6 g/cm3) and an optimized glued prepreg reinforced with fibers of high-strength high-modulus VMPglass are described. Results of fire and fatigue tests of a promising 1441-SIAL structural laminate are presented.

  4. CO2-laser-assisted processing of glass fiber-reinforced thermoplastic composites

    NASA Astrophysics Data System (ADS)

    Brecher, Christian; Emonts, Michael; Schares, Richard Ludwig; Stimpfl, Joffrey

    2013-02-01

    To fully exploit the potential of fiber-reinforced thermoplastic composites (FRTC) and to achieve a broad industrial application, automated manufacturing systems are crucial. Investigations at Fraunhofer IPT have proven that the use of laser system technology in processing FRTC allows to achieve high throughput, quality, flexibility, reproducibility and out-of-autoclave processing simultaneously. As 90% of the FRP in Europe1 are glass fiber-reinforced a high impact can be achieved by introducing laser-assisted processing with all its benefits to glass fiber-reinforced thermoplastics (GFRTC). Fraunhofer IPT has developed the diode laser-assisted tape placement (laying and winding) to process carbon fiber-reinforced thermoplastic composites (CFRTC) for years. However, this technology cannot be transferred unchanged to process milky transparent GFRTC prepregs (preimpregnated fibers). Due to the short wavelength (approx. 980 nm) and therefore high transmission less than 20% of the diode laser energy is absorbed as heat into non-colored GFRTC prepregs. Hence, the use of a different wave length, e.g. CO2-laser (10.6 μm) with more than 90% laser absorption, is required to allow the full potential of laser-assisted processing of GFRTC. Also the absorption of CO2-laser radiation at the surface compared to volume absorption of diode laser radiation is beneficial for the interlaminar joining of GFRTC. Fraunhofer IPT is currently developing and investigating the CO2-laser-assisted tape placement including new system, beam guiding, process and monitoring technology to enable a resource and energy efficient mass production of GFRP composites, e.g. pipes, tanks, masts. The successful processing of non-colored glass fiber-reinforced Polypropylene (PP) and Polyphenylene Sulfide (PPS) has already been proven.

  5. Experimental investigation of defect criticality in FRP laminate composites

    NASA Astrophysics Data System (ADS)

    Joyce, Peter James

    1999-11-01

    This work examines the defect criticality of fiber reinforced polymer Composites. The objective is to determine the sensitivity of the finished composite to various process-induced defects. This work focuses on two different classes of process-induced defects; (1) fiber waviness in high performance carbon-fiber reinforced unidirectional composites and (2) void volume in low cost glass-fabric reinforced composites. The role of fiber waviness in the compressive response of unidirectional composites has been studied by a number of other investigators. Because of difficulties associated with producing real composites with varying levels of fiber waviness, most experimental studies of fiber waviness have evaluated composites with artificially induced fiber waviness. Furthermore, most experimental studies have been concentrated on the effects of out-of-plane fiber waviness. The objective of this work is to evaluate the effects of in-plane fiber waviness naturally occurring in autoclave consolidated thermoplastic laminates. The first phase of this project involved the development of a simple technique for measuring the resulting fiber waviness levels. An experimental investigation of the compression strength reduction in composites with in-plane fiber waviness followed. The experimental program included carbon-fiber reinforced thermoplastic composites manufactured from prepreg tape by hand layup, and carbon-fiber and glass-fiber reinforced composites manufactured from an experimental powder towpreg by filament winding and autoclave consolidation. The compression specimens exhibited kink band failure in the prepreg composite and varying amounts of longitudinal splitting and kink banding in the towpreg composites. The compression test results demonstrated the same trend as predicted by microbudding theory but the overall quantitative correlation was poor. The second thrust of this research evaluated void effects in resin transfer molded composites. Much of the existing literature in this area has focused on composites with unidirectional fiber reinforcement. In this program, the influence of void volume on the mechanical behavior of RTM composites with plain weave reinforcement was investigated. The experimental program demonstrated that the effects of void volume are negligible in terms of the fiber dominated properties. Interlaminar shear strength tests on the other hand demonstrated a linear dependence on void volume in the range tested.

  6. Structures, Design and Test: Materials

    NASA Technical Reports Server (NTRS)

    2004-01-01

    NASA Marshall has developed a technology that combines a film/adhesive laydown module with fiber placement technology to enable the processing of composite prepreg tow/tape and films, foils, or adhesives on the same placement machine. The deve!opment of this technology grew out of NASA's need for lightweight, permeation-resistant cryogenic propellant tanks.

  7. Fourier transform infrared (FTIR) fiber optic monitoring of composites during cure in an autoclave

    NASA Technical Reports Server (NTRS)

    Druy, Mark A.; Elandjian, Lucy; Stevenson, William A.; Driver, Richard D.; Leskowitz, Garett M.

    1990-01-01

    Real-time in situ monitoring of the chemical states of epoxy resins was investigated during cure in an autoclave using infrared evanescent spectroscopy. Fiber evanescent sensors were developed which may be sandwiched between the plies of the prepreg sample. A short length of sapphire fiber was used as the sensor cell portion of the fiber probe. Heavy metal fluoride glass optical fiber cables were designed for connecting the FTIR spectrometer to the sensor fiber within the autoclave. The sapphire fibers have outstanding mechanical thermal properties which should permit their use as an embedded link in all thermoset composites. The system is capable of operation at a temperature of 250 C for periods up to 8 hours without major changes to the fiber transmission. A discussion of the selection of suitable sensor fibers, the construction of a fiber-optic interface, and the interpretation of in situ infrared spectra of the curing process is presented.

  8. New Polyimide Has Many Uses

    NASA Technical Reports Server (NTRS)

    St. Clair, Terry L.; Progar, Donald J.; Smith, Janice Y.; Smith, Ricky E.

    1991-01-01

    Low-toxicity and low-mutogenicity monomer key to new high-performance polyimide. LaRC-IA is thermoplastic polyimide made from 3-4'-oxydianiline and 4,4'-oxydiphthalic anhydride. Good processing characteristics, low toxicity, and no mutagenicity. Adhesives, composite matrix resins, heat resin moldings, and coating films made of new polymer found to exhibit properties identical or superior to commercially available polyimides. Potential applications wide ranging. With and without end capping, employed to prepare unfilled moldings, coatings and free films, adhesive tape, adhesively bonded substrates, prepregs, and composites.

  9. Problems encountered with conventional fiber-reinforced composites

    NASA Technical Reports Server (NTRS)

    Landel, R. F.

    1981-01-01

    Preparational, computational, and operational problems associated with fiber-reinforced composites (FRC) are reviewed. Initial preparation of FRCs is shown to involve consideration of the type of prepreg, the setting time, cure conditions and cycles, and cure temperatures. The effects of the choice of bonding agents, the fiber transfer length, and individual fiber responses to bonding agents are noted to have an impact on fiber strength, moisture uptake, and fatigue resistance. The deformation prior to failure and the failure region are modeled through models of mini-, micro- and macro mechanics formulations employing a stiffness matrix, failure criterion, or fracture mechanics. The detection, evaluation, and repair of defects comprises the operational domain, and it is stressed that no good repair techniques exist for FRCs.

  10. Strong and Tough Hi-Nicalon Fiber-Reinforced Celsian Matrix Composites

    NASA Technical Reports Server (NTRS)

    Bansal, Narottam P.

    1997-01-01

    Strong, tough and almost fully dense Hi-Nicalon/BN/SiC fiber reinforced celsian matrix composites have been fabricated by impregnation of the fiber tows with the matrix slurry, winding on a drum, stacking the prepreg tapes in the desired orientation, and hot pressing. The monoclinic celsian phase in the matrix was produced in situ, during hot pressing, from a mixed oxide precursor. The unidirectional composites having approx. 42 volume percent of fibers exhibited graceful failure with extensive fiber pullout in three-point bend tests at room temperature. Values of first matrix cracking stress and strain were 435 +/- 35 MPa and 0.27 +/- 0.01 %, respectively, and ultimate strengths of 900 +/- 60 MPa were observed. The Young's modulus of the composites was 165 +/- 5 GPa.

  11. Puncture-Healing Thermoplastic Resin Carbon-Fiber-Reinforced Composites

    NASA Technical Reports Server (NTRS)

    Grimsley, Brian W. (Inventor); Gordon, Keith L. (Inventor); Cano, Roberto J. (Inventor); Czabaj, Michael W. (Inventor); Siochi, Emilie J. (Inventor)

    2015-01-01

    A composite comprising a combination of a self-healing polymer matrix and a carbon fiber reinforcement is described. In one embodiment, the matrix is a polybutadiene graft copolymer matrix, such as polybutadiene graft copolymer comprising poly(butadiene)-graft-poly(methyl acrylate-co-acrylonitrile). A method of fabricating the composite is also described, comprising the steps of manufacturing a pre-impregnated unidirectional carbon fiber preform by wetting a plurality of carbon fibers with a solution, the solution comprising a self-healing polymer and a solvent, and curing the preform. A method of repairing a structure made from the composite of the invention is described. A novel prepreg material used to manufacture the composite of the invention is described.

  12. Puncture-Healing Thermoplastic Resin Carbon-Fiber Reinforced Composites

    NASA Technical Reports Server (NTRS)

    Gordon, Keith L. (Inventor); Siochi, Emilie J. (Inventor); Grimsley, Brian W. (Inventor); Cano, Roberto J. (Inventor); Czabaj, Michael W. (Inventor)

    2017-01-01

    A composite comprising a combination of a self-healing polymer matrix and a carbon fiber reinforcement is described. In one embodiment, the matrix is a polybutadiene graft copolymer matrix, such as polybutadiene graft copolymer comprising poly(butadiene)-graft-poly(methyl acrylate-co-acrylonitrile). A method of fabricating the composite is also described, comprising the steps of manufacturing a pre-impregnated unidirectional carbon fiber preform by wetting a plurality of carbon fibers with a solution, the solution comprising a self-healing polymer and a solvent, and curing the preform. A method of repairing a structure made from the composite of the invention is described. A novel prepreg material used to manufacture the composite of the invention is described.

  13. SiC Composite Turbine Vanes

    NASA Technical Reports Server (NTRS)

    Calomino, Anthony M.; Verilli, Michael J.

    2006-01-01

    Turbine inlet guide vanes have been fabricated from composites of silicon carbide fibers in silicon carbide matrices. A unique design for a cloth made from SiC fibers makes it possible to realize the geometric features necessary to form these vanes in the same airfoil shapes as those of prior metal vanes. The fiber component of each of these vanes was made from SiC-fiber cloth coated with boron nitride. The matrix was formed by chemical-vapor infiltration with SiC, then slurry-casting of SiC, followed by melt infiltration with silicon. These SiC/SiC vanes were found to be capable of withstanding temperatures 400 F (222 C) greater than those that can be withstood by nickel-base-superalloy turbine airfoils now in common use in gas turbine engines. The higher temperature capability of SiC/SiC parts is expected to make it possible to use them with significantly less cooling than is used for metallic parts, thereby enabling engines to operate more efficiently while emitting smaller amounts of NOx and CO. The SiC/SiC composite vanes were fabricated in two different configurations. Each vane of one of the configurations has two internal cavities formed by a web between the suction and the pressure sides of the vane. Each vane of the other configuration has no web (see Figure 1). It is difficult to fabricate components having small radii, like those of the trailing edges of these vanes, by use of stiff stoichiometric SiC fibers currently preferred for SiC/SiC composites. To satisfy the severe geometric and structural requirements for these vanes, the aforementioned unique cloth design, denoted by the term Y-cloth, was conceived (see Figure 2). In the regions away from the trailing edge, the Y-cloth features a fiber architecture that had been well characterized and successfully demonstrated in combustor liners. To form a sharp trailing edge (having a radius of 0.3 mm), the cloth was split into two planes during the weaving process. The fiber tows forming the trailing-edge section were interlocked, thereby enhancing through-thickness strength of the resulting composite material. For vanes of the webless configuration, each made from a layup of six plies of Ycloth, the length of each Y-cloth layer was cut so that the two strips corresponding to the aforementioned two planes would wrap around the perimeter of a graphite vane preform tool with a 10-mm overlap. The overlap was used to join the two strips in a fringe splice. To make the external sixth ply, a standard woven cloth was cut to the required final length and a fringe splice joined the two ends of the cloth at the trailing edge. The cloth was then prepregged. The entire assembly was then placed into an aluminum compaction tool designed to form the outer net shape of the vane. After the prepreg material was allowed to dry, the preform was removed from the aluminum tooling and placed into an external graphite tool before being shipped to a vendor for matrix infiltration. To make the SiC fiber preform for a vane having an internal web, a slightly different initial approach was followed. Each of two sections forming the internal cavities (and ultimately the web) was created by first slipping two concentric layers of a two-dimensional, 2-by-2, 45 - braided tube around a net-shape graphite mandrel. The tubes on both mandrels were prepregged and allowed to dry. The resulting two subassemblies were put together, then four additional plies were wrapped around them in the same fashion as that described above for the six plies of the vaneless configuration. The consolidation of the SiC fiber preforms into SiC/SiC composite parts was performed by commercial vendors using their standard processes. The capability of two of the webless SiC/SiC turbine vanes was demonstrated in tests in a turbine environment. The tests included 50 hours of steady-state operation and 102 two-minute thermal cycles. A surface temperature of 1,320 C was reached during the tests.

  14. Diode Laser Assisted Filament Winding of Thermoplastic Matrix Composites

    PubMed Central

    Quadrini, Fabrizio; Squeo, Erica Anna; Prosperi, Claudia

    2010-01-01

    A new consolidation method for the laser-assisted filament winding of thermoplastic prepregs is discussed: for the first time a diode laser is used, as well as long glass fiber reinforced polypropylene prepregs. A consolidation apparatus was built by means of a CNC motion table, a stepper motor and a simple tensioner. Preliminary tests were performed in a hoop winding configuration: only the winding speed was changed, and all the other process parameters (laser power, distance from the laser focus, consolidation force) were kept constant. Small wound rings with an internal diameter of 25 mm were produced and compression tests were carried out to evaluate the composite agglomeration in dependence of the winding speed. At lower winding speeds, a strong interpenetration of adjacent layers was observed.

  15. All-Glass Fiber Amplifier Pumped by Ultra-High Brightness Pumps

    DTIC Science & Technology

    2016-02-15

    coated triple-clad fibers, we are developing triple-clad Yb fiber with gold coating for improved thermal management. 2.1 Pump laser The two...amplifier results using gain fiber with metalized fiber coating . Keywords: Fiber laser , specialty fiber, pump laser , beam combining, fiber metal coating ... coating can exceed its long-term damage threshold. Such a concern obviously does not apply to a fiber with gold protective coating [14]. Thus in

  16. Induction Bonding of Prepreg Tape and Titanium Foil

    NASA Technical Reports Server (NTRS)

    Messier, Bernadette C.; Hinkley, Jeffrey A.; Johnston, Norman J.

    1998-01-01

    Hybrid structural laminates made of titanium foil and carbon fiber reinforced polymer composite offer a potential for improved performance in aircraft structural applications. To obtain information needed for the automated fabrication of hybrid laminates, a series of bench scale tests were conducted of the magnetic induction bonding of titanium foil and thermoplastic prepreg tape. Foil and prepreg specimens were placed in the gap of a toroid magnet mounted in a bench press. Several magnet power supplies were used to study power at levels from 0.5 to 1.75 kW and frequencies from 50 to 120 kHz. Sol-gel surface-treated titanium foil, 0.0125 cm thick, and PIXA/IM7 prepreg tape were used in several lay-up configurations. Data were obtained on wedge peel bond strength, heating rate, and temperature ramp over a range of magnet power levels and frequencies at different "power-on" times for several magnet gap dimensions. These data will be utilized in assessing the potential for automated processing. Peel strengths of foil-tape bonds depended on the maximum temperature reached during heating and on the applied pressure. Maximum peel strengths were achieved at 1.25kW and 8OkHz. Induction heating of the foil appears to be capable of good bonding up to 10 plies of tape. Heat transfer calculations indicate that a 20-40 C temperature difference exists across the tape thickness during heat-up.

  17. 3D modeling of squeeze flow of unidirectionally thermoplastic composite inserts

    NASA Astrophysics Data System (ADS)

    Ghnatios, Chady; Abisset-Chavanne, Emmanuelle; Binetruy, Christophe; Chinesta, Francisco; Advani, Suresh

    2016-10-01

    Thermoplastic composites are attractive because they can be recycled and exhibit superior mechanical properties. The ability of thermoplastic resin to melt and solidify allows for fast and cost-effective manufacturing processes, which is a crucial property for high volume production. Thermoplastic composite parts are usually obtained by stacking several prepreg plies to create a laminate with a particular orientation sequence to meet design requirements. During the consolidation and forming process, the thermoplastic laminate is subjected to complex deformation which can include intraply and/or interply shear, ply reorientation and squeeze flow. In the case of unidirectional prepregs, the ply constitutive equation, when elastic effects are neglected, can be modeled as a transversally isotropic fluid, that must satisfy the fiber inextensibility as well as the fluid incompressibility. The high-fidelity solution of the squeeze flow in laminates composed of unidirectional prepregs was addressed in our former works by making use of an in-plane-out-of-plane separated representation allowing a very detailed resolution of the involved fields throughout the laminate thickness. In the present work prepregs plies are supposed of limited dimensions compared to the in-plane dimension of the part and will be named inserts. Again within the Proper Generalized Decomposition framework high-resolution simulation of the squeeze flow occurring during consolidation is addressed within a fully 3D in-plane-out-of-plane separated representation.

  18. FTIR Monitoring Of Curing Of Composites

    NASA Technical Reports Server (NTRS)

    Druy, Mark A.; Stevenson, William A.; Young, Philip R.

    1990-01-01

    Infrared-sensing optical fiber system developed to monitor principal infrared absorption bands resulting from vibrations of atoms and molecules as chemical bonds form when resin cured. System monitors resin chemistry more directly. Used to obtain Fourier transform infrared (FTIR) spectrum from graphite fiber/polyimide matrix resin prepreg. Embedded fiber optic FTIR sensor used to indicate state of cure of thermosetting composite material. Developed primarily to improve quality of advanced composites, many additional potential applications exist because principal of operation applicable to all organic materials and most inorganic gases. Includes monitoring integrities of composite materials in service, remote sensing of hazardous materials, and examination of processes in industrial reactors and furnaces.

  19. Reinforcing of thermoplastic polycarbonate and polysulfone with carbon fibers: Production and characteristics of UD-compound objects

    NASA Technical Reports Server (NTRS)

    Fitzer, E.; Jaeger, H.

    1988-01-01

    The production and characteristics of the carbon fiber reinforced thermoplastics polycarbonate and polysulfone are described. The production of prepregs from defined polymer solutions is emphasized along with methods of optimizing the production of compounds. The characteristics of unidirectionally reinforced thermoplastics, such as shear strength, bending strength, and impact resistance are compared with regard to fracture behavior, the influence of intermediate layers, and the behavior under cryogenic conditions and under slightly elevated temperatures. The problem of adhesion between high strength carbon fibers and thermoplastics is examined, taking into account the effect of moisture on the shear strength and the impact resistance.

  20. Evaluating Embedded Heater Bonding for Composites

    NASA Astrophysics Data System (ADS)

    Carte, Casey

    Out-of-autoclave bonding of high-strength carbon-fiber composites structures can reduce costs associated with autoclaves. Nevertheless, a concern is whether out-of-autoclave bonding results in a loss of delamination toughness. The main contribution of this paper is to comparatively evaluate the delamination toughness of adhesively bonded composite parts using carbon fiber embedded heaters and those bonded in an autoclave. Carbon Fiber Reinforced Polymer (CFRP) adherends were bonded by passing an electrical current through a layer of carbon fiber prepreg embedded at the bondline between two electrically insulating thin film adhesives. The delamination toughness was evaluated under mode I dominated loading conditions using a modified single cantilever beam test. Experimental results show that the delamination toughness of specimens bonded using a carbon fiber embedded heater was comparable to that of samples bonded in an autoclave.

  1. The mechanical behavior of GLARE laminates for aircraft structures

    NASA Astrophysics Data System (ADS)

    Wu, Guocai; Yang, J.-M.

    2005-01-01

    GLARE (glass-reinforced aluminum laminate) is a new class of fiber metal laminates for advanced aerospace structural applications. It consists of thin aluminum sheets bonded together with unidirectional or biaxially reinforced adhesive prepreg of high-strength glass fibers. GLARE laminates offer a unique combination of properties such as outstanding fatigue resistance, high specific static properties, excellent impact resistance, good residual and blunt notch strength, flame resistance and corrosion properties, and ease of manufacture and repair. GLARE laminates can be tailored to suit a wide variety of applications by varying the fiber/resin system, the alloy type and thickness, stacking sequence, fiber orientation, surface pretreatment technique, etc. This article presents a comprehensive overview of the mechanical properties of various GLARE laminates under different loading conditions.

  2. Polymer infiltration studies

    NASA Technical Reports Server (NTRS)

    Marchello, Joseph M.

    1992-01-01

    The preparation is reported of carbon fiber composites using advanced polymer resins. Current and ongoing research activities include: powder towpreg process; weaving, braiding and stitching dry powder prepreg; advanced tow placement; and customized ATP towpreg. The goal of these studies is to produce advanced composite materials for automated part fabrication using textile and robotics technology in the manufacture of subsonic and supersonic aircraft.

  3. Mechanical properties of the fiberglass prepreg system used for the National Transonic Facility replacement blade set

    NASA Technical Reports Server (NTRS)

    Young, Clarence P., Jr.; Wallace, John W.

    1991-01-01

    The results are presented of mechanical and physical properties characterization testing for the fiber glass prepreg system used to fabricate 15 of the replacement set of 25 fan blades for the National Transonic Facility. The fan blades were fabricated to be identical to the original blade set with the exception that the 7576 style E glass cloth used for the replacement set has a different surface finish than the original 7576 cloth. The 7781 E glass cloth and resin system were unchanged. The data are presented for elevated, room, and cryogenic temperatures. The results are compared with data from the original blade set and evaluated against selected structural design criteria. Test experience is described along with recommendations for future testing of these materials if required.

  4. Optimization of sensor introduction into laminated composite materials

    NASA Astrophysics Data System (ADS)

    Schaaf, Kristin; Nemat-Nasser, Sia

    2008-03-01

    This work seeks to extend the functionality of the composite material beyond that of simply load-bearing and to enable in situ sensing, without compromising the structural integrity of the host composite material. Essential to the application of smart composites is the issue of the mechanical coupling of the sensor to the host material. Here we present various methods of embedding sensors within the host composite material. In this study, quasi-static three-point bending (short beam) and fatigue three-point bending (short beam) tests are conducted in order to characterize the effects of introducing the sensors into the host composite material. The sensors that are examined include three types of polyvinylidene fluoride (PVDF) thin film sensors: silver ink with a protective coating of urethane, silver ink without a protective coating, and nickel-copper alloy without a protective coating. The methods of sensor integration include placement at the midplane between the layers of prepreg material as well as a sandwich configuration in which a PVDF thin film sensor is placed between the first and second and nineteenth and twentieth layers of prepreg. Each PVDF sensor is continuous and occupies the entire layer, lying in the plane normal to the thickness direction in laminated composites. The work described here is part of an ongoing effort to understand the structural effects of integrating microsensor networks into a host composite material.

  5. Numerical Investigation of T-joints with 3D Four Directional Braided Composite Fillers Under Tensile Loading

    NASA Astrophysics Data System (ADS)

    Li, Xiao-kang; Liu, Zhen-guo; Hu, Long; Wang, Yi-bo; Lei, Bing; Huang, Xiang

    2017-02-01

    Numerical studied on T-joints with three-dimensional four directional (3D4D) braided composite fillers was presented in this article. Compared with conventional unidirectional prepreg fillers, the 3D braided composite fillers have excellent ability to prevent crack from penetrating trigone fillers, which constantly occurred in the conventional fillers. Meanwhile, the 3D braided composite fillers had higher fiber volume fraction and eliminated the fiber folding problem in unidirectional prepreg fillers. The braiding technology and mechanical performance of 3D4D braided fillers were studied. The numerical model of carbon fiber T-joints with 3D4D braided composite fillers was built by finite element analysis software. The damage formation, extension and failing process of T-joints with 3D4D braided fillers under tensile load were investigated. Further investigation was extended to the effect of 3D4D braided fillers with different braiding angles on mechanical behavior of the T-joints. The study results revealed that the filling area was the weakest part of the T-joints where the damage first appeared and the crack then rapidly spread to the glue film around the filling area and the interface between over-laminate and soleplate. The 3D4D braided fillers were undamaged and the braiding angle change induced a little effect on the bearing capacity of T-joints.

  6. Metal matrix coated fiber composites and the methods of manufacturing such composites

    DOEpatents

    Weeks, Jr., Joseph K.; Gensse, Chantal

    1993-01-01

    A fiber coating which allows ceramic or metal fibers to be wetted by molten metals is disclosed. The coating inhibits degradation of the physical properties caused by chemical reaction between the fiber and the coating itself or between the fiber and the metal matrix. The fiber coating preferably includes at least a wetting layer, and in some applications, a wetting layer and a barrier layer between the fiber and the wetting layer. The wetting layer promotes fiber wetting by the metal matrix. The barrier layer inhibits fiber degradation. The fiber coating permits the fibers to be infiltrated with the metal matrix resulting in composites having unique properties not obtainable in pure materials.

  7. Metal matrix coated fiber composites and the methods of manufacturing such composites

    DOEpatents

    Weeks, J.K. Jr.; Gensse, C.

    1993-09-14

    A fiber coating which allows ceramic or metal fibers to be wetted by molten metals is disclosed. The coating inhibits degradation of the physical properties caused by chemical reaction between the fiber and the coating itself or between the fiber and the metal matrix. The fiber coating preferably includes at least a wetting layer, and in some applications, a wetting layer and a barrier layer between the fiber and the wetting layer. The wetting layer promotes fiber wetting by the metal matrix. The barrier layer inhibits fiber degradation. The fiber coating permits the fibers to be infiltrated with the metal matrix resulting in composites having unique properties not obtainable in pure materials. 8 figures.

  8. In situ simultaneous strain and temperature measurement of adaptive composite materials using a fiber Bragg grating based sensor

    NASA Astrophysics Data System (ADS)

    Yoon, Hyuk-Jin; Costantini, Daniele M.; Michaud, Veronique; Limberger, Hans G.; Manson, Jan-Anders; Salathe, Rene P.; Kim, Chun-Gon; Hong, Chang-Sun

    2005-05-01

    An optical fiber sensor to simultaneously measure strain and temperature was designed and embedded into an adaptive composite laminate which exhibits a shape change upon thermal activation. The sensor is formed by two fiber Bragg gratings, which are written in optical fibers with different core dopants. The two gratings were spliced close to each other and a sensing element resulted with Bragg gratings of similar strain sensitivity but different response to temperature. This is due to the dependence of the fiber thermo-optic coefficient on core dopants and relative concentrations. The sensor was tested on an adaptive composite laminate made of unidirectional Kevlar-epoxy pre-preg plies. Several 150μm diameter pre-strained NiTiCu shape memory alloy wires were embedded in the composite laminate together with one fiber sensor. Simultaneous monitoring of strain and temperature during the curing process and activation in an oven was demonstrated.

  9. Polymer matrix of fiber-reinforced composites: Changes in the semi-interpenetrating polymer network during the shelf life.

    PubMed

    Khan, Aftab A; Al-Kheraif, Abdulaziz A; Al-Shehri, Abdullah M; Säilynoja, Eija; Vallittu, Pekka K

    2018-02-01

    This laboratory study was aimed to characterize semi-interpenetrating polymer network (semi-IPN) of fiber-reinforced composite (FRC) prepregs that had been stored for up to two years before curing. Resin impregnated prepregs of everStick C&B (StickTech-GC, Turku, Finland) glass FRC were stored at 4°C for various lengths of time, i.e., two-weeks, 6-months and 2-years. Five samples from each time group were prepared with a light initiated free radical polymerization method, which were embedded to its long axis in self-curing acrylic. The nanoindentation readings on the top surface toward the core of the sample were made for five test groups, which were named as "stage 1-5". To evaluate the nanohardness and modulus of elasticity of the polymer matrix, a total of 4 slices (100µm each) were cut from stage 1 to stage 5. Differences in nanohardness values were evaluated with analysis of variance (ANOVA), and regression model was used to develop contributing effect of the material's different stages to the total variability in the nanomechanical properties. Additional chemical and thermal characterization of the polymer matrix structure of FRC was carried out. It was hypothesized that time of storage may have an influence on the semi-IPN polymer structure of the cured FRC. The two-way ANOVA test revealed that the storage time had no significant effect on the nanohardness of FRC (p = 0.374). However, a highly significant difference in nanohardness values was observed between the different stages of FRC (P<0.001). The regression coefficient suggests nanohardness increased on average by 0.039GPa for every storage group. The increased nanohardness values in the core region of 6-months and 2-years stored prepregs might be due to phase-segregation of components of semi-IPN structure of FRC prepregs before their use. This may have an influence to the surface bonding properties of the cured FRC. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Allergic contact dermatitis from a nonbisphenol A epoxy in a graphite fiber reinforced epoxy laminate.

    PubMed

    Mathias, C G

    1987-09-01

    An employee of the Composites Division of an aircraft engine manufacturing firm developed dermatitis associated with the handling of a graphite fiber reinforced epoxy laminate (epoxy prepreg). Patch test investigation demonstrated that the responsible causal agent was the nonbisphenol A epoxy binder, 4-glycidyloxy-N, N-diglycidylaniline. A patch test with bisphenol A epoxy from a standard patch test screening series was negative. Subsequent interviews with employees of the Composites Division suggested that a relative lack of awareness of the cutaneous hazards of fiber reinforced epoxy laminates, compared with liquid epoxy resin systems, may be an important risk factor for allergic sensitization to these composite materials.

  11. Cure Cycle Optimization of Rapidly Cured Out-Of-Autoclave Composites.

    PubMed

    Dong, Anqi; Zhao, Yan; Zhao, Xinqing; Yu, Qiyong

    2018-03-13

    Out-of-autoclave prepreg typically needs a long cure cycle to guarantee good properties as the result of low processing pressure applied. It is essential to reduce the manufacturing time, achieve real cost reduction, and take full advantage of out-of-autoclave process. The focus of this paper is to reduce the cure cycle time and production cost while maintaining high laminate quality. A rapidly cured out-of-autoclave resin and relative prepreg were independently developed. To determine a suitable rapid cure procedure for the developed prepreg, the effect of heating rate, initial cure temperature, dwelling time, and post-cure time on the final laminate quality were evaluated and the factors were then optimized. As a result, a rapid cure procedure was determined. The results showed that the resin infiltration could be completed at the end of the initial cure stage and no obvious void could be seen in the laminate at this time. The laminate could achieve good internal quality using the optimized cure procedure. The mechanical test results showed that the laminates had a fiber volume fraction of 59-60% with a final glass transition temperature of 205 °C and excellent mechanical strength especially the flexural properties.

  12. Cure Cycle Optimization of Rapidly Cured Out-Of-Autoclave Composites

    PubMed Central

    Dong, Anqi; Zhao, Yan; Zhao, Xinqing; Yu, Qiyong

    2018-01-01

    Out-of-autoclave prepreg typically needs a long cure cycle to guarantee good properties as the result of low processing pressure applied. It is essential to reduce the manufacturing time, achieve real cost reduction, and take full advantage of out-of-autoclave process. The focus of this paper is to reduce the cure cycle time and production cost while maintaining high laminate quality. A rapidly cured out-of-autoclave resin and relative prepreg were independently developed. To determine a suitable rapid cure procedure for the developed prepreg, the effect of heating rate, initial cure temperature, dwelling time, and post-cure time on the final laminate quality were evaluated and the factors were then optimized. As a result, a rapid cure procedure was determined. The results showed that the resin infiltration could be completed at the end of the initial cure stage and no obvious void could be seen in the laminate at this time. The laminate could achieve good internal quality using the optimized cure procedure. The mechanical test results showed that the laminates had a fiber volume fraction of 59–60% with a final glass transition temperature of 205 °C and excellent mechanical strength especially the flexural properties. PMID:29534048

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    John J. Gangloff Jr; Shatil Sinha; Suresh G. Advani

    The formation and transport of voids in composite materials remains a key research area in composite manufacturing science. Knowledge of how voids, resin, and fiber reinforcement propagate throughout a composite material continuum from green state to cured state during an automated tape layup process is key to minimizing defects induced by void-initiated stress concentrations under applied loads for a wide variety of composite applications. This paper focuses on modeling resin flow in a deforming fiber tow during an automated process of partially impregnated thermoset prepreg composite material tapes. In this work, a tow unit cell based model has been presentedmore » that determines the consolidation and impregnation of a thermoset prepreg tape under an input pressure profile. A parametric study has been performed to characterize the behavior of varying tow speed and compaction forces on the degree of consolidation. Results indicate that increased tow consolidation is achieved with slower tow speeds and higher compaction forces although the relationship is not linear. The overall modeling of this project is motivated to address optimization of the 'green state' composite properties and processing parameters to reduce or eliminate 'cured state' defects, such as porosity and de-lamination. This work is partially funded by the Department of Energy under Award number DE-EE0001367.« less

  14. Develop and demonstrate manufacturing processes for fabricating graphite filament reinforced polymide (Gr/PI) composite structural elements

    NASA Technical Reports Server (NTRS)

    Chase, V. A.; Harrison, E. S.

    1985-01-01

    A study was conducted to assess the merits of using graphite/polyimide, NR-150B2 resin, for structural applications on advanced space launch vehicles. The program was divided into two phases: (1) Fabrication Process Development; and (2) Demonstration Components. The first phase of the program involved the selection of a graphite fiber, quality assurance of the NR-150B2 polyimide resin, and the quality assurance of the graphite/polyimide prepreg. In the second phase of the program, a limited number of components were fabricated before the NR-150B2 resin system was removed from the market by the supplier, Du Pont. The advancement of the NR-150B2 polyimide resin binder was found to vary significantly based on previous time and temperature history during the prepregging operation. Strength retention at 316C (600F) was found to be 50% that of room temperature strength. However, the composite would retain its initial strength after 200 hours exposure at 316C (600F). Basic chemistry studies are required for determining NR-150B2 resin binder quality assurance parameters. Graphite fibers are available that can withstand high temperature cure and postcure cycles.

  15. Coatings for graphite fibers

    NASA Technical Reports Server (NTRS)

    Galasso, F. S.; Scola, D. A.; Veltri, R. D.

    1980-01-01

    Graphite fibers released from composites during burning or an explosion caused shorting of electrical and electronic equipment. Silicon carbide, silica, silicon nitride and boron nitride were coated on graphite fibers to increase their electrical resistances. Resistances as high as three orders of magnitude higher than uncoated fiber were attained without any significant degradation of the substrate fiber. An organo-silicone approach to produce coated fibers with high electrical resistance was also used. Celion 6000 graphite fibers were coated with an organo-silicone compound, followed by hydrolysis and pyrolysis of the coating to a silica-like material. The shear and flexural strengths of composites made from high electrically resistant fibers were considerably lower than the shear and flexural strengths of composites made from the lower electrically resistant fibers. The lower shear strengths of the composites indicated that the coatings on these fibers were weaker than the coating on the fibers which were pyrolyzed at higher temperature.

  16. Coatings for Graphite Fibers

    NASA Technical Reports Server (NTRS)

    Galasso, F. S.; Scola, D. A.; Veltri, R. D.

    1980-01-01

    Several approaches for applying high resistance coatings continuously to graphite yarn were investigated. Two of the most promising approaches involved (1) chemically vapor depositing (CVD) SiC coatings on the surface of the fiber followed by oxidation, and (2) drawing the graphite yarn through an organo-silicone solution followed by heat treatments. In both methods, coated fibers were obtained which exhibited increased electrical resistances over untreated fibers and which were not degraded. This work was conducted in a previous program. In this program, the continuous CVD SiC coating process used on HTS fiber was extended to the coating of HMS, Celion 6000, Celion 12000 and T-300 graphite fiber. Electrical resistances three order of magnitude greater than the uncoated fiber were measured with no significant degradation of the fiber strength. Graphite fibers coated with CVD Si3N4 and BN had resistances greater than 10(exp 6) ohm/cm. Lower pyrolysis temperatures were used in preparing the silica-like coatings also resulting in resistances as high as three orders of magnitude higher than the uncoated fiber. The epoxy matrix composites prepared using these coated fibers had low shear strengths indicating that the coatings were weak.

  17. Effects of Constituents and Lay-up Configuration on Drop-Weight Tests of Fiber-Metal Laminates

    NASA Astrophysics Data System (ADS)

    Liu, Yanxiong; Liaw, Benjamin

    2010-02-01

    Impact responses and damage of various fiber-metal laminates were studied using a drop-weight instrument with the post-impact damage characteristics being evaluated through ultrasonic and mechanical sectioning techniques. The first severe failure induced by the low-velocity drop-weight impact occurred as delamination between the aluminum and fiber-epoxy layers at the non-impact side. It was followed by a visible shear crack in the outer aluminum layer on the non-impact face. Through-thickness shear cracks in the aluminum sheets and severe damage in the fiber laminated layers (including delamination between adjacent fiber-epoxy laminae with different fiber orientations) developed under higher energy impacts. The impact properties of fiber-metal laminates varied with different constituent materials and fiber orientations. Since it was punched through easily, the aramid-fiber reinforced fiber-metal laminates (ARALL) offered poorer impact resistance than the glass-fiber reinforced fiber-metal laminates (GLARE). Tougher and more ductile aluminum alloys improved the impact resistance. GLARE made of cross-ply prepregs provided better impact resistance than GLARE with unidirectional plies.

  18. High-temperature resins

    NASA Technical Reports Server (NTRS)

    Serafini, T. T.

    1982-01-01

    The basic chemistry, cure processes, properties, and applications of high temperature resins known as polyimides are surveyed. Condensation aromatic polymides are prepared by reacting aromatic diamines with aromatic dianhydrides, aromatic tetracarboxylic acids, or with dialkyl esters of aromatic tetracarboxylic acids, depending on the intended end use. The first is for coatings or films while the latter two are more suitable for polyimide matrix resins. Prepreg solutions are made by dissolving reactants in an aprotic solvent, and advances in the addition of a diamine on the double bond and radical polymerization of the double bond are noted to have yielded a final cure product with void-free characteristics. Attention is given to properties of the Skybond, Pyralin, and NR-150B polyimide prepreg materials and characteristics of aging in the NP-150 polyimides. Finally, features of the NASA-developed PMR polyimides are reviewed.

  19. Composite material impregnation unit

    NASA Technical Reports Server (NTRS)

    Wilkinson, S. P.; Marchello, J. M.; Johnston, N. J.

    1993-01-01

    This memorandum presents an introduction to the NASA multi-purpose prepregging unit which is now installed and fully operational at the Langley Research Center in the Polymeric Materials Branch. A description of the various impregnation methods that are available to the prepregger are presented. Machine operating details and protocol are provided for its various modes of operation. These include, where appropriate, the related equations for predicting the desired prepreg specifications. Also, as the prepregger is modular in its construction, each individual section is described and discussed. Safety concerns are an important factor and a chapter has been included that highlights the major safety features. Initial experiences and observations for fiber impregnation are described. These first observations have given great insight into the areas of future work that need to be addressed. Future memorandums will focus on these individual processes and their related problems.

  20. The coupled effect of fiber volume fraction and void fraction on hydraulic fluid absorption of quartz/BMI laminates

    NASA Astrophysics Data System (ADS)

    Hurdelbrink, Keith R.; Anderson, Jacob P.; Siddique, Zahed; Altan, M. Cengiz

    2016-03-01

    Bismaleimide (BMI) resin with quartz (AQ581) fiber reinforcement is a composite material frequently used in aerospace applications, such as engine cowlings and radomes. Various composite components used in aircrafts are exposed to different types of hydraulic fluids, which may lead to anomalous absorption behavior over the service life of the composite. Accurate predictive models for absorption of liquid penetrants are particularly important as the composite components are often exposed to long-term degradation due to absorbed moisture, hydraulic fluids, or similar liquid penetrants. Microstructural features such as fiber volume fraction and void fraction can have a significant effect on the absorption behavior of fiber-reinforced composites. In this paper, hydraulic fluid absorption characteristics of quartz/BMI laminates fabricated from prepregs preconditioned at different relative humidity and subsequently cured at different pressures are presented. The composite samples are immersed into hydraulic fluid at room temperature, and were not subjected to any prior degradation. To generate process-induced microvoids, prepregs were conditioned in an environmental chamber at 2% or 99% relative humidity at room temperature for a period of 24 hours prior to laminate fabrication. To alter the fiber volume fraction, the laminates were fabricated at cure pressures of 68.9 kPa (10 psi) or 482.6 kPa (70 psi) via a hot-press. The laminates are shown to have different levels of microvoids and fiber volume fractions, which were observed to affect the absorption dynamics considerably and exhibited clear non-Fickian behavior. A one-dimensional hindered diffusion model (HDM) was shown to be successful in predicting the hydraulic fluid absorption. Model prediction indicates that as the fabrication pressure increased from 68.9 kPa to 482.6 kPa, the maximum fluid content (M∞) decreased from 8.0% wt. to 1.0% wt. The degree of non-Fickian behavior, measured by hindrance coefficient (μ), was shown to increase with the increased void fraction.

  1. Carbon nanotube and graphene nanoribbon-coated conductive Kevlar fibers.

    PubMed

    Xiang, Changsheng; Lu, Wei; Zhu, Yu; Sun, Zhengzong; Yan, Zheng; Hwang, Chi-Chau; Tour, James M

    2012-01-01

    Conductive carbon material-coated Kevlar fibers were fabricated through layer-by-layer spray coating. Polyurethane was used as the interlayer between the Kevlar fiber and carbon materials to bind the carbon materials to the Kevlar fiber. Strongly adhering single-walled carbon nanotube coatings yielded a durable conductivity of 65 S/cm without significant mechanical degradation. In addition, the properties remained stable after bending or water washing cycles. The coated fibers were analyzed using scanning electron microcopy and a knot test. The as-produced fiber had a knot efficiency of 23%, which is more than four times higher than that of carbon fibers. The spray-coating of graphene nanoribbons onto Kevlar fibers was also investigated. These flexible coated-Kevlar fibers have the potential to be used for conductive wires in wearable electronics and battery-heated armors. © 2011 American Chemical Society

  2. Eddy-Current Monitoring Of Composite Layups

    NASA Technical Reports Server (NTRS)

    Fox, Robert L.; Buckley, John D.

    1993-01-01

    Eddy-current-probe apparatus used to determine predominant orientations of fibers in fiber/matrix composite materials. Apparatus nondestructive, noninvasive means for monitoring composite prepregs and layups during fabrication to ensure predictable and repeatable mechanical properties of finished composite panels. Consists essentially of electromagnet coil wrapped around horseshoe-shaped powdered-iron or ferrite ore. Optionally, capacitor included in series or parallel with coil to form resonant circuit. Impedance monitor excites radio-frequency current in coil and measures impedance of probe circuit. Affected by whatever material placed near ends of core, where material intercepts alternating magnetic field excited in core by current in coil.

  3. Improvement of Interaction in a Composite Structure by Using a Sol-Gel Functional Coating on Carbon Fibers.

    PubMed

    Szczurek, Anna; Barcikowski, Michał; Leluk, Karol; Babiarczuk, Bartosz; Kaleta, Jerzy; Krzak, Justyna

    2017-08-25

    The modification of carbon fibers for improving adhesion between fibers and an epoxy resin in composite materials has become the focus of attention. In this work the carbon fiber coating process has been devised in a way preventing the stiffening and clumping of fibers. To improve interactions between coated fibers and a resin in composites, four types of silica coatings with different organic functional groups (3-aminopropyl-coating 1, 3-mercaptopropyl-coating 2, 2-(3,4-epoxycyclohexyl) ethyl-coating 3, methyl-coating 4) were obtained. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) were used to distinguish the changes of a carbon fibers surface after coating deposition. The thickness of the obtained coatings, including the diversity of thickness, was determined by transmission electron microscopy (TEM). The increase in surface free energy (SFE) of modified fibers, including the distinction between the polar and dispersive parts, was examined by wettability measurements using a tensometric test. The developed coating preparation process allowed to cover fibers separately with nanoscale silica layers, which changed their morphology. The introduction of organic functional groups resulted in surface free energy changes, especially an increase in specific polar surface energy components.

  4. Improvement of Interaction in a Composite Structure by Using a Sol-Gel Functional Coating on Carbon Fibers

    PubMed Central

    Barcikowski, Michał; Leluk, Karol; Babiarczuk, Bartosz; Kaleta, Jerzy

    2017-01-01

    The modification of carbon fibers for improving adhesion between fibers and an epoxy resin in composite materials has become the focus of attention. In this work the carbon fiber coating process has been devised in a way preventing the stiffening and clumping of fibers. To improve interactions between coated fibers and a resin in composites, four types of silica coatings with different organic functional groups (3-aminopropyl–coating 1, 3-mercaptopropyl–coating 2, 2-(3,4-epoxycyclohexyl) ethyl–coating 3, methyl–coating 4) were obtained. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) were used to distinguish the changes of a carbon fibers surface after coating deposition. The thickness of the obtained coatings, including the diversity of thickness, was determined by transmission electron microscopy (TEM). The increase in surface free energy (SFE) of modified fibers, including the distinction between the polar and dispersive parts, was examined by wettability measurements using a tensometric test. The developed coating preparation process allowed to cover fibers separately with nanoscale silica layers, which changed their morphology. The introduction of organic functional groups resulted in surface free energy changes, especially an increase in specific polar surface energy components. PMID:28841187

  5. Effect of BN coating on the strength of a mullite type fiber

    NASA Astrophysics Data System (ADS)

    Chawla, K. K.; Xu, Z. R.; Ha, J.-S.; Schmücker, M.; Schneider, H.

    1997-09-01

    Nextel 480 is a polycrystalline essentially mullite fiber (70 wt.-% Al2O3+28 wt.-% SiO2+2 wt.-% B2O3). Different thicknesses of BN were applied as coatings on this fiber. Optical, scanning electron, and transmission electron microscopy were used to characterize the microstructure of the coatings and fibers. The effects of coating and high temperature exposure on the fiber strength were investigated using two-parameter Weibull distribution. TEM examination showed that the BN coating has a turbostratic structure, with the basal planes lying predominantly parallel to the fiber surface. Such an orientation of coating is desirable for easy crack deflection and subsequent fiber pullout in a composite. The BN coated Nextel 480 fiber showed that Weibull mean strength increased first and then decreased with increasing coating thickness. This was due to the surface flaw healing effect of the coating (up to 0.3 μm) while in the case of thick BN coating (1 μm), the soft nature of the coating material had a more dominant effect and resulted in a decrease of the fiber strength. High temperature exposure of Nextel 480 resulted in grain growth, which led to a strength loss.

  6. Effect of fiber architecture on flexural characteristics and fracture of fiber-reinforced dental composites.

    PubMed

    Karbhari, Vistasp M; Strassler, Howard

    2007-08-01

    The aim of this study was to compare and elucidate the differences in damage mechanisms and response of fiber-reinforced dental resin composites based on three different brands under flexural loading. The types of reinforcement consisted of a unidirectional E-glass prepreg (Splint-It from Jeneric/Petron Inc.), an ultrahigh molecular weight polyethylene fiber based biaxial braid (Connect, Kerr) and an ultrahigh molecular weight polyethylene fiber based leno-weave (Ribbond). Three different commercially available fiber reinforcing systems were used to fabricate rectangular bars, with the fiber reinforcement close to the tensile face, which were tested in flexure with an emphasis on studying damage mechanisms and response. Eight specimens (n=8) of each type were tested. Overall energy capacity as well as flexural strength and modulus were determined and results compared in light of the different abilities of the architectures used. Under flexural loading unreinforced and unidirectional prepreg reinforced dental composites failed in a brittle fashion, whereas the braid and leno-weave reinforced materials underwent significant deformation without rupture. The braid reinforced specimens showed the highest peak load. The addition of the unidirectional to the matrix resulted in an average strain of 0.06mm/mm which is 50% greater than the capacity of the unreinforced matrix, whereas the addition of the braid and leno-weave resulted in increases of 119 and 126%, respectively, emphasizing the higher capacity of both the UHM polyethylene fibers and the architectures to hold together without rupture under flexural loading. The addition of the fiber reinforcement substantially increases the level of strain energy in the specimens with the maximum being attained in the braid reinforced specimens with a 433% increase in energy absorption capability above the unreinforced case. The minimum scatter and highest consistency in response is seen in the leno-weave reinforced specimens due to the details of the architecture which restrict fabric shearing and movement during placement. It is crucial that the appropriate selection of fiber architectures be made not just from a perspective of highest strength, but overall damage tolerance and energy absorption. Differences in weaves and architectures can result in substantially different performance and appropriate selection can mitigate premature and catastrophic failure. The study provides details of materials level response characteristics which are useful in selection of the fiber reinforcement based on specifics of application.

  7. Study of high resistance inorganic coatings on graphite fibers. [for graphite-epoxy composite materials

    NASA Technical Reports Server (NTRS)

    Galasso, F. S.; Veltri, R. D.; Scola, D. A.

    1979-01-01

    Coatings made of boron, silicon carbide, silica, and silica-like materials were studied to determine their ability to increase resistance of graphite fibers. The most promising results were attained by chemical vapor depositing silicon carbide on graphite fiber followed by oxidation, and drawing graphite fiber through ethyl silicate followed by appropriate heat treatments. In the silicon carbide coating studies, no degradation of the graphite fibers was observed and resistance values as high as three orders of magnitude higher than that of the uncoated fiber was attained. The strength of a composite fabricated from the coated fiber had a strength which compared favorably with those of composites prepared from uncoated fiber. For the silica-like coated fiber prepared by drawing the graphite fiber through an ethyl silicate solution followed by heating, coated fiber resistances about an order of magnitude greater than that of the uncoated fiber were attained. Composites prepared using these fibers had flexural strengths comparable with those prepared using uncoated fibers, but the shear strengths were lower.

  8. The effect of SiO 2-doped boron nitride multiple coatings on mechanical properties of quartz fibers

    NASA Astrophysics Data System (ADS)

    Zheng, Yu; Wang, Shubin

    2012-01-01

    SiO2-doped boron nitride multiple coatings (SiO2/BN multiple coatings) were prepared on quartz fibers surface at 700 °C. Single fiber tensile test was employed to evaluate fiber tensile strength; Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM) were employed to evaluate morphology and structure of the fibers. Fiber tensile test results indicated that the strength of quartz fibers with SiO2/BN multiple coatings was about twice of the fibers with BN coatings and original fibers which were heated at 700 °C for 10 h. The SiO2/BN multiple coatings would provide compressive stress on quartz fibers, which would help to seal the defects on fiber surface. Furthermore, TEM images showed that the nano-SiO2 powders crystallized in advance of quartz fibers, which would suppress crystallization of quartz fibers and reduce damage from crystallization. Thus, nano-SiO2 powders would help to keep mechanical properties of quartz fibers.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sabau, Adrian S.; Greer, Clayton M.; Chen, Jian

    Here, the increasing use of Carbon Fiber-reinforced Polymer matrix Composites (CFPC) and aluminum alloys as lightweight materials in the automotive and aerospace industries demands enhanced surface preparation and control of surface morphology prior to joining. In this study, surfaces of both composite and aluminum were prepared for joining using an Nd:YAG laser in a two-beam interference setup, enabling the (a) structuring of the AL 5182 surface, (b) removal of the resin layer on top of carbon fibers, and (c) structuring of the carbon fibers. CFPC specimens of T700S carbon fiber, Prepreg - T8 3 epoxy, 5 ply thick, 0/90o plaquesmore » were used. The effect of laser fluence, scanning speed, and number of shots-per-spot was investigated on the removal rate of the resin without an excessive damage of the fibers. Optical micrographs, 3D imaging, and scanning electron microscope (SEM) imaging were used to study the effect of the laser processing on surface morphology.« less

  10. [Preparation of carbon fiber reinforced fluid type resin denture (author's transl)].

    PubMed

    Kasuga, H; Sato, H; Nakabayashi, N

    1980-01-01

    Transverse strength of cured fluid resins is weaker than that of the heat cured. We have studied to improve the mechanical strength of self-cured acrylic resin by application of carbon fibers as reinforcement and simple methods which must be acceptable for technicians are proposed. A cloth type carbon fiber was the best reinforcement among studied carbon fibers such as chopped or mat. The chopped fibers were difficult to mix homogeneously with fluid resins and effectiveness of the reinforcement was low. Breaking often occurred at the interface between the reinforcement and resin in the cases of mat which gave defects to the test specimens. To prepare reinforced denture, the cloth was trimmed on the master cast after removal of wax and the prepreg was formed with the alginate impression on the cast by Palapress and the cloth. Other steps were same as the usual fluid resin.

  11. Surface Modification of Carbon Fiber Polymer Composites after Laser Structuring

    NASA Astrophysics Data System (ADS)

    Sabau, Adrian S.; Chen, Jian; Jones, Jonaaron F.; Hackett, Alexandra; Jellison, Gerald D.; Daniel, Claus; Warren, David; Rehkopf, Jackie D.

    The increasing use of Carbon Fiber-reinforced Polymer matrix Composites (CFPC) as a lightweight material in automotive and aerospace industries requires the control of surface morphology. In this study, the composites surface was prepared by ablating the resin on the top fiber layer of the composite using an Nd:YAG laser. The CFPC specimens with T700S carbon fiber and Prepreg — T83 resin (epoxy) were supplied by Plasan Carbon Composites, Inc. as 4 ply thick, 0/90° plaques. The effect of laser fluence, scanning speed, and wavelength was investigated on the removal rate of the resin without an excessive damage of the fibers. In addition, resin ablation due to the power variation created by a laser interference technique is presented. Optical property measurements, optical micrographs, 3D imaging, and high-resolution optical profiler images were used to study the effect of the laser processing on surface morphology.

  12. Tensile Strength and Microstructural Characterization of Uncoated and Coated HPZ Ceramic Fibers

    NASA Technical Reports Server (NTRS)

    Bansal, Narottam P.; Wheeler, Donald R.; Dickerson, Robert M.

    1996-01-01

    Tensile strengths of as-received HPZ fiber and those surface coated with BN, BN/SiC, and BN/Si3N4 have been determined at room temperature using a two-parameter Weibull distribution. Nominally approx. 0.4 micron BN and 0.2 micron SiC or Si3N4 coatings were deposited on the fibers by chemical vapor deposition using a continuous reactor. The average tensile strength of uncoated HPZ fiber was 2.0 +/- 0.56 GPa (290 +/- 81 ksi) with a Weibull modulus of 4.1. For the BN coated fibers, the average strength and the Weibull modulus increased to 2.39 +/- 0.44 GPa (346 +/- 64 ksi) and 6.5, respectively. The HPZ/BN/SiC fibers showed an average strength of 2.0 +/- 0.32 GPa (290 +/- 47 ksi) and Weibull modulus of 7.3. Average strength of the fibers having a dual BN/Si3N4 surface coating degraded to 1.15 +/- 0.26 GPa (166 +/- 38 ksi) with a Weibull modulus of 5.3. The chemical composition and thickness of the fiber coatings were determined using scanning Auger analysis. Microstructural analysis of the fibers and the coatings was carried out by scanning electron microscopy and transmission electron microscopy. A microporous silica-rich layer approx. 200 nm thick is present on the as-received HPZ fiber surface. The BN coatings on the fibers are amorphous to partly turbostratic and contaminated with carbon and oxygen. Silicon carbide coating was crystalline whereas the silicon nitride coating was amorphous. The silicon carbide and silicon nitride coatings are non-stoichiometric, non-uniform, and granular. Within a fiber tow, the fibers on the outside had thicker and more granular coatings than those on the inside.

  13. PMR polyimide composites for aerospace applications

    NASA Technical Reports Server (NTRS)

    Serafini, T. T.

    1982-01-01

    Fiber reinforced PMR polyimides are finding increased acceptance as engineering materials for high performance structural applications. Prepreg materials based on this novel class of highly processable, high temperature resistant polyimides, are commercially available and the PMR concept was incorporated in several industrial applications. The status of PMR polyimides is reviewed. Emphasis is given to the chemistry, processing, and applications of the first generation PMR polyimides known as PMR-15.

  14. Formation of boron nitride coatings on silicon carbide fibers using trimethylborate vapor

    NASA Astrophysics Data System (ADS)

    Yuan, Mengjiao; Zhou, Tong; He, Jing; Chen, Lifu

    2016-09-01

    High quality boron nitride (BN) coatings have been grown on silicon carbide (SiC) fibers by carbothermal nitridation and at atmospheric pressure. SiC fibers were first treated in chlorine gas to form CDC (carbide-derived carbon) film on the fiber surface. The CDC-coated SiC fibers were then reacted with trimethylborate vapor and ammonia vapor at high temperature, forming BN coatings by carbothermal reduction. The FT-IR, XPS, XRD, SEM, TEM and AES were used to investigate the formation of the obtained coatings. It has been found that the obtained coatings are composed of phase mixture of h-BN and amorphous carbon, very uniform in thickness, have smooth surface and adhere well with the SiC fiber substrates. The BN-coated SiC fibers retain ∼80% strength of the as-received SiC fibers and show an obvious interfacial debonding and fiber pullout in the SiCf/SiOC composites. This method may be useful for the large scale production of high quality BN coating on silicon carbide fiber.

  15. Carbothermal synthesis of coatings on silicon carbide fibers

    NASA Astrophysics Data System (ADS)

    Chen, Linlin

    Four kinds of protective coatings---carbide derived carbon (CDC), boron nitride (BN), Al-O-N and BN doped Al-O-N (BAN) have been successfully synthesized on the surface of SiC fibers on the target to enhance the mechanical properties and oxidation resistance of the coated SiC fibers for the application as the reinforcements in the Ceramic Matrix Composites (CMCs) in the high temperatures. First of all, CDC coatings have been uniformly produced on Tyranno ZMI SiC fibers with good thickness control within nanometer accuracy by the chlorination in the temperature range of 550--700°C at atmospheric pressure. Kinetics of the carbon coating growth on the fibers has been systematically studied and thus a good foundation was set up for the further coating synthesis. BN coatings have been synthesized on the surface of SiC powders, fibers and fabrics by a novel carbothermal nitridation method. Non-bridging has been achieved in the BN-coated fiber tows by the nitridation in ammonia at atmospheric pressure in a temperature below 1200°C, which is lower compared to the traditional BN synthesis method and does not cause the degradation of the coated-fibers. BN coatings on the carbon nanotubes have also been formed and unlike the common methods, no additional dopant (such as metal catalyst) is introduced into the system during the BN coatings syntheses, thus the contamination of the final product is avoided. A novel Al-O-N coating has been explored with the most impressive point is that a more than 65% improvement in the tensile strength (up to ˜5.1GPa) and a three-time increase in the Weibull modulus compared to the as-received fibers are resulted by the formation of 200nm Al-O-N coating on the SiC fibers. It exceeds the strength of all other small diameter SiC fibers reported in the literature. Furthermore, BAN coating has also been produced on the surface of SiC fibers and about 20% enhancement in mechanical strength is achieved compared to that of the original fibers. Oxidation experiments of the SiC fibers with four kinds of coatings under 1000°C and 1200°C in air have been carried out and better oxidation resistance of the coated fibers are presented compared to the as-received fibers. In summary, exploration of various coatings synthesis for the SiC fibers has been successfully conducted in this work. The coating material suitable for the SiC fibers should be chosen properly according to its specific application in the CFCCs and well thickness-control to meet the corresponding requirements.

  16. Carbide coated fibers in graphite-aluminum composites

    NASA Technical Reports Server (NTRS)

    Imprescia, R. J.; Levinson, L. S.; Reiswig, R. D.; Wallace, T. C.; Williams, J. M.

    1975-01-01

    The NASA-supported program at the Los Alamos Scientific Laboratory (LASL) to develop carbon fiber-aluminum matrix composites is described. Chemical vapor deposition (CVD) was used to uniformly deposit thin, smooth, continuous coats of TiC on the fibers of graphite tows. Wet chemical coating of fibers, followed by high-temperature treatment, was also used, but showed little promise as an alternative coating method. Strength measurements on CVD coated fiber tows showed that thin carbide coats can add to fiber strength. The ability of aluminum alloys to wet TiC was successfully demonstrated using TiC-coated graphite surfaces. Pressure-infiltration of TiC- and ZrC-coated fiber tows with aluminum alloys was only partially successful. Experiments were performed to evaluate the effectiveness of carbide coats on carbon as barriers to prevent reaction between alluminum alloys and carbon. Initial results indicate that composites of aluminum and carbide-coated graphite are stable for long periods of time at temperatures near the alloy solidus.

  17. Comparison of Autoclave and Out-of-Autoclave Composites

    NASA Technical Reports Server (NTRS)

    Sutter, James K.; Kenner, W. Scott; Pelham, Larry; Miller, Sandi G.; Polis, Danel L.; Nailadi, Chaitra; Zimmerman, Thomas J.; Lort, Richard D.; Hou, Tan-Hung; Quade, Derek J.; hide

    2010-01-01

    The National Aeronautics and Space Administration (NASA) Exploration Systems Mission Directorate initiated an Advanced Composite Technology Project through the Exploration Technology Development Program in order to support the polymer composite needs for future heavy lift launch architectures. As an example, the large composite dry structural applications on Ares V inspired the evaluation of autoclave and out-of-autoclave (OOA) composite materials. A NASA and industry team selected the most appropriate materials based on component requirements for a heavy lift launch vehicle. Autoclaved and OOA composites were fabricated and results will highlight differences in processing conditions, laminate quality, as well as initial room temperature thermal and mechanical performance. Results from this study compare solid laminates that were both fiber-placed and hand-laid. Due to the large size of heavy-lift launch vehicle composite structures, there is significant potential that the uncured composite material or prepreg will experience significant out-life during component fabrication. Therefore, prepreg out-life was a critical factor examined in this comparison. In order to rigorously test material suppliers recommended out-life, the NASA/Industry team extended the out-time of the uncured composite prepreg to values that were approximately 50% beyond the manufacturers out-time limits. Early results indicate that the OOA prepreg composite materials suffered in both composite quality and mechanical property performance from their extended out-time. However, the OOA materials performed similarly to the autoclaved composites when processed within a few days of exposure to ambient "shop" floor handling. Follow on studies evaluating autoclave and OOA aluminum honeycomb core sandwich composites are planned.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sabau, Adrian S; Chen, Jian; Jones, Jonaaron F.

    The increasing use of Carbon Fiber Polymer Composite (CFPC) as a lightweight material in automotive and aerospace industries requires the control of surface morphology. In this study, the composites surface was prepared by ablating the resin in the top fiber layer of the composite using an Nd:YAG laser. The CFPC specimens with T700S carbon fiber and Prepreg - T83 resin (epoxy) were supplied by Plasan Carbon Composites, Inc. as 4 ply thick, 0/90o plaques. The effect of laser fluence, scanning speed, and wavelength was investigated to remove resin without an excessive damage of the fibers. In addition, resin ablation duemore » to the power variation created by a laser interference technique is presented. Optical property measurements, optical micrographs, 3D imaging, and high-resolution optical profiler images were used to study the effect of the laser processing on the surface morphology.« less

  19. The improvement of wave-absorbing ability of silicon carbide fibers by depositing boron nitride coating

    NASA Astrophysics Data System (ADS)

    Ye, Fang; Zhang, Litong; Yin, Xiaowei; Liu, Yongsheng; Cheng, Laifei

    2013-04-01

    This work investigated electromagnetic wave (EMW) absorption and mechanical properties of silicon carbide (SiC) fibers with and without boron nitride (BN) coating by chemical vapor infiltration (CVI). The dielectric property and EM shielding effectiveness of SiC fiber bundles before and after being coated by BN were measured by wave guide method. The EM reflection coefficient of SiC fiber laminates with and without BN coating was determined by model calculation and NRL-arc method, respectively. Tensile properties of SiC fiber bundles with and without BN coating were tested at room temperature. Results show that SiC fibers with BN coating had a great improvement of EMW absorbing property because the composites achieved the impedance matching. BN with the low permittivity and dielectric loss contributed to the enhancive introduction and reduced reflection of EMW. The tensile strength and Weibull modulus of SiC fiber bundles coated by BN increased owing to the decrease of defects in SiC fibers and the protection of coating during loading.

  20. Heat suppression of the fiber coating on a cladding light stripper in high-power fiber laser.

    PubMed

    Yan, Ming-Jian; Wang, Zheng; Meng, Ling-Qiang; Yin, Lu; Han, Zhi-Gang; Shen, Hua; Wang, Hai-Lin; Zhu, Ri-Hong

    2018-01-20

    We present a theoretical model for the thermal effect of the fiber coating on a high-power cladding light stripper, which is fabricated by chemical etching. For the input and output of the fiber coating, a novel segmented corrosion method and increasing attenuation method are proposed for heat suppression, respectively. The relationship between the attenuation and temperature rise of the fiber coating at the output is experimentally demonstrated. The temperature distribution of the fiber coating at the input as well as the return light power caused by scattering are measured for the etched fiber with different surface roughness values. The results suggest that the rise in temperature is primarily caused by the scattering light propagating into the coating. Finally, an attenuation of 27 dB is achieved. At a room temperature of 23°C and input pump power of 438 W, the highest temperature of the input fiber coating decreases from 39.5°C to 27.9°C by segmented corrosion, and the temperature rise of the output fiber coating is close to 0.

  1. Evaluation of failure criterion for graphite/epoxy fabric laminates

    NASA Technical Reports Server (NTRS)

    Tennyson, R. C.; Wharram, G. E.

    1985-01-01

    The development and application of the tensor polynomial failure criterion for composite laminate analysis is described. Emphasis is given to the fabrication and testing of Narmco Rigidite 5208-WT300, a plain weave fabric of Thornel 300 Graphite fibers impregnated with Narmco 5208 Resin. The quadratic-failure criterion with F sub 12=0 provides accurate estimates of failure stresses for the graphite/epoxy investigated. The cubic failure criterion was recast into an operationally easier form, providing design curves that can be applied to laminates fabricated from orthotropic woven fabric prepregs. In the form presented, no interaction strength tests are required, although recourse to the quadratic model and the principal strength parameters is necessary. However, insufficient test data exist at present to generalize this approach for all prepreg constructions, and its use must be restricted to the generic materials and configurations investigated to date.

  2. Prepreg and Melt Infiltration Technology Developed for Affordable, Robust Manufacturing of Ceramic Matrix Composites

    NASA Technical Reports Server (NTRS)

    Singh, Mrityunjay; Petko, Jeannie F.

    2004-01-01

    Affordable fiber-reinforced ceramic matrix composites with multifunctional properties are critically needed for high-temperature aerospace and space transportation applications. These materials have various applications in advanced high-efficiency and high-performance engines, airframe and propulsion components for next-generation launch vehicles, and components for land-based systems. A number of these applications require materials with specific functional characteristics: for example, thick component, hybrid layups for environmental durability and stress management, and self-healing and smart composite matrices. At present, with limited success and very high cost, traditional composite fabrication technologies have been utilized to manufacture some large, complex-shape components of these materials. However, many challenges still remain in developing affordable, robust, and flexible manufacturing technologies for large, complex-shape components with multifunctional properties. The prepreg and melt infiltration (PREMI) technology provides an affordable and robust manufacturing route for low-cost, large-scale production of multifunctional ceramic composite components.

  3. Fabrication of CFRP/Al Active Laminates

    NASA Astrophysics Data System (ADS)

    Asanuma, Hiroshi; Haga, Osamu; Ohira, Junichiro; Takemoto, Kyosuke; Imori, Masataka

    This paper describes fabrication and evaluation of the active laminate. It was made by hot-pressing of an aluminum plate as a high CTE material, a unidirectional CFRP prepreg as a low CTE material and an electric resistance heater, a KFRP prepreg as a low CTE material and an insulator between them, and copper foils as electrodes. In this study, fabricating conditions and performances such as curvature change and output force were examined. Under optimized fabricating conditions, it became clear that 1) the curvature of the active laminate linearly changes as a function of temperature, between room temperature and its hot pressing temperature without hysteresis by electric resistance heating of carbon fiber in the CFRP layer and cooling, and 2) the output force against a fixed punch almost linearly increases with increasing temperature during heating from 313K up to around the glass transition temperature of the epoxy matrix.

  4. Modified carbon fibers to improve composite properties. [sizing fibers for reduced electrical conductivity and adhesion during combustion

    NASA Technical Reports Server (NTRS)

    Shepler, R. E.

    1979-01-01

    Thin coatings, 5 to 10 wt. percent, were applied to PAN-based carbon fibers. These coatings were intended to make the carbon fibers less electrically conductive or to cause fibers to stick together when a carbon fiber/epoxy composite burned. The effectiveness of the coatings in these regards was evaluated in burn tests with a test rig designed to simulate burning, impact and wind conditions which might release carbon fibers. The effect of the coatings on fiber and composite properties and handling was also investigated. Attempts at sizing carbon fibers with silicon dioxide, silicon carbide and boron nitride meet with varying degrees of success; however, none of these materials provided an electrically nonconductive coating. Coatings intended to stick carbon fibers together after a composite burned were sodium silicate, silica gel, ethyl silicate, boric acid and ammonium borate. Of these, only the sodium silicate and silica gel provided any sticking together of fibers. The amount of sticking was insufficient to achieve the desired objectives.

  5. Surface characterization of carbon fiber polymer composites and aluminum alloys after laser interference structuring

    DOE PAGES

    Sabau, Adrian S.; Greer, Clayton M.; Chen, Jian; ...

    2016-05-03

    Here, the increasing use of Carbon Fiber-reinforced Polymer matrix Composites (CFPC) and aluminum alloys as lightweight materials in the automotive and aerospace industries demands enhanced surface preparation and control of surface morphology prior to joining. In this study, surfaces of both composite and aluminum were prepared for joining using an Nd:YAG laser in a two-beam interference setup, enabling the (a) structuring of the AL 5182 surface, (b) removal of the resin layer on top of carbon fibers, and (c) structuring of the carbon fibers. CFPC specimens of T700S carbon fiber, Prepreg - T8 3 epoxy, 5 ply thick, 0/90o plaquesmore » were used. The effect of laser fluence, scanning speed, and number of shots-per-spot was investigated on the removal rate of the resin without an excessive damage of the fibers. Optical micrographs, 3D imaging, and scanning electron microscope (SEM) imaging were used to study the effect of the laser processing on surface morphology.« less

  6. Enhancement of the in-plane shear properties of carbon fiber composites containing carbon nanotube mats

    NASA Astrophysics Data System (ADS)

    Kim, Hansang

    2015-01-01

    The in-plane shear property of carbon fiber laminates is one of the most important structural features of aerospace and marine structures. Fiber-matrix debonding caused by in-plane shear loading is the major failure mode of carbon fiber composites because of the stress concentration at the interfaces. In this study, carbon nanotube mats (CNT mat) were incorporated in two different types of carbon fiber composites. For the case of woven fabric composites, mechanical interlocking between the CNTs and the carbon fibers increased resistance to shear failure. However, not much improvement was observed for the prepreg composites as a result of incorporation of the CNT mats. The reinforcement mechanism of the CNT mat layer was investigated by a fractographic study using scanning electron microscopy. In addition, the CNT mat was functionalized by three different methods and the effectiveness of the functionalization methods was determined and the most appropriate functionalization method for the CNT mat was air oxidation.

  7. Novel benzo-15-crown-5 sol-gel coating for solid-phase microextraction.

    PubMed

    Wang, Danhua; Xing, Jun; Peng, Jiagang; Wu, Caiying

    2003-07-11

    A novel dihydroxy-terminated benzo-15-crown-5 was synthesized and applied to prepare a solid-phase microextraction (SPME) fiber coating with sol-gel technology. The optimization of the sol-gel process was studied. The coating method with sol-gel was improved and completed in one run, which economized materials and allowed easier control of the fiber thickness. The repeatability of coating fiber to fiber was better than 4.94% (RSD). The surface of the fiber coating was well-distributed and an electron microscopy experiment suggested a porous structure for crown ether coating, providing high surface areas and allowing for high extraction efficiency. The coating has a high thermal stability (350 degrees C), long lifetime and can stand solvent (organic and inorganic) rinsing due to the chemical binding between the coating and the fiber surface. Non-polar benzene, toluene, ethylbenzene, xylenes, chlorobenzenes, polar phenolic compounds and arylamines were used to evaluate the character of the fiber coating by headspace SPME-gas chromatography technology. For phenols, the linear concentrations ranged from 5 to 1000 microg/l, the detection limits were between 0.05 and 1 microg/l, and the RSD was less than 5%. The addition of benzo-crown ether not only increases the thermal stability of the fiber coating, but also enhances the selectivity of the fiber coating. Compared with commercially available SPME fibers poly(dimethylsiloxane) and polyacrylate, the few phases showed better selectivity and sensitivity towards non-polar and polar aromatic compounds.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Padaki, S.; Drzal, L.T.

    The consolidation process in composites made out of powder impregnated tapes differs from that of other material forms because of the distribution of fiber and matrix in the unconsolidated state. A number of factors (e.g. time, pressure, particle size, volume fraction and viscosity) affect the efficiency of the consolidation of these tapes. This paper describes the development of a mathematical process model that describes the best set of parameters required for the consolidation of a given prepreg tape.

  9. PMR polyimides-review and update

    NASA Technical Reports Server (NTRS)

    Serafini, T. T.; Delvigs, P.; Alston, W. B.

    1982-01-01

    Fiber reinforced PMR polyimides are finding increased acceptance as engineering materials for high performance structural applications. Prepreg materials based on this novel class of highly processable, high temperature resistant polyimides are commercially available and the PMR concept is used by other investigators. The current status of first and second generation PMR polyimides were reviewed. Emphasis is given to the chemistry, processing and applications of the first generation material known as PMR-15.

  10. Investigation of cladding and coating stripping methods for specialty optical fibers

    NASA Astrophysics Data System (ADS)

    Lee, Jung-Ryul; Dhital, Dipesh; Yoon, Dong-Jin

    2011-03-01

    Fiber optic sensing technology is used extensively in several engineering fields, including smart structures, health and usage monitoring, non-destructive testing, minimum invasive sensing, safety monitoring, and other advanced measurement fields. A general optical fiber consists of a core, cladding, and coating layers. Many sensing principles require that the cladding or coating layer should be removed or modified. In addition, since different sensing systems are needed for different types of optical fibers, it is very important to find and sort out the suitable cladding or coating removal method for a particular fiber. This study focuses on finding the cladding and coating stripping methods for four recent specialty optical fibers, namely: hard polymer-clad fiber, graded-index plastic optical fiber, copper/carbon-coated optical fiber, and aluminum-coated optical fiber. Several methods, including novel laser stripping and conventional chemical and mechanical stripping, were tried to determine the most suitable and efficient technique. Microscopic investigation of the fiber surfaces was used to visually evaluate the mechanical reliability. Optical time domain reflectometric signals of the successful removal cases were investigated to further examine the optical reliability. Based on our results, we describe and summarize the successful and unsuccessful methods.

  11. Fabrication and Characterization of Conductive Conjugated Polymer-Coated Antheraea mylitta Silk Fibroin Fibers for Biomedical Applications.

    PubMed

    Gh, Darshan; Kong, Dexu; Gautrot, Julien; Vootla, Shyam Kumar

    2017-07-01

    Conductive polymers are interesting materials for a number of biological and medical applications requiring electrical stimulation of cells or tissues. Highly conductive polymers (polypyrrole and polyaniline)/Antheraea mylitta silk fibroin coated fibers are fabricated successfully by in situ polymerization without any modification of the native silk fibroin. Coated fibers characterized by scanning electron microscopy confirm the silk fiber surface is covered by conductive polymers. Thermogravimetric analysis reveals preserved thermal stability of silk fiber after coating process. X-ray diffraction of degummed fiber diffraction peaks at around 2θ = 20.4 and 16.5 confirms the preservation of the β-sheet structure typical of degummed silk II fibers. This phenomenon implies that both polypyrrole and polyaniline chains form interactions with peptide linkages in degummed fiber macromolecules, without significantly disrupting protein assembly. Fourier transform infrared spectroscopy of coated fibers indicates hydrogen bonding and electrostatic interactions exist between silk fibroin macromolecules and conductive polymers. Resulting fibers display good conductive properties compared to corresponding conjugated polymers. In vitro analysis (live/dead assay) of the behavior of human immortalized keratinocytes (HaCaTs) on coated fibers demonstrates improved cell-adhesive properties and viability after polymers coating. Hence, polypyrrole- and polyaniline-coated A. mylitta silk fibers are suitable for application in cell culture and for tissue engineering, where electrical conduction properties are required. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Influence of pretreatment on the surface characteristics of PLLA fibers and subsequent hydroxyapatite coating.

    PubMed

    Peng, F; Olson, J R; Shaw, M T; Wei, M

    2009-01-01

    A fibrous precursor for bone repair composites was made by coating poly(L-lactide) (PLLA) fibers with hydroxyapatite (HA) using a biomimetic method. To enhance the bonding between the HA coating and the PLLA fiber, PLLA fibers were etched with either sodium hydroxide or sodium hypochlorite to generate carboxyl groups on fiber surfaces. The experiments were designed to determine the influence of etching on the fiber surface morphology and chemistry as well as the subsequent HA coating on the etched fiber surfaces. It was found that the etching pretreatment increased the roughness as well as the hydrophilicity of fibers, indicating that hydrolysis of PLLA chains had taken place on fiber surfaces. The etching pretreatment also promoted HA coating formation by introducing thicker coating on the surface of fibers with a longer etching time, a higher etching concentration, or with NaOCl as the etching agent. A mechanism of surface hydrolysis and oxidation of PLLA was proposed. (c) 2008 Wiley Periodicals, Inc.

  13. Mixed polyvalent-monovalent metal coating for carbon-graphite fibers

    NASA Technical Reports Server (NTRS)

    Harper-Tervet, J.; Tervet, F. W.; Humphrey, M. F. (Inventor)

    1982-01-01

    An improved coating of gasification catalyst for carbon-graphite fibers is provided comprising a mixture of a polyvalent metal such as calcium and a monovalent metal such as lithium. The addition of lithium provides a lighter coating and a more flexible coating when applied to a coating of a carboxyl containing resin such as polyacrylic acid since it reduces the crosslink density. Furthermore, the presence of lithium provides a glass-like substance during combustion which holds the fiber together resulting in slow, even combustion with much reduced evolution of conductive fragments. The coated fibers are utilized as fiber reinforcement for composites.

  14. Optimal cure cycle design of a resin-fiber composite laminate

    NASA Technical Reports Server (NTRS)

    Hou, Jean W.; Hou, Tan H.; Sheen, Jeen S.

    1987-01-01

    Fibers reinforced composites are used in many applications. The composite parts and structures are often manufactured by curing the prepreg or unmolded material. The magnitudes and durations of the cure temperature and the cure pressure applied during the cure process have significant consequences on the performance of the finished product. The goal of this study is to exploit the potential of applying the optimization technique to the cure cycle design. The press molding process of a polyester is used as an example. Various optimization formulations for the cure cycle design are investigated. Recommendations are given for further research in computerizing the cure cycle design.

  15. Carbide coated fibers in graphite-aluminum composites

    NASA Technical Reports Server (NTRS)

    Imprescia, R. J.; Levinson, L. S.; Reiswig, R. D.; Wallace, T. C.; Williams, J. M.

    1975-01-01

    Thin, uniform coats of titanium carbide, deposited on graphite fibers by chemical vapor deposition with thicknesses up to approximately 0.1 microns were shown to improve fiber strength significantly. For greater thicknesses, strength was degraded. The coats promote wetting of the fibers and infiltration of the fiber yarns with aluminum alloys, and act as protective barriers to inhibit reaction between the fibers and the alloys. Chemical vapor deposition was used to produce silicon carbide coats on graphite fibers. In general, the coats were nonuniform and were characterized by numerous surface irregularities. Despite these irregularities, infiltration of these fibers with aluminum alloys was good. Small graphite-aluminum composite samples were produced by vacuum hot-pressing of aluminum-infiltrated graphite yarn at temperatures above the metal liquidus.

  16. Carbide coated fibers in graphites-aluminum composites. [(fabrication of metal matrix composites)

    NASA Technical Reports Server (NTRS)

    Imprescia, R. J.; Levinson, L. S.; Reiswig, R. D.; Wallace, T. C.; Williams, J. M.

    1976-01-01

    Research activities are described for a NASA-supported program at the Los Alamos Scientific Laboratory to develop graphite fiber-aluminum matrix composites. A chemical vapor deposition apparatus was constructed for continuously coating graphite fibers with TiC. As much as 150 meters of continuously coated fibers were produced. Deposition temperatures were varied from 1365 K to about 1750 K, and deposition time from 6 to 150 seconds. The 6 sec deposition time corresponded to a fiber feed rate of 2.54 m/min through the coater. Thin, uniform, adherent TiC coats, with thicknesses up to approximately 0.1 micrometer were produced on the individual fibers of Thornel 50 graphite yarns without affecting fiber strength. Although coat properties were fairly uniform throughout a given batch, more work is needed to improve the batch-to-batch reproducibility. Samples of TiC-coated Thornel 50 fibers were infiltrated with an aluminum alloy and hot-pressed in vacuum to produce small composite bars for flexure testing. Strengths as high as 90% of the rule-of-mixtures strength were achieved. Results of the examination of the fracture surfaces indicate that the bonding between the aluminum and the TiC-coated fibers is better than that achieved in a similar, commercially infiltrated material made with fibers having no observable surface coats. Several samples of Al-infiltrated, TiC-coated Thornel 50 graphite yarns, together with samples of the commercially infiltrated, uncoated fibers, were heated for 100 hours at temperatures near the alloy solidus. The TiC-coated samples appear to undergo less reaction than do the uncoated samples. Photomicrographs are shown.

  17. Manufacturing and shear response characterization of carbon nanofiber modified CFRP using the out-of-autoclave-vacuum-bag-only cure process.

    PubMed

    McDonald, Erin E; Wallace, Landon F; Hickman, Gregory J S; Hsiao, Kuang-Ting

    2014-01-01

    The interlaminar shear response is studied for carbon nanofiber (CNF) modified out-of-autoclave-vacuum-bag-only (OOA-VBO) carbon fiber reinforced plastic (CFRP). Commercial OOA-VBO prepregs were coated with a CNF modified epoxy solution and a control epoxy solution without CNF to make CNF modified samples and control samples, respectively. Tensile testing was used to study the in-plane shear performance of [± 45°]4s composite laminates. Significant difference in failure modes between the control and CNF modified CFRPs was identified. The control samples experienced half-plane interlaminar delamination, whereas the CNF modified samples experienced a localized failure in the intralaminar region. Digital image correlation (DIC) surface strain results of the control sample showed no further surface strain increase along the delaminated section when the sample was further elongated prior to sample failure. On the other hand, the DIC results of the CNF modified sample showed that the surface strain increased relatively and uniformly across the CFRP as the sample was further elongated until sample failure. The failure mode evidence along with microscope pictures indicated that the CNF modification acted as a beneficial reinforcement inhibiting interlaminar delamination.

  18. Manufacturing and Shear Response Characterization of Carbon Nanofiber Modified CFRP Using the Out-of-Autoclave-Vacuum-Bag-Only Cure Process

    PubMed Central

    McDonald, Erin E.; Wallace, Landon F.; Hickman, Gregory J. S.; Hsiao, Kuang-Ting

    2014-01-01

    The interlaminar shear response is studied for carbon nanofiber (CNF) modified out-of-autoclave-vacuum-bag-only (OOA-VBO) carbon fiber reinforced plastic (CFRP). Commercial OOA-VBO prepregs were coated with a CNF modified epoxy solution and a control epoxy solution without CNF to make CNF modified samples and control samples, respectively. Tensile testingwas used to study the in-plane shear performance of [±45°]4s composite laminates. Significant difference in failure modes between the control and CNF modified CFRPs was identified. The control samples experienced half-plane interlaminar delamination, whereas the CNF modified samples experienced a localized failure in the intralaminar region. Digital image correlation (DIC) surface strain results of the control sample showed no further surface strain increase along the delaminated section when the sample was further elongated prior to sample failure. On the other hand, the DIC results of the CNF modified sample showed that the surface strain increased relatively and uniformly across the CFRP as the sample was further elongated until sample failure. The failure mode evidence along with microscope pictures indicated that the CNF modification acted as a beneficial reinforcement inhibiting interlaminar delamination. PMID:24688435

  19. Modeling and Experiment of Melt Impregnation of Continuous Fiber-reinforced Thermoplastic with Pins

    NASA Astrophysics Data System (ADS)

    Yang, Jian-Jun; Xin, Chun-Ling; Tang, Ke; Zhang, Zhi-Cheng; Yan, Bao-Rui; Ren, Feng; He, Ya-Dong

    2016-05-01

    Melt impregnation is a crucial method for continuous fiber-reinforced thermoplastic. It was developed several years ago for thermosetting plastic, but it is very popular now in the thermoplastic matrices, with a much higher viscosity. In this paper, we propose a mathematic model based on Darcy's law, which combined with processing parameters and material physical parameters. Then we use this model to predict the influence of processing parameters on the degree of impregnation of the prepreg, and the trend of prediction is consistent with the experimental results. Therefore, the exhaustive numerical study enables to define the optimal processing conditions for a perfect impregnation. The results are shown to be effective tools for finding optimal pulling speed, pin number and pressure for a given fluid/fibers pair.

  20. Microstructure of the smart composite structures with embedded fiber optic sensing nerves

    NASA Astrophysics Data System (ADS)

    Liu, Jingyuan; Luo, Fei; Li, Changchun; Ma, Naibin

    1997-11-01

    The composite structures with embedded optical fiber sensors construct a smart composite structure system, which may have the characteristics of the in-service self-measurement, self- recognition and self-judgement action. In the present work, we studied the microstructures of carbon/epoxy composite laminates with embedded sensing optical fibers, and the integration of optical fiber with composites was also discussed. The preliminary experiment results show that because of the difference between the sensing optical fibers and the reinforcing fibers in their size, the microstructure of the composites with embedded optical fibers will produce partial local changes in the area of embedded optical fiber, these changes may affect the mechanical properties of composite structures. When the optical fibers are embedded parallel to the reinforcing fibers, due to the composite prepregs are formed under a press action during its curing process, the reinforcing fibers can be arranged equably around the optical fibers. But when the optical fibers are embedded perpendicularly to the reinforcement fibers, the resin rich pocket will appear in the composite laminates surrounding the embedded optical fiber. The gas holes will be easily produced in these zones which may produce a premature failure of the composite structure. The photoelastic experiments are also given in the paper.

  1. High temperature ceramic articles having corrosion resistant coating

    DOEpatents

    Stinton, David P.; Lee, Woo Y.

    1997-01-01

    A ceramic article which includes a porous body of SiC fibers, Si.sub.3 N.sub.4 fibers, SiC coated fibers or Si.sub.3 N.sub.4 coated fibers, having at least one surface, the article having a coating of AlN adherently disposed throughout at least a portion of the porous body.

  2. Mechanical, Chemical and Microstructural Characterization of Monazite-Coated Silicon Carbide Fibers

    NASA Technical Reports Server (NTRS)

    Bansal, N. P.; Wheeler, D. R.; Chen, Y. L.

    2000-01-01

    Tensile strengths of as-received Hi-Nicalon and Sylramic fibers and those having monazite surface coatings, deposited by atmospheric pressure chemical vapor deposition, were measured at room temperature and the Weibull statistical parameters determined. The average tensile strengths of uncoated Hi-Nicalon and Sylramic fibers were 3.19 +/- 0.73 and 2.78 +/- 0.53 GPa with a Weibull modulus of 5.41 and 5.52, respectively. The monazite-coated Hi-Nicalon and Sylramic fibers showed strength loss of approx. 10 and 15 percent, respectively, compared with the as-received fibers. The elemental compositions of the fibers and the coatings were analyzed using scanning Auger microprobe and energy dispersive X-ray spectroscopy. The LaPO4 coating on Hi-Nicalon fibers was approximately stoichiometric and about 50 nm thick. The coating on the Sylramic fibers extended to a depth of about 100 to 150 nm. The coating may have been stoichiometric LaPO4 in the first 30 to 40 nm of the layer. However, the surface roughness of Sylramic fiber made this profile somewhat difficult to interpret. Microstructural analyses of the fibers and the coatings were done by scanning electron microscopy, transmission electron microscopy, and selected area electron diffraction. Hi-Nicalon fiber consists of fine beta-SiC nanocrystals ranging in size from 1 to 30 mn embedded in an amorphous matrix. Sylramic is a polycrystalline stoichiometric silicon carbide fiber consisting of submicron beta-SiC crystallites ranging from 100 to 300 nm. Small amount of TiB2 nanocrystallites (approx. 50 nm) are also present. The LaPO4 coating on Hi-Nicalon fibers consisted of a chain of peanut shape particles having monazite-(La) structure. The coating on Sylramic fibers consisted of two layers. The inner layer was a chain of peanut shape particles having monazite-(La) structure. The outer layer was comprised of much smaller particles with a microcrystalline structure.

  3. Cyclic Fiber Push-In Test Monitors Evolution of Interfacial Behavior in Ceramic Matrix Composites

    NASA Technical Reports Server (NTRS)

    Eldridge, Jeffrey I.

    1998-01-01

    SiC fiber-reinforced ceramic matrix composites are being developed for high-temperature advanced jet engine applications. Obtaining a strong, tough composite material depends critically on optimizing the mechanical coupling between the reinforcing fibers and the surrounding matrix material. This has usually been accomplished by applying a thin C or BN coating onto the surface of the reinforcing fibers. The performance of these fiber coatings, however, may degrade under cyclic loading conditions or exposure to different environments. Degradation of the coating-controlled interfacial behavior will strongly affect the useful service lifetime of the composite material. Cyclic fiber push-in testing was applied to monitor the evolution of fiber sliding behavior in both C- and BN-coated small-diameter (15-mm) SiC-fiber-reinforced ceramic matrix composites. The cyclic fiber push-in tests were performed using a desktop fiber push-out apparatus. At the beginning of each test, the fiber to be tested was aligned underneath a 10- mm-diameter diamond punch; then, the applied load was cycled between selected maximum and minimum loads. From the measured response, the fiber sliding distance and frictional sliding stresses were determined for each cycle. Tests were performed in both room air and nitrogen. Cyclic fiber push-in tests of C-coated, SiC-fiber-reinforced SiC showed progressive increases in fiber sliding distances along with decreases in frictional sliding stresses for continued cycling in room air. This rapid degradation in interfacial response was not observed for cycling in nitrogen, indicating that moisture exposure had a large effect in immediately lowering the frictional sliding stresses of C-coated fibers. These results indicate that matrix cracks bridged by C-coated fibers will not be stable, but will rapidly grow in moisture-containing environments. In contrast, cyclic fiber push-in tests of both BN-coated, SiC-fiber-reinforced SiC and BNcoated, SiC-fiber-reinforced barium strontium aluminosilicate showed no significant changes in fiber sliding behavior with continued short-term cycling in either room air or nitrogen. Although the composites with BN-coated fibers showed stable short-term cycling behavior in both environments, long-term (several-week) exposure of debonded fibers to room air resulted in dramatically increased fiber sliding distances and decreased frictional sliding stresses. These results indicate that although matrix cracks bridged by BNcoated fibers will show short-term stability, such cracks will show substantial growth with long-term exposure to moisture-containing environments. Newly formulated BN coatings, with higher moisture resistance, will be tested in the near future.

  4. Ceramic fiber reinforced filter

    DOEpatents

    Stinton, David P.; McLaughlin, Jerry C.; Lowden, Richard A.

    1991-01-01

    A filter for removing particulate matter from high temperature flowing fluids, and in particular gases, that is reinforced with ceramic fibers. The filter has a ceramic base fiber material in the form of a fabric, felt, paper of the like, with the refractory fibers thereof coated with a thin layer of a protective and bonding refractory applied by chemical vapor deposition techniques. This coating causes each fiber to be physically joined to adjoining fibers so as to prevent movement of the fibers during use and to increase the strength and toughness of the composite filter. Further, the coating can be selected to minimize any reactions between the constituents of the fluids and the fibers. A description is given of the formation of a composite filter using a felt preform of commercial silicon carbide fibers together with the coating of these fibers with pure silicon carbide. Filter efficiency approaching 100% has been demonstrated with these filters. The fiber base material is alternately made from aluminosilicate fibers, zirconia fibers and alumina fibers. Coating with Al.sub.2 O.sub.3 is also described. Advanced configurations for the composite filter are suggested.

  5. Surface modification and characterization of aramid fibers with hybrid coating

    NASA Astrophysics Data System (ADS)

    Chen, Jianrui; Zhu, Yaofeng; Ni, Qingqing; Fu, Yaqin; Fu, Xiang

    2014-12-01

    Aramid fibers were modified through solution dip-coating and interfacial in situ polymerization using a newly synthesized SiO2/shape memory polyurethane (SiO2/SMPU) hybrid. Fourier transform infrared and X-ray photoelectron spectroscopy indicated that the synthesized SiO2/SMPU hybrid successfully coated the fiber surface. The surface morphology of the aramid fibers and the single fiber tensile strength and interfacial shear strength (IFSS) of the composites were determined. The IFSS of the fiber coated with the hybrid improved by 45%, which benefited from a special "pizza-like" structure on the fiber surface.

  6. Elasto-optics in double-coated optical fibers induced by axial strain and hydrostatic pressure.

    PubMed

    Yang, Yu-Ching; Lee, Haw-Long; Chou, Huann-Ming

    2002-04-01

    Stresses, microbending loss, and refractive-index changes induced simultaneously by axial strain and hydrostatic pressure in double-coated optical fibers are analyzed. The lateral pressure and normal stresses in the optical fiber, primary coating, and secondary coating are derived. Also presented are the microbending loss and refractive-index changes in the glass fiber. The normal stresses are affected by axial strain, hydrostatic pressure, material properties, and thickness of the primary and secondary coatings. It is found that microbending loss decreases with increasing thickness, the Young's modulus, and the Poisson's ratio of the secondary coating but increases with the increasing Young's modulus and Poisson's ratio of the primary coating. Similarly, changes in refractive index in the glass fiber decrease with the increasing Young's modulus and Poisson's ratio of the secondary coating but increase with the increasing Young's modulus and Poisson's ratio of the primary coating. Therefore, to minimize microbending loss induced simultaneously by axial strain and hydrostatic pressure in the glass fiber, the polymeric coatings should be suitably selected. An optimal design procedure is also indicated.

  7. Impregnation of glass fibres with polymethylmethacrylate using a powder-coating method

    NASA Astrophysics Data System (ADS)

    Vallittu, Pekka K.

    1995-01-01

    The aim of this study was to evaluate the usefulness of a powder-coating method to impregnate glass fibres with polymethylmethacrylate (PMMA) for dental purposes. The continuous unidirectional E-glass fibres, the surface of which had been treated with precured silane, were powder-coated with spherical PMMA particles. Before the powder-coated prepregs were used, the incorporated PMMA powder was dissolved with methylmethacrylate monomer. The degree of impregnation of the polymerized composite was determined with a scanning electron microscope. The results revealed that the mean degree of impregnation varied from 0.87 to 0.92, being lower in the heat-cured PMMA group (which simulated fabrication of a new denture), and higher in the autopolymerizing group (which simulated the repair of a fractured denture). The means between the two groups did not, however, differ significantly ( p=0.249). The results suggest that, even though the method has some shortcomings in terms of dental laboratory technology, the powder-coating method can be used to fabricate or repair acrylic resin-based dentures.

  8. High temperature ceramic articles having corrosion resistant coating

    DOEpatents

    Stinton, D.P.; Lee, W.Y.

    1997-09-30

    A ceramic article is disclosed which includes a porous body of SiC fibers, Si{sub 3}N{sub 4} fibers, SiC coated fibers or Si{sub 3}N{sub 4} coated fibers, having at least one surface, the article having a coating of AlN adherently disposed throughout at least a portion of the porous body. 1 fig.

  9. Room-temperature aqueous plasma electrolyzing Al2O3 nano-coating on carbon fiber

    NASA Astrophysics Data System (ADS)

    Zhang, Yuping; Meng, Yang; Shen, Yonghua; Chen, Weiwei; Cheng, Huanwu; Wang, Lu

    2017-10-01

    A novel room-temperature aqueous plasma electrolysis technique has been developed in order to prepared Al2O3 nano-coating on each fiber within a carbon fiber bundle. The microstructure and formation mechanism of the Al2O3 nano-coating were systematically investigated. The oxidation resistance and tensile strength of the Al2O3-coated carbon fiber was measured at elevated temperatures. It showed that the dense Al2O3 nano-coating was relatively uniformly deposited with 80-120 nm in thickness. The Al2O3 nano-coating effectively protected the carbon fiber, evidenced by the slower oxidation rate and significant increase of the burn-out temperature from 800 °C to 950 °C. Although the bare carbon fiber remained ∼25 wt.% after oxidation at 700 °C for 20 min, a full destruction was observed, evidenced by the ∼0 GPa of the tensile strength, compared to ∼1.3 GPa of the Al2O3-coated carbon fiber due to the effective protection from the Al2O3 nano-coating. The formation mechanism of the Al2O3 nano-coating on carbon fiber was schematically established mainly based on the physic-chemical effect in the cathodic plasma arc zone.

  10. Coupling Light Emitting Diodes with Photocatalyst-Coated Optical Fibers Improves Quantum Yield of Pollutant Oxidation.

    PubMed

    Ling, Li; Tugaoen, Heather; Brame, Jonathon; Sinha, Shahnawaz; Li, Chuanhao; Schoepf, Jared; Hristovski, Kiril; Kim, Jae-Hong; Shang, Chii; Westerhoff, Paul

    2017-11-21

    A photocatalyst-coated optical fiber was coupled with a 318 nm ultraviolet-A light emitting diode, which activated the photocatalysts by interfacial photon-electron excitation while minimizing photonic energy losses due to conventional photocatalytic barriers. The light delivery mechanism was explored via modeling of evanescent wave energy produced upon total internal reflection and photon refraction into the TiO 2 surface coating. This work explores aqueous phase LED-irradiated optical fibers for treating organic pollutants and for the first time proposes a dual-mechanistic approach to light delivery and photocatalytic performance. Degradation of a probe organic pollutant was evaluated as a function of optical fiber coating thickness, fiber length, and photocatalyst attachment method and compared against the performance of an equivalent catalyst mass in a completely mixed slurry reactor. Measured and simulated photon fluence through the optical fibers decreased as a function of fiber length, coating thickness, or TiO 2 mass externally coated on the fiber. Thinner TiO 2 coatings achieved faster pollutant removal rates from solution, and dip coating performed better than sol-gel attachment methods. TiO 2 attached to optical fibers achieved a 5-fold higher quantum yield compared against an equivalent mass of TiO 2 suspended in a slurry solution.

  11. A Fully Contained Resin Infusion Process for Fiber-Reinforced Polymer Composite Fabrication and Repair

    DTIC Science & Technology

    2013-01-01

    Figures iv  Acknowledgments v  1.  Introduction 1  2.  Experimental 2  2.1  Composite Laminate Fabrication...2 Figure 2. Image of fiberglass composite being fabricated using VARTM processing. 2. Experimental 2.1 Composite Laminate Fabrication...style 5 × 5 plain 5 weave prepreg S-2 fiberglass fabric and a honeycomb core cured in an autoclave, much like the composite parts fielded in

  12. Fiber reinforced PMR polyimide composites

    NASA Technical Reports Server (NTRS)

    Cavano, P. J.; Winters, W. E.

    1978-01-01

    Commercially obtained PMR-15 polyimide prepregs with S-glass and graphite fiber reinforcements were evaluated along with in-house prepared glass and graphite cloth PMR 2 materials. A novel autoclave approach was conceived and used to demonstrate that both the PMR systems respond to 1.4 MPa (200 psi) autoclave pressures to produce void free composites equivalent to die molded laminates. Isothermal gravimetric analysis and subsequent mechanical property tests indicated that the PMR 2 system was significantly superior in thermo-oxidative stability, and that S-glass reinforcements may contribute to the accelerated degradation of composites at 316 C (600 F) when compared to graphite fiber reinforced composites. Fully reversed bending fatigue experiments were conducted with a type of fixture unused for organic matrix composites. These studies indicated that the graphite fiber composites were clearly superior in fatigue resistance to the glass fiber reinforced material and that PMR matrix composite systems yield performance of the same order as composite materials employing other families of matrices.

  13. The light transmission and distribution in an optical fiber coated with TiO2 particles.

    PubMed

    Wang, Wen; Ku, Young

    2003-03-01

    The light delivery and distribution phenomena along the optical fiber coated with the P-25 TiO(2) particles by dipping was investigated. The surface properties (coverage, roughness and thickness) of the TiO(2) layer coated on the optical fiber were characterized by SEM micrographs. For TiO(2) layer prepared from solutions containing less than 20 wt.% of TiO(2) slurry, the thickness of layer was increased linearly with the TiO(2) slurry content in solutions. The UV light intensity transmitted along a TiO(2)-coated optical fiber decreased more rapidly than that transmitted along a non-coated fiber. Based on the experimental results, the light intensity distribution around a coated optical fiber was modeled to determine the optimum configuration for the design of optical fiber reactors under various operational conditions. Copyright 2002 Elsevier Science Ltd.

  14. Effects of Fiber/Matrix Interface and its Composition on Mechanical Properties of Hi-Nicalon/Celsian Composites

    NASA Technical Reports Server (NTRS)

    Bansal, Narottam P.; Eldridge, Jeffrey I.

    1999-01-01

    To evaluate the effects of fiber coatings on composite mechanical properties. unidirectional celsian matrix composites reinforced with uncoated Hi-Nicalon fibers and those precoated with a dual BN/SiC layer in two separate batches (batch 1 and batch 2) were tested in three-point flexure. The uncoated-fiber reinforced composites showed catastrophic failure with strength of 210+/-35 MPa and a flat fracture surface. In contrast, composites reinforced with coated fibers exhibited graceful failure with extensive fiber pullout and showed significantly higher ultimate strengths, 904 and 759 MPa for the batch 1 and 2 coatings. respectively. Fiber push-in tests and microscopic examination indicated no chemical reaction at the uncoated or coated fiber-matrix interfaces that might be responsible for fiber strength degradation. Instead, the low strength of composite with uncoated fibers was due to degradation of the fiber strength from mechanical damage during composite processing. Despite identical processing, the first matrix cracking stresses (Sigma(sub mc)) of the composites reinforced with fibers coated in batch 1 and batch 2 were quite different, 436 and 122 MPa, respectively. The large difference in Sigma(sub mc) of the coated-fiber composites was attributed to differences in fiber sliding stresses (Tau(sub friction)), 121.2+/-48.7 and 10.4+/-3.1 MPa, respectively. for the two composites as determined by the fiber push-in method. Such a large difference in Tau(sub friction). for the two composites was found to be due to the difference in the compositions of the interface coatings. Scanning Auger microprobe analysis revealed the presence of carbon layers between the fiber and BN. and also between the BN and SiC coatings in the composite showing lower Tau(sub friction). This resulted in lower Sigma(sub mc) in agreement with the ACK theory. The ultimate strengths of the two composites depended mainly on the fiber volume fraction and were not significantly effected by Tau(sub friction) values, as expected. The poor reproducibility of the fiber coating composition between the two batches was judged to be the primary source of the large differences in performance of the two composites.

  15. Ceramic fiber insulation impregnated with an infra-red retardant coating and method for production thereof

    NASA Technical Reports Server (NTRS)

    Zinn, Alfred A. (Inventor); Tarkanian, Ryan Jeffrey (Inventor)

    2007-01-01

    The invented insulation is a ceramic fiber insulation wherein the ceramic fibers are treated with a coating which contains transition metal oxides. The invented process for coating the insulation is a process of applying the transition metal oxide coating to the fibers of the insulation after the fibers have been formed into a tile or other porous body. The coating of transition metal oxide lowers the transmittance of radiation through the insulation thereby lowering the temperature of the backface of the insulation and better protecting the structure that underlies the insulation.

  16. ZnO nanorod array polydimethylsiloxane composite solid phase micro-extraction fiber coating: fabrication and extraction capability.

    PubMed

    Wang, Dan; Wang, Qingtang; Zhang, Zhuomin; Chen, Guonan

    2012-01-21

    ZnO nanorod array coating is a novel kind of solid-phase microextraction (SPME) fiber coating which shows good extraction capability due to the nanostructure. To prepare the composite coating is a good way to improve the extraction capability. In this paper, the ZnO nanorod array polydimethylsiloxane (PDMS) composite SPME fiber coating has been prepared and its extraction capability for volatile organic compounds (VOCs) has been studied by headspace sampling the typical volatile mixed standard solution of benzene, toluene, ethylbenzene and xylene (BTEX). Improved detection limit and good linear ranges have been achieved for this composite SPME fiber coating. Also, it is found that the composite SPME fiber coating shows good extraction selectivity to the VOCs with alkane radicals.

  17. Highly porous solid-phase microextraction fiber coating based on poly(ethylene glycol)-modified ormosils synthesized by sol-gel technology.

    PubMed

    da Costa Silva, Raquel Gomes; Augusto, Fabio

    2005-04-22

    The preparation and characteristics of solid-phase microextraction (SPME) fibers coated with Carbowax 20M ormosil (organically modified silica) are described here. Raw fused silica fibers were coated with Carbowax 20M-modified silica using sol-gel process. Scanning electron micrographs of fibers revealed a highly porous, sponge-like coating with an average thickness of (8 +/- 1) microm. The sol-gel Carbowax fibers were compared to commercial fibers coated with 100 microm polydimethylsiloxane (PDMS) and 65 microm Carbowax-divinylbenzene (DVB). Shorter equilibrium times were possible with the sol-gel Carbowax fiber: for headspace extraction of the test analytes, they ranged from less than 3 min for benzene to 15 min for o-xylene. Extraction efficiencies of the sol-gel Carbowax fiber were superior to those of conventional fibers: for o-xylene, the extracted masses were 230 and 540% of that obtained with 100 microm PDMS and 65 microm Carbowax-DVB fibers, respectively.

  18. Hi-Nicalon Fiber-Reinforced Celsian Matrix Composites: Influence of Interface Modification

    NASA Technical Reports Server (NTRS)

    Bansal, Narottam P.; Eldridge, Jeffrey I.

    1998-01-01

    Unidirectional celsian matrix composites having 42-45 vol % of uncoated or BN-SIC coated Hi-Nicalon fibers were tested in three-point bend at room temperature. The uncoated fiber-reinforced composites showed catastrophic failure with strength of 210 35 MPa and a flat fracture surface. In contrast, composites reinforced with coated fibers exhibited graceful failure with extensive fiber pullout. Values of first matrix cracking stress and strain were 435 +/- 35 MPa and 0.27 +/- 0.01%, respectively, with ultimate strength as high as 960 MPa. The elastic Young modulus of the uncoated and coated fiber-reinforced composites were 184 +/- 4 GPa and 165 +/- 5 GPa, respectively. Fiber push-through tests and microscopic examination indicated no chemical reaction at the uncoated or coated fiber-matrix interface. The low strength of composite with uncoated fibers is due to degradation of the fiber strength from mechanical damage during processing. Because both the coated- and uncoated-fiber-reinforced composites exhibited weak interfaces, the beneficial effect of the BN-SIC dual layer is primarily the protection of fibers from mechanical damage during processing.

  19. Development of Al2O3 fiber-reinforced Al2O3-based ceramics.

    PubMed

    Tanimoto, Yasuhiro; Nemoto, Kimiya

    2004-09-01

    The purpose of this study was to use a tape casting technique to develop an Al2O3 fiber-reinforced Al2O3-based ceramic material (Al2O3-fiber/Al2O3 composite) into a new type of dental ceramic. The Al2O3-based ceramic used a matrix consisting of 60 wt% Al2O3 powder and 40 wt% SiO2-B2O3 powder. The prepreg sheets of Al2O3-fiber/Al2O3 composite (in which uniaxially aligned Al2O3 fibers were infiltrated with the Al2O3-based matrix) were fabricated continuously using tape casting technique with a doctor blade system. Multilayer preforms of Al2O3-fiber/Al2O3 composite sheets were then sintered at a maximum temperature of 1000 degrees C under an atmospheric pressure in a furnace. The results showed that the shrinkage and bending properties of Al2O3-fiber/Al2O3 composite exceeded those of unreinforced Al2O3--hence demonstrating the positive effects of fiber reinforcement. In conclusion, the tape casting technique has been utilized to successfully develop a new type of dental ceramic material.

  20. Flexible fiber-reinforced composites with improved interfacial adhesion by mussel-inspired polydopamine and poly(methyl methacrylate) coating.

    PubMed

    Yi, Mi; Sun, Hongyang; Zhang, Hongcheng; Deng, Xuliang; Cai, Qing; Yang, Xiaoping

    2016-01-01

    To obtain a kind of light-curable fiber-reinforced composite for dental restoration, an excellent interfacial adhesion between the fiber and the acrylate resin matrix is quite essential. Herein, surface modification on glass fibers were carried out by coating them with poly(methyl methacrylate) (PMMA), polydopamine (PDA), or both. The PMMA or PDA coating was performed by soaking fibers in PMMA/acetone solution or dopamine aqueous solution. PDA/PMMA co-coated glass fibers were obtained by further soaking PDA-coated fibers in PMMA/acetone solution. These modified fibers were impregnated with bisphenol A glycidyl methacrylate (Bis-GMA)/triethylene glycol dimethacrylate (TEGDMA) (5:5, w/w) dental resin at a volume fraction of 75%, using unmodified fibers as reference. Light-cured specimens were submitted to evaluations including flexural properties, morphological observation, dynamic mechanical thermal analysis (DMTA) and pull-out test. In comparison with unmodified glass fibers, all the modified glass fibers showed enhancements in flexural strength and modulus of Bis-GMA/TEGDMA resin composites. Results of DMTA and pull-out tests confirmed that surface modification had significantly improved the interfacial adhesion between the glass fiber and the resin matrix. Particularly, the PDA/PMMA co-coated glass fibers displayed the most efficient reinforcement and the strongest interfacial adhesion due to the synergetic effects of PDA and PMMA. It indicated that co-coating method was a promising approach in modifying the interfacial compatibility between inorganic glass fiber and organic resin matrix. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Effects of Interface Coating and Nitride Enhancing Additive on Properties of Hi-Nicalon SiC Fiber Reinforced Reaction-Bonded Silicon Nitride Composites

    NASA Technical Reports Server (NTRS)

    Bhatt, Ramakrishana T.; Hull, David R.; Eldridge, Jeffrey I.; Babuder, Raymond

    2000-01-01

    Strong and tough Hi-Nicalon SiC fiber reinforced reaction-bonded silicon nitride matrix composites (SiC/ RBSN) have been fabricated by the fiber lay-up approach. Commercially available uncoated and PBN, PBN/Si-rich PBN, and BN/SiC coated SiC Hi-Nicalon fiber tows were used as reinforcement. The composites contained approximately 24 vol % of aligned 14 micron diameter SiC fibers in a porous RBSN matrix. Both one- and two-dimensional composites were characterized. The effects of interface coating composition, and the nitridation enhancing additive, NiO, on the room temperature physical, tensile, and interfacial shear strength properties of SiC/RBSN matrix composites were evaluated. Results indicate that for all three coated fibers, the thickness of the coatings decreased from the outer periphery to the interior of the tows, and that from 10 to 30 percent of the fibers were not covered with the interface coating. In the uncoated regions, chemical reaction between the NiO additive and the SiC fiber occurs causing degradation of tensile properties of the composites. Among the three interface coating combinations investigated, the BN/SiC coated Hi-Nicalon SiC fiber reinforced RBSN matrix composite showed the least amount of uncoated regions and reasonably uniform interface coating thickness. The matrix cracking stress in SiC/RBSN composites was predicted using a fracture mechanics based crack bridging model.

  2. Synthesis of boron nitride coatings on quartz fibers: Thickness control and mechanism research

    NASA Astrophysics Data System (ADS)

    Zheng, Yu; Wang, Shubin

    2011-10-01

    Boron nitride (BN) coatings were successfully synthesized on quartz fibers by dip-coating in boric acid and urea solutions at 700 °C. The SEM micrographs indicated that the quartz fibers were fully covered by coatings with smooth surface. The XRD, FT-IR, XPS spectra and HR-TEM results showed that the composition of the coatings which combined closely with the quartz fibers was polycrystalline h-BN. By changing the dip circles, the coating thickness was well controlled. The thicknesses of samples dipped less than six circles increased linearly with dipping-circles; and the increment of coating thickness would slow down when the fibers were dipped 10 circles. After being dipped for 10 circles, the thickness was about 300 nm. The coating thickness was also established by calculation and the calculated results were consistent with the results measured by micrograph.

  3. Method for forming hermetic coatings for optical fibers

    DOEpatents

    Michalske, Terry A.; Rye, Robert R.; Smith, William L.

    1993-01-01

    A method for forming hermetic coatings on optical fibers by hot filament assisted chemical vapor deposition advantageously produces a desirable coating while maintaining the pristine strength of the pristine fiber. The hermetic coatings may be formed from a variety of substances, such as, for example, boron nitride and carbon.

  4. The effect of irradiation process on the optical fiber coating

    NASA Astrophysics Data System (ADS)

    Wang, Zeyu; Xiao, Chun; Rong, Liang; Ji, Wei

    2018-03-01

    Protective fiber coating decides the mechanical strength of an optical fiber as well as its resistance against the influence of environment, especially in some special areas like irradiation atmospheres. According to the experiment in this paper, it was found that the tensile force and peeling force of resistant radiation optical fiber was improved because of the special optical fiber coating.

  5. Feasibility study on the development of tough, moisture-resistant laminating resins

    NASA Technical Reports Server (NTRS)

    Brand, R. A.; Harrison, E. S.

    1979-01-01

    The potential of cyanate resins as replacement for epoxy resins in composites with graphite fiber reinforcement was investigated in an effort to provide improved moisture resistance and toughness in laminating systems at a projected cost, handleability, and processing requirements equivalent to 400 K (260 F) curing epoxies. Monomer synthesis, formulation, blending, resin preparation, catalysis studies, prepreg preparation, laminate fabrication, and testing are discussed. A graphite fiber reinforced laminate was developed with 95 percent retention of the original 363 K (180 F) flexural strength and 70 percent retention of the 363 K (180 F) short beam shear strength after 500 hour exposure to 95 + 7 relative humidity at 324 K (120 F).

  6. Design and Manufacture of Conical Shell Structures Using Prepreg Laminates

    NASA Astrophysics Data System (ADS)

    Khakimova, Regina; Burau, Florian; Degenhardt, Richard; Siebert, Mark; Castro, Saullo G. P.

    2016-06-01

    The design and manufacture of unstiffened composite conical structures is very challenging, as the variation of the fiber orientations, lay-up and the geometry of the ply pieces have a significant influence on the thickness imperfections and ply angle deviations imprinted to the final part. This paper deals with the manufacture of laminated composite cones through the prepeg/autoclave process. The cones are designed to undergo repetitive buckling tests without accumulating permanent damage. The aim is to define a process that allows the control of fiber angle deviations and the removal of thickness imperfections generated from gaps and overlaps between ply pieces. Ultrasonic scan measurements are used to proof the effectiveness of the proposed method.

  7. Composite impact strength improvement through a fiber/matrix interphase

    NASA Technical Reports Server (NTRS)

    Cavano, P. J.; Winters, W. E.

    1975-01-01

    Research was conducted to improve the impact strength and toughness of fiber/resin composites by means of a fiber coating interphase. Graphite fiber/epoxy resin composites were fabricated with four different fiber coating systems introduced in a matrix-fiber interphase. Two graphite fibers, a high strength and a high modulus type, were studied with the following coating systems: chemical vapor deposited boron, electroless nickel, a polyamide-imide resin and a thermoplastic polysulfone resin. Evaluation methods included the following tests: Izod, flexure, shear fracture toughness, longitudinal and transverse tensile, and transverse and longitudinal compression. No desirable changes could be effected with the high strength fiber, but significant improvements in impact performance were observed with the polyamide-imide resin coated high modulus fiber with no loss in composite modulus.

  8. On-line tritium production monitor

    DOEpatents

    Mihalczo, John T.

    1993-01-01

    A scintillation optical fiber system for the on-line monitoring of nuclear reactions in an event-by-event manner is described. In the measurement of tritium production one or more optical fibers are coated with enriched .sup.6 Li and connected to standard scintillation counter circuitry. A neutron generated .sup.6 Li(n )T reaction occurs in the coated surface of .sup.6 Li-coated fiber to produce energetic alpha and triton particles one of which enters the optical fiber and scintillates light through the fiber to the counting circuit. The coated optical fibers can be provided with position sensitivity by placing a mirror at the free end of the fibers or by using pulse counting circuits at both ends of the fibers.

  9. On-line tritium production monitor

    DOEpatents

    Mihalczo, J.T.

    1993-11-23

    A scintillation optical fiber system for the on-line monitoring of nuclear reactions in an event-by-event manner is described. In the measurement of tritium production one or more optical fibers are coated with enriched {sup 6}Li and connected to standard scintillation counter circuitry. A neutron generated {sup 6}Li(n)T reaction occurs in the coated surface of {sup 6}Li-coated fiber to produce energetic alpha and triton particles one of which enters the optical fiber and scintillates light through the fiber to the counting circuit. The coated optical fibers can be provided with position sensitivity by placing a mirror at the free end of the fibers or by using pulse counting circuits at both ends of the fibers. 5 figures.

  10. Evaluation of fiber’s misorientation effect on compliance and load carry capacity of shaped composite beams

    NASA Astrophysics Data System (ADS)

    Polilov, A. N.; Tatus’, N. A.

    2018-04-01

    The goal of this paper is analysis of design methods for composite beams and plates with curvilinear fiber trajectories. The novelty of this approach is determined by the fact that traditional composite materials are typically formed using prepregs with rectilinear fibers only. The results application area is associated with design process for shaped composite structure element by using of biomechanical principles. One of the related problems is the evaluation of fiber’s misorientation effect on stiffness and load carry capacity of shaped composite element with curvilinear fiber trajectories. Equistrong beam with constant cross-section area is considered as example, and it can be produced by unidirectional fiber bunch forming, impregnated with polymer matrix. Effective elastic modulus evaluation methods for structures with curvilinear fiber trajectories are validated. Misorientation angle range (up to 5o) when material with required accuracy can be considered as homogeneous, neglecting fiber misorientation, is determined. It is shown that for the beams with height-to-width ratio small enough it is possible to consider 2D misorientation only.

  11. Development of active and sensitive material systems based on composites

    NASA Astrophysics Data System (ADS)

    Asanuma, Hiroshi

    2002-07-01

    This paper describes new concepts proposed by the author to realize active and sensitive structural material systems. Two examples of multifunctional composites were fabricated and evaluated in this study as follows: (1) An active laminate of aluminum plate (works as muscle), epoxy film (as insulator), unidirectional CFRP prepreg (as bone and blood vessel) and copper foil electrode (to apply voltage on CFRP) was made with an embedded optical fiber multiply fractured in the CFRP layer (works as nerve), of which curvature change could be effectively monitored with the fractured optical fiber. (2) A stainless steel fiber/aluminum active composite with embedded Ti oxide/Ti composite fiber was fabricated. The Ti oxide/Ti fiber could work as a sensor for temperature by removing a part of the oxide before embedment to make a metallic contact between the embedded titanium fiber and aluminum matrix to be able to generate thermal electromotive force, and also could work as a sensor for strain and as a heater for actuation. In the both cases, the outputs from their embedded sensors can be used to control their actuations.

  12. Coating Carbon Fibers With Platinum

    NASA Technical Reports Server (NTRS)

    Effinger, Michael R.; Duncan, Peter; Coupland, Duncan; Rigali, Mark J.

    2007-01-01

    A process for coating carbon fibers with platinum has been developed. The process may also be adaptable to coating carbon fibers with other noble and refractory metals, including rhenium and iridium. The coated carbon fibers would be used as ingredients of matrix/fiber composite materials that would resist oxidation at high temperatures. The metal coats would contribute to oxidation resistance by keeping atmospheric oxygen away from fibers when cracks form in the matrices. Other processes that have been used to coat carbon fibers with metals have significant disadvantages: Metal-vapor deposition processes yield coats that are nonuniform along both the lengths and the circumferences of the fibers. The electrical resistivities of carbon fibers are too high to be compatible with electrolytic processes. Metal/organic vapor deposition entails the use of expensive starting materials, it may be necessary to use a furnace, and the starting materials and/or materials generated in the process may be hazardous. The present process does not have these disadvantages. It yields uniform, nonporous coats and is relatively inexpensive. The process can be summarized as one of pretreatment followed by electroless deposition. The process consists of the following steps: The surfaces of the fiber are activated by deposition of palladium crystallites from a solution. The surface-activated fibers are immersed in a solution that contains platinum. A reducing agent is used to supply electrons to effect a chemical reduction in situ. The chemical reduction displaces the platinum from the solution. The displaced platinum becomes deposited on the fibers. Each platinum atom that has been deposited acts as a catalytic site for the deposition of another platinum atom. Hence, the deposition process can also be characterized as autocatalytic. The thickness of the deposited metal can be tailored via the duration of immersion and the chemical activity of the solution.

  13. Flammability Characteristics of Fiber Reinforced Composite Materials

    DTIC Science & Technology

    1990-08-01

    Thick Vertical Sheet of Kevlar/Phenolio-PVB ( Owens - Corning $pall Liner), MTL A4) 3 12 Chemical Heat Release Rate During Fire Propagation for a 40 0.61 m...Long, 0.10 m Wide and 3 mm Thick Vertical Sheet of S-2/Phenolic ( Owens - Corning ), MTL #5) 13 Chemical Heac Release Rate During Fire Propagation for 41...Materials T eohnology Laboratory (AKTL) by Owens - Corning Corporation; 3. NTL #3: S-2 fiberglabs/polyestel’, flame retardant, prepreg, formulated for

  14. Effects of water during cure on the properties of a carbon/phenolic system

    NASA Technical Reports Server (NTRS)

    Penn, B. G.; Clemons, J. M.; Ledbetter, F. E., III; Daniels, J. G.; Thompson, L. M.

    1984-01-01

    The effects of prepreg water contamination on interlaminar shear strength, tranverse compressive strength, and longitudinal compressive strength were determined. Decreases in these properties due to water contamination were sugstantial: 28 percent for the interlaminar shear strength, 21 percent for the transverse compressive strength and 31 percent for the longitudinal compressive strength. Since voids were not detected by X-ray analysis, the most likely cause for these results is fiber-matrix debounding in the laminate.

  15. Effects of Carbon Nanomaterial Reinforcement on Composite Joints Under Cyclic and Impact Loading

    DTIC Science & Technology

    2012-03-01

    prepreg . 2 Figure 1. Composite decks on DDG1000. (From [3]) Figure 2. USV built from nanotube-reinforced carbon fiber composites. (From [2...been proven that the infusion of CNTs enhances the strength and fracture toughness of CFRP laminates under static loading (mode I and mode II...Kostopoulos et al. [5] investigated the influence of the multi-walled carbon nanotubes (MWCNTs) on the impact and after-impact behavior of CFRP laminates

  16. Preparation and mechanical properties of carbon fiber reinforced hydroxyapatite/polylactide biocomposites.

    PubMed

    Shen, Lie; Yang, Hui; Ying, Jia; Qiao, Fei; Peng, Mao

    2009-11-01

    A novel biocomposite of carbon fiber (CF) reinforced hydroxyapatite (HA)/polylactide (PLA) was prepared by hot pressing a prepreg which consisting of PLA, HA and CF. The prepreg was manufactured by solvent impregnation process. Polymer resin PLA dissolved with chloroform was mixed with HA. After reinforcement CF bundle was impregnated in the mixture, the solvent was dried completely and subsequently hot-pressed uniaxially under a pressure of 40 MPa at 170 degrees C for 20 min. A study was carried out to investigate change in mechanical properties of CF/HA/PLA composites before and after degradation in vitro. The composites have excellent mechanical properties. A peak showed in flexural strength, flexural modulus and shear strength aspects, reaching up 430 MPa, 22 GPa, 212 MPa, respectively, as the HA content increased. Degraded in vitro for 3 months, the flexural strength and flexural modulus of the CF/HA/PLA fell 13.2% and 5.4%, respectively, while the shear strength of the CF/HA/PLA composites remains at the 190 MPa level. The SEM photos showed that there were gaps between the PLA matrix and CF after degradation. Water uptake increased to 5%, but the mass loss rate was only 1.6%. The pH values of the PBS dropped less than 0.1. That's because the alkaline of HA neutralize the acid degrades from PLA, which can prevent the body from the acidity harm.

  17. ODC-Free Solvent Implementation for Phenolics Cleaning

    NASA Technical Reports Server (NTRS)

    Wurth, Laura; Biegert, Lydia; Lamont, DT; McCool, Alex (Technical Monitor)

    2001-01-01

    During phenolic liner manufacture, resin-impregnated (pre-preg) bias tape of silica, glass, or carbon cloth is tape-wrapped, cured, machined, and then wiped with 1,1,1 tri-chloroethane (TCA) to remove contaminants that may have been introduced during machining and handling. Following the TCA wipe, the machined surface is given a resin wet-coat and over-wrapped with more prepreg and cured. A TCA replacement solvent for these wiping operations must effectively remove both surface contaminants, and sub-surface oils and greases while not compromising the integrity of this interface. Selection of a TCA replacement solvent for phenolic over-wrap interface cleaning began with sub-scale compatibility tests with cured phenolics. Additional compatibility tests included assessment of solvent retention in machined phenolic surfaces. Results from these tests showed that, while the candidate solvent did not degrade the cured phenolics, it was retained in higher concentrations than TCA in phenolic surfaces. This effect was most pronounced with glass and silica cloth phenolics with steep ply angles relative to the wiped surfaces.

  18. Silicon-doped boron nitride coated fibers in silicon melt infiltrated composites

    DOEpatents

    Corman, Gregory Scot; Luthra, Krishan Lal

    2002-01-01

    A fiber-reinforced silicon-silicon carbide matrix composite having improved oxidation resistance at high temperatures in dry or water-containing environments is produced. The invention also provides a method for protecting the reinforcing fibers in the silicon-silicon carbide matrix composites by coating the fibers with a silicon-doped boron nitride coating.

  19. Silicon-doped boron nitride coated fibers in silicon melt infiltrated composites

    DOEpatents

    Corman, Gregory Scot; Luthra, Krishan Lal

    1999-01-01

    A fiber-reinforced silicon--silicon carbide matrix composite having improved oxidation resistance at high temperatures in dry or water-containing environments is produced. The invention also provides a method for protecting the reinforcing fibers in the silicon--silicon carbide matrix composites by coating the fibers with a silicon-doped boron nitride coating.

  20. Microstructural, Chemical and Mechanical Characterization of Polymer-Derived Hi-Nicalon Fibers with Surface Coatings

    NASA Technical Reports Server (NTRS)

    Bansal, Narottam P.; Chen, Yuan L.

    1998-01-01

    Room temperature tensile strengths of as-received Hi-Nicalon fibers and those having BN/SiC, p-BN/SiC, and p-B(Si)N/SiC surface coatings, deposited by chemical vapor deposition, were measured using an average fiber diameter of 13.5 microns. The Weibull statistical parameters were determined for each fiber. The average tensile strength of uncoated Hi-Nicalon on was 3.19 +/- 0.73 GPa with a Weibull modulus of 5.41. Strength of fibers coated with BN/SiC did not change. However, coat with p-BN/SiC and p-B(Si)N/SiC surface layers showed strength loss of approx. 10 and 35 percent, respectively, compared with as-received fibers. The elemental compositions of the fibers and the coatings were analyzed using scanning Auger microprobe and energy dispersive x-ray spectroscopy. The BN coating was contaminated with a large concentration of carbon and some oxygen. In contrast, p-BN, p-B(Si)N, and SiC coatings did not show any contamination. Microstructural analyses of the fibers and the coatings were done by scanning electron microscopy (SEM), transmission electron microscopy (TEM), and selected area electron diffraction. Hi-Nicalon fiber consists of the P-SIC nanocrystals ranging in size from 1 to 30 nm embedded in an amorphous matrix. TEM analysis of the BN coating revealed four distinct layers with turbostatic structure. The p-BN layer was turbostratic and showed considerable preferred orientation. The p-B(Si)N was glassy and the silicon and boron were uniformly distributed. The silicon carbide coating was polycrystalline with a columnar structure along the growth direction. The p-B(Si)N/SiC coatings were more uniform, less defective and of better quality than the BN/SiC or the p-BN/SiC coatings.

  1. Easy and safe coated optical fiber direct connection without handling bare optical fiber

    NASA Astrophysics Data System (ADS)

    Saito, Kotaro; Kihara, Mitsuru; Shimizu, Tomoya; Kurashima, Toshio

    2015-06-01

    We propose a novel field installable splicing technique for the direct connection of 250 μm diameter coated optical fiber that does not require bare optical fiber to be handled. Our proposed technique can realize a low insertion loss over a wide field installation temperature range of -10-40 °C. The keys to coated optical fiber direct connection are a cleaving technique and a technique for removing coated optical fiber. As the cleaving technique, we employed a method where the fiber is stretched and then a blade is pushed perpendicularly against the stretched fiber. As a result we confirmed that fiber endfaces cleaved at -10-40 °C were all mirror endfaces. With the removal technique, the coating is removed inside the connecting component by incorporating a circular cone shaped coating removal part. A mechanical splice based on these techniques successfully achieved a low insertion loss of less than 0.11 dB and a return loss of more than 50 dB at -10, 20, and 40 °C. In addition, the temperature cycle characteristics were stable over a wide temperature range of -40-75 °C.

  2. Effects of Interface Modification on Mechanical Behavior of Hi-Nicalon Fiber-Reinforced Celsian Matrix Composites

    NASA Technical Reports Server (NTRS)

    Bansal, Narottam P.; Eldridge, Jeffrey I.

    1997-01-01

    Unidirectional celsian matrix composites having approx. 42 volume percent of uncoated or BN/SiC-coated Hi-Nicalon fibers were tested in three-point bend at room temperature. The uncoated fiber-reinforced composites showed catastrophic failure with strength of 210 +/- 35 MPa and a flat fracture surface. In contrast, composites reinforced with BN/SiC-coated fibers exhibited graceful failure with extensive fiber pullout. Values of first matrix cracking stress and strain were 435 +/- 35 MPa and 0.27 +/- 0.01 %, respectively, with ultimate strength as high as 960 MPa. The elastic Young's modulus of the uncoated and BN/SiC-coated fiber-reinforced composites were measured as 184 q 4 GPa and 165 +/- 5 GPa, respectively. Fiber push-through tests and microscopic examination indicated no chemical reaction at the uncoated or coated fiber-matrix interface. The low strength of the uncoated fiber-reinforced composite is probably due to degradation of the fibers from mechanical surface damage during processing. Because both the coated and uncoated fiber reinforced composites exhibited weak interfaces, the beneficial effect of the BN-SiC dual layer is primarily the protection of fibers from mechanical damage during processing.

  3. Carbide coated fibers in graphite-aluminum composites

    NASA Technical Reports Server (NTRS)

    Imprescia, R. J.; Levinson, L. S.; Reiswig, R. D.; Wallace, T. C.; Williams, J. M.

    1975-01-01

    The study of protective-coupling layers of refractory metal carbides on the graphite fibers prior to their incorporation into composites is presented. Such layers should be directly wettable by liquid aluminum and should act as diffusion barriers to prevent the formation of aluminum carbide. Chemical vapor deposition was used to uniformly deposit thin, smooth, continuous coats of ZrC on the carbon fibers of tows derived from both rayon and polyacrylonitrile. A wet chemical coating of the fibers, followed by high-temperature treatment, was used, and showed promise as an alternative coating method. Experiments were performed to demonstrate the ability of aluminum alloys to wet carbide surfaces. Titanium carbide, zirconium carbide and carbide-coated graphite surfaces were successfully wetted. Results indicate that initial attempts to wet surfaces of ZrC-coated carbon fibers appear successful.

  4. Sapphire reinforced alumina matrix composites

    NASA Technical Reports Server (NTRS)

    Jaskowiak, Martha H.; Setlock, John A.

    1994-01-01

    Unidirectionally reinforced A1203 matrix composites have been fabricated by hot pressing. Approximately 30 volume % of either coated or uncoated sapphire fiber was used as reinforcement. Unstabilized ZrO2 was applied as the fiber coating. Composite mechanical behavior was analyzed both after fabrication and after additional heat treatment. The results of composite tensile tests were correlated with fiber-matrix interfacial shear strengths determined from fiber push-out tests. Substantially higher strength and greater fiber pull-out were observed for the coated fiber composites for all processing conditions studied. The coated fiber composites retained up to 95% and 87% of their as-fabricated strength when heat treated at 14000C for 8 or 24 hours, respectively. Electron microscopy analysis of the fracture surfaces revealed extensive fiber pull-out both before and after heat treatment.

  5. Effects of HF Treatments on Tensile Strength of Hi-Nicalon Fibers

    NASA Technical Reports Server (NTRS)

    Bansal, Narottam P.

    1998-01-01

    Tensile strengths of as-received Hi-Nicalon fibers and those having a dual BN/SiC surface coating, deposited by chemical vapor deposition, have been measured at room temperature. These fibers were also treated with HF for 24 h followed by tensile strength measurements. Strengths of uncoated and BN/SiC coated Hi-Nicalon fibers extracted from celsian matrix composites, by dissolving away the matrix in HF for 24 h, were also determined. The average tensile strength of uncoated Hi-Nicalon was 3.19 +/- 0.73 GPa with a Weibull modulus of 5.41. The Hi-Nicalon/BN/SiC fibers showed an average strength of 3.04 q 0.53 GPa and Weibull modulus of 6.66. After HF treatments, the average strengths of the uncoated and BN/SiC coated Hi-Nicalon fibers were 2.69 +/- 0.67 GPa and 2.80 +/- 0.53 GPa and the Weibull moduli were 4.93 and 5.96, respectively. The BN/SiC coated fibers extracted from the celsian matrix composite exhibited a strength of 2.38 +/- 0.40 GPa and a Weibull modulus of 7.15. The strength of the uncoated Hi-Nicalon fibers in the composite was so severely degraded that they disintegrated into small fragments during extraction with HF. The uncoated fibers probably undergo mechanical surface damage during hot pressing of the composites. Also, the BN layer on the coated fibers acts as a compliant layer which protects the fibers from mechanical damage during composite processing. The elemental composition and thickness of the fiber coatings were deten-nined using scanning Auger analysis. Microstructural analyses of the fibers and the coatings were done by scanning electron microscopy and transmission electron microscopy. Strengths of fibers calculated using average and measured fiber diameters were in good agreement. Thus, the strength of fibers can be evaluated using an average fiber diameter instead of the measured diameter of each filament.

  6. Fabrication and Evaluation of Graphite Fiber-Reinforced Polyimide Composite Tube Forms Using Modified Resin Transfer Molding

    NASA Technical Reports Server (NTRS)

    Exum, Daniel B.; Ilias, S.; Avva, V. S.; Sadler, Bob

    1997-01-01

    The techniques necessary for the fabrication of a complex three-dimensional tubular form using a PMR-type resin have been developed to allow for the construction of several tubes with good physical and mechanical properties. Employing established resin transfer molding practices, the relatively non-hazardous AMB-21 in acetone formulation was used to successfully impregnate four layers of AS4 braided graphite fiber preform previously loaded around an aluminum cylindrical core in an enclosed mold cavity. Using heat and vacuum, the solvent was evaporated to form a prepreg followed by a partial imidization and removal of condensation products. The aluminum core was replaced by a silicone rubber bladder and the cure cycle continued to the final stage of 550 F with a bladder internal pressure of 200 lbs/sq in while simultaneously applying a strong vacuum to the prepreg for removal of any additional imidization products. A combination of several modifications to the standard resin transfer molding methodology enabled the mold to 'breathe', allowing the imidization products a pathway for escape. AMB-21 resin was chosen because of the carcinogenic nature of the primary commercial polyimide PMR-15. The AMB-21 resin was formulated using commercially available monomers or monomer precursors and dissolved in a mixture of methyl alcohol and acetone. The viscosity of the resulting monomer solution was checked by use of a Brookfield rheometer and adjusted by adding acetone to an easily pumpable viscosity of about 600 cP. In addition, several types of chromatographic and thermal analyses were of the braids, and excess handling of the preforms broke some of the microscopic fibers, needlessly decreasing the strength of the finished part. In addition, three dimensional braided preforms with fibers along the length of the tube will be significantly stronger in tension than the braided preforms used in this study.

  7. Auger analysis of a fiber/matrix interface in a ceramic matrix composite

    NASA Technical Reports Server (NTRS)

    Honecy, Frank S.; Pepper, Stephen V.

    1988-01-01

    Auger electron spectroscopy (AES) depth profiling was used to characterize the fiber/matrix interface of an SiC fiber, reaction bonded Si3N4 matrix composite. Depth profiles of the as received double coated fiber revealed concentration oscillations which disappeared after annealing the fiber in the environment used to fabricate the composite. After the composite was fractured, the Auger depth profiles showed that failure occurred in neither the Beta-SiC fiber body nor in the Si3N4 matrix but, concurrently, at the fiber coating/matrix interface and within the fiber coating itself.

  8. Fiber coating method

    DOEpatents

    Corman, Gregory Scot

    2003-04-15

    A coating is applied to reinforcing fibers arranged into a tow by coaxially aligning the tow with an adjacent separation layer and winding or wrapping the tow and separation layer onto a support structure in an interleaved manner so that the separation layer separates a wrap of the tow from an adjacent wrap of the tow. A coating can then be uniformly applied to the reinforcing fibers without defects caused by fiber tow to fiber tow contact. The separation layer can be a carbon fiber veil.

  9. Raman Study of Uncoated and P-bn/sic-coated Hi-nicalon Reinforced Celsian Matrix Composites. Part 2; Residual Stress in the Fibers

    NASA Technical Reports Server (NTRS)

    Gouadec, Gwenael; Colomban, Philippe; Bansal, Narottam P.

    2000-01-01

    Band shifts on Raman spectra were used to assess, at a microscopic scale, the residual strain existing in Hi-Nicalon fibers reinforcing celsian matrix composites. Uncoated as well as p-BN/SiC- and p-B(Si)N/SiC-coated Hi-Nicalon fibers were used as the reinforcements. We unambiguously conclude that the fibers are in a state of compressive residual stress. Quantitative determination of the residual stress was made possible by taking into account the heating induced by laser probing and by using a reference line, of fixed wavenumber. We found fiber compressive residual stress values between 110 and 960 MPa depending on the fiber/matrix coating in the composite. A stress relaxation-like phenomenon was observed at the surface of p-BN/SiC-coated Hi-Nicalon fibers whereas the uncoated or p-B(Si)N/SiC-coated Hi-Nicalon fibers did not show any stress relaxation in the Celsian matrix composites.

  10. The Evolution of Interfacial Sliding Stresses During Cyclic Push-in Testing of C- and BN-Coated Hi-Nicalon Fiber-Reinforced CMCs

    NASA Technical Reports Server (NTRS)

    Eldridge, J. I.; Bansal, N. P.; Bhatt, R. T.

    1998-01-01

    Interfacial debond cracks and fiber/matrix sliding stresses in ceramic matrix composites (CMCs) can evolve under cyclic fatigue conditions as well as with changes in the environment, strongly affecting the crack growth behavior, and therefore, the useful service lifetime of the composite. In this study, room temperature cyclic fiber push-in testing was applied to monitor the evolution of frictional sliding stresses and fiber sliding distances with continued cycling in both C- and BN-coated Hi-Nicalon SiC fiber-reinforced CMCs. A SiC matrix composite reinforced with C-coated Hi-Nical on fibers as well as barium strontium aluminosilicate (BSAS) matrix composites reinforced with BN-coated (four different deposition processes compared) Hi-Nicalon fibers were examined. For failure at a C interface, test results indicated progressive increases in fiber sliding distances during cycling in room air but not in nitrogen. These results suggest the presence of moisture will promote crack growth when interfacial failure occurs at a C interface. While short-term testing environmental effects were not apparent for failure at the BN interfaces, long-term exposure of partially debonded BN-coated fibers to humid air resulted in large increases in fiber sliding distances and decreases in interfacial sliding stresses for all the BN coatings, presumably due to moisture attack. A wide variation was observed in debond and frictional sliding stresses among the different BN coatings.

  11. Metal-Coated Optical Fibers for High Temperature Applications

    NASA Technical Reports Server (NTRS)

    Zeakes, Jason; Murphy, Kent; Claus, Richard; Greene, Jonathan; Tran, Tuan

    1996-01-01

    A DC magnetron sputtering system has been used to actively coat optical fibers with hermetic metal coatings during the fiber draw process. Thin films of Inconel 625 have been deposited on optical fibers and annealed in air at 2000 F. Scanning electron microscopy and Auger electron microscopy have been used to investigate the morphology and composition of the films prior to and following thermal cycling. Issues to be addressed include film adhesion, other coating materials, and a discussion of additional applications for this novel technology.

  12. Material Properties of Silicon Carbide Fibers with Continuously Applied Sol-Gel Alumina Coatings

    DTIC Science & Technology

    1990-12-01

    71 Coating Characterization ...................... 73 iii Two-Dimensional Plane Strain Analysis .................. 78 VI ...Axial Load in the Coating of Fiber Serie T ...... .82 vi List of Figures (continued) Figure Page 39. Tangential Stress Due to Axial Load in the Coating...residual stress will be presented 17 Fiur Vi o a CaFber EfIVfef Sic=’/. Figure 1. Sectional View of a Coated Fiber first, since these stresses are of

  13. Fracture Toughness of Carbon Fiber Composites Containing Various Fiber Sizings and a Puncture Self-Healing Thermoplastic Matrix

    NASA Technical Reports Server (NTRS)

    Cano, Roberto J.; Grimsley, Brian W.; Ratcliffe, James G.; Gordon, Keith L.; Smith, Joseph G.; Siochi, Emilie J.

    2015-01-01

    Ongoing efforts at NASA Langley Research Center (LaRC) have resulted in the identification of several commercially available thermoplastic resin systems which self-heal after ballistic impact and through penetration. One of these resins, polybutylene graft copolymer (PBg), was selected as a matrix for processing with unsized carbon fibers to fabricate reinforced composites for further evaluation. During process development, data from thermo-physical analyses was utilized to determine a processing cycle to fabricate laminate panels, which were analyzed by photo microscopy and acid digestion. The process cycle was further optimized based on these results to fabricate panels for mechanical property characterization. The results of the processing development effort of this composite material, as well as the results of the mechanical property characterization, indicated that bonding between the fiber and PBg was not adequate. Therefore, three sizings were investigated in this work to assess their potential to improve fiber/matrix bonding compared to previously tested unsized IM7 fiber. Unidirectional prepreg was made at NASA LaRC from three sized carbon fibers and utilized to fabricate test coupons that were tested in double cantilever beam configurations to determine GIc fracture toughness.

  14. Improving the interfacial and mechanical properties of short glass fiber/epoxy composites by coating the glass fibers with cellulose nanocrystals

    Treesearch

    A. Asadi; M. Miller; Robert Moon; K. Kalaitzidou

    2016-01-01

    In this study, the interfacial and mechanical properties of cellulose nanocrystals (CNC) coated glass fiber/epoxy composites were investigated as a function of the CNC content on the surface of glass fibers (GF). Chopped GF rovings were coated with CNC by immersing the GF in CNC (0–5 wt%) aqueous suspensions. Single fiber fragmentation (SFF) tests showed that the...

  15. Preparation and characterization of polydimethylsiloxane/poly(vinylalcohol) coated solid phase microextraction fibers using sol-gel technology.

    PubMed

    Lopes, Alexandre Leite; Augusto, Fabio

    2004-11-12

    The applicability of a composite composed of polydimethylsiloxane (PDMS) and poly(vinyl alcohol) (PDMS/PVA) as coating sorbent for SPME fibers is demonstrated here. Fused silica (FS) fibers were coated with PDMS/PVA composite through a sol-gel process, using methyltrimethoxysilane as reticulating agent. The chemical and physical properties of the sol-gel PDMS/PVA composite were determined by infrared spectroscopy and thermogravimetric analysis. Electron scanning microscopy of the prepared fibers, showed that the coating obtained was highly microporous, having a thickness of approximately 5 microm. The fibers were tested for the headspace extraction of several organic compounds (o-xylene, naphthalene, ethyl caprate, p-chlorotoluene and PCB) prior to gas chromatographic analysis. The extractive capacity of the PDMS/PVA coating was found to be superior to that of pure conventional PDMS fibers.

  16. Interfacial microstructure and mechanical properties of Cf/AZ91D composites with TiO2 and PyC fiber coatings.

    PubMed

    Li, Shaolin; Qi, Lehua; Zhang, Ting; Ju, Luyan; Li, Hejun

    2017-10-01

    In spite of the effectiveness of the fiber coatings on interface modification of carbon fiber reinforced magnesium matrix composites, the cost and exclusive equipment for the coatings preparation are usually ignored during research work. In this paper, pyrolytic carbon (PyC) and TiO 2 were coated on carbon fiber surface to study the effects of fiber coatings on interfacial microstructure and mechanical properties of carbon fiber reinforced AZ91D composites (C f /AZ91D composites). It was indicated that both the two coatings could modify the interface and improve the mechanical properties of the composites. The ultimate tensile strength of the TiO 2 -C f /AZ91D and the PyC-C f /AZ91D composite were 333MPa and 400MPa, which were improved by 41.7% and 70.2% respectively, compared with the untreated-C f /AZ91D composite. The microstructure observation revealed that the strengthening of the composites relied on fiber integrity and moderate interfacial bonding. MgO nano-particles were generated at the interface due to the reaction of TiO 2 with Mg in the TiO 2 -C f /AZ91D composite. The volume expansion resulting from the reaction let to disordered intergranular films and crystal defects at the interface. The fibers were protected and the interfacial reaction was restrained by PyC coating in the PyC-C f /AZ91D composite. The principle to select the coating of fiber was proposed by comparing the effectiveness and cost of the coatings. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Microstructure-property relationships of chemically vapor deposited zirconia fiber coating for environmentally durable silicon carbide/silicon carbide composites

    NASA Astrophysics Data System (ADS)

    Li, Hao

    In SiC/SiC ceramic matrix composites, toughness is obtained by adding a fiber coating, which provides a weak interface for crack deflection and debonding between the fiber and the matrix. However, the most commonly used fiber coatings, carbon and boron nitride, are unstable in oxidative environments. In the present study, the feasibility of using a chemically vapor deposited zirconia (CVD-ZrO2) fiber coating as an oxidation-resistant interphase for SiC/SiC composites was investigated. A study of morphological evolution in the CVD-ZrO2 coating suggested that a size-controlled displacive phase transformation from tetragonal ZrO2 ( t-ZrO2) to monoclinic ZrO2 (m-ZrO 2) was the key mechanism responsible for the weak interface behavior exhibited by the ZrO2 coating. It appeared that a low oxygen partial pressure in the CVD reactor chamber was essential for the nucleation of t-ZrO2 and therefore was responsible for the delamination behavior. With this understanding of the weak interface mechanism, minicomposite specimens containing various ZrO2 fiber coating morphologies were fabricated and tested. A fractographic analysis showed that in-situ fiber strength and minicomposite failure loads were strongly dependent on the phase contents and microstructure of the ZrO2 coating. We determined that an optimum microstructure of the ZrO2 coating should contain a predelaminated interface surrounded by a dense outer layer. The outer layer was needed to protect the fiber from degradation during the subsequent SiC matrix infiltration procedure. A preliminary tensile stress-rupture study indicated that the ZrO2 coating exhibited promising performance in terms of providing the weak interface behavior and maintaining the thermal and oxidative stability at elevated temperatures.

  18. The Packaging Technology Study on Smart Composite Structure Based on The Embedded FBG Sensor

    NASA Astrophysics Data System (ADS)

    Zhang, Youhong; Chang, Xinlong; Zhang, Xiaojun; He, Xiangyong

    2018-03-01

    It is convenient to carry out the health monitoring of the solid rocket engine composite shell based on the embedded FBG sensor. In this paper, the packaging technology using one-way fiber layer of prepreg fiberglass/epoxy resin was proposed. The proposed packaging process is simple, and the packaged sensor structure size is flexible and convenient to use, at the mean time, the packaged structure has little effect on the pristine composite material structure.

  19. Development of a metal-based composite actuator

    NASA Astrophysics Data System (ADS)

    Asanuma, Hiroshi; Haga, Osamu; Ishii, Toshio; Kurihara, Haruki; Ohira, Junichiro; Hakoda, Genji

    2000-06-01

    This paper describes a basic concept and elemental developments to realize a metal based composite actuator to be used for smart structures. In this study, CFRP prepreg was laminated on aluminum plate to develop an actuator and this laminate could perform unidirectional actuation. SiC continuous fiber/Al composite thin plate could also be used for form a modified type of actuator instead of using CFRP. As sensors to be embedded in this actuator, the following ones wee developed. (1) A pre-notched optical fiber filament could be embedded in aluminum matrix without fracture by the interphase forming/bonding method with copper insert and could be fractured in it at the notch, which enabled forming of an optical interference type strain sensor. (2) Nickel wire could be uniformly oxidized and embedded in aluminum matrix without fracture, which could successfully work as a temperature sensor and a strain sensor.

  20. Manufacture of fiber-epoxy test specimens: Including associated jigs and instrumentation

    NASA Technical Reports Server (NTRS)

    Mathur, S. B.; Felbeck, D. K.

    1980-01-01

    Experimental work on the manufacture and strength of graphite-epoxy composites is considered. The correct data and thus a true assessment of the strength properties based on a proper and scientifically modeled test specimen with engineered design, construction, and manufacture has led to claims of a very broad spread in optimized values. Such behavior is in the main due to inadequate control during manufacture of test specimen, improper curing, and uneven scatter in the fiber orientation. The graphite fibers are strong but brittle. Even with various epoxy matrices and volume fraction, the fracture toughness is still relatively low. Graphite-epoxy prepreg tape was investigated as a sandwich construction with intermittent interlaminar bonding between the laminates in order to produce high strength, high fracture toughness composites. The quality and control of manufacture of the multilaminate test specimen blanks was emphasized. The dimensions, orientation and cure must be meticulous in order to produce the desired mix.

  1. Micromagnetic Simulation of Fibers and Coatings on Textiles

    NASA Astrophysics Data System (ADS)

    Ehrmann, Andrea; Blachowicz, Tomasz

    2015-10-01

    Simulations of mechanical or comfort properties of fibers, yarns and textile fabrics have been developed for a long time. In the course of increasing interest in smart textiles, models for conductive fabrics have also been developed. The magnetic properties of fibers or magnetic coatings, however, are almost exclusively being examined experimentally. This article thus describes different possibilities of micromagnetically modeling magnetic fibers or coatings. It gives an overview of calculation times for different dimensions of magnetic materials, indicating the limits due to available computer performance and shows the influence of these dimensions on the simulated magnetic properties for magnetic coatings on fibers and fabrics.

  2. Metal-coated optical fibers for high temperature sensing applications

    NASA Astrophysics Data System (ADS)

    Fidelus, Janusz D.; Wysokiński, Karol; Stańczyk, Tomasz; Kołakowska, Agnieszka; Nasiłowski, Piotr; Lipiński, Stanisław; Tenderenda, Tadeusz; Nasiłowski, Tomasz

    2017-10-01

    An novel low-temperature method was used to enhance the corrosion resistance of copper or gold-coated optical fibers. A characterization of the elaborated materials and reports on selected studies such as cyclic temperature tests together with tensile tests is presented. Gold-coated optical fibers are proposed as a component of optical fiber sensors working in oxidizing atmospheres under temperatures exceeding 900 °C.

  3. Evanescent wave assisted nanomaterial coating.

    PubMed

    Mondal, Samir K; Pal, Sudipta Sarkar; Kumbhakar, Dharmadas; Tiwari, Umesh; Bhatnagar, Randhir

    2013-08-01

    In this work we present a novel nanomaterial coating technique using evanescent wave (EW). The gradient force in the EW is used as an optical tweezer for tweezing and self-assembling nanoparticles on the source of EW. As a proof of the concept, we have used a laser coupled etched multimode optical fiber, which generates EW for the EW assisted coating. The section-wise etched multimode optical fiber is horizontally and superficially dipped into a silver/gold nanoparticles solution while the laser is switched on. The fiber is left until the solution recedes due to evaporation leaving the fiber in air. The coating time usually takes 40-50 min at room temperature. The scanning electron microscope image shows uniform and thin coating of self-assembled nanoparticles due to EW around the etched section. A coating thickness <200 nm is achieved. The technique could be useful for making surface-plasmon-resonance-based optical fiber probes and other plasmonic circuits.

  4. Double-layer optical fiber coating analysis in MHD flow of an elastico-viscous fluid using wet-on-wet coating process

    NASA Astrophysics Data System (ADS)

    Khan, Zeeshan; Islam, Saeed; Shah, Rehan Ali; Khan, Muhammad Altaf; Bonyah, Ebenezer; Jan, Bilal; Khan, Aurangzeb

    Modern optical fibers require a double-layer coating on the glass fiber in order to provide protection from signal attenuation and mechanical damage. The most important plastic resins used in wires and optical fibers are plastic polyvinyl chloride (PVC) and low and high density polyethylene (LDPE/HDPE), nylon and Polysulfone. One of the most important things which affect the final product after processing is the design of the coating die. In the present study, double-layer optical fiber coating is performed using melt polymer satisfying Oldroyd 8-constant fluid model in a pressure type die with the effect of magneto-hydrodynamic (MHD). Wet-on-wet coating process is applied for double-layer optical fiber coating. The coating process in the coating die is modeled as a simple two-layer Couette flow of two immiscible fluids in an annulus with an assigned pressure gradient. Based on the assumptions of fully developed laminar and MHD flow, the Oldroyd 8-constant model of non-Newtonian fluid of two immiscible resin layers is modeled. The governing nonlinear equations are solved analytically by the new technique of Optimal Homotopy Asymptotic Method (OHAM). The convergence of the series solution is established. The results are also verified by the Adomian Decomposition Method (ADM). The effect of important parameters such as magnetic parameter Mi , the dilatant constant α , the Pseodoplastic constant β , the radii ratio δ , the pressure gradient Ω , the speed of fiber optics V , and the viscosity ratio κ on the velocity profiles, thickness of coated fiber optics, volume flow rate, and shear stress on the fiber optics are investigated. At the end the result of the present work is also compared with the experimental results already available in the literature by taking non-Newtonian parameters tends to zero.

  5. Fabrication and Anti-Oxidation Ability of SiC-SiO₂ Coated Carbon Fibers Using Sol-Gel Method.

    PubMed

    Yang, Guangyuan; Huang, Zhixiong; Wang, Xu; Wang, Bo

    2018-02-27

    The paper proposed a method to improve the anti-oxidation performance of carbon fibers (CF) at high temperature environment by coating silicon dioxide (SiO₂) and silicon carbide (SiC). The modified sol-gel method had been used to ensure the proper interface between fibers and coating. We used polydimethylsiloxane and ethyl orthosilicate to make stable emulsion to uniformly disperse SiC nanoparticles. The modified SiO₂/SiC coating had been coated on CF successfully. Compared with the untreated CF, the coated fibers started to be oxidized around 900 °C and the residual weight was 57% at 1400 °C. The oxidation mechanism had been discussed. The structure of SiC/SiO₂ coated CF had been characterized by scanning electron microscope and X-ray diffraction analysis. Thermal gravimetric analysis was used to test the anti-oxidation ability of CF with different coatings.

  6. Application of diffusion barriers to high modulus fibers

    NASA Technical Reports Server (NTRS)

    Veltri, R. D.; Douglas, F. C.; Paradis, E. L.; Galasso, F. S.

    1977-01-01

    Barrier layers were coated onto high-modulus fibers, and nickel and titanium layers were overcoated as simulated matrix materials. The objective was to coat the high-strength fibers with unreactive selected materials without degrading the fibers. The fibers were tungsten, niobium, and single-crystal sapphire, while the materials used as barrier coating layers were Al2O3, Y2O3, TiC, ZrC, WC with 14% Co, and HfO2. An ion-plating technique was used to coat the fibers. The fibers were subjected to high-temperature heat treatments to evaluate the effectiveness of the barrier layer in preventing fiber-metal interactions. Results indicate that Al2O3, Y2O3, and HfO2 can be used as barrier layers to minimize the nickel-tungsten interaction. Further investigation, including thermal cycling tests at 1090 C, revealed that HfO2 is probably the best of the three.

  7. Coatings influencing thermal stress in photonic crystal fiber laser

    NASA Astrophysics Data System (ADS)

    Pang, Dongqing; Li, Yan; Li, Yao; Hu, Minglie

    2018-06-01

    We studied how coating materials influence the thermal stress in the fiber core for three holding methods by simulating the temperature distribution and the thermal stress distribution in the photonic-crystal fiber laser. The results show that coating materials strongly influence both the thermal stress in the fiber core and the stress differences caused by holding methods. On the basis of the results, a two-coating PCF was designed. This design reduces the stress differences caused by variant holding conditions to zero, then the stability of laser operations can be improved.

  8. Development of novel molecularly imprinted solid-phase microextraction fiber and its application for the determination of triazines in complicated samples coupled with high-performance liquid chromatography.

    PubMed

    Hu, Xiaogang; Hu, Yuling; Li, Gongke

    2007-04-13

    A novel molecularly imprinted polymer (MIP) coated solid-phase microextraction (SPME) fiber that could be coupled directly to high-performance liquid chromatography (HPLC) was prepared with prometryn as the template molecule. The characteristics and application of this fiber were investigated. Electron microscope photographs indicated that the MIP coating with average thickness of 25.0 microm was homogeneous and porous. The extraction yield of prometryn with the MIP-coated fibers was 10 times as much as that with the non-imprinted polymer (NIP) coated fibers. And special selectivity to other triazines which have similar structure to prometryn was discovered with the MIP-coated fibers. A method for the determination of triazines by the MIP-coated SPME coupled with HPLC was developed. The optimized extraction conditions were studied. Detection limits for the triazines studied were within the range of 0.012-0.090 microg/L. The method was applied to five triazines determination in the spiked soybean, corn, lettuce, and soil samples with the recoveries of 78.0-103.5%, 82.4-113.4%, 75.5-83.4%, and 81.0-106.1%, respectively. The MIP-coated fibers are suitable for the selective extraction of trace triazines in complicated samples.

  9. Maternal prepregnancy overweight and offspring fatness and blood pressure: role of physical activity.

    PubMed

    Eisenman, Joey C; Sarzynski, Mark A; Tucker, Jerod; Heelan, Kate A

    2010-08-01

    The purpose of this study was to examine if offspring physical activity may affect the relationship between maternal overweight and offspring fatness and blood pressure (BP). Subjects included 144 maternal-child pairs (n = 74 boys and 70 girls, mean age = 7.3 yrs). Maternal prepregnancy BMI was determined by self-report. Offspring characteristics included resting systolic and diastolic BP, body fatness by dual energy x-ray absorbtiometry, and moderate-to-vigorous physical activity (MVPA) using the Actigraph accelerometer. Children whose mothers were overweight or obese prepregnancy (Prepreg OW) were significantly larger and fatter than children from mothers with a normal prepregnancy BMI (Prepreg NORM). Prepreg OW children also had higher mean arterial pressure than Prepreg NORM children. BP values were not different across maternal Prepreg BMI/ MVPA groups. Percent fat was significantly different across Prepreg BMI/MVPA groups. Prepreg OW children that did not meet the daily recommended value of MVPA were the fattest. Prepreg OW children that attained (3)60 min of MVPA/ day had a mean percent body fat that was similar to Prepreg NORM children of either MVPA group.

  10. Insulation Materials Comprising Fibers Having a Partially Cured Polymer Coating Thereon, Articles Including Such Insulation Materials, and Methods of Forming Such Materials and Articles

    NASA Technical Reports Server (NTRS)

    Morgan, Richard E. (Inventor); Meeks, Craig L. (Inventor)

    2017-01-01

    Insulation materials have a coating of a partially cured polymer on a plurality of fibers, and the plurality of coated fibers in a cross-linked polymeric matrix. Insulation may be formed by applying a preceramic polymer to a plurality of fibers, heating the preceramic polymer to form a partially cured polymer over at least portions of the plurality of fibers, disposing the plurality of fibers in a polymeric material, and curing the polymeric material. A rocket motor may be formed by disposing a plurality of coated fibers in an insulation precursor, curing the insulation precursor to form an insulation material without sintering the partially cured polymer, and providing an energetic material over the polymeric material. An article includes an insulation material over at least one surface.

  11. Tack Measurements of Prepreg Tape at Variable Temperature and Humidity

    NASA Technical Reports Server (NTRS)

    Wohl, Christopher; Palmieri, Frank L.; Forghani, Alireza; Hickmott, Curtis; Bedayat, Houman; Coxon, Brian; Poursartip, Anoush; Grimsley, Brian

    2017-01-01

    NASA’s Advanced Composites Project has established the goal of achieving a 30 percent reduction in the timeline for certification of primary composite structures for application on commercial aircraft. Prepreg tack is one of several critical parameters affecting composite manufacturing by automated fiber placement (AFP). Tack plays a central role in the prevention of wrinkles and puckers that can occur during AFP, thus knowledge of tack variation arising from a myriad of manufacturing and environmental conditions is imperative for the prediction of defects during AFP. A full design of experiments was performed to experimentally characterize tack on 0.25-inch slit-tape tow IM7/8552-1 prepreg using probe tack testing. Several process parameters (contact force, contact time, retraction speed, and probe diameter) as well as environmental parameters (temperature and humidity) were varied such that the entire parameter space could be efficiently evaluated. Mid-point experimental conditions (i.e., parameters not at either extrema) were included to enable prediction of curvature in relationships and repeat measurements were performed to characterize experimental error. Collectively, these experiments enable determination of primary dependencies as well as multi-parameter relationships. Slit-tape tow samples were mounted to the bottom plate of a rheometer parallel plate fixture using a jig to prevent modification of the active area to be interrogated with the top plate, a polished stainless steel probe, during tack testing. The probe surface was slowly brought into contact with the pre-preg surface until a pre-determined normal force was achieved (2-30 newtons). After a specified dwell time (0.02-10 seconds), during which the probe substrate interaction was maintained under displacement control, the probe was retracted from the surface (0.1-50 millimeters per second). Initial results indicated a clear dependence of tack strength on several parameters, with a particularly strong dependence on temperature and humidity. Although an increase in either of these parameters reduces tack strength, a maximum in tack was predicted to occur under conditions of low temperature and moderate humidity.

  12. Effects of chitosan-coated fibers as a scaffold for three-dimensional cultures of rabbit fibroblasts for ligament tissue engineering.

    PubMed

    Sarukawa, Junichiro; Takahashi, Masaaki; Abe, Masashi; Suzuki, Daisuke; Tokura, Seiichi; Furuike, Tetsuya; Tamura, Hiroshi

    2011-01-01

    Material selection in tissue-engineering scaffolds is one of the primary factors defining cellular response and matrix formation. In this study, we fabricated chitosan-coated poly(lactic acid) (PLA) fiber scaffolds to test our hypothesis that PLA fibers coated with chitosan highly promoted cell supporting properties compared to those without chitosan. Both PLA fibers (PLA group) and chitosan-coated PLA fibers (PLA-chitosan group) were fabricated for this study. Anterior cruciate ligament (ACL) fibroblasts were isolated from Japanese white rabbits and cultured on scaffolds consisting of each type of fiber. The effects of cell adhesivity, proliferation, and synthesis of the extracellular matrix (ECM) for each fiber were analyzed by cell counting, hydroxyproline assay, scanning electron microscopy and quantitative RT-PCR. Cell adhesivity, proliferation, hydroxyproline content and the expression of type-I collagen mRNA were significantly higher in the PLA-chitosan group than in the PLA group. Scanning electron microscopic observation showed that fibroblasts proliferated with a high level of ECM synthesis around the cells. Chitosan coating improved ACL fibroblast adhesion and proliferation, and had a positive effect on matrix production. Thus, the advantages of chitosan-coated PLA fibers show them to be a suitable biomaterial for ACL tissue-engineering scaffolds.

  13. Octadecyltrimethoxysilane functionalized ZnO nanorods as a novel coating for solid-phase microextraction with strong hydrophobic surface.

    PubMed

    Zeng, Jingbin; Liu, Haihong; Chen, Jinmei; Huang, Jianli; Yu, Jianfeng; Wang, Yiru; Chen, Xi

    2012-09-21

    In this paper, we have, for the first time, proposed an approach by combining self-assembled monolayers (SAMs) and nanomaterials (NMs) for the preparation of novel solid-phase microextraction (SPME) coatings. The self-assembly of octadecyltrimethoxysilane (OTMS) on the surface of ZnO nanorods (ZNRs) was selected as a model system to demonstrate the feasibility of this approach. The functionalization of OTMS on the surface of ZNRs was characterized and confirmed using scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS). The OTMS-ZNRs coated fiber exhibited stronger hydrophobicity after functionalization, and its extraction efficiency for non-polar benzene homologues was increased by a factor of 1.5-3.6 when compared to a ZNRs fiber with almost identical thickness and façade. In contrast, the extraction efficiency of the OTMS-ZNRs coated fiber for polar aldehydes was 1.6-4.0-fold lower than that of the ZNRs coated fiber, further indicating its enhanced surface hydrophobicity. The OTMS-ZNRs coated fiber revealed a much higher capacity upon increasing the OTMS layer thickness to 5 μm, leading to a factor of 12.0-13.4 and 1.8-2.5 increase in extraction efficiency for the benzene homologues relative to a ZNRs coated fiber and a commercial PDMS fiber, respectively. The developed HS-SPME-GC method using the OTMS-ZNRs coated fiber was successfully applied to the determination of the benzene homologues in limnetic water samples with recovery ranging from 83 to 113% and relative standard deviations (RSDs) of less than 8%.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Janke, C.J.

    Electron beam (EB) curing is a technology that promises, in certain applications, to deliver lower cost and higher performance polymer matrix composite (PMC) structures compared to conventional thermal curing processes. PMCs enhance performance by making products lighter, stronger, more durable, and less energy demanding. They are essential in weight- and performance-dominated applications. Affordable PMCs can enhance US economic prosperity and national security. US industry expects rapid implementation of electron beam cured composites in aircraft and aerospace applications as satisfactory properties are demonstrated, and implementation in lower performance applications will likely follow thereafter. In fact, at this time and partly becausemore » of discoveries made in this project, field demonstrations are underway that may result in the first fielded applications of electron beam cured composites. Serious obstacles preventing the widespread use of electron beam cured PMCs in many applications are their relatively poor interfacial properties and resin toughness. The composite shear strength and resin toughness of electron beam cured carbon fiber reinforced epoxy composites were about 25% and 50% lower, respectively, than those of thermally cured composites of similar formulations. The essential purpose of this project was to improve the mechanical properties of electron beam cured, carbon fiber reinforced epoxy composites, with a specific focus on composite shear properties for high performance aerospace applications. Many partners, sponsors, and subcontractors participated in this project. There were four government sponsors from three federal agencies, with the US Department of Energy (DOE) being the principal sponsor. The project was executed by Oak Ridge National Laboratory (ORNL), NASA and Department of Defense (DOD) participants, eleven private CRADA partners, and two subcontractors. A list of key project contacts is provided in Appendix A. In order to properly manage the large project team and properly address the various technical tasks, the CRADA team was organized into integrated project teams (IPT's) with each team focused on specific research areas. Early in the project, the end user partners developed ''exit criteria'', recorded in Appendix B, against which the project's success was to be judged. The project team made several important discoveries. A number of fiber coatings or treatments were developed that improved fiber-matrix adhesion by 40% or more, according to microdebond testing. The effects of dose-time and temperature-time profiles during the cure were investigated, and it was determined that fiber-matrix adhesion is relatively insensitive to the irradiation procedure, but can be elevated appreciably by thermal postcuring. Electron beam curable resin properties were improved substantially, with 80% increase in electron beam 798 resin toughness, and {approx}25% and 50% improvement, respectively, in ultimate tensile strength and ultimate tensile strain vs. earlier generation electron beam curable resins. Additionally, a new resin electron beam 800E was developed with generally good properties, and a very notable 120% improvement in transverse composite tensile strength vs. earlier generation electron beam cured carbon fiber reinforced epoxies. Chemical kinetics studies showed that reaction pathways can be affected by the irradiation parameters, although no consequential effects on material properties have been noted to date. Preliminary thermal kinetics models were developed to predict degree of cure vs. irradiation and thermal parameters. These models are continually being refined and validated. Despite the aforementioned impressive accomplishments, the project team did not fully realize the project objectives. The best methods for improving adhesion were combined with the improved electron beam 3K resin to make prepreg and uni-directional test laminates from which composite properties could be determined. Nevertheless, only minor improvements in the composite shear strength, and moderate improvements in the transverse tensile strength, were achieved. The project team was not satisfied with the laminate quality achieved, and low quality (specifically, high void fraction) laminates will compromise the composite properties. There were several problems with the prepregging and fabrication, many of them related to the use of new fiber treatments.« less

  15. Stripping and splicing polyimide-coated fibers

    NASA Astrophysics Data System (ADS)

    Duke, Douglas; Kanda, Yoshiharu; Tobita, Kenyo; Yamauchi, Ryozo

    2011-05-01

    Polyimide is often used as a coating material for optical fibers used in high temperature environments such as aerospace or oil and gas sensor applications. Unfortunately, polyimide coating is very difficult to strip by conventional mechanical stripping methods. The glass fiber is easily damaged if the stripping process is not extremely well controlled. Stripping the polyimide coating by heating with a flame or arc typically results in a significant reduction in fiber strength. Strength may be maintained by using hot acid stripping, however the use of the strong hot acid presents safety hazards and also requires controlled and safe waste disposal. Another issue with polyimide coating is variability of the coating diameter from various manufacturers or due to different polyimide coating processes. This not only complicates the polyimide stripping issue, but also presents problems with precise clamping and alignment during splicing, especially when it is necessary to splice with a short cleave length. In this paper, we present new polyimide coating stripping technology. The significant feature of this stripping technology is achievement of good strength while avoiding the use of hot acid or heating. We also developed a new specialty fiber fusion splicer that enables precise alignment and splicing regardless of the variability of polyimide coating diameter, even when clamping on the coating.

  16. Evaluation of long-term corrosion durability and self-healing ability of scratched coating systems on carbon steel in a marine environment

    NASA Astrophysics Data System (ADS)

    Zhao, Xia; Chen, Changwei; Xu, Weichen; Zhu, Qingjun; Ge, Chengyue; Hou, Baorong

    2017-09-01

    Defects in protective-coating systems on steel surfaces are inevitable in practical engineering applications. A composite coating system, including a primer, middle coat and topcoat, were used to protect carbon steel from corrosion in a marine environment. Two environmental additives, glass fibers and thiourea, were applied in the middle coat to modify the coating system. The long-term corrosion durability and self-healing ability of the scratched coating system were evaluated by multiple methods. Results of the electrochemical technologies indicated that the coating system that contained 0.5 wt.% fibers and 0.5 wt.% thiourea presented good corrosion protection and self-healing for carbon steel when immersed in 3.5% NaCl for 120 d. Evolution of localized corrosion factors with time, as obtained from the current distribution showed that fibers combined with thiourea could inhibit the occurrence of local corrosion in scratched coating systems and retarded the corrosion development significantly. Surface characterization suggested that adequate thiourea could be absorbed uniformly on fibers for a long time to play an important role in protecting the carbon steel. Finally, schematic models were established to demonstrate the action of fibers and thiourea on the exposed surface of the carbon steel and the scratched coating system in the entire deterioration process.

  17. About the role of phase matching between a coated microsphere and a tapered fiber: experimental study.

    PubMed

    Ristić, Davor; Rasoloniaina, Alphonse; Chiappini, Andrea; Féron, Patrice; Pelli, Stefano; Conti, Gualtiero Nunzi; Ivanda, Mile; Righini, Giancarlo C; Cibiel, Gilles; Ferrari, Maurizio

    2013-09-09

    Coatings of spherical optical microresonators are widely employed for different applications. Here the effect of the thickness of a homogeneous coating layer on the coupling of light from a tapered fiber to a coated microsphere has been studied. Spherical silica microresonators were coated using a 70SiO(2)- 30HfO(2) glass doped with 0.3 mol% Er(3+) ions. The coupling of a 1480 nm pump laser inside the sphere has been assessed using a tapered optical fiber and observing the 1530-1580 nm Er(3+) emission outcoupled to the same tapered fiber. The measurements were done for different coating thicknesses and compared with theoretical calculations to understand the relationship of the detected signal with the whispering gallery mode electric field profiles.

  18. 78 FR 23591 - Certain Prepregs, Laminates, and Finished Circuit Boards

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-19

    ... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-659 (Enforcement)] Certain Prepregs... United States after importation of certain prepregs, laminates, and finished circuit boards that infringe... prepregs and laminates that are the subject of the investigation or that otherwise infringe, induce, and/or...

  19. Influence of polysaccharide-based edible coatings as carriers of prebiotic fibers on quality attributes of ready-to-eat fresh blueberries.

    PubMed

    Alvarez, María V; Ponce, Alejandra G; Moreira, María R

    2018-05-01

    Little information is available regarding the effect of dietary fibers added into edible coatings on quality attributes of ready-to-eat fruits. The aim of this study was to evaluate the effects of sodium alginate (AL) and chitosan (CH) edible coatings enriched with four different dietary fibers (apple fiber, orange fiber, inulin and oligofructose) on microbiological, nutritional, physico-chemical and sensorial properties of ready-to-eat fresh blueberries stored for 18 days at 5 °C. The most encouraging results were found for CH coatings (with and without fibers) which significantly inhibited the growth of mesophilic bacteria and yeasts/molds (reductions up to 1.9 log CFU g -1 ), reduced decay rate by more than 50%, enhanced antioxidant properties, retained fruit firmness, delayed off-odor development and improved overall visual quality of blueberries. Oligofructose and orange fiber added to CH coatings enhanced antioxidant properties of fruits and allowed higher reductions in yeast/mold counts compared to the use of CH alone. CH-based coatings enriched with inulin, oligofructose and apple fiber extended sensory shelf life of blueberries by 6 days. AL coatings (with and without fiber) allowed delaying fungal decay and also retaining antioxidant properties but did not improve the microbiological and sensory quality of fruits. The results proved that fiber-enriched CH treatments allowed the maintenance of freshness and the improvement of the quality of ready-to-eat blueberries. It might be an interesting option to offer consumers a healthy product with prebiotic potential and an extended shelf life. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  20. Bioinspired Polyelectrolyte-Assembled Graphene-Oxide-Coated C18 Composite Solid-Phase Microextraction Fibers for In Vivo Monitoring of Acidic Pharmaceuticals in Fish.

    PubMed

    Qiu, Junlang; Chen, Guosheng; Liu, Shuqin; Zhang, Tianlang; Wu, Jiayi; Wang, Fuxin; Xu, Jianqiao; Liu, Yan; Zhu, Fang; Ouyang, Gangfeng

    2016-06-07

    A novel solid-phase microextraction (SPME) fiber was prepared by gluing poly(diallyldimethylammonium chloride) (PDDA) assembled graphene oxide (GO)-coated C18 composite particles (C18@GO@PDDA) onto a quartz fiber with polyaniline (PANI). The fiber surface coating was sequentially modified with bioinspired polynorepinephrine, which provided a smooth biointerface and makes the coating suitable for in vivo sampling. The novel custom-made coating was used to extract acidic pharmaceuticals, and high-performance liquid chromatography tandem mass spectrometry (HPLC-MS/MS) was employed for analysis. The custom-made coating exhibited a much higher extraction efficiency than the previously used commercial polydimethylsiloxane (PDMS) and polyacrylate (PA) coatings. The custom-made coating also possessed satisfactory stability (the relative standard deviations (RSDs) ranged from 1.60% to 10.3% for six sampling-desorption cycles), interfiber reproducibility (the RSDs ranged from 2.61% to 11.5%), and resistance to matrix effects. The custom-made fibers were used to monitor the presence of acid pharmaceuticals in dorsal-epaxial muscle of living fish, and satisfactory sensitivities (limits of detection ranged from 0.13 ng/g to 7.56 ng/g) were achieved. The accuracies were verified by the comparison with liquid extraction. Moreover, the novel fibers were successfully used to monitor the presence of acidic pharmaceuticals in living fish, which demonstrated that the custom-made fibers were feasible for possible long-term in vivo continuous pharmaceutical monitoring.

  1. Rapid Prototyping of Slot Die Devices for Roll to Roll Production of EL Fibers

    PubMed Central

    Bellingham, Alyssa; Bromhead, Nicholas; Fontecchio, Adam

    2017-01-01

    There is a growing interest in fibers supporting optoelectrical properties for textile and wearable display applications. Solution-processed electroluminescent (EL) material systems can be continuously deposited onto fiber or yarn substrates in a roll-to-roll process, making it easy to scale manufacturing. It is important to have precise control over layer deposition to achieve uniform and reliable light emission from these EL fibers. Slot-die coating offers this control and increases the rate of EL fiber production. Here, we report a highly adaptable, cost-effective 3D printing model for developing slot dies used in automatic coating systems. The resulting slot-die coating system enables rapid, reliable production of alternating current powder-based EL (ACPEL) fibers and can be adapted for many material systems. The benefits of this system over dip-coating for roll-to-roll production of EL fibers are demonstrated in this work. PMID:28772954

  2. Influence of BN fiber coatings on the interfacial structure of sapphire fiber reinforced NiAl composites

    NASA Astrophysics Data System (ADS)

    Reichert, K.; Wen, K.; Cremer, R.; Hu, W.; Neuschütz, D.; Gottstein, G.

    2001-07-01

    A new concept for a tailored fiber-matrix interface for sapphire fiber reinforced NiAl matrix composites is proposed, consisting of an initial hexagonal boron nitride (hBN) fiber coating. For this, single crystal Al 2O 3 fibers were coated with hBN by chemical vapor deposition (CVD). Following a comprehensive characterization of the CVD coating as to composition and structure by means of X-ray photoelectron spectroscopy (XPS) and grazing incidence X-ray diffraction (GIXRD), the fiber reinforced NiAl matrix composites were fabricated by diffusion bonding at 1400°C. The interfaces NiAl/BN and BN/Al 2O 3 were analyzed by scanning electron microscopy (SEM), analytical transmission electron microscopy (TEM), and selected area diffraction (SAD). An interfacial reaction between NiAl and hBN to form AlN was revealed using these analytical techniques.

  3. Rapid Prototyping of Slot Die Devices for Roll to Roll Production of EL Fibers.

    PubMed

    Bellingham, Alyssa; Bromhead, Nicholas; Fontecchio, Adam

    2017-05-29

    There is a growing interest in fibers supporting optoelectrical properties for textile and wearable display applications. Solution-processed electroluminescent (EL) material systems can be continuously deposited onto fiber or yarn substrates in a roll-to-roll process, making it easy to scale manufacturing. It is important to have precise control over layer deposition to achieve uniform and reliable light emission from these EL fibers. Slot-die coating offers this control and increases the rate of EL fiber production. Here, we report a highly adaptable, cost-effective 3D printing model for developing slot dies used in automatic coating systems. The resulting slot-die coating system enables rapid, reliable production of alternating current powder-based EL (ACPEL) fibers and can be adapted for many material systems. The benefits of this system over dip-coating for roll-to-roll production of EL fibers are demonstrated in this work.

  4. In Vitro Evaluation and Mechanism Analysis of the Fiber Shedding Property of Textile Pile Debridement Materials

    PubMed Central

    Fu, Yijun; Xie, Qixue; Lao, Jihong; Wang, Lu

    2016-01-01

    Fiber shedding is a critical problem in biomedical textile debridement materials, which leads to infection and impairs wound healing. In this work, single fiber pull-out test was proposed as an in vitro evaluation for the fiber shedding property of a textile pile debridement material. Samples with different structural design (pile densities, numbers of ground yarns and coating times) were prepared and estimated under this testing method. Results show that single fiber pull-out test offers an appropriate in vitro evaluation for the fiber shedding property of textile pile debridement materials. Pull-out force for samples without back-coating exhibited a slight escalating trend with the supplement in pile density and number of ground yarn plies, while back-coating process significantly raised the single fiber pull-out force. For fiber shedding mechanism analysis, typical pull-out behavior and failure modes of the single fiber pull-out test were analyzed in detail. Three failure modes were found in this study, i.e., fiber slippage, coating point rupture and fiber breakage. In summary, to obtain samples with desirable fiber shedding property, fabric structural design, preparation process and raw materials selection should be taken into full consideration. PMID:28773428

  5. Miniaturization and automation of an internally cooled coated fiber device.

    PubMed

    Chen, Yong; Pawliszyn, Janusz

    2006-07-15

    The internally cooled coated fiber device was miniaturized to allow its direct introduction into a gas chromatography injector, while maintaining a reasonable lifetime of the septum. The device was robust, and its fiber, which was accommodated in an 18-gauge needle, was reproducibly used for more than 100 injections without any coating failure. The fiber temperature was controlled within 5 degrees C of the preset value by use of a temperature controller, a solenoid valve, and stainless steel tubings with different inner diameter. The device was mounted and used on the CTC CombiPAL autosampler with minor modifications, such as enlarging the hole of the needle guide of the autosampler and coupling the temperature control system of the device to the autosampler through a logic circuit. The device was validated with the back equilibration of hydrocarbons preloaded in the fiber in air. The automation of the internally cooled coated fiber device provided the feasibility of high throughput for the analysis of analytes in complex matrixes that required simultaneous heating of the sample matrixes and cooling of the fiber coating.

  6. Optical Fiber Protection

    NASA Technical Reports Server (NTRS)

    1999-01-01

    F&S Inc. developed and commercialized fiber optic and microelectromechanical systems- (MEMS) based instrumentation for harsh environments encountered in the aerospace industry. The NASA SBIR programs have provided F&S the funds and the technology to develop ruggedized coatings and coating techniques that are applied during the optical fiber draw process. The F&S optical fiber fabrication facility and developed coating methods enable F&S to manufacture specialty optical fiber with custom designed refractive index profiles and protective or active coatings. F&S has demonstrated sputtered coatings using metals and ceramics and combinations of each, and has also developed techniques to apply thin coatings of specialized polyimides formulated at NASA Langley Research Center. With these capabilities, F&S has produced cost-effective, reliable instrumentation and sensors capable of withstanding temperatures up to 800? C and continues building commercial sales with corporate partners and private funding. More recently, F&S has adapted the same sensing platforms to provide the rapid detection and identification of chemical and biological agents

  7. Effect of surface modification of fibers with a polymer coating on the interlaminar shear strength of a composite and the translation of fiber strength in an F-12 aramid/epoxy composite vessel

    NASA Astrophysics Data System (ADS)

    Shu-hui, Zhang; Guo-zheng, Liang; Wei, Zhang; Jin-fang, Zeng

    2006-11-01

    The surface of aramid fibers was modified with a polymer coating — a surface treatment reagent containing epoxy resin. The resulting fibers were examined by using NOL tests, hydroburst tests, and the scanning electron microscopy. The modified fibers had a rougher surface than the untreated ones. The interlaminar shear strength of an aramid-fiber-reinforced epoxy composite was highest when the concentration of polymer coating system was 5%. The translation of fiber strength in an aramid/epoxy composite vessel was improved by 8%. The mechanism of the surface treatment of fibers in improving the mechanical properties of aramid/epoxy composites is discussed.

  8. [Preparation of a novel activated carbon coating fiber for solid phase micro-extraction and its application for halocarbon compound analysis in water].

    PubMed

    Wang, Shutao; Wang, Yan; You, Hong; Liang, Zhihua

    2004-09-01

    A novel activated carbon coating fiber used for solid phase micro-extraction (SPME) was prepared using activated carbon powder and silica resin adhesive. The extraction properties of the novel activated carbon coating fiber were investigated. The results indicate that this coating fiber has high concentration ability, with enrichment factors for chloroform, carbon tetrachloride, trichloroethylene and tetrachloroethylene in the range of 13.8 to 18.7. The fiber is stable at temperature as high as 290 degrees C and it can be used for over 140 times at 250 degrees C. The activated carbon coating fiber was then applied to the analysis of the four halocarbon compounds mentioned above. A linear correlation with correlation coefficients between 0.995 2 and 0.999 4 and the detection limits between 0.008 and 0.05 microg/L were observed. The method was also applied to a real water sample analysis and the recoveries of these halocarbon compounds were from 95.5% to 104.6%.

  9. Optical fiber humidity sensor based on evanescent-wave scattering.

    PubMed

    Xu, Lina; Fanguy, Joseph C; Soni, Krunal; Tao, Shiquan

    2004-06-01

    The phenomenon of evanescent-wave scattering (EWS) is used to design an optical-fiber humidity sensor. Porous solgel silica (PSGS) coated on the surface of a silica optical-fiber core scatters evanescent waves that penetrate the coating layer. Water molecules in the gas phase surrounding the optical fiber can be absorbed into the inner surface of the pores of the porous silica. The absorbed water molecules form a thin layer of liquid water on the inner surface of the porous silica and enhance the EWS. The amount of water absorbed into the PSGS coating is in dynamic equilibrium with the water-vapor pressure in the gas phase. Therefore the humidity in the air can be quantitatively determined with fiber-optic EWS caused by the PSGS coating. The humidity sensor reported here is fast in response, reversible, and has a wide dynamic range. The possible interference caused by EWS to an optical-fiber gas sensor with a reagent-doped PSGS coating as a transducer is also discussed.

  10. 77 FR 61025 - Certain Prepregs, Laminates, and Finished Circuit Boards: Notice of Institution of Formal...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-05

    ... INTERNATIONAL TRADE COMMISSION [Inv. No. 337-TA-659] Certain Prepregs, Laminates, and Finished..., and the sale within the United States after importation of certain prepregs, laminates, and finished... for sale, and selling for importation into the United States prepregs and laminates that are the...

  11. Metal-Coated Optical Fibers for High Temperature Applications

    NASA Technical Reports Server (NTRS)

    Zeakes, Jason; Murphy, Kent; Claus, Richard; Greene, Jonathan; Tran, Tuan

    1996-01-01

    This poster will highlight on-going research at the Virginia Tech Fiber & Electro-Optics Research Center (FEORC) in the area of thin films on optical fibers. Topics will include the sputter deposition of metals and metal; alloys onto optical fiber and fiber optic sensors for innovative applications. Specific information will be available on thin film fiber optic hydrogen sensors, corrosion sensors, and metal-coated optical fiber for high temperature aerospace applications.

  12. Fabrication and Anti-Oxidation Ability of SiC-SiO2 Coated Carbon Fibers Using Sol-Gel Method

    PubMed Central

    Yang, Guangyuan; Huang, Zhixiong; Wang, Xu; Wang, Bo

    2018-01-01

    The paper proposed a method to improve the anti-oxidation performance of carbon fibers (CF) at high temperature environment by coating silicon dioxide (SiO2) and silicon carbide (SiC). The modified sol-gel method had been used to ensure the proper interface between fibers and coating. We used polydimethylsiloxane and ethyl orthosilicate to make stable emulsion to uniformly disperse SiC nanoparticles. The modified SiO2/SiC coating had been coated on CF successfully. Compared with the untreated CF, the coated fibers started to be oxidized around 900 °C and the residual weight was 57% at 1400 °C. The oxidation mechanism had been discussed. The structure of SiC/SiO2 coated CF had been characterized by scanning electron microscope and X-ray diffraction analysis. Thermal gravimetric analysis was used to test the anti-oxidation ability of CF with different coatings. PMID:29495499

  13. Carbonic anhydrase immobilized on hollow fiber membranes using glutaraldehyde activated chitosan for artificial lung applications

    PubMed Central

    Kimmel, J. D.; Arazawa, D. T.; Ye, S.-H.; Shankarraman, V.; Wagner, W. R.

    2013-01-01

    Extracorporeal CO2 removal from circulating blood is a promising therapeutic modality for the treatment of acute respiratory failure. The enzyme carbonic anhydrase accelerates CO2 removal within gas exchange devices by locally catalyzing HCO3− into gaseous CO2 within the blood. In this work, we covalently immobilized carbonic anhydrase on the surface of polypropylene hollow fiber membranes using glutaraldehyde activated chitosan tethering to amplify the density of reactive amine functional groups for enzyme immobilization. XPS and a colorimetric amine assay confirmed higher amine densities on the chitosan coated fiber compared to control fiber. Chitosan/CA coated fibers exhibited accelerated CO2 removal in scaled-down gas exchange devices in buffer and blood (115 % enhancement vs. control, 37 % enhancement vs. control, respectively). Carbonic anhydrase immobilized directly on hollow fiber membranes without chitosan tethering resulted in no enhancement in CO2 removal. Additionally, fibers coated with chitosan/carbonic anhydrase demonstrated reduced platelet adhesion when exposed to blood compared to control and heparin coated fibers. PMID:23888352

  14. Development of composite tube protective coatings

    NASA Technical Reports Server (NTRS)

    Dursch, H.; Hendricks, C.

    1986-01-01

    Protective coatings for graphite/epoxy (Gr/Ep) tubular structures proposed for the Space Station are evaluated. The program was divided into four parts; System Definition, Coating Concept Selection and Evaluation, Scale-up and Assembly, and Reporting. System Definition involved defining the structural and environmental properties required of the Gr/Ep tubes. The prepreg and ply sequence selected was a P75S/934 (O2, + or - 20, O2)sub s layup which meets the various structural requirements of the Space Station. Coating Concept and Selection comprised the main emphasis of the effort. Concepts for protectively coating the Gr/Ep tubes included the use of metal foil and electroplating. The program results demonstrated that both phosphoric and chromic acid anodized Al foil provided adequate adhesion to the Gr/Ep tubes and stability of optical properties when subjected to atomic oxygen and thermal cycling representative of the LEO environment. SiO2/Al coatings sputtered onto Al foils also resulted in an excellent protective coating. The electroplated Ni possessed unacceptable adhesion loss to the Gr/Ep tubes during atomic oxygen testing. Scale-Up and Assembly involved fabricating and wrapping 8-ft-long by 2-in-diameter Gr/EP tubes with chromic acid anodized foil and delivering these tubes, along with representative Space Station erectable end fittings, to NASA LaRC.

  15. CVD Fiber Coatings for Al2O3/NiAl Composites

    NASA Technical Reports Server (NTRS)

    Boss, Daniel E.

    1995-01-01

    While sapphire-fiber-reinforced nickel aluminide (Al2O3/NiAl) composites are an attractive candidate for high-temperature structures, the significant difference in the coefficient of thermal expansion between the NiAl matrix and the sapphire fiber creates substantial residual stresses in the composite. This study seeks to produce two fiber-coating systems with the potential to reduce the residual stresses in the sapphire/NiAl composite system. Chemical vapor deposition (CVD) was used to produce both the compensating and compliant-fiber coatings for use in sapphire/NiAl composites. A special reactor was designed and built to produce the FGM and to handle the toxic nickel precursors. This process was successfully used to produce 500-foot lengths of fiber with coating thicknesses of approximately 3 microns, 5 microns, and 10 microns.

  16. Role of interfacial thermal barrier in the transverse thermal conductivity of uniaxial SiC fiber-reinforced reaction bonded silicon nitride

    NASA Technical Reports Server (NTRS)

    Bhatt, H.; Donaldson, K. Y.; Hasselman, D. P. H.; Bhatt, R. T.

    1992-01-01

    The transverse thermal conductivity of reaction-bonded Si3N4 is significantly affected by an interfacial barrier at the interface formed with SiC reinforcing fibers. A comparative study of composites with and without reinforcing-fiber carbon coatings found the coating to reduce effective thermal conductivity by a factor of about 2; this, however, is partially due to a thermal expansion-mismatch gap between fiber and matrix. HIPing of composites with coated fibers led to an enhancement of thermal conductivity via improved interfacial thermal contact and greater grain size and crystallinity of the fibers.

  17. Study of the technics of coating stripping and FBG writing on polyimide fiber

    NASA Astrophysics Data System (ADS)

    Song, ZhiQiang; Qi, HaiFeng; Ni, JiaSheng; Wang, Chang

    2017-10-01

    Compared with ordinary optical fiber, polyimide fiber has the characteristics of high temperature resistance and high strength, which has important application in the field of optical fiber sensing. The common methods of polyimide coating stripping were introduced in this paper, including high temperature stripping, chemical stripping and arc ablation. In order to meet the requirements of FBG writing technology, a method using argon ion laser ablation coating was proposed. The method can precisely control the stripping length of the coating and completely does not affect the tensile strength of the optical fiber. According to the experiment, the fabrication process of polyimide FBG is stripping-hydrogen loadingwriting. Under the same conditions, 10 FBG samples were fabricated with good uniformity of wavelength bandwidth and reflectivity. UV laser ablation of polyimide coating has been proved to be a safe, reliable and efficient method.

  18. Two-photon excited fluorescence from a pseudoisocyanine-attached gold-coated tip via a thin tapered fiber under a weak continuous wave excitation.

    PubMed

    Ren, Fang; Takashima, Hideaki; Tanaka, Yoshito; Fujiwara, Hideki; Sasaki, Keiji

    2013-11-18

    A simple tapered fiber based photonic-plasmonic hybrid nanostructure composed of a thin tapered fiber and a pseudoisocyanine (PIC)-attached Au-coated tip was demonstrated. Using this simple hybrid nanostructure, we succeeded in observing two-photon excited fluorescence from the PIC dye molecules under a weak continuous wave excitation condition. From the results of the tip-fiber distance dependence and excitation polarization dependence, we found that using a thin tapered fiber and an Au-coated tip realized efficient coupling of the incident light (~95%) and LSP excitation at the Au-coated tip, suggesting the possibility of efficiently inducing two-photon excited fluorescence from the PIC dye molecules attached on the Au-coated tip. This simple photonic-plasmonic hybrid system is one of the promising tools for single photon sources, highly efficient plasmonic sensors, and integrated nonlinear plasmonic devices.

  19. Effects of Fiber Coating Composition on Mechanical Behavior of Silicon Carbide Fiber-Reinforced Celsian Composites

    NASA Technical Reports Server (NTRS)

    Bansal, Narottam P.; Elderidge, Jeffrey I.

    1998-01-01

    Celsian matrix composites reinforced with Hi-Nicalon fibers, precoated with a dual layer of BN/SiC by chemical vapor deposition in two separate batches, were fabricated. Mechanical properties of the composites were measured in three-point flexure. Despite supposedly identical processing, the composite panels fabricated with fibers coated in two batches exhibited substantially different mechanical behavior. The first matrix cracking stresses (sigma(sub mc)) of the composites reinforced with fibers coated in batch 1 and batch 2 were 436 and 122 MPa, respectively. This large difference in sigma(sub mc) was attributed to differences in fiber sliding stresses(tau(sub friction)), 121.2+/-48.7 and 10.4+/-3.1 MPa, respectively, for the two composites as determined by the fiber push-in method. Such a large difference in values of tau(sub friction) for the two composites was found to be due to the difference in the compositions of the interface coatings. Scanning Auger microprobe analysis revealed the presence of carbon layers between the fiber and BN, and also between the BN and SiC coatings in the composite showing lower tau(sub friction). This resulted in lower sigma(sub mc) in agreement with the ACK theory. The ultimate strengths of the two composites, 904 and 759 MPa, depended mainly on the fiber volume fraction and were not significantly effected by tau(sub friction) values, as expected. The poor reproducibility of the fiber coating composition between the two batches was judged to be the primary source of the large differences in performance of the two composites.

  20. Development of a polymeric ionic liquid coating for direct-immersion solid-phase microextraction using polyhedral oligomeric silsesquioxane as cross-linker.

    PubMed

    Chen, Chunyan; Liang, Xiaotong; Wang, Jianping; Zou, Ying; Hu, Huiping; Cai, Qingyun; Yao, Shouzhuo

    2014-06-27

    A novel solid-phase microextraction (SPME) fiber was developed by chemical binding of a crosslinked polymeric ionic liquid (PIL) on the surface of an anodized Ti wire, and was applied in direct-immersion mode for the extraction of perfluorinated compounds (PFCs) from water samples coupled with high performance liquid chromatography-tandem mass spectrometry analysis. The PIL coatings were synthesized by using 1-vinyl-3-hexylimidazolium hexafluorophosphate as monomer and methylacryloyl-substituted polyhedral oligomeric silsesquioxane (POSS) as cross-linker via free radical reaction. The proposed fiber coating exhibited high mechanical stability due to the chemical bonding between the coating and the Ti wire surface. The integration of POSS reagent enhanced the organic solvent resistance of the coating. The parameters affecting the extraction performance of the fiber coating including extraction time, pH of solution, ionic strength and desorption conditions were optimized. The developed PIL-POSS fiber showed good linearity (R<0.998) between 0.1 and 50ngmL(-1) with method detection limits ranging from 0.005 to 0.08ngmL(-1) depending on the analyte, and with relative standard deviation for single-fiber repeatability and fiber-to-fiber reproducibility less than 8.6% and 9.5%, respectively. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Asbestos Removal in the Construction Industry.

    DTIC Science & Technology

    1991-01-01

    a lower strength lighter building panel. 5.3.3 Sprayed Coatings Mineral wool fiber and vermiculite have replaced asbestos in sprayed coating...wearing resistance and non- slip properties in floor tiles. Glass or mineral wool fibers may be used as alternative fibers, but make for a brittle...asbestos, for many applications, is millboard made from aluminosilicate fibers or mineral wool fibers. These fibers are bonded with a high temperature

  2. Preparation and characterization of boron nitride coatings on carbon fibers from borazine by chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Li, Jun-Sheng; Zhang, Chang-Rui; Li, Bin

    2011-06-01

    Boron nitride (BN) coatings were deposited on carbon fibers by chemical vapor deposition (CVD) using borazine as single source precursor. The deposited coatings were characterized by scanning electron microscopy (SEM), Auger electron spectroscopy (AES), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and Raman spectroscopy. The effect of temperatures on growth kinetics, morphology, composition and structure of the coatings was investigated. In the low temperature range of 900 °C-1000 °C, the growth rate increased with increasing temperature complying with Arrhenius law, and an apparent active energy of 72 kJ/mol was calculated. The coating surface was smooth and compact, and the coatings uniformly deposited on individual fibers of carbon fiber bundles. The growth was controlled by surface reaction. At 1000 °C, the deposition rate reached a maximum (2.5 μm/h). At the same time, the limiting step of the growth translated to be mass-transportation. Above 1100 °C, the growth rate decreased drastically due to the occurrence of gas-phase nucleation. Moreover, the coating surface became loose and rough. Composition and structure examinations revealed that stoichiometric BN coatings with turbostratic structure were obtained below 1000 °C, while hexagonal BN coatings were deposited above 1100 °C. A penetration of carbon element from the fibers to the coatings was observed.

  3. Effect of temperature on the spectrum of fiber Bragg grating sensors embedded in polymer composite

    NASA Astrophysics Data System (ADS)

    Anoshkin, A. N.; Shipunov, G. S.; Voronkov, A. A.; Shardakov, I. N.

    2017-12-01

    This work presents the experimental results on the effect of temperature on the spectrum of fiber Bragg grating (FBG) sensors embedded in a polymer composite material manufactured by the prepreg method. The tests are carried out for flat bar specimens made of fiberglass with five embedded FBG sensors. For measuring the reflected wave power, the ASTRO X322 Interrogator is used. It is shown that embedding leads to the occurrence of an additional power peak and decreases the reflection spectrum signal by 10-12 dB. This is due to the effect of transverse compression force and the anisotropic character of the thermal expansion coefficient of the material. In heating, the reflected spectrum is close to the initial state of the material, but it has a less power.

  4. Influence of prepreg characteristics on stamp consolidation

    NASA Astrophysics Data System (ADS)

    Slange, T. K.; Warnet, L. L.; Grouve, W. J. B.; Akkerman, R.

    2017-10-01

    Stamp forming is a rapid manufacturing technology used to shape flat blanks of thermoplastic composite material into three-dimensional components. The development of automated lay-up technologies further extends the applicability of stamp forming by allowing rapid lay-up of tailored blanks and partial preconsolidation. This partial preconsolidation makes the influence of prepreg more critical compared to conventional preconsolidation methods which provide full preconsolidation. This paper aims to highlight consolidation challenges that can appear when stamp forming blanks manufactured by automated lay-up. Important prepreg characteristics were identified based on an experimental study where a comparison was made between various prepreg in their as-received, deconsolidated and stamp consolidated state. It was found that adding up small thickness variations across the width of a prepreg when stacking plies into a blank by automated lay-up can cause non-uniform consolidation. Additionally, deconsolidation of the prepreg does not seem to obstruct interlaminar bonding, while intralaminar voids initially present in a prepreg cannot be removed during stamp forming. An additional preconsolidation step after automated lay-up seems necessary to remove blank thickness variations and intralaminar voids for the current prepregs. Eliminating this process step and the successful combination of rapid automated lay-up and stamp forming requires prepregs which are void-free and have less thickness variation.

  5. Effect of fiber surface conditioning on the acoustic emission behavior of steel fiber reinforced concrete

    NASA Astrophysics Data System (ADS)

    Aggelis, D. G.; Soulioti, D. V.; Gatselou, E.; Barkoula, N. M.; Paipetis, A.; Matikas, T. E.

    2011-04-01

    The role of coating in preserving the bonding between steel fibers and concrete is investigated in this paper. Straight types of fibers with and without chemical coating are used in steel fiber reinforced concrete mixes. The specimens are tested in bending with concurrent monitoring of their acoustic emission activity throughout the failure process using two broadband sensors. The different stages of fracture (before, during and after main crack formation) exhibit different acoustic fingerprints, depending on the mechanisms that are active during failure (concrete matrix micro-cracking, macro-cracking and fiber pull out). Additionally, it was seen that the acoustic emission behaviour exhibits distinct characteristics between coated and uncoated fiber specimens. Specifically, the frequency of the emitted waves is much lower for uncoated fiber specimens, especially after the main fracture incident, during the fiber pull out stage of failure. Additionally, the duration and the rise time of the acquired waveforms are much higher for uncoated specimens. These indices are used to distinguish between tensile and shear fracture in concrete and suggest that friction is much stronger for the uncoated fibers. On the other hand, specimens with coated fibers exhibit more tensile characteristics, more likely due to the fact that the bond between fibers and concrete matrix is stronger. The fibers therefore, are not simply pulled out but also detach a small volume of the brittle concrete matrix surrounding them. It seems that the effect of chemical coating can be assessed by acoustic emission parameters additionally to the macroscopic measurements of ultimate toughness.

  6. Improved Optical-Fiber Temperature Sensors

    NASA Technical Reports Server (NTRS)

    Rogowski, Robert S.; Egalon, Claudio O.

    1993-01-01

    In optical-fiber temperature sensors of proposed type, phosphorescence and/or fluorescence in temperature-dependent coating layers coupled to photodetectors. Phosphorescent and/or fluorescent behavior(s) of coating material(s) depend on temperature; coating material or mixture of materials selected so one can deduce temperature from known temperature dependence of phosphorescence and/or fluorescence spectrum, and/or characteristic decay of fluorescence. Basic optical configuration same as that of optical-fiber chemical detectors described in "Making Optical-Fiber Chemical Detectors More Sensitive" (LAR-14525).

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saunders, C.B.; Carmichael, A.A.; Kremers, W.

    The mechanical and physical properties of electron-beam (EB) curable carbon-fiber-reinforced composites were investigated, using a resin matrix made from a mixture of 50 percent of an epoxy diacrylate oligomer, 30 percent of a polybutadiene diacrylate oligomer, and 20 percent of dipentaerythritol monohydroxypentaacrylate monomer, and applying varying EB doses for curing the mixture. It was found that the gel content in the cured prepreg polymer depended upon the total EB dose below 50 kGy, the dose rate, and, at a low dose of 16 kGy/hr, on the atmosphere and pressure during irradiation. 14 refs.

  8. Mechanisms of CFR composites destruction studying with pulse acoustic microscopy

    NASA Astrophysics Data System (ADS)

    Petronyuk, Y. S.; Morokov, E. S.; Levin, V. M.; Ryzhova, T. B.; Chernov, A. V.

    2016-05-01

    Non-destructive inspection of carbon-fiber-reinforced (CFR) composites applied in aerospace industry attracts a wide attention. In the paper, high frequency focused ultrasound (50-100 MHz) has been applied to study the bulk microstructure of the CFR material and mechanisms of its destruction under the mechanical loading. It has been shown impulse acoustic microscopy provides detecting the areas of adhesion loss at millimeter and micron level. Behavior of the CFR laminate structure fabricated by prepreg or infusion technology has been investigated under the tensile and impact loading.

  9. Substituted Cyclohexene Endcaps for Polymers with Thermal-Oxidative Stability

    NASA Technical Reports Server (NTRS)

    2005-01-01

    This invention relates to polyimides having improved thermal-oxidative stability, to the process of preparing said polyimides, and the use of polyimide prepolymers in the preparation of prepregs and composites. The polyimides are particularly usefull in the preparation of fiber-reinforced, high-temperature composites for use in various engine parts including inlets, fan ducts, exit flaps and other parts of high speed aircraft. The polyimides are derived from the polymerization of effective amounts of at least one tetracarboxylic dianhydride, at least one polyamine and a novel dicarboxylic endcap having the formula presented.

  10. Metal-coated optical fiber damage sensors

    NASA Astrophysics Data System (ADS)

    Chang, Chia-Chen; Sirkis, James S.

    1993-07-01

    A process which uses electroplating methods has been developed to fabricate metal coated optical fiber sensors. The elastic-plastic characteristics of the metal coatings have been exploited to develop a sensor capable of `remembering' low velocity impact damage. These sensors have been investigated under uniaxial tension testing of unembedded sensors and under low velocity impact of graphite/epoxy specimens with embedded sensors using both Michelson and polarimetric optical arrangements. The tests show that coating properties alter the optical fiber sensor performance and that the permanent deformation in the coating can be used to monitor composite delamination/impact damage.

  11. Multilayer Fiber Interfaces for Improved Environmental Resistance and Slip in Carbon Fiber Reinforced Composites

    NASA Technical Reports Server (NTRS)

    Babcock, Jason R.; Ramachandran, Gautham; Williams, Brian E.; Effinger, Michael R.

    2004-01-01

    Ultraviolet-enhanced chemical vapor deposition (UVCVD) has been developed to lower the required substrate temperature thereby allowing for the application of metal oxide-based coatings to carbon and ceramic fibers without causing significant fiber damage. An effort to expand this capability to other ceramic phases chosen to maximize oxidation protection in the likely event of matrix cracking and minimize possible reaction between the coating and fiber during long-term high temperature use will be presented along with studies aimed at the demonstration of these and other benefits for the next-generation interface coating systems being developed herein.

  12. Environmental effects on the tensile strength of chemically vapor deposited silicon carbide fibers

    NASA Technical Reports Server (NTRS)

    Bhatt, R. T.; Kraitchman, M. D.

    1985-01-01

    The room temperature and elevated temperature tensile strengths of commercially available chemically vapor-deposited (CVD) silicon carbide fibers were measured after 15 min heat treatment to 1600 C in various environments. These environments included oxygen, air, argon and nitrogen at one atmosphere and vacuum at 10/9 atmosphere. Two types of fibers were examined which differed in the SiC content of their carbon-rich coatings. Threshold temperature for fiber strength degradation was observed to be dependent on the as-received fiber-flaw structure, on the environment and on the coating. Fractographic analyses and flexural strength measurements indicate that tensile strength losses were caused by surface degradation. Oxidation of the surface coating is suggested as one possible degradation mechanism. The SiC fibers containing the higher percentage of SiC near the surface of the carbon-rich coating show better strength retention and higher elevated temperature strength.

  13. Development of quality assurance methods for epoxy graphite prepreg

    NASA Technical Reports Server (NTRS)

    Chen, J. S.; Hunter, A. B.

    1982-01-01

    Quality assurance methods for graphite epoxy/prepregs were developed. Liquid chromatography, differential scanning calorimetry, and gel permeation chromatography were investigated. These methods were applied to a second prepreg system. The resin matrix formulation was correlated with mechanical properties. Dynamic mechanical analysis and fracture toughness methods were investigated. The chromatography and calorimetry techniques were all successfully developed as quality assurance methods for graphite epoxy prepregs. The liquid chromatography method was the most sensitive to changes in resin formulation. The were also successfully applied to the second prepreg system.

  14. Electron microscopy and microanalysis of the fiber-matrix interface in monolithic silicone carbide-based ceramic composite material for use in a fusion reactor application.

    PubMed

    Toplisek, Tea; Drazic, Goran; Novak, Sasa; Kobe, Spomenka

    2008-01-01

    A composite material made from continuous monolithic silicone carbide (SiC) fibers and a SiC-based matrix (SiC(f)/SiC), was prepared using a novel technique, i.e. adapted dip coating and infiltration of SiC fibers with a water suspension containing SiC particles and a sintering additive. This kind of material could be used in the first-wall blanket of a future fusion reactor. Using magnetron sputtering, the SiC fibers were coated with various thin layers (TiC, CrN, CrC, WC, DLC-diamond-like carbon) of the interface material by physical vapor deposition (PVD). Using scanning and transmission electron microscopy and microanalysis, detailed microstructural studies of the fiber-matrix interface were performed. Both samples, with coated and uncoated fibers, were examined under a load. The microcracks introduced by the Vickers indenter continued their path through the fibers, and thus caused the failure of the composite material, in the case of the uncoated fibers or deviated from their primary direction at the fiber-matrix interface in the case of the coated fibers.

  15. Fatigue crack growth in fiber-metal laminates

    NASA Astrophysics Data System (ADS)

    Ma, YuE; Xia, ZhongChun; Xiong, XiaoFeng

    2014-01-01

    Fiber-metal laminates (FMLs) consist of three layers of aluminum alloy 2024-T3 and two layers of glass/epoxy prepreg, and it (it means FMLs) is laminated by Al alloy and fiber alternatively. Fatigue crack growth rates in notched fiber-metal laminates under constant amplitude fatigue loading were studied experimentally and numerically and were compared with them in monolithic 2024-T3 Al alloy plates. It is shown that the fatigue life of FMLs is about 17 times longer than monolithic 2024-T3 Al alloy plate; and crack growth rates in FMLs panels remain constant mostly even when the crack is long, unlike in the monolithic 2024-T3 Al alloy plates. The formula to calculate bridge stress profiles of FMLs was derived based on the fracture theory. A program by Matlab was developed to calculate the distribution of bridge stress in FMLs, and then fatigue growth lives were obtained. Finite element models of FMLs were built and meshed finely to analyze the stress distributions. Both results were compared with the experimental results. They agree well with each other.

  16. Effect of temperature rise and hydrostatic pressure on microbending loss and refractive index change in double-coated optical fiber

    NASA Astrophysics Data System (ADS)

    Seraji, Faramarz E.; Toutian, Golnoosh

    This paper presents an analysis of the effect of temperature rise and hydrostatic pressure on microbending loss, refractive index change, and stress components of a double-coated optical fiber by considering coating material parameters such as Young's modulus and the Poisson ratio. It is shown that, when temperature rises, the microbending loss and refractive index changes would decrease with increase of thickness of primary coating layer and will increase after passing through a minima. Increase of thickness of secondary coating layer causes the microbending loss and refractive index changes to decrease. We have shown that the temperature rise affecting the fiber makes the microbending loss and refractive index decrease, linearly. At a particular temperature, the microbending loss takes negative values, due to tensile pressure applied on the fiber. The increase of Young's modulus and the Poisson ratio of primary coating would lower the microbending loss and refractive index change whereas in the secondary coating layer, the condition reverses.

  17. On-line defect detection of aluminum coating using fiber optic sensor

    NASA Astrophysics Data System (ADS)

    Patil, Supriya S.; Shaligram, A. D.

    2015-03-01

    Aluminum metallization using the sprayed coating for exhaust mild steel (MS) pipes of tractors is a standard practice for avoiding rusting. Patches of thin metal coats are prone to rusting and are thus considered as defects in the surface coating. This paper reports a novel configuration of the fiber optic sensor for on-line checking the aluminum metallization uniformity and hence for defect detection. An optimally chosen high bright 440 nm BLUE LED (light-emitting diode) launches light into a transmitting fiber inclined at the angle of 60° to the surface under inspection placed adequately. The reflected light is transported by a receiving fiber to a blue enhanced photo detector. The metallization thickness on the coated surface results in visually observable variation in the gray shades. The coated pipe is spirally inspected by a combination of linear and rotary motions. The sensor output is the signal conditioned and monitored with RISHUBH DAS. Experimental results show the good repeatability in the defect detection and coating non-uniformity measurement.

  18. Highly stretchable and conductive fibers enabled by liquid metal dip-coating

    NASA Astrophysics Data System (ADS)

    Zhang, Qiang; Roach, Devin J.; Geng, Luchao; Chen, Haosen; Qi, H. Jerry; Fang, Daining

    2018-03-01

    Highly stretchable and conductive fibers have been fabricated by dip-coating of a layer of liquid metal (eutectic gallium indium, EGaIn) on printed silicone elastomer filaments. This fabrication method exploits a nanolayer of oxide skin that rapidly forms on the surface of EGaIn when exposed to air. Through dip-coating, the sticky nature of the oxide skin leads to the formation of a thin EGaIn coating (˜5 μm thick) on the originally nonconductive filaments and renders these fibers excellent conductivity. Electrical characterization shows that the fiber resistance increases moderately as the fiber elongates but always maintains conductivity even when stretched by 800%. Besides this, these fibers possess good cyclic electrical stability with little degradation after hundreds of stretching cycles, which makes them an excellent candidate for stretchable conductors. We then demonstrate a highly stretchable LED circuit as well as a conductive stretchable net that extends the 1D fibers into a 2D configuration. These examples demonstrate potential applications for topologically complex stretchable electronics.

  19. Polymer Coating of Carbon Nanotube Fibers for Electric Microcables

    PubMed Central

    Alvarez, Noe T.; Ochmann, Timothy; Kienzle, Nicholas; Ruff, Brad; Haase, Mark R.; Hopkins, Tracy; Pixley, Sarah; Mast, David; Schulz, Mark J.; Shanov, Vesselin

    2014-01-01

    Carbon nanotubes (CNTs) are considered the most promising candidates to replace Cu and Al in a large number of electrical, mechanical and thermal applications. Although most CNT industrial applications require macro and micro size CNT fiber assemblies, several techniques to make conducting CNT fibers, threads, yarns and ropes have been reported to this day, and improvement of their electrical and mechanical conductivity continues. Some electrical applications of these CNT conducting fibers require an insulating layer for electrical insulation and protection against mechanical tearing. Ideally, a flexible insulator such as hydrogenated nitrile butadiene rubber (HNBR) on the CNT fiber can allow fabrication of CNT coils that can be assembled into lightweight, corrosion resistant electrical motors and transformers. HNBR is a largely used commercial polymer that unlike other cable-coating polymers such as polyvinyl chloride (PVC), it provides unique continuous and uniform coating on the CNT fibers. The polymer coated/insulated CNT fibers have a 26.54 μm average diameter—which is approximately four times the diameter of a red blood cell—is produced by a simple dip-coating process. Our results confirm that HNBR in solution creates a few microns uniform insulation and mechanical protection over a CNT fiber that is used as the electrically conducting core. PMID:28344254

  20. Polymer Coating of Carbon Nanotube Fibers for Electric Microcables.

    PubMed

    Alvarez, Noe T; Ochmann, Timothy; Kienzle, Nicholas; Ruff, Brad; Haase, Mark R; Hopkins, Tracy; Pixley, Sarah; Mast, David; Schulz, Mark J; Shanov, Vesselin

    2014-11-04

    Carbon nanotubes (CNTs) are considered the most promising candidates to replace Cu and Al in a large number of electrical, mechanical and thermal applications. Although most CNT industrial applications require macro and micro size CNT fiber assemblies, several techniques to make conducting CNT fibers, threads, yarns and ropes have been reported to this day, and improvement of their electrical and mechanical conductivity continues. Some electrical applications of these CNT conducting fibers require an insulating layer for electrical insulation and protection against mechanical tearing. Ideally, a flexible insulator such as hydrogenated nitrile butadiene rubber (HNBR) on the CNT fiber can allow fabrication of CNT coils that can be assembled into lightweight, corrosion resistant electrical motors and transformers. HNBR is a largely used commercial polymer that unlike other cable-coating polymers such as polyvinyl chloride (PVC), it provides unique continuous and uniform coating on the CNT fibers. The polymer coated/insulated CNT fibers have a 26.54 μm average diameter-which is approximately four times the diameter of a red blood cell-is produced by a simple dip-coating process. Our results confirm that HNBR in solution creates a few microns uniform insulation and mechanical protection over a CNT fiber that is used as the electrically conducting core.

  1. Characterization of interfacial failure in SiC reinforced Si3N4 matrix composite material by both fiber push-out testing and Auger electron spectroscopy

    NASA Technical Reports Server (NTRS)

    Eldridge, J. I.; Honecy, F. S.

    1990-01-01

    AES depth profiling and a fiber push-out test for interfacial shear-strength determination have been used to ascertain the mechanical/chemical properties of the fiber/matrix interface in SiC-reinforced reaction-bonded Si3N4, with attention to the weak point where interfacial failure occurs. In the cases of both composite fracture and fiber push-outs, the interfacial failure occurred either between the two C-rich coatings that are present on the double-coated SiC fibers, or between the inner C-rich coating and the SiC fiber. Interface failure occurs at points of very abrupt concentration changes.

  2. Inorganic Polymer Matrix Composite Strength Related to Interface Condition

    PubMed Central

    Radford, Donald W.; Grabher, Andrew; Bridge, John

    2009-01-01

    Resin transfer molding of an inorganic polymer binder was successfully demonstrated in the preparation of ceramic fiber reinforced engine exhaust valves. Unfortunately, in the preliminary processing trials, the resulting composite valves were too brittle for in-engine evaluation. To address this limited toughness, the effectiveness of a modified fiber-matrix interface is investigated through the use of carbon as a model material fiber coating. After sequential heat treatments composites molded from uncoated and carbon-coated fibers are compared using room temperature 3-point bend testing. Carbon-coated Nextel fiber reinforced geopolymer composites demonstrated a 50% improvement in strength, versus that of the uncoated fiber reinforced composites, after the 250 °C postcure.

  3. Ceramic Fiber Coatings Development and Demonstration

    DTIC Science & Technology

    1993-05-28

    from polycar- bosilane polymer . The fiber is mostly amorphous with some microcrystalline beta- SiC . A typical elemental composition (wt %) is 57... preceramic polymers yielded improvements mainly for oxide coatings and proved particularly promising for low cost processing. A schematic for this...deposition. COMPOSITE FABRICATION AND EVALUATION Coated fiber tows were infiltrated with Si 3N4 matrix by chemical vapor deposition in order to study

  4. Glue-free assembly of glass fiber reinforced thermoplastics using laser light

    NASA Astrophysics Data System (ADS)

    Binetruy, C.; Clement, S.; Deleglise, M.; Franz, C.; Knapp, W.; Oumarou, M.; Renard, J.; Roesner, A.

    2011-05-01

    The use of laser light for bonding of continuous fiber reinforced thermoplastic composites (CFTPC) offers new possibilities to overcome the constraints of conventional joining technologies. Laser bonding is environmentally friendly as no chemical additive or glue is necessary. Accuracy and flexibility of the laser process as well as the quality of the weld seams provide benefits which are already used in many industrial applications. Laser transmission welding has already been introduced in manufacturing of short fiber thermoplastic composites. The laser replaces hot air in tapelaying systems for pre-preg carbon fiber placement. The paper provides an overview concerning the technical basics of the joining process and outline some material inherent characteristics to be considered when using continuous glass fiber reinforced composites The technical feasibility and the mechanical characterization of laser bonded CFTPC are demonstrated. The influence of the different layer configurations on the laser interaction with the material is investigated and the dependency on the mechanical strength of the weld seem is analyzed. The results show that the laser provides an alternative joining technique and offers new perspectives to assemble structural components emerging in automotive or aeronautical manufacturing. It overcomes the environmental and technical difficulties related to existing gluing processes.

  5. Gold Coating of Fiber Tips in Near-Field Scanning Optical Microscopy

    NASA Technical Reports Server (NTRS)

    Vikram, Chandra S.; Witherow, William K.

    2000-01-01

    We report what is believed to be the first experimental demonstration of gold coating by a chemical baking process on tapered fiber tips used in near-field scanning optical microscopy. Many tips can be simultaneously coated.

  6. Control of interfaces in Al-C fibre composites

    NASA Technical Reports Server (NTRS)

    Warrier, S. G.; Blue, C. A.; Lin, R. Y.

    1993-01-01

    The interface of Al-C fiber composite was modified by coating a silver layer on the surface of carbon fibres prior to making composites, in an attempt to improve the wettability between molten aluminum and carbon fibers during infiltration. An electroless plating technique was adopted and perfected to provide a homogeneous silver coating on the carbon fiber surface. Al-C fiber composites were prepared using a liquid infiltration technique in a vacuum. It was found that silver coating promoted the wetting between aluminum and carbon fibers, particularly with polyacrylonitrile-base carbon fibers. However, due to rapid dissolution of silver in molten aluminum, it was believed that the improved infiltration was not due to the wetting behavior between molten aluminum and silver. The cleaning of the fiber surface and the preservation of the cleaned carbon surface with silver coating was considered to be the prime reason for the improved wettability. Interfacial reactions between aluminum and carbon fibers were observed. Amorphous carbon was found to react more with aluminum than graphitic carbon. This is believed to be because of the inertness of the graphitic basal planes.

  7. Electrodeposited polyaniline as a fiber coating for solid-phase microextraction of organochlorine pesticides from water.

    PubMed

    Li, Xiang; Zhong, Ming; Chen, Jianmin

    2008-08-01

    The study on the performance of polyaniline as a fiber coating for solid-phase microextraction (SPME) purposes has been reported. Polyaniline coatings were directly electrodeposited on the surface of a stainless steel wire and applied for the extraction of some organochlorine pesticides (OCPs) from water samples. Analyses were performed using GC-electron capture detection (GC-ECD). The results obtained show that polyaniline fiber coating is suitable for the successful extraction of organochlorine compounds. This behavior is most probably due to the porous surface structure of polyaniline film, which provides large surface areas and allowed for high extraction efficiency. Experimental parameters such as adsorption and desorption conditions were studied and optimized. The optimized method has an acceptable linearity, with a concentration range of 1-5000 ng/L. Single fiber repeatability and fiber-to-fiber reproducibility were less than 12 and 17%, respectively. High environmental resistance and lower cost are among the advantages of polyaniline fibers over commercially available SPME fibers. The developed method was applied to the analysis of real water samples from Yangtse River and Tianmu Lake.

  8. Magnesium coated phosphate glass fibers for unidirectional reinforcement of polycaprolactone composites.

    PubMed

    Liu, Xiaoling; Grant, David M; Palmer, Graham; Parsons, Andrew J; Rudd, Chris D; Ahmed, Ifty

    2015-10-01

    Bioresorbable composites have shown much potential for bone repair applications, as they have the ability to degrade completely over time and their degradation and mechanical properties can be tailored to suit the end application. In this study, phosphate glass fiber (from the system 45% P2 O5-16% CaO-24% MgO-11% Na2 O-4% Fe2 O3 (given in mol%)) were used to reinforce polycaprolactone (PCL) with approximately 20% fiber volume fraction. The glass fiber surfaces were coated with magnesium (Mg) through magnetron sputtering to improve the fiber-matrix interfacial properties. The Mg coating provided a rough fiber surface (roughness (Ra) of about 44nm). Both noncoated and Mg-coated fiber-reinforced composites were assessed. The water uptake and mass loss properties for the composites were assessed in phosphate-buffered saline (PBS) at 37°C for up to 28 days, and ion release profiles were also investigated in both water and PBS media. Inhibition of media influx was observed for the Mg-coated composites. The composite mechanical properties were characterized on the basis of both tensile and flexural tests and their retention in PBS media at 37°C was also investigated. A higher retention of the mechanical properties was observed for the Mg-coated composites over the 28 days degradation period. © 2014 Wiley Periodicals, Inc.

  9. On Healable Polymers and Fiber-Reinforced Composites

    NASA Astrophysics Data System (ADS)

    Nielsen, Christian Eric

    Polymeric materials capable of healing damage would be valuable in structural applications where access for repair is limited. Approaches to creating such materials are reviewed, with the present work focusing on polymers with thermally reversible covalent cross-links. These special cross-links are Diels-Alder (DA) adducts, which can be separated and re-formed, enabling healing of mechanical damage at the molecular level. Several DA-based polymers, including 2MEP4FS, are mechanically and thermally characterized. The polymerization reaction of 2MEP4FS is modeled and the number of established DA adducts is associated with the glass transition temperature of the polymer. The models are applied to concentric cylinder rotational measurements of 2MEP4FS prepolymer at room and elevated temperatures to describe the viscosity as a function of time, temperature, and conversion. Mechanical damage including cracks and scratches are imparted in cured polymer samples and subsequently healed. Damage due to high temperature thermal degradation is observed to not be reversible. The ability to repair damage without flowing polymer chains makes DA-based healable polymers particularly well-suited for crack healing. The double cleavage drilled compression (DCDC) fracture test is investigated as a useful method of creating and incrementally growing cracks in a sample. The effect of sample geometry on the fracture behavior is experimentally and computationally studied. Computational and empirical models are developed to estimate critical stress intensity factors from DCDC results. Glass and carbon fiber-reinforced composites are fabricated with 2MEP4FS as the matrix material. A prepreg process is developed that uses temperature to control the polymerization rate of the monomers and produce homogeneous prepolymer for integration with a layer of unidirectional fiber. Multiple prepreg layers are laminated to form multi-layered cross-ply healable composites, which are characterized in bending using dynamic mechanical analysis (DMA). Simple, theory-based analyses indicate that numerous cracks are present before testing due to thermal expansion mismatches, and during testing, these cracks must be healing. Extending healable composites to include healable fiber-matrix interfaces is discussed as future work and interfacial healing characterization approaches are considered.

  10. Alumina fiber strength improvement

    NASA Technical Reports Server (NTRS)

    Pepper, R. T.; Nelson, D. C.

    1982-01-01

    The effective fiber strength of alumina fibers in an aluminum composite was increased to 173,000 psi. A high temperature heat treatment, combined with a glassy carbon surface coating, was used to prevent degradation and improve fiber tensile strength. Attempts to achieve chemical strengthening of the alumina fiber by chromium oxide and boron oxide coatings proved unsuccessful. A major problem encountered on the program was the low and inconsistent strength of the Dupont Fiber FP used for the investigation.

  11. A review on development of solid phase microextraction fibers by sol-gel methods and their applications.

    PubMed

    Kumar, Ashwini; Gaurav; Malik, Ashok Kumar; Tewary, Dhananjay Kumar; Singh, Baldev

    2008-03-03

    Solid phase microextraction (SPME) is an innovative, solvent free technology that is fast, economical and versatile. SPME is a fiber coated with a liquid (polymer), a solid (sorbent) or a combination of both. The fiber coating takes up the compounds from the sample by absorption in the case of liquid coatings or adsorption in the case of solid coatings. The SPME fiber is then transferred with the help of a syringe like device into the analytical instrument for desorption and analysis of the target analytes. The sol-gel process provides a versatile method to prepare size, shape and charge selective materials of high purity and homogeneity by means of preparation techniques different from the traditional ones, for the chemical analysis. This review is on the current state of the art and future trends in the developments of solid phase microextraction (SPME) fibers using sol-gel method. To achieve more selective determination of different compound classes, the variety of different coating material for SPME fibers has increased. Further developments in SPME as a highly efficient extraction technique, will greatly depend on new breakthroughs in the area of new coating material developments for the SPME fibers. In sol-gel approach, appropriate sol-gel precursors and other building blocks can be selected to create a stationary phase with desired structural and surface properties. This approach is efficient in integrating the advantageous properties of organic and inorganic material systems and thereby increasing and improving the extraction selectivity of the produced amalgam organic-inorganic stationary phases. This review is mainly focused on recent advanced developments in the design, synthesis, characterisation, properties and application of sol-gel in preparation of coatings for the SPME fibers.

  12. Layer-by-layer fabrication of chemical-bonded graphene coating for solid-phase microextraction.

    PubMed

    Zhang, Suling; Du, Zhuo; Li, Gongke

    2011-10-01

    A new fabrication strategy of the graphene-coated solid-phase microextraction (SPME) fiber is developed. Graphite oxide was first used as starting coating material that covalently bonded to the fused-silica substrate using 3-aminopropyltriethoxysilane (APTES) as cross-linking agent and subsequently deoxidized by hydrazine to give the graphene coating in situ. The chemical bonding between graphene and the silica fiber improve its chemical stability, and the obtained fiber was stable enough for more than 150 replicate extraction cycles. The graphene coating was wrinkled and folded, like the morphology of the rough tree bark. Its performance is tested by headspace (HS) SPME of polycyclic aromatic hydrocarbons (PAHs) followed by GC/MS analysis. The results showed that the graphene-coated fiber exhibited higher enrichment factors (EFs) from 2-fold for naphthalene to 17-fold for B(b)FL as compared to the commercial polydimethylsioxane (PDMS) fiber, and the EFs increased with the number of condensed rings of PAHs. The strong adsorption affinity was believed to be mostly due to the dominant role of π-π stacking interaction and hydrophobic effect, according to the results of selectivity study for a variety of organic compounds including PAHs, the aromatic compounds with different substituent groups, and some aliphatic hydrocarbons. For PAHs analysis, the graphene-coated fiber showed good precision (<11%), low detection limits (1.52-2.72 ng/L), and wide linearity (5-500 ng/L) under the optimized conditions. The repeatability of fiber-to-fiber was 4.0-10.8%. The method was applied to simultaneous analysis of eight PAHs with satisfactory recoveries, which were 84-102% for water samples and 72-95% for soil samples, respectively.

  13. Growth and lasing of single crystal YAG fibers with different Ho3+ concentrations

    NASA Astrophysics Data System (ADS)

    Bera, Subhabrata; Nie, Craig D.; Soskind, Michael G.; Li, Yuan; Harrington, James A.; Johnson, Eric G.

    2018-01-01

    A method to grow single crystal (SC) yttrium aluminum garnet (YAG) fibers with varied rare-earth ion dopant concentration has been proposed. Crystalline holmium aluminum garnet (HoAG), prepared via sol-gel process, was dip-coated on to previously grown SC YAG fibers. The HoAG coated SC YAG fiber preforms were re-grown to a smaller diameter using the laser heated pedestal growth (LHPG) technique. The final dopant concentration of the re-grown SC fiber was varied by changing the number of HoAG coatings on the preform. 120 μm diameter SC Ho:YAG fibers with four different dopant concentrations were grown. Lasing was demonstrated at 2.09 μm for these fibers. A maximum of 58.5% optical-to-optical slope efficiency was obtained.

  14. Stress transfer in microdroplet tensile test: PVC-coated and uncoated Kevlar-29 single fiber

    NASA Astrophysics Data System (ADS)

    Zhenkun, Lei; Quan, Wang; Yilan, Kang; Wei, Qiu; Xuemin, Pan

    2010-11-01

    The single fiber/microdroplet tensile test is applied for evaluating the interfacial mechanics between a fiber and a resin substrate. It is used to investigate the influence of a polymer coating on a Kevlar-29 fiber surface, specifically the stress transfer between the fiber and epoxy resin in a microdroplet. Unlike usual tests, this new test ensures a symmetrical axial stress on the embedded fiber and reduces the stress singularity that appears at the embedded fiber entry. Using a homemade loading device, symmetrical tensile tests are performed on a Kevlar-29 fiber with or without polyvinylchloride (PVC) coating, the surface of which is in contact with two epoxy resin microdroplets during curing. Raman spectra on the embedded fiber are recorded by micro-Raman Spectroscopy under different strain levels. Then they are transformed to the distributions of fiber axis stress based on the relationship between stress and Raman shift. The Raman results reveal that the fiber axial stresses increase with the applied loads, and the antisymmetric interfacial shear stresses, obtained by a straightforward balance of shear-to-axial forces argument, lead to the appearance of shear stress concentrations at a distance to the embedded fiber entry. The load is transferred from the outer fiber to the embedded fiber in the epoxy microdroplet. As is observed by scanning electronic microscopy (SEM), the existence of a flexible polymer coating on the fiber surface reduces the stress transfer efficiency.

  15. Properties of Multifunctional Hybrid Carbon Nanotube/Carbon Fiber Polymer Matrix Composites

    NASA Technical Reports Server (NTRS)

    Cano, Roberto J.; Kang, Jin Ho; Grimsley, Brian W.; Ratcliffe, James G.; Siochi, Emilie J.

    2016-01-01

    For aircraft primary structures, carbon fiber reinforced polymer (CFRP) composites possess many advantages over conventional aluminum alloys due to their light weight, higher strength- and stiffness-to-weight ratios, and low life-cycle maintenance costs. However, the relatively low electrical and thermal conductivities of CFRP composites fail to provide structural safety in certain operational conditions such as lightning strikes. Carbon nanotubes (CNT) offer the potential to enhance the multi-functionality of composites with improved thermal and electrical conductivity. In this study, hybrid CNT/carbon fiber (CF) polymer composites were fabricated by interleaving layers of CNT sheets with Hexcel® IM7/8852 prepreg. Resin concentrations from 1 wt% to 50 wt% were used to infuse the CNT sheets prior to composite fabrication. The interlaminar properties of the resulting hybrid composites were characterized by mode I and II fracture toughness testing. Fractographical analysis was performed to study the effect of resin concentration. In addition, multi-directional physical properties like thermal conductivity of the orthotropic hybrid polymer composite were evaluated.

  16. Design Study for the Asteroid Redirect Vehicle (ARV) Composite Primary Bulkhead

    NASA Technical Reports Server (NTRS)

    Cressman, Thomas O.; Paddock, David A.

    2017-01-01

    A design study was undertaken of a carbon fiber primary bulkhead for a large solar electric propulsion (SEP) spacecraft. The bulkhead design, supporting up to 16 t of xenon propellant, progressed from one consisting of many simple parts with many complex joints, to one consisting of a few complex parts with a few simple joints. The unique capabilities of composites led to a topology that transitioned loads from bending to in-plane tension and shear, with low part count. This significantly improved bulkhead manufacturability, cost, and mass. The stiffness-driven structure utilized high-modulus M55J fiber unidirectional prepregs. A full-scale engineering demonstration unit (EDU) of the concept was used to demonstrate manufacturability of the concept. Actual labor data was obtained, which could be extrapolated to a full bulkhead. The effort demonstrated the practicality of using high-modulus fiber (HMF) composites for unique shape topologies that minimize mass and cost. The lessons are applicable to primary and secondary aerospace structures that are stiffness driven.

  17. Effects of number of ply, compression temperature, pressure and time on mechanical properties of prepreg kenaf-polypropilene composites

    NASA Astrophysics Data System (ADS)

    Tomo, H. S. S.; Ujianto, O.; Rizal, R.; Pratama, Y.

    2017-07-01

    Composite material thermoplastic was prepared from polypropilen granule as matrix, kenaf fiber as reinforcement and grafted polypropylene copolymer maleic anhydride as coupling agent. Composite products were produced as sandwich structures using compression molding. This research aimed to observe the influence of number of ply, temperature, pressure, and compression time using factorial design. Effects of variables on tensile and flexural strength were analyzed. Experimental results showed that tensile and flexural strength were influenced by degradation, fiber compaction, and matrix - fiber interaction mechanisms. Flexural strength was significantly affected by number of ply and its interaction to another process parameters (temperature, pressure, and compression time), but no significant effect of process parameters on tensile strength. The highest tensile strength (62.0 MPa) was produced at 3 ply, 210 °C, 50 Bar, and 3 min compression time (low, high, high, low), while the highest flexural strength (80.3 MPa) was produced at 3 ply, 190 °C, 50 Bar, and 3 min compression time (low, low, high, low).

  18. Influence of Layup and Curing on the Surface Accuracy in the Manufacturing of Carbon Fiber Reinforced Polymer (CFRP) Composite Space Mirrors

    NASA Astrophysics Data System (ADS)

    Yang, Zhiyong; Zhang, Jianbao; Xie, Yongjie; Zhang, Boming; Sun, Baogang; Guo, Hongjun

    2017-12-01

    Carbon fiber reinforced polymer, CFRP, composite materials have been used to fabricate space mirror. Usually the composite space mirror can completely replicate the high-precision surface of mould by replication process, but the actual surface accuracy of replicated space mirror is always reduced, still needed further study. We emphatically studied the error caused by layup and curing on the surface accuracy of space mirror through comparative experiments and analyses, the layup and curing influence factors include curing temperature, cooling rate of curing, method of prepreg lay-up, and area weight of fiber. Focusing on the four factors, we analyzed the error influence rule and put forward corresponding control measures to improve the surface figure of space mirror. For comparative analysis, six CFRP composite mirrors were fabricated and surface profile of mirrors were measured. Four guiding control measures were described here. Curing process of composite space mirror is our next focus.

  19. Structural analysis and testing of a carbon-composite wing using fiber Bragg gratings

    NASA Astrophysics Data System (ADS)

    Nicolas, Matthew James

    The objective of this study was to determine the deflected wing shape and the out-of-plane loads of a large-scale carbon-composite wing of an ultralight aerial vehicle using Fiber Bragg Grating (FBG) technology. The composite wing was instrumented with an optical fiber on its top and bottom surfaces positioned over the main spar, resulting in approximately 780 strain sensors bonded to the wings. The strain data from the FBGs was compared to that obtained from four conventional strain gages, and was used to obtain the out-of-plane loads as well as the wing shape at various load levels using NASA-developed real-time load and displacement algorithms. The composite wing measured 5.5 meters and was fabricated from laminated carbon uniaxial and biaxial prepreg fabric with varying laminate ply patterns and wall thickness dimensions. A three-tier whiffletree system was used to load the wing in a manner consistent with an in-flight loading condition.

  20. Thermal Stability of Hi-Nicalon SiC Fiber in Nitrogen and Silicon Environments

    NASA Technical Reports Server (NTRS)

    Bhatt, R. T.; Garg, A.

    1995-01-01

    The room temperature tensile strength of uncoated and two types of pyrolytic boron nitride coated (PBN and Si-rich PBN) Hi-Nicalon SiC fibers was determined after 1 to 400 hr heat treatments to 1800 C under N2 pressures of 0.1, 2, and 4 MPa, and under 0.1 Mpa argon and vacuum environments. In addition, strength stability of both uncoated and coated fibers embedded in silicon powder and exposed to 0.1 MPa N2 for 24 hrs at temperatures to 1400 C was investigated. The uncoated and both types of BN coated fibers exposed to N2 for 1 hr showed noticeable strength degradation above 1400 C and 1600 C, respectively. The strength degradation appeared independent of nitrogen pressure, time of heat treatment, and surface coatings. TEM microstructural analysis suggests that flaws created due to SiC grain growth are responsible for the strength degradation. In contact with silicon powder, the uncoated and both types of PBN coated fibers degrade rapidly above 1350 C.

  1. Elasto-plastic bond mechanics of embedded fiber optic sensors in concrete under uniaxial tension with strain localization

    NASA Astrophysics Data System (ADS)

    Li, Qingbin; Li, Guang; Wang, Guanglun

    2003-12-01

    Brittleness of the glass core inside fiber optic sensors limits their practical usage, and therefore they are coated with low-modulus softer protective materials. Protective coatings absorb a portion of the strain, and hence part of the structural strain is sensed. The study reported here corrects for this error through development of a theoretical model to account for the loss of strain in the protective coating of optical fibers. The model considers the coating as an elasto-plastic material and formulates strain transfer coefficients for elastic, elasto-plastic and strain localization phases of coating deformations in strain localization in concrete. The theoretical findings were verified through laboratory experimentation. The experimental program involved fabrication of interferometric optical fiber sensors, embedding within mortar samples and tensile tests in a closed-loop servo-hydraulic testing machine. The elasto-plastic strain transfer coefficients were employed for correction of optical fiber sensor data and results were compared with those of conventional extensometers.

  2. Metallization of Kevlar fibers with gold.

    PubMed

    Little, Brian K; Li, Yunfeng; Cammarata, V; Broughton, R; Mills, G

    2011-06-01

    Electrochemical gold plating processes were examined for the metallization of Kevlar yarn. Conventional Sn(2+)/Pd(2+) surface activation coupled with electroless Ni deposition rendered the fibers conductive enough to serve as cathodes for electrochemical plating. The resulting coatings were quantified gravimetrically and characterized via adhesion tests together with XRD, SEM, TEM; the coatings effect on fiber strength was also probed. XRD data showed that metallic Pd formed during surface activation whereas amorphous phases and trace amounts of pure Ni metal were plated via the electroless process. Electrodeposition in a thiosulfate bath was the most efficient Au coating process as compared with the analogous electroless procedure, and with electroplating using a commercial cyanide method. Strongly adhering coatings resulted upon metallization with three consecutive electrodepositions, which produced conductive fibers able to sustain power outputs in the range of 1 W. On the other hand, metallization affected the tensile strength of the fiber and defects present in the metal deposits make questionable the effectiveness of the coatings as protective barriers. © 2011 American Chemical Society

  3. Optical fiber sensors based on nanostructured coatings fabricated by means of the layer-by-layer electrostatic self-assembly method

    NASA Astrophysics Data System (ADS)

    Arregui, Francisco J.; Matías, Ignacio R.; Claus, Richard O.

    2007-07-01

    The Layer-by-Layer Electrostatic Self-Assembly (ESA) method has been successfully used for the design and fabrication of nanostructured materials. More specifically, this technique has been applied for the deposition of thin films on optical fibers with the purpose of fabricating different types of optical fiber sensors. In fact, optical fiber sensors for measuring humidity, temperature, pH, hydrogen peroxide, glucose, volatile organic compounds or even gluten have been already experimentally demonstrated. The versatility of this technique allows the deposition of these sensing coatings on flat substrates and complex geometries as well. For instance, nanoFabry-Perots and microgratings have been formed on cleaved ends of optical fibers (flat surfaces) and also sensing coatings have been built onto long period gratings (cylindrical shape), tapered fiber ends (conical shape), biconically tapered fibers or even the internal side of hollow core fibers. Among the different materials used for the construction of these sensing nanostructured coatings, diverse types such as polymers, inorganic semiconductors, colorimetric indicators, fluorescent dyes, quantum dots or even biological elements as enzymes can be found. This technique opens the door to the fabrication of new types of optical fiber sensors.

  4. Laser pulse power transmission limits of silica fibers with antireflective coating

    NASA Astrophysics Data System (ADS)

    Meister, St.; Wosniok, A.; Seewald, G.; Scharfenorth, Ch.; Eichler, H. J.

    2005-04-01

    Multimode optical fibers are used for the transmission of high power laser pulses and as phase conjugated mirrors by stimulated Brillouin scattering. Both applications are enhanced by antireflection coatings on the fiber end-faces. Fiber transmissions reach more than 99.5% for pulse energies below the threshold of stimulated Brillouin scattering. Laser-induced damage thresholds of the fibers coated with Ta2O5 / SiO2 were measured at 1064 nm and 24 ns pulse duration. A damage threshold of up to 101 J/cm2 could be achieved. The damage morphology was investigated using atomic force microscopy and scanning electron microscopy.

  5. Tailoring Interfacial Properties by Controlling Carbon Nanotube Coating Thickness on Glass Fibers Using Electrophoretic Deposition.

    PubMed

    Tamrakar, Sandeep; An, Qi; Thostenson, Erik T; Rider, Andrew N; Haque, Bazle Z Gama; Gillespie, John W

    2016-01-20

    The electrophoretic deposition (EPD) method was used to deposit polyethylenimine (PEI) functionalized multiwall carbon nanotube (CNT) films onto the surface of individual S-2 glass fibers. By varying the processing parameters of EPD following Hamaker's equation, the thickness of the CNT film was controlled over a wide range from 200 nm to 2 μm. The films exhibited low electrical resistance, providing evidence of coating uniformity and consolidation. The effect of the CNT coating on fiber matrix interfacial properties was investigated through microdroplet experiments. Changes in interfacial properties due to application of CNT coatings onto the fiber surface with and without a CNT-modified matrix were studied. A glass fiber with a 2 μm thick CNT coating and the unmodified epoxy matrix showed the highest increase (58%) in interfacial shear strength (IFSS) compared to the baseline. The increase in the IFSS was proportional to CNT film thickness. Failure analysis of the microdroplet specimens indicated higher IFSS was related to fracture morphologies with higher levels of surface roughness. EPD enables the thickness of the CNT coating to be adjusted, facilitating control of fiber/matrix interfacial resistivity. The electrical sensitivity provides the opportunity to fabricate a new class of sizing with tailored interfacial properties and the ability to detect damage initiation.

  6. Towards seamlessly-integrated textile electronics: methods to coat fabrics and fibers with conducting polymers for electronic applications.

    PubMed

    Allison, Linden; Hoxie, Steven; Andrew, Trisha L

    2017-06-29

    Traditional textile materials can be transformed into functional electronic components upon being dyed or coated with films of intrinsically conducting polymers, such as poly(aniline), poly(pyrrole) and poly(3,4-ethylenedioxythiophene). A variety of textile electronic devices are built from the conductive fibers and fabrics thus obtained, including: physiochemical sensors, thermoelectric fibers/fabrics, heated garments, artificial muscles and textile supercapacitors. In all these cases, electrical performance and device ruggedness is determined by the morphology of the conducting polymer active layer on the fiber or fabric substrate. Tremendous variation in active layer morphology can be observed with different coating or dyeing conditions. Here, we summarize various methods used to create fiber- and fabric-based devices and highlight the influence of the coating method on active layer morphology and device stability.

  7. Design and Manufacturing of Tow-Steered Composite Shells Using Fiber Placement

    NASA Technical Reports Server (NTRS)

    Wu, K. Chauncey; Tatting, Brian F.; Smith, Brett H.; Stevens, Randy S.; Occhipiniti, Gina P.; Swift, Jonathan B.; Achary, David C.; Thornburgh, Robert P.

    2009-01-01

    Advanced composite shells that may offer the potential to improve the structural performance of future aircraft fuselage structures were developed under this joint NASA-industry collaborative effort. Two cylindrical shells with tailored, tow-steered layups and continuously varying fiber angle orientations were designed and built at the National Center for Advanced Manufacturing - Louisiana Partnership. The shells were fabricated from unidirectional IM7/8552 graphite-epoxy pre-preg slit tape material fiber-placed on a constant-diameter mandrel. Each shell had the same nominal 8-ply [plus or minus 45/plus or minus Theta]s layup, where the nominal fiber angle in the tow-steered plies varied continuously from 10 degrees along the crown to 45 degrees on each side, then back to 10 degrees on the keel. One shell was fabricated with all 24 tows placed during each pass of the fiber placement machine, resulting in many tow overlaps on the shell surface. The fiber placement machine's individual tow cut/restart capability was also used to manufacture a second shell with tow drops and a more uniform laminate thickness. This paper presents an overview of the detailed design and manufacturing processes for these shells, and discusses issues encountered during their fabrication and post-cure evaluation. Future plans for structural testing and analyses of the shells are also discussed.

  8. Cryomilling of Thermoplastic Powder for Prepreg Applications

    DTIC Science & Technology

    2013-09-01

    Cryomilling of Thermoplastic Powder for Prepreg Applications by Brian Parquette, Anit Giri, Daniel J. O’Brien, Sarah Brennan, Kyu Cho, and...MD 21005-5066 ARL-TR-6591 September 2013 Cryomilling of Thermoplastic Powder for Prepreg Applications Brian Parquette and Sarah Brennan...COVERED (From - To) 1 March 2012–30 May 2013 4. TITLE AND SUBTITLE Cryomilling of Thermoplastic Powder for Prepreg Applications 5a. CONTRACT

  9. Preparation of novel alumina nanowire solid-phase microextraction fiber coating for ultra-selective determination of volatile esters and alcohols from complicated food samples.

    PubMed

    Zhang, Zhuomin; Ma, Yunjian; Wang, Qingtang; Chen, An; Pan, Zhuoyan; Li, Gongke

    2013-05-17

    A novel alumina nanowire (ANW) solid-phase microextraction (SPME) fiber coating was prepared by a simple and rapid anodization-chemical etching method for ultra-selective determination of volatile esters and alcohols from complicated food samples. Preparation conditions for ANW SPME fiber coating including corrosion solution concentration and corrosion time were optimized in detail for better surface morphology and higher surface area based on scanning electron microscope (SEM). Under the optimum conditions, homogeneous alumina nanowire structure of ANW SPME fiber coating was achieved with the average thickness of 20 μm around. Compared with most of commercial SPME fiber coatings, ANW SPME fiber coatings achieved the higher extraction capacity and special selectivity for volatile esters and alcohols. Finally, an efficient gas sampling technique based on ANW SPME fiber coating as the core was established and successfully applied for the ultra-selective determination of trace volatile esters and alcohols from complicated banana and fermented glutinous rice samples coupled with gas chromatography/mass spectrometry (GC/MS) detection. It was interesting that 25 esters and 2 alcohols among 30 banana volatile organic compounds (VOCs) identified and 4 esters and 7 alcohols among 13 identified VOCs of fermented glutinous rice were selectively sampled by ANW SPME fiber coatings. Furthermore, new analytical methods for the determination of some typical volatile esters and alcohols from banana and fermented glutinous rice samples at specific storage or brewing phases were developed and validated. Good recoveries for banana and fermented glutinous rice samples were achieved in range of 108-115% with relative standard deviations (RSDs) of 2.6-6.7% and 80.0-91.8% with RSDs of 0.3-1.3% (n=3), respectively. This work proposed a novel and efficient gas sampling technique of ANW SPME which was quite suitable for ultra-selectively sampling trace volatile esters and alcohols from complicated food samples. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Raman Study of Uncoated and p-BN/SiC-Coated Hi-Nicalon Fiber-Reinforced Celsian Matrix Composites. Part 1; Distribution and Nanostructure of Different Phases

    NASA Technical Reports Server (NTRS)

    Gouadec, Gwenael; Colomban, Philippe; Bansal, Narottam P.

    2000-01-01

    Hi-Nicalon fiber reinforced celsian matrix composites were characterized by Raman spectroscopy and imaging, using several laser wavelengths. Composite #1 is reinforced by as-received fibers while coatings of p-BN and SiC protect the fibers in composite #2. The matrix contains traces of the hexagonal phase of celsian, which is concentrated in the neighborhood of fibers in composite #1. Some free silicon was evident in the coating of composite #2 which might involve a {BN + SiC yields BNC + Si} "reaction" at the p-BN/SiC interface. Careful analysis of C-C peaks revealed no abnormal degradation of the fiber core in the composites.

  11. Pulsed operation of Tm-doped fiber lasers using piezoelectric-driven microbend applied to elliptical coating fibers

    NASA Astrophysics Data System (ADS)

    Sakata, H.; Kimpara, K.; Komori, K.; Tomiki, M.

    2014-05-01

    We report Q-switched pulse generation in Tm-doped fiber lasers by introducing piezoelectric-driven microbend into an elliptical coating fiber in a fiber ring resonator. Compared with the untreated circular fiber having a diameter of 240 μm, the elliptical coating fiber was flattened to have a major axis diameter of about 300 μm. We employed a pair of comblike plates attached on the piezoelectric actuators in order to bend the fiber from both sides. The output pulse power is improved by optimizing the tooth-width and spatial period of the comb-like plates, so that the elliptical coating fiber is easily bent and the propagation mode is efficiently coupled to radiation modes around λ = 1.9 μm. The Tm-doped fiber is pumped by a laser diode emitting at 1.63 μm and the pump light is introduced to the fiber ring resonator via the wavelength division multiplexing coupler. The emission spectra showed that the center oscillation wavelength was typically 1.92 μm. When the pump power was increased to 156 mW, the output pulse showed a peak power of 42.5 W with a pulse width of 1.06 μs. We expect that the in-fiber Q-switching technique will provide simple laser systems for environmental sensing and medical applications.

  12. Light-triggered 5-fluorouracil release via UiO-66 coated optical fiber

    NASA Astrophysics Data System (ADS)

    Nazari, Marziyeh; Rubio-Martinez, Marta; Nazari, Fatemeh; Younis, Adel Ayad; Collins, Stephen F.; Duke, Mikel C.; Hill, Matthew R.

    2017-07-01

    UiO-66 thin film coated optical fiber end-face is fabricated and was utilized for 5-Fluorouracil (5-FU) anti-cancer medicine encapsulation and the drug was released by applying the appropriate light delivered via the optical fiber.

  13. Surface chemical analysis and ab initio investigations of CsI coated C fiber cathodes for high power microwave sources

    NASA Astrophysics Data System (ADS)

    Vlahos, Vasilios; Morgan, Dane; LaCour, Matthew; Golby, Ken; Shiffler, Don; Booske, John H.

    2010-02-01

    CsI coated C fiber cathodes are promising electron emitters utilized in field emission applications. Ab initio calculations, in conjunction with experimental investigations on CsI-spray coated C fiber cathodes, were performed in order to better understand the origin of the low turn-on E-field obtained, as compared to uncoated C fibers. One possible mechanism for lowering the turn-on E-field is surface dipole layers reducing the work function. Ab initio modeling revealed that surface monolayers of Cs, CsI, Cs2O, and CsO are all capable of producing low work function C fiber cathodes (1 eV<Φ<1.5 eV), yielding a reduction in the turn-on E-field by as much as ten times, when compared to the bare fiber. Although a CsI-containing aqueous solution is spray deposited on the C fiber surface, energy dispersive x-ray spectroscopy and scanning auger microscopy measurements show coabsorption of Cs and I into the fiber interior and Cs and O on the fiber surface, with no surface I. It is therefore proposed that a cesium oxide (CsxOy) surface coating is responsible, at least in part, for the low turn E-field and superior emission characteristics of this type of fiber cathode. This CsxOy layer could be formed during preconditioning heating. CsxOy surface layers cannot only lower the fiber work function by the formation of surface dipoles (if they are thin enough) but may also enhance surface emission through their ability to emit secondary electrons due to a process of grazing electron impact. These multiple electron emission processes may explain the reported 10-100 fold reduction in the turn-on E-field of coated C fibers.

  14. Simulation tests to assess occupational exposure to airborne asbestos from artificially weathered asphalt-based roofing products.

    PubMed

    Sheehan, Patrick; Mowat, Fionna; Weidling, Ryan; Floyd, Mark

    2010-11-01

    Historically, asbestos-containing roof cements and coatings were widely used for patching and repairing leaks. Although fiber releases from these materials when newly applied have been studied, there are virtually no useful data on airborne asbestos fiber concentrations associated with the repair or removal of weathered roof coatings and cements, as most studies involve complete tear-out of old roofs, rather than only limited removal of the roof coating or cement during a repair job. This study was undertaken to estimate potential chrysotile asbestos fiber exposures specific to these types of roofing products following artificially enhanced weathering. Roof panels coated with plastic roof cement and fibered roof coating were subjected to intense solar radiation and daily simulated precipitation events for 1 year and then scraped to remove the weathered materials to assess chrysotile fiber release and potential worker exposures. Analysis of measured fiber concentrations for hand scraping of the weathered products showed 8-h time-weighted average concentrations that were well below the current Occupational Safety and Health Administration permissible exposure limit for asbestos. There was, however, visibly more dust and a few more fibers collected during the hand scraping of weathered products compared to the cured products previously tested. There was a notable difference between fibers released from weathered and cured roofing products. In weathered samples, a large fraction of chrysotile fibers contained low concentrations of or essentially no magnesium and did not meet the spectral, mineralogical, or morphological definitions of chrysotile asbestos. The extent of magnesium leaching from chrysotile fibers is of interest because several researchers have reported that magnesium-depleted chrysotile fibers are less toxic and produce fewer mesothelial tumors in animal studies than normal chrysotile fibers.

  15. Preparation and application of the sol-gel-derived acrylate/silicone co-polymer coatings for headspace solid-phase microextraction of 2-chloroethyl ethyl sulfide in soil.

    PubMed

    Liu, Mingming; Zeng, Zhaorui; Fang, Huaifang

    2005-05-27

    Three types of novel acrylate/silicone co-polymer coatings, including co-poly(methyl acrylate/hydroxy-terminated silicone oil) (MA/OH-TSO), co-poly(methyl methacrylate/OH-TSO) (MMA/OH-TSO) and co-poly(butyl methacrylate/OH-TSO) (BMA/OH-TSO), were prepared for the first time by sol-gel method and cross-linking technology and subsequently applied to headspace solid-phase microextraction (HS-SPME) of 2-chloroethyl ethyl sulfide (CEES), a surrogate of mustard, in soil. The underlying mechanisms of the coating process were discussed and confirmed by IR spectra. The selectivity of the three types of sol-gel-derived acrylate/silicone coated fibers was studied, and the BMA/OH-TSO coated fibers exhibited the highest extraction ability to CEES. The concentration of BMA and OH-TSO in sol solution was optimized, and the BMA/OH-TSO (3:1)-coated fibers possessed the highest extraction efficiency. Compared with commercially available polyacrylate (PA) fiber, the sol-gel-derived BMA/OH-TSO (3:1) fibers showed much higher extraction efficiency to CEES. Therefore, the BMA/OH-TSO (3:1)-coated fibers were chosen for the analysis of CEES in soil matrix. The reproducibility of coating preparation was satisfactory, with the RSD 2.39% within batch and 3.52% between batches, respectively. The coatings proved to be quite stable at high temperature (to 350 degrees C) and in different solvents (organic or inorganic), thus their lifetimes (to 150 times) are longer than conventional fibers. Extraction parameters, such as the volume of water added to the soil, extraction temperature and time, and the ionic strength were optimized. The linearity was from 0.1 to 10 microg/g, the limit of detection (LOD) was 2.7 ng/g, and the RSD was 2.19%. The recovery of CEES was 88.06% in agriculture soil, 92.61% in red clay, and 101.95% in sandy soil, respectively.

  16. An electromagnetically actuated fiber optic switch using magnetized ferromagnetic materials

    NASA Astrophysics Data System (ADS)

    Pandojirao-S, Praveen; Dhaubanjar, Naresh; Phuyal, Pratibha C.; Chiao, Mu; Chiao, J.-C.

    2008-03-01

    This paper presents the design, fabrication and testing of a fiber optic switch actuated electromagnetically. The ferromagnetic gel coated optical fiber is actuated using external electromagnetic fields. The ferromagnetic gel consists of ferromagnetic powders dispersed in epoxy. The fabrication utilizes a simple cost-effective coating setup. A direct fiberto-fiber alignment eliminates the need for complementary optical parts and the displacement of fiber switches the laser coupling. The magnetic characteristics of magnetized ferromagnetic materials are performed using alternating gradient magnetometer and the magnetic hysteresis curves are measured for different ferromagnetic materials including iron, cobalt, and nickel. Optical fiber switches with various fiber lengths are actuated and their static and dynamic responses for the same volume of ferromagnetic gel are summarized. The highest displacement is 1.345 mm with an input current of 260mA. In this paper, the performance of fiber switches with various coating materials is presented.

  17. Microstructure and Tensile Properties of BN/SiC Coated Hi-Nicalon, and Sylramic SiC Fiber Preforms. Revised

    NASA Technical Reports Server (NTRS)

    Bhatt, Ramakrishna T.; Chen, Yuan L.; Morscher, Gregory N.

    2002-01-01

    Batch to batch and within batch variations, and the influence of fiber architecture on room temperature physical and tensile properties of BN/SiC coated Hi-Nicalon and Sylramic SiC fiber preform specimens were determined. The three fiber architectures studied were plain weave (PW), 5-harness satin (5HS), and 8-harness satin (8HS). Results indicate that the physical properties vary up to 10 percent within a batch, and up to 20 percent between batches of preforms. Load-reload (Hysteresis) and acoustic emission methods were used to analyze damage accumulation occurring during tensile loading. Early acoustic emission activity, before observable hysteretic behavior, indicates that the damage starts with the formation of nonbridged tunnel cracks. These cracks then propagate and intersect the load bearing "0 deg" fibers giving rise to hysteretic behavior. For the Hi-Nicalon preform specimens, the onset of "0 deg" bundle cracking stress and strain appeared to be independent of the fiber architecture. Also, the "0 deg" fiber bundle cracking strain remained nearly the same for the preform specimens of both fiber types. TEM analysis indicates that the CVI BN interface coating is mostly amorphous and contains carbon and oxygen impurities, and the CVI SiC coating is crystalline. No reaction exists between the CVI BN and SiC coating.

  18. Microstructure and Tensile Properties of BN/SiC Coated Hi-Nicalon, and Sylramic SiC Fiber Preforms

    NASA Technical Reports Server (NTRS)

    Bhatt, Ramakrishna T.; Chen, Yuan L.; Morscher, Gregory N.

    2001-01-01

    Batch to batch and within batch variations, and the influence of fiber architecture on room temperature physical and tensile properties of BN/SiC coated Hi-Nicalon and Sylramic SiC fiber preform specimens were determined. The three fiber architectures studied were plain weave (PW), 5-harness satin (5HS) and 8-harness satin (8HS) Results indicate that the physical properties vary up to 10 percent within a batch, and up to 20 percent between batches of preforms. Load-reload (Hysteresis) and acoustic emission methods were used to analyze damage accumulation occurring during tensile loading. Early acoustic emission activity, before observable hysteretic behavior, indicates that the damage starts with the formation of nonbridged tunnel cracks. These cracks then propagate and intersect the load bearing "0" fibers giving rise to hysteretic behavior, For the Hi-Nicalon preform specimens, the onset of "0" bundle cracking stress and strain appeared to be independent of the fiber architecture. Also, the "0" fiber bundle cracking strain remained nearly the same for the preform specimens of both fiber types. Transmission Electron Microscope (TEM) analysis indicates that the Chemical Vapor Infiltration (CVI) Boron Nitride (BN) interface coating is mostly amorphous and contains carbon and oxygen impurities, and the CVI SiC coating is crystalline. No reaction exists between the CVI BN and SiC coating.

  19. Effects of Fiber Coatings on Tensile Properties of Hi-Nicalon SiC/RBSN Tow Composites

    NASA Technical Reports Server (NTRS)

    Bhatt, Ramakrishna T.; Hull, David R.

    1997-01-01

    Uncoated Hi-Nicalon silicon carbide (SiC) fiber tows and those coated with a single surface layer of pyrolytic boron nitride (PBN), double layers of PBN/Si-rich PBN, and boron nitride (BN)/SiC coatings deposited by chemical vapor deposition (CVD) method were infiltrated with silicon slurry and then exposed to N2, for 4 hr at 1200 and 1400 C. Room temperature ultimate tensile fracture loads and microstructural characterization of uncoated and CVD coated Hi-Nicalon SiC fiber reinforced reaction-bonded silicon nitride (RBSN) tow composites were measured to select suitable interface coating(s) stable under RBSN processing conditions. Results indicate that room temperature ultimate fracture loads of the uncoated Hi-Nicalon SiC/RBSN tow composites nitrided at both temperatures were significantly lower than those of the uncoated Hi-Nicalon tows without slurry infiltration. In contrast, all CVD coated Hi-Nicalon SiC/RBSN tow composites retained a greater fraction of the dry tow fracture load after nitridation at 1200 C, but degraded significantly after nitridation at 1400 C. Reaction between metal impurities (Fe and Ni) present in the attrition milled silicon powder and uncoated regions of SiC fibers appears to be the probable cause for fiber degradation.

  20. Fire resistance properties of ceramic wool fiber reinforced intumescent coatings

    NASA Astrophysics Data System (ADS)

    Amir, N.; Othman, W. M. S. W.; Ahmad, F.

    2015-07-01

    This research studied the effects of varied weight percentage and length of ceramic wool fiber (CWF) reinforcement to fire retardant performance of epoxy-based intumescent coating. Ten formulations were developed using ammonium polyphosphate (APP), expandable graphite (EG), melamine (MEL) and boric acid (BA). The mixing was conducted in two stages; powdered materials were grinded in Rocklabs mortar grinder and epoxy-mixed using Caframo mixer at low speed mixing. The samples were applied on mild steel substrate and exposed to 500°C heat inside Carbolite electric furnace. The char expansion and its physical properties were observed. Scanning electron microscopy (SEM) analyses were conducted to inspect the fiber dispersion, fiber condition and the cell structure of both coatings and chars produced. Thermogravimetric analyses (TGA) were conducted to study the thermal properties of the coating such as degradation temperature and residual weight. Fire retardant performance was determined by measuring backside temperature of substrate in 1-hour, 1000°C Bunsen burner test according to UL 1709 fire regime. The results showed that intumescent coating reinforced with CWF produced better fire resistance performance. When compared to unreinforced coating, formulation S6-15 significantly reduced steel temperature at approximately 34.7% to around 175°C. However, higher fiber weight percentage had slightly decreased fire retardant performance of the coating.

  1. Structural and morphological characterization of anatase TiO 2 coating on χ-Alumina scale fiber fabricated by sol-gel dip-coating method

    NASA Astrophysics Data System (ADS)

    Nguyen, Hue Thi; Miao, Lei; Tanemura, Sakae; Tanemura, Masaki; Toh, Shoichi; Kaneko, Kenji; Kawasaki, Masahiro

    2004-10-01

    Anatase TiO 2 coatings 0.4 μm thick have been successfully fabricated by sol-gel dip-coating process on χ-Al 2O 3 fibers 100 μm by 10 cm long with a surface fish-scale. This was achieved by adjustment of the sol-gel parameters such as molar ratio of the precursors in TiO 2-sols, dip-coating time, drying duration in air, heating processes and number of cyclical repetitions of the process. Two samples were prepared using two sols containing different molar ratios of precursors. XRD, TEM, EDS and SEM characterization confirmed: (1) the similarity of the growth of anatase-TiO 2 from two sols under the optimal sol-gel parameters, (2) that the coatings are composed of aggregated crystallites of 10-25 nm in diameter, (3) the good compositional uniformity of Ti in the fabricated anatase-TiO 2 crystallites, (4) a surface covering ratio of anatase-TiO 2 around the fiber of at least 90%, and (5) that there is a good adherence of the fabricated anatase-TiO 2 layer on alumina fiber as evidenced by the lack of cracking and peeling off traces around the boundary between the coating and the fiber.

  2. Steady flow and heat transfer analysis of Phan-Thein-Tanner fluid in double-layer optical fiber coating analysis with Slip Conditions

    NASA Astrophysics Data System (ADS)

    Khan, Zeeshan; Shah, Rehan Ali; Islam, Saeed; Jan, Bilal; Imran, Muhammad; Tahir, Farisa

    2016-10-01

    Modern optical fibers require double-layer coating on the glass fiber to provide protection from signal attenuation and mechanical damage. The most important plastic resins used in wires and optical fibers are plastic polyvinyl chloride (PVC) and low-high density polyethylene (LDPE/HDPE), nylon and Polysulfone. In this paper, double-layer optical fiber coating is performed using melt polymer satisfying PTT fluid model in a pressure type die using wet-on-wet coating process. The assumption of fully developed flow of Phan-Thien-Tanner (PTT) fluid model, two-layer liquid flows of an immiscible fluid is modeled in an annular die, where the fiber is dragged at a higher speed. The equations characterizing the flow and heat transfer phenomena are solved exactly and the effects of emerging parameters (Deborah and slip parameters, characteristic velocity, radii ratio and Brinkman numbers on the axial velocity, flow rate, thickness of coated fiber optics, and temperature distribution) are reported in graphs. It is shown that an increase in the non-Newtonian parameters increase the velocity in the absence or presence of slip parameters which coincides with related work. The comparison is done with experimental work by taking λ → 0 (non-Newtonian parameter).

  3. Steady flow and heat transfer analysis of Phan-Thein-Tanner fluid in double-layer optical fiber coating analysis with Slip Conditions

    PubMed Central

    Khan, Zeeshan; Shah, Rehan Ali; Islam, Saeed; Jan, Bilal; Imran, Muhammad; Tahir, Farisa

    2016-01-01

    Modern optical fibers require double-layer coating on the glass fiber to provide protection from signal attenuation and mechanical damage. The most important plastic resins used in wires and optical fibers are plastic polyvinyl chloride (PVC) and low-high density polyethylene (LDPE/HDPE), nylon and Polysulfone. In this paper, double-layer optical fiber coating is performed using melt polymer satisfying PTT fluid model in a pressure type die using wet-on-wet coating process. The assumption of fully developed flow of Phan-Thien-Tanner (PTT) fluid model, two-layer liquid flows of an immiscible fluid is modeled in an annular die, where the fiber is dragged at a higher speed. The equations characterizing the flow and heat transfer phenomena are solved exactly and the effects of emerging parameters (Deborah and slip parameters, characteristic velocity, radii ratio and Brinkman numbers on the axial velocity, flow rate, thickness of coated fiber optics, and temperature distribution) are reported in graphs. It is shown that an increase in the non-Newtonian parameters increase the velocity in the absence or presence of slip parameters which coincides with related work. The comparison is done with experimental work by taking λ → 0 (non-Newtonian parameter). PMID:27708412

  4. Steady flow and heat transfer analysis of Phan-Thein-Tanner fluid in double-layer optical fiber coating analysis with Slip Conditions.

    PubMed

    Khan, Zeeshan; Shah, Rehan Ali; Islam, Saeed; Jan, Bilal; Imran, Muhammad; Tahir, Farisa

    2016-10-06

    Modern optical fibers require double-layer coating on the glass fiber to provide protection from signal attenuation and mechanical damage. The most important plastic resins used in wires and optical fibers are plastic polyvinyl chloride (PVC) and low-high density polyethylene (LDPE/HDPE), nylon and Polysulfone. In this paper, double-layer optical fiber coating is performed using melt polymer satisfying PTT fluid model in a pressure type die using wet-on-wet coating process. The assumption of fully developed flow of Phan-Thien-Tanner (PTT) fluid model, two-layer liquid flows of an immiscible fluid is modeled in an annular die, where the fiber is dragged at a higher speed. The equations characterizing the flow and heat transfer phenomena are solved exactly and the effects of emerging parameters (Deborah and slip parameters, characteristic velocity, radii ratio and Brinkman numbers on the axial velocity, flow rate, thickness of coated fiber optics, and temperature distribution) are reported in graphs. It is shown that an increase in the non-Newtonian parameters increase the velocity in the absence or presence of slip parameters which coincides with related work. The comparison is done with experimental work by taking λ → 0 (non-Newtonian parameter).

  5. Are we all doing it wrong? Influence of stripping and cleaving methods of laser fibers on laser lithotripsy performance.

    PubMed

    Kronenberg, Peter; Traxer, Olivier

    2015-03-01

    We assessed whether stripping and cleaving the laser fiber tip with specialized tools, namely laser fiber strippers, or ceramic or metal scissors, would influence lithotripsy performance. Laser fiber tips were stripped with a specialized laser fiber stripper or remained coated. The tips were then cleaved with metal or ceramic scissors. Laser lithotripsy experiments were performed with the 4 fiber tip combinations using an automated laser fragmentation testing system with artificial stones made of plaster of Paris or BegoStone Plus (Bego, Lincoln, Rhode Island). High frequency-low pulse energy (20 Hz and 0.5 J) and low frequency-high pulse energy (5 Hz and 2.0 J) settings were used for 30 seconds. Fissure width, depth and volume, and laser fiber tip photos were analyzed. Coated laser fiber tips always achieved significantly higher ablation volumes (sometimes greater than 50%) than stripped laser fiber tips (p <0.00001) regardless of cleaving scissor type, stone material or lithotripter setting. Coated fiber tips cleaved with metal scissors ablated as well as those cleaved with ceramic scissors (p = 0.16). However, stripped fibers were much less ablative when they were cut with metal scissors compared to ceramic scissors (p <0.00001). Harder stone material decreased ablation volume (p <0.00001). Low frequency-high pulse energy settings were an average of 3 times more ablative than high frequency-low pulse energy settings (p <0.00001). Stripping the fibers, a harder stone material and low frequency-high pulse energy settings were associated with increased fiber tip degradation. Coated laser fibers provided better lithotripsy performance and metal scissors were as good as ceramic scissors to cleave coated fibers. This knowledge may improve and simplify the way that laser lithotripsy procedures are done worldwide. Copyright © 2015 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  6. LSP Composite Susbtrate Manufacturing Processing Guide

    NASA Technical Reports Server (NTRS)

    Kovach, Daniel J.; Griess, Kenneth H.

    2013-01-01

    This document is intended to define Carbon Fiber Reinforced Plastic (CFRP) test panel configurations that can be employed for the purposes of evaluating the protection capabilities of Lightning Strike Protection (LSP) materials developed by the Aerospace Industry. The configurations are intended to provide consistent behavior in their response to simulated lightning strikes at pre-defined levels when tested by a capable vendor according to a test procedure written to enable consistent results (ref section 2.1.2). In response to an attachment of a simulated lightning strike on a CFRP panel, one can expect to see various levels of ablation and delamination, both through the thickness of the panel and with respect to the amount of panel surface area that exhibits damage. Panel configurations defined in this document include: An "unprotected" configuration 128694-1 (ref section 4.1), consisting of a cured CFRP laminate stackup of tape and fabric prepregs, coated with a typical aerospace primer and paint finishing scheme, attached to aluminum grounding bars intended to draw electrical current from the lightning attachment point to the panel edges and thus to ground. A "protected" configuration 128694-2 (ref section 4.1), wherein a layer of an LSP material form often used in the Aerospace Industry is included in the laminate stackup prior to cure. The CFRP materials, finishes and grounding arrangement for ths configuration are the same as for the "unprotected" configuration.

  7. Hollow fiber optics with improved durability for high-peak-power pulses of Q-switched Nd:YAG lasers.

    PubMed

    Matsuura, Yuji; Tsuchiuchi, Akio; Noguchi, Hiroshi; Miyagi, Mitsunobu

    2007-03-10

    To improve the damage threshold of hollow optical waveguides for transmitting Q-switched Nd:YAG laser pulses, we optimize the metallization processes for the inner coating of fibers. For silver-coated hollow fiber as the base, second, and third Nd:YAG lasers, drying silver films at a moderate temperature and with inert gas flow is found to be effective. By using this drying process, the resistance to high-peak-power optical pulse radiation is drastically improved for fibers fabricated with and without the sensitizing process. The maximum peak power transmitted in the fiber is greater than 20 MW. To improve the energy threshold of aluminum-coated hollow fibers for the fourth and fifth harmonics of Nd:YAG lasers, a thin silver film is added between the aluminum film and the glass substrate to increase adhesion of the aluminum coating. By using this primer layer, the power threshold improves to 3 MW for the fourth harmonics of a Q-switched Nd:YAG laser light.

  8. Infrared spectroscopic investigations on the distribution of residual grease on textiles

    NASA Astrophysics Data System (ADS)

    Siedler, J.; Schumacher-Hamedat, Ursula; Hoecker, Hartwig

    1992-03-01

    Surface modification of textile materials is of major importance in the modern textile industry. Several methods are commonly applied to produce a broad range of coated materials. The adhesion between the coating polymers and the textile fibers often determines the quality. Improved adhesion of the coating is achieved by a chemical bonding (covalent or ionic) between the coating materials and the textile. The efficiency,however, is dependent on the orientation of the functional groups of the outmost molecular layers of the fibers. Therefore, we have used surface sensitive methods to analyze the surface structure of proteinaceous fibers. Homopoly(aminoacid) films like poly(-(gamma) -benzyl-L-glutamate) and poly(- (Beta) -benzyl-L-aspartate) have been chosen as models for natural fibers like wool.

  9. Effect of metal coating in all-fiber acousto-optic tunable filter using torsional wave.

    PubMed

    Song, Du-Ri; Jun, Chang Su; Do Lim, Sun; Kim, Byoung Yoon

    2014-12-15

    Torsional mode acousto-optic tunable filter (AOTF) is demonstrated using a metal-coated birefringent optical fiber for an improved robustness. The changes in acoustic and optical properties of a metal-coated birefringent optical fiber induced by the thin metal coating were analyzed experimentally and theoretically. The filter wavelength shift is successfully explained as a result of combined effect of acoustic wavelength change and optical birefringence change. We also demonstrated a small form-factor configuration by coiling the fiber with 6 cm diameter without performance degradation. The center wavelength of the filter can be tuned >35 nm by changing the applied frequency, and the coupling efficiency is higher than 92% with <5 nm 3-dB bandwidth.

  10. Investigation to develop a method to apply diffusion barrier to high strength fibers

    NASA Technical Reports Server (NTRS)

    Veltri, R. D.; Paradis, R. D.; Douglas, F. C.

    1975-01-01

    A radio frequency powered ion plating process was used to apply the diffusion barriers of aluminum oxide, yttrium oxide, hafnium oxide and titanium carbide to a substrate tungsten fiber. Each of the coatings was examined as to its effect on both room temperature strength and tensile strength of the base tungsten fiber. The coated fibers were then overcoated with a nickel alloy to become single cell diffusion couples. These diffusion couples were exposed to 1093 C for 24 hours, cycled between room temperature and 1093 C, and given a thermal anneal for 100 hours at 1200 C. Tensile testing and metallographic examinations determined that the hafnium oxide coating produced the best high temperature diffusion barrier for tungsten of the four coatings.

  11. Surface and Bulk Characteristics of Cesium Iodide (CsI) coated Carbon (C) Fibers for High Power Microwave (HPM) Field Emission Cathodes

    NASA Astrophysics Data System (ADS)

    Vlahos, Vasilios; Morgan, Dane; Booske, John H.; Shiffler, Don

    2008-11-01

    CsI coated C fibers [1] are promising field emission cathodes for HPM applications. Ab initio computational modeling has shown that atomically-thin CsI coatings reduce the work function of C substrates by a surface dipole mechanism [2]. Characterization measurements of the composition and morphology of the CsI-coated C fibers are underway for determining the properties and characteristics of the following important regions of the fiber: (i) the surface on the tip of the fiber where the majority of electron emission is believed to occur, (ii) the surface covering the body of the fiber and its role on the emission properties of the system, and (iii) the interior volume of the fiber and its effects on the CsI surface re-supply process and rate. The results will be interpreted in terms of surface electronic properties and theoretical electron emission models. [1]D. Shiffler, et al., Phys. Plasmas 11 (2004) 1680. [2]V.Vlahos et al., Appl. Phys. Lett. 91 (2007) 144102.

  12. Efficient prepreg recycling at low temperatures

    NASA Astrophysics Data System (ADS)

    Pannkoke, Kord; Oethe, Marcus; Busse, Jürgen

    When manufacturing fibre reinforced plastics engineers are still confronted with a lack of experience concerning efficient recycling methods for prepreg cutting waste. Normally, the prepregs are cured and subsequently milled to use them as a filler material for polymers. However, this method is expensive and it is difficult to find applications for the milled FRP. An alternative method to recycle CFRP prepregs will be presented in this paper. Cutting the uncured prepreg waste was done by means of a saw mill which was cooled down to low temperatures. Working temperatures of -30°C are sufficient to harden the uncured resin and to achieve cuttable prepregs. Furthermore, post-curing during the cutting process is avoided with this technique. The result is a `cotton'-like matted structure with random fibre orientation and fibre length distribution. Subsequent curing was done by means of a press and an autoclave, respectively. It will be shown by means of tension and bending tests that low-temperature cutting of uncured prepregs is a way to partly conserve the high valuation of FRP during recycling. Furthermore, it offers possibilities for various applications.

  13. Interphase for ceramic matrix composites reinforced by non-oxide ceramic fibers

    NASA Technical Reports Server (NTRS)

    DiCarlo, James A. (Inventor); Bhatt, Ramakrishna (Inventor); Morscher, Gregory N. (Inventor); Yun, Hee-Mann (Inventor)

    2008-01-01

    A ceramic matrix composite material is disclosed having non-oxide ceramic fibers, which are formed in a complex fiber architecture by conventional textile processes; a thin mechanically weak interphase material, which is coated on the fibers; and a non-oxide or oxide ceramic matrix, which is formed within the interstices of the interphase-coated fiber architecture. During composite fabrication or post treatment, the interphase is allowed to debond from the matrix while still adhering to the fibers, thereby providing enhanced oxidative durability and damage tolerance to the fibers and the composite material.

  14. Fast detection of humidity with a subwavelength-diameter fiber taper coated with gelatin film.

    PubMed

    Zhang, Lei; Gu, Fuxing; Lou, Jingyi; Yin, Xuefeng; Tong, Limin

    2008-08-18

    A subwavelength-diameter tapered optical fiber coated with gelatin layer for fast relative humidity (RH) sensing is reported. The sensing element is composed of a 680-nm-diameter fiber taper coated with a 80-nm-thickness 8-mm-length gelatin layer, and is operated at a wavelength of 1550 nm. When exposed to moisture, the change in refractive index of the gelatin layer changes the mode field of the guided mode of the coated fiber, and converts a portion of power from guided mode to radiation mode, resulting in RH-dependent loss for optical sensing. The sensor is operated within a wide humidity range (9-94% RH) with high sensitivity and good reversibility. Measured response time is about 70 ms, which is one or two orders of magnitude faster than other types of RH sensors relying on conventional optical fibers or films.

  15. Optical fiber science and technology: Novel fibers and fiber sensors

    NASA Astrophysics Data System (ADS)

    Morse, T. F.

    1988-02-01

    This equipment grant has permitted the purchase of a complete optical fiber draw facility and auxilliary equipment for our fiber characterization laboratory. The draw tower has been erected in a specially prepared laboratory. It is a 7.8 m automated tower with a 20 kw carbon induction furnace, and sufficient room for two UV coating stages, or a UV coating stage, and a thermal curing stage. The tower installation took perhaps somewhat more time than initially anticipated, largely due to difficulties in the site preparation. The tower itself has been installed on a reinforced concrete pad, with appropriate vibration isolation. For about six months, we have been gaining experience in the use of the tower, and have been drawing kilometer lengths of fiber that range in diameter from 50 microns to 250 microns with a tolerance of the order of a few microns. In anticipation of expanding the coating capabilities of our draw tower, a vacuum system was purchased for use with radio frequency sputtering on-line on the tower. This will be particularly useful for ceramic coated fibers in the study of the behavior of fiber strengthened composite materials.

  16. Pyrolysis as a way to close a CFRC life cycle: Carbon fibers recovery and their use as feedstock for a new composite production

    NASA Astrophysics Data System (ADS)

    Giorgini, Loris; Benelli, Tiziana; Mazzocchetti, Laura; Leonardi, Chiara; Zattini, Giorgio; Minak, Giangiacomo; Dolcini, Enrico; Tosi, Cristian; Montanari, Ivan

    2014-05-01

    Pyrolysis is shown to be an efficient method for recycling carbon fiber composites in the form of both uncured prepregs scraps or as cured end-of-life objects. The pyrolytic process leads to different products in three physical states of matter. The gaseous fraction, called syngas, can be used as energy feedstock in the process itself. The oil fraction can be used as fuel or chemical feedstock. The solid residue contains substantially unharmed carbon fibers that can be isolated and recovered for the production of new composite materials, thus closing the life cycle of the composite in a "cradle to cradle" approach. All the pyrolysis outputs were thoroughly analyzed and characterized in terms of composition for oil and gas fraction and surface characteristics of the fibers. In particular, it is of paramount importance to correlate the aspect and properties of the fibers obtained with different composite feedstock and operational conditions, that can be significantly different, with the reinforcing performance in the newly produced Recycled Carbon Fibers Reinforced Polymers. Present results have been obtained on a pyrolysis pilot plant that offers the possibility of treating up to 70kg of materials, thus leading to a significant amount of products to be tested in the further composites production, focused mainly on chopped carbon fiber reinforcement.

  17. Autoclave processing for composite material fabrication. 1: An analysis of resin flows and fiber compactions for thin laminate

    NASA Technical Reports Server (NTRS)

    Hou, T. H.

    1985-01-01

    High quality long fiber reinforced composites, such as those used in aerospace and industrial applications, are commonly processed in autoclaves. An adequate resin flow model for the entire system (laminate/bleeder/breather), which provides a description of the time-dependent laminate consolidation process, is useful in predicting the loss of resin, heat transfer characteristics, fiber volume fraction and part dimension, etc., under a specified set of processing conditions. This could be accomplished by properly analyzing the flow patterns and pressure profiles inside the laminate during processing. A newly formulated resin flow model for composite prepreg lamination process is reported. This model considers viscous resin flows in both directions perpendicular and parallel to the composite plane. In the horizontal direction, a squeezing flow between two nonporous parallel plates is analyzed, while in the vertical direction, a poiseuille type pressure flow through porous media is assumed. Proper force and mass balances have been made and solved for the whole system. The effects of fiber-fiber interactions during lamination are included as well. The unique features of this analysis are: (1) the pressure gradient inside the laminate is assumed to be generated from squeezing action between two adjacent approaching fiber layers, and (2) the behavior of fiber bundles is simulated by a Finitely Extendable Nonlinear Elastic (FENE) spring.

  18. Effects of TiB2 Particle and Short Fiber Sizes on the Microstructure and Properties of TiB2-Reinforced Composite Coatings

    NASA Astrophysics Data System (ADS)

    Lin, Yinghua; Yao, Jianhua; Wang, Liang; Zhang, Qunli; Li, Xueqiao; Lei, Yongping; Fu, Hanguang

    2018-03-01

    In this study, particle and short fiber-reinforced titanium matrix composite coatings are prepared via laser in situ technique using (0.5 and 50 μm) TiB2 and Ti powder as cladding materials. The microstructure and properties of the composite coatings are studied, and the changing mechanism of the microstructure is discussed. The results reveal that particle agglomeration is prone to appear with using fine TiB2 particles. Decomposition of the particles preferentially occurs with using coarse TiB2 particles. The cracks and pores on the surface of the coating are formed at a lower laser energy density. With the increase in the laser energy density, cracking on the surface of the coating diminishes, but the coating exhibits depression behavior. The depression extent of the coating using fine TiB2 particle as the reinforcement is much less than that of the coating using coarse TiB2 particle. Moreover, the size of the aggregate and the tendency of cracking can be reduced with the increase in Ti addition. Meanwhile, short TiB fiber bundles are formed by the diffusion mechanism of rod aggregate, and randomly oriented TiB short fibers are formed mainly by the dissolution-precipitation mechanism of fine TiB2 particles. Moreover, the growth of short TiB fibers can be in an alternating manner between B27 and Bf structures. The micro-hardness and wear resistance of the coatings are evidently higher than that of the titanium alloy substrate. The wear resistance of the large size TiB2 coating is higher than that of the small size TiB2 coating under the condition of low load.

  19. Damage Behaviors and Compressive Strength of Toughened CFRP Laminates with Thin Plies Subjected to Transverse Impact Loadings

    NASA Astrophysics Data System (ADS)

    Yokozeki, Tomohiro; Aoki, Yuichiro; Ogasawara, Toshio

    It has been recognized that damage resistance and strength properties of CFRP laminates can be improved by using thin-ply prepregs. This study investigates the damage behaviors and compressive strength of CFRP laminates using thin-ply and standard prepregs subjected to out-of-plane impact loadings. CFRP laminates used for the evaluation are prepared using the standard prepregs, thin-ply prepregs, and combinations of the both. Weight-drop impact test and post-impact compression test of quasi-isotropic laminates are performed. It is shown that the damage behaviors are different between the thin-ply and the standard laminates, and the compression-after-impact strength is improved by using thin-ply prepregs. Effects of the use of thin-ply prepregs and the layout of thin-ply layers on the damage behaviors and compression-after-impact properties are discussed based on the experimental results.

  20. Porous protective solid phase micro-extractor sheath

    DOEpatents

    Andresen, Brian D.; Randich, Erik

    2005-03-29

    A porous protective sheath for active extraction media used in solid phase microextraction (SPME). The sheath permits exposure of the media to the environment without the necessity of extending a fragile coated fiber from a protective tube or needle. Subsequently, the sheath can pierce and seal with GC-MS septums, allowing direct injection of samples into inlet ports of analytical equipment. Use of the porous protective sheath, within which the active extraction media is contained, mitigates the problems of: 1) fiber breakage while the fiber is extended during sampling, 2) active media coating loss caused by physical contact of the bare fiber with the sampling environment; and 3) coating slough-off during fiber extension and retraction operations caused by rubbing action between the fiber and protective needle or tube.

  1. The honey insertion cladding to improve the sensitivity of temperature polymer optical fiber sensor

    NASA Astrophysics Data System (ADS)

    Arwani, M.; Kuswanto, H.

    2018-04-01

    The sensitivity of temperature polymer optical fiber (POF) sensor has been studied. Part of cladding (9 cm) was substituted with honey. Polymer cladding was stripped mechanically and the honey inserted into the tube. Plastic gel closed the two end sides of the tubes. The optical power output was detected by Optical Power Meter (OPM). Honey cladding and temperature changing effect to the internal reflection and optical fiber output intensity. Highest output intensity changing at 20°C was shown by optical fiber coated by longan honey as cladding. The range of 10-50° C, as the rise of surroundings temperature, the attenuation was getting smaller. Best sensitivity was fiber with sensing part coated by Longan honey. Best linearity was sensing fiber with sensing part coated by Pracimantoro honey.

  2. Precipitation Coating of Monazite on Woven Ceramic Fibers: 1. Feasibility (Postprint)

    DTIC Science & Technology

    2007-02-01

    08 Aug 2006. Paper contains color . 14. ABSTRACT Monazite coatings were deposited on woven cloths and tows of NextelTM 610 fibers by heterogeneous...by dissolving concentrated phosphoric acid ( Fish - er Scientific Co., Pittsburgh, PA) or a combination of lantha- num nitrate (Aldrich Chemical Co...Boccaccini, P. Karapappas, J. M. Marijuan, and C. Kaya, ‘‘ TiO2 Coat- ings on Silicon Carbide Fiber Substrates by Electrophoretic Deposition,’’ J.Mater. Sci

  3. Fiber optics structural mechanics and nanotechnology based new generation of fiber coatings

    NASA Astrophysics Data System (ADS)

    Suhir, E.

    2006-02-01

    This paper consists of two parts - review and extension. The review part deals with typical fiber optics structures (bare, single- and dual-coated fibers; fibers experiencing low temperature micro-bending; fibers soldered into ferrules or adhesively bonded into capillaries; role of the non-linear stress-strain relationship, etc.) subjected to thermally induced and/or mechanical loading in bending, tension, compression, or to various combinations of such loadings. The emphasis is on the state-of-the-art in the area of optical fiber coatings and the functional (optical), mechanical and environmental problems that occur in polymer-coated or metallized fibers. The solutions to the examined problems are obtained using analytical methods (predictive models) of structural mechanics. The review is based primarily on the author's research conducted at Bell Laboratories, Murray Hill, NJ, during his eighteen years tenure with this company. The extension part addresses a new generation of optical fiber coatings and deals with the application of a newly developed (by the ERS/Siloptix Co.) nano-particle material (NPM) that is used as an attractive substitute for the existing optical fiber coatings. This NPM-based coating has all the merits of polymer and metal coatings, but is free of their shortcomings. The developed material is an unconventional inhomogeneous "smart" composite material, which is equivalent to a homogeneous material with the following major properties: low Young's modulus, immunity to corrosion, good-to-excellent adhesion to adjacent material(s), non-volatile, stable properties at temperature extremes (from -220°C to +350°C), very long (practically infinite) lifetime, "active" hydrophobicity - the material provides a moisture barrier (to both water and water vapor), and, if necessary, can even "wick" moisture away from the contact surface; ability for "self-healing" and "healing": the NPM is able to restore its own dimensions, when damaged, and is able to fill existing or developed defects (cracks and other "imperfections") in contacted surfaces; very low (near unity) effective refractive index (if needed). NPM can be designed, depending on the application, to enhance those properties most important. NPM properties have been confirmed through testing. The tests have demonstrated the outstanding mechanical reliability, extraordinary environmental durability and, in particular applications, improved optical performance of the light guide.

  4. Synthesis and adsorption properties of hollow tubular alumina fibers

    NASA Astrophysics Data System (ADS)

    Lozhkomoev, A. S.; Kazantsev, S. O.; Glazkova, E. A.

    2017-12-01

    In this study, composite glass fibers coated with alumina nanoplates and hollow tubular alumina fibers with a diameter of 400-500 nm are synthesized based on glass fiber templated hydrothermal strategy. Porous coatings on glass fibers and hollow fibers consist of cross-linked alumina nanoplates with the size of 100-200 nm and thickness of 2-5 nm. Their formation is attributed to the template-induced heterogeneous growth of alumina nanoplates on glass fibers of the B-06-F type. It is important that composite glass fibers and hollow tubular fibers have opposite surface charges and exhibit selective sorption characteristics towards anionic and cationic dyes.

  5. Preparing polymeric matrix composites using an aqueous slurry technique

    NASA Technical Reports Server (NTRS)

    Johnston, Norman J. (Inventor); Towell, Timothy W. (Inventor)

    1993-01-01

    An aqueous process was developed to prepare a consolidated composite laminate from an aqueous slurry. An aqueous poly(amic acid) surfactant solution was prepared by dissolving a poly(amic acid) powder in an aqueous ammonia solution. A polymeric powder was added to this solution to form a slurry. The slurry was deposited on carbon fiber to form a prepreg which was dried and stacked to form a composite laminate. The composite laminate was consolidated using pressure and was heated to form the polymeric matrix. The resulting composite laminate exhibited high fracture toughness and excellent consolidation.

  6. Development of SiC/SiC composites by PIP in combination with RS

    NASA Astrophysics Data System (ADS)

    Kotani, Masaki; Kohyama, Akira; Katoh, Yutai

    2001-02-01

    In order to improve the mechanical performances of SiC/SiC composite, process improvement and modification of polymer impregnation and pyrolysis (PIP) and reaction sintering (RS) process were investigated. The fibrous prepregs were prepared by a polymeric intra-bundle densification technique using Tyranno-SA™ fiber. For inter-bundle matrix, four kinds of process options utilizing polymer pyrolysis and reaction sintering were studied. The process conditions were systematically optimized through fabricating monoliths. Then, SiC/SiC composites were fabricated using optimized inter-bundle matrix slurries in each process for the first inspection of process requirements.

  7. Improved coating for silica fiber based ceramic Reusable Surface Insulation (CRSI)

    NASA Technical Reports Server (NTRS)

    Ormiston, T. J.

    1974-01-01

    A series of coatings was developed for the space shuttle type silica fiber insulation system and characterized for optical and physical properties. Reentry simulation tests were run using a radiant panel and also using a hypersonic plasma arc. The coatings produced had improved physical and optical properties as well as greater reuse capability over the GE version of the JSC-0042 coating.

  8. Effect of сopper сoating on fibers made of aluminum alloy, titanium, and FeCrAl alloy on surface morphology and activity in CO oxidation

    NASA Astrophysics Data System (ADS)

    Lukiyanchuk, I. V.; Rudnev, V. S.; Serov, M. M.; Krit, B. L.; Lukiyanchuk, G. D.; Nedozorov, P. M.

    2018-04-01

    The catalytic activity of both copper fibers and copper-coated fibers of a diameter of 50-100 μm made of aluminum alloy, technical grade titanium, and FeCrAl alloy in CO oxidation has been estimated. Metal fibers have been fabricated by the method of pendant drop melt extraction (PDME). The fibers copper plating was carried out by chemical and electrochemical methods. The composition and structure of samples and coatings before and after catalytic tests have been characterized by the methods of scanning electron microscopy, energy-dispersive analysis, and X-ray fluorescence analysis. It has been shown that the catalytic activity of copper-coated fibers made of FeCrAl alloy in the reaction of CO oxidation is not inferior to that of copper fibers.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Weizhao; Ren, Huaqing; Lu, Jie

    This paper reports several characterization methods of the properties of the uncured woven prepreg during the preforming process. The uniaxial tension, bias-extension, and bending tests are conducted to measure the in-plane properties of the material. The friction tests utilized to reveal the prepreg-prepreg and prepreg-forming tool interactions. All these tests are performed within the temperature range of the real manufacturing process. The results serve as the inputs to the numerical simulation for the product prediction and preforming process parameter optimization.

  10. Preparation of thick silica coatings on carbon fibers with fine-structured silica nanotubes induced by a self-assembly process.

    PubMed

    Baumgärtner, Benjamin; Möller, Hendrik; Neumann, Thomas; Volkmer, Dirk

    2017-01-01

    A facile method to coat carbon fibers with a silica shell is presented in this work. By immobilizing linear polyamines on the carbon fiber surface, the high catalytic activity of polyamines in the sol-gel-processing of silica precursors is used to deposit a silica coating directly on the fiber's surface. The surface localization of the catalyst is achieved either by attaching short-chain polyamines (e.g., tetraethylenepentamine) via covalent bonds to the carbon fiber surface or by depositing long-chain polyamines (e.g., linear poly(ethylenimine)) on the carbon fiber by weak non-covalent bonding. The long-chain polyamine self-assembles onto the carbon fiber substrate in the form of nanoscopic crystallites, which serve as a template for the subsequent silica deposition. The silicification at close to neutral pH is spatially restricted to the localized polyamine and consequently to the fiber surface. In case of the linear poly(ethylenimine), silica shells of several micrometers in thickness can be obtained and their morphology is easily controlled by a considerable number of synthesis parameters. A unique feature is the hierarchical biomimetic structure of the silica coating which surrounds the embedded carbon fiber by fibrillar and interconnected silica fine-structures. The high surface area of the nanostructured composite fiber may be exploited for catalytic applications and adsorption purposes.

  11. Femtosecond FBG Written through the Coating for Sensing Applications.

    PubMed

    Habel, Joé; Boilard, Tommy; Frenière, Jean-Simon; Trépanier, François; Bernier, Martin

    2017-11-02

    Type I fiber Bragg gratings (FBG) written through the coating of various off-the-shelf silica fibers with a femtosecond laser and the phase-mask technique are reported. Inscription through most of the common coating compositions (acrylate, silicone and polyimide) is reported as well as writing through the polyimide coating of various fiber cladding diameters, down to 50 µm. The long term annealing behavior of type I gratings written in a pure silica core fiber is also reported as well as a comparison of the mechanical resistance of type I and II FBG. The high mechanical resistance of the resulting type I FBG is shown to be useful for the fabrication of various distributed FBG arrays written using a single period phase-mask. The strain sensing response of such distributed arrays is also presented.

  12. Hot forming of composite prepreg : Experimental study

    NASA Astrophysics Data System (ADS)

    Tardif, Xavier; Duthille, Bertrand; Bechtel, Stephane; le Pinru, Louis; Campagne, Benjamin; Destombes, Gautier; Deshors, Antoine; Marchand, Christophe; Azzouzi, Khalid El; Moro, Tanguy

    2017-10-01

    The hot forming of thermoset prepreg consists in bending an uncured composite part by applying a mechanical constrain on the hot laminate. Most of the time, the mold is inserted in a vacuum box and the mechanical constrain is applied on the composite laminate by a single membrane or a double-membrane. But the performance improvement products resulted in forming increasingly complex parts with advanced materials having a less formability. These new complex parts require a finer comprehension of the process and an optimization of the key parameters to get acceptable quality. In this work, an experimental study has been carried out to identify the process conditions that do not lead to unacceptable defaults: undulations of fibers. In the present study, downward-bending has been evaluated with an original light mechanical forming concept, for a given stacking sequence. The influence of the part's temperature and the part's bending speed are investigated. To carry this study out, a hot forming test bench has been designed and manufactured to have a precise supervision of the process conditions. It is able to bend parts of 1500 mm length x 600 mm width x 20 mm thick.

  13. Moisture sensor based on evanescent wave light scattering by porous sol-gel silica coating

    DOEpatents

    Tao, Shiquan; Singh, Jagdish P.; Winstead, Christopher B.

    2006-05-02

    An optical fiber moisture sensor that can be used to sense moisture present in gas phase in a wide range of concentrations is provided, as well techniques for making the same. The present invention includes a method that utilizes the light scattering phenomenon which occurs in a porous sol-gel silica by coating an optical fiber core with such silica. Thus, a porous sol-gel silica polymer coated on an optical fiber core forms the transducer of an optical fiber moisture sensor according to an embodiment. The resulting optical fiber sensor of the present invention can be used in various applications, including to sense moisture content in indoor/outdoor air, soil, concrete, and low/high temperature gas streams.

  14. Temperature and refractive index measurement based on a coating-enhanced dual-microspheric fiber sensor

    NASA Astrophysics Data System (ADS)

    Ju, Yao; Ning, Shougui; Sun, Huijin; Mo, Jun; Yang, Chao; Feng, Guoying; Zhou, Hao; Zhou, Shouhuan

    2018-07-01

    We propose and demonstrate a coating-enhanced dual-microspheric structure fiber sensor that measures temperature and refractive index simultaneously. The claddings of the two microspheric structured fibers are spliced together and the ends of the fibers are coated with a layer of gold film to increase reflection, thereby forming a dual-microspheric structure sensor head. Our experimental results show that the temperature sensitivity and the refractive index can reach 65.77 pm °C‑1 and  ‑19.7879 nm RIU‑1, respectively. Compared with the uncoated sensor, the refractive index sensitivity is significantly improved by the gold film. This work suggests a low-cost, high-resolution and convenient fiber-based method to achieve multifunctional sensing applications.

  15. Effects of sterilization methods on key properties of specialty optical fibers used in medical devices

    NASA Astrophysics Data System (ADS)

    Stolov, Andrei A.; Slyman, Brian E.; Burgess, David T.; Hokansson, Adam S.; Li, Jie; Allen, R. Steve

    2013-03-01

    Optical fibers with different types of polymer coatings were exposed to three sterilization conditions: multiple autoclaving, treatment with ethylene oxide and treatment with gamma rays. Effects of different sterilization techniques on key optical and mechanical properties of the fibers are reported. The primary attention is given to behavior of the coatings in harsh sterilization environments. The following four coating/buffer types were investigated: (i) dual acrylate, (ii) polyimide, (iii) silicone/PEEK and (iv) fluoroacrylate hard cladding/ETFE.

  16. Femtosecond laser direct-write of optofluidics in polymer-coated optical fiber

    NASA Astrophysics Data System (ADS)

    Joseph, Kevin A. J.; Haque, Moez; Ho, Stephen; Aitchison, J. Stewart; Herman, Peter R.

    2017-03-01

    Multifunctional lab in fiber technology seeks to translate the accomplishments of optofluidic, lab on chip devices into silica fibers. a robust, flexible, and ubiquitous optical communication platform that can underpin the `Internet of Things' with distributed sensors, or enable lab on chip functions deep inside our bodies. Femtosecond lasers have driven significant advances in three-dimensional processing, enabling optical circuits, microfluidics, and micro-mechanical structures to be formed around the core of the fiber. However, such processing typically requires the stripping and recoating of the polymer buffer or jacket, increasing processing time and mechanically weakening the device. This paper reports on a comprehensive assessment of laser damage in urethane-acrylate-coated fiber. The results show a sufficient processing window is available for femtosecond laser processing of the fiber without damaging the polymer jacket. The fiber core, cladding, and buffer could be simultaneously processed without removal of the buffer jacket. Three-dimensional lab in fiber devices were successfully fabricated by distortion-free immersionlens focusing, presenting fiber-cladding optical circuits and progress towards chemically-etched channels, microfluidic cavities, and MEMS structure inside buffer-coated fiber.

  17. Feasibility on fiber orientation detection on unidirectional CFRP composite laminates using nondestructive evaluation techniques

    NASA Astrophysics Data System (ADS)

    Yang, In-Young; Kim, Ji-Hoon; Cha, Cheon-Seok; Lee, Kil-Sung; Hsu, David K.; Im, Kwang-Hee

    2007-07-01

    In particular, CFRP (carbon fiber reinforced plastics) composite materials have found wide applicability because of their inherent design flexibility and improved material properties. CFRP composites were manufactured from uni-direction prepreg sheet in this paper. It is important to assess fiber orientation, material properties and part defect in order to ensure product quality and structural integrity of CFRP because strength and stiffness of composites depend on fiber orientation. It is desirable to perform nondestructive evaluation which is very beneficial. An new method for nondestructively determining the fiber orientation in a composite laminate is presented. A one-sided pitch-catch setup was used in the detection and evaluation of flaws and material anomalies in the unidirectional CFRP composite laminates. Two Rayleigh wave transducers were joined head-to-head and used in the pitch-catch mode on the surface of the composites. The pitch-catch signal was found to be more sensitive than normal incidence backwall echo of longitudinal wave to subtle flaw conditions in the composite. Especially, ultrasonic waves were extensively characterized in the CFRP composite laminates both normal to fiber and along to fiber with using a one-sided direction of Rayleigh wave transducers. Also, one-sided ultrasonic measurement was made with using a Rayleigh wave transducers and a conventional scanner was used in an immersion tank for extracting fiber orientation information from the ultrasonic reflection in the unidirectional laminate. Therefore, it is thought that the proposed method is useful to evaluate integrity of CFRP laminates.

  18. Effect of Reinforcement Using Stainless Steel Mesh, Glass Fibers, and Polyethylene on the Impact Strength of Heat Cure Denture Base Resin - An In Vitro Study.

    PubMed

    Murthy, H B Mallikarjuna; Shaik, Sharaz; Sachdeva, Harleen; Khare, Sumit; Haralur, Satheesh B; Roopa, K T

    2015-06-01

    The impact strength of denture base resin is of great concern and many approaches have been made to strengthen acrylic resin dentures. The objective of this study was to compare the impact strength of the denture base resin with and without reinforcement and to evaluate the impact strength of denture base resin when reinforced with stainless steel mesh, glass fiber, and polyethylene fibers in the woven form. The specimens (maxillary denture bases) were fabricated using a standard polyvinylsiloxane mold with conventional heat cured polymethyl methacrylate resin. The specimens were divided into four groups (n = 10). Group I specimens or control group were not reinforced. Group II specimens were reinforced with stainless steel mesh and Group III and Group IV specimens were reinforced with three percent by weight of glass fibers and polyethylene fibers in weave form respectively. All the specimens were immersed in water for 1-week before testing. The impact strength was measured with falling weight impact testing machine. One-way analysis of variance and Tukey's post-hoc test were used for statistical analysis. Highest impact strength values were exhibited by the specimens reinforced with polyethylene fibers followed by glass fibers, stainless steel mesh, and control group. Reinforcement of maxillary complete dentures showed a significant increase in impact strength when compared to unreinforced dentures. Polyethylene fibers exhibit better impact strength followed by glass fibers and stainless steel mesh. By using pre-impregnated glass and polyethylene fibers in woven form (prepregs) the impact strength of the denture bases can be increased effectively.

  19. Coated Fused Silica Fibers for Enhanced Sensitivity Torsion Pendulum

    NASA Technical Reports Server (NTRS)

    Numata, Kenji; Horowitz, Jordan; Camp, Jordan

    2007-01-01

    In order to investigate the fundamental thermal noise limit of a torsion pendulum using a fused silica fiber, we systematically measured and modeled the mechanical losses of thin fused silica fibers coated by electrically conductive thin metal films. Our results indicate that it is possible to achieve a thermal noise limit for coated silica lower by a factor between 3 and 9, depending on the silica diameter, compared to the best tungsten fibers available. This will allow a corresponding increase in sensitivity of torsion pendula used for weak force measurements, including the gravitational constant measurement and ground-based force noise testing for the Laser Interferometer Space Antenna (LISA) mission.

  20. Detection of volatile organic compounds using an optical fiber sensor coated with a sol-gel silica layer containing immobilized Nile red

    NASA Astrophysics Data System (ADS)

    Liu, Dejun; Lian, Xiaokang; Mallik, Arun Kumar; Han, Wei; Wei, Fangfang; Yuan, Jinhui; Yu, Chongxiu; Farrell, Gerald; Semenova, Yuliya; Wu, Qiang

    2017-04-01

    A simple volatile organic compound (VOC) sensor based on a tapered small core singlemode fiber (SCSMF) structure is reported. The tapered SCSMF fiber structure with a waist diameter of 7.0 μm is fabricated using a customized microheater brushing technique. Silica based material containing immobilized Nile red was prepared by a sol-gel method and was used as a coating applied to the surface of the tapered fiber structure. Different coating thicknesses created by a 2-pass and 4-pass coating process are investigated. The experiments demonstrate that both sensors show a linear response at different gas concentrations to all three tested VOCs (methanol, ethanol and acetone). The sensor with a thicker coating shows better sensitivities but longer response and recovery times. The best measurement resolutions for the 4-pass coating sensor are estimated to be 2.3 ppm, 1.5 ppm and 3.1 ppm for methanol, ethanol and acetone, respectively. The fastest response and recovery time of 1 min and 5 min are demonstrated by the sensor in the case of methanol.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sweet, William J.; Oldham, Christopher J.; Parsons, Gregory N., E-mail: parsons@ncsu.edu

    Flexible electronics and wearable technology represent a novel and growing market for next generation devices. In this work, the authors deposit conductive zinc oxide films by atomic layer deposition onto nylon-6 nonwoven fiber mats and spun-cast films, and quantify the impact that deposition temperature, coating thickness, and aluminum doping have on the conductivity of the coated substrates. The authors produce aluminum doped zinc oxide (AZO) coated fibers with conductivity of 230 S/cm, which is ∼6× more conductive than ZnO coated fibers. Furthermore, the authors demonstrate AZO coated fibers maintain 62% of their conductivity after being bent around a 3 mm radius cylinder.more » As an example application, the authors fabricate an “all-fiber” pressure sensor using AZO coated nylon-6 electrodes. The sensor signal scales exponentially under small applied force (<50 g/cm{sup 2}), yielding a ∼10{sup 6}× current change under 200 g/cm{sup 2}. This lightweight, flexible, and breathable touch/force sensor could function, for example, as an electronically active nonwoven for personal or engineered system analysis and diagnostics.« less

  2. Detection device for high explosives

    DOEpatents

    Grey, Alan E.; Partin, Judy K.; Stone, Mark L.; Von Wandruszka, Ray M.; Reagen, William K.; Ingram, Jani C.; Lancaster, Gregory D.

    1992-01-01

    A portable fiber optic detector that senses the presence of specific target chemicals by electrostatically attracting the target chemical to an aromatic compound coating on an optical fiber. Attaching the target chemical to the coated fiber reduces the fluorescence so that a photon sensing detector records the reduced light level and activates an appropriate alarm or indicator.

  3. Properties of carbon fibers with various coatings

    NASA Technical Reports Server (NTRS)

    Seegel, V.; Mcmahon, P.

    1983-01-01

    It is shown that all high modulus carbon fibers are durable with respect to thermal oxidation in air. Among the more widely used and economical materials with low modulus, Celion displays particularly good oxidative durability at high temperatures. This contrast to other materials is due to the low content of Natrium and Kalium in Celion carbon fibers. It is also noted that improved characteristics are attained in Celion carbon fiber/polyimide systems when fibers are used with high temperature resistant polyimide coatings.

  4. The Influence of Interfacial Roughness on Fiber Sliding in Oxide Composites with La-Monazite Interphases

    NASA Technical Reports Server (NTRS)

    Davis, J. B.; Hay, R. S.; Marshall, D. B.; Morgan, P. E. D.; Sayir, A.; Gray, Hugh R. (Technical Monitor); Farmer, Serene C. (Technical Monitor)

    2002-01-01

    Room temperature debonding and sliding of La-Monazite coated fibers is assessed using a composite with a polycrystalline alumina matrix and fibers of several different single crystal (mullite, sapphire) and directionally solidified eutectic (Al2O3/Y3Al5O12 and Al2O3/Y-ZrO2) compositions. These fibers provide a range of residual stresses and interfacial roughnesses. Sliding occurred over a debond crack at the fiber-coating interface when the sliding displacement and surface roughness were relatively small. At large sliding displacements with relatively rough interfaces, the monazite coatings were deformed extensively by fracture, dislocations and occasional twinning, whereas the fibers were undamaged. Dense, fine-grained (10 nm) microstructures suggestive of dynamic recrystallization were also observed in the coatings. Frictional heating during sliding is assessed. The possibility of low temperature recrystallization is discussed in the light of the known resistance of monazite to radiation damage. The ability of La-Monazite to undergo plastic deformation relatively easily at low temperatures may be enabling for its use as a composite interface.

  5. Characterisation of Ductile Prepregs

    NASA Astrophysics Data System (ADS)

    Pinto, F.; White, A.; Meo, M.

    2013-04-01

    This study is focused on the analysis of micro-perforated prepregs created from standard, off the shelf prepregs modified by a particular laser process to enhance ductility of prepregs for better formability and drapability. Fibres are shortened through the use of laser cutting in a predetermined pattern intended to maintain alignment, and therefore mechanical properties, yet increase ductility at the working temperature. The increase in ductility allows the product to be more effectively optimised for specific forming techniques. Tensile tests were conducted on several specimens in order to understand the ductility enhancement offered by this process with different micro-perforation patterns over standard prepregs. Furthermore, the effects of forming temperature was also analysed to assess the applicability of this material to hot draping techniques and other heated processes.

  6. Preparation of thick silica coatings on carbon fibers with fine-structured silica nanotubes induced by a self-assembly process

    PubMed Central

    Baumgärtner, Benjamin; Möller, Hendrik; Neumann, Thomas

    2017-01-01

    A facile method to coat carbon fibers with a silica shell is presented in this work. By immobilizing linear polyamines on the carbon fiber surface, the high catalytic activity of polyamines in the sol–gel-processing of silica precursors is used to deposit a silica coating directly on the fiber’s surface. The surface localization of the catalyst is achieved either by attaching short-chain polyamines (e.g., tetraethylenepentamine) via covalent bonds to the carbon fiber surface or by depositing long-chain polyamines (e.g., linear poly(ethylenimine)) on the carbon fiber by weak non-covalent bonding. The long-chain polyamine self-assembles onto the carbon fiber substrate in the form of nanoscopic crystallites, which serve as a template for the subsequent silica deposition. The silicification at close to neutral pH is spatially restricted to the localized polyamine and consequently to the fiber surface. In case of the linear poly(ethylenimine), silica shells of several micrometers in thickness can be obtained and their morphology is easily controlled by a considerable number of synthesis parameters. A unique feature is the hierarchical biomimetic structure of the silica coating which surrounds the embedded carbon fiber by fibrillar and interconnected silica fine-structures. The high surface area of the nanostructured composite fiber may be exploited for catalytic applications and adsorption purposes. PMID:28685115

  7. Femtosecond FBG Written through the Coating for Sensing Applications

    PubMed Central

    Habel, Joé; Boilard, Tommy; Frenière, Jean-Simon; Bernier, Martin

    2017-01-01

    Type I fiber Bragg gratings (FBG) written through the coating of various off-the-shelf silica fibers with a femtosecond laser and the phase-mask technique are reported. Inscription through most of the common coating compositions (acrylate, silicone and polyimide) is reported as well as writing through the polyimide coating of various fiber cladding diameters, down to 50 µm. The long term annealing behavior of type I gratings written in a pure silica core fiber is also reported as well as a comparison of the mechanical resistance of type I and II FBG. The high mechanical resistance of the resulting type I FBG is shown to be useful for the fabrication of various distributed FBG arrays written using a single period phase-mask. The strain sensing response of such distributed arrays is also presented. PMID:29099077

  8. Deeply-etched micromirror with vertical slit and metallic coating enabling transmission-type optical MEMS filters

    NASA Astrophysics Data System (ADS)

    Othman, Muhammad A.; Sabry, Yasser M.; Sadek, Mohamed; Nassar, Ismail M.; Khalil, Diaa A.

    2016-03-01

    In this work we report a novel optical MEMS deeply-etched mirror with metallic coating and vertical slot, where the later allows reflection and transmission by the micromirror. The micromirror as well as fiber grooves are fabricated using deep reactive ion etching technology, where the optical axis is in-plane and the components are self-aligned. The etching depth is 150 μm chosen to improve the micromirror optical throughput. The vertical optical structure is Al metal coated using the shadow mask technique. A fiber-coupled Fabry-Pérot filter is successfully realized using the fabricated structure. Experimental measurements were obtained based on a dielectric-coated optical fiber inserted into a fiber groove facing the slotted micromirror. A versatile performance in terms of the free spectral range and 3-dB bandwidth is achieved.

  9. Rapid in situ growth of oriented titanium-nickel oxide composite nanotubes arrays coated on a nitinol wire as a solid-phase microextraction fiber coupled to HPLC-UV.

    PubMed

    Zhen, Qi; Zhang, Min; Song, Wenlan; Wang, Huiju; Wang, Xuemei; Du, Xinzhen

    2016-10-01

    An oriented titanium-nickel oxide composite nanotubes coating was in situ grown on a nitinol wire by direct electrochemical anodization in ethylene glycol with ammonium fluoride and water for the first time. The morphology and composition of the resulting coating showed that the anodized nitinol wire provided a titania-rich coating. The titanium-nickel oxide composite nanotubes coated fiber was used for solid-phase microextraction of different aromatic compounds coupled to high-performance liquid chromatography with UV detection. The titanium-nickel oxide composite nanotubes coating exhibited high extraction capability, good selectivity, and rapid mass transfer for weakly polar UV filters. Thereafter the important parameters affecting extraction efficiency were investigated for solid-phase microextraction of UV filters. Under the optimized conditions, the calibration curves were linear in the range of 0.1-300 μg/L for target UV filters with limits of detection of 0.019-0.082 μg/L. The intraday and interday precision of the proposed method with the single fiber were 5.3-7.2 and 5.9-7.9%, respectively, and the fiber-to-fiber reproducibility ranged from 6.3 to 8.9% for four fibers fabricated in different batches. Finally, its applicability was evaluated by the extraction and determination of target UV filters in environmental water samples. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Process for making silicon carbide reinforced silicon carbide composite

    NASA Technical Reports Server (NTRS)

    Lau, Sai-Kwing (Inventor); Calandra, Salavatore J. (Inventor); Ohnsorg, Roger W. (Inventor)

    1998-01-01

    A process comprising the steps of: a) providing a fiber preform comprising a non-oxide ceramic fiber with at least one coating, the coating comprising a coating element selected from the group consisting of carbon, nitrogen, aluminum and titanium, and the fiber having a degradation temperature of between 1400.degree. C. and 1450.degree. C., b) impregnating the preform with a slurry comprising silicon carbide particles and between 0.1 wt % and 3 wt % added carbon c) providing a cover mix comprising: i) an alloy comprising a metallic infiltrant and the coating element, and ii) a resin, d) placing the cover mix on at least a portion of the surface of the porous silicon carbide body, e) heating the cover mix to a temperature between 1410.degree. C. and 1450.degree. C. to melt the alloy, and f) infiltrating the fiber preform with the melted alloy for a time period of between 15 minutes and 240 minutes, to produce a ceramic fiber reinforced ceramic composite.

  11. Silicon carbide reinforced silicon carbide composite

    NASA Technical Reports Server (NTRS)

    Lau, Sai-Kwing (Inventor); Calandra, Salvatore J. (Inventor); Ohnsorg, Roger W. (Inventor)

    2001-01-01

    This invention relates to a process comprising the steps of: a) providing a fiber preform comprising a non-oxide ceramic fiber with at least one coating, the coating comprising a coating element selected from the group consisting of carbon, nitrogen, aluminum and titanium, and the fiber having a degradation temperature of between 1400.degree. C. and 1450.degree. C., b) impregnating the preform with a slurry comprising silicon carbide particles and between 0.1 wt % and 3 wt % added carbon c) providing a cover mix comprising: i) an alloy comprising a metallic infiltrant and the coating element, and ii) a resin, d) placing the cover mix on at least a portion of the surface of the porous silicon carbide body, e) heating the cover mix to a temperature between 1410.degree. C. and 1450.degree. C. to melt the alloy, and f) infiltrating the fiber preform with the melted alloy for a time period of between 15 minutes and 240 minutes, to produce a ceramic fiber reinforced ceramic composite.

  12. Investigation of the effects of NaOH dopant level on the physical and mechanical properties of carbon/phenolic composite material

    NASA Technical Reports Server (NTRS)

    Clinton, R. G., Jr.

    1985-01-01

    The near-catastrophic erosion of the STS-8A solid rocket booster nozzle was the instigating factor in the recent, and on-going, intensive investigation of carbon/phenolic composite materials. Much of this effort has been focused on the effect of sodium contamination on the carbon fibers. It is known that sodium acts as a catalyst in the oxidation of the fibers at elevated temperatures. A study was undertaken to determine what changes were caused by variation in sodium content. Investigations were conducted in three areas: (1) phenolic resin; (2) carbon/phenolic prepreg; and (3) cured laminates. Due to the exploratory nature of the studies, a variety of tests in addition to those normally run in production facilities were considered. The experimental methodologies and results of these experiments are discussed, and recommendations for improving techniques and extending the research program are presented.

  13. Non-destructive evaluation of porosity and its effect on mechanical properties of carbon fiber reinforced polymer composite materials

    NASA Astrophysics Data System (ADS)

    Bhat, M. R.; Binoy, M. P.; Surya, N. M.; Murthy, C. R. L.; Engelbart, R. W.

    2012-05-01

    In this work, an attempt is made to induce porosity of varied levels in carbon fiber reinforced epoxy based polymer composite laminates fabricated using prepregs by varying the fabrication parameters such as applied vacuum, autoclave pressure and curing temperature. Different NDE tools have been utilized to evaluate the porosity content and correlate with measurable parameters of different NDE techniques. Primarily, ultrasonic imaging and real time digital X-ray imaging have been tried to obtain a measurable parameter which can represent or reflect the amount of porosity contained in the composite laminate. Also, effect of varied porosity content on mechanical properties of the CFRP composite materials is investigated through a series of experimental investigations. The outcome of the experimental approach has yielded interesting and encouraging trend as a first step towards developing an NDE tool for quantification of effect of varied porosity in the polymer composite materials.

  14. Characterization of polymer composites during autoclave manufacturing by Fourier transform Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Farquharson, Stuart; Smith, Wayne W.; Rigas, Elias J.; Granville, Dana

    2001-02-01

    12 The superior engineering properties of fiber reinforced polymer matrix composites, primarily the high strength-to- weight ratio, make them suitable to applications ranging from sporting goods to aircraft components (e.g. helicopter blades). Unfortunately, consistent fabrication of components with desired mechanical properties has proven difficult, and has led to high production costs. This is largely due to the inability to monitor and control polymer cure, loosely defined as the process of polymer chain extension and cross- linking. Even with stringent process control, slight variations in the pre-polymer formulations (e.g. prepreg) can influence reaction rates, reaction mechanisms, and ultimately, product properties. In an effort to optimize the performance of thermoset composite, we have integrated fiber optic probes between the plies of laminates and monitored cure by Raman spectroscopy, with the eventual goal of process control. Here we present real-time measurements of two high performance aerospace companies cured within an industrial autoclave.

  15. Design and Analysis of Tow-Steered Composite Shells Using Fiber Placement

    NASA Technical Reports Server (NTRS)

    Wu, K. Chauncey

    2008-01-01

    In this study, a sub-scale advanced composite shell design is evaluated to determine its potential for use on a future aircraft fuselage. Two composite shells with the same nominal 8-ply [+/-45/+/-Theta](sub s) layup are evaluated, where Theta indicates a tow-steered ply. To build this shell, a fiber placement machine would be used to steer unidirectional prepreg tows as they are placed around the circumference of a 17-inch diameter right circular cylinder. The fiber orientation angle varies continuously from 10 degrees (with respect to the shell axis of revolution) at the crown, to 45 degrees on the side, and back to 10 degrees on the keel. All 24 tows are placed at each point on every fiber path in one structure designated as the shell with overlaps. The resulting pattern of tow overlaps causes the laminate thickness to vary between 8 and 16 plies. The second shell without tow overlaps uses the capability of the fiber placement machine to cut and add tows at any point along the fiber paths to fabricate a shell with a nearly uniform 8-ply laminate thickness. Issues encountered during the design and analysis of these shells are presented and discussed. Static stiffness and buckling loads of shells with tow-steered layups are compared with the performance of a baseline quasi-isotropic shell using both finite element analyses and classical strength of materials theory.

  16. Amine-functionalized MIL-53(Al)-coated stainless steel fiber for efficient solid-phase microextraction of synthetic musks and organochlorine pesticides in water samples.

    PubMed

    Xie, Lijun; Liu, Shuqin; Han, Zhubing; Jiang, Ruifen; Zhu, Fang; Xu, Weiqin; Su, Chengyong; Ouyang, Gangfeng

    2017-09-01

    The fiber coating is the key part of the solid-phase microextraction (SPME) technique, and it determines the sensitivity, selectivity, and repeatability of the analytical method. In this work, amine (NH 2 )-functionalized material of Institute Lavoisier (MIL)-53(Al) nanoparticles were successfully synthesized, characterized, and applied as the SPME fiber coating for efficient sample pretreatment owing to their unique structures and excellent adsorption properties. Under optimized conditions, the NH 2 -MIL-53(Al)-coated fiber showed good precision, low limits of detection (LODs) [0.025-0.83 ng L -1 for synthetic musks (SMs) and 0.051-0.97 ng L -1 for organochlorine pesticides (OCPs)], and good linearity. Experimental results showed that the NH 2 -MIL-53(Al) SPME coating was solvent resistant and thermostable. In addition, the extraction efficiencies of the NH 2 -MIL-53(Al) coating for SMs and OCPs were higher than those of commercially available SPME fiber coatings such as polydimethylsiloxane, polydimethylsiloxane-divinylbenzene, and polyacrylate. The reasons may be that the analytes are adsorbed on NH 2 -MIL-53(Al) primarily through π-π interactions, electron donor-electron acceptor interactions, and hydrogen bonds between the analytes and organic linkers of the material. Direct immersion (DI) SPME-gas chromatography-mass spectrometry methods based on NH 2 -MIL-53(Al) were successfully applied for the analysis of tap and river water samples. The recoveries were 80.3-115% for SMs and 77.4-117% for OCPs. These results indicate that the NH 2 -MIL-53(Al) coating may be a promising alternative to SPME coatings for the enrichment of SMs and OCPs.

  17. Absorbing TiOx thin film enabling laser welding of polyurethane membranes and polyamide fibers

    PubMed Central

    Amberg, Martin; Haag, Alexander; Storchenegger, Raphael; Rupper, Patrick; Lehmeier, Frederike; Rossi, René M; Hegemann, Dirk

    2015-01-01

    We report on the optical properties of thin titanium suboxide (TiOx) films for applications in laser transmission welding of polymers. Non-absorbing fibers were coated with TiOx coatings by reactive magnetron sputtering. Plasma process parameters influencing the chemical composition and morphology of the deposited thin films were investigated in order to optimize their absorption properties. Optical absorption spectroscopy showed that the oxygen content of the TiOx coatings is the main parameter influencing the optical absorbance. Overtreatment (high power plasma input) of the fiber surface leads to high surface roughness and loss of mechanical stability of the fiber. The study shows that thin substoichiometric TiOx films enable the welding of very thin polyurethane membranes and polyamide fibers with improved adhesion properties. PMID:27877837

  18. Absorbing TiOx thin film enabling laser welding of polyurethane membranes and polyamide fibers

    NASA Astrophysics Data System (ADS)

    Amberg, Martin; Haag, Alexander; Storchenegger, Raphael; Rupper, Patrick; Lehmeier, Frederike; Rossi, René M.; Hegemann, Dirk

    2015-10-01

    We report on the optical properties of thin titanium suboxide (TiOx) films for applications in laser transmission welding of polymers. Non-absorbing fibers were coated with TiOx coatings by reactive magnetron sputtering. Plasma process parameters influencing the chemical composition and morphology of the deposited thin films were investigated in order to optimize their absorption properties. Optical absorption spectroscopy showed that the oxygen content of the TiOx coatings is the main parameter influencing the optical absorbance. Overtreatment (high power plasma input) of the fiber surface leads to high surface roughness and loss of mechanical stability of the fiber. The study shows that thin substoichiometric TiOx films enable the welding of very thin polyurethane membranes and polyamide fibers with improved adhesion properties.

  19. Absorbing TiO x thin film enabling laser welding of polyurethane membranes and polyamide fibers.

    PubMed

    Amberg, Martin; Haag, Alexander; Storchenegger, Raphael; Rupper, Patrick; Lehmeier, Frederike; Rossi, René M; Hegemann, Dirk

    2015-10-01

    We report on the optical properties of thin titanium suboxide (TiO x ) films for applications in laser transmission welding of polymers. Non-absorbing fibers were coated with TiO x coatings by reactive magnetron sputtering. Plasma process parameters influencing the chemical composition and morphology of the deposited thin films were investigated in order to optimize their absorption properties. Optical absorption spectroscopy showed that the oxygen content of the TiO x coatings is the main parameter influencing the optical absorbance. Overtreatment (high power plasma input) of the fiber surface leads to high surface roughness and loss of mechanical stability of the fiber. The study shows that thin substoichiometric TiO x films enable the welding of very thin polyurethane membranes and polyamide fibers with improved adhesion properties.

  20. Dynamic response of tapered optical multimode fiber coated with carbon nanotubes for ethanol sensing application.

    PubMed

    Shabaneh, Arafat; Girei, Saad; Arasu, Punitha; Mahdi, Mohd; Rashid, Suraya; Paiman, Suriati; Yaacob, Mohd

    2015-05-04

    Ethanol is a highly combustible chemical universally designed for biomedical applications. In this paper, optical sensing performance of tapered multimode fiber tip coated with carbon nanotube (CNT) thin film towards aqueous ethanol with different concentrations is investigated. The tapered optical multimode fiber tip is coated with CNT using drop-casting technique and is annealed at 70 °C to enhance the binding of the nanomaterial to the silica fiber tip. The optical fiber tip and the CNT sensing layer are micro-characterized using FESEM and Raman spectroscopy techniques. When the developed sensor was exposed to different concentrations of ethanol (5% to 80%), the sensor reflectance reduced proportionally. The developed sensors showed high sensitivity, repeatability and fast responses (<55 s) towards ethanol.

  1. Dynamic Response of Tapered Optical Multimode Fiber Coated with Carbon Nanotubes for Ethanol Sensing Application

    PubMed Central

    Shabaneh, Arafat; Girei, Saad; Arasu, Punitha; Mahdi, Mohd; Rashid, Suraya; Paiman, Suriati; Yaacob, Mohd

    2015-01-01

    Ethanol is a highly combustible chemical universally designed for biomedical applications. In this paper, optical sensing performance of tapered multimode fiber tip coated with carbon nanotube (CNT) thin film towards aqueous ethanol with different concentrations is investigated. The tapered optical multimode fiber tip is coated with CNT using drop-casting technique and is annealed at 70 °C to enhance the binding of the nanomaterial to the silica fiber tip. The optical fiber tip and the CNT sensing layer are micro-characterized using FESEM and Raman spectroscopy techniques. When the developed sensor was exposed to different concentrations of ethanol (5% to 80%), the sensor reflectance reduced proportionally. The developed sensors showed high sensitivity, repeatability and fast responses (<55 s) towards ethanol. PMID:25946634

  2. Method of preparation of novel fiber reinforced titanium diboride composite bodies and uses therefor

    DOEpatents

    Newkirk, L.C.; Riley, R.E.; Valencia, F.A.; Wallace, T.C. Sr.

    Cloth is coated with titanium diboride in a chemical vapor deposition reaction under particular coating conditions which result in a uniform coating on the individual filaments making up the cloth fiber bundles. The coated cloth can be used as deposited as electrodes, for example, or can be hot pressed to form highly spall-resistant structures having special utility in fusion reactors, for example, as wall armor.

  3. Enhancing the Stiffness of Electrospun Nanofiber Scaffolds with Controlled Surface Coating and Mineralization

    PubMed Central

    Liu, Wenying; Yeh, Yi-Chun; Lipner, Justin; Xie, Jingwei; Sung, Hsing-Wen; Thomopoulos, Stavros; Xia, Younan

    2011-01-01

    A new method was developed to coat hydroxyapatite (HAp) onto electrospun poly(lactic-co-glycolic acid) (PLGA) nanofibers for tendon-to-bone insertion site repair applications. Prior to mineralization, chitosan and heparin were covalently immobilized onto the surface of the fibers to accelerate the nucleation of bone-like HAp crystals. Uniform coatings of HAp were obtained by immersing the nanofiber scaffolds into a modified 10 times concentrated simulated body fluid (m10SBF) for different periods of time. The new method resulted in thicker and denser coatings of mineral on the fibers compared to previously reported methods. Scanning electron microscopy measurements confirmed the formation of nanoscale HAp particles on the fibers. Mechanical property assessment demonstrated higher stiffness with respect to previous coating methods. A combination of the nanoscale fibrous structure and bone-like mineral coating could mimic the structure, composition, and function of mineralized tissues. PMID:21710996

  4. Effects of Coating and Diametric Load on Fiber Bragg Gratings as Cryogenic Temperature Sensors

    NASA Technical Reports Server (NTRS)

    Wu, meng-Chou; Pater, Ruth H.; DeHaven, Stanton L.

    2008-01-01

    Cryogenic temperature sensing was demonstrated using pressurized fiber Bragg gratings (PFBGs) with polymer coating of various thicknesses. The PFBG was obtained by applying a small diametric load to a regular fiber Bragg grating (FBG). The Bragg wavelengths of FBGs and PFBG were measured at temperatures from 295 K to 4.2 K. The temperature sensitivities of the FBGs were increased by the polymer coating. A physical model was developed to relate the Bragg wavelength shifts to the thermal expansion coefficients, Young's moduli, and thicknesses of the coating polymers. When a diametric load of no more than 15 N was applied to a FBG, a pressure-induced transition occurred at 200 K during the cooling cycle. The pressure induced transition yielded PFBG temperature sensitivities three times greater than conventional FBGs for temperatures ranging from 80 to 200 K, and ten times greater than conventional fibers for temperatures below 80 K. PFBGs were found to produce an increased Bragg wavelength shift of 2.2 nm compared to conventional FBGs over the temperature range of 4.2 to 300 K. This effect was independent of coating thickness and attributed to the change of the fiber thermo-optic coefficient.

  5. Continuous fiber reinforced mesh bond coat for environmental barrier coating system

    DOEpatents

    Zhang, James; Das, Rupak; Roberts III, Herbert Chidsey; Delvaux, John McConnell

    2017-09-26

    A gas turbine blade may have a bond coat applied to its surface. A porous substrate may be applied to the bond layer and one or more protective layers may be applied to the bond layer such that the fiber mesh is embedded between the bond layer and the protective layer to prevent creep.

  6. Advanced Microelectronics and Materials Programs

    DTIC Science & Technology

    1991-12-01

    of SiC /Si 3N 4 ceramic upon pyrolysis . This material was used to produce adherent coatings on a variety of substrates, and also infiltration ...the areas of Fiber Fabrication, Coatings and Infiltration , Composite Fabrication, and Physical/Mechanical Properties. Significant accomplishments...projects in the areas of Fiber Fabrication, Coatings and Infiltration , Composite Fabrication, and Physical/Mechanical Properties. Significant

  7. Fundamental research on spiking, recovery and understanding seed coat nep counts in AFIS analysis of pre-opened cotton

    USDA-ARS?s Scientific Manuscript database

    Understanding seed coat fragment (SCF) spiking results in Advanced Fiber Information Systems (AFIS) analysis of seed coat neps (SCN) in ginned cottons was confounded by side processes in the system such as particle crushing that results in inflated recoveries. A high degree of machine (AFIS)-fiber ...

  8. Chemical Silver Coating of Fiber Tips in Near-Field Scanning Optical Microscopy

    NASA Technical Reports Server (NTRS)

    Vikram, Chandra S.; Witherow, William K.

    1998-01-01

    We report what is believed to be the first experimental demonstration of silver coating by a wet chemical process on tapered fiber tips used in near-field scanning optical microscopy. The process is at room temperature and pressure and takes only a few minutes to complete. Many tips can be simultaneously coated.

  9. Laser pulse transmission and damage threshold of silica fibers with antireflective coatings

    NASA Astrophysics Data System (ADS)

    Meister, Stefan; Wosniok, Alexander; Riesbeck, Thomas; Scharfenorth, Chris; Eichler, Hans J.

    2005-03-01

    Standard 200 μm multimode fibers with Ta2O5/SiO2 antireflective coatings reach a transmission of more than 99.5% below the threshold of stimulated Brillouin scattering. The laser-induced damage threshold measured at 1064 nm and 24 ns pulse duration was about half than the LIDT of uncoated fibers.

  10. Detection device for high explosives

    DOEpatents

    Grey, A.E.; Partin, J.K.; Stone, M.L.; Von Wandruszka, R.M.; Reagen, W.K.; Ingram, J.C.; Lancaster, G.D.

    1992-10-20

    A portable fiber optic detector is described that senses the presence of specific target chemicals by electrostatically attracting the target chemical to an aromatic compound coating on an optical fiber. Attaching the target chemical to the coated fiber reduces the fluorescence so that a photon sensing detector records the reduced light level and activates an appropriate alarm or indicator. 5 figs.

  11. Guanidine Soaps As Vehicles For Coating Ceramic Fibers

    NASA Technical Reports Server (NTRS)

    Philipp, Warren H.; Veitch, Lisa C.; Jaskowiak, Martha H.

    1994-01-01

    Soaps made from strong organic base guanidine and organic fatty acids serve as vehicles and binders for coating ceramic fibers, various smooth substrates, and other problematic surfaces with thin precious-metal or metal-oxide films. Films needed to serve as barriers to diffusion in fiber/matrix ceramic composite materials. Guanidine soaps entirely organic and burn off, leaving no residues.

  12. Plasmonic Fiber Optic Refractometric Sensors: From Conventional Architectures to Recent Design Trends

    PubMed Central

    Klantsataya, Elizaveta; Jia, Peipei; Ebendorff-Heidepriem, Heike; Monro, Tanya M.; François, Alexandre

    2016-01-01

    Surface Plasmon Resonance (SPR) fiber sensor research has grown since the first demonstration over 20 year ago into a rich and diverse field with a wide range of optical fiber architectures, plasmonic coatings, and excitation and interrogation methods. Yet, the large diversity of SPR fiber sensor designs has made it difficult to understand the advantages of each approach. Here, we review SPR fiber sensor architectures, covering the latest developments from optical fiber geometries to plasmonic coatings. By developing a systematic approach to fiber-based SPR designs, we identify and discuss future research opportunities based on a performance comparison of the different approaches for sensing applications. PMID:28025532

  13. Optical fiber characteristics and standards; Proceedings of the Meeting, Cannes, France, November 25-27, 1985

    NASA Technical Reports Server (NTRS)

    Bouillie, Remy (Editor)

    1986-01-01

    Papers are presented on outside vapor deposition, the plasma activated CVD process for large scale production of telecommunication fibers, axial lateral plasma deposition technology from plastic clad silica, coatings for optical fibers, primary coating characterization, and radiation-induced time dependent attenuation in a fiber. Topics discussed include fibers with high tensile strength, the characteristics and specifications of airborne fiber optic components, the baseband frequency response of multimode fibers, and fibers for local and broadband networks. Consideration is given to industrial measurements for single mode and multimode fibers, the characterization of source power distribution in a multimode fiber by a splice offset technique, the measurement of chromatic dispersion in a single mode optical, and the effect of temperature on the refracted near-field optical fiber profiling technique.

  14. Experimental Investigation of Widespread Delamination Damage to Composite Materials Caused by Radiant Heating

    DTIC Science & Technology

    2013-06-30

    Rev. E) 2002. 7. RM-3002 Bismaleimide (BMI) Prepreg , Product Information, Renegade Materials Corporation, Revision Date: 16-May-2012 KOA 16... prepregs /polyimide- prepregs . Renegade Materials Corporation Website, Accessed June 20, 2013. 9. Shen, C. and G.S. Springer, “Moisture Absorption and

  15. Resin-Powder Dispenser

    NASA Technical Reports Server (NTRS)

    Standfield, Clarence E.

    1994-01-01

    Resin-powder dispenser used at NASA's Langley Research Center for processing of composite-material prepregs. Dispenser evenly distributes powder (resin polymer and other matrix materials in powder form) onto wet uncured prepregs. Provides versatility in distribution of solid resin in prepreg operation. Used wherever there is requirement for even, continuous distribution of small amount of powder.

  16. Gasifiable carbon-graphite fibers

    NASA Technical Reports Server (NTRS)

    Humphrey, Marshall F. (Inventor); Ramohalli, Kumar N. R. (Inventor); Dowler, Warren L. (Inventor)

    1982-01-01

    Fine, carbon-graphite fibers do not combust during the combustion of a composite and are expelled into the air as fine conductive particles. Coating of the fibers with a salt of a metal having a work function below 4.2 eV such as an alkaline earth metal salt, e.g., calcium acetate, catalytically enhances combustion of the fibers at temperatures below 1000.degree. C. such that the fibers self-support combustion and burn to produce a non-conductive ash. Fire-polishing the fibers before application of the coating is desirable to remove sizing to expose the carbon surface to the catalyst.

  17. Interfacial reactions in titanium/SCS fiber composites during fabrication

    NASA Technical Reports Server (NTRS)

    Warrier, S. G.; Lin, R. Y.

    1993-01-01

    The objectrive of the study was to determine the effect of titanium concentration and different pyrocarbon fiber coatings on the morphology and the extent of fiber-matrix reactions in Ti/SiC composites fabricated by rapid infrared forming (RIF). It is found that the extent of fiber-matrix reactions in Ti/SiC composites fabricated by the RIF technique is noticeably affected by both an increase in Ti content and by the processing temperature. Uncoated SiC fibers extensively react with the titanium alloy matrix at 1200 C, whereas no reaction occurs when coated SiC fibers are used.

  18. Low temperature and UV curable sol-gel coatings for long lasting optical fiber biosensors

    NASA Astrophysics Data System (ADS)

    Otaduy, D.; Villar, A.; Gomez-Herrero, E.; Goitandia, A. M.; Gorritxategi, E.; Quintana, I.

    2010-04-01

    The use of optical fibers as sensing element is increasing in clinical, pharmaceutical and industrial applications. Excellent light delivery, long interaction length, low cost and ability not only to excite the target molecules but also to capture the emitted light from the targets are the hallmarks of optical fiber as biosensors. In biosensors based on fiber optics the interaction with the analyte can occur within an element of the optical fiber. One of the techniques for this kind of biosensors is to remove the fiber optic cladding and substitute it for biological coatings that will interact with the parameter to sensorize. The deposition of these layers can be made by sol-gel technology. The sol-gel technology is being increasingly used mainly due to the high versatility to tailor their optical features. Incorporation of suitable chemical and biochemical sensing agents have allowed determining pH, gases, and biochemical species, among others. Nonetheless, the relatively high processing temperatures and short lifetime values mean severe drawbacks for a successful exploitation of sol-gel based coated optical fibres. With regard to the latter, herein we present the design, preparation and characterization of novel sol-gel coated optical fibres. Low temperature and UV curable coating formulations were optimized to achieve a good adhesion and optical performance. The UV photopolymerizable formulation was comprised by glycidoxypropyltrimethoxysilane (GLYMO), Tetraethylorthosilicate (TEOS) and an initiator. While the thermoset coating was prepared by using 3-aminopropyltrimethoxysilane, GLYMO, and TEOS as main reagents. Both curable sol-gel coated fibres were analysed by FTIR, SEM and optical characterization. Furthermore, in the present work a new technique for silica cladding removal has been developed by ultra-short pulses laser processing, getting good dimensional accuracy and surface integrity.

  19. Conductive paper fabricated by layer-by-layer assembly of polyelectrolytes and ITO nanoparticles

    NASA Astrophysics Data System (ADS)

    Peng, C. Q.; Thio, Y. S.; Gerhardt, R. A.

    2008-12-01

    A new salt-free approach was developed for fabricating conductive paper by layer-by-layer (LBL) assembly of conductive indium tin oxide (ITO) nanoparticles and polyelectrolytes onto wood fibers. Subsequent to the coating procedure, the fibers were manufactured into conductive paper using traditional paper making methods. The wood fibers were first coated with polyethyleneimine (PEI) and then LBL assembled with poly(sodium 4-styrenesulfonate) (PSS) and ITO for several bilayers. The surface charge intensity of both the ITO nanoparticles and the coated wood fibers were evaluated by measuring the ζ-potential of the nanoparticles and short fibers, respectively. The ITO nanoparticles were found to preferentially aggregate on defects on the fiber surfaces and formed interconnected paths, which led to the formation of conductive percolation paths throughout the whole paper. With ten bilayer coatings, the as-made paper was made DC conductive, and its σdc was measured to be 5.2 × 10-6 S cm-1 in the in-plane (IP) direction, while the conductivity was 1.9 × 10-8 S cm-1 in the through-the-thickness (TT) direction. The percolation phenomena in these LBL-assembled ITO-coated paper fibers was evaluated using scanning electron microscopy (SEM), current atomic force microscopy (I-AFM), and impedance measurements. The AC electrical properties are reported for frequencies ranging from 0.01 Hz to 1 MHz. A clear transition from insulating to conducting behavior is observed in the AC conductivity.

  20. Thermal Properties of Hybrid Carbon Nanotube/Carbon Fiber Polymer

    NASA Technical Reports Server (NTRS)

    Kang, Jin Ho; Cano, Roberto J.; Luong, Hoa; Ratcliffe, James G.; Grimsley, Brian W.; Siochi, Emilie J.

    2016-01-01

    Carbon fiber reinforced polymer (CFRP) composites possess many advantages for aircraft structures over conventional aluminum alloys: light weight, higher strength- and stiffness-to-weight ratio, and low life-cycle maintenance costs. However, the relatively low thermal and electrical conductivities of CFRP composites are deficient in providing structural safety under certain operational conditions such as lightning strikes. One possible solution to these issues is to interleave carbon nanotube (CNT) sheets between conventional carbon fiber (CF) composite layers. However, the thermal and electrical properties of the orthotropic hybrid CNT/CF composites have not been fully understood. In this study, hybrid CNT/CF polymer composites were fabricated by interleaving layers of CNT sheets with Hexcel (Registered Trademark) IM7/8852 prepreg. The CNT sheets were infused with a 5% solution of a compatible epoxy resin prior to composite fabrication. Orthotropic thermal and electrical conductivities of the hybrid polymer composites were evaluated. The interleaved CNT sheets improved the in-plane thermal conductivity of the hybrid composite laminates by about 400% and the electrical conductivity by about 3 orders of magnitude.

  1. Composite Properties of Polyimide Resins Made From "Salt-Like" Solution Precursors

    NASA Technical Reports Server (NTRS)

    Cano, Roberto J.; Weiser, Erik S.; SaintClair, Terry L.; Echigo, Yoshiaki; Kaneshiro, Hisayasu

    1997-01-01

    Recent work in high temperature materials at NASA Langley Research Center (LaRC (trademark)) have led to the development of new polyimide resin systems with very attractive properties. The majority of the work done with these resin systems has concentrated on determining engineering mechanical properties of composites prepared from a poly(amide acid) precursor. Three NASA Langley-developed polyimide matrix resins, LaRC (trademark) -IA, LaRC (trademark) -IAX, and LaRC (trademark) -8515, were produced via a salt-like process developed by Unitika Ltd. The 'salt-like' solutions (sixty-five percent solids in NMP) were prepregged onto Hexcel IM7 carbon fiber using the NASA LaRC Multipurpose Tape Machine. Process parameters were determined and composite panels fabricated. Mechanical properties are presented for these three intermediate modulus carbon fiber/polyimide matrix composites and compared to existing data on the same polyimide resin systems and IM7 carbon fiber manufactured via poly(amide acid) solutions (thirty-five percent solids in NMP). This work studies the effects of varying the synthetic route on the processing and mechanical properties of polyimide composites.

  2. Simulating squeeze flows in multiaxial laminates using an improved TIF model

    NASA Astrophysics Data System (ADS)

    Ibañez, R.; Abisset-Chavanne, Emmanuelle; Chinesta, Francisco

    2017-10-01

    Thermoplastic composites are widely considered in structural parts. In this paper attention is paid to squeeze flow of continuous fiber laminates. In the case of unidirectional prepregs, the ply constitutive equation is modeled as a transversally isotropic fluid, that must satisfy both the fiber inextensibility as well as the fluid incompressibility. When laminate is squeezed the flow kinematics exhibits a complex dependency along the laminate thickness requiring a detailed velocity description through the thickness. In a former work the solution making use of an in-plane-out-of-plane separated representation within the PGD - Poper Generalized Decomposition - framework was successfully accomplished when both kinematic constraints (inextensibility and in-compressibility) were introduced using a penalty formulation for circumventing the LBB constraints. However, such a formulation makes difficult the calculation on fiber tractions and compression forces, the last required in rheological characterizations. In this paper the former penalty formulation is substituted by a mixed formulation that makes use of two Lagrange multipliers, while addressing the LBB stability conditions within the separated representation framework, questions never until now addressed.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    MANDELL, JOHN F.; SAMBORSKY, DANIEL D.; CAIRNS, DOUGLAS

    This report presents the major findings of the Montana State University Composite Materials Fatigue Program from 1997 to 2001, and is intended to be used in conjunction with the DOE/MSU Composite Materials Fatigue Database. Additions of greatest interest to the database in this time period include environmental and time under load effects for various resin systems; large tow carbon fiber laminates and glass/carbon hybrids; new reinforcement architectures varying from large strands to prepreg with well-dispersed fibers; spectrum loading and cumulative damage laws; giga-cycle testing of strands; tough resins for improved structural integrity; static and fatigue data for interply delamination; andmore » design knockdown factors due to flaws and structural details as well as time under load and environmental conditions. The origins of a transition to increased tensile fatigue sensitivity with increasing fiber content are explored in detail for typical stranded reinforcing fabrics. The second focus of the report is on structural details which are prone to delamination failure, including ply terminations, skin-stiffener intersections, and sandwich panel terminations. Finite element based methodologies for predicting delamination initiation and growth in structural details are developed and validated, and simplified design recommendations are presented.« less

  4. Morphological control of inter-penetrating polymer networks

    NASA Technical Reports Server (NTRS)

    Hansen, Marion

    1989-01-01

    Synthetic organic polymer chemistry has been successful in producing composition of matter with thermal oxidation stability and progressively higher glass transition temperatures. In part, this was done by increasing the steric-hindrance of moieties in the chain of a macromolecule. The resulting polymers are usually quite insoluble and produce molten polymers of very high viscosities. These types of polymers are not easily processed into graphite fiber prepregs by melt or solution impregnation methods. Hence, a technological need exists to produce new knowledge of how to produce polymer-fiber composites from this class of polymers. The concept of freeze drying amic-acid prepolymers with reactive thermoplastic was proposed as a research topic for the ASEE/NASA Summer Faculty Program of 1989 as a means of producing polymer-fiber composites. This process scheme has the thermodynamic attribute that the magnitude of phase separation due to differences in solubility of two organic constituents in solution will be greatly reduced by removing a solvent not by evaporation but by sublimation. Progress to date on evaluating this polymer processing concept is briefly outlined.

  5. Mechanics of Unidirectional Fiber-Reinforced Composites: Buckling Modes and Failure Under Compression Along Fibers

    NASA Astrophysics Data System (ADS)

    Paimushin, V. N.; Kholmogorov, S. A.; Gazizullin, R. K.

    2018-01-01

    One-dimensional linearized problems on the possible buckling modes of an internal or peripheral layer of unidirectional multilayer composites with rectilinear fibers under compression in the fiber direction are considered. The investigations are carried out using the known Kirchhoff-Love and Timoshenko models for the layers. The binder, modeled as an elastic foundation, is described by the equations of elasticity theory, which are simplified in accordance to the model of a transversely soft layer and are integrated along the transverse coordinate considering the kinematic coupling relations for a layer and foundation layers. Exact analytical solutions of the problems formulated are found, which are used to calculate a composite made of an HSE 180 REM prepreg based on a unidirectional carbon fiber tape. The possible buckling modes of its internal and peripheral layers are identified. Calculation results are compared with experimental data obtained earlier. It is concluded that, for the composite studied, the flexural buckling of layers in the uniform axial compression of specimens along fibers is impossible — the failure mechanism is delamination with buckling of a fiber bundle according to the pure shear mode. It is realized (due to the low average transverse shear modulus) at the value of the ultimate compression stress equal to the average shear modulus. It is shown that such a shear buckling mode can be identified only on the basis of equations constructed using the Timoshenko shear model to describe the deformation process of layers.

  6. A Novel Method for Depositing Precious Metal Films on Difficult Surfaces

    NASA Technical Reports Server (NTRS)

    Veitch, L. C.; Phillip, W. H.

    1994-01-01

    A guanidine-based vehicle was developed to deposit precious metal coatings on surfaces known to be difficult to coat. To demonstrate this method, a platinum coating was deposited on alumina fibers using a guanidine-platinum solution. X-ray diffraction confirmed that the only species present in the coating was platinum and that all of the carbon species had been removed upon heat treatment. SEM results showed that some porosity was present but that the coatings uniformly covered the fiber surface and adhered well to the finer.

  7. Improvement of transmission properties of visible pilot beam for polymer-coated silver hollow fibers with acrylic silicone resin as buffer layer for sturdy structure

    NASA Astrophysics Data System (ADS)

    Iwai, Katsumasa; Takaku, Hiroyuki; Miyagi, Mitsunobu; Shi, Yi-Wei; Zhu, Xiao-Song; Matsuura, Yuji

    2017-02-01

    Flexible hollow fibers with 530-μm-bore size were developed for infrared laser delivery. Sturdy hollow fibers were fabricated by liquid-phase coating techniques. A silica glass capillary is used as the substrate. Acrylic silicone resin is used as a buffer layer and the buffer layer is firstly coated on the inner surface of the capillary to protect the glass tube from chemical damages due to the following silver plating process. A silver layer was inner-plated by using the conventional silver mirror-plating technique. To improve adhesion of catalyst to the buffer layer, a surface conditioner has been introduced in the method of silver mirror-plating technique. We discuss improvement of transmission properties of sturdy polymer-coated silver hollow fibers for the Er:YAG laser and red pilot beam delivery.

  8. Application of diffusion barriers to the refractory fibers of tungsten, columbium, carbon and aluminum oxide

    NASA Technical Reports Server (NTRS)

    Douglas, F. C.; Paradis, E. L.; Veltri, R. D.

    1973-01-01

    A radio frequency powered ion-plating system was used to plate protective layers of refractory oxides and carbide onto high strength fiber substrates. Subsequent overplating of these combinations with nickel and titanium was made to determine the effectiveness of such barrier layers in preventing diffusion of the overcoat metal into the fibers with consequent loss of fiber strength. Four substrates, five coatings, and two metal matrix materials were employed for a total of forty material combinations. The substrates were tungsten, niobium, NASA-Hough carbon, and Tyco sapphire. The diffusion-barrier coatings were aluminum oxide, yttrium oxide, titanium carbide, tungsten carbide with 14% cobalt addition, and zirconium carbide. The metal matrix materials were IN 600 nickel and Ti 6/4 titanium. Adhesion of the coatings to all substrates was good except for the NASA-Hough carbon, where flaking off of the oxide coatings in particular was observed.

  9. Modeling FBG sensors sensitivity from cryogenic temperatures to room temperature as a function of metal coating thickness

    NASA Astrophysics Data System (ADS)

    Vendittozzi, Cristian; Felli, Ferdinando; Lupi, Carla

    2018-05-01

    Fiber optics with photo-imprinted Bragg grating have been studied in order to be used as temperature sensors in cryogenic applications. The main disadvantage presented by Fiber Bragg Grating (FBG) sensors is the significant drop in sensitivity as temperature decreases, mainly due to the critical lowering of the thermo-optic coefficient of the fiber and the very low thermal expansion coefficient (CTE) of fused silica at cryogenic temperatures. Thus, especially for the latter, it is important to enhance sensitivity to temperature by depositing a metal coating presenting higher CTE. In this work the thermal sensitivity of metal-coated FBG sensors has been evaluated by considering their elongation within temperature variations in the cryogenic range, as compared to bare fiber sensors. To this purpose, a theoretical model simulating elongation of metal-coated sensors has been developed. The model has been used to evaluate the behaviour of different metals which can be used as coating (Ni, Cu, Al, Zn, Pb and In). The optimal coating thickness has been calculated at different fixed temperature (from 5 K to 100 K) for each metal. It has been found that the metal coating effectiveness depends on thickness and operating temperature in accordance to our previous experimental work and theory suggest.

  10. Study on the effect of carbon nanotube coating on the refractive index sensing sensitivity of fiber modal interferometer

    NASA Astrophysics Data System (ADS)

    Zhang, Ya-nan; Xie, Wen-ge; Wang, Jianzhang; Wang, Pengzhao

    2018-01-01

    Refractive index sensing of liquid is important in the domain of chemistry and biology. Fiber optical sensors provide an excellent way to measure the refractive index due to their feasible integration to other fiber optics components, high sensitivity, small size, and distributed sensing. However, conventional optical sensors have different shortages. To find a practical way to measure the refractive index of liquid, this paper intended to combine Carbon Nanotube (CNT) with non-core fiber (NCF) to prepare a kind of modal interferometer sensor and to explore the effect of CNT coating on refractive index sensing properties of the modal interferometer. Firstly, a structure of single mode non-core single mode (SNS) fiber with a CNT film coating was proposed and simulated. The simulation results showed that the CNT coating could improve the refractive index sensitivity of the interferometer sensor. Then in the experiment part, the CNT solution was fabricated and deposited onto the NCF, and a refractive index sensing system was built to examine the property of the CNT-coated SNS interferometer sensor. During the experiment, the influence factors of sensitivity were summarized by testing the sensing performance under different conditions, and it was demonstrated that the CNT coating could improve the contrast of the interference spectrum, and also had the possibility to increase the refractive index sensitivity of the interferometer sensor.

  11. Effect of 25 cycles of launch pad exposure and simulated mission heating on space shuttle reusable surface insulation coated with reaction cured glass

    NASA Technical Reports Server (NTRS)

    Ransone, P. O.; Morrison, J. D.; Minster, J. E.

    1979-01-01

    Tiles of space shuttle reusable surface insulation coated with reaction cured glass were subjected to 25 cycles of launch pad exposure and simulated mission heating. The coating could not withstand the environment without cracking. Water absorption after cracking reached as high as 150 weight percent. Exposure of insulation fibers beneath the coating to contaminants dissolved in absorbed water initiated fiber degradation.

  12. Thermal Strain Analysis of Optic Fiber Sensors

    PubMed Central

    Her, Shiuh-Chuan; Huang, Chih-Ying

    2013-01-01

    An optical fiber sensor surface bonded onto a host structure and subjected to a temperature change is analytically studied in this work. The analysis is developed in order to assess the thermal behavior of an optical fiber sensor designed for measuring the strain in the host structure. For a surface bonded optical fiber sensor, the measuring sensitivity is strongly dependent on the bonding characteristics which include the protective coating, adhesive layer and the bonding length. Thermal stresses can be generated due to a mismatch of thermal expansion coefficients between the optical fiber and host structure. The optical fiber thermal strain induced by the host structure is transferred via the adhesive layer and protective coating. In this investigation, an analytical expression of the thermal strain and stress in the optical fiber is presented. The theoretical predictions are validated using the finite element method. Numerical results show that the thermal strain and stress are linearly dependent on the difference in thermal expansion coefficients between the optical fiber and host structure and independent of the thermal expansion coefficients of the adhesive and coating. PMID:23385407

  13. Interface control and mechanical property improvements in silicon carbide/titanium composites

    NASA Technical Reports Server (NTRS)

    Brewer, W. D.; Unnam, J.

    1982-01-01

    Several composite systems made of titanium matrix reinforced with silicon carbide fiber were investigated to obtain a better understanding of composite-degradation mechanisms and to develop techniques to minimize loss of mechanical properties during fabrication and in service. Emphasis was on interface control by fiber or matrix coatings. X-ray diffraction studies on planar samples showed that the formation of titanium silicides was greatly inhibited by the presence of aluminum or Ti3A1 layers at the fiber-matrix interface, with the Ti3A1 being more effective in reducing the reactions. Fiber studies showed that coating the fiber with a 1-micron-thick layer of aluminum improved the as-fabricated strength of a stoichiometric SiC fiber and reduced the fiber degradation during exposure to composite-fabrication conditions. Applying an interfacial barrier by coating the matrix foils instead of the fibers was found to be an effective method for improving composite strength. Reducing the fabrication temperature also resulted in significant improvements in composite strengths. Good-quality, well-consolidated composites were fabricated at temperatures well below those currently used for SiC-Ti composite fabrication.

  14. Development and characterization of coaxially electrospun gelatin coated poly (3-hydroxybutyric acid) thin films as potential scaffolds for skin regeneration.

    PubMed

    Nagiah, Naveen; Madhavi, Lakshmi; Anitha, R; Anandan, C; Srinivasan, Natarajan Tirupattur; Sivagnanam, Uma Tirichurapalli

    2013-10-01

    The morphology of fibers synthesized through electrospinning has been found to mimic extracellular matrix. Coaxially electrospun fibers of gelatin (sheath) coated poly (3-hydroxybutyric acid) (PHB) (core) was developed using 2,2,2 trifluoroethanol(TFE) and 1,1,1,3,3,3 hexafluoro-2-propanol(HFIP) as solvents respectively. The coaxial structure and coating of gelatin with PHB fibers was confirmed through transmission electron microscopy (TEM), scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). Thermal stability of the coaxially electrospun fibers was analyzed using thermogravimetric analysis(TGA), differential scanning calorimetry(DSC) and differential thermogravimetric analysis(DTA). Complete evaporation of solvent and gelatin grafting over PHB fibers was confirmed through attenuated total reflection-Fourier transformed infrared spectroscopy (ATR-FTIR). The coaxially electrospun fibers exhibited competent tensile properties for skin regeneration with high surface area and porosity. In vitro degradation studies proved the stability of fibers and its potential applications in tissue engineering. The fibers supported the growth of human dermal fibroblasts and keratinocytes with normal morphology indicating its potential as a scaffold for skin regeneration. © 2013.

  15. Characterization of Polyimide Matrix Resins and Prepregs

    NASA Technical Reports Server (NTRS)

    Maximovich, M. G.; Galeos, R. M.

    1985-01-01

    Graphite/polyimide composite materials are attractive candidates for a wide range of aerospace applications. They have many of the virtues of graphite/epoxies, i.e., high specific strengths and stiffness, and also outstanding thermal/oxidative stability. Yet they are not widely used in the aerospace industry due to problems of procesability. By their nature, modern addition polyimide (PI) resins and prepregs are more complex than epoxies; the key to processing lies in characterizing and understanding the materials. Chemical and rheological characterizations are carried out on several addition polyimide resins and graphite reinforced prepregs, including those based on PMR-15, LARC 160 (AP 22), LARC 160 (Curithane 103) and V378A. The use of a high range torque transducer with a Rheometrics mechanical spectrometer allows rheological data to be generated on prepreg materials as well as neat resins. The use of prepreg samples instead of neat resins eliminates the need for preimidization of the samples and the data correlates well with processing behavior found in the shop. Rheological characterization of the resins and prepregs finds significant differences not readily detected by conventional chemical characterization techniques.

  16. Method and apparatus for enhanced evanescent fluorescence and color filtering using a high refractive index thin film coating

    DOEpatents

    Kao, Hung Pin; Schoeniger, Joseph; Yang, Nancy

    2001-01-01

    A technique for increasing the excitation and collection of evanescent fluorescence radiation emanating from a fiber optic sensor having a high refractive index (n.sub.r), dielectric thin film coating has been disclosed and described. The invention comprises a clad optical fiber core whose cladding is removed on a distal end, the distal end coated with a thin, non-porous, titanium dioxide sol-gel coating. It has been shown that such a fiber will exhibit increased fluorescence coupling due in part by 1) increasing the intensity of the evanescent field at the fiber core surface by a constructive interference effect on the propagating light, and 2) increasing the depth of penetration of the field in the sample. The interference effect created by the thin film imposes a wavelength dependence on the collection of the fluorescence and also suggests a novel application of thin films for color filtering as well as increasing collected fluorescence in fiber sensors. Collected fluorescence radiation increased by up to 6-fold over that of a bare fused silica fiber having a numerical aperture (N.A.) of O.6.

  17. Optical fiber cable chemical stripping fixture

    NASA Technical Reports Server (NTRS)

    Kolasinski, John R. (Inventor); Coleman, Alexander M. (Inventor)

    1995-01-01

    An elongated fixture handle member is connected to a fixture body member with both members having interconnecting longitudinal central axial bores for the passage of an optical cable therethrough. The axial bore of the fixture body member, however, terminates in a shoulder stop for the outer end of a jacket of the optical cable covering both an optical fiber and a coating therefor, with an axial bore of reduced diameter continuing from the shoulder stop forward for a predetermined desired length to the outer end of the fixture body member. A subsequent insertion of the fixture body member including the above optical fiber elements into a chemical stripping solution results in a softening of the exposed external coating thereat which permits easy removal thereof from the optical fiber while leaving a desired length coated fiber intact within the fixture body member.

  18. Kevlar reinforced neoprene composites

    NASA Technical Reports Server (NTRS)

    Penn, B. G.; Daniels, J. G.; White, W. T.; Thompson, L. M.; Clemons, L. M.

    1985-01-01

    Kevlar/neoprene composites were prepared by two techniques. One method involved the fabrication of a composite from a rubber prepreg prepared by coating Kevlar with viscous neoprene solution and then allowing the solvent to evaporate (solution impregnation technique). The second method involved heating a stack of Kevlar/neoprene sheets at a temperature sufficient to cause polymer flow (melt flow technique). There was no significant difference in the breaking strength and percent elongation for samples obtained by the two methods; however the shear strength obtained for samples fabricated by the solution impregnation technique (275 psi) was significantly higher than that found for the melt flow fabricated samples (110 psi).

  19. Porous, High Capacity Coatings for Solid Phase Microextraction by Sputtering.

    PubMed

    Diwan, Anubhav; Singh, Bhupinder; Roychowdhury, Tuhin; Yan, DanDan; Tedone, Laura; Nesterenko, Pavel N; Paull, Brett; Sevy, Eric T; Shellie, Robert A; Kaykhaii, Massoud; Linford, Matthew R

    2016-02-02

    We describe a new process for preparing porous solid phase microextraction (SPME) coatings by the sputtering of silicon onto silica fibers. The microstructure of these coatings is a function of the substrate geometry and mean free path of the silicon atoms, and the coating thickness is controlled by the sputtering time. Sputtered silicon structures on silica fibers were treated with piranha solution (a mixture of concd H2SO4 and 30% H2O2) to increase the concentration of silanol groups on their surfaces, and the nanostructures were silanized with octadecyldimethylmethoxysilane in the gas phase. The attachment of this hydrophobic ligand was confirmed by X-ray photoelectron spectroscopy and contact angle goniometry on model, planar silicon substrates. Sputtered silicon coatings adhered strongly to their surfaces, as they were able to pass the Scotch tape adhesion test. The extraction time and temperature for headspace extraction of mixtures of alkanes and alcohols on the sputtered fibers were optimized (5 min and 40 °C), and the extraction performances of SPME fibers with 1.0 or 2.0 μm of sputtered silicon were compared to those from a commercial 7 μm poly(dimethylsiloxane) (PDMS) fiber. For mixtures of alcohols, aldehydes, amines, and esters, the 2.0 μm sputtered silicon fiber yielded signals that were 3-9, 3-5, 2.5-4.5, and 1.5-2 times higher, respectively, than those of the commercial fiber. For the heavier alkanes (undecane-hexadecane), the 2.0 μm sputtered fiber yielded signals that were approximately 1.0-1.5 times higher than the commercial fiber. The sputtered fibers extracted low molecular weight analytes that were not detectable with the commercial fiber. The selectivity of the sputtered fibers appears to favor analytes that have both a hydrophobic component and hydrogen-bonding capabilities. No detectable carryover between runs was noted for the sputtered fibers. The repeatability (RSD%) for a fiber (n = 3) was less than 10% for all analytes tested, and the between-fiber reproducibility (n = 3) was 0-15%, generally 5-10%, for all analytes tested. The repeatabilities of our sputtered fibers and the commercial 7 μm PDMS fiber are essentially the same. Fibers could be used for at least 300 extractions without loss of performance. More than 50 compounds were identified in a gas chromatography-mass spectrometry headspace analysis of a real world botanical sample with the 2.0 μm fiber.

  20. Optimization of the Manufacturing Process of Conical Shell Structures Using Prepreg Laminatees

    NASA Astrophysics Data System (ADS)

    Khakimova, Regina; Zimmermann, Rolf; Burau, Florian; Siebert, Marc; Arbelo, Mariano; Castro, Saullo; Degenhardt, Richard

    2014-06-01

    The design and manufacture of an unstiffened composite conical structure which is a scaled-down version of the Ariane 5 Midlife Evolution Equipment Bay Structure is presented. For such benchmarking structures the fiber orientation error is critical and then the manufacturing process becomes a big challenge. The paper therefore is focused on the implementation of a tailoring study and on the manufacturing process. The conical structure will be tested to validate a new design approach.This study contributes to the European Union (EU) project DESICOS, whose aim is to develop less conservative design guidelines for imperfection sensitive thin-walled structures.

Top