Sample records for fiber composite afc

  1. Performance characterization of active fiber-composite actuators for helicopter rotor blade applications

    NASA Astrophysics Data System (ADS)

    Wickramasinghe, Viresh K.; Hagood, Nesbitt W.

    2002-07-01

    The primary objective of this work was to characterize the performance of the Active Fiber Composite (AFC) actuator material system for the Boeing Active Material Rotor (AMR) blade application. The AFCs were a new structural actuator system consisting of piezoceramic fibers embedded in an epoxy matrix and sandwiched between interdigitated electrodes to orient the driving electric field in the fiber direction to use the primary piezoelectric effect. These actuators were integrated directly into the blade spar laminate as active plies within the composite structure to perform structural actuation for vibration control in helicopters. Therefore, it was necessary to conduct extensive electromechanical material characterization to evaluate AFCs both as actuators and as structural components of the rotor blade. The characterization tests designed to extract important electromechanical properties under simulated blade operating conditions included stress-strain tests, free strain tests and actuation under tensile load tests. This paper presents the test results as well as the comprehensive testing process developed to evaluate the relevant AFC material properties. The results from this comprehensive performance characterization of the AFC material system supported the design and operation of the Boeing AMR blade scheduled for hover and forward flight wind tunnel tests.

  2. Material characterization of active fiber composites for integral twist-actuated rotor blade application

    NASA Astrophysics Data System (ADS)

    Wickramasinghe, Viresh K.; Hagood, Nesbitt W.

    2004-10-01

    The primary objective of this work was to perform material characterization of the active fiber composite (AFC) actuator system for the Boeing active material rotor (AMR) blade application. The purpose of the AMR was to demonstrate active vibration control in helicopters through integral twist-actuation of the blade. The AFCs were a new structural actuator system consisting of piezoceramic fibers embedded in an epoxy matrix and sandwiched between interdigitated electrodes to enhance actuation performance. These conformable actuators were integrated directly into the blade spar laminate as active plies within the composite structure to perform structural control. Therefore, extensive electromechanical material characterization was required to evaluate AFCs both as actuators and as structural components of the blade. The characterization tests designed to extract important electromechanical properties under simulated blade operating conditions included nominal actuation tests, stress-strain tests and actuation under tensile load tests. This paper presents the test results as well as the comprehensive testing procedure developed to evaluate the relevant properties of the AFCs for structural application. The material characterization tests provided an invaluable insight into the behavior of the AFCs under various electromechanical conditions. The results from this comprehensive material characterization of the AFC actuator system supported the design and operation of the AMR blades scheduled for wind tunnel tests.

  3. Performance analysis of smart laminated composite plate integrated with distributed AFC material undergoing geometrically nonlinear transient vibrations

    NASA Astrophysics Data System (ADS)

    Shivakumar, J.; Ashok, M. H.; Khadakbhavi, Vishwanath; Pujari, Sanjay; Nandurkar, Santosh

    2018-02-01

    The present work focuses on geometrically nonlinear transient analysis of laminated smart composite plates integrated with the patches of Active fiber composites (AFC) using Active constrained layer damping (ACLD) as the distributed actuators. The analysis has been carried out using generalised energy based finite element model. The coupled electromechanical finite element model is derived using Von Karman type nonlinear strain displacement relations and a first-order shear deformation theory (FSDT). Eight-node iso-parametric serendipity elements are used for discretization of the overall plate integrated with AFC patch material. The viscoelastic constrained layer is modelled using GHM method. The numerical results shows the improvement in the active damping characteristics of the laminated composite plates over the passive damping for suppressing the geometrically nonlinear transient vibrations of laminated composite plates with AFC as patch material.

  4. Experimental characterization of PZT fibers using IDE electrodes

    NASA Astrophysics Data System (ADS)

    Wyckoff, Nicholas; Ben Atitallah, Hassene; Ounaies, Zoubeida

    2016-04-01

    Lead zirconate titanate (PZT) fibers are mainly used in active fiber composites (AFC) where they are embedded in a polymer matrix. Interdigitated electrodes (IDE) along the direction of the fibers are used to achieve planar actuation, hereby exploiting the d33 coefficient of PZT. When embedded in the AFC, the PZT fibers are subjected to mechanical loading as well as non-uniform electric field as a result of the IDEs. Therefore, it is important to characterize the electrical and electromechanical behavior of these fibers ex-situ using the IDE electrodes to assess the impact of nonuniform electric field on the properties of the fibers. For that reason, this work aims at quantifying the impact of IDE electrodes on the electrical and electromechanical behavior of PZT fibers, which is necessary for their successful implementation in devices like AFC. The tested fibers were purchased from Advanced Cerametrics and they have an average diameter of 250 micrometers. The IDE electrodes were screen printed on an acrylic substrate. The PZT fibers were subjected to frequency sweeps at low voltages to determine permittivity for parallel and interdigitated electrodes. The piezoelectric e33 constant is determined from electromechanical testing of PZT fibers in parallel electrodes to compare the electromechanical behavior for PZT in bulk and fiber form. The dielectric constant and e33 were found to be lower for the IDE and parallel electrodes compared to bulk but comparable to results published in literature.

  5. Geometrically nonlinear transient vibrations of actively damped anti-symmetric angle ply laminated composite shallow shell using active fibre composite (AFC) actuators

    NASA Astrophysics Data System (ADS)

    Ashok, M. H.; Shivakumar, J.; Nandurkar, Santosh; Khadakbhavi, Vishwanath; Pujari, Sanjay

    2018-02-01

    In present work, the thin laminated composite shallow shell as smart structure with AFC material’s ACLD treatment is analyzed for geometrically nonlinear transient vibrations. The AFC material is used to make the constraining layer of the ACLD treatment. Golla-Hughes-McTavish (GHM) is used to model the constrained viscoelastic layer of the ACLD treatment in time domain. Along with a simple first-order shear deformation theory the Von Kármán type non-linear strain displacement relations are used for deriving this electromechanical coupled problem. A 3-dimensional finite element model of smart composite panels integrated with the ACLD treated patches has been modelled to reveal the performance of ACLD treated patches on improving the damping properties of slender anti-symmetric angle-ply laminated shallow shell, in controlling the transient vibrations which are geometrically nonlinear. The mathematical results explain that the ACLD treated patches considerably enhance the damping properties of anti-symmetric angle-ply panels undergoing geometrically nonlinear transient vibrations.

  6. Assimilation of Consanguineous Mafic Intrutions: Layered Crustal Sill Complexes as Reactive Filters for Continental Basalts

    NASA Astrophysics Data System (ADS)

    Shervais, J. W.; Hanan, B. B.; Vetter, S. K.

    2007-12-01

    Continental basalts commonly display variations in their chemical compositions that are inferred to reflect fractionational crystallization (FC), recharge-FC (RFC), assimilation-FC (AFC), or recharge-AFC (RAFC). The dominance of AFC-related processes reflects the intrinsic linkage between crystallization (which releases latent heat) and assimilation (which consumes latent heat). One of the central questions in any assimilation process, however, is what exactly is being assimilated. It is commonly assumed in most AFC models for the intrusion of basalt into continental crust that the contaminant is pre-existing continental crust - that is, felsic gneiss of roughly granodioritic to tonalitic composition, which is enriched in K2O and other large ion lithophiles relative to mantle-derived basalts. These continental gneisses are commonly Precambrian in age and are enriched in the lithophilic isotope ratios 87Sr/86Sr, 207Pb/204Pb, and 208Pb/204Pb, and depleted in 143Nd/144Nd. As a result, AFC-related processes involving this ancient continental crust component typically result in basaltic lavas that are enriched in LILE (e.g., K) relative to high-field strength elements (e.g., Ti, P) and enriched in the heavy isotopes of Sr, Pb, and Nd compared to the primary or parental magma. Contrary to these expectations, basalts of the Snake River volcanic province that display chemical variations diagnostic of AFC (e.g., increasing La/Lu with decreasing mg#) are commonly characterized by essentially constant isotopic ratios of Sr, Pb and Nd, and by LILE/HFSE ratios (e.g., K/P) that decrease with decreasing mg#. We propose that these basalts assimilated a ferrogabbro derived from a parent magma that was the same or similar to the magmas being intruded to recharge the system. Melts derived from this ferrogabbro would be low in K and enriched in Fe, Ti, P, and La/Lu relative to the primitive recharge magma; the isotopic composition would be the same as the primitive recharge magma. We infer that this exchange took place within a 10 km thick mafic sill complex that has been imaged seismically at depths of 12-22 km the middle crust. We propose that this process may apply to a wide range of continental basalts.

  7. Modeling and Analysis of Actinide Diffusion Behavior in Irradiated Metal Fuel

    NASA Astrophysics Data System (ADS)

    Edelmann, Paul G.

    There have been numerous attempts to model fast reactor fuel behavior in the last 40 years. The US currently does not have a fully reliable tool to simulate the behavior of metal fuels in fast reactors. The experimental database necessary to validate the codes is also very limited. The DOE-sponsored Advanced Fuels Campaign (AFC) has performed various experiments that are ready for analysis. Current metal fuel performance codes are either not available to the AFC or have limitations and deficiencies in predicting AFC fuel performance. A modified version of a new fuel performance code, FEAST-Metal , was employed in this investigation with useful results. This work explores the modeling and analysis of AFC metallic fuels using FEAST-Metal, particularly in the area of constituent actinide diffusion behavior. The FEAST-Metal code calculations for this work were conducted at Los Alamos National Laboratory (LANL) in support of on-going activities related to sensitivity analysis of fuel performance codes. A sensitivity analysis of FEAST-Metal was completed to identify important macroscopic parameters of interest to modeling and simulation of metallic fuel performance. A modification was made to the FEAST-Metal constituent redistribution model to enable accommodation of newer AFC metal fuel compositions with verified results. Applicability of this modified model for sodium fast reactor metal fuel design is demonstrated.

  8. Theoretical study of low-frequency noise and amplitude – frequency characteristics of a semiconductor laser with a fiber Bragg grating

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kurnosov, V D; Kurnosov, K V

    2013-09-30

    Using the rate equations for the density of photons and charge carriers, we have studied the amplitude low-frequency noise of a fibre Bragg grating semiconductor laser. The calculations rely on two versions of the rate equation for the carriers, characterised by the presence of the optical confinement coefficient for the term, which takes into account the rate of stimulated recombination. It is shown that the relative noise intensity, which is calculated by using the rate equation for the carriers without optical confinement, agrees better with the experimental results. The calculation of the amplitude – frequency characteristics (AFCs) has shown thatmore » it is impossible to give preference to any one of these systems, since the AFCs for the two versions of the rate equations for the carriers coincide. (lasers)« less

  9. New control strategies for longwall armored face conveyors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Broadfoot, A.R.; Betz, R.E.

    1998-03-01

    This paper investigates a new control approach for longwall armored face conveyors (AFC`s) using variable-speed drives (VSD`s). Traditionally, AFC`s have used fixed-speed or two-speed motors, with various mechanical solutions employed to try to solve the problems that this causes. The VSD approach to the control problem promises to solve all the significant problems associated with the control of AFC`s. This paper will present the control algorithms developed for a VSD-based AFC drive system and demonstrate potential performance via computer simulation. A full discussion of the problems involved with the control of AFC`s can be found in the companion paper.

  10. Design of synthetic jet actuator based on FSMA composite

    NASA Astrophysics Data System (ADS)

    Liang, Yuanchang; Kuga, Yasuo; Taya, Minoru

    2005-05-01

    An improved version of the membrane actuator has been designed and constructed based on our previous diaphragm actuator. It consists of ferromagnetic shape memory alloy composite (FSMA) diaphragm and an electromagnet system. The actuation mechanism of the membrane actuator is the hybrid mechanism that we proposed previously. The high momentum airflow will be produced by the oscillation of the circular FSMA composite diaphragm driven by electromagnets close to its resonance frequency. This membrane actuator is designed for the active flow control technology on airplane wings. The active flow control (AFC) technology has been studied and shown that it can help aircraft improve aerodynamic performance and jet noise reduction. AFC can be achieved by a synthetic jet actuator injecting high momentum air into the airflow at the appropriate locations on aircraft wings. Due to large force and martensitic transformation on the FSMA composite diaphragm, the membrane actuator can produce 190 m/s synthetic jets at 220 Hz. A series connection of several membrane actuators is proposed to construct a synthetic jet actuator package for distributing synthetic jet flow along the wing span.

  11. Prevalence of Artificial Food Colors in Grocery Store Products Marketed to Children.

    PubMed

    Batada, Ameena; Jacobson, Michael F

    2016-10-01

    Artificial food colors (AFCs) in foods and beverages may be harmful to children. This study assesses the percentage of grocery store products marketed to children that contain AFCs, by category and company. The research team collected product and food-color information about 810 products in one grocery store in North Carolina in 2014. Overall, 350 products (43.2%) contained AFCs. The most common AFCs were Red 40 (29.8% of products), Blue 1 (24.2%), Yellow 5 (20.5%), and Yellow 6 (19.5%). Produce was the only category that did not have any AFCs. The highest percentage of products with AFCs was found in candies (96.3%), fruit-flavored snacks (94%), and drink mixes/powders (89.7%). Forty-one of the 66 companies marketed products containing AFCs. Given concerns about health effects of AFCs and high proportions of high-AFC categories, clinicians, parents, food companies, and the government can take steps to support children's healthy eating and development by reducing AFCs in children's diets. © The Author(s) 2016.

  12. Active flow control insight gained from a modified integral boundary layer equation

    NASA Astrophysics Data System (ADS)

    Seifert, Avraham

    2016-11-01

    Active Flow Control (AFC) can alter the development of boundary layers with applications (e.g., reducing drag by separation delay or separating the boundary layers and enhancing vortex shedding to increase drag). Historically, significant effects of steady AFC methods were observed. Unsteady actuation is significantly more efficient than steady. Full-scale AFC tests were conducted with varying levels of success. While clearly relevant to industry, AFC implementation relies on expert knowledge with proven intuition and or costly and lengthy computational efforts. This situation hinders the use of AFC while simple, quick and reliable design method is absent. An updated form of the unsteady integral boundary layer (UIBL) equations, that include AFC terms (unsteady wall transpiration and body forces) can be used to assist in AFC analysis and design. With these equations and given a family of suitable velocity profiles, the momentum thickness can be calculated and matched with an outer, potential flow solution in 2D and 3D manner to create an AFC design tool, parallel to proven tools for airfoil design. Limiting cases of the UIBL equation can be used to analyze candidate AFC concepts in terms of their capability to modify the boundary layers development and system performance.

  13. Adult foster care for the elderly in Oregon: a mainstream alternative to nursing homes?

    PubMed Central

    Kane, R A; Kane, R L; Illston, L H; Nyman, J A; Finch, M D

    1991-01-01

    BACKGROUND. In Oregon, adult foster care (AFC) homes, which are private residences where a live-in manager cares for one to five disabled residents, have been covered by Medicaid since 1981 and seem to offer a mainstream alternative to nursing homes. They house almost 6000 older people, two thirds of which pay privately. METHODS. In a cross-sectional study, we interviewed 400 AFC and 400 nursing home residents. Data analyses included descriptive cross-tabulations; hierarchial loglinear models for judging the effects of care setting and payment status on resident characteristics; and logit analyses for predicting care setting and payment status within care settings. RESULTS. On average, nursing home residents were more physically and cognitively impaired than AFC residents, but there was considerable overlap in patterns of frailty in the two settings. Medicaid AFC residents were less disabled than privately paying AFC residents. AFC residents reported more social activity, even when we controlled for disability status. AFC residents and their families were more likely to value privacy and homelike settings when choosing a care setting, whereas nursing home residents were more likely to value rehabilitation and organized activity programs. CONCLUSIONS. Both AFC and nursing homes are viable components of a long-term care repertoire. The greater disability levels of private-pay AFC residents refutes the criticisms that disabled Medicaid residents were being inappropriately channeled to AFC. PMID:1951820

  14. Warm-Up Effect in Panelist-Articulated-2-Alternative Forced Choice Test.

    PubMed

    Bloom, David J; Baik, Hwa-Young; Lee, Soo-Yeun

    2018-01-01

    Panelist performance in discrimination tests has been shown to increase when warm-up samples are provided prior to the actual test. Samples are used prior to the actual test for the attribute articulation process of a panelist-articulated-2-alternative forced choice (PA-2-AFC) procedure; however, it is yet unknown if the pretest articulation phase adds to the power of this testing method as with the warm-up. The goal of the study was to determine if a "warm-up" effect was displayed in the PA-2-AFC test resulting in greater power compared to the researcher-designated-2-AFC (RD-2-AFC) test. A RD-2-AFC test, with and without warm-up samples, and a PA-2-AFC test were performed by 61 panelists. A reduced calorie, citrus-flavored, and carbonated beverage was used in the tests. During RD-2-AFC testing, panelists were asked to identify which sample was more sour. For PA-2-AFC testing, panelists individually articulated the nature and direction of the difference between the 2 samples through a pretesting articulation procedure. The articulated difference was, then, used in standard 2-AFC test procedure. A warm-up effect was observed when comparing the standard RD-2-AFC with and without warm-up samples. The addition of warm up samples significantly increased the power of the test, in addition, the PA-2-AFC method had lower power than the RD-2-AFC method. The increase in power with the addition of warm-up samples for the RD-2-AFC procedure supports literature findings on the benefit of providing warm-up samples. No warm-up effect can be attributed to the PA-2-AFC method evidenced by the overall low power observed, which may be attributed to sample complexity. Selecting a specified discrimination testing method is advantageous and can reduce costs of sensory testing, but has been considered unpractical when samples may differ in unknown ways. This research explores the use of panelist derived terms to circumvent the need for researchers to identify these differences and compares the results to using research designated terms in discrimination testing. Results from this study can be utilized in creating ways to incorporate more powerful methods into sensory discrimination testing plans and provides researchers with a means for selecting terms for use in specified discrimination testing methods. © 2017 Institute of Food Technologists®.

  15. Refined AFC-Enabled High-Lift System Integration Study

    NASA Technical Reports Server (NTRS)

    Hartwich, Peter M.; Shmilovich, Arvin; Lacy, Douglas S.; Dickey, Eric D.; Scalafani, Anthony J.; Sundaram, P.; Yadlin, Yoram

    2016-01-01

    A prior trade study established the effectiveness of using Active Flow Control (AFC) for reducing the mechanical complexities associated with a modern high-lift system without sacrificing aerodynamic performance at low-speed flight conditions representative of takeoff and landing. The current technical report expands on this prior work in two ways: (1) a refined conventional high-lift system based on the NASA Common Research Model (CRM) is presented that is more representative of modern commercial transport aircraft in terms of stall characteristics and maximum Lift/Drag (L/D) ratios at takeoff and landing-approach flight conditions; and (2) the design trade space for AFC-enabled high-lift systems is expanded to explore a wider range of options for improving their efficiency. The refined conventional high-lift CRM (HL-CRM) concept features leading edge slats and slotted trailing edge flaps with Fowler motion. For the current AFC-enhanced high lift system trade study, the refined conventional high-lift system is simplified by substituting simply-hinged trailing edge flaps for the slotted single-element flaps with Fowler motion. The high-lift performance of these two high-lift CRM variants is established using Computational Fluid Dynamics (CFD) solutions to the Reynolds-Averaged Navier-Stokes (RANS) equations. These CFD assessments identify the high-lift performance that needs to be recovered through AFC to have the CRM variant with the lighter and mechanically simpler high-lift system match the performance of the conventional high-lift system. In parallel to the conventional high-lift concept development, parametric studies using CFD guided the development of an effective and efficient AFC-enabled simplified high-lift system. This included parametric trailing edge flap geometry studies addressing the effects of flap chord length and flap deflection. As for the AFC implementation, scaling effects (i.e., wind-tunnel versus full-scale flight conditions) are addressed, as are AFC architecture aspects such as AFC unit placement, number AFC units, operating pressures, mass flow rates, and steady versus unsteady AFC applications. These efforts led to the development of a novel traversing AFC actuation concept which is efficient in that it reduces the AFC mass flow requirements by as much as an order of magnitude compared to previous AFC technologies, and it is predicted to be effective in driving the aerodynamic performance of a mechanical simplified high-lift system close to that of the reference conventional high-lift system. Conceptual system integration studies were conducted for the AFC-enhanced high-lift concept applied to a NASA Environmentally Responsible Aircraft (ERA) reference configuration, the so-called ERA-0003 concept. The results from these design integration assessments identify overall system performance improvement opportunities over conventional high-lift systems that suggest the viability of further technology maturation efforts for AFC-enabled high lift flap systems. To that end, technical challenges are identified associated with the application of AFC-enabled high-lift systems to modern transonic commercial transports for future technology maturation efforts.

  16. Association between antral follicle count and reproductive measures in New Zealand lactating dairy cows maintained in a pasture-based production system.

    PubMed

    Martinez, Marcelo F; Sanderson, Neil; Quirke, Laurel D; Lawrence, Stephen B; Juengel, Jennifer L

    2016-02-01

    The antral follicle count (AFC) in cattle is consistent throughout the estrous cycle of individual cows, and cows with a lower AFC have lower fertility. We assessed the AFC at random stages of the estrous cycle, examined the correlation between AFC classifications, and determined the relationship between the most rapid and practical laboratory-based AFC classification (AFC of follicles of ≥ 2 mm in diameter) and fertility measures in New Zealand lactating dairy cows. Cows detected in estrus (n = 202) or not (n = 239) during the first 4 weeks of the breeding season were subjected to ultrasonography and classified as having a high, medium, or low AFC at the time of scanning (on-site classification). Images from ultrasound scanning were recorded onto video for accurate follicle counting in an imaging laboratory. A strong association (P < 0.05) between the AFC of follicles with a diameter of 2 mm or greater and fertility was observed. Cows with a high AFC had a shorter (P < 0.05) interval from calving to conception by artificial insemination (AI; 82.4 ± 1.6 vs. 87.3 ± 1.2 days) and greater pregnancy rates (PRs; i.e., PR to the first AI [68.1% vs. 45.3%], 6-week PR [81.9% vs. 67.3%], and overall PR [91.3% vs. 79.7%]) than cows with a low AFC. The AFC was positively associated (P < 0.0001) with age. Progesterone concentrations during diestrus were greater (P < 0.05) in high-AFC cows (7.6 ± 0.3 ng/mL) than in low-AFC cows (6.5 ± 0.3 ng/mL), whether these were pregnant (7.7 ± 0.3 ng/mL) or not (6.3 ± 0.2 ng/mL). A rapid on-site scoring system determined that cows classified as having a high AFC had a shorter (P < 0.05) interval from calving to the first AI (76.5 ± 1.7 vs. 82.3 ± 1.9 days) and were more likely to show estrus (P < 0.01; 56.8% vs. 36.4%) and have a CL at the beginning of the breeding season (P < 0.01; 93.4% vs. 79.6%) than cows with a low on-site AFC. Collectively, we have confirmed an association between AFC2 and fertility, and these results support the hypothesis that cows with a greater number of antral follicles are more fertile than cows with a lesser number of follicles. Although the on-site classification was related to resumption of estrous cycles after calving, associations with other fertility measurements could not be observed, highlighting a need for further refinement of the on-site classification system for rapid phenotyping of the AFC. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. AFC-Enabled Vertical Tail System Integration Study

    NASA Technical Reports Server (NTRS)

    Mooney, Helen P.; Brandt, John B.; Lacy, Douglas S.; Whalen, Edward A.

    2014-01-01

    This document serves as the final report for the SMAAART AFC-Enabled Vertical Tail System Integration Study. Included are the ground rule assumptions which have gone into the study, layouts of the baseline and AFC-enabled configurations, critical sizing information, system requirements and architectures, and assumed system properties that result in an NPV assessment of the two candidate AFC technologies.

  18. Age-Related Normogram for Ovarian Antral Follicle Count in Women with Polycystic Ovary Syndrome and Comparison with Age Matched Controls Using Magnetic Resonance Imaging.

    PubMed

    Aiyappan, Senthil Kumar; Karpagam, Bulabai; Vadanika, V; Chidambaram, Prem Kumar; Vinayagam, S; Saravanan, K C

    2016-01-01

    Antral Follicle count (AFC) is a reliable marker for ovarian reserve. Previous studies have used transvaginal ultrasound for estimation of AFC, however we used magnetic resonance imaging (MRI) for estimation of AFC and for creating an age-related normogram in patients with polycystic ovary syndrome (PCOS) and compared it with normal patients. The aim of this study is to create an age related normogram for AFC in women with PCOS and to compare that with women without polycystic ovarian syndrome using MRI. A total of 1500 women were examined, out of which 400 fitted the criteria for PCOS. They all underwent MRI study and similar age matched women without PCOS also underwent MRI examination. Normogram for AFC were obtained using LMS software and a percentile chart was obtained. Normogram for AFC in PCOS women showed decline in number of AFC as the age progresses and the decline was linear. The normogram for AFC was compared with equal number of patients without PCOS and they also showed decline in AFC as the age progresses, however the decline was exponential and faster. Age related normogram for AFC is widely used and considered as best clinical predictor for ovarian response in assisted reproductive technology. Knowledge of ovarian reserve is important in PCOS and non-PCOS females as PCOS patients are at risk for ovarian hyperstimulation syndrome during gonadotrophin theraphy. MRI is an equally effective and in some times better alternative to transvaginal ultrasound as it has got its own advantages.

  19. Decreased ovarian function is associated with obesity in very long-term female survivors of childhood cancer.

    PubMed

    van Dorp, W; Blijdorp, K; Laven, J S E; Pieters, R; Visser, J A; van der Lely, A J; Neggers, S J C M M; van den Heuvel-Eibrink, M M

    2013-06-01

    Obesity and gonadal dysfunction are known major side effects of treatment in adult childhood cancer survivors (CCS). In the general population, obesity has a negative influence on female fertility. We aimed to evaluate whether obesity and serum insulin are associated with decreased ovarian reserve markers in CCS. Retrospective single-center cohort study. Data of 191 female survivors of childhood cancer were analyzed. Median follow-up time was 18.8 (2.348.8) years. Outcome measures were serum anti-Müllerian hormone (AMH) and total follicle count (FC). Potential risk factors were: BMI; body composition measures, determined by dual-energy X-ray absorptiometry (total fat percentage, lean body mass, and visceral fat percentage); and fasting insulin. Lower serum AMH was found in obese subjects (β (%) -49, P=0.007) and in subjects with fasting insulin in the highest tertile (β (%) -43, P=0.039). Total fat percentage tends to be associated with serum AMH (β (%) -2.1, P=0.06). Survivors in the highest tertile of insulin had significantly lower FC than survivors in the lowest tertile (β -6.3, P=0.013). BMI and other measures of body composition were not associated with FC. Correlation between serum AMH and antral follicle count (AFC) was ρ=0.32 (P=0.08). Obesity and insulin resistance are associated with gonadal damage, as reflected by decreased AMH and reduced FC in adult survivors of childhood cancer. In contrast to its highly predictive value for AFC in the healthy female population, serum AMH does not seem to correlate as well with AFC in CCS.

  20. In vitro fertilization (IVF) using semi-defined culture conditions from low or high antral follicle count pubertal beef heifers

    USDA-ARS?s Scientific Manuscript database

    To compare the in vitro fertilization (IVF) and production (IVP) of embryos from low and high antral follicle count (AFC) heifers, AFC were determined on 106 heifers using transrectal ultrasonography. Ten heifers with the lowest AFC (avg. 13.2) and 10 heifers with the highest AFC (avg. 27.4) with ev...

  1. Amounts of artificial food dyes and added sugars in foods and sweets commonly consumed by children.

    PubMed

    Stevens, Laura J; Burgess, John R; Stochelski, Mateusz A; Kuczek, Thomas

    2015-04-01

    Artificial food colors (AFCs) are used to color many beverages, foods, and sweets in the United States and throughout the world. In the United States, the Food and Drug Administration (FDA) limits the AFCs allowed in the diet to 9 different colors. The FDA certifies each batch of manufactured AFCs to guarantee purity and safety. The amount certified has risen from 12 mg/capita/d in 1950 to 62 mg/capita/d in 2010. Previously, we reported the amounts of AFCs in commonly consumed beverages. In this article, the amounts of AFCs in commonly consumed foods and sweets are reported. In addition, the amount of sugars in each product is included. Amounts of AFCs reported here along with the beverage data show that many children could be consuming far more dyes than previously thought. Clinical guidance is given to help caregivers avoid AFCs and reduce the amount of sugars in children's diets. © The Author(s) 2014.

  2. Prediction of power requirements for a longwall armored face conveyor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Broadfoot, A.R.; Betz, R.E.

    1995-12-31

    Longwall armored face conveyors (AFC`s) have traditionally been designed using a combination of heuristics and simple models. However, as longwalls increase in length these design procedures are proving to be inadequate. The result has either been costly loss of production due to AFC stalling or component failure, or larger than necessary capital investment due to overdesign. In order to allow accurate estimation of the power requirements for an AFC this paper develops a comprehensive model of all the friction forces associated with the AFC. Power requirement predictions obtained from these models are then compared with measurements from two mine faces.

  3. Psychological stress and reproductive aging among pre-menopausal women

    PubMed Central

    Bleil, M.E.; Adler, N.E.; Pasch, L.A.; Sternfeld, B.; Gregorich, S.E.; Rosen, M.P.; Cedars, M.I.

    2012-01-01

    BACKGROUND Life history models suggest that biological preparation for current versus longer term reproduction is favored in environments of adversity. In this context, we present a model of reproductive aging in which environmental adversity is proposed to increase the number of growing follicles at the cost of hastening the depletion of the ovarian reserve over time. We evaluated this model by examining psychological stress in relation to reproductive aging indexed by antral follicle count (AFC), a marker of total ovarian reserve. We hypothesized that stress would be related to (i) higher AFC in younger women, reflecting greater reproductive readiness as well as (ii) greater AFC loss across women, reflecting more accelerated reproductive aging. METHODS In a multi-ethnic, community sample of 979 participants [ages 25–45 (mean (standard deviation) = 35.2 (5.5)); 27.5% Caucasian] in the Ovarian Aging study, an investigation of the correlates of reproductive aging, the interaction of age-x-stress was assessed in relation to AFC to determine whether AFC and AFC loss varied across women experiencing differing levels of stress. Stress was assessed by the perceived stress scale and AFC was assessed by summing the total number of antral follicles visible by transvaginal ultrasound. RESULTS In linear regression examining AFC as the dependent variable, covariates (race/ethnicity, socio-economic status, menarcheal age, hormone-containing medication for birth control, parity, cigarette smoking, bodymass index, waist-to-hip ratio) and age were entered on step 1, stress on step 2 and the interaction term (age-x-stress) on step 3. On step 3, significant main effects showed that older age was related to lower AFC (b = −0.882, P = 0.000) and greater stress was related to higher AFC (b = 0.545, P = 0.005). Follow-up analyses showed that the main effect of stress on AFC was present in the younger women only. A significant interaction term (b = −0.036, P = 0.031) showed the relationship between age and AFC varied as function of stress. When the sample was divided into tertiles of stress, the average follicle loss was −0.781, −0.842 and −0.994 follicles/year in the low-, mid- and high-stress groups, respectively. CONCLUSIONS Psychological stress was related to higher AFC among younger women and greater AFC decline across women, suggesting that greater stress may enhance reproductive readiness in the short term at the cost of accelerating reproductive aging in the long term. Findings are preliminary, however, due to the cross-sectional nature of the current study. PMID:22767452

  4. Comparison of the Effects of Two Whitening Toothpastes on Microhardness of the Enamel and a Microhybride Composite Resin: An in Vitro Study

    PubMed Central

    Khamverdi, Z.; Kasraie, Sh.; Rezaei-Soufi, L.; Jebeli, S.

    2010-01-01

    Introduction: Whitening toothpastes which have been accepted in populations may affect properties of enamel and restorative materials. The aim of this study was to compare the microhardness of human enamel and Z250 microhybrid composite resin after brushing with two whitening toothpastes. Materials and Methods: In this experimental study of enamel specimens, forty five freshly extracted human incisors were prepared and divided into three groups of control enamel (ClE), Crest enamel (CtE) and Aquafresh enamel (AfE). For composite resin specimens, forty five cylindrical-shaped specimens of light-cured Z250 composite were prepared and divided into three groups of control composite (ClC), Crest composite (CtC) and Aquafresh composite (AfC). The control groups were brushed without toothpaste. Crest and Aquafresh group specimens were brushed with Crest and Aquafresh whitening toothpastes, respectively. Vickers microhardness test was performed for all groups. Data were analyzed by One-way ANOVA and Tukey tests. Results: Microhardness values of ClE, CtE, AfE, ClC, CtC and AfC groups were 332.99 ± 26.59, 313.99 ± 20.56, 323.57 ± 27.96, 137.1 ± 3.16, 122.95 ± 3.27 and 130.36 ± 4.8, respectively. One-way ANOVA showed no significant differences among three enamel groups but there was significant difference among composite groups (p<0.01). Conclusion: Crest and Aquafresh whitening toothpastes did not affect enamel hardness but reduced the microhardness value of Z-250 composite resin. However, Crest whitening toothpaste decreased the microhardness more than Aquafresh. PMID:21998788

  5. Age-related nomograms for antral follicle count and anti-Mullerian hormone for subfertile Chinese women in Singapore.

    PubMed

    Loy, See Ling; Cheung, Yin Bun; Fortier, Marielle Valerie; Ong, Chiou Li; Tan, Heng Hao; Nadarajah, Sadhana; Chan, Jerry Kok Yen; Viardot-Foucault, Veronique

    2017-01-01

    Antral follicle count (AFC) and anti-Mullerian hormone (AMH) are known as the most reliable markers of a woman's ovarian reserve and are related to age. There is currently no specific local age-related centile charts for AFC and AMH. Therefore, we aim to examine the relationship between AFC and AMH with age and construct age-related nomograms among a subfertile Asian population. This is a study involving Chinese women who had their AFC and AMH measured as part of their subfertility screening from December 2010 until November 2014 in KK Women's and Children's Hospital, Singapore. Ordinary least squares regression analysis was used to estimate the relationship of AFC and AMH with age, while age-related AFC and AMH nomograms for the 3rd, 10th, 25th, 50th, 75th, 90th and 97th percentiles were produced using the lambda-mu-sigma method. A total of 1,009 women, aged 26 to 44 year-old, were included. On average, the AFC and AMH decreased respectively by 0.79 follicle (95% confidence interval -0.93, -0.64) and 0.38 ng/mL (95% confidence interval -0.43, -0.32) per year of age. The age-related nomograms of AFC showed an approximately linear pattern, inversely correlated with age, regardless of the percentile. For AMH, the pattern is linear for the 75th percentile and below but shows a slightly accelerating decline for the 90th and 97th percentile. Overall, there were large inter-individual variations in AFC and AMH up to about 40 year-old. The declines of AFC and AMH over age are mostly linear among subfertile Chinese women in Singapore. The age-related AFC and AMH nomograms could be used as a reference chart by fertility practitioners. However, future validation with longitudinal data is required.

  6. Modular Multi-Sensor Display System Design Study. Volume 2. Detail Design and Application Analysis

    DTIC Science & Technology

    1974-08-01

    control grid . 2. Horizontal AFC/Deflection Module - Generates horizontal sweep signals from input syncs to provide 525 to 1023 line television raster...separation, and gener- ate composite blanking for the CRT control grid . Signal Number of Lines Signal Type Characteristics Input Interface Composite...SEPERATOR DC RESTORA- TION l_i BLANKING VERT DRIVE ■♦ Bl" CRT " CATHODE * _fc> BRIGHTNESS ^ (FRONT PANEL) .CRT GRID ■♦• COMP SYNC Figure

  7. Prediction of power requirements for a longwall armored face conveyor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Broadfoot, A.R.; Betz, R.E.

    1997-01-01

    Longwall armored face conveyors (AFC`s) have traditionally been designed using a combination of heuristics and simple models. However, as longwalls increase in length, these design procedures are proving to be inadequate. The result has either been a costly loss of production due to AFC stalling or component failure, or larger than necessary capital investment due to overdesign. In order to allow accurate estimation of the power requirements for an AFC, this paper develops a comprehensive model of all the friction forces associated with the AFC. Power requirement predictions obtained from these models are then compared with measurements from two minemore » faces.« less

  8. The use of serum anti-Mullerian hormone (AMH) levels and antral follicle count (AFC) to predict the number of oocytes collected and availability of embryos for cryopreservation in IVF.

    PubMed

    Kotanidis, L; Nikolettos, K; Petousis, S; Asimakopoulos, B; Chatzimitrou, E; Kolios, G; Nikolettos, N

    2016-12-01

    To investigate the predictive value of anti-Mullerian hormone (AMH) and antral follicle count (AFC) on the final number of oocytes retrieved and the availability of embryos for cryopreservation in in vitro fertilization (IVF) cycles. In this prospective study, one hundred and twenty women in their first IVF treatment were enrolled. The short stimulation agonist protocol was used for controlled ovarian hyperstimulation in all cases. Serum AMH levels were measured during the menstrual cycle preceding treatment. AFC was measured in cycle day 2, just before starting ovarian stimulation. A strong, positive correlation between AMH, AFC and the number of collected oocytes was found. The patients with available and suitable supplementary embryos for cryopreservation had higher levels of AMH and larger numbers of AFC. AMH and AFC appear to be valuable markers mainly for ovarian reserve and response to IVF treatment. Serum AMH levels and AFC are significantly associated with the number of retrieved oocytes. Also, a positive correlation with the availability of supernumerary embryos suitable for cryopreservation was observed.

  9. Amounts of artificial food colors in commonly consumed beverages and potential behavioral implications for consumption in children.

    PubMed

    Stevens, Laura J; Burgess, John R; Stochelski, Mateusz A; Kuczek, Thomas

    2014-02-01

    Artificial food colors (AFCs) are widely used to color foods and beverages. The amount of AFCs the Food and Drug Administration has certified over the years has increased more than 5-fold since 1950 (12 mg/capita/day) to 2012 (68 mg/capita/day). In the past 38 years, there have been studies of adverse behavioral reactions such as hyperactivity in children to double-blind challenges with AFCs. Studies that used 50 mg or more of AFCs as the challenge showed a greater negative effect on more children than those which used less. The study reported here is the first to quantify the amounts of AFCs in foods (specifically in beverages) commonly consumed by children in the United States. Consumption data for all foods would be helpful in the design of more challenge studies. The data summarized here should help clinicians advise parents about AFCs and beverage consumption.

  10. Estimation of genetic parameters for reproductive traits in alpacas.

    PubMed

    Cruz, A; Cervantes, I; Burgos, A; Morante, R; Gutiérrez, J P

    2015-12-01

    One of the main deficiencies affecting animal breeding programs in Peruvian alpacas is the low reproductive performance leading to low number of animals available to select from, decreasing strongly the selection intensity. Some reproductive traits could be improved by artificial selection, but very few information about genetic parameters exists for these traits in this specie. The aim of this study was to estimate genetic parameters for six reproductive traits in alpacas both in Suri (SU) and Huacaya (HU) ecotypes, as well as their genetic relationship with fiber and morphological traits. Dataset belonging to Pacomarca experimental farm collected between 2000 and 2014 was used. Number of records for age at first service (AFS), age at first calving (AFC), copulation time (CT), pregnancy diagnosis (PD), gestation length (GL), and calving interval (CI) were, respectively, 1704, 854, 19,770, 5874, 4290 and 934. Pedigree consisted of 7742 animals. Regarding reproductive traits, model of analysis included additive and residual random effects for all traits, and also permanent environmental effect for CT, PD, GL and CI traits, with color and year of recording as fixed effects for all the reproductive traits and also age at mating and sex of calf for GL trait. Estimated heritabilities, respectively for HU and SU were 0.19 and 0.09 for AFS, 0.45 and 0.59 for AFC, 0.04 and 0.05 for CT, 0.07 and 0.05 for PD, 0.12 and 0.20 for GL, and 0.14 and 0.09 for CI. Genetic correlations between them ranged from -0.96 to 0.70. No important genetic correlations were found between reproductive traits and fiber or morphological traits in HU. However, some moderate favorable genetic correlations were found between reproductive and either fiber and morphological traits in SU. According to estimated genetic correlations, some reproductive traits might be included as additional selection criteria in HU. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. DETANONOate, a nitric oxide donor, decreases amiloride-sensitive alveolar fluid clearance in rabbits.

    PubMed

    Nielsen, V G; Baird, M S; Chen, L; Matalon, S

    2000-04-01

    Inhaled nitric oxide (NO) has been administered to animals to selectively reduce pulmonary hypertension via NO donors such as the NONOates. However, vectorial Na(+) transport across confluent monolayers of alveolar type II (ATII) pneumocytes has been decreased by NO. We tested the hypothesis that administration of the NO donor, DETANONOate, would decrease alveolar fluid clearance (AFC) in the rabbit in vivo. We instilled a solution of 5% albumin in 0.9% NaCl with 3 mM DETANONOate into anesthetized rabbits. Two hours later, similar AFC values were measured in the presence and absence of 3 mM DETANONOate (38 +/- 12% versus 43 +/- 13%; mean +/- SD). However, animals coadministered 1 mM amiloride with one of three doses of DETANONOate (100 microM, 300 microM, or 3 mM) had significantly (p < 0.05) greater AFC values (23 +/- 8, 20 +/- 14, 28 +/- 12%, respectively) than those administered amiloride alone (10 +/- 7%). When 5% albumin in a Cl(-)-free solution was administered in the presence or absence of 100 microM DETANONOate, neither AFC values nor alveolar Cl(-) concentrations were different. DETANONOate decreases the amiloride-sensitive fraction of AFC but does not decrease total AFC. DETANONOate does not influence total AFC secondary to an increase in the amiloride-insensitive fraction of AFC that is not associated with a decrease in alveolar Cl(-) secretion.

  12. Antral follicle counts are strongly associated with live-birth rates after assisted reproduction, with superior treatment outcome in women with polycystic ovaries.

    PubMed

    Holte, Jan; Brodin, Thomas; Berglund, Lars; Hadziosmanovic, Nermin; Olovsson, Matts; Bergh, Torbjörn

    2011-09-01

    To evaluate the association of antral follicle count (AFC) with in vitro fertilization/intracytoplasmic sperm injection (IVF-ICSI) outcome in a large unselected cohort of patients covering the entire range of AFC. Prospective observational study. University-affiliated private infertility center. 2,092 women undergoing 4,308 IVF-ICSI cycles. AFC analyzed for associations with treatment outcome and statistically adjusted for repeated treatments and age. Pregnancy rate, live-birth rate, and stimulation outcome parameters. The AFC was log-normally distributed. Pregnancy rates and live-birth rates were positively associated with AFC in a log-linear way, leveling out above AFC ∼30. Treatment outcome was superior among women with polycystic ovaries, independent from ovulatory status. The findings were significant also after adjustment for age and number of oocytes retrieved. Pregnancy and live-birth rates are log-linearly related to AFC. Polycystic ovaries, most often excluded from studies on ovarian reserve, fit as one extreme in the spectrum of AFC; a low count constitutes the other extreme, with the lowest ovarian reserve and poor treatment outcome. The findings remained statistically significant also after adjustment for the number of oocytes retrieved, suggesting this measure of ovarian reserve comprises information on oocyte quality and not only quantity. Copyright © 2011 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  13. Long-term hormonal contraceptive use is associated with a reversible suppression of antral follicle count and a break from hormonal contraception may improve oocyte yield.

    PubMed

    Letourneau, Joseph M; Cakmak, Hakan; Quinn, Molly; Sinha, Nikita; I Cedars, Marcelle; Rosen, Mitchell P

    2017-09-01

    Unlike infertility, patients presenting for fertility preservation (FP) are often using combined hormonal contraceptives (CHC). We studied whether long-term (≥6 months) CHC use is associated with reversible suppression of antral follicle count (AFC). This is a longitudinal study of FP cycles from 2012 to 2016. We studied three groups: those without CHC exposure (NO CHC), those with CHC usage with a CHC break (BREAK), and without a break (NO BREAK) prior to ovarian stimulation. We assessed ovarian reserve by AFC at initial consultation and discussed the possibility of CHC suppression of AFC. Patients chose between ovarian stimulation with no CHC break versus ovarian stimulation after a CHC break. AFC was measured serially in the BREAK group. We assessed whether AFC suppression was reversed in the BREAK group. Total oocyte yield was compared among the NO CHC, BREAK, and NO BREAK groups. T tests, ANOVA, and linear/logistic regressions were used. Seven hundred forty-three women underwent FP. Twenty-one percent (n = 154) were taking long-term CHC (≥6 months). AFC suppression was more likely with CHC use (OR 1.6, 95% CI 1.1-2.4, P = 0.011). The BREAK group (n = 79) stopped CHC for an average of 4 months. AFC improvement started at 1 month and plateaued at approximately 6- to 7-month break. The BREAK group had approximately twice as many oocytes per initial AFC as NO BREAK (2.8 ± 3.8 vs. 1.4 ± 0.9, P < 0.001). When women present for FP on CHC, AFC may be suppressed. A CHC break of several months is associated with an increase in AFC and a potential improvement in overall egg yield.

  14. Various applications of Active Field Control (AFC)

    NASA Astrophysics Data System (ADS)

    Watanabe, Takayuki; Miyazaki, Hideo; Kishinaga, Shinji; Kawakami, Fukushi

    2003-10-01

    AFC is an electro-acoustic enhancement system, which has been under development at Yamaha Corporation. In this paper, several types of various AFC applications are discussed, while referring to representative projects for each application in Japan. (1) Realization of acoustics in a huge hall to classical music program, e.g., Tokyo International Forum. This venue is a multipurpose hall with approximately 5000 seats. AFC achieves loudness and reverberance equivalent to those of a hall with 2500 seats or fewer. (2) Optimization of acoustics for a variety of programs, e.g., Arkas Sasebo. AFC is used to create the optimum acoustics for each program, such as reverberance for classical concerts, acoustical support for opera singers, uniformity throughout the hall from the stage to under-balcony area, etc. (3) Control of room shape acoustical effect, e.g., Osaka Central Public Hall: In this renovation project, preservation of historically important architecture in the original form is required. AFC is installed to vary only the acoustical environment without architectural changes. (4) Assistance with crowd enthusiasm for sports entertainment, e.g., Tokyo Metropolitan Gymnasium. In this venue, which is designed as a very absorptive space for speech intelligibility, AFC is installed to enhance the atmosphere of live sports entertainment.

  15. Adaptive format conversion for scalable video coding

    NASA Astrophysics Data System (ADS)

    Wan, Wade K.; Lim, Jae S.

    2001-12-01

    The enhancement layer in many scalable coding algorithms is composed of residual coding information. There is another type of information that can be transmitted instead of (or in addition to) residual coding. Since the encoder has access to the original sequence, it can utilize adaptive format conversion (AFC) to generate the enhancement layer and transmit the different format conversion methods as enhancement data. This paper investigates the use of adaptive format conversion information as enhancement data in scalable video coding. Experimental results are shown for a wide range of base layer qualities and enhancement bitrates to determine when AFC can improve video scalability. Since the parameters needed for AFC are small compared to residual coding, AFC can provide video scalability at low enhancement layer bitrates that are not possible with residual coding. In addition, AFC can also be used in addition to residual coding to improve video scalability at higher enhancement layer bitrates. Adaptive format conversion has not been studied in detail, but many scalable applications may benefit from it. An example of an application that AFC is well-suited for is the migration path for digital television where AFC can provide immediate video scalability as well as assist future migrations.

  16. Longitudinal Tracking of Human Fetal Cells Labeled with Super Paramagnetic Iron Oxide Nanoparticles in the Brain of Mice with Motor Neuron Disease

    PubMed Central

    Bigini, Paolo; Diana, Valentina; Barbera, Sara; Fumagalli, Elena; Micotti, Edoardo; Sitia, Leopoldo; Paladini, Alessandra; Bisighini, Cinzia; De Grada, Laura; Coloca, Laura; Colombo, Laura; Manca, Pina; Bossolasco, Patrizia; Malvestiti, Francesca; Fiordaliso, Fabio; Forloni, Gianluigi; Morbidelli, Massimo; Salmona, Mario; Giardino, Daniela; Mennini, Tiziana; Moscatelli, Davide; Silani, Vincenzo; Cova, Lidia

    2012-01-01

    Stem Cell (SC) therapy is one of the most promising approaches for the treatment of Amyotrophic Lateral Sclerosis (ALS). Here we employed Super Paramagnetic Iron Oxide nanoparticles (SPIOn) and Hoechst 33258 to track human Amniotic Fluid Cells (hAFCs) after transplantation in the lateral ventricles of wobbler (a murine model of ALS) and healthy mice. By in vitro, in vivo and ex vivo approaches we found that: 1) the main physical parameters of SPIOn were maintained over time; 2) hAFCs efficiently internalized SPIOn into the cytoplasm while Hoechst 33258 labeled nuclei; 3) SPIOn internalization did not alter survival, cell cycle, proliferation, metabolism and phenotype of hAFCs; 4) after transplantation hAFCs rapidly spread to the whole ventricular system, but did not migrate into the brain parenchyma; 5) hAFCs survived for a long time in the ventricles of both wobbler and healthy mice; 6) the transplantation of double-labeled hAFCs did not influence mice survival. PMID:22384217

  17. The anti-aging effects of LW-AFC via correcting immune dysfunctions in senescence accelerated mouse resistant 1 (SAMR1) strain.

    PubMed

    Wang, Jianhui; Cheng, Xiaorui; Zhang, Xiaorui; Cheng, Junping; Xu, Yiran; Zeng, Ju; Zhou, Wenxia; Zhang, Yongxiang

    2016-05-10

    Although there were considerable advances in the anti-aging medical field, it is short of therapeutic drug for anti-aging. Mounting evidence indicates that the immunosenescence is the key physiopathological mechanism of aging. This study showed the treatment of LW-AFC, an herbal medicine, decreased the grading score of senescence, increased weight, prolonged average life span and ameliorated spatial memory impairment in 12- and 24-month-old senescence accelerated mouse resistant 1 (SAMR1) strain. And these anti-aging effects of LW-AFC were more excellent than melatonin. The administration of LW-AFC enhanced ConA- and LPS-induced splenocyte proliferation in aged SAMR1 mice. The treatment of LW-AFC not only reversed the decreased the proportions of helper T cells, suppressor T cells and B cells, the increased regulatory T cells in the peripheral blood of old SAMR1 mice, but also could modulate the abnormal secretion of IL-1β, IL-2, IL-6, IL-17, IL-23, GM-CSF, IFN-γ, TNF-α, TNF-β, RANTES, eotaxin, MCP-1, IL-4, IL-5, IL-10 and G-CSF. These data indicated that LW-AFC reversed the immunosenescence status by restoring immunodeficiency and decreasing chronic inflammation and suggested LW-AFC may be an effective anti-aging agent.

  18. Soluble Receptor for Advanced Glycation End-Products Predicts Impaired Alveolar Fluid Clearance in Acute Respiratory Distress Syndrome.

    PubMed

    Jabaudon, Matthieu; Blondonnet, Raiko; Roszyk, Laurence; Bouvier, Damien; Audard, Jules; Clairefond, Gael; Fournier, Mathilde; Marceau, Geoffroy; Déchelotte, Pierre; Pereira, Bruno; Sapin, Vincent; Constantin, Jean-Michel

    2015-07-15

    Levels of the soluble form of the receptor for advanced glycation end-products (sRAGE) are elevated during acute respiratory distress syndrome (ARDS) and correlate with severity and prognosis. Alveolar fluid clearance (AFC) is necessary for the resolution of lung edema but is impaired in most patients with ARDS. No reliable marker of this process has been investigated to date. To verify whether sRAGE could predict AFC during ARDS. Anesthetized CD-1 mice underwent orotracheal instillation of hydrochloric acid. At specified time points, lung injury was assessed by analysis of blood gases, alveolar permeability, lung histology, AFC, and plasma/bronchoalveolar fluid measurements of proinflammatory cytokines and sRAGE. Plasma sRAGE and AFC rates were also prospectively assessed in 30 patients with ARDS. The rate of AFC was inversely correlated with sRAGE levels in the plasma and the bronchoalveolar fluid of acid-injured mice (Spearman's ρ = -0.73 and -0.69, respectively; P < 10(-3)), and plasma sRAGE correlated with AFC in patients with ARDS (Spearman's ρ = -0.59; P < 10(-3)). Similarly, sRAGE levels were significantly associated with lung injury severity, and decreased over time in mice, whereas AFC was restored and lung injury resolved. Our results indicate that sRAGE levels could be a reliable predictor of impaired AFC during ARDS, and should stimulate further studies on the pathophysiologic implications of RAGE axis in the mechanisms leading to edema resolution. Clinical trial registered with www.clinicaltrials.gov (NCT 00811629).

  19. Collaborative partnership in age-friendly cities: two case studies from Quebec, Canada.

    PubMed

    Garon, Suzanne; Paris, Mario; Beaulieu, Marie; Veil, Anne; Laliberté, Andréanne

    2014-01-01

    This article aims to explain the collaborative partnership conditions and factors that foster implementation effectiveness within the age-friendly cities (AFC) in Quebec (AFC-QC), Canada. Based on a community-building approach that emphasizes collaborative partnership, the AFC-QC implementation process is divided into three steps: (1) social diagnostic of older adults' needs; (2) an action plan based on a logic model; and (3) implementation through collaborations. AFC-QC promotes direct involvement of older adults and seniors' associations at each of the three steps of the implementation process, as well as other stakeholders in the community. Based on two contrasting case studies, this article illustrates the importance of collaborative partnership for the success of AFC implementation. Results show that stakeholders, agencies, and organizations are exposed to a new form of governance where coordination and collaborative partnership among members of the steering committee are essential. Furthermore, despite the importance of the senior associations' participation in the process, they encountered significant limits in the capacity of implementing age-friendly environments solely by themselves. In conclusion, we identify the main collaborative partnership conditions and factors in AFC-QC.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chichester, Heather Jean MacLean; Hayes, Steven Lowe; Dempsey, Douglas

    This report summarizes the objectives of the current irradiation testing activities being undertaken by the Advanced Fuels Campaign relative to supporting the development and demonstration of innovative design features for metallic fuels in order to realize reliable performance to ultra-high burnups. The AFC-3 and AFC-4 test series are nearing completion; the experiments in this test series that have been completed or are in progress are reviewed and the objectives and test matrices for the final experiments in these two series are defined. The objectives, testing strategy, and test parameters associated with a future AFC test series, AFC-5, are documented. Finally,more » the future intersections and/or synergies of the AFC irradiation testing program with those of the TREAT transient testing program, emerging needs of proposed Versatile Test Reactor concepts, and the Joint Fuel Cycle Study program’s Integrated Recycle Test are discussed.« less

  1. Antral follicle count predicts natural menopause in a population-based sample: the Coronary Artery Risk Development in Young Adults Women's Study.

    PubMed

    Wellons, Melissa F; Bates, Gordon Wright; Schreiner, Pamela J; Siscovick, David S; Sternfeld, Barbara; Lewis, Cora E

    2013-08-01

    The timing of menopause is associated with multiple chronic diseases. Tools that predict this milestone have relevance for clinical and research purposes. Among infertile women, a positive relationship exists between antral follicle count (AFC) and response to controlled ovarian hyperstimulation, a marker of ovarian reserve. However, an age-independent relationship between AFC and menopause has not been demonstrated. Thus, our objective was to evaluate the relationship between AFC measured in women aged 34 to 49 years and incident natural menopause during 7 years of follow-up. The Coronary Artery Risk Development in Young Adults Study is a longitudinal community-based study (Chicago, IL; Birmingham, AL; Minneapolis, MN; and Oakland, CA) begun in 1985-1986. In 2002-2003, the Coronary Artery Risk Development in Young Adults Women's Study measured follicle-stimulating hormone (FSH) levels and performed a transvaginal ultrasound protocol that included AFC (2-10 mm follicles on both ovaries). Incident natural menopause was assessed by surveys in 2005-2006 and 2009-2010. In our sample (n = 456), the median (interquartile range) AFC and FSH level were 5 (2-9) and 7.8 (5.6-11.0) mIU/mL, respectively, at a mean (range) age of 42 (34-49) years in 2002-2003. One hundred one women reported natural menopause by 2009-2010. In Cox models, current smoking, stable menses, FSH level higher than 13 mIU/mL, and AFC of 4 or less were independently associated with incident natural menopause. Compared with AFC higher than 4, those with an AFC of 4 or less were nearly twice as likely to have undergone menopause during 7 years of follow-up (hazard ratio, 1.89; 95% CI, 1.19-3.02) after adjustment for covariates. AFC has been found to be independently associated with natural menopause during 7 years of follow-up after controlling for other markers of ovarian aging.

  2. Antral Follicle Count Predicts Natural Menopause in a Population-Based Sample: The CARDIA Women’s Study

    PubMed Central

    Wellons, Melissa F.; Bates, Gordon Wright; Schreiner, Pamela J.; Siscovick, David S.; Sternfeld, Barbara; Lewis, Cora E.

    2013-01-01

    Objective The timing of menopause is associated with multiple chronic diseases. Tools to predict this milestone have relevance for clinical and research purposes. Among infertile women, a positive relationship exists between antral follicle count (AFC) and response to controlled ovarian hyperstimulation, a marker of ovarian reserve. However, a relationship between AFC and menopause that is age-independent has not been demonstrated. Thus, our objective was to evaluate the relationship between AFC measured in women at ages 34–49 and incident natural menopause over 7-years of follow-up. Methods The Coronary Artery Risk Development in Young Adults (CARDIA) study is a longitudinal community-based study (Chicago, Illinois; Birmingham, Alabama; Minneapolis, Minnesota; and Oakland, California) begun in 1985–1986. In 2002–03, the CARDIA Women’s Study measured FSH levels and performed a transvaginal ultrasound protocol that included AFC (2mm–10mm follicles on both ovaries). Incident natural menopause was assessed by survey in 2005–06 and 2009–10. Results In our sample (n=456), median AFC and FSH were 5 (IQR 2–9) and 7.8 mIU/mL (IQR 5.6–11.0), respectively, at a mean age of 42 (range 34–49) in 2002–03. 101 women reported natural menopause by 2009–10. In Cox models, current smoking, stable menses, FSH>13, and AFC ≤4 were independently associated with incident natural menopause. Compared to AFC >4, those with AFC ≤4 were nearly twice as likely to have undergone menopause over 7-years of follow-up (HR 1.89, 95% CI 1.19–3.02) after adjustment for covariates. Conclusion AFC is independently associated with natural menopause over 7-years of follow-up after controlling for other markers of ovarian aging. PMID:23422869

  3. Satellite Dynamic Damping via Active Force Control Augmentation

    NASA Astrophysics Data System (ADS)

    Varatharajoo, Renuganth

    2012-07-01

    An approach that incorporates the Active Force Control (AFC) technique into a conventional Proportional-Derivative (PD) controller is proposed for a satellite active dynamic damping towards a full attitude control. The AFC method has been established to facilitate a robust motion control of dynamical systems in the presence of disturbances, parametric uncertainties and changes that are commonly prevalent in the real-world environment. The usefulness of the method can be extended by introducing intelligent mechanisms to approximate the mass or inertia matrix of the dynamic system to trigger the compensation effect of the controller. AFC is a technique that relies on the appropriate estimation of the inertial or mass parameters of the dynamic system and the measurements of the acceleration and force signals induced by the system if practical implementation is ever considered. In AFC, it is shown that the system subjected to a number of disturbances remains stable and robust via the compensating action of the control strategy. We demonstrate that it is possible to design a spacecraft attitude feedback controller that will ensure the system dynamics set point remains unchanged even in the presence of the disturbances provided that the actual disturbances can be modeled effectively. In order to further facilitate this analysis, a combined energy and attitude control system (CEACS) is proposed as a model satellite attitude control actuator. All the governing equations are established and the proposed satellite attitude control architecture is made amenable to numerical treatments. The results show that the PD-AFC attitude damping performances are superiorly better than that of the solely PD type. It is also shown that the tunings of the AFC system gains are crucial to ensure a better attitude damping performance and this process is mandatory for AFC systems. Finally, the results demonstrate an important satellite dynamic damping enhancement capability using the AFC technique. Keywords: Satellite, Dynamic Damping, Attitude Control, AFC Technique,

  4. Advanced flight computer. Special study

    NASA Technical Reports Server (NTRS)

    Coo, Dennis

    1995-01-01

    This report documents a special study to define a 32-bit radiation hardened, SEU tolerant flight computer architecture, and to investigate current or near-term technologies and development efforts that contribute to the Advanced Flight Computer (AFC) design and development. An AFC processing node architecture is defined. Each node may consist of a multi-chip processor as needed. The modular, building block approach uses VLSI technology and packaging methods that demonstrate a feasible AFC module in 1998 that meets that AFC goals. The defined architecture and approach demonstrate a clear low-risk, low-cost path to the 1998 production goal, with intermediate prototypes in 1996.

  5. Antral follicle count in normal (fertility-proven) and infertile Indian women.

    PubMed

    Agarwal, Arjit; Verma, Ashish; Agarwal, Shubhra; Shukla, Ram Chandra; Jain, Madhu; Srivastava, Arvind

    2014-07-01

    Antral follicle count (AFC) has been labeled as the most accurate biomarker to assess female fecundity. Unfortunately, no baseline Indian data exists, and we continue using surrogate values from the Western literature (inferred from studies on women, grossly different than Indian women in morphology and genetic makeup). (1) To establish the role of AFC as a function of ovarian reserve in fertility-proven and in subfertile Indian women. (2) To establish baseline cut-off AFC values for Indian women. Prospective observational case-control study. Thirty patients undergoing workup for infertility were included and compared to equal number of controls (women with proven fertility). The basal ovarian volume and AFC were measured by endovaginal. USG the relevant clinical data and hormonal assays were charted for every patient. SPSS platform was used to perform the Student's t-test and Mann-Whitney U-test for intergroup comparisons. Correlations were determined by Pearson's ranked correlation coefficient. Regression analysis revealed the highest correlation of AFC and age in fertile and infertile patients with difference in mean AFC of both the groups. Comparison of the data recorded for cases and controls showed no significant difference in the mean ovarian volume. AFC has the closest association with chronological age in normal and infertile Indian women. The same is lower in infertile women than in matched controls. Baseline and cut-off values in Indian women are lower than that mentioned in the Western literature.

  6. Performance, usability and comparison of two versions of a new macular vision test: the handheld Radial Shape Discrimination test

    PubMed Central

    Ku, Jae Y.; Milling, Ashli F.; Pitrelli Vazquez, Noelia

    2016-01-01

    Background Central vision, critical for everyday tasks such as reading and driving, is impacted by age-related changes in the eye and by diseases such as age-related macular degeneration. The detection of changes in macular function is therefore important. The Radial Shape Discrimination (RSD) test measures the threshold at which distortions in a radial frequency pattern can be detected and there is evidence that it is more sensitive to macular pathology than visual acuity (VA). It also provides a more quantitative measure of macular function than the commonly available Amsler grid. Recently, handheld versions of the test (hRSD) in which stimuli are presented on mobile devices (e.g., Apple iPod Touch, iPhone) have been developed. We investigated the characteristics of the hRSD test in healthy participants. Methods Data were collected using both three-alternative forced choice (3AFC) and 4AFC versions of the hRSD test, presented on an Apple iPod Touch. For the 3AFC version, data from a single test session were available for 186 (72 male; mean ± SD age 42 ± 17y; range 16–90y) healthy participants. Test-retest data were available for subgroups of participants (intra-session: N = 74; tests approximately 2 months apart: N = 30; tests 39 months apart: N = 15). The 3AFC and 4AFC versions were directly compared in 106 participants who also completed a usability questionnaire. Distance and near VA and Pelli Robson Contrast Sensitivity (CS) data were collected and undilated fundoscopy performed on the majority of participants. Results Mean (±SD) 3AFC hRSD threshold was −0.77 ± 0.14 logMAR, and was statistically significantly correlated with age (Pearson r = 0.35; p < 0.001). The linear regression of hRSD threshold on age had a slope of +0.0026 compared to +0.0051 for near VA (which also correlated with age: r = 0.51; p < 0.001). There were no statistically significant differences in hRSD thresholds for any of the test-retest subgroups. We also observed no statistically significant difference between 3AFC (−0.82 ± 0.11 logMAR) and 4AFC (−0.80 ± 0.12 logMAR) hRSD thresholds (t = 1.85, p = 0.067) and participants reported excellent test usability with no strong preference expressed between the 3AFC and 4AFC versions of the test. Discussion The 3AFC hRSD thresholds we report are consistent with a number of previous studies, as is its greater stability in ageing compared to VA. We have also shown that in the absence of pathology, thresholds are stable over short and long timescales. The 4AFC thresholds we have reported provide a baseline for future investigations, and we have confirmed that 3AFC and 4AFC thresholds are similar, providing a basis of comparisons between studies using the different versions. As the hRSD test is easy to use and relatively inexpensive, clinical studies are now required to establish its ability to detect and monitor macular pathologies. PMID:27833815

  7. Intravenous S-Ketamine Does Not Inhibit Alveolar Fluid Clearance in a Septic Rat Model

    PubMed Central

    Weber, Nina C.; van der Sluijs, Koen; Hackl, Florian; Hotz, Lorenz; Dahan, Albert; Hollmann, Markus W.; Berger, Marc M.

    2014-01-01

    We previously demonstrated that intratracheally administered S-ketamine inhibits alveolar fluid clearance (AFC), whereas an intravenous (IV) bolus injection had no effect. The aim of the present study was to characterize whether continuous IV infusion of S-ketamine, yielding clinically relevant plasma concentrations, inhibits AFC and whether its effect is enhanced in acute lung injury (ALI) which might favor the appearance of IV S-ketamine at the alveolar surface. AFC was measured in fluid-instilled rat lungs. S-ketamine was administered IV over 6 h (loading dose: 20 mg/kg, followed by 20 mg/kg/h), or intratracheally by addition to the instillate (75 µg/ml). ALI was induced by IV lipopolysaccharide (LPS; 7 mg/kg). Interleukin (IL)-6 and cytokine-induced neutrophil chemoattractant (CINC)-3 were measured by ELISA in plasma and bronchoalveolar lavage fluid. Isolated rat alveolar type-II cells were exposed to S-ketamine (75 µg/ml) and/or LPS (1 mg/ml) for 6 h, and transepithelial ion transport was measured as short circuit current (ISC). AFC was 27±5% (mean±SD) over 60 min in control rats and was unaffected by IV S-ketamine. Tracheal S-ketamine reduced AFC to 18±9%. In LPS-treated rats, AFC decreased to 16±6%. This effect was not enhanced by IV S-ketamine. LPS increased IL-6 and CINC-3 in plasma and bronchoalveolar lavage fluid. In alveolar type-II cells, S-ketamine reduced ISC by 37% via a decrease in amiloride-inhibitable sodium transport. Continuous administration of IV S-ketamine does not affect rat AFC even in endotoxin-induced ALI. Tracheal application with direct exposure of alveolar epithelial cells to S-ketamine decreases AFC by inhibition of amiloride-inhibitable sodium transport. PMID:25386677

  8. Endogenous acetylcholine increases alveolar epithelial fluid transport via activation of alveolar epithelial Na,K-ATPase in mice.

    PubMed

    Li, Xia; Yan, Xi Xin; Li, Hong Lin; Li, Rong Qin

    2015-10-01

    The contribution of endogenous acetylcholine to alveolar fluid clearance (AFC) and related molecular mechanisms were explored. AFC was measured in Balb/c mice after vagotomy and vagus nerve stimulation. Effects of acetylcholine chloride on AFC in Kunming mice and Na,K-ATPase function in A549 alveolar epithelial cells also were determined. AFC significantly decreased in mice with left cervical vagus nerve transection compared with controls (48.69 ± 2.57 vs. 66.88 ± 2.64, P ≤ 0.01), which was reversed by stimulation of the peripheral (60.81 ± 1.96, P ≤ 0.01). Compared with control, acetylcholine chloride dose-dependently increased AFC and elevated Na,K-ATPase activity, and these increases were blocked or reversed by atropine. These effects were accompanied by recruitment of Na,K-ATPase α1 to the cell membrane. Thus, vagus nerves participate in alveolar epithelial fluid transport by releasing endogenous acetylcholine in the infusion-induced pulmonary edema mouse model. Effects of endogenous acetylcholine on AFC are likely mediated by Na,K-ATPase function through activation of muscarinic acetylcholine receptors on alveolar epithelia. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Flow Separation Control on A Full-Scale Vertical Tail Model Using Sweeping Jet Actuators

    NASA Technical Reports Server (NTRS)

    Andino, Marlyn Y.; Lin, John C.; Washburn, Anthony E.; Whalen, Edward A.; Graff, Emilio C.; Wygnanski, Israel J.

    2015-01-01

    This paper describes test results of a joint NASA/Boeing research effort to advance Active Flow Control (AFC) technology to enhance aerodynamic efficiency. A full-scale Boeing 757 vertical tail model equipped with sweeping jets AFC was tested at the National Full-Scale Aerodynamics Complex 40- by 80-Foot Wind Tunnel at NASA Ames Research Center. The flow separation control optimization was performed at 100 knots, a maximum rudder deflection of 30deg, and sideslip angles of 0deg and -7.5deg. Greater than 20% increments in side force were achieved at the two sideslip angles with a 31-actuator AFC configuration. Flow physics and flow separation control associated with the AFC are presented in detail. AFC caused significant increases in suction pressure on the actuator side and associated side force enhancement. The momentum coefficient (C sub mu) is shown to be a useful parameter to use for scaling-up sweeping jet AFC from sub-scale tests to full-scale applications. Reducing the number of actuators at a constant total C(sub mu) of approximately 0.5% and tripling the actuator spacing did not significantly affect the flow separation control effectiveness.

  10. Active field control (AFC) -electro-acoustic enhancement system using acoustical feedback control

    NASA Astrophysics Data System (ADS)

    Miyazaki, Hideo; Watanabe, Takayuki; Kishinaga, Shinji; Kawakami, Fukushi

    2003-10-01

    AFC is an electro-acoustic enhancement system using FIR filters to optimize auditory impressions, such as liveness, loudness, and spaciousness. This system has been under development at Yamaha Corporation for more than 15 years and has been installed in approximately 50 venues in Japan to date. AFC utilizes feedback control techniques for recreation of reverberation from the physical reverberation of the room. In order to prevent coloration problems caused by a closed loop condition, two types of time-varying control techniques are implemented in the AFC system to ensure smooth loop gain and a sufficient margin in frequency characteristics to prevent instability. Those are: (a) EMR (electric microphone rotator) -smoothing frequency responses between microphones and speakers by changing the combinations of inputs and outputs periodically; (b) fluctuating-FIR -smoothing frequency responses of FIR filters and preventing coloration problems caused by fixed FIR filters, by moving each FIR tap periodically on time axis with a different phase and time period. In this paper, these techniques are summarized. A block diagram of AFC using new equipment named AFC1, which has been developed at Yamaha Corporation and released recently in the US, is also presented.

  11. The art and science of flow control - case studies using flow visualization methods

    NASA Astrophysics Data System (ADS)

    Alvi, F. S.; Cattafesta, L. N., III

    2010-04-01

    Active flow control (AFC) has been the focus of significant research in the last decade. This is mainly due to the potentially substantial benefits it affords. AFC applications range from the subsonic to the supersonic (and beyond) regime for both internal and external flows. These applications are wide and varied, such as controlling flow transition and separation over various external components of the aircraft to active management of separation and flow distortion in engine components and over turbine and compressor blades. High-speed AFC applications include control of flow oscillations in cavity flows, supersonic jet screech, impinging jets, and jet-noise control. In this paper we review some of our recent applications of AFC through a number of case studies that illustrate the typical benefits as well as limitations of present AFC methods. The case studies include subsonic and supersonic canonical flowfields such as separation control over airfoils, control of supersonic cavity flows and impinging jets. In addition, properties of zero-net mass-flux (ZNMF) actuators are also discussed as they represent one of the most widely studied actuators used for AFC. In keeping with the theme of this special issue, the flowfield properties and their response to actuation are examined through the use of various qualitative and quantitative flow visualization methods, such as smoke, shadowgraph, schlieren, planar-laser scattering, and Particle image velocimetry (PIV). The results presented here clearly illustrate the merits of using flow visualization to gain significant insight into the flow and its response to AFC.

  12. Live birth rates are satisfactory following multiple IVF treatment cycles in poor prognosis patients.

    PubMed

    Mustafa, Kamarul B; Keane, Kevin N; Walz, Nikita L; Mitrovic, Katarina I; Hinchliffe, Peter M; Yovich, John L

    2017-03-01

    This seven-year retrospective study analysed the live birth rate (LBR) for women undergoing IVF treatment with various antral follicle counts (AFC). The LBR decreased with lower AFC ratings, and in 290 treatment cycles for women in the poorest AFC category, ≤4 follicles (group E), the LBR was the lowest at 10.7%. The pregnancy loss rate (PLR) significantly increased with poorer AFC categories, from 21.8% in AFC group A (≥20 follicles), to 54.4% in AFC group E (p<0.0001). This trend was repeated with advancing age, from 21.6% for younger women (<35years), to 32.9, 48.5 and 100% for ages 35-39, 40-44 and ≥45 years, respectively (p<0.0001). However, LBR within the specific AFC group E cohort was also age-dependent and decreased significantly from 30.0% for <35 years old, to 13.3, 3.9 and 0% for patients aged 35-39, 40-44 and ≥45 years, respectively. Most, importantly, LBR rates within these age groups were not dependent on the number of IVF attempts (1st, 2nd, 3rd or ≥4 cycles), which indicated that cycle number should not be the primary deciding factor for cessation of IVF treatment in responding women <45years old. Copyright © 2016 Society for Biology of Reproduction & the Institute of Animal Reproduction and Food Research of Polish Academy of Sciences in Olsztyn. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  13. Exploration of relationships between low-Ti and high-Ti pristine lunar glasses using an armalcolite assimilation model

    NASA Technical Reports Server (NTRS)

    Jones, John H.; Delano, John W.

    1991-01-01

    The pristine glasses of Delano are the most primitive lunar basaltic magma compositions discovered to date. They are grouped into two (and possibly three) arrays: a low-alumina array and a high alumina array. These glasses are very olivine normative and are multiply saturated at pressures of approximately 20 kbar, implying a depth of origin of 400 to 500 km in the Moon. Thus, these glasses appear to be the best candidates for primitive partial melts of the upper lunar mantle. One of the most perplexing characteristics of the pristine glasses is a positive correlation between Ni and SiO2 within each array. This is contrary to the terrestrial experience, where Ni is observed to positively correlate with MgO and negatively correlate with SiO2. These systematics are believed to be due to the depletion of Ni by olivine fractionation. The difference between the lunar and terrestrial Ni vs. SiO2 trends may be partially ascribed to the Ti-rich component. In the case of the pristine glasses, SiO2 increases not because of olivine fractionation, but because they contain less of the high-Ti component. An attempt was made to model this variation in Ni and SiO2 with a simple assimilation-fractional crystallization (AFC) model. Silica and Ni both decreased dramatically as the AFC process proceeded. Only 15 to 20 percent AFC was necessary to produce the observed variation, and the SiO2 vs. Ni variation was modeled quite well. The D(Ni) for olivine/liquid in this model was taken to be 10 and the olivine was assumed to be Fe sub 80. However, the results of this model for Ti and Mg were less than satisfactory. It seemed difficult to achieve the high TiO2 contents of some glasses (16 to 17 wt. percent) by this method. Continual addition of ilmenite by AFC could indeed raise the titania concentrations to the necessary levels, but only by enriching the magma in FeO and greatly depleting the magma in MgO. An attempt was made to circumvent this problem by using armalcolite, (Fe, Mg)Ti2O5, in the AFC model, and the results are presented.

  14. Active Control of Flow Separation on a High-Lift System with Slotted Flap at High Reynolds Number

    NASA Technical Reports Server (NTRS)

    Khodadoust, Abdollah; Washburn, Anthony

    2007-01-01

    The NASA Energy Efficient Transport (EET) airfoil was tested at NASA Langley's Low- Turbulence Pressure Tunnel (LTPT) to assess the effectiveness of distributed Active Flow Control (AFC) concepts on a high-lift system at flight scale Reynolds numbers for a medium-sized transport. The test results indicate presence of strong Reynolds number effects on the high-lift system with the AFC operational, implying the importance of flight-scale testing for implementation of such systems during design of future flight vehicles with AFC. This paper describes the wind tunnel test results obtained at the LTPT for the EET high-lift system for various AFC concepts examined on this airfoil.

  15. Discordance between serum anti-Müllerian hormone concentrations and antral follicle counts: not only technical issues.

    PubMed

    Alebic, M Š; Stojanovic, N; Dewailly, D

    2018-06-01

    Do patient-specific features contribute to the differences between measured serum anti-Müllerian hormone (AMH) concentrations and AMH values expected from the corresponding antral follicle count (AFC)? Patient-specific features contribute to the differences between measured AMH values and AMH values expected from the corresponding AFC (AMHp), potentially through their effect on follicular AMH production. Both patient counselling and patient management could be hampered by finding of disagreement between AFC and AMH if both are used for the prediction of ovarian response. The difference between measured AMH concentrations and AMH values expected according to the corresponding AFC cannot be entirely explained by the technical limitations of counting of antral follicles and analytical variability of the AMH assay used. This retrospective study analysed medical records of 1097 IVF patients collected between March 2011 and July 2013. The study population (N = 1097) included 705 (64.3%) women with normal ovarian morphology and 392 (35.7%) women with polycystic ovarian morphology, aged 20-44 years, who underwent their first IVF cycle in a single clinical centre. AMH was measured by a routine laboratory method and predicted AMH (AMHp) values were calculated using the linear regression equation (AMHp = -4.4 + 1.5 × AFC). The absolute value of the difference between AMH and AMHp was considered to be the measure of the degree of AMH-AFC agreement. The association of the difference between AMH and AMHp with clinical and biochemical parameters was investigated in both the higher-than-predicted (HTP) group comprising patients with AMH higher than AMHp (N = 466) and the lower-than-predicted (LTP) group comprising patients with AMH lower than AMHp (N = 631). Patients in the HTP group had significantly longer menstrual cycle length and higher AMH and LH concentrations but lower AFC and FSH concentration than their counterparts in the LTP group. There was a significant association of absolute value of the difference between AMH and AMHp with age, menstrual cycle length, AFC, FSH and testosterone in both groups (P < 0.001). The difference between AMH and AMHp was exclusively correlated to LH in the HTP group (r = 0.159, P < 0.001) and to BMI in the LTP group (r = 0.231, P < 0.001), respectively. Multiple regression analysis revealed that only LH was significantly related to the difference between AMH and AMHp in the HTP group, independently from AFC. In the LTP group, BMI, menstrual cycle length, FSH and testosterone were found associated with the difference between AMH and AMHp, independently from AFC. The main limitation of the study is selection bias. Data analysed in this study were collected from medical records of patients undergoing IVF treatment in a single department of human reproduction which precludes generalization of the results to women of different geographic origin, ethnicity, race and reproductive status. AMH higher than expected for a given AFC could suggest up-regulated AMH secretion (a typical feature of polycystic ovary syndrome) while AMH lower than expected from the corresponding AFC suggest down-regulated AMH secretion that could be seen as an early symptom of diminished ovarian reserve and premature ovarian insufficiency. In other words, when challenged against AFC, the serum AMH level is not only a quantitative but also a qualitative follicle marker, in relation with clinical and endocrine parameters. No study funding was obtained for this study. The authors have no conflict of interest(s) to declare. Non-applicable.

  16. Block Copolymers for Alkaline Fuel Cell Membrane Materials

    DTIC Science & Technology

    2014-07-30

    temperature fuel cells including proton exchange membrane fuel cell ( PEMFC ) and alkaline fuel cell (AFC) with operation temperature usually lower than 120...advantages over proton exchange membrane fuel cells ( PEMFCs ) resulting in the popularity of AFCs in the US space program.[8-11] The primary benefit AFC...offered over PEMFC is better electrochemical kinetics on the anode and cathode under the alkaline environment, which results in the ability to use

  17. A four-alternative forced choice (4AFC) software for observer performance evaluation in radiology

    NASA Astrophysics Data System (ADS)

    Zhang, Guozhi; Cockmartin, Lesley; Bosmans, Hilde

    2016-03-01

    Four-alternative forced choice (4AFC) test is a psychophysical method that can be adopted for observer performance evaluation in radiological studies. While the concept of this method is well established, difficulties to handle large image data, perform unbiased sampling, and keep track of the choice made by the observer have restricted its application in practice. In this work, we propose an easy-to-use software that can help perform 4AFC tests with DICOM images. The software suits for any experimental design that follows the 4AFC approach. It has a powerful image viewing system that favorably simulates the clinical reading environment. The graphical interface allows the observer to adjust various viewing parameters and perform the selection with very simple operations. The sampling process involved in 4AFC as well as the speed and accuracy of the choice made by the observer is precisely monitored in the background and can be easily exported for test analysis. The software has also a defensive mechanism for data management and operation control that minimizes the possibility of mistakes from user during the test. This software can largely facilitate the use of 4AFC approach in radiological observer studies and is expected to have widespread applicability.

  18. Allowance for funds in construction: accounting stepchild and regulatory football

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coughlan, P.B.

    AFC (allowance for funds in construction) is an accounting method of recording the use of additional capital needed to compensate the capital already invested in construction work in progress (CWIP) where CWIP is excluded from the utility's rate base. As a practical matter, the compensation in the form of interest on debt, dividends on preferred and common stocks, and reinvested earnings is paid or recorded currently. Since the CWIP is not included in rate base and current customers are not paying any revenues to support the CWIP capital, the cash to pay the interest comes from a variety of sources,more » including cash revenues covering depreciation and reinvested earnings on rate base capital as well as from sales of additional bonds and stock. Commissions and courts have examined AFC in some depth, but many problems remain. Four unresolved areas are examined in this paper: (1) should AFC be compounded, whether directly or indirectly; (2) who should benefit from the current tax reduction associated with the interest component of AFC; (3) is AFC really a noncash accounting gimmick; (4) what happens when you sell AFC-bearing construction work in progress to a third party. The author presents examples to show why he believes AFC represents valid, good-quality earnings for utilities. It properly represents cash income if certain prerequisite conditions are present and prerequisite procedures followed in its calculation. Among the factors cited in favor of such an allowance by regulators is an avoidance of regulatory lag in much the same way as provided by automatic cost adjustments. (MCW)« less

  19. Measurement of antral follicle count in patients undergoing in vitro fertilization treatment: results of a worldwide web-based survey.

    PubMed

    Christianson, Mindy S; Shoham, Gon; Tobler, Kyle J; Zhao, Yulian; Cordeiro, Christina N; Leong, Milton; Shoham, Zeev

    2015-10-01

    The purpose of the present study was to identify trends in the therapeutic approaches used to measure antral follicle count (AFC) in patients undergoing in vitro fertilization (IVF) treatment worldwide. A retrospective evaluation utilizing the results of a web-based survey, IVF-Worldwide ( www.IVF-Worldwide.com ), was performed. Responses from 796 centers representing 593,200 cycles were evaluated. The majority of respondents (71.2 %) considered antral follicle count as a mandatory part of their practice with most (69.0 %) measuring AFC in the follicular phase. Most respondents (89.7 %) reported that they would modify the IVF stimulation protocol based on the AFC. There was considerable variation regarding a limit for the number of antral follicles required to initiate an IVF cycle with 46.1 % designating three antral follicles as their limit, 39.9 % selecting either four or five follicles as their limit, and 14.0 % reporting a higher cutoff criteria. With respect to antral follicle size, 61.5 % included follicles ranging between 2 and 10 mm in the AFC. When asked to identify the best predictor of ovarian hyper-response during IVF cycles, AFC was selected most frequently (49.4 %), followed by anti-Mullerian hormone level (42.7 %). Age was selected as the best predictor of ongoing pregnancy rate in 81.7 % of respondents. While a large proportion of respondents utilized AFC as part of their daily practice and modified IVF protocol based on the measurement, the majority did not consider AFC as the best predictor of ongoing pregnancy rate.

  20. Modulation of microenvironmental pH for dual release and reduced in vivo gastrointestinal bleeding of aceclofenac using hydroxypropyl methylcellulose-based bilayered matrix tablet.

    PubMed

    Kang, Won-Ho; Nguyen, Hien Van; Park, Chulhun; Choi, Youn-Woong; Lee, Beom-Jin

    2017-05-01

    This study was designed to develop a once-daily controlled-release matrix tablet of aceclofenac 200mg (AFC-CR) with dual release characteristics and to investigate the role of an alkalizer in enhancing drug solubility and reducing the occurrence of gastroduodenal mucosal lesions. Two formulation approaches were employed, namely a monolithic matrix tablet and a bilayered tablet. In vitro dissolution studies of AFC-CR tablets were carried out in simulated intestinal fluid (pH6.8 buffer). The in vivo pharmacokinetic studies and drug safety of the immediate-release reference tablet Airtal® 100mg (Daewoong Co., Korea) and the optimized AFC-CR tablet were compared in beagle dogs under fasted condition. The optimally selected AFC-CR formulation displayed the desired dual release characteristics in simulated intestinal fluid with satisfactory micromeritic properties. The swelling action of the optimal matrix tablet, which was visualized by near-infrared (NIR) chemical imaging, occurred rapidly following hydration. Incorporation of sodium carbonate (Na 2 CO 3 ) was found to enhance the release rate of the AFC-CR bilayered tablets at early stages and increase the microenvironmental pH (pH M ). A pharmacokinetic study in beagle dogs indicated a higher drug plasma concentration and a sustained-release pattern for the AFC-CR tablet compared to the Airtal® tablet. AFC-CR was also superior to Airtal® in terms of in vivo drug safety, since no beagle dog receiving AFC-CR experienced gastrointestinal bleeding. The significant enhancement of drug safety was attributed to the size reduction and the increase of pH M of drug particles by means of incorporation of the alkalizer. These findings provide a scientific rationale for developing a novel controlled-release matrix tablet with enhanced patient compliance and better pain control. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Cultured human amniocytes express hTERT, which is distributed between nucleus and cytoplasm and is secreted in extracellular vesicles.

    PubMed

    Radeghieri, Annalisa; Savio, Giulia; Zendrini, Andrea; Di Noto, Giuseppe; Salvi, Alessandro; Bergese, Paolo; Piovani, Giovanna

    2017-01-29

    An increasing number of studies on stem cells suggests that the therapeutic effect they exert is primarily mediated by a paracrine regulation through extracellular vesicles (EVs) giving solid grounds for stem cell EVs to be exploited as agents for treating diseases or for restoring damaged tissues and organs. Due to their capacity to differentiate in all embryonic germ layers, amniotic fluid stem cells (AFCs), represent a highly promising cell type for tissue regeneration, which however is still poorly studied and in turn underutilized. In view of this, we conducted a first investigation on the expression of human hTERT gene - known to be among the key triggers of organ regeneration - in AFCs and in the EVs they secrete. Isolated AFCs were evaluated by RT-qPCR for hTERT expression. The clones expressing the highest levels of transcript, were analyzed by Immunofluorescence imaging and Nuclear/cytoplasmic fractionation in order to evaluate hTERT subcellular localization. We then separated EVs from FBS depleted culture medium by serial (ultra) centrifugations steps and characterized them using Western blotting, Atomic force Microscopy and Nanoplasmonic assay. We first demonstrated that primary cultures of AFCs express the gene hTERT at different levels. Then we evidenced that in AFCs with the higher transcript levels, the hTERT protein is present in the nuclear and cytoplasmic compartment. Finally, we found that cytosolic hTERT is embodied in the EVs that AFCs secrete in the extracellular milieu. Our study demonstrates for the first time the expression of the full protein hTERT by AFCs and its release outside the cell mediated by EVs, indicating a new extra telomeric role for this protein. This finding represents an initial but crucial evidence for considering AFCs derived EVs as new potential sources for tissue regeneration. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Using psychophysics to ask if the brain samples or maximizes

    PubMed Central

    Acuna, Daniel E.; Berniker, Max; Fernandes, Hugo L.; Kording, Konrad P.

    2015-01-01

    The two-alternative forced-choice (2AFC) task is the workhorse of psychophysics and is used to measure the just-noticeable difference, generally assumed to accurately quantify sensory precision. However, this assumption is not true for all mechanisms of decision making. Here we derive the behavioral predictions for two popular mechanisms, sampling and maximum a posteriori, and examine how they affect the outcome of the 2AFC task. These predictions are used in a combined visual 2AFC and estimation experiment. Our results strongly suggest that subjects use a maximum a posteriori mechanism. Further, our derivations and experimental paradigm establish the already standard 2AFC task as a behavioral tool for measuring how humans make decisions under uncertainty. PMID:25767093

  3. Depressive Symptomatology, Psychological Stress, and Ovarian Reserve: A Role for Psychological Factors in Ovarian Aging?

    PubMed Central

    Bleil, Maria E.; Adler, Nancy E.; Pasch, Lauri A.; Sternfeld, Barbara; Gregorich, Steven E.; Rosen, Mitchell P.; Cedars, Marcelle I.

    2012-01-01

    Objective To examine psychological factors in relation to antral follicle count (AFC), a marker of ovarian reserve, in a multiethnic sample of 683 pre-menopausal women in the Ovarian Aging (OVA) Study. Methods In cross-sectional analyses, linear regression was performed to determine whether AFC decline across women varied over levels of depression as well as depression in combination with psychological stress. The total and subscale scores of the Center for Epidemiological Studies Depression Scale (CESD) were used to measure depression and the Perceived Stress Scale was used to measure psychological stress. Results Following covariate-adjustment, the 2-way interaction of age-x-positive affect and the 3-way interaction of age-x-positive affect-x-stress were related to AFC (b = 0.047, p = .036; b = 0.012, p = .099, respectively). In stratified analyses, stress was related to AFC in women with low positive affect (b = −.070, p = .021) but not in women with high positive affect (b = .018, p = .54). AFC decline across women was progressively higher in women with low positive affect who reported low (−0.747 follicles/year), mid (−0.920 follicles/year), and high (−1.112 follicles/year) levels of stress. Results examining the CESD total and remaining subscale scores were all non-significant (p’s > .05). Conclusions Cross-sectional evidence suggests that 1) women with low positive affect may experience accelerated AFC decline and 2) low positive affect may be a vulnerability factor, or, alternatively, high positive affect may be a protective factor, in moderating the negative effects of psychological stress on AFC decline. PMID:22760086

  4. Anti-Müllerian hormone levels and antral follicle count in women enrolled in in vitro fertilization cycles: relationship to lifestyle factors, chronological age and reproductive history.

    PubMed

    Nardo, Luciano G; Christodoulou, Dimitra; Gould, Della; Roberts, Steve A; Fitzgerald, Cheryl T; Laing, Ian

    2007-01-01

    The aims of this prospective study were to investigate the relationship between anti-Müllerian hormone (AMH) and antral follicle count (AFC), and to determine whether these markers of ovarian reserve correlate with lifestyle factors, ethnicity, chronological age and reproductive history. Participants were 136 normo-ovulatory women undergoing infertility work-up within 3 months of their first ovarian stimulation cycle for in vitro fertilization. On day 3 of a spontaneous menstrual cycle, a blood sample for measurement of plasma AMH levels was taken and a transvaginal ultrasound scan to determine the AFC (follicles measuring 2-5 mm in diameter) was performed. Information about smoking, body mass index, alcohol consumption, ethnic origin, chronological age, age at menarche, years since menarche and gravidity were recorded using a case report form. The main outcome measures were plasma AMH concentrations and total number of small antral follicles (AFC). Median plasma levels of AMH were 2.0 ng/ml (interquartile range 1.1-3.6) and AFC was 10 (interquartile range 7-15). A positive correlation between AMH and AFC (r = 0.54, p < 0.0001) was found. AMH and AFC correlated negatively with age (r = -0.30, p < 0.001 and r = -0.27, p = 0.001 respectively) and number of years since menarche (r = -0.23, p = 0.007 and r = -0.21, p = 0.015 respectively), but not with any of the other measures. Circulating AMH levels and AFC correlated with each other and declined significantly with age. There were only weak, non-significant, correlations with lifestyle factors and reproductive history. These putative markers could be used individually or together to assess the age-related decline of ovarian function in normo-ovulatory candidates for IVF.

  5. β-Liddle mutation of the epithelial sodium channel increases alveolar fluid clearance and reduces the severity of hydrostatic pulmonary oedema in mice

    PubMed Central

    Randrianarison, Nadia; Escoubet, Brigitte; Ferreira, Chrystophe; Fontayne, Alexandre; Fowler-Jaeger, Nicole; Clerici, Christine; Hummler, Edith; Rossier, Bernard C; Planès, Carole

    2007-01-01

    Transepithelial sodium transport via alveolar epithelial Na+ channels and Na+,K+-ATPase constitutes the driving force for removal of alveolar oedema fluid. Decreased activity of the amiloride-sensitive epithelial Na+ channel (ENaC) in the apical membrane of alveolar epithelial cells impairs sodium-driven alveolar fluid clearance (AFC) and predisposes to pulmonary oedema. We hypothesized that hyperactivity of ENaC in the distal lung could improve AFC and facilitate the resolution of pulmonary oedema. AFC and lung fluid balance were studied at baseline and under conditions of hydrostatic pulmonary oedema in the β-Liddle (L) mouse strain harbouring a gain-of-function mutation (R566stop) within the Scnn1b gene. As compared with wild-type (+/+), baseline AFC was increased by 2- and 3-fold in heterozygous (+/L) and homozygous mutated (L/L) mice, respectively, mainly due to increased amiloride-sensitive AFC. The β2-agonist terbutaline stimulated AFC in +/+ and +/L mice, but not in L/L mice. Acute volume overload induced by saline infusion (40% of body weight over 2 h) significantly increased extravascular (i.e. interstitial and alveolar) lung water as assessed by the bloodless wet-to-dry lung weight ratio in +/+ and L/L mice, as compared with baseline. However, the increase was significantly larger in +/+ than in L/L groups (P= 0.01). Volume overload also increased the volume of the alveolar epithelial lining fluid in +/+ mice, indicating the presence of alveolar oedema, but not in L/L mice. Cardiac function as evaluated by echocardiography was comparable in both groups. These data show that constitutive ENaC activation improved sodium-driven AFC in the mouse lung, and attenuated the severity of hydrostatic pulmonary oedema. PMID:17430990

  6. High Lift Common Research Model for Wind Tunnel Testing: An Active Flow Control Perspective

    NASA Technical Reports Server (NTRS)

    Lin, John C.; Melton, Latunia P.; Viken, Sally A.; Andino, Marlyn Y.; Koklu, Mehti; Hannon, Judith A.; Vatsa, Veer N.

    2017-01-01

    This paper provides an overview of a research and development effort sponsored by the NASA Advanced Air Transport Technology Project to achieve the required high-lift performance using active flow control (AFC) on simple hinged flaps while reducing the cruise drag associated with the external mechanisms on slotted flaps of a generic modern transport aircraft. The removal of the external fairings for the Fowler flap mechanism could help to reduce drag by 3.3 counts. The main challenge is to develop an AFC system that can provide the necessary lift recovery on a simple hinged flap high-lift system while using the limited pneumatic power available on the aircraft. Innovative low-power AFC concepts will be investigated in the flap shoulder region. The AFC concepts being explored include steady blowing and unsteady blowing operating in the spatial and/or temporal domain. Both conventional and AFC-enabled high-lift configurations were designed for the current effort. The high-lift configurations share the cruise geometry that is based on the NASA Common Research Model, and therefore, are also open geometries. A 10%-scale High Lift Common Research Model (HL-CRM) is being designed for testing at the NASA Langley Research Center 14- by 22-Foot Subsonic Tunnel during fiscal year 2018. The overall project plan, status, HL-CRM configurations, and AFC objectives for the wind tunnel test are described.

  7. An Overview of Active Flow Control Enhanced Vertical Tail Technology Development

    NASA Technical Reports Server (NTRS)

    Lin, John C.; Andino, Marlyn Y.; Alexander, Michael G.; Whalen, Edward A.; Spoor, Marc A.; Tran, John T.; Wygnanski, Israel J.

    2016-01-01

    This paper summarizes a joint NASA/Boeing research effort to advance Active Flow Control (AFC) technology to enhance aerodynamic efficiency of a vertical tail. Sweeping jet AFC technology was successfully tested on subscale and full-scale models as well as in flight. The subscale test was performed at Caltech on a 14% scale model. More than 50% side force enhancement was achieved by the sweeping jet actuation when the momentum coefficient was 1.7%. AFC caused significant increases in suction pressure on the actuator side and associated side force enhancement. Subsequently, a full-scale Boeing 757 vertical tail model equipped with sweeping jets was tested at the National Full-Scale Aerodynamics Complex 40- by 80-Foot Wind Tunnel at NASA Ames Research Center. There, flow separation control optimization was performed at near flight conditions. Greater than 20% increase in side force were achieved for the maximum rudder deflection of 30deg at the key sideslip angles (0deg and -7.5deg) with a 31-actuator AFC configuration. Based on these tests, the momentum coefficient is shown to be a necessary, but not sufficient parameter to use for design and scaling of sweeping jet AFC from subscale tests to full-scale applications. Leveraging the knowledge gained from the wind tunnel tests, the AFC-enhanced vertical tail technology was successfully flown on the Boeing 757 ecoDemonstrator in the spring of 2015.

  8. An applied investigation of kenaf-based fiber/polymer composites as potential lightweight materials for automotive components

    NASA Astrophysics Data System (ADS)

    Du, Yicheng

    Natural fibers have the potential to replace glass fibers in fiber-reinforced composite applications. However, the natural fibers' intrinsic properties cause these issues: (1) the mechanical property variation; (2) moisture uptake by natural fibers and their composites; (3) lack of sound, cost-effective, environment-friendly fiber-matrix compounding processes; (4) incompatibility between natural fibers and polymer matrices; and (5) low heat-resistance of natural fibers and their composites. This dissertation systematically studied the use of kenaf bast fiber bundles, obtained via a mechanical retting method, as a light-weight reinforcement material for fiber-reinforced thermoset polymer composites for automotive applications. Kenaf bast fiber bundle tensile properties were tested, and the effects of locations in the kenaf plant, loading rates, retting methods, and high temperature treatments and their durations on kenaf bast fiber bundle tensile properties were evaluated. A process has been developed for fabricating high fiber loading kenaf bast fiber bundle-reinforced unsaturated polyester composites. The generated composites possessed high elastic moduli and their tensile strengths were close to specification requirements for glass fiber-reinforced sheet molding compounds. Effects of fiber loadings and lengths on resultant composite's tensile properties were evaluated. Fiber loadings were very important for composite tensile modulus. Both fiber loadings and fiber lengths were important for composite tensile strengths. The distributions of composite tensile, flexural and impact strengths were analyzed. The 2-parameter Weibull model was found to be the most appropriate for describing the composite strength distributions and provided the most conservative design values. Kenaf-reinforced unsaturated polyester composites were also proved to be more cost-effective than glass fiber-reinforced SMCs at high fiber loadings. Kenaf bast fiber bundle-reinforced composite's water absorption properties were tested. Surface-coating and edge-sealing significantly reduced composite water resistance properties. Encapsulation was a practical method to improve composite water resistance properties. The molding pressure and styrene concentrations on composite and matrix properties were evaluated. Laser and plasma treatment improved fiber-to-matrix adhesion.

  9. Two AFC Loops For Low CNR And High Dynamics

    NASA Technical Reports Server (NTRS)

    Hinedi, Sami M.; Aguirre, Sergio

    1992-01-01

    Two alternative digital automatic-frequency-control (AFC) loops proposed to acquire (or reacquire) and track frequency of received carrier radio signal. Intended for use where carrier-to-noise ratios (CNR's) low and carrier frequency characterized by high Doppler shift and Doppler rate because of high relative speed and acceleration, respectively, between transmitter and receiver. Either AFC loops used in place of phase-locked loop. New loop concepts integrate ideas from classical spectrum-estimation, digital-phase-locked-loop, and Kalman-Filter theories.

  10. An introduction to NASA's advanced computing program: Integrated computing systems in advanced multichip modules

    NASA Technical Reports Server (NTRS)

    Fang, Wai-Chi; Alkalai, Leon

    1996-01-01

    Recent changes within NASA's space exploration program favor the design, implementation, and operation of low cost, lightweight, small and micro spacecraft with multiple launches per year. In order to meet the future needs of these missions with regard to the use of spacecraft microelectronics, NASA's advanced flight computing (AFC) program is currently considering industrial cooperation and advanced packaging architectures. In relation to this, the AFC program is reviewed, considering the design and implementation of NASA's AFC multichip module.

  11. Intestinal anti-inflammatory effects of total alkaloid extract from Fumaria capreolata in the DNBS model of mice colitis and intestinal epithelial CMT93 cells.

    PubMed

    Bribi, Noureddine; Algieri, Francesca; Rodriguez-Nogales, Alba; Vezza, Teresa; Garrido-Mesa, Jose; Utrilla, María Pilar; Del Mar Contreras, María; Maiza, Fadila; Segura-Carretero, Antonio; Rodriguez-Cabezas, Maria Elena; Gálvez, Julio

    2016-08-15

    Fumaria capreolata L. (Papaveraceae) is a botanical drug used in North Africa for its gastro-intestinal and anti-inflammatory properties. It is characterized for the presence of several alkaloids that could be responsible for some of its effects, including an immunomodulatory activity. To test in vivo the intestinal anti-inflammatory properties of the total alkaloid fraction extracted from the aerial parts of F. capreolata (AFC), and to evaluate its effects on an intestinal epithelial cell line. AFC was chemically characterized by liquid chromatography coupled to diode array detection and high resolution mass spectrometry. Different doses of AFC (25, 50 and 100mg/kg) were assayed in the DNBS model of experimental colitis in mice, and the colonic damage was evaluated both histologically and biochemically. In addition, in vitro experiments were performed with this alkaloid fraction on the mouse intestinal epithelial cell line CMT93 stimulated with LPS. The chemical analysis of AFC revealed the presence of 23 alkaloids, being the most abundants stylopine, protopine and coptisine. Oral administration of AFC produced a significant inhibition of the release and the expression of IL-6 and TNF-α in the colonic tissue. It also suppressed in vivo the transcription of other pro-inflammatory mediators such as IL-1β, iNOS, IL-12 and IL-17. Furthermore, AFC showed an immunomodulatory effect in vitro since it was able to inhibit the mRNA expression of IL-6, TNF-α and ICAM-1. Moreover, the beneficial effect of AFC in the colitic mice could also be associated with the normalization of the expression of MUC-2 and ZO-1, which are important for the intestinal epithelial integrity. The present study suggests that AFC, containing 1.3% of stylopine and 0.9% of protopine, significantly exerted intestinal anti-inflammatory effects in an experimental model of mouse colitis. This fact could be related to a modulation of the intestinal immune response and a restoration of the intestinal epithelial function. Copyright © 2016 Elsevier GmbH. All rights reserved.

  12. Artificial food colors and attention-deficit/hyperactivity symptoms: conclusions to dye for.

    PubMed

    Arnold, L Eugene; Lofthouse, Nicholas; Hurt, Elizabeth

    2012-07-01

    The effect of artificial food colors (AFCs) on child behavior has been studied for more than 35 years, with accumulating evidence from imperfect studies. This article summarizes the history of this controversial topic and testimony to the 2011 Food and Drug Administration Food Advisory Committee convened to evaluate the current status of evidence regarding attention-deficit/hyperactivity disorder (ADHD). Features of ADHD relevant to understanding the AFC literature are explained: ADHD is a quantitative diagnosis, like hypertension, and some individuals near the threshold may be pushed over it by a small symptom increment. The chronicity and pervasiveness make caregiver ratings the most valid measure, albeit subjective. Flaws in many studies include nonstandardized diagnosis, questionable sample selection, imperfect blinding, and nonstandardized outcome measures. Recent data suggest a small but significant deleterious effect of AFCs on children's behavior that is not confined to those with diagnosable ADHD. AFCs appear to be more of a public health problem than an ADHD problem. AFCs are not a major cause of ADHD per se, but seem to affect children regardless of whether or not they have ADHD, and they may have an aggregated effect on classroom climate if most children in the class suffer a small behavioral decrement with additive or synergistic effects. Possible biological mechanisms with published evidence include the effects on nutrient levels, genetic vulnerability, and changes in electroencephalographic beta-band power. A table clarifying the Food and Drug Administration and international naming systems for AFCs, with cross-referencing, is provided.

  13. Denoising forced-choice detection data.

    PubMed

    García-Pérez, Miguel A

    2010-02-01

    Observers in a two-alternative forced-choice (2AFC) detection task face the need to produce a response at random (a guess) on trials in which neither presentation appeared to display a stimulus. Observers could alternatively be instructed to use a 'guess' key on those trials, a key that would produce a random guess and would also record the resultant correct or wrong response as emanating from a computer-generated guess. A simulation study shows that 'denoising' 2AFC data with information regarding which responses are a result of guesses yields estimates of detection threshold and spread of the psychometric function that are far more precise than those obtained in the absence of this information, and parallel the precision of estimates obtained with yes-no tasks running for the same number of trials. Simulations also show that partial compliance with the instructions to use the 'guess' key reduces the quality of the estimates, which nevertheless continue to be more precise than those obtained from conventional 2AFC data if the observers are still moderately compliant. An empirical study testing the validity of simulation results showed that denoised 2AFC estimates of spread were clearly superior to conventional 2AFC estimates and similar to yes-no estimates, but variations in threshold across observers and across sessions hid the benefits of denoising for threshold estimation. The empirical study also proved the feasibility of using a 'guess' key in addition to the conventional response keys defined in 2AFC tasks.

  14. Health assessment of gasoline and fuel oxygenate vapors: immunotoxicity evaluation.

    PubMed

    White, Kimber L; Peachee, Vanessa L; Armstrong, Sarah R; Twerdok, Lorraine E; Clark, Charles R; Schreiner, Ceinwen A

    2014-11-01

    Female Sprague Dawley rats were exposed via inhalation to vapor condensates of either gasoline or gasoline combined with various fuel oxygenates to assess potential immunotoxicity of evaporative emissions. Test articles included vapor condensates prepared from "baseline gasoline" (BGVC), or gasoline combined with methyl tertiary butyl ether (G/MTBE), ethyl t-butyl ether (G/ETBE), t-amyl methyl ether (G/TAME), diisopropyl ether (G/DIPE), ethanol (G/EtOH), or t-butyl alcohol (G/TBA). Target concentrations were 0, 2000, 10,000 or 20,000mg/mg(3) administered for 6h/day, 5days/week for 4weeks. The antibody-forming cell (AFC) response to the T-dependent antigen, sheep erythrocyte (sRBC), was used to determine the effects of the gasoline vapor condensates on the humoral components of the immune system. Exposure to BGVC, G/MTBE, G/TAME, and G/TBA did not result in significant changes in the IgM AFC response to sRBC, when evaluated as either specific activity (AFC/10(6) spleen cells) or as total spleen activity (AFC/spleen). Exposure to G/EtOH and G/DIPE resulted in a dose-dependent decrease in the AFC response, reaching the level of statistical significance only at the high 20,000mg/m(3) level. Exposure to G/ETBE resulted in a statistically significant decrease in the AFC response at the middle (10,000mg/m(3)) and high (20,000mg/m(3)) exposure concentrations. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. Method of making a continuous ceramic fiber composite hot gas filter

    DOEpatents

    Hill, Charles A.; Wagner, Richard A.; Komoroski, Ronald G.; Gunter, Greg A.; Barringer, Eric A.; Goettler, Richard W.

    1999-01-01

    A ceramic fiber composite structure particularly suitable for use as a hot gas cleanup ceramic fiber composite filter and method of making same from ceramic composite material has a structure which provides for increased strength and toughness in high temperature environments. The ceramic fiber composite structure or filter is made by a process in which a continuous ceramic fiber is intimately surrounded by discontinuous chopped ceramic fibers during manufacture to produce a ceramic fiber composite preform which is then bonded using various ceramic binders. The ceramic fiber composite preform is then fired to create a bond phase at the fiber contact points. Parameters such as fiber tension, spacing, and the relative proportions of the continuous ceramic fiber and chopped ceramic fibers can be varied as the continuous ceramic fiber and chopped ceramic fiber are simultaneously formed on the porous vacuum mandrel to obtain a desired distribution of the continuous ceramic fiber and the chopped ceramic fiber in the ceramic fiber composite structure or filter.

  16. Associations between age at first calving, rearing average daily weight gain, herd milk yield and dairy herd production, reproduction, and profitability.

    PubMed

    Krpálková, L; Cabrera, V E; Kvapilík, J; Burdych, J; Crump, P

    2014-10-01

    The objective of this study was to evaluate the associations of variable intensity in rearing dairy heifers on 33 commercial dairy herds, including 23,008 cows and 18,139 heifers, with age at first calving (AFC), average daily weight gain (ADG), and milk yield (MY) level on reproduction traits and profitability. Milk yield during the production period was analyzed relative to reproduction and economic parameters. Data were collected during a 1-yr period (2011). The farms were located in 12 regions in the Czech Republic. The results show that those herds with more intensive rearing periods had lower conception rates among heifers at first and overall services. The differences in those conception rates between the group with the greatest ADG (≥0.800 kg/d) and the group with the least ADG (≤0.699 kg/d) were approximately 10 percentage points in favor of the least ADG. All the evaluated reproduction traits differed between AFC groups. Conception at first and overall services (cows) was greatest in herds with AFC ≥800 d. The shortest days open (105 d) and calving interval (396 d) were found in the middle AFC group (799 to 750 d). The highest number of completed lactations (2.67) was observed in the group with latest AFC (≥800 d). The earliest AFC group (≤749 d) was characterized by the highest depreciation costs per cow at 8,275 Czech crowns (US$414), and the highest culling rate for cows of 41%. The most profitable rearing approach was reflected in the middle AFC (799 to 750 d) and middle ADG (0.799 to 0.700 kg) groups. The highest MY (≥8,500 kg) occurred with the earliest AFC of 780 d. Higher MY led to lower conception rates in cows, but the highest MY group also had the shortest days open (106 d) and a calving interval of 386 d. The same MY group had the highest cow depreciation costs, net profit, and profitability without subsidies of 2.67%. We conclude that achieving low AFC will not always be the most profitable approach, which will depend upon farm-specific herd management. The MY is a very important factor for dairy farm profitability. The group of farms having the highest MY achieved the highest net profit despite having greater fertility problems. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  17. Membrane process treatment for greywater recycling: investigations on direct tubular nanofiltration.

    PubMed

    Hourlier, F; Massé, A; Jaouen, P; Lakel, A; Gérente, C; Faur, C; Cloirec, P Le

    2010-01-01

    On-site greywater recycling and reuse is one of the main ways to reduce potable water requirement in urban areas. Direct membrane filtration is a promising technology to recycle greywater on-site. This study aimed at selecting a tubular nanofiltration (NF) membrane and its operating conditions in order to treat and reuse greywater in buildings. To do so, a synthetic greywater (SGW) was reconstituted in order to conduct experiments on a reproducible effluent. Then, three PCI NF membranes (AFC30, AFC40 and AFC80) having distinct molecular weight cut-offs were tested to recycle this SGW with a constant concentration at 25°C at two different transmembrane pressures (20 and 35 bar). The best results were obtained with AFC80 at 35 bar: the flux was close to 50 L m⁻²  h⁻¹, retentions of 95% for chemical oxygen demand and anionic surfactants were observed, and no Enterococcus were detected in the permeate. The performances of AFC80 were also evaluated on a real greywater: fluxes and retentions were similar to those observed on SGW. These results demonstrate the effectiveness of direct nanofiltration to recycle and reuse greywater.

  18. Convergent and divergent effects of apolipoprotein E ε4 and ε2 alleles on amygdala functional networks in nondemented older adults.

    PubMed

    Gong, Liang; Shu, Hao; He, Cancan; Ye, Qing; Bai, Feng; Xie, Chunming; Zhang, Zhijun

    2017-06-01

    Traditionally, in the context of Alzheimer's disease, the apolipoprotein E ε2 (APOEε2) allele is a protective factor and the APOEε4 allele is a destructive factor. However, this inverse relationship has recently been challenged, and the neural mechanisms underlying the effects of APOE genotype on Alzheimer's disease remain unclear. A resting-state functional magnetic resonance imaging study was conducted to investigate the effects of APOE genotype and age on amygdala functional connectivity (AFC) networks in 84 patients with amnestic mild cognitive impairment and 124 cognitively normal order adults. The results indicated that the APOEε2 and APOEε4 alleles produced convergent effects in the right AFC network but divergent effects in the left AFC network. As age increased, APOEε2 carriers showed stable AFC, whereas APOEε4 carriers exhibited decreased AFC in all participants. Furthermore, mediation analysis revealed that connectivity strength regulates the effects of APOE genotype and age on cognitive function in amnestic mild cognitive impairment patients. Our findings suggest that the APOEε2 and APOEε4 alleles produce both convergent and divergent topological effects on brain function. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Circulating basal anti-Müllerian hormone levels as predictor of ovarian response in women undergoing ovarian stimulation for in vitro fertilization.

    PubMed

    Nardo, Luciano G; Gelbaya, Tarek A; Wilkinson, Hannah; Roberts, Stephen A; Yates, Allen; Pemberton, Phil; Laing, Ian

    2009-11-01

    To evaluate the clinical value of basal anti-Müllerian hormone (AMH) measurements compared with other available determinants, apart from chronologic age, in the prediction of ovarian response to gonadotrophin stimulation. Prospective cohort study. Tertiary referral center for reproductive medicine and an IVF unit. Women undergoing their first cycle of controlled ovarian hyperstimulation (COH) for in vitro fertilization (IVF). Basal levels of FSH and AMH as well as antral follicle count (AFC) were measured in 165 subjects. All patients were followed prospectively and their cycle outcomes recorded. Predictive value of FSH, AMH, and AFC for extremes of ovarian response to stimulation. Out of the 165 women, 134 were defined as normal responders, 15 as poor responders, and 16 as high responders. Subjects in the poor response group were significantly older then those in the other two groups. Anti-Müllerian hormone levels and AFC were markedly raised in the high responders and decreased in the poor responders. Compared with FSH and AFC, AMH performed better in the prediction of excessive response to ovarian stimulation-AMH area under receiver operating characteristic curve (ROC(AUC)) 0.81, FSH ROC(AUC) 0.66, AFC ROC(AUC) 0.69. For poor response, AMH (ROC(AUC) 0.88) was a significantly better predictor than FSH (ROC(AUC) 0.63) but not AFC (ROC(AUC) 0.81). AMH prediction of ovarian response was independent of age and PCOS. Anti-Müllerian hormone cutoffs of >3.75 ng/mL and <1.0 ng/mL would have modest sensitivity and specificity in predicting the extremes of response. Circulating AMH has the ability to predict excessive and poor response to stimulation with exogenous gonadotrophins. Overall, this biomarker is superior to basal FSH and AFC, and has the potential to be incorporated in to work-up protocols to predict patient's ovarian response to treatment and to individualize strategies aiming at reducing the cancellation rate and the iatrogenic complications of COH.

  20. Active Flow Control (AFC) and Insect Accretion and Mitigation (IAM) System Design and Integration on the Boeing 757 ecoDemonstrator

    NASA Technical Reports Server (NTRS)

    Alexander, Michael G.; Harris, F. Keith; Spoor, Marc A.; Boyland, Susannah R.; Farrell, Thomas E.; Raines, David M.

    2016-01-01

    This paper presents a systems overview of how the Boeing and NASA team designed, analyzed, fabricated, and integrated the Active Flow Control (AFC) technology and Insect Accretion Mitigation (IAM) systems on the Boeing 757 ecoDemonstrator. The NASA Environmentally Responsible Aviation (ERA) project partnered with Boeing to demonstrate these two technology systems on a specially outfitted Boeing 757 ecoDemonstrator during the spring of 2015. The AFC system demonstrated attenuation of flow separation on a highly deflected rudder and increased the side force generated. This AFC system may enable a smaller vertical tail to provide the control authority needed in the event of an engine failure during takeoff while still operating in a conventional manner over the rest of the flight envelope. The AFC system consisted of ducting to obtain air from the Auxiliary Power Unit (APU), a control valve to modulate the system mass flow, a heat exchanger to lower the APU air temperature, and additional ducting to deliver the air to the AFC actuators located on the vertical tail. The IAM system demonstrated how to mitigate insect residue adhesion on a wing's leading edge. Something as small as insect residue on a leading edge can cause turbulent wedges that interrupt laminar flow, resulting in an increase in drag and fuel use. The IAM system consisted of NASA developed Engineered Surfaces (ES) which were thin aluminum sheet substrate panels with coatings applied to the exterior. These ES were installed on slats 8 and 9 on the right wing of the 757 ecoDemonstrator. They were designed to support panel removal and installation in one crew shift. Each slat accommodated 4 panels. Both the AFC and IAM flight test were the culmination of several years of development and produced valuable data for the advancement of modern aircraft designs.

  1. The association of protein intake (amount and type) with ovarian antral follicle counts among infertile women: results from the EARTH prospective study cohort.

    PubMed

    Souter, I; Chiu, Y-H; Batsis, M; Afeiche, M C; Williams, P L; Hauser, R; Chavarro, J E

    2017-09-01

    To evaluate the association between protein intake (amount and type) and antral follicle count (AFC). Prospective cohort. Academic fertility centre. Two hundred and sixty-five women undergoing fertility treatments at an academic fertility centre and participating in an ongoing study on environment and reproductive health. We measured AFC in ultrasonographic evaluation among women undergoing infertility treatments. Women completed a previously validated semi-quantitative food frequency questionnaire. We used Poisson regression to evaluate the relation between protein intake and AFC while adjusting for age, body mass index, race, smoking status, and total energy intake. Antral follicle count. Among 265 women (mean age: 35.0 ± 3.9 years, 85% Caucasian), total protein intake (% energy) was unrelated to AFC. When protein from different food sources was considered separately, we found a negative association between dairy protein intake and AFC. The mean AFC was 14.4% (3.9-23.7%) lower for women in the highest quintile of dairy protein intake than for women in the bottom quintile after adjusting for potential confounders (P-trend = 0.04). This association was stronger among women who had never smoked (P-trend = 0.002) but was not observed among previous smokers (P-trend = 0.36). There were no associations between protein intake from either non-dairy animal or vegetable sources and AFC. Higher dairy protein intake (≥5.24% of energy) was associated with lower antral follicle counts among women presenting for infertility treatment. These findings should be further investigated in prospective studies also designed to clarify the biology underlying the observed associations. Higher dairy protein intake was associated with lower antral follicle counts in an infertile population. © 2017 Royal College of Obstetricians and Gynaecologists.

  2. Assessment of WMATA's Automatic Fare Collection Equipment Performance

    DOT National Transportation Integrated Search

    1981-01-01

    The Washington Metropolitan Area Transit Authority (WMATA) has had an Automatic Fare Collection (AFC) system in operation since June 1977. The AFC system, comprised of entry/exit gates, farecard vendors, and addfare machines, initially encountered ma...

  3. Characterization of H2 photoproduction by marine green alga Tetraselmis subcordiformis integrated with an alkaline fuel cell.

    PubMed

    Guo, Zhen; Li, Ying; Guo, Haiyan

    2016-03-01

    To investigate the feasibility of coupling carbonyl cyanide m-chlorophenylhydrazone-regulated photohydrogen production by Tetraselmis subcordiformis in a photobioreactor to an alkaline fuel cell (AFC). H2 evolution kinetics in the AFC integrated process was characterized. The duration of H2 evolution was prolonged and its yield was improved about 1.5-fold (to 78 ± 5 ml l(-1)) compared with that of the process without AFC. Improved H2 yield was possibly caused by removal of H2 feedback inhibition by H2 consumption in situ. Decreases in the H2 production rate correlated with the gradual deactivation of PSII and hydrogenase activities. The H2 yield was closely associated with catabolism of starch and protein. A marine green algal CO2-supplemented culture integrated with in situ H2-consumption by an AFC system was developed as a viable protocol for the H2 production.

  4. Evidence for top-down control of eye movements during visual decision making.

    PubMed

    Glaholt, Mackenzie G; Wu, Mei-Chun; Reingold, Eyal M

    2010-05-01

    Participants' eye movements were monitored while they viewed displays containing 6 exemplars from one of several categories of everyday items (belts, sunglasses, shirts, shoes), with a column of 3 items presented on the left and another column of 3 items presented on the right side of the display. Participants were either required to choose which of the two sets of 3 items was the most expensive (2-AFC) or which of the 6 items was the most expensive (6-AFC). Importantly, the stimulus display, and the relevant stimulus dimension, were held constant across conditions. Consistent with the hypothesis of top-down control of eye movements during visual decision making, we documented greater selectivity in the processing of stimulus information in the 6-AFC than the 2-AFC decision. In addition, strong spatial biases in looking behavior were demonstrated, but these biases were largely insensitive to the instructional manipulation, and did not substantially influence participants' choices.

  5. Properties of indirect composites reinforced with monomer-impregnated glass fiber.

    PubMed

    Tanoue, Naomi; Sawase, Takashi; Matsumura, Hideo; McCabe, John F

    2012-07-01

    Sufficient flexural strength is required for long-term clinical use of fixed partial dentures made with fiber-reinforced composite. The flexural strengths of indirect composite materials reinforced with a monomer-preimpregnated glass fiber material were determined to evaluate the compatibility of the composites to glass fiber material. Four types (microhybrid, nanohybrid, microfilled, and minifilled) of indirect composites and a unidirectional long glass fiber material were selected for investigation. The composites were placed on a fiber plate and polymerized in accordance with the respective manufacturer's instructions. Rectangular bar fiber-composite specimens were machined and the flexural strength was calculated. The flexural strength of each indirect composite was also measured. The microfilled composite with the lowest filler content (70 wt%) exhibited the highest increase ratio using the fiber, although its strength without fiber reinforcement was the lowest (62.1 MPa). The fiber-microhybrid specimen demonstrated the highest mean strength (355.9 MPa), although the filler content of the microhybrid composite was comparatively low (73 wt%). The type of composite material should be considered for the selection of an optimal fiber-composite combination.

  6. Theoretical basis, principles of design, and experimental study of the prototype of perfect AFCS transmitting signals without coding

    NASA Astrophysics Data System (ADS)

    Platonov, A.; Zaitsev, Ie.; Opalski, L. J.

    2017-08-01

    The paper presents an overview of design methodology and results of experiments with a Prototype of highly efficient optimal adaptive feedback communication systems (AFCS), transmitting low frequency analog signals without coding. The paper emphasizes the role of the forward transmitter saturation as the factor that blocked implementation of theoretical results of pioneer (1960-1970s) and later research on FCS. Deepened analysis of the role of statistical fitting condition in adequate formulation and solution of AFCS optimization task is given. Solution of the task - optimal transmission/reception algorithms is presented in the form useful for elaboration of the hardware/software Prototype. A notable particularity of the Prototype is absence of the encoding/decoding units, whose functions are realized by the adaptive pulse amplitude modulator (PAM) of the forward transmitter (FT) and estimating/controlling algorithm in the receiver of base station (BS). Experiments confirm that the Prototype transmits signals from FT to BS "perfectly": with the bit rate equal to the capacity of the system, and with limit energy [J/bit] and spectral [bps/Hz] efficiency. Another, not less important and confirmed experimentally, particularity of AFCS is its capability to adjust parameters of FT and BS to the characteristics of scenario of application and maintain the ideal regime of transmission including spectralenergy efficiency. AFCS adjustment can be made using BS estimates of mean square error (MSE). The concluding part of the paper contains discussion of the presented results, stressing capability of AFCS to solve problems appearing in development of dense wireless networks.

  7. AFC-Enabled Simplified High-Lift System Integration Study

    NASA Technical Reports Server (NTRS)

    Hartwich, Peter M.; Dickey, Eric D.; Sclafani, Anthony J.; Camacho, Peter; Gonzales, Antonio B.; Lawson, Edward L.; Mairs, Ron Y.; Shmilovich, Arvin

    2014-01-01

    The primary objective of this trade study report is to explore the potential of using Active Flow Control (AFC) for achieving lighter and mechanically simpler high-lift systems for transonic commercial transport aircraft. This assessment was conducted in four steps. First, based on the Common Research Model (CRM) outer mold line (OML) definition, two high-lift concepts were developed. One concept, representative of current production-type commercial transonic transports, features leading edge slats and slotted trailing edge flaps with Fowler motion. The other CRM-based design relies on drooped leading edges and simply hinged trailing edge flaps for high-lift generation. The relative high-lift performance of these two high-lift CRM variants is established using Computational Fluid Dynamics (CFD) solutions to the Reynolds-Averaged Navier-Stokes (RANS) equations for steady flow. These CFD assessments identify the high-lift performance that needs to be recovered through AFC to have the CRM variant with the lighter and mechanically simpler high-lift system match the performance of the conventional high-lift system. Conceptual design integration studies for the AFC-enhanced high-lift systems were conducted with a NASA Environmentally Responsible Aircraft (ERA) reference configuration, the so-called ERA-0003 concept. These design trades identify AFC performance targets that need to be met to produce economically feasible ERA-0003-like concepts with lighter and mechanically simpler high-lift designs that match the performance of conventional high-lift systems. Finally, technical challenges are identified associated with the application of AFC-enabled highlift systems to modern transonic commercial transports for future technology maturation efforts.

  8. Prediction value of anti-Mullerian hormone (AMH) serum levels and antral follicle count (AFC) in hormonal contraceptive (HC) users and non-HC users undergoing IVF-PGD treatment.

    PubMed

    Bas-Lando, Maayan; Rabinowitz, Ron; Farkash, Rivka; Algur, Nurit; Rubinstein, Esther; Schonberger, Oshrat; Eldar-Geva, Talia

    2017-10-01

    Use of hormone contraceptives (HC) is very popular in the reproductive age and, therefore, evaluation of ovarian reserve would be a useful tool to accurately evaluate the reproductive potential in HC users. We conducted a retrospective cohort study of 41 HC users compared to 57 non-HC users undergoing IVF-preimplantation genetic diagnosis (PGD) aiming to evaluate the effect of HC on the levels of anti-Mullerian hormone (AMH), small (2-5 mm), large (6-10 mm) and total antral follicle count (AFC) and the ability of these markers to predict IVF outcome. Significant differences in large AFC (p = 0.04) and ovarian volume (p < 0.0001) were seen, however, there were no significant differences in small and total AFC or in serum AMH and FSH levels. Oocyte number significantly correlated with AMH and total AFC in HC users (p < 0.001) while in non-HC users these correlations were weaker. In HC users, the significant predictors of achieving <6 and >18 oocytes were AFC (ROC-AUC; 0.958, p = 0.001 and 0.883, p = 0.001) and AMH (ROC-AUC-0.858, p = 0.01 and 0.878, p = 0.001), respectively. The predictive values were less significant in non-HC users. These findings are important in women treated for PGD, in ovum donors and for assessing the fertility prognosis in women using HC and wishing to postpone pregnancy.

  9. Antimüllerian hormone levels and antral follicle counts are not reduced compared with community controls in patients with rigorously defined unexplained infertility.

    PubMed

    Greenwood, Eleni A; Cedars, Marcelle I; Santoro, Nanette; Eisenberg, Esther; Kao, Chia-Ning; Haisenleder, Daniel J; Diamond, Michael P; Huddleston, Heather G

    2017-12-01

    To test the hypothesis that women with unexplained infertility demonstrate evidence of diminished ovarian reserve when compared with a population of community controls. Cross-sectional study. Multicenter university-based clinical practices. Study participants included 277 healthy, normo-ovulatory female partners with rigorously defined unexplained infertility randomly selected from a multicenter trial (Assessment of Multiple Intrauterine Gestations from Ovarian Stimulation). Controls included 226 healthy, normo-ovulatory women not seeking treatment for fertility from a community-based cohort (Ovarian Aging study). Serum antimüllerian hormone (AMH) assay at a central laboratory, FSH, fasting serum metabolic testing, transvaginal ultrasonography for antral follicle counts (AFCs), anthropometric measurements. Average AMH, AFC, and AMH/AFC were compared between infertile and control women by age. Analyses of covariance compared these outcomes while controlling for confounders, including age, race, body mass index, smoking history, and study site. In our models, AMH, AFC, and AMH/AFC ovarian reserve indices did not differ between infertile women and community-based controls, after controlling for age, race, body mass index, smoking history, and study site. Currently utilized predictors of ovarian reserve do not discriminate women with rigorously defined unexplained infertility from healthy community-based women of similar demographic characteristics. Contrary to our hypothesis, among women with FSH in the normal range (≤12 IU/L), women with unexplained infertility did not show evidence of decreased ovarian reserve as measured by AMH and AFC. Ovarian reserve markers in isolation may not serve as predictors of future fertility. Copyright © 2017 American Society for Reproductive Medicine. All rights reserved.

  10. Ridership impacts of South Florida's EASY smart card : [summary].

    DOT National Transportation Integrated Search

    2013-07-01

    Transit agencies across the U.S. increasingly are replacing electronic fare reading systems with Advanced Fare Collection (AFC) or smart card systems. In 2009, Miami-Dade Transit (MDT) was the first Florida transit agency to deploy AFC, branded...

  11. Rail Transit System Maintenance Practices for Automatic Fare Collection Equipment

    DOT National Transportation Integrated Search

    1984-05-01

    A review of rail transit system maintenance practices for automatic fare collection (AFC) equipment was performed. This study supports an UMTA sponsored program to improve the reliability of AFC equipment. The maintenance practices of the transit sys...

  12. Associations between age at first calving and subsequent lactation performance in UK Holstein and Holstein-Friesian dairy cows

    PubMed Central

    Eastham, Neil T.; Coates, Amy; Cripps, Peter; Richardson, Henry; Smith, Robert

    2018-01-01

    Lactation records from 396,534 pedigree Holstein and Holstein-Friesian primiparous cows from 6,985 UK milk recorded herds, calving for the first time during the period between the 1st of January 2006 and the 31st of December 2008, were examined in order to determine the associations between age at first calving (AFC) and subsequent production, udder health, fertility and survivability parameters. Heifers were grouped by AFC into single month classes ranging from 21 to 42 months. Mixed effects multivariable regression modelling was used for data analysis. Mean and median AFC were 29.1 and 28 months respectively. Within the study, only 48,567 heifers (12.3% of the studied population) calved for the first time at 24 months of age or younger. 162,157 heifers (40.9%) were 30 months or older at their first calving. An increased AFC was associated with increased first lactation milk, fat and protein yields. The lowest predicted mean 305-day yield (6,617kgs; 95% confidence interval (CI): 6,546–6,687 kgs) was recorded for the 21 month AFC class, significantly lower than any other class. The 36 month AFC class had the highest predicted mean (7,774 kgs; 95% CI: 7,737–7,811 kgs). However, an increased AFC was also associated with increased calving interval and increased first lactation somatic cell count (SCC). Animals calving at 21 months had a predicted mean lactation SCC of 72,765 (95% CI: 68427–77378). Animals calving at 36 months of age had a predicted mean lactation SCC of 86,648 (95% CI: 84,499–88,853). Importantly, an increased AFC was also associated with decreased lifetime daily milk yield and decreased likelihood of calving for a second successive time. Animals calving at 22 months of age had a predicted mean daily lifetime milk yield of 15.24 kgs (95% CI: 15.06–15.35); animals calving at 36 months of age had a predicted mean daily lifetime milk yield of 12.83 kgs (95% CI: 12.76–12.91). Our results highlight the importance of achieving a lower age at first calving which was here associated with improved udder health, increased lifetime daily milk yield, improved reproductive performance and increased likelihood of calving for a second time. PMID:29897929

  13. Associations between age at first calving and subsequent lactation performance in UK Holstein and Holstein-Friesian dairy cows.

    PubMed

    Eastham, Neil T; Coates, Amy; Cripps, Peter; Richardson, Henry; Smith, Robert; Oikonomou, Georgios

    2018-01-01

    Lactation records from 396,534 pedigree Holstein and Holstein-Friesian primiparous cows from 6,985 UK milk recorded herds, calving for the first time during the period between the 1st of January 2006 and the 31st of December 2008, were examined in order to determine the associations between age at first calving (AFC) and subsequent production, udder health, fertility and survivability parameters. Heifers were grouped by AFC into single month classes ranging from 21 to 42 months. Mixed effects multivariable regression modelling was used for data analysis. Mean and median AFC were 29.1 and 28 months respectively. Within the study, only 48,567 heifers (12.3% of the studied population) calved for the first time at 24 months of age or younger. 162,157 heifers (40.9%) were 30 months or older at their first calving. An increased AFC was associated with increased first lactation milk, fat and protein yields. The lowest predicted mean 305-day yield (6,617kgs; 95% confidence interval (CI): 6,546-6,687 kgs) was recorded for the 21 month AFC class, significantly lower than any other class. The 36 month AFC class had the highest predicted mean (7,774 kgs; 95% CI: 7,737-7,811 kgs). However, an increased AFC was also associated with increased calving interval and increased first lactation somatic cell count (SCC). Animals calving at 21 months had a predicted mean lactation SCC of 72,765 (95% CI: 68427-77378). Animals calving at 36 months of age had a predicted mean lactation SCC of 86,648 (95% CI: 84,499-88,853). Importantly, an increased AFC was also associated with decreased lifetime daily milk yield and decreased likelihood of calving for a second successive time. Animals calving at 22 months of age had a predicted mean daily lifetime milk yield of 15.24 kgs (95% CI: 15.06-15.35); animals calving at 36 months of age had a predicted mean daily lifetime milk yield of 12.83 kgs (95% CI: 12.76-12.91). Our results highlight the importance of achieving a lower age at first calving which was here associated with improved udder health, increased lifetime daily milk yield, improved reproductive performance and increased likelihood of calving for a second time.

  14. Crystallization kinetics and thermal resistance of bamboo fiber reinforced biodegradable polymer composites

    NASA Astrophysics Data System (ADS)

    Thumsorn, S.; Srisawat, N.; On, J. Wong; Pivsa-Art, S.; Hamada, H.

    2014-05-01

    Bamboo fiber reinforced biodegradable polymer composites were prepared in this study. Biodegradable poly(butylene succinate) (PBS) was blended with bamboo fiber in a twin screw extruder with varied bamboo content from 20-0wt%. PBS/bamboo fiber composites were fabricated by compression molding process. The effect of bamboo fiber contents on properties of the composites was investigated. Non-isothermal crystallization kinetic study of the composites was investigated based on Avrami equation. The kinetic parameters indicated that bamboo fiber acted as heterogeneous nucleation and enhanced crystallinity of the composites. Bamboo fiber was well dispersed on PBS matrix and good adhered with the matrix. Tensile strength of the composites slightly deceased with adding bamboo fiber. However, tensile modulus and impact strength of the composites increased when increasing bamboo fiber contents. It can be noted that bamboo fiber promoted crystallization and crystallinity of PBS in the composites. Therefore, the composites were better in impact load transferring than neat PBS, which exhibited improving on impact performance of the composites.

  15. Fabrication of Composite Material Using Gettou Fiber by Injection Molding

    NASA Astrophysics Data System (ADS)

    Setsuda, Roy; Fukumoto, Isao; Kanda, Yasuyuki

    This study investigated the mechanical properties of composite using gettou (shell ginger) fiber as reinforcement fabricated from injection molding. Gettou fiber is a natural fiber made from gettou, a subtropical plant that is largely abundant in Okinawa, Japan. We used the stem part of gettou plant and made the gettou fiber by crushing the stem. The composite using gettou fiber contributed to low shrinkage ratio, high bending strength and high flexural modulus. The mechanical strength of composite using long gettou fiber showed higher value than composite using short gettou fiber. Next, because gettou is particularly known for its anti-mold characteristic, we investigated the characteristic in gettou plastic composite. The composite was tested against two molds: aspergillius niger and penicillium funiculosum. The 60% gettou fiber plastic composite was found to satisfy the JISZ2801 criterion. Finally, in order to predict the flexural modulus of composite using gettou fiber by Halpin-Tsai equation, the tensile elastic modulus of single gettou fiber was measured. The tendency of the experimental results of composite using gettou fiber was in good agreement with Halpin-Tsai equation.

  16. Microstructure of the smart composite structures with embedded fiber optic sensing nerves

    NASA Astrophysics Data System (ADS)

    Liu, Jingyuan; Luo, Fei; Li, Changchun; Ma, Naibin

    1997-11-01

    The composite structures with embedded optical fiber sensors construct a smart composite structure system, which may have the characteristics of the in-service self-measurement, self- recognition and self-judgement action. In the present work, we studied the microstructures of carbon/epoxy composite laminates with embedded sensing optical fibers, and the integration of optical fiber with composites was also discussed. The preliminary experiment results show that because of the difference between the sensing optical fibers and the reinforcing fibers in their size, the microstructure of the composites with embedded optical fibers will produce partial local changes in the area of embedded optical fiber, these changes may affect the mechanical properties of composite structures. When the optical fibers are embedded parallel to the reinforcing fibers, due to the composite prepregs are formed under a press action during its curing process, the reinforcing fibers can be arranged equably around the optical fibers. But when the optical fibers are embedded perpendicularly to the reinforcement fibers, the resin rich pocket will appear in the composite laminates surrounding the embedded optical fiber. The gas holes will be easily produced in these zones which may produce a premature failure of the composite structure. The photoelastic experiments are also given in the paper.

  17. Genotype x environment interaction for age at first calving in Brazilian and Colombian Holsteins.

    PubMed

    Cerón-Muñoz, M F; Tonhati, H; Costa, C N; Maldonado-Estrada, J; Rojas-Sarmiento, D

    2004-08-01

    The objective was to determine whether there is a genotype x environment interaction for age at first calving (AFC) in Holstein cattle in Brazil and Colombia. Data included 51,239 and 25,569 first-lactation records from Brazil and Colombia, respectively. Of 4230 sires in the data, 530 were North American sires used in both countries. Analyses were done using the REML bi-trait animal model, and AFC was considered as a distinct characteristic in each country. Fixed effects of contemporary group (herd-calving year), sire genetic group, and cow genetic group, and random effects of animal and residual variation were included in the model. Average AFC in Brazil and Colombia were 29.5 +/- 4.0 and 32.1 +/- 3.5 mo, respectively. Additive and residual genetic components and heritability coefficient for AFC in Brazil were 2.21 mo2, 9.41 mo2, and 0.19, respectively, whereas for Colombia, they were 1.02 mo2, 6.84 mo2, and 0.13, respectively. The genetic correlation of AFC between Brazil and Colombia was 0.78, indicating differences in ranking of sires consistent with a genotype x environment interaction. Therefore, in countries with differing environments, progeny of Holstein sires may calve at relatively younger or older ages compared with contemporary herdmates in one environment versus another.

  18. Estimating Aboveground Forest Carbon Stock of Major Tropical Forest Land Uses Using Airborne Lidar and Field Measurement Data in Central Sumatra

    NASA Astrophysics Data System (ADS)

    Thapa, R. B.; Watanabe, M.; Motohka, T.; Shiraishi, T.; shimada, M.

    2013-12-01

    Tropical forests are providing environmental goods and services including carbon sequestration, energy regulation, water fluxes, wildlife habitats, fuel, and building materials. Despite the policy attention, the tropical forest reserve in Southeast Asian region is releasing vast amount of carbon to the atmosphere due to deforestation. Establishing quality forest statistics and documenting aboveground forest carbon stocks (AFCS) are emerging in the region. Airborne and satellite based large area monitoring methods are developed to compliment conventional plot based field measurement methods as they are costly, time consuming, and difficult to implement for large regions. But these methods still require adequate ground measurements for calibrating accurate AFCS model. Furthermore, tropical region comprised of varieties of natural and plantation forests capping higher variability of forest structures and biomass volumes. To address this issue and the needs for ground data, we propose the systematic collection of ground data integrated with airborne light detection and ranging (LiDAR) data. Airborne LiDAR enables accurate measures of vertical forest structure, including canopy height and volume demanding less ground measurement plots. Using an appropriate forest type based LiDAR sampling framework, structural properties of forest can be quantified and treated similar to ground measurement plots, producing locally relevant information to use independently with satellite data sources including synthetic aperture radar (SAR). In this study, we examined LiDAR derived forest parameters with field measured data and developed general and specific AFCS models for tropical forests in central Sumatra. The general model is fitted for all types of natural and plantation forests while the specific model is fitted to the specific forest type. The study region consists of natural forests including peat swamp and dry moist forests, regrowth, and mangrove and plantation forests including rubber, acacia, oil palm, and coconut. To cover these variations of forest type, eight LiDAR transacts crossing 60 (1-ha size) field plots were acquired for calibrating the models. The field plots consisted of AFCS ranging from 4 - 161 Mg /ha. The calibrated LiDAR to AFCS general model enabled to predict the AFCS with R2 = 0.87 and root mean square errors (RMSE) = 17.4 Mg /ha. The specific AFCS models provided carbon estimates, varied by forest types, with R2 ranging from 0.72 - 0.97 and uncertainty (RMSE) ranging from 1.4 - 10.7 Mg /ha. Using these models, AFCS maps were prepared for the LiDAR coverage that provided AFCS estimates for 8,000 ha offering larger ground sampling measurements for calibration of SAR based carbon mapping model to wider region of Sumatra.

  19. Effects of Fiber/Matrix Interface and its Composition on Mechanical Properties of Hi-Nicalon/Celsian Composites

    NASA Technical Reports Server (NTRS)

    Bansal, Narottam P.; Eldridge, Jeffrey I.

    1999-01-01

    To evaluate the effects of fiber coatings on composite mechanical properties. unidirectional celsian matrix composites reinforced with uncoated Hi-Nicalon fibers and those precoated with a dual BN/SiC layer in two separate batches (batch 1 and batch 2) were tested in three-point flexure. The uncoated-fiber reinforced composites showed catastrophic failure with strength of 210+/-35 MPa and a flat fracture surface. In contrast, composites reinforced with coated fibers exhibited graceful failure with extensive fiber pullout and showed significantly higher ultimate strengths, 904 and 759 MPa for the batch 1 and 2 coatings. respectively. Fiber push-in tests and microscopic examination indicated no chemical reaction at the uncoated or coated fiber-matrix interfaces that might be responsible for fiber strength degradation. Instead, the low strength of composite with uncoated fibers was due to degradation of the fiber strength from mechanical damage during composite processing. Despite identical processing, the first matrix cracking stresses (Sigma(sub mc)) of the composites reinforced with fibers coated in batch 1 and batch 2 were quite different, 436 and 122 MPa, respectively. The large difference in Sigma(sub mc) of the coated-fiber composites was attributed to differences in fiber sliding stresses (Tau(sub friction)), 121.2+/-48.7 and 10.4+/-3.1 MPa, respectively. for the two composites as determined by the fiber push-in method. Such a large difference in Tau(sub friction). for the two composites was found to be due to the difference in the compositions of the interface coatings. Scanning Auger microprobe analysis revealed the presence of carbon layers between the fiber and BN. and also between the BN and SiC coatings in the composite showing lower Tau(sub friction). This resulted in lower Sigma(sub mc) in agreement with the ACK theory. The ultimate strengths of the two composites depended mainly on the fiber volume fraction and were not significantly effected by Tau(sub friction) values, as expected. The poor reproducibility of the fiber coating composition between the two batches was judged to be the primary source of the large differences in performance of the two composites.

  20. The optimal fiber volume fraction and fiber-matrix property compatibility in fiber reinforced composites

    NASA Technical Reports Server (NTRS)

    Pan, Ning

    1992-01-01

    Although the question of minimum or critical fiber volume fraction beyond which a composite can then be strengthened due to addition of fibers has been dealt with by several investigators for both continuous and short fiber composites, a study of maximum or optimal fiber volume fraction at which the composite reaches its highest strength has not been reported yet. The present analysis has investigated this issue for short fiber case based on the well-known shear lag (the elastic stress transfer) theory as the first step. Using the relationships obtained, the minimum spacing between fibers is determined upon which the maximum fiber volume fraction can be calculated, depending on the fiber packing forms within the composites. The effects on the value of this maximum fiber volume fraction due to such factors as fiber and matrix properties, fiber aspect ratio and fiber packing forms are discussed. Furthermore, combined with the previous analysis on the minimum fiber volume fraction, this maximum fiber volume fraction can be used to examine the property compatibility of fiber and matrix in forming a composite. This is deemed to be useful for composite design. Finally some examples are provided to illustrate the results.

  1. The effect of fiber bleaching treatment on the properties of poly(lactic acid)/oil palm empty fruit bunch fiber composites.

    PubMed

    Rayung, Marwah; Ibrahim, Nor Azowa; Zainuddin, Norhazlin; Saad, Wan Zuhainis; Razak, Nur Inani Abdul; Chieng, Buong Woei

    2014-08-22

    In this work, biodegradable composites from poly(lactic acid) (PLA) and oil palm empty fruit bunch (OPEFB) fiber were prepared by melt blending method. Prior to mixing, the fiber was modified through bleaching treatment using hydrogen peroxide. Bleached fiber composite showed an improvement in mechanical properties as compared to untreated fiber composite due to the enhanced fiber/matrix interfacial adhesion. Interestingly, fiber bleaching treatment also improved the physical appearance of the composite. The study was extended by blending the composites with commercially available masterbatch colorant.

  2. The Effect of Fiber Bleaching Treatment on the Properties of Poly(lactic acid)/Oil Palm Empty Fruit Bunch Fiber Composites

    PubMed Central

    Rayung, Marwah; Ibrahim, Nor Azowa; Zainuddin, Norhazlin; Saad, Wan Zuhainis; Razak, Nur Inani Abdul; Chieng, Buong Woei

    2014-01-01

    In this work, biodegradable composites from poly(lactic acid) (PLA) and oil palm empty fruit bunch (OPEFB) fiber were prepared by melt blending method. Prior to mixing, the fiber was modified through bleaching treatment using hydrogen peroxide. Bleached fiber composite showed an improvement in mechanical properties as compared to untreated fiber composite due to the enhanced fiber/matrix interfacial adhesion. Interestingly, fiber bleaching treatment also improved the physical appearance of the composite. The study was extended by blending the composites with commercially available masterbatch colorant. PMID:25153628

  3. Kenaf-glass fiber reinforced unsaturated polyester hybrid composites: Tensile properties

    NASA Astrophysics Data System (ADS)

    Zhafer, S. F.; Rozyanty, A. R.; Shahnaz, S. B. S.; Musa, L.; Zuliahani, A.

    2016-07-01

    The use of natural fibers in composite is rising in recent years due their lightweight, non-abrasive, combustible, non-toxic, low cost and biodegradable properties. However, in comparison with synthetic fibers, the mechanical properties of natural fibers are lower. Therefore, the inclusion of synthetic fibers could improve the mechanical performance of natural fiber based composites. In this study, kenaf bast fiber and glass fiber at different weight percentage loading were used as reinforcement to produce hybrid composites. Unsaturated polyester (UP) resin was used as matrix and hand lay-up process was performed to apply the UP resin on the hybrid kenaf bast/glass fiber composite. Effect of different fiber loading on tensile strength, tensile modulus and elongation at break of the hybrid composite was studied. It has been found that the highest value of tensile strength and modulus was achieved at 10 wt.% kenaf/10 wt.% glass fiber loading. It was concluded that addition of glass fiber has improved the tensile properties of kenaf bast fiber based UP composites.

  4. Development and characterization of sugarcane bagasse fiber and nano-silica reinforced epoxy hybrid composites

    NASA Astrophysics Data System (ADS)

    Fong, A. L.; Khandoker, N. A. N.; Debnath, S.

    2018-04-01

    This paper presents an experimental study on the mechanical performance of sugarcane bagasse fiber reinforced epoxy composite. Tensile and flexural properties of the composites were investigated in this research. Different weightage of short fiber and fiber particulates were utilized to study their effects on the mechanical performance of the composites in terms of tensile and flexural properties. 1% of nano-silica was reinforced to investigate its effect on the mechanical performance of the composites. Hand lay-up composite molding process was used to fabricate the composite samples. During fabrication, ultrasonic mixing was carried out to study the effects on mechanical performance of the fiber particulate reinforced composites. In overall, ultrasonic mixing and addition of nano-silica particles has improved the mechanical performance of the fiber particulate composites. Morphology analysis on surface of composites has shown the removal of air bubbles and deagglomeration. 1wt% of short fiber reinforced composite exhibits the highest tensile and flexural properties among all the samples. Sugarcane bagasse particulates reinforced composites were shown to have better performance compared to short fiber reinforced composites when the wt% of the fiber increase.

  5. Genetic parameters and environmental effects on temperament score and reproductive traits of Nellore cattle.

    PubMed

    Barrozo, D; Buzanskas, M E; Oliveira, J A; Munari, D P; Neves, H H R; Queiroz, S A

    2012-01-01

    Animal temperament is a trait of economic relevance and its use as a selection criterion requires the identification of environmental factors that influence this trait, as well as the estimation of its genetic variability and interrelationship with other traits. The objectives of this study were to evaluate the effect of the covariates dam age at calving (ADC), long yearling age (YA) and long yearling weight (YW) on temperament score (T) and to estimate genetic parameters for T, scrotal circumference (SC) at long YA and age at first calving (AFC) in Nellore cattle participating in a selection program. The traits were analyzed by the restricted maximum likelihood method under a multiple-trait animal model. For all traits, contemporary group was included as a fixed effect and additive genetic and residual as random effects. In addition to these effects, YA, YW and ADC were considered for analyzing T. In the case of SC and AFC, the effect of long YW was included as a covariate. Genetic parameters were estimated for and between traits. The three covariates significantly influenced T. The heritability estimates for T, SC and AFC were 0.18 ± 0.02, 0.53 ± 0.04 and 0.23 ± 0.08, respectively. The genetic correlations between T and SC, and T and AFC were -0.07 ± 0.17 and -0.06 ± 0.19, respectively. The genetic correlation estimated between SC and AFC was -0.57 ± 0.16. In conclusion, a response to selection for T, SC and AFC is expected and selection for T does not imply correlated responses with the other traits.

  6. Microbiological and physicochemical factors affecting Aspergillus section Flavi incidence in Cavendish banana (Musa cavendishii) chips production in Southern Philippines.

    PubMed

    Sales, A C; Azanza, P V; Yoshizawa, T

    2005-01-01

    Microbiological and physicochemical factors affecting the incidence of Aspergillus section Flavi in dried Cavendish banana (Musa cavendishii) chips production in Southern Philippines were examined. The average counts of Aspergillus section Flavi (AFC) in fresh and dried Cavendish bananas from 10 production batches of the Philippine Agro-Industrial Development Cooperative in Davao del Norte, Southern Philippines were 1.2 x 10(2) and 1.6 x 10(2) cfu/g, respectively. Isolates from both samples were identified to be Aspergillus flavus based on spore type and conidial structure of isolates. An increasing trend in the AFC of Cavendish bananas was observed during dried banana chips processing. Variability in the AFC between production batches was attributed to differences in aerobic and fungal populations and physicochemical characteristics of the fruits, peel damage of the raw materials, concentration of AFC in the air and food-contact surfaces of the production area, and temperature and relative humidity (RH) conditions of the environment during production and storage. Physicochemical characteristics of Cavendish bananas from the receipt of raw materials up to the first day of drying were within the reported range of values allowing growth and toxin production by aflatoxigenic fungi. Air-borne AFC varied depending on the section of the production area examined. The close proximity of the waste disposal area from the production operation to the preparation, drying and storage areas suggests that cross-contamination, probably air-borne or insect-borne was a likely occurrence. The hands of workers were also identified as AFC sources. Results of this study highlight the need for the development of strategies to control aflatoxigenic fungi and aflatoxin contamination in Philippine dried Cavendish bananas.

  7. Simultaneous in vivo comparison of water-filled and air-filled pressure measurement catheters: Implications for good urodynamic practice.

    PubMed

    Gammie, A; Abrams, P; Bevan, W; Ellis-Jones, J; Gray, J; Hassine, A; Williams, J; Hashim, H

    2016-11-01

    This study aimed to evaluate whether the pressure readings obtained from air-filled catheters (AFCs) are the same as the readings from simultaneously inserted water-filled catheters (WFCs). It also aimed to make any possible recommendations for the use of AFCs to conform to International Continence Society (ICS) Good Urodynamic Practices (GUP). Female patients undergoing urodynamic studies in a single center had water-filled and air-filled catheters simultaneously measuring abdominal and intravesical pressure during filling with saline and during voiding. The pressures recorded by each system at each event during the test were compared using paired t-test and Bland-Altman analyses. 62 patients were recruited, of whom 51 had pressures that could be compared during filling, and 23 during voiding. On average, the pressures measured by the two systems were not significantly different during filling and at maximum flow, but the values for a given patient were found to differ by up to 10 cmH 2 O. This study shows that AFCs and WFCs cannot be assumed to register equal values of pressure. It has further shown that even when the p det readings are compared with their value at the start of a test, a divergence of values of up to 10 cmH 2 O remains. If AFCs are used, care must be taken to compensate for any p det variations that occur during patient movement. Before AFCs are adopted, new normal values for resting pressures need to be developed to allow good quality AFC pressure readings to be made. Neurourol. Urodynam. 35:926-933, 2016. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  8. Bio-composites fabricated by sandwiching sisal fibers with polypropylene (PP)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sosiati, H., E-mail: hsosiati@gmail.com; Nahyudin, A., E-mail: ahmadnahyudin@yahoo.co.id; Fauzi, I., E-mail: ikhsannurfauzi@gmail.com

    Sisal fibers reinforced polypropylene (PP) composites were successfully fabricated using sandwiching sisal fibers with PP sheets. The ratio of fiber and polymer matrix was 50:50 (wt. %). Untreated short and long sisal fibers, and alkali treated short sisal fibers in 6% NaOH at 100°C for 1 and 3 h were used as reinforcement or fillers. A small amount (3 wt. %) of maleic anhydride grafted polypropylene (MAPP) was added as a coupling agent. Scanning electron microscopy (SEM) and Fourier transform infrared (FTIR) spectroscopy were used to characterize the surface morphology and chemical composition of the fibers, respectively. Flexural test of sisal/PPmore » composites was done according to ASTM D 790-02. The results showed that flexural strength of untreated long fiber reinforced composite is much higher than that of the untreated and alkali treated short fibers reinforced composites with and without the addition of MAPP. Alkalization related to fiber surface modification, fiber length/fiber orientation and a composite fabrication technique are important factors in contributing to the fiber distribution within the matrix, the bonding between the fiber and the matrix and the enhancement of flexural strength of the bio-composite.« less

  9. Food additives and behavior in 8- to 9-year-old children in Hong Kong: a randomized, double-blind, placebo-controlled trial.

    PubMed

    Lok, Kris Y W; Chan, Ruth S M; Lee, Vivian W Y; Leung, Patrick W; Leung, Cynthia; Leung, Jason; Woo, Jean

    2013-01-01

    To test the individual effect of artificial food colorings (AFCs) and a preservative on the behavior of the general Chinese population. One hundred thirty children (70 boys and 60 girls) in Hong Kong with a mean age of 8.64 years were enlisted to the study with a within-subject crossover between AFCs, a preservative (sodium benzoate), and a placebo capsule. Two behavior scores were used including the strengths and weaknesses of attention deficit hyperactivity disorder and normal behavior rating scale and the child behavior checklist-teacher report form. Capsule A containing AFCs and Capsule B containing sodium benzoate had no significant adverse effect compared with placebo in both behavior scores. This result persisted when analysis was restricted to children with 85% consumption of capsule (per protocol analysis). There seem to be no significant associations between AFCs and a preservative on Chinese children's behavior at the age of 8 to 9 years. Future directions and implications of this research are discussed.

  10. Properties of discontinuous S2-glass fiber-particulate-reinforced resin composites with two different fiber length distributions.

    PubMed

    Huang, Qiting; Garoushi, Sufyan; Lin, Zhengmei; He, Jingwei; Qin, Wei; Liu, Fang; Vallittu, Pekka Kalevi; Lassila, Lippo Veli Juhana

    2017-10-01

    To investigate the reinforcing efficiency and light curing properties of discontinuous S2-glass fiber-particulate reinforced resin composite and to examine length distribution of discontinuous S2-glass fibers after a mixing process into resin composite. Experimental S2-glass fiber-particulate reinforced resin composites were prepared by mixing 10wt% of discontinuous S2-glass fibers, which had been manually cut into two different lengths (1.5 and 3.0mm), with various weight ratios of dimethacrylate based resin matrix and silaned BaAlSiO 2 filler particulates. The resin composite made with 25wt% of UDMA/SR833s resin system and 75wt% of silaned BaAlSiO 2 filler particulates was used as control composite which had similar composition as the commonly used resin composites. Flexural strength (FS), flexural modulus (FM) and work of fracture (WOF) were measured. Fractured specimens were observed by scanning electron microscopy. Double bond conversion (DC) and fiber length distribution were also studied. Reinforcement of resin composites with discontinuous S2-glass fibers can significantly increase the FS, FM and WOF of resin composites over the control. The fibers from the mixed resin composites showed great variation in final fiber length. The mean aspect ratio of experimental composites containing 62.5wt% of particulate fillers and 10wt% of 1.5 or 3.0mm cutting S2-glass fibers was 70 and 132, respectively. No difference was found in DC between resin composites containing S2-glass fibers with two different cutting lengths. Discontinuous S2-glass fibers can effectively reinforce the particulate-filled resin composite and thus may be potential to manufacture resin composites for high-stress bearing application. Copyright © 2017. Published by Elsevier Ltd.

  11. Ovarian morphology in polycystic ovary syndrome: estimates from 2D and 3D ultrasound and magnetic resonance imaging and their correlation to anti-Müllerian hormone.

    PubMed

    Nylander, Malin; Frøssing, Signe; Bjerre, Anne H; Chabanova, Elizaveta; Clausen, Helle V; Faber, Jens; Skouby, Sven O

    2017-08-01

    Background Due to improved ultrasound scanners, new three-dimensional (3D) modalities, and novel Anti-Müllerian hormone (AMH)-assays, the ultrasound criteria for polycystic ovarian morphology are under debate and the appropriate thresholds are often requested. Purpose To quantify the differences in estimates of ovarian volume and antral follicle count (AFC) from two-dimensional (2D) and 3D transvaginal ultrasound (TVUS) and magnetic resonance imaging (MRI). Material and Methods A cross-sectional study on 66 overweight women with polycystic ovary syndrome (PCOS) according to Rotterdam criteria. Ovarian volume and AFC were estimated from MRI, 2D TVUS, and 3D TVUS, and serum AMH levels were assessed. Bland-Altman statistics were used for comparison. Results Participants had a median age of 29 years (age range, 19-44 years) with a mean BMI of 32.7 kg/m 2 (SD 4.5). Ovarian volume from 2D TVUS was 1.48 mL (95% confidence interval [CI], 0.94-2.03; P < 0.001) and 1.25 mL (95% CI, 0.62-1.87; P < 0.001) smaller than from 3D TVUS and MRI, respectively. AFC from 2D TVUS was 18% (95% CI, 13-23; P < 0.005) and 16% (95% CI, 6-25; P < 0.005) smaller than estimates from 3D TVUS and MRI, respectively. Correlations between AMH and AFC from 2D TVUS, 3D TVUS, and MRI were 0.67, 0.78, and 0.70, respectively ( P < 0.001 for all). Conclusion In an overweight PCOS population, 2D TVUS underestimated ovarian volume and AFC as compared with 3D TVUS and MRI. Serum AMH correlated best with AFC from 3D TVUS, followed by MRI and 2D TVUS. The advantage of 3D TVUS might be of minor clinical importance when diagnosing PCOS, but useful when the actual AFC are of interest, e.g. in fertility counseling and research.

  12. Effect of fiber orientation on tensile and impact properties of Zalacca Midrib fiber-HDPE composites by compression molding

    NASA Astrophysics Data System (ADS)

    Lasikun, Ariawan, Dody; Surojo, Eko; Triyono, Joko

    2018-02-01

    The research aims to investigate the fiber orientation effect on the tensile and impact properties of zalacca midrib fiber /HDPE composites. The composites were produced by compression molding with pressing temperature at 150°C, pressing pressure at 50 bar, and holding time of 25 minutes. The fiber orientations applied in composites were 0°, 15°, 30°, 45°, 60°, 75°, and 90°, at 10% fiber volume fraction. The samples were evaluated by using: Tensile test and Izod impact test according to ASTM D638 and ASTM D5941, respectively. The result of experiments indicate that the orientation of zalacca midrib fiber influences the characteristics of HDPE composite-zalacca midrib fiber. The composite mechanical strength decline with the increase of orientation fibers from 0° to 90°. The composite failure mode of composites are observed by Scanning Electron Microscope (SEM).

  13. Fabrication of borassus fruit lignocellulose fiber/PP composites and comparison with jute, sisal and coir fibers.

    PubMed

    Sudhakara, P; Jagadeesh, Dani; Wang, YiQi; Prasad, C Venkata; Devi, A P Kamala; Balakrishnan, G; Kim, B S; Song, J I

    2013-10-15

    Novel composites based on borassus fruit fine fiber (BFF) and polypropylene (PP) were fabricated with variable fiber composition (5, 10, 15 and 20 wt%) by injection molding. Maleated PP (MAPP) was also used as compatibilizer at 5 wt% for effective fiber-matrix adhesion. FTIR analysis confirms the evidence of a chemical bonding between the fiber and polymeric matrix through esterification in presence of MAPP. The tensile and flexural properties were found to increase with 15 and 10 wt% fiber loadings respectively, and decreased thereafter. Coir, jute and sisal fiber composites were also fabricated with 15 wt% fiber loading under the same conditions as used for BFF/PP composites. It was found that the mechanical properties of BFF (15 wt%)/PP composites were equivalent to jute/PP, sisal/PP and superior to coir/PP composites. Jute/PP and sisal/PP composites showed higher water absorption than BFF/PP and coir/PP composites. These results have demonstrated that the BFF/PP composites can also be an alternative material for composites applications. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Experimental investigation of defect criticality in FRP laminate composites

    NASA Astrophysics Data System (ADS)

    Joyce, Peter James

    1999-11-01

    This work examines the defect criticality of fiber reinforced polymer Composites. The objective is to determine the sensitivity of the finished composite to various process-induced defects. This work focuses on two different classes of process-induced defects; (1) fiber waviness in high performance carbon-fiber reinforced unidirectional composites and (2) void volume in low cost glass-fabric reinforced composites. The role of fiber waviness in the compressive response of unidirectional composites has been studied by a number of other investigators. Because of difficulties associated with producing real composites with varying levels of fiber waviness, most experimental studies of fiber waviness have evaluated composites with artificially induced fiber waviness. Furthermore, most experimental studies have been concentrated on the effects of out-of-plane fiber waviness. The objective of this work is to evaluate the effects of in-plane fiber waviness naturally occurring in autoclave consolidated thermoplastic laminates. The first phase of this project involved the development of a simple technique for measuring the resulting fiber waviness levels. An experimental investigation of the compression strength reduction in composites with in-plane fiber waviness followed. The experimental program included carbon-fiber reinforced thermoplastic composites manufactured from prepreg tape by hand layup, and carbon-fiber and glass-fiber reinforced composites manufactured from an experimental powder towpreg by filament winding and autoclave consolidation. The compression specimens exhibited kink band failure in the prepreg composite and varying amounts of longitudinal splitting and kink banding in the towpreg composites. The compression test results demonstrated the same trend as predicted by microbudding theory but the overall quantitative correlation was poor. The second thrust of this research evaluated void effects in resin transfer molded composites. Much of the existing literature in this area has focused on composites with unidirectional fiber reinforcement. In this program, the influence of void volume on the mechanical behavior of RTM composites with plain weave reinforcement was investigated. The experimental program demonstrated that the effects of void volume are negligible in terms of the fiber dominated properties. Interlaminar shear strength tests on the other hand demonstrated a linear dependence on void volume in the range tested.

  15. Hybrid Fiber Layup and Fiber-Reinforced Polymeric Composites Produced Therefrom

    NASA Technical Reports Server (NTRS)

    Barnell, Thomas J. (Inventor); Garrigan, Sean P. (Inventor); Rauscher, Michael D. (Inventor); Dietsch, Benjamin A. (Inventor); Cupp, Gary N. (Inventor)

    2018-01-01

    Embodiments of a hybrid fiber layup used to form a fiber-reinforced polymeric composite, and a fiber-reinforced polymeric composite produced therefrom are disclosed. The hybrid fiber layup comprises one or more dry fiber strips and one or more prepreg fiber strips arranged side by side within each layer, wherein the prepreg fiber strips comprise fiber material impregnated with polymer resin and the dry fiber strips comprise fiber material without impregnated polymer resin.

  16. The phenotypic diversity in per-follicle anti-Müllerian hormone production in polycystic ovary syndrome.

    PubMed

    Alebić, M Š; Stojanović, N; Duhamel, A; Dewailly, D

    2015-08-01

    Is intrinsic dysregulation of granulosa cells (GC) and consequent increases in the per-follicle production of anti-Müllerian hormone (AMH), correlated with the phenotypic presentation of women with polycystic ovaries? Involvement of intrinsic GC dysregulation in oligo-anovulation associated with polycystic ovary syndrome (PCOS) is likely because among women with PCOS, those with oligo-amenorrhea have higher per-follicle AMH production than those who ovulate normally, irrespective of their androgen and/or metabolic status. Women with PCOS have higher serum AMH level than non-PCOS women due to an increased follicle number and excessive AMH production per follicle, the latter reflecting a putative GC dysfunction that may vary between PCOS phenotypes. This is a retrospective analysis of data collected from 1021 women undergoing infertility evaluation from March 2011 to October 2013. The study included women with polycystic ovarian morphology (PCOM) who met the Rotterdam criteria for PCOS (n = 272), women with PCOM only (n = 168) and controls (n = 581). We used serum AMH to antral follicle count (AFC) ratio (AMH/AFC) as a marker of per-follicle AMH production and checked whether this ratio was associated with the PCOS phenotype and to the menstrual, androgen and metabolic status in women with PCOS, women with PCOM only and in controls. AMH/AFC was significantly higher in oligo-amenorrheic women with PCOS than in eumenorrheic women with PCOS or PCOM (P < 0.001) but also in the latter group compared with controls (P < 0.001) regardless of androgen status. Stepwise discriminant analysis yielded a significant score for the menstrual status with a discriminant power of 26.5% (P < 0.001). This score included AFC, AMH/AFC, waist circumference and LH with partial R(2) of 0.172, 0.042, 0.024 and 0.023, respectively. The AMH to AFC ratio as a surrogate marker for average AMH may be subject to error because follicles below the sensitivity limit of the ultrasonography used may also contribute to serum AMH concentration and secondly, AFC can be subjective. The higher AMH/AFC in women with PCOM only than in controls suggests that isolated PCOM may represent a PCOS-like phenotype in which an inherent dysfunction of GC exists but is too mild to affect the ovulatory process. No funding was obtained for this study. There are no conflicts of interest to be declared. Non-applicable. © The Author 2015. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  17. Evaluating the effect of some mechanical properties for chemically treated various natural fibers reinforced polyester composite

    NASA Astrophysics Data System (ADS)

    Salih, Wafaa Mahdi; Abdulkader, Niveen Jamal; Salih, Sana Mahdi

    2018-05-01

    This research were studied the effect of some mechanical properties for composite materials reinforced fiber and prepared from material (polyester with various natural fibers) then studied the effect of chemical treatment on the same fiber immerse in 10% NaOH solution for half an hour and then compared, the results of the same test of composite materials without and with chemical treatment and the results proved that there is a clear effect when treat the fiber compared to non-chemical treatment of the fibers also noted that hemp fibers loaded the stress higher than other fibers for both cases to distinguish them that the hemp fiber has continuous fibers either the other fibers are characterized by the type of cross linking or chopped types in tensile test, and the results of the same test of composite materials without and with chemical treatment and the results proved that the hardness of the fiber composite while the treated fiber composite samples better than the untreated fiber, and from the figures the palm leaf has the highest value than lufa fiber, hemp fiber and the smallest value is in sisal fiber because of the nature of formation fibers materials.

  18. Fluidic actuators for active flow control on airframe

    NASA Astrophysics Data System (ADS)

    Schueller, M.; Weigel, P.; Lipowski, M.; Meyer, M.; Schlösser, P.; Bauer, M.

    2016-04-01

    One objective of the European Projects AFLoNext and Clean Sky 2 is to apply Active Flow Control (AFC) on the airframe in critical aerodynamic areas such as the engine/wing junction or the outer wing region for being able to locally improve the aerodynamics in certain flight conditions. At the engine/wing junction, AFC is applied to alleviate or even eliminate flow separation at low speeds and high angle of attacks likely to be associated with the integration of underwing- mounted Ultra High Bypass Ratio (UHBR) engines and the necessary slat-cut-outs. At the outer wing region, AFC can be used to allow more aggressive future wing designs with improved performance. A relevant part of the work on AFC concepts for airframe application is the development of suitable actuators. Fluidic Actuated Flow Control (FAFC) has been introduced as a Flow Control Technology that influences the boundary layer by actively blowing air through slots or holes out of the aircraft skin. FAFC actuators can be classified by their Net Mass Flux and accordingly divided into ZNMF (Zero Net Mass Flux) and NZNMF (Non Zero Net-Mass-Flux) actuators. In the frame of both projects, both types of the FAFC actuator concepts are addressed. In this paper, the objectives of AFC on the airframe is presented and the actuators that are used within the project are discussed.

  19. Analysis of Non-Genetic Factors Influencing Reproductive Traits of Japanese Black Heifer

    NASA Astrophysics Data System (ADS)

    Setiaji, A.; Oikawa, T.

    2018-02-01

    This study aimed was to identify non-genetic factors strongly associated with reproductive traits on Japanese Black heifer. Artificial insemination and calving records were analyzed to investigate non-genetic effect on reproductive performances. A total of 2220 records of heifer raised between 2005 and 2016 were utilized in this study. Studied traits were first service non return rate to 56 days (NRR), first service pregnancy rate (FPR), days from first to successful insemination (FSI), number of services per conception (NSC), age at first calving (AFC), and gestation length (GL). Test of significance for effects in the statistical model was performed using GLM procedure of SAS 9.3. The yearling trend was plotted on the adjusted mean of parameters, by the least square mean procedure. Means of NRR, FPR, FSI, NSC, AFC and GL were 72%, 53%, 52.71 days, 1.76, 760.71 days and 288.26 days, respectively. The effect of farm was significant (P<0.001) for FSI, AFC, and GL. The effects of age of heifer at first insemination was significant (P<0.001) for AFC. Month of insemination and sex of calf were significant (P<0.001) for GL. Compared with average value of reproductive traits, NSC and GL were generally within standard values for Japanese Black cattle, while AFC was slightly earlier. The result indicated that different management of farms strongly influenced reproductive traits of Japanese Black heifer.

  20. 3D Representative Volume Element Reconstruction of Fiber Composites via Orientation Tensor and Substructure Features

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Yi; Chen, Wei; Xu, Hongyi

    To provide a seamless integration of manufacturing processing simulation and fiber microstructure modeling, two new stochastic 3D microstructure reconstruction methods are proposed for two types of random fiber composites: random short fiber composites, and Sheet Molding Compounds (SMC) chopped fiber composites. A Random Sequential Adsorption (RSA) algorithm is first developed to embed statistical orientation information into 3D RVE reconstruction of random short fiber composites. For the SMC composites, an optimized Voronoi diagram based approach is developed for capturing the substructure features of SMC chopped fiber composites. The proposed methods are distinguished from other reconstruction works by providing a way ofmore » integrating statistical information (fiber orientation tensor) obtained from material processing simulation, as well as capturing the multiscale substructures of the SMC composites.« less

  1. Effect of lightning strike on bromine intercalated graphite fiber/epoxy composites

    NASA Technical Reports Server (NTRS)

    Gaier, James R.; Slabe, Melissa E.; Brink, Norman O.

    1991-01-01

    Laminar composites were fabricated from pristine and bromine intercalated pitch based graphite fibers. It was found that laminar composites could be fabricated using either pristine or intercalated graphite fibers using standard fabrication techniques. The intercalated graphite fiber composites had electrical properties which were markedly improved over both the corresponding pitch based and polyacrylonitrile (PAN) based composites. Despite composites resistivities more than an order of magnitude lower for pitch based fiber composites, the lightning strike resistance was poorer than that of the Pan based fiber composites. This leads to the conclusion that the mechanical properties of the pitch fibers are more important than electrical or thermal properties in determining the lightning strike resistance. Based on indicated lightning strike tolerance for high elongation to failure materials, the use of vapor grown, rather than pitch based graphite fibers appears promising.

  2. Hull Fiber From DDGS and Corn Grain as Alternative Fillers in Polymer Composites with High Density Polyethylene

    NASA Astrophysics Data System (ADS)

    Pandey, Pankaj

    The steady increase in corn based ethanol production has resulted in a dramatic rise in the supply of its co-product known as distillers' dried grain with solubles (DDGS). Currently, the main outlet for DDGS is the animal feed industry, but the presence of fibers makes them indigestible by non-ruminants such as swine and poultry. Separation of fiber from DDGS would increase the nutritional value of DDGS with higher protein and fat contents and reduced fiber content. The fiber from DDGS can be separated through a physical separation process known as elusieve. The DDGS fiber has the potential to be used as a fiber filler in thermoplastic composites. This research project evaluates DDGS fiber as a filler in thermoplastic composites. The fibers from corn hull and DDGS have been used as fillers at 30% and 50% fiber loading in high density polyethylene (HDPE) composites and compared against a standard oak fiber filler composites at a lab scale. DDGS and corn fiber composites showed comparable mechanical properties as the oak wood fiber HDPE composites. Further evaluation was completed on the performance of composite samples at commercial scale with six combinations of oak fiber, corn hull fiber and DDGS fiber with fiber loading maintained at 50%, and then samples were exposed to UV accelerated weathering for 2000 h. The UV weathering decreased the mechanical properties of all the exposed samples compared to the unexposed samples. Also, UV weathering resulted in a severe chain scission of the HDPE polymer, increasing their crystallinity. The performance of mercerized or sodium hydroxide (NaOH) treated DDGS fiber as filler was investigated by characterizing the effects of treated and untreated DDGS fibers on physical, mechanical, and thermal properties of HDPE composites. The NaOH treated DDGS fiber at 25% loading showed consistent improvement in flexural and tensile modulus of elasticities of the composites compared to the neat HDPE.

  3. Quartz and E-glass fiber self-sensing composites

    NASA Astrophysics Data System (ADS)

    Zolfaghar, K.; Khan, N. A.; Brooks, David; Hayes, Simon A.; Liu, Tonguy; Roca, J.; Lander, J.; Fernando, Gerard F.

    1998-04-01

    This paper reports on developments in the field of self- sensing fiber reinforced composites. The reinforcing fibers have been surface treated to enable them to act as light guides for short distances. The reinforcing fiber light guides were embedded in carbon fiber reinforced epoxy prepregs and processed into composites. The resultant composite was termed the self-sensing composite as any damage to these fibers or its interface would result in the attenuation of the transmitted light. The self-sensing fibers were capable of detecting a 2 J impact.

  4. Hi-Nicalon Fiber-Reinforced Celsian Matrix Composites: Influence of Interface Modification

    NASA Technical Reports Server (NTRS)

    Bansal, Narottam P.; Eldridge, Jeffrey I.

    1998-01-01

    Unidirectional celsian matrix composites having 42-45 vol % of uncoated or BN-SIC coated Hi-Nicalon fibers were tested in three-point bend at room temperature. The uncoated fiber-reinforced composites showed catastrophic failure with strength of 210 35 MPa and a flat fracture surface. In contrast, composites reinforced with coated fibers exhibited graceful failure with extensive fiber pullout. Values of first matrix cracking stress and strain were 435 +/- 35 MPa and 0.27 +/- 0.01%, respectively, with ultimate strength as high as 960 MPa. The elastic Young modulus of the uncoated and coated fiber-reinforced composites were 184 +/- 4 GPa and 165 +/- 5 GPa, respectively. Fiber push-through tests and microscopic examination indicated no chemical reaction at the uncoated or coated fiber-matrix interface. The low strength of composite with uncoated fibers is due to degradation of the fiber strength from mechanical damage during processing. Because both the coated- and uncoated-fiber-reinforced composites exhibited weak interfaces, the beneficial effect of the BN-SIC dual layer is primarily the protection of fibers from mechanical damage during processing.

  5. 47 CFR 90.539 - Frequency stability.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... base station signal. (b) The frequency stability of base transmitters operating in the narrowband... is locked to the base station. When AFC is not locked to the base station, the frequency stability... base station, and 5 parts per million or better when AFC is not locked. [63 FR 58651, Nov. 2, 1998, as...

  6. An evaluation of upgraded boron fibers in epoxy-matrix composites

    NASA Technical Reports Server (NTRS)

    Rhodes, T. C.; Fleck, J. N.; Meiners, K. E.

    1973-01-01

    An initial evaluation of upgraded boron fibers in an epoxy matrix is performed. Data generated on the program show that fiber strength does increase as a consequence of the upgrading treatment. However, the interlaninar shear strength of upgraded fiber composites is lower than that for an untreated fiber composite. In the limited tests performed, the increased fiber strength failed to translate into the composite.

  7. Process modifications for improved carbon fiber composites: Alleviation of the electrical hazards problem

    NASA Technical Reports Server (NTRS)

    Ramohalli, K.

    1980-01-01

    Attempts to alleviate carbon-fiber-composite electrical hazards during airplane crash fires through fiber gasification are described. Thermogravimetric and differential scanning calorimetric experiments found several catalysts that caused fibers to combust when composites were exposed to test fires. Composites were tested in the 'Burn-Bang' apparatus and in high voltage electrical detection grid apparatus. In a standard three minute burn test modified composites released no fibers, while state-of-the-art composites released several hundred fiber fragments. Expected service life with and without catalytic modification was studied and electron microscopy and X-ray microanalysis furnished physical appearance and chemical composition data. An acrylic acid polymer fiber coating was developed that wet the carbon fiber surface uniformly with the catalyst, providing a marked contrast with the uneven coats obtained by solution-dipping.

  8. Creep of Heat-Resistant Composites of an Oxide-Fiber/Ni-Matrix Family

    NASA Astrophysics Data System (ADS)

    Mileiko, S. T.

    2001-09-01

    A creep model of a composite with a creeping matrix and initially continuous elastic brittle fibers is developed. The model accounts for the fiber fragmentation in the stage of unsteady creep of the composite, which ends with a steady-state creep, where a minimum possible average length of the fiber is achieved. The model makes it possible to analyze the creep rate of the composite in relation to such parameters of its structure as the statistic characteristics of the fiber strength, the creep characteristics of the matrix, and the strength of the fiber-matrix interface, the latter being of fundamental importance. A comparison between the calculation results and the experimental ones obtained on composites with a Ni-matrix and monocrystalline and eutectic oxide fibers as well as on sapphire fiber/TiAl-matrix composites shows that the model is applicable to the computer simulation of the creep behavior of heat-resistant composites and to the optimization of the structure of such composites. By combining the experimental data with calculation results, it is possible to evaluate the heat resistance of composites and the potential of oxide-fiber/Ni-matrix composites. The composite specimens obtained and tested to date reveal their high creep resistance up to a temperature of 1150°C. The maximum operating temperature of the composites can be considerably raised by strengthening the fiber-matrix interface.

  9. Characteristics of starch-based biodegradable composites reinforced with date palm and flax fibers.

    PubMed

    Ibrahim, Hamdy; Farag, Mahmoud; Megahed, Hassan; Mehanny, Sherif

    2014-01-30

    The aim of this work is to study the behavior of completely biodegradable starch-based composites containing date palm fibers in the range from 20 to 80 wt%. Hybrid composites containing date palm and flax fibers, 25 wt% each, were also examined. The composites were preheated and then hot pressed at 5 MPa and 160°C for 30 min. SEM investigation showed strong adhesion between fibers and matrix. Density measurements showed very small void fraction (less than 0.142%) for composites containing up to 50 wt% fiber content. Increasing fiber weight fraction up to 50 wt% increased the composite static tensile and flexural mechanical properties (stiffness and strength). Composite thermal stability, water uptake and biodegradation improved with increasing fiber content. The present work shows that starch-based composites with 50 wt% fibers content have the optimum mechanical properties. The hybrid composite of flax and date palm fibers, 25 wt% each, has good properties and provides a competitive eco-friendly candidate for various applications. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Effect of fiber fibrillation on impact and flexural strength of coir fiber reinforced epoxy hybrid composites

    NASA Astrophysics Data System (ADS)

    Mawardi, I.; Jufriadi; Hanif

    2018-03-01

    This study aims to develop fiber-reinforced epoxy resin composites. This study presents the effect of fiber fibrillation on the impact and flextural strength of the epoxy hybrid composite reinforced by coir fiber. Coir is soaked in 5% NaOH solution for 5 hours. Then fiber is rocessed using a blender of 2000 rpm density fibrillation. The length of time the fibrillation varied for 10, 20 and 30 minutes. Volume fraction of 30% fiber and matrix 70% composited. The composite uses a matrix of epoxy by hand lay up method. The implemented tests are impact and flexural tests. The test results show fiber fibrillation treatment can improve the composite mechanical properties. The highest impact and flexural strength, 24.45 kJ/m2 and 87.91 MPa were produced with fiber fibrillation for 10 minutes.

  11. Physical and thermal behavior of cement composites reinforced with recycled waste paper fibers

    NASA Astrophysics Data System (ADS)

    Hospodarova, Viola; Stevulova, Nadezda; Vaclavik, Vojtech; Dvorsky, Tomas

    2017-07-01

    In this study, three types of recycled waste paper fibers were used to manufacture cement composites reinforced with recycled cellulosic fibers. Waste cellulosic fibers in quantity of 0.2, 0.3, and 0.5 wt.% were added to cement mixtures. Physical properties such as density, water capillarity, water absorbability and thermal conductivity of fiber cement composites were studied after 28 days of hardening. However, durability of composites was tested after their water storage up to 90 days. Final results of tested properties of fiber cement composites were compared with cement reference sample without cellulosic fibers.

  12. Experimental Investigation and Analysis of Mercerized and Citric Acid Surface Treated Bamboo Fiber Reinforced Composite

    NASA Astrophysics Data System (ADS)

    De, Jyotiraman; Baxi, R. N., Dr.

    2017-08-01

    Mercerization or NaOH fiber surface treatment is one of the most popular surface treatment processes to make the natural fibers such as bamboo fibers compatible for use as reinforcing material in composites. But NaOH being a chemical is hazardous and polluting to the nature. This paper explores the possibility of use of naturally derived citric acid for bamboo fiber surface treatment and its comparison with NaOH treated Bamboo Fiber Composites. Untreated, 2.5 wt% NaOH treated and 5 wt% citric acid treated Bamboo Fiber Composites with 5 wt% fiber content were developed by Hand Lay process. Bamboo mats made of bamboo slivers were used as reinforcing material. Mechanical and physical characterization was done to compare the effects of NaOH and citric acid bamboo fiber surface treatment on mechanical and physical properties of Bamboo Fiber Composite. The experiment data reveals that the tensile and flexural strength was found to be highest for citric acid and NaOH treated Bamboo Fiber Composite respectively. Water absorption tendency was found more than the NaOH treated Bamboo Fiber Composites. SEM micrographs used to analyze the morphology of fracture surface of tensile test specimens confirm improvement in fiber-matrix interface bonding due to surface treatment of bamboo fibers.

  13. An analytical solution for the elastoplastic response of a continuous fiber composite under uniaxial loading

    NASA Technical Reports Server (NTRS)

    Lee, Jong-Won; Allen, David H.

    1990-01-01

    A continuous fiber composite is modelled by a two-element composite cylinder in order to predict the elastoplastic response of the composite under a monotonically increasing tensile loading parallel to fibers. The fibers and matrix are assumed to be elastic-perfectly plastic materials obeying Hill's and Tresca's yield criteria, respectively. Here, the composite behavior when the fibers yield prior to the matrix is investigated.

  14. Effect of Composite Fabrication on the Strength of Single Crystal Al2O3 Fibers in Two Fe-Base Alloy Composites

    NASA Technical Reports Server (NTRS)

    Draper, Susan L.; Aiken, Beverly J. M.

    1998-01-01

    Continuous single-crystal Al2O3 fibers have been incorporated into a variety of metal and intermetallic matrices and the results have consistently indicated that the fiber strength had been reduced by 32 to 50% during processing. Two iron-based alloys, FeNiCoCrAl and FeAlVCMn, were chosen as matrices for Al2O3 fiber reinforced metal matrix composites (MMC) with the goal of maintaining Al2O3 fiber strength after composite processing. The feasibility of Al2O3/FeNiCoCrAl and Al2O3/FeAlVCMn composite systems for high temperature applications were assessed in terms of fiber-matrix chemical compatibility, interfacial bond strength, and composite tensile properties. The strength of etched-out fibers was significantly improved by choosing matrices containing less reactive elements. The ultimate tensile strength (UTS) values of the composites could generally be predicted with existing models using the strength of etched-out fibers. However, the UTS of the composites were less than desired due to a low fiber Weibull modulus. Acoustic emission analysis during tensile testing was a useful tool for determining the efficiency of the fibers in the composite and for determining the failure mechanism of the composites.

  15. Tutorial for Collecting and Processing Images of Composite Structures to Determine the Fiber Volume Fraction

    NASA Technical Reports Server (NTRS)

    Conklin, Lindsey

    2017-01-01

    Fiber-reinforced composite structures have become more common in aerospace components due to their light weight and structural efficiency. In general, the strength and stiffness of a composite structure are directly related to the fiber volume fraction, which is defined as the fraction of fiber volume to total volume of the composite. The most common method to measure the fiber volume fraction is acid digestion, which is a useful method when the total weight of the composite, the fiber weight, and the total weight can easily be obtained. However, acid digestion is a destructive test, so the material will no longer be available for additional characterization. Acid digestion can also be difficult to machine out specific components of a composite structure with complex geometries. These disadvantages of acid digestion led the author to develop a method to calculate the fiber volume fraction. The developed method uses optical microscopy to calculate the fiber area fraction based on images of the cross section of the composite. The fiber area fraction and fiber volume fraction are understood to be the same, based on the assumption that the shape and size of the fibers are consistent in the depth of the composite. This tutorial explains the developed method for optically determining fiber area fraction performed at NASA Langley Research Center.

  16. Effects of Fiber/Matrix Interface and its Composition on Mechanical Properties of Hi Nicalon/Celsian Composites

    NASA Technical Reports Server (NTRS)

    Bansal, Narottam P.; Eldridge, Jeffrey I.

    1998-01-01

    Fiber-reinforced ceramic matrix composites (CMC) are prospective candidate materials for high temperature structural applications in aerospace, energy conservation, power generation, nuclear, petrochemical, and other industries. At NASA Lewis, we are investigating celsian matrix composites reinforced with various types of silicon carbide fibers. The objective of the present study was to investigate the effects of fiber/matrix interface and its composition on the mechanical properties of silicon carbide (Hi-Nicalon) fiber-reinforced celsian matrix composites.

  17. Effects of Interface Modification on Mechanical Behavior of Hi-Nicalon Fiber-Reinforced Celsian Matrix Composites

    NASA Technical Reports Server (NTRS)

    Bansal, Narottam P.; Eldridge, Jeffrey I.

    1997-01-01

    Unidirectional celsian matrix composites having approx. 42 volume percent of uncoated or BN/SiC-coated Hi-Nicalon fibers were tested in three-point bend at room temperature. The uncoated fiber-reinforced composites showed catastrophic failure with strength of 210 +/- 35 MPa and a flat fracture surface. In contrast, composites reinforced with BN/SiC-coated fibers exhibited graceful failure with extensive fiber pullout. Values of first matrix cracking stress and strain were 435 +/- 35 MPa and 0.27 +/- 0.01 %, respectively, with ultimate strength as high as 960 MPa. The elastic Young's modulus of the uncoated and BN/SiC-coated fiber-reinforced composites were measured as 184 q 4 GPa and 165 +/- 5 GPa, respectively. Fiber push-through tests and microscopic examination indicated no chemical reaction at the uncoated or coated fiber-matrix interface. The low strength of the uncoated fiber-reinforced composite is probably due to degradation of the fibers from mechanical surface damage during processing. Because both the coated and uncoated fiber reinforced composites exhibited weak interfaces, the beneficial effect of the BN-SiC dual layer is primarily the protection of fibers from mechanical damage during processing.

  18. Study to determine and analyze the strength of high modulus glass in epoxy-matrix composites

    NASA Technical Reports Server (NTRS)

    Bacon, J. F.

    1974-01-01

    Glass composition research was conducted to produce a high modulus, high strength beryllium-free glass fiber. This program was built on the previous research for developing high modulus, high strength glass fibers which had a 5 weight percent beryllia content. The fibers resulting from the composition program were then used to produce fiber reinforced-epoxy resin composites which were compared with composites reinforced by commercial high modulus glass fibers, Thornel S graphite fiber, and hybrids where the external quarters were reinforced with Thornel S graphite fiber and the interior half with glass fiber as well as the reverse hybrid. The composites were given tensile strength, compressive strength, short-beam shear strength, creep and fatigue tests. Comments are included on the significance of the test data.

  19. Sapphire reinforced alumina matrix composites

    NASA Technical Reports Server (NTRS)

    Jaskowiak, Martha H.; Setlock, John A.

    1994-01-01

    Unidirectionally reinforced A1203 matrix composites have been fabricated by hot pressing. Approximately 30 volume % of either coated or uncoated sapphire fiber was used as reinforcement. Unstabilized ZrO2 was applied as the fiber coating. Composite mechanical behavior was analyzed both after fabrication and after additional heat treatment. The results of composite tensile tests were correlated with fiber-matrix interfacial shear strengths determined from fiber push-out tests. Substantially higher strength and greater fiber pull-out were observed for the coated fiber composites for all processing conditions studied. The coated fiber composites retained up to 95% and 87% of their as-fabricated strength when heat treated at 14000C for 8 or 24 hours, respectively. Electron microscopy analysis of the fracture surfaces revealed extensive fiber pull-out both before and after heat treatment.

  20. Damping properties of fiber reinforced composite suitable for stayed cable

    NASA Astrophysics Data System (ADS)

    Li, Jianzhi; Sun, Baochen; Du, Yanliang

    2011-11-01

    Carbon fiber reinforced plastics (CFRP) cables were initially most investigated to replace steel cables. To further explore the advantages of FRP cables, the potential ability of vibration control is studied in this paper emphasizing the designable characteristic of hybrid FRP cables. Fiber reinforced vinyl ester composites and fiber reinforced epoxy composites were prepared by the pultrusion method. Due to the extensive application of fiber reinforced composites, the temperature spectrum and frequency spectrum of loss factor for the composite were tested using dynamic mechanical analysis (DMA) equipment. The damping properties and damping mechanism of the composite were investigated and discussed at different temperatures and frequencies. The result indicates that the loss factor of the composites is increasing with the increase of the frequency from 0.1Hz to 2 Hz and decreasing with the decrease of the temperature from -20°C to 60°C. The loss factor of the carbon fiber composite is higher than that of the glass fiber for the same matrix. The loss factor of the vinyl ester composite is higher than that of the epoxy composite for the same fiber.

  1. Damping properties of fiber reinforced composite suitable for stayed cable

    NASA Astrophysics Data System (ADS)

    Li, Jianzhi; Sun, Baochen; Du, Yanliang

    2012-04-01

    Carbon fiber reinforced plastics (CFRP) cables were initially most investigated to replace steel cables. To further explore the advantages of FRP cables, the potential ability of vibration control is studied in this paper emphasizing the designable characteristic of hybrid FRP cables. Fiber reinforced vinyl ester composites and fiber reinforced epoxy composites were prepared by the pultrusion method. Due to the extensive application of fiber reinforced composites, the temperature spectrum and frequency spectrum of loss factor for the composite were tested using dynamic mechanical analysis (DMA) equipment. The damping properties and damping mechanism of the composite were investigated and discussed at different temperatures and frequencies. The result indicates that the loss factor of the composites is increasing with the increase of the frequency from 0.1Hz to 2 Hz and decreasing with the decrease of the temperature from -20°C to 60°C. The loss factor of the carbon fiber composite is higher than that of the glass fiber for the same matrix. The loss factor of the vinyl ester composite is higher than that of the epoxy composite for the same fiber.

  2. 3-Dimensional Computational Fluid Dynamics Modeling of Solid Oxide Fuel Cell Using Different Fuels

    DTIC Science & Technology

    2011-01-01

    major types of fuel cells in practice are listed below: Polymer Electrolyte Membrane Fuel Cell ( PEMFC ) Alkaline Fuel cell (AFC) Phosphoric Acid...Material Operating Temperature (oC) Efficiency (%) PEMFC H2, Methanol, Formic Acid Hydrated Organic Polymer < 90 40-50 AFC Pure H2 Aqueous

  3. Ultrastable automatic frequency control

    NASA Technical Reports Server (NTRS)

    Sabourin, D. J.; Furiga, A.

    1981-01-01

    Center frequency of wideband AFC circuit drifts only hundredths of percent per day. Since circuit responds only to slow frequency drifts and modulation signal has high-pass characteristics, AFC does not interfere with normal FM operation. Stable oscillator, reset circuit, and pulse generator constitute time-averaging discriminator; digital counter in pulse generator replaces usual monostable multivibrator.

  4. Blended Wing Body (BWB) Boundary Layer Ingestion (BLI) Inlet Configuration and System Studies

    NASA Technical Reports Server (NTRS)

    Kawai, Ronald T.; Friedman, Douglas M.; Serrano, Leonel

    2006-01-01

    A study was conducted to determine the potential reduction in fuel burned for BLI (boundary layer ingestion) inlets on a BWB (blended wing body) airplane employing AFC (active flow control). The BWB is a revolutionary type airplane configuration with engines on the aft upper surface where thick boundary layer offers the greatest opportunity for ram drag reduction. AFC is an emerging technology for boundary layer control. Several BLI inlet configurations were analyzed in the NASA-developed RANS Overflow CFD code. The study determined that, while large reductions in ram drag result from BLI, lower inlet pressure recovery produces engine performance penalties that largely offset this ram drag reduction. AFC could, however, enable a short BLI inlet that allows surface mounting of the engine which, when coupled with a short diffuser, would significantly reduce drag and weight for a potential 10% reduction in fuel burned. Continuing studies are therefore recommended to achieve this reduction in fuel burned considering the use of more modest amounts of BLI coupled with both AFC and PFC (Passive Flow Control) to produce a fail-operational system.

  5. An overview of active flow control actuators and applications (presentation video)

    NASA Astrophysics Data System (ADS)

    Brzozowski, Daniel; Whalen, Edward A.

    2014-04-01

    Active Flow Control (AFC) is an emerging technology which promises performance enhancements to both military and civilian aircraft. A technique which uses energy input at discrete locations to manipulate the flow over an aerodynamic surface, AFC may be used to reduce drag, prevent flow separation, and enable otherwise-infeasible aerodynamic designs. Additional applications include shear layer and turbulence control for aero-optics applications and mixing enhancement for thermal applications. Many AFC applications call for a high frequency fluidic perturbation provided by an electrically-powered actuator. In these instances, piezoelectric (PZT) materials have served as the workhorse for flow control actuators, such as the widely-studied synthetic jet. Because the PZT materials form the critical component of the actuator, the maximum performance of the synthetic jet (velocity and momentum output) is limited by the physical limitations of the PZT material. The purpose of this presentation is to provide a high level overview of AFC actuators and applications in an attempt to engage the smart materials community and encourage advanced material development in support of these crucial applications.

  6. A High-Order, Time Invariant, Linearized Model for Application to HHCIAFCS Interaction Studies

    NASA Technical Reports Server (NTRS)

    Cheng, Rendy P.; Tischler, Mark B.; Celi, Roberto

    2003-01-01

    This paper describes a methodology for the extraction of a linear time invariant model from a nonlinear helicopter model, and followed by an examination of the interactions of the Higher Harmonic Control (HHC) and the Automatic Flight Control System (AFCS). This new method includes an embedded harmonic analyzer inside a linear time invariant model, which allows the periodicity of the helicopter response to be captured. The: coupled high-order model provides the needed level of dynamic fidelity to permit an analysis and optimization of the AFCS and HHC loops. Results of this study indicate that the closed-loop HHC system has little influence on the AFCS or on the vehicle handling qualities, which indicates that the AFCS does not need modification to work with the HHC system. The results also show that the vibration response to maneuvers must be considered during the HHC design process, which leads to much higher required HHC loop crossover frequencies. This research also demonstrates that the transient vibration response during maneuvers can be reduced by optimizing the closed-loop higher harmonic control laws using conventional control system analyses.

  7. Improved fire protection system for underground fueling areas. Volume II. Final report Sep 77-Oct 81

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McDonald, L.; Kennedy, D.; Reid, G.

    1981-10-01

    The objectives of this investigation were to (1) develop safe practice guidelines that will minimize the chance of fires in underground fueling areas and (2) to develop a low-cost, reliable, automatic fire control system (AFCS) for underground fueling areas. Volume I of the report covered the period from June 21, 1976, to September 30, 1977, and included (1) the preparation of safe practice guidelines for underground fueling areas; (2) preparation of recommended AFCS design concepts for underground fueling areas; and (3) the design, fabrication, and in-mine fire test of an AFCS at Pine Creek Mine, Bishop, Calif. Volume II ofmore » the report covers the period from September 30, 1977, to September 30, 1981, and includes (1) a long-term validation test of the AFCS in the Pine Creek Mine, (2) a study of the environmental effects of aqueous film-forming foam, (3) the design and installation of a system at AMAX Buick Mine, Boss, Mo., (4) the design of a system for enclosed fuel areas, and (5) the design of a system for semipermanent fueling areas.« less

  8. Active vibration control for piezoelectricity cantilever beam: an adaptive feedforward control method

    NASA Astrophysics Data System (ADS)

    Zhu, Qiao; Yue, Jun-Zhou; Liu, Wei-Qun; Wang, Xu-Dong; Chen, Jun; Hu, Guang-Di

    2017-04-01

    This work is focused on the active vibration control of piezoelectric cantilever beam, where an adaptive feedforward controller (AFC) is utilized to reject the vibration with unknown multiple frequencies. First, the experiment setup and its mathematical model are introduced. Due to that the channel between the disturbance and the vibration output is unknown in practice, a concept of equivalent input disturbance (EID) is employed to put an equivalent disturbance into the input channel. In this situation, the vibration control can be achieved by setting the control input be the identified EID. Then, for the EID with known multiple frequencies, the AFC is introduced to perfectly reject the vibration but is sensitive to the frequencies. In order to accurately identify the unknown frequencies of EID in presence of the random disturbances and un-modeled nonlinear dynamics, the time-frequency-analysis (TFA) method is employed to precisely identify the unknown frequencies. Consequently, a TFA-based AFC algorithm is proposed to the active vibration control with unknown frequencies. Finally, four cases are given to illustrate the efficiency of the proposed TFA-based AFC algorithm by experiment.

  9. Genome Regions Associated with Functional Performance of Soybean Stem Fibers in Polypropylene Thermoplastic Composites

    PubMed Central

    Reinprecht, Yarmilla; Arif, Muhammad; Simon, Leonardo C.; Pauls, K. Peter

    2015-01-01

    Plant fibers can be used to produce composite materials for automobile parts, thus reducing plastic used in their manufacture, overall vehicle weight and fuel consumption when they replace mineral fillers and glass fibers. Soybean stem residues are, potentially, significant sources of inexpensive, renewable and biodegradable natural fibers, but are not curretly used for biocomposite production due to the functional properties of their fibers in composites being unknown. The current study was initiated to investigate the effects of plant genotype on the performance characteristics of soybean stem fibers when incorporated into a polypropylene (PP) matrix using a selective phenotyping approach. Fibers from 50 lines of a recombinant inbred line population (169 RILs) grown in different environments were incorporated into PP at 20% (wt/wt) by extrusion. Test samples were injection molded and characterized for their mechanical properties. The performance of stem fibers in the composites was significantly affected by genotype and environment. Fibers from different genotypes had significantly different chemical compositions, thus composites prepared with these fibers displayed different physical properties. This study demonstrates that thermoplastic composites with soybean stem-derived fibers have mechanical properties that are equivalent or better than wheat straw fiber composites currently being used for manufacturing interior automotive parts. The addition of soybean stem residues improved flexural, tensile and impact properties of the composites. Furthermore, by linkage and in silico mapping we identified genomic regions to which quantitative trait loci (QTL) for compositional and functional properties of soybean stem fibers in thermoplastic composites, as well as genes for cell wall synthesis, were co-localized. These results may lead to the development of high value uses for soybean stem residue. PMID:26167917

  10. Effect of carbon fiber addition on the electromagnetic shielding properties of carbon fiber/polyacrylamide/wood based fiberboards

    NASA Astrophysics Data System (ADS)

    Dang, Baokang; Chen, Yipeng; Yang, Ning; Chen, Bo; Sun, Qingfeng

    2018-05-01

    Carbon fiber (CF) reinforced polyacrylamide/wood fiber composite boards are fabricated by mechanical grind-assisted hot-pressing, and are used for electromagnetic interference (EMI) shielding. CF with an average diameter of 150 nm is distributed on wood fiber, which is then encased by polyacrylamide. The CF/polyacrylamide/wood fiber (CPW) composite exhibits an optimal EMI shielding effectiveness (SE) of 41.03 dB compared to that of polyacrylamide/wood fiber composite (0.41 dB), which meets the requirements of commercial merchandise. Meanwhile, the CPW composite also shows high mechanical strength. The maximum modulus of rupture (MOR) and modulus of elasticity (MOE) of CPW composites are 39.52 MPa and 5823.15 MPa, respectively. The MOR and MOE of CPW composites increased by 38% and 96%, respectively, compared to that of polyacrylamide/wood fiber composite (28.64 and 2967.35 MPa).

  11. Effect of carbon fiber addition on the electromagnetic shielding properties of carbon fiber/polyacrylamide/wood based fiberboards.

    PubMed

    Dang, Baokang; Chen, Yipeng; Yang, Ning; Chen, Bo; Sun, Qingfeng

    2018-05-11

    Carbon fiber (CF) reinforced polyacrylamide/wood fiber composite boards are fabricated by mechanical grind-assisted hot-pressing, and are used for electromagnetic interference (EMI) shielding. CF with an average diameter of 150 nm is distributed on wood fiber, which is then encased by polyacrylamide. The CF/polyacrylamide/wood fiber (CPW) composite exhibits an optimal EMI shielding effectiveness (SE) of 41.03 dB compared to that of polyacrylamide/wood fiber composite (0.41 dB), which meets the requirements of commercial merchandise. Meanwhile, the CPW composite also shows high mechanical strength. The maximum modulus of rupture (MOR) and modulus of elasticity (MOE) of CPW composites are 39.52 MPa and 5823.15 MPa, respectively. The MOR and MOE of CPW composites increased by 38% and 96%, respectively, compared to that of polyacrylamide/wood fiber composite (28.64 and 2967.35 MPa).

  12. Properties of polyurethane foam/coconut coir fiber as a core material and as a sandwich composites component

    NASA Astrophysics Data System (ADS)

    Azmi, M. A.; Abdullah, H. Z.; Idris, M. I.

    2013-12-01

    This research focuses on the fabrication and characterization of sandwich composite panels using glass fiber composite skin and polyurethane foam reinforced coconut coir fiber core. The main objectives are to characterize the physical and mechanical properties and to elucidate the effect of coconut coir fibers in polyurethane foam cores and sandwich composite panels. Coconut coir fibers were used as reinforcement in polyurethane foams in which later were applied as the core in sandwich composites ranged from 5 wt% to 20 wt%. The physical and mechanical properties found to be significant at 5 wt% coconut coir fiber in polyurethane foam cores as well as in sandwich composites. It was found that composites properties serve better in sandwich composites construction.

  13. Effect of alkaline treatment on mechanical properties of kenaf fiber reinforced polyester composites

    NASA Astrophysics Data System (ADS)

    Reddy, Bijjam Ramgopal; Dhoria, Sneha H.

    2018-04-01

    This paper focuses on the study of the effect of chemical treatment on mechanical properties such as tensile, flexural and impact properties of kenaf fiber reinforced polyester composites. Adhesion between the fiber and polymer is one of factors affecting the mechanical properties of composites. In order to increase the adhesion, the fibers are chemically treated with 5% of sodium hydroxide (NaOH) solution. The composite specimens are prepared in both untreated and treated forms of kenaf fibers with five levels of fiber volume fractions. The specimens are prepared according to ASTM standards. Mechanical tests such as tensile, flexural and impact are conducted to determine ultimate tensile strength, bending strength and impact strength of composites. The effect of change in volume fraction on the mechanical properties of the composites is studied for both untreated (raw) and chemically treated kenaf fibers. It has been found that the composites made of chemically treated fibers have good mechanical properties compared to untreated fibers.

  14. Each small antral follicle in ovaries of women with polycystic ovary syndrome produces more antimüllerian hormone than its counterpart in a normal ovary: an observational cross-sectional study.

    PubMed

    Bhide, Priya; Dilgil, Merve; Gudi, Anil; Shah, Amit; Akwaa, Charity; Homburg, Roy

    2015-02-01

    To ascertain if subfertile women with polycystic ovary syndrome (PCOS) secrete more antimüllerian hormone (AMH) per antral follicle than control women. Observational cross-sectional study. Fertility clinic. A total of 438 women attending the fertility clinic over a period of 13 months from September 2012 to September 2013. Serum concentrations of AMH and the total antral follicle count (AFC) were obtained from women attending the fertility clinic. The ratio of AMH/AFC for each subject was calculated. Women were categorized into three groups: PCOS, polycystic ovarian morphology (PCOM), and control. PCOS and PCOM were defined based on the European Society for Human Reproduction and Embryology/American Society for Reproductive Medicine Rotterdam consensus criteria. The ratio of AMH/AFC for each subject in the three groups: PCOS, PCOM, and control. The median AMH/AFC ratios in the PCOS, PCOM, and control groups were 1.92, 1.13, and 1.00, respectively. The AMH/AFC ratio was significantly higher in the PCOS group compared with the PCOM and control groups (F[2,152] = 21.82). Women in the three groups were not statistically different regarding age, body mass index, earlier ovarian surgery, and smoking status. Subfertile women with PCOS secrete significantly more AMH per antral follicle than women with PCOM only and control women. Copyright © 2015 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  15. Presence of keratin-specific antibody-forming cells in palatine tonsils of patients with pustulosis palmaris et plantaris (PPP) and its correlation with prognosis after tonsillectomy.

    PubMed

    Tanimoto, Yoichiro; Fukuyama, Satoshi; Tanaka, Norimitsu; Ohori, Jun-Ichiro; Tanimoto, Yukari; Kurono, Yuichi

    2014-01-01

    Keratin-specific immune responses in tonsils may be associated with the pathogenesis of pustulosis palmaris et plantaris (PPP). Evaluation of keratin-specific immune responses in tonsils might be useful to predict the effectiveness of tonsillectomy for patients with PPP. The aim of the present study was to clarify the role of keratin-specific immune responses in the pathogenesis of PPP in tonsils. It has been reported that anti-keratin antibodies in serum were higher in patients with PPP and decreased after tonsillectomy, indicating that anti-keratin antibodies might be generated in tonsils. In order to demonstrate the presence of keratin-specific immune responses in tonsils, the numbers of keratin-specific antibody-forming cells (AFCs) in tonsillar and peripheral blood lymphocytes were examined by enzyme-linked immunospot assay. The prognosis of PPP was compared after tonsillectomy. The numbers of keratin-specific IgM and IgG AFCs in tonsils and of IgG AFCs in peripheral blood were significantly increased in patients with PPP. The numbers of keratin-specific IgG AFCs in peripheral blood correlated positively with tonsil and serum IgG antibodies specific to keratin. Our data show that a good prognosis in patients with PPP depended on the numbers of keratin-specific IgG and IgM AFCs in peripheral blood and the levels of keratin-specific IgG antibodies in serum being significantly decreased 6 months after tonsillectomy.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    J. Carmack; L. Braase; F. Goldner

    The mission of the Advanced Fuels Campaign (AFC) is to perform Research, Development, and Demonstration (RD&D) activities for advanced fuel forms (including cladding) to enhance the performance and safety of the nation’s current and future reactors, enhance proliferation resistance of nuclear fuel, effectively utilize nuclear energy resources, and address the longer-term waste management challenges. This includes development of a state of the art Research and Development (R&D) infrastructure to support the use of a “goal oriented science based approach.” AFC uses a “goal oriented, science based approach” aimed at a fundamental understanding of fuel and cladding fabrication methods and performancemore » under irradiation, enabling the pursuit of multiple fuel forms for future fuel cycle options. This approach includes fundamental experiments, theory, and advanced modeling and simulation. One of the most challenging aspects of AFC is the management, integration, and coordination of major R&D activities across multiple organizations. AFC interfaces and collaborates with Fuel Cycle Technologies (FCT) campaigns, universities, industry, various DOE programs and laboratories, federal agencies (e.g., Nuclear Regulatory Commission [NRC]), and international organizations. Key challenges are the development of fuel technologies to enable major increases in fuel performance (safety, reliability, power and burnup) beyond current technologies, and development of characterization methods and predictive fuel performance models to enable more efficient development and licensing of advanced fuels. Challenged with the research and development of fuels for two different reactor technology platforms, AFC targeted transmutation fuel development and focused ceramic fuel development for Advanced LWR Fuels.« less

  17. The Indecision Model of Psychophysical Performance in Dual-Presentation Tasks: Parameter Estimation and Comparative Analysis of Response Formats

    PubMed Central

    García-Pérez, Miguel A.; Alcalá-Quintana, Rocío

    2017-01-01

    Psychophysical data from dual-presentation tasks are often collected with the two-alternative forced-choice (2AFC) response format, asking observers to guess when uncertain. For an analytical description of performance, psychometric functions are then fitted to data aggregated across the two orders/positions in which stimuli were presented. Yet, order effects make aggregated data uninterpretable, and the bias with which observers guess when uncertain precludes separating sensory from decisional components of performance. A ternary response format in which observers are also allowed to report indecision should fix these problems, but a comparative analysis with the 2AFC format has never been conducted. In addition, fitting ternary data separated by presentation order poses serious challenges. To address these issues, we extended the indecision model of psychophysical performance to accommodate the ternary, 2AFC, and same–different response formats in detection and discrimination tasks. Relevant issues for parameter estimation are also discussed along with simulation results that document the superiority of the ternary format. These advantages are demonstrated by fitting the indecision model to published detection and discrimination data collected with the ternary, 2AFC, or same–different formats, which had been analyzed differently in the sources. These examples also show that 2AFC data are unsuitable for testing certain types of hypotheses. matlab and R routines written for our purposes are available as Supplementary Material, which should help spread the use of the ternary format for dependable collection and interpretation of psychophysical data. PMID:28747893

  18. The role of rapid solidification processing in the fabrication of fiber reinforced metal matrix composites

    NASA Technical Reports Server (NTRS)

    Locci, Ivan E.; Noebe, Ronald D.

    1989-01-01

    Advanced composite processing techniques for fiber reinforced metal matrix composites require the flexibility to meet several widespread objectives. The development of uniquely desired matrix microstructures and uniformly arrayed fiber spacing with sufficient bonding between fiber and matrix to transmit load between them without degradation to the fiber or matrix are the minimum requirements necessary of any fabrication process. For most applications these criteria can be met by fabricating composite monotapes which are then consolidated into composite panels or more complicated components such as fiber reinforced turbine blades. Regardless of the end component, composite monotapes are the building blocks from which near net shape composite structures can be formed. The most common methods for forming composite monotapes are the powder cloth, foil/fiber, plasma spray, and arc spray processes. These practices, however, employ rapid solidification techniques in processing of the composite matrix phase. Consequently, rapid solidification processes play a vital and yet generally overlooked role in composite fabrication. The future potential of rapid solidification processing is discussed.

  19. Monitoring Damage Propagation in Glass Fiber Composites Using Carbon Nanofibers.

    PubMed

    Al-Sabagh, Ahmed; Taha, Eman; Kandil, Usama; Nasr, Gamal-Abdelnaser; Reda Taha, Mahmoud

    2016-09-10

    In this work, we report the potential use of novel carbon nanofibers (CNFs), dispersed during fabrication of glass fiber composites to monitor damage propagation under static loading. The use of CNFs enables a transformation of the typically non-conductive glass fiber composites into new fiber composites with appreciable electrical conductivity. The percolation limit of CNFs/epoxy nanocomposites was first quantified. The electromechanical responses of glass fiber composites fabricated using CNFs/epoxy nanocomposite were examined under static tension loads. The experimental observations showed a nonlinear change of electrical conductivity of glass fiber composites incorporating CNFs versus the stress level under static load. Microstructural investigations proved the ability of CNFs to alter the polymer matrix and to produce a new polymer nanocomposite with a connected nanofiber network with improved electrical properties and different mechanical properties compared with the neat epoxy. It is concluded that incorporating CNFs during fabrication of glass fiber composites can provide an innovative means of self-sensing that will allow damage propagation to be monitored in glass fiber composites.

  20. Investigations on Thermal Conductivities of Jute and Banana Fiber Reinforced Epoxy Composites

    NASA Astrophysics Data System (ADS)

    Pujari, Satish; Ramakrishna, Avasarala; Balaram Padal, Korabu Tulasi

    2017-04-01

    The Jute and Banana fibers are used as reinforcement in epoxy resin matrix for making partially green biodegradable material composite via hand lay-up technique. The thermal conductivity of the jute fiber epoxy composites and banana fiber epoxy composites at different volume fraction of the fiber is determined experimentally by using guarded heat flow meter method. The experimental results had shown that thermal conductivity of the composites decrease with an increase in the fiber content. Experimental results are compared with theoretical models (Series model, Hashin model and Maxwell model) to describe the variation of the thermal conductivity versus the volume fraction of the fiber. Good agreement between theoretical and experimental results is observed. Thermal conductivity of Banana fiber composite is less when compared to that of Jute composite which indicates banana is a good insulator and also the developed composites can be used as insulating materials in building, automotive industry and in steam pipes to save energy by reducing rate of heat transfer.

  1. Polypyrrole/poly (p-phenylene terephthalamide) composite fibers: Morphology, mechanics, and electrical properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rector, L.P.

    1991-01-01

    Polypyrrole/poly (p-phenylene terephthalamide) (PPTA) composite fibers were fabricated by the oxidative polymerization of pyrrole within the gel structure of never-dried, dry-jet, wet-spun PPTA fibers. The composites were formed by infiltration of the swollen PPTA fibers with the chemical oxidant FeCl{sub 3}, followed by exposure of the infiltrated fibers to pyrrole vapor at elevated temperatures (100C). The conductive phase volume fraction was controlled by variations in the FeCl{sub 3} infiltration concentration. The temperature dependencies of the composite fiber d.c. conductivities is reasonably well described by the predictions of the three-dimensional variable-range hoping (3DVRH) charge transport model. The composite morphology was examinedmore » with SEM results demonstrating the existence of micron-sized polypyrrole inclusions in the fiber interior, as well as a polypyrrole skin on the fiber surface. The tensile modulii of the composite fibers exhibited a rule-of-mixtures dependence upon PPTA content. The compressive properties of several composite-fiber compositions were evaluated by the elastica loop method. The compressive strengths were found to be 82-151% of the corresponding ultimate tensile strengths.« less

  2. 3D-Printing of Meso-structurally Ordered Carbon Fiber/Polymer Composites with Unprecedented Orthotropic Physical Properties

    NASA Astrophysics Data System (ADS)

    Lewicki, James P.; Rodriguez, Jennifer N.; Zhu, Cheng; Worsley, Marcus A.; Wu, Amanda S.; Kanarska, Yuliya; Horn, John D.; Duoss, Eric B.; Ortega, Jason M.; Elmer, William; Hensleigh, Ryan; Fellini, Ryan A.; King, Michael J.

    2017-03-01

    Here we report the first example of a class of additively manufactured carbon fiber reinforced composite (AMCFRC) materials which have been achieved through the use of a latent thermal cured aromatic thermoset resin system, through an adaptation of direct ink writing (DIW) 3D-printing technology. We have developed a means of printing high performance thermoset carbon fiber composites, which allow the fiber component of a resin and carbon fiber fluid to be aligned in three dimensions via controlled micro-extrusion and subsequently cured into complex geometries. Characterization of our composite systems clearly show that we achieved a high order of fiber alignment within the composite microstructure, which in turn allows these materials to outperform equivalently filled randomly oriented carbon fiber and polymer composites. Furthermore, our AM carbon fiber composite systems exhibit highly orthotropic mechanical and electrical responses as a direct result of the alignment of carbon fiber bundles in the microscale which we predict will ultimately lead to the design of truly tailorable carbon fiber/polymer hybrid materials having locally programmable complex electrical, thermal and mechanical response.

  3. 3D-Printing of Meso-structurally Ordered Carbon Fiber/Polymer Composites with Unprecedented Orthotropic Physical Properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lewicki, James P.; Rodriguez, Jennifer N.; Zhu, Cheng

    Here we report the first example of a class of additively manufactured carbon fiber reinforced composite (AMCFRC) materials which have been achieved through the use of a latent thermal cured aromatic thermoset resin system, through an adaptation of direct ink writing (DIW) 3D-printing technology. We have developed a means of printing high performance thermoset carbon fiber composites, which allow the fiber component of a resin and carbon fiber fluid to be aligned in three dimensions via controlled micro-extrusion and subsequently cured into complex geometries. Characterization of our composite systems clearly show that we achieved a high order of fiber alignmentmore » within the composite microstructure, which in turn allows these materials to outperform equivalently filled randomly oriented carbon fiber and polymer composites. Moreover, our AM carbon fiber composite systems exhibit highly orthotropic mechanical and electrical responses as a direct result of the alignment of carbon fiber bundles in the microscale which we predict will ultimately lead to the design of truly tailorable carbon fiber/polymer hybrid materials having locally programmable complex electrical, thermal and mechanical response.« less

  4. 3D-Printing of Meso-structurally Ordered Carbon Fiber/Polymer Composites with Unprecedented Orthotropic Physical Properties

    DOE PAGES

    Lewicki, James P.; Rodriguez, Jennifer N.; Zhu, Cheng; ...

    2017-03-06

    Here we report the first example of a class of additively manufactured carbon fiber reinforced composite (AMCFRC) materials which have been achieved through the use of a latent thermal cured aromatic thermoset resin system, through an adaptation of direct ink writing (DIW) 3D-printing technology. We have developed a means of printing high performance thermoset carbon fiber composites, which allow the fiber component of a resin and carbon fiber fluid to be aligned in three dimensions via controlled micro-extrusion and subsequently cured into complex geometries. Characterization of our composite systems clearly show that we achieved a high order of fiber alignmentmore » within the composite microstructure, which in turn allows these materials to outperform equivalently filled randomly oriented carbon fiber and polymer composites. Moreover, our AM carbon fiber composite systems exhibit highly orthotropic mechanical and electrical responses as a direct result of the alignment of carbon fiber bundles in the microscale which we predict will ultimately lead to the design of truly tailorable carbon fiber/polymer hybrid materials having locally programmable complex electrical, thermal and mechanical response.« less

  5. Fracture surface analysis in composite and titanium bonding

    NASA Technical Reports Server (NTRS)

    Devilbiss, T. A.; Wightman, J. P.

    1985-01-01

    To understand the mechanical properties of fiber-reinforced composite materials, it is necessary to understand the mechanical properties of the matrix materials and of the reinforcing fibers. Another factor that can affect the mechanical properties of a composite material is the interaction between the fiber and the matrix. In general, composites with strong fiber matrix bonding will give higher modulus, lower toughness composites. Composites with weak bonding will have a lower modulus and more ductility. The situation becomes a bit more complex when all possibilities are examined. To be considered are the following: the properties of the surface layer on the fiber, the interactive forces between polymer and matrix, the surface roughness and porosity of the fiber, and the morphology of the matrix polymer at the fiber surface. In practice, the surface of the fibers is treated to enhance the mechanical properties of a composite. These treatments include anodization, acid etching, high temperature oxidation, and plasma oxidation, to name a few. The goal is to be able to predict the surface properties of carbon fibers treated in various ways, and then to relate surface properties to fiber matrix bonding.

  6. 3D-Printing of Meso-structurally Ordered Carbon Fiber/Polymer Composites with Unprecedented Orthotropic Physical Properties.

    PubMed

    Lewicki, James P; Rodriguez, Jennifer N; Zhu, Cheng; Worsley, Marcus A; Wu, Amanda S; Kanarska, Yuliya; Horn, John D; Duoss, Eric B; Ortega, Jason M; Elmer, William; Hensleigh, Ryan; Fellini, Ryan A; King, Michael J

    2017-03-06

    Here we report the first example of a class of additively manufactured carbon fiber reinforced composite (AMCFRC) materials which have been achieved through the use of a latent thermal cured aromatic thermoset resin system, through an adaptation of direct ink writing (DIW) 3D-printing technology. We have developed a means of printing high performance thermoset carbon fiber composites, which allow the fiber component of a resin and carbon fiber fluid to be aligned in three dimensions via controlled micro-extrusion and subsequently cured into complex geometries. Characterization of our composite systems clearly show that we achieved a high order of fiber alignment within the composite microstructure, which in turn allows these materials to outperform equivalently filled randomly oriented carbon fiber and polymer composites. Furthermore, our AM carbon fiber composite systems exhibit highly orthotropic mechanical and electrical responses as a direct result of the alignment of carbon fiber bundles in the microscale which we predict will ultimately lead to the design of truly tailorable carbon fiber/polymer hybrid materials having locally programmable complex electrical, thermal and mechanical response.

  7. 3D-Printing of Meso-structurally Ordered Carbon Fiber/Polymer Composites with Unprecedented Orthotropic Physical Properties

    PubMed Central

    Lewicki, James P.; Rodriguez, Jennifer N.; Zhu, Cheng; Worsley, Marcus A.; Wu, Amanda S.; Kanarska, Yuliya; Horn, John D.; Duoss, Eric B.; Ortega, Jason M.; Elmer, William; Hensleigh, Ryan; Fellini, Ryan A.; King, Michael J.

    2017-01-01

    Here we report the first example of a class of additively manufactured carbon fiber reinforced composite (AMCFRC) materials which have been achieved through the use of a latent thermal cured aromatic thermoset resin system, through an adaptation of direct ink writing (DIW) 3D-printing technology. We have developed a means of printing high performance thermoset carbon fiber composites, which allow the fiber component of a resin and carbon fiber fluid to be aligned in three dimensions via controlled micro-extrusion and subsequently cured into complex geometries. Characterization of our composite systems clearly show that we achieved a high order of fiber alignment within the composite microstructure, which in turn allows these materials to outperform equivalently filled randomly oriented carbon fiber and polymer composites. Furthermore, our AM carbon fiber composite systems exhibit highly orthotropic mechanical and electrical responses as a direct result of the alignment of carbon fiber bundles in the microscale which we predict will ultimately lead to the design of truly tailorable carbon fiber/polymer hybrid materials having locally programmable complex electrical, thermal and mechanical response. PMID:28262669

  8. Effect of prepubertal and postpubertal growth and age at first calving on production and reproduction traits during the first 3 lactations in Holstein dairy cattle.

    PubMed

    Krpálková, L; Cabrera, V E; Vacek, M; Stípková, M; Stádník, L; Crump, P

    2014-05-01

    The objective of this study was to evaluate the effect of body condition score (BCS), body weight (BW), average daily weight gain (ADG), and age at first calving (AFC) of Holstein heifers on production and reproduction parameters in the 3 subsequent lactations. The data set consisted of 780 Holstein heifers calved at 2 dairy farms in the Czech Republic from 2007 to 2011. Their BW and BCS were measured at monthly intervals during the rearing period (5 to 18 mo of age), and the milk production and reproduction data of the first 3 lactations were collected over an 8-yr period (2005 to 2012). The highest milk yield in the first lactation was found in the group with medium ADG (5 to 14 mo of age; 0.949 to 0.850 kg of ADG). The highest average milk yield over lifetime performance was detected in heifers with the highest total ADG (≥ 0.950 kg/d). The difference in milk yield between the evaluated groups of highest ADG (in total and postpubertal growth ≥ 0.950 kg/d and in prepubertal growth ≥ 0.970 kg/d) and the lowest ADG (≤ 0.849 kg/d) was approximately 1,000 kg/305 d per cow. The highest milk yield in the first lactation was found in the group with the highest AFC ≥ 751 d, for which fat and protein content in the milk was not reduced. Postpubertal growth (11 to 14 mo of age) had the greatest effect on AFC. The group with lowest AFC ≤ 699 d showed a negative effect on milk yield but only in the first 100 d of the first parity. The highest ADG was detrimental to reproduction parameters in the first lactation. The highest BW at 14 mo (≥ 420 kg) led to lower AFC. Groups according to BCS at 14 mo showed no differences in AFC or milk yield in the first lactation or lifetime average production per lactation. We concluded that low AFC ≤ 699 d did not show a negative effect on subsequent production and reproduction parameters. Therefore, a shorter rearing period is recommended for dairy herds with suitable management. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  9. Regulation of ENaC-mediated alveolar fluid clearance by insulin via PI3K/Akt pathway in LPS-induced acute lung injury.

    PubMed

    Deng, Wang; Li, Chang-Yi; Tong, Jin; Zhang, Wei; Wang, Dao-Xin

    2012-03-30

    Stimulation of epithelial sodium channel (ENaC) increases Na(+) transport, a driving force of alveolar fluid clearance (AFC) to keep alveolar spaces free of edema fluid that is beneficial for acute lung injury (ALI). It is well recognized that regulation of ENaC by insulin via PI3K pathway, but the mechanism of this signaling pathway to regulate AFC and ENaC in ALI remains unclear. The aim of this study was to investigate the effect of insulin on AFC in ALI and clarify the pathway in which insulin regulates the expression of ENaC in vitro and in vivo. A model of ALI (LPS at a dose of 5.0 mg/kg) with non-hyperglycemia was established in Sprague-Dawley rats receiving continuous exogenous insulin by micro-osmotic pumps and wortmannin. The lungs were isolated for measurement of bronchoalveolar lavage fluid(BALF), total lung water content(TLW), and AFC after ALI for 8 hours. Alveolar epithelial type II cells were pre-incubated with LY294002, Akt inhibitor and SGK1 inhibitor 30 minutes before insulin treatment for 2 hours. The expressions of α-,β-, and γ-ENaC were detected by immunocytochemistry, reverse transcriptase polymerase chain reaction (RT-PCR) and western blotting. In vivo, insulin decreased TLW, enchanced AFC, increased the expressions of α-,β-, and γ-ENaC and the level of phosphorylated Akt, attenuated lung injury and improved the survival rate in LPS-induced ALI, the effects of which were blocked by wortmannin. Amiloride, a sodium channel inhibitor, significantly reduced insulin-induced increase in AFC. In vitro, insulin increased the expressions of α-,β-, and γ-ENaC as well as the level of phosphorylated Akt but LY294002 and Akt inhibitor significantly prevented insulin-induced increase in the expression of ENaC and the level of phosphorylated Akt respectively. Immunoprecipitation studies showed that levels of Nedd4-2 binding to ENaC were decreased by insulin via PI3K/Akt pathway. Our study demonstrated that insulin alleviated pulmonary edema and enhanced AFC by increasing the expression of ENaC that dependent upon PI3K/Akt pathway by inhibition of Nedd4-2.

  10. Auger analysis of a fiber/matrix interface in a ceramic matrix composite

    NASA Technical Reports Server (NTRS)

    Honecy, Frank S.; Pepper, Stephen V.

    1988-01-01

    Auger electron spectroscopy (AES) depth profiling was used to characterize the fiber/matrix interface of an SiC fiber, reaction bonded Si3N4 matrix composite. Depth profiles of the as received double coated fiber revealed concentration oscillations which disappeared after annealing the fiber in the environment used to fabricate the composite. After the composite was fractured, the Auger depth profiles showed that failure occurred in neither the Beta-SiC fiber body nor in the Si3N4 matrix but, concurrently, at the fiber coating/matrix interface and within the fiber coating itself.

  11. A comparison of tensile properties of polyester composites reinforced with pineapple leaf fiber and pineapple peduncle fiber

    NASA Astrophysics Data System (ADS)

    Juraidi, J. M.; Shuhairul, N.; Syed Azuan, S. A.; Intan Saffinaz Anuar, Noor

    2013-12-01

    Pineapple fiber which is rich in cellulose, relatively inexpensive, and abundantly available has the potential for polymer reinforcement. This research presents a study of the tensile properties of pineapple leaf fiber and pineapple peduncle fiber reinforced polyester composites. Composites were fabricated using leaf fiber and peduncle fiber with varying fiber length and fiber loading. Both fibers were mixed with polyester composites the various fiber volume fractions of 4, 8 and 12% and with three different fiber lengths of 10, 20 and 30 mm. The composites panels were fabricated using hand lay-out technique. The tensile test was carried out in accordance to ASTM D638. The result showed that pineapple peduncle fiber with 4% fiber volume fraction and fiber length of 30 mm give highest tensile properties. From the overall results, pineapple peduncle fiber shown the higher tensile properties compared to pineapple leaf fiber. It is found that by increasing the fiber volume fraction the tensile properties has significantly decreased but by increasing the fiber length, the tensile properties will be increased proportionally. Minitab software is used to perform the two-way ANOVA analysis to measure the significant. From the analysis done, there is a significant effect of fiber volume fraction and fiber length on the tensile properties.

  12. The effect of woven and non-woven fiber structure on mechanical properties polyester composite reinforced kenaf

    NASA Astrophysics Data System (ADS)

    Ratim, S.; Bonnia, N. N.; Surip, S. N.

    2012-07-01

    The effects of woven and non-woven kenaf fiber on mechanical properties of polyester composites were studied at different types of perform structures. Composite polyester reinforced kenaf fiber has been prepared via hand lay-up process by varying fiber forms into plain weave, twill and mats structure. The reinforcing efficiency of different fiber structure was compared with control of unreinforced polyester sample. It was found that the strength and stiffness of the composites are largely affected by fiber structure. A maximum value for tensile strength of composite was obtained for twill weave pattern of fiber structure while no significant different for plain weave and mat structure. The elastic modulus of composite has shown some improvement on plain and twill weave pattern. Meanwhile, lower value of modulus elasticity achieved by mats structure composite as well as control sample. The modulus of rupture and impact resistance were also analyzed. The improvement of modulus of rupture value can be seen on plain and twill weave pattern. However impact resistance doesn't show significant improvement in all types of structure except for mat fiber. The mechanical properties of kenaf fiber reinforced polyester composite found to be increased with woven and non-woven fiber structures in composite.

  13. Influence of Hybridizing Flax and Hemp-Agave Fibers with Glass Fiber as Reinforcement in a Polyurethane Composite

    PubMed Central

    Pandey, Pankaj; Bajwa, Dilpreet; Ulven, Chad; Bajwa, Sreekala

    2016-01-01

    In this study, six combinations of flax, hemp, and glass fiber were investigated for a hybrid reinforcement system in a polyurethane (PU) composite. The natural fibers were combined with glass fibers in a PU composite in order to achieve a better mechanical reinforcement in the composite material. The effect of fiber hybridization in PU composites was evaluated through physical and mechanical properties such as water absorption (WA), specific gravity (SG), coefficient of linear thermal expansion (CLTE), flexural and compression properties, and hardness. The mechanical properties of hybridized samples showed mixed trends compared to the unhybridized samples, but hybridization with glass fiber reduced water absorption by 37% and 43% for flax and hemp-agave PU composites respectively. PMID:28773512

  14. Fire test method for graphite fiber reinforced plastics

    NASA Technical Reports Server (NTRS)

    Bowles, K. J.

    1980-01-01

    A potential problem in the use of graphite fiber reinforced resin matrix composites is the dispersal of graphite fibers during accidential fires. Airborne, electrically conductive fibers originating from the burning composites could enter and cause shorting in electrical equipment located in surrounding areas. A test method for assessing the burning characteristics of graphite fiber reinforced composites and the effectiveness of the composites in retaining the graphite fibers has been developed. The method utilizes a modified rate of heat release apparatus. The equipment and the testing procedure are described. The application of the test method to the assessment of composite materials is illustrated for two resin matrix/graphite composite systems.

  15. A Review on the Perforated Impact Energy Absorption of Kenaf Fibres Reinforced Composites

    NASA Astrophysics Data System (ADS)

    Ismail, Al Emran; Khalid, S. N. A.; Nor, Nik Hisyamudin Muhd

    2017-10-01

    This paper reviews the potential of mechanical energy absorption of natural fiber reinforced composites subjected to perforated impact. According to literature survey, several research works discussing on the impact performances on natural fiber reinforced composites are available. However, most of these composite fibers are randomly arranged. Due to high demand for sustainable materials, many researches give high attention to enhance the mechanical capability of natural fiber composites especially focused on the fiber architecture. Therefore, it is important to review the progress of impact energy absorption on woven fiber composite in order to identify the research opportunities in the future.

  16. An Investigation of Fiber Reinforced Chemically Bonded Phosphate Ceramic Composites at Room Temperature.

    PubMed

    Ding, Zhu; Li, Yu-Yu; Lu, Can; Liu, Jian

    2018-05-21

    In this study, chemically bonded phosphate ceramic (CBPC) fiber reinforced composites were made at indoor temperatures. The mechanical properties and microstructure of the CBPC composites were studied. The CBPC matrix of aluminum phosphate binder, metakaolin, and magnesia with different Si/P ratios was prepared. The results show that when the Si/P ratio was 1.2, and magnesia content in the CBPC was 15%, CBPC reached its maximum flexural strength. The fiber reinforced CBPC composites were prepared by mixing short polyvinyl alcohol (PVA) fibers or unidirectional continuous carbon fiber sheets. Flexural strength and dynamic mechanical properties of the composites were determined, and the microstructures of specimens were analyzed by scanning electron micrography, X-ray diffraction, and micro X-ray computed tomography. The flexural performance of continuous carbon fiber reinforced CBPC composites was better than that of PVA fiber composites. The elastic modulus, loss modulus, and loss factor of the fiber composites were measured through dynamic mechanical analysis. The results showed that fiber reinforced CBPC composites are an inorganic polymer viscoelastic material with excellent damping properties. The reaction of magnesia and phosphate in the matrix of CBPC formed a different mineral, newberyite, which was beneficial to the development of the CBPC.

  17. Experimental Investigations on Thermal Conductivity of Fenugreek and Banana Composites

    NASA Astrophysics Data System (ADS)

    Pujari, Satish; Venkatesh, Talari; Seeli, Hepsiba

    2018-04-01

    The use of composite materials in manufacturing has significantly increased in the past decade. Research is being done to identify natural fibers that can be used as composites. Several natural fibers are already being used in the industry as composites. The appealing advantages of using natural fibers are reflected in lower density when compared to synthetic fibers and also in saving costs. This research paper highlights the experiment that analyses the use of biodegradable fenugreek composite as natural fiber and concludes that fenugreek natural fibers are an excellent substitute to the synthetic fibers in terms of reinforcement properties for the polymers. These fenugreek fibers are naturally sourced, renewable, cost effective and bio-friendly. In thermal energy storage systems as well as in air conditioning systems, thermal insulators are predominantly used to enhance the storage properties. An experiment was created to investigate the thermal properties of fenugreek banana composites for different fiber concentrations. The experimental results showed that the thermal conductivity of the composites decrease with an increase in the fiber content. The experimental results were compared with the theoretical models to describe the variation of thermal conductivity with the volume fraction of the fiber. Good agreement between theoretical and experimental results was observed.

  18. Effects of Fiber Coating Composition on Mechanical Behavior of Silicon Carbide Fiber-Reinforced Celsian Composites

    NASA Technical Reports Server (NTRS)

    Bansal, Narottam P.; Elderidge, Jeffrey I.

    1998-01-01

    Celsian matrix composites reinforced with Hi-Nicalon fibers, precoated with a dual layer of BN/SiC by chemical vapor deposition in two separate batches, were fabricated. Mechanical properties of the composites were measured in three-point flexure. Despite supposedly identical processing, the composite panels fabricated with fibers coated in two batches exhibited substantially different mechanical behavior. The first matrix cracking stresses (sigma(sub mc)) of the composites reinforced with fibers coated in batch 1 and batch 2 were 436 and 122 MPa, respectively. This large difference in sigma(sub mc) was attributed to differences in fiber sliding stresses(tau(sub friction)), 121.2+/-48.7 and 10.4+/-3.1 MPa, respectively, for the two composites as determined by the fiber push-in method. Such a large difference in values of tau(sub friction) for the two composites was found to be due to the difference in the compositions of the interface coatings. Scanning Auger microprobe analysis revealed the presence of carbon layers between the fiber and BN, and also between the BN and SiC coatings in the composite showing lower tau(sub friction). This resulted in lower sigma(sub mc) in agreement with the ACK theory. The ultimate strengths of the two composites, 904 and 759 MPa, depended mainly on the fiber volume fraction and were not significantly effected by tau(sub friction) values, as expected. The poor reproducibility of the fiber coating composition between the two batches was judged to be the primary source of the large differences in performance of the two composites.

  19. Interphase for ceramic matrix composites reinforced by non-oxide ceramic fibers

    NASA Technical Reports Server (NTRS)

    DiCarlo, James A. (Inventor); Bhatt, Ramakrishna (Inventor); Morscher, Gregory N. (Inventor); Yun, Hee-Mann (Inventor)

    2008-01-01

    A ceramic matrix composite material is disclosed having non-oxide ceramic fibers, which are formed in a complex fiber architecture by conventional textile processes; a thin mechanically weak interphase material, which is coated on the fibers; and a non-oxide or oxide ceramic matrix, which is formed within the interstices of the interphase-coated fiber architecture. During composite fabrication or post treatment, the interphase is allowed to debond from the matrix while still adhering to the fibers, thereby providing enhanced oxidative durability and damage tolerance to the fibers and the composite material.

  20. Thermal degradation and tensile strength of sansevieria trifasciata-polypropylene composites

    NASA Astrophysics Data System (ADS)

    Abral, H.; Kenedy, E.

    2015-07-01

    The paper exhibits thermal degradation and tensile strength of Sansevieria Trifasciata (ST) fibers and polypropylene (PP) composites. Thermal degradation of ST fibers PP composites was conducted by using thermogravimetry (TGA) instrument, meanwhile tensile strength of the composite was done by using tensile equipment. The results show that the thermal resistance of ST fibers PP composites was higher than that of virgin PP only. Increases in volume fraction of fibers in the composites enhance the tensile strength. Scanning Electron Microscope (SEM) observation exhibits good interface bonding between ST fibers and PP matrix.

  1. Effect of surface modification of fibers with a polymer coating on the interlaminar shear strength of a composite and the translation of fiber strength in an F-12 aramid/epoxy composite vessel

    NASA Astrophysics Data System (ADS)

    Shu-hui, Zhang; Guo-zheng, Liang; Wei, Zhang; Jin-fang, Zeng

    2006-11-01

    The surface of aramid fibers was modified with a polymer coating — a surface treatment reagent containing epoxy resin. The resulting fibers were examined by using NOL tests, hydroburst tests, and the scanning electron microscopy. The modified fibers had a rougher surface than the untreated ones. The interlaminar shear strength of an aramid-fiber-reinforced epoxy composite was highest when the concentration of polymer coating system was 5%. The translation of fiber strength in an aramid/epoxy composite vessel was improved by 8%. The mechanism of the surface treatment of fibers in improving the mechanical properties of aramid/epoxy composites is discussed.

  2. Properties of PMR polyimide composites made with improved high strength graphite fibers

    NASA Technical Reports Server (NTRS)

    Vannucci, R. D.

    1980-01-01

    Recent graphite fiber developments have resulted in high strength, intermediate modulus graphite fibers having improved thermo-oxidative resistance. These improved fibers, obtained from various commercial suppliers, were used to fabricate PMR-15 and PMR-11 polyimide composites. Studies were performed to investigate the effects of the improved high strength graphite fibers on composite properties after exposure in air at 600 F. The use of the more oxidatively resistant fibers did not result in improved performance at 600 F. Two of the improved fibers were found to have an adverse effect on the long-term performance of PMR composites. The influence of various factors such as fiber physical properties, surface morphology and chemical composition are also discussed.

  3. Mechanical properties of kenaf composites using dynamic mechanical analysis

    NASA Astrophysics Data System (ADS)

    Loveless, Thomas A.

    Natural fibers show potential to replace glass fibers in thermoset and thermoplastic composites. Kenaf is a bast-type fiber with high specific strength and great potential to compete with glass fibers. In this research kenaf/epoxy composites were analyzed using Dynamic Mechanical Analysis (DMA). A three-point bend apparatus was used in the DMA testing. The samples were tested at 1 hertz, at a displacement of 10 ?m, and at room temperature. The fiber volume content of the kenaf was varied from 20% - 40% in 5% increments. Ten samples of each fiber volume fraction were manufactured and tested. The flexural storage modulus, the flexural loss modulus, and the loss factor were reported. Generally as the fiber volume fraction of kenaf increased, the flexural storage and flexural loss modulus increased. The loss factor remained relatively constant with increasing fiber volume fraction. Woven and chopped fiberglass/epoxy composites were manufactured and tested to be compared with the kenaf/epoxy composites. Both of the fiberglass/epoxy composites reported higher flexural storage and flexural loss modulus values. The kenaf/epoxy composites reported higher loss factor values. The specific flexural storage and specific flexural loss modulus were calculated for both the fiberglass and kenaf fiber composites. Even though the kenaf composites reported a lower density, the fiberglass composites reported higher specific mechanical properties.

  4. A New Fiber Preform with Nanocarbon Binder for Manufacturing Carbon Fiber Reinforced Composite by Liquid Molding Process.

    PubMed

    Seong, Dong Gi; Ha, Jong Rok; Lee, Jea Uk; Lee, Wonoh; Kim, Byung Sun

    2015-11-01

    Carbon fiber reinforced composite has been a good candidate of lightweight structural component in the automotive industry. As fast production speed is essential to apply the composite materials for the mass production area such as automotive components, the high speed liquid composite molding processes have been developed. Fast resin injection through the fiber preform by high pressure is required to improve the production speed, but it often results in undesirable deformations of the fiber preform which causes defectives in size and properties of the final composite products. In order to prevent the undesirable deformation and improve the stability of preform shape, polymer type binder materials are used. More stable fiber preform can be obtained by increasing the amount of binder material, but it disturbs the resin impregnation through the fiber preform. In this study, carbon nanomaterials such as graphene oxide were embedded on the surface of carbon fiber by electrophoretic deposition method in order to improve the shape stability of fiber preform and interfacial bonding between polymer and the reinforcing fiber. Effects of the modified reinforcing fiber were investigated in two respects. One is to increase the binding energy between fiber tows, and the other is to increase the interfacial bonding between polymer matrix and fiber surface. The effects were analyzed by measuring the binding force of fiber preform and interlaminar shear strength of the composite. This study also investigated the high speed liquid molding process of the composite materials composed of polymer matrix and the carbon fiber preforms embedded by carbon nanomaterials. Process parameter such as permeability of fiber preform was measured to investigate the effect of nanoscale surface modification on the macroscale processing condition for composite manufacturing.

  5. Tensile Properties and Deflection Temperature of Polypropylene/Sumberejo Kenaf Fiber Composites with Fiber Content Variation

    NASA Astrophysics Data System (ADS)

    Ollivia, S. L.; Juwono, A. L.; Roseno, Seto

    2017-05-01

    The use of synthetic fibers as reinforcement in composites has disadvantage which are unsustainable and an adverse impact on the environment. An alternative reinforcement for composites is natural fiber. Polypropylene and Sumberejo kenaf fibers were used respectively as the matrix and reinforcement. The aim of this research was to obtain the optimum tensile properties and deflection temperature with the variation of kenaf fiber fractions. Polypropylene/kenaf fiber composites were fabricated by hot press method. The kenaf fiber was soaked in NaOH solution before being used as the reinforcement and polypropylene was extruded before being used as the matrix. The weight fractions were varied to produce composites and pristine polypropylene samples were also prepared for comparison. The optimum tensile strength, modulus and deflection temperature were found in the composites with the 40 wt% kenaf fiber fraction with an increase up to 80% and 170% compared to the pristine polypropylene with the values of (60.3 ± 4,3) MPa and (159.1 ± 1,8) °C respectively. The Scanning Electron Microscope observation results in the fracture surface of the composites with the 40 wt% fiber fraction showed a relatively good bonding interface between fibers and the matrix and the failure modes were fiber breakage and matrix failures.

  6. Coating applications to natural fiber composites to improve their physical, surface and water absorption characters

    USDA-ARS?s Scientific Manuscript database

    Natural (organic) fibers are used in reinforced composites and natural fiber composites (NFCs). These fibers have advantages over synthetic composites such as high mechanical properties, lower densities and biodegradablity. However, one major disadvantage of NFCs is their hydrophilicity. In this stu...

  7. A new biodegradable sisal fiber-starch packing composite with nest structure.

    PubMed

    Xie, Qi; Li, Fangyi; Li, Jianfeng; Wang, Liming; Li, Yanle; Zhang, Chuanwei; Xu, Jie; Chen, Shuai

    2018-06-01

    A new completely biodegradable sisal fiber-starch packing composite was proposed. The effects of fiber content and alkaline treatment on the cushioning property of the composites were studied from energy absorption efficiency, cellular microstructure and compatibility between fiber and starch. With increasing fiber content, the nest structure of composites becomes dense first and then loosens, resulting in initial enhancement and subsequent weakening of the cushioning property of the composites. The composite with 4:13 mass ratio of fiber and thermoplastic starch (TPS) exhibit the optimal cushioning property. Alkaline treatment increases the compatibility between sisal fiber and TPS, promotes the formation of dense nest structure, thereby enhances the cushioning property of the composites. After biodegradability tests for 28 days, the weight loss of the composites was 62.36%. It's found that the composites are a promising replacement for expandable polystyrene (EPS) as packing material, especially under large compression load (0.7-6 MPa). Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Raman Study of Uncoated and p-BN/SiC-Coated Hi-Nicalon Fiber-Reinforced Celsian Matrix Composites. Part 1; Distribution and Nanostructure of Different Phases

    NASA Technical Reports Server (NTRS)

    Gouadec, Gwenael; Colomban, Philippe; Bansal, Narottam P.

    2000-01-01

    Hi-Nicalon fiber reinforced celsian matrix composites were characterized by Raman spectroscopy and imaging, using several laser wavelengths. Composite #1 is reinforced by as-received fibers while coatings of p-BN and SiC protect the fibers in composite #2. The matrix contains traces of the hexagonal phase of celsian, which is concentrated in the neighborhood of fibers in composite #1. Some free silicon was evident in the coating of composite #2 which might involve a {BN + SiC yields BNC + Si} "reaction" at the p-BN/SiC interface. Careful analysis of C-C peaks revealed no abnormal degradation of the fiber core in the composites.

  9. Shaped fiber composites

    DOEpatents

    Kinnan, Mark K.; Roach, Dennis P.

    2017-12-05

    A composite article is disclosed that has non-circular fibers embedded in a polymer matrix. The composite article has improved damage tolerance, toughness, bending, and impact resistance compared to composites having traditional round fibers.

  10. Fabricating continuous electroconductive polyacrylonitrile fibers with thermosensitive property via wet-spinning

    NASA Astrophysics Data System (ADS)

    Liu, Wanwan; Jin, Yang; Wang, Yangyi; Ge, Mingqiao; Gao, Qiang

    2017-12-01

    In this work, conductive polyacrylonitrile (PAN) composite fiber with thermosensitive property was successfully prepared via wet-spinning. Thermochromic pigment (TCP) microsphere capsules were applied to manufacture color-changing fibers. Meanwhile, light-colored conductive whiskers (ATO@TiO2) were employed to endow polyacrylonitrile fibers with conductivity without prejudicing their thermosensitive property. Interestingly, unlike other conductive fibers in dark color, this kind of conductive composite fiber can be dyed by thermosensitive pigment. The obtained composite fiber containing 20 vol% ATO@TiO2 whiskers shows a resistivity of 105 Ω · cm and could generate heat by Joule heating when being applied under a certain voltage. The composite fiber shows a red color at room temperature, while the color of the composite fiber fades gradually and finally becomes white as temperature rise. This simple and cost-effective approach is expected to inspire more research into the applications of multifunctional conductive fibers.

  11. Effect of high and low antral follicle count in pubertal beef heifers on in vitro fertilization (IVF)

    USDA-ARS?s Scientific Manuscript database

    Pubertal heifers can be classified between those with high (= 25) and low (= 15) antral follicle counts (AFC). The objective of this study was to determine oocyte development and maturation (e.g., fertility) in an in vitro fertilization (IVF) system for high and low AFC heifers. From a pool of 120...

  12. In vitro fertilization (IVF) from low or high antral follicle count pubertal beef heifers using semi-defined culture conditions

    USDA-ARS?s Scientific Manuscript database

    Antral follicle counts (AFC) vary among pubertal beef heifers. Our objective was to compare the in vitro maturation and fertilization of oocytes collected from low and high AFC heifers. Previously we reported results using serum-based IVF media and in this study report results using semi-defined m...

  13. Control problems in armored face conveyors for longwall mines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Broadfoot, A.R.; Betz, R.E.

    1998-03-01

    This paper is a tutorial discussion of the current difficulties being experienced with the performance of armored face conveyor (AFC) drive systems, as used in longwall mining. It presents the traditional approaches to the design of the drive system and highlights the inadequacies. The final part of the paper presents a possible solution approach using variable-speed drive systems, emphasizing the advantages of this approach. The paper is significant, in that it discusses, in one document, a number of problems related to the operation of longwall AFC`s. Furthermore, it presents a solution path for these problems. The details of the controlmore » strategies to solve the problems highlighted are left to a companion paper.« less

  14. Influence of the composite material thermal expansion on embedded highly birefringent polymer microstructured optical fibers

    NASA Astrophysics Data System (ADS)

    SzelÄ g, M.; Lesiak, P.; Kuczkowski, M.; Domański, A. W.; Woliński, T. R.

    2013-05-01

    Results of our research on embedded highly birefringent polymer microstructured fibers are presented. A composite material sample with fibers embedded between two layers of a multi-layer composite structure is fabricated and characterized. Temperature sensitivities of the polymer fibers are measured in a free space and compared with the fibers embedded in the composite material. It appeared that highly birefringent polymer microstructured fibers exhibit a strong increase in temperature sensitivity when embedded in the composite material, which is due to the stress-induced changes in birefringence created by thermally-induced strain.

  15. Process of Making Boron-Fiber Reinforced Composite Tape

    NASA Technical Reports Server (NTRS)

    Belvin, Harry L. (Inventor); Cano, Roberto J. (Inventor); Johnston, Norman J. (Inventor); Marchello, Joseph M. (Inventor)

    2002-01-01

    The invention is an apparatus and method for producing a hybrid boron reinforced polymer matrix composition from powder pre-impregnated fiber tow bundles and a linear array of boron fibers. The boron fibers are applied onto the powder pre-impregnated fiber tow bundles and then are processed within a processing component having an impregnation bar assembly. After passing through variable-dimension forming nip-rollers, the powder pre-impregnated fiber tow bundles with the boron fibers become a hybrid boron reinforced polymer matrix composite tape. A driving mechanism pulls the powder pre-impregnated fiber tow bundles with boron fibers through the processing line of the apparatus and a take-up spool collects the formed hybrid boron-fiber reinforced polymer matrix composite tape.

  16. Properties of PMR Polyimide composites made with improved high strength graphite fibers

    NASA Technical Reports Server (NTRS)

    Vannucci, R. D.

    1980-01-01

    High strength, intermediate modulus graphite fibers were obtained from various commercial suppliers, and were used to fabricate PMR-15 and PMR-2 polyimide composites. The effects of the improved high strength graphite fibers on composite properties after exposure in air at 600 F were investigated. Two of the improved fibers were found to have an adverse effect on the long term performance of PMR composites. The influence of various factors such as fiber physical properties, surface morphology and chemical composition were also examined.

  17. Nano-Fiber Reinforced Enhancements in Composite Polymer Matrices

    NASA Technical Reports Server (NTRS)

    Chamis, Christos C.

    2009-01-01

    Nano-fibers are used to reinforce polymer matrices to enhance the matrix dependent properties that are subsequently used in conventional structural composites. A quasi isotropic configuration is used in arranging like nano-fibers through the thickness to ascertain equiaxial enhanced matrix behavior. The nano-fiber volume ratios are used to obtain the enhanced matrix strength properties for 0.01,0.03, and 0.05 nano-fiber volume rates. These enhanced nano-fiber matrices are used with conventional fiber volume ratios of 0.3 and 0.5 to obtain the composite properties. Results show that nano-fiber enhanced matrices of higher than 0.3 nano-fiber volume ratio are degrading the composite properties.

  18. Improved fiber retention by the use of fillers in graphite fiber/resin matrix composites

    NASA Technical Reports Server (NTRS)

    Gluyas, R. E.; Bowles, K. J.

    1980-01-01

    A variety of matrix fillers were tested for their ability to prevent loss of fiber from graphite fiber/PMR polyimide and graphite fiber/epoxy composites in a fire. The fillers tested included powders of boron, boron carbide lime glass, lead glass, and aluminum. Boron was the most effective and prevented any loss of graphite fiber during burning. Mechanical properties of composites containing boron filler were measured and compared to those of composites containing no filler.

  19. Hybrid matrix fiber composites

    DOEpatents

    Deteresa, Steven J.; Lyon, Richard E.; Groves, Scott E.

    2003-07-15

    Hybrid matrix fiber composites having enhanced compressive performance as well as enhanced stiffness, toughness and durability suitable for compression-critical applications. The methods for producing the fiber composites using matrix hybridization. The hybrid matrix fiber composites include two chemically or physically bonded matrix materials, whereas the first matrix materials are used to impregnate multi-filament fibers formed into ribbons and the second matrix material is placed around and between the fiber ribbons that are impregnated with the first matrix material and both matrix materials are cured and solidified.

  20. Fire test method for graphite fiber reinforced plastics

    NASA Technical Reports Server (NTRS)

    Bowles, K. J.

    1980-01-01

    A potential problem in the use of graphite fiber reinforced resin matrix composites is the dispersal of graphite fibers during accidental fires. Airborne, electrically conductive fibers originating from the burning composites could enter and cause shorting in electrical equipment located in surrounding areas. A test method for assessing the burning characteristics of graphite fiber reinforced composites and the effectiveness of the composites in retaining the graphite fibers has been developed. The method utilizes a modified Ohio State University Rate of Heat Release apparatus. The equipment and the testing procedure are described. The application of the test method to the assessment of composite materials is illustrated for two resin matrix/graphite composite systems.

  1. Water Uptake Behavior and Young Modulus Prediction of Composites Based on Treated Sisal Fibers and Poly(Lactic Acid)

    PubMed Central

    Orue, Ander; Eceiza, Arantxa; Peña-Rodriguez, Cristina; Arbelaiz, Aitor

    2016-01-01

    The main aim of this work was to study the effect of sisal fiber surface treatments on water uptake behavior of composites based on untreated and treated fibers. For this purpose, sisal fibers were treated with different chemical treatments. All surface treatments delayed the water absorption of fibers only for a short time of period. No significant differences were observed in water uptake profiles of composites based on fibers with different surface treatments. After water uptake period, tensile strength and Young modulus values of sisal fiber/poly(lactic acid) (PLA) composites were decreased. On the other hand, composites based on NaOH + silane treated fibers showed the lowest diffusion coefficient values, suggesting that this treatment seemed to be the most effective treatment to reduce water diffusion rate into the composites. Finally, Young modulus values of composites, before water uptake period, were predicted using different micromechanical models and were compared with experimental data. PMID:28773524

  2. "Green" composites from renewable resources: preparation of epoxidized soybean oil and flax fiber composites.

    PubMed

    Liu, Zengshe; Erhan, Sevim Z; Akin, Danny E; Barton, Franklin E

    2006-03-22

    In recent years there has been considerable interest in using natural plant fibers as reinforcements for plastics. The motivation includes cost, performance enhancement, weight reduction, and environment concerns. High performance flax fiber could potentially substitute for glass or carbon fibers as reinforcements for plastics. This study reports the "green" composites obtained from a mixture of epoxidized soybean oil and epoxy resin, 1,1,1-tris(p-hydroxyphenyl)ethane triglycidyl ether (THPE-GE), reinforced with flax fiber. The compression molding method is used for making the composites. Curing agents triethylenetetramine and diethylenetriamine provide better physical properties of the composites than Jeffamine agents D-230 and EDR-148. Both the flexural modulus and the tensile modulus of the composites increase as the amount of THPE-GE increases. The flexural modulus increased at a fiber content of <10 wt %, but there is a decrease beyond 10 wt %. The tensile modulus increases with fiber content until a maximum at 13.5 wt %, and then it decreases. The flax fiber length affected the mechanical properties of the composites: the longer the fiber length, the better are the mechanical properties observed.

  3. A Study On the effect of Surface treatment on the Physical and Mechanical properties of date-palm stem liber embedded epoxy composites

    NASA Astrophysics Data System (ADS)

    Tripathy, Satchidananda; Dehury, Janaki; Mishra, Debasmita

    2016-02-01

    Natural fiber reinforced polymer composites are being used frequently for variety of engineering applications due to many of their advantages like ease of availability, low density, low production cost and good mechanical properties but natural fibers are more or less hydrophilic in nature. Therefore, an investigation has been carried out to make better utilization of a class of natural fiber that is date palm stem fiber, for making a wide range of products. Attempts have been made in this research work to study the effect of fiber loading on the physical, mechanical and water absorption behaviour of treated and untreated short fiber based epoxy composites. Composites of various compositions of different amounts of fiber loading are fabricated by simple hand lay-up technique. It has been observed that there is a significant effect of surface treatment of fibers on the overall properties of composites. Further enhancement of properties with lower water absorption rate was attained with glass fiber-epoxy based hybrid composites.

  4. SrNdPb isotopic and trace element evidence for crustal contamination of plume-derived flood basalts: Oligocene flood volcanism in western Yemen

    NASA Astrophysics Data System (ADS)

    Baker, J. A.; Thirlwall, M. F.; Menzies, M. A.

    1996-07-01

    Oligocene flood basalts from western Yemen have a relatively limited range in initial isotopic composition compared with other continental flood basalts: 87Sr/86Sr = 0.70365-0.70555 ; 143Nd/144Nd = 0.5129-0.51248 ( ɛNd = +6.0 to -2.4) ; 206pb/204Pb = 17.9-19.3 . Most compositions lie outside the isotopic ranges of temporally and spatially appropriate mantle source compositions observed in this area, i.e., Red Sea/Gulf of Aden MORB mantle, the Afar plume, and Pan-African lithospheric mantle Correlations between indices of fractionation, silica, and isotope ratios suggest that crustal contamination has substantially modified the primary isotopic and incompatible trace element characteristics of the flood basalts. However, significant scatter in these correlations was produced by: (a) the heterogeneous isotopic composition of Pan-African crust; (b) the difference in susceptibility of magmas to contamination as a result of variable incompatible trace element contents in primary melts produced by differing degrees of partial melting; (c) the presence or absence of plagioclase as a fractionating phase generating complex contamination trajectories for Sr; (d) sampling over a wide area not representing a single coherent magmatic system; and (e) variation in contamination mechanisms from assimilation associated with fractionation (AFC) to assimilation by hot mafic magmas with little concomitant fractionation. The presence of plagioclase as a fractionating phase in some suites that were undergoing AFC requires assimilation to have taken place within the crust and, coupled with the limited LREE-enrichment accompanying isotopic variations, excludes the possibility that an AFC-type process took place during magma transfer through the lithospheric mantle. Isotopic compositions of some of the inferred crustal assimilants are similar to those postulated by other workers for an enriched lithospheric mantle source of many flood basalts in southwestern Yemen, Ethiopia, and Djibouti. The western Yemen flood basalts contain 0-30% crust which largely swamps their primary lead isotopic signature, but the primary SrNd isotopic signature is close to that of the least contaminated and isotopically most depleted flood basalts. LREE/HFSE and LILE/HFSE ratios also correlate with isotopic data as a result of crustal contamination. However, Nb/La and K/Nb ratios of >1.1 and <150, respectively, in least contaminated samples require an OIB-like source. The pre-contamination isotopic signature is estimated to be: 87Sr/86Sr ˜ 0.7036; 143Nd/144Nd ˜ 0.51292 ; 206Pb/204Pb ˜ 18.4-19.0 . This, coupled with low LILE/HFSE ratios, suggest the source has characteristics akin to the Afar plume. A mantle source isotopically more depleted than Bulk Earth, but not as depleted as MORB, coupled with LILE depletion, also characterises other examples of plume-derived flood volcanism. This mantle reservoir is responsible for the second largest outbursts of volcanism on Earth and has radiogenic isotopic characteristics akin to PREMA mantle, but the incompatible trace element signature of HIMU mantle.

  5. The Effects of Fiber Orientation and Volume Fraction of Fiber on Mechanical Properties of Additively Manufactured Composite Material

    NASA Astrophysics Data System (ADS)

    Kuchipudi, Suresh Chandra

    Additive manufacturing (AM) also known as 3D printing has tremendous advancements in recent days with a vast number of applications in industrial, automotive, architecture, consumer projects, fashion, toys, food, art, etc. Composite materials are widely used in structures with weight as a critical factor especially in aerospace industry. Recently, additive manufacturing technology, a rapidly growing innovative technology, has gained lot of importance in making composite materials. The properties of composite materials depend upon the properties of constituent's matrix and fiber. There is lot of research on effect of fiber orientation on mechanical properties of composite materials made using conventional manufacturing methods. It will be interesting and relevant to study the relationship between the fiber orientation and fiber volume with mechanical properties of additively manufactured composite materials. This thesis work presents experimental investigation of mechanical behavior like tensile strength and fatigue life with variation in fiber orientation and fiber volume fraction of 3D printed composite materials. The aim is to study the best combination of volume fraction of fiber and fiber orientation that has better fatigue strength for additive manufactured composite materials. Using this study, we can decide the type of orientation and volume percent for desired properties. This study also finds the range of fatigue limits of 3d printed composite materials.

  6. Enhanced mechanical and thermal properties of regenerated cellulose/graphene composite fibers.

    PubMed

    Tian, Mingwei; Qu, Lijun; Zhang, Xiansheng; Zhang, Kun; Zhu, Shifeng; Guo, Xiaoqing; Han, Guangting; Tang, Xiaoning; Sun, Yaning

    2014-10-13

    In this study, a wet spinning method was applied to fabricate regenerated cellulose fibers filled with low graphene loading which was systematically characterized by SEM, TEM, FTIR and XRD techniques. Subsequently, the mechanical and thermal properties of the resulting fibers were investigated. With only 0.2 wt% loading of graphene, a ∼ 50% improvement of tensile strength and 25% enhancement of Young's modulus were obtained and the modified Halpin-Tsai model was built to predict the mechanical properties of composite fibers. Thermal analysis of the composite fibers showed remarkably enhanced thermal stability and dynamic heat transfer performance of graphene-filled cellulose composite fiber, also, the presence of graphene oxide can significantly enhance the thermal conductivity of the composite fiber. This work provided a facile way to improve mechanical and thermal properties of regenerated cellulose fibers. The resultant composite fibers have potential application in thermal insulation and reinforced fibrous materials. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Effects of glass scraps powder and glass fiber on mechanical properties of polyester composites

    NASA Astrophysics Data System (ADS)

    Sonsakul, K.; Boongsood, W.

    2017-11-01

    One concern in bus manufacturing is the high cost of glass fiber reinforced in polyester composites parts. The composites of glass fiber and polyester are low elongation and high strength, and glass scraps powder displays high hardness and good chemical compatibility with the polymer matrix and glass fiber. This research aimed to study the effects of glass scraps powder and glass fiber on mechanical performance of polyester composites. Glass fiber was randomly oriented fiber and used as new. Glass scraps were obtained from a bus factory and crushed to powder sizes of 120 and 240 μm by a ball mill. Polyester composites were prepared using Vacuum Infusion Process (VIP).Polyester reinforced with 3 layers of glass fiber was an initial condition. Then, one layer of glass fiber was replaced with glass scraps powder. Flexural strength, tensile strength, impact strength and hardness of the polyester composites were determined. Hardness was increased with a combination of smaller size and higher volume of glass scraps powder. Pictures of specimens obtained by using scanning electron microscope (SEM) confirmed that the powder of glass scraps packed in the layers of glass fiber in polyester composites.

  8. Effects of moisture on aspen-fiber/polypropylene composites

    Treesearch

    Roger M. Rowell; Sandra E. Lange; Rodney E. Jacobson

    2004-01-01

    Moisture sorption in fiber-thermoplastic composites leads to dimensional instability and biological attack. To determine the pick up of moisture this type of composite, aspen fiber/polypropylene composites were made using several different levels of aspen fiber (30 to 60% by weight) with and without the addition of a compatibilizer (maleic anhydride grafted...

  9. The interface in tungsten fiber reinforced niobium metal-matrix composites. Final Report Ph.D. Thesis - Case Western Reserve Univ., Cleveland, OH

    NASA Technical Reports Server (NTRS)

    Grobstein, Toni L.

    1989-01-01

    The creep resistance of tungsten fiber reinforced niobium metal-matrix composites was evaluated. The interface region between the fiber and matrix was characterized by microhardness and electron probe microanalysis measurements which indicated that its properties were between those of fiber and matrix. However, the measured properties of the composite exceeded those calculated by the rule of mixtures even when the interface zone was assumed to retain all the strength of the fiber. The composite structure appeared to enhance the strengths of both the fibers and the matrix above what they exhibited in stand-alone tests. The effect of fiber orientation and matrix alloy composition on the fiber/matrix interface were also evaluated. Small alloying additions of zirconium and tungsten to the niobium matrix affected the creep resistance of the composites only slightly. A decrease in the creep resistance of the composite with increasing zirconium content in the matrix was ascribed to an increase in the diffusion rate of the fiber/matrix interdiffusion reaction, and a slight increase in the creep resistance of the composite was observed with an addition of 9 w percent tungsten to the matrix. In addition, Kirkendall void formation was observed at the fiber/matrix interface; the void distribution differed depending on the fiber orientation relative to the stress axis.

  10. Interface control and mechanical property improvements in silicon carbide/titanium composites

    NASA Technical Reports Server (NTRS)

    Brewer, W. D.; Unnam, J.

    1982-01-01

    Several composite systems made of titanium matrix reinforced with silicon carbide fiber were investigated to obtain a better understanding of composite-degradation mechanisms and to develop techniques to minimize loss of mechanical properties during fabrication and in service. Emphasis was on interface control by fiber or matrix coatings. X-ray diffraction studies on planar samples showed that the formation of titanium silicides was greatly inhibited by the presence of aluminum or Ti3A1 layers at the fiber-matrix interface, with the Ti3A1 being more effective in reducing the reactions. Fiber studies showed that coating the fiber with a 1-micron-thick layer of aluminum improved the as-fabricated strength of a stoichiometric SiC fiber and reduced the fiber degradation during exposure to composite-fabrication conditions. Applying an interfacial barrier by coating the matrix foils instead of the fibers was found to be an effective method for improving composite strength. Reducing the fabrication temperature also resulted in significant improvements in composite strengths. Good-quality, well-consolidated composites were fabricated at temperatures well below those currently used for SiC-Ti composite fabrication.

  11. Multi-Length Scale-Enriched Continuum-Level Material Model for Kevlar-Fiber-Reinforced Polymer-Matrix Composites

    DTIC Science & Technology

    2012-08-03

    is unlimited. Multi-Length Scale-Enriched Continuum-Level Material Model for Kevlar ®-Fiber-Reinforced Polymer-Matrix Composites The views, opinions...12211 Research Triangle Park, NC 27709-2211 ballistics, composites, Kevlar , material models, microstructural defects REPORT DOCUMENTATION PAGE 11... Kevlar ®-Fiber-Reinforced Polymer-Matrix Composites Report Title Fiber-reinforced polymer matrix composite materials display quite complex deformation

  12. Effect of sintering temperature on flexural properties of alumina fiber-reinforced, alumina-based ceramics prepared by tape casting technique.

    PubMed

    Tanimoto, Yasuhiro; Nemoto, Kimiya

    2006-01-01

    The purpose of this study was to investigate the effect of sintering temperature on flexural properties of an alumina fiber-reinforced, alumina-based ceramic (alumina-fiber/alumina composite) prepared by a tape casting technique. The alumina-based ceramic used a matrix consisting of 60 wt% Al(2)O(3) powder and 40 wt% SiO(2)-B(2)O(3) glass powder with the following composition in terms of wt%: 33 SiO(2), 32 B(2)O(3), 20 CaO, and 15 MgO. Prepreg sheets of alumina-fiber/alumina composite in which uniaxial aligned alumina fibers were infiltrated with the alumina-based matrix were fabricated continuously using a tape casting technique employing a doctor blade system. Four sintering temperatures were investigated: 900 degrees C, 1000 degrees C, 1100 degrees C, and 1200 degrees C, all for 4 hours under atmospheric pressure in a furnace. The surface of the alumina-fiber/alumina composite after sintering was observed with a field-emission scanning electron microscope (FE-SEM). A three-point bending test was carried out to measure the flexural strength and modulus of alumina-fiber/alumina composite specimens. In addition, sintered alumina fiber was characterized by X-ray diffraction (XRD). FE-SEM observation showed that alumina-fiber/alumina composite was confirmed to be densely sintered for all sintering temperatures. Three-point bending measurement revealed that alumina-fiber/alumina composite produced at sintering temperatures of 1100 degrees C and 1200 degrees C exhibit flexural strengths lower than those of alumina-fiber/alumina composite produced at sintering temperatures of 900 degrees C and 1000 degrees C; alumina-fiber/alumina composite produced at sintering temperatures of 1100 degrees C and 1200 degrees C exhibit flexural moduli lower than that of alumina-fiber/alumina composite produced at a sintering temperature of 1000 degrees C. Additional XRD pattern of alumina fiber indicated that with increasing sintering temperature, the crystallographic structure of gamma-alumina transformed to mullite. There were significant differences in the flexural properties between the alumina-fiber/alumina composite sintered at the four temperatures. This indicates that the choice of optimum sintering temperature is an important factor for successful dental applications of alumina-fiber/alumina composite developed by the tape casting system.

  13. Thermo-Oxidative Stability of Graphite/PMR-15 Composites: Effect of Fiber Surface Modification on Composite Shear Properties

    NASA Technical Reports Server (NTRS)

    Madhukar, Madhu S.; Bowles, Kenneth J.; Papadopolous, Demetrios S.

    1994-01-01

    Experiments were conducted to establish a correlation between the weight loss of a polyimide (PMR- 15) matrix and graphite fibers and the in-plane shear properties of their unidirectional composites subjected to different isothermal aging times up to 1000 hr at 316 C. The role of fiber surface treatment on the composite degradation during the thermo-oxidative aging was investigated by using A4 graphite fibers with three surface modifications: untreated (AU-4), surface treated (AS-4), and surface treated and sized with an epoxy-compatible sizing (AS-4G). The weight loss of the matrix fibers, and composites was determined during the aging. The effect of thermal aging was seen in all the fiber samples in terms of weight loss and reduction in fiber diameter. Calculated values of weight loss fluxes for different surfaces of rectangular unidirectional composite plates showed that the largest weight loss occurred at those cut surfaces where fibers were perpendicular to the surface. Consequently, the largest amount of damage was also noted on these cut surfaces. Optical observation of the neat matrix and composite plates subjected to different aging times revealed that the degradation (such as matrix microcracking and void growth) occurred in a thin surface layer near the specimen edges. The in-plane shear modulus of the composites was unaffected by the fiber surface treatment and the thermal aging. The shear strength of the composites with the untreated fibers was the lowest and it decreased with aging. A fracture surface examination of the composites with untreated fibers suggested that the weak interface allowed the oxidation reaction to proceed along the interface and thus expose the inner material to further oxidation. The results indicated that the fiber-matrix interface affected the composite degradation process during its thermal aging and that the the weak interface accelerated the composite degradation.

  14. Effect of fiber reinforcement on thermo-oxidative stability and mechanical properties of polymer matrix composites

    NASA Technical Reports Server (NTRS)

    Bowles, K. J.

    1992-01-01

    A number of studies have investigated the thermooxidative behavior of polymer matrix composites. Two significant observations have been made from these research efforts: (1) fiber reinforcement has a significant effect on composite thermal stability; and (2) geometric effects must be considered when evaluating thermal aging data. The polyimide PMR-15 was the matrix material used in these studies. The control composite material was reinforced with Celion 6000 graphite fiber. T-4OR graphite fibers, along with some very stable ceramic fibers were selected as reinforcing fibers because of their high thermal stability. The ceramic fibers were Nicalon (silicon carbide) and Nextel 312 (alumina-silica-boron oxide). The mechanical properties of the two graphite fiber composites were significantly different, probably owing to variations in interfacial bonding between the fibers and the polyimide matrix. Three oxidation mechanisms were observed: (1) the preferential oxidation of the Celion 6000 fiber ends at cut surfaces, leaving a surface of matrix material with holes where the fiber ends were originally situated; (2) preferential oxidation of the composite matrix; and (3) interfacial degradation by oxidation. The latter two mechanisms were also observed on fiber end cut surfaces. The fiber and interface attacks appeared to initiate interfiber cracking along these surfaces.

  15. Properties of foam and composite materials made o starch and cellulose fiber

    USDA-ARS?s Scientific Manuscript database

    Composite materials were made of starch and cellulose fibers. Pre-gelatinized starch was effective in dispersing pulp fiber in a starch matrix to form a viscous starch/fiber dough. The starch/fiber dough was a useful feedstock for various composite foam and plastic materials. Viscous blends of star...

  16. Mechanical characterization of glass fiber (woven roving/chopped strand mat E-glass fiber) reinforced polyester composites

    NASA Astrophysics Data System (ADS)

    Bhaskar, V. Vijaya; Srinivas, Kolla

    2017-07-01

    Polymer reinforced composites have been replacing most of the engineering material and their applications become more and more day by day. Polymer composites have been analyzing from past thirty five years for their betterment for adapting more applications. This paper aims at the mechanical properties of polyester reinforced with glass fiber composites. The glass fiber is reinforced with polyester in two forms viz Woven Rovings (WRG) and Chopped Strand Mat (CSMG) E-glass fibers. The composites are fabricated by hand lay-up technique and the composites are cut as per ASTM Standard sizes for corresponding tests like flexural, compression and impact tests, so that flexural strength, compression strength, impact strength and inter laminar shear stress(ILSS) of polymer matrix composites are analyzed. From the tests and further calculations, the polyester composites reinforced with Chopped Strand Mat glass fiber have shown better performance against flexural load, compression load and impact load than that of Woven Roving glass fiber.

  17. Mechanical Property Evaluation of Palm/Glass Sandwiched Fiber Reinforced Polymer Composite in Comparison with few natural composites

    NASA Astrophysics Data System (ADS)

    Raja Dhas, J. Edwin; Pradeep, P.

    2017-10-01

    Natural fibers available plenty can be used as reinforcements in development of eco friendly polymer composites. The less utilized palm leaf stalk fibers sandwiched with artificial glass fibers was researched in this work to have a better reinforcement in preparing a green composite. The commercially available polyester resin blend with coconut shell filler in nano form was used as matrix to sandwich these composites. Naturally available Fibers of palm leaf stalk, coconut leaf stalk, raffia and oil palm were extracted and treated with potassium permanganate solution which enhances the properties. For experimentation four different plates were fabricated using these fibers adopting hand lay-up method. These sandwiched composite plates are further machined to obtain ASTM standards Specimens which are mechanically tested as per standards. Experimental results reveal that the alkali treated palm leaf stalk fiber based polymer composite shows appreciable results than the others. Hence the developed composite can be recommended for fabrication of automobile parts.

  18. Effect of gamma radiation on the mechanical properties of natural silk fiber and synthetic E-glass fiber reinforced polypropylene composites: A comparative study

    NASA Astrophysics Data System (ADS)

    Shubhra, Quazi T. H.; Alam, A. K. M. M.

    2011-11-01

    Silk is a strong natural proteinous fiber and E-glass is a very strong synthetic fiber. Compression molding method was used to fabricate B. mori silk fiber reinforced polypropylene (PP) matrix composites. The tensile strength (TS), tensile modulus (TM), bending strength (BS), bending modulus (BM) and impact strength (IS) of prepared composites were 55.1 MPa, 780 MPa, 56.3 MPa, 3450 MPa and 17 kJ/m 2, respectively. Synthetic E-glass fiber reinforced PP based composites were fabricated in the same way and TS, TM, BS, BM, IS of E-glass fiber reinforced polypropylene composites were found to be 128.7 MPa, 4350 MPa, 141.6 MPa, 6300 MPa and 19 kJ/m 2, respectively. Gamma radiation is high energy ionizing radiation and was applied to increase the mechanical properties of the composites. Application of gamma ray increases the mechanical properties of silk/PP composites to a greater extent than that of E-glass/PP composites.

  19. New biocomposites based on bioplastic flax fibers and biodegradable polymers.

    PubMed

    Wróbel-Kwiatkowska, Magdalena; Czemplik, Magdalena; Kulma, Anna; Zuk, Magdalena; Kaczmar, Jacek; Dymińska, Lucyna; Hanuza, Jerzy; Ptak, Maciej; Szopa, Jan

    2012-01-01

    A new generation of entirely biodegradable and bioactive composites with polylactic acid (PLA) or poly-ε-caprolactone (PCL) as the matrix and bioplastic flax fibers as reinforcement were analyzed. Bioplastic fibers contain polyhydroxybutyrate and were obtained from transgenic flax. Biochemical analysis of fibers revealed presence of several antioxidative compounds of hydrophilic (phenolics) and hydrophobic [cannabidiol (CBD), lutein] nature, indicating their high antioxidant potential. The presence of CBD and lutein in flax fibers is reported for the first time. FTIR analysis showed intermolecular hydrogen bonds between the constituents in composite PLA+flax fibers which were not detected in PCL-based composite. Mechanical analysis of prepared composites revealed improved stiffness and a decrease in tensile strength. The viability of human dermal fibroblasts on the surface of composites made of PLA and transgenic flax fibers was the same as for cells cultured without composites and only slightly lower (to 9%) for PCL-based composites. The amount of platelets and Escherichia coli cells aggregated on the surface of the PLA based composites was significantly lower than for pure polymer. Thus, composites made of PLA and transgenic flax fibers seem to have bacteriostatic, platelet anti-aggregated, and non-cytotoxic effect. Copyright © 2012 American Institute of Chemical Engineers (AIChE).

  20. Effect of maleic anhydride treatment on the mechanical properties of sansevieria fiber/vinyl ester composites

    NASA Astrophysics Data System (ADS)

    Pradipta, Rangga; Mardiyati, Steven, Purnomo, Ikhsan

    2017-03-01

    Sanseviera trifasciata commonly called mother-in-law tongue also known as snake plant is native to Indonesia, India and Africa. Sansevieria is a new fiber in composite research and has showed promising properties as reinforcement material in polymer matrix composites. Chemical treatment on reinforcing fiber is crucial to reduce hydrophilic tendency and thus improve compatibility with the matrix. In this study, effect of maleic anhydride as chemical treatment on the mechanical properties of Sansevieria fiber/vinyl ester composite was investigated. Sansevieria fibers were immersed by using NaOH 3% for two hours at 100°C and then treated by using maleic anhydrate for two hours at 120°C. Composites were prepared by solution casting with various volume fractions of fiber; 0%, 2.5%, 5%, 7.5% and 10%. Actual density, volume fraction of void and mechanical properties of composite were conducted according to ASTM standard testing methods D792, D3171 and D3039. It was found that mechanical properties of composites increased as volume fractions of fiber was increased. The highest tensile strength and modulus of elasticity of composites were 57.45 MPa and 3.47 GPa respectively, obtained from composites with volume fraction of fiber 10%.

  1. Effect of Manufacturing Method to Tensile Properties of Hybrid Composite Reinforced by Natural (Agel Leaf Fiber) and Glass Fibers

    NASA Astrophysics Data System (ADS)

    Nugroho, A.; Abdurohman, K.; Kusmono; Hestiawan, H.; Jamasri

    2018-04-01

    This paper described the effect of different type of manufacturing method to tensile properties of hybrid composite woven agel leaf fiber and glass fiber as an alternative of LSU structure material. The research was done by using 3 ply of woven agel leaf fiber (ALF) and 3 ply of glass fiber (wr200) while the matrix was using unsaturated polyester. Composite manufacturing method used hand lay-up and vacuum bagging. Tensile test conducted with Tensilon universal testing machine, specimen shape and size according to standard size ASTM D 638. Based on tensile test result showed that the tensile strength of agel leaf fiber composite with unsaturated polyester matrix is 54.5 MPa by hand lay-up and 84.6 MPa with vacuum bagging method. From result of tensile test, hybrid fiber agel composite and glass fiber with unsaturated polyester matrix have potential as LSU structure.

  2. Hybrid Polyvinyl Alcohol and Cellulose Fiber Pulp Instead of Asbestos Fibers in Cement-Based Composites

    NASA Astrophysics Data System (ADS)

    Shokrieh, M. M.; Mahmoudi, A.; Shadkam, H. R.

    2015-05-01

    The Taguchi method was used to determine the optimum content of a four-parameters cellulose fiber pulp, polyvinyl alcohol (PVA) fibers, a silica fume, and bentonite for cement-based composite sheets. Then cement composite sheets from the hybrid of PVA and the cellulose fiber pulp were manufactured, and their moduli of rapture were determined experimentally. The result obtained showed that cement composites with a hybrid of PVA and cellulose fiber pulp had a higher flexural strength than cellulose-fiber- reinforced cement ones, but this strength was rather similar to that of asbestos-fiber-reinforced cement composites. Also, using the results of flexural tests and an analytical method, the tensile and compressive moduli of the hybrid of PVA and cement sheet were calculated. The hybrid of PVA and cellulose fiber pulp is proposed as an appropriate alternative for substituting asbestos in the Hatschek process.

  3. Evaluating the Significance of Viscoelasticity in Diagnosing Early-Stage Liver Fibrosis with Transient Elastography.

    PubMed

    Zhao, Jingxin; Zhai, Fei; Cheng, Jun; He, Qiong; Luo, Jianwen; Yang, Xueping; Shao, Jinhua; Xing, Huichun

    2017-01-01

    Transient elastography quantifies the propagation of a mechanically generated shear wave within a soft tissue, which can be used to characterize the elasticity and viscosity parameters of the tissue. The aim of our study was to combine numerical simulation and clinical assessment to define a viscoelastic index of liver tissue to improve the quality of early diagnosis of liver fibrosis. This is clinically relevant, as early fibrosis is reversible. We developed an idealized two-dimensional axisymmetric finite element model of the liver to evaluate the effects of different viscoelastic values on the propagation characteristics of the shear wave. The diagnostic value of the identified viscoelastic index was verified against the clinical data of 99 patients who had undergone biopsy and routine blood tests for staging of liver disease resulting from chronic hepatitis B infection. Liver stiffness measurement (LSM) and the shear wave attenuation fitting coefficient (AFC) were calculated from the ultrasound data obtained by performing transient elastography. Receiver operating curve analysis was used to evaluate the reliability and diagnostic accuracy of LSM and AFC. Compared to LSM, the AFC provided a higher diagnostic accuracy to differentiate early stages of liver fibrosis, namely F1 and F2 stages, with an overall specificity of 81.48%, sensitivity of 83.33% and diagnostic accuracy of 81.82%. AFC was influenced by the level of LSM, ALT. However, there are no correlation between AFC and Age, BMI, TBIL or DBIL. Quantification of the viscoelasticity of liver tissue provides reliable measurement to identify and differentiate early stages of liver fibrosis.

  4. Evaluating the Significance of Viscoelasticity in Diagnosing Early-Stage Liver Fibrosis with Transient Elastography

    PubMed Central

    Cheng, Jun; He, Qiong; Luo, Jianwen; Yang, Xueping; Shao, Jinhua; Xing, Huichun

    2017-01-01

    Transient elastography quantifies the propagation of a mechanically generated shear wave within a soft tissue, which can be used to characterize the elasticity and viscosity parameters of the tissue. The aim of our study was to combine numerical simulation and clinical assessment to define a viscoelastic index of liver tissue to improve the quality of early diagnosis of liver fibrosis. This is clinically relevant, as early fibrosis is reversible. We developed an idealized two-dimensional axisymmetric finite element model of the liver to evaluate the effects of different viscoelastic values on the propagation characteristics of the shear wave. The diagnostic value of the identified viscoelastic index was verified against the clinical data of 99 patients who had undergone biopsy and routine blood tests for staging of liver disease resulting from chronic hepatitis B infection. Liver stiffness measurement (LSM) and the shear wave attenuation fitting coefficient (AFC) were calculated from the ultrasound data obtained by performing transient elastography. Receiver operating curve analysis was used to evaluate the reliability and diagnostic accuracy of LSM and AFC. Compared to LSM, the AFC provided a higher diagnostic accuracy to differentiate early stages of liver fibrosis, namely F1 and F2 stages, with an overall specificity of 81.48%, sensitivity of 83.33% and diagnostic accuracy of 81.82%. AFC was influenced by the level of LSM, ALT. However, there are no correlation between AFC and Age, BMI, TBIL or DBIL. Quantification of the viscoelasticity of liver tissue provides reliable measurement to identify and differentiate early stages of liver fibrosis. PMID:28107385

  5. Genetic and clinical predictors of ovarian response in assisted reproductive technology

    NASA Astrophysics Data System (ADS)

    Wiweko, B.; Damayanti, I.; Suryandari, D.; Natadisastra, M.; Pratama, G.; Sumapraja, K.; Meutia, K.; Iffanolia, P.; Harzief, A. K.; Hestiantoro, A.

    2017-08-01

    Several factors are known to influence ovarian response to rFSH stimulation such as age, antral follicle count (AFC), and basal FSH level, Mutation of allele Ser680Asn in FSHR gene was responsible to ovarian resistance toward exogenous FSH. The aim of this study is to develop a prediction model of ovarian response to COS in IVF. This study was a prospective cohort study. One hundred and thirteen women undergoing their first cycle of IVF in Yasmin IVF Clinic Jakarta were recruited to this study. Clinical datas included were age, BMI, and AFC. Basal FSH and E2 as well as serum AMH was measured from peripheral blood taken at second day of cycle. Bsr-1 enzyme is used to identify the polymorphism in exon 10 position 680 with RFLP technique. Three genotype polymorphism, Asn/Asn (255 bp ribbon), Asn/Ser (97 bp and 158 bp), and Ser/Ser (97 bp, 158 bp, and 255 bp). AFC has the highest predictor for ovarian response with AUC 0.922 (CI 95% 0.833-1.000). AMH also showed high predicting value (AUC 0.843 CI 95% 0.663-1.000). The multivariate analysis revealed combination of AFC, AMH, age, and basal FSH is a good model for ovarian response prediction (AUC=0.97). No significant relation between Asn/Asn, Asn/Ser, or Ser/Ser genotype FSHR polymorphism with ovarian response (p = 0.866) and total dose of rRSH (p = 0.08). This study showed that model combination of AFC, AMH, patient’s age and basal FSH are very good to predict number of mature oocytes.

  6. Nondestructive evaluation of composite materials by pulsed time domain methods in imbedded optical fibers

    NASA Technical Reports Server (NTRS)

    Claus, R. O.; Bennett, K. D.; Jackson, B. S.

    1986-01-01

    The application of fiber-optical time domain reflectometry (OTDR) to nondestructive quantitative measurements of distributed internal strain in graphite-epoxy composites, using optical fiber waveguides imbedded between plies, is discussed. The basic OTDR measurement system is described, together with the methods used to imbed optical fibers within composites. Measurement results, system limitations, and the effect of the imbedded fiber on the integrity of the host composite material are considered.

  7. Evaluation of tensile strength of hybrid fiber (jute/gongura) reinforced hybrid polymer matrix composites

    NASA Astrophysics Data System (ADS)

    Venkatachalam, G.; Gautham Shankar, A.; Vijay, Kumar V.; Chandan, Byral R.; Prabaharan, G. P.; Raghav, Dasarath

    2015-07-01

    The polymer matrix composites attract many industrial applications due to its light weight, less cost and easy for manufacturing. In this paper, an attempt is made to prepare and study of the tensile strength of hybrid (two natural) fibers reinforced hybrid (Natural + Synthetic) polymer matrix composites. The samples were prepared with hybrid reinforcement consists of two different fibers such as jute and Gongura and hybrid polymer consists of polyester and cashew nut shell resins. The hybrid composites tensile strength is evaluated to study the influence of various fiber parameters on mechanical strength. The parameters considered here are the duration of fiber treatment, the concentration of alkali in fiber treatment and nature of fiber content in the composites.

  8. 77 FR 44110 - Special Conditions: Agusta S.p.A. Model AW139 and AB139 Helicopter, Installation of a Search and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-27

    ... must comply with the following: (i) The hoist operator control must be designed and located to provide... failures affecting the control system must be evaluated. (ii) The AFCS must be designed so that it cannot... Helicopter, Installation of a Search and Rescue (SAR) Automatic Flight Control System (AFCS) AGENCY: Federal...

  9. Mathematical Model for a Simplified Calculation of the Input Momentum Coefficient for AFC Purposes

    NASA Astrophysics Data System (ADS)

    Hirsch, Damian; Gharib, Morteza

    2016-11-01

    Active Flow Control (AFC) is an emerging technology which aims at enhancing the aerodynamic performance of flight vehicles (i.e., to save fuel). A viable AFC system must consider the limited resources available on a plane for attaining performance goals. A higher performance goal (i.e., airplane incremental lift) demands a higher input fluidic requirement (i.e., mass flow rate). Therefore, the key requirement for a successful and practical design is to minimize power input while maximizing performance to achieve design targets. One of the most used design parameters is the input momentum coefficient Cμ. The difficulty associated with Cμ lies in obtaining the parameters for its calculation. In the literature two main approaches can be found, which both have their own disadvantages (assumptions, difficult measurements). A new, much simpler calculation approach will be presented that is based on a mathematical model that can be applied to most jet designs (i.e., steady or sweeping jets). The model-incorporated assumptions will be justified theoretically as well as experimentally. Furthermore, the model's capabilities are exploited to give new insight to the AFC technology and its physical limitations. Supported by Boeing.

  10. The East Asian age-friendly cities promotion - Taiwan's experience and the need for an oriental paradigm.

    PubMed

    Chao, Tzuyuan Stessa; Huang, Huiwen

    2016-03-01

    It is the consensus that the rapid increase of the ageing population has become a global phenomenon. In 2007, the World Health Organization (WHO) advanced a handbook called Global Age-friendly Cities: A Guide The core concept of the age-friendly cities (AFC) movement is 'active ageing'. Taiwan became one of the few Asian countries that initially responded to the WHO AFC movement in 2010. Following the guidance set by the WHO, Taiwan began its promotion at a national level, and with local authorities. However, during the advocacy process, the fundamental differences between Eastern and Western cultures in terms of family values and deep-rooted respect for the elderly have raised an awareness of the need for an oriental paradigm. This paper identifies three key elements for AFC promotion in East Asian countries based on an analysis of Taiwan's experience: during needs assessment take collectivism into consideration, during action plans at the community level community leaders' views will be more important (particularism), and when promoting AFC at the institutional level a top-down approach will be more acceptable (high power distance concept). © The Author(s) 2016.

  11. Fractional-N phase-locked loop for split and direct automatic frequency control in A-GPS

    NASA Astrophysics Data System (ADS)

    Park, Chester Sungchung; Park, Sungkyung

    2018-07-01

    A low-power mixed-signal phase-locked loop (PLL) is modelled and designed for the DigRF interface between the RF chip and the modem chip. An assisted-GPS or A-GPS multi-standard system includes the DigRF interface and uses the split automatic frequency control (AFC) technique. The PLL circuitry uses the direct AFC technique and is based on the fractional-N architecture using a digital delta-sigma modulator along with a digital counter, fulfilling simple ultra-high-resolution AFC with robust digital circuitry and its timing. Relative to the output frequency, the measured AFC resolution or accuracy is <5 parts per billion (ppb) or on the order of a Hertz. The cycle-to-cycle rms jitter is <6 ps and the typical settling time is <30 μs. A spur reduction technique is adopted and implemented as well, demonstrating spur reduction without employing dithering. The proposed PLL includes a low-leakage phase-frequency detector, a low-drop-out regulator, power-on-reset circuitry and precharge circuitry. The PLL is implemented in a 90-nm CMOS process technology with 1.2 V single supply. The overall PLL draws about 1.1 mA from the supply.

  12. Porous block nanofiber composite filters

    DOEpatents

    Ginley, David S.; Curtis, Calvin J.; Miedaner, Alexander; Weiss, Alan J.; Paddock, Arnold

    2016-08-09

    Porous block nano-fiber composite (110), a filtration system (10) and methods of using the same are disclosed. An exemplary porous block nano-fiber composite (110) includes a porous block (100) having one or more pores (200). The porous block nano-fiber composite (110) also includes a plurality of inorganic nano-fibers (211) formed within at least one of the pores (200).

  13. Influence of nanosize clay platelets on the mechanical properties of glass fiber reinforced polyester composites.

    PubMed

    Jawahar, P; Balasubramanian, M

    2006-12-01

    Glass fiber reinforced polyester composite and hybrid nanoclay-fiber reinforced composites were prepared by hand lay-up process. The mechanical behavior of these materials and the changes as a result of the incorporation of both nanosize clay and glass fibers were investigated. Composites were prepared with a glass fibre content of 25 vol%. The proportion of the nanosize clay platelets was varied from 0.5 to 2.5 vol%. Hybrid clay-fiber reinforced polyester composite posses better tensile, flexural, impact, and barrier properties. Hybrid clay-fiber reinforced polyester composites also posses better shear strength, storage modulus, and glass transition temperature. The optimum properties were found to be with the hybrid laminates containing 1.5 vol% nanosize clay.

  14. Fabrication and evaluation of low fiber content alumina fiber/aluminum composites

    NASA Technical Reports Server (NTRS)

    Hack, J. E.; Strempek, G. C.

    1980-01-01

    The mechanical fabrication of low volume percent fiber, polycrystalline alumina fiber reinforced aluminum composites was accomplished. Wire preform material was prepared by liquid-metal infiltration of alumina fiber bundles. The wires were subsequently encapsulated with aluminum foil and fabricated into bulk composite material by hot-drawing. Extensive mechanical, thermal and chemical testing was conducted on preform and bulk material to develop a process and material data base. In addition, a preliminary investigation of mechanical forming of bulk alumina fiber reinforced aluminum composite material was conducted.

  15. Method of producing a hybrid matrix fiber composite

    DOEpatents

    Deteresa, Steven J [Livermore, CA; Lyon, Richard E [Absecon, NJ; Groves, Scott E [Brentwood, CA

    2006-03-28

    Hybrid matrix fiber composites having enhanced compressive performance as well as enhanced stiffness, toughness and durability suitable for compression-critical applications. The methods for producing the fiber composites using matrix hybridization. The hybrid matrix fiber composites comprised of two chemically or physically bonded matrix materials, whereas the first matrix materials are used to impregnate multi-filament fibers formed into ribbons and the second matrix material is placed around and between the fiber ribbons that are impregnated with the first matrix material and both matrix materials are cured and solidified.

  16. Compression failure mechanisms of composite structures

    NASA Technical Reports Server (NTRS)

    Hahn, H. T.; Sohi, M.; Moon, S.

    1986-01-01

    An experimental and analytical study was conducted to delineate the compression failure mechanisms of composite structures. The present report summarizes further results on kink band formation in unidirectional composites. In order to assess the compressive strengths and failure modes of fibers them selves, a fiber bundle was embedded in epoxy casting and tested in compression. A total of six different fibers were used together with two resins of different stiffnesses. The failure of highly anisotropic fibers such as Kevlar 49 and P-75 graphite was due to kinking of fibrils. However, the remaining fibers--T300 and T700 graphite, E-glass, and alumina--failed by localized microbuckling. Compressive strengths of the latter group of fibers were not fully utilized in their respective composite. In addition, acoustic emission monitoring revealed that fiber-matrix debonding did not occur gradually but suddenly at final failure. The kink band formation in unidirectional composites under compression was studied analytically and through microscopy. The material combinations selected include seven graphite/epoxy composites, two graphite/thermoplastic resin composites, one Kevlar 49/epoxy composite and one S-glass/epoxy composite.

  17. Study of high resistance inorganic coatings on graphite fibers. [for graphite-epoxy composite materials

    NASA Technical Reports Server (NTRS)

    Galasso, F. S.; Veltri, R. D.; Scola, D. A.

    1979-01-01

    Coatings made of boron, silicon carbide, silica, and silica-like materials were studied to determine their ability to increase resistance of graphite fibers. The most promising results were attained by chemical vapor depositing silicon carbide on graphite fiber followed by oxidation, and drawing graphite fiber through ethyl silicate followed by appropriate heat treatments. In the silicon carbide coating studies, no degradation of the graphite fibers was observed and resistance values as high as three orders of magnitude higher than that of the uncoated fiber was attained. The strength of a composite fabricated from the coated fiber had a strength which compared favorably with those of composites prepared from uncoated fiber. For the silica-like coated fiber prepared by drawing the graphite fiber through an ethyl silicate solution followed by heating, coated fiber resistances about an order of magnitude greater than that of the uncoated fiber were attained. Composites prepared using these fibers had flexural strengths comparable with those prepared using uncoated fibers, but the shear strengths were lower.

  18. Investigations of the mechanical properties of bi-layer and trilayer fiber reinforced composites

    NASA Astrophysics Data System (ADS)

    Jayakrishna, K.; Balasubramani, K.; Sultan, M. T. H.; Karthikeyan, S.

    2016-10-01

    Natural fibers are renewable raw materials with an environmental-friendly properties and they are recyclable. The mechanical properties of bi-layer and tri-layer thermoset polymer composites have been analyzed. The bi-layer composite consists of basalt and jute mats, while the tri-layer composite consists of basalt fiber, jute fiber and glass fiber mats. In both cases, the epoxy resin was used as the matrix and PTFE as a filler in the composites. The developed trilayer natural fiber composite can be used in various industrial applications such as automobile parts, construction and manufacturing. Furthermore, it also can be adopted in aircraft interior decoration and designed body parts. Flexural, impact, tensile, compression, shear and hardness tests, together with density measurement, were conducted to study the mechanical properties of both bi-layer and tri-layer composites. From the comparison, the tri-layer composite was found to perform in a better way in all tests.

  19. Natural Kenaf Fiber Reinforced Composites as Engineered Structural Materials

    NASA Astrophysics Data System (ADS)

    Dittenber, David B.

    The objective of this work was to provide a comprehensive evaluation of natural fiber reinforced polymer (NFRP)'s ability to act as a structural material. As a chemical treatment, aligned kenaf fibers were treated with sodium hydroxide (alkalization) in different concentrations and durations and then manufactured into kenaf fiber / vinyl ester composite plates. Single fiber tensile properties and composite flexural properties, both in dry and saturated environments, were assessed. Based on ASTM standard testing, a comparison of flexural, tensile, compressive, and shear mechanical properties was also made between an untreated kenaf fiber reinforced composite, a chemically treated kenaf fiber reinforced composite, a glass fiber reinforced composite, and oriented strand board (OSB). The mechanical properties were evaluated for dry samples, samples immersed in water for 50 hours, and samples immersed in water until saturation (~2700 hours). Since NFRPs are more vulnerable to environmental effects than synthetic fiber composites, a series of weathering and environmental tests were conducted on the kenaf fiber composites. The environmental conditions studied include real-time outdoor weathering, elevated temperatures, immersion in different pH solutions, and UV exposure. In all of these tests, degradation was found to be more pronounced in the NFRPs than in the glass FRPs; however, in nearly every case the degradation was less than 50% of the flexural strength or stiffness. Using a method of overlapping and meshing discontinuous fiber ends, large mats of fiber bundles were manufactured into composite facesheets for structural insulated panels (SIPs). The polyisocyanurate foam cores proved to be poorly matched to the strength and stiffness of the NFRP facesheets, leading to premature core shear or delamination failures in both flexure and compressive testing. The NFRPs were found to match well with the theoretical stiffness prediction methods of classical lamination theory, finite element method, and Castigliano's method in unidirectional tension and compression, but are less accurate for the more bond-dependent flexural and shear properties. With the acknowledged NFRP matrix bonding issues, the over-prediction of these theoretical models indicates that the flexural stiffness of the kenaf composite may be increased by up to 40% if a better bond between the fiber and matrix can be obtained. The sustainability of NFRPs was examined from two perspectives: environmental and socioeconomic. While the kenaf fibers themselves possess excellent sustainability characteristics, costing less while possessing a lesser environmental impact than the glass fibers, the vinyl ester resin used in the composites is environmentally hazardous and inflated the cost and embodied energy of the composite SIPs. Consistent throughout all the designs was a correlation between the respective costs of the raw materials and the respective environmental impacts. The socioeconomic study looked at the sustainability of natural fiber reinforced composite materials as housing materials in developing countries. A literature study on the country of Bangladesh, where the fibers in this study were grown, showed that the jute and kenaf market would benefit from the introduction of a value-added product like natural fiber composites. The high rate of homeless and inadequately housed in Bangladesh, as well as in the US and throughout the rest of the world, could be somewhat alleviated if a new, affordable, and durable material were introduced. While this study found that natural fiber composites possess sufficient mechanical properties to be adopted as primary structural members, the two major remaining hurdles needing to be overcome before natural fiber composites can be adopted as housing materials are the cost and sustainability of the resin system and the moisture resistance/durability of the fibers. (Abstract shortened by UMI.)

  20. Basalt fiber and nanoclay compositions, articles incorporating the same, and methods of insulating a rocket motor with the same

    NASA Technical Reports Server (NTRS)

    Gajiwala, Himansu M. (Inventor)

    2010-01-01

    An insulation composition that comprises at least one nitrile butadiene rubber, basalt fibers, and nanoclay is disclosed. Further disclosed is an insulation composition that comprises polybenzimidazole fibers, basalt fibers, and nanoclay. The basalt fibers may be present in the insulation compositions in a range of from approximately 1% by weight to approximately 6% by weight of the total weight of the insulation composition. The nanoclay may be present in the insulation compositions in a range of from approximately 5% by weight to approximately 10% by weight of the total weight of the insulation composition. Rocket motors including the insulation compositions and methods of insulating a rocket motor are also disclosed.

  1. Rocket motors incorporating basalt fiber and nanoclay compositions and methods of insulating a rocket motor with the same

    NASA Technical Reports Server (NTRS)

    Gajiwala, Himansu M. (Inventor)

    2011-01-01

    An insulation composition that comprises at least one nitrile butadiene rubber, basalt fibers, and nanoclay is disclosed. Further disclosed is an insulation composition that comprises polybenzimidazole fibers, basalt fibers, and nanoclay. The basalt fibers may be present in the insulation compositions in a range of from approximately 1% by weight to approximately 6% by weight of the total weight of the insulation composition. The nanoclay may be present in the insulation compositions in a range of from approximately 5% by weight to approximately 10% by weight of the total weight of the insulation composition. Rocket motors including the insulation compositions and methods of insulating a rocket motor are also disclosed.

  2. Tungsten fiber reinforced copper matrix composites: A review

    NASA Technical Reports Server (NTRS)

    Mcdanels, David L.

    1989-01-01

    Tungsten fiber reinforced copper matrix (W/Cu) composites have served as an ideal model system with which to analyze the properties of metal matrix composites. A series of research programs were conducted to investigate the stress-strain behavior of W/Cu composites; the effect of fiber content on the strength, modulus, and conductivity of W/Cu composites; and the effect of alloying elements on the behavior of tungsten wire and of W/Cu composites. Later programs investigated the stress-rupture, creep, and impact behavior of these composites at elevated temperatures. Analysis of the results of these programs as allows prediction of the effects of fiber properties, matrix properties, and fiber content on the properties of W/Cu composites. These analyses form the basis for the rule-of-mixtures prediction of composite properties which was universally adopted as the criteria for measuring composite efficiency. In addition, the analyses allows extrapolation of potential properties of other metal matrix composites and are used to select candidate fibers and matrices for development of tungsten fiber reinforced superalloy composite materials for high temperature aircraft and rocket engine turbine applications. The W/Cu composite efforts are summarized, some of the results obtained are described, and an update is provided on more recent work using W/Cu composites as high strength, high thermal conductivity composite materials for high heat flux, elevated temperature applications.

  3. Cyclic Oxidation of FeCrAlY/Al2O3 Composites

    NASA Technical Reports Server (NTRS)

    Nesbitt, James A.; Draper, Susan L.; Barrett, Charles A.

    1999-01-01

    Three-ply FeCrAlY/Al2O3 composites and FeCrAlY matrix-only samples were cyclically oxidized at 1000 C and 1100 C for up to 1000 1-hr cycles. Fiber ends were exposed at the ends of the composite samples. Following cyclic oxidation, cracks running parallel to and perpendicular to the fibers were observed on the large surface of the composite. In addition, there was evidence of increased scale damage and spallation around the exposed fiber ends, particularly around the middle ply fibers. This damage was more pronounced at the higher temperature. The exposed fiber ends showed cracking between fibers in the outer plies, occasionally with Fe and Cr-rich oxides growing out of the cracks. Large gaps developed at the fiber/matrix interface around many of the fibers, especially those in the outer plies. Oxygen penetrated many of these gaps resulting in significant oxide formation at the fiber/matrix interface far within the composite sample. Around several fibers, the matrix was also internally oxidized showing Al2O3 precipitates in a radial band around the fibers. The results show that these composites have poor cyclic oxidation resistance due to the CTE mismatch and inadequate fiber/matrix bond strength at temperatures of 1000 C and above.

  4. Role of different lymphocyte subpopulations in the formation of non-specific immunoglobulins induced by antigen injection.

    PubMed

    Chernyshova, I N; Borisova, T K; Emelyanzeva, J A; Sidorova, E V

    1999-04-01

    The formation of antibody and non-specific immunoglobulin under the influence of T-dependent (TD) and type 2 T-independent (TI-2) antigens in mice of two congenic strains CBA (Lyb5-, Lyb5+) and CBA/N (Lyb5-) was studied. TD antigens induced in mice of both strains not only the appearance of antibody-forming cells (AFC), but also a great increase in the number of cells producing non-specific immunoglobulins (nIFC). TI-2 antigens induced the AFC and antigen-dependent nIFC formation in CBA mice only. It is concluded that during immune response to TI-2 antigens not only the AFC appearance but the increase in nIFC formation (polyclonal activation) is due mainly to the mature Lyb5+ B cells.

  5. Composite strengthening. [of nonferrous, fiber reinforced alloys

    NASA Technical Reports Server (NTRS)

    Stoloff, N. S.

    1976-01-01

    The mechanical behavior of unidirectionally reinforced metals is examined, with particular attention to fabrication techniques for artificial composites and eutectic alloys and to principles of fiber reinforcement. The properties of artificial composites are discussed in terms of strength of fiber composites, strength of ribbon-reinforced composites, crack initiation, crack propagation, and creep behavior. The properties of eutectic composites are examined relative to tensile strength, compressive strength, fracture, high-temperature strength, and fatigue. In the case of artificial composites, parallelism of fibers, good bonding between fibers and matrix, and freedom of fibers from damage are all necessary to ensure superior performance. For many eutectic systems there are stringent boundary conditions relative to melt purity and superheat, atmosphere control, temperature gradient, and growth rate in order to provide near-perfect alignment of the reinforcements with a minimum of growth defects.

  6. Pendulum impact resistance of tungsten fiber/metal matrix composites.

    NASA Technical Reports Server (NTRS)

    Winsa, E. A.; Petrasek, D. W.

    1972-01-01

    The impact properties of copper, copper-10 nickel, and a superalloy matrix reinforced with tungsten fibers were studied. In most cases the following increased composite impact strength: increased fiber or matrix toughness, decreased fiber-matrix reaction, increased test temperature, hot working and heat treatment. Notch sensitivity was reduced by increasing fiber or matrix toughness. The effect of fiber content depended on the relative toughness of the fibers and matrix. Above 530 K a 60 volume per cent superalloy matrix composite had a greater impact strength than a turbine blade superalloy, whereas below 530 K a hot worked 56 volume per cent composite had a greater impact strength than the superalloy.

  7. The Study on the Mechanical Properties of Multi-walled Carbon Nanotube/Polypropylene Fibers

    NASA Astrophysics Data System (ADS)

    Youssefi, Mostafa; Safaie, Banafsheh

    2018-06-01

    Polypropylene (PP) is an important semicrystalline polymer with various applications. Polypropylene fibers containing 1 wt% of multi-walled carbon nanotube was spun using a conventional melt spinning apparatus. The produced fibers were drawn with varying levels of draw ratio. The mechanical properties of the composites were studied. Tensile strength and modulus of the composite fibers were increased with the increase in draw ratio. Molecular orientation and helical content of the composite fibers were increased after drawing. To conclude, tensile properties and molecular orientation of the composite fibers were higher than those of neat polypropylene fibers with the same draw ratio.

  8. The Study on the Mechanical Properties of Multi-walled Carbon Nanotube/Polypropylene Fibers

    NASA Astrophysics Data System (ADS)

    Youssefi, Mostafa; Safaie, Banafsheh

    2018-01-01

    Polypropylene (PP) is an important semicrystalline polymer with various applications. Polypropylene fibers containing 1 wt% of multi-walled carbon nanotube was spun using a conventional melt spinning apparatus. The produced fibers were drawn with varying levels of draw ratio. The mechanical properties of the composites were studied. Tensile strength and modulus of the composite fibers were increased with the increase in draw ratio. Molecular orientation and helical content of the composite fibers were increased after drawing. To conclude, tensile properties and molecular orientation of the composite fibers were higher than those of neat polypropylene fibers with the same draw ratio.

  9. Effect of fiber reinforcements on thermo-oxidative stability and mechanical properties of polymer matrix composites

    NASA Technical Reports Server (NTRS)

    Bowles, Kenneth J.

    1991-01-01

    A number of studies have investigated the thermo-oxidative behavior of polymer matrix composites. Two significant observations have been made from these research efforts: (1) fiber reinforcement has a significant effect on composite thermal stability; and (2) geometric effects must be considered when evaluating thermal aging data. A compilation of some results from these studies is presented, and this information shows the influence of the reinforcement fibers on the oxidative degradation of various polymer matrix composites. The polyimide PMR-15 was the matrix material that was used in these studies. The control composite material was reinforced with Celion 6000 graphite fiber. T-40R graphite fibers, along with some very stable ceramic fibers were selected as reinforcing fibers because of their high thermal stability. The ceramic fibers were Nicalon (silicon carbide) and Nextel 312 (alumina-silica-boron oxide). The mechanical properties of the two graphite fiber composites were significantly different, probably owing to variations in interfacial bonding between the fibers and the polyimide matrix. The Celion 6000/PMR-15 bond is very tight but the T-40/PMR-15 bond is less tight. Three oxidation mechanisms were observed: (1) the preferential oxidation of the Celion 6000 fiber ends at cut surfaces, leaving a surface of matrix material with holes where the fiber ends were originally situated; (2) preferential oxidation of the composite matrix; and (3) interfacial degradation by oxidation. The latter two mechanisms were also observed on fiber end cut surfaces. The fiber and interface attacks appeared to initiate interfiber cracking along these surfaces.

  10. Monitoring Fiber Stress During Curing of Single Fiber Glass- and Graphite-Epoxy Composites

    NASA Technical Reports Server (NTRS)

    Madhukar, Madhu S.; Kosuri, Ranga P.; Bowles, Kenneth J.

    1994-01-01

    The difference in thermal expansion characteristics of epoxy matrices and graphite fibers can produce significant residual stresses in the fibers during curing of composite materials. Tests on single fiber glass-epoxy and graphite-epoxy composite specimens were conducted in which the glass and graphite fibers were preloaded in tension, and the epoxy matrix was cast around the fibers. The fiber tension was monitored while the matrix was placed around the fiber and subjected to the temperature-time curing cycle. Two mechanisms responsible for producing stress in embedded fibers were identified as matrix thermal expansion and contraction and matrix cure shrinkage. A simple analysis based on the change in fiber tension during the curing cycle was conducted to estimate the produced stresses. Experimental results on single fiber glass- and graphite-epoxy composites show that the fiber was subjected to significant tensile stresses when the temperature was raised from the first to the second dwell period. When initial fiber pretension is about 60 percent of the fiber failure load, these curing-induced stresses can cause tensile fracture of the embedded fiber.

  11. Fiber optic connector

    DOEpatents

    Rajic, Slobodan; Muhs, Jeffrey D.

    1996-01-01

    A fiber optic connector and method for connecting composite materials within which optical fibers are imbedded. The fiber optic connector includes a capillary tube for receiving optical fibers at opposing ends. The method involves inserting a first optical fiber into the capillary tube and imbedding the unit in the end of a softened composite material. The capillary tube is injected with a coupling medium which subsequently solidifies. The composite material is machined to a desired configuration. An external optical fiber is then inserted into the capillary tube after fluidizing the coupling medium, whereby the optical fibers are coupled.

  12. Coatings for graphite fibers

    NASA Technical Reports Server (NTRS)

    Galasso, F. S.; Scola, D. A.; Veltri, R. D.

    1980-01-01

    Graphite fibers released from composites during burning or an explosion caused shorting of electrical and electronic equipment. Silicon carbide, silica, silicon nitride and boron nitride were coated on graphite fibers to increase their electrical resistances. Resistances as high as three orders of magnitude higher than uncoated fiber were attained without any significant degradation of the substrate fiber. An organo-silicone approach to produce coated fibers with high electrical resistance was also used. Celion 6000 graphite fibers were coated with an organo-silicone compound, followed by hydrolysis and pyrolysis of the coating to a silica-like material. The shear and flexural strengths of composites made from high electrically resistant fibers were considerably lower than the shear and flexural strengths of composites made from the lower electrically resistant fibers. The lower shear strengths of the composites indicated that the coatings on these fibers were weaker than the coating on the fibers which were pyrolyzed at higher temperature.

  13. Differences in interfacial bond strengths of graphite fiber-epoxy resin composites

    NASA Technical Reports Server (NTRS)

    Needles, H. L.

    1985-01-01

    The effect of epoxy-size and degree of cure on the interfacial bonding of an epoxy-amine-graphite fiber composite system is examined. The role of the fiber-resin interface in determining the overall mechanical properties of composites is poorly understood. A good interfacial adhesive bond is required to achieve maximum stress transfer to the fibers in composites, but at the same time some form of energy absorbing interfacial interaction is needed to achieve high fracture toughening. The incompatibility of these two processes makes it important to understand the nature and basic factors involved at the fiber-resin interface as stress is applied. The mechanical properties including interlaminar shear values for graphite fiber-resin composites are low compared to glass and boron-resin composites. These differences have been attributed to poor fiber-matrix adhesion. Graphite fibers are commonly subjected to post-treatments including application of organic sizing in order to improve their compatibility with the resin matrix and to protect the fiber tow from damage during processing and lay-up. In such processes, sized graphite fiber tow is impregnated with epoxy resin and then layed-up i nto the appropriate configuration. Following an extended ambient temperature cure, the graphite-resin composite structure is cured at elevated temperature using a programmed temperature sequence to cure and then cool the product.

  14. Ovulation rate, antral follicle count, and circulating anti-Müllerian hormone in Trio allele carriers, a novel high fecundity bovine genotype.

    PubMed

    García-Guerra, Alvaro; Motta, Jéssica C L; Melo, Leonardo F; Kirkpatrick, Brian W; Wiltbank, Milo C

    2017-10-01

    High fecundity genotypes in sheep are a valuable model to study the physiological mechanisms underlying follicle selection and the control of ovulation rate. Similar genotypes in cattle had not been described until the recent identification of a major bovine allele, termed Trio, which had a large effect on ovulation rate. The present study was designed to evaluate ovulation rate, antral follicle count (AFC), circulating ant-müllerian hormone (AMH), and the association among these measures in unstimulated and superstimulated Trio carrier cattle. We hypothesized that AFC and AMH would be variable among individual cows but would be similar between Trio carriers and non-carrier control cows and that there would be no association between these measures of follicle numbers and ovulation rate. In experiment 1, ovulation rate was determined during 4 consecutive estrous cycles in Trio carriers (n = 34) and non-carrier controls (n = 27). Ovulation rate, on average, was greater (P < 0.01) in Trio carriers (3.5 ± 0.2) compared to non-carrier controls (1.1 ± 0.1) with ∼70% of carrier cycles (n = 136) having 3-4 ovulations while only ∼5% had single ovulations. In contrast, non-carrier cycles (n = 108) were mostly single ovulation (89%) with none having more than two ovulations. In experiment 2, AFC, determined at wave emergence, was not different (P = 0.54) between Trio carriers (24.5 ± 1.3; n = 45) and non-carrier controls (23.1 ± 0.9; n = 37), and no correlation was found between AFC and mean ovulation rate in either genotype (r = -0.009 and r = -0.07; P > 0.70, respectively). In Experiment 3, circulating AMH was also not different between genotypes (P = 0.65) while correlations were found between AFC and AMH in Trio carriers (r = 0.43; P = 0.05; n = 27) and non-carrier controls (r = 0.78; P < 0.01; n = 19). In experiment 4, AFC and AMH were determined in Trio-carriers (n = 9) in relation to a synchronized follicular wave which was unstimulated or stimulated with exogenous FSH. Stimulation with FSH increased ovulation rate, compared to unstimulated Trio carriers, however no association was found between AFC or AMH and ovulation rate regardless of whether superstimulation with exogenous FSH was used. In conclusion, the novel high fecundity bovine genotype Trio, results in consistent multiple ovulations despite having similar AFC and AMH. Therefore, our results suggest that differences in antral follicle numbers during the final stages of follicle development are not a key component of the mechanism underlying multiple ovulations in Trio carriers. Copyright © 2017. Published by Elsevier Inc.

  15. 21 CFR 878.3500 - Polytetrafluoroethylene with carbon fibers composite implant material.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Polytetrafluoroethylene with carbon fibers... Prosthetic Devices § 878.3500 Polytetrafluoroethylene with carbon fibers composite implant material. (a) Identification. A polytetrafluoroethylene with carbon fibers composite implant material is a porous device...

  16. Mallow Fiber-Reinforced Epoxy Composites in Multilayered Armor for Personal Ballistic Protection

    NASA Astrophysics Data System (ADS)

    Nascimento, Lucio Fábio Cassiano; Louro, Luis Henrique Leme; Monteiro, Sergio Neves; Lima, Édio Pereira; da Luz, Fernanda Santos

    2017-10-01

    Lighter and less expensive polymer composites reinforced with natural fibers have been investigated as possible components of a multilayered armor system (MAS) for personal protection against high-velocity ammunition. Their ballistic performance was consistently found comparable with that of conventional Kevlar® synthetic aramid fiber. Among the numerous existing natural fibers with the potential for reinforcing polymer composites to replace Kevlar® in MAS, mallow fiber has not been fully investigated. Thus, the objective of this work is to evaluate the ballistic performance of epoxy composites reinforced with 30 vol.% of aligned mallow fibers as a second MAS layer backing a front ceramic plate. The results using high-velocity 7.62 ammunition show a similar indentation to a Kevlar® layer with the same thickness. An impedance matching calculation supports the similar ballistic performance of mallow fiber composite and Kevlar®. Reduced MAS costs associated with the mallow fiber composite are practical advantages over Kevlar®.

  17. Properties of cellulose/Thespesia lampas short fibers bio-composite films.

    PubMed

    Ashok, B; Reddy, K Obi; Madhukar, K; Cai, J; Zhang, L; Rajulu, A Varada

    2015-01-01

    Cellulose was dissolved in pre cooled environment friendly solvent (aq.7% sodium hydroxide+12% urea) and regenerated with 5%H2SO4 as coagulation bath. Using cellulose as matrix and alkali treated short natural fibers extracted from the newly identified Thespesia lampas plant as fillers the green composite films were prepared. The films were found to be non toxic. The effect of fiber loading on the tensile properties and thermal stability was studied. The fractographs indicated better interfacial bonding between the fibers and cellulose. The crystallinity of the composite films was found to be lower than the matrix and decreased with increasing fiber content. In spite of better interfacial bonding, the tensile properties of the composites were found to be lower than those of the matrix and decreased with increasing fiber content and this behavior was attributed to the random orientation of the fibers in the composites. The thermal stability of the composite films was higher than the matrix and increased with fiber content. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Improved adhesion performances of aramid fibers with vinyl epoxy via supercritical carbon dioxide modification

    NASA Astrophysics Data System (ADS)

    Qin, M. L.; Kong, H. J.; Yu, M. H.; Teng, C. Q.

    2017-06-01

    In this paper, aramid fibers were treated under supercritical carbon dioxide (SCCO2) with isocyanate terminated liquid nitrile rubber to improve the adhesion performances of vinyl epoxy composites. The interfacial shear strength (IFSS) of vinyl epoxy composites was investigated by micro-bond test. The results indicate that the surface modification of aramid fibers in SCCO2 was an efficient method to increase the adhesion performances between fibers and vinyl epoxy. Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), and scanning electron microscopy (SEM) were adopted to investigate the surface structure and composition of aramid fibers. The flexural strength and interlaminar shear strength (ILSS) of treated aramid fibers/vinyl epoxy composites was improved by 18.1% and 28.9% compared with untreated aramid fibers, respectively. Furthermore, the fractured surfaces of the composites were observed by SEM, which showed that the interfacial adhesion of composites has been remarkably changed.

  19. Study of Natural Fiber Breakage during Composite Processing

    NASA Astrophysics Data System (ADS)

    Quijano-Solis, Carlos Jafet

    Biofiber-thermoplastic composites have gained considerable importance in the last century. To provide mechanical reinforcement to the polymer, fibers must be larger than a critical aspect ratio (length-to-width ratio). However, biofibers undergo breakage in length or width during processing, affecting their final aspect ratio in the composites. In this study, influence on biofiber breakage by factors related to processing conditions, fiber morphology and the flow type was investigated through: a) experiments using an internal mixer, a twin-screw extruder (TSE) or a capillary rheometer; and b) a Monte Carlo computer simulation. Composites of thermomechanical fibers of aspen or wheat straw mixed with polypropylene were studied. Internal mixer experiments analyzed wheat straw and two batches of aspen fibers, named AL and AS. AL fibers had longer average length. Processing variables included the temperature, rotors speed and fiber concentration. TSE experiments studied AL and AS fiber composites under various screws speeds, temperatures and feeding rates of the polymer and fibers. Capillary rheometers experiments determined AL fiber breakage in shear and elongational flows for composites processed at different concentrations, temperatures, and strain rates. Finally, the internal mixer experimental results where compared to Monte Carlo simulation predictions. The simulation focused on fiber length breakage due to fiber-polymer interactions. Internal mixer results showed that final fiber average length depended almost solely on processing conditions while final fiber average width depended on both processing conditions and initial fiber morphology. In the TSE, processing conditions as well as initial fiber length influenced final average length. TSE results showed that the fiber concentration regime seems to influence the effect of processing variables on fiber breakage. Capillary rheometer experiments demonstrated that biofiber breakage happens in both elongational and shear flows. In some cases, percentage of biofiber breakage in elongational flow is higher. In general, simulation predictions of final average lengths were in good agreement with experiments, indicating the importance of fiber-polymer interactions on fiber breakage. The largest discrepancies were obtained at higher fiber concentration composites; these differences might be resolved, in future simulations, by including the effect of fiber-fiber interactions.

  20. Composite impact strength improvement through a fiber/matrix interphase

    NASA Technical Reports Server (NTRS)

    Cavano, P. J.; Winters, W. E.

    1975-01-01

    Research was conducted to improve the impact strength and toughness of fiber/resin composites by means of a fiber coating interphase. Graphite fiber/epoxy resin composites were fabricated with four different fiber coating systems introduced in a matrix-fiber interphase. Two graphite fibers, a high strength and a high modulus type, were studied with the following coating systems: chemical vapor deposited boron, electroless nickel, a polyamide-imide resin and a thermoplastic polysulfone resin. Evaluation methods included the following tests: Izod, flexure, shear fracture toughness, longitudinal and transverse tensile, and transverse and longitudinal compression. No desirable changes could be effected with the high strength fiber, but significant improvements in impact performance were observed with the polyamide-imide resin coated high modulus fiber with no loss in composite modulus.

  1. Interfacial enhancement of carbon fiber/nylon 12 composites by grafting nylon 6 to the surface of carbon fiber

    NASA Astrophysics Data System (ADS)

    Hui, Chen; Qingyu, Cai; Jing, Wu; Xiaohong, Xia; Hongbo, Liu; Zhanjun, Luo

    2018-05-01

    Nylon 6 (PA6) grafted onto carbon fiber (CF) after chemical oxidation treatment was in an attempt to reinforce the mechanical properties of carbon fiber composites. Scanning electronic microscopy (SEM), Fourier transform infrared analysis (FT-IR), X-ray photoelectron spectroscope (XPS) and thermogravimetric analysis (TG) were selected to characterize carbon fibers with different surface treated. Experimental results showed that PA6 was grafted uniformly on the fiber surface through the anionic polymerization. A large number of functional groups were introduced to the fiber surface and the surface roughness was increased. After grafting PA6 on the oxidized carbon fibers, it played an important role on improving the interfacial adhesion between the fibers and the matrix by improving PA12 wettability, increasing chemical bonding and mechanical interlocking. Compared with the desized CF composites, the tensile strength of PA6-CF/PA12 composites was increased by 30.8% from 53.9 MPa to 70.2 MPa. All results indicated that grafting PA6 onto carbon fiber surface was an effective method to enhance the mechanical strength of carbon fiber/nylon 12 composites.

  2. A Large-scale Finite Element Model on Micromechanical Damage and Failure of Carbon Fiber/Epoxy Composites Including Thermal Residual Stress

    NASA Astrophysics Data System (ADS)

    Liu, P. F.; Li, X. K.

    2018-06-01

    The purpose of this paper is to study micromechanical progressive failure properties of carbon fiber/epoxy composites with thermal residual stress by finite element analysis (FEA). Composite microstructures with hexagonal fiber distribution are used for the representative volume element (RVE), where an initial fiber breakage is assumed. Fiber breakage with random fiber strength is predicted using Monte Carlo simulation, progressive matrix damage is predicted by proposing a continuum damage mechanics model and interface failure is simulated using Xu and Needleman's cohesive model. Temperature dependent thermal expansion coefficients for epoxy matrix are used. FEA by developing numerical codes using ANSYS finite element software is divided into two steps: 1. Thermal residual stresses due to mismatch between fiber and matrix are calculated; 2. Longitudinal tensile load is further exerted on the RVE to perform progressive failure analysis of carbon fiber/epoxy composites. Numerical convergence is solved by introducing the viscous damping effect properly. The extended Mori-Tanaka method that considers interface debonding is used to get homogenized mechanical responses of composites. Three main results by FEA are obtained: 1. the real-time matrix cracking, fiber breakage and interface debonding with increasing tensile strain is simulated. 2. the stress concentration coefficients on neighbouring fibers near the initial broken fiber and the axial fiber stress distribution along the broken fiber are predicted, compared with the results using the global and local load-sharing models based on the shear-lag theory. 3. the tensile strength of composite by FEA is compared with those by the shear-lag theory and experiments. Finally, the tensile stress-strain curve of composites by FEA is applied to the progressive failure analysis of composite pressure vessel.

  3. A Large-scale Finite Element Model on Micromechanical Damage and Failure of Carbon Fiber/Epoxy Composites Including Thermal Residual Stress

    NASA Astrophysics Data System (ADS)

    Liu, P. F.; Li, X. K.

    2017-09-01

    The purpose of this paper is to study micromechanical progressive failure properties of carbon fiber/epoxy composites with thermal residual stress by finite element analysis (FEA). Composite microstructures with hexagonal fiber distribution are used for the representative volume element (RVE), where an initial fiber breakage is assumed. Fiber breakage with random fiber strength is predicted using Monte Carlo simulation, progressive matrix damage is predicted by proposing a continuum damage mechanics model and interface failure is simulated using Xu and Needleman's cohesive model. Temperature dependent thermal expansion coefficients for epoxy matrix are used. FEA by developing numerical codes using ANSYS finite element software is divided into two steps: 1. Thermal residual stresses due to mismatch between fiber and matrix are calculated; 2. Longitudinal tensile load is further exerted on the RVE to perform progressive failure analysis of carbon fiber/epoxy composites. Numerical convergence is solved by introducing the viscous damping effect properly. The extended Mori-Tanaka method that considers interface debonding is used to get homogenized mechanical responses of composites. Three main results by FEA are obtained: 1. the real-time matrix cracking, fiber breakage and interface debonding with increasing tensile strain is simulated. 2. the stress concentration coefficients on neighbouring fibers near the initial broken fiber and the axial fiber stress distribution along the broken fiber are predicted, compared with the results using the global and local load-sharing models based on the shear-lag theory. 3. the tensile strength of composite by FEA is compared with those by the shear-lag theory and experiments. Finally, the tensile stress-strain curve of composites by FEA is applied to the progressive failure analysis of composite pressure vessel.

  4. Inorganic Polymer Matrix Composite Strength Related to Interface Condition

    PubMed Central

    Radford, Donald W.; Grabher, Andrew; Bridge, John

    2009-01-01

    Resin transfer molding of an inorganic polymer binder was successfully demonstrated in the preparation of ceramic fiber reinforced engine exhaust valves. Unfortunately, in the preliminary processing trials, the resulting composite valves were too brittle for in-engine evaluation. To address this limited toughness, the effectiveness of a modified fiber-matrix interface is investigated through the use of carbon as a model material fiber coating. After sequential heat treatments composites molded from uncoated and carbon-coated fibers are compared using room temperature 3-point bend testing. Carbon-coated Nextel fiber reinforced geopolymer composites demonstrated a 50% improvement in strength, versus that of the uncoated fiber reinforced composites, after the 250 °C postcure.

  5. Ovarian response markers lead to appropriate and effective use of corifollitropin alpha in assisted reproduction.

    PubMed

    La Marca, Antonio; D'Ippolito, Giovanni

    2014-02-01

    Corifollitropin alpha is a highly effective gonadotrophin, which maintains multifollicular growth for a week. The advantages of its administration include ease of use of the drug, making the treatment more patient friendly, resulting in a lower level of distress for the patient. At the same time, the pregnancy rate resulting from its use in IVF/intracytoplasmic sperm injection cycles is similar to that found when daily recombinant FSH is administered. The ovarian response to corifollitropin alpha is dependent on clinically established predictors such as baseline FSH, antral follicle count (AFC) and age. There is a general trend towards a higher ovarian response with an increasing AFC and the number of oocytes per attempt decreased with increasing baseline FSH and age. Even if the risk of ovarian hyperstimulation syndrome following corifollitropin alpha is very similar to the rate reported in literature for young women undergoing IVF, the risk of overstimulation may be reduced by avoiding maximal ovarian stimulation in women anticipated to be hyperresponders. High basal anti-Müllerian hormone and/or AFC can identify women with enhanced functional ovarian reserve at risk of overstimulation, and the risk is even higher if maximally stimulated with corifollitropin alpha or high dose of daily recombinant FSH. Corifollitropin alpha is a highly effective gonadotrophin which maintains multifollicular growth for a week. The ovarian response to corifollitropin was demonstrated to be dependent on clinically established predictors such as baseline FSH, antral follicle count (AFC) and age. There was a general trend toward a higher ovarian response with an increasing AFC and the mean number of oocytes per attempt decreased with increasing baseline FSH and age. Even if the risk of ovarian hyperstimulation syndrome (OHSS) following corifollitropin alpha is very similar to the rate of OHSS reported in literature for young women undergoing IVF, the risk of overstimulation may be reduced by avoiding maximal ovarian stimulation in women anticipated to be hyperresponders. Increasing evidence demonstrates that anti-Müllerian hormone and AFC exhibit a very good diagnostic performance in the prediction of hyperresponse. High basal anti-Müllerian hormone and/or AFC can identify women with enhanced functional ovarian reserve who are at risk of overstimulation if stimulated in IVF cycles and the risk is even higher if maximally stimulated with corifollitropin alpha or high dose of daily recombinant FSH. Copyright © 2013 Reproductive Healthcare Ltd. Published by Elsevier Ltd. All rights reserved.

  6. Outcome of ICSI with motile testicular spermatozoa obtained through microscopically assisted testicular sperm extraction in relation to the ovarian response.

    PubMed

    Erdem, E; Karacan, M; Usta, A; Arvas, A; Cebi, Z; Camlibel, T

    2017-05-01

    To determine the relationship between AFC, basal FSH level, woman's age, the number of oocytes retrieved and the outcome of ICSI with testicular spermatozoa obtained with microscopically assisted testicular sperm extraction. In this retrospective cohort study, a total of 340 couples who underwent ICSI treatment with testicular sperm were enrolled. Women aged?40years and the first cycles of couples were included. ICSI was performed with motile testicular spermatozoa obtained from 89 men with obstructive azoospermia and 251 men with nonobstructive azoospermia. GnRH-antagonist protocol was used for ovulation induction. Simple linear regression was carried out to analyze relationship between the AFC, basal FSH, woman's age, the number of oocytes, and the live birth rate (LBR). Receiver operator characteristic curves (ROC) were formed to detect cut-off values below which LBR was significantly decreased. ROC curve analysis demonstrated that the cut-off level of the number of oocytes retrieved to predict the LBR was 7. According to this cut-off level, all patients were divided into two groups. Women with retrieved<7 oocytes were included in Group 1 and women with retrieved?7 oocytes were included in Group 2. The mean age of men was 35.1±4.9years. The mean age, mean FSH level and mean AFC of women were 32.1±4.9years, 6.9±2.7 IU/L, 7.6±3.4, respectively. Significant correlations were found between AFC, the number of oocytes retrieved, and the LBR per ICSI cycle with testicular spermatozoa. The LBR was significantly lower in women with AFC<8 than those with AFC?8. Independently, the LBR was significantly lower in cycles with<7 oocytes retrieved compared to those with ?7. Embryo transfer was not achieved in 37 cycles with<7 oocytes (37/167, 22.1%) and 18 cycles with?7 (18/173, 10.4%) because of the absence of transfer-quality embryos (P=0.005). The LBRs were the lowest in cycles with one or two oocytes available (8.3 and 8.3%, respectively), but these rates were not statistically different than those in cycles with 3, 4, 5 and 6 oocytes (14.2, 17.2, 18.5, 17.6%, respectively, P=0.810). AFC and the number of oocytes retrieved are important prognostic factors in an ICSI cycle with testicular sperm in women ?40years, yielding significantly diminished LBRs with<8 antral follicles and/or<7 oocytes retrieved. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  7. Heifer fertility and carry over consequences for life time production in dairy and beef cattle.

    PubMed

    Wathes, D C; Pollott, G E; Johnson, K F; Richardson, H; Cooke, J S

    2014-05-01

    The rearing period has a key influence on the later performance of cattle, affecting future fertility and longevity. Producers usually aim to breed replacement heifers by 15 months to calve at 24 months. An age at first calving (AFC) close to 2 years (23 to 25 months) is optimum for economic performance as it minimises the non-productive period and maintains a seasonal calving pattern. This is rarely achieved in either dairy or beef herds, with average AFC for dairy herds usually between 26 and 30 months. Maintaining a low AFC requires good heifer management with adequate growth to ensure an appropriate BW and frame size at calving. Puberty should occur at least 6 weeks before the target breeding age to enable animals to undergo oestrous cycles before mating. Cattle reach puberty at a fairly consistent, but breed-dependent, proportion of mature BW. Heifer fertility is a critical component of AFC. In US Holsteins the conception rate peaked at 57% at 15 to 16 months, declining in older heifers. Wide variations in growth rates on the same farm often lead to some animals having delayed first breeding and/or conception. Oestrous synchronisation regimes and sexed semen can both be used but unless heifers have been previously well-managed the success rates may be unacceptably low. Altering the nutritional input above or below those needed for maintenance at any stage from birth to first calving clearly alters the average daily gain (ADG) in weight. In general an ADG of around 0.75 kg/day seems optimal for dairy heifers, with lower rates delaying puberty and AFC. There is some scope to vary ADG at different ages providing animals reach an adequate size by calving. Major periods of nutritional deficiency and/or severe calfhood disease will, however, compromise development with long-term adverse consequences. Infectious disease can also cause pregnancy loss/abortion. First lactation milk yield may be slightly lower in younger calving cows but lifetime production is higher as such animals usually have good fertility and survive longer. There is now extensive evidence that as long as the AFC is >23 months then future performance is not adversely influenced. On the other hand, delayed first calving >30 months is associated with poor survival. Underfeeding of young heifers reduces their milk production potential and is a greater problem than overfeeding. Farmers are more likely to meet the optimum AFC target of 23 to 25 months if they monitor growth rates and adjust feed accordingly.

  8. Metal matrix coated fiber composites and the methods of manufacturing such composites

    DOEpatents

    Weeks, Jr., Joseph K.; Gensse, Chantal

    1993-01-01

    A fiber coating which allows ceramic or metal fibers to be wetted by molten metals is disclosed. The coating inhibits degradation of the physical properties caused by chemical reaction between the fiber and the coating itself or between the fiber and the metal matrix. The fiber coating preferably includes at least a wetting layer, and in some applications, a wetting layer and a barrier layer between the fiber and the wetting layer. The wetting layer promotes fiber wetting by the metal matrix. The barrier layer inhibits fiber degradation. The fiber coating permits the fibers to be infiltrated with the metal matrix resulting in composites having unique properties not obtainable in pure materials.

  9. Metal matrix coated fiber composites and the methods of manufacturing such composites

    DOEpatents

    Weeks, J.K. Jr.; Gensse, C.

    1993-09-14

    A fiber coating which allows ceramic or metal fibers to be wetted by molten metals is disclosed. The coating inhibits degradation of the physical properties caused by chemical reaction between the fiber and the coating itself or between the fiber and the metal matrix. The fiber coating preferably includes at least a wetting layer, and in some applications, a wetting layer and a barrier layer between the fiber and the wetting layer. The wetting layer promotes fiber wetting by the metal matrix. The barrier layer inhibits fiber degradation. The fiber coating permits the fibers to be infiltrated with the metal matrix resulting in composites having unique properties not obtainable in pure materials. 8 figures.

  10. SiC/SiC Composites: The Effect of Fiber Type and Fiber Architecture on Mechanical Properties

    NASA Technical Reports Server (NTRS)

    Morscher, Gregory N.

    2008-01-01

    Woven SiC/SiC composites represent a broad family of composites with a broad range of properties which are of interest for many energy-based and aero-based applications. Two important features of SiC/SiC composites which one must consider are the reinforcing fibers themselves and the fiber-architecture they are formed into. The range of choices for these two features can result in a wide range of elastic, mechanical, thermal, and electrical properties. In this presentation, it will be demonstrated how the effect of fiber-type and fiber architecture effects the important property of "matrix cracking stress" for slurry-cast melt-infiltrated SiC matrix composites, which is often considered to be a critical design parameter for this system of composites.

  11. Fatigue damage accumulation in various metal matrix composites

    NASA Technical Reports Server (NTRS)

    Johnson, W. S.

    1987-01-01

    The purpose of this paper is to review some of the latest understanding of the fatigue behavior of continuous fiber reinforced metal matrix composites. The emphasis is on the development of an understanding of different fatigue damage mechanisms and why and how they occur. The fatigue failure modes in continuous fiber reinforced metal matrix composites are controlled by the three constituents of the system: fiber, matrix, and fiber/matrix interface. The relative strains to fatigue failure of the fiber and matrix will determine the failure mode. Several examples of matrix, fiber, and self-similar damage growth dominated fatigue damage are given for several metal matrix composite systems. Composite analysis, failure modes, and damage modeling are discussed. Boron/aluminum, silicon-carbide/aluminum, FP/aluminum, and borsic/titanium metal matrix composites are discussed.

  12. Graphitized-carbon fiber/carbon char fuel

    DOEpatents

    Cooper, John F [Oakland, CA

    2007-08-28

    A method for recovery of intact graphitic fibers from fiber/polymer composites is described. The method comprises first pyrolyzing the graphite fiber/polymer composite mixture and then separating the graphite fibers by molten salt electrochemical oxidation.

  13. Review on effect of chemical, thermal, additive treatment on mechanical properties of basalt fiber and their composites

    NASA Astrophysics Data System (ADS)

    Jain, Naman; Singh, Vinay Kumar; Chauhan, Sakshi

    2017-12-01

    Basalt fiber is emerging out the new reinforcing material for composites. To overcome some of the disadvantages of fibers such as poor bonding to polymers, low thermal stability and high moisture absorption fiber characteristics are modified with chemical, thermal and additive treatments. Chemical treatment corrosive resistance to alkali and acid were investigated which were used to clean and modify the surface of fiber for higher bonding with resins. To improve the thermal stability and reduce moisture uptake thermal treatment such as plasma and non thermal plasma were used which increased the surface roughness and change the chemical composition of surface of basalt fiber. Additive treatment is used to improve the mechanical properties of fibers, in basalt fiber additive treatment was done with SiO2 additive because of its chemical composition which contains major content of SiO2. In present investigation review on the effect of different treatment such as chemical, thermal and additive were studied. Effect of these treatment on chemical composition of the surface of basalt fiber and corrosion to acidic and alkali solution were studied with their effect on mechanical properties of basalt fiber and their composite.

  14. Effects of carbon fiber surface characteristics on interfacial bonding of epoxy resin composite subjected to hygrothermal treatments

    NASA Astrophysics Data System (ADS)

    Li, Min; Liu, Hongxin; Gu, Yizhuo; Li, Yanxia; Zhang, Zuoguang

    2014-01-01

    The changes of interfacial bonding of three types of carbon fibers/epoxy resin composite as well as their corresponding desized carbon fiber composites subjecting to hygrothermal conditions were investigated by means of single fiber fragmentation test. The interfacial fracture energy was obtained to evaluate the interfacial bonding before and after boiling water aging. The surface characteristics of the studied carbon fiber were characterized using X-ray photoelectron spectroscopy. The effects of activated carbon atoms and silicon element at carbon fiber surface on the interfacial hygrothermal resistance were further discussed. The results show that the three carbon fiber composites with the same resin matrix possess different hygrothermal resistances of interface and the interfacial fracture energy after water aging can not recovery to the level of raw dry sample (irreversible changes) for the carbon fiber composites containing silicon. Furthermore, the activated carbon atoms have little impact on the interfacial hygrothermal resistance. The irreversible variations of interfacial bonding and the differences among different carbon fiber composites are attributed to the silicon element on the carbon fiber bodies, which might result in hydrolyzation in boiling water treatment and degrade interfacial hygrothermal resistance.

  15. Thermomechanical Property Data Base Developed for Ceramic Fibers

    NASA Technical Reports Server (NTRS)

    1996-01-01

    A key to the successful application of metal and ceramic composite materials in advanced propulsion and power systems is the judicious selection of continuous-length fiber reinforcement. Appropriate fibers can provide these composites with the required thermomechanical performance. To aid in this selection, researchers at the NASA Lewis Research Center, using in-house state-of-the-art test facilities, developed an extensive data base of the deformation and fracture properties of commercial and developmental ceramic fibers at elevated temperatures. Lewis' experimental focus was primarily on fiber compositions based on silicon carbide or alumina because of their oxidation resistance, low density, and high modulus. Test approaches typically included tensile and flexural measurements on single fibers or on multifilament tow fibers in controlled environments of air or argon at temperatures from 800 to 1400 C. Some fiber specimens were pretreated at composite fabrication temperatures to simulate in situ composite conditions, whereas others were precoated with potential interphase and matrix materials.

  16. Thermal conductivity and thermal expansion of graphite fiber/copper matrix composites

    NASA Technical Reports Server (NTRS)

    Ellis, David L.; Mcdanels, David L.

    1991-01-01

    The high specific conductivity of graphite fiber/copper matrix (Gr/Cu) composites offers great potential for high heat flux structures operating at elevated temperatures. To determine the feasibility of applying Gr/Cu composites to high heat flux structures, composite plates were fabricated using unidirectional and cross-plied pitch-based P100 graphite fibers in a pure copper matrix. Thermal conductivity of the composites was measured from room temperature to 1073 K, and thermal expansion was measured from room temperature to 1050 K. The longitudinal thermal conductivity, parallel to the fiber direction, was comparable to pure copper. The transverse thermal conductivity, normal to the fiber direction, was less than that of pure copper and decreased with increasing fiber content. The longitudinal thermal expansion decreased with increasing fiber content. The transverse thermal expansion was greater than pure copper and nearly independent of fiber content.

  17. Thermal conductivity and thermal expansion of graphite fiber-reinforced copper matrix composites

    NASA Technical Reports Server (NTRS)

    Ellis, David L.; Mcdanels, David L.

    1993-01-01

    The high specific conductivity of graphite fiber/copper matrix (Gr/Cu) composites offers great potential for high heat flux structures operating at elevated temperatures. To determine the feasibility of applying Gr/Cu composites to high heat flux structures, composite plates were fabricated using unidirectional and cross-plied pitch-based P100 graphite fibers in a pure copper matrix. Thermal conductivity of the composites was measured from room temperature to 1073 K, and thermal expansion was measured from room temperature to 1050 K. The longitudinal thermal conductivity, parallel to the fiber direction, was comparable to pure copper. The transverse thermal conductivity, normal to the fiber direction, was less than that of pure copper and decreased with increasing fiber content. The longitudinal thermal expansion decreased with increasing fiber content. The transverse thermal expansion was greater than pure copper and nearly independent of fiber content.

  18. Effect of natural fibers on mechanical properties of green cement mortar

    NASA Astrophysics Data System (ADS)

    AL-Zubaidi, Aseel B.

    2018-05-01

    Natural fibers of banana, reed, palm and coconut were used to reinforce cement composite. Optical microscopy showed that the prepared fibers are different in size and morphology. Nearly equiaxed, ribbon-like and nearly cylindrical morphologies were observed. Each of the utilized natural fibers was incorporated in the cement matrix at 0, 0.25, 0.5, 0.75 and 1.0 wt% and cured for 28 days. The scanning electron micrographs for the 1.0 wt% -reinforced composite showed differences in porosity, grain size and shape. Each of the utilized fibers has different effect on the microstructure of the cement composite that depends on the fiber size and morphology. Water absorption, thermal conductivity, bending strength, hardness and compression strengths were measured for the reinforced cement composite. It is found that the final physical and mechanical properties of the set cement composite depend on the fiber content and fiber type through the differences in their sizes and morphologies.

  19. Rotational 3D printing of damage-tolerant composites with programmable mechanics.

    PubMed

    Raney, Jordan R; Compton, Brett G; Mueller, Jochen; Ober, Thomas J; Shea, Kristina; Lewis, Jennifer A

    2018-02-06

    Natural composites exhibit exceptional mechanical performance that often arises from complex fiber arrangements within continuous matrices. Inspired by these natural systems, we developed a rotational 3D printing method that enables spatially controlled orientation of short fibers in polymer matrices solely by varying the nozzle rotation speed relative to the printing speed. Using this method, we fabricated carbon fiber-epoxy composites composed of volume elements (voxels) with programmably defined fiber arrangements, including adjacent regions with orthogonally and helically oriented fibers that lead to nonuniform strain and failure as well as those with purely helical fiber orientations akin to natural composites that exhibit enhanced damage tolerance. Our approach broadens the design, microstructural complexity, and performance space for fiber-reinforced composites through site-specific optimization of their fiber orientation, strain, failure, and damage tolerance. Copyright © 2018 the Author(s). Published by PNAS.

  20. Starch/polycaprolactone-containing composites reinforced with pre-treated sisal fibers

    USDA-ARS?s Scientific Manuscript database

    Composites based on thermoplastic cornstarch (TPS) and polycaprolactone (PCL) were reinforced with 5, 10 and 20% (wt%) of pretreated sisal fiber. The impact of the addition of sisal fiber on the mechanical, thermal and morphological properties of composites was investigated. Addition of 5-10% fibers...

  1. Oxidation of carbon fiber surfaces for use as reinforcement in high-temperature cementitious material systems

    DOEpatents

    Sugama, Toshifumi

    1990-01-01

    The interfacial bond characteristics between carbon fiber and a cement matrix, in high temperature fiber-reinforced cementitious composite systems, can be improved by the oxidative treatment of the fiber surfaces. Compositions and the process for producing the compositions are disclosed.

  2. Effect of kenaf fiber age on PLLA composite properties

    USDA-ARS?s Scientific Manuscript database

    The age of the kenaf (Hibiscus cannabinus L.) fiber dictates its pore architecture. The impact of increasing age of plant fiber on the corresponding composite can impact material selection for enhanced composite performance. Bast fibers stems of kenaf, a warm season tropical herbaceous annual plant ...

  3. Microstructured Optical Fiber Sensors Embedded in a Laminate Composite for Smart Material Applications

    PubMed Central

    Sonnenfeld, Camille; Sulejmani, Sanne; Geernaert, Thomas; Eve, Sophie; Lammens, Nicolas; Luyckx, Geert; Voet, Eli; Degrieck, Joris; Urbanczyk, Waclaw; Mergo, Pawel; Becker, Martin; Bartelt, Hartmut; Berghmans, Francis; Thienpont, Hugo

    2011-01-01

    Fiber Bragg gratings written in highly birefringent microstructured optical fiber with a dedicated design are embedded in a composite fiber-reinforced polymer. The Bragg peak wavelength shifts are measured under controlled axial and transversal strain and during thermal cycling of the composite sample. We obtain a sensitivity to transversal strain that exceeds values reported earlier in literature by one order of magnitude. Our results evidence the relevance of using microstructured optical fibers for structural integrity monitoring of composite material structures. PMID:22163755

  4. Fabrication of CH₃NH₃PbI₃/PVP Composite Fibers via Electrospinning and Deposition.

    PubMed

    Chao, Li-Min; Tai, Ting-Yu; Chen, Yueh-Ying; Lin, Pei-Ying; Fu, Yaw-Shyan

    2015-08-21

    In our study, one-dimensional PbI₂/polyvinylpyrrolidone (PVP) composition fibers have been prepared by using PbI₂ and PVP as precursors dissolved in N,N-dimethylformamide via a electrospinning process. Dipping the fibers into CH₃NH₃I solution changed its color, indicating the formation of CH₃NH₃PbI₃, to obtain CH₃NH₃PbI₃/PVP composite fibers. The structure, morphology and composition of the all as-prepared fibers were characterized by using X-ray diffraction and scanning electron microscopy.

  5. A new fiber sensor based on graphene coating technique for wearable equipment

    NASA Astrophysics Data System (ADS)

    Wu, Ensen; Zhang, Jinnan; Qiao, Min; Cao, Yanghua; Wang, Qi; Ren, Xiaomin; Zuo, Yong

    2018-02-01

    We propose and implement a graphene-based composite fiber sensor in this paper. The advantages of this composite fiber lie in simple and practicable fabrication, high sensitivity to tensile strain deformation, wide maximal sensing range. The experiment shows that the composite fiber can monitor small signals of the body and massive movements in conventionality condition such as human pulse and the movement of elbow. This suggests that this graphene-based composite fiber has a broad prospect in health monitoring and movement recognition.

  6. Carbon fiber composites for cryogenic filament-wound vessels

    NASA Technical Reports Server (NTRS)

    Larsen, J. V.; Simon, R. A.

    1972-01-01

    Advanced unidirectional and bidirectional carbon fiber/epoxy resin composites were evaluated for physical and mechanical properties over a cryogenic to room temperature range for potential application to cryogenic vessels. The results showed that Courtaulds HTS carbon fiber was the superior fiber in terms of cryogenic strength properties in epoxy composites. Of the resin systems tested in ring composites, CTBN/ERLB 4617 exhibited the highest composite strengths at cryogenic temperatures, but very low interlaminar shear strengths at room temperature. Tests of unidirectional and bidirectional composite bars showed that the Epon 828/Empol 1040 resin was better at all test temperatures. Neither fatigue cycling nor thermal shock had a significant effect on composite strengths or moduli. Thermal expansion measurements gave negative values in the fiber direction and positive values in the transverse direction of the composites.

  7. Effect of fiber content on the thermal conductivity and dielectric constant of hair fiber reinforced epoxy composite

    NASA Astrophysics Data System (ADS)

    Prasad Nanda, Bishnu; Satapathy, Alok

    2018-03-01

    This paper reports on the dielectric and thermal properties of hair fibers reinforced epoxy composites. Hair is an important part of human body which also offers protection to the human body. It is also viewed as a biological waste which is responsible for creating environmental pollution due to its low decomposition rate. But at the same time it has unique microstructural, mechanical and thermal properties. In the present work, epoxy composites are made by solution casting method with different proportions of short hair fiber (SHF). Effects of fiber content on the thermal conductivity and dielectric constant of epoxy resin are studied. Thermal conductivities of the composites are obtained using a UnithermTM Model 2022 tester. An HIOKI-3532-50 Hi Tester Elsier Analyzer is used for measuring the capacitance of the epoxy-SHF composite, from which dielectric constant (Dk) of the composite are calculated. A reduction in thermal conductivity of the composite is noticed with the increase in wt. % of fiber. The dielectric constant value of the composites also found to be significantly affected by the fiber content.

  8. Thermomechanical Performance of C and SiC Multilayer, Fiber-Reinforced, CVI SiC Matrix Composites

    NASA Technical Reports Server (NTRS)

    Morscher, Gregory N.; Singh, Mrityunjay

    2004-01-01

    Hybrid fiber approaches have been attempted in the past to alloy desirable properties of different fiber-types for mechanical properties, thermal stress management, and oxidation resistance. Such an approach has potential for the CrSiC and SiCrSiC composite systems. SiC matrix composites with different stacking sequences of woven C fiber (T300) layers and woven Sic fiber (Hi-NicalonTM) layers were fabricated using the standard CVI process. Delamination occurred to some extent due to thermal mismatch for all of the composites. However, for the composites with a more uniform stacking sequence, minimal delamination occurred, enabling tensile properties to be determined at room temperature and elevated temperatures (stress-rupture in air). Composites were seal-coated with a CVI SiC layer as well as a proprietary C-B-Si (CBS) layer. Definite improvement in rupture behavior was observed in air for composites with increasing SiC fiber content and a CBS layer. The results will be compared to standard C fiber reinforced CVI SiC matrix and Hi-Nicalon reinforced CVI SiC matrix composites.

  9. Transverse thermal expansion of carbon fiber/epoxy matrix composites

    NASA Technical Reports Server (NTRS)

    Helmer, J. F.; Diefendorf, R. J.

    1983-01-01

    Thermal expansion coefficients and moduli of elasticity have been determined experimentally for a series of epoxy-matrix composites reinforced with carbon and Kevlar fibers. It is found that in the transverse direction the difference between the properties of the fiber and the matrix is not as pronounced as in the longitudinal direction, where the composite properties are fiber-dominated. Therefore, the pattern of fiber packing tends to affect transverse composite properties. The transverse properties of the composites tested are examined from the standpoint of the concept of homogeneity defined as the variation of packing (or lack thereof) throughout a sample.

  10. Method for forming fibrous silicon carbide insulating material

    DOEpatents

    Wei, G.C.

    1983-10-12

    A method whereby silicon carbide-bonded SiC fiber composites are prepared from carbon-bonded C fiber composites is disclosed. Carbon-bonded C fiber composite material is treated with gaseous silicon monoxide generated from the reaction of a mixture of colloidal silica and carbon black at an elevated temperature in an argon atmosphere. The carbon in the carbon bond and fiber is thus chemically converted to SiC resulting in a silicon carbide-bonded SiC fiber composite that can be used for fabricating dense, high-strength high-toughness SiC composites or as thermal insulating materials in oxidizing environments.

  11. Method for forming fibrous silicon carbide insulating material

    DOEpatents

    Wei, George C.

    1984-01-01

    A method whereby silicon carbide-bonded SiC fiber composites are prepared from carbon-bonded C fiber composites is disclosed. Carbon-bonded C fiber composite material is treated with gaseous silicon monoxide generated from the reaction of a mixture of colloidal silica and carbon black at an elevated temperature in an argon atmosphere. The carbon in the carbon bond and fiber is thus chemically converted to SiC resulting in a silicon carbide-bonded SiC fiber composite that can be used for fabricating dense, high-strength high-toughness SiC composites or as thermal insulating materials in oxidizing environments.

  12. Experimentation and analysis of mechanical behavior modification of titanium matrix composites through controlled fiber placement

    NASA Astrophysics Data System (ADS)

    Bowman, Cheryl Lynne

    Titanium composites reinforced with SiC fibers in a uniaxial direction are being considered for various high temperature applications which require high specific strength or stiffness in the primary loading direction. However the very low tensile and creep strength of these composites in the transverse direction (loading perpendicular to the fiber axis) limits their use in many practical applications. Recent advances in composite fabrication techniques have provided not only better control of fiber volume fraction and distribution, but also the ability to control the relative fiber placement. The goal of this research was produce continuously reinforced SiC/Ti composites with precise fiber arrangement in order to ascertain the significance of fiber arrangements on transverse mechanical properties. In this study, TIMETAL 21S and Ti-6-4 composites reinforced with SCS-6 SiC fibers were produced with six distinct fiber placement arrangements. The effect of fiber placement on uniaxial tensile and creep behaviors was assessed and the results compared to analytical predictions. Consistent with analytical predictions, the fiber arrangements used in this study did not significantly change the longitudinal tensile behavior, but differences were obtained in the transverse loading response. For example, a diamond (non-equilateral triangle) fiber packing was found to have a higher transverse ultimate tensile strength and better transverse creep resistance than a rectangular fiber packing arrangement for a given volume fraction and fiber spacing (within-ply vs. between-ply). Initially this result appeared to be in contrast to previous computational and analytical simulations which predicted more favorable mechanical behavior for rectangular-type arrangements. However, this experimental/predictive conflict was resolved, in part, by simply defining a fiber spacing ratio which could describe both rectangular type and diamond-type arrangements. The computationally efficient Micromechanical Analysis Code based on the Generalized Method of Cells captured the correct behavior trends for these fiber arrangements and thus can be used to estimate the optimum fiber arrangement for a given materials system. Although this research utilized SiC/titanium alloy composites, the results should be relevant to any composite with a continuous reinforcement, a ductile matrix, and a finite fiber/matrix interfacial bond strength.

  13. Natural Fiber Composite Retting, Preform Manufacture and Molding (Project 18988/Agreement 16313)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simmons, Kevin L.; Howe, Daniel T.; Laddha, Sachin

    2009-12-31

    Plant-based natural fibers can be used in place of glass in fiber reinforced automotive composites to reduce weight, cost and provide environmental benefits. Current automotive applications use natural fibers in injection molded thermoplastics for interior, non-structural applications. Compression molded natural fiber reinforced thermosets have the opportunity to extend natural fiber composite applications to structural and semi-structural parts and exterior parts realizing further vehicle weight savings. The development of low cost molding and fiber processing techniques for large volumes of natural fibers has helped in understanding the barriers of non-aqueous retting. The retting process has a significant effect on the fibermore » quality and its processing ability that is related to the natural fiber composite mechanical properties. PNNL has developed a compression molded fiber reinforced composite system of which is the basis for future preforming activities and fiber treatment. We are using this process to develop preforming techniques and to validate fiber treatment methods relative to OEM provided application specifications. It is anticipated for next fiscal year that demonstration of larger quantities of SMC materials and molding of larger, more complex components with a more complete testing regimen in coordination with Tier suppliers under OEM guidance.« less

  14. Mechanical properties of green composites based on thermoplastic starch

    NASA Astrophysics Data System (ADS)

    Fornes, F.; Sánchez-Nácher, L.; Fenollar, O.; Boronat, T.; Garcia-Sanoguera, D.

    2010-06-01

    The present work is focused on study of "green composites" elaborated from thermoplastic starch (TPS) as polymer matrix and a fiber from natural origin (rush) as reinforced fiber. The effect of the fiber content has been studied by means of the mechanical properties. The composite resulting presents a lack of interaction between matrix and fiber that represents a performance decrease. However the biodegradability behavior of the resulting composite raise this composite as useful an industrial level.

  15. Three-dimensional printing of continuous-fiber composites by in-nozzle impregnation

    PubMed Central

    Matsuzaki, Ryosuke; Ueda, Masahito; Namiki, Masaki; Jeong, Tae-Kun; Asahara, Hirosuke; Horiguchi, Keisuke; Nakamura, Taishi; Todoroki, Akira; Hirano, Yoshiyasu

    2016-01-01

    We have developed a method for the three-dimensional (3D) printing of continuous fiber-reinforced thermoplastics based on fused-deposition modeling. The technique enables direct 3D fabrication without the use of molds and may become the standard next-generation composite fabrication methodology. A thermoplastic filament and continuous fibers were separately supplied to the 3D printer and the fibers were impregnated with the filament within the heated nozzle of the printer immediately before printing. Polylactic acid was used as the matrix while carbon fibers, or twisted yarns of natural jute fibers, were used as the reinforcements. The thermoplastics reinforced with unidirectional jute fibers were examples of plant-sourced composites; those reinforced with unidirectional carbon fiber showed mechanical properties superior to those of both the jute-reinforced and unreinforced thermoplastics. Continuous fiber reinforcement improved the tensile strength of the printed composites relative to the values shown by conventional 3D-printed polymer-based composites. PMID:26965201

  16. Creation of smart composites using an embroidery machine

    NASA Astrophysics Data System (ADS)

    Torii, Nobuhiro; Oka, Kosuke; Ikeda, Tadashige

    2016-04-01

    A smart composite with functional fibers and reinforcement fibers optimally placed with an embroidery machine was created. Fiber orientation affects mechanical properties of composite laminates significantly. Accordingly, if the fibers can be placed along a desired curved path, fiber reinforced plastic (FRP) structures can be designed more lightly and more sophisticatedly. To this end a tailored fiber placement method using the embroidery machine have been studied. To add functions to the FRP structures, shape memory alloy (SMA) wires were placed as functional fibers. First, for a certain purpose the paths of the reinforcement fibers and the SMA wires were simultaneously optimized in analysis. Next, the reinforcement fibers and tubes with the SMA wires were placed on fabrics by using the embroidery machine and this fabric was impregnated with resin by using the vacuum assisted resin transfer molding method. This smart composite was activated by applying voltage to the SMA wires. Fundamental properties of the smart composite were examined and the feasibility of the proposed creation method was shown.

  17. Stability of Glass Fiber-Plastic Composites

    DTIC Science & Technology

    1974-11-01

    miniiiii’ 5 0712 01016774 9 x TECHNICA. . LIBRARY Jt U*Al>/l 1 Technical Report RL-75-6 STABILITY OF GLASS FIBER -PLASTIC COMPOSITES Wartan A...Subtitle) STABILITY OF GLASS FIBER -PLASTIC COMPOSITES 5. TYPE OF REPORT & PERIOD COVERED Technical Report 6. PERFORMING ORG. REPORT NUMBER 7...Exploratory research was conducted to determine the stages and nature of degradation of glass fiber -plastic composite systems under various environmental

  18. Instrumented impact testing of kenaf fiber reinforced polypropylene composites: effects of temperature and composition

    Treesearch

    Craig Merrill Clemons; Anand R. Sanadi

    2007-01-01

    An instrumented Izod test was used to investigate the effects of fiber content, coupling agent, and temperature on the impact performance of kenaf fiber reinforced polypropylene (PP). Composites containing 0-60% (by weight) kenaf fiber and 0 or 2% maleated polypropylene (MAPP) and PP/wood flour composites were tested at room temperature and between -50 °C and +...

  19. Reinforcing and Toughening Effects of Bamboo Pulp Fiber on Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) Fiber Composites.

    USDA-ARS?s Scientific Manuscript database

    Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV)/bamboo pulp fiber composites were melt-compounded and injection-molded. Tensile, impact and dynamic mechanical properties of the composites were studied. In contrast to many other short natural fiber reinforced biocomposites which demonstrate decre...

  20. Oxidation of carbon fiber surfaces for use as reinforcement in high-temperature cementitious material systems

    DOEpatents

    Sugama, Toshifumi.

    1990-05-22

    The interfacial bond characteristics between carbon fiber and a cement matrix, in high temperature fiber-reinforced cementitious composite systems, can be improved by the oxidative treatment of the fiber surfaces. Compositions and the process for producing the compositions are disclosed. 2 figs.

  1. Crustal contamination and crystal entrapment during polybaric magma evolution at Mt. Somma-Vesuvius volcano, Italy: Geochemical and Sr isotope evidence

    USGS Publications Warehouse

    Piochi, M.; Ayuso, R.A.; de Vivo, B.; Somma, R.

    2006-01-01

    New major and trace element analyses and Sr-isotope determinations of rocks from Mt. Somma-Vesuvius volcano produced from 25 ky BP to 1944 AD are part of an extensive database documenting the geochemical evolution of this classic region. Volcanic rocks include silica undersaturated, potassic and ultrapotassic lavas and tephras characterized by variable mineralogy and different crystal abundance, as well as by wide ranges of trace element contents and a wide span of initial Sr-isotopic compositions. Both the degree of undersaturation in silica and the crystal content increase through time, being higher in rocks produced after the eruption at 472 AD (Pollena eruption). Compositional variations have been generally thought to reflect contributions from diverse types of mantle and crust. Magma mixing is commonly invoked as a fundamental process affecting the magmas, in addition to crystal fractionation. Our assessment of geochemical and Sr-isotopic data indicates that compositional variability also reflects the influence of crustal contamination during magma evolution during upward migration to shallow crustal levels and/or by entrapment of crystal mush generated during previous magma storage in the crust. Using a variant of the assimilation fractional crystallization model (Energy Conservation-Assimilation Fractional Crystallization; [Spera and Bohrson, 2001. Energy-constrained open-system magmatic processes I: General model and energy-constrained assimilation and fractional crystallization (EC-AFC) formulation. J. Petrol. 999-1018]; [Bohrson, W.A. and Spera, F.J., 2001. Energy-constrained open-system magmatic process II: application of energy-constrained assimilation-fractional crystallization (EC-AFC) model to magmatic systems. J. Petrol. 1019-1041]) we estimated the contributions from the crust and suggest that contamination by carbonate rocks that underlie the volcano (2 km down to 9-10 km) is a fundamental process controlling magma compositions at Mt. Somma-Vesuvius in the last 8 ky BP. Contamination in the mid- to upper crust occurred repeatedly, after the magma chamber waxed with influx of new mantle- and crustal-derived magmas and fluids, and waned as a result of magma withdrawal and production of large and energetic plinian and subplinian eruptions. ?? 2005 Elsevier B.V. All rights reserved.

  2. Thermo-oxidative stability studies of PMR-15 polymer matrix composites reinforced with various fibers

    NASA Technical Reports Server (NTRS)

    Bowles, Kenneth J.

    1990-01-01

    An experimental study was conducted to measure the thermo-oxidative stability of PMR-15 polymer matrix composites reinforced with various fibers and to observe differences in the way they degrade in air. The fibers that were studied included graphite and the thermally stable Nicalon and Nextel ceramic fibers. Weight loss rates for the different composites were assessed as a function of mechanical properties, specimen geometry, fiber sizing, and interfacial bond strength. Differences were observed in rates of weight loss, matrix cracking, geometry dependency, and fiber-sizing effects. It was shown that Celion 6000 fiber-reinforced composites do not exhibit a straight-line Arrhenius relationship at temperatures above 316 C.

  3. Production of hybrid granitic magma at the advancing front of basaltic underplating: Inferences from the Sesia Magmatic System (south-western Alps, Italy)

    NASA Astrophysics Data System (ADS)

    Sinigoi, Silvano; Quick, James E.; Demarchi, Gabriella; Klötzli, Urs S.

    2016-05-01

    The Permian Sesia Magmatic System of the southwestern Alps displays the plumbing system beneath a Permian caldera, including a deep crustal gabbroic complex, upper crustal granite plutons and a bimodal volcanic field dominated by rhyolitic tuff filling the caldera. Isotopic compositions of the deep crustal gabbro overlap those of coeval andesitic basalts, whereas granites define a distinct, more radiogenic cluster (Sri ≈ 0.708 and 0.710, respectively). AFC computations starting from the best mafic candidate for a starting melt show that Nd and Sr isotopic compositions and trace elements of andesitic basalts may be modeled by reactive bulk assimilation of ≈ 30% of partially depleted crust and ≈ 15%-30% gabbro fractionation. Trace elements of the deep crustal gabbro cumulates require a further ≈ 60% fractionation of the andesitic basalt and loss of ≈ 40% of silica-rich residual melt. The composition of the granite plutons is consistent with a mixture of relatively constant proportions of residual melt delivered from the gabbro and anatectic melt. Chemical and field evidence leads to a conceptual model which links the production of the two granitic components to the evolution of the Mafic Complex. During the growth of the Mafic Complex, progressive incorporation of packages of crustal rocks resulted in a roughly steady state rate of assimilation. Anatectic granite originates in the hot zone of melting crust located above the advancing mafic intrusion. Upward segregation of anatectic melts facilitates the assimilation of the partially depleted restite by stoping. At each cycle of mafic intrusion and incorporation, residual and anatectic melts are produced in roughly constant proportions, because the amount of anatectic melt produced at the roof is a function of volume and latent heat of crystallization of the underplated mafic melt which in turn produces proportional amounts of hybrid gabbro cumulates and residual melt. Such a process can explain the restricted range in isotopic compositions of most rhyolitic and granitic rocks of the Permo-Carboniferous province of Europe and elsewhere. Sheet labelled "XRF standard analyses" reports replicate analyses normalized to 100 obtained by XRF on international standards analyzed along with our samples. Sheet labelled "XRF replicate sample analyses" reports replicate XRF analyses on two samples of our data set. ICP-MS analyses from Acme Analytical Laboratories Ltd. are shown for comparison. Sheet labelled "ICP-MS analyses" reports replicate analyses of trace elements on standard SO18, its official value and replicate analyses of two our samples provided by Acme Analytical Laboratories Ltd. Sheet labelled "kinzigite". Major and trace elements of amphibolite-facies paragneiss samples of the Kinzigite Formation from the roof of the Mafic Complex. In bold data by ICP-MS, other data by XRF. For Ba, Rb and Sr XRF data were included in the average estimate to increase the statistics. The last column reports the average data of amphibolite-facies rocks from the Kinzigite Formation from Schnetger (1994). Sheet labelled "PBB paragneiss". Data for granulite-facies paragneiss samples in the septa of the paragneiss bearing belt (PBB). XRF data for Ba and Sr were included in the average estimate to increase the statistics (Rb excluded because close to detection limit for XRF in many samples). The last column reports the average data of granulite-facies rocks from Val Strona (stronalite) from Schnetger (1994). Sheet labelled "PBB charnockite". Data for charnockitic rocks included in paragneiss septa. XRF data for Ba and Sr were included in the average estimate to increase the statistics (Rb excluded because close to detection limit for XRF in many samples). Sheet labelled "computed crustal assimilant". Reports the average compositions of paragneiss in amphibolite and granulite facies from this work and from Schnetger (1994). The bulk composition of the septa is computed as 70% paragneiss and 30% charnockite, as roughly estimated in the field. The partially depleted assimilant is computed as a 50/50 mixture of amphibolite- and granulite facies rocks. Sheet labelled "anatectic products" includes leucosomes at the roof of the Mafic Complex, anatectic granites from this work and from the Atesina Volcanic district (Rottura et al., 1998). In bold data by ICP-MS, other data by XRF. Sheet labelled "Valle Mosso granite" reports the whole rock compositions of granitic rocks of the pluton, distinguishing samples from upper and lower granite. XRF data for Ba, Rb and Sr were included in the average estimate to increase the statistics. The last column reports the bulk composition of the pluton, estimated as 70% lower and 30% upper granite. Sheet labelled "Rhyolite" reports whole rock and average compositions of rhyolite. Sheet labelled "UMC gabbro" reports whole rock compositions of gabbros from the upper Mafic Complex. Samples are grouped as pertaining to the "Upper Zone" and "Main Gabbro" according the subdivision of Rivalenti et al. (1975). Gt gabbro = garnet-bearing gabbro. In bold data by ICP-MS, other data by XRF. For Ba and Sr XRF data were included in the average estimate to increase the statistics. Sheet labelled "computed average UMC" reports the whole composition of upper Mafic complex, estimated as 30% Upper Zone and 70% Main Gabbro. Sheet labelled "mafic rocks in middle crust" reports the whole rock compositions from the mafic pod PST262, intruded at the boundary between Ivrea Zone and Serie dei Laghi at 287 ± 5 Ma (Klötzli et al., 2014) and mafic dikes and an enclave intruded in the lower Valle Mosso granite. Sheet labelled "mafic volcanic rocks" reports the whole rock compositions of basaltic andesite and andesite from the Sesia Magmatic System. The average composition is computed excluding altered samples and XRF data for trace elements. Sr and Nd isotope data from this work and previous publications. Sheet labelled "compositions for modelling" reports a summary of the average compositions of the components used for the computations. Sheet labelled "Kd used for AFC and FC modelling" reports the Kd values and percent of mineral phases used in the AFC and FC computations (from Claeson and Meurer, 2004; Rollinson, 1993; Green et al., 2000; Namur et al., 2011). Sheet labelled "trace elements modelling" reports the results of AFC, bulk mixing and FC computations on trace elements. The enclosed figure illustrates the bulk mixing lines between Campore and average crust or anatectic granite respectively. Mixing required getting the composition of andesitic basalt with average crust and anatectic granite varies from 33 to 63% respectively (see text for consequences). The AFC path from Campore to andesitic basalts overlaps the bulk mixing lines. The shape of the mixing line between residual and anatectic melt results in the poor sensibility of Nd to the addition of anatectic melt to the residual one (εNd remains within the field of mafic rocks up to 80% addition of anatectic melt). Sheet labelled "major elements modelling" reports the results of mass balance computations on major-elements based on bulk mixing and XL-FRAC (Stormer and Nicholls, 1978). Sheet labelled "EC-RAXFC modelling" reports input data and results obtained by EC-RAXFC code (Bohrson and Spera, 2007) to simulate the energy constrained AFC from Campore to andesitic basalt. Liquidus temperature and specific heat of magma and assimilant (tlm, tla, cpm, cpa) as well as heat of crystallization and fusion (hm, ha) were obtained by Rhyolite-Melts code (Gualda et al., 2012) at P = 6 kbar (intermediate pressure between the roof and the deepest rocks of the Mafic Complex; Demarchi et al., 1998), assuming QFM + 2, and H2O content = 0.5 for Campore and = 1.0 for assimilant (intermediate between kinzigite and stronalite from Schnetger, 1994). Initial temperature of assimilant (tlo) was assumed equal to the solidus temperature (ts), which results around 850° from the experimental melting of natural metapelite (Vielzeuf and Holloway, 1988). Non-linear melting functions were chosen within the range of values suggested by Bohrson and Spera (2007). Recharge magma (R) was set = 0 because the homogeneity of the Upper Mafic Complex is best explained if each new mafic pulse is injected at the new neutral buoyancy level, above a dense and partially depleted restite, and may be treated as a single pulse. X was set = 1 assuming that all anatectic melt enters the mafic magma. Different simulations were run using alternatively bulk partition coefficients of Sr and Nd for the assimilant (Da) reported for "standard" upper crust by Bohrson and Spera (2001; 1.5 and 0.25, respectively), Da estimated from our data set (2.15 and 2.6, respectively) and intermediate values. For the mafic magma, the bulk D values (Dm) of 0.77 for Sr and 0.34 for Nd result from the Kd and percent of mineral phases used in the AFC computation. Lat-long grid for samples reported in OS tables.

  4. Water Absorption and Thickness Swelling Behavior of Polypropylene Reinforced with Hybrid Recycled Newspaper and Glass Fiber

    NASA Astrophysics Data System (ADS)

    Shakeri, Alireza; Ghasemian, Ali

    2010-04-01

    This study aims to investigate the moisture absorption of recycled newspaper fiber and recycled newspaper-glass fiber hybrid reinforced polypropylene composites to study their suitability in outdoor applications. In this work composite materials were made from E-glass fiber (G), recycled newspaper (NP) and polypropylene (PP), by using internal mixing and hot-pressing molding. Long-term water absorption (WA) and thickness swelling (TS) kinetics of the composites was investigated with water immersion. It was found that the WA and TS increase with NP content in composite and water immersion time before an equilibrium condition was reached. Composites made from the NP show comparable results as those made of the hybrid fiber. The results suggest that the water absorption and thickness swelling composite decrease with increasing glass fiber contents in hybrid fiber composite. It is interesting to find that the WA and TS can be reduced significantly with incorporation of a coupling agent (maleated polypropylene) in the composite formulation. Further studies were conducted to model the water diffusion and thickness swelling of the composites. Diffusion coefficients and swelling rate parameters in the models were obtained by fitting the model predictions with the experimental data.

  5. Composite structural materials

    NASA Technical Reports Server (NTRS)

    Loewy, R. G.; Wiberley, S. E.

    1985-01-01

    Various topics relating to composite structural materials for use in aircraft structures are discussed. The mechanical properties of high performance carbon fibers, carbon fiber-epoxy interface bonds, composite fractures, residual stress in high modulus and high strength carbon fibers, fatigue in composite materials, and the mechanical properties of polymeric matrix composite laminates are among the topics discussed.

  6. Development of Ceramic Fibers for Reinforcement in Composite Materials

    NASA Technical Reports Server (NTRS)

    Gates, L. E.; Lent, W. E.; Teague, W. T.

    1961-01-01

    Refinements of the vertical arc fiberizing apparatus resulted in its ability to fiberize very different refractory glasses having wide ranges of properties. Although the apparatus, was originally designed as a laboratory research tool for the evaluation of many compositions daily, up to one quarter pound of fibers of a single composition could be produced in an 8-hour day. Fibers up to six and a half feet long were produced with the apparatus. Studies were conducted of two methods of fiberizing refractory glasses requiring rapid freezing from the melt. The first method consisted of fiberizing droplets of molten glass passing through an annular nozzle. The second method consisted of reconstructing the annular nozzle in. the shape of a horseshoe to achieve a shorter delay in blasting a molten droplet from the tip of a rod. Both methods were judged feasible for producing fibers of glasses requiring rapid freezing. The first method would be more amenable to volume fiber production. Studies of induction heating for fiber formation did not lead to its designation as a very efficient heating method. Problems. remain to be solved, in the design of a suitable susceptor for a higher heating rate, in protecting the susceptor from oxidation with an inert gas, in contamination of the melt from a refractory crucible, and in the protective radiation shielding of the induction concentrator coil. It is not considered practical to continue studies of this heating method. In the course of this program 151 refractory glass compositions were evaluated for fiber, forming characteristics. Of the various types of materials studied, the following showed promise in producing acceptable refractory fibers: sIlica- spinel (magnesium aluminate), silica- spinel-zirconia, silica-zirconia, silica-zinc spinel, aluminum phosphate glasses, and fluoride glasses. Compositions which did not produce acceptable fibers were high zirconia materials, barium spinels, and calcium aluminates. Improvements in the. testing apparatus for single fiber tensile strength increased the precision. of tests conducted on nine fibers. The highest mean tensile strength, a value of 295,000 pounds per square inch, was obtained with R-141 fibers. Treatment of R-74 fibers with anhydrous Linde A-1100 silane finish improved its mean fiber tensile strength by 25 percent. The lapse of time after fiber formation had no measurable effect on tensile strength. A static heating test conducted with various high melting fibers indicated that Fiberfrax and R-108 underwent no significant changes in bulk volume or resiliency on exposure to 2750 degrees Fahrenheit (1510 degrees Centigrade) in an oxidizing atmosphere. For fiber-resin composition fabrication, ten fiber materials were selected on the bases of high fiber yield, fusion temperature, and type of composition. Fiberfrax, a commercial ceramic fiber, was included for comparison. A new, more effective method of removing pellets from blown fibers was developed. The de-pelletized fibers were treated with a silane finish and felted into ten-inch diameter felts prior to resin impregnation. Composites containing 30 percent by weight of CTL 91-LD phenolic resin were molded under high pressure from the impregnated felts and post-cured to achieve optimum properties. Flexural strength, flexural modules of elasticity, and punch shear strength tests were conducted on the composite specimens. The highest average flexural strength obtained was 19,958 pounds per square inch with the R-74-fiber-resin composite. This compares very favorably with the military specification of 13,000 pounds per square inch flexural strength for randomly oriented fiber reinforced composites. The highest punch shear strength (11,509 pounds per square inch) was obtained with the R-89 fiber-resin composite. The effects of anhydrous fiber finishes on composite strength were not clearly indicated. Plasma arc tests at a heat flux of 550 British Thermal Units per square foot per second on eight composite materials indicated ablation rates generally equivalent to Fiberglas-Micarta No. 259-2. The composite reinforced with R-99 fibers had an average ablation rate of 0.008 inch per second and appears quite promising on the basis of these tests. Preliminary studies for processing fibers into yarn and fabric were conducted with R-99 fibers. The use of certain organic gums aided in 2 fabricating by hand several relatively strong yarns and a crude fabric swatch. This indicated the practicality of developing techniques for processing these fibers into yarn and fabric without significant damage to the fibers.

  7. Multi-material Preforming of Structural Composites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Norris, Robert E.; Eberle, Cliff C.; Pastore, Christopher M.

    2015-05-01

    Fiber-reinforced composites offer significant weight reduction potential, with glass fiber composites already widely adopted. Carbon fiber composites deliver the greatest performance benefits, but their high cost has inhibited widespread adoption. This project demonstrates that hybrid carbon-glass solutions can realize most of the benefits of carbon fiber composites at much lower cost. ORNL and Owens Corning Reinforcements along with program participants at the ORISE collaborated to demonstrate methods for produce hybrid composites along with techniques to predict performance and economic tradeoffs. These predictions were then verified in testing coupons and more complex demonstration articles.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Westman, Matthew P.; Fifield, Leonard S.; Simmons, Kevin L.

    The need for renewable fiber reinforced composites has never been as prevalent as it currently is. Natural fibers offer both cost savings and a reduction in density when compared to glass fibers. Though the strength of natural fibers is not as great as glass, the specific properties are comparable. Currently natural fiber composites have two issues that need to be addressed: resin compatibility and water absorption. The following preliminary research has investigated the use of Kenaf, Hibiscus cannabinus, as a possible glass replacement in fiber reinforced composites.

  9. Fiber optic connector

    DOEpatents

    Rajic, S.; Muhs, J.D.

    1996-10-22

    A fiber optic connector and method for connecting composite materials within which optical fibers are imbedded are disclosed. The fiber optic connector includes a capillary tube for receiving optical fibers at opposing ends. The method involves inserting a first optical fiber into the capillary tube and imbedding the unit in the end of a softened composite material. The capillary tube is injected with a coupling medium which subsequently solidifies. The composite material is machined to a desired configuration. An external optical fiber is then inserted into the capillary tube after fluidizing the coupling medium, whereby the optical fibers are coupled. 3 figs.

  10. Influence of natural fibers on the phase transitions in high-density polyethylene composites using dynamic mechanical analysis

    Treesearch

    Mehdi Tajvidi; Robert H. Falk; John C. Hermanson; Colin Felton

    2003-01-01

    Dynamic mechanical analysis was employed to evaluate the performance of various natural fibers in high-density polyethylene composites. Kenaf, newsprint, rice hulls, and wood flour were sources of fiber. Composites were made at 25 percent and 50 percent by weight fiber contents. Maleic anhydride modified polyethylene was also added at 1:25 ratio to the fiber....

  11. Effects of graphite fiber stability on the properties of PMR polyimide composites

    NASA Technical Reports Server (NTRS)

    Delvigs, P.; Alston, W. B.; Vannucci, R. D.

    1979-01-01

    The effect of the stability of graphite fibers on composite properties after exposure in air at 600 F was investigated. Composites were fabricated from PMR-15 and PMR-2 monomer solutions, using HTS-2 and Celion 6000 graphite fibers as the reinforcement. The effect of long-term exposure in air at 600 F on composite weight loss and mechanical properties was determined. These composites exhibited a significantly increased lifetime at that temperature compared to composites fabricated from HTS fiber sold prior to 1975. The effect of the PMR-15 and PMR-II resin compositions on long-term composite performance at 600 F is also discussed.

  12. Langley Aerothermodynamic Facilities Complex: Enhancements and Testing Capabilities

    NASA Technical Reports Server (NTRS)

    Micol, J. R.

    1998-01-01

    Description, capabilities, recent upgrades, and utilization of the NASA Langley Research Center (LaRC) Aerothermodynamic Facilities Complex (AFC) are presented. The AFC consists of five hypersonic, blow-down-to-vacuum wind tunnels that collectively provide a range of Mach number from 6 to 20, unit Reynolds number from 0.04 to 22 million per foot and, most importantly for blunt configurations, normal shock density ratio from 4 to 12. These wide ranges of hypersonic simulation parameters are due, in part, to the use of three different test gases (air, helium, and tetrafluoromethane), thereby making several of the facilities unique. The Complex represents nearly three-fourths of the conventional (as opposed to impulse)-type hypersonic wind tunnels operational in this country. AFC facilities are used to assess and optimize the hypersonic aerodynamic performance and aeroheating characteristics of aerospace vehicle concepts and to provide benchmark aerodynamic/aeroheating data fr generating the flight aerodynamic databook and final design of the thermal protection system (TPS) (e.g., establishment of flight limitations not to exceed TPS design limits). Modifications and enhancements of AFC hardware components and instrumentation have been pursued to increase capability, reliability, and productivity in support of programmatic goals. Examples illustrating facility utilization in recent years to generate essentially all of the experimental hypersonic aerodynamic and aeroheating information for high-priority, fast-paced Agency programs are presented. These programs include Phase I of the Reusable Launch Vehicle (RLV) Advanced Technology Demonstrator, X-33 program, PHase II of the X-33 program, X-34 program, the Hyper-X program ( a Mach 5,7, and 10 airbreathing propulsion flight experiment), and the X-38 program (Experimental Crew Return Vehicle, X-CRV). Current upgrades/enchancements and future plans for the AFC are discussed.

  13. Thermal stability relationships between PMR-15 resin and its composites

    NASA Technical Reports Server (NTRS)

    Bowles, Kenneth J.; Jayne, Douglas; Leonhardt, Todd A.; Bors, Dennis

    1993-01-01

    A study was conducted to investigate the relationship between the thermo-oxidative stability of PMR-15 matrix resin and the stability of graphite-fiber-reinforced composites that contain this resin as the matrix material. Three areas were investigated. The first was the effect of fiber/matrix interfacial bond strength on the isothermal aging weight loss of composites. By using type-A graphite fibers produced by Hercules, it was possible to study composites reinforced with fibers that were processed to receive different surface treatments. One of the fibers was untreated, a second fiber was treated by oxidation to enhance fiber/matrix bonding, and the third type of fiber was coated with an epoxy sizing. These treatments produced three significantly different interfacial bond strengths. The epoxy sizing on the third fiber was quickly oxidized from the bare fiber surfaces at 288, 316, and 343 C. The weight loss due to the removal of the sizing was constant at 1.5 percent. This initial weight loss was not observed in thermo-oxidative stability studies of composites. The PMR-15 matrix satisfactorily protected the reinforcemnt at all three temperatures.

  14. Effects of mold geometry on fiber orientation of powder injection molded metal matrix composites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahmad, Faiz, E-mail: faizahmad@petronas.com.my; Aslam, Muhammad, E-mail: klaira73@gmail.com; Altaf, Khurram, E-mail: khurram.altaf@petronas.com.my

    2015-07-22

    Fiber orientations in metal matrix composites have significant effect on improving tensile properties. Control of fiber orientations in metal injection molded metal composites is a difficult task. In this study, two mold cavities of dimensions 6x6x90 mm and 10x20x180 mm were used for comparison of fiber orientation in injection molded metal composites test parts. In both mold cavities, convergent and divergent flows were developed by modifying the sprue dimensions. Scanning electron microscope (SEM) was used to examine the fiber orientations within the test samples. The results showed highly aligned fiber in injection molded test bars developed from the convergent melt flow. Randommore » orientation of fibers was noted in the composites test bars produced from divergent melt flow.« less

  15. Rotational 3D printing of damage-tolerant composites with programmable mechanics

    PubMed Central

    Raney, Jordan R.; Compton, Brett G.; Ober, Thomas J.; Shea, Kristina; Lewis, Jennifer A.

    2018-01-01

    Natural composites exhibit exceptional mechanical performance that often arises from complex fiber arrangements within continuous matrices. Inspired by these natural systems, we developed a rotational 3D printing method that enables spatially controlled orientation of short fibers in polymer matrices solely by varying the nozzle rotation speed relative to the printing speed. Using this method, we fabricated carbon fiber–epoxy composites composed of volume elements (voxels) with programmably defined fiber arrangements, including adjacent regions with orthogonally and helically oriented fibers that lead to nonuniform strain and failure as well as those with purely helical fiber orientations akin to natural composites that exhibit enhanced damage tolerance. Our approach broadens the design, microstructural complexity, and performance space for fiber-reinforced composites through site-specific optimization of their fiber orientation, strain, failure, and damage tolerance. PMID:29348206

  16. 21 CFR 878.3500 - Polytetrafluoroethylene with carbon fibers composite implant material.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... composite implant material. 878.3500 Section 878.3500 Food and Drugs FOOD AND DRUG ADMINISTRATION... Prosthetic Devices § 878.3500 Polytetrafluoroethylene with carbon fibers composite implant material. (a) Identification. A polytetrafluoroethylene with carbon fibers composite implant material is a porous device...

  17. Effects of Interface Coating and Nitride Enhancing Additive on Properties of Hi-Nicalon SiC Fiber Reinforced Reaction-Bonded Silicon Nitride Composites

    NASA Technical Reports Server (NTRS)

    Bhatt, Ramakrishana T.; Hull, David R.; Eldridge, Jeffrey I.; Babuder, Raymond

    2000-01-01

    Strong and tough Hi-Nicalon SiC fiber reinforced reaction-bonded silicon nitride matrix composites (SiC/ RBSN) have been fabricated by the fiber lay-up approach. Commercially available uncoated and PBN, PBN/Si-rich PBN, and BN/SiC coated SiC Hi-Nicalon fiber tows were used as reinforcement. The composites contained approximately 24 vol % of aligned 14 micron diameter SiC fibers in a porous RBSN matrix. Both one- and two-dimensional composites were characterized. The effects of interface coating composition, and the nitridation enhancing additive, NiO, on the room temperature physical, tensile, and interfacial shear strength properties of SiC/RBSN matrix composites were evaluated. Results indicate that for all three coated fibers, the thickness of the coatings decreased from the outer periphery to the interior of the tows, and that from 10 to 30 percent of the fibers were not covered with the interface coating. In the uncoated regions, chemical reaction between the NiO additive and the SiC fiber occurs causing degradation of tensile properties of the composites. Among the three interface coating combinations investigated, the BN/SiC coated Hi-Nicalon SiC fiber reinforced RBSN matrix composite showed the least amount of uncoated regions and reasonably uniform interface coating thickness. The matrix cracking stress in SiC/RBSN composites was predicted using a fracture mechanics based crack bridging model.

  18. Study on interfacial and mechanical improvement of carbon fiber/epoxy composites by depositing multi-walled carbon nanotubes on fibers

    NASA Astrophysics Data System (ADS)

    Xiao, Chufan; Tan, Yefa; Wang, Xiaolong; Gao, Li; Wang, Lulu; Qi, Zehao

    2018-07-01

    To improve the interfacial properties between carbon fiber (CF) and epoxy resin (EP), T300 carbon fibers were coated with multi-walled carbon nanotubes (MWCNTs) using aqueous suspension deposition method. The carbon fiber/epoxy laminated composites were prepared by molding process. The wettability and interfacial properties between MWCNTs deposited carbon fibers (MWCNTs-T300) and EP were studied. The mechanical properties of carbon fiber/epoxy laminated composites were tested, and the mechanism of the interface strengthening was discussed. The results show that the surface energy of T300 carbon fiber is obviously increased after MWCNT deposition. The contact angle between MWCNTs-T300 and EP is reduced, and the interfacial energy and adhesion work are greatly improved. The MWCNTs-T300/EP laminated composites have excellent mechanical properties, the flexural strength is 822 MPa, the tensile strength is 841 MPa, and the interlaminar shear strength (ILSS) is 25.68 MPa, which are increased by 15.1%, 17.6% and 12.6% compared with those of the original carbon fiber/EP laminated composites (original T300/EP) respectively. The MWCNTs-T300/EP composites have good interface bonding performance, low porosity and uniform fiber distribution. Interfacial friction and resin toughening are the main mechanisms for the interface enhancement of MWCNTs-T300/EP composites.

  19. Carbon fiber reinforced thermoplastic composites for future automotive applications

    NASA Astrophysics Data System (ADS)

    Friedrich, K.

    2016-05-01

    After a brief introduction to polymer composite properties and markets, the state of the art activities in the field of manufacturing of advanced composites for automotive applications are elucidated. These include (a) long fiber reinforced thermoplastics (LFT) for secondary automotive components, and (b) continuous carbon fiber reinforced thermosetting composites for car body applications. It is followed by future possibilities of carbon fiber reinforced thermoplastic composites for e.g. (i) crash elements, (ii) racing car seats, and (iii) production and recycling of automotive fenders.

  20. Flexural properties of polyethylene, glass and carbon fiber-reinforced resin composites for prosthetic frameworks.

    PubMed

    Maruo, Yukinori; Nishigawa, Goro; Irie, Masao; Yoshihara, Kumiko; Minagi, Shogo

    2015-01-01

    High flexural properties are needed for fixed partial denture or implant prosthesis to resist susceptibility to failures caused by occlusal overload. The aim of this investigation was to clarify the effects of four different kinds of fibers on the flexural properties of fiber-reinforced composites. Polyethylene fiber, glass fiber and two types of carbon fibers were used for reinforcement. Seven groups of specimens, 2 × 2 × 25 mm, were prepared (n = 10 per group). Four groups of resin composite specimens were reinforced with polyethylene, glass or one type of carbon fiber. The remaining three groups served as controls, with each group comprising one brand of resin composite without any fiber. After 24-h water storage in 37°C distilled water, the flexural properties of each specimen were examined with static three-point flexural test at a crosshead speed of 0.5 mm/min. Compared to the control without any fiber, glass and carbon fibers significantly increased the flexural strength (p < 0.05). On the contrary, the polyethylene fiber decreased the flexural strength (p < 0.05). Among the fibers, carbon fiber exhibited higher flexural strength than glass fiber (p < 0.05). Similar trends were observed for flexural modulus and fracture energy. However, there was no significant difference in fracture energy between carbon and glass fibers (p > 0.05). Fibers could, therefore, improve the flexural properties of resin composite and carbon fibers in longitudinal form yielded the better effects for reinforcement.

  1. Design and analysis of a novel latch system implementing fiber-reinforced composite materials

    NASA Astrophysics Data System (ADS)

    Guevara Arreola, Francisco Javier

    The use of fiber-reinforced composite materials have increased in the last four decades in high technology applications due to their exceptional mechanical properties and low weight. In the automotive industry carbon fiber have become popular exclusively in luxury cars because of its high cost. However, Carbon-glass hybrid composites offer an effective alternative to designers to implement fiber-reinforced composites into several conventional applications without a considerable price increase maintaining most of their mechanical properties. A door latch system is a complex mechanism that is under high loading conditions during car accidents such as side impacts and rollovers. Therefore, the Department of Transportation in The United States developed a series of tests that every door latch system comply in order to be installed in a vehicle. The implementation of fiber-reinforced composite materials in a door latch system was studied by analyzing the material behavior during the FMVSS No. 206 transverse test using computational efforts and experimental testing. Firstly, a computational model of the current forkbolt and detent structure was developed. Several efforts were conducted in order to create an effective and time efficient model. Two simplified models were implemented with two different contact interaction approaches. 9 composite materials were studied in forkbolt and 5 in detent including woven carbon fiber, unidirectional carbon fiber, woven carbon-glass fiber hybrid composites and unidirectional carbon-glass fiber hybrid composites. The computational model results showed that woven fiber-reinforced composite materials were stiffer than the unidirectional fiber-reinforced composite materials. For instance, a forkbolt made of woven carbon fibers was 20% stiffer than a forkbolt made of unidirectional fibers symmetrically stacked in 0° and 90° alternating directions. Furthermore, Hybrid composite materials behaved as expected in forkbolt noticing a decline in the load-displacement slopes while the percentage of glass fiber increased. In the other hand, results showed that a detent made of only glass fiber layers was preferable than a carbon-glass fiber hybrid detent due to the high stresses shown in carbon fiber layers. Ultimately, forkbolt and detent were redesigned according to their functionality and test results. It was observed that the new design was stiffer than the original by showing a steeper load-displacement curve. Subsequently, an experimental procedure was performed in order to correlate computational model results. Fiber-reinforced composite forkbolt and detent were waterjet cut from a composite laminate manufactured by Vacuum Assisted Resin Transfer Molding (VART) process. Then, samples were tested according to the computational model. Six testing sample combinations of forkbolt and detent were tested including the top three woven iterations forkbolts from the computational model paired with woven and unidirectional glass fiber detents. Test results showed a stiffness drop of 15% when the carbon fiber percentage decreases from 100% to 75%. Also, it was observed that woven glass fiber detent was superior to the unidirectional glass fiber detent by presenting a forkbolt-detent stiffness 38% higher. Moreover, the new design of forkbolt and detent were tested showing a stiffness increment of 29%. Furthermore, it was observed that fiber-reinforced composite forkbolt and detent did not reach the desired load of 5000 N. However, the redesigned forkbolt made of 100% woven carbon fiber and the redesign detent made of 100% woven glass fiber were close to reach that load. The design review based on test results performed (DRBTR) showed that components did not fail where the computational model concluded to be the areas with the highest maximum principal stress. In contrast to the computational model, all samples failed at the contact area between forkbolt and detent.

  2. Overlapping memory trace indispensable for linking, but not recalling, individual memories.

    PubMed

    Yokose, Jun; Okubo-Suzuki, Reiko; Nomoto, Masanori; Ohkawa, Noriaki; Nishizono, Hirofumi; Suzuki, Akinobu; Matsuo, Mina; Tsujimura, Shuhei; Takahashi, Yukari; Nagase, Masashi; Watabe, Ayako M; Sasahara, Masakiyo; Kato, Fusao; Inokuchi, Kaoru

    2017-01-27

    Memories are not stored in isolation from other memories but are integrated into associative networks. However, the mechanisms underlying memory association remain elusive. Using two amygdala-dependent behavioral paradigms-conditioned taste aversion (CTA) and auditory-cued fear conditioning (AFC)-in mice, we found that presenting the conditioned stimulus used for the CTA task triggered the conditioned response of the AFC task after natural coreactivation of the memories. This was accompanied through an increase in the overlapping neuronal ensemble in the basolateral amygdala. Silencing of the overlapping ensemble suppressed CTA retrieval-induced freezing. However, retrieval of the original CTA or AFC memory was not affected. A small population of coshared neurons thus mediates the link between memories. They are not necessary for recalling individual memories. Copyright © 2017, American Association for the Advancement of Science.

  3. Integrated mechanics for the passive damping of polymer-matrix composites and composite structures

    NASA Technical Reports Server (NTRS)

    Saravanos, D. A.; Chamis, Christos C.

    1991-01-01

    Some recent developments on integrated damping mechanics for unidirectional composites, laminates, and composite structures are reviewed. Simplified damping micromechanics relate the damping of on-axis and off-axis composites to constituent properties, fiber volume ratio, fiber orientation, temperature, and moisture. Laminate and structural damping mechanics for thin composites are summarized. Discrete layer damping mechanics for thick laminates, including the effects of interlaminar shear damping, are developed and semianalytical predictions of modal damping in thick simply supported specialty composite plates are presented. Applications show the advantages of the unified mechanics, and illustrate the effect of fiber volume ratio, fiber orientation, structural geometry, and temperature on the damping. Additional damping properties for composite plates of various laminations, aspect ratios, fiber content, and temperature illustrate the merits and ranges of applicability of each theory (thin or thick laminates).

  4. Preparation and electrochemical characterization of ionic-conducting lithium lanthanum titanate oxide/polyacrylonitrile submicron composite fiber-based lithium-ion battery separators

    NASA Astrophysics Data System (ADS)

    Liang, Yinzheng; Ji, Liwen; Guo, Bingkun; Lin, Zhan; Yao, Yingfang; Li, Ying; Alcoutlabi, Mataz; Qiu, Yiping; Zhang, Xiangwu

    Lithium lanthanum titanate oxide (LLTO)/polyacrylonitrile (PAN) submicron composite fiber-based membranes were prepared by electrospinning dispersions of LLTO ceramic particles in PAN solutions. These ionic-conducting LLTO/PAN composite fiber-based membranes can be directly used as lithium-ion battery separators due to their unique porous structure. Ionic conductivities were evaluated after soaking the electrospun LLTO/PAN composite fiber-based membranes in a liquid electrolyte, 1 M lithium hexafluorophosphate (LiPF 6) in ethylene carbonate (EC)/ethyl methyl carbonate (EMC) (1:1 vol). It was found that, among membranes with various LLTO contents, 15 wt.% LLTO/PAN composite fiber-based membranes provided the highest ionic conductivity, 1.95 × 10 -3 S cm -1. Compared with pure PAN fiber membranes, LLTO/PAN composite fiber-based membranes had greater liquid electrolyte uptake, higher electrochemical stability window, and lower interfacial resistance with lithium. In addition, lithium//1 M LiPF 6/EC/EMC//lithium iron phosphate cells containing LLTO/PAN composite fiber-based membranes as the separator exhibited high discharge specific capacity of 162 mAh g -1 and good cycling performance at 0.2 C rate at room temperature.

  5. Engineering Design Handbook Short Fiber Plastic Base Composites

    DTIC Science & Technology

    1975-07-31

    ENGINEERING DESIGN HANDBOOK N ’~rttl SHORT FIBER PLASTIC BASE COMPOSITES l ,.. HEADQUARTERS, US ARrm MAlERIEL COIVMAND JULY 1975 DEPARTMENT OF...HANDBOOK SHORT FIBER PLASTIC BASE COMPOSITES TABLE OF CONTENTS 31 July 1975 Paragraph Page 1-1 1-2 1-2.1 1-2.2 1-3 1-3.1 1-3.2 1-3.3 1...General ............................... . Molding Short Fiber Compounds ........... . Classification of Polymer Based Composites

  6. Mechanical and Impact Characterization of Poly-Dicyclopentadiene (p-DCPD) Matrix Composites Using Novel Glass Fibers and Sizings

    DTIC Science & Technology

    2016-08-01

    Matrix Composites Using Novel Glass Fibers and Sizings by Steven E Boyd Approved for public release; distribution is...Research Laboratory Mechanical and Impact Characterization of Poly-Dicyclopentadiene (p-DCPD) Matrix Composites Using Novel Glass Fibers and Sizings...p-DCPD) Matrix Composites Using Novel Glass Fibers and Sizings 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR

  7. Continuous Fiber Ceramic Composites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fareed, Ali; Craig, Phillip A.

    2002-09-01

    Fiber-reinforced ceramic composites demonstrate the high-temperature stability of ceramics--with an increased fracture toughness resulting from the fiber reinforcement of the composite. The material optimization performed under the continuous fiber ceramic composites (CFCC) included a series of systematic optimizations. The overall goals were to define the processing window, to increase the robustinous of the process, to increase process yield while reducing costs, and to define the complexity of parts that could be fabricated.

  8. Load-bearing capacity of human incisor restored with various fiber-reinforced composite posts.

    PubMed

    Le Bell-Rönnlöf, Anna-Maria; Lassila, Lippo V J; Kangasniemi, Ilkka; Vallittu, Pekka K

    2011-06-01

    The aim of this study was to evaluate the load-bearing capacity and microstrain of incisors restored with posts of various kinds. Both prefabricated titanium posts and different fiber-reinforced composite posts were tested. The crowns of human incisors were cut and post preparation was carried out. The roots were divided into groups: (1) prefabricated serrated titanium posts, (2) prefabricated carbon fiber-reinforced composite posts, (3) individually formed glass fiber-reinforced composite posts with the canal full of fibers, and (4) individually formed "split" glass fiber-reinforced composite posts. The posts were cemented and composite crowns were made. Intact human incisors were used as reference. All roots were embedded in acrylic resin cylinders and stored at room temperature in water. Static load was applied under a loading angle of 45° using a universal testing machine. On half of the specimens microstrain was measured with strain gages and an acoustic emission analysis was carried out. Failure mode assessment was also made. The group with titanium posts showed highest number of unfavorable failures compared to the groups with fiber-reinforced composite posts. With fiber-reinforced composite posts the failures may more often be favorable compared to titanium posts, which clinically means repairable failures. Copyright © 2011 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  9. Modified carbon fibers to improve composite properties. [sizing fibers for reduced electrical conductivity and adhesion during combustion

    NASA Technical Reports Server (NTRS)

    Shepler, R. E.

    1979-01-01

    Thin coatings, 5 to 10 wt. percent, were applied to PAN-based carbon fibers. These coatings were intended to make the carbon fibers less electrically conductive or to cause fibers to stick together when a carbon fiber/epoxy composite burned. The effectiveness of the coatings in these regards was evaluated in burn tests with a test rig designed to simulate burning, impact and wind conditions which might release carbon fibers. The effect of the coatings on fiber and composite properties and handling was also investigated. Attempts at sizing carbon fibers with silicon dioxide, silicon carbide and boron nitride meet with varying degrees of success; however, none of these materials provided an electrically nonconductive coating. Coatings intended to stick carbon fibers together after a composite burned were sodium silicate, silica gel, ethyl silicate, boric acid and ammonium borate. Of these, only the sodium silicate and silica gel provided any sticking together of fibers. The amount of sticking was insufficient to achieve the desired objectives.

  10. Effect of Sericin on Mechanical Behavior of Composite Material Reinforced by Silk Woven Fabric

    NASA Astrophysics Data System (ADS)

    Kimura, Teruo; Ino, Haruhiro; Hanada, Koji; Katori, Sigetaka

    Recent, attention has been given to shift from glass fibers and carbon fibers to natural fibers for FRP composites for the goal of protecting the environment. This paper concerned with the application of silk fabric for composite materials. Polypropylene (PP) was used for the matrix material and the silk fabric composites were molded using a compression molding method. Especially, the effect of sericin on mechanical behaviors of composite materials was discussed. Good adhesion between silk and PP was obtained by removing the sericin existing around the fibroin. The tensile modulus of composite decreased with decreasing the sericin because of the flexibility of silk fibers without sericin. In particular, the higher Izod impact value was obtained for the composites containing the silk fibers without sericin.

  11. Characterization of Thermal Behavior of Epoxy Composites Reinforced with Curaua Fibers by Differential Scanning Calorimetry

    NASA Astrophysics Data System (ADS)

    Barcelos, Mariana A.; Ribeiro, Carolina Gomes D.; Ferreira, Jordana; Vieira, Janaina da S.; Margem, Frederico M.; Monteiro, Sergio N.

    Epoxy composites reinforced with natural lignocellulosic fibers have, in recent times, been gaining attention in engineering areas as lighter and cheaper alternatives for traditional composites such as the "fiberglass". The curaua fiber is the one strongest today being considered as reinforcement of composites for automobile interior parts. In fact, several studies are currently being dedicated to curaua fiber composites since physical and mechanical properties are required for practical uses. In this work, the thermal behavior of epoxy composites reinforced with up to 30 % in volume of curaua fibers was investigated by differential scanning calorimetry, DSC. The results showed endothermic and exothermic events associated with water release and possible molecular chain amorphous transformation. Comparison with similar composites permitted to propose mechanism that explains this DSC thermal behavior.

  12. Processing and characterization of natural cellulose fibers/thermoset polymer composites.

    PubMed

    Thakur, Vijay Kumar; Thakur, Manju Kumari

    2014-08-30

    Recently natural cellulose fibers from different biorenewable resources have attracted the considerable attraction of research community all around the globe owing to their unique intrinsic properties such as biodegradability, easy availability, environmental friendliness, flexibility, easy processing and impressive physico-mechanical properties. Natural cellulose fibers based materials are finding their applications in a number of fields ranging from automotive to biomedical. Natural cellulose fibers have been frequently used as the reinforcement component in polymers to add the specific properties in the final product. A variety of cellulose fibers based polymer composite materials have been developed using various synthetic strategies. Seeing the immense advantages of cellulose fibers, in this article we discuss the processing of biorenewable natural cellulose fibers; chemical functionalization of cellulose fibers; synthesis of polymer resins; different strategies to prepare cellulose based green polymer composites, and diverse applications of natural cellulose fibers/polymer composite materials. The article provides an in depth analysis and comprehensive knowledge to the beginners in the field of natural cellulose fibers/polymer composites. The prime aim of this review article is to demonstrate the recent development and emerging applications of natural cellulose fibers and their polymer materials. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Estimating rock and slag wool fiber dissolution rate from composition.

    PubMed

    Eastes, W; Potter, R M; Hadley, J G

    2000-12-01

    A method was tested for calculating the dissolution rate constant in the lung for a wide variety of synthetic vitreous silicate fibers from the oxide composition in weight percent. It is based upon expressing the logarithm of the dissolution rate as a linear function of the composition and using a different set of coefficients for different types of fibers. The method was applied to 29 fiber compositions including rock and slag fibers as well as refractory ceramic and special-purpose, thin E-glass fibers and borosilicate glass fibers for which in vivo measurements have been carried out. These fibers had dissolution rates that ranged over a factor of about 400, and the calculated dissolution rates agreed with the in vivo values typically within a factor of 4. The method presented here is similar to one developed previously for borosilicate glass fibers that was accurate to a factor of 1.25. The present coefficients work over a much broader range of composition than the borosilicate ones but with less accuracy. The dissolution rate constant of a fiber may be used to estimate whether disease would occur in animal inhalation or intraperitoneal injection studies of that fiber.

  14. Passive Impact Damage Detection of Fiber Glass Composite Panels

    DTIC Science & Technology

    2013-12-19

    PASSIVE IMPACT DAMAGE DETECTION OF FIBER GLASS COMPOSITE PANELS. By BRUNO ZAMORANO-SENDEROS A dissertation...COVERED 04-11-2012 to 10-12-2013 4. TITLE AND SUBTITLE PASSIVE IMPACT DAMAGE DETECTION OF FIBER GLASS COMPOSITE PANELS 5a. CONTRACT NUMBER 5b...process. .................................... 31 Figure 3-8 Sensor attached to the fiber glass fabric

  15. Silicon-doped boron nitride coated fibers in silicon melt infiltrated composites

    DOEpatents

    Corman, Gregory Scot; Luthra, Krishan Lal

    2002-01-01

    A fiber-reinforced silicon-silicon carbide matrix composite having improved oxidation resistance at high temperatures in dry or water-containing environments is produced. The invention also provides a method for protecting the reinforcing fibers in the silicon-silicon carbide matrix composites by coating the fibers with a silicon-doped boron nitride coating.

  16. Silicon-doped boron nitride coated fibers in silicon melt infiltrated composites

    DOEpatents

    Corman, Gregory Scot; Luthra, Krishan Lal

    1999-01-01

    A fiber-reinforced silicon--silicon carbide matrix composite having improved oxidation resistance at high temperatures in dry or water-containing environments is produced. The invention also provides a method for protecting the reinforcing fibers in the silicon--silicon carbide matrix composites by coating the fibers with a silicon-doped boron nitride coating.

  17. Self-healing in single and multiple fiber(s) reinforced polymer composites

    NASA Astrophysics Data System (ADS)

    Woldesenbet, E.

    2010-06-01

    You Polymer composites have been attractive medium to introduce the autonomic healing concept into modern day engineering materials. To date, there has been significant research in self-healing polymeric materials including several studies specifically in fiber reinforced polymers. Even though several methods have been suggested in autonomic healing materials, the concept of repair by bleeding of enclosed functional agents has garnered wide attention by the scientific community. A self-healing fiber reinforced polymer composite has been developed. Tensile tests are carried out on specimens that are fabricated by using the following components: hollow and solid glass fibers, healing agent, catalysts, multi-walled carbon nanotubes, and a polymer resin matrix. The test results have demonstrated that single fiber polymer composites and multiple fiber reinforced polymer matrix composites with healing agents and catalysts have provided 90.7% and 76.55% restoration of the original tensile strength, respectively. Incorporation of functionalized multi-walled carbon nanotubes in the healing medium of the single fiber polymer composite has provided additional efficiency. Healing is found to be localized, allowing multiple healing in the presence of several cracks.

  18. Reactive compatibilization in polymer alloys, recyclates and composites

    NASA Astrophysics Data System (ADS)

    Czvikovszky, T.; Hargitai, H.; Rácz, I.; Csukat, G.

    1999-05-01

    The efficiency of all composite materials depends on the fiber-matrix interface and its ability to transfer stress from the matrix to the fiber. Radiation treatment is a possible way to bind together the main components of the composite. In our earlier work we applied acrylic oligomer-treated fibers irradiated with low energy electron beam to reinforce recycled polypropylene. In the present work the interaction between the matrix and fibers - PAN and glass fibers - was investigated by ESCA (Electron Spectroscopy for Chemical Analysis). On the other hand, the conventional way of compatibilization - the effect of using maleic anhydride grafted PP as a coupling agent - was examined in flax fiber-PP composites.

  19. Development of FRP composite structural biomaterials: ultimate strength of the fiber/matrix interfacial bond in in vivo simulated environments.

    PubMed

    Latour, R A; Black, J

    1992-05-01

    Fiber reinforced polymer (FRP) composites are being developed as alternatives to metals for structural orthopedic implant applications. FRP composite fracture behavior and environmental interactions are distinctly different from those which occur in metals. These differences must be accounted for in the design and evaluation of implant performance. Fiber/matrix interfacial bond strength in a FRP composite is known to strongly influence fracture behavior. The interfacial bond strength of four candidate fiber/matrix combinations (carbon fiber/polycarbonate, carbon fiber/polysulfone, polyaramid fiber/polycarbonate, polyaramid fiber/polysulfone) were investigated at 37 degrees C in dry and in vivo simulated (saline, exudate) environments. Ultimate bond strength was measured by a single fiber-microdroplet pull-out test. Dry bond strengths were significantly decreased following exposure to either saline or exudate with bond strength loss being approximately equal in both the saline and exudate. Bond strength loss is attributed to the diffusion of water and/or salt ions into the sample and their interaction with interfacial bonding. Because bond degradation is dependent upon diffusion, diffusional equilibrium must be obtained in composite test samples before the full effect of the test environment upon composite mechanical behavior can be determined.

  20. Study of Tensile Properties and Deflection Temperature of Polypropylene/Subang Pineapple Leaf Fiber Composites

    NASA Astrophysics Data System (ADS)

    Hafizhah, R.; Juwono, A. L.; Roseno, S.

    2017-05-01

    The development of eco-friendly composites has been increasing in the past four decades because the requirement of eco-friendly materials has been increasing. Indonesia has a lot of natural fiber resources and, pineapple leaf fiber is one of those fibers. This study aimed to determine the influence of weight fraction of pineapple leaf fibers, that were grown at Subang, to the tensile properties and the deflection temperature of polypropylene/Subang pineapple leaf fiber composites. Pineapple leaf fibers were pretreated by alkalization, while polypropylene pellets, as the matrix, were extruded into sheets. Hot press method was used to fabricate the composites. The results of the tensile test and Heat Deflection Temperature (HDT) test showed that the composites that contained of 30 wt.% pineapple leaf fiber was the best composite. The values of tensile strength, modulus of elasticity and deflection temperature were (64.04 ± 3.91) MPa; (3.98 ± 0.55) GPa and (156.05 ± 1.77) °C respectively, in which increased 187.36%, 198.60%, 264.72% respectively from the pristine polypropylene. The results of the observation on the fracture surfaces showed that the failure modes were fiber breakage and matrix failure.

  1. Continuous unidirectional fiber reinforced composites: Fabrication and testing

    NASA Technical Reports Server (NTRS)

    Weber, M. D.; Spiegel, F. X.; West, Harvey A.

    1994-01-01

    The study of the anisotropic mechanical properties of an inexpensively fabricated composite with continuous unidirectional fibers and a clear matrix was investigated. A method has been developed to fabricate these composites with aluminum fibers and a polymer matrix. These composites clearly demonstrate the properties of unidirectional composites and cost less than five dollars each to fabricate.

  2. Fiber reinforced cementitious matrix (FRCM) composites for reinforced concrete strengthening.

    DOT National Transportation Integrated Search

    2013-07-01

    Fiber-reinforced composite systems are widely used for strengthening, repairing, and rehabilitation of reinforced concrete structural : members. A promising newly-developed type of composite, comprised of fibers and an inorganic cement-based matrix, ...

  3. Effect of thermal cycling on composites reinforced with two differently sized silica-glass fibers.

    PubMed

    Meriç, Gökçe; Ruyter, I Eystein

    2007-09-01

    To evaluate the effects of thermal cycling on the flexural properties of composites reinforced with two differently sized fibers. Acid-washed, woven, fused silica-glass fibers, were heat-treated at 500 degrees C, silanized and sized with one of two sizing resins (linear poly(butyl methacrylate)) (PBMA), cross-linked poly(methyl methacrylate) (PMMA). Subsequently the fibers were incorporated into a polymer matrix. Two test groups with fibers and one control group without fibers were prepared. The flexural properties of the composite reinforced with linear PBMA-sized fibers were evaluated by 3-point bend testing before thermal cycling. The specimens from all three groups were thermally cycled in water (12,000 cycles, 5/55 degrees C, dwell time 30 s), and afterwards tested by 3-point bending. SEM micrographs were taken of the fibers and of the fractured fiber reinforced composites (FRC). The reduction of ultimate flexural strength after thermal cycling was less than 20% of that prior to thermal cycling for composites reinforced with linear PBMA-sized silica-glass fibers. The flexural strength of the composite reinforced with cross-linked PMMA-sized fibers was reduced to less than half of the initial value. This study demonstrated that thermal cycling differently influences the flexural properties of composites reinforced with different sized silica-glass fibers. The interfacial linear PBMA-sizing polymer acts as a stress-bearing component for the high interfacial stresses during thermal cycling due to the flexible structure of the linear PBMA above Tg. The cross-linked PMMA-sizing, however, acts as a rigid component and therefore causes adhesive fracture between the fibers and matrix after the fatigue process of thermal cycling and flexural fracture.

  4. The hygroscopic behavior of plant fibers: a review.

    PubMed

    Célino, Amandine; Fréour, Sylvain; Jacquemin, Frédéric; Casari, Pascal

    2013-01-01

    Environmental concern has resulted in a renewed interest in bio-based materials. Among them, plant fibers are perceived as an environmentally friendly substitute to glass fibers for the reinforcement of composites, particularly in automotive engineering. Due to their wide availability, low cost, low density, high-specific mechanical properties, and eco-friendly image, they are increasingly being employed as reinforcements in polymer matrix composites. Indeed, their complex microstructure as a composite material makes plant fiber a really interesting and challenging subject to study. Research subjects about such fibers are abundant because there are always some issues to prevent their use at large scale (poor adhesion, variability, low thermal resistance, hydrophilic behavior). The choice of natural fibers rather than glass fibers as filler yields a change of the final properties of the composite. One of the most relevant differences between the two kinds of fiber is their response to humidity. Actually, glass fibers are considered as hydrophobic whereas plant fibers have a pronounced hydrophilic behavior. Composite materials are often submitted to variable climatic conditions during their lifetime, including unsteady hygroscopic conditions. However, in humid conditions, strong hydrophilic behavior of such reinforcing fibers leads to high level of moisture absorption in wet environments. This results in the structural modification of the fibers and an evolution of their mechanical properties together with the composites in which they are fitted in. Thereby, the understanding of these moisture absorption mechanisms as well as the influence of water on the final properties of these fibers and their composites is of great interest to get a better control of such new biomaterials. This is the topic of this review paper.

  5. The hygroscopic behavior of plant fibers: a review

    PubMed Central

    Célino, Amandine; Fréour, Sylvain; Jacquemin, Frédéric; Casari, Pascal

    2013-01-01

    Environmental concern has resulted in a renewed interest in bio-based materials. Among them, plant fibers are perceived as an environmentally friendly substitute to glass fibers for the reinforcement of composites, particularly in automotive engineering. Due to their wide availability, low cost, low density, high-specific mechanical properties, and eco-friendly image, they are increasingly being employed as reinforcements in polymer matrix composites. Indeed, their complex microstructure as a composite material makes plant fiber a really interesting and challenging subject to study. Research subjects about such fibers are abundant because there are always some issues to prevent their use at large scale (poor adhesion, variability, low thermal resistance, hydrophilic behavior). The choice of natural fibers rather than glass fibers as filler yields a change of the final properties of the composite. One of the most relevant differences between the two kinds of fiber is their response to humidity. Actually, glass fibers are considered as hydrophobic whereas plant fibers have a pronounced hydrophilic behavior. Composite materials are often submitted to variable climatic conditions during their lifetime, including unsteady hygroscopic conditions. However, in humid conditions, strong hydrophilic behavior of such reinforcing fibers leads to high level of moisture absorption in wet environments. This results in the structural modification of the fibers and an evolution of their mechanical properties together with the composites in which they are fitted in. Thereby, the understanding of these moisture absorption mechanisms as well as the influence of water on the final properties of these fibers and their composites is of great interest to get a better control of such new biomaterials. This is the topic of this review paper. PMID:24790971

  6. Effects of Surface Treatments on Mechanical Properties and Water Resistance of Kenaf Fiber-Reinforced Unsaturated Polyester Composites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ren, Xiaofeng; Qui, Renhui; Fifield, Leonard S.

    2012-05-17

    Effects of surface treatments on the strength and water resistance of kenaf fiber-reinforced unsaturated polyester (UPE) composites were investigated. A new coupling agent that consists of 1,6-diisocyanato-hexane (DIH) and 2-hydroxylethyl acrylate (HEA) was investigated for surface treatments of kenaf fibers. The surface treatments were found to significantly enhance the tensile strength, modulus of rupture, modulus of elasticity, and water resistance of the resulting kenaf UPE composites. Fourier transform infrared spectroscopy (FTIR) confirmed that DIH-HEA was covalently bonded onto kenaf fibers. Scanning electron microscopy (SEM) images of the composites revealed that chemical treatment of kenaf fibers with a combination of DIHmore » and HEA improved the interfacial adhesion between kenaf fibers and UPE resin in the DIHHEA-treated kenafUPE composites. The mechanisms by which the chemical treatment of kenaf fiber surfaces improved strength and water resistance of the resulting kenaf UPE composites were discussed.« less

  7. Research on Extrusion of Rubber Composites Reinforced by Short Fibers Orientation Based on FEA

    NASA Astrophysics Data System (ADS)

    Zhang, Dewei; Wang, Chuansheng; Shen, Bo; Li, Shaoming; Bian, Huiguang

    2018-06-01

    In recent years, rubber composites reinforced by short fibers has been researched deeply, because of its good performances such as higher wear resistance, higher cut resistance and so on. Some research results indicated that if short fibers get orientation in rubber composites, the performances of rubber products could be promoted greatly. But how to make short fibers get orientation in rubber matrix during extrusion is still a real problem. And there are many parameters affect the short fibers orientation. So, in this paper, the effects of die structure including expansion-die and dam-expansion-die on extrusion flow field of short fiber and rubber composite material during extrusion process has been researched by Polyflow. And the FEA results about the pressure field, velocity field and the velocity vector of the rubber composites flow field indicate that, comparing with expansion-die and the dam-expansion-die, the latter one is better for the extrusion process of rubber composites and making short fibers get radial orientation in rubber matrix.

  8. Modeling Strength Degradation of Fiber-Reinforced Ceramic-Matrix Composites Subjected to Cyclic Loading at Elevated Temperatures in Oxidative Environments

    NASA Astrophysics Data System (ADS)

    Longbiao, Li

    2018-02-01

    In this paper, the strength degradation of non-oxide and oxide/oxide fiber-reinforced ceramic-matrix composites (CMCs) subjected to cyclic loading at elevated temperatures in oxidative environments has been investigated. Considering damage mechanisms of matrix cracking, interface debonding, interface wear, interface oxidation and fibers fracture, the composite residual strength model has been established by combining the micro stress field of the damaged composites, the damage models, and the fracture criterion. The relationships between the composite residual strength, fatigue peak stress, interface debonding, fibers failure and cycle number have been established. The effects of peak stress level, initial and steady-state interface shear stress, fiber Weibull modulus and fiber strength, and testing temperature on the degradation of composite strength and fibers failure have been investigated. The evolution of residual strength versus cycle number curves of non-oxide and oxide/oxide CMCs under cyclic loading at elevated temperatures in oxidative environments have been predicted.

  9. Effects of atmospheric air plasma treatment on interfacial properties of PBO fiber reinforced composites

    NASA Astrophysics Data System (ADS)

    Zhang, Chengshuang; Li, Cuiyun; Wang, Baiya; Wang, Bin; Cui, Hong

    2013-07-01

    Poly(p-phenylene benzobisoxazole) (PBO) fiber was modified by atmospheric air plasma treatment. The effects of plasma treatment power and speed on both surface properties of PBO fibers and interfacial properties of PBO/epoxy composites were investigated. Surface chemical composition of PBO fibers were analyzed by X-ray photoelectron spectroscopy (XPS). Surface morphologies of the fibers and interface structures of the composites were examined using scanning electron microscopy (SEM). Interfacial adhesion property of the composites was evaluated by interlaminar shear strength (ILSS). Mechanical properties of PBO multifilament were measured by universal testing machine. The results indicate that atmospheric air plasma treatment introduced some polar or oxygen-containing groups to PBO fiber surfaces, enhanced surface roughness and changed surface morphologies of PBO fibers by plasma etching and oxidative reactions. The plasma treatment also improved interfacial adhesion of PBO/epoxy composites but has little effect on tensile properties of PBO multifilament. The ILSS of PBO/epoxy composites increased to 40.0 MPa after atmospheric air plasma treatment with plasma treatment power of 300 W and treatment speed of 6 m/min.

  10. Analysis of Deactivation Mechanism on a Multi-Component Sulfur-Tolerant Steam Reforming Catalyst

    DTIC Science & Technology

    2010-08-01

    Alkaline Fuel Cells (AFC) .............................................................................. 4 1.1.2. Proton Exchange Membrane Fuel Cells ( PEMFC ...temperature fuel cells. Alkaline Fuel Cell (AFC), Proton Exchange Membrane Fuel Cell ( PEMFC ), DMFC and Phosphoric Acid Fuel Cell (PAFC) are low...1960s. 1.1.2. Proton Exchange Membrane Fuel Cells ( PEMFC ) Proton exchange membrane fuel cells are said to be the best type of fuel cells to replace

  11. Cationic Polymers Developed for Alkaline Fuel Cell Applications

    DTIC Science & Technology

    2015-01-20

    into five categories: proton exchange membrane fuel cell ( PEMFC ), alkaline fuel cell (AFC), molten carbonate fuel cell (MCFC), solid oxide fuel...SOFC and PAFC belong to high temperature fuel cell, which can be applied in stationary power generation. PEMFC and AFC belong to low temperature fuel...function of the polymer electrolyte is to serve as electrolyte to transport ions between electrodes. PEMFC uses a polymer as electrolyte and works

  12. Molecular and Cellular Mechanisms for Trapping and Activating Emotional Memories

    PubMed Central

    Cai, Denise J.; Sano, Yoshitake; Lee, Yong-Seok; Zhou, Yu; Bekal, Pallavi; Deisseroth, Karl; Silva, Alcino J.

    2016-01-01

    Recent findings suggest that memory allocation to specific neurons (i.e., neuronal allocation) in the amygdala is not random, but rather the transcription factor cAMP-response element binding protein (CREB) modulates this process, perhaps by regulating the transcription of channels that control neuronal excitability. Here, optogenetic studies in the mouse lateral amygdala (LA) were used to demonstrate that CREB and neuronal excitability regulate which neurons encode an emotional memory. To test the role of CREB in memory allocation, we overexpressed CREB in the lateral amygdala to recruit the encoding of an auditory-fear conditioning (AFC) memory to a subset of neurons. Then, post-training activation of these neurons with Channelrhodopsin-2 was sufficient to trigger recall of the memory for AFC, suggesting that CREB regulates memory allocation. To test the role of neuronal excitability in memory allocation, we used a step function opsin (SFO) to transiently increase neuronal excitability in a subset of LA neurons during AFC. Post-training activation of these neurons with Volvox Channelrhodopsin-1 was able to trigger recall of that memory. Importantly, our studies show that activation of the SFO did not affect AFC by either increasing anxiety or by strengthening the unconditioned stimulus. Our findings strongly support the hypothesis that CREB regulates memory allocation by modulating neuronal excitability. PMID:27579481

  13. Method matters: Systematic effects of testing procedure on visual working memory sensitivity

    PubMed Central

    Makovski, Tal; Watson, Leah M.; Koutstaal, Wilma; Jiang, Yuhong V.

    2010-01-01

    Visual working memory (WM) is traditionally considered a robust form of visual representation that survives changes in object motion, observer's position, and other visual transients. This study presents data that are inconsistent with the traditional view. We show that memory sensitivity is dramatically influenced by small variations in the testing procedure, supporting the idea that representations in visual WM are susceptible to interference from testing. In this study, participants were shown an array of colors to remember. After a short retention interval, memory for one of the items was tested with either a same-different task or a 2-alternative-forced-choice (2AFC) task. Memory sensitivity was much lower in the 2AFC task than in the same-different task. This difference was found regardless of encoding similarity or whether visual WM required a fine memory resolution or a coarse resolution. The 2AFC disadvantage was reduced when participants were informed shortly before testing which item would be probed. The 2AFC disadvantage diminished in perceptual tasks and was not found in tasks probing visual long-term memory. These results support memory models that acknowledge the labile nature of visual WM, and have implications for the format of visual WM and its assessment. PMID:20854011

  14. Relationship between linear type and fertility traits in Nguni cows.

    PubMed

    Zindove, T J; Chimonyo, M; Nephawe, K A

    2015-06-01

    The objective of the study was to assess the dimensionality of seven linear traits (body condition score, body stature, body length, heart girth, navel height, body depth and flank circumference) in Nguni cows using factor analysis and indicate the relationship between the extracted latent variables and calving interval (CI) and age at first calving (AFC). The traits were measured between December 2012 and November 2013 on 1559 Nguni cows kept under thornveld, succulent karoo, grassland and bushveld vegetation types. Low partial correlations (-0.04 to 0.51), high Kaiser statistic for measure of sampling adequacy scores and significance of the Bartlett sphericity test (P1. Factor 1 included body condition score, body depth, flank circumference and heart girth and represented body capacity of cows. Factor 2 included body length, body stature and navel height and represented frame size of cows. CI and AFC decreased linearly with increase of factor 1. There was a quadratic increase in AFC as factor 2 increased (P<0.05). It was concluded that the linear type traits under study can be grouped into two distinct factors, one linked to body capacity and the other to the frame size of the cows. Small-framed cows with large body capacities have shorter CI and AFC.

  15. Micromechanical analysis of composites with fibers distributed randomly over the transverse cross-section

    NASA Astrophysics Data System (ADS)

    Weng, Jingmeng; Wen, Weidong; Cui, Haitao; Chen, Bo

    2018-06-01

    A new method to generate the random distribution of fibers in the transverse cross-section of fiber reinforced composites with high fiber volume fraction is presented in this paper. Based on the microscopy observation of the transverse cross-sections of unidirectional composite laminates, hexagon arrangement is set as the initial arrangement status, and the initial velocity of each fiber is arbitrary at an arbitrary direction, the micro-scale representative volume element (RVE) is established by simulating perfectly elastic collision. Combined with the proposed periodic boundary conditions which are suitable for multi-axial loading, the effective elastic properties of composite materials can be predicted. The predicted properties show reasonable agreement with experimental results. By comparing the stress field of RVE with fibers distributed randomly and RVE with fibers distributed periodically, the predicted elastic modulus of RVE with fibers distributed randomly is greater than RVE with fibers distributed periodically.

  16. Sintered composite medium and filter

    DOEpatents

    Bergman, Werner

    1987-01-01

    A particulate filter medium is formed of a sintered composite of 0.5 micron diameter quartz fibers and 2 micron diameter stainless steel fibers. A preferred composition is about 40 vol. % quartz and about 60 vol. % stainless steel fibers. The media is sintered at about 1100.degree. C. to bond the stainless steel fibers into a cage network which holds the quartz fibers. High filter efficiency and low flow resistance are provided by the smaller quartz fibers. High strength is provided by the stainless steel fibers. The resulting media has a high efficiency and low pressure drop similar to the standard HEPA media, with tensile strength at least four times greater, and a maximum operating temperature of about 550.degree. C. The invention also includes methods to form the composite media and a HEPA filter utilizing the composite media. The filter media can be used to filter particles in both liquids and gases.

  17. Experimental evaluation and simulation of volumetric shrinkage and warpage on polymeric composite reinforced with short natural fibers

    NASA Astrophysics Data System (ADS)

    Santos, Jonnathan D.; Fajardo, Jorge I.; Cuji, Alvaro R.; García, Jaime A.; Garzón, Luis E.; López, Luis M.

    2015-09-01

    A polymeric natural fiber-reinforced composite is developed by extrusion and injection molding process. The shrinkage and warpage of high-density polyethylene reinforced with short natural fibers of Guadua angustifolia Kunth are analyzed by experimental measurements and computer simulations. Autodesk Moldflow® and Solid Works® are employed to simulate both volumetric shrinkage and warpage of injected parts at different configurations: 0 wt.%, 20 wt.%, 30 wt.% and 40 wt.% reinforcing on shrinkage and warpage behavior of polymer composite. Become evident the restrictive effect of reinforcing on the volumetric shrinkage and warpage of injected parts. The results indicate that volumetric shrinkage of natural composite is reduced up to 58% with fiber increasing, whereas the warpage shows a reduction form 79% to 86% with major fiber content. These results suggest that it is a highly beneficial use of natural fibers to improve the assembly properties of polymeric natural fiber-reinforced composites.

  18. Sintered composite filter

    DOEpatents

    Bergman, W.

    1986-05-02

    A particulate filter medium formed of a sintered composite of 0.5 micron diameter quartz fibers and 2 micron diameter stainless steel fibers is described. Preferred composition is about 40 vol.% quartz and about 60 vol.% stainless steel fibers. The media is sintered at about 1100/sup 0/C to bond the stainless steel fibers into a cage network which holds the quartz fibers. High filter efficiency and low flow resistance are provided by the smaller quartz fibers. High strength is provided by the stainless steel fibers. The resulting media has a high efficiency and low pressure drop similar to the standard HEPA media, with tensile strength at least four times greater, and a maximum operating temperature of about 550/sup 0/C. The invention also includes methods to form the composite media and a HEPA filter utilizing the composite media. The filter media can be used to filter particles in both liquids and gases.

  19. Manufacturing of Nanocomposite Carbon Fibers and Composite Cylinders

    NASA Technical Reports Server (NTRS)

    Tan, Seng; Zhou, Jian-guo

    2013-01-01

    Pitch-based nanocomposite carbon fibers were prepared with various percentages of carbon nanofibers (CNFs), and the fibers were used for manufacturing composite structures. Experimental results show that these nanocomposite carbon fibers exhibit improved structural and electrical conductivity properties as compared to unreinforced carbon fibers. Composite panels fabricated from these nanocomposite carbon fibers and an epoxy system also show the same properties transformed from the fibers. Single-fiber testing per ASTM C1557 standard indicates that the nanocomposite carbon fiber has a tensile modulus of 110% higher, and a tensile strength 17.7% times higher, than the conventional carbon fiber manufactured from pitch. Also, the electrical resistance of the carbon fiber carbonized at 900 C was reduced from 4.8 to 2.2 ohm/cm. The manufacturing of the nanocomposite carbon fiber was based on an extrusion, non-solvent process. The precursor fibers were then carbonized and graphitized. The resultant fibers are continuous.

  20. Oxidation of Al2O3 continuous fiber-reinforced/NiAl composites

    NASA Technical Reports Server (NTRS)

    Doychak, J.; Nesbitt, J. A.; Noebe, R. D.; Bowman, R. R.

    1992-01-01

    The 1200 C and 1300 C isothermal and cyclic oxidation behavior of Al2O3 continuous fiber-reinforced/NiAl composites were studied. Oxidation resulted in formation of Al2O3 external scales in a similar manner as scales formed on monolithic NiAl. The isothermal oxidation of an Al2O3/NiAl composite resulted in oxidation of the matrix along the fiber/matrix interface near the fiber ends. This oxide acted as a wedge between the fiber and the matrix, and, under cyclic oxidation conditions, led to further oxidation along the fiber lengths and eventual cracking of the composite. The oxidation behavior of composites in which the Al2O3 fibers were sputter coated with nickel prior to processing was much more severe. This was attributed to open channels around the fibers which formed during processing, most likely as a result of the diffusion of the nickel coating into the matrix.

  1. Axisymmetric micromechanics of elastic-perfectly plastic fibrous composites under uniaxial tension loading

    NASA Technical Reports Server (NTRS)

    Lee, Jong-Won; Allen, David H.

    1993-01-01

    The uniaxial response of a continuous fiber elastic-perfectly plastic composite is modeled herein as a two-element composite cylinder. An axisymmetric analytical micromechanics solution is obtained for the rate-independent elastic-plastic response of the two-element composite cylinder subjected to tensile loading in the fiber direction for the case wherein the core fiber is assumed to be a transversely isotropic elastic-plastic material obeying the Tsai-Hill yield criterion, with yielding simulating fiber failure. The matrix is assumed to be an isotropic elastic-plastic material obeying the Tresca yield criterion. It is found that there are three different circumstances that depend on the fiber and matrix properties: fiber yield, followed by matrix yielding; complete matrix yield, followed by fiber yielding; and partial matrix yield, followed by fiber yielding, followed by complete matrix yield. The order in which these phenomena occur is shown to have a pronounced effect on the predicted uniaxial effective composite response.

  2. Hollow fiber membranes and methods for forming same

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhandari, Dhaval Ajit; McCloskey, Patrick Joseph; Howson, Paul Edward

    2016-03-22

    The invention provides improved hollow fiber membranes having at least two layers, and methods for forming the same. The methods include co-extruding a first composition, a second composition, and a third composition to form a dual layer hollow fiber membrane. The first composition includes a glassy polymer; the second composition includes a polysiloxane; and the third composition includes a bore fluid. The dual layer hollow fiber membranes include a first layer and a second layer, the first layer being a porous layer which includes the glassy polymer of the first composition, and the second layer being a polysiloxane layer whichmore » includes the polysiloxane of the second composition.« less

  3. Carbonized asphaltene-based carbon-carbon fiber composites

    DOEpatents

    Bohnert, George; Lula, James; Bowen, III, Daniel E.

    2016-12-27

    A method of making a carbon binder-reinforced carbon fiber composite is provided using carbonized asphaltenes as the carbon binder. Combinations of carbon fiber and asphaltenes are also provided, along with the resulting composites and articles of manufacture.

  4. The weathering effect in natural environment on hybrid kenaf/glass fiber unsaturated polyester composite

    NASA Astrophysics Data System (ADS)

    Rozyanty, A. R.; Mohammed, M. M.; Musa, L.; Shahnaz, S. B. S.; Zuliahani, A.

    2017-04-01

    Kenaf and glass fiber hybrid composite was prepared by using hand lay-up process. The effect of weather on mechanical properties of kenaf/glass fiber hybrid composites was studied. The hybrid composite samples were exposed to natural weather. Tensile test was performed for samples at different weathering exposure time. Tensile strength of kenaf/glass fiber hybrid composite was 70.9 MPa and tensile modulus was at 30 GPa before expose to environment weather. Unfortunately, mechanical properties of hybrid composite decreased as exposure time increase due to the moisture absorption which further promotes weakness in interfacial bonding.

  5. Electrical property of macroscopic graphene composite fibers prepared by chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Sun, Haibin; Fu, Can; Gao, Yanli; Guo, Pengfei; Wang, Chunlei; Yang, Wenchao; Wang, Qishang; Zhang, Chongwu; Wang, Junya; Xu, Junqi

    2018-07-01

    Graphene fibers are promising candidates in portable and wearable electronics due to their tiny volume, flexibility and wearability. Here, we successfully synthesized macroscopic graphene composite fibers via a two-step process, i.e. first electrospinning and then chemical vapor deposition (CVD). Briefly, the well-dispersed PAN nanofibers were sprayed onto the copper surface in an electrified thin liquid jet by electrospinning. Subsequently, CVD growth process induced the formation of graphene films using a PAN-solid source of carbon and a copper catalyst. Finally, crumpled and macroscopic graphene composite fibers were obtained from carbon nanofiber/graphene composite webs by self-assembly process in the deionized water. Temperature-dependent conduct behavior reveals that electron transport of the graphene composite fibers belongs to hopping mechanism and the typical electrical conductivity reaches 4.59 × 103 S m‑1. These results demonstrated that the graphene composite fibers are promising for the next-generation flexible and wearable electronics.

  6. A study on the crushing behavior of basalt fiber reinforced composite structures

    NASA Astrophysics Data System (ADS)

    Pandian, A.; Veerasimman, A. P.; Vairavan, M.; Francisco, C.; Sultan, M. T. H.

    2016-10-01

    The crushing behavior and energy absorption capacity of basalt fiber reinforced hollow square structure composites are studied under axial compression. Using the hand layup technique, basalt fiber reinforced composites were fabricated using general purpose (GP) polyester resin with the help of wooden square shaped mould of varying height (100 mm, 150 mm and 200 mm). For comparison, similar specimens of glass fiber reinforced polymer composites were also fabricated and tested. Axial compression load is applied over the top end of the specimen with cross head speed as 2 mm/min using Universal Testing Machine (UTM). From the experimental results, the load-deformation characteristics of both glass fiber and basalt fiber composites were investigated. Crashworthiness and mode of collapse for the composites were determined from load-deformation curve, and they were then compared to each other in terms of their crushing behaviors.

  7. Quantitative radiographic analysis of fiber reinforced polymer composites.

    PubMed

    Baidya, K P; Ramakrishna, S; Rahman, M; Ritchie, A

    2001-01-01

    X-ray radiographic examination of the bone fracture healing process is a widely used method in the treatment and management of patients. Medical devices made of metallic alloys reportedly produce considerable artifacts that make the interpretation of radiographs difficult. Fiber reinforced polymer composite materials have been proposed to replace metallic alloys in certain medical devices because of their radiolucency, light weight, and tailorable mechanical properties. The primary objective of this paper is to provide a comparable radiographic analysis of different fiber reinforced polymer composites that are considered suitable for biomedical applications. Composite materials investigated consist of glass, aramid (Kevlar-29), and carbon reinforcement fibers, and epoxy and polyether-ether-ketone (PEEK) matrices. The total mass attenuation coefficient of each material was measured using clinical X-rays (50 kev). The carbon fiber reinforced composites were found to be more radiolucent than the glass and kevlar fiber reinforced composites.

  8. Effect of low velocity impact damage on the natural frequency of composite plates

    NASA Astrophysics Data System (ADS)

    Chok, E. Y. L.; Majid, D. L. A. A.; Harmin, M. Y.

    2017-12-01

    Biodegradable natural fibers have been suggested to replace the hazardous synthetic fibers in many aerospace applications. However, this notion has been limited due to their low mechanical properties, which leads to the idea of hybridizing the two materials. Many aircraft components such as radome, aft body and wing are highly susceptible to low velocity impact damage while in-service. The damages degrade the structural integrity of the components and change their dynamic characteristics. In worst case scenario, the changes can lead to resonance, which is an excessive vibration. This research is conducted to study the dynamic characteristic changes of low velocity impact damaged hybrid composites that is designed for aircraft radome applications. Three materials, which are glass fiber, kenaf fiber and kenaf/glass fiber hybrid composites, have been impacted with 3J, 6J and 9J of energy. Cantilevered and also vertically clamped boundary conditions are used and the natural frequencies are extracted for each of the specimens. The obtained results show that natural frequency decreases with increasing impact level. Cantilevered condition is found to induce lower modes due to the gravitational pull. To eliminate mass and geometrical effects, normalized modes are computed. Among the three materials considered, glass fiber composites have displayed the highest normalized frequency that reflects on its higher stiffness compared to the other two materials. As the damage level is increased, glass fiber composites have shown the highest frequency reduction to a maximum of 35% while kenaf composites have the least frequency reduction in the range of 1 - 18%. Thus, kenaf fiber is taken to be helpful in stalling the damage progression and reducing the effect of damage. This has been proven when the percentage frequency decrement shown by kenaf/glass fiber composite lies between glass fiber and kenaf fiber composites.

  9. Hole-pin joining structure with fiber-round-hole distribution of lobster cuticle and biomimetic study.

    PubMed

    Chen, Bin; Fan, Jinghong; Gou, Jihua; Lin, Shiyun

    2014-12-01

    Observations of the cuticle of the Boston Spiny Lobster using scanning electron microscope (SEM) show that it is a natural biocomposite consisting of chitin fibers and sclerotic-protein matrix with hierarchical and helicoidal structure. The SEM images also indicate that there is a hole-pin joining structure in the cuticle. In this joining structure, the chitin fibers in the neighborhood of the joining holes continuously round the holes to form a fiber-round-hole distribution. The maximum pullout force of the fibers in the fiber-round-hole distribution, which is closely related to the fracture toughness of the cuticle, is investigated and compared with that of the fibers in non-fiber-round-hole distribution based on their representative models. It is revealed that the maximum pullout force of the fibers in the fiber-round-hole distribution is significantly larger than that of the fibers in the non-fiber-round-hole distribution, and that a larger diameter of the hole results in a larger difference in the maximum pullout forces of the fibers between the two kinds of the fiber distributions. Inspired by the fiber-round-hole distribution found in the cuticle, composite specimens with the fiber-round-hole distribution were fabricated with a special mold and process to mirror the fiber-round-hole distribution. The fracture toughness of the biomimetic composite specimens is tested and compared with that of the conventional composite specimens with the non-fiber-round-hole distribution. It is demonstrated that the fracture toughness of the biomimetic composite specimens with the fiber-round-hole distribution is significantly larger than that of the conventional composite specimens with the non-fiber-round-hole distribution. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Vertically aligned TiO2 nanorods-woven carbon fiber for reinforcement of both mechanical and anti-wear properties in resin composite

    NASA Astrophysics Data System (ADS)

    Fei, Jie; Zhang, Chao; Luo, Dan; Cui, Yali; Li, Hejun; Lu, Zhaoqing; Huang, Jianfeng

    2018-03-01

    A series of TiO2 nanorods were successfully grown on woven carbon fiber by hydrothermal method to reinforce the resin composite. The TiO2 nanorods improved the mechanical interlocking among woven carbon fibers and resin matrix, resulting in better fibers/resin interfacial bonding. Compared with desized-woven carbon fiber, the uniform TiO2 nanorods array resulted in an improvement of 84.3% and 73.9% in the tensile and flexural strength of the composite. However, the disorderly TiO2 nanorods on woven carbon fiber leaded to an insignificant promotion of the mechanical strength. The enhanced performance of well-proportioned TiO2 nanorods-woven carbon fiber was also reflected in the nearly 56% decrease of wear rate, comparing to traditional woven carbon fiber reinforced composite.

  11. Transformation of the released asbestos, carbon fibers and carbon nanotubes from composite materials and the changes of their potential health impacts.

    PubMed

    Wang, Jing; Schlagenhauf, Lukas; Setyan, Ari

    2017-02-20

    Composite materials with fibrous reinforcement often provide superior mechanical, thermal, electrical and optical properties than the matrix. Asbestos, carbon fibers and carbon nanotubes (CNTs) have been widely used in composites with profound impacts not only on technology and economy but also on human health and environment. A large number of studies have been dedicated to the release of fibrous particles from composites. Here we focus on the transformation of the fibrous fillers after their release, especially the change of the properties essential for the health impacts. Asbestos fibers exist in a large number of products and the end-of-the-life treatment of asbestos-containing materials poses potential risks. Thermal treatment can transform asbestos to non-hazardous phase which provides opportunities of safe disposal of asbestos-containing materials by incineration, but challenges still exist. Carbon fibers with diameters in the range of 5-10 μm are not considered to be respirable, however, during the release process from composites, the carbon fibers may be split along the fiber axis, generating smaller and respirable fibers. CNTs may be exposed on the surface of the composites or released as free standing fibers, which have lengths shorter than the original ones. CNTs have high thermal stability and may be exposed after thermal treatment of the composites and still keep their structural integrity. Due to the transformation of the fibrous fillers during the release process, their toxicity may be significantly different from the virgin fibers, which should be taken into account in the risk assessment of fiber-containing composites.

  12. High fiber-low matrix composites: kenaf fiber/polypropylene.

    Treesearch

    Anand R. Sanadi; J.F. Hunt; D.F. Caulfield; G. Kovacsvolgyi; B. Destree

    2002-01-01

    Considerable interest has been generated in the use of lignocellulosic fibers and wastes (both agricultural and wood based) as fillers and reinforcements in thermoplastics. In general, present technologies limit fiber loading in thermoplastics to about 60 percent by weight of fiber. To produce high fiber content composites for commercial use while maintaining adequate...

  13. Overview of SBIR Phase II Work on Hollow Graphite Fibers

    NASA Technical Reports Server (NTRS)

    Stallcup, Michael; Brantley, Lott W. (Technical Monitor)

    2001-01-01

    Ultra-Lightweight materials are enabling for producing space based optical components and support structures. Heretofore, innovative designs using existing materials has been the approach to produce lighter-weight optical systems. Graphite fiber reinforced composites, because of their light weight, have been a material of frequent choice to produce space based optical components. Hollow graphite fibers would be lighter than standard solid graphite fibers and, thus, would save weight in optical components. The Phase I SBIR program demonstrated it is possible to produce hollow carbon fibers that have strengths up to 4.2 GPa which are equivalent to commercial fibers, and composites made from the hollow fibers had substantially equivalent composite strengths as commercial fiber composites at a 46% weight savings. The Phase II SBIR program will optimize processing and properties of the hollow carbon fiber and scale-up processing to produce sufficient fiber for fabricating a large ultra-lightweight mirror for delivery to NASA. Information presented here includes an overview of the strength of some preliminary hollow fibers, photographs of those fibers, and a short discussion of future plans.

  14. Studies on mechanical properties of graphene based hybrid composites reinforced with kenaf/glass fiber

    NASA Astrophysics Data System (ADS)

    Kumar, S. C. Ramesh; Shivanand, H. K.; Vidayasagar, H. N.; Nagabhushan, V.

    2018-04-01

    The polymer composites are developed with natural fibers and fillers as a alternate material for some of the engineering applications in the field of automobiles and domestic purposes are being investigated. The natural fiber composites such as banana, sisal, jute, coir, kenaf and hemp polymer composites appear more effective due to their lightweight, higher specific strength, biodegradable and cost is low. The main objective is to prepare the Kenaf/Glass fiber hybrid composite filled with graphene as nano filler and to investigate the mechanical properties of hybrid composites. The different types of hybrid composites laminates are fabricated without filler, 0.5, 1 & 1.5Wt % of graphene by using kenaf and glass fiber as reinforcing material with epoxy resin. The specimen were prepared as per the ASTM standards and results shows that the mixing of graphene in epoxy resin improves the mechanical properties of hybrid composites.

  15. Development of nanoparticle embedded sizing for enhanced structural health monitoring of carbon fiber composites

    NASA Astrophysics Data System (ADS)

    Bowland, Christopher C.; Wang, Yangyang; Naskar, Amit K.

    2017-04-01

    Carbon fiber composites experience sudden, catastrophic failure when exposed to sufficient stress levels and provide no obvious visual indication of damage before they fail. With the commercial adoption of these high-performance composites in structural applications, a need for in-situ monitoring of their structural integrity is paramount. Therefore, ways in which to monitor these systems has gathered research interest. A common method for accomplishing this is measuring through-thickness resistance changes of the composite due to the fact that carbon fiber composites are electrically conductive. This provides information on whole-body stress levels imparted on the composite and can help identify the presence of damage. However, this technique relies on the carbon fiber and polymer matrix to reveal a resistance change. Here, an approach is developed that increases damage detection sensitivity. This is achieved by developing a facile synthesis method of integrating semiconducting nanomaterials, such as silicon carbide, into carbon fiber sizing. The piezoresistive effect exhibited by these nanomaterials provides more pronounced resistance changes in response to mechanical stress as compared to carbon fiber alone. This is investigated through fabricating a unidirectional composite and subsequently monitoring the electrical resistance during mechanical testing. By establishing this route for integrating nanomaterials into carbon fiber composites, various nanomaterials can see future composite integration to realize novel properties.

  16. Glass Fiber Resin Composites and Components at Arctic Temperatures

    DTIC Science & Technology

    2015-06-01

    NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA THESIS Approved for public release; distribution is unlimited GLASS FIBER RESIN...3. REPORT TYPE AND DATES COVERED Master’s Thesis 4. TITLE AND SUBTITLE GLASS FIBER RESIN COMPOSITES AND COMPONENTS AT ARCTIC TEMPERATURES 5...public release; distribution is unlimited 12b. DISTRIBUTION CODE 13. ABSTRACT (maximum 200 words) Glass fiber reinforced composites (GFRC

  17. Effect of fabric structure and polymer matrix on flexural strength, interlaminar shear stress, and energy dissipation of glass fiber-reinforced polymer composites

    USDA-ARS?s Scientific Manuscript database

    We report the effect of glass fiber structure and the epoxy polymer system on the flexural strength, interlaminar shear stress (ILSS), and energy absorption properties of glass fiber-reinforced polymer (GFRP) composites. Four different GFRP composites were fabricated from two glass fiber textiles of...

  18. Effect of configuration and some processing variables on the properties of wood fiber-polyethylene composites

    Treesearch

    Chin-Yin Hwang; Chung-Yun Hse; Elvin T. Choong

    1999-01-01

    Chemical compositions and fiber measurement of virgin and recycled fibers from three sources were determined. Results revealed that virgin southern pine fiber had highest alcohol-benzene extractive and lignin contents and lowest holo- and alpha-cellulose content among the three fiber types. Fiber length distribution of virgin fiber was less sensitive to disintegration...

  19. Time dependent micromechanics in continuous graphite fiber/epoxy composites with fiber breaks

    NASA Astrophysics Data System (ADS)

    Zhou, Chao Hui

    Time dependent micromechanics in graphite fiber/epoxy composites around fiber breaks was investigated with micro Raman spectroscopy (MRS) and two shear-lag based composite models, a multi-fiber model (VBI) and a single fiber model (SFM), which aim at predicting the strain/stress evolutions in the composite from the matrix creep behavior and fiber strength statistics. This work is motivated by the need to understand the micromechanics and predict the creep-rupture of the composites. Creep of the unfilled epoxy was characterized under different stress levels and at temperatures up to 80°C, with two power law functions, which provided the modeling parameters used as input for the composite models. Both the VBI and the SFM models showed good agreement with the experimental data obtained with MRS, when inelasticity (interfacial debonding and/or matrix yielding) was not significant. The maximum shear stress near a fiber break relaxed at t-alpha/2 (or as (1+ talpha)-1/2) and the load recovery length increased at talpha/2(or (1+ talpha)1/2) following the model predictions. When the inelastic zone became non-negligible, the viscoelastic VBI model lost its competence, while the SFM with inelasticity showed good agreement with the MRS measurements. Instead of using the real fiber spacing, an effective fiber spacing was used in model predictions, taking into account of the radial decay of the interfacial shear stress from the fiber surface. The comparisons between MRS data and the SFM showed that inelastic zone would initiate when the shear strain at the fiber end exceeds a critical value gammac which was determined to be 5% for this composite system at room temperature and possibly a smaller value at elevated temperatures. The stress concentrations in neighboring intact fibers played important roles in the subsequent fiber failure and damage growth. The VBI model predicts a constant stress concentration factor, 1.33, for the 1st nearest intact fiber, which is in good agreement with MRS measurements for most cases except for those with severely debonded interfaces. However, the VBI model usually gives a stress concentration profile narrower than the measured one due to the inelasticity near the fiber break. The low average fiber volume fraction in the model composites caused small relaxation in the stress concentration, which became more obvious at elevated temperatures, especially for large fiber spacing cases. When new break(s) occurred in the original intact neighboring fibers within an effective distance from the original break, the inelastic zones grew at a faster rate due to the strong interactions. Results on the creep-rupture of the bulk composites showed that the failure probability depends on the stress level and the loading time. The time dependent failure probability data could be fitted to a power law function, which suggested a link between the matrix creep, composite short-term strength and the composite creep-rupture.

  20. Research on graphite reinforced glass matrix composites

    NASA Technical Reports Server (NTRS)

    Prewo, K. M.; Thompson, E. R.

    1980-01-01

    High levels of mechanical performance in tension, flexure, fatigue, and creep loading situations of graphite fiber reinforced glass matrix composites are discussed. At test temperatures of up to 813 K it was found that the major limiting factor was the oxidative instability of the reinforcing graphite fibers. Particular points to note include the following: (1) a wide variety of graphite fibers were found to be comparable with the glass matrix composite fabrication process; (2) choice of fiber, to a large extent, controlled resultant composite performance; (3) composite fatigue performance was found to be excellent at both 300 K and 703 K; (4) composite creep and stress rupture at temperatures of up to 813 K was limited by the oxidative stability of the fiber; (5) exceptionally low values of composite thermal expansion coefficient were attributable to the dimensional stability of both matrix and fiber; and (6) component fabricability was demonstrated through the hot pressing of hot sections and brazing using glass and metal joining phases.

  1. Preparation and Properties of Electrospun Poly (Vinyl Pyrrolidone)/Cellulose Nanocrystal/Silver Nanoparticle Composite Fibers

    PubMed Central

    Huang, Siwei; Zhou, Ling; Li, Mei-Chun; Wu, Qinglin; Kojima, Yoichi; Zhou, Dingguo

    2016-01-01

    Poly (vinyl pyrrolidone) (PVP)/cellulose nanocrystal (CNC)/silver nanoparticle composite fibers were prepared via electrospinning using N,N′-dimethylformamide (DMF) as a solvent. Rheology, morphology, thermal properties, mechanical properties, and antimicrobial activity of nanocomposites were characterized as a function of material composition. The PVP/CNC/Ag electrospun suspensions exhibited higher conductivity and better rheological properties compared with those of the pure PVP solution. The average diameter of the PVP electrospun fibers decreased with the increase in the amount of CNCs and Ag nanoparticles. Thermal stability of electrospun composite fibers was decreased with the addition of CNCs. The CNCs help increase the composite tensile strength, while the elongation at break decreased. The composite fibers included Ag nanoparticles showed improved antimicrobial activity against both the Gram-negative bacterium Escherichia coli (E. coli) and the Gram-positive bacterium Staphylococcus aureus (S. aureus). The enhanced strength and antimicrobial performances of PVP/CNC/Ag electrospun composite fibers make the mat material an attractive candidate for application in the biomedical field. PMID:28773644

  2. Micromechanics of composites with shape memory alloy fibers in uniform thermal fields

    NASA Technical Reports Server (NTRS)

    Birman, Victor; Saravanos, Dimitris A.; Hopkins, Dale A.

    1995-01-01

    Analytical procedures are developed for a composite system consisting of shape memory alloy fibers within an elastic matrix subject to uniform temperature fluctuations. Micromechanics for the calculation of the equivalent properties of the composite are presented by extending the multi-cell model to incorporate shape memory alloy fibers. A three phase concentric cylinder model is developed for the analysis of local stresses which includes the fiber, the matrix, and the surrounding homogenized composite. The solution addresses the complexities induced by the nonlinear dependence of the in-situ martensite fraction of the fibers to the local stresses and temperature, and the local stresses developed from interactions between the fibers and matrix during the martensitic and reverse phase transformations. Results are presented for a nitinol/epoxy composite. The applications illustrate the response of the composite in isothermal longitudinal loading and unloading, and in temperature induced actuation. The local stresses developed in the composite under various stages of the martensitic and reverse phase transformation are also shown.

  3. Research on Damage Models for Continuous Fiber Composites

    DTIC Science & Technology

    1988-07-01

    r ~.F (~ Mechanics and Materials Center TEXAS A&M UNIVERSITY College Station, Texas RESEARCH ON DAMAGE MODELS FOR CONTINUOUS FIBER COMPOSITES Final...Washington, DC 20332 11. TITLE (Include Security Clas=fication) Research on Damage Models for Continuous Fiber Composites - Final Technical Report 1...GROUP SUB-GROU ::=, COMPOsites ) continuum mechanics , ~ idamage, internal state variables V experimental mechanics, laminated composites o 19. ABSTRACT

  4. Effects of edge grinding and sealing on mechanical properties of machine damaged laminate composites

    NASA Astrophysics Data System (ADS)

    Asmatulu, Ramazan; Yeoh, Jason; Alarifi, Ibrahim M.; Alharbi, Abdulaziz

    2016-04-01

    Fiber reinforced composites have been utilized for a number of different applications, including aircraft, wind turbine, automobile, construction, manufacturing, and many other industries. During the fabrication, machining (waterjet, diamond and band saws) and assembly of these laminate composites, various edge and hole delamination, fiber pullout and other micro and nanocracks can be formed on the composite panels. The present study mainly focuses on the edge grinding and sealing of the machine damaged fiber reinforced composites, such as fiberglass, plain weave carbon fiber and unidirectional carbon fiber. The MTS tensile test results confirmed that the composite coupons from the grinding process usually produced better and consistent mechanical properties compared to the waterjet cut samples only. In addition to these studies, different types of high strength adhesives, such as EPON 828 and Loctite were applied on the edges of the prepared composite coupons and cured under vacuum. The mechanical tests conducted on these coupons indicated that the overall mechanical properties of the composite coupons were further improved. These processes can lower the labor costs on the edge treatment of the composites and useful for different industrial applications of fiber reinforced composites.

  5. Effects of oxygen plasma treatment power on Aramid fiber III/BMI composite humidity resistance properties

    NASA Astrophysics Data System (ADS)

    Wang, Jing; Shi, Chen; Feng, Jiayue; Long, Xi; Meng, Lingzhi; Ren, Hang

    2018-01-01

    The effects of oxygen plasma treatment power on Aramid Fiber III chemical structure and its reinforced bismaleimides (BMI) composite humidity resistance properties were investigated in this work. The aramid fiber III chemical structure under different plasma treatment power were measured by FTIR. The composite bending strength and interlinear shear strength with different plasma treatment power before and after absorption water were tested respectively. The composite rupture morphology was observed by SEM. The FTIR results showed that oxygen plasma treatment do not change the fiber bulk chemical structure. The composite humidity resistance of bending strength and interlinear shear strength are similar for untreated and plasma treated samples. The retention rate of composite bending strength and interlinear shear strength are about 75% and 94%, respectively. The composite rupture mode turns to be the fiber failure after water absorption.

  6. Mechanical properties of SiC fiber-reinforced reaction-bonded Si3N4 composites

    NASA Technical Reports Server (NTRS)

    Bhatt, R. T.

    1985-01-01

    The room temperature mechanical and physical properties of silicon carbide fiber reinforced reaction-bonded silicon nitride composites (SiC/RBSN) have been evaluated. The composites contained 23 and 40 volume fraction of aligned 140 micro m diameter chemically vapor deposited SiC fibers. Preliminary results for composite tensile and bend strengths and fracture strain indicate that the composites displayed excellent properties when compared with unreinforced RBSN of comparable porosity. Fiber volume fraction showed little influence on matrix first cracking strain but did influence the stressed required for matrix first cracking and for ultimate composite fracture strength. It is suggested that by reducing matrix porosity and by increasing the volume fraction of the large diameter SiC fiber, it should be possible to further improve the composite stress at which the matrix first cracks.

  7. Surface characterization of LDEF carbon fiber/polymer matrix composites

    NASA Technical Reports Server (NTRS)

    Grammer, Holly L.; Wightman, James P.; Young, Philip R.; Slemp, Wayne S.

    1995-01-01

    XPS (x-ray photoelectron spectroscopy) and SEM (scanning electron microscopy) analysis of both carbon fiber/epoxy matrix and carbon fiber/polysulfone matrix composites revealed significant changes in the surface composition as a result of exposure to low-earth orbit. The carbon 1s curve fit XPS analysis in conjunction with the SEM photomicrographs revealed significant erosion of the polymer matrix resins by atomic oxygen to expose the carbon fibers of the composite samples. This erosion effect on the composites was seen after 10 months in orbit and was even more obvious after 69 months.

  8. Highly birefringent polymer microstructured optical fibers embedded in composite materials

    NASA Astrophysics Data System (ADS)

    Lesiak, P.; SzelÄ g, M.; Kuczkowski, M.; Domański, A. W.; Woliński, T. R.

    2013-05-01

    Composite structures are made from two or more constituent materials with significantly different physical or chemical properties and they remain separate and distinct in a macroscopic level within the finished structure. This feature allows for introducing highly birefringent polymer microstructured optical fibers into the composite material. These new fibers can consist of only two polymer materials (PMMA and PC) with similar value of the Young modulus as the composite material so any stresses induced in the composite material can be easily measured by the proposed embedded fiber optic sensors.

  9. Bio-composites based on cellulose acetate and kenaf fibers: Processing and properties

    NASA Astrophysics Data System (ADS)

    Pang, C.; Shanks, R. A.; Daver, F.

    2014-05-01

    Research on bio-composites is important because of its positive environmental impact. In this study, bio-composites based on plasticised cellulose acetate and kenaf fibers were prepared by solution casting and compression moulding methods. The fibers were chemically treated to remove lignin, hemicellulose and impurities. Mechanical, morphological and thermal properties of the bio-composites were studied. Introduction of chopped kenaf fibers increased the storage modulus. The flexural storage modulus of the composite was affected with the introduction of moisture. Moisture behaved similar to the effect of plasticiser, it reduced the modulus.

  10. Interfacial microstructure and mechanical properties of Cf/AZ91D composites with TiO2 and PyC fiber coatings.

    PubMed

    Li, Shaolin; Qi, Lehua; Zhang, Ting; Ju, Luyan; Li, Hejun

    2017-10-01

    In spite of the effectiveness of the fiber coatings on interface modification of carbon fiber reinforced magnesium matrix composites, the cost and exclusive equipment for the coatings preparation are usually ignored during research work. In this paper, pyrolytic carbon (PyC) and TiO 2 were coated on carbon fiber surface to study the effects of fiber coatings on interfacial microstructure and mechanical properties of carbon fiber reinforced AZ91D composites (C f /AZ91D composites). It was indicated that both the two coatings could modify the interface and improve the mechanical properties of the composites. The ultimate tensile strength of the TiO 2 -C f /AZ91D and the PyC-C f /AZ91D composite were 333MPa and 400MPa, which were improved by 41.7% and 70.2% respectively, compared with the untreated-C f /AZ91D composite. The microstructure observation revealed that the strengthening of the composites relied on fiber integrity and moderate interfacial bonding. MgO nano-particles were generated at the interface due to the reaction of TiO 2 with Mg in the TiO 2 -C f /AZ91D composite. The volume expansion resulting from the reaction let to disordered intergranular films and crystal defects at the interface. The fibers were protected and the interfacial reaction was restrained by PyC coating in the PyC-C f /AZ91D composite. The principle to select the coating of fiber was proposed by comparing the effectiveness and cost of the coatings. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Equations to assess the impact resistance of fiber composites

    NASA Technical Reports Server (NTRS)

    Chamis, C. C.; Hanson, M. P.; Serafini, T. T.

    1972-01-01

    Numerical analysis of impact resistance of composite materials containing fibers is discussed. Mathematical model of longitudinal impact resistance is presented. Potential impact resistance of various fiber composites as obtained by numerical analysis is presented as plotted curve.

  12. Ferroelectric hybrid fibers to develop flexible sensors for shape sensing of smart textiles and soft condensed matter bodies

    NASA Astrophysics Data System (ADS)

    Sebastian, Tutu; Lusiola, Tony; Clemens, Frank

    2017-04-01

    Piezoelectric fibers are widely used in composites for actuator and sensor applications due to its ability to convert electrical pulses into mechanical vibrations and transform the returned mechanical vibrations back into electrical signal. They are beneficial for the fabrication of composites especially 1-3 composites, active fiber composites (unidirectional axially aligned PZT fibers sandwiched between interdigitated electrodes and embedded in a polymer matrix) etc, with potential applications in medical imaging, structural health monitoring, energy harvesting, vibration and noise control. However, due to the brittle nature of PZT fibers, maximum strain is limited to 0.2% and cannot be integrated into flexible sensor applications. In this contribution, a new approach to develop flexible ferroelectric hybrid fibers for soft body shape sensing is investigated. Piezoelectric particles incorporated in a polymer matrix and extruded as fiber, 0-3 composite in fibrous form is studied. Commercially obtained calcined PZT and calcined BaTiO3 powders were used in the unsintered form to obtain flexible soft condensed matter ferroelectric hybrid fibers. The extruded fibers were subjected to investigation for their electromechanical behavior as a function of electric field. The hybrid fibers reached 10% of the maximum polarization of their sintered counterpart.

  13. Polyaniline coated cellulose fiber / polyvinyl alcohol composites with high dielectric permittivity and low percolation threshold

    NASA Astrophysics Data System (ADS)

    Anju, V. P.; Narayanankutty, Sunil K.

    2016-01-01

    Cost effective, high performance dielectric composites based on polyvinyl alcohol, cellulose fibers and polyaniline were prepared and the dielectric properties were studied as a function of fiber content, fiber dimensions and polyaniline content over a frequency range of 40 Hz to 30 MHz. The short cellulose fibers were size-reduced to micro and nano levels prior to coating with polyaniline. Fiber surface was coated with Polyaniline (PANI) by an in situ polymerization technique in aqueous medium. The composites were then prepared by solution casting method. Short cellulose fiber composites showed a dielectric constant (DEC) of 2.3 x 105 at 40 Hz. For the micro- and nano- cellulose fiber composites the DEC was increased to 4.5 x 105 and 1.3 x 108, respectively. To gain insight into the inflection point of the dielectric data polynomial regression analysis was carried out. The loss tangent of all the composites remained at less than 1.5. Further, AC conductivity, real and imaginary electric moduli of all the composites were evaluated. PVA nanocomposite attained an AC conductivity of 3 S/m. These showed that by controlling the size of the fiber used, it was possible to tune the permittivity and dielectric loss to desired values over a wide range. These novel nanocomposites, combining high dielectric constant and low dielectric loss, can be effectively used in applications such as high-charge storage capacitors.

  14. Rheological properties of molten flax- and Tencel{sup ®}-polypropylene composites: Influence of fiber morphology and concentration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abdennadher, Ahmed; Vincent, Michel; Budtova, Tatiana, E-mail: Tatiana.Budtova@mines-paristech.fr

    The rheological properties of short fiber reinforced polypropylene were investigated. Flax and Tencel{sup ®} are two cellulose based fibers used in this study. Flax fibers are extracted from the bast of plants. They are composed of thin elementary fibers and rigid thick bundles made of elementary fibers “glued” together. Tencel{sup ®} is a man-made cellulosic fiber spun from cellulose solution, with a uniform diameter, thin, and flexible. First, fiber dimensions before and after compounding were analyzed. Both types of fibers were broken during compounding. Flax shows larger length and diameter than Tencel{sup ®}, but aspect ratio of flax is smaller.more » The reason is that after compounding flax remained in bundles. Dynamic viscosity, elastic and viscous moduli were studied as a function of fiber type, concentration (from 0 to 30 wt. %), and composite temperature (from 180 to 200 °C). All Tencel{sup ®}-based composites showed higher apparent yield stress, viscosity, and moduli compared to flax-based composites at the same fiber concentrations. The results are analyzed in terms of the influence of fiber type, aspect ratio, and flexibility. The importance of considering fiber morphology is demonstrated as far as it controls fiber flexibility and fiber-fiber interactions.« less

  15. Investigation of mechanical properties of kenaf, hemp and E-glass fiber reinforced composites

    NASA Astrophysics Data System (ADS)

    Dinesh, Veena; Shivanand, H. K.; Vidyasagar, H. N.; Chari, V. Srinivasa

    2018-04-01

    Recently the use of fiber reinforced polymer composite in the automobile, aerospace overwhelming designing sectors has increased tremendously due to the ecological issues and health hazard possessed by the synthetic fiber during disposal and manufacturing. The paper presents tensile strength, flexural strength and hardness of kenaf-E glass-kenaf, hemp-E glass-hemp and kenaf-E glass-hemp fiber reinforced polyester composites. The composite plates are shaped according to the standard geometry and uni-axially loaded in order to investigate the tensile responses of each combination. In addition to the physical and mechanical properties, processing methods and application of kenaf and hemp fiber composites is also discussed.

  16. Microwave and plasma-assisted modification of composite fiber surface topography

    DOEpatents

    Paulauskas, Felix L [Knoxville, TN; White, Terry L [Knoxville, TN; Bigelow, Timothy S [Knoxville, TN

    2003-02-04

    The present invention introduces a novel method for producing an undulated surface on composite fibers using plasma technology and microwave radiation. The undulated surface improves the mechanical interlocking of the fibers to composite resins and enhances the mechanical strength and interfacial sheer strength of the composites in which they are introduced.

  17. Multifunctional hydroxyapatite/Na(Y/Gd)F4:Yb3+,Er3+ composite fibers for drug delivery and dual modal imaging.

    PubMed

    Liu, Min; Liu, Hui; Sun, Shufen; Li, Xuejiao; Zhou, Yanmin; Hou, Zhiyao; Lin, Jun

    2014-02-04

    Porous hydroxyapatite (HAp) composite fibers functionalized with up-conversion (UC) luminescent and magnetic Na(Y/Gd)F4:Yb(3+),Er(3+) nanocrystals (NCs) have been fabricated via electrospinning. After transferring hydrophobic oleic acid-capped Na(Y/Gd)F4:Yb(3+),Er(3+) NCs into aqueous solution, these water-dispersible NCs were dispersed into precursor electrospun solution containing CTAB. Na(Y/Gd)F4:Yb(3+),Er(3+)@HAp composite fibers were fabricated by the high temperature treatment of the electrospun Na(Y/Gd)F4:Yb(3+),Er(3+) NCs decorated precursor fibers. The biocompatibility test on MC 3T3-E1 cells using MTT assay shows that the HAp composite fibers have negligible cytotoxity, which reveals the HAp composite fibers could be a drug carrier for drug delivery. Because the contrast brightening is enhanced at increased concentrations of Gd(3+), the HAp composite fibers can serve as T1 magnetic resonance imaging contrast agents. In addition, the composites uptaken by MC 3T3-E1 cells present the UC luminescent emission of Er(3+) under the excitation of a 980 nm near-infrared laser. The above findings reveal Na(Y/Gd)F4:Yb(3+),Er(3+)@HAp composite fibers have potential applications in drug storage/release and magnetic resonance/UC luminescence imaging.

  18. Fabrication of CH3NH3PbI3/PVP Composite Fibers via Electrospinning and Deposition

    PubMed Central

    Chao, Li-Min; Tai, Ting-Yu; Chen, Yueh-Ying; Lin, Pei-Ying; Fu, Yaw-Shyan

    2015-01-01

    In our study, one-dimensional PbI2/polyvinylpyrrolidone (PVP) composition fibers have been prepared by using PbI2 and PVP as precursors dissolved in N,N-dimethylformamide via a electrospinning process. Dipping the fibers into CH3NH3I solution changed its color, indicating the formation of CH3NH3PbI3, to obtain CH3NH3PbI3/PVP composite fibers. The structure, morphology and composition of the all as-prepared fibers were characterized by using X-ray diffraction and scanning electron microscopy. PMID:28793517

  19. Feasibility of producing cast-refractory metal-fiber superalloy composites

    NASA Technical Reports Server (NTRS)

    Mcintyre, R. D.

    1973-01-01

    A study was conducted to evaluate the feasibility of direct casting as a practical method for producing cast superalloy tungsten or columbium alloy fiber composites while retaining a high percentage of fiber strength. Fourteen nickel base, four cobalt, and three iron based matrices were surveyed for their degree of reaction with the metal fibers. Some stress-rupture results were obtained at temperatures of 760, 816, 871, and 1093 C for a few composite systems. The feasibility of producing acceptable composites of some cast nickel, cobalt, and iron matrix alloys with tungsten or columbium alloy fibers was demonstrated.

  20. Distributed Sensing of Carbon-Epoxy Composites and Filament Wound Pressure Vessels Using Fiber-Bragg Gratings

    NASA Technical Reports Server (NTRS)

    Grant, J.; Kaul, R.; Taylor, S.; Myer, G.; Jackson, K.; Osei, A.; Sharma, A.

    2003-01-01

    Multiple Fiber Bragg-gratings are embedded in carbon-epoxy laminates as well as in composite wound pressure vessel. Structural properties of such composites are investigated. The measurements include stress-strain relation in laminates and Poisson's ratio in several specimens with varying orientation of the optical fiber Bragg-sensor with respect to the carbon fiber in an epoxy matrix. Additionally, fiber Bragg gratings are bonded on the surface of these laminates and cylinders fabricated out of carbon-epoxy composites and multiple points are monitored and compared for strain measurements at several locations.

  1. The effect of oxygen-plasma treatment on Kevlar fibers and the properties of Kevlar fibers/bismaleimide composites

    NASA Astrophysics Data System (ADS)

    Su, Min; Gu, Aijuan; Liang, Guozheng; Yuan, Li

    2011-02-01

    The effect of oxygen-plasma treatment for Kevlar fibers on the interfacial adhesion and typical macro-properties of Kevlar fiber/bismaleimide composites was intensively studied. It is found that oxygen-plasma treatment significantly affects the interfacial adhesion by changing the chemistry and morphology of the surfaces of the fibers, and thus leading to improved interlaminar shear strength, water resistance and dielectric properties of the composites. However, the improvement is closely related to the treatment power and time. The best condition for treating Kevlar fiber is 70 W for 5 min. Oxygen-plasma treatment provides an effective technique for overcoming the poor interfacial adhesion of Kevlar fiber based composites, and thus showing great potential in fabricating high performance copper clad laminates.

  2. Modified Composite Materials Workshop

    NASA Technical Reports Server (NTRS)

    Dicus, D. L. (Compiler)

    1978-01-01

    The reduction or elimination of the hazard which results from accidental release of graphite fibers from composite materials was studied at a workshop. At the workshop, groups were organized to consider six topics: epoxy modifications, epoxy replacement, fiber modifications, fiber coatings and new fibers, hybrids, and fiber release testing. Because of the time required to develop a new material and acquire a design data base, most of the workers concluded that a modified composite material would require about four to five years of development and testing before it could be applied to aircraft structures. The hybrid working group considered that some hybrid composites which reduce the risk of accidental fiber release might be put into service over the near term. The fiber release testing working group recommended a coordinated effort to define a suitable laboratory test.

  3. Fiber shape effects on metal matrix composite behavior

    NASA Technical Reports Server (NTRS)

    Brown, H. C.; Lee, H.-J.; Chamis, C. C.

    1992-01-01

    The effects of different fiber shapes on the behavior of a SiC/Ti-15 metal matrix composite is computationally simulated. A three-dimensional finite element model consisting of a group of nine unidirectional fibers is used in the analysis. The model is employed to represent five different fiber shapes: a circle, an ellipse, a kidney, and two different cross shapes. The distribution of microstresses and the composite material properties, such as moduli, coefficients of thermal expansion, and Poisson's ratios, are obtained from the finite element analysis for the various fiber shapes. Comparisons of these results are used to determine the sensitivity of the composite behavior to the different fiber shapes and assess their potential benefits. No clear benefits result from different fiber shapes though there are some increases/decreases in isolated properties.

  4. Electronic equipment vulnerability to fire released carbon fibers

    NASA Technical Reports Server (NTRS)

    Pride, R. A.; Mchatton, A. D.; Musselman, K. A.

    1980-01-01

    The vulnerability of electronic equipment to damage by carbon fibers released from burning aircraft type structural composite materials was investigated. Tests were conducted on commercially available stereo power amplifiers which showed that the equipment was damaged by fire released carbon fibers but not by the composite resin residue, soot and products of combustion of the fuel associated with burning the carbon fiber composites. Results indicate that the failure rates of the equipment exposed to the fire released fiber were consistent with predictions based on tests using virgin fibers.

  5. Comparison Of Models Of Metal-Matrix Composites

    NASA Technical Reports Server (NTRS)

    Bigelow, C. A.; Johnson, W. S.; Naik, R. A.

    1994-01-01

    Report presents comparative review of four mathematical models of micromechanical behaviors of fiber/metal-matrix composite materials. Models differ in various details, all based on properties of fiber and matrix constituent materials, all involve square arrays of fibers continuous and parallel and all assume complete bonding between constituents. Computer programs implementing models used to predict properties and stress-vs.-strain behaviors of unidirectional- and cross-ply laminated composites made of boron fibers in aluminum matrices and silicon carbide fibers in titanium matrices. Stresses in fiber and matrix constituent materials also predicted.

  6. Process for preparing composite articles from composite fiber blends

    NASA Technical Reports Server (NTRS)

    McMahon, Paul E. (Inventor); Chung, Tai-Shung (Inventor); Ying, Lincoln (Inventor)

    1989-01-01

    A composite article is prepared by forming a continuous tow of continuous carbon fibers, forming a continuous tow of thermoplastic polymer fibers, uniformly and continuously spreading the thermoplastic polymer fibers to a selected width, uniformly and continuously spreading the carbon fiber tow to a width that is essentially the same as the selected width for the thermoplastic polymer fiber tow, intermixing the tows intimately, uniformly and continuously, in a relatively tension-free state, continuously withdrawing the intermixed tow and applying the tow to a mold and heating the tow.

  7. Optimization of High Temperature and Pressurized Steam Modified Wood Fibers for High-Density Polyethylene Matrix Composites Using the Orthogonal Design Method.

    PubMed

    Gao, Xun; Li, Qingde; Cheng, Wanli; Han, Guangping; Xuan, Lihui

    2016-10-18

    The orthogonal design method was used to determine the optimum conditions for modifying poplar fibers through a high temperature and pressurized steam treatment for the subsequent preparation of wood fiber/high-density polyethylene (HDPE) composites. The extreme difference, variance, and significance analyses were performed to reveal the effect of the modification parameters on the mechanical properties of the prepared composites, and they yielded consistent results. The main findings indicated that the modification temperature most strongly affected the mechanical properties of the prepared composites, followed by the steam pressure. A temperature of 170 °C, a steam pressure of 0.8 MPa, and a processing time of 20 min were determined as the optimum parameters for fiber modification. Compared to the composites prepared from untreated fibers, the tensile, flexural, and impact strength of the composites prepared from modified fibers increased by 20.17%, 18.5%, and 19.3%, respectively. The effect on the properties of the composites was also investigated by scanning electron microscopy and dynamic mechanical analysis. When the temperature, steam pressure, and processing time reached the highest values, the composites exhibited the best mechanical properties, which were also well in agreement with the results of the extreme difference, variance, and significance analyses. Moreover, the crystallinity and thermal stability of the fibers and the storage modulus of the prepared composites improved; however, the hollocellulose content and the pH of the wood fibers decreased.

  8. Optimization of High Temperature and Pressurized Steam Modified Wood Fibers for High-Density Polyethylene Matrix Composites Using the Orthogonal Design Method

    PubMed Central

    Gao, Xun; Li, Qingde; Cheng, Wanli; Han, Guangping; Xuan, Lihui

    2016-01-01

    The orthogonal design method was used to determine the optimum conditions for modifying poplar fibers through a high temperature and pressurized steam treatment for the subsequent preparation of wood fiber/high-density polyethylene (HDPE) composites. The extreme difference, variance, and significance analyses were performed to reveal the effect of the modification parameters on the mechanical properties of the prepared composites, and they yielded consistent results. The main findings indicated that the modification temperature most strongly affected the mechanical properties of the prepared composites, followed by the steam pressure. A temperature of 170 °C, a steam pressure of 0.8 MPa, and a processing time of 20 min were determined as the optimum parameters for fiber modification. Compared to the composites prepared from untreated fibers, the tensile, flexural, and impact strength of the composites prepared from modified fibers increased by 20.17%, 18.5%, and 19.3%, respectively. The effect on the properties of the composites was also investigated by scanning electron microscopy and dynamic mechanical analysis. When the temperature, steam pressure, and processing time reached the highest values, the composites exhibited the best mechanical properties, which were also well in agreement with the results of the extreme difference, variance, and significance analyses. Moreover, the crystallinity and thermal stability of the fibers and the storage modulus of the prepared composites improved; however, the hollocellulose content and the pH of the wood fibers decreased. PMID:28773963

  9. Feasibility on fiber orientation detection on unidirectional CFRP composite laminates using nondestructive evaluation techniques

    NASA Astrophysics Data System (ADS)

    Yang, In-Young; Kim, Ji-Hoon; Cha, Cheon-Seok; Lee, Kil-Sung; Hsu, David K.; Im, Kwang-Hee

    2007-07-01

    In particular, CFRP (carbon fiber reinforced plastics) composite materials have found wide applicability because of their inherent design flexibility and improved material properties. CFRP composites were manufactured from uni-direction prepreg sheet in this paper. It is important to assess fiber orientation, material properties and part defect in order to ensure product quality and structural integrity of CFRP because strength and stiffness of composites depend on fiber orientation. It is desirable to perform nondestructive evaluation which is very beneficial. An new method for nondestructively determining the fiber orientation in a composite laminate is presented. A one-sided pitch-catch setup was used in the detection and evaluation of flaws and material anomalies in the unidirectional CFRP composite laminates. Two Rayleigh wave transducers were joined head-to-head and used in the pitch-catch mode on the surface of the composites. The pitch-catch signal was found to be more sensitive than normal incidence backwall echo of longitudinal wave to subtle flaw conditions in the composite. Especially, ultrasonic waves were extensively characterized in the CFRP composite laminates both normal to fiber and along to fiber with using a one-sided direction of Rayleigh wave transducers. Also, one-sided ultrasonic measurement was made with using a Rayleigh wave transducers and a conventional scanner was used in an immersion tank for extracting fiber orientation information from the ultrasonic reflection in the unidirectional laminate. Therefore, it is thought that the proposed method is useful to evaluate integrity of CFRP laminates.

  10. ENVIRONMENTAL TECHNOLOGY VERIFICATION REPORT - REMOVAL OF PRECURSORS TO DISINFECTION BY-PRODUCTS IN DRINKING WATER, PCI MEMBRANE SYSTEMS FYNE PROCESS MODEL ROP 1434 WITH AFC-30 NANOFILTRATON AT BARROW, AK - NSF 00/19/EPADW395

    EPA Science Inventory

    Equipment testing and verification of PCI Membrane Systems Inc. Fyne Process nanofiltraton systems Model ROP 1434 equipped with a C10 module containing AFC-30 tubular membranes was conducted from 3/16-5/11/2000 in Barrow, AS. The source water was a moderate alkalinity, moderately...

  11. A Hybrid Approach to Tactical Vehicles

    DTIC Science & Technology

    2011-09-01

    membrane fuel cell ( PEMFC ), molten carbonate fuel cell (MCFC), solid oxide fuel cell (SOFC), phosphoric acid fuel cell (PAFC), alkaline fuel cell (AFC...and the direct methanol fuel cell (DMFC) (Ehsani, Gao, & Emadi, 2010). Of the six major types of fuel cells; the PEMFC , SOFC, and AFC are... PEMFC (21st Century Truck Program, 2000). There are a number of advantages of using a fuel cell as the primary power source for a vehicle. All fuel

  12. Design and pilot evaluation of the RAH-66 Comanche Core AFCS

    NASA Technical Reports Server (NTRS)

    Fogler, Donald L., Jr.; Keller, James F.

    1993-01-01

    This paper addresses the design and pilot evaluation of the Core Automatic Flight Control System (AFCS) for the Reconnaissance/Attack Helicopter (RAH-66) Comanche. During the period from November 1991 through February 1992, the RAH-66 Comanche control laws were evaluated through a structured pilot acceptance test using a motion base simulator. Design requirements, descriptions of the control law design, and handling qualities data collected from ADS-33 maneuvers are presented.

  13. Performance of a commercial transport under typical MLS noise environment

    NASA Technical Reports Server (NTRS)

    Ho, J. K.

    1986-01-01

    The performance of a 747-200 automatic flight control system (AFCS) subjected to typical Microwave Landing System (MLS) noise is discussed. The performance is then compared with the results from a previous study which had a B747 AFCS subjected to the MLS standards and recommended practices (SARPS) maximum allowable noise. A glide slope control run with Instrument Landing System (ILS) noise is also conducted. Finally, a linear covariance analysis is presented.

  14. Flight Control Development for the ARH-70 Armed Reconnaissance Helicopter Program

    NASA Technical Reports Server (NTRS)

    Christensen, Kevin T.; Campbell, Kip G.; Griffith, Carl D.; Ivler, Christina M.; Tischler, Mark B.; Harding, Jeffrey W.

    2008-01-01

    In July 2005, Bell Helicopter won the U.S. Army's Armed Reconnaissance Helicopter competition to produce a replacement for the OH-58 Kiowa Warrior capable of performing the armed reconnaissance mission. To meet the U.S. Army requirement that the ARH-70A have Level 1 handling qualities for the scout rotorcraft mission task elements defined by ADS-33E-PRF, Bell equipped the aircraft with their generic automatic flight control system (AFCS). Under the constraints of the tight ARH-70A schedule, the development team used modem parameter identification and control law optimization techniques to optimize the AFCS gains to simultaneously meet multiple handling qualities design criteria. This paper will show how linear modeling, control law optimization, and simulation have been used to produce a Level 1 scout rotorcraft for the U.S. Army, while minimizing the amount of flight testing required for AFCS development and handling qualities evaluation of the ARH-70A.

  15. Changes in ovarian reserve and ovarian blood flow in patients with polycystic ovary syndrome following laparoscopic ovarian drilling.

    PubMed

    Kamal, Nasser; Sanad, Zakaria; Elkelani, Osama; Rezk, Mohamed; Shawky, Mohamed; Sharaf, Abd-Elbar

    2018-04-10

    This prospective cohort study was conducted on 80 patients with clomiphene citrate (CC)-resistant polycystic ovary syndrome undergoing laparoscopic ovarian drilling (LOD). Pre- and post-LOD ovarian reserve parameters (anti-Mullerian hormone: AMH, ovarian volume: OV, and antral follicle count: AFC) and ovarian stromal blood flow indices (Vascularization index: VI, flow index: FI, and vascularization flow index: VFI) were measured to explore the effect of LOD and to find out the correlation between serum AMH and different clinical, hormonal, and ultrasonic variables. There was a highly significant reduction of the serum AMH (p < .001) after LOD with significant reduction in OV, AFC and vascular indices (VI, FI and VFI) of the right and left ovaries (p < .05). LOD significantly reduced ovarian reserve parameters (AMH, OV and AFC) and ovarian stromal blood flow indices (VI, FI and VFI) with no observed correlation between AMH levels and Doppler indices.

  16. A High-Order, Linear Time-Invariant Model for Application to Higher Harmonic Control and Flight Control System Interaction

    NASA Technical Reports Server (NTRS)

    Cheng, Rendy P.; Tischler, Mark B.; Celi, Roberto

    2006-01-01

    This research describes a new methodology for the extraction of a high-order, linear time invariant model, which allows the periodicity of the helicopter response to be accurately captured. This model provides the needed level of dynamic fidelity to permit an analysis and optimization of the AFCS and HHC algorithms. The key results of this study indicate that the closed-loop HHC system has little influence on the AFCS or on the vehicle handling qualities, which indicates that the AFCS does not need modification to work with the HHC system. However, the results show that the vibration response to maneuvers must be considered during the HHC design process, and this leads to much higher required HHC loop crossover frequencies. This research also demonstrates that the transient vibration responses during maneuvers can be reduced by optimizing the closed-loop higher harmonic control algorithm using conventional control system analyses.

  17. An intelligent active force control algorithm to control an upper extremity exoskeleton for motor recovery

    NASA Astrophysics Data System (ADS)

    Hasbullah Mohd Isa, Wan; Taha, Zahari; Mohd Khairuddin, Ismail; Majeed, Anwar P. P. Abdul; Fikri Muhammad, Khairul; Abdo Hashem, Mohammed; Mahmud, Jamaluddin; Mohamed, Zulkifli

    2016-02-01

    This paper presents the modelling and control of a two degree of freedom upper extremity exoskeleton by means of an intelligent active force control (AFC) mechanism. The Newton-Euler formulation was used in deriving the dynamic modelling of both the anthropometry based human upper extremity as well as the exoskeleton that consists of the upper arm and the forearm. A proportional-derivative (PD) architecture is employed in this study to investigate its efficacy performing joint-space control objectives. An intelligent AFC algorithm is also incorporated into the PD to investigate the effectiveness of this hybrid system in compensating disturbances. The Mamdani Fuzzy based rule is employed to approximate the estimated inertial properties of the system to ensure the AFC loop responds efficiently. It is found that the IAFC-PD performed well against the disturbances introduced into the system as compared to the conventional PD control architecture in performing the desired trajectory tracking.

  18. Bacteriological evaluation of a new air turbine handpiece for preventing cross-contamination in dental procedures.

    PubMed

    Masuda, K; Ohta, M; Ohsuka, S; Matsuyama, M; Ashoori, M; Usami, T; Ito, M; Ueda, M; Kaneda, T

    1994-03-01

    An autoclavable air turbine handpiece, Air Flushing Clean System (AFCS) (Osada Electric Co., Ltd., Tokyo, Japan) was developed for use in dentistry with the objective of reducing cross-contamination. Its potential for bacterial contamination was investigated in vitro using two bacterial strains (Streptococcus mutants ATCC 25175 and Staphylococcus aureus FDA 209 P). In theory, this device should prevent cross-contamination of the internal water and air lines of the handpiece, by maintaining an internal positive pressure even after the turbine is stopped. In the present study, this AFCS device was found to reduce the bacterial contamination within the air turbine handpiece more effectively than the conventional handpiece used according to accepted protocol. The reduction of such contamination by the AFCS is in keeping with the recent objective of the American Dental Association to reduce cross-contamination during dental procedures.

  19. Advanced Fuels Campaign FY 2014 Accomplishments Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Braase, Lori; May, W. Edgar

    The mission of the Advanced Fuels Campaign (AFC) is to perform Research, Development, and Demonstration (RD&D) activities for advanced fuel forms (including cladding) to enhance the performance and safety of the nation’s current and future reactors; enhance proliferation resistance of nuclear fuel; effectively utilize nuclear energy resources; and address the longer-term waste management challenges. This includes development of a state-of-the art Research and Development (R&D) infrastructure to support the use of a “goal-oriented science-based approach.” In support of the Fuel Cycle Research and Development (FCRD) program, AFC is responsible for developing advanced fuels technologies to support the various fuel cyclemore » options defined in the Department of Energy (DOE) Nuclear Energy Research and Development Roadmap, Report to Congress, April 2010. AFC uses a “goal-oriented, science-based approach” aimed at a fundamental understanding of fuel and cladding fabrication methods and performance under irradiation, enabling the pursuit of multiple fuel forms for future fuel cycle options. This approach includes fundamental experiments, theory, and advanced modeling and simulation. The modeling and simulation activities for fuel performance are carried out under the Nuclear Energy Advanced Modeling and Simulation (NEAMS) program, which is closely coordinated with AFC. In this report, the word “fuel” is used generically to include fuels, targets, and their associated cladding materials. R&D of light water reactor (LWR) fuels with enhanced accident tolerance is also conducted by AFC. These fuel systems are designed to achieve significantly higher fuel and plant performance to allow operation to significantly higher burnup, and to provide enhanced safety during design basis and beyond design basis accident conditions. The overarching goal is to develop advanced nuclear fuels and materials that are robust, have high performance capability, and are more tolerant to accident conditions than traditional fuel systems. AFC management and integration activities included continued support for international collaborations, primarily with France, Japan, the European Union, Republic of Korea, and China, as well as various working group and expert group activities in the Organization for Economic Cooperation and Development Nuclear Energy Agency (OECD-NEA) and the International Atomic Energy Agency (IAEA). Three industry-led Funding Opportunity Announcements (FOAs) and two university-led Integrated Research Projects (IRPs), funded in 2013, made significant progress in fuels and materials development. All are closely integrated with AFC and Accident Tolerant Fuels (ATF) research. Accomplishments made during fiscal year (FY) 2014 are highlighted in this report, which focuses on completed work and results. The process details leading up to the results are not included; however, the lead technical contact is provided for each section.« less

  20. Ovarian reserve after treatment with alkylating agents during childhood.

    PubMed

    Thomas-Teinturier, Cécile; Allodji, Rodrigue Sétchéou; Svetlova, Ekaterina; Frey, Marie-Alix; Oberlin, Odile; Millischer, Anne-Elodie; Epelboin, Sylvie; Decanter, Christine; Pacquement, Helene; Tabone, Marie-Dominique; Sudour-Bonnange, Helene; Baruchel, André; Lahlou, Najiba; De Vathaire, Florent

    2015-06-01

    What is the effect of different alkylating agents used without pelvic radiation to treat childhood cancer in girls on the ovarian reserve in survivors? Ovarian reserve seems to be particularly reduced in survivors who received procarbazine (in most cases for Hodgkin lymphoma) or high-dose chemotherapy; procarbazine but not cyclophosphamide dose is associated with diminished ovarian reserve. A few studies have demonstrated diminished ovarian reserve in survivors after various combination therapies, but the individual role of each treatment is difficult to assess. Prospective cross-sectional study, involving 105 survivors and 20 controls. One hundred and five survivors aged 17-40 years and 20 controls investigated on Days 2-5 of a menstrual cycle or Day 7 of an oral contraceptive pill-free interval. ovarian surface area (OS), total number of antral follicles (AFC), serum levels of follicle-stimulating hormone (FSH), luteinizing hormone (LH), estradiol and anti-Müllerian hormone (AMH). Survivors had a lower OS than controls: 3.5 versus 4.4 cm(2) per ovary (P = 0.0004), and lower AMH levels: 10.7 versus 22 pmol/l (P = 0.003). Ovarian markers (OS, AMH, AFC) were worse in patients who received high-dose compared with conventional-dose alkylating agents (P = 0.01 for OS, P = 0.002 for AMH, P < 0.0001 for AFC). Hodgkin lymphoma survivors seemed to have a greater reduction in ovarian reserve than survivors of leukaemia (P = 0.04 for AMH, P = 0.01 for AFC), sarcoma (P = 0.04 for AMH, P = 0.04 for AFC) and other lymphomas (P = 0.04 for AFC). A multiple linear regression analysis showed that procarbazine but not cyclophosphamide nor ifosfamide dose was associated with reduced OS (P = 0.0003), AFC (P = 0.0007), AMH (P < 0.0001) and higher FSH levels (P < 0.0001). The small percentage of participating survivors (28%) from the total cohort does not allow conclusion on fertility issues because of possible response bias. The association between procarbazine and HL makes it impossible to dissociate their individual impacts on ovarian reserve. The number of controls is small, but ovarian volume and AMH levels in survivors were compared with published normal values and results were unchanged. Early detection and follow-up of compromised ovarian function after cancer therapy should help physicians to counsel young survivors about their fertility window. However, longitudinal follow-up is required to determine the rate of progression from low ovarian reserve to premature ovarian failure. La Ligue contre le Cancer (grant no., PRAYN7497). The authors have no competing interests to disclose. © The Author 2015. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  1. Highly improved Uv resistance and composite interfacial properties of aramid fiber via iron (III) coordination

    NASA Astrophysics Data System (ADS)

    Cheng, Zheng; Hong, Dawei; Dai, Yu; Jiang, Chan; Meng, Chenbo; Luo, Longbo; Liu, Xiangyang

    2018-03-01

    The poor Uv stability and weak interfacial adhesion are considered as the bottleneck problems for further application of aramid fiber. Herein, a new strategy, Fe3+ coordination, was reported for aramid fiber to simultaneous improve its Uv resistance and composite interfacial shear strength. Fe3+ was introduced onto aramid fiber by coordinating with benzimidazole unit of fiber structure. It can reach a doping capacity of as high as 1516ug/g fiber, and the fiber surface is saturatedly covered with Fe3+. The chemical structure of Fe3+-benzimidazole brings about strong metal-enhanced fluorescence emission effect, which, in turn, greatly raises its Uv stability. Owing to the Fe3+ coordination, the tensile strength of Fe-coordinated fiber could preserve as high as 96% after Uv irradiation, compared with 73% of untreated fiber. Meanwhile, the introduction of Fe3+ improves the surface polarity of aramid fiber and consequently leads to the increase of the composite interfacial shear strength by 39%. It is believed that the Fe-coordinated fiber integrates the advantages of easy production, cost-effective and increased Uv stability, as well as high composite interfacial adhesion, and can be used as promising enhancement for the advanced composite material in harsh environment.

  2. Natural fibers

    Treesearch

    Craig M. Clemons

    2010-01-01

    The term “natural fibers” covers a broad range of vegetable, animal, and mineral fibers. However, in the composites industry, it usually refers to wood fiber and plant-based bast, leaf, seed, and stem fibers. These fibers often contribute greatly to the structural performance of the plant and, when used in plastic composites, can provide significant reinforcement....

  3. Natural fibers

    Treesearch

    Craig M. Clemons; Daniel F. Caulfield

    2005-01-01

    The term “natural fibers” covers a broad range of vegetable, animal, and mineral fibers. However, in the composites industry, it usually refers to wood fiber and agrobased bast, leaf, seed, and stem fibers. These fibers often contribute greatly to the structural performance of the plant and, when used in plastic composites, can provide significant reinforcement. Below...

  4. The Galvanic Corrosion of Graphite Epoxy Composite Materials Coupled with Alloys

    DTIC Science & Technology

    1975-12-01

    Approved for public release; distribution unlimited. 17 DISTR:3UTION STATEMENT (of the absatract entered in Block 10, If different from Report) IS...SUPPLEMENTARY NIOTES 1x6Voved for p ,11c elease; IA14 AFR j,90- 17 .~y C. X Capta~4 USAF Dre c tor’ of Xn f’orma Cion 19. K~EY W OS (Continiue an r.overse...acceptability by particular alloy is as follows: Acceptable-Ti-6A1-4V, Ti-6A!-2Sn-4 Zr-2o, Rene 41, Inconel X, Inconel, AFC-77, PH 17 -7, SS-304, Be-Cu, SS

  5. Effects of HF Treatments on Tensile Strength of Hi-Nicalon Fibers

    NASA Technical Reports Server (NTRS)

    Bansal, Narottam P.

    1998-01-01

    Tensile strengths of as-received Hi-Nicalon fibers and those having a dual BN/SiC surface coating, deposited by chemical vapor deposition, have been measured at room temperature. These fibers were also treated with HF for 24 h followed by tensile strength measurements. Strengths of uncoated and BN/SiC coated Hi-Nicalon fibers extracted from celsian matrix composites, by dissolving away the matrix in HF for 24 h, were also determined. The average tensile strength of uncoated Hi-Nicalon was 3.19 +/- 0.73 GPa with a Weibull modulus of 5.41. The Hi-Nicalon/BN/SiC fibers showed an average strength of 3.04 q 0.53 GPa and Weibull modulus of 6.66. After HF treatments, the average strengths of the uncoated and BN/SiC coated Hi-Nicalon fibers were 2.69 +/- 0.67 GPa and 2.80 +/- 0.53 GPa and the Weibull moduli were 4.93 and 5.96, respectively. The BN/SiC coated fibers extracted from the celsian matrix composite exhibited a strength of 2.38 +/- 0.40 GPa and a Weibull modulus of 7.15. The strength of the uncoated Hi-Nicalon fibers in the composite was so severely degraded that they disintegrated into small fragments during extraction with HF. The uncoated fibers probably undergo mechanical surface damage during hot pressing of the composites. Also, the BN layer on the coated fibers acts as a compliant layer which protects the fibers from mechanical damage during composite processing. The elemental composition and thickness of the fiber coatings were deten-nined using scanning Auger analysis. Microstructural analyses of the fibers and the coatings were done by scanning electron microscopy and transmission electron microscopy. Strengths of fibers calculated using average and measured fiber diameters were in good agreement. Thus, the strength of fibers can be evaluated using an average fiber diameter instead of the measured diameter of each filament.

  6. Evaluation of mechanical properties of hybrid fiber (hemp, jute, kevlar) reinforced composites

    NASA Astrophysics Data System (ADS)

    Suresha, K. V.; Shivanand, H. K.; Amith, A.; Vidyasagar, H. N.

    2018-04-01

    In today's world composites play wide role in all the engineering fields. The reinforcement of composites decides the properties of the material. Natural fiber composites compared to synthetic fiber possesses poor mechanical properties. The solution for this problem is to use combination of natural fiber and synthetic fiber. Hybridization helps to improve the overall mechanical properties of the material. In this study, hybrid reinforced composites of Hemp fabric/Kevlar fabric/Epoxy and Jute fabric/ Kevlar fabric/Epoxy composites are fabricated using Simple hand layup technique followed by Vacuum bagging process. Appropriate test methods as per standards and guidelines are followed to analyze mechanical behavior of the composites. The mechanical characteristics like tensile, compression and flexural properties of the hybrid reinforced composites are tested as per the ASTM standards by series of tensile test; compression test and three point bending tests were conducted on the hybrid composites. A quantitative relationship between the Hemp fabric/Kevlar fabric/Epoxy and Jute/ Kevlar fabric/Epoxy has been established with constant thickness.

  7. Investigation of mechanical properties of hemp/glass fiber reinforced nano clay hybrid composites

    NASA Astrophysics Data System (ADS)

    Unki, Hanamantappa Ningappa; Shivanand, H. K.; Vidyasagar, H. N.

    2018-04-01

    Over the last twenty to thirty years composite materials have been used in engineering field. Composite materials possess high strength, high strength to weight ratio due to these facts composite materials are becoming popular among researchers and scientists. The major proportion of engineering materials consists of composite materials. Composite materials are used in vast applications ranging from day-to-day household articles to highly sophisticated applications. In this paper an attempt is made to prepare three different composite materials using e-glass and Hemp. In this present investigation hybrid composite of Hemp, Glass fiber and Nano clay will be prepared by Hand-layup technique. The glass fiber used in this present investigation is E-glass fiber bi-directional: 90˚ orientation. The composite samples will be made in the form of a Laminates. The wt% of nanoclay added in the preparation of sample is 20 gm constant. The fabricated composite Laminate will be cut into corresponding profiles as per ASTM standards for Mechanical Testing. The effect of addition of Nano clay and variation of Hemp/glass fibers will be studied. In the present work, a new Hybrid composite is developed in which Hemp, E glass fibers is reinforced with epoxy resin and with Nano clay.

  8. Embedded sensor having an identifiable orientation

    DOEpatents

    Bennett, Thomas E.; Nelson, Drew V.

    2002-01-01

    An apparatus and method is described wherein a sensor, such as a mechanical strain sensor, embedded in a fiber core, is "flagged" to identify a preferred orientation of the sensor. The identifying "flag" is a composite material, comprising a plurality of non-woven filaments distributed in a resin matrix, forming a small planar tab. The fiber is first subjected to a stimulus to identify the orientation providing the desired signal response, and then sandwiched between first and second layers of the composite material. The fiber, and therefore, the sensor orientation is thereby captured and fixed in place. The process for achieving the oriented fiber includes, after identifying the fiber orientation, carefully laying the oriented fiber onto the first layer of composite, moderately heating the assembled layer for a short period in order to bring the composite resin to a "tacky" state, heating the second composite layer as the first, and assembling the two layers together such that they merge to form a single consolidated block. The consolidated block achieving a roughly uniform distribution of composite filaments near the embedded fiber such that excess resin is prevented from "pooling" around the periphery of the fiber.

  9. Hybrid boron nitride-natural fiber composites for enhanced thermal conductivity.

    PubMed

    Xia, Changlei; Garcia, Andres C; Shi, Sheldon Q; Qiu, Ying; Warner, Nathaniel; Wu, Yingji; Cai, Liping; Rizvi, Hussain R; D'Souza, Nandika A; Nie, Xu

    2016-10-05

    Thermal conductivity was dramatically increased after adding natural fiber into hexagonal boron nitride (hBN)/epoxy composites. Although natural fiber does not show high-thermal conductivity itself, this study found that the synergy of natural fiber with hBN could significantly improve thermal conductivity, compared with that solely using hBN. A design of mixtures approach using constant fibers with increasing volume fractions of hBN was examined and compared. The thermal conductivity of the composite containing 43.6% hBN, 26.3% kenaf fiber and 30.1% epoxy reached 6.418 W m -1 K -1 , which was 72.3% higher than that (3.600 W m -1 K -1 ) of the 69.0% hBN and 31.0% epoxy composite. Using the scanning electron microscope (SEM) and micro computed tomography (micro-CT), it was observed that the hBN powders were well distributed and ordered on the fiber surfaces enhancing the ceramic filler's interconnection, which may be the reason for the increase in thermal conductivity. Additionally, the results from mechanical and dynamic mechanical tests showed that performances dramatically improved after adding kenaf fibers into the hBN/epoxy composite, potentially benefiting the composite's use as an engineered material.

  10. Highly conductive and ultrastretchable electric circuits from covered yarns and silver nanowires.

    PubMed

    Cheng, Yin; Wang, Ranran; Sun, Jing; Gao, Lian

    2015-04-28

    Stretchable electronics, as a promising research frontier, has achieved progress in a variety of sophisticated applications. The realization of stretchable electronics frequently involves the demand for a stretchable conductor as an electrical circuit. However, it still remains a challenge to fabricate high-performance (working strain exceeding 200%) stretchable conductors. Here, we present for the first time a facile, cost-effective, and scalable method for manufacturing ultrastretchable composite fibers with a "twining spring" configuration: cotton fibers twining spirally around a polyurethane fiber. The composite fiber possesses a high conductivity up to 4018 S/cm, which remains as high as 688 S/cm at 500% tensile strain. In addition, the conductivity of the composite fiber (initial conductivity of 4018 S/cm) remains perfectly stable after 1000 bending events and levels off at 183 S/cm after 1000 cyclic stretching events of 200% strain. Stretchable LED arrays are integrated efficiently utilizing the composite fibers as a stretchable electric wiring system, demonstrating the potential applications in large-area stretchable electronics. The biocompatibility of the composite fiber is verified, opening up its prospects in the field of implantable devices. Our fabrication strategy is also versatile for the preparation of other specially functionalized composite fibers with superb stretchability.

  11. High temperature composites. Status and future directions

    NASA Technical Reports Server (NTRS)

    Signorelli, R. A.

    1982-01-01

    A summary of research investigations of manufacturing methods, fabrication methods, and testing of high temperature composites for use in gas turbine engines is presented. Ceramic/ceramic, ceramic/metal, and metal/metal composites are considered. Directional solidification of superalloys and eutectic alloys, fiber reinforced metal and ceramic composites, ceramic fibers and whiskers, refractory coatings, metal fiber/metal composites, matrix metal selection, and the preparation of test specimens are discussed.

  12. Method of producing a ceramic fiber-reinforced glass-ceramic matrix composite

    NASA Technical Reports Server (NTRS)

    Bansal, Narottam P. (Inventor)

    1994-01-01

    A fiber-reinforced composite composed of a BaO-Al2O3-2SiO2 (BAS) glass ceramic matrix is reinforced with CVD silicon carbide continuous fibers. A slurry of BAS glass powders is prepared and celsian seeds are added during ball melting. The slurry is cast into tapes which are cut to the proper size. Continuous CVD-SiC fibers are formed into mats of the desired size. The matrix tapes and the fiber mats are alternately stacked in the proper orientation. This tape-mat stack is warm pressed to produce a 'green' composite. The 'green' composite is then heated to an elevated temperature to burn out organic constituents. The remaining interim material is then hot pressed to form a silicon carbide fiber-reinforced celsian (BAS) glass-ceramic matrix composite which may be machined to size.

  13. CVD Fiber Coatings for Al2O3/NiAl Composites

    NASA Technical Reports Server (NTRS)

    Boss, Daniel E.

    1995-01-01

    While sapphire-fiber-reinforced nickel aluminide (Al2O3/NiAl) composites are an attractive candidate for high-temperature structures, the significant difference in the coefficient of thermal expansion between the NiAl matrix and the sapphire fiber creates substantial residual stresses in the composite. This study seeks to produce two fiber-coating systems with the potential to reduce the residual stresses in the sapphire/NiAl composite system. Chemical vapor deposition (CVD) was used to produce both the compensating and compliant-fiber coatings for use in sapphire/NiAl composites. A special reactor was designed and built to produce the FGM and to handle the toxic nickel precursors. This process was successfully used to produce 500-foot lengths of fiber with coating thicknesses of approximately 3 microns, 5 microns, and 10 microns.

  14. Fiber-Reinforced Reactive Nano-Epoxy Composites

    NASA Technical Reports Server (NTRS)

    Zhong, Wei-Hong

    2011-01-01

    An ultra-high-molecular-weight polyethylene/ matrix interface based on the fabrication of a reactive nano-epoxy matrix with lower surface energy has been improved. Enhanced mechanical properties versus pure epoxy on a three-point bend test include: strength (25 percent), modulus (20 percent), and toughness (30 percent). Increased thermal properties include higher Tg (glass transition temperature) and stable CTE (coefficient of thermal expansion). Improved processability for manufacturing composites includes faster wetting rates on macro-fiber surfaces, lower viscosity, better resin infusion rates, and improved rheological properties. Improved interfacial adhesion properties with Spectra fibers by pullout tests include initial debonding force of 35 percent, a maximum pullout force of 25 percent, and energy to debond at 65 percent. Improved mechanical properties of Spectra fiber composites (tensile) aging resistance properties include hygrothermal effects. With this innovation, high-performance composites have been created, including carbon fibers/nano-epoxy, glass fibers/nano-epoxy, aramid fibers/ nano-epoxy, and ultra-high-molecularweight polyethylene fiber (UHMWPE).

  15. Characterizing fiber-reinforced composite structures using AC-impedance spectroscopy (AC-IS)

    NASA Astrophysics Data System (ADS)

    Woo, Leta Y.

    Property enhancement in composites depends largely on the reinforcement. For fiber-reinforced composites, the distribution of fibers is crucial in determining the electrical and mechanical performance. Image analysis methods for characterization can be time-consuming and/or destructive. This work explores the capability of AC-impedance spectroscopy (AC-IS), an electrical measurement technique, to serve as a rapid, non-destructive tool for characterizing composite microstructure. The composite requirements include a filler that is electrically conducting or semi-conducting with higher conductivity than the matrix, and a high-impedance interface or coating between the filler and the matrix. To establish an AC-IS characterization method, cement-matrix composites with steel reinforcement were employed as both a technologically important and a model system to investigate how fibers affect the electrical response. Beginning with spherical particulates and then fibers, composites were examined using composite theory and an "intrinsic conductivity" approach. The intrinsic conductivity approach applies to composites with low volume fractions of fibers (i.e., in the dilute regime) and relates how the composite conductivity varies relative to the matrix as a function of volume fraction. A universal equivalent circuit model was created to understand the AC-IS response of composites based on the geometry and volume fraction of the filler. Deviation from predicted behavior was assessed using a developed f-function, which quantifies how fibers contribute to the overall electrical response of the composite. Using the f-function, an AC-IS method for investigating fiber dispersion was established to characterize alignment, settling/segregation, and aggregation. Alignment was investigated using measurements made in three directions. A point-probe technique characterized settling and/or large-scale inhomogeneous mixing in samples. Aggregation was quantified using a "dispersion factor" that compared theoretical with measured values and served as an upper limit for how well the fibers were dispersed. The AC-IS method was then extended to two different cement-matrix composite systems, low resistivity fresh-paste cement composites (confirmed by time domain reflectometry) and high resistivity cement composites, both of which required additional analysis to apply the AC-IS characterization method.

  16. The Mechanical Properties and Microstructure Characters of Hybrid Composite Geopolymers-Pineapple Fiber Leaves (PFL)

    NASA Astrophysics Data System (ADS)

    Amalia, N.; Hidayatullah, S.; Nurfadilla; Subaer

    2017-03-01

    The objective of this research is to study the influence of organic fibers on the mechanical properties and microstructure characters of hybrid composite geopolymers-pineapple fibers (PFL). Geopolymers were synthesized by using alkali activated of class C-fly ash added manually with short pineapple fiber leaves (PFL) and then cured at 60°C for 1 hour. The resulting composites were stored in open air for 28 days prior to mechanical and microstructure characterizations. The samples were subjected to compressive and flexural strength measurements, heat resistance as well as acid attack (1M H2SO4 solution). The microstructure of the composites were examined by using Scanning Electron Microscopy-Energy Dispersive Spectroscopy (SEM-EDS). The measurement showed that the addition of pineapple fibers was able to improve the compressive and flexural strength of geopolymers. The resulting hybrid composites were able to resist fire to a maximum temperature of 1500°C. SEM examination showed the presence of good bond between geopolymer matrix and pineapple fibers. It was also found that there were no chemical constituents of geopolymers leached out during acid liquid treatment. It is concluded that hybrid composite geopolymers-pineapple fibers are potential composites for wide range applications.

  17. Tailored interphase structure for improved strength and energy absorption of composites

    NASA Astrophysics Data System (ADS)

    Gao, Xiao

    Fiber reinforced polymeric composites are lightweight, high-strength and high impact-resistant materials used widely for various applications. It has been shown that the mechanical performance of composites are dependent on the interphase, a three-dimensional region of nanometer size in the vicinity of the fiber-matrix boundary that possesses properties different from those of either the fiber reinforcement or the matrix resin and governs the load transfer from matrix to fiber. This research conducts a systematic study on glass fiber-epoxy interphase structure by tailoring adhesion between constituents and the creation of textures to control strength and energy absorption through mechanical interlocking between glass fiber and epoxy matrix. Our objective is to establish the foundation for microstructural design and optimization of the composite's structural and impact performance. Two ways of roughening the glass fiber surface have been studied to create the mechanical interlocking between fiber and resin; the first technique involves forming in-situ islands on the glass fiber surface by using silane blends of Glycidoxypropyltrimethoxy silane (GPS) and Tetraethoxy silane (TEOS); the second technique applies a silane coupling agents based sizing with the incorporation of silica nanoparticles (Ludox TMA, 22 nm) onto the fiber surface. The microdroplet test was selected to characterize the influence of adhesion and mechanical interlocking effects on interphase properties of different sizing sized glass fiber reinforced epoxy systems. A suitable data reduction scheme enables the strength and specified energy absorbed due to debonding, dynamic sliding, and quasi-static sliding to be quantified. In order to validate the effect of tailored interphase structure, which is induced by creating mechanical interlocking between fiber and resin, on macroscopic composite properties, composite panels were made from these four different sizing sized glass fibers and tested using the punch shear test. The composite panel made from the hybrid sizing sized glass fiber exhibited improved strength and energy absorption consistent with the trends in micromechanical measurements. Through all failure stages under macromechanical testing, hybrid sizing sized glass fiber/epoxyamine composite panel shows an increase in the strength and total energy absorption by 13% and 26%, respectively, compared to the compatible sizing sized baseline. Both micromechanical and macromechanical tests demonstrate the significant influence of tailoring the interphase structure on improving the impact performance of the composites. The hybrid sizing with the incorporation of nanoparticles, in particular, can greatly improve the impact resistance (i.e. energy absorption) of composites without sacrificing its structural performance (i.e. strength).

  18. Design of a unidirectional composite momentum wheel rim

    NASA Astrophysics Data System (ADS)

    Shogrin, Bradley; Jones, William R., Jr.; Prahl, Joseph M.

    1995-05-01

    A preliminary study comparing twelve unidirectional-fiber composite systems to five metal materials conventionally used in momentum wheels is presented. Six different fibers are considered in the study: E-Glass, S-Glass, Boron, AS, T300, and Kevlar. Because of the possibility of high momentum requirements, and thus high stresses, only two matrix materials are considered: a high-modulus (HM) and a intermediate-modulus-high-strength (IMHS) matrix. Each of the six fibers are coupled with each of the two matrix materials. In an effort to optimize the composite system, each composite is considered while varying the fiber volume ratio from 0.0 to 0.7 in increments of 0.1. For fiber volume ratios above 0.2, all twelve unidirectional-fiber composite systems meet the study's requirements with higher factors of safety and less mass than the five conventional isotropic (metal) materials. For example, at a fiber volume ratio of 0.6, the Kevlar/IMHS composite system has a safety factor 4.5 times greater than that of a steel (maraging) system and an approximately 10 percent reduction in weight.

  19. Fabrication of Fiber-Reinforced Celsian Matrix Composites

    NASA Technical Reports Server (NTRS)

    Bansal, Narottam P.; Setlock, John A.

    2000-01-01

    A method has been developed for the fabrication of small diameter, multifilament tow fiber reinforced ceramic matrix composites. Its application has been successfully demonstrated for the Hi-Nicalon/celsian system. Strong and tough celsian matrix composites, reinforced with BN/SiC-coated Hi-Nicalon fibers, have been fabricated by infiltrating the fiber tows with the matrix slurry, winding the tows on a drum, cutting and stacking of the prepreg tapes in the desired orientation, and hot pressing. The monoclinic celsian phase in the matrix was produced in situ, during hot pressing, from the 0.75BaO-0.25SrO-Al2O3-2SiO2 mixed precursor synthesized by solid state reaction from metal oxides. Hot pressing resulted in almost fully dense fiber-reinforced composites. The unidirectional composites having approx. 42 vol% of fibers exhibited graceful failure with extensive fiber pullout in three-point bend tests at room temperature. Values of yield stress and strain were 435 +/- 35 MPa and 0.27 +/- 0.01 percent, respectively, and ultimate strengths of 900 +/- 60 MPa were observed. The Young's modulus of the composites was measured to be 165 +/- 5 GPa.

  20. Effect of the Microstructure on the Fracture Mode of Short-Fiber Reinforced Plastic Composites

    NASA Astrophysics Data System (ADS)

    Nishikawa, Masaaki; Okabe, Tomonaga; Takeda, Nobuo

    A numerical simulation was presented to discuss the microscopic damage and its influence on the strength and energy-absorbing capability of short-fiber reinforced plastic composites. The dominant damage includes matrix crack and/or interfacial debonding, when the fibers are shorter than the critical length for fiber breakage. The simulation addressed the matrix crack with a continuum damage mechanics (CDM) model and the interfacial debonding with an embedded process zone (EPZ) model. Fictitious free-edge effects on the fracture modes were successfully eliminated with the periodic-cell simulation. The advantage of our simulation was pointed out by demonstrating that the simulation with edge effects significantly overestimates the dissipative energy of the composites. We then investigated the effect of the material microstructure on the fracture modes in the composites. The simulated results clarified that the inter-fiber distance affects the breaking strain of the composites and the fiber-orientation angle affects the position of the damage initiation. These factors influence the strength and energy-absorbing capability of short fiber-reinforced composites.

  1. The effects of temperature on fiber composite bridge decks.

    DOT National Transportation Integrated Search

    2009-01-01

    In this study the fiber composite bridge decks were subjected to thermal gradients to obtain the temperature difference between the top and bottom surface of the decks and to determine the thermal properties of the deck. The fiber composite bridge de...

  2. Research on graphite reinforced glass matrix composites

    NASA Technical Reports Server (NTRS)

    Bacon, J. F.; Prewo, K. M.

    1977-01-01

    The results of research for the origination of graphite-fiber reinforced glass matrix composites are presented. The method selected to form the composites consisted of pulling the graphite fiber through a slurry containing powdered glass, winding up the graphite fiber and the glass it picks up on a drum, drying, cutting into segments, loading the tape segment into a graphite die, and hot pressing. During the course of the work, composites were made with a variety of graphite fibers in a glass matrix.

  3. Studies on fabrication of glass fiber reinforced composites using polymer blends

    NASA Astrophysics Data System (ADS)

    Patel, R. H.; Kachhia, P. H.; Patel, S. N.; Rathod, S. T.; Valand, J. K.

    2018-05-01

    Glass fiber reinforced PVC/NBR composites have been fabricated via hot compression moulding process. PVC is brittle in nature and thus lower thermal stability. Therefore, to improve the toughness of PVC, NBR was incorporated in certain proportions. As both are polar and thus they are compatible. To improve the strength property further, these blends were used to fabricate glass fiber reinforced composites. SEM micrograph shows good wettability of the blend with glass fibers resulting in proper bonding which increase the strength of the composites.

  4. Carbon Fiber Foam Composites and Methods for Making the Same

    NASA Technical Reports Server (NTRS)

    Atwater, Mark Andrew (Inventor); Leseman, Zayd Chad (Inventor); Phillips, Jonathan (Inventor)

    2014-01-01

    Exemplary embodiments provide methods and apparatus of forming fibrous carbon foams (FCFs). In one embodiment, FCFs can be formed by flowing a fuel rich gas mixture over a catalytic material and components to be encapsulated in a mold to form composite carbon fibers, each composite carbon fiber having a carbon phase grown to encapsulate the component in situ. The composite carbon fibers can be intertwined with one another to form FCFs having a geometry according to the mold.

  5. Micromechanical analysis of thermo-inelastic multiphase short-fiber composites

    NASA Technical Reports Server (NTRS)

    Aboudi, Jacob

    1994-01-01

    A micromechanical formulation is presented for the prediction of the overall thermo-inelastic behavior of multiphase composites which consist of short fibers. The analysis is an extension of the generalized method of cells that was previously derived for inelastic composites with continuous fibers, and the reliability of which was critically examined in several situations. The resulting three dimensional formulation is extremely general, wherein the analysis of thermo-inelastic composites with continuous fibers as well as particulate and porous inelastic materials are merely special cases.

  6. Polyhedral Oligomeric Silsesquioxane (POSS) Dianiline as a Replacement for Toxic Methylenedianiline in PMR-15: Chemistry and Properties

    DTIC Science & Technology

    2016-08-22

    POSS dinadic composite cross-section. Prior to aging, a few voids are seen in the matrix , but no cracks. After the same time aging as with the PMR-15...the composite , fiber and matrix , respectively; σc, σf, and σm are stress in the composite , fiber and matrix , respectively; Vf and Vm are volume...fraction of the fiber and matrix , respectively; Ec, Ef and Em are the moduli of the composite , fiber and matrix , respectively

  7. Intermediate Temperature Stress Rupture of Woven SiC Fiber, BN Interphase, SiC Matrix Composites in Air

    NASA Technical Reports Server (NTRS)

    Morscher, Gregory N.; Levine, Stanley (Technical Monitor)

    2000-01-01

    Tensile stress-rupture experiments were performed on woven Hi-Nicalon reinforced SiC matrix composites with BN interphases in air. Modal acoustic emission (AE) was used to monitor the damage accumulation in the composites during the tests and microstructural analysis was performed to determine the amount of matrix cracking that occurred for each sample. Fiber fractograph), was also performed for individual fiber failures at the specimen fracture surface to determine the strengths at which fibers failed. The rupture strengths were significantly worse than what would have been expected front the inherent degradation of the fibers themselves when subjected to similar rupture conditions. At higher applied stresses the rate of rupture "?as larger than at lower applied stresses. It was observed that the change in rupture rate corresponded to the onset of through-thickness cracking in the composites themselves. The primary cause of the sen,ere degradation was the ease with which fibers would bond to one another at their closest separation distances, less than 100 nanometers, when exposed to the environment. The near fiber-to-fiber contact in the woven tows enabled premature fiber failure over large areas of matrix cracks due to the stress-concentrations created b), fibers bonded to one another after one or a few fibers fail. i.e. the loss of global load sharing. An@, improvement in fiber-to-fiber separation of this composite system should result in improved stress- rupture properties. A model was den,eloped in order to predict the rupture life-time for these composites based on the probabilistic nature of indin,idual fiber failure at temperature. the matrix cracking state during the rupture test, and the rate of oxidation into a matrix crack. Also incorporated into the model were estimates of the stress-concentration that would occur between the outer rim of fibers in a load-bearing bundle and the unbridged region of a matrix crack after Xia et al. For the lower stresses, this source of stress-concentration was the likely cause for initial fiber failure that would trigger catastrophic failure of the composite.

  8. Effects of Thermal Cycling on Thermal Expansion and Mechanical Properties of Sic Fiber-reinforced Reaction-bonded Si3n4 Composites

    NASA Technical Reports Server (NTRS)

    Bhatt, R. T.; Palczer, A. R.

    1994-01-01

    Thermal expansion curves for SiC fiber-reinforced reaction-bonded Si3N4 matrix composites (SiC/RBSN) and unreinforced RBSN were measured from 25 to 1400 C in nitrogen and in oxygen. The effects of fiber/matrix bonding and cycling on the thermal expansion curves and room-temperature tensile properties of unidirectional composites were determined. The measured thermal expansion curves were compared with those predicted from composite theory. Predicted thermal expansion curves parallel to the fiber direction for both bonding cases were similar to that of the weakly bonded composites, but those normal to the fiber direction for both bonding cases resulted in no net dimensional changes at room temperature, and no loss in tensile properties from the as-fabricated condition. In contrast, thermal cycling in oxygen for both composites caused volume expansion primarily due to internal oxidation of RBSN. Cyclic oxidation affected the mechanical properties of the weakly bonded SiC/RBSN composites the most, resulting in loss of strain capability beyond matrix fracture and catastrophic, brittle fracture. Increased bonding between the SiC fiber and RBSN matrix due to oxidation of the carbon-rich fiber surface coating and an altered residual stress pattern in the composite due to internal oxidation of the matrix are the main reasons for the poor mechanical performance of these composites.

  9. Residual Tensile Property of Plain Woven Jute Fiber/Poly(Lactic Acid) Green Composites during Thermal Cycling

    PubMed Central

    Katogi, Hideaki; Takemura, Kenichi; Akiyama, Motoki

    2016-01-01

    This study investigated the residual tensile properties of plain woven jute fiber reinforced poly(lactic acid) (PLA) during thermal cycling. Temperature ranges of thermal cycling tests were 35–45 °C and 35–55 °C. The maximum number of cycles was 103 cycles. The quasi-static tensile tests of jute fiber, PLA, and composite were conducted after thermal cycling tests. Thermal mechanical analyses of jute fiber and PLA were conducted after thermal cycling tests. Results led to the following conclusions. For temperatures of 35–45 °C, tensile strength of composite at 103 cycles decreased 10% compared to that of composite at 0 cycles. For temperatures of 35–55 °C, tensile strength and Young’s modulus of composite at 103 cycles decreased 15% and 10%, respectively, compared to that of composite at 0 cycles. Tensile properties and the coefficient of linear expansion of PLA and jute fiber remained almost unchanged after thermal cycling tests. From observation of a fracture surface, the length of fiber pull out in the fracture surface of composite at 103 cycles was longer than that of composite at 0 cycles. Therefore, tensile properties of the composite during thermal cycling were decreased, probably because of the decrease of interfacial adhesion between the fiber and resin. PMID:28773694

  10. Numerical simulation of fiber interaction in short-fiber injection-molded composite using different cavity geometries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thi, Thanh Binh Nguyen, E-mail: nttbinh@kit.ac.jp; Yokoyama, Atsushi, E-mail: yokoyama@kit.ac.jp; Hamanaka, Senji

    The theoretical fiber-interaction model for calculating the fiber orientation in the injection molded short fiber/thermoplastic composite parts was proposed. The proposed model included the fiber dynamics simulation in order to obtain an equation of the global interaction coefficient and accurate estimate of the fiber interacts at all orientation states. The steps to derive the equation for this coefficient in short fiber suspension as a function of the fiber aspect ratio, volume fraction and general shear rate are delineated. Simultaneously, the high-resolution 3D X-ray computed tomography system XVA-160α was used to observe fiber distribution of short-glass-fiber-reinforced polyamide specimens using different cavitymore » geometries. The fiber orientation tensor components are then calculated. Experimental orientation measurements of short-glass-fiber-reinforced polyamide is used to check the ability of present theory for predicting orientation. The experiments and predictions show a quantitative agreement and confirm the basic understanding of fiber orientation in injection-molded composites.« less

  11. Numerical simulation of fiber interaction in short-fiber injection-molded composite using different cavity geometries

    NASA Astrophysics Data System (ADS)

    Thi, Thanh Binh Nguyen; Yokoyama, Atsushi; Hamanaka, Senji; Yamashita, Katsuhisa; Nonomura, Chisato

    2016-03-01

    The theoretical fiber-interaction model for calculating the fiber orientation in the injection molded short fiber/thermoplastic composite parts was proposed. The proposed model included the fiber dynamics simulation in order to obtain an equation of the global interaction coefficient and accurate estimate of the fiber interacts at all orientation states. The steps to derive the equation for this coefficient in short fiber suspension as a function of the fiber aspect ratio, volume fraction and general shear rate are delineated. Simultaneously, the high-resolution 3D X-ray computed tomography system XVA-160α was used to observe fiber distribution of short-glass-fiber-reinforced polyamide specimens using different cavity geometries. The fiber orientation tensor components are then calculated. Experimental orientation measurements of short-glass-fiber-reinforced polyamide is used to check the ability of present theory for predicting orientation. The experiments and predictions show a quantitative agreement and confirm the basic understanding of fiber orientation in injection-molded composites.

  12. Ballistic Impact of Braided Composites with a Soft Projectile

    NASA Technical Reports Server (NTRS)

    Roberts, Gary D.; Pereira, J. Michael; Revilock, Duane M., Jr.; Binienda, Wieslaw K.; Xie, Ming; Braley, Mike

    2002-01-01

    Impact tests using a soft gelatin projectile were performed to identify failure modes that occur at high strain energy density during impact loading. Failure modes were identified for aluminum plates and for composites plates and half-rings made from triaxial carbon fiber braid having a 0/+/- 60deg architecture. For aluminum plates, a large hole formed as a result of crack propagation from the initiation site at the center of the plate. For composite plates, fiber tensile failure occurred in the back ply at the center of the plate. Cracks then propagated from this site along the +/-60deg fiber directions until triangular flaps opened to form a hole. For composite half-rings fabricated with 0deg fibers aligned circumferentially, fiber tensile failure also occurred in the back ply. Cracks first propagated from this site perpendicular the 0deg fibers. The cracks then turned to follow the +/-60deg fibers and 0deg fibers until rectangular flaps opened to form a hole. Damage in the composites was localized near the impact site, while cracks in the aluminum extended to the boundaries.

  13. Preparation of tungsten fiber reinforced-tungsten/copper composite for plasma facing component

    NASA Astrophysics Data System (ADS)

    He, Gang; Xu, Kunyuan; Guo, Shibin; Qian, Xueqiang; Yang, Zengchao; Liu, Guanghua; Li, Jiangtao

    2014-12-01

    W fiber reinforced-W/Cu composite is designed as a transition layer between CuCrZr heat sink material and W plasma facing material. A novel method was developed for the preparation of W fiber reinforced-W/Cu composite by combining combustion synthesis with centrifugal infiltration. Cu melt with a transient temperature over 2000 °C produced by the thermite reaction was infiltrated into the W powder and fiber bed with the assistance of a high gravity field. It was found that the W particles were sintered and bonded to the W fibers due to the high temperature produced by the thermite reaction. The bending strength of W/Cu composite improved 12.7% through W fibers reinforcement.

  14. EMTA-NLA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    2009-10-14

    EMTA-NLA is a computer program for analyzing the nonlinear stiffness, strength, and thermo-elastic properties of discontinuous fiber composite materials. Discontinuous fiber composites are chopped-fiber reinforced polymer materials that are formed by injection molding or compression molding techniques. The fibers tend to align during forming as the composite flows and fills the mold. EMTA-NLA can read the fiber orientation data from the molding software, Autodesk Moldflow Plastics Insight, and calculate the local material properties for accurately analyzing the warpage, stiffness, and strength of the as-formed composite part using the commercial NLA software. Therefore, EMTA-NLA is a unique assembly of mathematical algorithmsmore » that provide a one-of-a-kind composites constitutive model that links these two powerful commercial software packages.« less

  15. Squid pen-inspired chitinous functional materials: Hierarchical chitin fibers by centrifugal jet-spinning and transparent chitin fiber-reinforced composite

    NASA Astrophysics Data System (ADS)

    Jeong, Seung-Hwan; Kim, Joong-Kwon; Lim, Young-Woo; Hwang, Hyun-Bin; Kwon, Hee-Young; Bae, Byeong-Soo; Jin, Jungho

    2018-01-01

    Here, inspired by the fibrous composite structure of a squid pen, we introduce hierarchical chitin fibers (herein, termed "Chiber") and their transparent composites and demonstrate the potential of these chitinous functional materials as a sustainable separation-membrane and reinforcing filler for composites. We employ a centrifugal jet-spinning process to fabricate Chiber with aligned chitin nanofibrillar architectures, for which we discuss the processing-morphology relationship. A nonwoven fiber-mat made of Chiber exhibits excellent adsorbing performance for a toxic ionic dye (Congo Red), and has a low coefficient of thermal expansion comparable to that of glass fibers. Finally, we demonstrate a squid pen-mimetic transparent composite using Chiber and investigate its optical property.

  16. Issues in quantification of registered respiratory gated PET/CT in the lung.

    PubMed

    Cuplov, Vesna; Holman, Beverley F; McClelland, Jamie; Modat, Marc; Hutton, Brian F; Thielemans, Kris

    2017-12-14

    PET/CT quantification of lung tissue is limited by several difficulties: the lung density and local volume changes during respiration, the anatomical mismatch between PET and CT and the relative contributions of tissue, air and blood to the PET signal (the tissue fraction effect). Air fraction correction (AFC) has been shown to improve PET image quantification in the lungs. Methods to correct for the movement and anatomical mismatch involve respiratory gating and image registration techniques. While conventional registration methods only account for spatial mismatch, the Jacobian determinant of the deformable registration transformation field can be used to estimate local volume changes and could therefore potentially be used to correct (i.e. Jacobian Correction, JC) the PET signal for changes in concentration due to local volume changes. This work aims to investigate the relationship between variations in the lung due to respiration, specifically density, tracer concentration and local volume changes. In particular, we study the effect of AFC and JC on PET quantitation after registration of respiratory gated PET/CT patient data. Six patients suffering from lung cancer with solitary pulmonary nodules underwent [Formula: see text]F-FDG PET/cine-CT. The PET data were gated into six respiratory gates using displacement gating based on a real-time position management (RPM) signal and reconstructed with matched gated CT. The PET tracer concentration and tissue density were extracted from registered gated PET and CT images before and after corrections (AFC or JC) and compared to the values from the reference images. Before correction, we observed a linear correlation between the PET tracer concentration values and density. Across all gates and patients, the maximum relative change in PET tracer concentration before (after) AFC was found to be 16.2% (4.1%) and the maximum relative change in tissue density and PET tracer concentration before (after) JC was found to be 17.1% (5.5%) and 16.2% (6.8%) respectively. Overall our results show that both AFC or JC largely explain the observed changes in PET tracer activity over the respiratory cycle. We also speculate that a second order effect is related to change in fluid content but this needs further investigation. Consequently, either AFC or JC is recommended when combining lung PET images from different gates to reduce noise.

  17. Issues in quantification of registered respiratory gated PET/CT in the lung

    NASA Astrophysics Data System (ADS)

    Cuplov, Vesna; Holman, Beverley F.; McClelland, Jamie; Modat, Marc; Hutton, Brian F.; Thielemans, Kris

    2018-01-01

    PET/CT quantification of lung tissue is limited by several difficulties: the lung density and local volume changes during respiration, the anatomical mismatch between PET and CT and the relative contributions of tissue, air and blood to the PET signal (the tissue fraction effect). Air fraction correction (AFC) has been shown to improve PET image quantification in the lungs. Methods to correct for the movement and anatomical mismatch involve respiratory gating and image registration techniques. While conventional registration methods only account for spatial mismatch, the Jacobian determinant of the deformable registration transformation field can be used to estimate local volume changes and could therefore potentially be used to correct (i.e. Jacobian Correction, JC) the PET signal for changes in concentration due to local volume changes. This work aims to investigate the relationship between variations in the lung due to respiration, specifically density, tracer concentration and local volume changes. In particular, we study the effect of AFC and JC on PET quantitation after registration of respiratory gated PET/CT patient data. Six patients suffering from lung cancer with solitary pulmonary nodules underwent 18 F-FDG PET/cine-CT. The PET data were gated into six respiratory gates using displacement gating based on a real-time position management (RPM) signal and reconstructed with matched gated CT. The PET tracer concentration and tissue density were extracted from registered gated PET and CT images before and after corrections (AFC or JC) and compared to the values from the reference images. Before correction, we observed a linear correlation between the PET tracer concentration values and density. Across all gates and patients, the maximum relative change in PET tracer concentration before (after) AFC was found to be 16.2% (4.1%) and the maximum relative change in tissue density and PET tracer concentration before (after) JC was found to be 17.1% (5.5%) and 16.2% (6.8%) respectively. Overall our results show that both AFC or JC largely explain the observed changes in PET tracer activity over the respiratory cycle. We also speculate that a second order effect is related to change in fluid content but this needs further investigation. Consequently, either AFC or JC is recommended when combining lung PET images from different gates to reduce noise.

  18. Diode-Pumped Thulium (Tm)/Holmium (Ho) Composite Fiber 2.1-Micrometers Laser

    DTIC Science & Technology

    2015-09-01

    composite fiber laser of holmium-core and thulium-doped cladding . The composite fiber was optically pumped by an 803-nm fiber coupled diode source and was...4 odd and 5 even modes were exclusive to the core and first cladding . As the Tm laser modes are excluded from lasing in the second (undoped...of the Tm-doped clad /Ho-doped core fiber laser . In particular, calculations of the model overlap of the cladding modes with the core have been

  19. FIBER-TEX 1991: The Fifth Conference on Advanced Engineering Fibers and Textile Structures for Composites

    NASA Technical Reports Server (NTRS)

    Buckley, John D. (Editor)

    1992-01-01

    This document is a compilation of papers presented at a joint NASA/North Carolina State University/DoD/Clemson University/Drexel University conference on Fibers, Textile Technology, and Composites Structures held at the College of Textiles Building on Centennial Campus of North Carolina State University, Raleigh, North Carolina on October 15-17, 1991. Conference papers presented information on advanced engineering fibers, textile processes and structures, structural fabric production, mechanics and characteristics of woven composites, pultruded composites, and the latest requirements for the use of textiles in the production of composite materials and structures.

  20. Modeling and Predicting the Stress Relaxation of Composites with Short and Randomly Oriented Fibers

    PubMed Central

    Obaid, Numaira; Sain, Mohini

    2017-01-01

    The addition of short fibers has been experimentally observed to slow the stress relaxation of viscoelastic polymers, producing a change in the relaxation time constant. Our recent study attributed this effect of fibers on stress relaxation behavior to the interfacial shear stress transfer at the fiber-matrix interface. This model explained the effect of fiber addition on stress relaxation without the need to postulate structural changes at the interface. In our previous study, we developed an analytical model for the effect of fully aligned short fibers, and the model predictions were successfully compared to finite element simulations. However, in most industrial applications of short-fiber composites, fibers are not aligned, and hence it is necessary to examine the time dependence of viscoelastic polymers containing randomly oriented short fibers. In this study, we propose an analytical model to predict the stress relaxation behavior of short-fiber composites where the fibers are randomly oriented. The model predictions were compared to results obtained from Monte Carlo finite element simulations, and good agreement between the two was observed. The analytical model provides an excellent tool to accurately predict the stress relaxation behavior of randomly oriented short-fiber composites. PMID:29053601

  1. The fatigue life study of polyphenylene sulfide composites filled with continuous glass fibers

    NASA Astrophysics Data System (ADS)

    Ye, Junjie; Hong, Yun; Wang, Yongkun; Zhai, Zhi; Shi, Baoquan; Chen, Xuefeng

    2018-04-01

    In this study, an effective microscopic model is proposed to investigate the fatigue life of composites containing continuous glass fibers, which is surrounded by polyphenylene sulfide (PPS) matrix materials. The representative volume element is discretized by parametric elements. Moreover, the microscopic model is established by employing the relation between average surface displacements and average surface tractions. Based on the experimental data, the required fatigue failure parameters of the PPS are determined. Two different fiber arrangements are considered for comparisons. Numerical analyses indicated that the square edge packing provides a more accuracy. In addition, microscopic structural parameters (fiber volume fraction, fiber off-axis angle) effect on the fatigue life of Glass/PPS composites is further discussed. It is revealed that fiber strength degradation effects on the fatigue life of continuous fiber-reinforced composites can be ignored.

  2. Thermal Cyclic Resistance Polyester Resin Composites Reinforce Fiber Nut Shell

    NASA Astrophysics Data System (ADS)

    Fahmi, Hendriwan

    2017-12-01

    The purpose of study is to determine the effect of fiber length and thermal cyclic of the bending strength of polyester resin composite reinforced by fibers nut shell. The materials used in this study is a nut shell fibers with fiber length of 1 cm, 2 cm and 3 cm and polyester resin with composition 70-30%wt. Fiber nut shell treated soaking in NaOH 30% for 30 minutes, then rinse with clean water so that the fiber free of alkali and then dried. Furthermore, the composite is heated in an oven to a temperature of 100°C for 1 hour and then cooled in the open with a variety of thermal cyclic 30, 40, and 50 times. Bending properties of composites known through the testing process using a three-point bending test equipment universal testing machine. The test results show that the bending strength bending highest in fiber length of 3 cm with 30 treatment cycles of thermal to the value of 53.325 MPa, while the lowest occurred in bending strength fiber length of 1 cm with no cycles of thermal treatment to the value of 30.675 MPa.

  3. Isolation of aramid nanofibers for high strength multiscale fiber reinforced composites

    NASA Astrophysics Data System (ADS)

    Lin, Jiajun; Patterson, Brendan A.; Malakooti, Mohammad H.; Sodano, Henry A.

    2018-03-01

    Aramid fibers are famous for their high specific strength and energy absorption properties and have been intensively used for soft body armor and ballistic protection. However, the use of aramid fiber reinforced composites is barely observed in structural applications. Aramid fibers have smooth and inert surfaces that are unable to form robust adhesion to polymeric matrices due to their high crystallinity. Here, a novel method to effectively integrate aramid fibers into composites is developed through utilization of aramid nanofibers. Aramid nanofibers are prepared from macroscale aramid fibers (such as Kevlar®) and isolated through a simple and scalable dissolution method. Prepared aramid nanofibers are dispersible in many polymers due to their improved surface reactivity, meanwhile preserve the conjugated structure and likely the strength of their macroscale counterparts. Simultaneously improved elastic modulus, strength and fracture toughness are observed in aramid nanofiber reinforced epoxy nanocomposites. When integrated in continuous fiber reinforced composites, aramid nanofibers can also enhance interfacial properties by forming hydrogen bonds and π-π coordination to bridge matrix and macroscale fibers. Such multiscale reinforcement by aramid nanofibers and continuous fibers results in strong polymeric composites with robust mechanical properties that are necessary and long desired for structural applications.

  4. Surface decoration of short-cut polyimide fibers with multi-walled carbon nanotubes and their application for reinforcement of lightweight PC/ABS composites

    NASA Astrophysics Data System (ADS)

    Zhang, Le; Han, Enlin; Wu, Yulun; Wang, Xiaodong; Wu, Dezhen

    2018-06-01

    The surface decoration of short-cut polyimide (PI) fibers with multi-walled carbon nanotubes (MWCNTs) was performed by fabricating a polydopamine (PDA) coating layer on the fiber surface and then immobilizing MWCNTs onto the coating layer via covalent bonding. This successful surface decoration was confirmed by scanning electron microscopy, X-ray photoelectron spectroscopy, Fourier-transform infrared microscopy and static water contact angle. The application of the surface-decorated PI fibers as reinforcing fibers for reinforcement of polycarbonate (PC)/acrylonitrile-butadiene-styrene copolymer (ABS) alloy was investigated, which indicated that the MWCNTs-decorated PI fibers not only could effectively reinforce the PC/ABS alloy but also generated a significant lightweighting effect on the resulting composites. The maximum mechanical properties were achieved for the composites at a fiber content of 20 wt.% and a fiber length of 3 mm. This significant reinforcement effect is attributed to the enhancement of interaction bonding strength between the fibers and matrix as a result of the surface decoration of PI fibers with MWCNTs. The morphological investigation suggested that fiber rupture was the major energy dissipation mechanism in the tensile and impact failures, whereas fiber debonding and pullout were partly involved in the fracture energy dissipation. In addition, the presence of surface-decorated PI fibers slightly enhanced the thermal stability and load bearing capability of composites. This work can provide a type of high-performance lightweight composite material for automobile and aviation industries.

  5. Mechanical and physical properties of wood fiber-reinforced, sulfur-based wood composites

    Treesearch

    Chung-Yun Hse; Ben S. Bryant

    1993-01-01

    Sulfur-based composite was made from sulfur impregnated, oven dried, wet-formed fiber mats. The fiber mats consisted of a 50/50 mixture of recycled newsprint pulp and mechanical hardwood pulp from several species made from chips in a laboratory refiner. The thickness of the composites was 0.125 inch and the specific gravity of the unimpregnated fiber mat was 0.2. The...

  6. Effect of fabricated density and bamboo species on physical-mechanical properties of bamboo fiber bundle reinforced composites

    Treesearch

    Jiulong Xie; Jinqiu Qi; Tingxing Hu; Cornelis F. De Hoop; Chung Yun Hse; Todd F. Shupe

    2016-01-01

    Bamboo stems were subjected to a mechanical treatment process for the extraction of bamboo fiber bundles. The fiber bundles were used as reinforcement for the fabrication of high-performance composites with phenolic resins as matrix. The influence of fabricated density and bamboo species on physical–mechanical properties of bamboo fiber bundle reinforced composites (...

  7. Impact Strength and Flexural Properties Enhancement of Methacrylate Silane Treated Oil Palm Mesocarp Fiber Reinforced Biodegradable Hybrid Composites

    PubMed Central

    Ibrahim, Nor Azowa; Ariffin, Hidayah; Yunus, Wan Md. Zin Wan

    2014-01-01

    Natural fiber as reinforcement filler in polymer composites is an attractive approach due to being fully biodegradable and cheap. However, incompatibility between hydrophilic natural fiber and hydrophobic polymer matrix restricts the application. The current studies focus on the effects of incorporation of silane treated OPMF into polylactic acid (PLA)/polycaprolactone (PCL)/nanoclay/OPMF hybrid composites. The composites were prepared by melt blending technique and characterize the composites with Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), and scanning electron microscopy (SEM). FTIR spectra indicated that peak shifting occurs when silane treated OPMF was incorporated into hybrid composites. Based on mechanical properties results, incorporation of silane treated OPMF enhances the mechanical properties of unmodified OPMF hybrid composites with the enhancement of flexural and impact strength being 17.60% and 48.43%, respectively, at 10% fiber loading. TGA thermogram shows that incorporation of silane treated OPMF did not show increment in thermal properties of hybrid composites. SEM micrographs revealed that silane treated OPMF hybrid composites show good fiber/matrix adhesion as fiber is still embedded in the matrix and no cavity is present on the surface. Water absorption test shows that addition of less hydrophilic silane treated OPMF successfully reduces the water uptake of hybrid composites. PMID:25254230

  8. Primary Manufacturing Processes for Fiber Reinforced Composites: History, Development & Future Research Trends

    NASA Astrophysics Data System (ADS)

    Tapan Bhatt, Alpa; Gohil, Piyush P.; Chaudhary, Vijaykumar

    2018-03-01

    Composite Materials are becoming more popular gradually replacing traditional material with extra strength, lighter weight and superior property. The world is exploring use of fiber reinforced composites in all application which includes air, land and water transport, construction industry, toys, instrumentation, medicine and the list is endless. Based on application and reinforcement used, there are many ways to manufactures parts with fiber reinforced composites. In this paper various manufacturing processes have been discussed at length, to make fiber reinforced composites components. The authors have endeavored to include all the processes available recently in composite industry. Paper first highlights history of fiber reinforced composites manufacturing, and then the comparison of different manufacturing process to build composites have been discussed, to give clear understanding on, which process should be selected, based on reinforcement, matrix and application. All though, there are several advantages to use such fiber reinforcement composites, still industries have not grown at par and there is a lot of scope to improve these industries. At last, where India stands today, what are the challenges in market has been highlighted and future market and research trend of exploring such composite industries have been discussed. This work is carried out as a part of research project sanctioned by GUJCOST, Gandhinagar.

  9. Impact strength and flexural properties enhancement of methacrylate silane treated oil palm mesocarp fiber reinforced biodegradable hybrid composites.

    PubMed

    Eng, Chern Chiet; Ibrahim, Nor Azowa; Zainuddin, Norhazlin; Ariffin, Hidayah; Yunus, Wan Md Zin Wan

    2014-01-01

    Natural fiber as reinforcement filler in polymer composites is an attractive approach due to being fully biodegradable and cheap. However, incompatibility between hydrophilic natural fiber and hydrophobic polymer matrix restricts the application. The current studies focus on the effects of incorporation of silane treated OPMF into polylactic acid (PLA)/polycaprolactone (PCL)/nanoclay/OPMF hybrid composites. The composites were prepared by melt blending technique and characterize the composites with Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), and scanning electron microscopy (SEM). FTIR spectra indicated that peak shifting occurs when silane treated OPMF was incorporated into hybrid composites. Based on mechanical properties results, incorporation of silane treated OPMF enhances the mechanical properties of unmodified OPMF hybrid composites with the enhancement of flexural and impact strength being 17.60% and 48.43%, respectively, at 10% fiber loading. TGA thermogram shows that incorporation of silane treated OPMF did not show increment in thermal properties of hybrid composites. SEM micrographs revealed that silane treated OPMF hybrid composites show good fiber/matrix adhesion as fiber is still embedded in the matrix and no cavity is present on the surface. Water absorption test shows that addition of less hydrophilic silane treated OPMF successfully reduces the water uptake of hybrid composites.

  10. Reduced toxicity polyester resins and microvascular pre-preg tapes for advanced composites manufacturing

    NASA Astrophysics Data System (ADS)

    Poillucci, Richard

    Advanced composites manufacturing broadly encapsulates topics ranging from matrix chemistries to automated machines that lay-up fiber-reinforced materials. Environmental regulations are stimulating research to reduce matrix resin formulation toxicity. At present, composites fabricated with polyester resins expose workers to the risk of contact with and inhalation of styrene monomer, which is a potential carcinogen, neurotoxin, and respiratory irritant. The first primary goal of this thesis is to reduce the toxicity associated with polyester resins by: (1) identification of potential monomers to replace styrene, (2) determination of monomer solubility within the polyester, and (3) investigation of approaches to rapidly screen a large resin composition parameter space. Monomers are identified based on their ability to react with polyester and their toxicity as determined by the Globally Harmonized System (GHS) and a green screen method. Solubilities were determined by the Hoftyzer -- Van Krevelen method, Hansen solubility parameter database, and experimental mixing of monomers. A combinatorial microfluidic mixing device is designed and tested to obtain distinct resin compositions from two input chemistries. The push for safer materials is complemented by a thrust for multifunctional composites. The second primary goal of this thesis is to design and implement the manufacture of sacrificial fiber materials suitable for use in automated fiber placement of microvascaular multifunctional composites. Two key advancements are required to achieve this goal: (1) development of a roll-to-roll method to place sacrificial fibers onto carbon fiber pre-preg tape; and (2) demonstration of feasible manufacture of microvascular carbon fiber plates with automated fiber placement. An automated method for placing sacrificial fibers onto carbon fiber tapes is designed and a prototype implemented. Carbon fiber tows with manual placement of sacrificial fibers is implemented within an automated fiber placement machine and the successful fabrication of a carbon fiber plate with an integrated microvascular channel is demonstrated.

  11. Electrical property of macroscopic graphene composite fibers prepared by chemical vapor deposition.

    PubMed

    Sun, Haibin; Fu, Can; Gao, Yanli; Guo, Pengfei; Wang, Chunlei; Yang, Wenchao; Wang, Qishang; Zhang, Chongwu; Wang, Junya; Xu, Junqi

    2018-07-27

    Graphene fibers are promising candidates in portable and wearable electronics due to their tiny volume, flexibility and wearability. Here, we successfully synthesized macroscopic graphene composite fibers via a two-step process, i.e. first electrospinning and then chemical vapor deposition (CVD). Briefly, the well-dispersed PAN nanofibers were sprayed onto the copper surface in an electrified thin liquid jet by electrospinning. Subsequently, CVD growth process induced the formation of graphene films using a PAN-solid source of carbon and a copper catalyst. Finally, crumpled and macroscopic graphene composite fibers were obtained from carbon nanofiber/graphene composite webs by self-assembly process in the deionized water. Temperature-dependent conduct behavior reveals that electron transport of the graphene composite fibers belongs to hopping mechanism and the typical electrical conductivity reaches 4.59 × 10 3 S m -1 . These results demonstrated that the graphene composite fibers are promising for the next-generation flexible and wearable electronics.

  12. Analysis of Fiber Clustering in Composite Materials Using High-Fidelity Multiscale Micromechanics

    NASA Technical Reports Server (NTRS)

    Bednarcyk, Brett A.; Aboudi, Jacob; Arnold, Steven M.

    2015-01-01

    A new multiscale micromechanical approach is developed for the prediction of the behavior of fiber reinforced composites in presence of fiber clustering. The developed method is based on a coupled two-scale implementation of the High-Fidelity Generalized Method of Cells theory, wherein both the local and global scales are represented using this micromechanical method. Concentration tensors and effective constitutive equations are established on both scales and linked to establish the required coupling, thus providing the local fields throughout the composite as well as the global properties and effective nonlinear response. Two nondimensional parameters, in conjunction with actual composite micrographs, are used to characterize the clustering of fibers in the composite. Based on the predicted local fields, initial yield and damage envelopes are generated for various clustering parameters for a polymer matrix composite with both carbon and glass fibers. Nonlinear epoxy matrix behavior is also considered, with results in the form of effective nonlinear response curves, with varying fiber clustering and for two sets of nonlinear matrix parameters.

  13. Research on graphite reinforced glass matrix composites

    NASA Technical Reports Server (NTRS)

    Bacon, J. F.; Prewo, K. M.; Thompson, E. R.

    1978-01-01

    A composite that can be used at temperatures up to 875 K with mechanical properties equal or superior to graphite fiber reinforced epoxy composites is presented. The composite system consist of graphite fiber, uniaxially or biaxially, reinforced borosilicate glass. The mechanical and thermal properties of such a graphite fiber reinforced glass composite are described, and the system is shown to offer promise as a high performance structural material. Specific properties that were measured were: a modified borosilicate glass uniaxially reinforced by Hercules HMS graphite fiber has a three-point flexural strength of 1030 MPa, a four-point flexural strength of 964 MPa, an elastic modulus of 199 GPa and a failure strain of 0.0052. The preparation and properties of similar composites with Hercules HTS, Celanese DG-102, Thornel 300 and Thornel Pitch graphite fibers are also described.

  14. Tensile properties of SiC/aluminum filamentary composites - Thermal degradation effects

    NASA Technical Reports Server (NTRS)

    Skinner, A.; Koczak, M. J.; Lawley, A.

    1982-01-01

    Aluminium metal matrix composites with a low cost fiber, e.g. SiC, provide for an attractive combination of high elastic modulus and longitudinal strengths coupled with a low density. SiC (volume fraction 0.55)-aluminum (6061) systems have been studied in order to optimize fiber composite strength and processing parameters. A comparison of two SiC/aluminum composites produced by AVCO and DWA is provided. Fiber properties are shown to alter composite tensile properties and fracture morphology. The room temperature tensile strengths appear to be insensitive to thermal exposures at 500 C up to 150 h. The elastic modulus of the composites also appears to be stable up to 400 C, however variations in the loss modulus are apparent. The fracture morphology reflects the quality of the interfacial bond, fiber strengths and fiber processing.

  15. Study on the influence of design parameters on the damping property of glass fiber reinforced epoxy composite

    NASA Astrophysics Data System (ADS)

    Bhattacharjee, A.; Nanda, B. K.

    2018-04-01

    Fiber reinforced composites are widely used in industrial applications due to their high strength, light weight and ease in manufacturing. In applications such as automotive, aerospace and structural parts, the components are subjected to unwanted vibrations which reduce their service life, accuracy as well as increases noise. Therefore, it is essential to avoid the detrimental effects of vibrations by enhancing their damping characteristics. The current research deals with estimating the damping properties of Glass fiber reinforced epoxy (GFRE) composites. Processing of the GFRE composites is carried out using hand-lay technique. Various design parameters such as number of glass fiber layers, orientation of fibers and weight ratio are varied while manufacturing GFRE composites. The effects of variation of these design parameters on damping property of GFRE composites are studied extensively.

  16. Compression failure mechanisms of single-ply, unidirectional, carbon-fiber composites

    NASA Technical Reports Server (NTRS)

    Ha, Jong-Bae; Nairn, John A.

    1992-01-01

    A single-ply composite compression test was used to study compression failure mechanisms as a function of fiber type, matrix type, and interfacial strength. Composites made with low- and intermediate-modulus fibers (Hercules AS4 and IM7) in either an epoxy (Hercules 3501-6) or a thermoplastic (ULTEM and LARC-TPI) matrix failed by kink banding and out-of-plane slip. The failures proceeded by rapid and catastrophic damage propagation across the specimen width. Composites made with high-modulus fibers (Hercules HMS4/3501-6) had a much lower compression strength. Their failures were characterized by kink banding and longitudinal splitting. The damage propagated slowly across the specimen width. Composites made with fibers treated to give low interfacial strength had low compression strength. These composites typically failed near the specimen ends and had long kink bands.

  17. Numerical approach of the injection molding process of fiber-reinforced composite with considering fiber orientation

    NASA Astrophysics Data System (ADS)

    Nguyen Thi, T. B.; Yokoyama, A.; Ota, K.; Kodama, K.; Yamashita, K.; Isogai, Y.; Furuichi, K.; Nonomura, C.

    2014-05-01

    One of the most important challenges in the injection molding process of the short-glass fiber/thermoplastic composite parts is being able to predict the fiber orientation, since it controls the mechanical and the physical properties of the final parts. Folgar and Tucker included into the Jeffery equation a diffusive type of term, which introduces a phenomenological coefficient for modeling the randomizing effect of the mechanical interactions between the fibers, to predict the fiber orientation in concentrated suspensions. Their experiments indicated that this coefficient depends on the fiber volume fraction and aspect ratio. However, a definition of the fiber interaction coefficient, which is very necessary in the fiber orientation simulations, hasn't still been proven yet. Consequently, this study proposed a developed fiber interaction model that has been introduced a fiber dynamics simulation in order to obtain a global fiber interaction coefficient. This supposed that the coefficient is a sum function of the fiber concentration, aspect ratio, and angular velocity. The proposed model was incorporated into a computer aided engineering simulation package C-Mold. Short-glass fiber/polyamide-6 composites were produced in the injection molding with the fiber weight concentration of 30 wt.%, 50 wt.%, and 70 wt.%. The physical properties of these composites were examined, and their fiber orientation distributions were measured by micro-computed-tomography equipment μ-CT. The simulation results showed a good agreement with experiment results.

  18. One-step Tape Casting of Composites via Slurry on Fiber

    NASA Technical Reports Server (NTRS)

    deGroh, Henry C., III

    2001-01-01

    A process by which metal matrix composites can be made was presented. The process involves putting a powder slurry on fibers to make a precursor green tape. These green tapes are cut, stacked and hot pressed to form the fully dense composite. A computer program was presented which enables complete quantification and control of the process. Once some easily obtained properties of the slurry and its behavior are determined (such as the shrinkage from the wet to green state, and the density of the green tape) modification of the fiber spacing and blade height give the maker precise control of fiber volume fraction, and fiber architecture in the composite. The process was shown to be accurate and flexible through the production of a wide variety of volume fraction fiber composites made from a wide variety of fibers and powders. The most time consuming step of the tape casting process (other than hot pressing) was winding the fiber on the drum. The tape casting techniques developed resulted in high quality metal matrix composites, with ultimate tensile strength in the range of 215 ksi (1477 MPa), a strain at failure of 1.15 percent, and in fatigue at room temperature 0 to 120 ksi, n = 0.3 Hz, a 4-ply Ti-24Al-11Nb/SCS-6, 32 vol% fiber tape cast composite lasted 202,205 cycles with a maximum strain on the 100th cycle of 0.43 percent.

  19. Fiber release from impacted graphite reinforced epoxy composites

    NASA Technical Reports Server (NTRS)

    Babinsky, T. C.

    1980-01-01

    Carbon fibers released from composites by aircraft fires and crashes can cause electrical shorts and consequent equipment damage. This report investigates less vigorous release mechanisms than that previously simulated by explosive burn/blast tests. When AS/3501-6 composites are impacted by various head and weight configurations of a pendulum impactor, less than 0.2 percent by weight of the original sample is released as single fibers. Other fiber release mechanisms studied were air blasts, constant airflow, torsion, flexural, and vibration of composite samples. The full significance of the low single fiber release rates found here is to be evaluated by NASA in their aircraft vulnerability studies.

  20. Dry Process for Manufacturing Hybridized Boron Fiber/Carbon Fiber Thermoplastic Composite Materials from a Solution Coated Precursor

    NASA Technical Reports Server (NTRS)

    Belvin, Harry L. (Inventor); Cano, Roberto J. (Inventor)

    2003-01-01

    An apparatus for producing a hybrid boron reinforced polymer matrix composite from precursor tape and a linear array of boron fibers. The boron fibers are applied onto the precursor tapes and the precursor tape processed within a processing component having an impregnation bar assembly. After passing through variable-dimension forming nip-rollers, the precursor tape with the boron fibers becomes a hybrid boron reinforced polymer matrix composite. A driving mechanism is used to pulled the precursor tape through the method and a take-up spool is used to collect the formed hybrid boron reinforced polymer matrix composite.

  1. Individualized versus standard FSH dosing in women starting IVF/ICSI: an RCT. Part 1: The predicted poor responder.

    PubMed

    van Tilborg, Theodora C; Torrance, Helen L; Oudshoorn, Simone C; Eijkemans, Marinus J C; Koks, Carolien A M; Verhoeve, Harold R; Nap, Annemiek W; Scheffer, Gabrielle J; Manger, A Petra; Schoot, Benedictus C; Sluijmer, Alexander V; Verhoeff, Arie; Groen, Henk; Laven, Joop S E; Mol, Ben Willem J; Broekmans, Frank J M

    2017-12-01

    Does an increased FSH dose result in higher cumulative live birth rates in women with a predicted poor ovarian response, apparent from a low antral follicle count (AFC), scheduled for IVF or ICSI? In women with a predicted poor ovarian response (AFC < 11) undergoing IVF/ICSI, an increased FSH dose (225/450 IU/day) does not improve cumulative live birth rates as compared to a standard dose (150 IU/day). In women scheduled for IVF/ICSI, an ovarian reserve test (ORT) can predict ovarian response to stimulation. The FSH starting dose is often adjusted based on the ORT from the belief that it will improve live birth rates. However, the existing RCTs on this topic, most of which show no benefit, are underpowered. Between May 2011 and May 2014, we performed an open-label multicentre RCT in women with an AFC < 11 (Dutch Trial Register NTR2657). The primary outcome was ongoing pregnancy achieved within 18 months after randomization and resulting in a live birth. We needed 300 women to assess whether an increased dose strategy would increase the cumulative live birth rate from 25 to 40% (two-sided alpha-error 0.05, power 80%). Women with an AFC ≤ 7 were randomized to an FSH dose of 450 IU/day or 150 IU/day, and women with an AFC 8-10 were randomized to 225 IU or 150 IU/day. In the standard group, dose adjustment was allowed in subsequent cycles based on pre-specified criteria. Both effectiveness and cost-effectiveness of the strategies were evaluated from an intention-to-treat perspective. In total, 511 women were randomized, 234 with an AFC ≤ 7 and 277 with an AFC 8-10. The cumulative live birth rate for increased versus standard dosing was 42.4% (106/250) versus 44.8% (117/261), respectively [relative risk (RR): 0.95 (95%CI, 0.78-1.15), P = 0.58]. As an increased dose strategy was more expensive [delta costs/woman: €1099 (95%CI, 562-1591)], standard FSH dosing was the dominant strategy in our economic analysis. Despite our training programme, the AFC might have suffered from inter-observer variation. As this open study permitted small dose adjustments between cycles, potential selective cancelling of cycles in women treated with 150 IU could have influenced the cumulative results. However, since first cycle live birth rates point in the same direction we consider it unlikely that the open design masked a potential benefit for the individualized strategy. Since an increased dose in women scheduled for IVF/ICSI with a predicted poor response (AFC < 11) does not improve live birth rates and is more expensive, we recommend using a standard dose of 150 IU/day in these women. This study was funded by The Netherlands Organisation for Health Research and Development (ZonMW number 171102020). T.C.T., H.L.T. and S.C.O. received an unrestricted personal grant from Merck BV. H.R.V. receives monetary compensation as a member on an external advisory board for Ferring pharmaceutical BV. B.W.J.M. is supported by a NHMRC Practitioner Fellowship (GNT1082548) and reports consultancy for OvsEva, Merck and Guerbet. F.J.M.B. receives monetary compensation as a member of the external advisory board for Ferring pharmaceutics BV (the Netherlands) and Merck Serono (the Netherlands) for consultancy work for Gedeon Richter (Belgium) and Roche Diagnostics on automated AMH assay development (Switzerland) and for a research cooperation with Ansh Labs (USA). All other authors have nothing to declare. Registered at the ICMJE-recognized Dutch Trial Registry (www.trialregister.nl). Registration number NTR2657. 20 December 2010. 12 May 2011. © The Author 2017. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com

  2. Interfacial reactions in titanium/SCS fiber composites during fabrication

    NASA Technical Reports Server (NTRS)

    Warrier, S. G.; Lin, R. Y.

    1993-01-01

    The objectrive of the study was to determine the effect of titanium concentration and different pyrocarbon fiber coatings on the morphology and the extent of fiber-matrix reactions in Ti/SiC composites fabricated by rapid infrared forming (RIF). It is found that the extent of fiber-matrix reactions in Ti/SiC composites fabricated by the RIF technique is noticeably affected by both an increase in Ti content and by the processing temperature. Uncoated SiC fibers extensively react with the titanium alloy matrix at 1200 C, whereas no reaction occurs when coated SiC fibers are used.

  3. Studies of fiber-matrix adhesion on compression strength

    NASA Technical Reports Server (NTRS)

    Bascom, Willard D.; Nairn, John A.; Boll, D. J.

    1991-01-01

    A study was initiated on the effect of the matrix polymer and the fiber matrix bond strength of carbon fiber polymer matrix composites. The work includes tests with micro-composites, single ply composites, laminates, and multi-axial loaded cylinders. The results obtained thus far indicate that weak fiber-matrix adhesion dramatically reduces 0 degree compression strength. Evidence is also presented that the flaws in the carbon fiber that govern compression strength differ from those that determine fiber tensile strength. Examination of post-failure damage in the single ply tests indicates kink banding at the crack tip.

  4. Core-Shell Composite Fibers for High-Performance Flexible Supercapacitor Electrodes.

    PubMed

    Lu, Xiaoyan; Shen, Chen; Zhang, Zeyang; Barrios, Elizabeth; Zhai, Lei

    2018-01-31

    Core-shell nanofibers containing poly(acrylic acid) (PAA) and manganese oxide nanoparticles as the core and polypyrrole (PPy) as the shell were fabricated through electrospinning the solution of PAA and manganese ions (PAA/Mn 2+ ). The obtained nanofibers were stabilized by Fe 3+ through the interaction between Fe 3+ ions and carboxylate groups. Subsequent oxidation of Mn 2+ by KMnO 4 produced uniform manganese dioxide (MnO 2 ) nanoparticles in the fibers. A PPy shell was created on the fibers by immersing the fibers in a pyrrole solution where the Fe 3+ ions in the fiber polymerized the pyrrole on the fiber surfaces. In the MnO 2 @PAA/PPy core-shell composite fibers, MnO 2 nanoparticles function as high-capacity materials, while the PPy shell prevents the loss of MnO 2 during the charge/discharge process. Such a unique structure makes the composite fibers efficient electrode materials for supercapacitors. The gravimetric specific capacity of the MnO 2 @PAA/PPy core-shell composite fibers was 564 F/g based on cyclic voltammetry curves at 10 mV/s and 580 F/g based on galvanostatic charge/discharge studies at 5 A/g. The MnO 2 @PAA/PPy core-shell composite fibers also present stable cycling performance with 100% capacitance retention after 5000 cycles.

  5. Fiber reinforced PMR polyimide composites

    NASA Technical Reports Server (NTRS)

    Cavano, P. J.; Winters, W. E.

    1978-01-01

    Commercially obtained PMR-15 polyimide prepregs with S-glass and graphite fiber reinforcements were evaluated along with in-house prepared glass and graphite cloth PMR 2 materials. A novel autoclave approach was conceived and used to demonstrate that both the PMR systems respond to 1.4 MPa (200 psi) autoclave pressures to produce void free composites equivalent to die molded laminates. Isothermal gravimetric analysis and subsequent mechanical property tests indicated that the PMR 2 system was significantly superior in thermo-oxidative stability, and that S-glass reinforcements may contribute to the accelerated degradation of composites at 316 C (600 F) when compared to graphite fiber reinforced composites. Fully reversed bending fatigue experiments were conducted with a type of fixture unused for organic matrix composites. These studies indicated that the graphite fiber composites were clearly superior in fatigue resistance to the glass fiber reinforced material and that PMR matrix composite systems yield performance of the same order as composite materials employing other families of matrices.

  6. Nanocellulose in spun continuous fibers: A review and future outlook

    Treesearch

    Craig Clemons

    2016-01-01

    Continuous fibers are commonly manufactured for a wide variety of uses such as filters, textiles, and composites. For example, most fibrous reinforcements (e.g., carbon fiber, glass fiber) for advanced composites are continuous fibers or yarns, fabrics, and preforms made from them. This allows broad flexibility in design and manufacturing approaches by controlling...

  7. Highly filled formaldehyde-free natural fiber polypropylene composites

    Treesearch

    Anand R. Sanadi; Daniel F. Caulfield

    2000-01-01

    Considerable interest has been generated in the use of lignocellulosic fibers and wastes (both agricultural and wood based) as fillers and reinforcements in thermoplastics. In general, present technologies limit fiber loading in thermoplastics to about 50% by weight of fiber. To produce high fiber content composites for commercial use while maintaining adequate...

  8. Moisture sorption properties of composite boards from esterified aspen fiber

    Treesearch

    C. Clemons; R. A. Young; R. M. Rowell

    1992-01-01

    One barrier to producing wood-plastic composites with wood fiber is the poor thermoplasticity of wood fiber. The objective of our study was to determine the plasticization of chemically modified wood fiber through tests on unmodified and esterified fiberboards. Attrition-milled aspen fiber was esterified with neat acetic, maleic, or succinic anhydride. Fourier...

  9. Structurally integrated fiber optic damage assessment system for composite materials.

    PubMed

    Measures, R M; Glossop, N D; Lymer, J; Leblanc, M; West, J; Dubois, S; Tsaw, W; Tennyson, R C

    1989-07-01

    Progress toward the development of a fiber optic damage assessment system for composite materials is reported. This system, based on the fracture of embedded optical fibers, has been characterized with respect to the orientation and location of the optical fibers in the composite. Together with a special treatment, these parameters have been tailored to yield a system capable of detecting the threshold of damage for various impacted Kevlar/epoxy panels. The technique has been extended to measure the growth of a damage region which could arise from either impact, manufacturing flaws, or static overloading. The mechanism of optical fiber fracture has also been investigated. In addition, the influence of embedded optical fibers on the tensile and compressive strength of the composite material has been studied. Image enhanced backlighting has been shown to be a powerful and convenient method of assessing internal damage to translucent composite materials.

  10. Hemp-Fiber-Reinforced Unsaturated Polyester Composites: Optimization of Processing and Improvement of Interfacial Adhesion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qui, Renhui; Ren, Xiaofeng; Fifield, Leonard S.

    2011-02-25

    The processing variables for making hemp-fiber-reinforced unsaturated polyester (UPE) composites were optimized through orthogonal experiments. It was found that the usage of initiator, methyl ethyl ketone peroxide, had the most significant effect on the tensile strength of the composites. The treatment of hemp fibers with a combination of 1, 6-diisocyanatohexane (DIH) and 2-hydroxylethyl acrylate (HEA) significantly increased tensile strength, flexural modulus of rupture and flexural modulus of elasticity, and water resistance of the resulting hemp-UPE composites. FTIR spectra revealed that DIH and HEA were covalently bonded to hemp fibers. Scanning electronic microscopy graphs of the fractured hemp-UPE composites demonstrated thatmore » treatment of hemp fibers with a combination of DIH and HEA greatly improved the interfacial adhesion between hemp fibers and UPE. The mechanism of improving the interfacial adhesion is proposed.« less

  11. A New Local Failure Model with Application to the Longitudinal Tensile Behavior of Continuously Reinforced Titanium Composites

    NASA Technical Reports Server (NTRS)

    Bednarcyk, Brett A.; Arnold, Steven M.

    2000-01-01

    A new model for local fiber failures in composite materials loaded longitudinally is presented. In developing the model, the goal was to account for the effects of fiber breakage on the global response of a composite in a relatively simple and efficient manner. Towards this end, the model includes the important feature of local stress unloading, even as global loading of the composite continues. The model has been incorporated into NASA Glenn's Micromechanics Analysis Code with Generalized Method of Cells (MAC/GMC) and was employed to simulate the longitudinal tensile deformation and failure behavior of several silicon carbide fiber/titanium matrix (SiC/Ti) composites. The model is shown to be quite realistic and capable of accurate predictions for various temperatures, fiber volume fractions, and fiber diameters. Further- more, the new model compares favorably to Curtin's (1993) effective fiber breakage model, which has also been incorporated into MAC/GMC.

  12. Investigation into the Implications of Fuel Cell Shipboard Integration into the T-AGOS 19 Class

    DTIC Science & Technology

    2012-02-01

    with each defined by its fundamental electrolyte: i. Alkali Fuel Cells (AFC) ii. Polymer Exchange Membrane ( PEM ) iii. Phosphoric Acid Fuel Cells ...of the PEM family (High Temperature – HTPEM and Direct Methanol Fuel Cells – DMFC) were assessed against a range of basic ship requirements...of fuel cell stacks in 100+kW power range for realistic marine applications, two technologies can be quickly discounted, namely – AFC, DMFC. PEM

  13. Evaluation of ovarian reserve tests in women with systemic lupus erythematosus.

    PubMed

    Ulug, Pasa; Oner, Gokalp; Kasap, Burcu; Akbas, Emin Murat; Ozcicek, Fatih

    2014-07-01

    Impact of systemic lupus erythematosus (SLE) on fertility may be negative, and ovarian function can be also reduced by autoimmune oophoritis. In this article, we evaluated the ovarian reserve of pre-menopausal women firstly diagnosed with systemic lupus erythematosus (SLE). This was a prospective controlled study which included twenty women with SLE and twenty healthy women as controls in the reproductive age. Basal levels of FSH, estradiol (E2), and LH on cycle day 3 were measured. All participants underwent transvaginal ultrasonographic examination on the third day of their menstrual periods for the determination of ovarian volume (OV) and total antral follicle count (AFC). A significant difference in FSH, LH, and E2 levels was observed between women with SLE and healthy controls. There was a statistically significant reduction in total AFC and OV in SLE group. Age was associated negatively with AFC, whereas positively with FSH and LH. Menstrual irregularity was significantly higher in SLE patients than control. AFC was the most reliable test to show the menstrual irregularity and negatively correlated each other in women with SLE. In this preliminary study, the first in SLE patients, we illustrated that women with SLE had lower ovarian reserves and higher menstrual irregularity compared with healthy controls according to hormonal and ultrasonographical evaluation. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  14. Influence of fiber treatment on dimensional stabilities of rattan waste composite boards

    NASA Astrophysics Data System (ADS)

    Zuraida, A.; Insyirah, Y.; Maisarah, T.; Zahurin, H.

    2018-01-01

    The main drawback of using natural fibers in composite boards is its hydrophilic properties which absorb a high volume of moisture. This results in low dimensional stability of the produced composite boards. Hence, the purpose of this study is to investigate the effects of fibers’ treatment processes of the rattan waste fibers on the dimensional stabilities of composite boards. The collected fibers underwent two types of retting processes, namely a water treatment and alkaline treatment retting processes; where the fibers were soaked in water and a 1% sodium hydroxide (NaOH) solution, respectively. The fibers were dried and mixed with poly(lactic) acid (PLA) pellets with ratio of 30% fibers: 70% matrix; before being fabricated into composite boards via a hot-pressing process and were labelled as RF/PLA, WRF/PLA, CRF/PLA for untreated rattan, rattan treated by water retting, rattan treated by chemical retting, respectively. The produced composite boards were cut and soaked in water for 24 hours for dimensional stability in terms of water absorption and thickness swelling tests. The results showed that WRF/PLA has the lowest water absorption (3.2%), and the CRF/PLA had the highest water absorption (23.2%). The thickness swelling showed a similar trend as water absorption. The presence of void contents and fibers damaged the insides of the boards, which contributed to low dimensional stabilities of the composite boards. It can be concluded that water retting facilitated in improving dimensional stability of the produced composite board.

  15. Resin impregnation process for producing a resin-fiber composite

    NASA Technical Reports Server (NTRS)

    Palmer, Raymond J. (Inventor); Moore, William E. (Inventor)

    1994-01-01

    Process for vacuum impregnation of a dry fiber reinforcement with a curable resin to produce a resin-fiber composite, by drawing a vacuum to permit flow of curable liquid resin into and through a fiber reinforcement to impregnate same and curing the resin-impregnated fiber reinforcement at a sufficient temperature and pressure to effect final curing. Both vacuum and positive pressure, e.g. autoclave pressure, are applied to the dry fiber reinforcement prior to application of heat and prior to any resin flow to compact the dry fiber reinforcement, and produce a resin-fiber composite of reduced weight, thickness and resin content, and improved mechanical properties. Preferably both a vacuum and positive pressure, e.g. autoclave pressure, are also applied during final curing.

  16. The recycling of comminuted glass-fiber-reinforced resin from electronic waste.

    PubMed

    Duan, Huabo; Jia, Weifeng; Li, Jinhui

    2010-05-01

    The reuse of comminuted glass-fiber-reinforced resin with various granularities gathered from printed circuit manufacturing residues was investigated. As fillers, these residues were converted into polymeric composite board by an extrusion and injection process using polypropylene as a bonding agent. The mechanical properties of the reproduced composite board were examined by considering the effects of mass fraction and glass-fiber distribution. Interfacial-layer micrograph analysis of the composite material fracture surface was used to study the fiber reinforcement mechanism. Results showed that using comminuted glass-fiber-reinforced resin as a filler material greatly enhanced the performance properties of the composite board. Although the length and diameter of filler varied, these variations had no appreciable effect on the mechanical properties of the processed board. Maximum values of 48.30 MPa for flexural strength, 31.34 MPa for tensile strength, and 31.34 J/m for impact strength were achieved from a composite board containing mass fractions of 30, 10, and 20% glass-fiber-reinforced resin waste, respectively. It was found that the maximum amount of recyclate that could be added to a composite board was 30% of weight. Beyond these percentages, the materials blend became unmanageable and the mixture less amenable to impregnation with fiber. Presented studies indicated that comminuted glass-fiber-reinforced resin waste-filled polypropylene composites are promising candidates for structural applications where high stiffness and fracture resistance are required.

  17. Durability of pulp fiber-cement composites

    NASA Astrophysics Data System (ADS)

    Mohr, Benjamin J.

    Wood pulp fibers are a unique reinforcing material as they are non-hazardous, renewable, and readily available at relatively low cost compared to other commercially available fibers. Today, pulp fiber-cement composites can be found in products such as extruded non-pressure pipes and non-structural building materials, mainly thin-sheet products. Although natural fibers have been used historically to reinforce various building materials, little scientific effort has been devoted to the examination of natural fibers to reinforce engineering materials until recently. The need for this type of fundamental research has been emphasized by widespread awareness of moisture-related failures of some engineered materials; these failures have led to the filing of national- and state-level class action lawsuits against several manufacturers. Thus, if pulp fiber-cement composites are to be used for exterior structural applications, the effects of cyclical wet/dry (rain/heat) exposure on performance must be known. Pulp fiber-cement composites have been tested in flexure to examine the progression of strength and toughness degradation. Based on scanning electron microscopy (SEM), environmental scanning electron microscopy (ESEM), energy dispersive spectroscopy (EDS), a three-part model describing the mechanisms of progressive degradation has been proposed: (1) initial fiber-cement/fiber interlayer debonding, (2) reprecipitation of crystalline and amorphous ettringite within the void space at the former fiber-cement interface, and (3) fiber embrittlement due to reprecipitation of calcium hydroxide filling the spaces within the fiber cell wall structure. Finally, as a means to mitigate kraft pulp fiber-cement composite degradation, the effects of partial portland cement replacement with various supplementary cementitious materials (SCMs) has been investigated for their effect on mitigating kraft pulp fiber-cement composite mechanical property degradation (i.e., strength and toughness losses) during wet/dry cycling. SCMs have been found to be effective in mitigating composite degradation through several processes, including a reduction in the calcium hydroxide content, stabilization of monosulfate by maintaining pore solution pH, and a decrease in ettringite reprecipitation accomplished by increased binding of aluminum in calcium aluminate phases and calcium in the calcium silicate hydrate (C-S-H) phase.

  18. Mechanical characterization of scalable cellulose nano-fiber based composites made using liquid composite molding process

    Treesearch

    Bamdad Barari; Thomas K. Ellingham; Issam I. Ghamhia; Krishna M. Pillai; Rani El-Hajjar; Lih-Sheng Turng; Ronald Sabo

    2016-01-01

    Plant derived cellulose nano-fibers (CNF) are a material with remarkable mechanical properties compared to other natural fibers. However, efforts to produce nano-composites on a large scale using CNF have yet to be investigated. In this study, scalable CNF nano-composites were made from isotropically porous CNF preforms using a freeze drying process. An improvised...

  19. Chapter 15: Characterization and Processing of Nanocellulose Thermosetting Composites

    Treesearch

    Ronald C. Sabo; Rani F. Elhajjar; Craig M. Clemons; Krishna M. Pillai

    2015-01-01

    Fiber-reinforced polymer composites have gained popularity through their advantages over conventional metallic materials. Most polymer composites are traditionally made with reinforcing fibers such as carbon or glass. However, there has been recent interest in sourcing these reinforcing fibers from renewable, natural resources. Nanocellulose-based reinforcements...

  20. Generation of Spatially Aligned Collagen Fiber Networks through Microtransfer Molding

    PubMed Central

    Naik, Nisarga; Caves, Jeffrey

    2013-01-01

    The unique biomechanical properties of native tissue are governed by the organization and composition of integrated collagen and elastin networks. We report an approach for fabricating spatially aligned, fiber-reinforced composites (FRC) with adjustable collagen fiber dimensions, layouts, and distribution within an elastin-like protein matrix yielding a biocomposite with controllable mechanical responses. Microtransfer molding is employed for the fabrication of hollow and solid collagen fibers with straight or crimped fiber geometries. Collagen fibers (width: 2 – 50 μm, thickness: 300 nm – 3 μm) exhibit a Young’s modulus of 126 ± 61 MPa and an ultimate tensile strength (UTS) of 7 ± 3.2 MPa. As fiber networks within composite structures, straight fiber layouts display orthotropic responses with Young’s modulus ranging from 0.95 ± 0.35 to 10.4 ± 0.5 MPa and tensile strength from 0.22 ± 0.08 to 0.87 ± 0.5 MPa with increasing fraction of collagen fibers (1–10% v/v). In contrast, composites based on crimped fiber layouts exhibit strain-dependent stiffness with an increase in Young’s modulus from 0.7 ± 0.14 MPa to 3.15 ± 0.49 MPa, at a specific transition strain. Through controlling the microstructure of engineered collagen fiber networks, a facile means has been established to control macroscale mechanical responses of composite protein-based materials. PMID:24039146

Top