NASA Astrophysics Data System (ADS)
Du, Yicheng
Natural fibers have the potential to replace glass fibers in fiber-reinforced composite applications. However, the natural fibers' intrinsic properties cause these issues: (1) the mechanical property variation; (2) moisture uptake by natural fibers and their composites; (3) lack of sound, cost-effective, environment-friendly fiber-matrix compounding processes; (4) incompatibility between natural fibers and polymer matrices; and (5) low heat-resistance of natural fibers and their composites. This dissertation systematically studied the use of kenaf bast fiber bundles, obtained via a mechanical retting method, as a light-weight reinforcement material for fiber-reinforced thermoset polymer composites for automotive applications. Kenaf bast fiber bundle tensile properties were tested, and the effects of locations in the kenaf plant, loading rates, retting methods, and high temperature treatments and their durations on kenaf bast fiber bundle tensile properties were evaluated. A process has been developed for fabricating high fiber loading kenaf bast fiber bundle-reinforced unsaturated polyester composites. The generated composites possessed high elastic moduli and their tensile strengths were close to specification requirements for glass fiber-reinforced sheet molding compounds. Effects of fiber loadings and lengths on resultant composite's tensile properties were evaluated. Fiber loadings were very important for composite tensile modulus. Both fiber loadings and fiber lengths were important for composite tensile strengths. The distributions of composite tensile, flexural and impact strengths were analyzed. The 2-parameter Weibull model was found to be the most appropriate for describing the composite strength distributions and provided the most conservative design values. Kenaf-reinforced unsaturated polyester composites were also proved to be more cost-effective than glass fiber-reinforced SMCs at high fiber loadings. Kenaf bast fiber bundle-reinforced composite's water absorption properties were tested. Surface-coating and edge-sealing significantly reduced composite water resistance properties. Encapsulation was a practical method to improve composite water resistance properties. The molding pressure and styrene concentrations on composite and matrix properties were evaluated. Laser and plasma treatment improved fiber-to-matrix adhesion.
Method of making a continuous ceramic fiber composite hot gas filter
Hill, Charles A.; Wagner, Richard A.; Komoroski, Ronald G.; Gunter, Greg A.; Barringer, Eric A.; Goettler, Richard W.
1999-01-01
A ceramic fiber composite structure particularly suitable for use as a hot gas cleanup ceramic fiber composite filter and method of making same from ceramic composite material has a structure which provides for increased strength and toughness in high temperature environments. The ceramic fiber composite structure or filter is made by a process in which a continuous ceramic fiber is intimately surrounded by discontinuous chopped ceramic fibers during manufacture to produce a ceramic fiber composite preform which is then bonded using various ceramic binders. The ceramic fiber composite preform is then fired to create a bond phase at the fiber contact points. Parameters such as fiber tension, spacing, and the relative proportions of the continuous ceramic fiber and chopped ceramic fibers can be varied as the continuous ceramic fiber and chopped ceramic fiber are simultaneously formed on the porous vacuum mandrel to obtain a desired distribution of the continuous ceramic fiber and the chopped ceramic fiber in the ceramic fiber composite structure or filter.
Properties of indirect composites reinforced with monomer-impregnated glass fiber.
Tanoue, Naomi; Sawase, Takashi; Matsumura, Hideo; McCabe, John F
2012-07-01
Sufficient flexural strength is required for long-term clinical use of fixed partial dentures made with fiber-reinforced composite. The flexural strengths of indirect composite materials reinforced with a monomer-preimpregnated glass fiber material were determined to evaluate the compatibility of the composites to glass fiber material. Four types (microhybrid, nanohybrid, microfilled, and minifilled) of indirect composites and a unidirectional long glass fiber material were selected for investigation. The composites were placed on a fiber plate and polymerized in accordance with the respective manufacturer's instructions. Rectangular bar fiber-composite specimens were machined and the flexural strength was calculated. The flexural strength of each indirect composite was also measured. The microfilled composite with the lowest filler content (70 wt%) exhibited the highest increase ratio using the fiber, although its strength without fiber reinforcement was the lowest (62.1 MPa). The fiber-microhybrid specimen demonstrated the highest mean strength (355.9 MPa), although the filler content of the microhybrid composite was comparatively low (73 wt%). The type of composite material should be considered for the selection of an optimal fiber-composite combination.
NASA Astrophysics Data System (ADS)
Thumsorn, S.; Srisawat, N.; On, J. Wong; Pivsa-Art, S.; Hamada, H.
2014-05-01
Bamboo fiber reinforced biodegradable polymer composites were prepared in this study. Biodegradable poly(butylene succinate) (PBS) was blended with bamboo fiber in a twin screw extruder with varied bamboo content from 20-0wt%. PBS/bamboo fiber composites were fabricated by compression molding process. The effect of bamboo fiber contents on properties of the composites was investigated. Non-isothermal crystallization kinetic study of the composites was investigated based on Avrami equation. The kinetic parameters indicated that bamboo fiber acted as heterogeneous nucleation and enhanced crystallinity of the composites. Bamboo fiber was well dispersed on PBS matrix and good adhered with the matrix. Tensile strength of the composites slightly deceased with adding bamboo fiber. However, tensile modulus and impact strength of the composites increased when increasing bamboo fiber contents. It can be noted that bamboo fiber promoted crystallization and crystallinity of PBS in the composites. Therefore, the composites were better in impact load transferring than neat PBS, which exhibited improving on impact performance of the composites.
Fabrication of Composite Material Using Gettou Fiber by Injection Molding
NASA Astrophysics Data System (ADS)
Setsuda, Roy; Fukumoto, Isao; Kanda, Yasuyuki
This study investigated the mechanical properties of composite using gettou (shell ginger) fiber as reinforcement fabricated from injection molding. Gettou fiber is a natural fiber made from gettou, a subtropical plant that is largely abundant in Okinawa, Japan. We used the stem part of gettou plant and made the gettou fiber by crushing the stem. The composite using gettou fiber contributed to low shrinkage ratio, high bending strength and high flexural modulus. The mechanical strength of composite using long gettou fiber showed higher value than composite using short gettou fiber. Next, because gettou is particularly known for its anti-mold characteristic, we investigated the characteristic in gettou plastic composite. The composite was tested against two molds: aspergillius niger and penicillium funiculosum. The 60% gettou fiber plastic composite was found to satisfy the JISZ2801 criterion. Finally, in order to predict the flexural modulus of composite using gettou fiber by Halpin-Tsai equation, the tensile elastic modulus of single gettou fiber was measured. The tendency of the experimental results of composite using gettou fiber was in good agreement with Halpin-Tsai equation.
Microstructure of the smart composite structures with embedded fiber optic sensing nerves
NASA Astrophysics Data System (ADS)
Liu, Jingyuan; Luo, Fei; Li, Changchun; Ma, Naibin
1997-11-01
The composite structures with embedded optical fiber sensors construct a smart composite structure system, which may have the characteristics of the in-service self-measurement, self- recognition and self-judgement action. In the present work, we studied the microstructures of carbon/epoxy composite laminates with embedded sensing optical fibers, and the integration of optical fiber with composites was also discussed. The preliminary experiment results show that because of the difference between the sensing optical fibers and the reinforcing fibers in their size, the microstructure of the composites with embedded optical fibers will produce partial local changes in the area of embedded optical fiber, these changes may affect the mechanical properties of composite structures. When the optical fibers are embedded parallel to the reinforcing fibers, due to the composite prepregs are formed under a press action during its curing process, the reinforcing fibers can be arranged equably around the optical fibers. But when the optical fibers are embedded perpendicularly to the reinforcement fibers, the resin rich pocket will appear in the composite laminates surrounding the embedded optical fiber. The gas holes will be easily produced in these zones which may produce a premature failure of the composite structure. The photoelastic experiments are also given in the paper.
NASA Technical Reports Server (NTRS)
Bansal, Narottam P.; Eldridge, Jeffrey I.
1999-01-01
To evaluate the effects of fiber coatings on composite mechanical properties. unidirectional celsian matrix composites reinforced with uncoated Hi-Nicalon fibers and those precoated with a dual BN/SiC layer in two separate batches (batch 1 and batch 2) were tested in three-point flexure. The uncoated-fiber reinforced composites showed catastrophic failure with strength of 210+/-35 MPa and a flat fracture surface. In contrast, composites reinforced with coated fibers exhibited graceful failure with extensive fiber pullout and showed significantly higher ultimate strengths, 904 and 759 MPa for the batch 1 and 2 coatings. respectively. Fiber push-in tests and microscopic examination indicated no chemical reaction at the uncoated or coated fiber-matrix interfaces that might be responsible for fiber strength degradation. Instead, the low strength of composite with uncoated fibers was due to degradation of the fiber strength from mechanical damage during composite processing. Despite identical processing, the first matrix cracking stresses (Sigma(sub mc)) of the composites reinforced with fibers coated in batch 1 and batch 2 were quite different, 436 and 122 MPa, respectively. The large difference in Sigma(sub mc) of the coated-fiber composites was attributed to differences in fiber sliding stresses (Tau(sub friction)), 121.2+/-48.7 and 10.4+/-3.1 MPa, respectively. for the two composites as determined by the fiber push-in method. Such a large difference in Tau(sub friction). for the two composites was found to be due to the difference in the compositions of the interface coatings. Scanning Auger microprobe analysis revealed the presence of carbon layers between the fiber and BN. and also between the BN and SiC coatings in the composite showing lower Tau(sub friction). This resulted in lower Sigma(sub mc) in agreement with the ACK theory. The ultimate strengths of the two composites depended mainly on the fiber volume fraction and were not significantly effected by Tau(sub friction) values, as expected. The poor reproducibility of the fiber coating composition between the two batches was judged to be the primary source of the large differences in performance of the two composites.
NASA Technical Reports Server (NTRS)
Pan, Ning
1992-01-01
Although the question of minimum or critical fiber volume fraction beyond which a composite can then be strengthened due to addition of fibers has been dealt with by several investigators for both continuous and short fiber composites, a study of maximum or optimal fiber volume fraction at which the composite reaches its highest strength has not been reported yet. The present analysis has investigated this issue for short fiber case based on the well-known shear lag (the elastic stress transfer) theory as the first step. Using the relationships obtained, the minimum spacing between fibers is determined upon which the maximum fiber volume fraction can be calculated, depending on the fiber packing forms within the composites. The effects on the value of this maximum fiber volume fraction due to such factors as fiber and matrix properties, fiber aspect ratio and fiber packing forms are discussed. Furthermore, combined with the previous analysis on the minimum fiber volume fraction, this maximum fiber volume fraction can be used to examine the property compatibility of fiber and matrix in forming a composite. This is deemed to be useful for composite design. Finally some examples are provided to illustrate the results.
Rayung, Marwah; Ibrahim, Nor Azowa; Zainuddin, Norhazlin; Saad, Wan Zuhainis; Razak, Nur Inani Abdul; Chieng, Buong Woei
2014-08-22
In this work, biodegradable composites from poly(lactic acid) (PLA) and oil palm empty fruit bunch (OPEFB) fiber were prepared by melt blending method. Prior to mixing, the fiber was modified through bleaching treatment using hydrogen peroxide. Bleached fiber composite showed an improvement in mechanical properties as compared to untreated fiber composite due to the enhanced fiber/matrix interfacial adhesion. Interestingly, fiber bleaching treatment also improved the physical appearance of the composite. The study was extended by blending the composites with commercially available masterbatch colorant.
Rayung, Marwah; Ibrahim, Nor Azowa; Zainuddin, Norhazlin; Saad, Wan Zuhainis; Razak, Nur Inani Abdul; Chieng, Buong Woei
2014-01-01
In this work, biodegradable composites from poly(lactic acid) (PLA) and oil palm empty fruit bunch (OPEFB) fiber were prepared by melt blending method. Prior to mixing, the fiber was modified through bleaching treatment using hydrogen peroxide. Bleached fiber composite showed an improvement in mechanical properties as compared to untreated fiber composite due to the enhanced fiber/matrix interfacial adhesion. Interestingly, fiber bleaching treatment also improved the physical appearance of the composite. The study was extended by blending the composites with commercially available masterbatch colorant. PMID:25153628
Kenaf-glass fiber reinforced unsaturated polyester hybrid composites: Tensile properties
NASA Astrophysics Data System (ADS)
Zhafer, S. F.; Rozyanty, A. R.; Shahnaz, S. B. S.; Musa, L.; Zuliahani, A.
2016-07-01
The use of natural fibers in composite is rising in recent years due their lightweight, non-abrasive, combustible, non-toxic, low cost and biodegradable properties. However, in comparison with synthetic fibers, the mechanical properties of natural fibers are lower. Therefore, the inclusion of synthetic fibers could improve the mechanical performance of natural fiber based composites. In this study, kenaf bast fiber and glass fiber at different weight percentage loading were used as reinforcement to produce hybrid composites. Unsaturated polyester (UP) resin was used as matrix and hand lay-up process was performed to apply the UP resin on the hybrid kenaf bast/glass fiber composite. Effect of different fiber loading on tensile strength, tensile modulus and elongation at break of the hybrid composite was studied. It has been found that the highest value of tensile strength and modulus was achieved at 10 wt.% kenaf/10 wt.% glass fiber loading. It was concluded that addition of glass fiber has improved the tensile properties of kenaf bast fiber based UP composites.
NASA Astrophysics Data System (ADS)
Fong, A. L.; Khandoker, N. A. N.; Debnath, S.
2018-04-01
This paper presents an experimental study on the mechanical performance of sugarcane bagasse fiber reinforced epoxy composite. Tensile and flexural properties of the composites were investigated in this research. Different weightage of short fiber and fiber particulates were utilized to study their effects on the mechanical performance of the composites in terms of tensile and flexural properties. 1% of nano-silica was reinforced to investigate its effect on the mechanical performance of the composites. Hand lay-up composite molding process was used to fabricate the composite samples. During fabrication, ultrasonic mixing was carried out to study the effects on mechanical performance of the fiber particulate reinforced composites. In overall, ultrasonic mixing and addition of nano-silica particles has improved the mechanical performance of the fiber particulate composites. Morphology analysis on surface of composites has shown the removal of air bubbles and deagglomeration. 1wt% of short fiber reinforced composite exhibits the highest tensile and flexural properties among all the samples. Sugarcane bagasse particulates reinforced composites were shown to have better performance compared to short fiber reinforced composites when the wt% of the fiber increase.
Bio-composites fabricated by sandwiching sisal fibers with polypropylene (PP)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sosiati, H., E-mail: hsosiati@gmail.com; Nahyudin, A., E-mail: ahmadnahyudin@yahoo.co.id; Fauzi, I., E-mail: ikhsannurfauzi@gmail.com
Sisal fibers reinforced polypropylene (PP) composites were successfully fabricated using sandwiching sisal fibers with PP sheets. The ratio of fiber and polymer matrix was 50:50 (wt. %). Untreated short and long sisal fibers, and alkali treated short sisal fibers in 6% NaOH at 100°C for 1 and 3 h were used as reinforcement or fillers. A small amount (3 wt. %) of maleic anhydride grafted polypropylene (MAPP) was added as a coupling agent. Scanning electron microscopy (SEM) and Fourier transform infrared (FTIR) spectroscopy were used to characterize the surface morphology and chemical composition of the fibers, respectively. Flexural test of sisal/PPmore » composites was done according to ASTM D 790-02. The results showed that flexural strength of untreated long fiber reinforced composite is much higher than that of the untreated and alkali treated short fibers reinforced composites with and without the addition of MAPP. Alkalization related to fiber surface modification, fiber length/fiber orientation and a composite fabrication technique are important factors in contributing to the fiber distribution within the matrix, the bonding between the fiber and the matrix and the enhancement of flexural strength of the bio-composite.« less
Huang, Qiting; Garoushi, Sufyan; Lin, Zhengmei; He, Jingwei; Qin, Wei; Liu, Fang; Vallittu, Pekka Kalevi; Lassila, Lippo Veli Juhana
2017-10-01
To investigate the reinforcing efficiency and light curing properties of discontinuous S2-glass fiber-particulate reinforced resin composite and to examine length distribution of discontinuous S2-glass fibers after a mixing process into resin composite. Experimental S2-glass fiber-particulate reinforced resin composites were prepared by mixing 10wt% of discontinuous S2-glass fibers, which had been manually cut into two different lengths (1.5 and 3.0mm), with various weight ratios of dimethacrylate based resin matrix and silaned BaAlSiO 2 filler particulates. The resin composite made with 25wt% of UDMA/SR833s resin system and 75wt% of silaned BaAlSiO 2 filler particulates was used as control composite which had similar composition as the commonly used resin composites. Flexural strength (FS), flexural modulus (FM) and work of fracture (WOF) were measured. Fractured specimens were observed by scanning electron microscopy. Double bond conversion (DC) and fiber length distribution were also studied. Reinforcement of resin composites with discontinuous S2-glass fibers can significantly increase the FS, FM and WOF of resin composites over the control. The fibers from the mixed resin composites showed great variation in final fiber length. The mean aspect ratio of experimental composites containing 62.5wt% of particulate fillers and 10wt% of 1.5 or 3.0mm cutting S2-glass fibers was 70 and 132, respectively. No difference was found in DC between resin composites containing S2-glass fibers with two different cutting lengths. Discontinuous S2-glass fibers can effectively reinforce the particulate-filled resin composite and thus may be potential to manufacture resin composites for high-stress bearing application. Copyright © 2017. Published by Elsevier Ltd.
NASA Astrophysics Data System (ADS)
Lasikun, Ariawan, Dody; Surojo, Eko; Triyono, Joko
2018-02-01
The research aims to investigate the fiber orientation effect on the tensile and impact properties of zalacca midrib fiber /HDPE composites. The composites were produced by compression molding with pressing temperature at 150°C, pressing pressure at 50 bar, and holding time of 25 minutes. The fiber orientations applied in composites were 0°, 15°, 30°, 45°, 60°, 75°, and 90°, at 10% fiber volume fraction. The samples were evaluated by using: Tensile test and Izod impact test according to ASTM D638 and ASTM D5941, respectively. The result of experiments indicate that the orientation of zalacca midrib fiber influences the characteristics of HDPE composite-zalacca midrib fiber. The composite mechanical strength decline with the increase of orientation fibers from 0° to 90°. The composite failure mode of composites are observed by Scanning Electron Microscope (SEM).
Sudhakara, P; Jagadeesh, Dani; Wang, YiQi; Prasad, C Venkata; Devi, A P Kamala; Balakrishnan, G; Kim, B S; Song, J I
2013-10-15
Novel composites based on borassus fruit fine fiber (BFF) and polypropylene (PP) were fabricated with variable fiber composition (5, 10, 15 and 20 wt%) by injection molding. Maleated PP (MAPP) was also used as compatibilizer at 5 wt% for effective fiber-matrix adhesion. FTIR analysis confirms the evidence of a chemical bonding between the fiber and polymeric matrix through esterification in presence of MAPP. The tensile and flexural properties were found to increase with 15 and 10 wt% fiber loadings respectively, and decreased thereafter. Coir, jute and sisal fiber composites were also fabricated with 15 wt% fiber loading under the same conditions as used for BFF/PP composites. It was found that the mechanical properties of BFF (15 wt%)/PP composites were equivalent to jute/PP, sisal/PP and superior to coir/PP composites. Jute/PP and sisal/PP composites showed higher water absorption than BFF/PP and coir/PP composites. These results have demonstrated that the BFF/PP composites can also be an alternative material for composites applications. Copyright © 2013 Elsevier Ltd. All rights reserved.
Experimental investigation of defect criticality in FRP laminate composites
NASA Astrophysics Data System (ADS)
Joyce, Peter James
1999-11-01
This work examines the defect criticality of fiber reinforced polymer Composites. The objective is to determine the sensitivity of the finished composite to various process-induced defects. This work focuses on two different classes of process-induced defects; (1) fiber waviness in high performance carbon-fiber reinforced unidirectional composites and (2) void volume in low cost glass-fabric reinforced composites. The role of fiber waviness in the compressive response of unidirectional composites has been studied by a number of other investigators. Because of difficulties associated with producing real composites with varying levels of fiber waviness, most experimental studies of fiber waviness have evaluated composites with artificially induced fiber waviness. Furthermore, most experimental studies have been concentrated on the effects of out-of-plane fiber waviness. The objective of this work is to evaluate the effects of in-plane fiber waviness naturally occurring in autoclave consolidated thermoplastic laminates. The first phase of this project involved the development of a simple technique for measuring the resulting fiber waviness levels. An experimental investigation of the compression strength reduction in composites with in-plane fiber waviness followed. The experimental program included carbon-fiber reinforced thermoplastic composites manufactured from prepreg tape by hand layup, and carbon-fiber and glass-fiber reinforced composites manufactured from an experimental powder towpreg by filament winding and autoclave consolidation. The compression specimens exhibited kink band failure in the prepreg composite and varying amounts of longitudinal splitting and kink banding in the towpreg composites. The compression test results demonstrated the same trend as predicted by microbudding theory but the overall quantitative correlation was poor. The second thrust of this research evaluated void effects in resin transfer molded composites. Much of the existing literature in this area has focused on composites with unidirectional fiber reinforcement. In this program, the influence of void volume on the mechanical behavior of RTM composites with plain weave reinforcement was investigated. The experimental program demonstrated that the effects of void volume are negligible in terms of the fiber dominated properties. Interlaminar shear strength tests on the other hand demonstrated a linear dependence on void volume in the range tested.
Hybrid Fiber Layup and Fiber-Reinforced Polymeric Composites Produced Therefrom
NASA Technical Reports Server (NTRS)
Barnell, Thomas J. (Inventor); Garrigan, Sean P. (Inventor); Rauscher, Michael D. (Inventor); Dietsch, Benjamin A. (Inventor); Cupp, Gary N. (Inventor)
2018-01-01
Embodiments of a hybrid fiber layup used to form a fiber-reinforced polymeric composite, and a fiber-reinforced polymeric composite produced therefrom are disclosed. The hybrid fiber layup comprises one or more dry fiber strips and one or more prepreg fiber strips arranged side by side within each layer, wherein the prepreg fiber strips comprise fiber material impregnated with polymer resin and the dry fiber strips comprise fiber material without impregnated polymer resin.
NASA Astrophysics Data System (ADS)
Salih, Wafaa Mahdi; Abdulkader, Niveen Jamal; Salih, Sana Mahdi
2018-05-01
This research were studied the effect of some mechanical properties for composite materials reinforced fiber and prepared from material (polyester with various natural fibers) then studied the effect of chemical treatment on the same fiber immerse in 10% NaOH solution for half an hour and then compared, the results of the same test of composite materials without and with chemical treatment and the results proved that there is a clear effect when treat the fiber compared to non-chemical treatment of the fibers also noted that hemp fibers loaded the stress higher than other fibers for both cases to distinguish them that the hemp fiber has continuous fibers either the other fibers are characterized by the type of cross linking or chopped types in tensile test, and the results of the same test of composite materials without and with chemical treatment and the results proved that the hardness of the fiber composite while the treated fiber composite samples better than the untreated fiber, and from the figures the palm leaf has the highest value than lufa fiber, hemp fiber and the smallest value is in sisal fiber because of the nature of formation fibers materials.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Yi; Chen, Wei; Xu, Hongyi
To provide a seamless integration of manufacturing processing simulation and fiber microstructure modeling, two new stochastic 3D microstructure reconstruction methods are proposed for two types of random fiber composites: random short fiber composites, and Sheet Molding Compounds (SMC) chopped fiber composites. A Random Sequential Adsorption (RSA) algorithm is first developed to embed statistical orientation information into 3D RVE reconstruction of random short fiber composites. For the SMC composites, an optimized Voronoi diagram based approach is developed for capturing the substructure features of SMC chopped fiber composites. The proposed methods are distinguished from other reconstruction works by providing a way ofmore » integrating statistical information (fiber orientation tensor) obtained from material processing simulation, as well as capturing the multiscale substructures of the SMC composites.« less
Effect of lightning strike on bromine intercalated graphite fiber/epoxy composites
NASA Technical Reports Server (NTRS)
Gaier, James R.; Slabe, Melissa E.; Brink, Norman O.
1991-01-01
Laminar composites were fabricated from pristine and bromine intercalated pitch based graphite fibers. It was found that laminar composites could be fabricated using either pristine or intercalated graphite fibers using standard fabrication techniques. The intercalated graphite fiber composites had electrical properties which were markedly improved over both the corresponding pitch based and polyacrylonitrile (PAN) based composites. Despite composites resistivities more than an order of magnitude lower for pitch based fiber composites, the lightning strike resistance was poorer than that of the Pan based fiber composites. This leads to the conclusion that the mechanical properties of the pitch fibers are more important than electrical or thermal properties in determining the lightning strike resistance. Based on indicated lightning strike tolerance for high elongation to failure materials, the use of vapor grown, rather than pitch based graphite fibers appears promising.
NASA Astrophysics Data System (ADS)
Pandey, Pankaj
The steady increase in corn based ethanol production has resulted in a dramatic rise in the supply of its co-product known as distillers' dried grain with solubles (DDGS). Currently, the main outlet for DDGS is the animal feed industry, but the presence of fibers makes them indigestible by non-ruminants such as swine and poultry. Separation of fiber from DDGS would increase the nutritional value of DDGS with higher protein and fat contents and reduced fiber content. The fiber from DDGS can be separated through a physical separation process known as elusieve. The DDGS fiber has the potential to be used as a fiber filler in thermoplastic composites. This research project evaluates DDGS fiber as a filler in thermoplastic composites. The fibers from corn hull and DDGS have been used as fillers at 30% and 50% fiber loading in high density polyethylene (HDPE) composites and compared against a standard oak fiber filler composites at a lab scale. DDGS and corn fiber composites showed comparable mechanical properties as the oak wood fiber HDPE composites. Further evaluation was completed on the performance of composite samples at commercial scale with six combinations of oak fiber, corn hull fiber and DDGS fiber with fiber loading maintained at 50%, and then samples were exposed to UV accelerated weathering for 2000 h. The UV weathering decreased the mechanical properties of all the exposed samples compared to the unexposed samples. Also, UV weathering resulted in a severe chain scission of the HDPE polymer, increasing their crystallinity. The performance of mercerized or sodium hydroxide (NaOH) treated DDGS fiber as filler was investigated by characterizing the effects of treated and untreated DDGS fibers on physical, mechanical, and thermal properties of HDPE composites. The NaOH treated DDGS fiber at 25% loading showed consistent improvement in flexural and tensile modulus of elasticities of the composites compared to the neat HDPE.
Quartz and E-glass fiber self-sensing composites
NASA Astrophysics Data System (ADS)
Zolfaghar, K.; Khan, N. A.; Brooks, David; Hayes, Simon A.; Liu, Tonguy; Roca, J.; Lander, J.; Fernando, Gerard F.
1998-04-01
This paper reports on developments in the field of self- sensing fiber reinforced composites. The reinforcing fibers have been surface treated to enable them to act as light guides for short distances. The reinforcing fiber light guides were embedded in carbon fiber reinforced epoxy prepregs and processed into composites. The resultant composite was termed the self-sensing composite as any damage to these fibers or its interface would result in the attenuation of the transmitted light. The self-sensing fibers were capable of detecting a 2 J impact.
Hi-Nicalon Fiber-Reinforced Celsian Matrix Composites: Influence of Interface Modification
NASA Technical Reports Server (NTRS)
Bansal, Narottam P.; Eldridge, Jeffrey I.
1998-01-01
Unidirectional celsian matrix composites having 42-45 vol % of uncoated or BN-SIC coated Hi-Nicalon fibers were tested in three-point bend at room temperature. The uncoated fiber-reinforced composites showed catastrophic failure with strength of 210 35 MPa and a flat fracture surface. In contrast, composites reinforced with coated fibers exhibited graceful failure with extensive fiber pullout. Values of first matrix cracking stress and strain were 435 +/- 35 MPa and 0.27 +/- 0.01%, respectively, with ultimate strength as high as 960 MPa. The elastic Young modulus of the uncoated and coated fiber-reinforced composites were 184 +/- 4 GPa and 165 +/- 5 GPa, respectively. Fiber push-through tests and microscopic examination indicated no chemical reaction at the uncoated or coated fiber-matrix interface. The low strength of composite with uncoated fibers is due to degradation of the fiber strength from mechanical damage during processing. Because both the coated- and uncoated-fiber-reinforced composites exhibited weak interfaces, the beneficial effect of the BN-SIC dual layer is primarily the protection of fibers from mechanical damage during processing.
An evaluation of upgraded boron fibers in epoxy-matrix composites
NASA Technical Reports Server (NTRS)
Rhodes, T. C.; Fleck, J. N.; Meiners, K. E.
1973-01-01
An initial evaluation of upgraded boron fibers in an epoxy matrix is performed. Data generated on the program show that fiber strength does increase as a consequence of the upgrading treatment. However, the interlaninar shear strength of upgraded fiber composites is lower than that for an untreated fiber composite. In the limited tests performed, the increased fiber strength failed to translate into the composite.
NASA Technical Reports Server (NTRS)
Ramohalli, K.
1980-01-01
Attempts to alleviate carbon-fiber-composite electrical hazards during airplane crash fires through fiber gasification are described. Thermogravimetric and differential scanning calorimetric experiments found several catalysts that caused fibers to combust when composites were exposed to test fires. Composites were tested in the 'Burn-Bang' apparatus and in high voltage electrical detection grid apparatus. In a standard three minute burn test modified composites released no fibers, while state-of-the-art composites released several hundred fiber fragments. Expected service life with and without catalytic modification was studied and electron microscopy and X-ray microanalysis furnished physical appearance and chemical composition data. An acrylic acid polymer fiber coating was developed that wet the carbon fiber surface uniformly with the catalyst, providing a marked contrast with the uneven coats obtained by solution-dipping.
Creep of Heat-Resistant Composites of an Oxide-Fiber/Ni-Matrix Family
NASA Astrophysics Data System (ADS)
Mileiko, S. T.
2001-09-01
A creep model of a composite with a creeping matrix and initially continuous elastic brittle fibers is developed. The model accounts for the fiber fragmentation in the stage of unsteady creep of the composite, which ends with a steady-state creep, where a minimum possible average length of the fiber is achieved. The model makes it possible to analyze the creep rate of the composite in relation to such parameters of its structure as the statistic characteristics of the fiber strength, the creep characteristics of the matrix, and the strength of the fiber-matrix interface, the latter being of fundamental importance. A comparison between the calculation results and the experimental ones obtained on composites with a Ni-matrix and monocrystalline and eutectic oxide fibers as well as on sapphire fiber/TiAl-matrix composites shows that the model is applicable to the computer simulation of the creep behavior of heat-resistant composites and to the optimization of the structure of such composites. By combining the experimental data with calculation results, it is possible to evaluate the heat resistance of composites and the potential of oxide-fiber/Ni-matrix composites. The composite specimens obtained and tested to date reveal their high creep resistance up to a temperature of 1150°C. The maximum operating temperature of the composites can be considerably raised by strengthening the fiber-matrix interface.
Characteristics of starch-based biodegradable composites reinforced with date palm and flax fibers.
Ibrahim, Hamdy; Farag, Mahmoud; Megahed, Hassan; Mehanny, Sherif
2014-01-30
The aim of this work is to study the behavior of completely biodegradable starch-based composites containing date palm fibers in the range from 20 to 80 wt%. Hybrid composites containing date palm and flax fibers, 25 wt% each, were also examined. The composites were preheated and then hot pressed at 5 MPa and 160°C for 30 min. SEM investigation showed strong adhesion between fibers and matrix. Density measurements showed very small void fraction (less than 0.142%) for composites containing up to 50 wt% fiber content. Increasing fiber weight fraction up to 50 wt% increased the composite static tensile and flexural mechanical properties (stiffness and strength). Composite thermal stability, water uptake and biodegradation improved with increasing fiber content. The present work shows that starch-based composites with 50 wt% fibers content have the optimum mechanical properties. The hybrid composite of flax and date palm fibers, 25 wt% each, has good properties and provides a competitive eco-friendly candidate for various applications. Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Mawardi, I.; Jufriadi; Hanif
2018-03-01
This study aims to develop fiber-reinforced epoxy resin composites. This study presents the effect of fiber fibrillation on the impact and flextural strength of the epoxy hybrid composite reinforced by coir fiber. Coir is soaked in 5% NaOH solution for 5 hours. Then fiber is rocessed using a blender of 2000 rpm density fibrillation. The length of time the fibrillation varied for 10, 20 and 30 minutes. Volume fraction of 30% fiber and matrix 70% composited. The composite uses a matrix of epoxy by hand lay up method. The implemented tests are impact and flexural tests. The test results show fiber fibrillation treatment can improve the composite mechanical properties. The highest impact and flexural strength, 24.45 kJ/m2 and 87.91 MPa were produced with fiber fibrillation for 10 minutes.
Physical and thermal behavior of cement composites reinforced with recycled waste paper fibers
NASA Astrophysics Data System (ADS)
Hospodarova, Viola; Stevulova, Nadezda; Vaclavik, Vojtech; Dvorsky, Tomas
2017-07-01
In this study, three types of recycled waste paper fibers were used to manufacture cement composites reinforced with recycled cellulosic fibers. Waste cellulosic fibers in quantity of 0.2, 0.3, and 0.5 wt.% were added to cement mixtures. Physical properties such as density, water capillarity, water absorbability and thermal conductivity of fiber cement composites were studied after 28 days of hardening. However, durability of composites was tested after their water storage up to 90 days. Final results of tested properties of fiber cement composites were compared with cement reference sample without cellulosic fibers.
NASA Astrophysics Data System (ADS)
De, Jyotiraman; Baxi, R. N., Dr.
2017-08-01
Mercerization or NaOH fiber surface treatment is one of the most popular surface treatment processes to make the natural fibers such as bamboo fibers compatible for use as reinforcing material in composites. But NaOH being a chemical is hazardous and polluting to the nature. This paper explores the possibility of use of naturally derived citric acid for bamboo fiber surface treatment and its comparison with NaOH treated Bamboo Fiber Composites. Untreated, 2.5 wt% NaOH treated and 5 wt% citric acid treated Bamboo Fiber Composites with 5 wt% fiber content were developed by Hand Lay process. Bamboo mats made of bamboo slivers were used as reinforcing material. Mechanical and physical characterization was done to compare the effects of NaOH and citric acid bamboo fiber surface treatment on mechanical and physical properties of Bamboo Fiber Composite. The experiment data reveals that the tensile and flexural strength was found to be highest for citric acid and NaOH treated Bamboo Fiber Composite respectively. Water absorption tendency was found more than the NaOH treated Bamboo Fiber Composites. SEM micrographs used to analyze the morphology of fracture surface of tensile test specimens confirm improvement in fiber-matrix interface bonding due to surface treatment of bamboo fibers.
NASA Technical Reports Server (NTRS)
Lee, Jong-Won; Allen, David H.
1990-01-01
A continuous fiber composite is modelled by a two-element composite cylinder in order to predict the elastoplastic response of the composite under a monotonically increasing tensile loading parallel to fibers. The fibers and matrix are assumed to be elastic-perfectly plastic materials obeying Hill's and Tresca's yield criteria, respectively. Here, the composite behavior when the fibers yield prior to the matrix is investigated.
NASA Technical Reports Server (NTRS)
Draper, Susan L.; Aiken, Beverly J. M.
1998-01-01
Continuous single-crystal Al2O3 fibers have been incorporated into a variety of metal and intermetallic matrices and the results have consistently indicated that the fiber strength had been reduced by 32 to 50% during processing. Two iron-based alloys, FeNiCoCrAl and FeAlVCMn, were chosen as matrices for Al2O3 fiber reinforced metal matrix composites (MMC) with the goal of maintaining Al2O3 fiber strength after composite processing. The feasibility of Al2O3/FeNiCoCrAl and Al2O3/FeAlVCMn composite systems for high temperature applications were assessed in terms of fiber-matrix chemical compatibility, interfacial bond strength, and composite tensile properties. The strength of etched-out fibers was significantly improved by choosing matrices containing less reactive elements. The ultimate tensile strength (UTS) values of the composites could generally be predicted with existing models using the strength of etched-out fibers. However, the UTS of the composites were less than desired due to a low fiber Weibull modulus. Acoustic emission analysis during tensile testing was a useful tool for determining the efficiency of the fibers in the composite and for determining the failure mechanism of the composites.
NASA Technical Reports Server (NTRS)
Conklin, Lindsey
2017-01-01
Fiber-reinforced composite structures have become more common in aerospace components due to their light weight and structural efficiency. In general, the strength and stiffness of a composite structure are directly related to the fiber volume fraction, which is defined as the fraction of fiber volume to total volume of the composite. The most common method to measure the fiber volume fraction is acid digestion, which is a useful method when the total weight of the composite, the fiber weight, and the total weight can easily be obtained. However, acid digestion is a destructive test, so the material will no longer be available for additional characterization. Acid digestion can also be difficult to machine out specific components of a composite structure with complex geometries. These disadvantages of acid digestion led the author to develop a method to calculate the fiber volume fraction. The developed method uses optical microscopy to calculate the fiber area fraction based on images of the cross section of the composite. The fiber area fraction and fiber volume fraction are understood to be the same, based on the assumption that the shape and size of the fibers are consistent in the depth of the composite. This tutorial explains the developed method for optically determining fiber area fraction performed at NASA Langley Research Center.
NASA Technical Reports Server (NTRS)
Bansal, Narottam P.; Eldridge, Jeffrey I.
1998-01-01
Fiber-reinforced ceramic matrix composites (CMC) are prospective candidate materials for high temperature structural applications in aerospace, energy conservation, power generation, nuclear, petrochemical, and other industries. At NASA Lewis, we are investigating celsian matrix composites reinforced with various types of silicon carbide fibers. The objective of the present study was to investigate the effects of fiber/matrix interface and its composition on the mechanical properties of silicon carbide (Hi-Nicalon) fiber-reinforced celsian matrix composites.
NASA Technical Reports Server (NTRS)
Bansal, Narottam P.; Eldridge, Jeffrey I.
1997-01-01
Unidirectional celsian matrix composites having approx. 42 volume percent of uncoated or BN/SiC-coated Hi-Nicalon fibers were tested in three-point bend at room temperature. The uncoated fiber-reinforced composites showed catastrophic failure with strength of 210 +/- 35 MPa and a flat fracture surface. In contrast, composites reinforced with BN/SiC-coated fibers exhibited graceful failure with extensive fiber pullout. Values of first matrix cracking stress and strain were 435 +/- 35 MPa and 0.27 +/- 0.01 %, respectively, with ultimate strength as high as 960 MPa. The elastic Young's modulus of the uncoated and BN/SiC-coated fiber-reinforced composites were measured as 184 q 4 GPa and 165 +/- 5 GPa, respectively. Fiber push-through tests and microscopic examination indicated no chemical reaction at the uncoated or coated fiber-matrix interface. The low strength of the uncoated fiber-reinforced composite is probably due to degradation of the fibers from mechanical surface damage during processing. Because both the coated and uncoated fiber reinforced composites exhibited weak interfaces, the beneficial effect of the BN-SiC dual layer is primarily the protection of fibers from mechanical damage during processing.
Study to determine and analyze the strength of high modulus glass in epoxy-matrix composites
NASA Technical Reports Server (NTRS)
Bacon, J. F.
1974-01-01
Glass composition research was conducted to produce a high modulus, high strength beryllium-free glass fiber. This program was built on the previous research for developing high modulus, high strength glass fibers which had a 5 weight percent beryllia content. The fibers resulting from the composition program were then used to produce fiber reinforced-epoxy resin composites which were compared with composites reinforced by commercial high modulus glass fibers, Thornel S graphite fiber, and hybrids where the external quarters were reinforced with Thornel S graphite fiber and the interior half with glass fiber as well as the reverse hybrid. The composites were given tensile strength, compressive strength, short-beam shear strength, creep and fatigue tests. Comments are included on the significance of the test data.
Sapphire reinforced alumina matrix composites
NASA Technical Reports Server (NTRS)
Jaskowiak, Martha H.; Setlock, John A.
1994-01-01
Unidirectionally reinforced A1203 matrix composites have been fabricated by hot pressing. Approximately 30 volume % of either coated or uncoated sapphire fiber was used as reinforcement. Unstabilized ZrO2 was applied as the fiber coating. Composite mechanical behavior was analyzed both after fabrication and after additional heat treatment. The results of composite tensile tests were correlated with fiber-matrix interfacial shear strengths determined from fiber push-out tests. Substantially higher strength and greater fiber pull-out were observed for the coated fiber composites for all processing conditions studied. The coated fiber composites retained up to 95% and 87% of their as-fabricated strength when heat treated at 14000C for 8 or 24 hours, respectively. Electron microscopy analysis of the fracture surfaces revealed extensive fiber pull-out both before and after heat treatment.
Damping properties of fiber reinforced composite suitable for stayed cable
NASA Astrophysics Data System (ADS)
Li, Jianzhi; Sun, Baochen; Du, Yanliang
2011-11-01
Carbon fiber reinforced plastics (CFRP) cables were initially most investigated to replace steel cables. To further explore the advantages of FRP cables, the potential ability of vibration control is studied in this paper emphasizing the designable characteristic of hybrid FRP cables. Fiber reinforced vinyl ester composites and fiber reinforced epoxy composites were prepared by the pultrusion method. Due to the extensive application of fiber reinforced composites, the temperature spectrum and frequency spectrum of loss factor for the composite were tested using dynamic mechanical analysis (DMA) equipment. The damping properties and damping mechanism of the composite were investigated and discussed at different temperatures and frequencies. The result indicates that the loss factor of the composites is increasing with the increase of the frequency from 0.1Hz to 2 Hz and decreasing with the decrease of the temperature from -20°C to 60°C. The loss factor of the carbon fiber composite is higher than that of the glass fiber for the same matrix. The loss factor of the vinyl ester composite is higher than that of the epoxy composite for the same fiber.
Damping properties of fiber reinforced composite suitable for stayed cable
NASA Astrophysics Data System (ADS)
Li, Jianzhi; Sun, Baochen; Du, Yanliang
2012-04-01
Carbon fiber reinforced plastics (CFRP) cables were initially most investigated to replace steel cables. To further explore the advantages of FRP cables, the potential ability of vibration control is studied in this paper emphasizing the designable characteristic of hybrid FRP cables. Fiber reinforced vinyl ester composites and fiber reinforced epoxy composites were prepared by the pultrusion method. Due to the extensive application of fiber reinforced composites, the temperature spectrum and frequency spectrum of loss factor for the composite were tested using dynamic mechanical analysis (DMA) equipment. The damping properties and damping mechanism of the composite were investigated and discussed at different temperatures and frequencies. The result indicates that the loss factor of the composites is increasing with the increase of the frequency from 0.1Hz to 2 Hz and decreasing with the decrease of the temperature from -20°C to 60°C. The loss factor of the carbon fiber composite is higher than that of the glass fiber for the same matrix. The loss factor of the vinyl ester composite is higher than that of the epoxy composite for the same fiber.
Reinprecht, Yarmilla; Arif, Muhammad; Simon, Leonardo C.; Pauls, K. Peter
2015-01-01
Plant fibers can be used to produce composite materials for automobile parts, thus reducing plastic used in their manufacture, overall vehicle weight and fuel consumption when they replace mineral fillers and glass fibers. Soybean stem residues are, potentially, significant sources of inexpensive, renewable and biodegradable natural fibers, but are not curretly used for biocomposite production due to the functional properties of their fibers in composites being unknown. The current study was initiated to investigate the effects of plant genotype on the performance characteristics of soybean stem fibers when incorporated into a polypropylene (PP) matrix using a selective phenotyping approach. Fibers from 50 lines of a recombinant inbred line population (169 RILs) grown in different environments were incorporated into PP at 20% (wt/wt) by extrusion. Test samples were injection molded and characterized for their mechanical properties. The performance of stem fibers in the composites was significantly affected by genotype and environment. Fibers from different genotypes had significantly different chemical compositions, thus composites prepared with these fibers displayed different physical properties. This study demonstrates that thermoplastic composites with soybean stem-derived fibers have mechanical properties that are equivalent or better than wheat straw fiber composites currently being used for manufacturing interior automotive parts. The addition of soybean stem residues improved flexural, tensile and impact properties of the composites. Furthermore, by linkage and in silico mapping we identified genomic regions to which quantitative trait loci (QTL) for compositional and functional properties of soybean stem fibers in thermoplastic composites, as well as genes for cell wall synthesis, were co-localized. These results may lead to the development of high value uses for soybean stem residue. PMID:26167917
NASA Astrophysics Data System (ADS)
Dang, Baokang; Chen, Yipeng; Yang, Ning; Chen, Bo; Sun, Qingfeng
2018-05-01
Carbon fiber (CF) reinforced polyacrylamide/wood fiber composite boards are fabricated by mechanical grind-assisted hot-pressing, and are used for electromagnetic interference (EMI) shielding. CF with an average diameter of 150 nm is distributed on wood fiber, which is then encased by polyacrylamide. The CF/polyacrylamide/wood fiber (CPW) composite exhibits an optimal EMI shielding effectiveness (SE) of 41.03 dB compared to that of polyacrylamide/wood fiber composite (0.41 dB), which meets the requirements of commercial merchandise. Meanwhile, the CPW composite also shows high mechanical strength. The maximum modulus of rupture (MOR) and modulus of elasticity (MOE) of CPW composites are 39.52 MPa and 5823.15 MPa, respectively. The MOR and MOE of CPW composites increased by 38% and 96%, respectively, compared to that of polyacrylamide/wood fiber composite (28.64 and 2967.35 MPa).
Dang, Baokang; Chen, Yipeng; Yang, Ning; Chen, Bo; Sun, Qingfeng
2018-05-11
Carbon fiber (CF) reinforced polyacrylamide/wood fiber composite boards are fabricated by mechanical grind-assisted hot-pressing, and are used for electromagnetic interference (EMI) shielding. CF with an average diameter of 150 nm is distributed on wood fiber, which is then encased by polyacrylamide. The CF/polyacrylamide/wood fiber (CPW) composite exhibits an optimal EMI shielding effectiveness (SE) of 41.03 dB compared to that of polyacrylamide/wood fiber composite (0.41 dB), which meets the requirements of commercial merchandise. Meanwhile, the CPW composite also shows high mechanical strength. The maximum modulus of rupture (MOR) and modulus of elasticity (MOE) of CPW composites are 39.52 MPa and 5823.15 MPa, respectively. The MOR and MOE of CPW composites increased by 38% and 96%, respectively, compared to that of polyacrylamide/wood fiber composite (28.64 and 2967.35 MPa).
NASA Astrophysics Data System (ADS)
Azmi, M. A.; Abdullah, H. Z.; Idris, M. I.
2013-12-01
This research focuses on the fabrication and characterization of sandwich composite panels using glass fiber composite skin and polyurethane foam reinforced coconut coir fiber core. The main objectives are to characterize the physical and mechanical properties and to elucidate the effect of coconut coir fibers in polyurethane foam cores and sandwich composite panels. Coconut coir fibers were used as reinforcement in polyurethane foams in which later were applied as the core in sandwich composites ranged from 5 wt% to 20 wt%. The physical and mechanical properties found to be significant at 5 wt% coconut coir fiber in polyurethane foam cores as well as in sandwich composites. It was found that composites properties serve better in sandwich composites construction.
Effect of alkaline treatment on mechanical properties of kenaf fiber reinforced polyester composites
NASA Astrophysics Data System (ADS)
Reddy, Bijjam Ramgopal; Dhoria, Sneha H.
2018-04-01
This paper focuses on the study of the effect of chemical treatment on mechanical properties such as tensile, flexural and impact properties of kenaf fiber reinforced polyester composites. Adhesion between the fiber and polymer is one of factors affecting the mechanical properties of composites. In order to increase the adhesion, the fibers are chemically treated with 5% of sodium hydroxide (NaOH) solution. The composite specimens are prepared in both untreated and treated forms of kenaf fibers with five levels of fiber volume fractions. The specimens are prepared according to ASTM standards. Mechanical tests such as tensile, flexural and impact are conducted to determine ultimate tensile strength, bending strength and impact strength of composites. The effect of change in volume fraction on the mechanical properties of the composites is studied for both untreated (raw) and chemically treated kenaf fibers. It has been found that the composites made of chemically treated fibers have good mechanical properties compared to untreated fibers.
NASA Technical Reports Server (NTRS)
Locci, Ivan E.; Noebe, Ronald D.
1989-01-01
Advanced composite processing techniques for fiber reinforced metal matrix composites require the flexibility to meet several widespread objectives. The development of uniquely desired matrix microstructures and uniformly arrayed fiber spacing with sufficient bonding between fiber and matrix to transmit load between them without degradation to the fiber or matrix are the minimum requirements necessary of any fabrication process. For most applications these criteria can be met by fabricating composite monotapes which are then consolidated into composite panels or more complicated components such as fiber reinforced turbine blades. Regardless of the end component, composite monotapes are the building blocks from which near net shape composite structures can be formed. The most common methods for forming composite monotapes are the powder cloth, foil/fiber, plasma spray, and arc spray processes. These practices, however, employ rapid solidification techniques in processing of the composite matrix phase. Consequently, rapid solidification processes play a vital and yet generally overlooked role in composite fabrication. The future potential of rapid solidification processing is discussed.
Monitoring Damage Propagation in Glass Fiber Composites Using Carbon Nanofibers.
Al-Sabagh, Ahmed; Taha, Eman; Kandil, Usama; Nasr, Gamal-Abdelnaser; Reda Taha, Mahmoud
2016-09-10
In this work, we report the potential use of novel carbon nanofibers (CNFs), dispersed during fabrication of glass fiber composites to monitor damage propagation under static loading. The use of CNFs enables a transformation of the typically non-conductive glass fiber composites into new fiber composites with appreciable electrical conductivity. The percolation limit of CNFs/epoxy nanocomposites was first quantified. The electromechanical responses of glass fiber composites fabricated using CNFs/epoxy nanocomposite were examined under static tension loads. The experimental observations showed a nonlinear change of electrical conductivity of glass fiber composites incorporating CNFs versus the stress level under static load. Microstructural investigations proved the ability of CNFs to alter the polymer matrix and to produce a new polymer nanocomposite with a connected nanofiber network with improved electrical properties and different mechanical properties compared with the neat epoxy. It is concluded that incorporating CNFs during fabrication of glass fiber composites can provide an innovative means of self-sensing that will allow damage propagation to be monitored in glass fiber composites.
Investigations on Thermal Conductivities of Jute and Banana Fiber Reinforced Epoxy Composites
NASA Astrophysics Data System (ADS)
Pujari, Satish; Ramakrishna, Avasarala; Balaram Padal, Korabu Tulasi
2017-04-01
The Jute and Banana fibers are used as reinforcement in epoxy resin matrix for making partially green biodegradable material composite via hand lay-up technique. The thermal conductivity of the jute fiber epoxy composites and banana fiber epoxy composites at different volume fraction of the fiber is determined experimentally by using guarded heat flow meter method. The experimental results had shown that thermal conductivity of the composites decrease with an increase in the fiber content. Experimental results are compared with theoretical models (Series model, Hashin model and Maxwell model) to describe the variation of the thermal conductivity versus the volume fraction of the fiber. Good agreement between theoretical and experimental results is observed. Thermal conductivity of Banana fiber composite is less when compared to that of Jute composite which indicates banana is a good insulator and also the developed composites can be used as insulating materials in building, automotive industry and in steam pipes to save energy by reducing rate of heat transfer.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rector, L.P.
1991-01-01
Polypyrrole/poly (p-phenylene terephthalamide) (PPTA) composite fibers were fabricated by the oxidative polymerization of pyrrole within the gel structure of never-dried, dry-jet, wet-spun PPTA fibers. The composites were formed by infiltration of the swollen PPTA fibers with the chemical oxidant FeCl{sub 3}, followed by exposure of the infiltrated fibers to pyrrole vapor at elevated temperatures (100C). The conductive phase volume fraction was controlled by variations in the FeCl{sub 3} infiltration concentration. The temperature dependencies of the composite fiber d.c. conductivities is reasonably well described by the predictions of the three-dimensional variable-range hoping (3DVRH) charge transport model. The composite morphology was examinedmore » with SEM results demonstrating the existence of micron-sized polypyrrole inclusions in the fiber interior, as well as a polypyrrole skin on the fiber surface. The tensile modulii of the composite fibers exhibited a rule-of-mixtures dependence upon PPTA content. The compressive properties of several composite-fiber compositions were evaluated by the elastica loop method. The compressive strengths were found to be 82-151% of the corresponding ultimate tensile strengths.« less
NASA Astrophysics Data System (ADS)
Lewicki, James P.; Rodriguez, Jennifer N.; Zhu, Cheng; Worsley, Marcus A.; Wu, Amanda S.; Kanarska, Yuliya; Horn, John D.; Duoss, Eric B.; Ortega, Jason M.; Elmer, William; Hensleigh, Ryan; Fellini, Ryan A.; King, Michael J.
2017-03-01
Here we report the first example of a class of additively manufactured carbon fiber reinforced composite (AMCFRC) materials which have been achieved through the use of a latent thermal cured aromatic thermoset resin system, through an adaptation of direct ink writing (DIW) 3D-printing technology. We have developed a means of printing high performance thermoset carbon fiber composites, which allow the fiber component of a resin and carbon fiber fluid to be aligned in three dimensions via controlled micro-extrusion and subsequently cured into complex geometries. Characterization of our composite systems clearly show that we achieved a high order of fiber alignment within the composite microstructure, which in turn allows these materials to outperform equivalently filled randomly oriented carbon fiber and polymer composites. Furthermore, our AM carbon fiber composite systems exhibit highly orthotropic mechanical and electrical responses as a direct result of the alignment of carbon fiber bundles in the microscale which we predict will ultimately lead to the design of truly tailorable carbon fiber/polymer hybrid materials having locally programmable complex electrical, thermal and mechanical response.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lewicki, James P.; Rodriguez, Jennifer N.; Zhu, Cheng
Here we report the first example of a class of additively manufactured carbon fiber reinforced composite (AMCFRC) materials which have been achieved through the use of a latent thermal cured aromatic thermoset resin system, through an adaptation of direct ink writing (DIW) 3D-printing technology. We have developed a means of printing high performance thermoset carbon fiber composites, which allow the fiber component of a resin and carbon fiber fluid to be aligned in three dimensions via controlled micro-extrusion and subsequently cured into complex geometries. Characterization of our composite systems clearly show that we achieved a high order of fiber alignmentmore » within the composite microstructure, which in turn allows these materials to outperform equivalently filled randomly oriented carbon fiber and polymer composites. Moreover, our AM carbon fiber composite systems exhibit highly orthotropic mechanical and electrical responses as a direct result of the alignment of carbon fiber bundles in the microscale which we predict will ultimately lead to the design of truly tailorable carbon fiber/polymer hybrid materials having locally programmable complex electrical, thermal and mechanical response.« less
Lewicki, James P.; Rodriguez, Jennifer N.; Zhu, Cheng; ...
2017-03-06
Here we report the first example of a class of additively manufactured carbon fiber reinforced composite (AMCFRC) materials which have been achieved through the use of a latent thermal cured aromatic thermoset resin system, through an adaptation of direct ink writing (DIW) 3D-printing technology. We have developed a means of printing high performance thermoset carbon fiber composites, which allow the fiber component of a resin and carbon fiber fluid to be aligned in three dimensions via controlled micro-extrusion and subsequently cured into complex geometries. Characterization of our composite systems clearly show that we achieved a high order of fiber alignmentmore » within the composite microstructure, which in turn allows these materials to outperform equivalently filled randomly oriented carbon fiber and polymer composites. Moreover, our AM carbon fiber composite systems exhibit highly orthotropic mechanical and electrical responses as a direct result of the alignment of carbon fiber bundles in the microscale which we predict will ultimately lead to the design of truly tailorable carbon fiber/polymer hybrid materials having locally programmable complex electrical, thermal and mechanical response.« less
Fracture surface analysis in composite and titanium bonding
NASA Technical Reports Server (NTRS)
Devilbiss, T. A.; Wightman, J. P.
1985-01-01
To understand the mechanical properties of fiber-reinforced composite materials, it is necessary to understand the mechanical properties of the matrix materials and of the reinforcing fibers. Another factor that can affect the mechanical properties of a composite material is the interaction between the fiber and the matrix. In general, composites with strong fiber matrix bonding will give higher modulus, lower toughness composites. Composites with weak bonding will have a lower modulus and more ductility. The situation becomes a bit more complex when all possibilities are examined. To be considered are the following: the properties of the surface layer on the fiber, the interactive forces between polymer and matrix, the surface roughness and porosity of the fiber, and the morphology of the matrix polymer at the fiber surface. In practice, the surface of the fibers is treated to enhance the mechanical properties of a composite. These treatments include anodization, acid etching, high temperature oxidation, and plasma oxidation, to name a few. The goal is to be able to predict the surface properties of carbon fibers treated in various ways, and then to relate surface properties to fiber matrix bonding.
Lewicki, James P; Rodriguez, Jennifer N; Zhu, Cheng; Worsley, Marcus A; Wu, Amanda S; Kanarska, Yuliya; Horn, John D; Duoss, Eric B; Ortega, Jason M; Elmer, William; Hensleigh, Ryan; Fellini, Ryan A; King, Michael J
2017-03-06
Here we report the first example of a class of additively manufactured carbon fiber reinforced composite (AMCFRC) materials which have been achieved through the use of a latent thermal cured aromatic thermoset resin system, through an adaptation of direct ink writing (DIW) 3D-printing technology. We have developed a means of printing high performance thermoset carbon fiber composites, which allow the fiber component of a resin and carbon fiber fluid to be aligned in three dimensions via controlled micro-extrusion and subsequently cured into complex geometries. Characterization of our composite systems clearly show that we achieved a high order of fiber alignment within the composite microstructure, which in turn allows these materials to outperform equivalently filled randomly oriented carbon fiber and polymer composites. Furthermore, our AM carbon fiber composite systems exhibit highly orthotropic mechanical and electrical responses as a direct result of the alignment of carbon fiber bundles in the microscale which we predict will ultimately lead to the design of truly tailorable carbon fiber/polymer hybrid materials having locally programmable complex electrical, thermal and mechanical response.
Lewicki, James P.; Rodriguez, Jennifer N.; Zhu, Cheng; Worsley, Marcus A.; Wu, Amanda S.; Kanarska, Yuliya; Horn, John D.; Duoss, Eric B.; Ortega, Jason M.; Elmer, William; Hensleigh, Ryan; Fellini, Ryan A.; King, Michael J.
2017-01-01
Here we report the first example of a class of additively manufactured carbon fiber reinforced composite (AMCFRC) materials which have been achieved through the use of a latent thermal cured aromatic thermoset resin system, through an adaptation of direct ink writing (DIW) 3D-printing technology. We have developed a means of printing high performance thermoset carbon fiber composites, which allow the fiber component of a resin and carbon fiber fluid to be aligned in three dimensions via controlled micro-extrusion and subsequently cured into complex geometries. Characterization of our composite systems clearly show that we achieved a high order of fiber alignment within the composite microstructure, which in turn allows these materials to outperform equivalently filled randomly oriented carbon fiber and polymer composites. Furthermore, our AM carbon fiber composite systems exhibit highly orthotropic mechanical and electrical responses as a direct result of the alignment of carbon fiber bundles in the microscale which we predict will ultimately lead to the design of truly tailorable carbon fiber/polymer hybrid materials having locally programmable complex electrical, thermal and mechanical response. PMID:28262669
Auger analysis of a fiber/matrix interface in a ceramic matrix composite
NASA Technical Reports Server (NTRS)
Honecy, Frank S.; Pepper, Stephen V.
1988-01-01
Auger electron spectroscopy (AES) depth profiling was used to characterize the fiber/matrix interface of an SiC fiber, reaction bonded Si3N4 matrix composite. Depth profiles of the as received double coated fiber revealed concentration oscillations which disappeared after annealing the fiber in the environment used to fabricate the composite. After the composite was fractured, the Auger depth profiles showed that failure occurred in neither the Beta-SiC fiber body nor in the Si3N4 matrix but, concurrently, at the fiber coating/matrix interface and within the fiber coating itself.
NASA Astrophysics Data System (ADS)
Juraidi, J. M.; Shuhairul, N.; Syed Azuan, S. A.; Intan Saffinaz Anuar, Noor
2013-12-01
Pineapple fiber which is rich in cellulose, relatively inexpensive, and abundantly available has the potential for polymer reinforcement. This research presents a study of the tensile properties of pineapple leaf fiber and pineapple peduncle fiber reinforced polyester composites. Composites were fabricated using leaf fiber and peduncle fiber with varying fiber length and fiber loading. Both fibers were mixed with polyester composites the various fiber volume fractions of 4, 8 and 12% and with three different fiber lengths of 10, 20 and 30 mm. The composites panels were fabricated using hand lay-out technique. The tensile test was carried out in accordance to ASTM D638. The result showed that pineapple peduncle fiber with 4% fiber volume fraction and fiber length of 30 mm give highest tensile properties. From the overall results, pineapple peduncle fiber shown the higher tensile properties compared to pineapple leaf fiber. It is found that by increasing the fiber volume fraction the tensile properties has significantly decreased but by increasing the fiber length, the tensile properties will be increased proportionally. Minitab software is used to perform the two-way ANOVA analysis to measure the significant. From the analysis done, there is a significant effect of fiber volume fraction and fiber length on the tensile properties.
NASA Astrophysics Data System (ADS)
Ratim, S.; Bonnia, N. N.; Surip, S. N.
2012-07-01
The effects of woven and non-woven kenaf fiber on mechanical properties of polyester composites were studied at different types of perform structures. Composite polyester reinforced kenaf fiber has been prepared via hand lay-up process by varying fiber forms into plain weave, twill and mats structure. The reinforcing efficiency of different fiber structure was compared with control of unreinforced polyester sample. It was found that the strength and stiffness of the composites are largely affected by fiber structure. A maximum value for tensile strength of composite was obtained for twill weave pattern of fiber structure while no significant different for plain weave and mat structure. The elastic modulus of composite has shown some improvement on plain and twill weave pattern. Meanwhile, lower value of modulus elasticity achieved by mats structure composite as well as control sample. The modulus of rupture and impact resistance were also analyzed. The improvement of modulus of rupture value can be seen on plain and twill weave pattern. However impact resistance doesn't show significant improvement in all types of structure except for mat fiber. The mechanical properties of kenaf fiber reinforced polyester composite found to be increased with woven and non-woven fiber structures in composite.
Pandey, Pankaj; Bajwa, Dilpreet; Ulven, Chad; Bajwa, Sreekala
2016-01-01
In this study, six combinations of flax, hemp, and glass fiber were investigated for a hybrid reinforcement system in a polyurethane (PU) composite. The natural fibers were combined with glass fibers in a PU composite in order to achieve a better mechanical reinforcement in the composite material. The effect of fiber hybridization in PU composites was evaluated through physical and mechanical properties such as water absorption (WA), specific gravity (SG), coefficient of linear thermal expansion (CLTE), flexural and compression properties, and hardness. The mechanical properties of hybridized samples showed mixed trends compared to the unhybridized samples, but hybridization with glass fiber reduced water absorption by 37% and 43% for flax and hemp-agave PU composites respectively. PMID:28773512
Fire test method for graphite fiber reinforced plastics
NASA Technical Reports Server (NTRS)
Bowles, K. J.
1980-01-01
A potential problem in the use of graphite fiber reinforced resin matrix composites is the dispersal of graphite fibers during accidential fires. Airborne, electrically conductive fibers originating from the burning composites could enter and cause shorting in electrical equipment located in surrounding areas. A test method for assessing the burning characteristics of graphite fiber reinforced composites and the effectiveness of the composites in retaining the graphite fibers has been developed. The method utilizes a modified rate of heat release apparatus. The equipment and the testing procedure are described. The application of the test method to the assessment of composite materials is illustrated for two resin matrix/graphite composite systems.
A Review on the Perforated Impact Energy Absorption of Kenaf Fibres Reinforced Composites
NASA Astrophysics Data System (ADS)
Ismail, Al Emran; Khalid, S. N. A.; Nor, Nik Hisyamudin Muhd
2017-10-01
This paper reviews the potential of mechanical energy absorption of natural fiber reinforced composites subjected to perforated impact. According to literature survey, several research works discussing on the impact performances on natural fiber reinforced composites are available. However, most of these composite fibers are randomly arranged. Due to high demand for sustainable materials, many researches give high attention to enhance the mechanical capability of natural fiber composites especially focused on the fiber architecture. Therefore, it is important to review the progress of impact energy absorption on woven fiber composite in order to identify the research opportunities in the future.
Ding, Zhu; Li, Yu-Yu; Lu, Can; Liu, Jian
2018-05-21
In this study, chemically bonded phosphate ceramic (CBPC) fiber reinforced composites were made at indoor temperatures. The mechanical properties and microstructure of the CBPC composites were studied. The CBPC matrix of aluminum phosphate binder, metakaolin, and magnesia with different Si/P ratios was prepared. The results show that when the Si/P ratio was 1.2, and magnesia content in the CBPC was 15%, CBPC reached its maximum flexural strength. The fiber reinforced CBPC composites were prepared by mixing short polyvinyl alcohol (PVA) fibers or unidirectional continuous carbon fiber sheets. Flexural strength and dynamic mechanical properties of the composites were determined, and the microstructures of specimens were analyzed by scanning electron micrography, X-ray diffraction, and micro X-ray computed tomography. The flexural performance of continuous carbon fiber reinforced CBPC composites was better than that of PVA fiber composites. The elastic modulus, loss modulus, and loss factor of the fiber composites were measured through dynamic mechanical analysis. The results showed that fiber reinforced CBPC composites are an inorganic polymer viscoelastic material with excellent damping properties. The reaction of magnesia and phosphate in the matrix of CBPC formed a different mineral, newberyite, which was beneficial to the development of the CBPC.
Experimental Investigations on Thermal Conductivity of Fenugreek and Banana Composites
NASA Astrophysics Data System (ADS)
Pujari, Satish; Venkatesh, Talari; Seeli, Hepsiba
2018-04-01
The use of composite materials in manufacturing has significantly increased in the past decade. Research is being done to identify natural fibers that can be used as composites. Several natural fibers are already being used in the industry as composites. The appealing advantages of using natural fibers are reflected in lower density when compared to synthetic fibers and also in saving costs. This research paper highlights the experiment that analyses the use of biodegradable fenugreek composite as natural fiber and concludes that fenugreek natural fibers are an excellent substitute to the synthetic fibers in terms of reinforcement properties for the polymers. These fenugreek fibers are naturally sourced, renewable, cost effective and bio-friendly. In thermal energy storage systems as well as in air conditioning systems, thermal insulators are predominantly used to enhance the storage properties. An experiment was created to investigate the thermal properties of fenugreek banana composites for different fiber concentrations. The experimental results showed that the thermal conductivity of the composites decrease with an increase in the fiber content. The experimental results were compared with the theoretical models to describe the variation of thermal conductivity with the volume fraction of the fiber. Good agreement between theoretical and experimental results was observed.
NASA Technical Reports Server (NTRS)
Bansal, Narottam P.; Elderidge, Jeffrey I.
1998-01-01
Celsian matrix composites reinforced with Hi-Nicalon fibers, precoated with a dual layer of BN/SiC by chemical vapor deposition in two separate batches, were fabricated. Mechanical properties of the composites were measured in three-point flexure. Despite supposedly identical processing, the composite panels fabricated with fibers coated in two batches exhibited substantially different mechanical behavior. The first matrix cracking stresses (sigma(sub mc)) of the composites reinforced with fibers coated in batch 1 and batch 2 were 436 and 122 MPa, respectively. This large difference in sigma(sub mc) was attributed to differences in fiber sliding stresses(tau(sub friction)), 121.2+/-48.7 and 10.4+/-3.1 MPa, respectively, for the two composites as determined by the fiber push-in method. Such a large difference in values of tau(sub friction) for the two composites was found to be due to the difference in the compositions of the interface coatings. Scanning Auger microprobe analysis revealed the presence of carbon layers between the fiber and BN, and also between the BN and SiC coatings in the composite showing lower tau(sub friction). This resulted in lower sigma(sub mc) in agreement with the ACK theory. The ultimate strengths of the two composites, 904 and 759 MPa, depended mainly on the fiber volume fraction and were not significantly effected by tau(sub friction) values, as expected. The poor reproducibility of the fiber coating composition between the two batches was judged to be the primary source of the large differences in performance of the two composites.
Interphase for ceramic matrix composites reinforced by non-oxide ceramic fibers
NASA Technical Reports Server (NTRS)
DiCarlo, James A. (Inventor); Bhatt, Ramakrishna (Inventor); Morscher, Gregory N. (Inventor); Yun, Hee-Mann (Inventor)
2008-01-01
A ceramic matrix composite material is disclosed having non-oxide ceramic fibers, which are formed in a complex fiber architecture by conventional textile processes; a thin mechanically weak interphase material, which is coated on the fibers; and a non-oxide or oxide ceramic matrix, which is formed within the interstices of the interphase-coated fiber architecture. During composite fabrication or post treatment, the interphase is allowed to debond from the matrix while still adhering to the fibers, thereby providing enhanced oxidative durability and damage tolerance to the fibers and the composite material.
Thermal degradation and tensile strength of sansevieria trifasciata-polypropylene composites
NASA Astrophysics Data System (ADS)
Abral, H.; Kenedy, E.
2015-07-01
The paper exhibits thermal degradation and tensile strength of Sansevieria Trifasciata (ST) fibers and polypropylene (PP) composites. Thermal degradation of ST fibers PP composites was conducted by using thermogravimetry (TGA) instrument, meanwhile tensile strength of the composite was done by using tensile equipment. The results show that the thermal resistance of ST fibers PP composites was higher than that of virgin PP only. Increases in volume fraction of fibers in the composites enhance the tensile strength. Scanning Electron Microscope (SEM) observation exhibits good interface bonding between ST fibers and PP matrix.
NASA Astrophysics Data System (ADS)
Shu-hui, Zhang; Guo-zheng, Liang; Wei, Zhang; Jin-fang, Zeng
2006-11-01
The surface of aramid fibers was modified with a polymer coating — a surface treatment reagent containing epoxy resin. The resulting fibers were examined by using NOL tests, hydroburst tests, and the scanning electron microscopy. The modified fibers had a rougher surface than the untreated ones. The interlaminar shear strength of an aramid-fiber-reinforced epoxy composite was highest when the concentration of polymer coating system was 5%. The translation of fiber strength in an aramid/epoxy composite vessel was improved by 8%. The mechanism of the surface treatment of fibers in improving the mechanical properties of aramid/epoxy composites is discussed.
Properties of PMR polyimide composites made with improved high strength graphite fibers
NASA Technical Reports Server (NTRS)
Vannucci, R. D.
1980-01-01
Recent graphite fiber developments have resulted in high strength, intermediate modulus graphite fibers having improved thermo-oxidative resistance. These improved fibers, obtained from various commercial suppliers, were used to fabricate PMR-15 and PMR-11 polyimide composites. Studies were performed to investigate the effects of the improved high strength graphite fibers on composite properties after exposure in air at 600 F. The use of the more oxidatively resistant fibers did not result in improved performance at 600 F. Two of the improved fibers were found to have an adverse effect on the long-term performance of PMR composites. The influence of various factors such as fiber physical properties, surface morphology and chemical composition are also discussed.
Mechanical properties of kenaf composites using dynamic mechanical analysis
NASA Astrophysics Data System (ADS)
Loveless, Thomas A.
Natural fibers show potential to replace glass fibers in thermoset and thermoplastic composites. Kenaf is a bast-type fiber with high specific strength and great potential to compete with glass fibers. In this research kenaf/epoxy composites were analyzed using Dynamic Mechanical Analysis (DMA). A three-point bend apparatus was used in the DMA testing. The samples were tested at 1 hertz, at a displacement of 10 ?m, and at room temperature. The fiber volume content of the kenaf was varied from 20% - 40% in 5% increments. Ten samples of each fiber volume fraction were manufactured and tested. The flexural storage modulus, the flexural loss modulus, and the loss factor were reported. Generally as the fiber volume fraction of kenaf increased, the flexural storage and flexural loss modulus increased. The loss factor remained relatively constant with increasing fiber volume fraction. Woven and chopped fiberglass/epoxy composites were manufactured and tested to be compared with the kenaf/epoxy composites. Both of the fiberglass/epoxy composites reported higher flexural storage and flexural loss modulus values. The kenaf/epoxy composites reported higher loss factor values. The specific flexural storage and specific flexural loss modulus were calculated for both the fiberglass and kenaf fiber composites. Even though the kenaf composites reported a lower density, the fiberglass composites reported higher specific mechanical properties.
Seong, Dong Gi; Ha, Jong Rok; Lee, Jea Uk; Lee, Wonoh; Kim, Byung Sun
2015-11-01
Carbon fiber reinforced composite has been a good candidate of lightweight structural component in the automotive industry. As fast production speed is essential to apply the composite materials for the mass production area such as automotive components, the high speed liquid composite molding processes have been developed. Fast resin injection through the fiber preform by high pressure is required to improve the production speed, but it often results in undesirable deformations of the fiber preform which causes defectives in size and properties of the final composite products. In order to prevent the undesirable deformation and improve the stability of preform shape, polymer type binder materials are used. More stable fiber preform can be obtained by increasing the amount of binder material, but it disturbs the resin impregnation through the fiber preform. In this study, carbon nanomaterials such as graphene oxide were embedded on the surface of carbon fiber by electrophoretic deposition method in order to improve the shape stability of fiber preform and interfacial bonding between polymer and the reinforcing fiber. Effects of the modified reinforcing fiber were investigated in two respects. One is to increase the binding energy between fiber tows, and the other is to increase the interfacial bonding between polymer matrix and fiber surface. The effects were analyzed by measuring the binding force of fiber preform and interlaminar shear strength of the composite. This study also investigated the high speed liquid molding process of the composite materials composed of polymer matrix and the carbon fiber preforms embedded by carbon nanomaterials. Process parameter such as permeability of fiber preform was measured to investigate the effect of nanoscale surface modification on the macroscale processing condition for composite manufacturing.
NASA Astrophysics Data System (ADS)
Ollivia, S. L.; Juwono, A. L.; Roseno, Seto
2017-05-01
The use of synthetic fibers as reinforcement in composites has disadvantage which are unsustainable and an adverse impact on the environment. An alternative reinforcement for composites is natural fiber. Polypropylene and Sumberejo kenaf fibers were used respectively as the matrix and reinforcement. The aim of this research was to obtain the optimum tensile properties and deflection temperature with the variation of kenaf fiber fractions. Polypropylene/kenaf fiber composites were fabricated by hot press method. The kenaf fiber was soaked in NaOH solution before being used as the reinforcement and polypropylene was extruded before being used as the matrix. The weight fractions were varied to produce composites and pristine polypropylene samples were also prepared for comparison. The optimum tensile strength, modulus and deflection temperature were found in the composites with the 40 wt% kenaf fiber fraction with an increase up to 80% and 170% compared to the pristine polypropylene with the values of (60.3 ± 4,3) MPa and (159.1 ± 1,8) °C respectively. The Scanning Electron Microscope observation results in the fracture surface of the composites with the 40 wt% fiber fraction showed a relatively good bonding interface between fibers and the matrix and the failure modes were fiber breakage and matrix failures.
USDA-ARS?s Scientific Manuscript database
Natural (organic) fibers are used in reinforced composites and natural fiber composites (NFCs). These fibers have advantages over synthetic composites such as high mechanical properties, lower densities and biodegradablity. However, one major disadvantage of NFCs is their hydrophilicity. In this stu...
A new biodegradable sisal fiber-starch packing composite with nest structure.
Xie, Qi; Li, Fangyi; Li, Jianfeng; Wang, Liming; Li, Yanle; Zhang, Chuanwei; Xu, Jie; Chen, Shuai
2018-06-01
A new completely biodegradable sisal fiber-starch packing composite was proposed. The effects of fiber content and alkaline treatment on the cushioning property of the composites were studied from energy absorption efficiency, cellular microstructure and compatibility between fiber and starch. With increasing fiber content, the nest structure of composites becomes dense first and then loosens, resulting in initial enhancement and subsequent weakening of the cushioning property of the composites. The composite with 4:13 mass ratio of fiber and thermoplastic starch (TPS) exhibit the optimal cushioning property. Alkaline treatment increases the compatibility between sisal fiber and TPS, promotes the formation of dense nest structure, thereby enhances the cushioning property of the composites. After biodegradability tests for 28 days, the weight loss of the composites was 62.36%. It's found that the composites are a promising replacement for expandable polystyrene (EPS) as packing material, especially under large compression load (0.7-6 MPa). Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Gouadec, Gwenael; Colomban, Philippe; Bansal, Narottam P.
2000-01-01
Hi-Nicalon fiber reinforced celsian matrix composites were characterized by Raman spectroscopy and imaging, using several laser wavelengths. Composite #1 is reinforced by as-received fibers while coatings of p-BN and SiC protect the fibers in composite #2. The matrix contains traces of the hexagonal phase of celsian, which is concentrated in the neighborhood of fibers in composite #1. Some free silicon was evident in the coating of composite #2 which might involve a {BN + SiC yields BNC + Si} "reaction" at the p-BN/SiC interface. Careful analysis of C-C peaks revealed no abnormal degradation of the fiber core in the composites.
Kinnan, Mark K.; Roach, Dennis P.
2017-12-05
A composite article is disclosed that has non-circular fibers embedded in a polymer matrix. The composite article has improved damage tolerance, toughness, bending, and impact resistance compared to composites having traditional round fibers.
NASA Astrophysics Data System (ADS)
Liu, Wanwan; Jin, Yang; Wang, Yangyi; Ge, Mingqiao; Gao, Qiang
2017-12-01
In this work, conductive polyacrylonitrile (PAN) composite fiber with thermosensitive property was successfully prepared via wet-spinning. Thermochromic pigment (TCP) microsphere capsules were applied to manufacture color-changing fibers. Meanwhile, light-colored conductive whiskers (ATO@TiO2) were employed to endow polyacrylonitrile fibers with conductivity without prejudicing their thermosensitive property. Interestingly, unlike other conductive fibers in dark color, this kind of conductive composite fiber can be dyed by thermosensitive pigment. The obtained composite fiber containing 20 vol% ATO@TiO2 whiskers shows a resistivity of 105 Ω · cm and could generate heat by Joule heating when being applied under a certain voltage. The composite fiber shows a red color at room temperature, while the color of the composite fiber fades gradually and finally becomes white as temperature rise. This simple and cost-effective approach is expected to inspire more research into the applications of multifunctional conductive fibers.
NASA Astrophysics Data System (ADS)
SzelÄ g, M.; Lesiak, P.; Kuczkowski, M.; Domański, A. W.; Woliński, T. R.
2013-05-01
Results of our research on embedded highly birefringent polymer microstructured fibers are presented. A composite material sample with fibers embedded between two layers of a multi-layer composite structure is fabricated and characterized. Temperature sensitivities of the polymer fibers are measured in a free space and compared with the fibers embedded in the composite material. It appeared that highly birefringent polymer microstructured fibers exhibit a strong increase in temperature sensitivity when embedded in the composite material, which is due to the stress-induced changes in birefringence created by thermally-induced strain.
Process of Making Boron-Fiber Reinforced Composite Tape
NASA Technical Reports Server (NTRS)
Belvin, Harry L. (Inventor); Cano, Roberto J. (Inventor); Johnston, Norman J. (Inventor); Marchello, Joseph M. (Inventor)
2002-01-01
The invention is an apparatus and method for producing a hybrid boron reinforced polymer matrix composition from powder pre-impregnated fiber tow bundles and a linear array of boron fibers. The boron fibers are applied onto the powder pre-impregnated fiber tow bundles and then are processed within a processing component having an impregnation bar assembly. After passing through variable-dimension forming nip-rollers, the powder pre-impregnated fiber tow bundles with the boron fibers become a hybrid boron reinforced polymer matrix composite tape. A driving mechanism pulls the powder pre-impregnated fiber tow bundles with boron fibers through the processing line of the apparatus and a take-up spool collects the formed hybrid boron-fiber reinforced polymer matrix composite tape.
Properties of PMR Polyimide composites made with improved high strength graphite fibers
NASA Technical Reports Server (NTRS)
Vannucci, R. D.
1980-01-01
High strength, intermediate modulus graphite fibers were obtained from various commercial suppliers, and were used to fabricate PMR-15 and PMR-2 polyimide composites. The effects of the improved high strength graphite fibers on composite properties after exposure in air at 600 F were investigated. Two of the improved fibers were found to have an adverse effect on the long term performance of PMR composites. The influence of various factors such as fiber physical properties, surface morphology and chemical composition were also examined.
Nano-Fiber Reinforced Enhancements in Composite Polymer Matrices
NASA Technical Reports Server (NTRS)
Chamis, Christos C.
2009-01-01
Nano-fibers are used to reinforce polymer matrices to enhance the matrix dependent properties that are subsequently used in conventional structural composites. A quasi isotropic configuration is used in arranging like nano-fibers through the thickness to ascertain equiaxial enhanced matrix behavior. The nano-fiber volume ratios are used to obtain the enhanced matrix strength properties for 0.01,0.03, and 0.05 nano-fiber volume rates. These enhanced nano-fiber matrices are used with conventional fiber volume ratios of 0.3 and 0.5 to obtain the composite properties. Results show that nano-fiber enhanced matrices of higher than 0.3 nano-fiber volume ratio are degrading the composite properties.
Improved fiber retention by the use of fillers in graphite fiber/resin matrix composites
NASA Technical Reports Server (NTRS)
Gluyas, R. E.; Bowles, K. J.
1980-01-01
A variety of matrix fillers were tested for their ability to prevent loss of fiber from graphite fiber/PMR polyimide and graphite fiber/epoxy composites in a fire. The fillers tested included powders of boron, boron carbide lime glass, lead glass, and aluminum. Boron was the most effective and prevented any loss of graphite fiber during burning. Mechanical properties of composites containing boron filler were measured and compared to those of composites containing no filler.
Hybrid matrix fiber composites
Deteresa, Steven J.; Lyon, Richard E.; Groves, Scott E.
2003-07-15
Hybrid matrix fiber composites having enhanced compressive performance as well as enhanced stiffness, toughness and durability suitable for compression-critical applications. The methods for producing the fiber composites using matrix hybridization. The hybrid matrix fiber composites include two chemically or physically bonded matrix materials, whereas the first matrix materials are used to impregnate multi-filament fibers formed into ribbons and the second matrix material is placed around and between the fiber ribbons that are impregnated with the first matrix material and both matrix materials are cured and solidified.
Fire test method for graphite fiber reinforced plastics
NASA Technical Reports Server (NTRS)
Bowles, K. J.
1980-01-01
A potential problem in the use of graphite fiber reinforced resin matrix composites is the dispersal of graphite fibers during accidental fires. Airborne, electrically conductive fibers originating from the burning composites could enter and cause shorting in electrical equipment located in surrounding areas. A test method for assessing the burning characteristics of graphite fiber reinforced composites and the effectiveness of the composites in retaining the graphite fibers has been developed. The method utilizes a modified Ohio State University Rate of Heat Release apparatus. The equipment and the testing procedure are described. The application of the test method to the assessment of composite materials is illustrated for two resin matrix/graphite composite systems.
Orue, Ander; Eceiza, Arantxa; Peña-Rodriguez, Cristina; Arbelaiz, Aitor
2016-01-01
The main aim of this work was to study the effect of sisal fiber surface treatments on water uptake behavior of composites based on untreated and treated fibers. For this purpose, sisal fibers were treated with different chemical treatments. All surface treatments delayed the water absorption of fibers only for a short time of period. No significant differences were observed in water uptake profiles of composites based on fibers with different surface treatments. After water uptake period, tensile strength and Young modulus values of sisal fiber/poly(lactic acid) (PLA) composites were decreased. On the other hand, composites based on NaOH + silane treated fibers showed the lowest diffusion coefficient values, suggesting that this treatment seemed to be the most effective treatment to reduce water diffusion rate into the composites. Finally, Young modulus values of composites, before water uptake period, were predicted using different micromechanical models and were compared with experimental data. PMID:28773524
Liu, Zengshe; Erhan, Sevim Z; Akin, Danny E; Barton, Franklin E
2006-03-22
In recent years there has been considerable interest in using natural plant fibers as reinforcements for plastics. The motivation includes cost, performance enhancement, weight reduction, and environment concerns. High performance flax fiber could potentially substitute for glass or carbon fibers as reinforcements for plastics. This study reports the "green" composites obtained from a mixture of epoxidized soybean oil and epoxy resin, 1,1,1-tris(p-hydroxyphenyl)ethane triglycidyl ether (THPE-GE), reinforced with flax fiber. The compression molding method is used for making the composites. Curing agents triethylenetetramine and diethylenetriamine provide better physical properties of the composites than Jeffamine agents D-230 and EDR-148. Both the flexural modulus and the tensile modulus of the composites increase as the amount of THPE-GE increases. The flexural modulus increased at a fiber content of <10 wt %, but there is a decrease beyond 10 wt %. The tensile modulus increases with fiber content until a maximum at 13.5 wt %, and then it decreases. The flax fiber length affected the mechanical properties of the composites: the longer the fiber length, the better are the mechanical properties observed.
NASA Astrophysics Data System (ADS)
Tripathy, Satchidananda; Dehury, Janaki; Mishra, Debasmita
2016-02-01
Natural fiber reinforced polymer composites are being used frequently for variety of engineering applications due to many of their advantages like ease of availability, low density, low production cost and good mechanical properties but natural fibers are more or less hydrophilic in nature. Therefore, an investigation has been carried out to make better utilization of a class of natural fiber that is date palm stem fiber, for making a wide range of products. Attempts have been made in this research work to study the effect of fiber loading on the physical, mechanical and water absorption behaviour of treated and untreated short fiber based epoxy composites. Composites of various compositions of different amounts of fiber loading are fabricated by simple hand lay-up technique. It has been observed that there is a significant effect of surface treatment of fibers on the overall properties of composites. Further enhancement of properties with lower water absorption rate was attained with glass fiber-epoxy based hybrid composites.
NASA Astrophysics Data System (ADS)
Kuchipudi, Suresh Chandra
Additive manufacturing (AM) also known as 3D printing has tremendous advancements in recent days with a vast number of applications in industrial, automotive, architecture, consumer projects, fashion, toys, food, art, etc. Composite materials are widely used in structures with weight as a critical factor especially in aerospace industry. Recently, additive manufacturing technology, a rapidly growing innovative technology, has gained lot of importance in making composite materials. The properties of composite materials depend upon the properties of constituent's matrix and fiber. There is lot of research on effect of fiber orientation on mechanical properties of composite materials made using conventional manufacturing methods. It will be interesting and relevant to study the relationship between the fiber orientation and fiber volume with mechanical properties of additively manufactured composite materials. This thesis work presents experimental investigation of mechanical behavior like tensile strength and fatigue life with variation in fiber orientation and fiber volume fraction of 3D printed composite materials. The aim is to study the best combination of volume fraction of fiber and fiber orientation that has better fatigue strength for additive manufactured composite materials. Using this study, we can decide the type of orientation and volume percent for desired properties. This study also finds the range of fatigue limits of 3d printed composite materials.
Enhanced mechanical and thermal properties of regenerated cellulose/graphene composite fibers.
Tian, Mingwei; Qu, Lijun; Zhang, Xiansheng; Zhang, Kun; Zhu, Shifeng; Guo, Xiaoqing; Han, Guangting; Tang, Xiaoning; Sun, Yaning
2014-10-13
In this study, a wet spinning method was applied to fabricate regenerated cellulose fibers filled with low graphene loading which was systematically characterized by SEM, TEM, FTIR and XRD techniques. Subsequently, the mechanical and thermal properties of the resulting fibers were investigated. With only 0.2 wt% loading of graphene, a ∼ 50% improvement of tensile strength and 25% enhancement of Young's modulus were obtained and the modified Halpin-Tsai model was built to predict the mechanical properties of composite fibers. Thermal analysis of the composite fibers showed remarkably enhanced thermal stability and dynamic heat transfer performance of graphene-filled cellulose composite fiber, also, the presence of graphene oxide can significantly enhance the thermal conductivity of the composite fiber. This work provided a facile way to improve mechanical and thermal properties of regenerated cellulose fibers. The resultant composite fibers have potential application in thermal insulation and reinforced fibrous materials. Copyright © 2014 Elsevier Ltd. All rights reserved.
Effects of glass scraps powder and glass fiber on mechanical properties of polyester composites
NASA Astrophysics Data System (ADS)
Sonsakul, K.; Boongsood, W.
2017-11-01
One concern in bus manufacturing is the high cost of glass fiber reinforced in polyester composites parts. The composites of glass fiber and polyester are low elongation and high strength, and glass scraps powder displays high hardness and good chemical compatibility with the polymer matrix and glass fiber. This research aimed to study the effects of glass scraps powder and glass fiber on mechanical performance of polyester composites. Glass fiber was randomly oriented fiber and used as new. Glass scraps were obtained from a bus factory and crushed to powder sizes of 120 and 240 μm by a ball mill. Polyester composites were prepared using Vacuum Infusion Process (VIP).Polyester reinforced with 3 layers of glass fiber was an initial condition. Then, one layer of glass fiber was replaced with glass scraps powder. Flexural strength, tensile strength, impact strength and hardness of the polyester composites were determined. Hardness was increased with a combination of smaller size and higher volume of glass scraps powder. Pictures of specimens obtained by using scanning electron microscope (SEM) confirmed that the powder of glass scraps packed in the layers of glass fiber in polyester composites.
Effects of moisture on aspen-fiber/polypropylene composites
Roger M. Rowell; Sandra E. Lange; Rodney E. Jacobson
2004-01-01
Moisture sorption in fiber-thermoplastic composites leads to dimensional instability and biological attack. To determine the pick up of moisture this type of composite, aspen fiber/polypropylene composites were made using several different levels of aspen fiber (30 to 60% by weight) with and without the addition of a compatibilizer (maleic anhydride grafted...
NASA Technical Reports Server (NTRS)
Grobstein, Toni L.
1989-01-01
The creep resistance of tungsten fiber reinforced niobium metal-matrix composites was evaluated. The interface region between the fiber and matrix was characterized by microhardness and electron probe microanalysis measurements which indicated that its properties were between those of fiber and matrix. However, the measured properties of the composite exceeded those calculated by the rule of mixtures even when the interface zone was assumed to retain all the strength of the fiber. The composite structure appeared to enhance the strengths of both the fibers and the matrix above what they exhibited in stand-alone tests. The effect of fiber orientation and matrix alloy composition on the fiber/matrix interface were also evaluated. Small alloying additions of zirconium and tungsten to the niobium matrix affected the creep resistance of the composites only slightly. A decrease in the creep resistance of the composite with increasing zirconium content in the matrix was ascribed to an increase in the diffusion rate of the fiber/matrix interdiffusion reaction, and a slight increase in the creep resistance of the composite was observed with an addition of 9 w percent tungsten to the matrix. In addition, Kirkendall void formation was observed at the fiber/matrix interface; the void distribution differed depending on the fiber orientation relative to the stress axis.
Interface control and mechanical property improvements in silicon carbide/titanium composites
NASA Technical Reports Server (NTRS)
Brewer, W. D.; Unnam, J.
1982-01-01
Several composite systems made of titanium matrix reinforced with silicon carbide fiber were investigated to obtain a better understanding of composite-degradation mechanisms and to develop techniques to minimize loss of mechanical properties during fabrication and in service. Emphasis was on interface control by fiber or matrix coatings. X-ray diffraction studies on planar samples showed that the formation of titanium silicides was greatly inhibited by the presence of aluminum or Ti3A1 layers at the fiber-matrix interface, with the Ti3A1 being more effective in reducing the reactions. Fiber studies showed that coating the fiber with a 1-micron-thick layer of aluminum improved the as-fabricated strength of a stoichiometric SiC fiber and reduced the fiber degradation during exposure to composite-fabrication conditions. Applying an interfacial barrier by coating the matrix foils instead of the fibers was found to be an effective method for improving composite strength. Reducing the fabrication temperature also resulted in significant improvements in composite strengths. Good-quality, well-consolidated composites were fabricated at temperatures well below those currently used for SiC-Ti composite fabrication.
2012-08-03
is unlimited. Multi-Length Scale-Enriched Continuum-Level Material Model for Kevlar ®-Fiber-Reinforced Polymer-Matrix Composites The views, opinions...12211 Research Triangle Park, NC 27709-2211 ballistics, composites, Kevlar , material models, microstructural defects REPORT DOCUMENTATION PAGE 11... Kevlar ®-Fiber-Reinforced Polymer-Matrix Composites Report Title Fiber-reinforced polymer matrix composite materials display quite complex deformation
Tanimoto, Yasuhiro; Nemoto, Kimiya
2006-01-01
The purpose of this study was to investigate the effect of sintering temperature on flexural properties of an alumina fiber-reinforced, alumina-based ceramic (alumina-fiber/alumina composite) prepared by a tape casting technique. The alumina-based ceramic used a matrix consisting of 60 wt% Al(2)O(3) powder and 40 wt% SiO(2)-B(2)O(3) glass powder with the following composition in terms of wt%: 33 SiO(2), 32 B(2)O(3), 20 CaO, and 15 MgO. Prepreg sheets of alumina-fiber/alumina composite in which uniaxial aligned alumina fibers were infiltrated with the alumina-based matrix were fabricated continuously using a tape casting technique employing a doctor blade system. Four sintering temperatures were investigated: 900 degrees C, 1000 degrees C, 1100 degrees C, and 1200 degrees C, all for 4 hours under atmospheric pressure in a furnace. The surface of the alumina-fiber/alumina composite after sintering was observed with a field-emission scanning electron microscope (FE-SEM). A three-point bending test was carried out to measure the flexural strength and modulus of alumina-fiber/alumina composite specimens. In addition, sintered alumina fiber was characterized by X-ray diffraction (XRD). FE-SEM observation showed that alumina-fiber/alumina composite was confirmed to be densely sintered for all sintering temperatures. Three-point bending measurement revealed that alumina-fiber/alumina composite produced at sintering temperatures of 1100 degrees C and 1200 degrees C exhibit flexural strengths lower than those of alumina-fiber/alumina composite produced at sintering temperatures of 900 degrees C and 1000 degrees C; alumina-fiber/alumina composite produced at sintering temperatures of 1100 degrees C and 1200 degrees C exhibit flexural moduli lower than that of alumina-fiber/alumina composite produced at a sintering temperature of 1000 degrees C. Additional XRD pattern of alumina fiber indicated that with increasing sintering temperature, the crystallographic structure of gamma-alumina transformed to mullite. There were significant differences in the flexural properties between the alumina-fiber/alumina composite sintered at the four temperatures. This indicates that the choice of optimum sintering temperature is an important factor for successful dental applications of alumina-fiber/alumina composite developed by the tape casting system.
NASA Technical Reports Server (NTRS)
Madhukar, Madhu S.; Bowles, Kenneth J.; Papadopolous, Demetrios S.
1994-01-01
Experiments were conducted to establish a correlation between the weight loss of a polyimide (PMR- 15) matrix and graphite fibers and the in-plane shear properties of their unidirectional composites subjected to different isothermal aging times up to 1000 hr at 316 C. The role of fiber surface treatment on the composite degradation during the thermo-oxidative aging was investigated by using A4 graphite fibers with three surface modifications: untreated (AU-4), surface treated (AS-4), and surface treated and sized with an epoxy-compatible sizing (AS-4G). The weight loss of the matrix fibers, and composites was determined during the aging. The effect of thermal aging was seen in all the fiber samples in terms of weight loss and reduction in fiber diameter. Calculated values of weight loss fluxes for different surfaces of rectangular unidirectional composite plates showed that the largest weight loss occurred at those cut surfaces where fibers were perpendicular to the surface. Consequently, the largest amount of damage was also noted on these cut surfaces. Optical observation of the neat matrix and composite plates subjected to different aging times revealed that the degradation (such as matrix microcracking and void growth) occurred in a thin surface layer near the specimen edges. The in-plane shear modulus of the composites was unaffected by the fiber surface treatment and the thermal aging. The shear strength of the composites with the untreated fibers was the lowest and it decreased with aging. A fracture surface examination of the composites with untreated fibers suggested that the weak interface allowed the oxidation reaction to proceed along the interface and thus expose the inner material to further oxidation. The results indicated that the fiber-matrix interface affected the composite degradation process during its thermal aging and that the the weak interface accelerated the composite degradation.
NASA Technical Reports Server (NTRS)
Bowles, K. J.
1992-01-01
A number of studies have investigated the thermooxidative behavior of polymer matrix composites. Two significant observations have been made from these research efforts: (1) fiber reinforcement has a significant effect on composite thermal stability; and (2) geometric effects must be considered when evaluating thermal aging data. The polyimide PMR-15 was the matrix material used in these studies. The control composite material was reinforced with Celion 6000 graphite fiber. T-4OR graphite fibers, along with some very stable ceramic fibers were selected as reinforcing fibers because of their high thermal stability. The ceramic fibers were Nicalon (silicon carbide) and Nextel 312 (alumina-silica-boron oxide). The mechanical properties of the two graphite fiber composites were significantly different, probably owing to variations in interfacial bonding between the fibers and the polyimide matrix. Three oxidation mechanisms were observed: (1) the preferential oxidation of the Celion 6000 fiber ends at cut surfaces, leaving a surface of matrix material with holes where the fiber ends were originally situated; (2) preferential oxidation of the composite matrix; and (3) interfacial degradation by oxidation. The latter two mechanisms were also observed on fiber end cut surfaces. The fiber and interface attacks appeared to initiate interfiber cracking along these surfaces.
Properties of foam and composite materials made o starch and cellulose fiber
USDA-ARS?s Scientific Manuscript database
Composite materials were made of starch and cellulose fibers. Pre-gelatinized starch was effective in dispersing pulp fiber in a starch matrix to form a viscous starch/fiber dough. The starch/fiber dough was a useful feedstock for various composite foam and plastic materials. Viscous blends of star...
NASA Astrophysics Data System (ADS)
Bhaskar, V. Vijaya; Srinivas, Kolla
2017-07-01
Polymer reinforced composites have been replacing most of the engineering material and their applications become more and more day by day. Polymer composites have been analyzing from past thirty five years for their betterment for adapting more applications. This paper aims at the mechanical properties of polyester reinforced with glass fiber composites. The glass fiber is reinforced with polyester in two forms viz Woven Rovings (WRG) and Chopped Strand Mat (CSMG) E-glass fibers. The composites are fabricated by hand lay-up technique and the composites are cut as per ASTM Standard sizes for corresponding tests like flexural, compression and impact tests, so that flexural strength, compression strength, impact strength and inter laminar shear stress(ILSS) of polymer matrix composites are analyzed. From the tests and further calculations, the polyester composites reinforced with Chopped Strand Mat glass fiber have shown better performance against flexural load, compression load and impact load than that of Woven Roving glass fiber.
NASA Astrophysics Data System (ADS)
Raja Dhas, J. Edwin; Pradeep, P.
2017-10-01
Natural fibers available plenty can be used as reinforcements in development of eco friendly polymer composites. The less utilized palm leaf stalk fibers sandwiched with artificial glass fibers was researched in this work to have a better reinforcement in preparing a green composite. The commercially available polyester resin blend with coconut shell filler in nano form was used as matrix to sandwich these composites. Naturally available Fibers of palm leaf stalk, coconut leaf stalk, raffia and oil palm were extracted and treated with potassium permanganate solution which enhances the properties. For experimentation four different plates were fabricated using these fibers adopting hand lay-up method. These sandwiched composite plates are further machined to obtain ASTM standards Specimens which are mechanically tested as per standards. Experimental results reveal that the alkali treated palm leaf stalk fiber based polymer composite shows appreciable results than the others. Hence the developed composite can be recommended for fabrication of automobile parts.
NASA Astrophysics Data System (ADS)
Shubhra, Quazi T. H.; Alam, A. K. M. M.
2011-11-01
Silk is a strong natural proteinous fiber and E-glass is a very strong synthetic fiber. Compression molding method was used to fabricate B. mori silk fiber reinforced polypropylene (PP) matrix composites. The tensile strength (TS), tensile modulus (TM), bending strength (BS), bending modulus (BM) and impact strength (IS) of prepared composites were 55.1 MPa, 780 MPa, 56.3 MPa, 3450 MPa and 17 kJ/m 2, respectively. Synthetic E-glass fiber reinforced PP based composites were fabricated in the same way and TS, TM, BS, BM, IS of E-glass fiber reinforced polypropylene composites were found to be 128.7 MPa, 4350 MPa, 141.6 MPa, 6300 MPa and 19 kJ/m 2, respectively. Gamma radiation is high energy ionizing radiation and was applied to increase the mechanical properties of the composites. Application of gamma ray increases the mechanical properties of silk/PP composites to a greater extent than that of E-glass/PP composites.
New biocomposites based on bioplastic flax fibers and biodegradable polymers.
Wróbel-Kwiatkowska, Magdalena; Czemplik, Magdalena; Kulma, Anna; Zuk, Magdalena; Kaczmar, Jacek; Dymińska, Lucyna; Hanuza, Jerzy; Ptak, Maciej; Szopa, Jan
2012-01-01
A new generation of entirely biodegradable and bioactive composites with polylactic acid (PLA) or poly-ε-caprolactone (PCL) as the matrix and bioplastic flax fibers as reinforcement were analyzed. Bioplastic fibers contain polyhydroxybutyrate and were obtained from transgenic flax. Biochemical analysis of fibers revealed presence of several antioxidative compounds of hydrophilic (phenolics) and hydrophobic [cannabidiol (CBD), lutein] nature, indicating their high antioxidant potential. The presence of CBD and lutein in flax fibers is reported for the first time. FTIR analysis showed intermolecular hydrogen bonds between the constituents in composite PLA+flax fibers which were not detected in PCL-based composite. Mechanical analysis of prepared composites revealed improved stiffness and a decrease in tensile strength. The viability of human dermal fibroblasts on the surface of composites made of PLA and transgenic flax fibers was the same as for cells cultured without composites and only slightly lower (to 9%) for PCL-based composites. The amount of platelets and Escherichia coli cells aggregated on the surface of the PLA based composites was significantly lower than for pure polymer. Thus, composites made of PLA and transgenic flax fibers seem to have bacteriostatic, platelet anti-aggregated, and non-cytotoxic effect. Copyright © 2012 American Institute of Chemical Engineers (AIChE).
NASA Astrophysics Data System (ADS)
Pradipta, Rangga; Mardiyati, Steven, Purnomo, Ikhsan
2017-03-01
Sanseviera trifasciata commonly called mother-in-law tongue also known as snake plant is native to Indonesia, India and Africa. Sansevieria is a new fiber in composite research and has showed promising properties as reinforcement material in polymer matrix composites. Chemical treatment on reinforcing fiber is crucial to reduce hydrophilic tendency and thus improve compatibility with the matrix. In this study, effect of maleic anhydride as chemical treatment on the mechanical properties of Sansevieria fiber/vinyl ester composite was investigated. Sansevieria fibers were immersed by using NaOH 3% for two hours at 100°C and then treated by using maleic anhydrate for two hours at 120°C. Composites were prepared by solution casting with various volume fractions of fiber; 0%, 2.5%, 5%, 7.5% and 10%. Actual density, volume fraction of void and mechanical properties of composite were conducted according to ASTM standard testing methods D792, D3171 and D3039. It was found that mechanical properties of composites increased as volume fractions of fiber was increased. The highest tensile strength and modulus of elasticity of composites were 57.45 MPa and 3.47 GPa respectively, obtained from composites with volume fraction of fiber 10%.
NASA Astrophysics Data System (ADS)
Nugroho, A.; Abdurohman, K.; Kusmono; Hestiawan, H.; Jamasri
2018-04-01
This paper described the effect of different type of manufacturing method to tensile properties of hybrid composite woven agel leaf fiber and glass fiber as an alternative of LSU structure material. The research was done by using 3 ply of woven agel leaf fiber (ALF) and 3 ply of glass fiber (wr200) while the matrix was using unsaturated polyester. Composite manufacturing method used hand lay-up and vacuum bagging. Tensile test conducted with Tensilon universal testing machine, specimen shape and size according to standard size ASTM D 638. Based on tensile test result showed that the tensile strength of agel leaf fiber composite with unsaturated polyester matrix is 54.5 MPa by hand lay-up and 84.6 MPa with vacuum bagging method. From result of tensile test, hybrid fiber agel composite and glass fiber with unsaturated polyester matrix have potential as LSU structure.
NASA Astrophysics Data System (ADS)
Shokrieh, M. M.; Mahmoudi, A.; Shadkam, H. R.
2015-05-01
The Taguchi method was used to determine the optimum content of a four-parameters cellulose fiber pulp, polyvinyl alcohol (PVA) fibers, a silica fume, and bentonite for cement-based composite sheets. Then cement composite sheets from the hybrid of PVA and the cellulose fiber pulp were manufactured, and their moduli of rapture were determined experimentally. The result obtained showed that cement composites with a hybrid of PVA and cellulose fiber pulp had a higher flexural strength than cellulose-fiber- reinforced cement ones, but this strength was rather similar to that of asbestos-fiber-reinforced cement composites. Also, using the results of flexural tests and an analytical method, the tensile and compressive moduli of the hybrid of PVA and cement sheet were calculated. The hybrid of PVA and cellulose fiber pulp is proposed as an appropriate alternative for substituting asbestos in the Hatschek process.
NASA Technical Reports Server (NTRS)
Claus, R. O.; Bennett, K. D.; Jackson, B. S.
1986-01-01
The application of fiber-optical time domain reflectometry (OTDR) to nondestructive quantitative measurements of distributed internal strain in graphite-epoxy composites, using optical fiber waveguides imbedded between plies, is discussed. The basic OTDR measurement system is described, together with the methods used to imbed optical fibers within composites. Measurement results, system limitations, and the effect of the imbedded fiber on the integrity of the host composite material are considered.
NASA Astrophysics Data System (ADS)
Venkatachalam, G.; Gautham Shankar, A.; Vijay, Kumar V.; Chandan, Byral R.; Prabaharan, G. P.; Raghav, Dasarath
2015-07-01
The polymer matrix composites attract many industrial applications due to its light weight, less cost and easy for manufacturing. In this paper, an attempt is made to prepare and study of the tensile strength of hybrid (two natural) fibers reinforced hybrid (Natural + Synthetic) polymer matrix composites. The samples were prepared with hybrid reinforcement consists of two different fibers such as jute and Gongura and hybrid polymer consists of polyester and cashew nut shell resins. The hybrid composites tensile strength is evaluated to study the influence of various fiber parameters on mechanical strength. The parameters considered here are the duration of fiber treatment, the concentration of alkali in fiber treatment and nature of fiber content in the composites.
Porous block nanofiber composite filters
Ginley, David S.; Curtis, Calvin J.; Miedaner, Alexander; Weiss, Alan J.; Paddock, Arnold
2016-08-09
Porous block nano-fiber composite (110), a filtration system (10) and methods of using the same are disclosed. An exemplary porous block nano-fiber composite (110) includes a porous block (100) having one or more pores (200). The porous block nano-fiber composite (110) also includes a plurality of inorganic nano-fibers (211) formed within at least one of the pores (200).
Jawahar, P; Balasubramanian, M
2006-12-01
Glass fiber reinforced polyester composite and hybrid nanoclay-fiber reinforced composites were prepared by hand lay-up process. The mechanical behavior of these materials and the changes as a result of the incorporation of both nanosize clay and glass fibers were investigated. Composites were prepared with a glass fibre content of 25 vol%. The proportion of the nanosize clay platelets was varied from 0.5 to 2.5 vol%. Hybrid clay-fiber reinforced polyester composite posses better tensile, flexural, impact, and barrier properties. Hybrid clay-fiber reinforced polyester composites also posses better shear strength, storage modulus, and glass transition temperature. The optimum properties were found to be with the hybrid laminates containing 1.5 vol% nanosize clay.
Fabrication and evaluation of low fiber content alumina fiber/aluminum composites
NASA Technical Reports Server (NTRS)
Hack, J. E.; Strempek, G. C.
1980-01-01
The mechanical fabrication of low volume percent fiber, polycrystalline alumina fiber reinforced aluminum composites was accomplished. Wire preform material was prepared by liquid-metal infiltration of alumina fiber bundles. The wires were subsequently encapsulated with aluminum foil and fabricated into bulk composite material by hot-drawing. Extensive mechanical, thermal and chemical testing was conducted on preform and bulk material to develop a process and material data base. In addition, a preliminary investigation of mechanical forming of bulk alumina fiber reinforced aluminum composite material was conducted.
Method of producing a hybrid matrix fiber composite
Deteresa, Steven J [Livermore, CA; Lyon, Richard E [Absecon, NJ; Groves, Scott E [Brentwood, CA
2006-03-28
Hybrid matrix fiber composites having enhanced compressive performance as well as enhanced stiffness, toughness and durability suitable for compression-critical applications. The methods for producing the fiber composites using matrix hybridization. The hybrid matrix fiber composites comprised of two chemically or physically bonded matrix materials, whereas the first matrix materials are used to impregnate multi-filament fibers formed into ribbons and the second matrix material is placed around and between the fiber ribbons that are impregnated with the first matrix material and both matrix materials are cured and solidified.
Compression failure mechanisms of composite structures
NASA Technical Reports Server (NTRS)
Hahn, H. T.; Sohi, M.; Moon, S.
1986-01-01
An experimental and analytical study was conducted to delineate the compression failure mechanisms of composite structures. The present report summarizes further results on kink band formation in unidirectional composites. In order to assess the compressive strengths and failure modes of fibers them selves, a fiber bundle was embedded in epoxy casting and tested in compression. A total of six different fibers were used together with two resins of different stiffnesses. The failure of highly anisotropic fibers such as Kevlar 49 and P-75 graphite was due to kinking of fibrils. However, the remaining fibers--T300 and T700 graphite, E-glass, and alumina--failed by localized microbuckling. Compressive strengths of the latter group of fibers were not fully utilized in their respective composite. In addition, acoustic emission monitoring revealed that fiber-matrix debonding did not occur gradually but suddenly at final failure. The kink band formation in unidirectional composites under compression was studied analytically and through microscopy. The material combinations selected include seven graphite/epoxy composites, two graphite/thermoplastic resin composites, one Kevlar 49/epoxy composite and one S-glass/epoxy composite.
NASA Technical Reports Server (NTRS)
Galasso, F. S.; Veltri, R. D.; Scola, D. A.
1979-01-01
Coatings made of boron, silicon carbide, silica, and silica-like materials were studied to determine their ability to increase resistance of graphite fibers. The most promising results were attained by chemical vapor depositing silicon carbide on graphite fiber followed by oxidation, and drawing graphite fiber through ethyl silicate followed by appropriate heat treatments. In the silicon carbide coating studies, no degradation of the graphite fibers was observed and resistance values as high as three orders of magnitude higher than that of the uncoated fiber was attained. The strength of a composite fabricated from the coated fiber had a strength which compared favorably with those of composites prepared from uncoated fiber. For the silica-like coated fiber prepared by drawing the graphite fiber through an ethyl silicate solution followed by heating, coated fiber resistances about an order of magnitude greater than that of the uncoated fiber were attained. Composites prepared using these fibers had flexural strengths comparable with those prepared using uncoated fibers, but the shear strengths were lower.
Investigations of the mechanical properties of bi-layer and trilayer fiber reinforced composites
NASA Astrophysics Data System (ADS)
Jayakrishna, K.; Balasubramani, K.; Sultan, M. T. H.; Karthikeyan, S.
2016-10-01
Natural fibers are renewable raw materials with an environmental-friendly properties and they are recyclable. The mechanical properties of bi-layer and tri-layer thermoset polymer composites have been analyzed. The bi-layer composite consists of basalt and jute mats, while the tri-layer composite consists of basalt fiber, jute fiber and glass fiber mats. In both cases, the epoxy resin was used as the matrix and PTFE as a filler in the composites. The developed trilayer natural fiber composite can be used in various industrial applications such as automobile parts, construction and manufacturing. Furthermore, it also can be adopted in aircraft interior decoration and designed body parts. Flexural, impact, tensile, compression, shear and hardness tests, together with density measurement, were conducted to study the mechanical properties of both bi-layer and tri-layer composites. From the comparison, the tri-layer composite was found to perform in a better way in all tests.
Natural Kenaf Fiber Reinforced Composites as Engineered Structural Materials
NASA Astrophysics Data System (ADS)
Dittenber, David B.
The objective of this work was to provide a comprehensive evaluation of natural fiber reinforced polymer (NFRP)'s ability to act as a structural material. As a chemical treatment, aligned kenaf fibers were treated with sodium hydroxide (alkalization) in different concentrations and durations and then manufactured into kenaf fiber / vinyl ester composite plates. Single fiber tensile properties and composite flexural properties, both in dry and saturated environments, were assessed. Based on ASTM standard testing, a comparison of flexural, tensile, compressive, and shear mechanical properties was also made between an untreated kenaf fiber reinforced composite, a chemically treated kenaf fiber reinforced composite, a glass fiber reinforced composite, and oriented strand board (OSB). The mechanical properties were evaluated for dry samples, samples immersed in water for 50 hours, and samples immersed in water until saturation (~2700 hours). Since NFRPs are more vulnerable to environmental effects than synthetic fiber composites, a series of weathering and environmental tests were conducted on the kenaf fiber composites. The environmental conditions studied include real-time outdoor weathering, elevated temperatures, immersion in different pH solutions, and UV exposure. In all of these tests, degradation was found to be more pronounced in the NFRPs than in the glass FRPs; however, in nearly every case the degradation was less than 50% of the flexural strength or stiffness. Using a method of overlapping and meshing discontinuous fiber ends, large mats of fiber bundles were manufactured into composite facesheets for structural insulated panels (SIPs). The polyisocyanurate foam cores proved to be poorly matched to the strength and stiffness of the NFRP facesheets, leading to premature core shear or delamination failures in both flexure and compressive testing. The NFRPs were found to match well with the theoretical stiffness prediction methods of classical lamination theory, finite element method, and Castigliano's method in unidirectional tension and compression, but are less accurate for the more bond-dependent flexural and shear properties. With the acknowledged NFRP matrix bonding issues, the over-prediction of these theoretical models indicates that the flexural stiffness of the kenaf composite may be increased by up to 40% if a better bond between the fiber and matrix can be obtained. The sustainability of NFRPs was examined from two perspectives: environmental and socioeconomic. While the kenaf fibers themselves possess excellent sustainability characteristics, costing less while possessing a lesser environmental impact than the glass fibers, the vinyl ester resin used in the composites is environmentally hazardous and inflated the cost and embodied energy of the composite SIPs. Consistent throughout all the designs was a correlation between the respective costs of the raw materials and the respective environmental impacts. The socioeconomic study looked at the sustainability of natural fiber reinforced composite materials as housing materials in developing countries. A literature study on the country of Bangladesh, where the fibers in this study were grown, showed that the jute and kenaf market would benefit from the introduction of a value-added product like natural fiber composites. The high rate of homeless and inadequately housed in Bangladesh, as well as in the US and throughout the rest of the world, could be somewhat alleviated if a new, affordable, and durable material were introduced. While this study found that natural fiber composites possess sufficient mechanical properties to be adopted as primary structural members, the two major remaining hurdles needing to be overcome before natural fiber composites can be adopted as housing materials are the cost and sustainability of the resin system and the moisture resistance/durability of the fibers. (Abstract shortened by UMI.)
NASA Technical Reports Server (NTRS)
Gajiwala, Himansu M. (Inventor)
2010-01-01
An insulation composition that comprises at least one nitrile butadiene rubber, basalt fibers, and nanoclay is disclosed. Further disclosed is an insulation composition that comprises polybenzimidazole fibers, basalt fibers, and nanoclay. The basalt fibers may be present in the insulation compositions in a range of from approximately 1% by weight to approximately 6% by weight of the total weight of the insulation composition. The nanoclay may be present in the insulation compositions in a range of from approximately 5% by weight to approximately 10% by weight of the total weight of the insulation composition. Rocket motors including the insulation compositions and methods of insulating a rocket motor are also disclosed.
NASA Technical Reports Server (NTRS)
Gajiwala, Himansu M. (Inventor)
2011-01-01
An insulation composition that comprises at least one nitrile butadiene rubber, basalt fibers, and nanoclay is disclosed. Further disclosed is an insulation composition that comprises polybenzimidazole fibers, basalt fibers, and nanoclay. The basalt fibers may be present in the insulation compositions in a range of from approximately 1% by weight to approximately 6% by weight of the total weight of the insulation composition. The nanoclay may be present in the insulation compositions in a range of from approximately 5% by weight to approximately 10% by weight of the total weight of the insulation composition. Rocket motors including the insulation compositions and methods of insulating a rocket motor are also disclosed.
Tungsten fiber reinforced copper matrix composites: A review
NASA Technical Reports Server (NTRS)
Mcdanels, David L.
1989-01-01
Tungsten fiber reinforced copper matrix (W/Cu) composites have served as an ideal model system with which to analyze the properties of metal matrix composites. A series of research programs were conducted to investigate the stress-strain behavior of W/Cu composites; the effect of fiber content on the strength, modulus, and conductivity of W/Cu composites; and the effect of alloying elements on the behavior of tungsten wire and of W/Cu composites. Later programs investigated the stress-rupture, creep, and impact behavior of these composites at elevated temperatures. Analysis of the results of these programs as allows prediction of the effects of fiber properties, matrix properties, and fiber content on the properties of W/Cu composites. These analyses form the basis for the rule-of-mixtures prediction of composite properties which was universally adopted as the criteria for measuring composite efficiency. In addition, the analyses allows extrapolation of potential properties of other metal matrix composites and are used to select candidate fibers and matrices for development of tungsten fiber reinforced superalloy composite materials for high temperature aircraft and rocket engine turbine applications. The W/Cu composite efforts are summarized, some of the results obtained are described, and an update is provided on more recent work using W/Cu composites as high strength, high thermal conductivity composite materials for high heat flux, elevated temperature applications.
Cyclic Oxidation of FeCrAlY/Al2O3 Composites
NASA Technical Reports Server (NTRS)
Nesbitt, James A.; Draper, Susan L.; Barrett, Charles A.
1999-01-01
Three-ply FeCrAlY/Al2O3 composites and FeCrAlY matrix-only samples were cyclically oxidized at 1000 C and 1100 C for up to 1000 1-hr cycles. Fiber ends were exposed at the ends of the composite samples. Following cyclic oxidation, cracks running parallel to and perpendicular to the fibers were observed on the large surface of the composite. In addition, there was evidence of increased scale damage and spallation around the exposed fiber ends, particularly around the middle ply fibers. This damage was more pronounced at the higher temperature. The exposed fiber ends showed cracking between fibers in the outer plies, occasionally with Fe and Cr-rich oxides growing out of the cracks. Large gaps developed at the fiber/matrix interface around many of the fibers, especially those in the outer plies. Oxygen penetrated many of these gaps resulting in significant oxide formation at the fiber/matrix interface far within the composite sample. Around several fibers, the matrix was also internally oxidized showing Al2O3 precipitates in a radial band around the fibers. The results show that these composites have poor cyclic oxidation resistance due to the CTE mismatch and inadequate fiber/matrix bond strength at temperatures of 1000 C and above.
Composite strengthening. [of nonferrous, fiber reinforced alloys
NASA Technical Reports Server (NTRS)
Stoloff, N. S.
1976-01-01
The mechanical behavior of unidirectionally reinforced metals is examined, with particular attention to fabrication techniques for artificial composites and eutectic alloys and to principles of fiber reinforcement. The properties of artificial composites are discussed in terms of strength of fiber composites, strength of ribbon-reinforced composites, crack initiation, crack propagation, and creep behavior. The properties of eutectic composites are examined relative to tensile strength, compressive strength, fracture, high-temperature strength, and fatigue. In the case of artificial composites, parallelism of fibers, good bonding between fibers and matrix, and freedom of fibers from damage are all necessary to ensure superior performance. For many eutectic systems there are stringent boundary conditions relative to melt purity and superheat, atmosphere control, temperature gradient, and growth rate in order to provide near-perfect alignment of the reinforcements with a minimum of growth defects.
Pendulum impact resistance of tungsten fiber/metal matrix composites.
NASA Technical Reports Server (NTRS)
Winsa, E. A.; Petrasek, D. W.
1972-01-01
The impact properties of copper, copper-10 nickel, and a superalloy matrix reinforced with tungsten fibers were studied. In most cases the following increased composite impact strength: increased fiber or matrix toughness, decreased fiber-matrix reaction, increased test temperature, hot working and heat treatment. Notch sensitivity was reduced by increasing fiber or matrix toughness. The effect of fiber content depended on the relative toughness of the fibers and matrix. Above 530 K a 60 volume per cent superalloy matrix composite had a greater impact strength than a turbine blade superalloy, whereas below 530 K a hot worked 56 volume per cent composite had a greater impact strength than the superalloy.
The Study on the Mechanical Properties of Multi-walled Carbon Nanotube/Polypropylene Fibers
NASA Astrophysics Data System (ADS)
Youssefi, Mostafa; Safaie, Banafsheh
2018-06-01
Polypropylene (PP) is an important semicrystalline polymer with various applications. Polypropylene fibers containing 1 wt% of multi-walled carbon nanotube was spun using a conventional melt spinning apparatus. The produced fibers were drawn with varying levels of draw ratio. The mechanical properties of the composites were studied. Tensile strength and modulus of the composite fibers were increased with the increase in draw ratio. Molecular orientation and helical content of the composite fibers were increased after drawing. To conclude, tensile properties and molecular orientation of the composite fibers were higher than those of neat polypropylene fibers with the same draw ratio.
The Study on the Mechanical Properties of Multi-walled Carbon Nanotube/Polypropylene Fibers
NASA Astrophysics Data System (ADS)
Youssefi, Mostafa; Safaie, Banafsheh
2018-01-01
Polypropylene (PP) is an important semicrystalline polymer with various applications. Polypropylene fibers containing 1 wt% of multi-walled carbon nanotube was spun using a conventional melt spinning apparatus. The produced fibers were drawn with varying levels of draw ratio. The mechanical properties of the composites were studied. Tensile strength and modulus of the composite fibers were increased with the increase in draw ratio. Molecular orientation and helical content of the composite fibers were increased after drawing. To conclude, tensile properties and molecular orientation of the composite fibers were higher than those of neat polypropylene fibers with the same draw ratio.
NASA Technical Reports Server (NTRS)
Bowles, Kenneth J.
1991-01-01
A number of studies have investigated the thermo-oxidative behavior of polymer matrix composites. Two significant observations have been made from these research efforts: (1) fiber reinforcement has a significant effect on composite thermal stability; and (2) geometric effects must be considered when evaluating thermal aging data. A compilation of some results from these studies is presented, and this information shows the influence of the reinforcement fibers on the oxidative degradation of various polymer matrix composites. The polyimide PMR-15 was the matrix material that was used in these studies. The control composite material was reinforced with Celion 6000 graphite fiber. T-40R graphite fibers, along with some very stable ceramic fibers were selected as reinforcing fibers because of their high thermal stability. The ceramic fibers were Nicalon (silicon carbide) and Nextel 312 (alumina-silica-boron oxide). The mechanical properties of the two graphite fiber composites were significantly different, probably owing to variations in interfacial bonding between the fibers and the polyimide matrix. The Celion 6000/PMR-15 bond is very tight but the T-40/PMR-15 bond is less tight. Three oxidation mechanisms were observed: (1) the preferential oxidation of the Celion 6000 fiber ends at cut surfaces, leaving a surface of matrix material with holes where the fiber ends were originally situated; (2) preferential oxidation of the composite matrix; and (3) interfacial degradation by oxidation. The latter two mechanisms were also observed on fiber end cut surfaces. The fiber and interface attacks appeared to initiate interfiber cracking along these surfaces.
Monitoring Fiber Stress During Curing of Single Fiber Glass- and Graphite-Epoxy Composites
NASA Technical Reports Server (NTRS)
Madhukar, Madhu S.; Kosuri, Ranga P.; Bowles, Kenneth J.
1994-01-01
The difference in thermal expansion characteristics of epoxy matrices and graphite fibers can produce significant residual stresses in the fibers during curing of composite materials. Tests on single fiber glass-epoxy and graphite-epoxy composite specimens were conducted in which the glass and graphite fibers were preloaded in tension, and the epoxy matrix was cast around the fibers. The fiber tension was monitored while the matrix was placed around the fiber and subjected to the temperature-time curing cycle. Two mechanisms responsible for producing stress in embedded fibers were identified as matrix thermal expansion and contraction and matrix cure shrinkage. A simple analysis based on the change in fiber tension during the curing cycle was conducted to estimate the produced stresses. Experimental results on single fiber glass- and graphite-epoxy composites show that the fiber was subjected to significant tensile stresses when the temperature was raised from the first to the second dwell period. When initial fiber pretension is about 60 percent of the fiber failure load, these curing-induced stresses can cause tensile fracture of the embedded fiber.
Rajic, Slobodan; Muhs, Jeffrey D.
1996-01-01
A fiber optic connector and method for connecting composite materials within which optical fibers are imbedded. The fiber optic connector includes a capillary tube for receiving optical fibers at opposing ends. The method involves inserting a first optical fiber into the capillary tube and imbedding the unit in the end of a softened composite material. The capillary tube is injected with a coupling medium which subsequently solidifies. The composite material is machined to a desired configuration. An external optical fiber is then inserted into the capillary tube after fluidizing the coupling medium, whereby the optical fibers are coupled.
NASA Technical Reports Server (NTRS)
Galasso, F. S.; Scola, D. A.; Veltri, R. D.
1980-01-01
Graphite fibers released from composites during burning or an explosion caused shorting of electrical and electronic equipment. Silicon carbide, silica, silicon nitride and boron nitride were coated on graphite fibers to increase their electrical resistances. Resistances as high as three orders of magnitude higher than uncoated fiber were attained without any significant degradation of the substrate fiber. An organo-silicone approach to produce coated fibers with high electrical resistance was also used. Celion 6000 graphite fibers were coated with an organo-silicone compound, followed by hydrolysis and pyrolysis of the coating to a silica-like material. The shear and flexural strengths of composites made from high electrically resistant fibers were considerably lower than the shear and flexural strengths of composites made from the lower electrically resistant fibers. The lower shear strengths of the composites indicated that the coatings on these fibers were weaker than the coating on the fibers which were pyrolyzed at higher temperature.
Differences in interfacial bond strengths of graphite fiber-epoxy resin composites
NASA Technical Reports Server (NTRS)
Needles, H. L.
1985-01-01
The effect of epoxy-size and degree of cure on the interfacial bonding of an epoxy-amine-graphite fiber composite system is examined. The role of the fiber-resin interface in determining the overall mechanical properties of composites is poorly understood. A good interfacial adhesive bond is required to achieve maximum stress transfer to the fibers in composites, but at the same time some form of energy absorbing interfacial interaction is needed to achieve high fracture toughening. The incompatibility of these two processes makes it important to understand the nature and basic factors involved at the fiber-resin interface as stress is applied. The mechanical properties including interlaminar shear values for graphite fiber-resin composites are low compared to glass and boron-resin composites. These differences have been attributed to poor fiber-matrix adhesion. Graphite fibers are commonly subjected to post-treatments including application of organic sizing in order to improve their compatibility with the resin matrix and to protect the fiber tow from damage during processing and lay-up. In such processes, sized graphite fiber tow is impregnated with epoxy resin and then layed-up i nto the appropriate configuration. Following an extended ambient temperature cure, the graphite-resin composite structure is cured at elevated temperature using a programmed temperature sequence to cure and then cool the product.
21 CFR 878.3500 - Polytetrafluoroethylene with carbon fibers composite implant material.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Polytetrafluoroethylene with carbon fibers... Prosthetic Devices § 878.3500 Polytetrafluoroethylene with carbon fibers composite implant material. (a) Identification. A polytetrafluoroethylene with carbon fibers composite implant material is a porous device...
Mallow Fiber-Reinforced Epoxy Composites in Multilayered Armor for Personal Ballistic Protection
NASA Astrophysics Data System (ADS)
Nascimento, Lucio Fábio Cassiano; Louro, Luis Henrique Leme; Monteiro, Sergio Neves; Lima, Édio Pereira; da Luz, Fernanda Santos
2017-10-01
Lighter and less expensive polymer composites reinforced with natural fibers have been investigated as possible components of a multilayered armor system (MAS) for personal protection against high-velocity ammunition. Their ballistic performance was consistently found comparable with that of conventional Kevlar® synthetic aramid fiber. Among the numerous existing natural fibers with the potential for reinforcing polymer composites to replace Kevlar® in MAS, mallow fiber has not been fully investigated. Thus, the objective of this work is to evaluate the ballistic performance of epoxy composites reinforced with 30 vol.% of aligned mallow fibers as a second MAS layer backing a front ceramic plate. The results using high-velocity 7.62 ammunition show a similar indentation to a Kevlar® layer with the same thickness. An impedance matching calculation supports the similar ballistic performance of mallow fiber composite and Kevlar®. Reduced MAS costs associated with the mallow fiber composite are practical advantages over Kevlar®.
Properties of cellulose/Thespesia lampas short fibers bio-composite films.
Ashok, B; Reddy, K Obi; Madhukar, K; Cai, J; Zhang, L; Rajulu, A Varada
2015-01-01
Cellulose was dissolved in pre cooled environment friendly solvent (aq.7% sodium hydroxide+12% urea) and regenerated with 5%H2SO4 as coagulation bath. Using cellulose as matrix and alkali treated short natural fibers extracted from the newly identified Thespesia lampas plant as fillers the green composite films were prepared. The films were found to be non toxic. The effect of fiber loading on the tensile properties and thermal stability was studied. The fractographs indicated better interfacial bonding between the fibers and cellulose. The crystallinity of the composite films was found to be lower than the matrix and decreased with increasing fiber content. In spite of better interfacial bonding, the tensile properties of the composites were found to be lower than those of the matrix and decreased with increasing fiber content and this behavior was attributed to the random orientation of the fibers in the composites. The thermal stability of the composite films was higher than the matrix and increased with fiber content. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Qin, M. L.; Kong, H. J.; Yu, M. H.; Teng, C. Q.
2017-06-01
In this paper, aramid fibers were treated under supercritical carbon dioxide (SCCO2) with isocyanate terminated liquid nitrile rubber to improve the adhesion performances of vinyl epoxy composites. The interfacial shear strength (IFSS) of vinyl epoxy composites was investigated by micro-bond test. The results indicate that the surface modification of aramid fibers in SCCO2 was an efficient method to increase the adhesion performances between fibers and vinyl epoxy. Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), and scanning electron microscopy (SEM) were adopted to investigate the surface structure and composition of aramid fibers. The flexural strength and interlaminar shear strength (ILSS) of treated aramid fibers/vinyl epoxy composites was improved by 18.1% and 28.9% compared with untreated aramid fibers, respectively. Furthermore, the fractured surfaces of the composites were observed by SEM, which showed that the interfacial adhesion of composites has been remarkably changed.
Study of Natural Fiber Breakage during Composite Processing
NASA Astrophysics Data System (ADS)
Quijano-Solis, Carlos Jafet
Biofiber-thermoplastic composites have gained considerable importance in the last century. To provide mechanical reinforcement to the polymer, fibers must be larger than a critical aspect ratio (length-to-width ratio). However, biofibers undergo breakage in length or width during processing, affecting their final aspect ratio in the composites. In this study, influence on biofiber breakage by factors related to processing conditions, fiber morphology and the flow type was investigated through: a) experiments using an internal mixer, a twin-screw extruder (TSE) or a capillary rheometer; and b) a Monte Carlo computer simulation. Composites of thermomechanical fibers of aspen or wheat straw mixed with polypropylene were studied. Internal mixer experiments analyzed wheat straw and two batches of aspen fibers, named AL and AS. AL fibers had longer average length. Processing variables included the temperature, rotors speed and fiber concentration. TSE experiments studied AL and AS fiber composites under various screws speeds, temperatures and feeding rates of the polymer and fibers. Capillary rheometers experiments determined AL fiber breakage in shear and elongational flows for composites processed at different concentrations, temperatures, and strain rates. Finally, the internal mixer experimental results where compared to Monte Carlo simulation predictions. The simulation focused on fiber length breakage due to fiber-polymer interactions. Internal mixer results showed that final fiber average length depended almost solely on processing conditions while final fiber average width depended on both processing conditions and initial fiber morphology. In the TSE, processing conditions as well as initial fiber length influenced final average length. TSE results showed that the fiber concentration regime seems to influence the effect of processing variables on fiber breakage. Capillary rheometer experiments demonstrated that biofiber breakage happens in both elongational and shear flows. In some cases, percentage of biofiber breakage in elongational flow is higher. In general, simulation predictions of final average lengths were in good agreement with experiments, indicating the importance of fiber-polymer interactions on fiber breakage. The largest discrepancies were obtained at higher fiber concentration composites; these differences might be resolved, in future simulations, by including the effect of fiber-fiber interactions.
Composite impact strength improvement through a fiber/matrix interphase
NASA Technical Reports Server (NTRS)
Cavano, P. J.; Winters, W. E.
1975-01-01
Research was conducted to improve the impact strength and toughness of fiber/resin composites by means of a fiber coating interphase. Graphite fiber/epoxy resin composites were fabricated with four different fiber coating systems introduced in a matrix-fiber interphase. Two graphite fibers, a high strength and a high modulus type, were studied with the following coating systems: chemical vapor deposited boron, electroless nickel, a polyamide-imide resin and a thermoplastic polysulfone resin. Evaluation methods included the following tests: Izod, flexure, shear fracture toughness, longitudinal and transverse tensile, and transverse and longitudinal compression. No desirable changes could be effected with the high strength fiber, but significant improvements in impact performance were observed with the polyamide-imide resin coated high modulus fiber with no loss in composite modulus.
NASA Astrophysics Data System (ADS)
Hui, Chen; Qingyu, Cai; Jing, Wu; Xiaohong, Xia; Hongbo, Liu; Zhanjun, Luo
2018-05-01
Nylon 6 (PA6) grafted onto carbon fiber (CF) after chemical oxidation treatment was in an attempt to reinforce the mechanical properties of carbon fiber composites. Scanning electronic microscopy (SEM), Fourier transform infrared analysis (FT-IR), X-ray photoelectron spectroscope (XPS) and thermogravimetric analysis (TG) were selected to characterize carbon fibers with different surface treated. Experimental results showed that PA6 was grafted uniformly on the fiber surface through the anionic polymerization. A large number of functional groups were introduced to the fiber surface and the surface roughness was increased. After grafting PA6 on the oxidized carbon fibers, it played an important role on improving the interfacial adhesion between the fibers and the matrix by improving PA12 wettability, increasing chemical bonding and mechanical interlocking. Compared with the desized CF composites, the tensile strength of PA6-CF/PA12 composites was increased by 30.8% from 53.9 MPa to 70.2 MPa. All results indicated that grafting PA6 onto carbon fiber surface was an effective method to enhance the mechanical strength of carbon fiber/nylon 12 composites.
NASA Astrophysics Data System (ADS)
Liu, P. F.; Li, X. K.
2018-06-01
The purpose of this paper is to study micromechanical progressive failure properties of carbon fiber/epoxy composites with thermal residual stress by finite element analysis (FEA). Composite microstructures with hexagonal fiber distribution are used for the representative volume element (RVE), where an initial fiber breakage is assumed. Fiber breakage with random fiber strength is predicted using Monte Carlo simulation, progressive matrix damage is predicted by proposing a continuum damage mechanics model and interface failure is simulated using Xu and Needleman's cohesive model. Temperature dependent thermal expansion coefficients for epoxy matrix are used. FEA by developing numerical codes using ANSYS finite element software is divided into two steps: 1. Thermal residual stresses due to mismatch between fiber and matrix are calculated; 2. Longitudinal tensile load is further exerted on the RVE to perform progressive failure analysis of carbon fiber/epoxy composites. Numerical convergence is solved by introducing the viscous damping effect properly. The extended Mori-Tanaka method that considers interface debonding is used to get homogenized mechanical responses of composites. Three main results by FEA are obtained: 1. the real-time matrix cracking, fiber breakage and interface debonding with increasing tensile strain is simulated. 2. the stress concentration coefficients on neighbouring fibers near the initial broken fiber and the axial fiber stress distribution along the broken fiber are predicted, compared with the results using the global and local load-sharing models based on the shear-lag theory. 3. the tensile strength of composite by FEA is compared with those by the shear-lag theory and experiments. Finally, the tensile stress-strain curve of composites by FEA is applied to the progressive failure analysis of composite pressure vessel.
NASA Astrophysics Data System (ADS)
Liu, P. F.; Li, X. K.
2017-09-01
The purpose of this paper is to study micromechanical progressive failure properties of carbon fiber/epoxy composites with thermal residual stress by finite element analysis (FEA). Composite microstructures with hexagonal fiber distribution are used for the representative volume element (RVE), where an initial fiber breakage is assumed. Fiber breakage with random fiber strength is predicted using Monte Carlo simulation, progressive matrix damage is predicted by proposing a continuum damage mechanics model and interface failure is simulated using Xu and Needleman's cohesive model. Temperature dependent thermal expansion coefficients for epoxy matrix are used. FEA by developing numerical codes using ANSYS finite element software is divided into two steps: 1. Thermal residual stresses due to mismatch between fiber and matrix are calculated; 2. Longitudinal tensile load is further exerted on the RVE to perform progressive failure analysis of carbon fiber/epoxy composites. Numerical convergence is solved by introducing the viscous damping effect properly. The extended Mori-Tanaka method that considers interface debonding is used to get homogenized mechanical responses of composites. Three main results by FEA are obtained: 1. the real-time matrix cracking, fiber breakage and interface debonding with increasing tensile strain is simulated. 2. the stress concentration coefficients on neighbouring fibers near the initial broken fiber and the axial fiber stress distribution along the broken fiber are predicted, compared with the results using the global and local load-sharing models based on the shear-lag theory. 3. the tensile strength of composite by FEA is compared with those by the shear-lag theory and experiments. Finally, the tensile stress-strain curve of composites by FEA is applied to the progressive failure analysis of composite pressure vessel.
Inorganic Polymer Matrix Composite Strength Related to Interface Condition
Radford, Donald W.; Grabher, Andrew; Bridge, John
2009-01-01
Resin transfer molding of an inorganic polymer binder was successfully demonstrated in the preparation of ceramic fiber reinforced engine exhaust valves. Unfortunately, in the preliminary processing trials, the resulting composite valves were too brittle for in-engine evaluation. To address this limited toughness, the effectiveness of a modified fiber-matrix interface is investigated through the use of carbon as a model material fiber coating. After sequential heat treatments composites molded from uncoated and carbon-coated fibers are compared using room temperature 3-point bend testing. Carbon-coated Nextel fiber reinforced geopolymer composites demonstrated a 50% improvement in strength, versus that of the uncoated fiber reinforced composites, after the 250 °C postcure.
Metal matrix coated fiber composites and the methods of manufacturing such composites
Weeks, Jr., Joseph K.; Gensse, Chantal
1993-01-01
A fiber coating which allows ceramic or metal fibers to be wetted by molten metals is disclosed. The coating inhibits degradation of the physical properties caused by chemical reaction between the fiber and the coating itself or between the fiber and the metal matrix. The fiber coating preferably includes at least a wetting layer, and in some applications, a wetting layer and a barrier layer between the fiber and the wetting layer. The wetting layer promotes fiber wetting by the metal matrix. The barrier layer inhibits fiber degradation. The fiber coating permits the fibers to be infiltrated with the metal matrix resulting in composites having unique properties not obtainable in pure materials.
Metal matrix coated fiber composites and the methods of manufacturing such composites
Weeks, J.K. Jr.; Gensse, C.
1993-09-14
A fiber coating which allows ceramic or metal fibers to be wetted by molten metals is disclosed. The coating inhibits degradation of the physical properties caused by chemical reaction between the fiber and the coating itself or between the fiber and the metal matrix. The fiber coating preferably includes at least a wetting layer, and in some applications, a wetting layer and a barrier layer between the fiber and the wetting layer. The wetting layer promotes fiber wetting by the metal matrix. The barrier layer inhibits fiber degradation. The fiber coating permits the fibers to be infiltrated with the metal matrix resulting in composites having unique properties not obtainable in pure materials. 8 figures.
SiC/SiC Composites: The Effect of Fiber Type and Fiber Architecture on Mechanical Properties
NASA Technical Reports Server (NTRS)
Morscher, Gregory N.
2008-01-01
Woven SiC/SiC composites represent a broad family of composites with a broad range of properties which are of interest for many energy-based and aero-based applications. Two important features of SiC/SiC composites which one must consider are the reinforcing fibers themselves and the fiber-architecture they are formed into. The range of choices for these two features can result in a wide range of elastic, mechanical, thermal, and electrical properties. In this presentation, it will be demonstrated how the effect of fiber-type and fiber architecture effects the important property of "matrix cracking stress" for slurry-cast melt-infiltrated SiC matrix composites, which is often considered to be a critical design parameter for this system of composites.
Fatigue damage accumulation in various metal matrix composites
NASA Technical Reports Server (NTRS)
Johnson, W. S.
1987-01-01
The purpose of this paper is to review some of the latest understanding of the fatigue behavior of continuous fiber reinforced metal matrix composites. The emphasis is on the development of an understanding of different fatigue damage mechanisms and why and how they occur. The fatigue failure modes in continuous fiber reinforced metal matrix composites are controlled by the three constituents of the system: fiber, matrix, and fiber/matrix interface. The relative strains to fatigue failure of the fiber and matrix will determine the failure mode. Several examples of matrix, fiber, and self-similar damage growth dominated fatigue damage are given for several metal matrix composite systems. Composite analysis, failure modes, and damage modeling are discussed. Boron/aluminum, silicon-carbide/aluminum, FP/aluminum, and borsic/titanium metal matrix composites are discussed.
Graphitized-carbon fiber/carbon char fuel
Cooper, John F [Oakland, CA
2007-08-28
A method for recovery of intact graphitic fibers from fiber/polymer composites is described. The method comprises first pyrolyzing the graphite fiber/polymer composite mixture and then separating the graphite fibers by molten salt electrochemical oxidation.
NASA Astrophysics Data System (ADS)
Jain, Naman; Singh, Vinay Kumar; Chauhan, Sakshi
2017-12-01
Basalt fiber is emerging out the new reinforcing material for composites. To overcome some of the disadvantages of fibers such as poor bonding to polymers, low thermal stability and high moisture absorption fiber characteristics are modified with chemical, thermal and additive treatments. Chemical treatment corrosive resistance to alkali and acid were investigated which were used to clean and modify the surface of fiber for higher bonding with resins. To improve the thermal stability and reduce moisture uptake thermal treatment such as plasma and non thermal plasma were used which increased the surface roughness and change the chemical composition of surface of basalt fiber. Additive treatment is used to improve the mechanical properties of fibers, in basalt fiber additive treatment was done with SiO2 additive because of its chemical composition which contains major content of SiO2. In present investigation review on the effect of different treatment such as chemical, thermal and additive were studied. Effect of these treatment on chemical composition of the surface of basalt fiber and corrosion to acidic and alkali solution were studied with their effect on mechanical properties of basalt fiber and their composite.
NASA Astrophysics Data System (ADS)
Li, Min; Liu, Hongxin; Gu, Yizhuo; Li, Yanxia; Zhang, Zuoguang
2014-01-01
The changes of interfacial bonding of three types of carbon fibers/epoxy resin composite as well as their corresponding desized carbon fiber composites subjecting to hygrothermal conditions were investigated by means of single fiber fragmentation test. The interfacial fracture energy was obtained to evaluate the interfacial bonding before and after boiling water aging. The surface characteristics of the studied carbon fiber were characterized using X-ray photoelectron spectroscopy. The effects of activated carbon atoms and silicon element at carbon fiber surface on the interfacial hygrothermal resistance were further discussed. The results show that the three carbon fiber composites with the same resin matrix possess different hygrothermal resistances of interface and the interfacial fracture energy after water aging can not recovery to the level of raw dry sample (irreversible changes) for the carbon fiber composites containing silicon. Furthermore, the activated carbon atoms have little impact on the interfacial hygrothermal resistance. The irreversible variations of interfacial bonding and the differences among different carbon fiber composites are attributed to the silicon element on the carbon fiber bodies, which might result in hydrolyzation in boiling water treatment and degrade interfacial hygrothermal resistance.
Thermomechanical Property Data Base Developed for Ceramic Fibers
NASA Technical Reports Server (NTRS)
1996-01-01
A key to the successful application of metal and ceramic composite materials in advanced propulsion and power systems is the judicious selection of continuous-length fiber reinforcement. Appropriate fibers can provide these composites with the required thermomechanical performance. To aid in this selection, researchers at the NASA Lewis Research Center, using in-house state-of-the-art test facilities, developed an extensive data base of the deformation and fracture properties of commercial and developmental ceramic fibers at elevated temperatures. Lewis' experimental focus was primarily on fiber compositions based on silicon carbide or alumina because of their oxidation resistance, low density, and high modulus. Test approaches typically included tensile and flexural measurements on single fibers or on multifilament tow fibers in controlled environments of air or argon at temperatures from 800 to 1400 C. Some fiber specimens were pretreated at composite fabrication temperatures to simulate in situ composite conditions, whereas others were precoated with potential interphase and matrix materials.
Thermal conductivity and thermal expansion of graphite fiber/copper matrix composites
NASA Technical Reports Server (NTRS)
Ellis, David L.; Mcdanels, David L.
1991-01-01
The high specific conductivity of graphite fiber/copper matrix (Gr/Cu) composites offers great potential for high heat flux structures operating at elevated temperatures. To determine the feasibility of applying Gr/Cu composites to high heat flux structures, composite plates were fabricated using unidirectional and cross-plied pitch-based P100 graphite fibers in a pure copper matrix. Thermal conductivity of the composites was measured from room temperature to 1073 K, and thermal expansion was measured from room temperature to 1050 K. The longitudinal thermal conductivity, parallel to the fiber direction, was comparable to pure copper. The transverse thermal conductivity, normal to the fiber direction, was less than that of pure copper and decreased with increasing fiber content. The longitudinal thermal expansion decreased with increasing fiber content. The transverse thermal expansion was greater than pure copper and nearly independent of fiber content.
Thermal conductivity and thermal expansion of graphite fiber-reinforced copper matrix composites
NASA Technical Reports Server (NTRS)
Ellis, David L.; Mcdanels, David L.
1993-01-01
The high specific conductivity of graphite fiber/copper matrix (Gr/Cu) composites offers great potential for high heat flux structures operating at elevated temperatures. To determine the feasibility of applying Gr/Cu composites to high heat flux structures, composite plates were fabricated using unidirectional and cross-plied pitch-based P100 graphite fibers in a pure copper matrix. Thermal conductivity of the composites was measured from room temperature to 1073 K, and thermal expansion was measured from room temperature to 1050 K. The longitudinal thermal conductivity, parallel to the fiber direction, was comparable to pure copper. The transverse thermal conductivity, normal to the fiber direction, was less than that of pure copper and decreased with increasing fiber content. The longitudinal thermal expansion decreased with increasing fiber content. The transverse thermal expansion was greater than pure copper and nearly independent of fiber content.
Effect of natural fibers on mechanical properties of green cement mortar
NASA Astrophysics Data System (ADS)
AL-Zubaidi, Aseel B.
2018-05-01
Natural fibers of banana, reed, palm and coconut were used to reinforce cement composite. Optical microscopy showed that the prepared fibers are different in size and morphology. Nearly equiaxed, ribbon-like and nearly cylindrical morphologies were observed. Each of the utilized natural fibers was incorporated in the cement matrix at 0, 0.25, 0.5, 0.75 and 1.0 wt% and cured for 28 days. The scanning electron micrographs for the 1.0 wt% -reinforced composite showed differences in porosity, grain size and shape. Each of the utilized fibers has different effect on the microstructure of the cement composite that depends on the fiber size and morphology. Water absorption, thermal conductivity, bending strength, hardness and compression strengths were measured for the reinforced cement composite. It is found that the final physical and mechanical properties of the set cement composite depend on the fiber content and fiber type through the differences in their sizes and morphologies.
Rotational 3D printing of damage-tolerant composites with programmable mechanics.
Raney, Jordan R; Compton, Brett G; Mueller, Jochen; Ober, Thomas J; Shea, Kristina; Lewis, Jennifer A
2018-02-06
Natural composites exhibit exceptional mechanical performance that often arises from complex fiber arrangements within continuous matrices. Inspired by these natural systems, we developed a rotational 3D printing method that enables spatially controlled orientation of short fibers in polymer matrices solely by varying the nozzle rotation speed relative to the printing speed. Using this method, we fabricated carbon fiber-epoxy composites composed of volume elements (voxels) with programmably defined fiber arrangements, including adjacent regions with orthogonally and helically oriented fibers that lead to nonuniform strain and failure as well as those with purely helical fiber orientations akin to natural composites that exhibit enhanced damage tolerance. Our approach broadens the design, microstructural complexity, and performance space for fiber-reinforced composites through site-specific optimization of their fiber orientation, strain, failure, and damage tolerance. Copyright © 2018 the Author(s). Published by PNAS.
Starch/polycaprolactone-containing composites reinforced with pre-treated sisal fibers
USDA-ARS?s Scientific Manuscript database
Composites based on thermoplastic cornstarch (TPS) and polycaprolactone (PCL) were reinforced with 5, 10 and 20% (wt%) of pretreated sisal fiber. The impact of the addition of sisal fiber on the mechanical, thermal and morphological properties of composites was investigated. Addition of 5-10% fibers...
Sugama, Toshifumi
1990-01-01
The interfacial bond characteristics between carbon fiber and a cement matrix, in high temperature fiber-reinforced cementitious composite systems, can be improved by the oxidative treatment of the fiber surfaces. Compositions and the process for producing the compositions are disclosed.
Effect of kenaf fiber age on PLLA composite properties
USDA-ARS?s Scientific Manuscript database
The age of the kenaf (Hibiscus cannabinus L.) fiber dictates its pore architecture. The impact of increasing age of plant fiber on the corresponding composite can impact material selection for enhanced composite performance. Bast fibers stems of kenaf, a warm season tropical herbaceous annual plant ...
Sonnenfeld, Camille; Sulejmani, Sanne; Geernaert, Thomas; Eve, Sophie; Lammens, Nicolas; Luyckx, Geert; Voet, Eli; Degrieck, Joris; Urbanczyk, Waclaw; Mergo, Pawel; Becker, Martin; Bartelt, Hartmut; Berghmans, Francis; Thienpont, Hugo
2011-01-01
Fiber Bragg gratings written in highly birefringent microstructured optical fiber with a dedicated design are embedded in a composite fiber-reinforced polymer. The Bragg peak wavelength shifts are measured under controlled axial and transversal strain and during thermal cycling of the composite sample. We obtain a sensitivity to transversal strain that exceeds values reported earlier in literature by one order of magnitude. Our results evidence the relevance of using microstructured optical fibers for structural integrity monitoring of composite material structures. PMID:22163755
Fabrication of CH₃NH₃PbI₃/PVP Composite Fibers via Electrospinning and Deposition.
Chao, Li-Min; Tai, Ting-Yu; Chen, Yueh-Ying; Lin, Pei-Ying; Fu, Yaw-Shyan
2015-08-21
In our study, one-dimensional PbI₂/polyvinylpyrrolidone (PVP) composition fibers have been prepared by using PbI₂ and PVP as precursors dissolved in N,N-dimethylformamide via a electrospinning process. Dipping the fibers into CH₃NH₃I solution changed its color, indicating the formation of CH₃NH₃PbI₃, to obtain CH₃NH₃PbI₃/PVP composite fibers. The structure, morphology and composition of the all as-prepared fibers were characterized by using X-ray diffraction and scanning electron microscopy.
A new fiber sensor based on graphene coating technique for wearable equipment
NASA Astrophysics Data System (ADS)
Wu, Ensen; Zhang, Jinnan; Qiao, Min; Cao, Yanghua; Wang, Qi; Ren, Xiaomin; Zuo, Yong
2018-02-01
We propose and implement a graphene-based composite fiber sensor in this paper. The advantages of this composite fiber lie in simple and practicable fabrication, high sensitivity to tensile strain deformation, wide maximal sensing range. The experiment shows that the composite fiber can monitor small signals of the body and massive movements in conventionality condition such as human pulse and the movement of elbow. This suggests that this graphene-based composite fiber has a broad prospect in health monitoring and movement recognition.
Carbon fiber composites for cryogenic filament-wound vessels
NASA Technical Reports Server (NTRS)
Larsen, J. V.; Simon, R. A.
1972-01-01
Advanced unidirectional and bidirectional carbon fiber/epoxy resin composites were evaluated for physical and mechanical properties over a cryogenic to room temperature range for potential application to cryogenic vessels. The results showed that Courtaulds HTS carbon fiber was the superior fiber in terms of cryogenic strength properties in epoxy composites. Of the resin systems tested in ring composites, CTBN/ERLB 4617 exhibited the highest composite strengths at cryogenic temperatures, but very low interlaminar shear strengths at room temperature. Tests of unidirectional and bidirectional composite bars showed that the Epon 828/Empol 1040 resin was better at all test temperatures. Neither fatigue cycling nor thermal shock had a significant effect on composite strengths or moduli. Thermal expansion measurements gave negative values in the fiber direction and positive values in the transverse direction of the composites.
NASA Astrophysics Data System (ADS)
Prasad Nanda, Bishnu; Satapathy, Alok
2018-03-01
This paper reports on the dielectric and thermal properties of hair fibers reinforced epoxy composites. Hair is an important part of human body which also offers protection to the human body. It is also viewed as a biological waste which is responsible for creating environmental pollution due to its low decomposition rate. But at the same time it has unique microstructural, mechanical and thermal properties. In the present work, epoxy composites are made by solution casting method with different proportions of short hair fiber (SHF). Effects of fiber content on the thermal conductivity and dielectric constant of epoxy resin are studied. Thermal conductivities of the composites are obtained using a UnithermTM Model 2022 tester. An HIOKI-3532-50 Hi Tester Elsier Analyzer is used for measuring the capacitance of the epoxy-SHF composite, from which dielectric constant (Dk) of the composite are calculated. A reduction in thermal conductivity of the composite is noticed with the increase in wt. % of fiber. The dielectric constant value of the composites also found to be significantly affected by the fiber content.
Thermomechanical Performance of C and SiC Multilayer, Fiber-Reinforced, CVI SiC Matrix Composites
NASA Technical Reports Server (NTRS)
Morscher, Gregory N.; Singh, Mrityunjay
2004-01-01
Hybrid fiber approaches have been attempted in the past to alloy desirable properties of different fiber-types for mechanical properties, thermal stress management, and oxidation resistance. Such an approach has potential for the CrSiC and SiCrSiC composite systems. SiC matrix composites with different stacking sequences of woven C fiber (T300) layers and woven Sic fiber (Hi-NicalonTM) layers were fabricated using the standard CVI process. Delamination occurred to some extent due to thermal mismatch for all of the composites. However, for the composites with a more uniform stacking sequence, minimal delamination occurred, enabling tensile properties to be determined at room temperature and elevated temperatures (stress-rupture in air). Composites were seal-coated with a CVI SiC layer as well as a proprietary C-B-Si (CBS) layer. Definite improvement in rupture behavior was observed in air for composites with increasing SiC fiber content and a CBS layer. The results will be compared to standard C fiber reinforced CVI SiC matrix and Hi-Nicalon reinforced CVI SiC matrix composites.
Transverse thermal expansion of carbon fiber/epoxy matrix composites
NASA Technical Reports Server (NTRS)
Helmer, J. F.; Diefendorf, R. J.
1983-01-01
Thermal expansion coefficients and moduli of elasticity have been determined experimentally for a series of epoxy-matrix composites reinforced with carbon and Kevlar fibers. It is found that in the transverse direction the difference between the properties of the fiber and the matrix is not as pronounced as in the longitudinal direction, where the composite properties are fiber-dominated. Therefore, the pattern of fiber packing tends to affect transverse composite properties. The transverse properties of the composites tested are examined from the standpoint of the concept of homogeneity defined as the variation of packing (or lack thereof) throughout a sample.
Method for forming fibrous silicon carbide insulating material
Wei, G.C.
1983-10-12
A method whereby silicon carbide-bonded SiC fiber composites are prepared from carbon-bonded C fiber composites is disclosed. Carbon-bonded C fiber composite material is treated with gaseous silicon monoxide generated from the reaction of a mixture of colloidal silica and carbon black at an elevated temperature in an argon atmosphere. The carbon in the carbon bond and fiber is thus chemically converted to SiC resulting in a silicon carbide-bonded SiC fiber composite that can be used for fabricating dense, high-strength high-toughness SiC composites or as thermal insulating materials in oxidizing environments.
Method for forming fibrous silicon carbide insulating material
Wei, George C.
1984-01-01
A method whereby silicon carbide-bonded SiC fiber composites are prepared from carbon-bonded C fiber composites is disclosed. Carbon-bonded C fiber composite material is treated with gaseous silicon monoxide generated from the reaction of a mixture of colloidal silica and carbon black at an elevated temperature in an argon atmosphere. The carbon in the carbon bond and fiber is thus chemically converted to SiC resulting in a silicon carbide-bonded SiC fiber composite that can be used for fabricating dense, high-strength high-toughness SiC composites or as thermal insulating materials in oxidizing environments.
NASA Astrophysics Data System (ADS)
Bowman, Cheryl Lynne
Titanium composites reinforced with SiC fibers in a uniaxial direction are being considered for various high temperature applications which require high specific strength or stiffness in the primary loading direction. However the very low tensile and creep strength of these composites in the transverse direction (loading perpendicular to the fiber axis) limits their use in many practical applications. Recent advances in composite fabrication techniques have provided not only better control of fiber volume fraction and distribution, but also the ability to control the relative fiber placement. The goal of this research was produce continuously reinforced SiC/Ti composites with precise fiber arrangement in order to ascertain the significance of fiber arrangements on transverse mechanical properties. In this study, TIMETAL 21S and Ti-6-4 composites reinforced with SCS-6 SiC fibers were produced with six distinct fiber placement arrangements. The effect of fiber placement on uniaxial tensile and creep behaviors was assessed and the results compared to analytical predictions. Consistent with analytical predictions, the fiber arrangements used in this study did not significantly change the longitudinal tensile behavior, but differences were obtained in the transverse loading response. For example, a diamond (non-equilateral triangle) fiber packing was found to have a higher transverse ultimate tensile strength and better transverse creep resistance than a rectangular fiber packing arrangement for a given volume fraction and fiber spacing (within-ply vs. between-ply). Initially this result appeared to be in contrast to previous computational and analytical simulations which predicted more favorable mechanical behavior for rectangular-type arrangements. However, this experimental/predictive conflict was resolved, in part, by simply defining a fiber spacing ratio which could describe both rectangular type and diamond-type arrangements. The computationally efficient Micromechanical Analysis Code based on the Generalized Method of Cells captured the correct behavior trends for these fiber arrangements and thus can be used to estimate the optimum fiber arrangement for a given materials system. Although this research utilized SiC/titanium alloy composites, the results should be relevant to any composite with a continuous reinforcement, a ductile matrix, and a finite fiber/matrix interfacial bond strength.
Natural Fiber Composite Retting, Preform Manufacture and Molding (Project 18988/Agreement 16313)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simmons, Kevin L.; Howe, Daniel T.; Laddha, Sachin
2009-12-31
Plant-based natural fibers can be used in place of glass in fiber reinforced automotive composites to reduce weight, cost and provide environmental benefits. Current automotive applications use natural fibers in injection molded thermoplastics for interior, non-structural applications. Compression molded natural fiber reinforced thermosets have the opportunity to extend natural fiber composite applications to structural and semi-structural parts and exterior parts realizing further vehicle weight savings. The development of low cost molding and fiber processing techniques for large volumes of natural fibers has helped in understanding the barriers of non-aqueous retting. The retting process has a significant effect on the fibermore » quality and its processing ability that is related to the natural fiber composite mechanical properties. PNNL has developed a compression molded fiber reinforced composite system of which is the basis for future preforming activities and fiber treatment. We are using this process to develop preforming techniques and to validate fiber treatment methods relative to OEM provided application specifications. It is anticipated for next fiscal year that demonstration of larger quantities of SMC materials and molding of larger, more complex components with a more complete testing regimen in coordination with Tier suppliers under OEM guidance.« less
Mechanical properties of green composites based on thermoplastic starch
NASA Astrophysics Data System (ADS)
Fornes, F.; Sánchez-Nácher, L.; Fenollar, O.; Boronat, T.; Garcia-Sanoguera, D.
2010-06-01
The present work is focused on study of "green composites" elaborated from thermoplastic starch (TPS) as polymer matrix and a fiber from natural origin (rush) as reinforced fiber. The effect of the fiber content has been studied by means of the mechanical properties. The composite resulting presents a lack of interaction between matrix and fiber that represents a performance decrease. However the biodegradability behavior of the resulting composite raise this composite as useful an industrial level.
Three-dimensional printing of continuous-fiber composites by in-nozzle impregnation
Matsuzaki, Ryosuke; Ueda, Masahito; Namiki, Masaki; Jeong, Tae-Kun; Asahara, Hirosuke; Horiguchi, Keisuke; Nakamura, Taishi; Todoroki, Akira; Hirano, Yoshiyasu
2016-01-01
We have developed a method for the three-dimensional (3D) printing of continuous fiber-reinforced thermoplastics based on fused-deposition modeling. The technique enables direct 3D fabrication without the use of molds and may become the standard next-generation composite fabrication methodology. A thermoplastic filament and continuous fibers were separately supplied to the 3D printer and the fibers were impregnated with the filament within the heated nozzle of the printer immediately before printing. Polylactic acid was used as the matrix while carbon fibers, or twisted yarns of natural jute fibers, were used as the reinforcements. The thermoplastics reinforced with unidirectional jute fibers were examples of plant-sourced composites; those reinforced with unidirectional carbon fiber showed mechanical properties superior to those of both the jute-reinforced and unreinforced thermoplastics. Continuous fiber reinforcement improved the tensile strength of the printed composites relative to the values shown by conventional 3D-printed polymer-based composites. PMID:26965201
Creation of smart composites using an embroidery machine
NASA Astrophysics Data System (ADS)
Torii, Nobuhiro; Oka, Kosuke; Ikeda, Tadashige
2016-04-01
A smart composite with functional fibers and reinforcement fibers optimally placed with an embroidery machine was created. Fiber orientation affects mechanical properties of composite laminates significantly. Accordingly, if the fibers can be placed along a desired curved path, fiber reinforced plastic (FRP) structures can be designed more lightly and more sophisticatedly. To this end a tailored fiber placement method using the embroidery machine have been studied. To add functions to the FRP structures, shape memory alloy (SMA) wires were placed as functional fibers. First, for a certain purpose the paths of the reinforcement fibers and the SMA wires were simultaneously optimized in analysis. Next, the reinforcement fibers and tubes with the SMA wires were placed on fabrics by using the embroidery machine and this fabric was impregnated with resin by using the vacuum assisted resin transfer molding method. This smart composite was activated by applying voltage to the SMA wires. Fundamental properties of the smart composite were examined and the feasibility of the proposed creation method was shown.
Stability of Glass Fiber-Plastic Composites
1974-11-01
miniiiii’ 5 0712 01016774 9 x TECHNICA. . LIBRARY Jt U*Al>/l 1 Technical Report RL-75-6 STABILITY OF GLASS FIBER -PLASTIC COMPOSITES Wartan A...Subtitle) STABILITY OF GLASS FIBER -PLASTIC COMPOSITES 5. TYPE OF REPORT & PERIOD COVERED Technical Report 6. PERFORMING ORG. REPORT NUMBER 7...Exploratory research was conducted to determine the stages and nature of degradation of glass fiber -plastic composite systems under various environmental
Craig Merrill Clemons; Anand R. Sanadi
2007-01-01
An instrumented Izod test was used to investigate the effects of fiber content, coupling agent, and temperature on the impact performance of kenaf fiber reinforced polypropylene (PP). Composites containing 0-60% (by weight) kenaf fiber and 0 or 2% maleated polypropylene (MAPP) and PP/wood flour composites were tested at room temperature and between -50 °C and +...
USDA-ARS?s Scientific Manuscript database
Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV)/bamboo pulp fiber composites were melt-compounded and injection-molded. Tensile, impact and dynamic mechanical properties of the composites were studied. In contrast to many other short natural fiber reinforced biocomposites which demonstrate decre...
Sugama, Toshifumi.
1990-05-22
The interfacial bond characteristics between carbon fiber and a cement matrix, in high temperature fiber-reinforced cementitious composite systems, can be improved by the oxidative treatment of the fiber surfaces. Compositions and the process for producing the compositions are disclosed. 2 figs.
NASA Technical Reports Server (NTRS)
Bowles, Kenneth J.
1990-01-01
An experimental study was conducted to measure the thermo-oxidative stability of PMR-15 polymer matrix composites reinforced with various fibers and to observe differences in the way they degrade in air. The fibers that were studied included graphite and the thermally stable Nicalon and Nextel ceramic fibers. Weight loss rates for the different composites were assessed as a function of mechanical properties, specimen geometry, fiber sizing, and interfacial bond strength. Differences were observed in rates of weight loss, matrix cracking, geometry dependency, and fiber-sizing effects. It was shown that Celion 6000 fiber-reinforced composites do not exhibit a straight-line Arrhenius relationship at temperatures above 316 C.
NASA Astrophysics Data System (ADS)
Shakeri, Alireza; Ghasemian, Ali
2010-04-01
This study aims to investigate the moisture absorption of recycled newspaper fiber and recycled newspaper-glass fiber hybrid reinforced polypropylene composites to study their suitability in outdoor applications. In this work composite materials were made from E-glass fiber (G), recycled newspaper (NP) and polypropylene (PP), by using internal mixing and hot-pressing molding. Long-term water absorption (WA) and thickness swelling (TS) kinetics of the composites was investigated with water immersion. It was found that the WA and TS increase with NP content in composite and water immersion time before an equilibrium condition was reached. Composites made from the NP show comparable results as those made of the hybrid fiber. The results suggest that the water absorption and thickness swelling composite decrease with increasing glass fiber contents in hybrid fiber composite. It is interesting to find that the WA and TS can be reduced significantly with incorporation of a coupling agent (maleated polypropylene) in the composite formulation. Further studies were conducted to model the water diffusion and thickness swelling of the composites. Diffusion coefficients and swelling rate parameters in the models were obtained by fitting the model predictions with the experimental data.
Composite structural materials
NASA Technical Reports Server (NTRS)
Loewy, R. G.; Wiberley, S. E.
1985-01-01
Various topics relating to composite structural materials for use in aircraft structures are discussed. The mechanical properties of high performance carbon fibers, carbon fiber-epoxy interface bonds, composite fractures, residual stress in high modulus and high strength carbon fibers, fatigue in composite materials, and the mechanical properties of polymeric matrix composite laminates are among the topics discussed.
Development of Ceramic Fibers for Reinforcement in Composite Materials
NASA Technical Reports Server (NTRS)
Gates, L. E.; Lent, W. E.; Teague, W. T.
1961-01-01
Refinements of the vertical arc fiberizing apparatus resulted in its ability to fiberize very different refractory glasses having wide ranges of properties. Although the apparatus, was originally designed as a laboratory research tool for the evaluation of many compositions daily, up to one quarter pound of fibers of a single composition could be produced in an 8-hour day. Fibers up to six and a half feet long were produced with the apparatus. Studies were conducted of two methods of fiberizing refractory glasses requiring rapid freezing from the melt. The first method consisted of fiberizing droplets of molten glass passing through an annular nozzle. The second method consisted of reconstructing the annular nozzle in. the shape of a horseshoe to achieve a shorter delay in blasting a molten droplet from the tip of a rod. Both methods were judged feasible for producing fibers of glasses requiring rapid freezing. The first method would be more amenable to volume fiber production. Studies of induction heating for fiber formation did not lead to its designation as a very efficient heating method. Problems. remain to be solved, in the design of a suitable susceptor for a higher heating rate, in protecting the susceptor from oxidation with an inert gas, in contamination of the melt from a refractory crucible, and in the protective radiation shielding of the induction concentrator coil. It is not considered practical to continue studies of this heating method. In the course of this program 151 refractory glass compositions were evaluated for fiber, forming characteristics. Of the various types of materials studied, the following showed promise in producing acceptable refractory fibers: sIlica- spinel (magnesium aluminate), silica- spinel-zirconia, silica-zirconia, silica-zinc spinel, aluminum phosphate glasses, and fluoride glasses. Compositions which did not produce acceptable fibers were high zirconia materials, barium spinels, and calcium aluminates. Improvements in the. testing apparatus for single fiber tensile strength increased the precision. of tests conducted on nine fibers. The highest mean tensile strength, a value of 295,000 pounds per square inch, was obtained with R-141 fibers. Treatment of R-74 fibers with anhydrous Linde A-1100 silane finish improved its mean fiber tensile strength by 25 percent. The lapse of time after fiber formation had no measurable effect on tensile strength. A static heating test conducted with various high melting fibers indicated that Fiberfrax and R-108 underwent no significant changes in bulk volume or resiliency on exposure to 2750 degrees Fahrenheit (1510 degrees Centigrade) in an oxidizing atmosphere. For fiber-resin composition fabrication, ten fiber materials were selected on the bases of high fiber yield, fusion temperature, and type of composition. Fiberfrax, a commercial ceramic fiber, was included for comparison. A new, more effective method of removing pellets from blown fibers was developed. The de-pelletized fibers were treated with a silane finish and felted into ten-inch diameter felts prior to resin impregnation. Composites containing 30 percent by weight of CTL 91-LD phenolic resin were molded under high pressure from the impregnated felts and post-cured to achieve optimum properties. Flexural strength, flexural modules of elasticity, and punch shear strength tests were conducted on the composite specimens. The highest average flexural strength obtained was 19,958 pounds per square inch with the R-74-fiber-resin composite. This compares very favorably with the military specification of 13,000 pounds per square inch flexural strength for randomly oriented fiber reinforced composites. The highest punch shear strength (11,509 pounds per square inch) was obtained with the R-89 fiber-resin composite. The effects of anhydrous fiber finishes on composite strength were not clearly indicated. Plasma arc tests at a heat flux of 550 British Thermal Units per square foot per second on eight composite materials indicated ablation rates generally equivalent to Fiberglas-Micarta No. 259-2. The composite reinforced with R-99 fibers had an average ablation rate of 0.008 inch per second and appears quite promising on the basis of these tests. Preliminary studies for processing fibers into yarn and fabric were conducted with R-99 fibers. The use of certain organic gums aided in 2 fabricating by hand several relatively strong yarns and a crude fabric swatch. This indicated the practicality of developing techniques for processing these fibers into yarn and fabric without significant damage to the fibers.
Multi-material Preforming of Structural Composites
DOE Office of Scientific and Technical Information (OSTI.GOV)
Norris, Robert E.; Eberle, Cliff C.; Pastore, Christopher M.
2015-05-01
Fiber-reinforced composites offer significant weight reduction potential, with glass fiber composites already widely adopted. Carbon fiber composites deliver the greatest performance benefits, but their high cost has inhibited widespread adoption. This project demonstrates that hybrid carbon-glass solutions can realize most of the benefits of carbon fiber composites at much lower cost. ORNL and Owens Corning Reinforcements along with program participants at the ORISE collaborated to demonstrate methods for produce hybrid composites along with techniques to predict performance and economic tradeoffs. These predictions were then verified in testing coupons and more complex demonstration articles.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Westman, Matthew P.; Fifield, Leonard S.; Simmons, Kevin L.
The need for renewable fiber reinforced composites has never been as prevalent as it currently is. Natural fibers offer both cost savings and a reduction in density when compared to glass fibers. Though the strength of natural fibers is not as great as glass, the specific properties are comparable. Currently natural fiber composites have two issues that need to be addressed: resin compatibility and water absorption. The following preliminary research has investigated the use of Kenaf, Hibiscus cannabinus, as a possible glass replacement in fiber reinforced composites.
Rajic, S.; Muhs, J.D.
1996-10-22
A fiber optic connector and method for connecting composite materials within which optical fibers are imbedded are disclosed. The fiber optic connector includes a capillary tube for receiving optical fibers at opposing ends. The method involves inserting a first optical fiber into the capillary tube and imbedding the unit in the end of a softened composite material. The capillary tube is injected with a coupling medium which subsequently solidifies. The composite material is machined to a desired configuration. An external optical fiber is then inserted into the capillary tube after fluidizing the coupling medium, whereby the optical fibers are coupled. 3 figs.
Mehdi Tajvidi; Robert H. Falk; John C. Hermanson; Colin Felton
2003-01-01
Dynamic mechanical analysis was employed to evaluate the performance of various natural fibers in high-density polyethylene composites. Kenaf, newsprint, rice hulls, and wood flour were sources of fiber. Composites were made at 25 percent and 50 percent by weight fiber contents. Maleic anhydride modified polyethylene was also added at 1:25 ratio to the fiber....
Effects of graphite fiber stability on the properties of PMR polyimide composites
NASA Technical Reports Server (NTRS)
Delvigs, P.; Alston, W. B.; Vannucci, R. D.
1979-01-01
The effect of the stability of graphite fibers on composite properties after exposure in air at 600 F was investigated. Composites were fabricated from PMR-15 and PMR-2 monomer solutions, using HTS-2 and Celion 6000 graphite fibers as the reinforcement. The effect of long-term exposure in air at 600 F on composite weight loss and mechanical properties was determined. These composites exhibited a significantly increased lifetime at that temperature compared to composites fabricated from HTS fiber sold prior to 1975. The effect of the PMR-15 and PMR-II resin compositions on long-term composite performance at 600 F is also discussed.
Thermal stability relationships between PMR-15 resin and its composites
NASA Technical Reports Server (NTRS)
Bowles, Kenneth J.; Jayne, Douglas; Leonhardt, Todd A.; Bors, Dennis
1993-01-01
A study was conducted to investigate the relationship between the thermo-oxidative stability of PMR-15 matrix resin and the stability of graphite-fiber-reinforced composites that contain this resin as the matrix material. Three areas were investigated. The first was the effect of fiber/matrix interfacial bond strength on the isothermal aging weight loss of composites. By using type-A graphite fibers produced by Hercules, it was possible to study composites reinforced with fibers that were processed to receive different surface treatments. One of the fibers was untreated, a second fiber was treated by oxidation to enhance fiber/matrix bonding, and the third type of fiber was coated with an epoxy sizing. These treatments produced three significantly different interfacial bond strengths. The epoxy sizing on the third fiber was quickly oxidized from the bare fiber surfaces at 288, 316, and 343 C. The weight loss due to the removal of the sizing was constant at 1.5 percent. This initial weight loss was not observed in thermo-oxidative stability studies of composites. The PMR-15 matrix satisfactorily protected the reinforcemnt at all three temperatures.
Effects of mold geometry on fiber orientation of powder injection molded metal matrix composites
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ahmad, Faiz, E-mail: faizahmad@petronas.com.my; Aslam, Muhammad, E-mail: klaira73@gmail.com; Altaf, Khurram, E-mail: khurram.altaf@petronas.com.my
2015-07-22
Fiber orientations in metal matrix composites have significant effect on improving tensile properties. Control of fiber orientations in metal injection molded metal composites is a difficult task. In this study, two mold cavities of dimensions 6x6x90 mm and 10x20x180 mm were used for comparison of fiber orientation in injection molded metal composites test parts. In both mold cavities, convergent and divergent flows were developed by modifying the sprue dimensions. Scanning electron microscope (SEM) was used to examine the fiber orientations within the test samples. The results showed highly aligned fiber in injection molded test bars developed from the convergent melt flow. Randommore » orientation of fibers was noted in the composites test bars produced from divergent melt flow.« less
Rotational 3D printing of damage-tolerant composites with programmable mechanics
Raney, Jordan R.; Compton, Brett G.; Ober, Thomas J.; Shea, Kristina; Lewis, Jennifer A.
2018-01-01
Natural composites exhibit exceptional mechanical performance that often arises from complex fiber arrangements within continuous matrices. Inspired by these natural systems, we developed a rotational 3D printing method that enables spatially controlled orientation of short fibers in polymer matrices solely by varying the nozzle rotation speed relative to the printing speed. Using this method, we fabricated carbon fiber–epoxy composites composed of volume elements (voxels) with programmably defined fiber arrangements, including adjacent regions with orthogonally and helically oriented fibers that lead to nonuniform strain and failure as well as those with purely helical fiber orientations akin to natural composites that exhibit enhanced damage tolerance. Our approach broadens the design, microstructural complexity, and performance space for fiber-reinforced composites through site-specific optimization of their fiber orientation, strain, failure, and damage tolerance. PMID:29348206
21 CFR 878.3500 - Polytetrafluoroethylene with carbon fibers composite implant material.
Code of Federal Regulations, 2010 CFR
2010-04-01
... composite implant material. 878.3500 Section 878.3500 Food and Drugs FOOD AND DRUG ADMINISTRATION... Prosthetic Devices § 878.3500 Polytetrafluoroethylene with carbon fibers composite implant material. (a) Identification. A polytetrafluoroethylene with carbon fibers composite implant material is a porous device...
NASA Technical Reports Server (NTRS)
Bhatt, Ramakrishana T.; Hull, David R.; Eldridge, Jeffrey I.; Babuder, Raymond
2000-01-01
Strong and tough Hi-Nicalon SiC fiber reinforced reaction-bonded silicon nitride matrix composites (SiC/ RBSN) have been fabricated by the fiber lay-up approach. Commercially available uncoated and PBN, PBN/Si-rich PBN, and BN/SiC coated SiC Hi-Nicalon fiber tows were used as reinforcement. The composites contained approximately 24 vol % of aligned 14 micron diameter SiC fibers in a porous RBSN matrix. Both one- and two-dimensional composites were characterized. The effects of interface coating composition, and the nitridation enhancing additive, NiO, on the room temperature physical, tensile, and interfacial shear strength properties of SiC/RBSN matrix composites were evaluated. Results indicate that for all three coated fibers, the thickness of the coatings decreased from the outer periphery to the interior of the tows, and that from 10 to 30 percent of the fibers were not covered with the interface coating. In the uncoated regions, chemical reaction between the NiO additive and the SiC fiber occurs causing degradation of tensile properties of the composites. Among the three interface coating combinations investigated, the BN/SiC coated Hi-Nicalon SiC fiber reinforced RBSN matrix composite showed the least amount of uncoated regions and reasonably uniform interface coating thickness. The matrix cracking stress in SiC/RBSN composites was predicted using a fracture mechanics based crack bridging model.
NASA Astrophysics Data System (ADS)
Xiao, Chufan; Tan, Yefa; Wang, Xiaolong; Gao, Li; Wang, Lulu; Qi, Zehao
2018-07-01
To improve the interfacial properties between carbon fiber (CF) and epoxy resin (EP), T300 carbon fibers were coated with multi-walled carbon nanotubes (MWCNTs) using aqueous suspension deposition method. The carbon fiber/epoxy laminated composites were prepared by molding process. The wettability and interfacial properties between MWCNTs deposited carbon fibers (MWCNTs-T300) and EP were studied. The mechanical properties of carbon fiber/epoxy laminated composites were tested, and the mechanism of the interface strengthening was discussed. The results show that the surface energy of T300 carbon fiber is obviously increased after MWCNT deposition. The contact angle between MWCNTs-T300 and EP is reduced, and the interfacial energy and adhesion work are greatly improved. The MWCNTs-T300/EP laminated composites have excellent mechanical properties, the flexural strength is 822 MPa, the tensile strength is 841 MPa, and the interlaminar shear strength (ILSS) is 25.68 MPa, which are increased by 15.1%, 17.6% and 12.6% compared with those of the original carbon fiber/EP laminated composites (original T300/EP) respectively. The MWCNTs-T300/EP composites have good interface bonding performance, low porosity and uniform fiber distribution. Interfacial friction and resin toughening are the main mechanisms for the interface enhancement of MWCNTs-T300/EP composites.
Carbon fiber reinforced thermoplastic composites for future automotive applications
NASA Astrophysics Data System (ADS)
Friedrich, K.
2016-05-01
After a brief introduction to polymer composite properties and markets, the state of the art activities in the field of manufacturing of advanced composites for automotive applications are elucidated. These include (a) long fiber reinforced thermoplastics (LFT) for secondary automotive components, and (b) continuous carbon fiber reinforced thermosetting composites for car body applications. It is followed by future possibilities of carbon fiber reinforced thermoplastic composites for e.g. (i) crash elements, (ii) racing car seats, and (iii) production and recycling of automotive fenders.
Maruo, Yukinori; Nishigawa, Goro; Irie, Masao; Yoshihara, Kumiko; Minagi, Shogo
2015-01-01
High flexural properties are needed for fixed partial denture or implant prosthesis to resist susceptibility to failures caused by occlusal overload. The aim of this investigation was to clarify the effects of four different kinds of fibers on the flexural properties of fiber-reinforced composites. Polyethylene fiber, glass fiber and two types of carbon fibers were used for reinforcement. Seven groups of specimens, 2 × 2 × 25 mm, were prepared (n = 10 per group). Four groups of resin composite specimens were reinforced with polyethylene, glass or one type of carbon fiber. The remaining three groups served as controls, with each group comprising one brand of resin composite without any fiber. After 24-h water storage in 37°C distilled water, the flexural properties of each specimen were examined with static three-point flexural test at a crosshead speed of 0.5 mm/min. Compared to the control without any fiber, glass and carbon fibers significantly increased the flexural strength (p < 0.05). On the contrary, the polyethylene fiber decreased the flexural strength (p < 0.05). Among the fibers, carbon fiber exhibited higher flexural strength than glass fiber (p < 0.05). Similar trends were observed for flexural modulus and fracture energy. However, there was no significant difference in fracture energy between carbon and glass fibers (p > 0.05). Fibers could, therefore, improve the flexural properties of resin composite and carbon fibers in longitudinal form yielded the better effects for reinforcement.
Design and analysis of a novel latch system implementing fiber-reinforced composite materials
NASA Astrophysics Data System (ADS)
Guevara Arreola, Francisco Javier
The use of fiber-reinforced composite materials have increased in the last four decades in high technology applications due to their exceptional mechanical properties and low weight. In the automotive industry carbon fiber have become popular exclusively in luxury cars because of its high cost. However, Carbon-glass hybrid composites offer an effective alternative to designers to implement fiber-reinforced composites into several conventional applications without a considerable price increase maintaining most of their mechanical properties. A door latch system is a complex mechanism that is under high loading conditions during car accidents such as side impacts and rollovers. Therefore, the Department of Transportation in The United States developed a series of tests that every door latch system comply in order to be installed in a vehicle. The implementation of fiber-reinforced composite materials in a door latch system was studied by analyzing the material behavior during the FMVSS No. 206 transverse test using computational efforts and experimental testing. Firstly, a computational model of the current forkbolt and detent structure was developed. Several efforts were conducted in order to create an effective and time efficient model. Two simplified models were implemented with two different contact interaction approaches. 9 composite materials were studied in forkbolt and 5 in detent including woven carbon fiber, unidirectional carbon fiber, woven carbon-glass fiber hybrid composites and unidirectional carbon-glass fiber hybrid composites. The computational model results showed that woven fiber-reinforced composite materials were stiffer than the unidirectional fiber-reinforced composite materials. For instance, a forkbolt made of woven carbon fibers was 20% stiffer than a forkbolt made of unidirectional fibers symmetrically stacked in 0° and 90° alternating directions. Furthermore, Hybrid composite materials behaved as expected in forkbolt noticing a decline in the load-displacement slopes while the percentage of glass fiber increased. In the other hand, results showed that a detent made of only glass fiber layers was preferable than a carbon-glass fiber hybrid detent due to the high stresses shown in carbon fiber layers. Ultimately, forkbolt and detent were redesigned according to their functionality and test results. It was observed that the new design was stiffer than the original by showing a steeper load-displacement curve. Subsequently, an experimental procedure was performed in order to correlate computational model results. Fiber-reinforced composite forkbolt and detent were waterjet cut from a composite laminate manufactured by Vacuum Assisted Resin Transfer Molding (VART) process. Then, samples were tested according to the computational model. Six testing sample combinations of forkbolt and detent were tested including the top three woven iterations forkbolts from the computational model paired with woven and unidirectional glass fiber detents. Test results showed a stiffness drop of 15% when the carbon fiber percentage decreases from 100% to 75%. Also, it was observed that woven glass fiber detent was superior to the unidirectional glass fiber detent by presenting a forkbolt-detent stiffness 38% higher. Moreover, the new design of forkbolt and detent were tested showing a stiffness increment of 29%. Furthermore, it was observed that fiber-reinforced composite forkbolt and detent did not reach the desired load of 5000 N. However, the redesigned forkbolt made of 100% woven carbon fiber and the redesign detent made of 100% woven glass fiber were close to reach that load. The design review based on test results performed (DRBTR) showed that components did not fail where the computational model concluded to be the areas with the highest maximum principal stress. In contrast to the computational model, all samples failed at the contact area between forkbolt and detent.
Integrated mechanics for the passive damping of polymer-matrix composites and composite structures
NASA Technical Reports Server (NTRS)
Saravanos, D. A.; Chamis, Christos C.
1991-01-01
Some recent developments on integrated damping mechanics for unidirectional composites, laminates, and composite structures are reviewed. Simplified damping micromechanics relate the damping of on-axis and off-axis composites to constituent properties, fiber volume ratio, fiber orientation, temperature, and moisture. Laminate and structural damping mechanics for thin composites are summarized. Discrete layer damping mechanics for thick laminates, including the effects of interlaminar shear damping, are developed and semianalytical predictions of modal damping in thick simply supported specialty composite plates are presented. Applications show the advantages of the unified mechanics, and illustrate the effect of fiber volume ratio, fiber orientation, structural geometry, and temperature on the damping. Additional damping properties for composite plates of various laminations, aspect ratios, fiber content, and temperature illustrate the merits and ranges of applicability of each theory (thin or thick laminates).
NASA Astrophysics Data System (ADS)
Liang, Yinzheng; Ji, Liwen; Guo, Bingkun; Lin, Zhan; Yao, Yingfang; Li, Ying; Alcoutlabi, Mataz; Qiu, Yiping; Zhang, Xiangwu
Lithium lanthanum titanate oxide (LLTO)/polyacrylonitrile (PAN) submicron composite fiber-based membranes were prepared by electrospinning dispersions of LLTO ceramic particles in PAN solutions. These ionic-conducting LLTO/PAN composite fiber-based membranes can be directly used as lithium-ion battery separators due to their unique porous structure. Ionic conductivities were evaluated after soaking the electrospun LLTO/PAN composite fiber-based membranes in a liquid electrolyte, 1 M lithium hexafluorophosphate (LiPF 6) in ethylene carbonate (EC)/ethyl methyl carbonate (EMC) (1:1 vol). It was found that, among membranes with various LLTO contents, 15 wt.% LLTO/PAN composite fiber-based membranes provided the highest ionic conductivity, 1.95 × 10 -3 S cm -1. Compared with pure PAN fiber membranes, LLTO/PAN composite fiber-based membranes had greater liquid electrolyte uptake, higher electrochemical stability window, and lower interfacial resistance with lithium. In addition, lithium//1 M LiPF 6/EC/EMC//lithium iron phosphate cells containing LLTO/PAN composite fiber-based membranes as the separator exhibited high discharge specific capacity of 162 mAh g -1 and good cycling performance at 0.2 C rate at room temperature.
Engineering Design Handbook Short Fiber Plastic Base Composites
1975-07-31
ENGINEERING DESIGN HANDBOOK N ’~rttl SHORT FIBER PLASTIC BASE COMPOSITES l ,.. HEADQUARTERS, US ARrm MAlERIEL COIVMAND JULY 1975 DEPARTMENT OF...HANDBOOK SHORT FIBER PLASTIC BASE COMPOSITES TABLE OF CONTENTS 31 July 1975 Paragraph Page 1-1 1-2 1-2.1 1-2.2 1-3 1-3.1 1-3.2 1-3.3 1...General ............................... . Molding Short Fiber Compounds ........... . Classification of Polymer Based Composites
2016-08-01
Matrix Composites Using Novel Glass Fibers and Sizings by Steven E Boyd Approved for public release; distribution is...Research Laboratory Mechanical and Impact Characterization of Poly-Dicyclopentadiene (p-DCPD) Matrix Composites Using Novel Glass Fibers and Sizings...p-DCPD) Matrix Composites Using Novel Glass Fibers and Sizings 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR
Continuous Fiber Ceramic Composites
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fareed, Ali; Craig, Phillip A.
2002-09-01
Fiber-reinforced ceramic composites demonstrate the high-temperature stability of ceramics--with an increased fracture toughness resulting from the fiber reinforcement of the composite. The material optimization performed under the continuous fiber ceramic composites (CFCC) included a series of systematic optimizations. The overall goals were to define the processing window, to increase the robustinous of the process, to increase process yield while reducing costs, and to define the complexity of parts that could be fabricated.
Load-bearing capacity of human incisor restored with various fiber-reinforced composite posts.
Le Bell-Rönnlöf, Anna-Maria; Lassila, Lippo V J; Kangasniemi, Ilkka; Vallittu, Pekka K
2011-06-01
The aim of this study was to evaluate the load-bearing capacity and microstrain of incisors restored with posts of various kinds. Both prefabricated titanium posts and different fiber-reinforced composite posts were tested. The crowns of human incisors were cut and post preparation was carried out. The roots were divided into groups: (1) prefabricated serrated titanium posts, (2) prefabricated carbon fiber-reinforced composite posts, (3) individually formed glass fiber-reinforced composite posts with the canal full of fibers, and (4) individually formed "split" glass fiber-reinforced composite posts. The posts were cemented and composite crowns were made. Intact human incisors were used as reference. All roots were embedded in acrylic resin cylinders and stored at room temperature in water. Static load was applied under a loading angle of 45° using a universal testing machine. On half of the specimens microstrain was measured with strain gages and an acoustic emission analysis was carried out. Failure mode assessment was also made. The group with titanium posts showed highest number of unfavorable failures compared to the groups with fiber-reinforced composite posts. With fiber-reinforced composite posts the failures may more often be favorable compared to titanium posts, which clinically means repairable failures. Copyright © 2011 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Shepler, R. E.
1979-01-01
Thin coatings, 5 to 10 wt. percent, were applied to PAN-based carbon fibers. These coatings were intended to make the carbon fibers less electrically conductive or to cause fibers to stick together when a carbon fiber/epoxy composite burned. The effectiveness of the coatings in these regards was evaluated in burn tests with a test rig designed to simulate burning, impact and wind conditions which might release carbon fibers. The effect of the coatings on fiber and composite properties and handling was also investigated. Attempts at sizing carbon fibers with silicon dioxide, silicon carbide and boron nitride meet with varying degrees of success; however, none of these materials provided an electrically nonconductive coating. Coatings intended to stick carbon fibers together after a composite burned were sodium silicate, silica gel, ethyl silicate, boric acid and ammonium borate. Of these, only the sodium silicate and silica gel provided any sticking together of fibers. The amount of sticking was insufficient to achieve the desired objectives.
Effect of Sericin on Mechanical Behavior of Composite Material Reinforced by Silk Woven Fabric
NASA Astrophysics Data System (ADS)
Kimura, Teruo; Ino, Haruhiro; Hanada, Koji; Katori, Sigetaka
Recent, attention has been given to shift from glass fibers and carbon fibers to natural fibers for FRP composites for the goal of protecting the environment. This paper concerned with the application of silk fabric for composite materials. Polypropylene (PP) was used for the matrix material and the silk fabric composites were molded using a compression molding method. Especially, the effect of sericin on mechanical behaviors of composite materials was discussed. Good adhesion between silk and PP was obtained by removing the sericin existing around the fibroin. The tensile modulus of composite decreased with decreasing the sericin because of the flexibility of silk fibers without sericin. In particular, the higher Izod impact value was obtained for the composites containing the silk fibers without sericin.
NASA Astrophysics Data System (ADS)
Barcelos, Mariana A.; Ribeiro, Carolina Gomes D.; Ferreira, Jordana; Vieira, Janaina da S.; Margem, Frederico M.; Monteiro, Sergio N.
Epoxy composites reinforced with natural lignocellulosic fibers have, in recent times, been gaining attention in engineering areas as lighter and cheaper alternatives for traditional composites such as the "fiberglass". The curaua fiber is the one strongest today being considered as reinforcement of composites for automobile interior parts. In fact, several studies are currently being dedicated to curaua fiber composites since physical and mechanical properties are required for practical uses. In this work, the thermal behavior of epoxy composites reinforced with up to 30 % in volume of curaua fibers was investigated by differential scanning calorimetry, DSC. The results showed endothermic and exothermic events associated with water release and possible molecular chain amorphous transformation. Comparison with similar composites permitted to propose mechanism that explains this DSC thermal behavior.
Processing and characterization of natural cellulose fibers/thermoset polymer composites.
Thakur, Vijay Kumar; Thakur, Manju Kumari
2014-08-30
Recently natural cellulose fibers from different biorenewable resources have attracted the considerable attraction of research community all around the globe owing to their unique intrinsic properties such as biodegradability, easy availability, environmental friendliness, flexibility, easy processing and impressive physico-mechanical properties. Natural cellulose fibers based materials are finding their applications in a number of fields ranging from automotive to biomedical. Natural cellulose fibers have been frequently used as the reinforcement component in polymers to add the specific properties in the final product. A variety of cellulose fibers based polymer composite materials have been developed using various synthetic strategies. Seeing the immense advantages of cellulose fibers, in this article we discuss the processing of biorenewable natural cellulose fibers; chemical functionalization of cellulose fibers; synthesis of polymer resins; different strategies to prepare cellulose based green polymer composites, and diverse applications of natural cellulose fibers/polymer composite materials. The article provides an in depth analysis and comprehensive knowledge to the beginners in the field of natural cellulose fibers/polymer composites. The prime aim of this review article is to demonstrate the recent development and emerging applications of natural cellulose fibers and their polymer materials. Copyright © 2014 Elsevier Ltd. All rights reserved.
Estimating rock and slag wool fiber dissolution rate from composition.
Eastes, W; Potter, R M; Hadley, J G
2000-12-01
A method was tested for calculating the dissolution rate constant in the lung for a wide variety of synthetic vitreous silicate fibers from the oxide composition in weight percent. It is based upon expressing the logarithm of the dissolution rate as a linear function of the composition and using a different set of coefficients for different types of fibers. The method was applied to 29 fiber compositions including rock and slag fibers as well as refractory ceramic and special-purpose, thin E-glass fibers and borosilicate glass fibers for which in vivo measurements have been carried out. These fibers had dissolution rates that ranged over a factor of about 400, and the calculated dissolution rates agreed with the in vivo values typically within a factor of 4. The method presented here is similar to one developed previously for borosilicate glass fibers that was accurate to a factor of 1.25. The present coefficients work over a much broader range of composition than the borosilicate ones but with less accuracy. The dissolution rate constant of a fiber may be used to estimate whether disease would occur in animal inhalation or intraperitoneal injection studies of that fiber.
Passive Impact Damage Detection of Fiber Glass Composite Panels
2013-12-19
PASSIVE IMPACT DAMAGE DETECTION OF FIBER GLASS COMPOSITE PANELS. By BRUNO ZAMORANO-SENDEROS A dissertation...COVERED 04-11-2012 to 10-12-2013 4. TITLE AND SUBTITLE PASSIVE IMPACT DAMAGE DETECTION OF FIBER GLASS COMPOSITE PANELS 5a. CONTRACT NUMBER 5b...process. .................................... 31 Figure 3-8 Sensor attached to the fiber glass fabric
Silicon-doped boron nitride coated fibers in silicon melt infiltrated composites
Corman, Gregory Scot; Luthra, Krishan Lal
2002-01-01
A fiber-reinforced silicon-silicon carbide matrix composite having improved oxidation resistance at high temperatures in dry or water-containing environments is produced. The invention also provides a method for protecting the reinforcing fibers in the silicon-silicon carbide matrix composites by coating the fibers with a silicon-doped boron nitride coating.
Silicon-doped boron nitride coated fibers in silicon melt infiltrated composites
Corman, Gregory Scot; Luthra, Krishan Lal
1999-01-01
A fiber-reinforced silicon--silicon carbide matrix composite having improved oxidation resistance at high temperatures in dry or water-containing environments is produced. The invention also provides a method for protecting the reinforcing fibers in the silicon--silicon carbide matrix composites by coating the fibers with a silicon-doped boron nitride coating.
Self-healing in single and multiple fiber(s) reinforced polymer composites
NASA Astrophysics Data System (ADS)
Woldesenbet, E.
2010-06-01
You Polymer composites have been attractive medium to introduce the autonomic healing concept into modern day engineering materials. To date, there has been significant research in self-healing polymeric materials including several studies specifically in fiber reinforced polymers. Even though several methods have been suggested in autonomic healing materials, the concept of repair by bleeding of enclosed functional agents has garnered wide attention by the scientific community. A self-healing fiber reinforced polymer composite has been developed. Tensile tests are carried out on specimens that are fabricated by using the following components: hollow and solid glass fibers, healing agent, catalysts, multi-walled carbon nanotubes, and a polymer resin matrix. The test results have demonstrated that single fiber polymer composites and multiple fiber reinforced polymer matrix composites with healing agents and catalysts have provided 90.7% and 76.55% restoration of the original tensile strength, respectively. Incorporation of functionalized multi-walled carbon nanotubes in the healing medium of the single fiber polymer composite has provided additional efficiency. Healing is found to be localized, allowing multiple healing in the presence of several cracks.
Reactive compatibilization in polymer alloys, recyclates and composites
NASA Astrophysics Data System (ADS)
Czvikovszky, T.; Hargitai, H.; Rácz, I.; Csukat, G.
1999-05-01
The efficiency of all composite materials depends on the fiber-matrix interface and its ability to transfer stress from the matrix to the fiber. Radiation treatment is a possible way to bind together the main components of the composite. In our earlier work we applied acrylic oligomer-treated fibers irradiated with low energy electron beam to reinforce recycled polypropylene. In the present work the interaction between the matrix and fibers - PAN and glass fibers - was investigated by ESCA (Electron Spectroscopy for Chemical Analysis). On the other hand, the conventional way of compatibilization - the effect of using maleic anhydride grafted PP as a coupling agent - was examined in flax fiber-PP composites.
Latour, R A; Black, J
1992-05-01
Fiber reinforced polymer (FRP) composites are being developed as alternatives to metals for structural orthopedic implant applications. FRP composite fracture behavior and environmental interactions are distinctly different from those which occur in metals. These differences must be accounted for in the design and evaluation of implant performance. Fiber/matrix interfacial bond strength in a FRP composite is known to strongly influence fracture behavior. The interfacial bond strength of four candidate fiber/matrix combinations (carbon fiber/polycarbonate, carbon fiber/polysulfone, polyaramid fiber/polycarbonate, polyaramid fiber/polysulfone) were investigated at 37 degrees C in dry and in vivo simulated (saline, exudate) environments. Ultimate bond strength was measured by a single fiber-microdroplet pull-out test. Dry bond strengths were significantly decreased following exposure to either saline or exudate with bond strength loss being approximately equal in both the saline and exudate. Bond strength loss is attributed to the diffusion of water and/or salt ions into the sample and their interaction with interfacial bonding. Because bond degradation is dependent upon diffusion, diffusional equilibrium must be obtained in composite test samples before the full effect of the test environment upon composite mechanical behavior can be determined.
NASA Astrophysics Data System (ADS)
Hafizhah, R.; Juwono, A. L.; Roseno, S.
2017-05-01
The development of eco-friendly composites has been increasing in the past four decades because the requirement of eco-friendly materials has been increasing. Indonesia has a lot of natural fiber resources and, pineapple leaf fiber is one of those fibers. This study aimed to determine the influence of weight fraction of pineapple leaf fibers, that were grown at Subang, to the tensile properties and the deflection temperature of polypropylene/Subang pineapple leaf fiber composites. Pineapple leaf fibers were pretreated by alkalization, while polypropylene pellets, as the matrix, were extruded into sheets. Hot press method was used to fabricate the composites. The results of the tensile test and Heat Deflection Temperature (HDT) test showed that the composites that contained of 30 wt.% pineapple leaf fiber was the best composite. The values of tensile strength, modulus of elasticity and deflection temperature were (64.04 ± 3.91) MPa; (3.98 ± 0.55) GPa and (156.05 ± 1.77) °C respectively, in which increased 187.36%, 198.60%, 264.72% respectively from the pristine polypropylene. The results of the observation on the fracture surfaces showed that the failure modes were fiber breakage and matrix failure.
Continuous unidirectional fiber reinforced composites: Fabrication and testing
NASA Technical Reports Server (NTRS)
Weber, M. D.; Spiegel, F. X.; West, Harvey A.
1994-01-01
The study of the anisotropic mechanical properties of an inexpensively fabricated composite with continuous unidirectional fibers and a clear matrix was investigated. A method has been developed to fabricate these composites with aluminum fibers and a polymer matrix. These composites clearly demonstrate the properties of unidirectional composites and cost less than five dollars each to fabricate.
Fiber reinforced cementitious matrix (FRCM) composites for reinforced concrete strengthening.
DOT National Transportation Integrated Search
2013-07-01
Fiber-reinforced composite systems are widely used for strengthening, repairing, and rehabilitation of reinforced concrete structural : members. A promising newly-developed type of composite, comprised of fibers and an inorganic cement-based matrix, ...
Effect of thermal cycling on composites reinforced with two differently sized silica-glass fibers.
Meriç, Gökçe; Ruyter, I Eystein
2007-09-01
To evaluate the effects of thermal cycling on the flexural properties of composites reinforced with two differently sized fibers. Acid-washed, woven, fused silica-glass fibers, were heat-treated at 500 degrees C, silanized and sized with one of two sizing resins (linear poly(butyl methacrylate)) (PBMA), cross-linked poly(methyl methacrylate) (PMMA). Subsequently the fibers were incorporated into a polymer matrix. Two test groups with fibers and one control group without fibers were prepared. The flexural properties of the composite reinforced with linear PBMA-sized fibers were evaluated by 3-point bend testing before thermal cycling. The specimens from all three groups were thermally cycled in water (12,000 cycles, 5/55 degrees C, dwell time 30 s), and afterwards tested by 3-point bending. SEM micrographs were taken of the fibers and of the fractured fiber reinforced composites (FRC). The reduction of ultimate flexural strength after thermal cycling was less than 20% of that prior to thermal cycling for composites reinforced with linear PBMA-sized silica-glass fibers. The flexural strength of the composite reinforced with cross-linked PMMA-sized fibers was reduced to less than half of the initial value. This study demonstrated that thermal cycling differently influences the flexural properties of composites reinforced with different sized silica-glass fibers. The interfacial linear PBMA-sizing polymer acts as a stress-bearing component for the high interfacial stresses during thermal cycling due to the flexible structure of the linear PBMA above Tg. The cross-linked PMMA-sizing, however, acts as a rigid component and therefore causes adhesive fracture between the fibers and matrix after the fatigue process of thermal cycling and flexural fracture.
The hygroscopic behavior of plant fibers: a review.
Célino, Amandine; Fréour, Sylvain; Jacquemin, Frédéric; Casari, Pascal
2013-01-01
Environmental concern has resulted in a renewed interest in bio-based materials. Among them, plant fibers are perceived as an environmentally friendly substitute to glass fibers for the reinforcement of composites, particularly in automotive engineering. Due to their wide availability, low cost, low density, high-specific mechanical properties, and eco-friendly image, they are increasingly being employed as reinforcements in polymer matrix composites. Indeed, their complex microstructure as a composite material makes plant fiber a really interesting and challenging subject to study. Research subjects about such fibers are abundant because there are always some issues to prevent their use at large scale (poor adhesion, variability, low thermal resistance, hydrophilic behavior). The choice of natural fibers rather than glass fibers as filler yields a change of the final properties of the composite. One of the most relevant differences between the two kinds of fiber is their response to humidity. Actually, glass fibers are considered as hydrophobic whereas plant fibers have a pronounced hydrophilic behavior. Composite materials are often submitted to variable climatic conditions during their lifetime, including unsteady hygroscopic conditions. However, in humid conditions, strong hydrophilic behavior of such reinforcing fibers leads to high level of moisture absorption in wet environments. This results in the structural modification of the fibers and an evolution of their mechanical properties together with the composites in which they are fitted in. Thereby, the understanding of these moisture absorption mechanisms as well as the influence of water on the final properties of these fibers and their composites is of great interest to get a better control of such new biomaterials. This is the topic of this review paper.
The hygroscopic behavior of plant fibers: a review
Célino, Amandine; Fréour, Sylvain; Jacquemin, Frédéric; Casari, Pascal
2013-01-01
Environmental concern has resulted in a renewed interest in bio-based materials. Among them, plant fibers are perceived as an environmentally friendly substitute to glass fibers for the reinforcement of composites, particularly in automotive engineering. Due to their wide availability, low cost, low density, high-specific mechanical properties, and eco-friendly image, they are increasingly being employed as reinforcements in polymer matrix composites. Indeed, their complex microstructure as a composite material makes plant fiber a really interesting and challenging subject to study. Research subjects about such fibers are abundant because there are always some issues to prevent their use at large scale (poor adhesion, variability, low thermal resistance, hydrophilic behavior). The choice of natural fibers rather than glass fibers as filler yields a change of the final properties of the composite. One of the most relevant differences between the two kinds of fiber is their response to humidity. Actually, glass fibers are considered as hydrophobic whereas plant fibers have a pronounced hydrophilic behavior. Composite materials are often submitted to variable climatic conditions during their lifetime, including unsteady hygroscopic conditions. However, in humid conditions, strong hydrophilic behavior of such reinforcing fibers leads to high level of moisture absorption in wet environments. This results in the structural modification of the fibers and an evolution of their mechanical properties together with the composites in which they are fitted in. Thereby, the understanding of these moisture absorption mechanisms as well as the influence of water on the final properties of these fibers and their composites is of great interest to get a better control of such new biomaterials. This is the topic of this review paper. PMID:24790971
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ren, Xiaofeng; Qui, Renhui; Fifield, Leonard S.
2012-05-17
Effects of surface treatments on the strength and water resistance of kenaf fiber-reinforced unsaturated polyester (UPE) composites were investigated. A new coupling agent that consists of 1,6-diisocyanato-hexane (DIH) and 2-hydroxylethyl acrylate (HEA) was investigated for surface treatments of kenaf fibers. The surface treatments were found to significantly enhance the tensile strength, modulus of rupture, modulus of elasticity, and water resistance of the resulting kenaf UPE composites. Fourier transform infrared spectroscopy (FTIR) confirmed that DIH-HEA was covalently bonded onto kenaf fibers. Scanning electron microscopy (SEM) images of the composites revealed that chemical treatment of kenaf fibers with a combination of DIHmore » and HEA improved the interfacial adhesion between kenaf fibers and UPE resin in the DIHHEA-treated kenafUPE composites. The mechanisms by which the chemical treatment of kenaf fiber surfaces improved strength and water resistance of the resulting kenaf UPE composites were discussed.« less
Research on Extrusion of Rubber Composites Reinforced by Short Fibers Orientation Based on FEA
NASA Astrophysics Data System (ADS)
Zhang, Dewei; Wang, Chuansheng; Shen, Bo; Li, Shaoming; Bian, Huiguang
2018-06-01
In recent years, rubber composites reinforced by short fibers has been researched deeply, because of its good performances such as higher wear resistance, higher cut resistance and so on. Some research results indicated that if short fibers get orientation in rubber composites, the performances of rubber products could be promoted greatly. But how to make short fibers get orientation in rubber matrix during extrusion is still a real problem. And there are many parameters affect the short fibers orientation. So, in this paper, the effects of die structure including expansion-die and dam-expansion-die on extrusion flow field of short fiber and rubber composite material during extrusion process has been researched by Polyflow. And the FEA results about the pressure field, velocity field and the velocity vector of the rubber composites flow field indicate that, comparing with expansion-die and the dam-expansion-die, the latter one is better for the extrusion process of rubber composites and making short fibers get radial orientation in rubber matrix.
NASA Astrophysics Data System (ADS)
Longbiao, Li
2018-02-01
In this paper, the strength degradation of non-oxide and oxide/oxide fiber-reinforced ceramic-matrix composites (CMCs) subjected to cyclic loading at elevated temperatures in oxidative environments has been investigated. Considering damage mechanisms of matrix cracking, interface debonding, interface wear, interface oxidation and fibers fracture, the composite residual strength model has been established by combining the micro stress field of the damaged composites, the damage models, and the fracture criterion. The relationships between the composite residual strength, fatigue peak stress, interface debonding, fibers failure and cycle number have been established. The effects of peak stress level, initial and steady-state interface shear stress, fiber Weibull modulus and fiber strength, and testing temperature on the degradation of composite strength and fibers failure have been investigated. The evolution of residual strength versus cycle number curves of non-oxide and oxide/oxide CMCs under cyclic loading at elevated temperatures in oxidative environments have been predicted.
NASA Astrophysics Data System (ADS)
Zhang, Chengshuang; Li, Cuiyun; Wang, Baiya; Wang, Bin; Cui, Hong
2013-07-01
Poly(p-phenylene benzobisoxazole) (PBO) fiber was modified by atmospheric air plasma treatment. The effects of plasma treatment power and speed on both surface properties of PBO fibers and interfacial properties of PBO/epoxy composites were investigated. Surface chemical composition of PBO fibers were analyzed by X-ray photoelectron spectroscopy (XPS). Surface morphologies of the fibers and interface structures of the composites were examined using scanning electron microscopy (SEM). Interfacial adhesion property of the composites was evaluated by interlaminar shear strength (ILSS). Mechanical properties of PBO multifilament were measured by universal testing machine. The results indicate that atmospheric air plasma treatment introduced some polar or oxygen-containing groups to PBO fiber surfaces, enhanced surface roughness and changed surface morphologies of PBO fibers by plasma etching and oxidative reactions. The plasma treatment also improved interfacial adhesion of PBO/epoxy composites but has little effect on tensile properties of PBO multifilament. The ILSS of PBO/epoxy composites increased to 40.0 MPa after atmospheric air plasma treatment with plasma treatment power of 300 W and treatment speed of 6 m/min.
NASA Astrophysics Data System (ADS)
Weng, Jingmeng; Wen, Weidong; Cui, Haitao; Chen, Bo
2018-06-01
A new method to generate the random distribution of fibers in the transverse cross-section of fiber reinforced composites with high fiber volume fraction is presented in this paper. Based on the microscopy observation of the transverse cross-sections of unidirectional composite laminates, hexagon arrangement is set as the initial arrangement status, and the initial velocity of each fiber is arbitrary at an arbitrary direction, the micro-scale representative volume element (RVE) is established by simulating perfectly elastic collision. Combined with the proposed periodic boundary conditions which are suitable for multi-axial loading, the effective elastic properties of composite materials can be predicted. The predicted properties show reasonable agreement with experimental results. By comparing the stress field of RVE with fibers distributed randomly and RVE with fibers distributed periodically, the predicted elastic modulus of RVE with fibers distributed randomly is greater than RVE with fibers distributed periodically.
Sintered composite medium and filter
Bergman, Werner
1987-01-01
A particulate filter medium is formed of a sintered composite of 0.5 micron diameter quartz fibers and 2 micron diameter stainless steel fibers. A preferred composition is about 40 vol. % quartz and about 60 vol. % stainless steel fibers. The media is sintered at about 1100.degree. C. to bond the stainless steel fibers into a cage network which holds the quartz fibers. High filter efficiency and low flow resistance are provided by the smaller quartz fibers. High strength is provided by the stainless steel fibers. The resulting media has a high efficiency and low pressure drop similar to the standard HEPA media, with tensile strength at least four times greater, and a maximum operating temperature of about 550.degree. C. The invention also includes methods to form the composite media and a HEPA filter utilizing the composite media. The filter media can be used to filter particles in both liquids and gases.
NASA Astrophysics Data System (ADS)
Santos, Jonnathan D.; Fajardo, Jorge I.; Cuji, Alvaro R.; García, Jaime A.; Garzón, Luis E.; López, Luis M.
2015-09-01
A polymeric natural fiber-reinforced composite is developed by extrusion and injection molding process. The shrinkage and warpage of high-density polyethylene reinforced with short natural fibers of Guadua angustifolia Kunth are analyzed by experimental measurements and computer simulations. Autodesk Moldflow® and Solid Works® are employed to simulate both volumetric shrinkage and warpage of injected parts at different configurations: 0 wt.%, 20 wt.%, 30 wt.% and 40 wt.% reinforcing on shrinkage and warpage behavior of polymer composite. Become evident the restrictive effect of reinforcing on the volumetric shrinkage and warpage of injected parts. The results indicate that volumetric shrinkage of natural composite is reduced up to 58% with fiber increasing, whereas the warpage shows a reduction form 79% to 86% with major fiber content. These results suggest that it is a highly beneficial use of natural fibers to improve the assembly properties of polymeric natural fiber-reinforced composites.
Bergman, W.
1986-05-02
A particulate filter medium formed of a sintered composite of 0.5 micron diameter quartz fibers and 2 micron diameter stainless steel fibers is described. Preferred composition is about 40 vol.% quartz and about 60 vol.% stainless steel fibers. The media is sintered at about 1100/sup 0/C to bond the stainless steel fibers into a cage network which holds the quartz fibers. High filter efficiency and low flow resistance are provided by the smaller quartz fibers. High strength is provided by the stainless steel fibers. The resulting media has a high efficiency and low pressure drop similar to the standard HEPA media, with tensile strength at least four times greater, and a maximum operating temperature of about 550/sup 0/C. The invention also includes methods to form the composite media and a HEPA filter utilizing the composite media. The filter media can be used to filter particles in both liquids and gases.
Manufacturing of Nanocomposite Carbon Fibers and Composite Cylinders
NASA Technical Reports Server (NTRS)
Tan, Seng; Zhou, Jian-guo
2013-01-01
Pitch-based nanocomposite carbon fibers were prepared with various percentages of carbon nanofibers (CNFs), and the fibers were used for manufacturing composite structures. Experimental results show that these nanocomposite carbon fibers exhibit improved structural and electrical conductivity properties as compared to unreinforced carbon fibers. Composite panels fabricated from these nanocomposite carbon fibers and an epoxy system also show the same properties transformed from the fibers. Single-fiber testing per ASTM C1557 standard indicates that the nanocomposite carbon fiber has a tensile modulus of 110% higher, and a tensile strength 17.7% times higher, than the conventional carbon fiber manufactured from pitch. Also, the electrical resistance of the carbon fiber carbonized at 900 C was reduced from 4.8 to 2.2 ohm/cm. The manufacturing of the nanocomposite carbon fiber was based on an extrusion, non-solvent process. The precursor fibers were then carbonized and graphitized. The resultant fibers are continuous.
Oxidation of Al2O3 continuous fiber-reinforced/NiAl composites
NASA Technical Reports Server (NTRS)
Doychak, J.; Nesbitt, J. A.; Noebe, R. D.; Bowman, R. R.
1992-01-01
The 1200 C and 1300 C isothermal and cyclic oxidation behavior of Al2O3 continuous fiber-reinforced/NiAl composites were studied. Oxidation resulted in formation of Al2O3 external scales in a similar manner as scales formed on monolithic NiAl. The isothermal oxidation of an Al2O3/NiAl composite resulted in oxidation of the matrix along the fiber/matrix interface near the fiber ends. This oxide acted as a wedge between the fiber and the matrix, and, under cyclic oxidation conditions, led to further oxidation along the fiber lengths and eventual cracking of the composite. The oxidation behavior of composites in which the Al2O3 fibers were sputter coated with nickel prior to processing was much more severe. This was attributed to open channels around the fibers which formed during processing, most likely as a result of the diffusion of the nickel coating into the matrix.
NASA Technical Reports Server (NTRS)
Lee, Jong-Won; Allen, David H.
1993-01-01
The uniaxial response of a continuous fiber elastic-perfectly plastic composite is modeled herein as a two-element composite cylinder. An axisymmetric analytical micromechanics solution is obtained for the rate-independent elastic-plastic response of the two-element composite cylinder subjected to tensile loading in the fiber direction for the case wherein the core fiber is assumed to be a transversely isotropic elastic-plastic material obeying the Tsai-Hill yield criterion, with yielding simulating fiber failure. The matrix is assumed to be an isotropic elastic-plastic material obeying the Tresca yield criterion. It is found that there are three different circumstances that depend on the fiber and matrix properties: fiber yield, followed by matrix yielding; complete matrix yield, followed by fiber yielding; and partial matrix yield, followed by fiber yielding, followed by complete matrix yield. The order in which these phenomena occur is shown to have a pronounced effect on the predicted uniaxial effective composite response.
Hollow fiber membranes and methods for forming same
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhandari, Dhaval Ajit; McCloskey, Patrick Joseph; Howson, Paul Edward
2016-03-22
The invention provides improved hollow fiber membranes having at least two layers, and methods for forming the same. The methods include co-extruding a first composition, a second composition, and a third composition to form a dual layer hollow fiber membrane. The first composition includes a glassy polymer; the second composition includes a polysiloxane; and the third composition includes a bore fluid. The dual layer hollow fiber membranes include a first layer and a second layer, the first layer being a porous layer which includes the glassy polymer of the first composition, and the second layer being a polysiloxane layer whichmore » includes the polysiloxane of the second composition.« less
Carbonized asphaltene-based carbon-carbon fiber composites
Bohnert, George; Lula, James; Bowen, III, Daniel E.
2016-12-27
A method of making a carbon binder-reinforced carbon fiber composite is provided using carbonized asphaltenes as the carbon binder. Combinations of carbon fiber and asphaltenes are also provided, along with the resulting composites and articles of manufacture.
NASA Astrophysics Data System (ADS)
Rozyanty, A. R.; Mohammed, M. M.; Musa, L.; Shahnaz, S. B. S.; Zuliahani, A.
2017-04-01
Kenaf and glass fiber hybrid composite was prepared by using hand lay-up process. The effect of weather on mechanical properties of kenaf/glass fiber hybrid composites was studied. The hybrid composite samples were exposed to natural weather. Tensile test was performed for samples at different weathering exposure time. Tensile strength of kenaf/glass fiber hybrid composite was 70.9 MPa and tensile modulus was at 30 GPa before expose to environment weather. Unfortunately, mechanical properties of hybrid composite decreased as exposure time increase due to the moisture absorption which further promotes weakness in interfacial bonding.
Electrical property of macroscopic graphene composite fibers prepared by chemical vapor deposition
NASA Astrophysics Data System (ADS)
Sun, Haibin; Fu, Can; Gao, Yanli; Guo, Pengfei; Wang, Chunlei; Yang, Wenchao; Wang, Qishang; Zhang, Chongwu; Wang, Junya; Xu, Junqi
2018-07-01
Graphene fibers are promising candidates in portable and wearable electronics due to their tiny volume, flexibility and wearability. Here, we successfully synthesized macroscopic graphene composite fibers via a two-step process, i.e. first electrospinning and then chemical vapor deposition (CVD). Briefly, the well-dispersed PAN nanofibers were sprayed onto the copper surface in an electrified thin liquid jet by electrospinning. Subsequently, CVD growth process induced the formation of graphene films using a PAN-solid source of carbon and a copper catalyst. Finally, crumpled and macroscopic graphene composite fibers were obtained from carbon nanofiber/graphene composite webs by self-assembly process in the deionized water. Temperature-dependent conduct behavior reveals that electron transport of the graphene composite fibers belongs to hopping mechanism and the typical electrical conductivity reaches 4.59 × 103 S m‑1. These results demonstrated that the graphene composite fibers are promising for the next-generation flexible and wearable electronics.
A study on the crushing behavior of basalt fiber reinforced composite structures
NASA Astrophysics Data System (ADS)
Pandian, A.; Veerasimman, A. P.; Vairavan, M.; Francisco, C.; Sultan, M. T. H.
2016-10-01
The crushing behavior and energy absorption capacity of basalt fiber reinforced hollow square structure composites are studied under axial compression. Using the hand layup technique, basalt fiber reinforced composites were fabricated using general purpose (GP) polyester resin with the help of wooden square shaped mould of varying height (100 mm, 150 mm and 200 mm). For comparison, similar specimens of glass fiber reinforced polymer composites were also fabricated and tested. Axial compression load is applied over the top end of the specimen with cross head speed as 2 mm/min using Universal Testing Machine (UTM). From the experimental results, the load-deformation characteristics of both glass fiber and basalt fiber composites were investigated. Crashworthiness and mode of collapse for the composites were determined from load-deformation curve, and they were then compared to each other in terms of their crushing behaviors.
Quantitative radiographic analysis of fiber reinforced polymer composites.
Baidya, K P; Ramakrishna, S; Rahman, M; Ritchie, A
2001-01-01
X-ray radiographic examination of the bone fracture healing process is a widely used method in the treatment and management of patients. Medical devices made of metallic alloys reportedly produce considerable artifacts that make the interpretation of radiographs difficult. Fiber reinforced polymer composite materials have been proposed to replace metallic alloys in certain medical devices because of their radiolucency, light weight, and tailorable mechanical properties. The primary objective of this paper is to provide a comparable radiographic analysis of different fiber reinforced polymer composites that are considered suitable for biomedical applications. Composite materials investigated consist of glass, aramid (Kevlar-29), and carbon reinforcement fibers, and epoxy and polyether-ether-ketone (PEEK) matrices. The total mass attenuation coefficient of each material was measured using clinical X-rays (50 kev). The carbon fiber reinforced composites were found to be more radiolucent than the glass and kevlar fiber reinforced composites.
Effect of low velocity impact damage on the natural frequency of composite plates
NASA Astrophysics Data System (ADS)
Chok, E. Y. L.; Majid, D. L. A. A.; Harmin, M. Y.
2017-12-01
Biodegradable natural fibers have been suggested to replace the hazardous synthetic fibers in many aerospace applications. However, this notion has been limited due to their low mechanical properties, which leads to the idea of hybridizing the two materials. Many aircraft components such as radome, aft body and wing are highly susceptible to low velocity impact damage while in-service. The damages degrade the structural integrity of the components and change their dynamic characteristics. In worst case scenario, the changes can lead to resonance, which is an excessive vibration. This research is conducted to study the dynamic characteristic changes of low velocity impact damaged hybrid composites that is designed for aircraft radome applications. Three materials, which are glass fiber, kenaf fiber and kenaf/glass fiber hybrid composites, have been impacted with 3J, 6J and 9J of energy. Cantilevered and also vertically clamped boundary conditions are used and the natural frequencies are extracted for each of the specimens. The obtained results show that natural frequency decreases with increasing impact level. Cantilevered condition is found to induce lower modes due to the gravitational pull. To eliminate mass and geometrical effects, normalized modes are computed. Among the three materials considered, glass fiber composites have displayed the highest normalized frequency that reflects on its higher stiffness compared to the other two materials. As the damage level is increased, glass fiber composites have shown the highest frequency reduction to a maximum of 35% while kenaf composites have the least frequency reduction in the range of 1 - 18%. Thus, kenaf fiber is taken to be helpful in stalling the damage progression and reducing the effect of damage. This has been proven when the percentage frequency decrement shown by kenaf/glass fiber composite lies between glass fiber and kenaf fiber composites.
Chen, Bin; Fan, Jinghong; Gou, Jihua; Lin, Shiyun
2014-12-01
Observations of the cuticle of the Boston Spiny Lobster using scanning electron microscope (SEM) show that it is a natural biocomposite consisting of chitin fibers and sclerotic-protein matrix with hierarchical and helicoidal structure. The SEM images also indicate that there is a hole-pin joining structure in the cuticle. In this joining structure, the chitin fibers in the neighborhood of the joining holes continuously round the holes to form a fiber-round-hole distribution. The maximum pullout force of the fibers in the fiber-round-hole distribution, which is closely related to the fracture toughness of the cuticle, is investigated and compared with that of the fibers in non-fiber-round-hole distribution based on their representative models. It is revealed that the maximum pullout force of the fibers in the fiber-round-hole distribution is significantly larger than that of the fibers in the non-fiber-round-hole distribution, and that a larger diameter of the hole results in a larger difference in the maximum pullout forces of the fibers between the two kinds of the fiber distributions. Inspired by the fiber-round-hole distribution found in the cuticle, composite specimens with the fiber-round-hole distribution were fabricated with a special mold and process to mirror the fiber-round-hole distribution. The fracture toughness of the biomimetic composite specimens is tested and compared with that of the conventional composite specimens with the non-fiber-round-hole distribution. It is demonstrated that the fracture toughness of the biomimetic composite specimens with the fiber-round-hole distribution is significantly larger than that of the conventional composite specimens with the non-fiber-round-hole distribution. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Fei, Jie; Zhang, Chao; Luo, Dan; Cui, Yali; Li, Hejun; Lu, Zhaoqing; Huang, Jianfeng
2018-03-01
A series of TiO2 nanorods were successfully grown on woven carbon fiber by hydrothermal method to reinforce the resin composite. The TiO2 nanorods improved the mechanical interlocking among woven carbon fibers and resin matrix, resulting in better fibers/resin interfacial bonding. Compared with desized-woven carbon fiber, the uniform TiO2 nanorods array resulted in an improvement of 84.3% and 73.9% in the tensile and flexural strength of the composite. However, the disorderly TiO2 nanorods on woven carbon fiber leaded to an insignificant promotion of the mechanical strength. The enhanced performance of well-proportioned TiO2 nanorods-woven carbon fiber was also reflected in the nearly 56% decrease of wear rate, comparing to traditional woven carbon fiber reinforced composite.
Wang, Jing; Schlagenhauf, Lukas; Setyan, Ari
2017-02-20
Composite materials with fibrous reinforcement often provide superior mechanical, thermal, electrical and optical properties than the matrix. Asbestos, carbon fibers and carbon nanotubes (CNTs) have been widely used in composites with profound impacts not only on technology and economy but also on human health and environment. A large number of studies have been dedicated to the release of fibrous particles from composites. Here we focus on the transformation of the fibrous fillers after their release, especially the change of the properties essential for the health impacts. Asbestos fibers exist in a large number of products and the end-of-the-life treatment of asbestos-containing materials poses potential risks. Thermal treatment can transform asbestos to non-hazardous phase which provides opportunities of safe disposal of asbestos-containing materials by incineration, but challenges still exist. Carbon fibers with diameters in the range of 5-10 μm are not considered to be respirable, however, during the release process from composites, the carbon fibers may be split along the fiber axis, generating smaller and respirable fibers. CNTs may be exposed on the surface of the composites or released as free standing fibers, which have lengths shorter than the original ones. CNTs have high thermal stability and may be exposed after thermal treatment of the composites and still keep their structural integrity. Due to the transformation of the fibrous fillers during the release process, their toxicity may be significantly different from the virgin fibers, which should be taken into account in the risk assessment of fiber-containing composites.
High fiber-low matrix composites: kenaf fiber/polypropylene.
Anand R. Sanadi; J.F. Hunt; D.F. Caulfield; G. Kovacsvolgyi; B. Destree
2002-01-01
Considerable interest has been generated in the use of lignocellulosic fibers and wastes (both agricultural and wood based) as fillers and reinforcements in thermoplastics. In general, present technologies limit fiber loading in thermoplastics to about 60 percent by weight of fiber. To produce high fiber content composites for commercial use while maintaining adequate...
Overview of SBIR Phase II Work on Hollow Graphite Fibers
NASA Technical Reports Server (NTRS)
Stallcup, Michael; Brantley, Lott W. (Technical Monitor)
2001-01-01
Ultra-Lightweight materials are enabling for producing space based optical components and support structures. Heretofore, innovative designs using existing materials has been the approach to produce lighter-weight optical systems. Graphite fiber reinforced composites, because of their light weight, have been a material of frequent choice to produce space based optical components. Hollow graphite fibers would be lighter than standard solid graphite fibers and, thus, would save weight in optical components. The Phase I SBIR program demonstrated it is possible to produce hollow carbon fibers that have strengths up to 4.2 GPa which are equivalent to commercial fibers, and composites made from the hollow fibers had substantially equivalent composite strengths as commercial fiber composites at a 46% weight savings. The Phase II SBIR program will optimize processing and properties of the hollow carbon fiber and scale-up processing to produce sufficient fiber for fabricating a large ultra-lightweight mirror for delivery to NASA. Information presented here includes an overview of the strength of some preliminary hollow fibers, photographs of those fibers, and a short discussion of future plans.
NASA Astrophysics Data System (ADS)
Kumar, S. C. Ramesh; Shivanand, H. K.; Vidayasagar, H. N.; Nagabhushan, V.
2018-04-01
The polymer composites are developed with natural fibers and fillers as a alternate material for some of the engineering applications in the field of automobiles and domestic purposes are being investigated. The natural fiber composites such as banana, sisal, jute, coir, kenaf and hemp polymer composites appear more effective due to their lightweight, higher specific strength, biodegradable and cost is low. The main objective is to prepare the Kenaf/Glass fiber hybrid composite filled with graphene as nano filler and to investigate the mechanical properties of hybrid composites. The different types of hybrid composites laminates are fabricated without filler, 0.5, 1 & 1.5Wt % of graphene by using kenaf and glass fiber as reinforcing material with epoxy resin. The specimen were prepared as per the ASTM standards and results shows that the mixing of graphene in epoxy resin improves the mechanical properties of hybrid composites.
NASA Astrophysics Data System (ADS)
Bowland, Christopher C.; Wang, Yangyang; Naskar, Amit K.
2017-04-01
Carbon fiber composites experience sudden, catastrophic failure when exposed to sufficient stress levels and provide no obvious visual indication of damage before they fail. With the commercial adoption of these high-performance composites in structural applications, a need for in-situ monitoring of their structural integrity is paramount. Therefore, ways in which to monitor these systems has gathered research interest. A common method for accomplishing this is measuring through-thickness resistance changes of the composite due to the fact that carbon fiber composites are electrically conductive. This provides information on whole-body stress levels imparted on the composite and can help identify the presence of damage. However, this technique relies on the carbon fiber and polymer matrix to reveal a resistance change. Here, an approach is developed that increases damage detection sensitivity. This is achieved by developing a facile synthesis method of integrating semiconducting nanomaterials, such as silicon carbide, into carbon fiber sizing. The piezoresistive effect exhibited by these nanomaterials provides more pronounced resistance changes in response to mechanical stress as compared to carbon fiber alone. This is investigated through fabricating a unidirectional composite and subsequently monitoring the electrical resistance during mechanical testing. By establishing this route for integrating nanomaterials into carbon fiber composites, various nanomaterials can see future composite integration to realize novel properties.
Glass Fiber Resin Composites and Components at Arctic Temperatures
2015-06-01
NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA THESIS Approved for public release; distribution is unlimited GLASS FIBER RESIN...3. REPORT TYPE AND DATES COVERED Master’s Thesis 4. TITLE AND SUBTITLE GLASS FIBER RESIN COMPOSITES AND COMPONENTS AT ARCTIC TEMPERATURES 5...public release; distribution is unlimited 12b. DISTRIBUTION CODE 13. ABSTRACT (maximum 200 words) Glass fiber reinforced composites (GFRC
USDA-ARS?s Scientific Manuscript database
We report the effect of glass fiber structure and the epoxy polymer system on the flexural strength, interlaminar shear stress (ILSS), and energy absorption properties of glass fiber-reinforced polymer (GFRP) composites. Four different GFRP composites were fabricated from two glass fiber textiles of...
Chin-Yin Hwang; Chung-Yun Hse; Elvin T. Choong
1999-01-01
Chemical compositions and fiber measurement of virgin and recycled fibers from three sources were determined. Results revealed that virgin southern pine fiber had highest alcohol-benzene extractive and lignin contents and lowest holo- and alpha-cellulose content among the three fiber types. Fiber length distribution of virgin fiber was less sensitive to disintegration...
Time dependent micromechanics in continuous graphite fiber/epoxy composites with fiber breaks
NASA Astrophysics Data System (ADS)
Zhou, Chao Hui
Time dependent micromechanics in graphite fiber/epoxy composites around fiber breaks was investigated with micro Raman spectroscopy (MRS) and two shear-lag based composite models, a multi-fiber model (VBI) and a single fiber model (SFM), which aim at predicting the strain/stress evolutions in the composite from the matrix creep behavior and fiber strength statistics. This work is motivated by the need to understand the micromechanics and predict the creep-rupture of the composites. Creep of the unfilled epoxy was characterized under different stress levels and at temperatures up to 80°C, with two power law functions, which provided the modeling parameters used as input for the composite models. Both the VBI and the SFM models showed good agreement with the experimental data obtained with MRS, when inelasticity (interfacial debonding and/or matrix yielding) was not significant. The maximum shear stress near a fiber break relaxed at t-alpha/2 (or as (1+ talpha)-1/2) and the load recovery length increased at talpha/2(or (1+ talpha)1/2) following the model predictions. When the inelastic zone became non-negligible, the viscoelastic VBI model lost its competence, while the SFM with inelasticity showed good agreement with the MRS measurements. Instead of using the real fiber spacing, an effective fiber spacing was used in model predictions, taking into account of the radial decay of the interfacial shear stress from the fiber surface. The comparisons between MRS data and the SFM showed that inelastic zone would initiate when the shear strain at the fiber end exceeds a critical value gammac which was determined to be 5% for this composite system at room temperature and possibly a smaller value at elevated temperatures. The stress concentrations in neighboring intact fibers played important roles in the subsequent fiber failure and damage growth. The VBI model predicts a constant stress concentration factor, 1.33, for the 1st nearest intact fiber, which is in good agreement with MRS measurements for most cases except for those with severely debonded interfaces. However, the VBI model usually gives a stress concentration profile narrower than the measured one due to the inelasticity near the fiber break. The low average fiber volume fraction in the model composites caused small relaxation in the stress concentration, which became more obvious at elevated temperatures, especially for large fiber spacing cases. When new break(s) occurred in the original intact neighboring fibers within an effective distance from the original break, the inelastic zones grew at a faster rate due to the strong interactions. Results on the creep-rupture of the bulk composites showed that the failure probability depends on the stress level and the loading time. The time dependent failure probability data could be fitted to a power law function, which suggested a link between the matrix creep, composite short-term strength and the composite creep-rupture.
Research on graphite reinforced glass matrix composites
NASA Technical Reports Server (NTRS)
Prewo, K. M.; Thompson, E. R.
1980-01-01
High levels of mechanical performance in tension, flexure, fatigue, and creep loading situations of graphite fiber reinforced glass matrix composites are discussed. At test temperatures of up to 813 K it was found that the major limiting factor was the oxidative instability of the reinforcing graphite fibers. Particular points to note include the following: (1) a wide variety of graphite fibers were found to be comparable with the glass matrix composite fabrication process; (2) choice of fiber, to a large extent, controlled resultant composite performance; (3) composite fatigue performance was found to be excellent at both 300 K and 703 K; (4) composite creep and stress rupture at temperatures of up to 813 K was limited by the oxidative stability of the fiber; (5) exceptionally low values of composite thermal expansion coefficient were attributable to the dimensional stability of both matrix and fiber; and (6) component fabricability was demonstrated through the hot pressing of hot sections and brazing using glass and metal joining phases.
Huang, Siwei; Zhou, Ling; Li, Mei-Chun; Wu, Qinglin; Kojima, Yoichi; Zhou, Dingguo
2016-01-01
Poly (vinyl pyrrolidone) (PVP)/cellulose nanocrystal (CNC)/silver nanoparticle composite fibers were prepared via electrospinning using N,N′-dimethylformamide (DMF) as a solvent. Rheology, morphology, thermal properties, mechanical properties, and antimicrobial activity of nanocomposites were characterized as a function of material composition. The PVP/CNC/Ag electrospun suspensions exhibited higher conductivity and better rheological properties compared with those of the pure PVP solution. The average diameter of the PVP electrospun fibers decreased with the increase in the amount of CNCs and Ag nanoparticles. Thermal stability of electrospun composite fibers was decreased with the addition of CNCs. The CNCs help increase the composite tensile strength, while the elongation at break decreased. The composite fibers included Ag nanoparticles showed improved antimicrobial activity against both the Gram-negative bacterium Escherichia coli (E. coli) and the Gram-positive bacterium Staphylococcus aureus (S. aureus). The enhanced strength and antimicrobial performances of PVP/CNC/Ag electrospun composite fibers make the mat material an attractive candidate for application in the biomedical field. PMID:28773644
Micromechanics of composites with shape memory alloy fibers in uniform thermal fields
NASA Technical Reports Server (NTRS)
Birman, Victor; Saravanos, Dimitris A.; Hopkins, Dale A.
1995-01-01
Analytical procedures are developed for a composite system consisting of shape memory alloy fibers within an elastic matrix subject to uniform temperature fluctuations. Micromechanics for the calculation of the equivalent properties of the composite are presented by extending the multi-cell model to incorporate shape memory alloy fibers. A three phase concentric cylinder model is developed for the analysis of local stresses which includes the fiber, the matrix, and the surrounding homogenized composite. The solution addresses the complexities induced by the nonlinear dependence of the in-situ martensite fraction of the fibers to the local stresses and temperature, and the local stresses developed from interactions between the fibers and matrix during the martensitic and reverse phase transformations. Results are presented for a nitinol/epoxy composite. The applications illustrate the response of the composite in isothermal longitudinal loading and unloading, and in temperature induced actuation. The local stresses developed in the composite under various stages of the martensitic and reverse phase transformation are also shown.
Research on Damage Models for Continuous Fiber Composites
1988-07-01
r ~.F (~ Mechanics and Materials Center TEXAS A&M UNIVERSITY College Station, Texas RESEARCH ON DAMAGE MODELS FOR CONTINUOUS FIBER COMPOSITES Final...Washington, DC 20332 11. TITLE (Include Security Clas=fication) Research on Damage Models for Continuous Fiber Composites - Final Technical Report 1...GROUP SUB-GROU ::=, COMPOsites ) continuum mechanics , ~ idamage, internal state variables V experimental mechanics, laminated composites o 19. ABSTRACT
Effects of edge grinding and sealing on mechanical properties of machine damaged laminate composites
NASA Astrophysics Data System (ADS)
Asmatulu, Ramazan; Yeoh, Jason; Alarifi, Ibrahim M.; Alharbi, Abdulaziz
2016-04-01
Fiber reinforced composites have been utilized for a number of different applications, including aircraft, wind turbine, automobile, construction, manufacturing, and many other industries. During the fabrication, machining (waterjet, diamond and band saws) and assembly of these laminate composites, various edge and hole delamination, fiber pullout and other micro and nanocracks can be formed on the composite panels. The present study mainly focuses on the edge grinding and sealing of the machine damaged fiber reinforced composites, such as fiberglass, plain weave carbon fiber and unidirectional carbon fiber. The MTS tensile test results confirmed that the composite coupons from the grinding process usually produced better and consistent mechanical properties compared to the waterjet cut samples only. In addition to these studies, different types of high strength adhesives, such as EPON 828 and Loctite were applied on the edges of the prepared composite coupons and cured under vacuum. The mechanical tests conducted on these coupons indicated that the overall mechanical properties of the composite coupons were further improved. These processes can lower the labor costs on the edge treatment of the composites and useful for different industrial applications of fiber reinforced composites.
NASA Astrophysics Data System (ADS)
Wang, Jing; Shi, Chen; Feng, Jiayue; Long, Xi; Meng, Lingzhi; Ren, Hang
2018-01-01
The effects of oxygen plasma treatment power on Aramid Fiber III chemical structure and its reinforced bismaleimides (BMI) composite humidity resistance properties were investigated in this work. The aramid fiber III chemical structure under different plasma treatment power were measured by FTIR. The composite bending strength and interlinear shear strength with different plasma treatment power before and after absorption water were tested respectively. The composite rupture morphology was observed by SEM. The FTIR results showed that oxygen plasma treatment do not change the fiber bulk chemical structure. The composite humidity resistance of bending strength and interlinear shear strength are similar for untreated and plasma treated samples. The retention rate of composite bending strength and interlinear shear strength are about 75% and 94%, respectively. The composite rupture mode turns to be the fiber failure after water absorption.
Mechanical properties of SiC fiber-reinforced reaction-bonded Si3N4 composites
NASA Technical Reports Server (NTRS)
Bhatt, R. T.
1985-01-01
The room temperature mechanical and physical properties of silicon carbide fiber reinforced reaction-bonded silicon nitride composites (SiC/RBSN) have been evaluated. The composites contained 23 and 40 volume fraction of aligned 140 micro m diameter chemically vapor deposited SiC fibers. Preliminary results for composite tensile and bend strengths and fracture strain indicate that the composites displayed excellent properties when compared with unreinforced RBSN of comparable porosity. Fiber volume fraction showed little influence on matrix first cracking strain but did influence the stressed required for matrix first cracking and for ultimate composite fracture strength. It is suggested that by reducing matrix porosity and by increasing the volume fraction of the large diameter SiC fiber, it should be possible to further improve the composite stress at which the matrix first cracks.
Surface characterization of LDEF carbon fiber/polymer matrix composites
NASA Technical Reports Server (NTRS)
Grammer, Holly L.; Wightman, James P.; Young, Philip R.; Slemp, Wayne S.
1995-01-01
XPS (x-ray photoelectron spectroscopy) and SEM (scanning electron microscopy) analysis of both carbon fiber/epoxy matrix and carbon fiber/polysulfone matrix composites revealed significant changes in the surface composition as a result of exposure to low-earth orbit. The carbon 1s curve fit XPS analysis in conjunction with the SEM photomicrographs revealed significant erosion of the polymer matrix resins by atomic oxygen to expose the carbon fibers of the composite samples. This erosion effect on the composites was seen after 10 months in orbit and was even more obvious after 69 months.
Highly birefringent polymer microstructured optical fibers embedded in composite materials
NASA Astrophysics Data System (ADS)
Lesiak, P.; SzelÄ g, M.; Kuczkowski, M.; Domański, A. W.; Woliński, T. R.
2013-05-01
Composite structures are made from two or more constituent materials with significantly different physical or chemical properties and they remain separate and distinct in a macroscopic level within the finished structure. This feature allows for introducing highly birefringent polymer microstructured optical fibers into the composite material. These new fibers can consist of only two polymer materials (PMMA and PC) with similar value of the Young modulus as the composite material so any stresses induced in the composite material can be easily measured by the proposed embedded fiber optic sensors.
Bio-composites based on cellulose acetate and kenaf fibers: Processing and properties
NASA Astrophysics Data System (ADS)
Pang, C.; Shanks, R. A.; Daver, F.
2014-05-01
Research on bio-composites is important because of its positive environmental impact. In this study, bio-composites based on plasticised cellulose acetate and kenaf fibers were prepared by solution casting and compression moulding methods. The fibers were chemically treated to remove lignin, hemicellulose and impurities. Mechanical, morphological and thermal properties of the bio-composites were studied. Introduction of chopped kenaf fibers increased the storage modulus. The flexural storage modulus of the composite was affected with the introduction of moisture. Moisture behaved similar to the effect of plasticiser, it reduced the modulus.
Li, Shaolin; Qi, Lehua; Zhang, Ting; Ju, Luyan; Li, Hejun
2017-10-01
In spite of the effectiveness of the fiber coatings on interface modification of carbon fiber reinforced magnesium matrix composites, the cost and exclusive equipment for the coatings preparation are usually ignored during research work. In this paper, pyrolytic carbon (PyC) and TiO 2 were coated on carbon fiber surface to study the effects of fiber coatings on interfacial microstructure and mechanical properties of carbon fiber reinforced AZ91D composites (C f /AZ91D composites). It was indicated that both the two coatings could modify the interface and improve the mechanical properties of the composites. The ultimate tensile strength of the TiO 2 -C f /AZ91D and the PyC-C f /AZ91D composite were 333MPa and 400MPa, which were improved by 41.7% and 70.2% respectively, compared with the untreated-C f /AZ91D composite. The microstructure observation revealed that the strengthening of the composites relied on fiber integrity and moderate interfacial bonding. MgO nano-particles were generated at the interface due to the reaction of TiO 2 with Mg in the TiO 2 -C f /AZ91D composite. The volume expansion resulting from the reaction let to disordered intergranular films and crystal defects at the interface. The fibers were protected and the interfacial reaction was restrained by PyC coating in the PyC-C f /AZ91D composite. The principle to select the coating of fiber was proposed by comparing the effectiveness and cost of the coatings. Copyright © 2017 Elsevier Ltd. All rights reserved.
Equations to assess the impact resistance of fiber composites
NASA Technical Reports Server (NTRS)
Chamis, C. C.; Hanson, M. P.; Serafini, T. T.
1972-01-01
Numerical analysis of impact resistance of composite materials containing fibers is discussed. Mathematical model of longitudinal impact resistance is presented. Potential impact resistance of various fiber composites as obtained by numerical analysis is presented as plotted curve.
NASA Astrophysics Data System (ADS)
Sebastian, Tutu; Lusiola, Tony; Clemens, Frank
2017-04-01
Piezoelectric fibers are widely used in composites for actuator and sensor applications due to its ability to convert electrical pulses into mechanical vibrations and transform the returned mechanical vibrations back into electrical signal. They are beneficial for the fabrication of composites especially 1-3 composites, active fiber composites (unidirectional axially aligned PZT fibers sandwiched between interdigitated electrodes and embedded in a polymer matrix) etc, with potential applications in medical imaging, structural health monitoring, energy harvesting, vibration and noise control. However, due to the brittle nature of PZT fibers, maximum strain is limited to 0.2% and cannot be integrated into flexible sensor applications. In this contribution, a new approach to develop flexible ferroelectric hybrid fibers for soft body shape sensing is investigated. Piezoelectric particles incorporated in a polymer matrix and extruded as fiber, 0-3 composite in fibrous form is studied. Commercially obtained calcined PZT and calcined BaTiO3 powders were used in the unsintered form to obtain flexible soft condensed matter ferroelectric hybrid fibers. The extruded fibers were subjected to investigation for their electromechanical behavior as a function of electric field. The hybrid fibers reached 10% of the maximum polarization of their sintered counterpart.
NASA Astrophysics Data System (ADS)
Anju, V. P.; Narayanankutty, Sunil K.
2016-01-01
Cost effective, high performance dielectric composites based on polyvinyl alcohol, cellulose fibers and polyaniline were prepared and the dielectric properties were studied as a function of fiber content, fiber dimensions and polyaniline content over a frequency range of 40 Hz to 30 MHz. The short cellulose fibers were size-reduced to micro and nano levels prior to coating with polyaniline. Fiber surface was coated with Polyaniline (PANI) by an in situ polymerization technique in aqueous medium. The composites were then prepared by solution casting method. Short cellulose fiber composites showed a dielectric constant (DEC) of 2.3 x 105 at 40 Hz. For the micro- and nano- cellulose fiber composites the DEC was increased to 4.5 x 105 and 1.3 x 108, respectively. To gain insight into the inflection point of the dielectric data polynomial regression analysis was carried out. The loss tangent of all the composites remained at less than 1.5. Further, AC conductivity, real and imaginary electric moduli of all the composites were evaluated. PVA nanocomposite attained an AC conductivity of 3 S/m. These showed that by controlling the size of the fiber used, it was possible to tune the permittivity and dielectric loss to desired values over a wide range. These novel nanocomposites, combining high dielectric constant and low dielectric loss, can be effectively used in applications such as high-charge storage capacitors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abdennadher, Ahmed; Vincent, Michel; Budtova, Tatiana, E-mail: Tatiana.Budtova@mines-paristech.fr
The rheological properties of short fiber reinforced polypropylene were investigated. Flax and Tencel{sup ®} are two cellulose based fibers used in this study. Flax fibers are extracted from the bast of plants. They are composed of thin elementary fibers and rigid thick bundles made of elementary fibers “glued” together. Tencel{sup ®} is a man-made cellulosic fiber spun from cellulose solution, with a uniform diameter, thin, and flexible. First, fiber dimensions before and after compounding were analyzed. Both types of fibers were broken during compounding. Flax shows larger length and diameter than Tencel{sup ®}, but aspect ratio of flax is smaller.more » The reason is that after compounding flax remained in bundles. Dynamic viscosity, elastic and viscous moduli were studied as a function of fiber type, concentration (from 0 to 30 wt. %), and composite temperature (from 180 to 200 °C). All Tencel{sup ®}-based composites showed higher apparent yield stress, viscosity, and moduli compared to flax-based composites at the same fiber concentrations. The results are analyzed in terms of the influence of fiber type, aspect ratio, and flexibility. The importance of considering fiber morphology is demonstrated as far as it controls fiber flexibility and fiber-fiber interactions.« less
Investigation of mechanical properties of kenaf, hemp and E-glass fiber reinforced composites
NASA Astrophysics Data System (ADS)
Dinesh, Veena; Shivanand, H. K.; Vidyasagar, H. N.; Chari, V. Srinivasa
2018-04-01
Recently the use of fiber reinforced polymer composite in the automobile, aerospace overwhelming designing sectors has increased tremendously due to the ecological issues and health hazard possessed by the synthetic fiber during disposal and manufacturing. The paper presents tensile strength, flexural strength and hardness of kenaf-E glass-kenaf, hemp-E glass-hemp and kenaf-E glass-hemp fiber reinforced polyester composites. The composite plates are shaped according to the standard geometry and uni-axially loaded in order to investigate the tensile responses of each combination. In addition to the physical and mechanical properties, processing methods and application of kenaf and hemp fiber composites is also discussed.
Microwave and plasma-assisted modification of composite fiber surface topography
Paulauskas, Felix L [Knoxville, TN; White, Terry L [Knoxville, TN; Bigelow, Timothy S [Knoxville, TN
2003-02-04
The present invention introduces a novel method for producing an undulated surface on composite fibers using plasma technology and microwave radiation. The undulated surface improves the mechanical interlocking of the fibers to composite resins and enhances the mechanical strength and interfacial sheer strength of the composites in which they are introduced.
Liu, Min; Liu, Hui; Sun, Shufen; Li, Xuejiao; Zhou, Yanmin; Hou, Zhiyao; Lin, Jun
2014-02-04
Porous hydroxyapatite (HAp) composite fibers functionalized with up-conversion (UC) luminescent and magnetic Na(Y/Gd)F4:Yb(3+),Er(3+) nanocrystals (NCs) have been fabricated via electrospinning. After transferring hydrophobic oleic acid-capped Na(Y/Gd)F4:Yb(3+),Er(3+) NCs into aqueous solution, these water-dispersible NCs were dispersed into precursor electrospun solution containing CTAB. Na(Y/Gd)F4:Yb(3+),Er(3+)@HAp composite fibers were fabricated by the high temperature treatment of the electrospun Na(Y/Gd)F4:Yb(3+),Er(3+) NCs decorated precursor fibers. The biocompatibility test on MC 3T3-E1 cells using MTT assay shows that the HAp composite fibers have negligible cytotoxity, which reveals the HAp composite fibers could be a drug carrier for drug delivery. Because the contrast brightening is enhanced at increased concentrations of Gd(3+), the HAp composite fibers can serve as T1 magnetic resonance imaging contrast agents. In addition, the composites uptaken by MC 3T3-E1 cells present the UC luminescent emission of Er(3+) under the excitation of a 980 nm near-infrared laser. The above findings reveal Na(Y/Gd)F4:Yb(3+),Er(3+)@HAp composite fibers have potential applications in drug storage/release and magnetic resonance/UC luminescence imaging.
Fabrication of CH3NH3PbI3/PVP Composite Fibers via Electrospinning and Deposition
Chao, Li-Min; Tai, Ting-Yu; Chen, Yueh-Ying; Lin, Pei-Ying; Fu, Yaw-Shyan
2015-01-01
In our study, one-dimensional PbI2/polyvinylpyrrolidone (PVP) composition fibers have been prepared by using PbI2 and PVP as precursors dissolved in N,N-dimethylformamide via a electrospinning process. Dipping the fibers into CH3NH3I solution changed its color, indicating the formation of CH3NH3PbI3, to obtain CH3NH3PbI3/PVP composite fibers. The structure, morphology and composition of the all as-prepared fibers were characterized by using X-ray diffraction and scanning electron microscopy. PMID:28793517
Feasibility of producing cast-refractory metal-fiber superalloy composites
NASA Technical Reports Server (NTRS)
Mcintyre, R. D.
1973-01-01
A study was conducted to evaluate the feasibility of direct casting as a practical method for producing cast superalloy tungsten or columbium alloy fiber composites while retaining a high percentage of fiber strength. Fourteen nickel base, four cobalt, and three iron based matrices were surveyed for their degree of reaction with the metal fibers. Some stress-rupture results were obtained at temperatures of 760, 816, 871, and 1093 C for a few composite systems. The feasibility of producing acceptable composites of some cast nickel, cobalt, and iron matrix alloys with tungsten or columbium alloy fibers was demonstrated.
NASA Technical Reports Server (NTRS)
Grant, J.; Kaul, R.; Taylor, S.; Myer, G.; Jackson, K.; Osei, A.; Sharma, A.
2003-01-01
Multiple Fiber Bragg-gratings are embedded in carbon-epoxy laminates as well as in composite wound pressure vessel. Structural properties of such composites are investigated. The measurements include stress-strain relation in laminates and Poisson's ratio in several specimens with varying orientation of the optical fiber Bragg-sensor with respect to the carbon fiber in an epoxy matrix. Additionally, fiber Bragg gratings are bonded on the surface of these laminates and cylinders fabricated out of carbon-epoxy composites and multiple points are monitored and compared for strain measurements at several locations.
NASA Astrophysics Data System (ADS)
Su, Min; Gu, Aijuan; Liang, Guozheng; Yuan, Li
2011-02-01
The effect of oxygen-plasma treatment for Kevlar fibers on the interfacial adhesion and typical macro-properties of Kevlar fiber/bismaleimide composites was intensively studied. It is found that oxygen-plasma treatment significantly affects the interfacial adhesion by changing the chemistry and morphology of the surfaces of the fibers, and thus leading to improved interlaminar shear strength, water resistance and dielectric properties of the composites. However, the improvement is closely related to the treatment power and time. The best condition for treating Kevlar fiber is 70 W for 5 min. Oxygen-plasma treatment provides an effective technique for overcoming the poor interfacial adhesion of Kevlar fiber based composites, and thus showing great potential in fabricating high performance copper clad laminates.
Modified Composite Materials Workshop
NASA Technical Reports Server (NTRS)
Dicus, D. L. (Compiler)
1978-01-01
The reduction or elimination of the hazard which results from accidental release of graphite fibers from composite materials was studied at a workshop. At the workshop, groups were organized to consider six topics: epoxy modifications, epoxy replacement, fiber modifications, fiber coatings and new fibers, hybrids, and fiber release testing. Because of the time required to develop a new material and acquire a design data base, most of the workers concluded that a modified composite material would require about four to five years of development and testing before it could be applied to aircraft structures. The hybrid working group considered that some hybrid composites which reduce the risk of accidental fiber release might be put into service over the near term. The fiber release testing working group recommended a coordinated effort to define a suitable laboratory test.
Fiber shape effects on metal matrix composite behavior
NASA Technical Reports Server (NTRS)
Brown, H. C.; Lee, H.-J.; Chamis, C. C.
1992-01-01
The effects of different fiber shapes on the behavior of a SiC/Ti-15 metal matrix composite is computationally simulated. A three-dimensional finite element model consisting of a group of nine unidirectional fibers is used in the analysis. The model is employed to represent five different fiber shapes: a circle, an ellipse, a kidney, and two different cross shapes. The distribution of microstresses and the composite material properties, such as moduli, coefficients of thermal expansion, and Poisson's ratios, are obtained from the finite element analysis for the various fiber shapes. Comparisons of these results are used to determine the sensitivity of the composite behavior to the different fiber shapes and assess their potential benefits. No clear benefits result from different fiber shapes though there are some increases/decreases in isolated properties.
Electronic equipment vulnerability to fire released carbon fibers
NASA Technical Reports Server (NTRS)
Pride, R. A.; Mchatton, A. D.; Musselman, K. A.
1980-01-01
The vulnerability of electronic equipment to damage by carbon fibers released from burning aircraft type structural composite materials was investigated. Tests were conducted on commercially available stereo power amplifiers which showed that the equipment was damaged by fire released carbon fibers but not by the composite resin residue, soot and products of combustion of the fuel associated with burning the carbon fiber composites. Results indicate that the failure rates of the equipment exposed to the fire released fiber were consistent with predictions based on tests using virgin fibers.
Comparison Of Models Of Metal-Matrix Composites
NASA Technical Reports Server (NTRS)
Bigelow, C. A.; Johnson, W. S.; Naik, R. A.
1994-01-01
Report presents comparative review of four mathematical models of micromechanical behaviors of fiber/metal-matrix composite materials. Models differ in various details, all based on properties of fiber and matrix constituent materials, all involve square arrays of fibers continuous and parallel and all assume complete bonding between constituents. Computer programs implementing models used to predict properties and stress-vs.-strain behaviors of unidirectional- and cross-ply laminated composites made of boron fibers in aluminum matrices and silicon carbide fibers in titanium matrices. Stresses in fiber and matrix constituent materials also predicted.
Process for preparing composite articles from composite fiber blends
NASA Technical Reports Server (NTRS)
McMahon, Paul E. (Inventor); Chung, Tai-Shung (Inventor); Ying, Lincoln (Inventor)
1989-01-01
A composite article is prepared by forming a continuous tow of continuous carbon fibers, forming a continuous tow of thermoplastic polymer fibers, uniformly and continuously spreading the thermoplastic polymer fibers to a selected width, uniformly and continuously spreading the carbon fiber tow to a width that is essentially the same as the selected width for the thermoplastic polymer fiber tow, intermixing the tows intimately, uniformly and continuously, in a relatively tension-free state, continuously withdrawing the intermixed tow and applying the tow to a mold and heating the tow.
Gao, Xun; Li, Qingde; Cheng, Wanli; Han, Guangping; Xuan, Lihui
2016-10-18
The orthogonal design method was used to determine the optimum conditions for modifying poplar fibers through a high temperature and pressurized steam treatment for the subsequent preparation of wood fiber/high-density polyethylene (HDPE) composites. The extreme difference, variance, and significance analyses were performed to reveal the effect of the modification parameters on the mechanical properties of the prepared composites, and they yielded consistent results. The main findings indicated that the modification temperature most strongly affected the mechanical properties of the prepared composites, followed by the steam pressure. A temperature of 170 °C, a steam pressure of 0.8 MPa, and a processing time of 20 min were determined as the optimum parameters for fiber modification. Compared to the composites prepared from untreated fibers, the tensile, flexural, and impact strength of the composites prepared from modified fibers increased by 20.17%, 18.5%, and 19.3%, respectively. The effect on the properties of the composites was also investigated by scanning electron microscopy and dynamic mechanical analysis. When the temperature, steam pressure, and processing time reached the highest values, the composites exhibited the best mechanical properties, which were also well in agreement with the results of the extreme difference, variance, and significance analyses. Moreover, the crystallinity and thermal stability of the fibers and the storage modulus of the prepared composites improved; however, the hollocellulose content and the pH of the wood fibers decreased.
Gao, Xun; Li, Qingde; Cheng, Wanli; Han, Guangping; Xuan, Lihui
2016-01-01
The orthogonal design method was used to determine the optimum conditions for modifying poplar fibers through a high temperature and pressurized steam treatment for the subsequent preparation of wood fiber/high-density polyethylene (HDPE) composites. The extreme difference, variance, and significance analyses were performed to reveal the effect of the modification parameters on the mechanical properties of the prepared composites, and they yielded consistent results. The main findings indicated that the modification temperature most strongly affected the mechanical properties of the prepared composites, followed by the steam pressure. A temperature of 170 °C, a steam pressure of 0.8 MPa, and a processing time of 20 min were determined as the optimum parameters for fiber modification. Compared to the composites prepared from untreated fibers, the tensile, flexural, and impact strength of the composites prepared from modified fibers increased by 20.17%, 18.5%, and 19.3%, respectively. The effect on the properties of the composites was also investigated by scanning electron microscopy and dynamic mechanical analysis. When the temperature, steam pressure, and processing time reached the highest values, the composites exhibited the best mechanical properties, which were also well in agreement with the results of the extreme difference, variance, and significance analyses. Moreover, the crystallinity and thermal stability of the fibers and the storage modulus of the prepared composites improved; however, the hollocellulose content and the pH of the wood fibers decreased. PMID:28773963
NASA Astrophysics Data System (ADS)
Yang, In-Young; Kim, Ji-Hoon; Cha, Cheon-Seok; Lee, Kil-Sung; Hsu, David K.; Im, Kwang-Hee
2007-07-01
In particular, CFRP (carbon fiber reinforced plastics) composite materials have found wide applicability because of their inherent design flexibility and improved material properties. CFRP composites were manufactured from uni-direction prepreg sheet in this paper. It is important to assess fiber orientation, material properties and part defect in order to ensure product quality and structural integrity of CFRP because strength and stiffness of composites depend on fiber orientation. It is desirable to perform nondestructive evaluation which is very beneficial. An new method for nondestructively determining the fiber orientation in a composite laminate is presented. A one-sided pitch-catch setup was used in the detection and evaluation of flaws and material anomalies in the unidirectional CFRP composite laminates. Two Rayleigh wave transducers were joined head-to-head and used in the pitch-catch mode on the surface of the composites. The pitch-catch signal was found to be more sensitive than normal incidence backwall echo of longitudinal wave to subtle flaw conditions in the composite. Especially, ultrasonic waves were extensively characterized in the CFRP composite laminates both normal to fiber and along to fiber with using a one-sided direction of Rayleigh wave transducers. Also, one-sided ultrasonic measurement was made with using a Rayleigh wave transducers and a conventional scanner was used in an immersion tank for extracting fiber orientation information from the ultrasonic reflection in the unidirectional laminate. Therefore, it is thought that the proposed method is useful to evaluate integrity of CFRP laminates.
NASA Astrophysics Data System (ADS)
Cheng, Zheng; Hong, Dawei; Dai, Yu; Jiang, Chan; Meng, Chenbo; Luo, Longbo; Liu, Xiangyang
2018-03-01
The poor Uv stability and weak interfacial adhesion are considered as the bottleneck problems for further application of aramid fiber. Herein, a new strategy, Fe3+ coordination, was reported for aramid fiber to simultaneous improve its Uv resistance and composite interfacial shear strength. Fe3+ was introduced onto aramid fiber by coordinating with benzimidazole unit of fiber structure. It can reach a doping capacity of as high as 1516ug/g fiber, and the fiber surface is saturatedly covered with Fe3+. The chemical structure of Fe3+-benzimidazole brings about strong metal-enhanced fluorescence emission effect, which, in turn, greatly raises its Uv stability. Owing to the Fe3+ coordination, the tensile strength of Fe-coordinated fiber could preserve as high as 96% after Uv irradiation, compared with 73% of untreated fiber. Meanwhile, the introduction of Fe3+ improves the surface polarity of aramid fiber and consequently leads to the increase of the composite interfacial shear strength by 39%. It is believed that the Fe-coordinated fiber integrates the advantages of easy production, cost-effective and increased Uv stability, as well as high composite interfacial adhesion, and can be used as promising enhancement for the advanced composite material in harsh environment.
Craig M. Clemons
2010-01-01
The term ânatural fibersâ covers a broad range of vegetable, animal, and mineral fibers. However, in the composites industry, it usually refers to wood fiber and plant-based bast, leaf, seed, and stem fibers. These fibers often contribute greatly to the structural performance of the plant and, when used in plastic composites, can provide significant reinforcement....
Craig M. Clemons; Daniel F. Caulfield
2005-01-01
The term ânatural fibersâ covers a broad range of vegetable, animal, and mineral fibers. However, in the composites industry, it usually refers to wood fiber and agrobased bast, leaf, seed, and stem fibers. These fibers often contribute greatly to the structural performance of the plant and, when used in plastic composites, can provide significant reinforcement. Below...
Effects of HF Treatments on Tensile Strength of Hi-Nicalon Fibers
NASA Technical Reports Server (NTRS)
Bansal, Narottam P.
1998-01-01
Tensile strengths of as-received Hi-Nicalon fibers and those having a dual BN/SiC surface coating, deposited by chemical vapor deposition, have been measured at room temperature. These fibers were also treated with HF for 24 h followed by tensile strength measurements. Strengths of uncoated and BN/SiC coated Hi-Nicalon fibers extracted from celsian matrix composites, by dissolving away the matrix in HF for 24 h, were also determined. The average tensile strength of uncoated Hi-Nicalon was 3.19 +/- 0.73 GPa with a Weibull modulus of 5.41. The Hi-Nicalon/BN/SiC fibers showed an average strength of 3.04 q 0.53 GPa and Weibull modulus of 6.66. After HF treatments, the average strengths of the uncoated and BN/SiC coated Hi-Nicalon fibers were 2.69 +/- 0.67 GPa and 2.80 +/- 0.53 GPa and the Weibull moduli were 4.93 and 5.96, respectively. The BN/SiC coated fibers extracted from the celsian matrix composite exhibited a strength of 2.38 +/- 0.40 GPa and a Weibull modulus of 7.15. The strength of the uncoated Hi-Nicalon fibers in the composite was so severely degraded that they disintegrated into small fragments during extraction with HF. The uncoated fibers probably undergo mechanical surface damage during hot pressing of the composites. Also, the BN layer on the coated fibers acts as a compliant layer which protects the fibers from mechanical damage during composite processing. The elemental composition and thickness of the fiber coatings were deten-nined using scanning Auger analysis. Microstructural analyses of the fibers and the coatings were done by scanning electron microscopy and transmission electron microscopy. Strengths of fibers calculated using average and measured fiber diameters were in good agreement. Thus, the strength of fibers can be evaluated using an average fiber diameter instead of the measured diameter of each filament.
Evaluation of mechanical properties of hybrid fiber (hemp, jute, kevlar) reinforced composites
NASA Astrophysics Data System (ADS)
Suresha, K. V.; Shivanand, H. K.; Amith, A.; Vidyasagar, H. N.
2018-04-01
In today's world composites play wide role in all the engineering fields. The reinforcement of composites decides the properties of the material. Natural fiber composites compared to synthetic fiber possesses poor mechanical properties. The solution for this problem is to use combination of natural fiber and synthetic fiber. Hybridization helps to improve the overall mechanical properties of the material. In this study, hybrid reinforced composites of Hemp fabric/Kevlar fabric/Epoxy and Jute fabric/ Kevlar fabric/Epoxy composites are fabricated using Simple hand layup technique followed by Vacuum bagging process. Appropriate test methods as per standards and guidelines are followed to analyze mechanical behavior of the composites. The mechanical characteristics like tensile, compression and flexural properties of the hybrid reinforced composites are tested as per the ASTM standards by series of tensile test; compression test and three point bending tests were conducted on the hybrid composites. A quantitative relationship between the Hemp fabric/Kevlar fabric/Epoxy and Jute/ Kevlar fabric/Epoxy has been established with constant thickness.
Investigation of mechanical properties of hemp/glass fiber reinforced nano clay hybrid composites
NASA Astrophysics Data System (ADS)
Unki, Hanamantappa Ningappa; Shivanand, H. K.; Vidyasagar, H. N.
2018-04-01
Over the last twenty to thirty years composite materials have been used in engineering field. Composite materials possess high strength, high strength to weight ratio due to these facts composite materials are becoming popular among researchers and scientists. The major proportion of engineering materials consists of composite materials. Composite materials are used in vast applications ranging from day-to-day household articles to highly sophisticated applications. In this paper an attempt is made to prepare three different composite materials using e-glass and Hemp. In this present investigation hybrid composite of Hemp, Glass fiber and Nano clay will be prepared by Hand-layup technique. The glass fiber used in this present investigation is E-glass fiber bi-directional: 90˚ orientation. The composite samples will be made in the form of a Laminates. The wt% of nanoclay added in the preparation of sample is 20 gm constant. The fabricated composite Laminate will be cut into corresponding profiles as per ASTM standards for Mechanical Testing. The effect of addition of Nano clay and variation of Hemp/glass fibers will be studied. In the present work, a new Hybrid composite is developed in which Hemp, E glass fibers is reinforced with epoxy resin and with Nano clay.
Embedded sensor having an identifiable orientation
Bennett, Thomas E.; Nelson, Drew V.
2002-01-01
An apparatus and method is described wherein a sensor, such as a mechanical strain sensor, embedded in a fiber core, is "flagged" to identify a preferred orientation of the sensor. The identifying "flag" is a composite material, comprising a plurality of non-woven filaments distributed in a resin matrix, forming a small planar tab. The fiber is first subjected to a stimulus to identify the orientation providing the desired signal response, and then sandwiched between first and second layers of the composite material. The fiber, and therefore, the sensor orientation is thereby captured and fixed in place. The process for achieving the oriented fiber includes, after identifying the fiber orientation, carefully laying the oriented fiber onto the first layer of composite, moderately heating the assembled layer for a short period in order to bring the composite resin to a "tacky" state, heating the second composite layer as the first, and assembling the two layers together such that they merge to form a single consolidated block. The consolidated block achieving a roughly uniform distribution of composite filaments near the embedded fiber such that excess resin is prevented from "pooling" around the periphery of the fiber.
Hybrid boron nitride-natural fiber composites for enhanced thermal conductivity.
Xia, Changlei; Garcia, Andres C; Shi, Sheldon Q; Qiu, Ying; Warner, Nathaniel; Wu, Yingji; Cai, Liping; Rizvi, Hussain R; D'Souza, Nandika A; Nie, Xu
2016-10-05
Thermal conductivity was dramatically increased after adding natural fiber into hexagonal boron nitride (hBN)/epoxy composites. Although natural fiber does not show high-thermal conductivity itself, this study found that the synergy of natural fiber with hBN could significantly improve thermal conductivity, compared with that solely using hBN. A design of mixtures approach using constant fibers with increasing volume fractions of hBN was examined and compared. The thermal conductivity of the composite containing 43.6% hBN, 26.3% kenaf fiber and 30.1% epoxy reached 6.418 W m -1 K -1 , which was 72.3% higher than that (3.600 W m -1 K -1 ) of the 69.0% hBN and 31.0% epoxy composite. Using the scanning electron microscope (SEM) and micro computed tomography (micro-CT), it was observed that the hBN powders were well distributed and ordered on the fiber surfaces enhancing the ceramic filler's interconnection, which may be the reason for the increase in thermal conductivity. Additionally, the results from mechanical and dynamic mechanical tests showed that performances dramatically improved after adding kenaf fibers into the hBN/epoxy composite, potentially benefiting the composite's use as an engineered material.
Highly conductive and ultrastretchable electric circuits from covered yarns and silver nanowires.
Cheng, Yin; Wang, Ranran; Sun, Jing; Gao, Lian
2015-04-28
Stretchable electronics, as a promising research frontier, has achieved progress in a variety of sophisticated applications. The realization of stretchable electronics frequently involves the demand for a stretchable conductor as an electrical circuit. However, it still remains a challenge to fabricate high-performance (working strain exceeding 200%) stretchable conductors. Here, we present for the first time a facile, cost-effective, and scalable method for manufacturing ultrastretchable composite fibers with a "twining spring" configuration: cotton fibers twining spirally around a polyurethane fiber. The composite fiber possesses a high conductivity up to 4018 S/cm, which remains as high as 688 S/cm at 500% tensile strain. In addition, the conductivity of the composite fiber (initial conductivity of 4018 S/cm) remains perfectly stable after 1000 bending events and levels off at 183 S/cm after 1000 cyclic stretching events of 200% strain. Stretchable LED arrays are integrated efficiently utilizing the composite fibers as a stretchable electric wiring system, demonstrating the potential applications in large-area stretchable electronics. The biocompatibility of the composite fiber is verified, opening up its prospects in the field of implantable devices. Our fabrication strategy is also versatile for the preparation of other specially functionalized composite fibers with superb stretchability.
High temperature composites. Status and future directions
NASA Technical Reports Server (NTRS)
Signorelli, R. A.
1982-01-01
A summary of research investigations of manufacturing methods, fabrication methods, and testing of high temperature composites for use in gas turbine engines is presented. Ceramic/ceramic, ceramic/metal, and metal/metal composites are considered. Directional solidification of superalloys and eutectic alloys, fiber reinforced metal and ceramic composites, ceramic fibers and whiskers, refractory coatings, metal fiber/metal composites, matrix metal selection, and the preparation of test specimens are discussed.
Method of producing a ceramic fiber-reinforced glass-ceramic matrix composite
NASA Technical Reports Server (NTRS)
Bansal, Narottam P. (Inventor)
1994-01-01
A fiber-reinforced composite composed of a BaO-Al2O3-2SiO2 (BAS) glass ceramic matrix is reinforced with CVD silicon carbide continuous fibers. A slurry of BAS glass powders is prepared and celsian seeds are added during ball melting. The slurry is cast into tapes which are cut to the proper size. Continuous CVD-SiC fibers are formed into mats of the desired size. The matrix tapes and the fiber mats are alternately stacked in the proper orientation. This tape-mat stack is warm pressed to produce a 'green' composite. The 'green' composite is then heated to an elevated temperature to burn out organic constituents. The remaining interim material is then hot pressed to form a silicon carbide fiber-reinforced celsian (BAS) glass-ceramic matrix composite which may be machined to size.
CVD Fiber Coatings for Al2O3/NiAl Composites
NASA Technical Reports Server (NTRS)
Boss, Daniel E.
1995-01-01
While sapphire-fiber-reinforced nickel aluminide (Al2O3/NiAl) composites are an attractive candidate for high-temperature structures, the significant difference in the coefficient of thermal expansion between the NiAl matrix and the sapphire fiber creates substantial residual stresses in the composite. This study seeks to produce two fiber-coating systems with the potential to reduce the residual stresses in the sapphire/NiAl composite system. Chemical vapor deposition (CVD) was used to produce both the compensating and compliant-fiber coatings for use in sapphire/NiAl composites. A special reactor was designed and built to produce the FGM and to handle the toxic nickel precursors. This process was successfully used to produce 500-foot lengths of fiber with coating thicknesses of approximately 3 microns, 5 microns, and 10 microns.
Fiber-Reinforced Reactive Nano-Epoxy Composites
NASA Technical Reports Server (NTRS)
Zhong, Wei-Hong
2011-01-01
An ultra-high-molecular-weight polyethylene/ matrix interface based on the fabrication of a reactive nano-epoxy matrix with lower surface energy has been improved. Enhanced mechanical properties versus pure epoxy on a three-point bend test include: strength (25 percent), modulus (20 percent), and toughness (30 percent). Increased thermal properties include higher Tg (glass transition temperature) and stable CTE (coefficient of thermal expansion). Improved processability for manufacturing composites includes faster wetting rates on macro-fiber surfaces, lower viscosity, better resin infusion rates, and improved rheological properties. Improved interfacial adhesion properties with Spectra fibers by pullout tests include initial debonding force of 35 percent, a maximum pullout force of 25 percent, and energy to debond at 65 percent. Improved mechanical properties of Spectra fiber composites (tensile) aging resistance properties include hygrothermal effects. With this innovation, high-performance composites have been created, including carbon fibers/nano-epoxy, glass fibers/nano-epoxy, aramid fibers/ nano-epoxy, and ultra-high-molecularweight polyethylene fiber (UHMWPE).
Characterizing fiber-reinforced composite structures using AC-impedance spectroscopy (AC-IS)
NASA Astrophysics Data System (ADS)
Woo, Leta Y.
Property enhancement in composites depends largely on the reinforcement. For fiber-reinforced composites, the distribution of fibers is crucial in determining the electrical and mechanical performance. Image analysis methods for characterization can be time-consuming and/or destructive. This work explores the capability of AC-impedance spectroscopy (AC-IS), an electrical measurement technique, to serve as a rapid, non-destructive tool for characterizing composite microstructure. The composite requirements include a filler that is electrically conducting or semi-conducting with higher conductivity than the matrix, and a high-impedance interface or coating between the filler and the matrix. To establish an AC-IS characterization method, cement-matrix composites with steel reinforcement were employed as both a technologically important and a model system to investigate how fibers affect the electrical response. Beginning with spherical particulates and then fibers, composites were examined using composite theory and an "intrinsic conductivity" approach. The intrinsic conductivity approach applies to composites with low volume fractions of fibers (i.e., in the dilute regime) and relates how the composite conductivity varies relative to the matrix as a function of volume fraction. A universal equivalent circuit model was created to understand the AC-IS response of composites based on the geometry and volume fraction of the filler. Deviation from predicted behavior was assessed using a developed f-function, which quantifies how fibers contribute to the overall electrical response of the composite. Using the f-function, an AC-IS method for investigating fiber dispersion was established to characterize alignment, settling/segregation, and aggregation. Alignment was investigated using measurements made in three directions. A point-probe technique characterized settling and/or large-scale inhomogeneous mixing in samples. Aggregation was quantified using a "dispersion factor" that compared theoretical with measured values and served as an upper limit for how well the fibers were dispersed. The AC-IS method was then extended to two different cement-matrix composite systems, low resistivity fresh-paste cement composites (confirmed by time domain reflectometry) and high resistivity cement composites, both of which required additional analysis to apply the AC-IS characterization method.
NASA Astrophysics Data System (ADS)
Amalia, N.; Hidayatullah, S.; Nurfadilla; Subaer
2017-03-01
The objective of this research is to study the influence of organic fibers on the mechanical properties and microstructure characters of hybrid composite geopolymers-pineapple fibers (PFL). Geopolymers were synthesized by using alkali activated of class C-fly ash added manually with short pineapple fiber leaves (PFL) and then cured at 60°C for 1 hour. The resulting composites were stored in open air for 28 days prior to mechanical and microstructure characterizations. The samples were subjected to compressive and flexural strength measurements, heat resistance as well as acid attack (1M H2SO4 solution). The microstructure of the composites were examined by using Scanning Electron Microscopy-Energy Dispersive Spectroscopy (SEM-EDS). The measurement showed that the addition of pineapple fibers was able to improve the compressive and flexural strength of geopolymers. The resulting hybrid composites were able to resist fire to a maximum temperature of 1500°C. SEM examination showed the presence of good bond between geopolymer matrix and pineapple fibers. It was also found that there were no chemical constituents of geopolymers leached out during acid liquid treatment. It is concluded that hybrid composite geopolymers-pineapple fibers are potential composites for wide range applications.
Tailored interphase structure for improved strength and energy absorption of composites
NASA Astrophysics Data System (ADS)
Gao, Xiao
Fiber reinforced polymeric composites are lightweight, high-strength and high impact-resistant materials used widely for various applications. It has been shown that the mechanical performance of composites are dependent on the interphase, a three-dimensional region of nanometer size in the vicinity of the fiber-matrix boundary that possesses properties different from those of either the fiber reinforcement or the matrix resin and governs the load transfer from matrix to fiber. This research conducts a systematic study on glass fiber-epoxy interphase structure by tailoring adhesion between constituents and the creation of textures to control strength and energy absorption through mechanical interlocking between glass fiber and epoxy matrix. Our objective is to establish the foundation for microstructural design and optimization of the composite's structural and impact performance. Two ways of roughening the glass fiber surface have been studied to create the mechanical interlocking between fiber and resin; the first technique involves forming in-situ islands on the glass fiber surface by using silane blends of Glycidoxypropyltrimethoxy silane (GPS) and Tetraethoxy silane (TEOS); the second technique applies a silane coupling agents based sizing with the incorporation of silica nanoparticles (Ludox TMA, 22 nm) onto the fiber surface. The microdroplet test was selected to characterize the influence of adhesion and mechanical interlocking effects on interphase properties of different sizing sized glass fiber reinforced epoxy systems. A suitable data reduction scheme enables the strength and specified energy absorbed due to debonding, dynamic sliding, and quasi-static sliding to be quantified. In order to validate the effect of tailored interphase structure, which is induced by creating mechanical interlocking between fiber and resin, on macroscopic composite properties, composite panels were made from these four different sizing sized glass fibers and tested using the punch shear test. The composite panel made from the hybrid sizing sized glass fiber exhibited improved strength and energy absorption consistent with the trends in micromechanical measurements. Through all failure stages under macromechanical testing, hybrid sizing sized glass fiber/epoxyamine composite panel shows an increase in the strength and total energy absorption by 13% and 26%, respectively, compared to the compatible sizing sized baseline. Both micromechanical and macromechanical tests demonstrate the significant influence of tailoring the interphase structure on improving the impact performance of the composites. The hybrid sizing with the incorporation of nanoparticles, in particular, can greatly improve the impact resistance (i.e. energy absorption) of composites without sacrificing its structural performance (i.e. strength).
Design of a unidirectional composite momentum wheel rim
NASA Astrophysics Data System (ADS)
Shogrin, Bradley; Jones, William R., Jr.; Prahl, Joseph M.
1995-05-01
A preliminary study comparing twelve unidirectional-fiber composite systems to five metal materials conventionally used in momentum wheels is presented. Six different fibers are considered in the study: E-Glass, S-Glass, Boron, AS, T300, and Kevlar. Because of the possibility of high momentum requirements, and thus high stresses, only two matrix materials are considered: a high-modulus (HM) and a intermediate-modulus-high-strength (IMHS) matrix. Each of the six fibers are coupled with each of the two matrix materials. In an effort to optimize the composite system, each composite is considered while varying the fiber volume ratio from 0.0 to 0.7 in increments of 0.1. For fiber volume ratios above 0.2, all twelve unidirectional-fiber composite systems meet the study's requirements with higher factors of safety and less mass than the five conventional isotropic (metal) materials. For example, at a fiber volume ratio of 0.6, the Kevlar/IMHS composite system has a safety factor 4.5 times greater than that of a steel (maraging) system and an approximately 10 percent reduction in weight.
Fabrication of Fiber-Reinforced Celsian Matrix Composites
NASA Technical Reports Server (NTRS)
Bansal, Narottam P.; Setlock, John A.
2000-01-01
A method has been developed for the fabrication of small diameter, multifilament tow fiber reinforced ceramic matrix composites. Its application has been successfully demonstrated for the Hi-Nicalon/celsian system. Strong and tough celsian matrix composites, reinforced with BN/SiC-coated Hi-Nicalon fibers, have been fabricated by infiltrating the fiber tows with the matrix slurry, winding the tows on a drum, cutting and stacking of the prepreg tapes in the desired orientation, and hot pressing. The monoclinic celsian phase in the matrix was produced in situ, during hot pressing, from the 0.75BaO-0.25SrO-Al2O3-2SiO2 mixed precursor synthesized by solid state reaction from metal oxides. Hot pressing resulted in almost fully dense fiber-reinforced composites. The unidirectional composites having approx. 42 vol% of fibers exhibited graceful failure with extensive fiber pullout in three-point bend tests at room temperature. Values of yield stress and strain were 435 +/- 35 MPa and 0.27 +/- 0.01 percent, respectively, and ultimate strengths of 900 +/- 60 MPa were observed. The Young's modulus of the composites was measured to be 165 +/- 5 GPa.
Effect of the Microstructure on the Fracture Mode of Short-Fiber Reinforced Plastic Composites
NASA Astrophysics Data System (ADS)
Nishikawa, Masaaki; Okabe, Tomonaga; Takeda, Nobuo
A numerical simulation was presented to discuss the microscopic damage and its influence on the strength and energy-absorbing capability of short-fiber reinforced plastic composites. The dominant damage includes matrix crack and/or interfacial debonding, when the fibers are shorter than the critical length for fiber breakage. The simulation addressed the matrix crack with a continuum damage mechanics (CDM) model and the interfacial debonding with an embedded process zone (EPZ) model. Fictitious free-edge effects on the fracture modes were successfully eliminated with the periodic-cell simulation. The advantage of our simulation was pointed out by demonstrating that the simulation with edge effects significantly overestimates the dissipative energy of the composites. We then investigated the effect of the material microstructure on the fracture modes in the composites. The simulated results clarified that the inter-fiber distance affects the breaking strain of the composites and the fiber-orientation angle affects the position of the damage initiation. These factors influence the strength and energy-absorbing capability of short fiber-reinforced composites.
The effects of temperature on fiber composite bridge decks.
DOT National Transportation Integrated Search
2009-01-01
In this study the fiber composite bridge decks were subjected to thermal gradients to obtain the temperature difference between the top and bottom surface of the decks and to determine the thermal properties of the deck. The fiber composite bridge de...
Research on graphite reinforced glass matrix composites
NASA Technical Reports Server (NTRS)
Bacon, J. F.; Prewo, K. M.
1977-01-01
The results of research for the origination of graphite-fiber reinforced glass matrix composites are presented. The method selected to form the composites consisted of pulling the graphite fiber through a slurry containing powdered glass, winding up the graphite fiber and the glass it picks up on a drum, drying, cutting into segments, loading the tape segment into a graphite die, and hot pressing. During the course of the work, composites were made with a variety of graphite fibers in a glass matrix.
Studies on fabrication of glass fiber reinforced composites using polymer blends
NASA Astrophysics Data System (ADS)
Patel, R. H.; Kachhia, P. H.; Patel, S. N.; Rathod, S. T.; Valand, J. K.
2018-05-01
Glass fiber reinforced PVC/NBR composites have been fabricated via hot compression moulding process. PVC is brittle in nature and thus lower thermal stability. Therefore, to improve the toughness of PVC, NBR was incorporated in certain proportions. As both are polar and thus they are compatible. To improve the strength property further, these blends were used to fabricate glass fiber reinforced composites. SEM micrograph shows good wettability of the blend with glass fibers resulting in proper bonding which increase the strength of the composites.
Carbon Fiber Foam Composites and Methods for Making the Same
NASA Technical Reports Server (NTRS)
Atwater, Mark Andrew (Inventor); Leseman, Zayd Chad (Inventor); Phillips, Jonathan (Inventor)
2014-01-01
Exemplary embodiments provide methods and apparatus of forming fibrous carbon foams (FCFs). In one embodiment, FCFs can be formed by flowing a fuel rich gas mixture over a catalytic material and components to be encapsulated in a mold to form composite carbon fibers, each composite carbon fiber having a carbon phase grown to encapsulate the component in situ. The composite carbon fibers can be intertwined with one another to form FCFs having a geometry according to the mold.
Micromechanical analysis of thermo-inelastic multiphase short-fiber composites
NASA Technical Reports Server (NTRS)
Aboudi, Jacob
1994-01-01
A micromechanical formulation is presented for the prediction of the overall thermo-inelastic behavior of multiphase composites which consist of short fibers. The analysis is an extension of the generalized method of cells that was previously derived for inelastic composites with continuous fibers, and the reliability of which was critically examined in several situations. The resulting three dimensional formulation is extremely general, wherein the analysis of thermo-inelastic composites with continuous fibers as well as particulate and porous inelastic materials are merely special cases.
2016-08-22
POSS dinadic composite cross-section. Prior to aging, a few voids are seen in the matrix , but no cracks. After the same time aging as with the PMR-15...the composite , fiber and matrix , respectively; σc, σf, and σm are stress in the composite , fiber and matrix , respectively; Vf and Vm are volume...fraction of the fiber and matrix , respectively; Ec, Ef and Em are the moduli of the composite , fiber and matrix , respectively
NASA Technical Reports Server (NTRS)
Morscher, Gregory N.; Levine, Stanley (Technical Monitor)
2000-01-01
Tensile stress-rupture experiments were performed on woven Hi-Nicalon reinforced SiC matrix composites with BN interphases in air. Modal acoustic emission (AE) was used to monitor the damage accumulation in the composites during the tests and microstructural analysis was performed to determine the amount of matrix cracking that occurred for each sample. Fiber fractograph), was also performed for individual fiber failures at the specimen fracture surface to determine the strengths at which fibers failed. The rupture strengths were significantly worse than what would have been expected front the inherent degradation of the fibers themselves when subjected to similar rupture conditions. At higher applied stresses the rate of rupture "?as larger than at lower applied stresses. It was observed that the change in rupture rate corresponded to the onset of through-thickness cracking in the composites themselves. The primary cause of the sen,ere degradation was the ease with which fibers would bond to one another at their closest separation distances, less than 100 nanometers, when exposed to the environment. The near fiber-to-fiber contact in the woven tows enabled premature fiber failure over large areas of matrix cracks due to the stress-concentrations created b), fibers bonded to one another after one or a few fibers fail. i.e. the loss of global load sharing. An@, improvement in fiber-to-fiber separation of this composite system should result in improved stress- rupture properties. A model was den,eloped in order to predict the rupture life-time for these composites based on the probabilistic nature of indin,idual fiber failure at temperature. the matrix cracking state during the rupture test, and the rate of oxidation into a matrix crack. Also incorporated into the model were estimates of the stress-concentration that would occur between the outer rim of fibers in a load-bearing bundle and the unbridged region of a matrix crack after Xia et al. For the lower stresses, this source of stress-concentration was the likely cause for initial fiber failure that would trigger catastrophic failure of the composite.
NASA Technical Reports Server (NTRS)
Bhatt, R. T.; Palczer, A. R.
1994-01-01
Thermal expansion curves for SiC fiber-reinforced reaction-bonded Si3N4 matrix composites (SiC/RBSN) and unreinforced RBSN were measured from 25 to 1400 C in nitrogen and in oxygen. The effects of fiber/matrix bonding and cycling on the thermal expansion curves and room-temperature tensile properties of unidirectional composites were determined. The measured thermal expansion curves were compared with those predicted from composite theory. Predicted thermal expansion curves parallel to the fiber direction for both bonding cases were similar to that of the weakly bonded composites, but those normal to the fiber direction for both bonding cases resulted in no net dimensional changes at room temperature, and no loss in tensile properties from the as-fabricated condition. In contrast, thermal cycling in oxygen for both composites caused volume expansion primarily due to internal oxidation of RBSN. Cyclic oxidation affected the mechanical properties of the weakly bonded SiC/RBSN composites the most, resulting in loss of strain capability beyond matrix fracture and catastrophic, brittle fracture. Increased bonding between the SiC fiber and RBSN matrix due to oxidation of the carbon-rich fiber surface coating and an altered residual stress pattern in the composite due to internal oxidation of the matrix are the main reasons for the poor mechanical performance of these composites.
Katogi, Hideaki; Takemura, Kenichi; Akiyama, Motoki
2016-01-01
This study investigated the residual tensile properties of plain woven jute fiber reinforced poly(lactic acid) (PLA) during thermal cycling. Temperature ranges of thermal cycling tests were 35–45 °C and 35–55 °C. The maximum number of cycles was 103 cycles. The quasi-static tensile tests of jute fiber, PLA, and composite were conducted after thermal cycling tests. Thermal mechanical analyses of jute fiber and PLA were conducted after thermal cycling tests. Results led to the following conclusions. For temperatures of 35–45 °C, tensile strength of composite at 103 cycles decreased 10% compared to that of composite at 0 cycles. For temperatures of 35–55 °C, tensile strength and Young’s modulus of composite at 103 cycles decreased 15% and 10%, respectively, compared to that of composite at 0 cycles. Tensile properties and the coefficient of linear expansion of PLA and jute fiber remained almost unchanged after thermal cycling tests. From observation of a fracture surface, the length of fiber pull out in the fracture surface of composite at 103 cycles was longer than that of composite at 0 cycles. Therefore, tensile properties of the composite during thermal cycling were decreased, probably because of the decrease of interfacial adhesion between the fiber and resin. PMID:28773694
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thi, Thanh Binh Nguyen, E-mail: nttbinh@kit.ac.jp; Yokoyama, Atsushi, E-mail: yokoyama@kit.ac.jp; Hamanaka, Senji
The theoretical fiber-interaction model for calculating the fiber orientation in the injection molded short fiber/thermoplastic composite parts was proposed. The proposed model included the fiber dynamics simulation in order to obtain an equation of the global interaction coefficient and accurate estimate of the fiber interacts at all orientation states. The steps to derive the equation for this coefficient in short fiber suspension as a function of the fiber aspect ratio, volume fraction and general shear rate are delineated. Simultaneously, the high-resolution 3D X-ray computed tomography system XVA-160α was used to observe fiber distribution of short-glass-fiber-reinforced polyamide specimens using different cavitymore » geometries. The fiber orientation tensor components are then calculated. Experimental orientation measurements of short-glass-fiber-reinforced polyamide is used to check the ability of present theory for predicting orientation. The experiments and predictions show a quantitative agreement and confirm the basic understanding of fiber orientation in injection-molded composites.« less
NASA Astrophysics Data System (ADS)
Thi, Thanh Binh Nguyen; Yokoyama, Atsushi; Hamanaka, Senji; Yamashita, Katsuhisa; Nonomura, Chisato
2016-03-01
The theoretical fiber-interaction model for calculating the fiber orientation in the injection molded short fiber/thermoplastic composite parts was proposed. The proposed model included the fiber dynamics simulation in order to obtain an equation of the global interaction coefficient and accurate estimate of the fiber interacts at all orientation states. The steps to derive the equation for this coefficient in short fiber suspension as a function of the fiber aspect ratio, volume fraction and general shear rate are delineated. Simultaneously, the high-resolution 3D X-ray computed tomography system XVA-160α was used to observe fiber distribution of short-glass-fiber-reinforced polyamide specimens using different cavity geometries. The fiber orientation tensor components are then calculated. Experimental orientation measurements of short-glass-fiber-reinforced polyamide is used to check the ability of present theory for predicting orientation. The experiments and predictions show a quantitative agreement and confirm the basic understanding of fiber orientation in injection-molded composites.
Ballistic Impact of Braided Composites with a Soft Projectile
NASA Technical Reports Server (NTRS)
Roberts, Gary D.; Pereira, J. Michael; Revilock, Duane M., Jr.; Binienda, Wieslaw K.; Xie, Ming; Braley, Mike
2002-01-01
Impact tests using a soft gelatin projectile were performed to identify failure modes that occur at high strain energy density during impact loading. Failure modes were identified for aluminum plates and for composites plates and half-rings made from triaxial carbon fiber braid having a 0/+/- 60deg architecture. For aluminum plates, a large hole formed as a result of crack propagation from the initiation site at the center of the plate. For composite plates, fiber tensile failure occurred in the back ply at the center of the plate. Cracks then propagated from this site along the +/-60deg fiber directions until triangular flaps opened to form a hole. For composite half-rings fabricated with 0deg fibers aligned circumferentially, fiber tensile failure also occurred in the back ply. Cracks first propagated from this site perpendicular the 0deg fibers. The cracks then turned to follow the +/-60deg fibers and 0deg fibers until rectangular flaps opened to form a hole. Damage in the composites was localized near the impact site, while cracks in the aluminum extended to the boundaries.
Preparation of tungsten fiber reinforced-tungsten/copper composite for plasma facing component
NASA Astrophysics Data System (ADS)
He, Gang; Xu, Kunyuan; Guo, Shibin; Qian, Xueqiang; Yang, Zengchao; Liu, Guanghua; Li, Jiangtao
2014-12-01
W fiber reinforced-W/Cu composite is designed as a transition layer between CuCrZr heat sink material and W plasma facing material. A novel method was developed for the preparation of W fiber reinforced-W/Cu composite by combining combustion synthesis with centrifugal infiltration. Cu melt with a transient temperature over 2000 °C produced by the thermite reaction was infiltrated into the W powder and fiber bed with the assistance of a high gravity field. It was found that the W particles were sintered and bonded to the W fibers due to the high temperature produced by the thermite reaction. The bending strength of W/Cu composite improved 12.7% through W fibers reinforcement.
DOE Office of Scientific and Technical Information (OSTI.GOV)
2009-10-14
EMTA-NLA is a computer program for analyzing the nonlinear stiffness, strength, and thermo-elastic properties of discontinuous fiber composite materials. Discontinuous fiber composites are chopped-fiber reinforced polymer materials that are formed by injection molding or compression molding techniques. The fibers tend to align during forming as the composite flows and fills the mold. EMTA-NLA can read the fiber orientation data from the molding software, Autodesk Moldflow Plastics Insight, and calculate the local material properties for accurately analyzing the warpage, stiffness, and strength of the as-formed composite part using the commercial NLA software. Therefore, EMTA-NLA is a unique assembly of mathematical algorithmsmore » that provide a one-of-a-kind composites constitutive model that links these two powerful commercial software packages.« less
NASA Astrophysics Data System (ADS)
Jeong, Seung-Hwan; Kim, Joong-Kwon; Lim, Young-Woo; Hwang, Hyun-Bin; Kwon, Hee-Young; Bae, Byeong-Soo; Jin, Jungho
2018-01-01
Here, inspired by the fibrous composite structure of a squid pen, we introduce hierarchical chitin fibers (herein, termed "Chiber") and their transparent composites and demonstrate the potential of these chitinous functional materials as a sustainable separation-membrane and reinforcing filler for composites. We employ a centrifugal jet-spinning process to fabricate Chiber with aligned chitin nanofibrillar architectures, for which we discuss the processing-morphology relationship. A nonwoven fiber-mat made of Chiber exhibits excellent adsorbing performance for a toxic ionic dye (Congo Red), and has a low coefficient of thermal expansion comparable to that of glass fibers. Finally, we demonstrate a squid pen-mimetic transparent composite using Chiber and investigate its optical property.
Diode-Pumped Thulium (Tm)/Holmium (Ho) Composite Fiber 2.1-Micrometers Laser
2015-09-01
composite fiber laser of holmium-core and thulium-doped cladding . The composite fiber was optically pumped by an 803-nm fiber coupled diode source and was...4 odd and 5 even modes were exclusive to the core and first cladding . As the Tm laser modes are excluded from lasing in the second (undoped...of the Tm-doped clad /Ho-doped core fiber laser . In particular, calculations of the model overlap of the cladding modes with the core have been
NASA Technical Reports Server (NTRS)
Buckley, John D. (Editor)
1992-01-01
This document is a compilation of papers presented at a joint NASA/North Carolina State University/DoD/Clemson University/Drexel University conference on Fibers, Textile Technology, and Composites Structures held at the College of Textiles Building on Centennial Campus of North Carolina State University, Raleigh, North Carolina on October 15-17, 1991. Conference papers presented information on advanced engineering fibers, textile processes and structures, structural fabric production, mechanics and characteristics of woven composites, pultruded composites, and the latest requirements for the use of textiles in the production of composite materials and structures.
Modeling and Predicting the Stress Relaxation of Composites with Short and Randomly Oriented Fibers
Obaid, Numaira; Sain, Mohini
2017-01-01
The addition of short fibers has been experimentally observed to slow the stress relaxation of viscoelastic polymers, producing a change in the relaxation time constant. Our recent study attributed this effect of fibers on stress relaxation behavior to the interfacial shear stress transfer at the fiber-matrix interface. This model explained the effect of fiber addition on stress relaxation without the need to postulate structural changes at the interface. In our previous study, we developed an analytical model for the effect of fully aligned short fibers, and the model predictions were successfully compared to finite element simulations. However, in most industrial applications of short-fiber composites, fibers are not aligned, and hence it is necessary to examine the time dependence of viscoelastic polymers containing randomly oriented short fibers. In this study, we propose an analytical model to predict the stress relaxation behavior of short-fiber composites where the fibers are randomly oriented. The model predictions were compared to results obtained from Monte Carlo finite element simulations, and good agreement between the two was observed. The analytical model provides an excellent tool to accurately predict the stress relaxation behavior of randomly oriented short-fiber composites. PMID:29053601
The fatigue life study of polyphenylene sulfide composites filled with continuous glass fibers
NASA Astrophysics Data System (ADS)
Ye, Junjie; Hong, Yun; Wang, Yongkun; Zhai, Zhi; Shi, Baoquan; Chen, Xuefeng
2018-04-01
In this study, an effective microscopic model is proposed to investigate the fatigue life of composites containing continuous glass fibers, which is surrounded by polyphenylene sulfide (PPS) matrix materials. The representative volume element is discretized by parametric elements. Moreover, the microscopic model is established by employing the relation between average surface displacements and average surface tractions. Based on the experimental data, the required fatigue failure parameters of the PPS are determined. Two different fiber arrangements are considered for comparisons. Numerical analyses indicated that the square edge packing provides a more accuracy. In addition, microscopic structural parameters (fiber volume fraction, fiber off-axis angle) effect on the fatigue life of Glass/PPS composites is further discussed. It is revealed that fiber strength degradation effects on the fatigue life of continuous fiber-reinforced composites can be ignored.
Thermal Cyclic Resistance Polyester Resin Composites Reinforce Fiber Nut Shell
NASA Astrophysics Data System (ADS)
Fahmi, Hendriwan
2017-12-01
The purpose of study is to determine the effect of fiber length and thermal cyclic of the bending strength of polyester resin composite reinforced by fibers nut shell. The materials used in this study is a nut shell fibers with fiber length of 1 cm, 2 cm and 3 cm and polyester resin with composition 70-30%wt. Fiber nut shell treated soaking in NaOH 30% for 30 minutes, then rinse with clean water so that the fiber free of alkali and then dried. Furthermore, the composite is heated in an oven to a temperature of 100°C for 1 hour and then cooled in the open with a variety of thermal cyclic 30, 40, and 50 times. Bending properties of composites known through the testing process using a three-point bending test equipment universal testing machine. The test results show that the bending strength bending highest in fiber length of 3 cm with 30 treatment cycles of thermal to the value of 53.325 MPa, while the lowest occurred in bending strength fiber length of 1 cm with no cycles of thermal treatment to the value of 30.675 MPa.
Isolation of aramid nanofibers for high strength multiscale fiber reinforced composites
NASA Astrophysics Data System (ADS)
Lin, Jiajun; Patterson, Brendan A.; Malakooti, Mohammad H.; Sodano, Henry A.
2018-03-01
Aramid fibers are famous for their high specific strength and energy absorption properties and have been intensively used for soft body armor and ballistic protection. However, the use of aramid fiber reinforced composites is barely observed in structural applications. Aramid fibers have smooth and inert surfaces that are unable to form robust adhesion to polymeric matrices due to their high crystallinity. Here, a novel method to effectively integrate aramid fibers into composites is developed through utilization of aramid nanofibers. Aramid nanofibers are prepared from macroscale aramid fibers (such as Kevlar®) and isolated through a simple and scalable dissolution method. Prepared aramid nanofibers are dispersible in many polymers due to their improved surface reactivity, meanwhile preserve the conjugated structure and likely the strength of their macroscale counterparts. Simultaneously improved elastic modulus, strength and fracture toughness are observed in aramid nanofiber reinforced epoxy nanocomposites. When integrated in continuous fiber reinforced composites, aramid nanofibers can also enhance interfacial properties by forming hydrogen bonds and π-π coordination to bridge matrix and macroscale fibers. Such multiscale reinforcement by aramid nanofibers and continuous fibers results in strong polymeric composites with robust mechanical properties that are necessary and long desired for structural applications.
NASA Astrophysics Data System (ADS)
Zhang, Le; Han, Enlin; Wu, Yulun; Wang, Xiaodong; Wu, Dezhen
2018-06-01
The surface decoration of short-cut polyimide (PI) fibers with multi-walled carbon nanotubes (MWCNTs) was performed by fabricating a polydopamine (PDA) coating layer on the fiber surface and then immobilizing MWCNTs onto the coating layer via covalent bonding. This successful surface decoration was confirmed by scanning electron microscopy, X-ray photoelectron spectroscopy, Fourier-transform infrared microscopy and static water contact angle. The application of the surface-decorated PI fibers as reinforcing fibers for reinforcement of polycarbonate (PC)/acrylonitrile-butadiene-styrene copolymer (ABS) alloy was investigated, which indicated that the MWCNTs-decorated PI fibers not only could effectively reinforce the PC/ABS alloy but also generated a significant lightweighting effect on the resulting composites. The maximum mechanical properties were achieved for the composites at a fiber content of 20 wt.% and a fiber length of 3 mm. This significant reinforcement effect is attributed to the enhancement of interaction bonding strength between the fibers and matrix as a result of the surface decoration of PI fibers with MWCNTs. The morphological investigation suggested that fiber rupture was the major energy dissipation mechanism in the tensile and impact failures, whereas fiber debonding and pullout were partly involved in the fracture energy dissipation. In addition, the presence of surface-decorated PI fibers slightly enhanced the thermal stability and load bearing capability of composites. This work can provide a type of high-performance lightweight composite material for automobile and aviation industries.
Mechanical and physical properties of wood fiber-reinforced, sulfur-based wood composites
Chung-Yun Hse; Ben S. Bryant
1993-01-01
Sulfur-based composite was made from sulfur impregnated, oven dried, wet-formed fiber mats. The fiber mats consisted of a 50/50 mixture of recycled newsprint pulp and mechanical hardwood pulp from several species made from chips in a laboratory refiner. The thickness of the composites was 0.125 inch and the specific gravity of the unimpregnated fiber mat was 0.2. The...
Jiulong Xie; Jinqiu Qi; Tingxing Hu; Cornelis F. De Hoop; Chung Yun Hse; Todd F. Shupe
2016-01-01
Bamboo stems were subjected to a mechanical treatment process for the extraction of bamboo fiber bundles. The fiber bundles were used as reinforcement for the fabrication of high-performance composites with phenolic resins as matrix. The influence of fabricated density and bamboo species on physicalâmechanical properties of bamboo fiber bundle reinforced composites (...
Ibrahim, Nor Azowa; Ariffin, Hidayah; Yunus, Wan Md. Zin Wan
2014-01-01
Natural fiber as reinforcement filler in polymer composites is an attractive approach due to being fully biodegradable and cheap. However, incompatibility between hydrophilic natural fiber and hydrophobic polymer matrix restricts the application. The current studies focus on the effects of incorporation of silane treated OPMF into polylactic acid (PLA)/polycaprolactone (PCL)/nanoclay/OPMF hybrid composites. The composites were prepared by melt blending technique and characterize the composites with Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), and scanning electron microscopy (SEM). FTIR spectra indicated that peak shifting occurs when silane treated OPMF was incorporated into hybrid composites. Based on mechanical properties results, incorporation of silane treated OPMF enhances the mechanical properties of unmodified OPMF hybrid composites with the enhancement of flexural and impact strength being 17.60% and 48.43%, respectively, at 10% fiber loading. TGA thermogram shows that incorporation of silane treated OPMF did not show increment in thermal properties of hybrid composites. SEM micrographs revealed that silane treated OPMF hybrid composites show good fiber/matrix adhesion as fiber is still embedded in the matrix and no cavity is present on the surface. Water absorption test shows that addition of less hydrophilic silane treated OPMF successfully reduces the water uptake of hybrid composites. PMID:25254230
NASA Astrophysics Data System (ADS)
Tapan Bhatt, Alpa; Gohil, Piyush P.; Chaudhary, Vijaykumar
2018-03-01
Composite Materials are becoming more popular gradually replacing traditional material with extra strength, lighter weight and superior property. The world is exploring use of fiber reinforced composites in all application which includes air, land and water transport, construction industry, toys, instrumentation, medicine and the list is endless. Based on application and reinforcement used, there are many ways to manufactures parts with fiber reinforced composites. In this paper various manufacturing processes have been discussed at length, to make fiber reinforced composites components. The authors have endeavored to include all the processes available recently in composite industry. Paper first highlights history of fiber reinforced composites manufacturing, and then the comparison of different manufacturing process to build composites have been discussed, to give clear understanding on, which process should be selected, based on reinforcement, matrix and application. All though, there are several advantages to use such fiber reinforcement composites, still industries have not grown at par and there is a lot of scope to improve these industries. At last, where India stands today, what are the challenges in market has been highlighted and future market and research trend of exploring such composite industries have been discussed. This work is carried out as a part of research project sanctioned by GUJCOST, Gandhinagar.
Eng, Chern Chiet; Ibrahim, Nor Azowa; Zainuddin, Norhazlin; Ariffin, Hidayah; Yunus, Wan Md Zin Wan
2014-01-01
Natural fiber as reinforcement filler in polymer composites is an attractive approach due to being fully biodegradable and cheap. However, incompatibility between hydrophilic natural fiber and hydrophobic polymer matrix restricts the application. The current studies focus on the effects of incorporation of silane treated OPMF into polylactic acid (PLA)/polycaprolactone (PCL)/nanoclay/OPMF hybrid composites. The composites were prepared by melt blending technique and characterize the composites with Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), and scanning electron microscopy (SEM). FTIR spectra indicated that peak shifting occurs when silane treated OPMF was incorporated into hybrid composites. Based on mechanical properties results, incorporation of silane treated OPMF enhances the mechanical properties of unmodified OPMF hybrid composites with the enhancement of flexural and impact strength being 17.60% and 48.43%, respectively, at 10% fiber loading. TGA thermogram shows that incorporation of silane treated OPMF did not show increment in thermal properties of hybrid composites. SEM micrographs revealed that silane treated OPMF hybrid composites show good fiber/matrix adhesion as fiber is still embedded in the matrix and no cavity is present on the surface. Water absorption test shows that addition of less hydrophilic silane treated OPMF successfully reduces the water uptake of hybrid composites.
NASA Astrophysics Data System (ADS)
Poillucci, Richard
Advanced composites manufacturing broadly encapsulates topics ranging from matrix chemistries to automated machines that lay-up fiber-reinforced materials. Environmental regulations are stimulating research to reduce matrix resin formulation toxicity. At present, composites fabricated with polyester resins expose workers to the risk of contact with and inhalation of styrene monomer, which is a potential carcinogen, neurotoxin, and respiratory irritant. The first primary goal of this thesis is to reduce the toxicity associated with polyester resins by: (1) identification of potential monomers to replace styrene, (2) determination of monomer solubility within the polyester, and (3) investigation of approaches to rapidly screen a large resin composition parameter space. Monomers are identified based on their ability to react with polyester and their toxicity as determined by the Globally Harmonized System (GHS) and a green screen method. Solubilities were determined by the Hoftyzer -- Van Krevelen method, Hansen solubility parameter database, and experimental mixing of monomers. A combinatorial microfluidic mixing device is designed and tested to obtain distinct resin compositions from two input chemistries. The push for safer materials is complemented by a thrust for multifunctional composites. The second primary goal of this thesis is to design and implement the manufacture of sacrificial fiber materials suitable for use in automated fiber placement of microvascaular multifunctional composites. Two key advancements are required to achieve this goal: (1) development of a roll-to-roll method to place sacrificial fibers onto carbon fiber pre-preg tape; and (2) demonstration of feasible manufacture of microvascular carbon fiber plates with automated fiber placement. An automated method for placing sacrificial fibers onto carbon fiber tapes is designed and a prototype implemented. Carbon fiber tows with manual placement of sacrificial fibers is implemented within an automated fiber placement machine and the successful fabrication of a carbon fiber plate with an integrated microvascular channel is demonstrated.
Electrical property of macroscopic graphene composite fibers prepared by chemical vapor deposition.
Sun, Haibin; Fu, Can; Gao, Yanli; Guo, Pengfei; Wang, Chunlei; Yang, Wenchao; Wang, Qishang; Zhang, Chongwu; Wang, Junya; Xu, Junqi
2018-07-27
Graphene fibers are promising candidates in portable and wearable electronics due to their tiny volume, flexibility and wearability. Here, we successfully synthesized macroscopic graphene composite fibers via a two-step process, i.e. first electrospinning and then chemical vapor deposition (CVD). Briefly, the well-dispersed PAN nanofibers were sprayed onto the copper surface in an electrified thin liquid jet by electrospinning. Subsequently, CVD growth process induced the formation of graphene films using a PAN-solid source of carbon and a copper catalyst. Finally, crumpled and macroscopic graphene composite fibers were obtained from carbon nanofiber/graphene composite webs by self-assembly process in the deionized water. Temperature-dependent conduct behavior reveals that electron transport of the graphene composite fibers belongs to hopping mechanism and the typical electrical conductivity reaches 4.59 × 10 3 S m -1 . These results demonstrated that the graphene composite fibers are promising for the next-generation flexible and wearable electronics.
Analysis of Fiber Clustering in Composite Materials Using High-Fidelity Multiscale Micromechanics
NASA Technical Reports Server (NTRS)
Bednarcyk, Brett A.; Aboudi, Jacob; Arnold, Steven M.
2015-01-01
A new multiscale micromechanical approach is developed for the prediction of the behavior of fiber reinforced composites in presence of fiber clustering. The developed method is based on a coupled two-scale implementation of the High-Fidelity Generalized Method of Cells theory, wherein both the local and global scales are represented using this micromechanical method. Concentration tensors and effective constitutive equations are established on both scales and linked to establish the required coupling, thus providing the local fields throughout the composite as well as the global properties and effective nonlinear response. Two nondimensional parameters, in conjunction with actual composite micrographs, are used to characterize the clustering of fibers in the composite. Based on the predicted local fields, initial yield and damage envelopes are generated for various clustering parameters for a polymer matrix composite with both carbon and glass fibers. Nonlinear epoxy matrix behavior is also considered, with results in the form of effective nonlinear response curves, with varying fiber clustering and for two sets of nonlinear matrix parameters.
Research on graphite reinforced glass matrix composites
NASA Technical Reports Server (NTRS)
Bacon, J. F.; Prewo, K. M.; Thompson, E. R.
1978-01-01
A composite that can be used at temperatures up to 875 K with mechanical properties equal or superior to graphite fiber reinforced epoxy composites is presented. The composite system consist of graphite fiber, uniaxially or biaxially, reinforced borosilicate glass. The mechanical and thermal properties of such a graphite fiber reinforced glass composite are described, and the system is shown to offer promise as a high performance structural material. Specific properties that were measured were: a modified borosilicate glass uniaxially reinforced by Hercules HMS graphite fiber has a three-point flexural strength of 1030 MPa, a four-point flexural strength of 964 MPa, an elastic modulus of 199 GPa and a failure strain of 0.0052. The preparation and properties of similar composites with Hercules HTS, Celanese DG-102, Thornel 300 and Thornel Pitch graphite fibers are also described.
Tensile properties of SiC/aluminum filamentary composites - Thermal degradation effects
NASA Technical Reports Server (NTRS)
Skinner, A.; Koczak, M. J.; Lawley, A.
1982-01-01
Aluminium metal matrix composites with a low cost fiber, e.g. SiC, provide for an attractive combination of high elastic modulus and longitudinal strengths coupled with a low density. SiC (volume fraction 0.55)-aluminum (6061) systems have been studied in order to optimize fiber composite strength and processing parameters. A comparison of two SiC/aluminum composites produced by AVCO and DWA is provided. Fiber properties are shown to alter composite tensile properties and fracture morphology. The room temperature tensile strengths appear to be insensitive to thermal exposures at 500 C up to 150 h. The elastic modulus of the composites also appears to be stable up to 400 C, however variations in the loss modulus are apparent. The fracture morphology reflects the quality of the interfacial bond, fiber strengths and fiber processing.
NASA Astrophysics Data System (ADS)
Bhattacharjee, A.; Nanda, B. K.
2018-04-01
Fiber reinforced composites are widely used in industrial applications due to their high strength, light weight and ease in manufacturing. In applications such as automotive, aerospace and structural parts, the components are subjected to unwanted vibrations which reduce their service life, accuracy as well as increases noise. Therefore, it is essential to avoid the detrimental effects of vibrations by enhancing their damping characteristics. The current research deals with estimating the damping properties of Glass fiber reinforced epoxy (GFRE) composites. Processing of the GFRE composites is carried out using hand-lay technique. Various design parameters such as number of glass fiber layers, orientation of fibers and weight ratio are varied while manufacturing GFRE composites. The effects of variation of these design parameters on damping property of GFRE composites are studied extensively.
Compression failure mechanisms of single-ply, unidirectional, carbon-fiber composites
NASA Technical Reports Server (NTRS)
Ha, Jong-Bae; Nairn, John A.
1992-01-01
A single-ply composite compression test was used to study compression failure mechanisms as a function of fiber type, matrix type, and interfacial strength. Composites made with low- and intermediate-modulus fibers (Hercules AS4 and IM7) in either an epoxy (Hercules 3501-6) or a thermoplastic (ULTEM and LARC-TPI) matrix failed by kink banding and out-of-plane slip. The failures proceeded by rapid and catastrophic damage propagation across the specimen width. Composites made with high-modulus fibers (Hercules HMS4/3501-6) had a much lower compression strength. Their failures were characterized by kink banding and longitudinal splitting. The damage propagated slowly across the specimen width. Composites made with fibers treated to give low interfacial strength had low compression strength. These composites typically failed near the specimen ends and had long kink bands.
NASA Astrophysics Data System (ADS)
Nguyen Thi, T. B.; Yokoyama, A.; Ota, K.; Kodama, K.; Yamashita, K.; Isogai, Y.; Furuichi, K.; Nonomura, C.
2014-05-01
One of the most important challenges in the injection molding process of the short-glass fiber/thermoplastic composite parts is being able to predict the fiber orientation, since it controls the mechanical and the physical properties of the final parts. Folgar and Tucker included into the Jeffery equation a diffusive type of term, which introduces a phenomenological coefficient for modeling the randomizing effect of the mechanical interactions between the fibers, to predict the fiber orientation in concentrated suspensions. Their experiments indicated that this coefficient depends on the fiber volume fraction and aspect ratio. However, a definition of the fiber interaction coefficient, which is very necessary in the fiber orientation simulations, hasn't still been proven yet. Consequently, this study proposed a developed fiber interaction model that has been introduced a fiber dynamics simulation in order to obtain a global fiber interaction coefficient. This supposed that the coefficient is a sum function of the fiber concentration, aspect ratio, and angular velocity. The proposed model was incorporated into a computer aided engineering simulation package C-Mold. Short-glass fiber/polyamide-6 composites were produced in the injection molding with the fiber weight concentration of 30 wt.%, 50 wt.%, and 70 wt.%. The physical properties of these composites were examined, and their fiber orientation distributions were measured by micro-computed-tomography equipment μ-CT. The simulation results showed a good agreement with experiment results.
One-step Tape Casting of Composites via Slurry on Fiber
NASA Technical Reports Server (NTRS)
deGroh, Henry C., III
2001-01-01
A process by which metal matrix composites can be made was presented. The process involves putting a powder slurry on fibers to make a precursor green tape. These green tapes are cut, stacked and hot pressed to form the fully dense composite. A computer program was presented which enables complete quantification and control of the process. Once some easily obtained properties of the slurry and its behavior are determined (such as the shrinkage from the wet to green state, and the density of the green tape) modification of the fiber spacing and blade height give the maker precise control of fiber volume fraction, and fiber architecture in the composite. The process was shown to be accurate and flexible through the production of a wide variety of volume fraction fiber composites made from a wide variety of fibers and powders. The most time consuming step of the tape casting process (other than hot pressing) was winding the fiber on the drum. The tape casting techniques developed resulted in high quality metal matrix composites, with ultimate tensile strength in the range of 215 ksi (1477 MPa), a strain at failure of 1.15 percent, and in fatigue at room temperature 0 to 120 ksi, n = 0.3 Hz, a 4-ply Ti-24Al-11Nb/SCS-6, 32 vol% fiber tape cast composite lasted 202,205 cycles with a maximum strain on the 100th cycle of 0.43 percent.
Fiber release from impacted graphite reinforced epoxy composites
NASA Technical Reports Server (NTRS)
Babinsky, T. C.
1980-01-01
Carbon fibers released from composites by aircraft fires and crashes can cause electrical shorts and consequent equipment damage. This report investigates less vigorous release mechanisms than that previously simulated by explosive burn/blast tests. When AS/3501-6 composites are impacted by various head and weight configurations of a pendulum impactor, less than 0.2 percent by weight of the original sample is released as single fibers. Other fiber release mechanisms studied were air blasts, constant airflow, torsion, flexural, and vibration of composite samples. The full significance of the low single fiber release rates found here is to be evaluated by NASA in their aircraft vulnerability studies.
NASA Technical Reports Server (NTRS)
Belvin, Harry L. (Inventor); Cano, Roberto J. (Inventor)
2003-01-01
An apparatus for producing a hybrid boron reinforced polymer matrix composite from precursor tape and a linear array of boron fibers. The boron fibers are applied onto the precursor tapes and the precursor tape processed within a processing component having an impregnation bar assembly. After passing through variable-dimension forming nip-rollers, the precursor tape with the boron fibers becomes a hybrid boron reinforced polymer matrix composite. A driving mechanism is used to pulled the precursor tape through the method and a take-up spool is used to collect the formed hybrid boron reinforced polymer matrix composite.
Interfacial reactions in titanium/SCS fiber composites during fabrication
NASA Technical Reports Server (NTRS)
Warrier, S. G.; Lin, R. Y.
1993-01-01
The objectrive of the study was to determine the effect of titanium concentration and different pyrocarbon fiber coatings on the morphology and the extent of fiber-matrix reactions in Ti/SiC composites fabricated by rapid infrared forming (RIF). It is found that the extent of fiber-matrix reactions in Ti/SiC composites fabricated by the RIF technique is noticeably affected by both an increase in Ti content and by the processing temperature. Uncoated SiC fibers extensively react with the titanium alloy matrix at 1200 C, whereas no reaction occurs when coated SiC fibers are used.
Studies of fiber-matrix adhesion on compression strength
NASA Technical Reports Server (NTRS)
Bascom, Willard D.; Nairn, John A.; Boll, D. J.
1991-01-01
A study was initiated on the effect of the matrix polymer and the fiber matrix bond strength of carbon fiber polymer matrix composites. The work includes tests with micro-composites, single ply composites, laminates, and multi-axial loaded cylinders. The results obtained thus far indicate that weak fiber-matrix adhesion dramatically reduces 0 degree compression strength. Evidence is also presented that the flaws in the carbon fiber that govern compression strength differ from those that determine fiber tensile strength. Examination of post-failure damage in the single ply tests indicates kink banding at the crack tip.
Core-Shell Composite Fibers for High-Performance Flexible Supercapacitor Electrodes.
Lu, Xiaoyan; Shen, Chen; Zhang, Zeyang; Barrios, Elizabeth; Zhai, Lei
2018-01-31
Core-shell nanofibers containing poly(acrylic acid) (PAA) and manganese oxide nanoparticles as the core and polypyrrole (PPy) as the shell were fabricated through electrospinning the solution of PAA and manganese ions (PAA/Mn 2+ ). The obtained nanofibers were stabilized by Fe 3+ through the interaction between Fe 3+ ions and carboxylate groups. Subsequent oxidation of Mn 2+ by KMnO 4 produced uniform manganese dioxide (MnO 2 ) nanoparticles in the fibers. A PPy shell was created on the fibers by immersing the fibers in a pyrrole solution where the Fe 3+ ions in the fiber polymerized the pyrrole on the fiber surfaces. In the MnO 2 @PAA/PPy core-shell composite fibers, MnO 2 nanoparticles function as high-capacity materials, while the PPy shell prevents the loss of MnO 2 during the charge/discharge process. Such a unique structure makes the composite fibers efficient electrode materials for supercapacitors. The gravimetric specific capacity of the MnO 2 @PAA/PPy core-shell composite fibers was 564 F/g based on cyclic voltammetry curves at 10 mV/s and 580 F/g based on galvanostatic charge/discharge studies at 5 A/g. The MnO 2 @PAA/PPy core-shell composite fibers also present stable cycling performance with 100% capacitance retention after 5000 cycles.
Fiber reinforced PMR polyimide composites
NASA Technical Reports Server (NTRS)
Cavano, P. J.; Winters, W. E.
1978-01-01
Commercially obtained PMR-15 polyimide prepregs with S-glass and graphite fiber reinforcements were evaluated along with in-house prepared glass and graphite cloth PMR 2 materials. A novel autoclave approach was conceived and used to demonstrate that both the PMR systems respond to 1.4 MPa (200 psi) autoclave pressures to produce void free composites equivalent to die molded laminates. Isothermal gravimetric analysis and subsequent mechanical property tests indicated that the PMR 2 system was significantly superior in thermo-oxidative stability, and that S-glass reinforcements may contribute to the accelerated degradation of composites at 316 C (600 F) when compared to graphite fiber reinforced composites. Fully reversed bending fatigue experiments were conducted with a type of fixture unused for organic matrix composites. These studies indicated that the graphite fiber composites were clearly superior in fatigue resistance to the glass fiber reinforced material and that PMR matrix composite systems yield performance of the same order as composite materials employing other families of matrices.
Nanocellulose in spun continuous fibers: A review and future outlook
Craig Clemons
2016-01-01
Continuous fibers are commonly manufactured for a wide variety of uses such as filters, textiles, and composites. For example, most fibrous reinforcements (e.g., carbon fiber, glass fiber) for advanced composites are continuous fibers or yarns, fabrics, and preforms made from them. This allows broad flexibility in design and manufacturing approaches by controlling...
Highly filled formaldehyde-free natural fiber polypropylene composites
Anand R. Sanadi; Daniel F. Caulfield
2000-01-01
Considerable interest has been generated in the use of lignocellulosic fibers and wastes (both agricultural and wood based) as fillers and reinforcements in thermoplastics. In general, present technologies limit fiber loading in thermoplastics to about 50% by weight of fiber. To produce high fiber content composites for commercial use while maintaining adequate...
Moisture sorption properties of composite boards from esterified aspen fiber
C. Clemons; R. A. Young; R. M. Rowell
1992-01-01
One barrier to producing wood-plastic composites with wood fiber is the poor thermoplasticity of wood fiber. The objective of our study was to determine the plasticization of chemically modified wood fiber through tests on unmodified and esterified fiberboards. Attrition-milled aspen fiber was esterified with neat acetic, maleic, or succinic anhydride. Fourier...
Structurally integrated fiber optic damage assessment system for composite materials.
Measures, R M; Glossop, N D; Lymer, J; Leblanc, M; West, J; Dubois, S; Tsaw, W; Tennyson, R C
1989-07-01
Progress toward the development of a fiber optic damage assessment system for composite materials is reported. This system, based on the fracture of embedded optical fibers, has been characterized with respect to the orientation and location of the optical fibers in the composite. Together with a special treatment, these parameters have been tailored to yield a system capable of detecting the threshold of damage for various impacted Kevlar/epoxy panels. The technique has been extended to measure the growth of a damage region which could arise from either impact, manufacturing flaws, or static overloading. The mechanism of optical fiber fracture has also been investigated. In addition, the influence of embedded optical fibers on the tensile and compressive strength of the composite material has been studied. Image enhanced backlighting has been shown to be a powerful and convenient method of assessing internal damage to translucent composite materials.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qui, Renhui; Ren, Xiaofeng; Fifield, Leonard S.
2011-02-25
The processing variables for making hemp-fiber-reinforced unsaturated polyester (UPE) composites were optimized through orthogonal experiments. It was found that the usage of initiator, methyl ethyl ketone peroxide, had the most significant effect on the tensile strength of the composites. The treatment of hemp fibers with a combination of 1, 6-diisocyanatohexane (DIH) and 2-hydroxylethyl acrylate (HEA) significantly increased tensile strength, flexural modulus of rupture and flexural modulus of elasticity, and water resistance of the resulting hemp-UPE composites. FTIR spectra revealed that DIH and HEA were covalently bonded to hemp fibers. Scanning electronic microscopy graphs of the fractured hemp-UPE composites demonstrated thatmore » treatment of hemp fibers with a combination of DIH and HEA greatly improved the interfacial adhesion between hemp fibers and UPE. The mechanism of improving the interfacial adhesion is proposed.« less
NASA Technical Reports Server (NTRS)
Bednarcyk, Brett A.; Arnold, Steven M.
2000-01-01
A new model for local fiber failures in composite materials loaded longitudinally is presented. In developing the model, the goal was to account for the effects of fiber breakage on the global response of a composite in a relatively simple and efficient manner. Towards this end, the model includes the important feature of local stress unloading, even as global loading of the composite continues. The model has been incorporated into NASA Glenn's Micromechanics Analysis Code with Generalized Method of Cells (MAC/GMC) and was employed to simulate the longitudinal tensile deformation and failure behavior of several silicon carbide fiber/titanium matrix (SiC/Ti) composites. The model is shown to be quite realistic and capable of accurate predictions for various temperatures, fiber volume fractions, and fiber diameters. Further- more, the new model compares favorably to Curtin's (1993) effective fiber breakage model, which has also been incorporated into MAC/GMC.
Influence of fiber treatment on dimensional stabilities of rattan waste composite boards
NASA Astrophysics Data System (ADS)
Zuraida, A.; Insyirah, Y.; Maisarah, T.; Zahurin, H.
2018-01-01
The main drawback of using natural fibers in composite boards is its hydrophilic properties which absorb a high volume of moisture. This results in low dimensional stability of the produced composite boards. Hence, the purpose of this study is to investigate the effects of fibers’ treatment processes of the rattan waste fibers on the dimensional stabilities of composite boards. The collected fibers underwent two types of retting processes, namely a water treatment and alkaline treatment retting processes; where the fibers were soaked in water and a 1% sodium hydroxide (NaOH) solution, respectively. The fibers were dried and mixed with poly(lactic) acid (PLA) pellets with ratio of 30% fibers: 70% matrix; before being fabricated into composite boards via a hot-pressing process and were labelled as RF/PLA, WRF/PLA, CRF/PLA for untreated rattan, rattan treated by water retting, rattan treated by chemical retting, respectively. The produced composite boards were cut and soaked in water for 24 hours for dimensional stability in terms of water absorption and thickness swelling tests. The results showed that WRF/PLA has the lowest water absorption (3.2%), and the CRF/PLA had the highest water absorption (23.2%). The thickness swelling showed a similar trend as water absorption. The presence of void contents and fibers damaged the insides of the boards, which contributed to low dimensional stabilities of the composite boards. It can be concluded that water retting facilitated in improving dimensional stability of the produced composite board.
Resin impregnation process for producing a resin-fiber composite
NASA Technical Reports Server (NTRS)
Palmer, Raymond J. (Inventor); Moore, William E. (Inventor)
1994-01-01
Process for vacuum impregnation of a dry fiber reinforcement with a curable resin to produce a resin-fiber composite, by drawing a vacuum to permit flow of curable liquid resin into and through a fiber reinforcement to impregnate same and curing the resin-impregnated fiber reinforcement at a sufficient temperature and pressure to effect final curing. Both vacuum and positive pressure, e.g. autoclave pressure, are applied to the dry fiber reinforcement prior to application of heat and prior to any resin flow to compact the dry fiber reinforcement, and produce a resin-fiber composite of reduced weight, thickness and resin content, and improved mechanical properties. Preferably both a vacuum and positive pressure, e.g. autoclave pressure, are also applied during final curing.
The recycling of comminuted glass-fiber-reinforced resin from electronic waste.
Duan, Huabo; Jia, Weifeng; Li, Jinhui
2010-05-01
The reuse of comminuted glass-fiber-reinforced resin with various granularities gathered from printed circuit manufacturing residues was investigated. As fillers, these residues were converted into polymeric composite board by an extrusion and injection process using polypropylene as a bonding agent. The mechanical properties of the reproduced composite board were examined by considering the effects of mass fraction and glass-fiber distribution. Interfacial-layer micrograph analysis of the composite material fracture surface was used to study the fiber reinforcement mechanism. Results showed that using comminuted glass-fiber-reinforced resin as a filler material greatly enhanced the performance properties of the composite board. Although the length and diameter of filler varied, these variations had no appreciable effect on the mechanical properties of the processed board. Maximum values of 48.30 MPa for flexural strength, 31.34 MPa for tensile strength, and 31.34 J/m for impact strength were achieved from a composite board containing mass fractions of 30, 10, and 20% glass-fiber-reinforced resin waste, respectively. It was found that the maximum amount of recyclate that could be added to a composite board was 30% of weight. Beyond these percentages, the materials blend became unmanageable and the mixture less amenable to impregnation with fiber. Presented studies indicated that comminuted glass-fiber-reinforced resin waste-filled polypropylene composites are promising candidates for structural applications where high stiffness and fracture resistance are required.
Durability of pulp fiber-cement composites
NASA Astrophysics Data System (ADS)
Mohr, Benjamin J.
Wood pulp fibers are a unique reinforcing material as they are non-hazardous, renewable, and readily available at relatively low cost compared to other commercially available fibers. Today, pulp fiber-cement composites can be found in products such as extruded non-pressure pipes and non-structural building materials, mainly thin-sheet products. Although natural fibers have been used historically to reinforce various building materials, little scientific effort has been devoted to the examination of natural fibers to reinforce engineering materials until recently. The need for this type of fundamental research has been emphasized by widespread awareness of moisture-related failures of some engineered materials; these failures have led to the filing of national- and state-level class action lawsuits against several manufacturers. Thus, if pulp fiber-cement composites are to be used for exterior structural applications, the effects of cyclical wet/dry (rain/heat) exposure on performance must be known. Pulp fiber-cement composites have been tested in flexure to examine the progression of strength and toughness degradation. Based on scanning electron microscopy (SEM), environmental scanning electron microscopy (ESEM), energy dispersive spectroscopy (EDS), a three-part model describing the mechanisms of progressive degradation has been proposed: (1) initial fiber-cement/fiber interlayer debonding, (2) reprecipitation of crystalline and amorphous ettringite within the void space at the former fiber-cement interface, and (3) fiber embrittlement due to reprecipitation of calcium hydroxide filling the spaces within the fiber cell wall structure. Finally, as a means to mitigate kraft pulp fiber-cement composite degradation, the effects of partial portland cement replacement with various supplementary cementitious materials (SCMs) has been investigated for their effect on mitigating kraft pulp fiber-cement composite mechanical property degradation (i.e., strength and toughness losses) during wet/dry cycling. SCMs have been found to be effective in mitigating composite degradation through several processes, including a reduction in the calcium hydroxide content, stabilization of monosulfate by maintaining pore solution pH, and a decrease in ettringite reprecipitation accomplished by increased binding of aluminum in calcium aluminate phases and calcium in the calcium silicate hydrate (C-S-H) phase.
Bamdad Barari; Thomas K. Ellingham; Issam I. Ghamhia; Krishna M. Pillai; Rani El-Hajjar; Lih-Sheng Turng; Ronald Sabo
2016-01-01
Plant derived cellulose nano-fibers (CNF) are a material with remarkable mechanical properties compared to other natural fibers. However, efforts to produce nano-composites on a large scale using CNF have yet to be investigated. In this study, scalable CNF nano-composites were made from isotropically porous CNF preforms using a freeze drying process. An improvised...
Chapter 15: Characterization and Processing of Nanocellulose Thermosetting Composites
Ronald C. Sabo; Rani F. Elhajjar; Craig M. Clemons; Krishna M. Pillai
2015-01-01
Fiber-reinforced polymer composites have gained popularity through their advantages over conventional metallic materials. Most polymer composites are traditionally made with reinforcing fibers such as carbon or glass. However, there has been recent interest in sourcing these reinforcing fibers from renewable, natural resources. Nanocellulose-based reinforcements...
Generation of Spatially Aligned Collagen Fiber Networks through Microtransfer Molding
Naik, Nisarga; Caves, Jeffrey
2013-01-01
The unique biomechanical properties of native tissue are governed by the organization and composition of integrated collagen and elastin networks. We report an approach for fabricating spatially aligned, fiber-reinforced composites (FRC) with adjustable collagen fiber dimensions, layouts, and distribution within an elastin-like protein matrix yielding a biocomposite with controllable mechanical responses. Microtransfer molding is employed for the fabrication of hollow and solid collagen fibers with straight or crimped fiber geometries. Collagen fibers (width: 2 – 50 μm, thickness: 300 nm – 3 μm) exhibit a Young’s modulus of 126 ± 61 MPa and an ultimate tensile strength (UTS) of 7 ± 3.2 MPa. As fiber networks within composite structures, straight fiber layouts display orthotropic responses with Young’s modulus ranging from 0.95 ± 0.35 to 10.4 ± 0.5 MPa and tensile strength from 0.22 ± 0.08 to 0.87 ± 0.5 MPa with increasing fraction of collagen fibers (1–10% v/v). In contrast, composites based on crimped fiber layouts exhibit strain-dependent stiffness with an increase in Young’s modulus from 0.7 ± 0.14 MPa to 3.15 ± 0.49 MPa, at a specific transition strain. Through controlling the microstructure of engineered collagen fiber networks, a facile means has been established to control macroscale mechanical responses of composite protein-based materials. PMID:24039146
NASA Technical Reports Server (NTRS)
Allred, Ronald E.; Gosau, Jan M.; Shin, E. Eugene; McCorkle, Linda S.; Sutter, James K.; OMalley, Michelle; Gray, Hugh R. (Technical Monitor)
2002-01-01
To increase performance and durability of high temperature composites for potential rocket engine components, it is necessary to optimize wetting and interfacial bonding between high modulus carbon fibers and high temperature polyimide resins. It has been previously demonstrated that the electro-oxidative shear treatments used by fiber manufacturers are not effective on higher modulus fibers that have fewer edge and defect sites in the surface crystallites. In addition, sizings commercially supplied on most carbon fibers are not compatible with polyimides. This study was an extension of prior work characterizing the surface chemistry and energy of high modulus carbon fibers (M40J and M60J, Torray) with typical fluorinated polyimide resins, such as PMR-II-50. A continuous desizing system which utilizes environmentally friendly chemical- mechanical processes was developed for tow level fiber and the processes were optimized based on weight loss behavior, surface elemental composition (XPS) and morphology (FE-SEM) analyses, and residual tow strength of the fiber, and the similar approaches have been applied on carbon fabrics. Both desized and further treated with a reactive finish were investigated for the composite reinforcement. The effects of desizing and/or subsequent surface retreatment on carbon fiber on composite properties and performance including fiber-matrix interfacial mechanical properties, thermal properties and blistering onset behavior will be discussed in this presentation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cantrell, John H., E-mail: john.h.cantrell@nasa.gov
2015-03-15
The chemical treatment of carbon fibers used in carbon fiber-epoxy matrix composites greatly affects the fraction of hydrogen bonds (H-bonds) formed at the fiber-matrix interface. The H-bonds are major contributors to the fiber-matrix interfacial shear strength and play a direct role in the interlaminar shear strength (ILSS) of the composite. The H-bond contributions τ to the ILSS and magnitudes K{sub N} of the fiber-matrix interfacial stiffness moduli of seven carbon fiber-epoxy matrix composites, subjected to different fiber surface treatments, are calculated from the Morse potential for the interactions of hydroxyl and carboxyl acid groups formed on the carbon fiber surfacesmore » with epoxy receptors. The τ calculations range from 7.7 MPa to 18.4 MPa in magnitude, depending on fiber treatment. The K{sub N} calculations fall in the range (2.01 – 4.67) ×10{sup 17} N m{sup −3}. The average ratio K{sub N}/|τ| is calculated to be (2.59 ± 0.043) × 10{sup 10} m{sup −1} for the seven composites, suggesting a nearly linear connection between ILSS and H-bonding at the fiber-matrix interfaces. The linear connection indicates that τ may be assessable nondestructively from measurements of K{sub N} via a technique such as angle beam ultrasonic spectroscopy.« less
Mechanical property characterization of polymeric composites reinforced by continuous microfibers
NASA Astrophysics Data System (ADS)
Zubayar, Ali
Innumerable experimental works have been conducted to study the effect of polymerization on the potential properties of the composites. Experimental techniques are employed to understand the effects of various fibers, their volume fractions and matrix properties in polymer composites. However, these experiments require fabrication of various composites which are time consuming and cost prohibitive. Advances in computational micromechanics allow us to study the various polymer based composites by using finite element simulations. The mechanical properties of continuous fiber composite strands are directional. In traditional continuous fiber laminated composites, all fibers lie in the same plane. This provides very desirable increases in the in-plane mechanical properties, but little in the transverse mechanical properties. The effect of different fiber/matrix combinations with various orientations is also available. Overall mechanical properties of different micro continuous fiber reinforced composites with orthogonal geometry are still unavailable in the contemporary research field. In this research, the mechanical properties of advanced polymeric composite reinforced by continuous micro fiber will be characterized based on analytical investigation and FE computational modeling. Initially, we have chosen IM7/PEEK, Carbon Fiber/Nylon 6, and Carbon Fiber/Epoxy as three different case study materials for analysis. To obtain the equivalent properties of the micro-hetero structures, a concept of micro-scale representative volume elements (RVEs) is introduced. Five types of micro scale RVEs (3 square and 2 hexagonal) containing a continuous micro fiber in the polymer matrix were designed. Uniaxial tensile, lateral expansion and transverse shear tests on each RVE were designed and conducted by the finite element computer modeling software ANSYS. The formulae based on elasticity theory were derived for extracting the equivalent mechanical properties (Young's moduli, shear moduli, and Poisson's ratios) from the numerical solutions of the RVEs undergone these three load tests. Validation of the obtained micro-scale mechanical properties will be performed using rule of mixture (ROM), 1st, and 2nd order of the mathematical model and experimental data.
Probabilistic Fiber Composite Micromechanics
NASA Technical Reports Server (NTRS)
Stock, Thomas A.
1996-01-01
Probabilistic composite micromechanics methods are developed that simulate expected uncertainties in unidirectional fiber composite properties. These methods are in the form of computational procedures using Monte Carlo simulation. The variables in which uncertainties are accounted for include constituent and void volume ratios, constituent elastic properties and strengths, and fiber misalignment. A graphite/epoxy unidirectional composite (ply) is studied to demonstrate fiber composite material property variations induced by random changes expected at the material micro level. Regression results are presented to show the relative correlation between predictor and response variables in the study. These computational procedures make possible a formal description of anticipated random processes at the intra-ply level, and the related effects of these on composite properties.
Low cost carbon fiber technology development for carbon fiber composite applications.
DOT National Transportation Integrated Search
2012-04-01
The objective of this project was to further develop low cost carbon fiber for a variety of potential applications. Manufacturing feasi-bility of low cost carbon fibers/composites has been demonstrated. A number of technologies that are currently usi...
Composites with improved fiber-resin interfacial adhesion
NASA Technical Reports Server (NTRS)
Cizmecioglu, Muzaffer (Inventor)
1989-01-01
The adhesion of fiber reinforcement such as high modulus graphite to a matrix resin such as polycarbonate is greatly enhanced by applying a very thin layer, suitably from 50 Angstroms to below 1000 Angstroms, to the surface of the fiber such as by immersing the fiber in a dilute solution of the matrix resin in a volatile solvent followed by draining to remove excess solution and air drying to remove the solvent. The thin layer wets the fiber surface. The very dilute solution of matrix resin is able to impregnate multifilament fibers and the solution evenly flows onto the surface of the fibers. A thin uniform layer is formed on the surface of the fiber after removal of the solvent. The matrix resin coated fiber is completely wetted by the matrix resin during formation of the composite. Increased adhesion of the resin to the fibers is observed at fracture. At least 65 percent of the surface of the graphite fiber is covered with polycarbonate resin at fracture whereas uncoated fibers have very little matrix resin adhering to their surfaces at fracture and epoxy sized graphite fibers exhibit only slightly higher coverage with matrix resin at fracture. Flexural modulus of the composite containing matrix resin coated fibers is increased by 50 percent and flexural strength by 37 percent as compared to composites made with unsized fibers.
NASA Astrophysics Data System (ADS)
Banerjee, Debangshu
The brittleness of monolithic ceramic materials can be overcome by reinforcing them with high strength, high modulus ceramic fibers. These ceramic matrix composites exhibit improved strength, toughness, and work of fracture. Successful design of a ceramic matrix composite (CMC) depends on two factors: proper choice of fiber, matrix, and interface material, and understanding the mechanics of fracture. The conventional techniques for measuring stress and strain at a local level in CMCs are based on indirect experiments and analytical models. In recent years a couple of optical techniques have been explored for non- contact and direct evaluation of the stress and strain in materials, such as laser Raman spectroscopy and fluorescence spectroscopy. In order to employ spectroscopy to study stress in a composite, a transparent matrix was needed. In this study a SiC fiber reinforced transparent glass matrix composite was developed. A tape casting, binder burnout, and sintering route was adopted to achieve the optimum transparency with proper fiber alignment and interfacial properties. Sapphire fibers were used to act as probe to generate fluorescence signals for measuring stress. A fugitive carbon coating was developed to act as a weak interface for the sapphire fiber, which otherwise, forms a strong bond with the matrix. A fixture was designed to apply stress on the composite specimen, in situ, under the microscope of the spectrometer. Using fluorescence spectroscopy, the micromechanics of load transfer from matrix to fibers were studied. Studies were conducted on both strongly and weakly bonded fibers, as well as on single fiber, and multi fiber situations. Residual stresses arising from thermal expansion mismatch have been mapped along the fiber length with resolution in microns. Residual axial stress was found to follow a shear lag profile along the fiber length. A finite residual axial stress was detected at the fiber ends. Correction of the measured stress for sample probe interaction could not eliminate this finite stress completely. Residual axial stress was also found to vary across the fiber cross section. Analytical models predicting the stress variation along the fiber length and across fiber cross section were developed. (Abstract shortened by UMI.)
NASA Astrophysics Data System (ADS)
Fe, Shaoyun; Zhou, Benlian; Lung, Chiwei
1992-06-01
An approximate theory of pull-out of fiber with fractal-tree structure from a matrix is developed with the aim of quantifying the effects of the fractal-tree structure of the fiber. In the experimental investigation of the pull-out of the synthetic fiber with fractal-tree structure, it was generally observed that the force and energy of fiber pullout increase with the branching angle. The application of this theory to experiment is successful. The strength and fracture toughness of composites reinforced by this kind of fiber are inferred to be greater than those of composites reinforced by plane fibers.
A novel basalt fiber-reinforced polylactic acid composite for hard tissue repair.
Chen, Xi; Li, Yan; Gu, Ning
2010-08-01
A basalt fiber (BF) was, for the first time, introduced into a poly(l-lactic acid) (PLLA) matrix as innovative reinforcement to fabricate composite materials for hard tissue repair. Firstly, BF/PLLA composites and pure PLLA were produced by the methods of solution blending and freeze drying. The results showed that basalt fibers can be uniformly dispersed in the PLLA matrix and significantly improve the mechanical properties and hydrophilicity of the PLLA matrix. The presence of basalt fibers may retard the polymer degradation rate and neutralize the acid degradation from PLLA. Osteoblasts were cultured in vitro to evaluate the cytocompatibility of the composite. An MTT assay revealed that osteoblasts proliferated well for 7 days and there was little difference found in their viability on both PLLA and BF/PLLA films, which was consistent with the alkaline phosphatase (ALP) activity results. A fluorescent staining observation showed that osteoblasts grew well on the composites. SEM images displayed that osteoblasts tended to grow along the fiber axis. The formation of mineralized nodules was observed on the films by Alizarin red S staining. These results suggest that the presence of basalt fibers does not noticeably affect osteoblastic behavior and the designed composites are osteoblast compatible. It is concluded that basalt fibers, as reinforcing fibers, may have promising applications in hard tissue repair.
NASA Astrophysics Data System (ADS)
Azieyanti, N. A.; Hakim, Alif; Hasini, Hasril
2017-10-01
A composite mixture of gypsum and natural fibers has been considered in this study to enhance the fire resistance rating of a fire door. Previously the materials used to make a fire door are gypsum and fiber wool where it acts as a protective coating. Normally this fire door must be compact and able to close on its own. Natural fibers have the ability to replace glass fiber cotton because of its features that are available in fiber glass wool. When using fiberglass, it can cause health problem once it is swallowed and inhaled, and may remain in the lungs indefinitely. It also can contribute to lungs cancer. Kapok fiber has been used in this experiment as natural fibers. The objective of the experiment is to analyze the fire resistant rating of the composite mixture of gypsum with kapok fiber. The scopes of the experiment consist of a preparation of composite mixture samples of gypsum with kapok fiber with different composition and thickness, and the fabrication of a fire resistant testing furnace. A testing of samples which were conducted in accordance with the standard MS 1073: PART 2:1996.
Shori, Deepa; Pandey, Swapnil; Kubde, Rajesh; Rathod, Yogesh; Atara, Rahul; Rathi, Shravan
2013-10-01
Fiber posts are widely used for restoration of mutilated teeth that lack adequate coronal tooth structure to retain a core for definitive restoration, bond between the fiber post and composite material depends upon the chemical reaction between the post surface and the resin material used for building up the core. In attempt to maximize the resin bonding with fiber post, different post surface conditioning is advocated. Therefore the purpose of the study is to examine the interfacial strength between fiber post and composite, as core build-up material after different surface treatments of fiber posts. Twenty fiber posts were split into four groups off five each according to different surface treatments viz. Group I-(Negative Control), Group II-Silanization (Positive control), Group III-(37% Phosphoric Acid & Silanization) ,Group IV- (10% Hydrogen Peroxide and Silanization). With the preformed plastic mould, a core of dual cure composite resin around the fiber post having the uniform thickness was created. Tensile bond strength of each specimen was measured under Universal Testing Machine (UTM) at the cross head speed of 3mm/min. The results achieved with 10% Hydrogen peroxide had a marked effect on micro tensile bond strength values between the tested materials. Immense enhancement in the silanization efficiency of quartz fiber phase was observed with different surface chemical treatment of the resin phase of fiber posts with the marked increase in the micro-tensile bond strength between fiber post and composite core. Shori D, Pandey S, Kubde R, Rathod Y, Atara R, Rathi S. To evaluate and compare the effect of different Post Surface treatments on the Tensile Bond Strength between Fiber Posts and Composite Resin. J Int Oral Health 2013; 5(5):27-32.
NASA Astrophysics Data System (ADS)
Zou, Chunrong; Li, Bin; Zhang, Changrui; Wang, Siqing; Xie, Zhengfang; Shao, Changwei
2016-02-01
The structural evolution of a silicon oxynitride fiber reinforced boron nitride matrix (Si-N-Of/BN) wave-transparent composite at high temperatures was investigated. When heat treated at 1600 °C, the composite retained a favorable bending strength of 55.3 MPa while partially crystallizing to Si2N2O and h-BN from the as-received amorphous structure. The Si-N-O fibers still performed as effective reinforcements despite the presence of small pores due to fiber decomposition. Upon heat treatment at 1800 °C, the Si-N-O fibers already lost their reinforcing function and rough hollow microstructure formed within the fibers because of the accelerated decomposition. Further heating to 2000 °C led to the complete decomposition of the reinforcing fibers and only h-BN particles survived. The crystallization and decomposition behaviors of the composite at high temperatures are discussed.
NASA Astrophysics Data System (ADS)
Reichert, K.; Wen, K.; Cremer, R.; Hu, W.; Neuschütz, D.; Gottstein, G.
2001-07-01
A new concept for a tailored fiber-matrix interface for sapphire fiber reinforced NiAl matrix composites is proposed, consisting of an initial hexagonal boron nitride (hBN) fiber coating. For this, single crystal Al 2O 3 fibers were coated with hBN by chemical vapor deposition (CVD). Following a comprehensive characterization of the CVD coating as to composition and structure by means of X-ray photoelectron spectroscopy (XPS) and grazing incidence X-ray diffraction (GIXRD), the fiber reinforced NiAl matrix composites were fabricated by diffusion bonding at 1400°C. The interfaces NiAl/BN and BN/Al 2O 3 were analyzed by scanning electron microscopy (SEM), analytical transmission electron microscopy (TEM), and selected area diffraction (SAD). An interfacial reaction between NiAl and hBN to form AlN was revealed using these analytical techniques.
Creep of experimental short fiber-reinforced composite resin.
Garoushi, Sufyan; Kaleem, Muhammad; Shinya, Akikazu; Vallittu, Pekka K; Satterthwaite, Julian D; Watts, David C; Lassila, Lippo V J
2012-01-01
The purpose of this study was to investigate the reinforcing effect of short E-glass fiber fillers oriented in different directions on composite resin under static and dynamic loading. Experimental short fiber-reinforced composite resin (FC) was prepared by mixing 22.5 wt% of short E-glass fibers, 22.5 wt% of resin, and 55 wt% of silane-treated silica fillers. Three groups of specimens (n=5) were tested: FC with isotropic fiber orientation, FC with anisotropic fiber orientation, and particulate-filled composite resin (PFC) as a control. Time-dependent creep and recovery were recorded. ANOVA revealed that after secondary curing in a vacuum oven and after storage in dry condition for 30 days, FC with isotropic fiber orientation (1.73%) exhibited significantly lower static creep value (p<0.05) than PFC (2.54%). For the different curing methods and storage conditions evaluated in this study, FC achieved acceptable static and dynamic creep values when compared to PFC.
NASA Astrophysics Data System (ADS)
Longbiao, Li
2017-06-01
In this paper, the synergistic effects of temperatrue and oxidation on matrix cracking in fiber-reinforced ceramic-matrix composites (CMCs) has been investigated using energy balance approach. The shear-lag model cooperated with damage models, i.e., the interface oxidation model, interface debonding model, fiber strength degradation model and fiber failure model, has been adopted to analyze microstress field in the composite. The relationships between matrix cracking stress, interface debonding and slipping, fiber fracture, oxidation temperatures and time have been established. The effects of fiber volume fraction, interface properties, fiber strength and oxidation temperatures on the evolution of matrix cracking stress versus oxidation time have been analyzed. The matrix cracking stresses of C/SiC composite with strong and weak interface bonding after unstressed oxidation at an elevated temperature of 700 °C in air condition have been predicted for different oxidation time.
Self-sensing E-glass-fiber-reinforced composites
NASA Astrophysics Data System (ADS)
Brooks, David; Hayes, Simon A.; Khan, N. A.; Zolfaghar, K.; Fernando, Gerard F.
1997-06-01
Conventional E-glass fibers were surface treated to enable them to act as light guides for short distances. The reinforcing fiber light guides were embedded in glass fiber reinforced epoxy prepregs and processed into composites. The resultant composite was termed the self-sensing composite as any damage to these fibers or its interface would result in the attenuation of the transmitted light. Epoxy, silicone, fluoropolymer and sol-gel derived cladding materials were evaluated as potential cladding materials. RFLGs with a silicone coating was found to give the best light transmission. The self-sensing fibers were capable of detecting a 0.5 J direct impact. The feasibility of using the RFLGs for impact damage location was also demonstrated successfully as bleeding-light could be seen in the vicinity of the impact.
NASA Astrophysics Data System (ADS)
Han, Baoshuai; Guo, Enyu; Xue, Xiang; Zhao, Zhiyong; Li, Tiejun; Xu, Yanjin; Luo, Liangshun; Hou, Hongliang
2018-05-01
Combining the excellent properties of carbon nanotube (CNT) and copper, CNT/Cu composite fibers were fabricated by physical vapor deposition (PVD) and rolling treatment. Dense and continuous copper film (∼2 μm) was coated on the surface of the CNT fibers by PVD, and rolling treatment was adopt to strengthen the CNT/Cu composite fibers. After the rolling treatment, the defects between the Cu grains and the CNT bundles were eliminated, and the structure of both the copper film and the core CNT fibers were optimized. The rolled CNT/Cu composite fibers possess high tensile effective strength (1.01 ± 0.13 GPa) and high electrical conductivity ((2.6 ± 0.3) × 107 S/m), and thus, this material may become a promising wire material.
NASA Technical Reports Server (NTRS)
Bradshaw, W. G.; Pinoli, P. C.; Vidoz, A. E.
1972-01-01
Large diameter, carbon-carbon composite, monofilaments were produced from the pyrolysis of organic precursor resins reinforced with high-strenght carbon fibers. The mechanical properties were measured before and after pyrolysis and the results were correlated with the properties of the constituents. The composite resulting from the combination of Thornel 75 and GW-173 resin precursor produced the highest tensile strength. The importance of matching strain-to-failure of fibers and matrix to obtain all the potential reinforcement of fibers is discussed. Methods are described to reduce, within the carbonaceous matrix, pyrolysis flaws which tend to reduce the composite strength. Preliminary studies are described which demonstrated the feasibility of fiber-matrix copyrolysis to alleviate matrix cracking and provide an improved matrix-fiber interfacial bonding.
Effect of coupling agents on the weathering characteristics of bio-fiber composites
USDA-ARS?s Scientific Manuscript database
Bio-fiber polymer composites (BFPC) are composite materials made from a thermoplastic or thermoset resin (substrate) with cellulosic fibers as fillers or reinforcement. BFPC have shown a significant growth in the last decade as a building product, automotive parts, and landscaping products. BFPC com...
Starch/fiber/poly(lactic acid) foam and compressed foam composites
USDA-ARS?s Scientific Manuscript database
Composites of starch, fiber, and poly(lactic acid) (PLA) were made using a foam substrate formed by dehydrating starch or starch/fiber gels. PLA was infiltrated into the dry foam to provide better moisture resistance. Foam composites were compressed into plastics using force ranging from 4-76MPa. Te...
Jenkins, R Brian; Joyce, Peter; Mechtel, Deborah
2017-01-27
Fiber Bragg grating (FBG) temperature sensors are embedded in composites to detect localized temperature gradients resulting from high energy infrared laser radiation. The goal is to detect the presence of radiation on a composite structure as rapidly as possible and to identify its location, much the same way human skin senses heat. A secondary goal is to determine how a network of sensors can be optimized to detect thermal damage in laser-irradiated composite materials or structures. Initial tests are conducted on polymer matrix composites reinforced with either carbon or glass fiber with a single optical fiber embedded into each specimen. As many as three sensors in each optical fiber measure the temporal and spatial thermal response of the composite to high energy radiation incident on the surface. Additional tests use a 2 × 2 × 3 array of 12 sensors embedded in a carbon fiber/epoxy composite to simultaneously measure temperature variations at locations on the composite surface and through the thickness. Results indicate that FBGs can be used to rapidly detect temperature gradients in a composite and their location, even for a direct strike of laser radiation on a sensor, when high temperatures can cause a non-uniform thermal response and FBG decay.
Jenkins, R. Brian; Joyce, Peter; Mechtel, Deborah
2017-01-01
Fiber Bragg grating (FBG) temperature sensors are embedded in composites to detect localized temperature gradients resulting from high energy infrared laser radiation. The goal is to detect the presence of radiation on a composite structure as rapidly as possible and to identify its location, much the same way human skin senses heat. A secondary goal is to determine how a network of sensors can be optimized to detect thermal damage in laser-irradiated composite materials or structures. Initial tests are conducted on polymer matrix composites reinforced with either carbon or glass fiber with a single optical fiber embedded into each specimen. As many as three sensors in each optical fiber measure the temporal and spatial thermal response of the composite to high energy radiation incident on the surface. Additional tests use a 2 × 2 × 3 array of 12 sensors embedded in a carbon fiber/epoxy composite to simultaneously measure temperature variations at locations on the composite surface and through the thickness. Results indicate that FBGs can be used to rapidly detect temperature gradients in a composite and their location, even for a direct strike of laser radiation on a sensor, when high temperatures can cause a non-uniform thermal response and FBG decay. PMID:28134815
Dang, Baokang; Chen, Yipeng; Wang, Hanwei; Chen, Bo; Jin, Chunde; Sun, Qingfeng
2018-01-01
Fe3O4/wood fiber composites are prepared with a green mechanical method using only distilled water as a solvent without any chemical agents, and then a binderless composite board with high mechanical properties is obtained via a hot-press for electromagnetic (EM) absorption. The fibers are connected by hydrogen bonds after being mechanically pretreated, and Fe3O4 nanoparticles (NPs) are attached to the fiber surface through physical adsorption. The composite board is bonded by an adhesive, which is provided by the reaction of fiber composition under high temperature and pressure. The Nano-Fe3O4/Fiber (NFF) binderless composite board shows remarkable microwave absorption properties and high mechanical strength. The optional reflection loss (RL) of the as-prepared binderless composite board is −31.90 dB. The bending strength of the NFF binderless composite board is 36.36 MPa with the addition of 6% nano-Fe3O4, the modulus of elasticity (MOE) is 6842.16 MPa, and the internal bond (IB) strength is 0.81 MPa. These results demonstrate that magnetic nanoparticles are deposited in binderless composite board by hot pressing, which is the easiest way to produce high mechanical strength and EM absorbers. PMID:29361726
1991-07-01
Massachusetts "A Microscopy Study of Impact Damage on Epoxy-Matrix ..... . . . 8-1 Carbon Fiber Composites " D.J. Boll, W.D. Bascom and J.C. Weidner Hercules...ON EPOXY-MATRIX CARBON FIBER COMPOSITES D.J. Boll, W.D. Bascom and J.C. Weidner Hercules Aerospace Magna, Utah A Microscopy Study of Impact Damage on...Epoxy-Matrix Carbon Fiber Composites D. 3. Boll, W. D. Bascom, J. C. Weidner and W. J. Murri Hercules Aerospace Magna, Utah Abstract The damage
The Effect of Moisture on Carbon Fiber Reinforced Epoxy Composites. 1. Diffusion
1976-09-27
II i NSWC/WOL/’r 76-7 0 00 WHITE OAK LABORATORY THE EFFECT OF MOISTURE ON CARBON FIBER REINFORCED EPOXY COMPOSITES I DIFFUSION 0 BY Joseph M. AugI 27...Effect of Moisture on Carbon Fiber’ Reinorcd EoxyComposites. onZI j , l Joseph M./Augll - lan E./egr ,. E RORMING ORGANIZATION NAME AND ADDRESS 10...Diffusion Carbon fiber composite* 20. A bf AACT (Ceedhlua on rverse side it meosemp &W idmtl’ 5 bl eek mmbeet) Mathematical models are suggested for
Investigation of Structural Properties of Carbon-Epoxy Composites Using Fiber-Bragg Gratings
NASA Technical Reports Server (NTRS)
Grant, J.; Kaul, R.; Taylor, S.; Jackson, K.; Sharma, A.; Burdine, Robert V. (Technical Monitor)
2002-01-01
Fiber Bragg-gratings are embedded in carbon-epoxy laminates as well as bonded on the surface of cylindrical structures fabricated out of such composites. Structural properties of such composites is investigated. The measurements include stress-strain relation in laminates and Poisson's ratio in several specimens with varying orientation of the optical fiber Bragg-sensor with respect to the carbon fiber in an epoxy matrix. Additionally, Bragg gratings are bonded on the surface of cylinders fabricated out of carbon-epoxy composites and longitudinal and hoop strain on the surface is measured.
Structures with high number density of carbon nanotubes and 3-dimensional distribution
NASA Technical Reports Server (NTRS)
Chen, Zheng (Inventor); Tzeng, Yonhua (Inventor)
2002-01-01
A composite is described having a three dimensional distribution of carbon nanotubes. The critical aspect of such composites is a nonwoven network of randomly oriented fibers connected at their junctions to afford macropores in the spaces between the fibers. A variety of fibers may be employed, including metallic fibers, and especially nickel fibers. The composite has quite desirable properties for cold field electron emission applications, such as a relatively low turn-on electric field, high electric field enhancement factors, and high current densities. The composites of this invention also show favorable properties for other an electrode applications. Several methods, which also have general application in carbon nanotube production, of preparing these composites are described and employ a liquid feedstock of oxyhydrocarbons as carbon nanotube precursors.
Wang, Dan; Wang, Qingtang; Zhang, Zhuomin; Chen, Guonan
2012-01-21
ZnO nanorod array coating is a novel kind of solid-phase microextraction (SPME) fiber coating which shows good extraction capability due to the nanostructure. To prepare the composite coating is a good way to improve the extraction capability. In this paper, the ZnO nanorod array polydimethylsiloxane (PDMS) composite SPME fiber coating has been prepared and its extraction capability for volatile organic compounds (VOCs) has been studied by headspace sampling the typical volatile mixed standard solution of benzene, toluene, ethylbenzene and xylene (BTEX). Improved detection limit and good linear ranges have been achieved for this composite SPME fiber coating. Also, it is found that the composite SPME fiber coating shows good extraction selectivity to the VOCs with alkane radicals.
Carbon Fiber Reinforced Carbon Composite Valve for an Internal Combustion Engine
NASA Technical Reports Server (NTRS)
Rivers, H. Kevin (Inventor); Ransone, Philip O. (Inventor); Northam, G. Burton (Inventor)
1999-01-01
A carbon fiber reinforced carbon composite valve for internal combustion engines and the like formed of continuous carbon fibers throughout the valve's stem and head is disclosed. The valve includes braided carbon fiber material over axially aligned unidirectional carbon fibers forming a valve stem; the braided and unidirectional carbon fibers being broomed out at one end of the valve stem forming the shape of the valve head; the valve-shaped structure being densified and rigidized with a matrix of carbon containing discontinuous carbon fibers: and the finished valve being treated to resist oxidation. Also disclosed is a carbon matrix plug containing continuous and discontinuous carbon fibers and forming a net-shape valve head acting as a mandrel over which the unidirectional and braided carbon fibers are formed according to textile processes. Also disclosed are various preform valves and processes for making finished and preform carbon fiber reinforced carbon composite valves.
Matrix cracking with irregular fracture fronts as observed in fiber reinforced ceramic composites
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu, K.X.; Yeh, C.P.; Wyatt, K.W.
1998-01-01
As a result of matrix cracking in fiber reinforced composites, fracture planforms assume a wide variation of profiles due to the fact that fiber bridging strongly affects the behavior of local crack fronts. This observation raises the question on the legitimacy of commonly used penny-shaped crack solutions when applied to fiber reinforced composites. Accordingly, investigation of the effects of fracture front profiles on mechanical responses is the thrust of this paper. The authors start with the solution of a penny-shaped crack in a unidirectional, fiber reinforced composite, which demonstrates necessity of considering wavy fracture fronts in fiber reinforced composites. Amore » theoretical framework for fiber reinforced composites with irregular fracture fronts due to matrix cracking is then established via a micromechanics model. The difference between small crack-size matrix cracking and large crack-size matrix cracking is investigated in detail. It is shown that the bridging effect is insignificant when matrix crack size is small and solution of effective property are obtained using Mori-Tanaka`s method by treating cracks and reinforcing fibers as distinct, but interacting phases. When the crack size becomes large, the bridging effects has to be taken into consideration. With bridging tractions obtained in consistency with the micromechanics solution, and corresponding crack energy backed out, the effective properties are obtained through a modification of standard Mori-Tanaka`s treatment of multiphase composites. Analytical solutions show that the generalization of a crack density of a penny-shaped planform is insufficient in describing the effective responses of fiber-reinforced composites with matrix cracking. Approximate solutions that account for the effects of the irregularity of crack planforms are given in closed forms for several irregular crack planforms, including cracks of cross rectangle, polygon and rhombus.« less
Low cost carbon fiber technology development for carbon fiber composite applications : phase 1.
DOT National Transportation Integrated Search
2008-01-01
The main goals of this research program at UTSI were: 1) to produce low cost carbon fibers and 2) to develop specific carbonbased : material technologies to meet current and future high performance fiber-reinforced composite needs of FTA and other : ...
NASA Technical Reports Server (NTRS)
Gouadec, Gwenael; Colomban, Philippe; Bansal, Narottam P.
2000-01-01
Band shifts on Raman spectra were used to assess, at a microscopic scale, the residual strain existing in Hi-Nicalon fibers reinforcing celsian matrix composites. Uncoated as well as p-BN/SiC- and p-B(Si)N/SiC-coated Hi-Nicalon fibers were used as the reinforcements. We unambiguously conclude that the fibers are in a state of compressive residual stress. Quantitative determination of the residual stress was made possible by taking into account the heating induced by laser probing and by using a reference line, of fixed wavenumber. We found fiber compressive residual stress values between 110 and 960 MPa depending on the fiber/matrix coating in the composite. A stress relaxation-like phenomenon was observed at the surface of p-BN/SiC-coated Hi-Nicalon fibers whereas the uncoated or p-B(Si)N/SiC-coated Hi-Nicalon fibers did not show any stress relaxation in the Celsian matrix composites.
NASA Technical Reports Server (NTRS)
Yun, Hee-Mann (Inventor); DiCarlo, James A. (Inventor)
2014-01-01
Methods are disclosed for producing architectural preforms and high-temperature composite structures containing high-strength ceramic fibers with reduced preforming stresses within each fiber, with an in-situ grown coating on each fiber surface, with reduced boron within the bulk of each fiber, and with improved tensile creep and rupture resistance properties tier each fiber. The methods include the steps of preparing an original sample of a preform formed from a pre-selected high-strength silicon carbide ceramic fiber type, placing the original sample in a processing furnace under a pre-selected preforming stress state and thermally treating the sample in the processing furnace at a pre-selected processing temperature and hold time in a processing gas having a pre-selected composition, pressure, and flow rate. For the high-temperature composite structures, the method includes additional steps of depositing a thin interphase coating on the surface of each fiber and forming a ceramic or carbon-based matrix within the sample.
NASA Technical Reports Server (NTRS)
Buckley, John D. (Editor)
1993-01-01
The FIBER-TEX 1992 proceedings contain the papers presented at the conference held on 27-29 Oct. 1992 at Drexel University. The conference was held to create a forum to encourage an interrelationship of the various disciplines involved in the fabrication of materials, the types of equipment, and the processes used in the production of advanced composite structures. Topics discussed were advanced engineering fibers, textile processes and structures, structural fabric production, mechanics and characteristics of woven composites, and the latest requirements for the use of textiles in the production of composite materials and structures as related to global activities focused on textile structural composites.
Activated carbon fiber composite material and method of making
Burchell, Timothy D.; Weaver, Charles E.; Chilcoat, Bill R.; Derbyshire, Frank; Jagtoyen, Marit
2000-01-01
An activated carbon fiber composite for separation and purification, or catalytic processing of fluids is described. The activated composite comprises carbon fibers rigidly bonded to form an open, permeable, rigid monolith capable of being formed to near-net-shape. Separation and purification of gases are effected by means of a controlled pore structure that is developed in the carbon fibers contained in the composite. The open, permeable structure allows the free flow of gases through the monolith accompanied by high rates of adsorption. By modification of the pore structure and bulk density the composite can be rendered suitable for applications such as gas storage, catalysis, and liquid phase processing.
Activated carbon fiber composite material and method of making
Burchell, Timothy D.; Weaver, Charles E.; Chilcoat, Bill R.; Derbyshire, Frank; Jagtoyen, Marit
2001-01-01
An activated carbon fiber composite for separation and purification, or catalytic processing of fluids is described. The activated composite comprises carbon fibers rigidly bonded to form an open, permeable, rigid monolith capable of being formed to near-net-shape. Separation and purification of gases are effected by means of a controlled pore structure that is developed in the carbon fibers contained in the composite. The open, permeable structure allows the free flow of gases through the monolith accompanied by high rates of adsorption. By modification of the pore structure and bulk density the composite can be rendered suitable for applications such as gas storage, catalysis, and liquid phase processing.
Burning characteristics and fiber retention of graphite/resin matrix composites
NASA Technical Reports Server (NTRS)
Bowles, K. J.
1980-01-01
Graphite fiber reinforced resin matrix composites were subjected to controlled burning conditions to determine their burning characteristics and fiber retention properties. Small samples were burned with a natural gas fired torch to study the effects of fiber orientation and structural flaws such as holes and slits that were machined into the laminates. Larger laminate samples were burned in a modified heat release rate calorimeter. Unidirectional epoxy/graphite and polyimide/graphite composites and boron powder filled samples of each of the two composite systems were burn tested. The composites were exposed to a thermal radiation of 5.3 Btu/sq ft-sec in air. Samples of each of the unfilled composite were decomposed anaerobically in the calorimeter. Weight loss data were recorded for burning and decomposition times up to thirty-five minutes. The effects of fiber orientation, flaws, and boron filler additives to the resins were evaluated. A high char forming polyimide resin was no more effective in retaining graphite fibers than a low char forming epoxy resin when burned in air. Boron powder additions to both the polyimide and the epoxy resins stabilized the chars and effectively controlled the fiber release.
Fiber Optic Sensors for Cure/Health Monitoring of Composite Materials
NASA Technical Reports Server (NTRS)
Wood, K. H.; Brown, T. L.; Wu, M. C.; Gause, C. B.
2004-01-01
The objective of the current program is to develop techniques for using optical fibers to monitor the cure of composite materials in real time during manufacture and to monitor the in-service structural health of composite structures. Single and multimode optical fibers containing Bragg gratings have been used to perform Near Infrared (NIR) spectroscopy on high refractive index resins and show promise as embedded sensors. In order for chemical spectroscopy to be possible, intimate contact must be achieved between the fiber core and the composite resin. This contact is often achieved by stripping the cladding off of a portion of the fiber, thus making it brittle and easily broken in the composite processing environment. To avoid weakening the fiber to this extent, high refractive index fibers have been fabricated that use a low refractive index acrylate coating which serves as the cladding. This is ideal, as the coating is easily solvent stripped and intimate contact with the glass core can be achieved. Real time resin and composite chemical spectra have been obtained, with possible multifunctional capability using Bragg gratings to assess physical properties such as strain, modulus and other parameters of interest.
NASA Astrophysics Data System (ADS)
Jimbou, R.; Kodama, K.; Saidoh, M.; Suzuki, Y.; Nakagawa, M.; Morita, K.; Tsuchiya, B.
1997-02-01
The thermal conductivity of the composite hot-pressed at 2100°C including B 4C and carbon fibers with a thermal conductivity of 1100 W/ m· K was nearly the same as that of the composite including carbon fibers with a thermal conductivity of 600 W/ m· K. This resulted from the higher amount of B diffused into the carbon fibers through the larger interface. The B 4C content in the composite can be reduced from 35 to 20 vol% which resulted from the more uniform distribution of B 4C by stacking the flat cloth woven of carbon fibers (carbon fiber plain fabrics) than in the composite with 35 vol% B 4C including curled carbon fiber plain fabrics. The decrease in the B 4C content does not result in the degradation of D (deuterium)-retention characteristics or D-recycling property, but will bring about the decreased amount of the surface layer to be melted under the bombardment of high energy hydrogen ions such as disruptions because of higher thermal conduction of the composite.
Fungal degradation of fiber-reinforced composite materials
NASA Technical Reports Server (NTRS)
Gu, J. D.; Lu, C.; Mitchell, R.; Thorp, K.; Crasto, A.
1997-01-01
As described in a previous report, a fungal consortium isolated from degraded polymeric materials was capable of growth on presterilized coupons of five composites, resulting in deep penetration into the interior of all materials within five weeks. Data describing the utilization of composite constituents as nutrients for the microflora are described in this article. Increased microbial growth was observed when composite extract was incubated with the fungal inoculum at ambient temperatures. Scanning electron microscopic observation of carbon fibers incubated with a naturally developed population of microorganisms showed the formation of bacterial biofilms on the fiber surfaces, suggesting possible utilization of the fiber chemical sizing as carbon and energy sources. Electrochemical impedance spectroscopy was used to monitor the phenomena occurring at the fiber-matrix interfaces. Significant differences were observed between inoculated and sterile panels of the composite materials. A progressive decline in impedance was detected in the inoculated panels. Several reaction steps may be involved in the degradation process. Initial ingress of water into the resin matrix appeared to be followed by degradation of fiber surfaces, and separation of fibers from the resin matrix. This investigation suggested that composite materials are susceptible to microbial attack by providing nutrients for growth.
Experimental research on continuous basalt fiber and basalt-fibers-reinforced polymers
NASA Astrophysics Data System (ADS)
Zhang, Xueyi; Zou, Guangping; Shen, Zhiqiang
2008-11-01
The interest for continuous basalt fibers and reinforced polymers has recently grown because of its low price and rich natural resource. Basalt fiber was one type of high performance inorganic fibers which were made from natural basalt by the method of melt extraction. This paper discusses basic mechanical properties of basalt fiber. The other work in this paper was to conduct tensile testing of continuous basalt fiber-reinforced polymer rod. Tensile strength and stress-strain curve were obtained in this testing. The strength of rod was fairly equal to rod of E-glass fibers and weaker than rod of carbon fibers. Surface of crack of rod was studied. An investigation of fracture mechanism between matrix and fiber was analyzed by SEM (Scanning electron microscopy) method. A poor adhesion between the matrix and fibers was also shown for composites analyzing SEM photos. The promising tensile properties of the presented basalt fibers composites have shown their great potential as alternative classical composites.
Hybridized polymer matrix composite
NASA Technical Reports Server (NTRS)
Stern, B. A.; Visser, T.
1981-01-01
Under certain conditions of combined fire and impact, graphite fibers are released to the atmosphere by graphite fiber composites. The retention of graphite fibers in these situations is investigated. Hybrid combinations of graphite tape and cloth, glass cloth, and resin additives are studied with resin systems. Polyimide resins form the most resistant composites and resins based on simple novolac epoxies the least resistant of those tested. Great improvement in the containment of the fibers is obtained in using graphite/glass hybrids, and nearly complete prevention of individual fiber release is made possible by the use of resin additives.
As-received microstructure of a SiC/Ti-15-3 composite
NASA Technical Reports Server (NTRS)
Lerch, Bradley A.; Hull, David R.; Leonhardt, Todd A.
1988-01-01
A silicon carbide fiber reinforced titanium (Ti-15V-3Cr-3Sn-3Al) composite is metallographically examined. Several methods for examining composite materials are investigated and documented. Polishing techniques for this material are described. An interference layering method is developed to reveal the structure of the fiber, the reaction zone, and various phases within the matrix. Microprobe and transmission electron microscope (TEM) analyses are performed on the fiber/matrix interface. A detailed description of the fiber distribution as well as the microstructure of the fiber and matrix are presented.
Cyclic Fiber Push-In Test Monitors Evolution of Interfacial Behavior in Ceramic Matrix Composites
NASA Technical Reports Server (NTRS)
Eldridge, Jeffrey I.
1998-01-01
SiC fiber-reinforced ceramic matrix composites are being developed for high-temperature advanced jet engine applications. Obtaining a strong, tough composite material depends critically on optimizing the mechanical coupling between the reinforcing fibers and the surrounding matrix material. This has usually been accomplished by applying a thin C or BN coating onto the surface of the reinforcing fibers. The performance of these fiber coatings, however, may degrade under cyclic loading conditions or exposure to different environments. Degradation of the coating-controlled interfacial behavior will strongly affect the useful service lifetime of the composite material. Cyclic fiber push-in testing was applied to monitor the evolution of fiber sliding behavior in both C- and BN-coated small-diameter (15-mm) SiC-fiber-reinforced ceramic matrix composites. The cyclic fiber push-in tests were performed using a desktop fiber push-out apparatus. At the beginning of each test, the fiber to be tested was aligned underneath a 10- mm-diameter diamond punch; then, the applied load was cycled between selected maximum and minimum loads. From the measured response, the fiber sliding distance and frictional sliding stresses were determined for each cycle. Tests were performed in both room air and nitrogen. Cyclic fiber push-in tests of C-coated, SiC-fiber-reinforced SiC showed progressive increases in fiber sliding distances along with decreases in frictional sliding stresses for continued cycling in room air. This rapid degradation in interfacial response was not observed for cycling in nitrogen, indicating that moisture exposure had a large effect in immediately lowering the frictional sliding stresses of C-coated fibers. These results indicate that matrix cracks bridged by C-coated fibers will not be stable, but will rapidly grow in moisture-containing environments. In contrast, cyclic fiber push-in tests of both BN-coated, SiC-fiber-reinforced SiC and BNcoated, SiC-fiber-reinforced barium strontium aluminosilicate showed no significant changes in fiber sliding behavior with continued short-term cycling in either room air or nitrogen. Although the composites with BN-coated fibers showed stable short-term cycling behavior in both environments, long-term (several-week) exposure of debonded fibers to room air resulted in dramatically increased fiber sliding distances and decreased frictional sliding stresses. These results indicate that although matrix cracks bridged by BNcoated fibers will show short-term stability, such cracks will show substantial growth with long-term exposure to moisture-containing environments. Newly formulated BN coatings, with higher moisture resistance, will be tested in the near future.
Fiber reinforced glasses and glass-ceramics for high performance applications
NASA Technical Reports Server (NTRS)
Prewo, K. M.; Brennan, J. J.; Layden, G. K.
1986-01-01
The development of fiber reinforced glass and glass-ceramic matrix composites is described. The general concepts involved in composite fabrication and resultant composite properties are given for a broad range of fiber and matrix combinations. It is shown that composite materials can be tailored to achieve high levels of toughness, strength, and elastic stiffness, as well as wear resistance and dimensional stability.
Method of Fabricating NASA-Standard Macro-Fiber Composite Piezoelectric Actuators
NASA Technical Reports Server (NTRS)
High, James W.; Wilkie, W. Keats
2003-01-01
The NASA Macro-Fiber Composite actuator is a flexible piezoelectric composite device designed for controlling vibrations and shape deformations in high performance aerospace structures. A complete method for fabricating the standard NASA Macro-Fiber Composite actuator is presented in this document. When followed precisely, these procedures will yield devices with electromechanical properties identical to the standard actuator manufactured by NASA Langley Research Center.
NASA Technical Reports Server (NTRS)
Fornes, R. E.; Gilbert, R. D.; Memory, J. D.
1987-01-01
Publications and theses generated on composite research are listed. Surface energy changes of an epoxy based on tetraglycidyl diaminodiphenyl methane (TGDDM)/diaminodiphenyl sulfone (DDS), T-300 graphite fiber and T-300/5208 (graphite fiber/epoxy) composites were investigated after irradiation with 0.5 MeV electrons. Electron spin resonance (ESR) investigations of line shapes and the radical decay behavior were made of an epoxy based on tetraglycidyl diaminodiphenyl methane (TGDDM)/diaminodiphenyl sulfone (DDS), T-300 graphite fiber, and T-300/5208 (graphite fiber/epoxy) composites after irradiation with Co(60) gamma-radiation or 0.5 MeV electrons. The results of the experiments are discussed.
Neutron diffraction measurements and modeling of residual strains in metal matrix composites
NASA Technical Reports Server (NTRS)
Saigal, A.; Leisk, G. G.; Hubbard, C. R.; Misture, S. T.; Wang, X. L.
1996-01-01
Neutron diffraction measurements at room temperature are used to characterize the residual strains in tungsten fiber-reinforced copper matrix, tungsten fiber-reinforced Kanthal matrix, and diamond particulate-reinforced copper matrix composites. Results of finite element modeling are compared with the neutron diffraction data. In tungsten/Kanthal composites, the fibers are in compression, the matrix is in tension, and the thermal residual strains are a strong function of the volume fraction of fibers. In copper matrix composites, the matrix is in tension and the stresses are independent of the volume fraction of tungsten fibers or diamond particles and the assumed stress free temperature because of the low yield strength of the matrix phase.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nguyen Thi, T. B., E-mail: thanhbinh.skku@gmail.com, E-mail: yokoyama@kit.ac.jp; Yokoyama, A., E-mail: thanhbinh.skku@gmail.com, E-mail: yokoyama@kit.ac.jp; Ota, K., E-mail: kei-ota@toyobo.jp, E-mail: katsuhiro-kodama@toyobo.jp, E-mail: katsuhisa-yamashita@toyobo.jp, E-mail: yumiko-isogai@toyobo.jp, E-mail: kenji-furuichi@toyobo.jp, E-mail: chisato-nonomura@toyobo.jp
2014-05-15
One of the most important challenges in the injection molding process of the short-glass fiber/thermoplastic composite parts is being able to predict the fiber orientation, since it controls the mechanical and the physical properties of the final parts. Folgar and Tucker included into the Jeffery equation a diffusive type of term, which introduces a phenomenological coefficient for modeling the randomizing effect of the mechanical interactions between the fibers, to predict the fiber orientation in concentrated suspensions. Their experiments indicated that this coefficient depends on the fiber volume fraction and aspect ratio. However, a definition of the fiber interaction coefficient, whichmore » is very necessary in the fiber orientation simulations, hasn't still been proven yet. Consequently, this study proposed a developed fiber interaction model that has been introduced a fiber dynamics simulation in order to obtain a global fiber interaction coefficient. This supposed that the coefficient is a sum function of the fiber concentration, aspect ratio, and angular velocity. The proposed model was incorporated into a computer aided engineering simulation package C-Mold. Short-glass fiber/polyamide-6 composites were produced in the injection molding with the fiber weight concentration of 30 wt.%, 50 wt.%, and 70 wt.%. The physical properties of these composites were examined, and their fiber orientation distributions were measured by micro-computed-tomography equipment μ-CT. The simulation results showed a good agreement with experiment results.« less
Multifunctional Flexible Composites Based on Continuous Carbon Nanotube Fiber
2014-07-28
fibers [1] The mechanical and electrical behavior of carbon nanotube fibers spun continuously from an aerogel is discussed. These fibers exhibit moderate...loading, demonstrates their potential for sensing applications in advanced composite materials. Insight into the failure behavior of the aerogel -spun...nanotube fibers is reported-the aerogel -spun fibers are observed to undergo mild to severe kinking due to tensile failure. This kinking is attributed to
Flexural Progressive Failure of Carbon/Glass Interlayer and Intralayer Hybrid Composites.
Wang, Qingtao; Wu, Weili; Gong, Zhili; Li, Wei
2018-04-17
The flexural progressive failure modes of carbon fiber and glass fiber (C/G) interlayer and intralayer hybrid composites were investigated in this work. Results showed that the bending failure modes for interlayer hybrid composites are determined by the layup structure. Besides, the bending failure is characterized by the compression failure of the upper layer, when carbon fiber tends to distribute in the upper layer, the interlayer hybrid composite fails early, the failure force is characterized by a multi-stage slightly fluctuating decline and the fracture area exhibits a diamond shape. While carbon fiber distributes in the middle or bottom layer, the failure time starts late, and the failure process exhibits one stage sharp force/stress drop, the fracture zone of glass fiber above the carbon layers presents an inverted trapezoid shape, while the fracture of glass fiber below the carbon layers exhibits an inverted triangular shape. With regards to the intralayer hybrid composites, the C/G hybrid ratio plays a dominating role in the bending failure which could be considered as the mixed failures of four structures. The bending failure of intralayer hybrid composites occurs in advance since carbon fiber are located in each layer; the failure process shows a multi-stage fluctuating decline, and the decline slows down as carbon fiber content increases, and the fracture sound release has the characteristics of a low intensity and high frequency for a long time. By contrast, as glass fiber content increases, the bending failure of intralayer composites is featured with a multi-stage cliff decline with a high amplitude and low frequency for a short-time fracture sound release.
Forensic analysis of dyed textile fibers.
Goodpaster, John V; Liszewski, Elisa A
2009-08-01
Textile fibers are a key form of trace evidence, and the ability to reliably associate or discriminate them is crucial for forensic scientists worldwide. While microscopic and instrumental analysis can be used to determine the composition of the fiber itself, additional specificity is gained by examining fiber color. This is particularly important when the bulk composition of the fiber is relatively uninformative, as it is with cotton, wool, or other natural fibers. Such analyses pose several problems, including extremely small sample sizes, the desire for nondestructive techniques, and the vast complexity of modern dye compositions. This review will focus on more recent methods for comparing fiber color by using chromatography, spectroscopy, and mass spectrometry. The increasing use of multivariate statistics and other data analysis techniques for the differentiation of spectra from dyed fibers will also be discussed.
Thermal degradation of the tensile strength of unidirectional boron/aluminum composites
NASA Technical Reports Server (NTRS)
Grimes, H. H.; Lad, R. A.; Maisel, J. E.
1977-01-01
The variation of ultimate tensile strength with thermal treatment of B-Al composite materials and of boron fibers chemically removed from these composites in an attempt to determine the mechanism of the resulting strength degradation was studied. Findings indicate that thermally cycling B-Al represents a more severe condition than equivalent time at temperature. Degradation of composite tensile strength from about 1.3 GN/m squared to as low as 0.34 GN/m squared was observed after 3,000 cycles to 420 C for 203 micrometers B-1100 Al composite. In general, the 1100 Al matrix composites degraded somewhat more than the 6061 matrix material studied. Measurement of fiber strengths confirmed a composite strength loss due to the degradation of fiber strength. Microscopy indicated a highly flawed fiber surface.
Development of Al2O3 fiber-reinforced Al2O3-based ceramics.
Tanimoto, Yasuhiro; Nemoto, Kimiya
2004-09-01
The purpose of this study was to use a tape casting technique to develop an Al2O3 fiber-reinforced Al2O3-based ceramic material (Al2O3-fiber/Al2O3 composite) into a new type of dental ceramic. The Al2O3-based ceramic used a matrix consisting of 60 wt% Al2O3 powder and 40 wt% SiO2-B2O3 powder. The prepreg sheets of Al2O3-fiber/Al2O3 composite (in which uniaxially aligned Al2O3 fibers were infiltrated with the Al2O3-based matrix) were fabricated continuously using tape casting technique with a doctor blade system. Multilayer preforms of Al2O3-fiber/Al2O3 composite sheets were then sintered at a maximum temperature of 1000 degrees C under an atmospheric pressure in a furnace. The results showed that the shrinkage and bending properties of Al2O3-fiber/Al2O3 composite exceeded those of unreinforced Al2O3--hence demonstrating the positive effects of fiber reinforcement. In conclusion, the tape casting technique has been utilized to successfully develop a new type of dental ceramic material.
NASA Technical Reports Server (NTRS)
Manning, C. R., Jr.; Honeycutt, L., III
1974-01-01
Evaluation of tantalum carbide-tungsten fiber composites has been completed as far as weight percent carbon additions and weight percent additions of tungsten fiber. Extensive studies were undertaken concerning Young's Modulus and fracture strength of this material. Also, in-depth analysis of the embrittling effects of the extra carbon additions on the tungsten fibers has been completed. The complete fabrication procedure for the tantalum carbide-tungsten fiber composites with extra carbon additions is given. Microprobe and metallographic studies showed the effect of extra carbon on the tungsten fibers, and evaluation of the thermal shock parameter fracture strength/Young's Modulus is included.
NASA Astrophysics Data System (ADS)
Nevskii, A. V.; Baldin, I. V.; Kudyakov, K. L.
2015-01-01
Adoption of modern building materials based on non-metallic fibers and their application in concrete structures represent one of the important issues in construction industry. This paper presents results of investigation of several types of raw materials selected: basalt fiber, carbon fiber and composite fiber rods based on glass and carbon. Preliminary testing has shown the possibility of raw materials to be effectively used in compressed concrete elements. Experimental program to define strength and deformability of compressed concrete elements with non-metallic fiber reinforcement and rod composite reinforcement included design, manufacture and testing of several types of concrete samples with different types of fiber and longitudinal rod reinforcement. The samples were tested under compressive static load. The results demonstrated that fiber reinforcement of concrete allows increasing carrying capacity of compressed concrete elements and reducing their deformability. Using composite longitudinal reinforcement instead of steel longitudinal reinforcement in compressed concrete elements insignificantly influences bearing capacity. Combined use of composite rod reinforcement and fiber reinforcement in compressed concrete elements enables to achieve maximum strength and minimum deformability.
Ultra-high modulus organic fiber hybrid composites
NASA Technical Reports Server (NTRS)
Champion, A. R.
1981-01-01
An experimental organic fiber, designated Fiber D, was characterized, and its performance as a reinforcement for composites was investigated. The fiber has a modulus of 172 GPa, tensile strength of 3.14 GPa, and density of 1.46 gm/cu cm. Unidirectional Fiber D/epoxy laminates containing 60 percent fiber by volume were evaluated in flexure, shear, and compression, at room temperature and 121 C in both the as fabricated condition and after humidity aging for 14 days at 95 percent RH and 82 C. A modulus of 94.1 GPa, flexure strength of 700 MPa, shear strength of 54 MPa, and compressive strength of 232 MPa were observed at room temperature. The as-fabricated composites at elevated temperature and humidity aged material at room temperature had properties 1 to 20 percent below these values. Combined humidity aging plus evaluated temperature testing resulted in even lower mechanical properties. Hybrid composite laminates of Fiber D with Fiber FP alumina or Thornel 300 graphite fiber were also evaluated and significant increases in modulus, flexure, and compressive strengths were observed.
Hu, Zhen; Shao, Qing; Huang, Yudong; Yu, Long; Zhang, Dayu; Xu, Xirong; Lin, Jing; Liu, Hu; Guo, Zhanhu
2018-05-04
The interfacial microcracks in the resin matrix composites are difficult to be detected and repaired. However, the self-healing concept provides opportunities to fabricate composites with unusual properties. In the present study, photothermal conversion Ag-Cu 2 S nanoparticles were immobilized onto poly(p-phenylene benzobisoxazole) (PBO) fibers via a polydopamine chemistry. Benefitting from the photothermal effects of Ag-Cu 2 S, the obtained PBO fibers (Ag-Cu 2 S-PBO) efficiently converted the light energy into heat under Xenon lamp irradiation. Then, single PBO fiber composites were prepared using thermoplastic polyurethane as the matrix. It was found that the interfacial damage caused by single fiber pull-out was simply self-healed by Xe light irradiation. This wonderful interfacial damage self-healing property was mainly attributed to the in situ heating generation via photothermal effects of Ag-Cu 2 S in the composite interface. This paper reports a novel strategy to construct advanced composites with light-triggered self-healing properties, which will provide inspiration for preparing high performance composite materials.
Effect of acetylation treatment and soaking time to bending strength of sugar palm fiber composite
NASA Astrophysics Data System (ADS)
Diharjo, Kuncoro; Permana, Andy; Arsada, Robbi; Asmoro, Gundhi; Budiono, Herru Santosa; Firdaus, Yohanes
2017-01-01
The objective of this experiment is to investigate the maximum bending strength of sugar palm composite by optimizing acetylation treatment and soaking time of the fiber. In this research, the acetylation treatments were varied in acetic acid content (0-10%, in weight) and soaking time (30-150 minutes). The composite specimens were produced using a press mold method for 40% of fiber and 60% of bisphenolic matrix composition in weight. The bending testing was conducted using three point bending method according to ASTM D790. The composite with the treated fiber of 4% acetyl acid has maximum bending strength and modulus due to the effect of removing lignin and other polluters without degrading the fiber strength. The longer of soaking time in the acid solution can significantly enhance the bending strength and modulus. The composite with low strength has an opening fracture, and there is no opening fracture on the composite with high strength.
NASA Astrophysics Data System (ADS)
Hu, Zhen; Shao, Qing; Huang, Yudong; Yu, Long; Zhang, Dayu; Xu, Xirong; Lin, Jing; Liu, Hu; Guo, Zhanhu
2018-05-01
The interfacial microcracks in the resin matrix composites are difficult to be detected and repaired. However, the self-healing concept provides opportunities to fabricate composites with unusual properties. In the present study, photothermal conversion Ag-Cu2S nanoparticles were immobilized onto poly(p-phenylene benzobisoxazole) (PBO) fibers via a polydopamine chemistry. Benefitting from the photothermal effects of Ag-Cu2S, the obtained PBO fibers (Ag-Cu2S-PBO) efficiently converted the light energy into heat under Xenon lamp irradiation. Then, single PBO fiber composites were prepared using thermoplastic polyurethane as the matrix. It was found that the interfacial damage caused by single fiber pull-out was simply self-healed by Xe light irradiation. This wonderful interfacial damage self-healing property was mainly attributed to the in situ heating generation via photothermal effects of Ag-Cu2S in the composite interface. This paper reports a novel strategy to construct advanced composites with light-triggered self-healing properties, which will provide inspiration for preparing high performance composite materials.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Skontorp, A.; Wang, S.S.; Shibuya, Y.
1994-12-31
In this paper, a homogenization theory is developed to determine high-temperature effective viscoelastic constitutive equations for fiber-reinforced polymer composites. The homogenization theory approximates the microstructure of a fiber composite, and determine simultaneously effective macroscopic constitutive properties of the composite and the associated microscopic strain and stress in the heterogeneous material. The time-temperature dependent homogenization theory requires that the viscoelastic constituent properties of the matrix phase at elevated temperatures, the governing equations for the composites, and the boundary conditions of the problem be Laplace transformed to a conjugate problem. The homogenized effective properties in the transformed domain are determined, using amore » two-scale asymptotic expansion of field variables and an averaging procedure. Field solutions in the unit cell are determined from basic and first-order governing equations with the aid of a boundary integral method (BIM). Effective viscoelastic constitutive properties of the composite at elevated temperatures are determined by an inverse transformation, as are the microscopic stress and deformation in the composite. Using this method, interactions among fibers and between the fibers and the matrix can be evaluated explicitly, resulting in accurate solutions for composites with high-volume fraction of reinforcing fibers. Examples are given for the case of a carbon-fiber reinforced thermoplastic polyamide composite in an elevated temperature environment. The homogenization predictions are in good agreement with experimental data available for the composite.« less
Ceramic fiber reinforced filter
Stinton, David P.; McLaughlin, Jerry C.; Lowden, Richard A.
1991-01-01
A filter for removing particulate matter from high temperature flowing fluids, and in particular gases, that is reinforced with ceramic fibers. The filter has a ceramic base fiber material in the form of a fabric, felt, paper of the like, with the refractory fibers thereof coated with a thin layer of a protective and bonding refractory applied by chemical vapor deposition techniques. This coating causes each fiber to be physically joined to adjoining fibers so as to prevent movement of the fibers during use and to increase the strength and toughness of the composite filter. Further, the coating can be selected to minimize any reactions between the constituents of the fluids and the fibers. A description is given of the formation of a composite filter using a felt preform of commercial silicon carbide fibers together with the coating of these fibers with pure silicon carbide. Filter efficiency approaching 100% has been demonstrated with these filters. The fiber base material is alternately made from aluminosilicate fibers, zirconia fibers and alumina fibers. Coating with Al.sub.2 O.sub.3 is also described. Advanced configurations for the composite filter are suggested.
Hybrid boron nitride-natural fiber composites for enhanced thermal conductivity
NASA Astrophysics Data System (ADS)
Xia, Changlei; Garcia, Andres C.; Shi, Sheldon Q.; Qiu, Ying; Warner, Nathaniel; Wu, Yingji; Cai, Liping; Rizvi, Hussain R.; D'Souza, Nandika A.; Nie, Xu
2016-10-01
Thermal conductivity was dramatically increased after adding natural fiber into hexagonal boron nitride (hBN)/epoxy composites. Although natural fiber does not show high-thermal conductivity itself, this study found that the synergy of natural fiber with hBN could significantly improve thermal conductivity, compared with that solely using hBN. A design of mixtures approach using constant fibers with increasing volume fractions of hBN was examined and compared. The thermal conductivity of the composite containing 43.6% hBN, 26.3% kenaf fiber and 30.1% epoxy reached 6.418 W m-1 K-1, which was 72.3% higher than that (3.600 W m-1 K-1) of the 69.0% hBN and 31.0% epoxy composite. Using the scanning electron microscope (SEM) and micro computed tomography (micro-CT), it was observed that the hBN powders were well distributed and ordered on the fiber surfaces enhancing the ceramic filler’s interconnection, which may be the reason for the increase in thermal conductivity. Additionally, the results from mechanical and dynamic mechanical tests showed that performances dramatically improved after adding kenaf fibers into the hBN/epoxy composite, potentially benefiting the composite’s use as an engineered material.
NASA Technical Reports Server (NTRS)
Bansal, Narottam P.
1997-01-01
Unidirectional SrO Al2O3 2SiO2 glass-ceramic matrix composites reinforced with uncoated Chemical Vapor Deposited (CVD) SiC (SCS-0) fibers have been fabricated by hot-pressing under appropriate conditions using the glass-ceramic approach. Almost fully dense composites having a fiber volume fraction of 0.24 have been obtained. Monoclinic celsian, SrAl2Si2O8, was the only crystalline phase observed in the matrix by x-ray diffraction. No chemical reaction was observed between the fiber and the matrix after high temperature processing. In three-point flexure, the composite exhibited a first matrix cracking stress of approx. 231 +/- 20 MPa and an ultimate strength of 265 +/- 17 MPa. Examination of fracture surfaces revealed limited short length fiber pull-out. From fiber push-out, the fiber/matrix interfacial debonding and frictional strengths were evaluated to be approx. 17.5 +/- 2.7 MPa and 11.3 +/- 1.6 MPa, respectively. Some fibers were strongly bonded to the matrix and could not be pushed out. The micromechanical models were not useful in predicting values of the first matrix cracking stress as well as the ultimate strength of the composites.
NASA Astrophysics Data System (ADS)
Ren, Liyun; Pandit, Vaibhav; Elkin, Joshua; Denman, Tyler; Cooper, James A.; Kotha, Shiva P.
2013-02-01
PLLA fibrous tissue scaffolds with controlled fiber nanoscale surface roughness are fabricated with a novel centrifugal jet spinning process. The centrifugal jet spinning technique is a highly efficient synthesis method for micron- to nano-sized fibers with a production rate up to 0.5 g min-1. During the centrifugal jet spinning process, a polymer solution jet is stretched by the centrifugal force of a rotating chamber. By engineering the rheological properties of the polymer solution, solvent evaporation rate and centrifugal force that are applied on the solution jet, polyvinylpyrrolidone (PVP) and poly(l-lactic acid) (PLLA) composite fibers with various diameters are fabricated. Viscosity measurements of polymer solutions allowed us to determine critical polymer chain entanglement limits that allow the generation of continuous fiber as opposed to beads or beaded fibers. Above a critical concentration at which polymer chains are partially or fully entangled, lower polymer concentrations and higher centrifugal forces resulted in thinner fibers. Etching of PVP from the PLLA-PVP composite fibers doped with increasing PVP concentrations yielded PLLA fibers with increasing nano-scale surface roughness and porosity, which increased the fiber hydrophilicity dramatically. Scanning electron micrographs of the etched composite fibers suggest that PVP and PLLA were co-contiguously phase separated within the composite fibers during spinning and nano-scale roughness features were created after the partial etching of PVP. To study the tissue regeneration efficacy of the engineered PLLA fiber matrix, human dermal fibroblasts are used to simulate partial skin graft. Fibers with increased PLLA surface roughness and porosity demonstrated a trend towards higher cell attachment and proliferation.PLLA fibrous tissue scaffolds with controlled fiber nanoscale surface roughness are fabricated with a novel centrifugal jet spinning process. The centrifugal jet spinning technique is a highly efficient synthesis method for micron- to nano-sized fibers with a production rate up to 0.5 g min-1. During the centrifugal jet spinning process, a polymer solution jet is stretched by the centrifugal force of a rotating chamber. By engineering the rheological properties of the polymer solution, solvent evaporation rate and centrifugal force that are applied on the solution jet, polyvinylpyrrolidone (PVP) and poly(l-lactic acid) (PLLA) composite fibers with various diameters are fabricated. Viscosity measurements of polymer solutions allowed us to determine critical polymer chain entanglement limits that allow the generation of continuous fiber as opposed to beads or beaded fibers. Above a critical concentration at which polymer chains are partially or fully entangled, lower polymer concentrations and higher centrifugal forces resulted in thinner fibers. Etching of PVP from the PLLA-PVP composite fibers doped with increasing PVP concentrations yielded PLLA fibers with increasing nano-scale surface roughness and porosity, which increased the fiber hydrophilicity dramatically. Scanning electron micrographs of the etched composite fibers suggest that PVP and PLLA were co-contiguously phase separated within the composite fibers during spinning and nano-scale roughness features were created after the partial etching of PVP. To study the tissue regeneration efficacy of the engineered PLLA fiber matrix, human dermal fibroblasts are used to simulate partial skin graft. Fibers with increased PLLA surface roughness and porosity demonstrated a trend towards higher cell attachment and proliferation. Electronic supplementary information (ESI) available. See DOI: 10.1039/c3nr33423f
Mangoush, Enas; Säilynoja, Eija; Prinssi, Roosa; Lassila, Lippo; Vallittu, Pekka K.
2017-01-01
Background Fiber reinforced composite (FRC) is a promising class of material that gives clinicians alternative treatment options. There are many FRC products available in the market based on either glass or polyethylene fiber type. The aim of this study was to present a comparison between glass and polyethylene fiber reinforced composites based on available literature review. Material and Methods A thorough literature search, with no limitation, was done up to June 2017. The range of relevant publications was surveyed using PubMed and Google Scholar. From the search results, articles related to our search terms were only considered. An assessment of these articles was done by two individuals in order to include only articles directly compare between glass and polyethylene FRCs. The search terms used were “fiber reinforced dental composites” and “glass and polyethylene fibers in dentistry”. Results The search provided 276 titles. Full-text analysis was performed for 29 articles that met the inclusion criteria. Most were laboratory-based research with various test specimen designs prepared according to ISO standard or with extracted teeth and only three articles were clinical studies. Most of studies (n=23) found superior characteristics of glass FRCs over polyethylene FRCs. Conclusions Significant reinforcement differences between commercial glass and polyethylene fiber reinforced composites were found. Key words:Fiber reinforced composite, glass fiber, polyethylene fiber. PMID:29410756
Bio-composites of cassava starch-green coconut fiber: part II-Structure and properties.
Lomelí-Ramírez, María Guadalupe; Kestur, Satyanarayana G; Manríquez-González, Ricardo; Iwakiri, Setsuo; de Muniz, Graciela Bolzon; Flores-Sahagun, Thais Sydenstricker
2014-02-15
Development of any new material requires its complete characterization to find potential applications. In that direction, preparation of bio-composites of cassava starch containing up to 30 wt.% green coconut fibers from Brazil by thermal molding process was reported earlier. Their characterization regarding physical and tensile properties of both untreated and treated matrices and their composites were also reported. Structural studies through FTIR and XRD and thermal stability of the above mentioned composites are presented in this paper. FT-IR studies revealed decomposition of components in the matrix; the starch was neither chemically affected nor modified by either glycerol or the amount of fiber. XRD studies indicated increasing crystallinity of the composites with increasing amount of fiber content. Thermal studies through TGA/DTA showed improvement of thermal stability with increasing amount of fiber incorporation, while DMTA showed increasing storage modulus, higher glass transition temperature and lower damping with increasing fiber content. Improved interfacial bonding between the matrix and fibers could be the cause for the above results. Copyright © 2013 Elsevier Ltd. All rights reserved.
Three-Axis Distributed Fiber Optic Strain Measurement in 3D Woven Composite Structures
NASA Technical Reports Server (NTRS)
Castellucci, Matt; Klute, Sandra; Lally, Evan M.; Froggatt, Mark E.; Lowry, David
2013-01-01
Recent advancements in composite materials technologies have broken further from traditional designs and require advanced instrumentation and analysis capabilities. Success or failure is highly dependent on design analysis and manufacturing processes. By monitoring smart structures throughout manufacturing and service life, residual and operational stresses can be assessed and structural integrity maintained. Composite smart structures can be manufactured by integrating fiber optic sensors into existing composite materials processes such as ply layup, filament winding and three-dimensional weaving. In this work optical fiber was integrated into 3D woven composite parts at a commercial woven products manufacturing facility. The fiber was then used to monitor the structures during a VARTM manufacturing process, and subsequent static and dynamic testing. Low cost telecommunications-grade optical fiber acts as the sensor using a high resolution commercial Optical Frequency Domain Reflectometer (OFDR) system providing distributed strain measurement at spatial resolutions as low as 2mm. Strain measurements using the optical fiber sensors are correlated to resistive strain gage measurements during static structural loading. Keywords: fiber optic, distributed strain sensing, Rayleigh scatter, optical frequency domain reflectometry
Tensile Mechanical Property of Oil Palm Empty Fruit Bunch Fiber Reinforced Epoxy Composites
NASA Astrophysics Data System (ADS)
Ghazilan, A. L. Ahmad; Mokhtar, H.; Shaik Dawood, M. S. I.; Aminanda, Y.; Ali, J. S. Mohamed
2017-03-01
Natural, short, untreated and randomly oriented oil palm empty fruit bunch fiber reinforced epoxy composites were manufactured using vacuum bagging technique with 20% fiber volume composition. The performance of the composite was evaluated as an alternative to synthetic or conventional reinforced composites. Tensile properties such as tensile strength, modulus of elasticity and Poisson’s ratio were compared to the tensile properties of pure epoxy obtained via tensile tests as per ASTM D 638 specifications using Universal Testing Machine INSTRON 5582. The tensile properties of oil palm empty fruit bunch fiber reinforced epoxy composites were lower compared to plain epoxy structure with the decrement in performances of 38% for modulus of elasticity and 61% for tensile strength.
Bio-Based Nanocomposites: An Alternative to Traditional Composites
ERIC Educational Resources Information Center
Tate, Jitendra S.; Akinola, Adekunle T.; Kabakov, Dmitri
2009-01-01
Polymer matrix composites (PMC), often referred to as fiber reinforced plastics (FRP), consist of fiber reinforcement (E-glass, S2-glass, aramid, carbon, or natural fibers) and polymer matrix/resin (polyester, vinyl ester, polyurethane, phenolic, and epoxies). Eglass/ polyester and E-glass/vinyl ester composites are extensively used in the marine,…
Effects of moisture on aspen-fiber/polypropylene composites
Roger M. Rowell
2002-01-01
Aspen fiber/polypropylene composites were made using several different levels of aspen fiber (0 to 60% by weight) with and without the addition of a compatibilizer (maleic anhydride grafted polypropylene, MAPP). These composites were tested under various relative humidity conditions and in water soaking, boiling water, cyclic liquid water and oven drying tests. In all...
USDA-ARS?s Scientific Manuscript database
Collagen fibers obtained from solid fibrous wastes generated in tannery have a high potential of being used in developing green composites. Earlier studies in our laboratory demonstrate that nonwoven composites can be derived from collagen fiber network using paper-making technology. The purpose of ...
USDA-ARS?s Scientific Manuscript database
Collagen fibers obtained from solid fibrous wastes generated in tannery have a high potential of being used in developing green composites. Earlier studies in our laboratory demonstrated that nonwoven composites can be derived from collagen fiber network using paper-making technology. The purpose of...
USDA-ARS?s Scientific Manuscript database
Flax fibers are often used in reinforced composites which have exhibited numerous advantages such as high mechanical properties, low density and biodegradability. On the other hand, the hydrophilic nature of flax fiber is a major problem. In this study, we prepared the soybean oil based composites...
Eddy-Current Inspection Of Graphite-Fiber Composites
NASA Technical Reports Server (NTRS)
Workman, G. L.; Bryson, C. C.
1993-01-01
NASA technical memorandum describes initial research on, and proposed development of, automated system for nondestructive eddy-current inspection of parts made of graphite-fiber/epoxy-matrix composite materials. Sensors in system E-shaped or U-shaped eddy-current probes like those described in "Eddy-Current Probes For Inspecting Graphite-Fiber Composites" (MFS-26129).
NASA Astrophysics Data System (ADS)
Verma, Deepak; Joshi, Garvit; Gupta, Ayush
2016-10-01
Natural fiber reinforced composites are a very popular area of research because of the easy availability and biodegradability of these fibers. The manufacturing of natural fiber composite is done by reinforcing fibers in the particulate form, fiber form or in woven mat form. Natural fiber composites also utilize industrial wastes as a secondary reinforcements like fly ash, sludge etc. By keeping all these point of views in the present investigation the effect of rice husk flour (chemically treated/untreated) and micro sized calcium carbonate with epoxy resin have been evaluated. The diameter of rice husk flour was maintained at 600 µm through mechanical sieving machine. The husk flour was chemically treated with NaOH (5 % w/v). Mechanical properties like hardness, flexural impact and compression strength were evaluated and found to be superior in modified or chemically treated flour as compared to unmodified or untreated flour reinforced composites. Scanning electron microscopy (SEM) study was also undertaken for the developed composites. SEM study shows the distribution of the rice husk flour and calcium carbonate over the matrix.
Testing an Impedance Non-destructive Method to Evaluate Steel-Fiber Concrete Samples
NASA Astrophysics Data System (ADS)
Komarkova, Tereza; Fiala, Pavel; Steinbauer, Miloslav; Roubal, Zdenek
2018-02-01
Steel-fiber reinforced concrete is a composite material characterized by outstanding tensile properties and resistance to the development of cracks. The concrete, however, exhibits such characteristics only on the condition that the steel fibers in the final, hardened composite have been distributed evenly. The current methods to evaluate the distribution and concentration of a fiber composite are either destructive or exhibit a limited capability of evaluating the concentration and orientation of the fibers. In this context, the paper discusses tests related to the evaluation of the density and orientation of fibers in a composite material. Compared to the approaches used to date, the proposed technique is based on the evaluation of the electrical impedance Z in the band close to the resonance of the sensor-sample configuration. Using analytically expressed equations, we can evaluate the monitored part of the composite and its density at various depths of the tested sample. The method employs test blocks of composites, utilizing the resonance of the measuring device and the measured sample set; the desired state occurs within the interval of between f=3 kHz and 400 kHz.
NASA Technical Reports Server (NTRS)
Jenkins, Michael G.; Ghosh, Asish; Salem, Jonathan A.
1990-01-01
Micromechanics fracture models are incorporated into three distinct fracture process zones which contribute to the crack growth resistance of fibrous composites. The frontal process zone includes microcracking, fiber debonding, and some fiber failure. The elastic process zone is related only to the linear elastic creation of new matrix and fiber fracture surfaces. The wake process zone includes fiber bridging, fiber pullout, and fiber breakage. The R-curve predictions of the model compare well with empirical results for a unidirectional, continuous fiber C/C composite. Separating the contributions of each process zone reveals the wake region to contain the dominant crack growth resistance mechanisms. Fractography showed the effects of the micromechanisms on the macroscopic fracture behavior.
NASA Technical Reports Server (NTRS)
Bacon, J. F.
1971-01-01
Emphasis on the consideration of glass formation on a kinetic process made it possible to think of glass compositions different from those normally employed in the manufacture of glass fibers. Approximately 450 new glass compositions were prepared and three dozen of these compositions have values for Young's modulus measured on bulk specimens greater than nineteen million pounds per square inch. Of the new glasses about a hundred could be drawn into fibers by mechanical methods at high speeds. The fiber which has a Young's modulus measured on the fiber of 18.6 million pounds per square inch and has been prepared in quantity as a monofilament (to date more than 150 million lineal feet of 0.2 to 0.4 mil fiber have been produced). This fiber has also been successfully incorporated both in epoxy and polyimide matrices. The epoxy resin composite has shown a modulus forty percent better than that achievable using the most common grade of competitive glass fiber, and twenty percent better than that obtainable with the best available grade of competitive glass fiber. Other glass fibers of even higher modulus have been developed.
Structural characterization and mechanical properties of polypropylene reinforced natural fibers
NASA Astrophysics Data System (ADS)
Karim, M. A. A.; Zaman, I.; Rozlan, S. A. M.; Berhanuddin, N. I. C.; Manshoor, B.; Mustapha, M. S.; Khalid, A.; Chan, S. W.
2017-10-01
Recently the development of natural fiber composite instead of synthetics fiber has lead to eco-friendly product manufacturing to meet various applications in the field of automotive, construction and manufacturing. The use of natural fibers offer an alternative to the reinforcing fibers because of their good mechanical properties, low density, renewability, and biodegradability. In this present research, the effects of maleic anhydride polypropylene (MAPP) on the mechanical properties and material characterization behaviour of kenaf fiber and coir fiber reinforced polypropylene were investigated. Different fractions of composites with 10wt%, 20wt% and 30wt% fiber content were prepared by using brabender mixer at 190°C. The 3wt% MAPP was added during the mixing. The composites were subsequently molded with injection molding to prepare the test specimens. The mechanical properties of the samples were investigated according to ISO 527 to determine the tensile strength and modulus. These results were also confirmed by the SEM machine observations of fracture surface of composites and FTIR analysis of the chemical structure. As the results, the presence of MAPP helps increasing the mechanical properties of both fibers and 30wt% kenaf fiber with 3wt% MAPP gives the best result compare to others.
Investigation of a SiC/Ti-24Al-11Nb composite
NASA Technical Reports Server (NTRS)
Brindley, P. K.; Bartolotta, P. A.; Klima, S. J.
1988-01-01
A summary of ongoing research on the characterization of a continuous fiber reinforced SiC/Ti-24Al-11Nb (at percent) composite is presented. The powder metallurgy fabrication technique is described as are the nondestructive evaluation results of the as-fabricated composite plates. Tensile properties of the SiC fiber, the matrix material, and the 0-deg SiC/Ti-24Al-11Nb composite (fibers oriented unidirectionally, parallel to the loading axis) from room temperature to 1100 C are presented and discussed with regard to the resultant fractography. The as-fabricated fiber-matrix interface has been examined by scanning transmission electron microscopy and the compounds present in the reaction zone have been identified. Fiber-matrix interaction and stability of the matrix near the fiber is characterized at 815, 985, and 1200 C from 1 to 500 hr. Measurements of the fiber-matrix reaction, the loss of C-rich coating from the surface of the SiC fiber, and the growth of the Beta depleted zone in the matrix adjacent to the fiber are presented. These data and the difference in coefficient of thermal expansion between the fiber and the matrix are discussed in terms of their likely effects on mechanical properties.
Guldberg, Marianne; Jensen, Søren Lund; Knudsen, Torben; Steenberg, Thomas; Kamstrup, Ole
2002-04-01
Man-made vitreous fibers (MMVF) are classified within the European Union (EU) as carcinogenic category 3 (possibly carcinogenic), but criteria exist to exonerate fibers from this classification. The HT stone wool fiber type is a MMVF that fulfills European regulatory requirements for exoneration from classification as a carcinogen based on in vivo testing. The chemical composition of the fibers and the results of the in vivo and in vitro studies that defined the chemical compositional range for a CAS registry number for these fibers are presented and discussed. Results from in vitro dissolution measurements at pH 4.5 of 52 fiber compositions (9-23 wt% Al(2)O(3) and 32-47 wt% SiO(2)) ranging from traditional stone wool to the biosoluble HT fibers are presented. The results are evaluated as a function of the ratio Al/(Al+Si) in the glass network and as a function of the fraction of Si-O-Si linkages in the glass. It is suggested that the dissolution mechanism for these fibers relates to the density of the surface silica layer on dissolving fibers and that the fraction of Si-O-Si linkages influences this. (c) 2002 Elsevier Science (USA).
Bridge toughening in fiber-reinforced composites: A three-dimensional discrete fiber model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu, K.X.; Huang, Y.; Chandra, A.
1995-07-01
The fracture behavior of unidirectionally fiber-reinforced composites is the principal focus of this paper. The model proposed here is three-dimensional and accounts for the effects of local fiber-crack interactions on spatial variations of crack tip behavior. The model also consistently accounts for the effect of composite anisotropy by embedding a penny-shaped crack in an orthotropic composite medium. Three factors are identified that influence the reductions of stress intensity factors (SIFS) due to fiber bridging: a dimensionless configuration constant, a fiber distribution pattern, and a fiber volume fraction. The model reveals that the fiber distribution pattern does not alter the spatialmore » mean of the SIFS, although it does affect the oscillational amplitude. The dimensionless configuration constant determines the extent of the bridging effect and provides guidance regarding possible avenues for enhancing bridge toughening. The design curve of SIFs (retarded by fiber bridging) vs the fiber volume fraction shows that the isotropic and orthotropic solutions differ just slightly from each other. However, the energy release rate obtained by an isotropic analysis (widely claimed to be the equivalent of SIFs in bridging models) could, significantly underestimate the bridging effect.« less
Microstructured Optical Fiber for X-ray Detection
NASA Technical Reports Server (NTRS)
DeHaven, Stanton L.
2009-01-01
A novel scintillating optical fiber is presented using a composite micro-structured quartz optical fiber. Scintillating materials are introduced into the multiple inclusions of the fiber. This creates a composite optical fiber having quartz as a cladding with an organic scintillating material core. X-ray detection using these fibers is compared to a collimated cadmium telluride (CdTe) detector over an energy range from 10 to 40 keV. Results show a good correlation between the fiber count rate trend and that of the CdTe detector.
Composite membranes, methods of making same, and applications of same
Pintauro, Peter N.; Park, Andrew; Ballengee, Jason
2016-05-24
In one aspect of the present invention, a method of fabricating a composite membrane includes: forming a first polymer solution from a first polymer and a second polymer solution from a second polymer, respectively, where the first polymer includes a charged polymer and the second polymer includes an uncharged polymer; electrospinning, separately and simultaneously, the first and second polymer solutions to form a dual fiber mat with first polymer fibers and second polymer fibers; and processing the dual fiber mat by softening and flowing one of the first or second polymer fibers to fill in the void space between the other of the first and second polymer fibers so as to form the composite membrane. In some embodiments, the composite membrane may be a proton exchange membrane (PEM) or an anion exchange membrane (AEM).
Burning characteristics and fiber retention of graphite/resin matrix composites
NASA Technical Reports Server (NTRS)
Bowles, K. J.
1980-01-01
Graphite fiber reinforced resin matrix composites were subjected to controlled burning conditions to determine their burning characteristics and fiber retention properties. Two types of burning equipment were used. Small samples were burned with a natural gas fired torch to study the effects of fiber orientation and structural flaws such as holes and slits that were machined into the laminates. Larger laminate samples were burned in a Heat Release Rate Calorimeter. Unidirectional epoxy/graphite and polyimide/graphite composites and boron powder filled samples of each of the two composite systems were burn tested and exposed to a thermal radiation. The effects of fiber orientation, flaws, and boron filler additives to the resins were evaluated. A high char forming polyimide resin was no more effective in retaining graphite fibers than a low char forming epoxy resin when burning in air.
Fracture behavior of glass fiber reinforced polymer composite
DOE Office of Scientific and Technical Information (OSTI.GOV)
Avci, A.; Arikan, H.; Akdemir, A
2004-03-01
Chopped strand glass fiber reinforced particle-filled polymer composite beams with varying notch-to-depth ratios and different volume fractions of glass fibers were investigated in Mode I fracture using three-point bending tests. Effects of polyester resin content and glass fiber content on fracture behavior was also studied. Polyester resin contents were used 13.00%%, 14.75%, 16.50%, 18.00% and 19.50%, and glass fiber contents were 1% and 1.5% of the total weight of the polymer composite system. Flexural strength of the polymer composite increases with increase in polyester and fiber content. The critical stress intensity factor was determined by using several methods such asmore » initial notch depth method, compliance method and J-integral method. The values of K{sub IC} obtained from these methods were compared.« less
NASA Technical Reports Server (NTRS)
Ricks, Trenton M.; Lacy, Jr., Thomas E.; Bednarcyk, Brett A.; Arnold, Steven M.
2013-01-01
Continuous fiber unidirectional polymer matrix composites (PMCs) can exhibit significant local variations in fiber volume fraction as a result of processing conditions that can lead to further local differences in material properties and failure behavior. In this work, the coupled effects of both local variations in fiber volume fraction and the empirically-based statistical distribution of fiber strengths on the predicted longitudinal modulus and local tensile strength of a unidirectional AS4 carbon fiber/ Hercules 3502 epoxy composite were investigated using the special purpose NASA Micromechanics Analysis Code with Generalized Method of Cells (MAC/GMC); local effective composite properties were obtained by homogenizing the material behavior over repeating units cells (RUCs). The predicted effective longitudinal modulus was relatively insensitive to small (8%) variations in local fiber volume fraction. The composite tensile strength, however, was highly dependent on the local distribution in fiber strengths. The RUC-averaged constitutive response can be used to characterize lower length scale material behavior within a multiscale analysis framework that couples the NASA code FEAMAC and the ABAQUS finite element solver. Such an approach can be effectively used to analyze the progressive failure of PMC structures whose failure initiates at the RUC level. Consideration of the effect of local variations in constituent properties and morphologies on progressive failure of PMCs is a central aspect of the application of Integrated Computational Materials Engineering (ICME) principles for composite materials.
Natural Mallow Fiber-Reinforced Epoxy Composite for Ballistic Armor Against Class III-A Ammunition
NASA Astrophysics Data System (ADS)
Nascimento, Lucio Fabio Cassiano; Holanda, Luane Isquerdo Ferreira; Louro, Luis Henrique Leme; Monteiro, Sergio Neves; Gomes, Alaelson Vieira; Lima, Édio Pereira
2017-10-01
Epoxy matrix composites reinforced with up to 30 vol pct of continuous and aligned natural mallow fibers were for the first time ballistic tested as personal armor against class III-A 9 mm FMJ ammunition. The ballistic efficiency of these composites was assessed by measuring the dissipated energy and residual velocity after the bullet perforation. The results were compared to those in similar tests of aramid fabric (Kevlar™) commonly used in vests for personal protections. Visual inspection and scanning electron microscopy analysis of impact-fractured samples revealed failure mechanisms associated with fiber pullout and rupture as well as epoxy cracking. As compared to Kevlar™, the mallow fiber composite displayed practically the same ballistic efficiency. However, there is a reduction in both weight and cost, which makes the mallow fiber composites a promising material for personal ballistic protection.
Resistivity of Carbon-Carbon Composites Halved
NASA Technical Reports Server (NTRS)
Gaier, James R.
2004-01-01
Carbon-carbon composites have become the material of choice for applications requiring strength and stiffness at very high temperatures (above 2000 C). These composites comprise carbon or graphite fibers embedded in a carbonized or graphitized matrix. In some applications, such as shielding sensitive electronics in very high temperature environments, the performance of these materials would be improved by lowering their electrical resistivity. One method to lower the resistivity of the composites is to lower the resistivity of the graphite fibers, and a proven method to accomplish that is intercalation. Intercalation is the insertion of guest atoms or molecules into a host lattice. In this study the host fibers were highly graphitic pitch-based graphite fibers, or vapor-grown carbon fibers (VGCF), and the intercalate was bromine. Intercalation compounds of graphite are generally thought of as being only metastable, but it has been shown that the residual bromine graphite fiber intercalation compound is remarkably stable, resisting decomposition even at temperatures at least as high as 1000 C. The focus of this work was to fabricate composite preforms, determine whether the fibers they were made from were still intercalated with bromine after processing, and determine the effect on composite resistivity. It was not expected that the resistivity would be lowered as dramatically as with graphite polymer composites because the matrix itself would be much more conductive, but it was hoped that the gains would be substantial enough to warrant its use in high-performance applications. In a collaborative effort supporting a Space Act Agreement between the NASA Glenn Research Center and Applied Sciences, Inc. (Cedarville, OH), laminar preforms were fabricated with pristine and bromine-intercalated pitch-based fibers (P100 and P100-Br) and VGCF (Pyro I and Pyro I-Br). The green preforms were carbonized at 1000 C and then heat treated to 3000 C. To determine whether the fibers in the samples were still intercalated after composite fabrication, they were subjected to X-ray diffraction. The composites containing intercalated graphite fibers showed much higher background scatter than that of pristine fibers, indicating the presence of bromine in the samples. More importantly, faint features indicative of intercalation were visible in the diffraction pattern, showing that the fibers were still intercalated.
Li, Longbiao
2016-01-01
In this paper, the fatigue life of fiber-reinforced ceramic-matrix composites (CMCs) with different fiber preforms, i.e., unidirectional, cross-ply, 2D (two dimensional), 2.5D and 3D CMCs at room and elevated temperatures in air and oxidative environments, has been predicted using the micromechanics approach. An effective coefficient of the fiber volume fraction along the loading direction (ECFL) was introduced to describe the fiber architecture of preforms. The statistical matrix multicracking model and fracture mechanics interface debonding criterion were used to determine the matrix crack spacing and interface debonded length. Under cyclic fatigue loading, the fiber broken fraction was determined by combining the interface wear model and fiber statistical failure model at room temperature, and interface/fiber oxidation model, interface wear model and fiber statistical failure model at elevated temperatures, based on the assumption that the fiber strength is subjected to two-parameter Weibull distribution and the load carried by broken and intact fibers satisfies the Global Load Sharing (GLS) criterion. When the broken fiber fraction approaches the critical value, the composites fatigue fracture. PMID:28773332
NASA Technical Reports Server (NTRS)
Murthy, P. L. N.; Chamis, C. C.
1992-01-01
A generic unit cell model which includes a unique fiber substructuring concept is proposed for the development of micromechanics equations for continuous fiber reinforcement ceramic composites. The unit cell consists of three constituents: fiber, matrix, and an interphase. In the present approach, the unit cell is further subdivided into several slices and the equations of micromechanics are derived for each slice. These are subsequently integrated to obtain ply level properties. A stand alone computer code containing the micromechanics model as a module is currently being developed specifically for the analysis of ceramic matrix composites. Towards this development, equivalent ply property results for a SiC/Ti-15-3 composite with 0.5 fiber volume ratio are presented and compared with those obtained from customary micromechanics models to illustrate the concept. Also, comparisons with limited experimental data for the ceramic matrix composite, SiC/RBSN (Reaction Bonded Silicon Nitride) with a 0.3 fiber volume ratio are given to validate the concepts.
NASA Astrophysics Data System (ADS)
Kim, Hansang
2015-01-01
The in-plane shear property of carbon fiber laminates is one of the most important structural features of aerospace and marine structures. Fiber-matrix debonding caused by in-plane shear loading is the major failure mode of carbon fiber composites because of the stress concentration at the interfaces. In this study, carbon nanotube mats (CNT mat) were incorporated in two different types of carbon fiber composites. For the case of woven fabric composites, mechanical interlocking between the CNTs and the carbon fibers increased resistance to shear failure. However, not much improvement was observed for the prepreg composites as a result of incorporation of the CNT mats. The reinforcement mechanism of the CNT mat layer was investigated by a fractographic study using scanning electron microscopy. In addition, the CNT mat was functionalized by three different methods and the effectiveness of the functionalization methods was determined and the most appropriate functionalization method for the CNT mat was air oxidation.
Nitrile crosslinked polyphenyl-quinoxaline/graphite fiber composites
NASA Technical Reports Server (NTRS)
Alston, W. B.
1976-01-01
Studies were performed to reduce the 600 F thermoplasticity of polyphenylquinoxaline (PPQ) matrix resins by introducing crosslinking by the reaction of terminal nitrile groups. Seven solvents and solvent mixtures were studied as the crosslinking catalysts and used to fabricate crosslinked PPQ/HMS graphite fiber composites. The room temperature and 600 F composite mechanical properties after short time and prolonged 600 F air exposure and the 600 F composite weight loss were determined and compared to those properties of high molecular weight, linear PPQ/HMS graphite fiber composites.
NASA Astrophysics Data System (ADS)
Konka, Hari P.; Wahab, M. A.; Lian, K.
2012-01-01
Piezoelectric fiber composite sensors (PFCSs) made from micro-sized lead zirconate titanate (PZT) fibers have many advantages over the traditional bulk PZT sensors for embedded sensor applications. PFCSs as embedded sensors will be an ideal choice to continuously monitor the stress/strain levels and health conditions of composite structures. PFCSs are highly flexible, easily embeddable, have high compatibility with composite structures, and also provides manufacturing flexibility. This research is focused on examining the effects of embedding PFCS sensors (macro-fiber composite (MFC) and piezoelectric fiber composite (PFC)) on the structural integrity of glass-fiber-epoxy composite laminates. The strengths of composite materials with embedded PFCSs and conventional PZT sensors were compared, and the advantages of PFCS sensors over PZTs were demonstrated. Initially a numerical simulation study is performed to understand the local stress/strain field near the embedded sensor region inside a composite specimen. High stress concentration regions were observed near the embedded sensor corner edge. Using PFCS leads to a reduction of 56% in longitudinal stress concentration and 38% in transverse stress concentration, when compared to using the conventional PZTs as embedded sensors. In-plane tensile, in-plane tension-tension fatigue, and short beam strength tests are performed to evaluate the strengths/behavior of the composite specimens containing embedded PFCS. From the tensile test it is observed that embedding PFCS and PZT sensors in the composite structures leads to a reduction in ultimate strength by 3 and 6% respectively. From the fatigue test results it is concluded that both embedded PFCS and PZT sensors do not have a significant effect on the fatigue behavior of the composite specimens. From the short beam strength test it is found that embedding PFCS and PZT sensors leads to a reduction in shear strength by 7 and 15% respectively. Overall the pure PZT sensors seem to have low compatibility with composites when compared to PFCSs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Holbery, Jim; Houston, Dan
In the last decade, natural fiber composites have experienced rapid growth in the European automotive market, and this trend appears to be global in scale, provided the cost and performance is justified against competing technologies. However, mass reduction, recyclability, and performance requirements can be met today by competing systems such as injection-molded unreinforced thermoplastics; natural fiber composites will continue to expand their role in automotive applications only if such technical challenges as moisture stability, fiber-polymer interface compatibility, and consistent, repeatable fiber sources are available to supply automotive manufacturers. Efforts underway by Tier I and II automotive suppliers to explore hybridmore » glass-natural fiber systems, as well as applications that exploit such capabilities as natural fiber sound dampening characteristics, could very well have far-reaching effects. In addition, the current development underway of bio-based resins such as Polyhydroxyalkanoate (PHA) biodegradable polyesters and bio-based polyols could provide fully bio-based composite options to future automotive designers. In short, the development of the natural fiber composite market would make a positive impact on farmers and small business owners on a global scale, reduce US reliance on foreign oil, improve environmental quality through the development of a sustainable resource supply chain, and achieve a better CO2 balance over the vehicle?s lifetime with near-zero net greenhouse gas emissions.« less
NASA Astrophysics Data System (ADS)
Shan, Ning
2016-10-01
Carbon fiber composite is widely applied to the field of aerospace engineering because of its excellent performance. But it will be able to form more defects in the process of manufacturing inevitably on account of unique manufacturing process. Meanwhile it has sophisticated structure and services in the bad environment long time. The existence of defects will be able to cause the sharp decline in component's performance when the defect accumulates to a certain degree. So the reliability and safety test demand of carbon fiber composite is higher and higher. Ultrasonic testing technology is the important means used for characteristics of component inspection of composite materials. Ultrasonic information detection uses acoustic transducer generally. It need coupling agent and is higher demand for the surface of sample. It has narrow frequency band and low test precision. The extrinsic type optical fiber F-P interference cavity structure is designed to this problem. Its optical interference model is studied. The initial length of F-P cavity is designed. The realtime online detection system of carbon fiber composite is established based on optical fiber F-P Ultrasound sensing technology. Finally, the testing experiment study is conducted. The results show that the system can realize real-time online detection of carbon fiber composite's defect effectively. It operates simply and realizes easily. It has low cost and is easy to practical engineering.
A comparison of fiber effects on polymer matrix composite oxidation
NASA Technical Reports Server (NTRS)
Bowles, Kenneth J.
1991-01-01
A number of thermo-oxidative stability studies addressing the effects of fiber reinforcement on composite thermal stability and influence of geometry on the results of aging studies were performed at NASA-Lewis. The information presented herein, a compilation of some results from these studies, shows the influence of the reinforcement fibers on the oxidative degradation of various PMR-15 composites. Reinforcement of graphite and ceramics were studied and three composite oxidation mechanisms were observed. One was a dominant attack of the reinforcement fiber, the second was the aggressive oxidation of the matrix material, and the third was interfacial degradation.
Measurements of print-through in graphite fiber epoxy composites
NASA Technical Reports Server (NTRS)
Jaworske, Donald A.; Jeunnette, Timothy T.; Anzic, Judith M.
1989-01-01
High-reflectance accurate-contour mirrors are needed for solar dynamic space power systems. Graphite fiber epoxy composites are attractive candidates for such applications owing to their high modulus, near-zero coefficient of thermal expansion, and low mass. However, mirrors prepared from graphite fiber epoxy composite substrates often exhibit print-through, a distortion of the surface, which causes a loss in solar specular reflectance. Efforts to develop mirror substrates without print-through distortion require a means of quantifying print-through. Methods have been developed to quantify the degree of print-through in graphite fiber epoxy composite specimens using surface profilometry.
Puncture-Healing Thermoplastic Resin Carbon-Fiber-Reinforced Composites
NASA Technical Reports Server (NTRS)
Grimsley, Brian W. (Inventor); Gordon, Keith L. (Inventor); Cano, Roberto J. (Inventor); Czabaj, Michael W. (Inventor); Siochi, Emilie J. (Inventor)
2015-01-01
A composite comprising a combination of a self-healing polymer matrix and a carbon fiber reinforcement is described. In one embodiment, the matrix is a polybutadiene graft copolymer matrix, such as polybutadiene graft copolymer comprising poly(butadiene)-graft-poly(methyl acrylate-co-acrylonitrile). A method of fabricating the composite is also described, comprising the steps of manufacturing a pre-impregnated unidirectional carbon fiber preform by wetting a plurality of carbon fibers with a solution, the solution comprising a self-healing polymer and a solvent, and curing the preform. A method of repairing a structure made from the composite of the invention is described. A novel prepreg material used to manufacture the composite of the invention is described.
Puncture-Healing Thermoplastic Resin Carbon-Fiber Reinforced Composites
NASA Technical Reports Server (NTRS)
Gordon, Keith L. (Inventor); Siochi, Emilie J. (Inventor); Grimsley, Brian W. (Inventor); Cano, Roberto J. (Inventor); Czabaj, Michael W. (Inventor)
2017-01-01
A composite comprising a combination of a self-healing polymer matrix and a carbon fiber reinforcement is described. In one embodiment, the matrix is a polybutadiene graft copolymer matrix, such as polybutadiene graft copolymer comprising poly(butadiene)-graft-poly(methyl acrylate-co-acrylonitrile). A method of fabricating the composite is also described, comprising the steps of manufacturing a pre-impregnated unidirectional carbon fiber preform by wetting a plurality of carbon fibers with a solution, the solution comprising a self-healing polymer and a solvent, and curing the preform. A method of repairing a structure made from the composite of the invention is described. A novel prepreg material used to manufacture the composite of the invention is described.
Test methods and design allowables for fibrous composites. Volume 2
NASA Technical Reports Server (NTRS)
Chamis, Christos C. (Editor)
1989-01-01
Topics discussed include extreme/hostile environment testing, establishing design allowables, and property/behavior specific testing. Papers are presented on environmental effects on the high strain rate properties of graphite/epoxy composite, the low-temperature performance of short-fiber reinforced thermoplastics, the abrasive wear behavior of unidirectional and woven graphite fiber/PEEK, test methods for determining design allowables for fiber reinforced composites, and statistical methods for calculating material allowables for MIL-HDBK-17. Attention is also given to a test method to measure the response of composite materials under reversed cyclic loads, a through-the-thickness strength specimen for composites, the use of torsion tubes to measure in-plane shear properties of filament-wound composites, the influlence of test fixture design on the Iosipescu shear test for fiber composite materials, and a method for monitoring in-plane shear modulus in fatigue testing of composites.
Mechanical Properties in a Bamboo Fiber/PBS Biodegradable Composite
NASA Astrophysics Data System (ADS)
Ogihara, Shinji; Okada, Akihisa; Kobayashi, Satoshi
In recent years, biodegradable plastics which have low effect on environment have been developed. However, many of them have lower mechanical properties than conventional engineering plastics. Reinforcing them with a natural fiber is one of reinforcing methods without a loss of their biodegradability. In the present study, we use a bamboo fiber as the reinforcement and polybutylenesuccinate (PBS) as the matrix. We fabricate long fiber unidirectional composites and cross-ply laminate with different fiber weight fractions (10, 20, 30, 40 and 50wt%). We conduct tensile tests to evaluate the mechanical properties of these composites. In addition, we measure bamboo fiber strength distribution. We discuss the experimentally-obtained properties based on the mechanical properties of the constituent materials. Young's modulus and tensile strength in unidirectional composite and cross-ply laminate increase with increasing fiber weight fraction. However, the strain at fracture showed decreasing tendency. Young's modulus in fiber and fiber transverse directions are predictable by the rules of mixture. Tensile strength in fiber direction is lower than Curtin's prediction of strength which considers distribution of fiber strength. Young's modulus in cross-ply laminate is predictable by the laminate theory. However, analytical prediction of Poisson's ratio in cross-ply laminate by the laminate theory is lower than the experimental results.
Method for fabricating light weight carbon-bonded carbon fiber composites
Wrenn, G.E. Jr.; Abbatiello, L.A.; Lewis, J. Jr.
1987-06-17
The invention is directed to the fabrication of ultralight carbon- bonded carbon fiber composites of densities in the range of about 0. 04 to 0.10 grams per cubic centimeter. The composites are fabricated by forming an aqueous slurry of carbonaceous fibers which include carbonized fibers and 0-50 weight percent fugitive fibers and a particulate thermosetting resin precursor. The slurry is brought into contact with a perforated mandrel and the water is drained from the slurry through the perforations at a controlled flow rate of about 0. 03 to 0.30 liters per minutes per square inch of a mandrel surface. The deposited billet of fibers and resin precursor is heated to cure the resin precursor to bind the fibers together, removed from the mandrel, and then the resin and fugitive fibers, if any, are carbonized.
NASA Technical Reports Server (NTRS)
Generazio, Edward R.
1992-01-01
In a preliminary study, ultrasonic, x-ray opaque, and fluorescent dye penetrants techniques were used to evaluate and characterize ceramic and metal matrix composites. Techniques are highlighted for identifying porosity, fiber alignment, fiber uniformity, matrix cracks, fiber fractures, unbonds or disbonds between laminae, and fiber-to-matrix bond variations. The nondestructive evaluations (NDE) were performed during processing and after thermomechanical testing. Specific examples are given for Si3N4/SiC (SCS-6 fiber), FeCrAlY/Al2O3 fibers, Ti-15-3/SiC (SCS-6 fiber) materials, and Si3N4/SiC (SCS-6 fiber) actively cooled panel components. Results of this study indicate that the choice of the NDE tools to be used can be optimized to yield a faithful and accurate evaluation of advanced composites.
NASA Technical Reports Server (NTRS)
Stock, Thomas A.
1995-01-01
Probabilistic composite micromechanics methods are developed that simulate expected uncertainties in unidirectional fiber composite properties. These methods are in the form of computational procedures using Monte Carlo simulation. The variables in which uncertainties are accounted for include constituent and void volume ratios, constituent elastic properties and strengths, and fiber misalignment. A graphite/epoxy unidirectional composite (ply) is studied to demonstrate fiber composite material property variations induced by random changes expected at the material micro level. Regression results are presented to show the relative correlation between predictor and response variables in the study. These computational procedures make possible a formal description of anticipated random processes at the intraply level, and the related effects of these on composite properties.
Strong and Tough Hi-Nicalon Fiber-Reinforced Celsian Matrix Composites
NASA Technical Reports Server (NTRS)
Bansal, Narottam P.
1997-01-01
Strong, tough and almost fully dense Hi-Nicalon/BN/SiC fiber reinforced celsian matrix composites have been fabricated by impregnation of the fiber tows with the matrix slurry, winding on a drum, stacking the prepreg tapes in the desired orientation, and hot pressing. The monoclinic celsian phase in the matrix was produced in situ, during hot pressing, from a mixed oxide precursor. The unidirectional composites having approx. 42 volume percent of fibers exhibited graceful failure with extensive fiber pullout in three-point bend tests at room temperature. Values of first matrix cracking stress and strain were 435 +/- 35 MPa and 0.27 +/- 0.01 %, respectively, and ultimate strengths of 900 +/- 60 MPa were observed. The Young's modulus of the composites was 165 +/- 5 GPa.
NASA Astrophysics Data System (ADS)
Makarov, I. S.; Golova, L. K.; Mironova, M. V.; Vinogradov, M. I.; Kulichikhin, V. G.
2018-04-01
For the first time the composite fibers based on cellulose with additives of vinyltriethoxysilane (VTEOS) have been obtained. The choice of the additive was justified by the chemical structure of the VTEOS, namely the Si-C links content and the low C/O ratio. Composite fibers were prepared from solid phase pre-solutions of cellulose with VTEOS in N-methylmorpholine-N-oxide (NMMO). An investigation of the rheological behavior of the filled cellulose solutions with VTEOS showed a slight effect of the additive on the viscosity properties of the system. Introduction of 5% of VTEOS to cellulose does not lead to significant structural changes and, as a result, mechanical properties of the fibers. The thermal behavior of composite fibers differs from cellulose fibers.
NASA Astrophysics Data System (ADS)
Giorgini, Loris; Benelli, Tiziana; Mazzocchetti, Laura; Leonardi, Chiara; Zattini, Giorgio; Minak, Giangiacomo; Dolcini, Enrico; Tosi, Cristian; Montanari, Ivan
2014-05-01
Pyrolysis is shown to be an efficient method for recycling carbon fiber composites in the form of both uncured prepregs scraps or as cured end-of-life objects. The pyrolytic process leads to different products in three physical states of matter. The gaseous fraction, called syngas, can be used as energy feedstock in the process itself. The oil fraction can be used as fuel or chemical feedstock. The solid residue contains substantially unharmed carbon fibers that can be isolated and recovered for the production of new composite materials, thus closing the life cycle of the composite in a "cradle to cradle" approach. All the pyrolysis outputs were thoroughly analyzed and characterized in terms of composition for oil and gas fraction and surface characteristics of the fibers. In particular, it is of paramount importance to correlate the aspect and properties of the fibers obtained with different composite feedstock and operational conditions, that can be significantly different, with the reinforcing performance in the newly produced Recycled Carbon Fibers Reinforced Polymers. Present results have been obtained on a pyrolysis pilot plant that offers the possibility of treating up to 70kg of materials, thus leading to a significant amount of products to be tested in the further composites production, focused mainly on chopped carbon fiber reinforcement.
Liu, Xiaoling; Grant, David M; Palmer, Graham; Parsons, Andrew J; Rudd, Chris D; Ahmed, Ifty
2015-10-01
Bioresorbable composites have shown much potential for bone repair applications, as they have the ability to degrade completely over time and their degradation and mechanical properties can be tailored to suit the end application. In this study, phosphate glass fiber (from the system 45% P2 O5-16% CaO-24% MgO-11% Na2 O-4% Fe2 O3 (given in mol%)) were used to reinforce polycaprolactone (PCL) with approximately 20% fiber volume fraction. The glass fiber surfaces were coated with magnesium (Mg) through magnetron sputtering to improve the fiber-matrix interfacial properties. The Mg coating provided a rough fiber surface (roughness (Ra) of about 44nm). Both noncoated and Mg-coated fiber-reinforced composites were assessed. The water uptake and mass loss properties for the composites were assessed in phosphate-buffered saline (PBS) at 37°C for up to 28 days, and ion release profiles were also investigated in both water and PBS media. Inhibition of media influx was observed for the Mg-coated composites. The composite mechanical properties were characterized on the basis of both tensile and flexural tests and their retention in PBS media at 37°C was also investigated. A higher retention of the mechanical properties was observed for the Mg-coated composites over the 28 days degradation period. © 2014 Wiley Periodicals, Inc.
Fibrous refractory composite insulation. [shielding reusable spacecraft
NASA Technical Reports Server (NTRS)
Leiser, D. B.; Goldstein, H. E.; Smith, M. (Inventor)
1979-01-01
A refractory composite insulating material was prepared from silica fibers and aluminosilicate fibers in a weight ratio ranging from 1:19 to 19:1, and about 0.5 to 30% boron oxide, based on the total fiber weight. The aluminosilicate fiber and boron oxide requirements may be satisfied by using aluminoborosilicate fibers and, in such instances, additional free boron oxide may be incorporated in the mix up to the 30% limit. Small quantities of refractory opacifiers, such as silicon carbide, may be also added. The composites just described are characterized by the absence of a nonfibrous matrix.
Multiscale modeling of PVDF matrix carbon fiber composites
NASA Astrophysics Data System (ADS)
Greminger, Michael; Haghiashtiani, Ghazaleh
2017-06-01
Self-sensing carbon fiber reinforced composites have the potential to enable structural health monitoring that is inherent to the composite material rather than requiring external or embedded sensors. It has been demonstrated that a self-sensing carbon fiber reinforced polymer composite can be created by using the piezoelectric polymer polyvinylidene difluoride (PVDF) as the matrix material and using a Kevlar layer to separate two carbon fiber layers. In this configuration, the electrically conductive carbon fiber layers act as electrodes and the Kevlar layer acts as a dielectric to prevent the electrical shorting of the carbon fiber layers. This composite material has been characterized experimentally for its effective d 33 and d 31 piezoelectric coefficients. However, for design purposes, it is desirable to obtain a predictive model of the effective piezoelectric coefficients for the final smart composite material. Also, the inverse problem can be solved to determine the degree of polarization obtained in the PVDF material during polarization by comparing the effective d 33 and d 31 values obtained in experiment to those predicted by the finite element model. In this study, a multiscale micromechanics and coupled piezoelectric-mechanical finite element modeling approach is introduced to predict the mechanical and piezoelectric performance of a plain weave carbon fiber reinforced PVDF composite. The modeling results show good agreement with the experimental results for the mechanical and electrical properties of the composite. In addition, the degree of polarization of the PVDF component of the composite is predicted using this multiscale modeling approach and shows that there is opportunity to drastically improve the smart composite’s performance by improving the polarization procedure.
Requirements of frictional debonding at fiber/matrix interfaces for tough ceramic composites
NASA Astrophysics Data System (ADS)
Hsueh, Chun-Hway
1992-11-01
Optimum toughening of fiber-reinforced ceramic composites requires debonding at fiber/matrix interfaces and subsequent frictional sliding between the fibers and the matrix as the main crack extends through the composite. Criteria of both interfacial debonding vs fiber fracture, and frictional debonding vs frictionless debonding, are illustrated. To achieve interfacial debonding, the ratio of the fiber strength to the interfacial shear strength must exceed a critical value; to achieve a frictional interface after interfacial debonding, the ratio of the interfacial residual clamping stress to the interfacial shear strength must also exceed a critical value. While interfacial debonding is not sensitive to Poisson's effect, the frictional interface is sensitive to Poisson's effect.
In situ polymerization of monomers for polyphenylquinoxaline/graphite fiber composites
NASA Technical Reports Server (NTRS)
Serafini, T. T.; Delvigs, P.; Vannucci, R. D.
1974-01-01
Methods currently used to prepare fiber reinforced, high temperature resistant polyphenylquinoxaline (PPQ) composites employ extremely viscous, low solids content solutions of high molecular weight PPQ polymers. An improved approach, described in this report, consists of impregnating the fiber with a solution of the appropriate monomers instead of a solution of previously synthesized high molecular weight polymer. Polymerization of the monomers occurs in situ on the fiber during the solvent removal and curing stages. The in situ polymerization approach greatly simplifies the fabrication of PPQ graphite fiber composites. The use of low viscosity monomeric type solutions facilitates fiber wetting, permits a high solids content, and eliminates the need for prior polymer synthesis.
Leslie H. Groom; Laurence Mott; Stephen M. Shaler; Tom Pesacreta
1999-01-01
The mechanical properties of wood-based composites are dependent upon the properties of the wood components (e.g., wood fibers, wood strands) and the manner in which they are combined. The relationship between fiber mechanical properties and fiber-based composites has been discussed in several publications. This paper will focus primarily on the influence of fiber...
Cheng Piao; Zhiyong Cai; Nicole M. Stark; Charles J. Monlezun
2013-01-01
Potassium methyl siliconate (PMS) was investigated as a new nano modifier of wood fiber and wood flour to improve the compatibility between the fiber/flour and the plastic matrix in fiber reinforced plastic composites. Before injection molding, bleached and brown pulp fibers and mixed species wood flour were pretreated in PMS solutions. The morphology of the treated...
Flexural Progressive Failure of Carbon/Glass Interlayer and Intralayer Hybrid Composites
Wu, Weili; Gong, Zhili
2018-01-01
The flexural progressive failure modes of carbon fiber and glass fiber (C/G) interlayer and intralayer hybrid composites were investigated in this work. Results showed that the bending failure modes for interlayer hybrid composites are determined by the layup structure. Besides, the bending failure is characterized by the compression failure of the upper layer, when carbon fiber tends to distribute in the upper layer, the interlayer hybrid composite fails early, the failure force is characterized by a multi-stage slightly fluctuating decline and the fracture area exhibits a diamond shape. While carbon fiber distributes in the middle or bottom layer, the failure time starts late, and the failure process exhibits one stage sharp force/stress drop, the fracture zone of glass fiber above the carbon layers presents an inverted trapezoid shape, while the fracture of glass fiber below the carbon layers exhibits an inverted triangular shape. With regards to the intralayer hybrid composites, the C/G hybrid ratio plays a dominating role in the bending failure which could be considered as the mixed failures of four structures. The bending failure of intralayer hybrid composites occurs in advance since carbon fiber are located in each layer; the failure process shows a multi-stage fluctuating decline, and the decline slows down as carbon fiber content increases, and the fracture sound release has the characteristics of a low intensity and high frequency for a long time. By contrast, as glass fiber content increases, the bending failure of intralayer composites is featured with a multi-stage cliff decline with a high amplitude and low frequency for a short-time fracture sound release. PMID:29673236
Transcrystalline interphases in natural fiber-PP composites: effect of coupling agent
A.R. Sanadi; D.F. Caulfield
2000-01-01
The interest in lignocellulosic fiber composites has been growing in recent years because of their high specific properties. In this work, a new technique was used to prepare specimen to observe the transcrystalline zones in kenaf fiber-polypropylene composites. A maleated polypropylene (MAPP) coupling agent was used to improve the stress-transfer efficiency in the...
Bonded carbon or ceramic fiber composite filter vent for radioactive waste
Brassell, Gilbert W.; Brugger, Ronald P.
1985-02-19
Carbon bonded carbon fiber composites as well as ceramic or carbon bonded ceramic fiber composites are very useful as filters which can separate particulate matter from gas streams entraining the same. These filters have particular application to the filtering of radioactive particles, e.g., they can act as vents for containers of radioactive waste material.
Damage Accumulation in SiC/SiC Composites with 3D Architectures
NASA Technical Reports Server (NTRS)
Morscher, Gregory N.; Yun, Hee-Mann; DiCarlo, James A.
2003-01-01
The formation and propagation of multiple matrix cracks in relatively dense ceramic matrix composites when subjected to increasing tensile stress is necessary for high strength and tough composites. However, the occurrence of matrix cracks at low stresses may limit the usefulness of some non-oxide composite systems when subjected to oxidizing environments for long times at stresses sufficient to cause matrix cracking. For SiC fiber-reinforced composites with two-dimensional woven architectures and chemically vapor infiltrated (CVI) SiC matrix and melt-infiltrated (MI) Si/SiC matrix composites, the matrix cracking behavior has been fairly well characterized for different fiber-types and woven architectures. It was found that the occurrence, degree, and growth of matrix cracks depends on the material properties of the composite constituents as well as other physical properties of the composite or architecture, e.g., matrix porosity and size of the fiber bundle. In this study, matrix cracking in SiC fiber reinforced, melt-infiltrated SiC composites with a 3D orthogonal architecture was determined for specimens tested in tension at room temperature. Acoustic emission (AE) was used to monitor the matrix cracking activity, which was later confirmed by microscopic examination of specimens that had failed. The determination of the exact location of AE demonstrated that initial cracking occurred in the matrix rich regions when a large z-direction fiber bundle was used. For specimens with large z-direction fiber tows, the earliest matrix cracking could occur at half the stress for standard 2D woven composites with similar constituents. Damage accumulation in 3D architecture composites will be compared to damage accumulation in 2D architecture composites and discussed with respect to modeling composite stress-strain behavior and use of these composites at elevated temperatures.
NASA Astrophysics Data System (ADS)
Hashim, Faiezah; Ismail, Hanafi; Rusli, Arjulizan
2017-07-01
Nowadays, a great attention has been dedicated to natural fibers as reinforcement for polymer composites. Natural fibers, compared to glass fibers, exhibit better mechanical properties, such as stiffness, impact strength, flexibility and modulus. However, certain drawbacks, such as the incompatibility between fibers and polymer matrices, the tendency to form aggregates during processing and the poor resistance to moisture, reduce the use of these natural fibers as reinforcements in polymers. Several treatments and modifications are being used to improve the adhesion between fibre and matrix. In this work, the effect of bleaching treatments using hydrogen peroxide in the Mengkuang leaf fibre (MLF) was evaluated on tensile properties of Ethylene Vinyl Acetate (EVA)/Natural Rubber (NR)/MLF composites. Treated MLF were mixed with the EVA/NR blend in Haake internal mixer at 120 °C and rotor speed of 50 rpm for 10 minutes. Fibre morphology and the fibre/matrix interface ware further characterized by scanning electron microscopy (SEM). The tensile strength was increased by about 8% as compared to the composites with untreated fibers. The increased adhesion between fiber and matrix was also observed by SEM. Thus, EVA/NR/MLF composites reinforced with the treated fibres exhibited better tensile properties than untreated EVA/NR/MLF composites.
Seggiani, Maurizia; Cinelli, Patrizia; Balestri, Elena; Mallegni, Norma; Stefanelli, Eleonora; Rossi, Alessia; Lardicci, Claudio; Lazzeri, Andrea
2018-05-11
In order to produce sustainable, bio-based and highly biodegradable materials, composites based on poly(hydroxybutyrate-co-hydroxyvalerate) (PHBV) and fibers of Posidonia oceanica (PO), a dominant Mediterranean seagrass, were produced by simple melt mixing and characterized in terms of thermal stability, morphology and rheological/mechanical properties. In view of their potential application in marine environments, degradation of the developed composites was evaluated under simulated and real marine environmental conditions for 1 year. Using 10 wt % of acetyl tributyl citrate (ATBC) as a plasticizer, smooth processing was achieved for up to 30 wt % of PO fibers, despite the reduction of the melt fluidity observed with increasing fiber loading. The tensile modulus slightly increased (from 2 to 2.4 GPa) while the tensile strength and the elongation decreased (from 23.6 to 21.5 MPa and from 3.2 to 1.9%, respectively) by increasing the PO fiber content from 0 to 30 wt %. Interestingly, the impact resistance of the composites increased with the increasing of the PO content: the Charpy’s impact energy increased from 3.6 (without fiber) to 4.4 kJ/m² for the composite with 30 wt %. The results of the aerobic biodegradation under simulated marine conditions showed that the presence of PO fibers favored the physical disintegration of the composite increasing the biodegradation rate of the polymeric matrix: after 216 days, the composite with 20 wt % PO fibers showed a biodegradability of about 30% compared to 20% of the composite without fibers. Under real marine conditions, the specimens containing PO fibers showed higher weight losses and deterioration of tensile properties compared to those without fibers. Presumably, biodegradation occurred after colonization of the specimen, and the specimens with 20 wt % PO fibers showed well-developed biofilm consisting of bacteria and fungi on the surface after only 3 months of incubation in marine sediments, unlike the no-fiber specimens. Consequently, the persistence of an adequate mechanical performance for a relatively long period (1 year), due to a moderate rate of biodegradation in the marine environment, make the developed PHBV/PO composites particularly suitable for the production of relatively low-cost and biodegradable items which are usable in the sea and/or sand dunes, increasing the market opportunities for biopolymers such as PHBV and, at the same time, finding an eco-sustainable valorization for the PO fibrous residues accumulated in large quantities on Mediterranean beaches, which represents a problem for coastal municipalities.
Mallegni, Norma; Stefanelli, Eleonora; Rossi, Alessia
2018-01-01
In order to produce sustainable, bio-based and highly biodegradable materials, composites based on poly(hydroxybutyrate-co-hydroxyvalerate) (PHBV) and fibers of Posidonia oceanica (PO), a dominant Mediterranean seagrass, were produced by simple melt mixing and characterized in terms of thermal stability, morphology and rheological/mechanical properties. In view of their potential application in marine environments, degradation of the developed composites was evaluated under simulated and real marine environmental conditions for 1 year. Using 10 wt % of acetyl tributyl citrate (ATBC) as a plasticizer, smooth processing was achieved for up to 30 wt % of PO fibers, despite the reduction of the melt fluidity observed with increasing fiber loading. The tensile modulus slightly increased (from 2 to 2.4 GPa) while the tensile strength and the elongation decreased (from 23.6 to 21.5 MPa and from 3.2 to 1.9%, respectively) by increasing the PO fiber content from 0 to 30 wt %. Interestingly, the impact resistance of the composites increased with the increasing of the PO content: the Charpy’s impact energy increased from 3.6 (without fiber) to 4.4 kJ/m2 for the composite with 30 wt %. The results of the aerobic biodegradation under simulated marine conditions showed that the presence of PO fibers favored the physical disintegration of the composite increasing the biodegradation rate of the polymeric matrix: after 216 days, the composite with 20 wt % PO fibers showed a biodegradability of about 30% compared to 20% of the composite without fibers. Under real marine conditions, the specimens containing PO fibers showed higher weight losses and deterioration of tensile properties compared to those without fibers. Presumably, biodegradation occurred after colonization of the specimen, and the specimens with 20 wt % PO fibers showed well-developed biofilm consisting of bacteria and fungi on the surface after only 3 months of incubation in marine sediments, unlike the no-fiber specimens. Consequently, the persistence of an adequate mechanical performance for a relatively long period (1 year), due to a moderate rate of biodegradation in the marine environment, make the developed PHBV/PO composites particularly suitable for the production of relatively low-cost and biodegradable items which are usable in the sea and/or sand dunes, increasing the market opportunities for biopolymers such as PHBV and, at the same time, finding an eco-sustainable valorization for the PO fibrous residues accumulated in large quantities on Mediterranean beaches, which represents a problem for coastal municipalities. PMID:29751601
Carbon Fiber Reinforced Ceramic Composites for Propulsion Applications
NASA Technical Reports Server (NTRS)
Freedman, Marc (Technical Monitor); Shivakumar, Kunigal N.
2003-01-01
Fiber reinforced ceramic composites are materials of choice for gas turbine engines because of their high thermal efficiency, thrust/weight ratio, and operating temperatures. However, the successful introduction of ceramic composites to hot structures is limited because of excessive cost of manufacturing, reproducibility, nonuniformity, and reliability. Intense research is going on around the world to address some of these issues. The proposed effort is to develop a comprehensive status report of the technology on processing, testing, failure mechanics, and environmental durability of carbon fiber reinforced ceramic composites through extensive literature study, vendor and end-user survey, visits to facilities doing this type of work, and interviews. Then develop a cooperative research plan between NASA GRC and NCA&T (Center for Composite Materials Research) for processing, testing, environmental protection, and evaluation of fiber reinforced ceramic composites.
Fiber-Reinforced Epoxy Composites and Methods of Making Same Without the Use of Oven or Autoclave
NASA Technical Reports Server (NTRS)
Barnell, Thomas J. (Inventor); Rauscher, Michael D. (Inventor); Stienecker, Rick D. (Inventor); Nickerson, David M. (Inventor); Tong, Tat H. (Inventor)
2016-01-01
Method embodiments for producing a fiber-reinforced epoxy composite comprise providing a mold defining a shape for a composite, applying a fiber reinforcement over the mold, covering the mold and fiber reinforcement thereon in a vacuum enclosure, performing a vacuum on the vacuum enclosure to produce a pressure gradient, insulating at least a portion of the vacuum enclosure with thermal insulation, infusing the fiber reinforcement with a reactive mixture of uncured epoxy resin and curing agent under vacuum conditions, wherein the reactive mixture of uncured epoxy resin and curing agent generates exothermic heat, and producing the fiber-reinforced epoxy composite having a glass transition temperature of at least about 100.degree. C. by curing the fiber reinforcement infused with the reactive mixture of uncured epoxy resin and curing agent by utilizing the exothermically generated heat, wherein the curing is conducted inside the thermally insulated vacuum enclosure without utilization of an external heat source or an external radiation source.
NASA Technical Reports Server (NTRS)
Naranong, N.
1980-01-01
The flexural strength and average modulus of graphite fiber reinforced composites were tested before and after exposure to 0.5 Mev electron radiation and 1.33 Mev gamma radiation by using a three point bending test (ASTM D-790). The irradiation was conducted on vacuum treated samples. Graphite fiber/epoxy (T300/5208), graphite fiber/polyimide (C6000/PMR 15) and graphite fiber/polysulfone (C6000/P1700) composites after being irradiated with 0.5 Mev electron radiation in vacuum up to 5000 Mrad, show increases in stress and modulus of approximately 12% compared with the controls. Graphite fiber/epoxy (T300/5208 and AS/3501-6), after being irradiated with 1.33 Mev gamma radiation up to 360 Mrads, show increases in stress and modulus of approximately 6% at 167 Mrad compared with the controls. Results suggest that the graphite fiber composites studied should withstand the high energy radiation in a space environment for a considerable time, e.g., over 30 years.
2013-05-10
13. SUPPLEMENTARY NOTES 14. ABSTRACT In this research, fiber Bragg grating ( FBG ) optical temperature sensors are used for structural health...surface of a composite structure. FBG sensors also respond to axial strain in the optical fiber, thus any structural strain experienced by the composite...features. First, a three-dimensional array of FBG temperature sensors has been embedded in a carbon/epoxy composite structure, consisting of both in
Plug Repairs of Marine Glass Fiber / Vinyl Ester Laminates Subjected to Uniaxial Tension
2009-06-01
Material characteristics of glass fiber / vinyl ester composites used in naval surface ships 1.1.1.2 Construction of surface ship hulls with FRP...Piping - Ventilation ducts - Deck gratings 1.1.1.1 Material characteristics of glass fiber / vinyl ester composites used in naval surface ships The...that polysester-based composites do [15, 24]. Typical processing methods for vinyl ester composites are hand lay-up, Resin Transfer Molding (RTM
Al2O3 fiber strength degradation in metal and intermetallic matrix composites
NASA Technical Reports Server (NTRS)
Draper, S. L.; Locci, I. E.
1994-01-01
The mechanisms for fiber damage in single crystal Al2O3 fiber-reinforced composites were investigated. Both fiber fragmentation and fiber strength degradation were observed in composites with a variety of matrix compositions. Four mechanisms that may be contributing to the fiber strength loss have been proposed and include matrix reaction, reaction with binders, residual stress-induced damage, and pressure from hot pressing. The effect of matrix reaction was separated from the other three effects by sputter-coating the matrices on cleaned fibers and annealing with a temperature profile that simulates processing conditions. These experiments revealed that Y and Cr in FeCrAlY base alloys and Zr in NiAl alloys reacted with the fiber, and grooves and adherent particles were formed on the fiber surface which were responsible for the strength loss. The effects of the matrix reaction appeared to dominate over the other possible mechanisms, although evidence for reaction with binders was also found. Ridges on the fiber surface, which reflected the grain boundaries of the matrix, were also observed. In order for single-crystal Al2O3 to be used as a fiber in MMC's and IMC's, a matrix or protective coating which minimizes matrix reaction during processing will be necessary. Of the matrices investigated, the Thermo-span(sup TM) alloy was the least damaging to fiber properties.
Sangyeob Lee; Hui Pan; Chung Y. Hse; Alfred R. Gunasekaran; Todd F. Shupe
2014-01-01
The effects of aqueous solutions were evaluated on the properties of regenerated cellulosic nanofibers prepared from pure cellulose fibers in various formulations of aqueous solutions. Thermoplastic composites were prepared with reinforcement of the regenerated cellulosic nanofibers. The regenerated cellulosic fibers from cellulosic woody biomass were obtained from...
Glass fiber addition strengthens low-density ablative compositions
NASA Technical Reports Server (NTRS)
Chandler, H. H.
1974-01-01
Approximately 15% of E-glass fibers was added to compositions under test and greatly improved char stability. Use of these fibers also reduced thermal strains which, in turn, minimized char shrinkage and associated cracks, subsurface voids, and disbonds. Increased strength allows honeycomb core reinforcement to be replaced by equivalent amount of glass fibers.
Analysis of the Light Transmission Ability of Reinforcing Glass Fibers Used in Polymer Composites.
Hegedűs, Gergely; Sarkadi, Tamás; Czigány, Tibor
2017-06-10
This goal of our research was to show that E-glass fiber bundles used for reinforcing composites can be enabled to transmit light in a common resin without any special preparation (without removing the sizing). The power of the transmitted light was measured and the attenuation coefficient, which characterizes the fiber bundle, was determined. Although the attenuation coefficient depends on temperature and the wavelength of the light, it is independent of the power of incident light, the quality of coupling, and the length of the specimen. The refractive index of commercially available transparent resins was measured and it was proved that a resin with a refractive index lower than that of the fiber can be used to make a composite whose fibers are capable of transmitting light. The effects of temperature, compression of the fibers, and the shape of fiber ends on the power of transmitted light were examined. The measurement of emitted light can provide information about the health of the fibers. This can be the basis of a simple health monitoring system in the case of general-purpose composite structures.
Analysis of the Light Transmission Ability of Reinforcing Glass Fibers Used in Polymer Composites
Hegedűs, Gergely; Sarkadi, Tamás; Czigány, Tibor
2017-01-01
This goal of our research was to show that E-glass fiber bundles used for reinforcing composites can be enabled to transmit light in a common resin without any special preparation (without removing the sizing). The power of the transmitted light was measured and the attenuation coefficient, which characterizes the fiber bundle, was determined. Although the attenuation coefficient depends on temperature and the wavelength of the light, it is independent of the power of incident light, the quality of coupling, and the length of the specimen. The refractive index of commercially available transparent resins was measured and it was proved that a resin with a refractive index lower than that of the fiber can be used to make a composite whose fibers are capable of transmitting light. The effects of temperature, compression of the fibers, and the shape of fiber ends on the power of transmitted light were examined. The measurement of emitted light can provide information about the health of the fibers. This can be the basis of a simple health monitoring system in the case of general-purpose composite structures. PMID:28772996
Control of interfaces in Al-C fibre composites
NASA Technical Reports Server (NTRS)
Warrier, S. G.; Blue, C. A.; Lin, R. Y.
1993-01-01
The interface of Al-C fiber composite was modified by coating a silver layer on the surface of carbon fibres prior to making composites, in an attempt to improve the wettability between molten aluminum and carbon fibers during infiltration. An electroless plating technique was adopted and perfected to provide a homogeneous silver coating on the carbon fiber surface. Al-C fiber composites were prepared using a liquid infiltration technique in a vacuum. It was found that silver coating promoted the wetting between aluminum and carbon fibers, particularly with polyacrylonitrile-base carbon fibers. However, due to rapid dissolution of silver in molten aluminum, it was believed that the improved infiltration was not due to the wetting behavior between molten aluminum and silver. The cleaning of the fiber surface and the preservation of the cleaned carbon surface with silver coating was considered to be the prime reason for the improved wettability. Interfacial reactions between aluminum and carbon fibers were observed. Amorphous carbon was found to react more with aluminum than graphitic carbon. This is believed to be because of the inertness of the graphitic basal planes.
NASA Astrophysics Data System (ADS)
Martin, Joshua J.; Caunter, Andrew; Dendulk, Amy; Goodrich, Scott; Pembroke, Ryan; Shores, Dan; Erb, Randall M.
2017-05-01
Three-dimensional (3D) printing of fiber reinforced composites represents an enabling technology that may bring toughness and specific strength to complex parts. Recently, direct-write 3D printing has been offered as a promising route to manufacturing fiber reinforced composites that show high specific strength. These approaches primarily rely on the use of shear-alignment during the extrusion process to align fibers along the printing direction. Shear alignment prevents fibers from being oriented along principle stress directions of the final designed part. This paper describes a new direct-write style 3D printing system that incorporates magnetic fields to actively control the orientation of reinforcing fibers during the printing of fiber reinforced composites. Such a manufacturing system is fraught with complications from the high shear dominated alignment experienced by the fibers during extrusion to the slow magnetic alignment dynamics of fibers in viscous media. Here we characterize these issues and suggest effective operating windows in which magnetic alignment is a viable approach to orienting reinforcing particles during direct-write 3D printing.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stoll, B.; Fellers, J.F.; Lin, J.S.
1986-01-01
This paper correlated the interlaminar shear strength of 7 different carbon fiber/epoxy composites with structural characteristics determined by Small Angle X-ray Scattering (SAXS) measurements. The carbon fibers were all of the same type but had different surface treatments. The SAXS patterns of the fibers and of the composites showed a highly nonlinear Guinier region which could not be approximated by traditional linear regression. A new approach to the Guinier approximation was developed to treat this nonlinear curve using a polynomial of second order. The radius of gyration (RG) of the fibers, as determined by this new method, correlated clearly withmore » both the extent of the surface treatment and the interlaminar shear strength of the composite. Also the difference in scattering between a dry fiber and a glycerine soaked fiber provides a way to characterize the changes obtained by surface treatments. These methods provide new ways to estimate the efficiency of a surface treatment and its effect on the interlaminar shear strength by analyzing the SAXS patterns of the fibers.« less
NASA Technical Reports Server (NTRS)
Bowles, Kenneth J.
1992-01-01
To date, the effect of thermo-oxidative aging on unidirectional composite mechanical properties has been monitored by the measurement of interlaminar shear strength (ILSS) and either three or four point longitudinal flexural strength (LFS) of the composites being tested. Both results are affected by the fiber-to-matrix bonding, the former being dependent on the shear resistance of the interface and the latter on the degree of load sharing by the fibers through the fiber/matrix interface. Recently, fiber/matrix interfacial bond strengths have been monitored using a transverse flexural strength (TFS) test method. This test method was used to evaluate the effect of fiber surface treatment on the fiber/matrix bond. The interface bonding was varied in these tests using Hercules A-fibers with three-types of surfaces that produce bonds of poor, better, and good quality. The TFS was found not only to be sensitive to the bonding, but also to the aging time of unidirectional A-fiber/PMR-15 composites. This relationship reflects the mechanism by which the PMR-15 degrades during thermal aging.
Kenaf Bast Fibers—Part II: Inorganic Nanoparticle Impregnation for Polymer Composites
Shi, Jinshu; Shi, Sheldon Q.; Barnes, H. Michael; ...
2011-01-01
The objective of this study was to investigate an inorganic nanoparticle impregnation (INI) technique to improve the compatibility between kenaf bast fibers and polyolefin matrices. The Scanning Electron Microscopy (SEM) was used to examine the surface morphology of the INI-treated fibers showing that the CaCO 3 nanoparticle crystals grew onto the fiber surface. Energy-dispersive X-ray spectroscopy (EDS) was used to verify the CaCO 3 nanoparticle deposits on the fiber surface. The tension tests of the individual fiber were conducted, and the results showed that the tensile strength of the fibers increased significantly (more than 20%) after the INI treatments. Polymermore » composites were fabricated using the INI-treated fiber as reinforcement and polypropylene (PP) as the matrix. The results showed that the INI treatments improved the compatibility between kenaf fibers and PP matrix. The tensile modulus and tensile strength of the composites reinforced with INI-treated fibers increased by 25.9% and 10.4%, respectively, compared to those reinforced with untreated kenaf fibers.« less
Engineering Porous Polymer Hollow Fiber Microfluidic Reactors for Sustainable C-H Functionalization.
He, Yingxin; Rezaei, Fateme; Kapila, Shubhender; Rownaghi, Ali A
2017-05-17
Highly hydrophilic and solvent-stable porous polyamide-imide (PAI) hollow fibers were created by cross-linking of bare PAI hollow fibers with 3-aminopropyl trimethoxysilane (APS). The APS-grafted PAI hollow fibers were then functionalized with salicylic aldehyde for binding catalytically active Pd(II) ions through a covalent postmodification method. The catalytic activity of the composite hollow fiber microfluidic reactors (Pd(II) immobilized APS-grafted PAI hollow fibers) was tested via heterogeneous Heck coupling reaction of aryl halides under both batch and continuous-flow reactions in polar aprotic solvents at high temperature (120 °C) and low operating pressure. X-ray photoelectron spectroscopy (XPS) and inductively coupled plasma (ICP) analyses of the starting and recycled composite hollow fibers indicated that the fibers contain very similar loadings of Pd(II), implying no degree of catalyst leaching from the hollow fibers during reaction. The composite hollow fiber microfluidic reactors showed long-term stability and strong control over the leaching of Pd species.
Laminate behavior for SiC fiber-reinforced reaction-bonded silicon nitride matrix composites
NASA Technical Reports Server (NTRS)
Rhatt, R. T.; Phillips, R. E.
1988-01-01
The room temperature mechanical properties of SiC fiber reinforced reaction-bonded silicon nitride matrix composite laminates (SiC/RBSN) have been measured. The laminates contained approx 30 volume fraction of aligned 142-micron diameter SiC fiber in a porous RBSN matrix. Three types of laminate studied were unidirectional: (1) (0) sub 8, (2) (10) sub 8, and (3) (45) sub 8, and (90) sub 8; cross plied laminates (0 sub 2/90 sub 2); and angle plied laminates: (+45 sub 2/-45 sub 2). Each laminate contained eight fiber plies. Results of the unidirectionally reinforced composites tested at various angles to the reinforcement direction indicate large anisotropy in in-plane properties. In addition, strength properties of these composites along the fiber direction were independent of specimen gage length and were unaffected by notches normal to the fiber direction. Splitting parallel to the fiber at the notch tip appears to be the dominant crack blunting mechanism responsible for notch insensitive behavior of these composites. In-plane properties of the composites can be improved by 2-D laminate construction. Mechanical property results for (0 sub 2/90 sub 2)sub s and (+45/-45 sub 2) sub s laminates showed that their matrix failure strains were similar to that for (0) sub 8 laminates, but their primary elastic moduli, matrix cracking strengths, and ultimate composite strengths were lower. The elastic properties of unidirectional, cross-ply, and angle-ply composites can be predicted from modified constitutive equations and laminate theory. Further improvements in laminate properties may be achieved by reducing the matrix porosity and by optimizing the bond strength between the SiC fiber and RBSN matrix.
Laminate behavior for SiC fiber-reinforced reaction-bonded silicon nitride matrix composites
NASA Technical Reports Server (NTRS)
Bhatt, Ramakrishna T.; Phillips, Ronald E.
1990-01-01
The room temperature mechanical properties of SiC fiber reinforced reaction-bonded silicon nitride matrix composite laminates (SiC/RBSN) have been measured. The laminates contained approx 30 volume fraction of aligned 142-micron diameter SiC fiber in a porous RBSN matrix. Three types of laminate studied were unidirectional: (1) (0) sub 8, (2) (10) sub 8, and (3) (45) sub 8, and (90) sub 8; cross plied laminates (0 sub 2/90 sub 2); and angle plied laminates: (+45 sub 2/-45 sub 2). Each laminate contained eight fiber plies. Results of the unidirectionally reinforced composites tested at various angles to the reinforcement direction indicate large anisotropy in in-plane properties. In addition, strength properties of these composites along the fiber direction were independent of specimen gage length and were unaffected by notches normal to the fiber direction. Splitting parallel to the fiber at the notch tip appears to be the dominant crack blunting mechanism responsible for notch insensitive behavior of these composites. In-plane properties of the composites can be improved by 2-D laminate construction. Mechanical property results for (0 sub 2/90 sub 2) sub s and (+45/-45 sub 2) sub s laminates showed that their matrix failure strains were similar to that for (0) sub 8 laminates, but their primary elastic moduli, matrix cracking strengths, and ultimate composite strengths were lower. The elastic properties of unidirectional, cross-ply, and angle-ply composites can be predicted from modified constitutive equations and laminate theory. Further improvements in laminate properties may be achieved by reducing the matrix porosity and by optimizing the bond strength between the SiC fiber and RBSN matrix.
Buckling Modes of Structural Elements of Off-Axis Fiber-Reinforced Plastics
NASA Astrophysics Data System (ADS)
Paimushin, V. N.; Polyakova, N. V.; Kholmogorov, S. A.; Shishov, M. A.
2018-05-01
The structures of two types of unidirectional fiber-reinforced composites — with an ELUR-P carbon fiber tape, an XT-118 cold-cure binder with an HSE 180 REM prepreg, and a hot-cure binder — were investigated. The diameters of fibers and fiber bundles (threads) of both the types of composites were measured, and their mutual arrangement was examined both in the semifinished products (in the uncured state) and in the finished composites. The defects characteristic of both the types of binder and manufacturing technique were detected in the cured composites. Based on an analysis of the results obtained, linearized problems on the internal multiscale buckling modes of an individual fiber (with and without account of its interaction with the surrounding matrix) or of a fiber bundle are formulated. In the initial atate, these structural elements of the fibrous composites are in a subcritical (unperturbed) state under the action of shear stresses and tension (compression) in the transverse direction. Such an initial stress state is formed in them in tension and compression tests on flat specimens made of off-axis-reinforced composites with straight fibers. To formulate the problems, the equations derived earlier from a consistent variant of geometrically nonlinear equations of elasticity theory by reducing them to the one-dimensional equations of the theory of straight rods on the basis of a refined Timoshenko shear model with account of tensile-compressive strains in the transverse direction are used. It is shown that, in loading test specimens, a continuous rearrangement of composite structure can occur due to the realization and continuous change of internal buckling modes as the wave-formation parameter varies continuously, which apparently explain the decrease revealed in the tangential shear modulus of the fibrous composites with increasing shear strains.
Investigation of Carbon Fiber Architecture in Braided Composites Using X-Ray CT Inspection
NASA Technical Reports Server (NTRS)
Rhoads, Daniel J.; Miller, Sandi G.; Roberts, Gary D.; Rauser, Richard W.; Golovaty, Dmitry; Wilber, J. Patrick; Espanol, Malena I.
2017-01-01
During the fabrication of braided carbon fiber composite materials, process variations occur which affect the fiber architecture. Quantitative measurements of local and global fiber architecture variations are needed to determine the potential effect of process variations on mechanical properties of the cured composite. Although non-destructive inspection via X-ray CT imaging is a promising approach, difficulties in quantitative analysis of the data arise due to the similar densities of the material constituents. In an effort to gain more quantitative information about features related to fiber architecture, methods have been explored to improve the details that can be captured by X-ray CT imaging. Metal-coated fibers and thin veils are used as inserts to extract detailed information about fiber orientations and inter-ply behavior from X-ray CT images.
Hybrid composites that retain graphite fibers on burning
NASA Technical Reports Server (NTRS)
House, E. E.
1980-01-01
A laboratory scale program was conducted to determine fiber release tendencies of graphite reinforced/resinous matrix composites currently used or projected for use in civil aircraft. In the event of an aircraft crash and burn situation, there is concern that graphite fibers will be released from the composites once the resin matrix is thermally decomposed. Hybridizing concepts aimed at preventing fiber release on burning were postulated and their effectiveness evaluated under fire, impact, and air flow during an aircraft crash.
Ultrasonic NDE and mechanical testing of fiber placement composites
NASA Astrophysics Data System (ADS)
Liu, Zhanjie; Fei, Dong; Hsu, David K.; Dayal, Vinay; Hale, Richard D.
2002-05-01
A fiber placed composite, especially with fiber steering, has considerably more complex internal structure than a laminate laid up from unidirectional prepreg tapes. In this work, we performed ultrasonic imaging of ply interfaces of fiber placed composite laminates, with an eye toward developing a tool for evaluating their quality. Mechanical short-beam shear tests were also conducted on both nonsteered and steered specimens to examine their failure behavior and its relationship to the structural defects indicated by ultrasonic imaging.
DOT National Transportation Integrated Search
2008-01-01
This study evaluated high-performance fiber-reinforced cementitious composites (HPFRCC), which are mortar mixtures with synthetic and steel fibers. The feasibility of using HPFRCC technology for transportation applications by the Virginia Department ...
Effect of chemical treatment of Kevlar fibers on mechanical interfacial properties of composites.
Park, Soo-Jin; Seo, Min-Kang; Ma, Tae-Jun; Lee, Douk-Rae
2002-08-01
In this work, the effects of chemical treatment on Kevlar 29 fibers have been studied in a composite system. The surface characteristics of Kevlar 29 fibers were characterized by pH, acid-base value, X-ray photoelectron spectroscopy (XPS), and FT-IR. The mechanical interfacial properties of the final composites were studied by interlaminar shear strength (ILSS), critical stress intensity factor (K(IC)), and specific fracture energy (G(IC)). Also, impact properties of the composites were investigated in the context of differentiating between initiation and propagation energies and ductile index (DI) along with maximum force and total energy. As a result, it was found that chemical treatment with phosphoric acid solution significantly affected the degree of adhesion at interfaces between fibers and resin matrix, resulting in improved mechanical interfacial strength in the composites. This was probably due to the presence of chemical polar groups on Kevlar surfaces, leading to an increment of interfacial binding force between fibers and matrix in a composite system.
Vapor Grown Carbon Fiber/Phenolic Matrix Composites for Rocket Nozzles and Heat Shields
NASA Technical Reports Server (NTRS)
Patton, R. D.; Pittman, C. U., Jr.; Wang, L.; Day, A.; Hill, J. R.
2001-01-01
The ablation and mechanical and thermal properties of vapor grown carbon fiber (VGCF)/phenolic resin composites were evaluated to determine the potential of using this material in solid rocket motor nozzles. Composite specimens with varying VGCF loading (30%-50% wt) including one sample with ex-rayon carbon fiber plies were prepared and exposed to a plasma torch for 20 s with a heat flux of 16.5 MW/sq m at approximately 1650 C. Low erosion rates and little char formation were observed, confirming that these materials were promising for rocket motor nozzle materials. When fiber loadings increased, mechanical properties and ablative properties improved. The VGCF composites had low thermal conductivities (approximately 0.56 W/m-C) indicating they were good insulating materials. If a 65% fiber loading in VGCF composite can be achieved, then ablative properties are projected to be comparable to or better than the composite material currently used on the Space Shuttle Reusable Solid Rocket Motor (RSRM).
NASA Technical Reports Server (NTRS)
Minnetyan, Levon; Chamis, Christos C. (Technical Monitor)
2003-01-01
Computational simulation results can give the prediction of damage growth and progression and fracture toughness of composite structures. The experimental data from literature provide environmental effects on the fracture behavior of metallic or fiber composite structures. However, the traditional experimental methods to analyze the influence of the imposed conditions are expensive and time consuming. This research used the CODSTRAN code to model the temperature effects, scaling effects and the loading effects of fiber/braided composite specimens with and without fiber-optic sensors on the damage initiation and energy release rates. The load-displacement relationship and fracture toughness assessment approach is compared with the test results from literature and it is verified that the computational simulation, with the use of established material modeling and finite element modules, adequately tracks the changes of fracture toughness and subsequent fracture propagation for any fiber/braided composite structure due to the change of fiber orientations, presence of large diameter optical fibers, and any loading conditions.
NASA Astrophysics Data System (ADS)
Yoon, Hyuk-Jin; Costantini, Daniele M.; Michaud, Veronique; Limberger, Hans G.; Manson, Jan-Anders; Salathe, Rene P.; Kim, Chun-Gon; Hong, Chang-Sun
2005-05-01
An optical fiber sensor to simultaneously measure strain and temperature was designed and embedded into an adaptive composite laminate which exhibits a shape change upon thermal activation. The sensor is formed by two fiber Bragg gratings, which are written in optical fibers with different core dopants. The two gratings were spliced close to each other and a sensing element resulted with Bragg gratings of similar strain sensitivity but different response to temperature. This is due to the dependence of the fiber thermo-optic coefficient on core dopants and relative concentrations. The sensor was tested on an adaptive composite laminate made of unidirectional Kevlar-epoxy pre-preg plies. Several 150μm diameter pre-strained NiTiCu shape memory alloy wires were embedded in the composite laminate together with one fiber sensor. Simultaneous monitoring of strain and temperature during the curing process and activation in an oven was demonstrated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chi, Yao; Key Laboratory of Multi-Scale Manufacturing Technology, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714; Chu, Jin
2016-05-23
Graphene nanowalls (GNWs) were grown directly on carbon fibers using a chemical vapor deposition technique which is simple and catalyst-free. We found that there is very strong π-π stacking which is a benefit for the GNWs/carbon fiber interface. This single modified filament then was embedded into an epoxy matrix to be a single-fiber composite in which was formed a “tenon-mortise” structure. Such a “tenon-mortise” model provides a simple, stable, and powerful connection between carbon fiber and the epoxy matrix. In addition, it was demonstrated that the epoxy matrix can be well embedded into GNWs through a field emission scanning electronmore » microscope. The results of the single-fiber composite tests indicated that the interfacial strength of the composites was immensely improved by 173% compared to those specimens without GNWs.« less
Energy Absorption in Chopped Carbon Fiber Compression Molded Composites
DOE Office of Scientific and Technical Information (OSTI.GOV)
Starbuck, J.M.
2001-07-20
In passenger vehicles the ability to absorb energy due to impact and be survivable for the occupant is called the ''crashworthiness'' of the structure. To identify and quantify the energy absorbing mechanisms in candidate automotive composite materials, test methodologies were developed for conducting progressive crush tests on composite plate specimens. The test method development and experimental set-up focused on isolating the damage modes associated with the frond formation that occurs in dynamic testing of composite tubes. Quasi-static progressive crush tests were performed on composite plates manufactured from chopped carbon fiber with an epoxy resin system using compression molding techniques. Themore » carbon fiber was Toray T700 and the epoxy resin was YLA RS-35. The effect of various material and test parameters on energy absorption was evaluated by varying the following parameters during testing: fiber volume fraction, fiber length, fiber tow size, specimen width, profile radius, and profile constraint condition. It was demonstrated during testing that the use of a roller constraint directed the crushing process and the load deflection curves were similar to progressive crushing of tubes. Of all the parameters evaluated, the fiber length appeared to be the most critical material parameter, with shorter fibers having a higher specific energy absorption than longer fibers. The combination of material parameters that yielded the highest energy absorbing material was identified.« less
Jayaramudu, J; Reddy, G Siva Mohan; Varaprasad, K; Sadiku, E R; Sinha Ray, S; Varada Rajulu, A
2013-04-02
The development of commercially viable "green products", based on natural resources for the matrices and reinforcements, in a wide range of applications, is on the rise. The present paper focuses on Sterculia urens short fiber reinforced pure cellulose matrix composite films. The morphologies of the untreated and 5% NaOH (alkali) treated S. urens fibers were observed by SEM. The effect of 5% NaOH treated S. urens fiber (5, 10, 15 and 20% loading) on the mechanical properties and thermal stability of the composites films is discussed. This paper presents the developments made in the area of biodegradable S. urens short fiber/cellulose (SUSF/cellulose) composite films, buried in the soil and later investigated by the (POM), before and after biodegradation has taken place. SUSF/cellulose composite films have great potential in food packaging and for medical applications. Copyright © 2013 Elsevier Ltd. All rights reserved.
Seawater infiltration effect on thermal degradation of fiber reinforced epoxy composites
NASA Astrophysics Data System (ADS)
Ibrahim, Mohd Haziq Izzuddin bin; Hassan, Mohamad Zaki bin; Ibrahim, Ikhwan; Rashidi, Ahmad Hadi Mohamed; Nor, Siti Fadzilah M.; Daud, Mohd Yusof Md
2018-05-01
Seawater salinity has been associated with the reduction of polymer structure durability. The aim of this study is to investigate the change in thermal degradation of fiber reinforced epoxy composite due to the presence of seawater. Carbon fiber, carbon/kevlar, fiberglass, and jute that reinforced with epoxy resin was laminated through hand-layup technique. Initially, these specimen was sectioned to 5×5 mm dimension, then immersed in seawater and distilled water at room temperature until it has thoroughly saturated. Following, the thermal degradation analysis using Differential Scanning Calorimetry (DSC), the thermic changes due to seawater infiltration was defined. The finding shows that moisture absorption reduces the glass transition temperature (Tg) of fiber reinforced epoxy composite. However, the glass transition temperature (Tg) of seawater infiltrated laminate composite is compareable with distilled water infiltrated laminate composite. The carbon fiber reinfored epoxy has the highest glass transition temperature out of all specimen.
Fiber grating systems used to measure strain in cylindrical structures
NASA Astrophysics Data System (ADS)
Udd, Eric; Corona-Bittick, Kelli; Slattery, Kerry T.; Dorr, Donald J.; Crowe, C. Robert; Vandiver, Terry L.; Evans, Robert N.
1997-07-01
Fiber optic grating systems are described that have been used to measure strain in cylindrical structures. The applications of these systems to a composite utility pole and to a composite missile body are described. Composite utility poles have significant advantages with respect to wooden utility poles that include superior strength and uniformity; light weight for ease of deployment; the ability to be recycled, reducing hazardous waste associated with chemically treated wooden poles; and compatibility with embedded fiber optic sensors, allowing structural loads to be monitored. Tests conducted of fiber optic grating sensors in combination with an overcoupled coupler demodulation system to support structural testing of a 22-ft composite pole are reported. Monitoring strain in composite missile bodies has the potential to improve the quality of manufactured parts, support performance testing, and enhance safety during long periods of storage. Strain measurements made with fiber optic grating and electrical strain gauges are described.
Surface Modification of Carbon Fiber Polymer Composites after Laser Structuring
NASA Astrophysics Data System (ADS)
Sabau, Adrian S.; Chen, Jian; Jones, Jonaaron F.; Hackett, Alexandra; Jellison, Gerald D.; Daniel, Claus; Warren, David; Rehkopf, Jackie D.
The increasing use of Carbon Fiber-reinforced Polymer matrix Composites (CFPC) as a lightweight material in automotive and aerospace industries requires the control of surface morphology. In this study, the composites surface was prepared by ablating the resin on the top fiber layer of the composite using an Nd:YAG laser. The CFPC specimens with T700S carbon fiber and Prepreg — T83 resin (epoxy) were supplied by Plasan Carbon Composites, Inc. as 4 ply thick, 0/90° plaques. The effect of laser fluence, scanning speed, and wavelength was investigated on the removal rate of the resin without an excessive damage of the fibers. In addition, resin ablation due to the power variation created by a laser interference technique is presented. Optical property measurements, optical micrographs, 3D imaging, and high-resolution optical profiler images were used to study the effect of the laser processing on surface morphology.