Moiré phase-shifted fiber Bragg gratings in polymer optical fibers
NASA Astrophysics Data System (ADS)
Min, Rui; Marques, Carlos; Bang, Ole; Ortega, Beatriz
2018-03-01
We demonstrate a simple way to fabricate phase-shifted fiber Bragg grating in polymer optical fibers as a narrowband transmission filter for a variety of applications at telecom wavelengths. The filters have been fabricated by overlapping two uniform fiber Bragg gratings with slightly different periods to create a Moiré grating with only two pulses (one pulse is 15 ns) of UV power. Experimental characterization of the filter is provided under different conditions where the strain and temperature sensitivities were measured.
All-fiber optical filter with an ultranarrow and rectangular spectral response.
Zou, Xihua; Li, Ming; Pan, Wei; Yan, Lianshan; Azaña, José; Yao, Jianping
2013-08-15
Optical filters with an ultranarrow and rectangular spectral response are highly desired for high-resolution optical/electrical signal processing. An all-fiber optical filter based on a fiber Bragg grating with a large number of phase shifts is designed and fabricated. The measured spectral response shows a 3 dB bandwidth of 650 MHz and a rectangular shape factor of 0.513 at the 25 dB bandwidth. This is the narrowest rectangular bandpass response ever reported for an all-fiber filter, to the best of our knowledge. The filter has also the intrinsic advantages of an all-fiber implementation.
Jeux, François; Desfarges-Berthelemot, Agnès; Kermène, Vincent; Barthelemy, Alain
2012-12-17
We report experiments on a new laser architecture involving phase contrast filtering to coherently combine an array of fiber lasers. We demonstrate that the new technique yields a more stable phase-locking than standard methods using only amplitude filtering. A spectral analysis of the output beams shows that the new scheme generates more resonant frequencies common to the coupled lasers. This property can enhance the combining efficiency when the number of lasers to be coupled is large.
Fabrication of Fiber-Optic Tilted Bragg Grating Filter in 40 nm Range with A Single Phase Mask
NASA Technical Reports Server (NTRS)
Grant, Joseph; Wang, Y.; Sharma, A.; Burdine, Robert V. (Technical Monitor)
2002-01-01
Fiber-optic Bragg grating filters are fabricated with a range of Bragg wavelength between 1296 and 1336 nm, using a single phase mask. 30 mW of continuous-wave light at 244 nm is used from a frequency-doubled argon-ion laser having an intracavity etalon. Gratings are fabricated by tilting the photosensitive fiber with respect to the phase mask up to an angle of 15 degrees. The variation of Bragg wavelength with the fiber-tilt is explained with a simple formula. High spatial coherence of 244 nm light makes it possible to displace the fiber as much as 6 mm in front of the phase mask and tilt the fiber by as much as 15 degrees. This results in nearly constant band-width and near 100% reflectively for all gratings throughout the 40 nm range.
Method of making a continuous ceramic fiber composite hot gas filter
Hill, Charles A.; Wagner, Richard A.; Komoroski, Ronald G.; Gunter, Greg A.; Barringer, Eric A.; Goettler, Richard W.
1999-01-01
A ceramic fiber composite structure particularly suitable for use as a hot gas cleanup ceramic fiber composite filter and method of making same from ceramic composite material has a structure which provides for increased strength and toughness in high temperature environments. The ceramic fiber composite structure or filter is made by a process in which a continuous ceramic fiber is intimately surrounded by discontinuous chopped ceramic fibers during manufacture to produce a ceramic fiber composite preform which is then bonded using various ceramic binders. The ceramic fiber composite preform is then fired to create a bond phase at the fiber contact points. Parameters such as fiber tension, spacing, and the relative proportions of the continuous ceramic fiber and chopped ceramic fibers can be varied as the continuous ceramic fiber and chopped ceramic fiber are simultaneously formed on the porous vacuum mandrel to obtain a desired distribution of the continuous ceramic fiber and the chopped ceramic fiber in the ceramic fiber composite structure or filter.
NASA Astrophysics Data System (ADS)
Arp, Hans Peter H.; Goss, Kai-Uwe
Due to the apparent environmental omnipresence of perfluorocarboxylic acids (PFAs), an increasing number of researchers are investigating their ambient particle- and gas-phase concentrations. Typically this is done using a high-volume air sampler equipped with Quartz Fiber Filters (QFFs) or Glass Fiber Filters (GFFs) to sample the particle-bound PFAs and downstream sorbents to sample the gas-phase PFAs. This study reports that at trace, ambient concentrations gas-phase PFAs sorb to QFFs and GFFs irreversibly and hardly pass through these filters to the downstream sorbents. As a consequence, it is not possible to distinguish between particle- and gas-phase concentrations, or to distinguish concentrations on different particle size fractions, unless precautions are taken. Failure to take such precautions could have already caused reported data to be misinterpreted. Here it is also reported that deactivating QFFs and GFFs with a silylating agent renders them suitable for sampling PFAs. Based on the presented study, a series of recommendations for air-sampling PFAs are provided.
Gatti, Davide; Galzerano, Gianluca; Laporta, Paolo; Longhi, Stefano; Janner, Davide; Guglierame, Andrea; Belmonte, Michele
2008-07-01
Optimal demodulation of differential phase-shift keying signals at 10 Gbit/s is experimentally demonstrated using a specially designed structured fiber Bragg grating composed by Fabry-Perot coupled cavities. Bit-error-rate measurements show that, as compared with a conventional Gaussian-shaped filter, our demodulator gives approximately 2.8 dB performance improvement.
Bidirectional phase-modulated hybrid cable television/radio-over-fiber lightwave transport systems.
Chen, Chia-Yi; Wu, Po-Yi; Lu, Hai-Han; Lin, Ying-Pyng; Gao, Ming-Cian; Wen, Jian-Ying; Chen, Hwan-Wen
2013-02-15
A bidirectional phase-modulated hybrid cable television/radio-over-fiber lightwave transport system employing fiber Bragg grating tilt filter as a phase modulation-to-intensity modulation conversion scheme is proposed and demonstrated. Impressive performances of carrier-to-noise ratio, composite second-order, composite triple-beat, and bit-error rate are obtained in our proposed systems over a combination of 40 km single-mode fiber-and 1.43 km photonic crystal fiber transmission.
2014-02-26
through RF filtering . Subsequently, this modulated signal is used in a cutback experiment with a passive fiber . Studies describing enhancement factors...to filter out higher order modes [3]. However, in order to maintain single-mode (diffraction limited) operation, conventional step-index fiber core...Letters 36, 2686-2688 (2011). [3] J. P. Koplaw, D. Kliner, and L. Goldberg, “Single-mode operation of a coiled multimode fiber amplifier,” Optics Letters
Zhen, Qi; Zhang, Min; Song, Wenlan; Wang, Huiju; Wang, Xuemei; Du, Xinzhen
2016-10-01
An oriented titanium-nickel oxide composite nanotubes coating was in situ grown on a nitinol wire by direct electrochemical anodization in ethylene glycol with ammonium fluoride and water for the first time. The morphology and composition of the resulting coating showed that the anodized nitinol wire provided a titania-rich coating. The titanium-nickel oxide composite nanotubes coated fiber was used for solid-phase microextraction of different aromatic compounds coupled to high-performance liquid chromatography with UV detection. The titanium-nickel oxide composite nanotubes coating exhibited high extraction capability, good selectivity, and rapid mass transfer for weakly polar UV filters. Thereafter the important parameters affecting extraction efficiency were investigated for solid-phase microextraction of UV filters. Under the optimized conditions, the calibration curves were linear in the range of 0.1-300 μg/L for target UV filters with limits of detection of 0.019-0.082 μg/L. The intraday and interday precision of the proposed method with the single fiber were 5.3-7.2 and 5.9-7.9%, respectively, and the fiber-to-fiber reproducibility ranged from 6.3 to 8.9% for four fibers fabricated in different batches. Finally, its applicability was evaluated by the extraction and determination of target UV filters in environmental water samples. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Rocking filters fabricated in birefringent photonic crystal fiber
NASA Astrophysics Data System (ADS)
Statkiewicz-Barabach, Gabriela; Anuszkiewicz, Alicja; Urbanczyk, Waclaw; Wojcik, Jan
2008-12-01
We demonstrate an efficient higher order rocking filter, which resonantly couples polarization modes guided in birefringent photonic crystal fibers. The grating was inscribed in the birefringent fiber with two large holes adjacent to the core by periodic mechanical twisting and heating with an arc fusion splicer. Because in photonic crystal fibers the phase birefringence is very dispersive and increases against wavelength, the phase matching between coupled modes can be obtained simultaneously at several wavelengths. In particular, we demonstrate that for the grating period Λ =8 mm, resonant coupling can be obtained at three different wavelengths. The first order coupling (-13dB) is obtained for Λ = LB . This condition is fulfilled at λ = 856 nm. The second order coupling (-20dB) is obtained for Λ = 2LB at λ =1270 nm and the third order coupling (- 17dB) occurs for Λ = 3LB at λ =1623 nm. The length of the filter was 9.6 cm, which corresponds to 13 periodic twists. We also present the results of sensitivity measurements of this filter to hydrostatic pressure and temperature.
A simple system for 160GHz optical terahertz wave generation and data modulation
NASA Astrophysics Data System (ADS)
Li, Yihan; He, Jingsuo; Sun, Xueming; Shi, Zexia; Wang, Ruike; Cui, Hailin; Su, Bo; Zhang, Cunlin
2018-01-01
A simple system based on two cascaded Mach-Zehnder modulators, which can generate 160GHz optical terahertz waves from 40GHz microwave sources, is simulated and tested in this paper. Fiber grating filter is used in the system to filter out optical carrier. By properly adjusting the modulator DC bias voltages and the signal voltages and phases, 4-tupling optical terahertz wave can be generated with fiber grating. This notch fiber grating filter is greatly suitable for terahertz over fiber (TOF) communication system. This scheme greatly reduces the cost of long-distance terahertz communication. Furthermore, 10Gbps digital signal is modulated in the 160GHz optical terahertz wave.
Liu, Wei; Li, Chen; Zhang, Zhigang; Kärtner, Franz X; Chang, Guoqing
2016-07-11
We propose and demonstrate a new approach to implement a wavelength-tunable ultrafast fiber laser source suitable for multiphoton microscopy. We employ fiber-optic nonlinearities to broaden a narrowband optical spectrum generated by an Yb-fiber laser system and then use optical bandpass filters to select the leftmost or rightmost spectral lobes from the broadened spectrum. Detailed numerical modeling shows that self-phase modulation dominates the spectral broadening, self-steepening tends to blue shift the broadened spectrum, and stimulated Raman scattering is minimal. We also find that optical wave breaking caused by fiber dispersion slows down the shift of the leftmost/rightmost spectral lobes and therefore limits the wavelength tuning range of the filtered spectra. We show both numerically and experimentally that shortening the fiber used for spectral broadening while increasing the input pulse energy can overcome this dispersion-induced limitation; as a result, the filtered spectral lobes have higher power, constituting a powerful and practical approach for energy scaling the resulting femtosecond sources. We use two commercially available photonic crystal fibers to verify the simulation results. More specific, use of 20-mm fiber NL-1050-ZERO-2 enables us to implement an Yb-fiber laser based ultrafast source, delivering femtosecond (70-120 fs) pulses tunable from 825 nm to 1210 nm with >1 nJ pulse energy.
Chandramouli, Bharat; Benskin, Jonathan P; Hamilton, M Coreen; Cosgrove, John R
2015-01-01
Per- and polyfluoroalkyl substances (PFASs), including perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS), are ubiquitous in the environment. Investigations into their fate and potential phase-partitioning behavior require separating solid from aqueous phases via filtration. However, sorption of aqueous-phase PFASs on filtration media may lead to underestimation of PFAS concentrations in the aqueous phase. The authors investigated the sorption of perfluoroalkyl carboxylates, perfluoroalkyl sulfonates, perfluoroalkyl phosphonic acids, perfluoroalkyl phosphinic acids (PFPiAs), polyfluoroalkyl phosphate monoesters, polyfluoroalkyl phosphate diesters (diPAPs), fluorotelomer sulfonates, and perfluorooctane sulfonamide on filtration media. The effects of concentration (3 spiking levels), filter media (4 types), matrix (4 matrices), and compound structure on sorption are reported. Glass fiber filtration resulted in the least sorption, whereas polytetrafluoroethylene filters resulted in the most sorption (up to 98%). Analyte concentration had no significant effect. Sorption was generally consistent across matrix types except for samples affected by aqueous film forming foam deployment, which displayed high sorption of PFOS on nylon filters. Sorption usually increased with an increasing number of carbon or fluorine atoms and was most pronounced for PFPiAs and diPAPs (30–75% sorption). Overall, glass fiber filters are more recommended than nylon filters in environmental samples when phase separation is required. Use of filtration media for PFAS must be preceded by matrix-specific testing to account for unpredictable effects. (C)2014 SETAC
Wang, Yiping; Ni, Xiaoqi; Wang, Ming; Cui, Yifeng; Shi, Qingyun
2017-01-23
In this paper, a demodulation method for optic fiber micro-electromechanical systems (MEMS) extrinsic Fabry-Perot interferometer (EFPI) pressure sensor exploiting microwave photonics filter technique is firstly proposed and experimentally demonstrated. A single bandpass microwave photonic filter (MPF) which mainly consists of a spectrum-sliced light source, a pressurized optical fiber MEMS EFPI, a phase modulator (PM) and a length of dispersion compensating fiber (DCF) is demonstrated. The frequency response of the filter with respect to the pressure is studied. By detecting the resonance frequency shifts of the MPF, the pressure can be determined. The theoretical and experimental results show that the proposed EFPI pressure demodulation method has a higher resolution and higher speed than traditional methods based on optical spectrum analysis. The sensitivity of the sensor is measured to be as high as 86 MHz/MPa in the range of 0-4Mpa. Moreover, the sensitivity can be easily adjusted.
Xu, Ou; Zhang, Jiejun; Yao, Jianping
2016-11-01
High speed and high resolution interrogation of a fiber Bragg grating (FBG) sensor based on microwave photonic filtering and chirped microwave pulse compression is proposed and experimentally demonstrated. In the proposed sensor, a broadband linearly chirped microwave waveform (LCMW) is applied to a single-passband microwave photonic filter (MPF) which is implemented based on phase modulation and phase modulation to intensity modulation conversion using a phase modulator (PM) and a phase-shifted FBG (PS-FBG). Since the center frequency of the MPF is a function of the central wavelength of the PS-FBG, when the PS-FBG experiences a strain or temperature change, the wavelength is shifted, which leads to the change in the center frequency of the MPF. At the output of the MPF, a filtered chirped waveform with the center frequency corresponding to the applied strain or temperature is obtained. By compressing the filtered LCMW in a digital signal processor, the resolution is improved. The proposed interrogation technique is experimentally demonstrated. The experimental results show that interrogation sensitivity and resolution as high as 1.25 ns/με and 0.8 με are achieved.
Characteristics research on self-amplified distributed feedback fiber laser
NASA Astrophysics Data System (ADS)
Song, Zhiqiang; Qi, Haifeng; Guo, Jian; Wang, Chang; Peng, Gangding
2014-09-01
A distributed feedback (DFB) fiber laser with a ratio of the backward to forward output power of 1:100 was composed by a 45-mm-length asymmetrical phase-shifted fiber grating fabricated on the 50-mm erbium-doped photosensitive fiber. Forward output laser was amplified using a certain length of Nufern EDFL-980-Hp erbium-doped fiber to absorb the surplus pump power after the active phase-shifted fiber grating and get population inversion. By using OptiSystem software, the best fiber length of the EDFL to get the highest gain was simulated. In order to keep the amplified laser with the narrow line-width and low noise, a narrow-band light filter consisting of a fiber Bragg grating (FBG) with the same Bragg wavelength as the laser and an optical circulator was used to filter the amplified spontaneous emission (ASE) noise of the out-cavity erbium-doped fiber. The designed laser structure sufficiently utilized the pump power, and a DFB fiber laser with the 32.5-mW output power, 11.5-kHz line width, and -87-dB/Hz relative intensity noise (RIN) at 300 mW of 980 nm pump power was brought out.
NASA Astrophysics Data System (ADS)
Shi, Nuannuan; Hao, Tengfei; Li, Wei; Zhu, Ninghua; Li, Ming
2018-01-01
We propose a photonic scheme to realize a reconfigurable microwave photonic filter (MPF) with flexible tunability using a multi-wavelength laser (MWL) and a multi-channel phase-shifted fiber Bragg grating (PS-FBG). The proposed MPF is capable of performing reconfigurability including single bandpass filter, two independently bandpass filter and a flat-top bandpass filter. The performance such as the central frequency and the bandwidth of passband is tuned by controlling the wavelengths of the MWL. In the MPF, The light waves from a MWL are sent to a phase modulator (PM) to generate the phase-modulated optical signals. By applying a multi-channel PS-FBG, which has a series of narrow notches in the reflection spectrum with the free spectral range (FSR) of 0.8 nm, the +1st sidebands are removed in the notches and the phased-modulated signals are converted to the intensity-modulated signals without beating signals generation between each two optical carriers. The proposed MPF is also experimentally verified. The 3-dB bandwidth of the MPF is broadened from 35 MHz to 135 MHz and the magnitude deviation of the top from the MPF is less than 0.2 dB within the frequency tunable range from 1 GHz to 5 GHz.
A 10-Gbit/s EML link using detuned narrowband optical filtering.
Ebrahimi, P; Jones, R; Wang, Y; Yan, L; Mader, T; Paniccia, M; Willner, A E; Paraschis, L
2007-08-20
In this paper, the effects of asymmetric narrowband optical filtering are investigated in a 10-Gbit/s optical communication link using integrated electro-absorption modulated lasers (EML). We investigate the effect of EML chirp on link performance as well as the optimal filter bandwidth and wavelength detuning. We show that both the phase response and the spectral narrowing of the filter will enable a longer distance transmission by interacting with the EML transient chirp and compensating for the fiber chromatic dispersion. Experimentally, an 8.75-GHz filter is shown to improve the link distance by 40 km from 65 to 105 km, when transmitting over standard single mode fiber.
Seven-core neodymium-doped phosphate all-solid photonic crystal fibers
NASA Astrophysics Data System (ADS)
Wang, Longfei; He, Dongbing; Feng, Suya; Yu, Chunlei; Hu, Lili; Chen, Danping
2016-01-01
We demonstrate a single-mode seven-core Nd-doped phosphate photonic crystal fiber with all-solid structure with an effective mode field diameter of 108 μm. The multicore fiber is first theoretically investigated through the finite-difference time-domain method. Then the in-phase mode is selected experimentally by a far-field mode-filtering method. The obtained in-phase mode has 7 mrad mode field divergences, which approximately agrees with the predicted 5.6 mrad in seven-core fiber. Output power of 15.5 W was extracted from a 25 cm fiber with slope efficiency of 57%.
Femtosecond pulse inscription of a selective mode filter in large mode area fibers
NASA Astrophysics Data System (ADS)
Krämer, Ria G.; Voigtländer, Christian; Freier, Erik; Liem, Andreas; Thomas, Jens U.; Richter, Daniel; Schreiber, Thomas; Tünnermann, Andreas; Nolte, Stefan
2013-02-01
We present a selective mode filter inscribed with ultrashort pulses directly into a few mode large mode area (LMA) fiber. The mode filter consists of two refractive index modifications alongside the fiber core in the cladding. The refractive index modifications, which were of approximately the same order of magnitude as the refractive index difference between core and cladding have been inscribed by nonlinear absorption of femtosecond laser pulses (800 nm wavelength, 120 fs pulse duration). If light is guided in the core, it will interact with the inscribed modifications causing modes to be coupled out of the core. In order to characterize the mode filter, we used a femtosecond inscribed fiber Bragg grating (FBG), which acts as a wavelength and therefore mode selective element in the LMA fiber. Since each mode has different Bragg reflection wavelengths, an FBG in a multimode fiber will exhibit multiple Bragg reflection peaks. In our experiments, we first inscribed the FBG using the phase mask scanning technique. Then the mode filter was inscribed. The reflection spectrum of the FBG was measured in situ during the inscription process using a supercontinuum source. The reflectivities of the LP01 and LP11 modes show a dependency on the length of the mode filter. Two stages of the filter were obtained: one, in which the LP11 mode was reduced by 60% and one where the LP01 mode was reduced by 80%. The other mode respectively showed almost no losses. In conclusion, we could selectively filter either the fundamental or higher order modes.
Dong, Bo; Zhou, Da-Peng; Wei, Li; Liu, Wing-Ki; Lit, John W Y
2008-11-10
A novel lateral force sensor based on a core-offset multi-mode fiber (MMF) interferometer is reported. High extinction ratio can be obtained by misaligning a fused cross section between the single-mode fiber (SMF) and MMF. With the variation of the lateral force applied to a short section of the MMF, the extinction ratio changes while the interference phase remains almost constant. The change of the extinction ratio is independent of temperature variations. The proposed force sensor has the advantages of temperature- and phase-independency, high extinction ratio sensitivity, good repeatability, low cost, and simple structure. Moreover, the core-offset MMF interferometer is expected to have applications in fiber filters and tunable phase-independent attenuators.
Interferometric interrogation of π-phase shifted fiber Bragg grating sensors
NASA Astrophysics Data System (ADS)
Srivastava, Deepa; Tiwari, Umesh; Das, Bhargab
2018-03-01
Interferometric interrogation technique realized for conventional fiber Bragg grating (FBG) sensors is historically known to offer the highest sensitivity measurements, however, it has not been yet explored for π-phase-shifted FBG (πFBG) sensors. This, we believe, is due to the complex nature of the reflection/transmission spectrum of a πFBG, which cannot be directly used for interferometric interrogation purpose. Therefore, we propose here an innovative as well as simple concept towards this direction, wherein, the transmission spectrum of a πFBG sensor is optically filtered using a specially designed fiber grating. The resulting filtered spectrum retains the entire characteristics of a πFBG sensor and hence the filtered spectrum can be interrogated with interferometric principles. Furthermore, due to the extremely narrow transmission notch of a πFBG sensor, a fiber interferometer can be realized with significantly longer path difference. This leads to substantially enhanced detection limit as compared to sensors based on a regular FBG of similar length. Theoretical analysis demonstrates that high resolution weak dynamic strain measurement down to 4 pε /√{ Hz } is easily achievable. Preliminary experimental results are also presented as proof-of-concept of the proposed interrogation principle.
Kong, Peter C [Idaho Falls, ID
2008-12-23
A self-cleaning porous cermet material, filter and system utilizing the same may be used in filtering particulate and gaseous pollutants from internal combustion engines having intermetallic and ceramic phases. The porous cermet filter may be made from a transition metal aluminide phase and an alumina phase. Filler materials may be added to increase the porosity or tailor the catalytic properties of the cermet material. Additionally, the cermet material may be reinforced with fibers or screens. The porous filter may also be electrically conductive so that a current may be passed therethrough to heat the filter during use. Further, a heating element may be incorporated into the porous cermet filter during manufacture. This heating element can be coated with a ceramic material to electrically insulate the heating element. An external heating element may also be provided to heat the cermet filter during use.
1995-06-30
Novel concepts of near-collinear/collinear acousto - optic interactions have been investigated during this SBIR Phase I program. As a result, several...new acousto - optic tunable filters have been built and tested. The program is highlighted by: (1) Design, fabrication and experimental demonstration of...a novel TeO2 near-collinear acousto - optic tunable filter has been designed, fabricated and tested. The device exhibits a 1.29 nm spectral resolution
Cermet materials, self-cleaning cermet filters, apparatus and systems employing same
Kong, Peter C.
2005-07-19
A self-cleaning porous cermet material, filter and system utilizing the same may be used in filtering particulate and gaseous pollutants from internal combustion engines having intermetallic and ceramic phases. The porous cermet filter may be made from a transition metal aluminide phase and an alumina phase. Filler materials may be added to increase the porosity or tailor the catalytic properties of the cermet material. Additionally, the cermet material may be reinforced with fibers or screens. The porous filter may also be electrically conductive so that a current may be passed therethrough to heat the filter during use. Further, a heating element may be incorporated into the porous cermet filter during manufacture. This heating element can be coated with a ceramic material to electrically insulate the heating element. An external heating element may also be provided to heat the cermet filter during use.
NASA Astrophysics Data System (ADS)
Gallego, E. E.; Ascorbe, J.; Del Villar, I.; Corres, J. M.; Matias, I. R.
2018-05-01
This work describes the process of nanofabrication of phase-shifted Bragg gratings on the end facet of a multimode optical fiber with a pulsed DC sputtering system based on a single target. Several structures have been explored as a function of parameters such as the number of layers or the phase-shift. The experimental results, corroborated with simulations based on plane-wave propagation in a stack of homogeneous layers, indicate that the phase-shift can be controlled with a high degree of accuracy. The device could be used both in communications, as a filter, or in the sensors domain. As an example of application, a humidity sensor with wavelength shifts of 12 nm in the range of 30 to 90% relative humidity (200 pm/% relative humidity) is presented.
Želudevičius, J; Danilevičius, R; Viskontas, K; Rusteika, N; Regelskis, K
2013-03-11
Results of numerical and experimental investigations of the simple fiber CPA system seeded by nearly bandwidth-limited pulses from the picosecond oscillator are presented. We utilized self-phase modulation in a stretcher fiber to broaden the pulse spectrum and dispersion of the fiber to stretch pulses in time. During amplification in the ytterbium-doped CCC fiber, gain-shaping and self-phase modulation effects were observed, which improved pulse compression with a bulk diffraction grating compressor. After compression with spectral filtering, pulses with the duration of 400 fs and energy as high as 50 µJ were achieved, and the output beam quality was nearly diffraction-limited.
Sagues, Mikel; García Olcina, Raimundo; Loayssa, Alayn; Sales, Salvador; Capmany, José
2008-01-07
We propose a novel scheme to implement tunable multi-tap complex coefficient filters based on optical single sideband modulation and narrow band optical filtering. A four tap filter is experimentally demonstrated to highlight the enhanced tuning performance provided by complex coefficients. Optical processing is performed by the use of a cascade of four phase-shifted fiber Bragg gratings specifically fabricated for this purpose.
Jing, Mingyong; Yu, Bo; Hu, Jianyong; Hou, Huifang; Zhang, Guofeng; Xiao, Liantuan; Jia, Suotang
2017-05-15
In this paper, we present a novel ultra-narrow linewidth fiber resonator formed by a tunable polarization maintaining (PM) π-phase-shifted fiber Bragg grating and a PM uniform fiber Bragg grating with a certain length of PM single mode fiber patch cable between them. Theoretical prediction shows that this resonator has ultra-narrow linewidth resonant peaks and is easy to realize impedance matching. We experimentally obtain 3 MHz narrow linewidth impedance matched resonant peak in a 7.3 m ultra-long passive fiber cavity. The impedance self-matching characteristic of this resonator also makes itself particularly suitable for use in ultra-sensitive sensors, ultra-narrow band rejection optical filters and fiber lasers applications.
Freeing Water from Viruses and Bacteria
NASA Technical Reports Server (NTRS)
2004-01-01
Four years ago, Argonide Corporation, a company focused on the research, production, and marketing of specialty nano materials, was seeking to develop applications for its NanoCeram[R] fibers. Only 2 nanometers in diameter, these nano aluminum oxide fibers possessed unusual bio-adhesive properties. When formulated into a filter material, the electropositive fibers attracted and retained electro-negative particles such as bacteria and viruses in water-based solutions. This technology caught the interest of NASA as a possible solution for improved water filtration in space cabins. NASA's Johnson Space Center awarded Sanford, Florida-based Argonide a Phase I Small Business Innovation Research (SBIR) contract to determine the feasibility of using the company's filter for purifying recycled space cabin water. Since viruses and bacteria can be carried aboard space cabins by space crews, the ability to detect and remove these harmful substances is a concern for NASA. The Space Agency also desired an improved filter to polish the effluent from condensed and waste water, producing potable drinking water. During its Phase I partnership with NASA, Argonide developed a laboratory-size filter capable of removing greater than 99.9999 percent of bacteria and viruses from water at flow rates more than 200 times faster than virus-rated membranes that remove particles by sieving. Since the new filter s pore size is rather large compared to other membranes, it is also less susceptible to clogging by small particles. In September 2002, Argonide began a Phase II SBIR project with Johnson to develop a full-size cartridge capable of serving a full space crew. This effort, which is still ongoing, enabled the company to demonstrate that its filter media is an efficient absorbent for DNA and RNA.
Wang, Huiju; Song, Wenlan; Zhang, Min; Zhen, Qi; Guo, Mei; Zhang, Yida; Du, Xinzhen
2016-10-14
A novel titanium and nickel oxide composite nanosheets (TiO 2 /NiOCNSs) coating was in situ grown on a Nitinol (NiTi) wire by direct hydrothermal treatment and modified by self-assembly of trichlorophenylsilane for solid phase microextraction (SPME). TiO 2 /NiOCNSs were radially oriented and chemically bonded to the NiTi substrate with double-faced open access sites. Moreover the phenyl modified TiO 2 /NiOCNSs (TiO 2 /NiOCNSs-Ph) coating exhibited original surface supporting framework favorable for effective SPME. The extraction performance of TiO 2 /NiOCNSs-Ph coated NiTi (NiTi-TiO 2 /NiOCNSs-Ph) fiber was investigated for the concentration and detection of ultraviolet (UV) filters, polycyclic aromatic hydrocarbons (PAHs), phthalate acid esters and polychlorinated biphenyls coupled to HPLC with UV detection. The novel fiber exhibited better selectivity for UV filters and PAHs and presented greater extraction capability compared to commercial polydimethylsiloxane and polyacrylate fibers. Under the optimized conditions for SPME of UV filters, the proposed method presented linear ranges from 0.1 to 300μg/L with correlation coefficients of higher than 0.999 and limits of detection from 0.030μg/L to 0.064μg/L. Relative standard deviations (RSDs) were below 7.16% and 8.42% for intra-day and inter-day measurements with the single fiber, respectively. Furthermore RSDs for fiber-to-fiber reproducibility from 6.57% to 8.93% were achieved. The NiTi-TiO 2 /NiOCNSs-Ph fiber can be used up to 200 times. The proposed method was successfully applied to the preconcentration and determination of trace target UV filters in different environmental water samples. The relative recoveries from 87.3% to 104% were obtained with RSDs less than 8.7%. Copyright © 2016 Elsevier B.V. All rights reserved.
Parity-time–symmetric optoelectronic oscillator
2018-01-01
An optoelectronic oscillator (OEO) is a hybrid microwave and photonic system incorporating an amplified positive feedback loop to enable microwave oscillation to generate a high-frequency and low–phase noise microwave signal. The low phase noise is ensured by the high Q factor of the feedback loop enabled by the use of a long and low-loss optical fiber. However, an OEO with a long fiber loop would have a small free spectral range, leading to a large number of closely spaced oscillation modes. To ensure single-mode oscillation, an ultranarrowband optical filter must be used, but such an optical filter is hard to implement and the stability is poor. Here, we use a novel concept to achieve single-mode oscillation without using an ultranarrowband optical filter. The single-mode operation is achieved based on parity-time (PT) symmetry by using two identical feedback loops, with one having a gain and the other having a loss of the same magnitude. The operation is analyzed theoretically and verified by an experiment. Stable single-mode oscillation at an ultralow phase noise is achieved without the use of an ultranarrowband optical filter. The use of PT symmetry in an OEO overcomes the long-existing mode-selection challenge that would greatly simplify the implementation of OEOs for ultralow–phase noise microwave generation. PMID:29888325
NASA Astrophysics Data System (ADS)
Frankel, R. J.
1981-05-01
A simple, inexpensive, and efficient method of water treatment for rural communities in Southeast Asia was developed using local materials as filter media. The filter utilizes coconut fiber and burnt rice husks in a two-stage filtering process designed as a gravityfed system without the need for backwashing, and eliminates in most cases the need of any chemicals. The first-stage filter with coconut fiber acts essentially as a substitute for the coagulation and sedimentation phases of conventional water-treatment plants. The second-stage filter, using burnt rice husks, is similar to slow sand filtration with the additional benefits of taste, color and odor removals through the absorption properties of the activated carbon in the medium. This paper reports on the design, construction costs, and operating results of several village size units in Thailand and in the Philippines.
Lolla, Dinesh; Lolla, Manideep; Abutaleb, Ahmed; Shin, Hyeon U.; Reneker, Darrell H.; Chase, George G.
2016-01-01
Electrospun polyvinylidene fluoride (PVDF) fiber mats with average fiber diameters (≈200 nm, ≈2000 nm) were fabricated by controlled electrospinning conditions. These fiber mats were polarized using a custom-made device to enhance the formation of the electret β-phase ferroelectric property of the fibers by simultaneous uniaxial stretching of the fiber mat and heating the mat to the Curie temperature of the PVDF polymer in a strong electric field of 2.5 kV/cm. Scanning electron microscopy, Fourier transform infrared spectroscopy, thermal gravimetric analysis, differential scanning calorimetry and Brunauer-Emmett-Teller (BET) surface area analyses were performed to characterize both the internal and external morphologies of the fiber mat samples to study polarization-associated changes. MATLAB simulations revealed the changes in the paths of the electric fields and the magnetic flux inside the polarization field with inclusion of the ferroelectric fiber mats. Both polarized and unpolarized fiber mats were challenged as filters against NaCl particles with average particle diameters of about 150 nm using a TSI 8130 to study capture efficiencies and relative pressure drops. Twelve filter experiments were conducted on each sample at one month time intervals between experiments to evaluate the reduction of the polarization enhancement over time. The results showed negligible polarization loss for the 200-nm fiber sample. The polarized mats had the highest filter efficiencies and lowest pressure drops. PMID:28773798
High-temperature sapphire optical sensor fiber coatings
NASA Astrophysics Data System (ADS)
Desu, Seshu B.; Claus, Richard O.; Raheem, Ruby; Murphy, Kent A.
1990-10-01
Advanced coal-fired power generation systems, such as pressurized fluidized-bed combustors and integrated gasifier-combined cycles, may provide cost effective future alternatives for power generation, improve our utilization of coal resources, and decrease our dependence upon oil and gas. When coal is burned or converted to combustible gas to produce energy, mineral matter and chemical compounds are released as solid and gaseous contaminants. The control of contaminants is mandatory to prevent pollution as well as degradation of equipment in advanced power generation. To eliminate the need for expensive heat recovery equipment and to avoid efficiency losses it is desirable to develop a technology capable of cleaning the hot gas. For this technology the removal of particle contaminants is of major concern. Several prototype high temperature particle filters have been developed, including ceramic candle filters, ceramic bag filters, and ceramic cross-flow (CXF) filters. Ceramic candle filters are rigid, tubular filters typically made by bonding silicon carbide or alumina-silica grains with clay bonding materials and perhaps including alumina-silica fibers. Ceramic bag filters are flexible and are made from long ceramic fibers such as alumina-silica. CXF filters are rigid filters made of stacks of individual lamina through which the dirty and clean gases flow in cross-wise directions. CXF filters are advantageous for hot gas cleanup applications since they offer a large effective filter surface per unit volume. The relatively small size of the filters allows the pressurized vessel containing them to be small, thus reducing potential equipment costs. CXF filters have shown promise but have experienced degradation at normal operational high temperatures (close to 1173K) and high pressures (up to 24 bars). Observed degradation modes include delamination of the individual tile layers, cracking at either the tile-torid interface or at the mounting flange, or plugging of the filter. These modes may be attributed to a number of material degradation mechanisms, such as thermal shock, oxidation corrosion of the material, mechanical loads, or phase changes in the filter material. Development of high temperature optical fiber (sapphire) sensors embedded in the CXF filters would be very valuable for both monitoring the integrity of the filter during its use and understanding the mechanisms of degradation such that durable filter development will be facilitated. Since the filter operating environment is very harsh, the high temperature sapphire optical fibers need to be protected and for some sensing techniques the fiber must also be coated with low refractive index film (cladding). The objective of the present study is to identify materials and develop process technologies for the application of claddings and protective coatings that are stable and compatible with sapphire fibers at both high temperatures and pressures.
Ultra narrow flat-top filter based on multiple equivalent phase shifts
NASA Astrophysics Data System (ADS)
Wang, Fei; Zou, Xihua; Yin, Zuowei; Chen, Xiangfei; Shen, Haisong
2008-11-01
Instead of real phase shifts, equivalent phase shifts (EPS) are adopted to construct ultra narrow phase-shifted band-pass filer in sampled Bragg gratings (SBG). Two optimized distributions of multiple equivalent phase shifts, using 2 and 5 EPSs respectively, are given in this paper to realize flat-top and ripple-free transmission characteristics simultaneously. Also two demonstrations with 5 EPSs both on hydrogen-loaded and photosensitive fibers are presented and their spectrums are examined by an optical vector analyzer (OVA). Given only ordinary phase mask and sub-micrometer precision control, ultra-narrowband flat-top filters with expected performance can be achieved flexibly and cost-effectively.
Li, Yi; Zhang, Min; Yang, Yaoxia; Wang, Xuemei; Du, Xinzhen
2014-09-05
A novel TiO2-nanosheets coated fiber for solid-phase microextraction (SPME) was fabricated by anodization of Ti wire substrates in ethylene glycol with concentrated NH4F. The in situ fabricated TiO2-nanosheets were densely embedded into Ti substrates with about 1μm long, 300nm wide and 80nm thick. The as-fabricated TiO2-nanosheets coating was employed to extract polycyclic aromatic hydrocarbons, phthalates and ultraviolet (UV) filters in combination with high performance liquid chromatography-UV detection (HPLC-UV). It was found that the TiO2-nanosheets coating exhibited high extraction capability and good selectivity for some UV filters frequently used in cosmetic sunscreen formulations. The main parameters affecting extraction performance were investigated and optimized. Under the optimized conditions, the calibration graphs were linear in the range of 0.1-400μgL(-1). The limits of detection of the proposed method were between 0.026μgL(-1) and 0.089μgL(-1) (S/N=3). The single fiber repeatability varied from 4.50% to 8.76% and the fiber-to-fiber reproducibility ranged from 7.75% to 9.64% for the extraction of spiked water with 50μgL(-1) UV filters (n=5). The SPME-HPLC-UV method was successfully established for the selective preconcentration and sensitive detection of target UV filters from real environmental water samples. Recovery of UV filters spiked at 10μgL(-1) and 25μgL(-1) ranged from 88.8% to 107% and the relative standard deviations were less than 9.8%. Furthermore the in situ growth of the TiO2-nanosheets coating was performed in a highly reproducible manner and the TiO2-nanosheets coated fiber has high mechanical strength, good stability and long service life. Copyright © 2014 Elsevier B.V. All rights reserved.
Chin, Sanghoon; Thévenaz, Luc; Sancho, Juan; Sales, Salvador; Capmany, José; Berger, Perrine; Bourderionnet, Jérôme; Dolfi, Daniel
2010-10-11
We experimentally demonstrate a novel technique to process broadband microwave signals, using all-optically tunable true time delay in optical fibers. The configuration to achieve true time delay basically consists of two main stages: photonic RF phase shifter and slow light, based on stimulated Brillouin scattering in fibers. Dispersion properties of fibers are controlled, separately at optical carrier frequency and in the vicinity of microwave signal bandwidth. This way time delay induced within the signal bandwidth can be manipulated to correctly act as true time delay with a proper phase compensation introduced to the optical carrier. We completely analyzed the generated true time delay as a promising solution to feed phased array antenna for radar systems and to develop dynamically reconfigurable microwave photonic filters.
Trujillo-Rodríguez, María J; Nan, He; Anderson, Jared L
2018-03-09
Three crosslinked polymeric ionic liquid (PIL) sorbent coatings were used in headspace solid-phase microextraction for the determination of a group of ultraviolet filters. The developed crosslinked PIL-based materials include two polycations and a double confined PIL. The method, in combination with gas chromatography-mass spectrometry, is simple, solvent free, and does not require of any derivatization step. After proper optimization of the methodologies with each developed fiber, the analytical performance was compared with a commercial polyacrylate fiber. A study of the normalized calibration slopes, obtained by dividing the calibration slope of each analyte by the coating volume, revealed that the crosslinked fibers can be used as alternatives to commercial fibers for the determination of the selected group of compounds. In particular, the coating nature of the PIL containing the 1-vinylbenzyl-3-hexadecylimidazolium bis[(trifluoromethyl)sulfonyl]imide IL as monomer and the 1,12-di(3-vinylbenzylimidazolium)dodecane bis[(trifluoromethyl)sulfonyl]imide IL as crosslinker is the most suitable for the extraction of the selected compounds despite their coating volume, being 3.6 times lower than the commercial polyacrylate fiber. For this fiber, wide linear ranges, correlation coefficients higher than 0.990, limits of detection ranging from 2.8 ng L -1 to 26 ng L -1 and relative standard deviations ranging from 2.5 to 15% were achieved. Finally, all proposed PIL-based fibers were applied towards the analysis of tap water, pool water and lake water, with the majority of the ultraviolet filters being detected and quantified in the last two types of samples. Copyright © 2018 Elsevier B.V. All rights reserved.
Particulate-Phase Carbonyls: Laboratory and Pacific 2001 Field Measurements
NASA Astrophysics Data System (ADS)
Liggio, J.; McLaren, R.
2002-12-01
Atmospheric aldehydes and ketones are important constituents of the gas phase. They are emitted from athropogenic and biogenic sources directly, but are also formed as secondary oxidation products of a variety of saturated and unsaturated hydrocarbons. Although their gas phase occurrence and chemistry is well known, the presence of these compounds in the particulate phase is not completely understood. A method has been developed to measure particulate phase carbonyls. Analysis was performed by a simultaneous extraction and derivatization of carbonyls by 2,4-dinitrophenylhydrazine. The subsequent derivatives are pre-concentrated and injected onto an HPLC and detected by UV absorption. Laboratory studies of the extraction kinetics, suggest that partitioning of even highly volatile carbonyls may be possible. Also, experiments performed to determine the extent of positive artifacts on Teflon coated filters, indicate that measurements of these volatile carbonyls are likely not a result of gas-phase adsorption to the filter. These studies also indicate that sampling on quartz fiber filters may introduce significantly more uncertainty with respect to positive artifacts. The analytical method was used to analyze filters sampled during the Pacific 2001 field campaign. Particulate samples were collected on Teflon coated glass-fiber filters. Samples were collected at an urban site (Slocan Park,Vancouver), a rural site (Langley) and an elevated rural mountain site (Eagle Ridge, Sumas). Preliminary results show several carbonyls present in aerosols, at pg/m3 to ng/m3 levels. Detected carbonyls of possible anthropogenic origin include formaldehyde, acetaldehyde, acetone, propanal, glyoxal and methylglyoxal. Detected carbonyls of biogenic origin include pinonaldehyde and nopinone, known oxidation products of the biogenically emitted a-pinene and b-pinene. Possible mechanisms for carbonyl partitioning and implications for their contribution to aerosols in the Lower Fraser Valley will be presented.
3D refractive index measurements of special optical fibers
NASA Astrophysics Data System (ADS)
Yan, Cheng; Huang, Su-Juan; Miao, Zhuang; Chang, Zheng; Zeng, Jun-Zhang; Wang, Ting-Yun
2016-09-01
A digital holographic microscopic chromatography-based approach with considerably improved accuracy, simplified configuration and performance stability is proposed to measure three dimensional refractive index of special optical fibers. Based on the approach, a measurement system is established incorporating a modified Mach-Zehnder interferometer and lab-developed supporting software for data processing. In the system, a phase projection distribution of an optical fiber is utilized to obtain an optimal digital hologram recorded by a CCD, and then an angular spectrum theory-based algorithm is adopted to extract the phase distribution information of an object wave. The rotation of the optic fiber enables the experimental measurements of multi-angle phase information. Based on the filtered back projection algorithm, a 3D refraction index of the optical fiber is thus obtained at high accuracy. To evaluate the proposed approach, both PANDA fibers and special elliptical optical fiber are considered in the system. The results measured in PANDA fibers agree well with those measured using S14 Refractive Index Profiler, which is, however, not suitable for measuring the property of a special elliptical fiber.
Airborne asbestos in Colorado public schools.
Chadwick, D A; Buchan, R M; Beaulieu, H J
1985-02-01
Levels of airborne asbestos for six Colorado public school facilities with sprayed-on asbestos materials were documented using three analytical techniques. Phase contrast microscopy showed levels up to the thousandths of a fiber per cubic centimeter (f/cc), scanning electron microscopy (SEM) up to the hundredths of a f/cc, and transmission electron microscopy coupled to selected area electron diffraction and energy dispersive X-ray analysis (TEM-SAED-EDXA) up to the tenths of an asbestos f/cc. Phase contrast microscopy was found to be an inadequate analytical technique for documenting the levels of airborne asbestos fibers in the schools: only large fibers which were not embedded in the filter were counted, and asbestos fibers were not distinguished from nonasbestos.
Jammed-array wideband sawtooth filter.
Tan, Zhongwei; Wang, Chao; Goda, Keisuke; Malik, Omer; Jalali, Bahram
2011-11-21
We present an all-optical passive low-cost spectral filter that exhibits a high-resolution periodic sawtooth spectral pattern without the need for active optoelectronic components. The principle of the filter is the partial masking of a phased array of virtual light sources with multiply jammed diffraction orders. We utilize the filter's periodic linear map between frequency and intensity to demonstrate fast sensitive interrogation of fiber Bragg grating sensor arrays and ultrahigh-frequency electrical sawtooth waveform generation. © 2011 Optical Society of America
Zhu, Mingyue; Zhang, Jing; Yi, Xingwen; Ying, Hao; Li, Xiang; Luo, Ming; Song, Yingxiong; Huang, Xiatao; Qiu, Kun
2018-03-19
We present the design and optimization of the optical single side-band (SSB) Nyquist four-level pulse amplitude modulation (PAM-4) transmission using dual-drive Mach-Zehnder modulator (DDMZM)modulation and direct detection (DD), aiming at the C-band cost-effective, high-speed and long-distance transmission. At the transmitter, the laser line width should be small to avoid the phase noise to amplitude noise conversion and equalization-enhanced phase noise due to the large chromatic dispersion (CD). The optical SSB signal is generated after optimizing the optical modulation index (OMI) and hence the minimum phase condition which is required by the Kramers-Kronig (KK) receiver can also be satisfied. At the receiver, a simple AC-coupled photodiode (PD) is used and a virtual carrier is added for the KK operation to alleviate the signal-to-signal beating interference (SSBI).A Volterra filter (VF) is cascaded for remaining nonlinearities mitigation. When the fiber nonlinearity becomes significant, we elect to use an optical band-pass filter with offset filtering. It can suppress the simulated Brillouin scattering and the conjugated distortion by filtering out the imaging frequency components. With our design and optimization, we achieve single-channel, single polarization 102.4-Gb/s Nyquist PAM-4 over 800-km standard single-mode fiber (SSMF).
Spectral Structure Of Phase-Induced Intensity Noise In Recirculating Delay Lines
NASA Astrophysics Data System (ADS)
Tur, M.; Moslehi, B.; Bowers, J. E.; Newton, S. A.; Jackson, K. P.; Goodman, J. W.; Cutler, C. C.; Shaw, H. J.
1983-09-01
The dynamic range of fiber optic signal processors driven by relatively incoherent multimode semiconductor lasers is shown to be severely limited by laser phase-induced noise. It is experimentally demonstrated that while the noise power spectrum of differential length fiber filters is approximately flat, processors with recirculating loops exhibit noise with a periodically structured power spectrum with notches at zero frequency as well as at all other multiples of 1/(loop delay). The experimental results are aug-mented by a theoretical analysis.
Linear, Low Noise Microwave Photonic Systems using Phase and Frequency Modulation
2012-05-11
modulation experiments 65 5.1 Review of FM lasers . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 5.1.1 Fabry - Perot lasers...asymmetrical Mach Zehnder interferometers (a-MZI) [17, 34], Fabry - Perot filters [35], fiber Bragg gratings [36] and tunable integrated filters [37, 38...transmitting subcarrier-multiplexed, analog signals for applications in cable television distribution. Experimental results for a Fabry - Perot
Khairuzzaman, Md; Zhang, Chao; Igarashi, Koji; Katoh, Kazuhiro; Kikuchi, Kazuro
2010-03-01
We describe a successful introduction of maximum-likelihood-sequence estimation (MLSE) into digital coherent receivers together with finite-impulse response (FIR) filters in order to equalize both linear and nonlinear fiber impairments. The MLSE equalizer based on the Viterbi algorithm is implemented in the offline digital signal processing (DSP) core. We transmit 20-Gbit/s quadrature phase-shift keying (QPSK) signals through a 200-km-long standard single-mode fiber. The bit-error rate performance shows that the MLSE equalizer outperforms the conventional adaptive FIR filter, especially when nonlinear impairments are predominant.
Ku, Yuen-Ching; Chan, Chun-Kit; Chen, Lian-Kuan
2007-06-15
We propose and experimentally demonstrate a novel in-band optical signal-to-noise ratio (OSNR) monitoring technique using a phase-modulator-embedded fiber loop mirror. This technique measures the in-band OSNR accurately by observing the output power of a fiber loop mirror filter, where the transmittance is adjusted by an embedded phase modulator driven by a low-frequency periodic signal. The measurement errors are less than 0.5 dB for an OSNR between 0 and 40 dB in a 10 Gbit/s non-return-to-zero system. This technique was also shown experimentally to have high robustness against various system impairments and high feasibility to be deployed in practical implementation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Levin, J.O.; Andersson, K.; Lindahl, R.
1985-05-01
Formaldehyde is sampled from air with the use of a standard miniature glass fiber filter impregnated with 2,4-dinitrophenylhydrazine and phosphoric acid. The formaldehyde hydrazone is desorbed from the filter with acetonitrile and determined by high-performance liquid chromatography using UV detection at 365 nm. Recovery of gas-phase-generated formaldehyde as hydrazone from a 13-mm impregnated filter is 80-100% in the range 0.3-30 ..mu..g of formaldehyde. This corresponds to 0.1-10 mg/m/sup 3/ in a 3-L air sample. When the filter sampling system is used in the active mode, air can be sampled at a rate of up to 1 L/min, affording an overallmore » sensitivity of about 1 ..mu..g/m/sup 3/ based on a 60-L air sample. Results are given from measurements of formaldehyde in indoor air. The DNP-coated filters were also evaluated for passive sampling. In this case 37-mm standard glass fibers were used and the sampling rate was 55-65 mL/min in two types of dosimeters. The diffusion samplers are especially useful for personal exposure monitoring in the work environment. 24 references, 2 figures, 4 tables.« less
Jung, Jaehoon; Lee, Yong Wook
2017-08-16
Continuous wavelength tuning of optical comb filters, which is an essential functionality for flexible signal processing in reconfigurable optical systems, has been challenging in high order filter structures with two birefringent elements (BEs) or more due to cumbersomeness in finding a combination of waveplates and BEs and complexity in determining their individual azimuthal orientations. Here, we propose a continuously tunable polarization-independent passband-flattened fiber comb filter with two BEs using a polarization-diversified loop structure for the first time. The proposed filter consists of a polarization beam splitter and two groups of a half-wave plate, quarter-wave plate, and polarization-maintaining fiber (PMF). The azimuthal orientation of PMF in the second group is fixed as 22.5°. Orientation angle sets of the four waveplates, which can induce an arbitrary phase shift from 0 to 2π in the passband-flattened transmittance function, are found from the filter transmittance derived using Jones matrix formulation. From theoretical spectral analysis, it is confirmed that passband-flattened comb spectra can be continuously tuned. Theoretical prediction is verified by experimental demonstration. Moreover, the wavelength-dependent evolution of the output state of polarization (SOP) of each PMF is investigated on the Poincare sphere, and the relationship between wavelength tuning and SOP evolution is also discussed.
Ceramic fiber reinforced filter
Stinton, David P.; McLaughlin, Jerry C.; Lowden, Richard A.
1991-01-01
A filter for removing particulate matter from high temperature flowing fluids, and in particular gases, that is reinforced with ceramic fibers. The filter has a ceramic base fiber material in the form of a fabric, felt, paper of the like, with the refractory fibers thereof coated with a thin layer of a protective and bonding refractory applied by chemical vapor deposition techniques. This coating causes each fiber to be physically joined to adjoining fibers so as to prevent movement of the fibers during use and to increase the strength and toughness of the composite filter. Further, the coating can be selected to minimize any reactions between the constituents of the fluids and the fibers. A description is given of the formation of a composite filter using a felt preform of commercial silicon carbide fibers together with the coating of these fibers with pure silicon carbide. Filter efficiency approaching 100% has been demonstrated with these filters. The fiber base material is alternately made from aluminosilicate fibers, zirconia fibers and alumina fibers. Coating with Al.sub.2 O.sub.3 is also described. Advanced configurations for the composite filter are suggested.
Virtual Deformation Control of the X-56A Model with Simulated Fiber Optic Sensors
NASA Technical Reports Server (NTRS)
Suh, Peter M.; Chin, Alexander W.; Mavris, Dimitri N.
2014-01-01
A robust control law design methodology is presented to stabilize the X-56A model and command its wing shape. The X-56A was purposely designed to experience flutter modes in its flight envelope. The methodology introduces three phases: the controller design phase, the modal filter design phase, and the reference signal design phase. A mu-optimal controller is designed and made robust to speed and parameter variations. A conversion technique is presented for generating sensor strain modes from sensor deformation mode shapes. The sensor modes are utilized for modal filtering and simulating fiber optic sensors for feedback to the controller. To generate appropriate virtual deformation reference signals, rigid-body corrections are introduced to the deformation mode shapes. After successful completion of the phases, virtual deformation control is demonstrated. The wing is deformed and it is shown that angle-ofattack changes occur which could potentially be used to an advantage. The X-56A program must demonstrate active flutter suppression. It is shown that the virtual deformation controller can achieve active flutter suppression on the X-56A simulation model.
Virtual Deformation Control of the X-56A Model with Simulated Fiber Optic Sensors
NASA Technical Reports Server (NTRS)
Suh, Peter M.; Chin, Alexander Wong
2013-01-01
A robust control law design methodology is presented to stabilize the X-56A model and command its wing shape. The X-56A was purposely designed to experience flutter modes in its flight envelope. The methodology introduces three phases: the controller design phase, the modal filter design phase, and the reference signal design phase. A mu-optimal controller is designed and made robust to speed and parameter variations. A conversion technique is presented for generating sensor strain modes from sensor deformation mode shapes. The sensor modes are utilized for modal filtering and simulating fiber optic sensors for feedback to the controller. To generate appropriate virtual deformation reference signals, rigid-body corrections are introduced to the deformation mode shapes. After successful completion of the phases, virtual deformation control is demonstrated. The wing is deformed and it is shown that angle-of-attack changes occur which could potentially be used to an advantage. The X-56A program must demonstrate active flutter suppression. It is shown that the virtual deformation controller can achieve active flutter suppression on the X-56A simulation model.
Steep and flat bandpass filter using linearly chirped and apodized fiber Bragg grating
NASA Astrophysics Data System (ADS)
Wu, Xunqi; Jacquet, Jo"l.; Duan, Guanghua
2010-02-01
The development of new optical systems requires the design of novel components that fulfill the market constraints. In particular, low loss, high optical rejection and low cost narrowband filters can play an important role for the introduction of the Wavelength Division Multiplexing (WDM) technology in the local network. So, a novel fiber filter is proposed in this article, with a special combined apodized Linearly Chirped Fiber Bragg Grating (LCFBG) which presents the preferable flat-top and steep-edge characteristics. In the design, we use a continuum cavity condition which is obtained when the effective round-trip phase of oscillated wavelength band is kept identical over the whole Bragg wavelength range. And the transmission spectra are calculated by the reconstruction of the matrixes with the continuum oscillation condition. Therefore, our works show that the ideal square shaped filter is obtained with a lower chirp value relatively together with symmetric reflectivity on both mirrors. The coupling coefficient of the FBG is adjusted to get the same reflectivity values and then to get a transmission filter close to unity. We have then introduced an apodization function of the filter to get a flatter transfer function. Various apodizations schemes have been tested. In this paper, we design and analyze a type of continuum fiber filter with the cavity formed between mirror and apodized LCFBG as reflectors. We calculate firstly the reflectivity, the transmissivity and the group time delay of LCFBG modeled by a simple and practical Transfer Matrix Method (TMM), and then the cavity is reconstructed by TMM, the length of the oscillated cavity is calculated by the continuum oscillation condition, so the output of transmission from the side of LCFBG is continuous in the corresponded reflected bandwidth of LCFBG. We obtain the results and discuss some characteristics of this type of continuum fiber filter.
Mode Selection for a Single-Frequency Fiber Laser
NASA Technical Reports Server (NTRS)
Liu, Jian
2010-01-01
A superstructured fiber-grating-based mode selection filter for a single-frequency fiber laser eliminates all free-space components, and makes the laser truly all-fiber. A ring cavity provides for stable operations in both frequency and power. There is no alignment or realignment required. After the fibers and components are spliced together and packaged, there is no need for specially trained technicians for operation or maintenance. It can be integrated with other modules, such as telescope systems, without extra optical alignment due to the flexibility of the optical fiber. The filter features a narrow line width of 1 kHz and side mode suppression ratio of 65 dB. It provides a high-quality laser for lidar in terms of coherence length and signal-to-noise ratio, which is 20 dB higher than solid-state or microchip lasers. This concept is useful in material processing, medical equipment, biomedical instrumentation, and optical communications. The pulse-shaping fiber laser can be directly used in space, airborne, and satellite applications including lidar, remote sensing, illuminators, and phase-array antenna systems.
2012-04-01
for automated SPME headspace sampling and in-line with a Thermo DSQII single quadrupole mass spectrometer. Collection of organic volatiles from the...urine was accomplished using a 2cm CAR/DVB/PDMS solid phase micro extraction fiber ( SPME ), Supelco supplier, inserted by the Triplus autosampler into...automated direct injection. Volatiles gathered by the SPME fiber were analyzed through desorption of the fiber by heating to elevated temperature and
Fiber-Optic Gratings for Lidar Measurements of Water Vapor
NASA Technical Reports Server (NTRS)
Vann, Leila B.; DeYoung, Russell J.
2006-01-01
Narrow-band filters in the form of phase-shifted Fabry-Perot Bragg gratings incorporated into optical fibers are being developed for differential-absorption lidar (DIAL) instruments used to measure concentrations of atmospheric water vapor. The basic idea is to measure the relative amounts of pulsed laser light scattered from the atmosphere at two nearly equal wavelengths, one of which coincides with an absorption spectral peak of water molecules and the other corresponding to no water vapor absorption. As part of the DIAL measurement process, the scattered light is made to pass through a filter on the way to a photodetector. Omitting other details of DIAL for the sake of brevity, what is required of the filter is to provide a stop band that: Surrounds the water-vapor spectral absorption peaks at a wavelength of 946 nm, Has a spectral width of at least a couple of nanometers, Contains a pass band preferably no wider than necessary to accommodate the 946.0003-nm-wavelength water vapor absorption peak [which has 8.47 pm full width at half maximum (FWHM)], and Contains another pass band at the slightly shorter wavelength of 945.9 nm, where there is scattering of light from aerosol particles but no absorption by water molecules. Whereas filters used heretofore in DIAL have had bandwidths of =300 pm, recent progress in the art of fiber-optic Bragg-grating filters has made it feasible to reduce bandwidths to less than or equal to 20 pm and thereby to reduce background noise. Another benefit of substituting fiber-optic Bragg-grating filters for those now in use would be significant reductions in the weights of DIAL instruments. Yet another advantage of fiber-optic Bragg-grating filters is that their transmission spectra can be shifted to longer wavelengths by heating or stretching: hence, it is envisioned that future DIAL instruments would contain devices for fine adjustment of transmission wavelengths through stretching or heating of fiber-optic Bragg-grating filters nominally designed and fabricated to have transmission wavelengths that, in the absence of stretching, would be slightly too short.
Advanced Optical Fiber Communication Systems.
1993-02-28
feedback (DFB) laser and a fiber Fabry - Perot (FFP) interferometer for optical frequency discrimination. After the photodetector and amplification, a...filter, an envelope detector, and an integrator; these three components function in tandem as a phase demodulator . We have analyzed the nonlinearities...down-converter and FSK demodulator extract the desired video signals. The measured carrier-to-noise ratio (CNR) at the photodiode must be approximately
Ku, Bon Ki; Deye, Gregory J.; Turkevich, Leonid A.
2015-01-01
Fiber dimension (especially length) and biopersistence are thought to be important variables in determining the pathogenicity of asbestos and other elongate mineral particles. In order to prepare samples of fibers for toxicology studies, it is necessary to develop and evaluate methods for separating fibers by length in the micrometer size range. In this study, we have filtered an aerosol of fibers through nylon screens to investigate whether such screens can efficiently remove the long fibers (L >20 μm, a typical macrophage size) from the aerosol stream. Such a sample, deficient in long fibers, could then be used as the control in a toxicology study to investigate the role of length. A well-dispersed aerosol of glass fibers (a surrogate for asbestos) was generated by vortex shaking a Japan Fibrous Material Research Association (JFMRA) glass fiber powder. Fibers were collected on a mixed cellulose ester (MCE) filter, imaged with phase contrast microscopy (PCM) and lengths were measured. Length distributions of the fibers that penetrated through various screens (10, 20 and 60 μm mesh sizes) were analyzed; additional study was made of fibers that penetrated through double screen and centrally blocked screen configurations. Single screens were not particularly efficient in removing the long fibers; however, the alternative configurations, especially the centrally blocked screen configuration, yielded samples substantially free of the long fibers. PMID:24417374
Frequency comb-based time transfer over a 159 km long installed fiber network
NASA Astrophysics Data System (ADS)
Lessing, M.; Margolis, H. S.; Brown, C. T. A.; Marra, G.
2017-05-01
We demonstrate a frequency comb-based time transfer technique on a 159 km long installed fiber link. Timing information is superimposed onto the optical pulse train of an ITU-channel-filtered mode-locked laser using an intensity modulation scheme. The environmentally induced optical path length fluctuations are compensated using a round-trip phase noise cancellation technique. When the fiber link is stabilized, a time deviation of 300 fs at 5 s and an accuracy at the 100 ps level are achieved.
Loranger, Sébastien; Lambin-Iezzi, Victor; Wahbeh, Mamoun; Kashyap, Raman
2016-04-15
Distributed feedback (DFB) fiber Bragg gratings (FBG) are widely used as narrow-band filters and single-mode cavities for lasers. Recently, a nonlinear generation has been shown in 10-20 cm DFB gratings in a highly nonlinear fiber. First, we show in this Letter a novel fabrication technique of ultra-long DFBs in a standard fiber (SMF-28). Second, we demonstrate nonlinear generation in such gratings. A particular inscription technique was used to fabricate all-in-phase ultra-long FBG and to implement reproducible phase shift to form a DFB mode. We demonstrate stimulated Brillouin scattering (SBS) emission from this DFB mode and characterize the resulting laser. It seems that such a SBS based DFB laser stabilizes a pump's jittering and reduces its linewidth.
Zhang, Lijia; Liu, Bo; Xin, Xiangjun
2015-06-15
A secure optical generalized filter bank multi-carrier (GFBMC) system with carrier-less amplitude-phase (CAP) modulation is proposed in this Letter. The security is realized through cubic constellation-masked method. Large key space and more flexibility masking can be obtained by cubic constellation masking aligning with the filter bank. An experiment of 18 Gb/s encrypted GFBMC/CAP system with 25-km single-mode fiber transmission is performed to demonstrate the feasibility of the proposed method.
The long-term performance of electrically charged filters in a ventilation system.
Raynor, Peter C; Chae, Soo Jae
2004-07-01
The efficiency and pressure drop of filters made from polyolefin fibers carrying electrical charges were compared with efficiency and pressure drop for filters made from uncharged glass fibers to determine if the efficiency of the charged filters changed with use. Thirty glass fiber filters and 30 polyolefin fiber filters were placed in different, but nearly identical, air-handling units that supplied outside air to a large building. Using two kinds of real-time aerosol counting and sizing instruments, the efficiency of both sets of filters was measured repeatedly for more than 19 weeks while the air-handling units operated almost continuously. Pressure drop was recorded by the ventilation system's computer control. Measurements showed that the efficiency of the glass fiber filters remained almost constant with time. However, the charged polyolefin fiber filters exhibited large efficiency reductions with time before the efficiency began to increase again toward the end of the test. For particles 0.6 microm in diameter, the efficiency of the polyolefin fiber filters declined from 85% to 45% after 11 weeks before recovering to 65% at the end of the test. The pressure drops of the glass fiber filters increased by about 0.40 in. H2O, whereas the pressure drop of the polyolefin fiber filters increased by only 0.28 in. H2O. The results indicate that dust loading reduces the effectiveness of electrical charges on filter fibers. Copyright 2004 JOEH, LLC
NASA Astrophysics Data System (ADS)
Barton, Catherine A.; Kaiser, Mary A.; Butler, Larry E.; Botelho, Miguel A.
This discussion paper reflects concerns as to the technical arguments set forth in the Arp and Goss paper. The authors of the paper, Arp and Goss, hypothesize that vapor phase perfluorocarboxylic acids (PFAs) are irreversibly sorbed to the surface of air sampling filters, and that this sorption erroneously biases vapor/particle speciation measurements toward the particle phase. These authors also suggest a surface treatment of the filters is necessary. As authors of some of the experimental data used in the Arp paper, we believe Arp and Goss have misstated the case for irreversible adsorption, and that untreated filters provide adequate vapor/particle speciation results for PFAs. Additional field data are offered to help prove the point.
Advanced Optical Fiber Communications Systems
1994-08-31
phase locking . The PZT port has a tuning coefficient of 3.4 MHz/V. The time constants of the optical phase - locked loop ( OPLL ) filter’s pole and zero are... with the PSK receiver optical phase -I-ocked loop ( OPLL ). As we increased nz in our experiments, the larger signal fluctuations made it increasingly... lasers , since a phase - locked loop is 114 I not required for the DPSK receiver (unlike
Allen, George; Rector, Lisa; Butcher, Thomas; ...
2017-07-31
The performance of Teflon-coated glass fiber filter media (Pallflex Emfab TX40) is evaluated for particulate matter (PM) sampling of residential wood heating devices in a dilution tunnel. Thirty samples of varying duration and PM loading and concentration were collected from an U.S. Environmental Protection Agency (EPA) Method 28 dilution tunnel using dual Method 5G sample trains with untreated glass fiber and Emfab filters. Filters were weighed soon after the end of sampling and again the next day after equilibration at 35% relative humidity (RH). PM concentrations from both types of filters agreed very well with 1-day equilibration, demonstrating that Emfabmore » filters are appropriate for use in measuring PM from residential wood burning appliances in a dilution tunnel and have performance equal to or better than the glass fiber filter media. Agreement between filter media without equilibration was erratic, with PM from glass fiber filter samples varying from slightly less than the Emfab samples to as much as 2.8 times higher. Some of the glass fiber filters lost substantial mass with equilibration, with the highest percent loss at lower filter mass loadings. Mass loss for Emfab samples was a small percentage of the mass and very consistent across the range of mass loadings. Taken together, these results may indicate water uptake on the glass fiber media that is readily removed with 1-day equilibration at moderate RH conditions. Implications: EPA regulations now allow the use of either glass fiber or Teflon filter media for wood appliance PM emission testing. Teflon filter media minimizes the potential for acid-gas PM artifacts on glass fiber filters; this is important as EPA moves toward the use of locally sourced cordwood for testing that may have higher sulfur content. This work demonstrates that the use of Teflon-coated glass fiber filters can give similar PM measurement results to glass fiber filters after 1 day of equilibration. With no equilibration, measured PM from glass fiber filters was usually higher than from Teflon-coated glass fiber filters.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Allen, George; Rector, Lisa; Butcher, Thomas
The performance of Teflon-coated glass fiber filter media (Pallflex Emfab TX40) is evaluated for particulate matter (PM) sampling of residential wood heating devices in a dilution tunnel. Thirty samples of varying duration and PM loading and concentration were collected from an U.S. Environmental Protection Agency (EPA) Method 28 dilution tunnel using dual Method 5G sample trains with untreated glass fiber and Emfab filters. Filters were weighed soon after the end of sampling and again the next day after equilibration at 35% relative humidity (RH). PM concentrations from both types of filters agreed very well with 1-day equilibration, demonstrating that Emfabmore » filters are appropriate for use in measuring PM from residential wood burning appliances in a dilution tunnel and have performance equal to or better than the glass fiber filter media. Agreement between filter media without equilibration was erratic, with PM from glass fiber filter samples varying from slightly less than the Emfab samples to as much as 2.8 times higher. Some of the glass fiber filters lost substantial mass with equilibration, with the highest percent loss at lower filter mass loadings. Mass loss for Emfab samples was a small percentage of the mass and very consistent across the range of mass loadings. Taken together, these results may indicate water uptake on the glass fiber media that is readily removed with 1-day equilibration at moderate RH conditions. Implications: EPA regulations now allow the use of either glass fiber or Teflon filter media for wood appliance PM emission testing. Teflon filter media minimizes the potential for acid-gas PM artifacts on glass fiber filters; this is important as EPA moves toward the use of locally sourced cordwood for testing that may have higher sulfur content. This work demonstrates that the use of Teflon-coated glass fiber filters can give similar PM measurement results to glass fiber filters after 1 day of equilibration. With no equilibration, measured PM from glass fiber filters was usually higher than from Teflon-coated glass fiber filters.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mizell, Steve A.; Shadel, Craig A.
Airborne particulates are collected at U.S. Department of Energy sites that exhibit radiological contamination on the soil surface to help assess the potential for wind to transport radionuclides from the contamination sites. Collecting these samples was originally accomplished by drawing air through a cellulose-fiber filter. These filters were replaced with glass-fiber filters in March 2011. Airborne particulates were collected side by side on the two filter materials between May 2013 and May 2014. Comparisons of the sample mass and the radioactivity determinations for the side-by-side samples were undertaken to determine if the change in the filter medium produced significant results.more » The differences in the results obtained using the two filter types were assessed visually by evaluating the time series and correlation plots and statistically by conducting a nonparametric matched-pair sign test. Generally, the glass-fiber filters collect larger samples of particulates and produce higher radioactivity values for the gross alpha, gross beta, and gamma spectroscopy analyses. However, the correlation between the radioanalytical results for the glass-fiber filters and the cellulose-fiber filters was not strong enough to generate a linear regression function to estimate the glass-fiber filter sample results from the cellulose-fiber filter sample results.« less
NASA Astrophysics Data System (ADS)
Zhang, Jun; Wu, Weiran; Rao, Qi; Zhou, Kejiang
2018-05-01
Tunable fiber lasers are a promising light source in all-optical wavelength conversion, fiber grating sensing and optical add-drop multiplexing. In order to achieve a tunable wavelength in the output, optical filters are indispensable for the construction of tunable fiber lasers. Recently, much attention has been given to developing high-performance filters. This paper proposes an environment-insensitive filter based on a Sagnac interferometer which was designed by an all-polarization-maintaining fiber with linear birefringence. According to the Sagnac interferometer, we derived the transfer function of an environment-insensitive filter. Based on this principle, it is shown that the device is able to implement a precision filtering function that can be used in a fiber laser’s optical resonant cavity. The experiment results demonstrated the effectiveness of this structure.
Photonic Analog-to-Digital Converters
2006-03-01
Edward W. Taylor, “Gamma-Ray Induced Damage and Recovery Behavior in an Erbium-Doped Fiber Laser ”, SPIE Proceedings, Vol. 4547, Sep. 2001, pp.126-133...requirements. The center frequency of the bandpass filter determined the laser mode-locked frequency. SNDP’s COEO had an operating frequency of... laser . Better filters and amplifiers were needed to improve operation and to reduce the phase noise to a level comparable with Delfyett’s actively
Downie, John D; Hurley, Jason; Mauro, Yihong
2008-09-29
We experimentally demonstrate uncompensated 8-channel wavelength division multiplexing (WDM) and single channel transmission at 10.7 Gb/s over a 470 km hybrid fiber link with in-line semiconductor optical amplifiers (SOAs). Two different forms of the duobinary modulation format are investigated and compared. Maximum Likelihood Sequence Estimation (MLSE) receiver technology is found to significantly mitigate nonlinear effects from the SOAs and to enable the long transmission, especially for optical duobinary signals derived from differential phase shift keying (DPSK) signals directly detected after narrowband optical filter demodulation. The MLSE also helps to compensate for a non-optimal Fabry-Perot optical filter demodulator.
Schmidt, M; Fürstenau, N
1999-05-01
A three-wavelength-based passive quadrature digital phase-demodulation scheme has been developed for readout of fiber-optic extrinsic Fabry-Perot interferometer vibration, acoustic, and strain sensors. This scheme uses a superluminescent diode light source with interference filters in front of the photodiodes and real-time arctan calculation. Quasi-static strain and dynamic vibration sensing with up to an 80-kHz sampling rate is demonstrated. Periodic nonlinearities owing to dephasing with increasing fringe number are corrected for with a suitable algorithm, resulting in significant improvement of the linearity of the sensor characteristics.
Li, Wei; Wang, Li Xian; Hofmann, Werner; Zhu, Ning Hua; Bimberg, Dieter
2012-08-27
We propose and demonstrate a novel scheme to generate ultra-wideband (UWB) triplet pulses based on four-wave mixing and phase-to-intensity modulation conversion. First a phase-modulated Gaussian doublet pulse is generated by four-wave mixing in a highly nonlinear fiber. Then an UWB triplet pulse is generated by generating the first-order derivative of the phase-modulated Gaussian doublet pulse using an optical filter serving as a frequency discriminator. By locating the optical signal at the linear slope of the optical filter, the phase modulated Gaussian doublet pulse is converted to an intensity-modulated UWB triplet pulse which well satisfies the Federal Communications Commission spectral mask requirements, even in the extremely power-restricted global positioning system band.
Modulated Fourier Transform Raman Fiber-Optic Spectroscopy
NASA Technical Reports Server (NTRS)
Jensen, Brian J. (Inventor); Cooper, John B. (Inventor); Wise, Kent L. (Inventor)
2000-01-01
A modification to a commercial Fourier Transform (FT) Raman spectrometer is presented for the elimination of thermal backgrounds in the FT Raman spectra. The modification involves the use of a mechanical optical chopper to modulate the continuous wave laser, remote collection of the signal via fiber optics, and connection of a dual-phase digital-signal-processor (DSP) lock-in amplifier between the detector and the spectrometer's collection electronics to demodulate and filter the optical signals. The resulting Modulated Fourier Transform Raman Fiber-Optic Spectrometer is capable of completely eliminating thermal backgrounds at temperatures exceeding 300 C.
1993-01-01
glass phase transformations, will identify characteristic signatures associated with film formation. Phase I technical objectives include the analysis...Fast, Highly Sensitive, Rugged, Miniature Spectroradiometer Based on a TeO2 Acousto-optic Tunable Filter (AOTF) Abstract: Brimrose proposes to research...this problem. The use of poltruded glass fiber reinforcing elements containing recycled plastic in their matrices will also be examined as this will
Low loss jammed-array wideband sawtooth filter based on a finite reflection virtually imaged array
NASA Astrophysics Data System (ADS)
Tan, Zhongwei; Cao, Dandan; Ding, Zhichao
2018-03-01
An edge filter is a potential technology in the fiber Bragg grating interrogation that has the advantages of fast response speed and suitability for dynamic measurement. To build a low loss, wideband jammed-array wideband sawtooth (JAWS) filter, a finite reflection virtually imaged array (FRVIA) is proposed and demonstrated. FRVIA is different from the virtually imaged phased array in that it has a low reflective front end. This change will lead to many differences in the device's performance in output optical intensity distribution, spectral resolution, output aperture, and tolerance of the manufacture errors. A low loss, wideband JAWS filter based on an FRVIA can provide an edge filter for each channel, respectively.
Zhu, Long; Wang, Andong; Chen, Shi; Liu, Jun; Mo, Qi; Du, Cheng; Wang, Jian
2017-10-16
Twisted light carrying orbital angular momentum (OAM) is a special kind of structured light that has a helical phase front, a phase singularity, and a doughnut intensity profile. Beyond widespread developments in manipulation, microscopy, metrology, astronomy, nonlinear and quantum optics, OAM-carrying twisted light has seen emerging application of optical communications in free space and specially designed fibers. Instead of specialty fibers, here we show the direct use of a conventional graded-index multi-mode fiber (MMF) for OAM communications. By exploiting fiber-compatible mode exciting and filtering elements, we excite the first four OAM mode groups in an MMF. We demonstrate 2.6-km MMF transmission using four data-carrying OAM mode groups (OAM 0,1 , OAM +1,1 /OAM -1,1 , OAM +2,1 , OAM +3,1 ). Moreover, we demonstrate two data-carrying OAM mode groups multiplexing transmission over the 2.6-km MMF with low-level crosstalk free of multiple-input multiple-output digital signal processing (MIMO-DSP). The demonstrations may open up new perspectives to fiber-based OAM communication/non-communication applications using already existing conventional fibers.
Fiber length and orientation prevent migration in fluid filters
NASA Technical Reports Server (NTRS)
Reiman, P. A.
1966-01-01
Stainless steel fiber web filter resists fiber migration which causes contamination of filtered fluids. This filter is capable of holding five times more particulate matter before arbitrary cutoff pressure drop and shows excellent retention in fuel flow at high rates.
Aerosol filtration with steel fiber filters
NASA Astrophysics Data System (ADS)
Bergman, W.; Wilson, K.; Larsen, G.; Lopez, R.
1993-04-01
An experimental study has been conducted of aerosol penetration through a new high efficiency steel fiber filter and filter media that was developed in cooperation with Pall Corporation. Previous studies have shown that sintered steel fiber media have significant improvements in higher filter efficiency and lower pressure drop than the previous steel filter technology based on sintered powder metal media. In the present study, measurements were made of the penetration of dioctyl sebacate (DOS) aerosols through flat sheet samples, pleated cartridge filters, and a 1000 cfm filter having 64 cartridges housed in a 2 x 2 x 1 ft. frame. The steel fiber media used in our study consists of 2 micron diameter stainless steel (316 L) fibers sintered together into sheets.
Zhu, Ping; Jafari, Rana; Jones, Travis; Trebino, Rick
2017-10-02
We introduce a simple delay-scanned complete spatiotemporal intensity-and-phase measurement technique based on wavelength-multiplexed holography to characterize long, complex pulses in space and time. We demonstrate it using pulses emerging from multi-mode fiber. This technique extends the temporal range and spectral resolution of the single-frame STRIPED FISH technique without using an otherwise-required expensive ultranarrow-bandpass filter. With this technique, we measured the complete intensity and phase of up to ten fiber modes from a multi-mode fiber (normalized frequency V ≈10) over a ~3ps time range. Spatiotemporal complexities such as intermodal delay, modal dispersion, and material dispersion were also intuitively displayed by the retrieved results. Agreement between the reconstructed color movies and the monitored time-averaged spatial profiles confirms the validity to this delay-scanned STRIPED FISH method.
Wear, Keith; Liu, Yunbo; Gammell, Paul M; Maruvada, Subha; Harris, Gerald R
2015-01-01
Nonlinear acoustic signals contain significant energy at many harmonic frequencies. For many applications, the sensitivity (frequency response) of a hydrophone will not be uniform over such a broad spectrum. In a continuation of a previous investigation involving deconvolution methodology, deconvolution (implemented in the frequency domain as an inverse filter computed from frequency-dependent hydrophone sensitivity) was investigated for improvement of accuracy and precision of nonlinear acoustic output measurements. Timedelay spectrometry was used to measure complex sensitivities for 6 fiber-optic hydrophones. The hydrophones were then used to measure a pressure wave with rich harmonic content. Spectral asymmetry between compressional and rarefactional segments was exploited to design filters used in conjunction with deconvolution. Complex deconvolution reduced mean bias (for 6 fiber-optic hydrophones) from 163% to 24% for peak compressional pressure (p+), from 113% to 15% for peak rarefactional pressure (p-), and from 126% to 29% for pulse intensity integral (PII). Complex deconvolution reduced mean coefficient of variation (COV) (for 6 fiber optic hydrophones) from 18% to 11% (p+), 53% to 11% (p-), and 20% to 16% (PII). Deconvolution based on sensitivity magnitude or the minimum phase model also resulted in significant reductions in mean bias and COV of acoustic output parameters but was less effective than direct complex deconvolution for p+ and p-. Therefore, deconvolution with appropriate filtering facilitates reliable nonlinear acoustic output measurements using hydrophones with frequency-dependent sensitivity.
Sintered composite medium and filter
Bergman, Werner
1987-01-01
A particulate filter medium is formed of a sintered composite of 0.5 micron diameter quartz fibers and 2 micron diameter stainless steel fibers. A preferred composition is about 40 vol. % quartz and about 60 vol. % stainless steel fibers. The media is sintered at about 1100.degree. C. to bond the stainless steel fibers into a cage network which holds the quartz fibers. High filter efficiency and low flow resistance are provided by the smaller quartz fibers. High strength is provided by the stainless steel fibers. The resulting media has a high efficiency and low pressure drop similar to the standard HEPA media, with tensile strength at least four times greater, and a maximum operating temperature of about 550.degree. C. The invention also includes methods to form the composite media and a HEPA filter utilizing the composite media. The filter media can be used to filter particles in both liquids and gases.
Bergman, W.
1986-05-02
A particulate filter medium formed of a sintered composite of 0.5 micron diameter quartz fibers and 2 micron diameter stainless steel fibers is described. Preferred composition is about 40 vol.% quartz and about 60 vol.% stainless steel fibers. The media is sintered at about 1100/sup 0/C to bond the stainless steel fibers into a cage network which holds the quartz fibers. High filter efficiency and low flow resistance are provided by the smaller quartz fibers. High strength is provided by the stainless steel fibers. The resulting media has a high efficiency and low pressure drop similar to the standard HEPA media, with tensile strength at least four times greater, and a maximum operating temperature of about 550/sup 0/C. The invention also includes methods to form the composite media and a HEPA filter utilizing the composite media. The filter media can be used to filter particles in both liquids and gases.
Sun, Junjie; Wang, Zefeng; Wang, Meng; Zhou, Zhiyue; Tang, Ni; Chen, Jinbao; Gu, Xijia
2017-11-10
A watt-level tunable 1.5 μm narrow linewidth fiber ring laser using a temperature tuning π-phase-shifted fiber Bragg grating (π-PSFBG) is demonstrated here, to the best of our knowledge, for the first time. The π-PSFBG is employed as both a narrow band filter and a wavelength tuning component, and its central wavelength is thermally tuned by a thermo-electric cooler. The maximum laser power is about 1.1 W with a linewidth of ∼318 MHz (∼2.57 pm) and a power fluctuation of less than 3%. The wavelength tuning range of the laser is about 1.29 nm with a sensitivity of ∼14.33 pm/°C, and the wavelength fluctuation is about 0.2 pm. This work provides important reference for tunable fiber lasers with both high power and narrow linewidth.
Measurement of curvature and temperature using multimode interference devices
NASA Astrophysics Data System (ADS)
Guzman-Sepulveda, J. R.; Aguilar-Soto, J. G.; Torres-Cisneros, M.; Ibarra-Manzano, O. G.; May-Arrioja, D. A.
2011-09-01
In this paper we propose the fabrication, implementation, and testing of a novel fiber optic sensor based on Multimode Interference (MMI) effects for independent measurement of curvature and temperature. The development of fiber based MMI devices is relatively new and since they exhibit a band-pass filter response they can be used in different applications. The operating mechanism of our sensor is based on the self-imaging phenomena that occur in multimode fibers (MMF), which is related to the interference of the propagating modes and their accumulated phase. We demonstrate that the peak wavelength shifts with temperature variations as a result of changes in the accumulated phase through thermo-optics effects, while the intensity of the peak wavelength is reduced as the curvature increases since we start to loss higher order modes. In this way both measurements are obtained independently with a single fiber device. Compared to other fiber-optic sensors, our sensor features an extremely simple structure and fabrication process, and hence cost effectiveness.
2004-05-12
Structural Engineering, La Jolla, CA 92093 14. ABSTRACT Tunable optical filters based on a Fabry - Perot element are a critical component in many...wavelength based fiber optic sensor systems. This report compares the performance of two fiber-pigtailed tunable optical filters, the fiber Fabry - Perot (FFP...both filters suggests that they can operate at frequencies up to 20 kHz and possibly as high as 100 kHz. 15. SUBJECT TERMS Tunable Fabry - Perot filters
Dispersion-free pulse duration reduction of passively Q-switched microchip lasers.
Lehneis, R; Steinmetz, A; Jauregui, C; Limpert, J; Tünnermann, A
2012-11-01
We present a dispersion-free method for the pulse duration reduction of passively Q-switched microchip laser (MCL) seed sources. This technique comprises two stages: one that carries out the self-phase modulation induced spectral broadening in a waveguide structure and a subsequent spectral filtering stage in order to shorten the pulses in time domain. The setup of a proof-of-principle experiment consists of a fiber-amplified passively Q-switched MCL, a passive single-mode fiber used as nonlinear element in which the spectrum is broadened, and a reflective volume-Bragg-grating acting as bandpass filter. A reduction of the pulse duration from 118 to 32 ps with high temporal quality has been achieved with this setup.
Mode-filtered large-core fiber for optical coherence tomography
Moon, Sucbei; Chen, Zhongping
2013-01-01
We have investigated the use of multimode fiber in optical coherence tomography (OCT) with a mode filter that selectively suppresses the power of the high-order modes (HOMs). A large-core fiber (LCF) that has a moderate number of guiding modes was found to be an attractive alternative to the conventional single-mode fiber for its large mode area and the consequentially wide Rayleigh range of the output beam if the HOMs of the LCF were efficiently filtered out by a mode filter installed in the middle. For this, a simple mode filtering scheme of a fiber-coil mode filter was developed in this study. The LCF was uniformly coiled by an optimal bend radius with a fiber winder, specially devised for making a low-loss mode filter. The feasibility of the mode-filtered LCF in OCT imaging was tested with a common-path OCT system. It has been successfully demonstrated that our mode-filtered LCF can provide a useful imaging or sensing probe without an objective lens that greatly simplifies the structure of the probing optics. PMID:23207399
Two kinds of novel tunable Thulium-doped fiber laser
NASA Astrophysics Data System (ADS)
Ma, Xiaowei; Chen, Daru; Feng, Gaofeng; Yang, Junyong
2014-11-01
Two kinds of tunable Thulium-doped fiber laser (TDFL) respectively using a Sagnac loop mirror and a novel tunable multimode interference (MMI) fiber filter are experimentally demonstrated. The TDFL with the Sagnac loop mirror made by a 145.5-cm polarization-maintaining fiber (PMF) can operate with stable dual-wavelength lasing or tunable single-wavelength lasing around 1860nm. Both stable dual-wavelength and tunable single-wavelength lasing are achieved by adjusting a polarization controller in the Sagnac loop mirror. The TDFL with a novel tunable MMI fiber filter formed by splicing a segment of a special no-core fiber that is an all silica fiber without fiber core to single mode fibers can achieve tuning range from 1813.52 nm to 1858.70 nm. The no-core fiber with a large diameter of 200 μm is gradually vertically covered by refractive index matching liquid, which leads to a wavelength tuning of the transmission peak of the MMI fiber filter. The relationship between the refractive index of the refractive index matching liquid and the peak wavelength shift of the MMI fiber filter is also discussed. Using the MMI fiber filter, a Thulium-doped fiber laser with a tuning range of 45.18 nm is demonstrated.
Comparison of mounting methods for the evaluation of fibers by phase contrast microscopy.
Lee, Eun Gyung; Pang, Thomas W S; Nelson, John; Andrew, Mike; Harper, Martin
2011-07-01
The objectives of this study were to evaluate mounting methods for fiber examination of air sample filters by phase contrast microscopy (PCM) and to evaluate differences in fiber counts that might be due to fiber movement. Acetone/triacetin (AT) with various amounts of triacetin and acetone/Euparal (AE) where the mounting medium was placed between the cleared filter wedge and the coverslip were tested as a function of time. Field sample slides collected from a taconite iron-ore processing mill, a tremolitic talc-ore processing mill, and from around a crusher in a meta-basalt stone quarry were prepared with relocatable coverslips to revisit the same field areas on the slides. For each slide, three or four field areas were randomly selected and pictures were taken every 2 weeks to determine any sign of fiber movement over time. For 11 AT slides (named as AT-3.5) prepared with 3.5 μl of the mounting medium according to the NIOSH 7400 method, no fiber movements were detected over 59 weeks. On the other hand, AT slides prepared with larger quantities (10, 15, and 20 μl) of the mounting medium (named as AT-10) and AE slides prepared with ∼10 μl mounting medium showed fiber movement from the eighth day at the earliest. Fiber movement began earlier for the slides mounted with excess triacetin than for those mounted with Euparal. The sample slide storage method, either vertically or horizontally, did not seem to accelerate fiber movement. Additionally, two other modified methods, dimethylformamide solution/Euparal (mDE) and dimethylformamide solution/triacetin (mDT), were also prepared where the mounting medium was placed between the cleared filter wedge and the glass slide. The findings of fiber movements were similar; when 3.5 μl of triacetin was used for the mDT slides, fiber movements were not detected, while fibers on slides prepared with 10 μl triacetin (mDT-10) moved around. No fiber movements were observed for the mDE slides at any time during 59 weeks. Once fiber movement started, fibers moved over distances measured from 4 μm and up to >1000 μm within 22 weeks. However, since then, no further fiber movements have been observed in any field sample slides. Additional sample slides, two Amosite and two chrysotile, were prepared from Union for International Cancer Control (UICC) samples using the AT method with 5 μl triacetin mounting medium. Fiber movements were also observed in these samples; chrysotile fibers began to migrate in 3 weeks, while Amosite fiber movement started after 3 months. Although fiber movement was observed for the AT-10, AE, and mDT-10 sample slides, fiber counts were not significantly different from AT-3.5 and mDE samples that exhibited no fiber movement. Although fiber counts would not be significantly changed by fiber movement, the type and amount of mounting medium for sample slide preparation remains critical for issues such as quality assurance and training of analysts by revisiting the same fibers.
Fu, L; Rochette, M; Ta'eed, V; Moss, D; Eggleton, B
2005-09-19
We investigate the feasibility of all-optical regeneration based on self-phase modulation in single mode As2Se3 chalcogenide fiber. By combining the chalcogenide fiber with a bandpass filter, we achieve a near step-like power transfer function with no pulse distortion. The device is shown to operate with 5.8 ps duration pulses, thus demonstrating the feasibility of this device operating with high bit-rate data signals. These results are achieved with pulse peak powers <10 W in a fully passive device, including only 2.8 m of chalcogenide fiber. We obtain an excellent agreement between theory and experiment and show that both the high nonlinearity of the chalcogenide glass along with its high normal dispersion near 1550 nm enables a significant device length reduction in comparison with silica-based devices, without compromise on the performance. We find that even for only a few meters of fiber, the large normal dispersion of the chalcogenide glass inhibits spectral oscillations that would appear with self-phase modulation alone. We measure the two photon absorption attenuation coefficient and find that it advantageously affects the device transfer function.
NASA Astrophysics Data System (ADS)
Liu, Yingchao; Chen, Hailiang; Ma, Mingjian; Zhang, Wenxun; Wang, Yujun; Li, Shuguang
2018-03-01
We propose a tunable ultra-broadband polarization filter based on three-core resonance of the fluid-infiltrated and gold-coated high birefringent photonic crystal fiber (HB-PCF). Gold film was applied to the inner walls of two cladding air holes and surface plasmon polaritons were generated on its surface. The two gold-coated cladding air holes acted as two defective cores. As the phase matching condition was satisfied, light transmitted in the fiber core and coupled to the two defective cores. The three-core PCF supported three super modes in two orthogonal polarization directions. The coupling characteristics among these modes were investigated using the finite-element method. We found that the coupling wavelengths and strength between these guided modes can be tuned by altering the structural parameters of the designed HB-PCF, such as the size of the voids, thickness of the gold-films and liquid infilling pattern. Under the optimized structural parameters, a tunable broadband polarization filter was realized. For one liquid infilling pattern, we obtained a broadband polarization filter which filtered out the light in y-polarization direction at the wavelength of 1550 nm. For another liquid infilling pattern, we filtered out light in the x-polarization direction at the wavelength of 1310 nm. Our studies on the designed HB-PCF made contributions to the further devising of tunable broadband polarization filters, which are extensively used in telecommunication and sensor systems. Project supported by the National Natural Science Foundation of China (Grant Nos. 61505175 and 61475134) and the Natural Science Foundation of Hebei Province (Grant Nos. F2017203110 and F2017203193).
Efficient visible and UV generation by frequency conversion of a mode-filtered fiber amplifier
NASA Astrophysics Data System (ADS)
Kliner, Dahv A. V.; Di Teodoro, Fabio; Koplow, Jeffrey P.; Moore, Sean W.; Smith, Arlee V.
2003-07-01
We have generated the second, third, fourth, and fifth harmonics of the output of a Yb-doped fiber amplifier seeded by a passively Q-switched Nd:YAG microchip laser. The fiber amplifier employed multimode fiber (25 μm core diameter, V ~ 7.4) to provide high-peak-power pulses, but diffraction-limited beam quality was obtained by use of bend-loss-induced mode filtering. The amplifier output had a pulse duration of 0.97 ns and smooth, transform-limited temporal and spectral profiles (~500 MHz linewidth). We obtained high nonlinear conversion efficiencies using a simple optical arrangement and critically phase-matched crystals. Starting with 320 mW of average power at 1064 nm (86 ´J per pulse at a 3.7 kHz repetition rate), we generated 160 mW at 532 nm, 38 mW at 355 nm, 69 mW at 266 nm, and 18 mW at 213 nm. The experimental results are in excellent agreement with calculations. Significantly higher visible and UV powers will be possible by operating the fiber amplifier at higher repetition rates and pulse energies and by further optimizing the nonlinear conversion scheme.
Huang, Ligang; Wang, Jie; Peng, Weihua; Zhang, Wending; Bo, Fang; Yu, Xuanyi; Gao, Feng; Chang, Pengfa; Song, Xiaobo; Zhang, Guoquan; Xu, Jingjun
2016-02-01
Based on the conversion between the fundamental mode (LP01) and the higher-order mode (LP11) in a tapered fiber via a whispering gallery mode resonator, an add/drop filter was proposed and demonstrated experimentally, in which the resonator only interacted with one tapered fiber, rather than two tapered fibers as in conventional configurations. The filter gains advantages of easy alignment and low scattering loss over the other filters based on tapered fiber and resonator, and will be useful in application.
A single chip 2 Gbit/s clock recovery subsystem for digital communications
NASA Astrophysics Data System (ADS)
Hickling, Ronald M.
A self-contained clock recovery/data resynchronizer phase locked loop (PLL) for use in microwave and fiber optic digital communications has been fabricated using GaAs integrated circuit technology. The IC contains the analog and digital components for the PLL: an edge-triggered phase detector based on a 1.2 GHz phase/frequency comparator, an op amp for creating the loop filter, and a VCO based on a differential source-coupled pair amplifier.
Ouyang, Yang; Liu, Jianxia; Xu, Xiaofeng; Zhao, Yujia; Zhou, Ai
2018-04-11
A phase-shifted eccentric core fiber Bragg grating (PS-ECFBG) fabricated by electric arc discharge (EAD) is presented and demonstrated. It is composed of a fraction of eccentric core fiber fusion spliced in between two pieces of commercial single mode fibers, where a PS-FBG was written. The EAD in this work could flexibly change the amount of phase-shift by changing the discharge number or discharge duration. Because of the offset location of the eccentric core and the ultra-narrow resonant peak of the PS-ECFBG, it has a higher accuracy for measuring the directional bend. The elongation and compression of the eccentric core keep the magnitude of phase shift still unchanged during the bending process. The bending sensitivities of the PS-ECFBG at two opposite most sensitive directions are 57.4 pm/m -1 and -51.5 pm/m -1 , respectively. Besides, the PS-ECFBG has the potential to be a tunable narrow bandpass filter, which has a wider bi-directional adjustable range because of the bending responses. The strain and temperature sensitivities of the PS-ECFBG are experimentally measured as well, which are 0.70 pm/με and 8.85 pm/°C, respectively.
Mesoscopic effect of spectral modulation for the light transmitted by a SNOM tip
NASA Astrophysics Data System (ADS)
Rähn, M.; Pärs, M.; Palm, V.; Jaaniso, R.; Hizhnyakov, V.
2010-06-01
The effect of a tapered metal-coated optical fiber terminated by a sub-wavelength aperture (SWA) on the spectrum of the transmitted light is investigated experimentally. Under certain conditions a remarkable spectral modulation of the transmitted light can be observed. This effect is of a mesoscopic origin, occurring only for a certain interval of SWA diameters. One can conclude that a noticeable modulation appears when the number of the transmitted fiber modes is small but exceeds unity, thus indicating the presence of a phase shift between different modes. To discern between two possible sources of such phase shift, the fiber length dependence of the output spectrum has been studied. According to the results obtained for the used sample of 200 nm SNOM tip, the observed phase shift is mostly caused rather by the inherent modal dispersion of the multimode fiber than by the mode-dependent light slowdown in the tapered region close to SWA due to the coupling to surface plasmons of the metal coating. The SWA acts here mainly as an effective mode filter.
Tunable all-fiber dissipative-soliton laser with a multimode interference filter.
Zhang, Lei; Hu, Jinmeng; Wang, Jianhua; Feng, Yan
2012-09-15
We report on a tunable all-fiber dissipative-soliton laser with a multimode interference filter that consists of a multimode fiber spliced between two single-mode fibers. By carefully selecting the fiber parameters, a filter with a central wavelength at 1032 nm and a bandwidth of 7.6 nm is constructed and used for spectral filtering in an all-normal-dispersion mode-locked ytterbium-doped fiber laser based on nonlinear polarization evolution. The laser delivers 31 mW of average output power with positively chirped 7 ps pulses. The repetition rate of the pulses is 15.3 MHz, and pulse energy is 2.1 nJ. Tunable dissipative-soliton over 12 nm is achieved by applying tension to the single-mode-multimode-single-mode filter.
Bonded carbon or ceramic fiber composite filter vent for radioactive waste
Brassell, Gilbert W.; Brugger, Ronald P.
1985-02-19
Carbon bonded carbon fiber composites as well as ceramic or carbon bonded ceramic fiber composites are very useful as filters which can separate particulate matter from gas streams entraining the same. These filters have particular application to the filtering of radioactive particles, e.g., they can act as vents for containers of radioactive waste material.
NASA Astrophysics Data System (ADS)
Yu, Jianhui; Jin, Shaoshen; Wei, Qingsong; Zang, Zhigang; Lu, Huihui; He, Xiaoli; Luo, Yunhan; Tang, Jieyuan; Zhang, Jun; Chen, Zhe
2015-01-01
In this paper, we report our experimental study on directly coupling a micro/nano fiber (MNOF) ring with a side-polished fiber(SPF). As a result of the study, the behavior of an add-drop filter was observed. The demonstrated add-drop filter explored the wavelength dependence of light coupling between a MNOF ring and a SPF. The characteristics of the filter and its performance dependence on the MNOF ring diameter were investigated experimentally. The investigation resulted in an empirically obtained ring diameter that showed relatively good filter performance. Since light coupling between a (MNOF) and a conventional single mode fiber has remained a challenge in the photonic integration community, the present study may provide an alternative way to couple light between a MNOF device and a conventional single mode fiber based device or system. The hybridization approach that uses a SPF as a platform to integrate a MNOF device may enable the realization of other all-fiber optical hybrid devices.
Yu, Jianhui; Jin, Shaoshen; Wei, Qingsong; Zang, Zhigang; Lu, Huihui; He, Xiaoli; Luo, Yunhan; Tang, Jieyuan; Zhang, Jun; Chen, Zhe
2015-01-12
In this paper, we report our experimental study on directly coupling a micro/nano fiber (MNOF) ring with a side-polished fiber(SPF). As a result of the study, the behavior of an add-drop filter was observed. The demonstrated add-drop filter explored the wavelength dependence of light coupling between a MNOF ring and a SPF. The characteristics of the filter and its performance dependence on the MNOF ring diameter were investigated experimentally. The investigation resulted in an empirically obtained ring diameter that showed relatively good filter performance. Since light coupling between a (MNOF) and a conventional single mode fiber has remained a challenge in the photonic integration community, the present study may provide an alternative way to couple light between a MNOF device and a conventional single mode fiber based device or system. The hybridization approach that uses a SPF as a platform to integrate a MNOF device may enable the realization of other all-fiber optical hybrid devices.
Tunable multimode-interference bandpass fiber filter.
Antonio-Lopez, J E; Castillo-Guzman, A; May-Arrioja, D A; Selvas-Aguilar, R; Likamwa, P
2010-02-01
We report on a wavelength-tunable filter based on multimode interference (MMI) effects. A typical MMI filter consists of a multimode fiber (MMF) spliced between two single-mode fibers (SMF). The peak wavelength response of the filter exhibits a linear dependence when the length of the MMF is modified. Therefore a capillary tube filled with refractive-index-matching liquid is used to effectively increase the length of the MMF, and thus wavelength tuning is achieved. Using this filter a ring-based tunable erbium-doped fiber laser is demonstrated with a tunability of 30 nm, covering the full C-band.
NASA Astrophysics Data System (ADS)
Grobnic, Dan; Mihailov, Stephen J.; Ding, H.; Bilodeau, F.; Smelser, Christopher W.
2005-05-01
Multimode sapphire fiber Bragg gratings (SFBG) made with an IR femtosecond laser and a phase mask were probed using tapered single mode fibers of different taper diameters producing single and low order mode reflection/transmission responses. A configuration made of an input single mode tapered fiber and multimode silica fiber used for output coupling was also tested and has delivered a filtered multimode transmission spectrum. The tapered coupling improved the spectral resolution of the SFBG as compared to its multimode responses previously reported. Such improvements facilitate the utilization of the SFBG as a high temperature sensor. Wavelength shifts of the single mode response were monitored as a function of temperature up to 1500 °C and were consistent with the measurement obtained from the multimode response published previously.
Analysis of dead zone sources in a closed-loop fiber optic gyroscope.
Chong, Kyoung-Ho; Choi, Woo-Seok; Chong, Kil-To
2016-01-01
Analysis of the dead zone is among the intensive studies in a closed-loop fiber optic gyroscope. In a dead zone, a gyroscope cannot detect any rotation and produces a zero bias. In this study, an analysis of dead zone sources is performed in simulation and experiments. In general, the problem is mainly due to electrical cross coupling and phase modulation drift. Electrical cross coupling is caused by interference between modulation voltage and the photodetector. The cross-coupled signal produces spurious gyro bias and leads to a dead zone if it is larger than the input rate. Phase modulation drift as another dead zone source is due to the electrode contamination, the piezoelectric effect of the LiNbO3 substrate, or to organic fouling. This modulation drift lasts for a short or long period of time like a lead-lag filter response and produces gyro bias error, noise spikes, or dead zone. For a more detailed analysis, the cross-coupling effect and modulation phase drift are modeled as a filter and are simulated in both the open-loop and closed-loop modes. The sources of dead zone are more clearly analyzed in the simulation and experimental results.
(DARPA) Nonlinear Optics at Low Light Levels
2010-05-28
of 104. The receiver modulator, M2 is run in anti-phase to the transmitter modulator so as to demodulate the photon beam and reduce its bandwidth to...spectrum that is wider than 3.5 MHz. After passing through the second phase modulator the anti-Stokes photon is sent through a 65-MHz fiber based Fabry ... Perot filter (Micron Optics) with a free spectral range of 13.6 GHz. If the spectral width of the photon after the second phase modulator is less than
NASA Astrophysics Data System (ADS)
Tibuleac, Sorin
In this dissertation, new reflection and transmission filters are developed and characterized in the optical and microwave spectral regions. These guided-mode resonance (GMR) filters are implemented by integrating diffraction gratings into classical thin-film multilayers to produce high efficiency filter response and low sidebands extended over a large spectral range. Diffraction from phase-shifted gratings and gratings with different periods is analyzed using rigorous coupled-wave theory yielding a new approach to filter linewidth broadening, line-shaping, and multi-line filters at normal incidence. New single-grating transmission filters presented have narrow linewidth, high peak transmittance, and low sideband reflectance. A comparison with classical thin-film filters shows that GMR devices require significantly fewer layers to obtain narrow linewidth and high peak response. All-dielectric microwave frequency- selective surfaces operating in reflection or transmission are shown to be realizable with only a few layers using common microwave materials. Single-layer and multilayer waveguide gratings operating as reflection and transmission filters, respectively, were built and tested in the 4-20 GHz frequency range. The presence of GMR notches and peaks is clearly established by the experimental results, and their spectral location and lineshape found to be in excellent agreement with the theoretical predictions. A new computer program using genetic algorithms and rigorous coupled-wave analysis was developed for optimization of multilayer structures containing homogeneous and diffractive layers. This program was utilized to find GMR filters possessing features not previously known. Thus, numerous examples of transmission filters with peaks approaching 100%, narrow linewidths (~0.03%), and low sidebands have been found in structures containing only 1-3 layers. A new type of GMR device integrating a waveguide grating with subwavelength period on the endface of an optical fiber is developed for high-resolution biomedical or chemical sensors and spectral filtering applications. Diffraction gratings with submicron periods exhibiting high efficiencies have been recorded for the first time on coated and uncoated endfaces of single-mode and multimode fibers. Guided-mode resonance transmittance notches of ~18% were experimentally obtained with structures consisting of photoresist gratings on thin films of Si3N4 deposited on optical fiber endfaces.
Lim, Tae Hwan; Choi, Jeong Rak; Lim, Dae Young; Lee, So Hee; Yeo, Sang Young
2015-10-01
Fiber binder adapted carbon air filter is prepared to increase gas adsorption efficiency and environmental stability. The filter prevents harmful gases, as well as particle dusts in the air from entering the body when a human inhales. The basic structure of carbon air filter is composed of spunbond/meltblown/activated carbon/bottom substrate. Activated carbons and meltblown layer are adapted to increase gas adsorption and dust filtration efficiency, respectively. Liquid type adhesive is used in the conventional carbon air filter as a binder material between activated carbons and other layers. However, it is thought that the liquid binder is not an ideal material with respect to its bonding strength and liquid flow behavior that reduce gas adsorption efficiency. To overcome these disadvantages, fiber type binder is introduced in our study. It is confirmed that fiber type binder adapted air filter media show higher strip strength, and their gas adsorption efficiencies are measured over 42% during 60 sec. These values are higher than those of conventional filter. Although the differential pressure of fiber binder adapted air filter is relatively high compared to the conventional one, short fibers have a good potential as a binder materials of activated carbon based air filter.
Rugged fiber optic probe for raman measurement
O'Rourke, Patrick E.; Toole, Jr., William R.; Nave, Stanley E.
1998-01-01
An optical probe for conducting light scattering analysis is disclosed. The probe comprises a hollow housing and a probe tip. A fiber assembly made up of a transmitting fiber and a receiving bundle is inserted in the tip. A filter assembly is inserted in the housing and connected to the fiber assembly. A signal line from the light source and to the spectrometer also is connected to the filter assembly and communicates with the fiber assembly. By using a spring-loaded assembly to hold the fiber connectors together with the in-line filters, complex and sensitive alignment procedures are avoided. The close proximity of the filter assembly to the probe tip eliminates or minimizes self-scattering generated by the optical fiber. Also, because the probe can contact the sample directly, sensitive optics can be eliminated.
Widely tunable opto-electronic oscillator
NASA Astrophysics Data System (ADS)
Maxin, J.; Pillet, G.; Morvan, L.; Dolfi, D.
2012-03-01
We present here a widely tunable opto-electronic oscillator (OEO) based on an Er,Yb:glass Dual Frequency Laser (DFL) at 1.53 μm. The beatnote is stabilized with an optical fiber delay line. Compared to classical optoelectronic oscillators, this architecture does not need RF filter and offers a wide tunability. We measured a reduction of 67 dB of the phase noise power spectral density (PSD) at 10 Hz of the carrier optical fiber leading to a level of -27 dBc/Hz with only 100 m optical fiber. Moreover, the scheme offers a microwave signal tunability from 2.5 to 5.5 GHz limited by the RF components.
Spectral shaping of an all-fiber torsional acousto-optic tunable filter.
Ko, Jeakwon; Lee, Kwang Jo; Kim, Byoung Yoon
2014-12-20
Spectral shaping of an all-fiber torsional acousto-optic (AO) tunable filter is studied. The technique is based on the axial modulation of AO coupling strength along a highly birefringent optical fiber, which is achieved by tailoring the outer diameter of the fiber along its propagation axis. Two kinds of filter spectral shaping schemes-Gaussian apodization and matched filtering with triple resonance peaks-are proposed and numerically investigated under realistic experimental conditions: at the 50-cm-long AO interaction length of the fiber and at half of the original fiber diameter as the minimum thickness of the tailored fiber section. The results show that the highest peak of sidelobe spectra in filter transmission is suppressed from 11.64% to 0.54% via Gaussian modulation of the AO coupling coefficient (κ). Matched filtering with triple resonance peaks operating with a single radio frequency signal is also achieved by cosine modulation of κ, of which the modulation period determines the spectral distance between two satellite peaks located in both wings of the main resonance peak. The splitting of two satellite peaks in the filter spectra reaches 48.2 nm while the modulation period varies from 7.7 to 50 cm. The overall peak power of two satellite resonances is calculated to be 22% of the main resonance power. The results confirm the validity and practicality of our approach, and we predict robust and stable operation of the designed all-fiber torsional AO filters.
Optical add/drop filter for wavelength division multiplexed systems
Deri, Robert J.; Strand, Oliver T.; Garrett, Henry E.
2002-01-01
An optical add/drop filter for wavelength division multiplexed systems and construction methods are disclosed. The add/drop filter includes a first ferrule having a first pre-formed opening for receiving a first optical fiber; an interference filter oriented to pass a first set of wavelengths along the first optical fiber and reflect a second set of wavelengths; and, a second ferrule having a second pre-formed opening for receiving the second optical fiber, and the reflected second set of wavelengths. A method for constructing the optical add/drop filter consists of the steps of forming a first set of openings in a first ferrule; inserting a first set of optical fibers into the first set of openings; forming a first set of guide pin openings in the first ferrule; dividing the first ferrule into a first ferrule portion and a second ferrule portion; forming an interference filter on the first ferrule portion; inserting guide pins through the first set of guide pin openings in the first ferrule portion and second ferrule portion to passively align the first set of optical fibers; removing material such that light reflected from the interference filter from the first set of optical fibers is accessible; forming a second set of openings in a second ferrule; inserting a second set of optical fibers into the second set of openings; and positioning the second ferrule with respect to the first ferrule such that the second set of optical fibers receive the light reflected from the interference filter.
Respiratory assessment of refractory ceramic fibers in a heating technician population.
Lucas, David; Clamagirand, Vincent; Capellmann, Pascale; Hervé, Agnès; Mauguen, Gilles; Le Mer, Yannik; Jegaden, Dominique
2018-04-01
Refractory ceramic fibers (RCF) have been extensively used for insulation in condensing boilers. The aim of this study was to evaluate the respiratory exposure to these fibers among maintenance heating technicians. We first created a working group (Carsat Brittany and Finistère Occupational Health Services) and carried out a sampling strategy. Atmospheric measurements were done during work tasks, and filters were analyzed by phase contrast microscopy (PCM) and scanning electron microscopy (SEM) in French approved laboratories. Four companies were included for a total of 15 days of work. During those 15 workdays, 12 SEM and 21 PCM samples were taken and analyzed. The phase contrast microscopy and SEM average results were 0.04 and 0.004 fibers/cm 3 , respectively. In conclusion, the study confirms heating technician RCF respiratory exposure during maintenance work for both condensation gas boilers and atmospheric boilers. Collective and individual prevention measures should be implemented along with appropriate medical follow-up.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pelliccia, Daniele; Vaz, Raquel; Svalbe, Imants
X-ray imaging of soft tissue is made difficult by their low absorbance. The use of x-ray phase imaging and tomography can significantly enhance the detection of these tissues and several approaches have been proposed to this end. Methods such as analyzer-based imaging or grating interferometry produce differential phase projections that can be used to reconstruct the 3D distribution of the sample refractive index. We report on the quantitative comparison of three different methods to obtain x-ray phase tomography with filtered back-projection from differential phase projections in the presence of noise. The three procedures represent different numerical approaches to solve themore » same mathematical problem, namely phase retrieval and filtered back-projection. It is found that obtaining individual phase projections and subsequently applying a conventional filtered back-projection algorithm produces the best results for noisy experimental data, when compared with other procedures based on the Hilbert transform. The algorithms are tested on simulated phantom data with added noise and the predictions are confirmed by experimental data acquired using a grating interferometer. The experiment is performed on unstained adult zebrafish, an important model organism for biomedical studies. The method optimization described here allows resolution of weak soft tissue features, such as muscle fibers.« less
Parallel Information Processing (Image Transmission Via Fiber Bundle and Multimode Fiber
NASA Technical Reports Server (NTRS)
Kukhtarev, Nicholai
2003-01-01
Growing demand for visual, user-friendly representation of information inspires search for the new methods of image transmission. Currently used in-series (sequential) methods of information processing are inherently slow and are designed mainly for transmission of one or two dimensional arrays of data. Conventional transmission of data by fibers requires many fibers with array of laser diodes and photodetectors. In practice, fiber bundles are also used for transmission of images. Image is formed on the fiber-optic bundle entrance surface and each fiber transmits the incident image to the exit surface. Since the fibers do not preserve phase, only 2D intensity distribution can be transmitted in this way. Each single mode fiber transmit only one pixel of an image. Multimode fibers may be also used, so that each mode represent different pixel element. Direct transmission of image through multimode fiber is hindered by the mode scrambling and phase randomization. To overcome these obstacles wavelength and time-division multiplexing have been used, with each pixel transmitted on a separate wavelength or time interval. Phase-conjugate techniques also was tested in, but only in the unpractical scheme when reconstructed image return back to the fiber input end. Another method of three-dimensional imaging over single mode fibers was demonstrated in, using laser light of reduced spatial coherence. Coherence encoding, needed for a transmission of images by this methods, was realized with grating interferometer or with the help of an acousto-optic deflector. We suggest simple practical holographic method of image transmission over single multimode fiber or over fiber bundle with coherent light using filtering by holographic optical elements. Originally this method was successfully tested for the single multimode fiber. In this research we have modified holographic method for transmission of laser illuminated images over commercially available fiber bundle (fiber endoscope, or fiberscope).
Antibacterial performance of nano polypropylene filter media containing nano-TiO2 and clay particles
NASA Astrophysics Data System (ADS)
Shafiee, Sara; Zarrebini, Mohammad; Naghashzargar, Elham; Semnani, Dariush
2015-10-01
Disinfection and elimination of pathogenic microorganisms from liquid can be achieved by filtration process using antibacterial filter media. The advent of nanotechnology has facilitated the introduction of membranes consisting of nano-fiber in filtration operations. The melt electro-spun fibers due to their extremely small diameters are used in the production of this particular filtration medium. In this work, antibacterial polypropylene filter medium containing clay particles and nano-TiO2 were made using melt electro-spun technology. Antibacterial performance of polypropylene nano-filters was evaluated using E. coli bacteria. Additionally, filtration efficiency of the samples in terms fiber diameter, filter porosity, and fiber distribution using image processing technique was determined. Air permeability and dust aerosol tests were conducted to establish the suitability of the samples as a filter medium. It was concluded that as far as antibacterial property is concerned, nano-fibers filter media containing clay particles are preferential to similar media containing TiO2 nanoparticles.
An, Jiwoo; Anderson, Jared L
2018-05-15
A double-confined polymeric ionic liquid (PIL) sorbent coating was fabricated for the determination of nine ultraviolet (UV) filters in sample solutions containing high salt content by direct immersion solid-phase microextraction (DI-SPME) coupled to high-performance liquid chromatography (HPLC). The IL monomer and crosslinker cations and anions, namely, 1-vinyl-3-decylimidazolium styrenesulfonate ([VImC 10 ][SS]) and 1,12-di(3-vinylbenzylimidazolium) dodecane distyrenesulfonate ([(VBIm) 2 C 12 ] 2[SS]), were co-polymerized to create a highly stable sorbent coating which allowed for up to 120 direct-immersion extractions in 25% NaCl (w/v) solution without a decrease in its extraction capability. Extraction and desorption parameters such as desorption solvent, agitation rate, extraction time, desorption solvent volume, and desorption time were evaluated and optimized. The analytical performance of the styrenesulfonate anion-based PIL fiber, PIL fiber containing chloride anions, and a commercially available polydimethylsiloxane/divinylbenzene (PDMS/DVB) fiber were compared. Coefficients of determination (R 2 ) for the styrenesulfonate anion-based PIL fiber ranged from 0.995 to 0.999 and the limits of detection (LODs) varied from 0.1 to 5 µg L -1 . The developed method was successfully applied in real water samples including tap, pool, and lake water, and acceptable relative recovery values were obtained. The lifetime of the PIL fiber containing chloride anions as well as the PDMS/DVB fiber were considerably shorter than the PIL fiber containing the styrenesulfonate anion, with both fibers showing a notable decrease in reproducibility and significant damage to the sorbent coating surface after 40 and 70 extractions, respectively. The R 2 values for the chloride anion containing PIL fiber were at or higher than 0.991 with LODs ranging from 0.5 to 5 µg L -1 . For the PDMS/DVB fiber, R 2 values ranged from 0.992 to 0.999 and LODs were found to be as low as 0.2 µg L -1 and as high as 5 µg L -1 . Copyright © 2018 Elsevier B.V. All rights reserved.
Yu, Jianhui; Jin, Shaoshen; Wei, Qingsong; Zang, Zhigang; Lu, Huihui; He, Xiaoli; Luo, Yunhan; Tang, Jieyuan; Zhang, Jun; Chen, Zhe
2015-01-01
In this paper, we report our experimental study on directly coupling a micro/nano fiber (MNOF) ring with a side-polished fiber(SPF). As a result of the study, the behavior of an add-drop filter was observed. The demonstrated add-drop filter explored the wavelength dependence of light coupling between a MNOF ring and a SPF. The characteristics of the filter and its performance dependence on the MNOF ring diameter were investigated experimentally. The investigation resulted in an empirically obtained ring diameter that showed relatively good filter performance. Since light coupling between a (MNOF) and a conventional single mode fiber has remained a challenge in the photonic integration community, the present study may provide an alternative way to couple light between a MNOF device and a conventional single mode fiber based device or system. The hybridization approach that uses a SPF as a platform to integrate a MNOF device may enable the realization of other all-fiber optical hybrid devices. PMID:25578467
All-fiber bandpass filter based on asymmetrical modes exciting and coupling
NASA Astrophysics Data System (ADS)
Zhang, Qiang; Zhu, Tao; Shi, Leilei; Liu, Min
2013-01-01
A low cost all-fiber bandpass filter is demonstrated by fabricating an asymmetric long-period fiber grating (LPFG) in an off-set splicing fiber structure of two single mode fibers in this paper. The main principle of the filter is that the asymmetric LPFG written by single-side CO2 laser irradiation is used to couple the asymmetric cladding modes excited by the offset-coupling of the splicing point between the single mode fiber and the grating, and the left core mode of the splicing point cannot be coupled to the right fiber core, hence the interference effect is avoided. So the bandpass characteristics in the transmission spectrum are achieved. The designed filter exhibits a pass band at a central wavelength of 1565.0 nm with a full-width at half-maximum bandwidth of 12.3 nm.
NASA Astrophysics Data System (ADS)
Bredfeldt, Jeremy S.; Liu, Yuming; Pehlke, Carolyn A.; Conklin, Matthew W.; Szulczewski, Joseph M.; Inman, David R.; Keely, Patricia J.; Nowak, Robert D.; Mackie, Thomas R.; Eliceiri, Kevin W.
2014-01-01
Second-harmonic generation (SHG) imaging can help reveal interactions between collagen fibers and cancer cells. Quantitative analysis of SHG images of collagen fibers is challenged by the heterogeneity of collagen structures and low signal-to-noise ratio often found while imaging collagen in tissue. The role of collagen in breast cancer progression can be assessed post acquisition via enhanced computation. To facilitate this, we have implemented and evaluated four algorithms for extracting fiber information, such as number, length, and curvature, from a variety of SHG images of collagen in breast tissue. The image-processing algorithms included a Gaussian filter, SPIRAL-TV filter, Tubeness filter, and curvelet-denoising filter. Fibers are then extracted using an automated tracking algorithm called fiber extraction (FIRE). We evaluated the algorithm performance by comparing length, angle and position of the automatically extracted fibers with those of manually extracted fibers in twenty-five SHG images of breast cancer. We found that the curvelet-denoising filter followed by FIRE, a process we call CT-FIRE, outperforms the other algorithms under investigation. CT-FIRE was then successfully applied to track collagen fiber shape changes over time in an in vivo mouse model for breast cancer.
Kilowatt high-efficiency narrow-linewidth monolithic fiber amplifier operating at 1034 nm
NASA Astrophysics Data System (ADS)
Naderi, Nader A.; Flores, Angel; Anderson, Brian M.; Rowland, Ken; Dajani, Iyad
2016-03-01
Power scaling investigation of a narrow-linewidth, Ytterbium-doped all-fiber amplifier operating at 1034 nm is presented. Nonlinear stimulated Brillouin scattering (SBS) effects were suppressed through the utilization of an external phase modulation technique. Here, the power amplifier was seeded with a spectrally broadened master oscillator and the results were compared using both pseudo-random bit sequence (PRBS) and white noise source (WNS) phase modulation formats. By utilizing an optical band pass filter as well as optimizing the length of fiber used in the pre-amplifier stages, we were able to appreciably suppress unwanted amplified spontaneous emission (ASE). Notably, through PRBS phase modulation, greater than two-fold enhancement in threshold power was achieved when compared to the WNS modulated case. Consequently, by further optimizing both the power amplifier length and PRBS pattern at a clock rate of 3.5 GHz, we demonstrated 1 kilowatt of power with a slope efficiency of 81% and an overall ASE content of less than 1%. Beam quality measurements at 1 kilowatt provided near diffraction-limited operation (M2 < 1.2) with no sign of modal instability. To the best of our knowledge, the power scaling results achieved in this work represent the highest power reported for a spectrally narrow all-fiber amplifier operating at < 1040 nm in Yb-doped silica-based fiber.
Liquid crystal photonic bandgap fiber components
NASA Astrophysics Data System (ADS)
Scolari, L.; Alkeskjold, T. T.; Noordegraaf, D.; Tartarini, G.; Bassi, P.; Bjarklev, A.
2007-11-01
Liquid crystal photonic bandgap fibers represent a promising platform for the design of all-in-fiber optical devices, which show a high degree of tunability and exhibit novel optical properties for the manipulation of guided light. In this review paper we present tunable fiber devices for spectral filtering, such as Gaussian filters and notch filters, and devices for polarization control and analysis, such as birefringence control devices and switchable and rotatable polarizers.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 4 2013-04-01 2013-04-01 false Filters. 211.72 Section 211.72 Food and Drugs FOOD... GOOD MANUFACTURING PRACTICE FOR FINISHED PHARMACEUTICALS Equipment § 211.72 Filters. Filters for liquid... shall not release fibers into such products. Fiber-releasing filters may be used when it is not possible...
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 4 2010-04-01 2010-04-01 false Filters. 211.72 Section 211.72 Food and Drugs FOOD... GOOD MANUFACTURING PRACTICE FOR FINISHED PHARMACEUTICALS Equipment § 211.72 Filters. Filters for liquid... shall not release fibers into such products. Fiber-releasing filters may be used when it is not possible...
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 4 2011-04-01 2011-04-01 false Filters. 211.72 Section 211.72 Food and Drugs FOOD... GOOD MANUFACTURING PRACTICE FOR FINISHED PHARMACEUTICALS Equipment § 211.72 Filters. Filters for liquid... shall not release fibers into such products. Fiber-releasing filters may be used when it is not possible...
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 4 2014-04-01 2014-04-01 false Filters. 211.72 Section 211.72 Food and Drugs FOOD... GOOD MANUFACTURING PRACTICE FOR FINISHED PHARMACEUTICALS Equipment § 211.72 Filters. Filters for liquid... shall not release fibers into such products. Fiber-releasing filters may be used when it is not possible...
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 4 2012-04-01 2012-04-01 false Filters. 211.72 Section 211.72 Food and Drugs FOOD... GOOD MANUFACTURING PRACTICE FOR FINISHED PHARMACEUTICALS Equipment § 211.72 Filters. Filters for liquid... shall not release fibers into such products. Fiber-releasing filters may be used when it is not possible...
NASA Astrophysics Data System (ADS)
Liang, Xiao; Liu, Shuo; Li, Yang; Liu, Zhibo; Jian, Shuisheng
2015-01-01
We experimentally characterized an all-fiber microstructure Mach-Zehnder comb-filter (MZ comb-filter), which based on homemade elliptical multilayer-core fibers (EMCF) and consisted of an EMCF-SMF-EMCF (ESE) structure. To the best of our knowledge, the dual-mode elliptical multilayer-core fiber was the first time to produce and apply in MZ comb filer. The EMCF, in which only two modes could be propagated, can be easier to fabricate a filter with clean comb spectrum than many fibers, such as multimode fibers, thin-core fibers, PCFs and et al. A comb-filter with extinction ratio (˜25 dB) was successfully achieved with an EMCF-SMF-EMCF structure. The wavelengths of the lead-out light shifted with the changing of surrounding refractive indexes (SRI) and temperature. Thus, this MZ comb-filter had potential for improving the SRI and temperature measurement resolutions. A maximum sensitivity of 53.744 nm per refractive index unit (RIU) within a linear range of 1.333-1.383 and 59.875 pm/°C within temperature range of 0-80 °C were experimentally achieved, respectively.
Fiber Bragg grating sensor interrogators on chip: challenges and opportunities
NASA Astrophysics Data System (ADS)
Marin, Yisbel; Nannipieri, Tiziano; Oton, Claudio J.; Di Pasquale, Fabrizio
2017-04-01
In this paper we present an overview of the current efforts towards integration of Fiber Bragg Grating (FBG) sensor interrogators. Different photonic integration platforms will be discussed, including monolithic planar lightwave circuit technology, silicon on insulator (SOI), indium phosphide (InP) and gallium arsenide (GaAs) material platforms. Also various possible techniques for wavelength metering and methods for FBG multiplexing will be discussed and compared in terms of resolution, dynamic performance, multiplexing capabilities and reliability. The use of linear filters, array waveguide gratings (AWG) as multiple linear filters and AWG based centroid signal processing techniques will be addressed as well as interrogation techniques based on tunable micro-ring resonators and Mach-Zehnder interferometers (MZI) for phase sensitive detection. The paper will also discuss the challenges and perspectives of photonic integration to address the increasing requirements of several industrial applications.
NASA Astrophysics Data System (ADS)
Florous, Nikolaos J.; Saitoh, Kunimasa; Murao, Tadashi; Koshiba, Masanori; Skorobogatiy, Maksim
2006-05-01
The objective of the present investigation is to demonstrate the possibility of designing compact ultra-narrow band-pass filters based on the phenomenon of non-proximity resonant tunneling in multi-core photonic band gap fibers (PBGFs). The proposed PBGF consists of three identical air-cores separated by two defected air-holes which act as highly-selective resonators. With a fine adjustment of the design parameters associated with the resonant-air-holes, phase matching at two distinct wavelengths can be achieved, thus enabling very narrow-band resonant directional coupling between the input and the two output cores. The validation of the proposed design is ensured with an accurate PBGF analysis based on finite element modal and beam propagation algorithms. Typical characteristics of the proposed device over a single polarization are: reasonable short coupling length of 2.7 mm, dual bandpass transmission response at wavelengths of 1.339 and 1.357 μm, with corresponding full width at half maximum bandwidths of 1.2 nm and 1.1 nm respectively, and a relatively high transmission of 95% at the exact resonance wavelengths. The proposed ultra-narrow band-pass filter can be employed in various applications such as all-fiber bandpass/bandstop filtering and resonant sensors.
Florous, Nikolaos J; Saitoh, Kunimasa; Murao, Tadashi; Koshiba, Masanori; Skorobogatiy, Maksim
2006-05-29
The objective of the present investigation is to demonstrate the possibility of designing compact ultra-narrow band-pass filters based on the phenomenon of non-proximity resonant tunneling in multi-core photonic band gap fibers (PBGFs). The proposed PBGF consists of three identical air-cores separated by two defected air-holes which act as highly-selective resonators. With a fine adjustment of the design parameters associated with the resonant-air-holes, phase matching at two distinct wavelengths can be achieved, thus enabling very narrow-band resonant directional coupling between the input and the two output cores. The validation of the proposed design is ensured with an accurate PBGF analysis based on finite element modal and beam propagation algorithms. Typical characteristics of the proposed device over a single polarization are: reasonable short coupling length of 2.7 mm, dual bandpass transmission response at wavelengths of 1.339 and 1.357 mum, with corresponding full width at half maximum bandwidths of 1.2 nm and 1.1 nm respectively, and a relatively high transmission of 95% at the exact resonance wavelengths. The proposed ultra-narrow band-pass filter can be employed in various applications such as all-fiber bandpass/bandstop filtering and resonant sensors.
Bailey, Charles L.; Morozov, Victor; Vsevolodov, Nikolai N.
2010-08-17
The claimed invention describes methods and apparatuses for manufacturing nano-aerosols and nano-structured materials based on the neutralization of charged electrosprayed products with oppositely charged electrosprayed products. Electrosprayed products include molecular ions, nano-clusters and nano-fibers. Nano-aerosols can be generated when neutralization occurs in the gas phase. Neutralization of electrospan nano-fibers with molecular ions and charged nano-clusters may result in the formation of fibrous aerosols or free nano-mats. Nano-mats can also be produced on a suitable substrate, forming efficient nano-filters.
Dynamic optical arbitrary waveform shaping based on cascaded optical modulators of single FBG.
Chen, Jingyuan; Li, Peili
2015-08-10
A dynamic optical arbitrary waveform generation (O-AWG) with amplitude and phase independently controlled in optical modulators of single fiber Bragg Grating (FBG) has been proposed. This novel scheme consists of several optical modulators. In the optical modulator (O-MOD), a uniform FBG is used to filter spectral component of the input signal. The amplitude is controlled by fiber stretcher (FS) in Mach-Zehnder interference (MZI) structure through interference of two MZI arms. The phase is manipulated via the second FS in the optical modulator. This scheme is investigated by simulation. Consequently, optical pulse trains with different waveforms as well as pulse trains with nonuniform pulse intensity, pulse spacing and pulse width within each period are obtained through FSs adjustment to alter the phase shifts of signal in each O-MOD.
Durán-Sánchez, Manuel; Prieto-Cortés, Patricia; Salceda-Delgado, Guillermo; Castillo-Guzmán, Arturo A.; Selvas-Aguilar, Romeo; Ibarra-Escamilla, Baldemar; Kuzin, Evgeny A.
2017-01-01
An all-fiber curvature laser sensor by using a novel modal interference in-fiber structure is proposed and experimentally demonstrated. The in-fiber device, fabricated by fusion splicing of multimode fiber and double-clad fiber segments, is used as wavelength filter as well as the sensing element. By including a multimode fiber in an ordinary modal interference structure based on a double-clad fiber, the fringe visibility of the filter transmission spectrum is significantly increased. By using the modal interferometer as a curvature sensitive wavelength filter within a ring cavity erbium-doped fiber laser, the spectral quality factor Q is considerably increased. The results demonstrate the reliability of the proposed curvature laser sensor with advantages of robustness, ease of fabrication, low cost, repeatability on the fabrication process and simple operation. PMID:29182527
Álvarez-Tamayo, Ricardo I; Durán-Sánchez, Manuel; Prieto-Cortés, Patricia; Salceda-Delgado, Guillermo; Castillo-Guzmán, Arturo A; Selvas-Aguilar, Romeo; Ibarra-Escamilla, Baldemar; Kuzin, Evgeny A
2017-11-28
An all-fiber curvature laser sensor by using a novel modal interference in-fiber structure is proposed and experimentally demonstrated. The in-fiber device, fabricated by fusion splicing of multimode fiber and double-clad fiber segments, is used as wavelength filter as well as the sensing element. By including a multimode fiber in an ordinary modal interference structure based on a double-clad fiber, the fringe visibility of the filter transmission spectrum is significantly increased. By using the modal interferometer as a curvature sensitive wavelength filter within a ring cavity erbium-doped fiber laser, the spectral quality factor Q is considerably increased. The results demonstrate the reliability of the proposed curvature laser sensor with advantages of robustness, ease of fabrication, low cost, repeatability on the fabrication process and simple operation.
Multiplexed fiber optic temperature-sensing system
NASA Astrophysics Data System (ADS)
Wang, Anbo; Wang, George Z.; Murphy, Kent A.; Miller, Mark S.; Claus, Richard O.
1993-03-01
A multiplexed temperature sensing system is constructed by cascading three temperature sensors along one multimode fiber such that each individual sensor responds to its local temperature disturbance. The sensing element of each sensor is a dielectric edge filter with a specific cutoff wavelength. White light serves as the light source. The performance of this sensor is based on the temperature dependence of the reflection or transmission spectrum of each filter. The reflected or transmitted light from the filter is then sent to two dielectric bandpass filters, which are selected for each particular edge filter and referred to as the sensing and reference filters, respectively. A photometer is placed behind each bandpass filter. The ratio of the sensing filter power to the reference filter power is a function of temperature. Since the cutoff wavelengths of these edge filters (sensors) along the fiber are well separated, the multiplexed signals are divided by different pairs of bandpass filters. In the corresponding experiments, three edge filters were cascaded and 100/104 micrometers graded index fibers were used. A resolution of each temperature sensor was determined to be +/- 0.2 degree(s)C over the temperature range of 30 degree(s)C to 100 degree(s)C.
Fiber-optic apparatus and method for measurement of luminescence and raman scattering
Myrick, Michael L.; Angel, Stanley M.
1993-01-01
A dual fiber forward scattering optrode for Raman spectroscopy with the remote ends of the fibers in opposed, spaced relationship to each other to form a analyte sampling space therebetween and the method of measuring Raman spectra utilizing same. One optical fiber is for sending an exciting signal to the remote sampling space and, at its remote end, has a collimating microlens and an optical filter for filtering out background emissions generated in the fiber. The other optical fiber is for collecting the Raman scattering signal at the remote sampling space and, at its remote end, has a collimating microlens and an optical filter to prevent the exciting signal from the exciting fiber from entering the collection fiber and to thereby prevent the generation of background emissions in the collecting fiber.
NASA Astrophysics Data System (ADS)
Prieto-Cortés, P.; Álvarez-Tamayo, R. I.; Durán-Sánchez, M.; Castillo-Guzmán, A.; Salceda-Delgado, G.; Ibarra-Escamilla, B.; Kuzin, E. A.; Barcelata-Pinzón, A.; Selvas-Aguilar, R.
2018-02-01
We report an in-fiber structure based on the use of a multimode fiber segment and a double cladding fiber segment, and its application as spectral filter in an erbium-doped fiber laser for selection and tuning of the laser line wavelength. The output transmission of the proposed device exhibit spectrum modulation of the input signal with free spectral range of 21 nm and maximum visibility enhanced to more than 20 dB. The output spectrum of the in-fiber filter is wavelength displaced by bending application which allows a wavelength tuning of the generated laser line in a range of 12 nm. The use of the proposed in-fiber structure is demonstrated as a reliable, simple, and low-cost wavelength filter for tunable fiber lasers design and optical instrumentation applications.
Fiber comb filters based on UV-writing Bragg gratings in graded-index multimode fibers
NASA Astrophysics Data System (ADS)
Liu, Yu; Lit, John; Gu, Xijia; Wei, Li
2005-10-01
We report a new kind of comb filters based on fiber Bragg gratings in graded-index multimode fibers. It produces two groups of spectra with a total of 36 reflection peaks that correspond to 18 principal modes and cross coupled modes. The mode indices and wavelength spacings have been investigated theoretically and experimentally. This kind of comb filters may be used to construct multi-wavelength light sources for sensing, optical communications, and instrumentations
Tepper, Frederick [Sanford, FL; Kaledin, Leonid [Port Orange, FL
2009-10-13
Aluminum hydroxide fibers approximately 2 nanometers in diameter and with surface areas ranging from 200 to 650 m.sup.2/g have been found to be highly electropositive. When dispersed in water they are able to attach to and retain electronegative particles. When combined into a composite filter with other fibers or particles they can filter bacteria and nano size particulates such as viruses and colloidal particles at high flux through the filter. Such filters can be used for purification and sterilization of water, biological, medical and pharmaceutical fluids, and as a collector/concentrator for detection and assay of microbes and viruses. The alumina fibers are also capable of filtering sub-micron inorganic and metallic particles to produce ultra pure water. The fibers are suitable as a substrate for growth of cells. Macromolecules such as proteins may be separated from each other based on their electronegative charges.
Gas refractometry based on an all-fiber spatial optical filter.
Silva, Susana; Coelho, L; André, R M; Frazão, O
2012-08-15
A spatial optical filter based on splice misalignment between optical fibers with different diameters is proposed for gas refractometry. The sensing head is formed by a 2 mm long optical fiber with 50 μm diameter that is spliced with a strong misalignment between two single-mode fibers (SMF28) and interrogated in transmission. The misalignment causes a Fabry-Perot behavior along the reduced-size fiber and depending on the lead-out SMF28 position, it is possible to obtain different spectral responses, namely, bandpass or band-rejection filters. It is shown that the spatial filter device is highly sensitive to refractive index changes on a nitrogen environment by means of the gas pressure variation. A maximum sensitivity of -1390 nm/RIU for the bandpass filter was achieved. Both devices have shown similar temperature responses with an average sensitivity of 25.7 pm/°C.
Fiber-Optic Linear Displacement Sensor Based On Matched Interference Filters
NASA Astrophysics Data System (ADS)
Fuhr, Peter L.; Feener, Heidi C.; Spillman, William B.
1990-02-01
A fiber optic linear displacement sensor has been developed in which a pair of matched interference filters are used to encode linear position on a broadband optical signal as relative intensity variations. As the filters are displaced, the optical beam illuminates varying amounts of each filter. Determination of the relative intensities at each filter pairs' passband is based on measurements acquired with matching filters and photodetectors. Source power variation induced errors are minimized by basing determination of linear position on signal Visibility. A theoretical prediction of the sensor's performance is developed and compared with experiments performed in the near IR spectral region using large core multimode optical fiber.
NASA Astrophysics Data System (ADS)
Rocco, Alessandra S.; Coppola, Giuseppe; Ferraro, Pietro; Foti, Giuseppe; Iodice, Mario
2004-09-01
Optical fiber sensors are the ideal system to monitor "smart structures" and on-site/real time stress measurements: they can be in fact easily embedded or attached to the structures under test and are not affected by electro- magnetic noise. In particular a signal from a Fiber Bragg grating sensor (FBG) may be processed such that its information remains immune to optical power fluctuations. Different interrogation methods can be used for reading out Bragg wavelength shifts. In this paper we propose a very simple interferometric method for interrogating FBG sensors, based on bi-polished silicon sample acting like an etalon tuneable filter (ETF). The Bragg wavelength shift can be evaluated by analyzing the spectral response of signal reflected by the FBG sensor and filtered by the ETF that is continuously and rapidly tuned. Tuning was obtained by rotating the ETF. Variation in the strain at the FBG causes a phase shift in the analyzed signal. The overall spectral signal, collected with time, consists in an interferometric figure which finesse and fringe contrast depending on the geometrical sizes and facets reflectivity of the silicon sample. The fringe pattern, expressed by the Airy's formula, depends on the wavelength l of the incident radiation and on the angle of incidence. The phase of fringe pattern can be retrieved by a standard FFT method giving quantitative measurements of the quasi-static strain variation sensed by the FBG. In this way, the method allows a valuable visualization of the time-evolution of the incremental strain applied to the FBG. Principle of functioning of this method is described and first results obtained employing such configuration, are reported.
Carbon fiber composite molecular sieve electrically regenerable air filter media
Wilson, Kirk A.; Burchell, Timothy D.; Judkins, Roddie R.
1998-01-01
An electrically regenerable gas filter system includes a carbon fiber composite molecular sieve (CFCMS) filter medium. After a separate medium-efficiency pre-filter removes particulate from the supply airstream, the CFCMS filter sorbs gaseous air pollutants before the air is recirculated to the space. When saturated, the CFCMS media is regenerated utilizing a low-voltage current that is caused to pass through the filter medium.
Choi, Dong Yun; An, Eun Jeong; Jung, Soo-Ho; Song, Dong Keun; Oh, Yong Suk; Lee, Hyung Woo; Lee, Hye Moon
2018-04-10
Through the direct decomposition of an Al precursor ink AlH 3 {O(C 4 H 9 ) 2 }, we fabricated an Al-coated conductive fiber filter for the efficient electrostatic removal of airborne particles (>99%) with a low pressure drop (~several Pascals). The effects of the electrical and structural properties of the filters were investigated in terms of collection efficiency, pressure drop, and particle deposition behavior. The collection efficiency did not show a significant correlation with the extent of electrical conductivity, as the filter is electrostatically charged by the metallic Al layers forming electrical networks throughout the fibers. Most of the charged particles were collected via surface filtration by Coulombic interactions; consequently, the filter thickness had little effect on the collection efficiency. Based on simulations of various fiber structures, we found that surface filtration can transition to depth filtration depending on the extent of interfiber distance. Therefore, the effects of structural characteristics on collection efficiency varied depending on the degree of the fiber packing density. This study will offer valuable information pertaining to the development of a conductive metal/polymer composite air filter for an energy-efficient and high-performance electrostatic filtration system.
White Matter Tract Injury is Associated with Deep Gray Matter Iron Deposition in Multiple Sclerosis.
Bergsland, Niels; Tavazzi, Eleonora; Laganà, Maria Marcella; Baglio, Francesca; Cecconi, Pietro; Viotti, Stefano; Zivadinov, Robert; Baselli, Giuseppe; Rovaris, Marco
2017-01-01
With respect to healthy controls (HCs), increased iron concentrations in the deep gray matter (GM) and decreased white matter (WM) integrity are common findings in multiple sclerosis (MS) patients. The association between these features of the disease remains poorly understood. We investigated the relationship between deep iron deposition in the deep GM and WM injury in associated fiber tracts in MS patients. Sixty-six MS patients (mean age 50.0 years, median Expanded Disability Status Scale 5.25, mean disease duration 19.1 years) and 29 HCs, group matched for age and sex were imaged on a 1.5T scanner. Susceptibility-weighted imaging and diffusion tensor imaging (DTI) were used for assessing high-pass filtered phase values in the deep GM and normal appearing WM (NAWM) integrity in associated fiber tracts, respectively. Correlation analyses investigated the associations between filtered phase values (suggestive of iron content) and WM damage. Areas indicative of increased iron levels were found in the left and right caudates as well as in the left thalamus. MS patients presented with decreased DTI-derived measures of tissue integrity in the associated WM tracts. Greater mean, axial and radial diffusivities were associated with increased iron levels in all three GM areas (r values .393 to .514 with corresponding P values .003 to <.0001). Global NAWM diffusivity measures were not related to mean filtered phase values within the deep GM. Increased iron concentration in the deep GM is associated with decreased tissue integrity of the connected WM in MS patients. Copyright © 2016 by the American Society of Neuroimaging.
Fiber-optic apparatus and method for measurement of luminescence and Raman scattering
Myrick, M.L.; Angel, S.M.
1993-03-16
A dual fiber forward scattering optrode for Raman spectroscopy with the remote ends of the fibers in opposed, spaced relationship to each other to form a analyte sampling space therebetween and the method of measuring Raman spectra utilizing same are described. One optical fiber is for sending an exciting signal to the remote sampling space and, at its remote end, has a collimating microlens and an optical filter for filtering out background emissions generated in the fiber. The other optical fiber is for collecting the Raman scattering signal at the remote sampling space and, at its remote end, has a collimating microlens and an optical filter to prevent the exciting signal from the exciting fiber from entering the collection fiber and to thereby prevent the generation of background emissions in the collecting fiber.
NASA Astrophysics Data System (ADS)
Ruan, Juan; Zhang, Wei-Gang; Zhang, Hao; Geng, Peng-Cheng; Bai, Zhi-Yong
2013-06-01
A novel tunable comb filter composed of a single-mode/multimode/polarization-maintaining-fiber-based Sagnac fiber loop is proposed and experimentally demonstrated. The filter tunability is achieved by rotating the polarization controller. The spectral shift is dependent on rotation direction and the position of the polarization controller. In addition, the adjustable range achieved by rotating the half-wave-plate polarization controller is twice higher than that of the quarter-wave-plate one.
Wide range optofluidically tunable multimode interference fiber laser
NASA Astrophysics Data System (ADS)
Antonio-Lopez, J. E.; Sanchez-Mondragon, J. J.; LiKamWa, P.; May-Arrioja, D. A.
2014-08-01
An optofluidically tunable fiber laser based on multimode interference (MMI) effects with a wide tuning range is proposed and demonstrated. The tunable mechanism is based on an MMI fiber filter fabricated using a special fiber known as no-core fiber, which is a multimode fiber (MMF) without cladding. Therefore, when the MMI filter is covered by liquid the optical properties of the no-core fiber are modified, which allow us to tune the peak wavelength response of the MMI filter. Rather than applying the liquid on the entire no-core fiber, we change the liquid level along the no-core fiber, which provides a highly linear tuning response. In addition, by selecting the adequate refractive index of the liquid we can also choose the tuning range. We demonstrate the versatility of the optofluidically tunable MMI filter by wavelength tuning two different gain media, erbium doped fiber and a semiconductor optical amplifier, achieving tuning ranges of 55 and 90 nm respectively. In both cases, we achieve side-mode suppression ratios (SMSR) better than 50 dBm with output power variations of less than 0.76 dBm over the whole tuning range.
Generating broadband vortex modes in ring-core fiber by using a plasmonic q-plate.
Ye, Jingfu; Li, Yan; Han, Yanhua; Deng, Duo; Su, Xiaoya; Song, He; Gao, Jianmin; Qu, Shiliang
2017-08-15
A mode convertor was proposed and investigated for generating vortex modes in a ring-core fiber based on a plasmonic q-plate (PQP), which is composed of specially organized L-shaped resonator (LSR) arrays. A multicore fiber was used to transmit fundamental modes, and the LSR arrays were used to modulate phases of these fundamental modes. Behind the PQP, the transmitted fundamental modes with gradient phase distribution can be considered as the incident lights for generating broadband vortex modes in the ring-core fiber filter. The topological charges of generated vortex modes can be various by using an optical PQP with different q, and the chirality of the generated vortex mode can be controlled by the sign of q and handedness of the incident circularly polarized light. The operation bandwidth is 800 nm in the range of 1200-2000 nm, which covers six communication bands from the O band to the U band. The separation of vortex modes also was addressed by using a dual ring-core fiber. The mode convertor is of potential interest for connecting a traditional network and vortex communication network.
Carbon fiber composite molecular sieve electrically regenerable air filter media
Wilson, K.A.; Burchell, T.D.; Judkins, R.R.
1998-10-27
An electrically regenerable gas filter system includes a carbon fiber composite molecular sieve (CFCMS) filter medium. After a separate medium-efficiency pre-filter removes particulate from the supply air stream, the CFCMS filter sorbs gaseous air pollutants before the air is recirculated to the space. When saturated, the CFCMS media is regenerated utilizing a low-voltage current that is caused to pass through the filter medium. 3 figs.
Tunable fiber laser based on the refractive index characteristic of MMI effects
NASA Astrophysics Data System (ADS)
Ma, Lin; Qi, Yanhui; Kang, Zexin; Bai, Yunlong; Jian, Shuisheng
2014-04-01
A tunable erbium-doped all-fiber laser has been demonstrated. This tunable laser is based on a tunable fiber filter using the refractive index characteristics of multimode interference effects. A thinner no-core fiber with a diameter of 104 μm is used to fabricate the tunable fiber filter. The joint point of the thinner no-core fiber with SMF is a taper, which improves its sensitivity for refractive index changes. The filter exhibits a very sensitive response to the change of the environmental refractive index, which is about 1000 nm/RIU in the RI range from 1.418 to 1.427. The tunable fiber laser based on the filter achieved a tunability of 32 nm, with the wavelength tuned from 1532 nm to 1564 nm covering the full C-band. The 3 dB bandwidth of the tunable laser is less than 0.02 nm with the signal-to-noise ratio of about 40 dB.
Multiphoton endoscopy based on a mode-filtered single-mode fiber
NASA Astrophysics Data System (ADS)
Moon, Sucbei; Liu, Gangjun; Chen, Zhongping
2011-03-01
We present a new low-nonlinearity fiber of mode-filtered large-core fiber for flexible beam delivery of intense pulsed light aiming at multi-photon endoscopy application. A multimode fiber of a large core diameter (20 μm) equips a mode filtering means in the middle of the fiber link to suppress the high-order modes selectively. A large effective core area of ~200 μm2 has been achieved at 0.8-μm and 1.0-μm bands. This is 8 times larger than the core area of a conventional SMF used for those spectral bands. Various advantages of our large-mode area fiber will be demonstrated and discussed in this report.
Fiber Bragg grating inscription in optical multicore fibers
NASA Astrophysics Data System (ADS)
Becker, Martin; Elsmann, Tino; Lorenz, Adrian; Spittel, Ron; Kobelke, Jens; Schuster, Kay; Rothhardt, Manfred; Latka, Ines; Dochow, Sebastian; Bartelt, Hartmut
2015-09-01
Fiber Bragg gratings as key components in telecommunication, fiber lasers, and sensing systems usually rely on the Bragg condition for single mode fibers. In special applications, such as in biophotonics and astrophysics, high light coupling efficiency is of great importance and therefore, multimode fibers are often preferred. The wavelength filtering effect of Bragg gratings in multimode fibers, however is spectrally blurred over a wide modal spectrum of the fiber. With a well-designed all solid multicore microstructured fiber a good light guiding efficiency in combination with narrow spectral filtering effect by Bragg gratings becomes possible.
Ratiometric wavelength monitor based on X-type spectral response using two edge filters
NASA Astrophysics Data System (ADS)
Hatta, Agus Muhamad; Rajan, Ginu; Farrell, Gerald; Semenova, Yuliya
2009-05-01
The performance of an all-fiber ratiometric wavelength measurement system is compared for the case of two edge filters and the case of one edge filter. The two fiber edge filters are used with overlapping and opposite slope spectral responses, a so called "X-type spectral response", each based on singlemode-multimode-singlemode (SMS) fiber structures. Noise and polarization dependent loss (PDL) are the two parameters that determine the resolution and an accuracy of the system. It is demonstrated that the use of two SMS edge filters for a ratiometric wavelength measurement system can increase the resolution and the accuracy when compared with a system using only one edge filter.
Widely tunable opto-electronic oscillator based on a dual frequency laser
NASA Astrophysics Data System (ADS)
Maxin, J.; Saleh, K.; Pillet, G.; Morvan, L.; Llopis, O.; Dolfi, D.
2013-03-01
We present the stabilization of the beatnote of an Er,Yb:glass Dual Frequency Laser at 1.53 μm with optical fiber delay lines. Instead of standard optoelectronics oscillators, this architecture does not need RF filter and offers a wide tunability from 2.5 to 5.5 GHz. Thank to a fine analysis of the laser RIN to phase noise conversion in the photodiodes, the expected RF-amplifiers noise limit is reached with a phase noise power spectral density of -25 dBc/Hz at 10 Hz (respectively -110 dBc/Hz at 10 kHz) from the carrier over the whole tuning range. Implementation of a double fiber coil architecture improves the oscillator spectral purity: the phase noise reaches a level of -35 dBc/Hz at 10 Hz (respectively -112 dBc/Hz respectively 10 kHz) from the carrier.
"Photonic lantern" spectral filters in multi-core Fiber.
Birks, T A; Mangan, B J; Díez, A; Cruz, J L; Murphy, D F
2012-06-18
Fiber Bragg gratings are written across all 120 single-mode cores of a multi-core optical Fiber. The Fiber is interfaced to multimode ports by tapering it within a depressed-index glass jacket. The result is a compact multimode "photonic lantern" filter with astrophotonic applications. The tapered structure is also an effective mode scrambler.
Aerosol Filter Loading Data for a Simulated Jet Engine Test Cell Aerosol.
1979-08-01
media. M SECTION II TEST PROGRAM I. TESTING PROCEDURE Sheets of the filter media were obtained from Owens - Corning Fiberglas Corporation. Ten centimeter...loading cycle. 2. TEST FILTERS The four following glass fiber filter medias were obtained from Owens - Corning Fiberglas Corporation (OCF) and tested both...shown in Table 22. Filters were washed from the back side. 5. ONCLUSIONS Four glass fiber filters, specified in the contract, were obtained from Owens
Qian, Fuping; Wang, Haigang
2010-04-15
The gas-solid two-phase flows in the plain wave fabric filter were simulated by computational fluid dynamics (CFD) technology, and the warps and wefts of the fabric filter were made of filaments with different dimensions. The numerical solutions were carried out using commercial computational fluid dynamics (CFD) code Fluent 6.1. The filtration performances of the plain wave fabric filter with different geometry parameters and operating condition, including the horizontal distance, the vertical distance and the face velocity were calculated. The effects of geometry parameters and operating condition on filtration efficiency and pressure drop were studied using response surface methodology (RSM) by means of the statistical software (Minitab V14), and two second-order polynomial models were obtained with regard to the effect of the three factors as stated above. Moreover, the models were modified by dismissing the insignificant terms. The results show that the horizontal distance, vertical distance and the face velocity all play an important role in influencing the filtration efficiency and pressure drop of the plane wave fabric filters. The horizontal distance of 3.8 times the fiber diameter, the vertical distance of 4.0 times the fiber diameter and Reynolds number of 0.98 are found to be the optimal conditions to achieve the highest filtration efficiency at the same face velocity, while maintaining an acceptable pressure drop. 2009 Elsevier B.V. All rights reserved.
Widely tunable erbium-doped fiber laser based on multimode interference effect.
Castillo-Guzman, A; Antonio-Lopez, J E; Selvas-Aguilar, R; May-Arrioja, D A; Estudillo-Ayala, J; LiKamWa, P
2010-01-18
A widely tunable erbium-doped all-fiber laser has been demonstrated. The tunable mechanism is based on a novel tunable filter using multimode interference effects (MMI). The tunable MMI filter was applied to fabricate a tunable erbium-doped fiber laser via a standard ring cavity. A tuning range of 60 nm was obtained, ranging from 1549 nm to 1609 nm, with a signal to noise ratio of 40 dB. The tunable MMI filter mechanism is very simple and inexpensive, but also quite efficient as a wavelength tunable filter.
Nanosize electropositive fibrous adsorbent
Tepper, Frederick; Kaledin, Leonid
2005-01-04
Aluminum hydroxide fibers approximately 2 nanometers in diameter and with surface areas ranging from 200 to 650 m.sup.2 /g have been fount to be highly electropositive. When dispersed in water they are able to attach to and retain electronegative particles. When combined into a composite filter with other fibers or particles they can filter bacteria and nano size particulates such as viruses and colloidal particles at high flux through the filter. Such filters can be used for purification and sterilization of water, biological, medical and pharmaceutical fluids, and as a collector/concentrator for detection and assay of mirobes and viruses. The alumina fibers are also capable of filtering sub-micron inorganic and metallic particles to produce ultra pure water. The fibers are suitable as a substrate for growth of cells. Macromolicules such as proteins may be separated from each other based on their electronegative charges.
Sidelobe suppression in all-fiber acousto-optic tunable filter using torsional acoustic wave.
Lee, Kwang Jo; Hwang, In-Kag; Park, Hyun Chul; Kim, Byoung Yoon
2010-06-07
We propose two techniques to suppress intrinsic sidelobe spectra in all-fiber acousto-optic tunable filter using torsional acoustic wave. The techniques are based on either double-pass filter configuration or axial tailoring of mode coupling strength along an acousto-optic interaction region in a highly birefringent optical fiber. The sidelobe peak in the filter spectrum is experimentally suppressed from -8.3 dB to -16.4 dB by employing double-pass configuration. Axial modulation of acousto-optic coupling strength is proposed using axial variation of the fiber diameter, and the simulation results show that the maximum side peak of -9.3 dB can be reduced to -22.2dB. We also discuss the possibility of further spectral shaping of the filter based on the axial tailoring of acousto-optic coupling strength.
Novel techniques for optical performance monitoring in optical systems
NASA Astrophysics Data System (ADS)
Ku, Yuen Ching
The tremendous increase of data traffic in the worldwide Internet has driven the rapid development of optical networks to migrate from numerous point-to-point links towards meshed, transparent optical networks with dynamically routed light paths. This increases the need for appropriate network supervision methods. In view of this, optical performance monitoring (OPM) has emerged as an indispensable element for the quality assurance of an optical network. This thesis is devoted to the proposal of several new and accurate techniques to monitor different optical impairments so as to enhance proper network management. When the optical signal is carried on fiber links with optical amplifiers, the accumulated amplified spontaneous emission (ASE) noise will result in erroneous detection of the received signals. The first part of the thesis presents a novel, simple, and robust in-band optical signal to noise ratio (OSNR) monitoring technique using phase modulator embedded fiber loop mirror (PM-FLM). This technique measures the in-band OSNR accurately by observing the output power of a fiber loop mirror filter, where the transmittance is adjusted by an embedded phase modulator driven by a low-frequency periodic signal. The robustness against polarization mode dispersion, chromatic dispersion, bit-rate, and partially polarized noise is experimentally demonstrated. Chromatic dispersion (CD) is due to the fact that light with different frequencies travel at different speeds inside fiber. It causes pulse spreading and intersymbol interference (ISI) which would severely degrade the transmission performance. By feeding a signal into a fiber loop which consists of a high-birefringence (Hi-Bi) fiber, we experimentally show that the amount of experienced dispersion can be deduced from the RF power at a specific selected frequency which is determined by the length of the Hi-Bi fiber. Experimental results show that this technique can provide high monitoring resolution and dynamic range. Polarization mode dispersion (PMD) splits an optical pulse into two orthogonally polarized pulses traveling along the fiber at different speeds, causing crosstalk and ISI. The third part of the thesis demonstrates two different PMD monitoring schemes. The first one is based on the analysis of frequency-resolved state-of-polarization (SOP) rotation, with signal spectrum broadened by self-phase modulation (SPM) effect. Experimental results show that the use of broadened signal spectrum induced by SPM not only relaxes the filter requirement and reduces the computational complexity, but also improves the estimation accuracy, and extends the monitoring range of the pulsewidth. The second one is based on the delay-tap asynchronous waveform sampling technique. By examining the statistical distribution of the measured scatter plot, unambiguous PMD measurement range up to 50% of signal bit-period is demonstrated. The final part of the thesis focuses on the monitoring of alignment status between the pulse carver and data modulator in an optical system. We again employ the two-tap asynchronous sampling technique to perform such kind of monitoring in RZ-OOK transmission system. Experimental results show that both the misalignment direction and magnitude can be successfully determined. Besides, we propose and experimentally demonstrate the use of off-center optical filtering technique to capture the amount of spectrum broadening induced by the misalignment between the pulse-carver and the data modulator in RZ-DPSK transmission system. The same technique was also applied to monitor the synchronization between the old and the new data in synchronized phase re-modulation (SPRM) system.
Tang, Chanjuan; Yu, Jianjun; Li, Xinying; Chi, Nan; Xiao, Jiangnan; Tian, Yumin; Zhang, Junwen
2014-01-13
We propose and experimentally demonstrate a full-duplex bi-directional transmission optical wireless-over fiber integration system at W-band (75-100 GHz) with the speed up to 15 Gb/s for both 95.4 GHz link and 88.6 GHz link for the first time. The generation of millimeter-wave (mm-wave) wireless signal is based on the photonic technique by heterodyne mixing of an optical quadrature-phase-shift-keying (QPSK) signal with a free-running light at different wavelength. After 20 km fiber transmission, up to 30 Gb/s mm-wave signal is delivered over 2 m wireless link, and then converted to the optical signal for another 20 km fiber transmission. At the wireless receiver, coherent detection and advanced digital signal processing (DSP) are introduced to improve receiver sensitivity and system performance. With the OSNR of 15 dB, the bit error ratios (BERs) for 10 Gb/s signal transmission at 95.4 GHz and 88.6 GHz are below the forward-error-correction (FEC) threshold of 3.8 × 10(-3) whether post filter is used or not, while the BER for 15 Gb/s QPSK signal employing post filter in the link of 95.4 GHz is 2.9 × 10(-3).
Multi-parameter fiber optic sensors based on fiber random grating
NASA Astrophysics Data System (ADS)
Xu, Yanping; Zhang, Mingjiang; Lu, Ping; Mihailov, Stephen; Bao, Xiaoyi
2017-04-01
Two novel configurations of multi-parameter fiber-optic sensing systems based on the fiber random grating are reported. The fiber random grating is fabricated through femtosecond laser induced refractive index modification over a 10cm standard telecom single mode fiber. In one configuration, the reflective spectrum of the fiber random grating is directly detected and a wavelength-division spectral cross-correlation algorithm is adopted to extract the spectral shifts for simultaneous measurement of temperature, axial strain, and surrounding refractive index. In the other configuration, a random fiber ring laser is constructed by incorporating the random feedback from the random grating. Numerous polarization-dependent spectral filters are formed along the random grating and superimposed to provide multiple lasing lines with high signal-to-noise ratio up to 40dB, which enables a high-fidelity multi-parameter sensing scheme by monitoring the spectral shifts of the lasing lines. Without the need of phase mask for fabrication and with the high physical strength, the random grating based sensors are much simpler and more compact, which could be potentially an excellent alternative for liquid medical sample sensing in biomedical and biochemical applications.
NASA Astrophysics Data System (ADS)
Salceda-Delgado, G.; Martinez-Rios, A.; Sierra-Hernandez, J. M.; Rodríguez-Carreón, V. C.; Toral-Acosta, D.; Selvas-Aguilar, R.; Álvarez-Tamayo, R. I.; Castillo-Guzman, A. A.; Rojas-Laguna, R.
2018-03-01
A straightforward and versatile method for switching from single to different multiwavelength laser emission in ring cavity fiber lasers is proposed and demonstrated experimentally. The method is based on using the changeable interference pattern from an optical fiber modal Michelson interferometer as a wavelength selective filter into the ring cavity laser. The interferometer is constructed using a bi-conical tapered fiber and a single-mode fiber segment, with these being spliced together to form an optical fiber tip probe. When the length of the single-mode fiber piece is modified, the phase difference between the interfering modes of the interferometer causes a change in the interferometer free spectral range. As a consequence, the laser intra-cavity losses lead to gain competition, which allows us to adjust the number of simultaneously generated laser lines. A multiwavelength reconfiguration of the laser from one up to a maximum of eight emission lines was obtained, with a maximum SNR of around 47 dBm.
Minn, Khant; Anopchenko, Aleksei; Yang, Jingyi; Lee, Ho Wai Howard
2018-02-05
We report a novel optical waveguide design of a hollow step index fiber modified with a thin layer of indium tin oxide (ITO). We show an excitation of highly confined waveguide mode in the proposed fiber near the wavelength where permittivity of ITO approaches zero. Due to the high field confinement within thin ITO shell inside the fiber, the epsilon-near-zero (ENZ) mode can be characterized by a peak in modal loss of the hybrid waveguide. Our results show that such in-fiber excitation of ENZ mode is due to the coupling of the guided core mode to the thin-film ENZ mode. We also show that the phase matching wavelength, where the coupling takes place, varies depending on the refractive index of the constituents inside the central bore of the fiber. These ENZ nanostructured optical fibers have many potential applications, for example, in ENZ nonlinear and magneto-optics, as in-fiber wavelength-dependent filters, and as subwavelength fluid channel for optical and bio-photonic sensing.
Chemical analysis of SOA produced from the irradiation of a mixture of α/β-farnesene/NOx was conducted in a 14.5 m3 smog chamber. SOA collected on glass-fiber filters was solvent extracted, derivatized using BSTFA, and analyzed by GC–MS. Gas-phase products were a...
The purpose of this SOP is to describe the procedures for extracting and preparing an air sample consisting of a polyurethane foam (PUF) plug and Teflon-coated glass fiber filter (Pallflex T60A20) for analysis of pesticides. This procedure covers sample preparation for samples t...
Large tunable optical delays via self-phase modulation and dispersion
NASA Astrophysics Data System (ADS)
Okawachi, Yoshitomo; Sharping, Jay E.; Xu, Chris; Gaeta, Alexander L.
2006-12-01
We demonstrate all-optically tunable delays in optical fiber via a dispersive stage and two stages of nonlinear spectral broadening and filtering. With this scheme, we achieve continuously tunable delays of 3.5- ps pulses and advancements over a total range of more than 1200 pulsewidths. Our technique is applicable to a wide range of pulse durations and delays.
Structured FBG filters for 10-Gb/s DPSK signal demodulation in single ended applications
NASA Astrophysics Data System (ADS)
Marazzi, L.; Boffi, P.; Parolari, P.; Martinelli, M.; Gatti, D.; Coluccelli, N.; Longhi, S.
2011-05-01
Differential phase-shift keying (DPSK) demodulations operated by a structured fiber Bragg grating (FBG) filter and by a Mach-Zehnder delay interferometer (MZDI) in a single-ended configuration are compared. Experimental measurements at 10 Gb/s demonstrate that a specially designed FBG outperforms an integrated-optic MZDI of ˜4 dB and ˜3.5 dB in back-to-back and after 25-km propagation, respectively. Both demodulators show low polarization sensitivity and signal frequency detuning dependence, but only MZDI operating point requires a thermal control. FBG filter proves an interesting solution for DPSK demodulation in low-cost applications and, moreover, can be designed to match colorless requirements of wave division multiplexed passive optical network (WDM-PON) applications.
MUTAGENICITY OF TEFLON-COATED GLASS FIBER FILTERS: A POTENTIAL PROBLEM AND SOLUTIONS
Teflon-coated glass fiber filters, used in studies of airborne particulate matter, were tested for mutagenic activity using the Salmonella/mammalian-microsome (Ames) assay. For each sample, eight blank filters were simultaneously extracted with dichloromethane (DCM), and the extr...
Shao, Zhihua; Qiao, Xueguang; Rong, Qiangzhou; Su, Dan
2015-08-01
A type of wave-breaking-free mode-locked dual-wavelength square pulse was experimentally observed in a figure-eight erbium-doped fiber laser with ultra-large net-anomalous dispersion. A 2.7 km long single-mode fiber (SMF) was incorporated as a nonlinear optical loop mirror (NOLM) and provided largely nonlinear phase accumulation and anomalous dispersion, which enhanced the four-wave-mixing effect to improve the stability of the dual-wavelength operation. In the NOLM, the long SMF with small birefringence supported the Sagnac interference as a filter to manage the dual-wavelength lasing. The dual-wavelength operation was made switchable by adjusting the intra-cavity polarization loss and phase delay corresponding to two square pulses. When the pump power was increased, the duration of the square pulse increased continuously while the peak pulse power gradually decreased. This square-type pulse can potentially be utilized for signal transmission and sensing.
Effectiveness of two synthetic fiber filters for removing white cells from AS-1 red cells.
Pikul, F J; Farrar, R P; Boris, M B; Estok, L; Marlo, D; Wildgen, M; Chaplin, H
1989-09-01
Two commercially available synthetic fiber filters were studied for their effectiveness at removing white cells (WBCs) from AS-1-preserved red cells (RBCs) stored less than or equal to 14 days. In all, 65 filtrations were performed. An automated microprocessor-controlled hydraulic system designed for use with cellulose acetate fiber filters was employed to prepare filtered RBCs before release for transfusion. Studies were also carried out on polyester fiber filters, which are designed to be used in-line during transfusion. Residual WBCs were below the accurate counting range of Coulter counters and of conventional manual chamber counts. An isosmotic ammonium chloride RBC lysis method, plus a modified chamber counting technique, permitted a 270-fold increase over the number of WBCs counted by the conventional manual method. For the polyester fiber-filtered products, residual WBCs per unit were not affected by speed of filtration, prior length of storage, or mechanical tapping during filtration. The effectiveness of WBC removal (mean 99.7%), total residual WBCs (means, 4.8 and 5.5 x 10(6], and RBC recovery (mean, 93%) was the same for both filters. The majority of residual WBCs were lymphocytes. WBC removal and RBC recovery were strikingly superior to results reported with nonfiltration methods.
All-fiber tunable MMI fiber laser
NASA Astrophysics Data System (ADS)
Antonio-Lopez, J. E.; Castillo-Guzman, A.; May-Arrioja, D. A.; Selvas-Aguilar, R.; LiKamWa, P.
2009-05-01
We report on a novel tuning mechanism to fabricate an all-fiber tunable laser based on multimode interference (MMI) effects. It is well known that the wavelength response of MMI devices exhibits a linear dependence when the length of the multimode fiber (MMF) section. Therefore, tuning in the MMI filter is achieved using a ferrule (capillary tube of 127 μm diameter) filled with a liquid with a higher refractive index than that of the ferrule, which creates a variable liquid MMF. This liquid MMF is used to increase the effective length of the MMI filter and tuning takes place. Using this simple scheme, a tuning range of 30 nm was easily achieved, with very small insertion losses. The filter was tested within a typical Erbium doped fiber (EDF) ring laser cavity, and a tunable EDF laser covering the full C-band was demonstrated. The advantage of our laser is of course the simplicity of the tunable MMI filter, which results in an inexpensive tunable fiber laser.
Effect of metal coating in all-fiber acousto-optic tunable filter using torsional wave.
Song, Du-Ri; Jun, Chang Su; Do Lim, Sun; Kim, Byoung Yoon
2014-12-15
Torsional mode acousto-optic tunable filter (AOTF) is demonstrated using a metal-coated birefringent optical fiber for an improved robustness. The changes in acoustic and optical properties of a metal-coated birefringent optical fiber induced by the thin metal coating were analyzed experimentally and theoretically. The filter wavelength shift is successfully explained as a result of combined effect of acoustic wavelength change and optical birefringence change. We also demonstrated a small form-factor configuration by coiling the fiber with 6 cm diameter without performance degradation. The center wavelength of the filter can be tuned >35 nm by changing the applied frequency, and the coupling efficiency is higher than 92% with <5 nm 3-dB bandwidth.
Receptacle for Optical-Fiber Scraps
NASA Technical Reports Server (NTRS)
Nevin, R.
1986-01-01
Small pieces of glass trapped by moving air. Device traps fibers in section of black air-conditioner filter material. Filter section rests on metal screen above axial fan, which pulls air down through filter. Fan is small, quiet unit of type ordinarily used to cool electronic equipment.
Narrowband spectral filter based on biconical tapered fiber
NASA Astrophysics Data System (ADS)
Celaschi, Sergio; Malheiros-Silveira, Gilliard N.
2018-02-01
The ease of fabrication and compactness of devices based on tapered optical fibers contribute to its potential using in several applications ranging from telecommunication components to sensing devices. In this work, we proposed, fabricated, and characterized a spectral filter made of biconical taper from a coaxial optical fiber. This filter is defined by adiabatically tapering a depressed-cladding fiber. The adiabatic taper profile obtained during fabrication prevents the interference of other modes than HE11 and HE12 ones, which play the main role for the beating phenomenon and the filter response. The evolution of the fiber shapes during the pulling was modeled by two coupled partial differential equations, which relate the normalized cross-section area, and the axial velocity of the fiber elongation. These equations govern the mass and axial momentum conservation. The numerical results of the filter characteristics are in good accordance with the experimental ones. The filter was packaged in order to let it ready for using in optical communication bands. The characteristics are: free spectral range (FSR) of 6.19 nm, insertion loss bellow 0.5 dB, and isolation > 20 dB at C-band. Its transmission spectrum extends from 1200 to 1600 nm where the optical fiber core supports monomode transmission. Such characteristics may also be interesting to be applied in sensing applications. We show preliminary numerical results assuming a biconic taper embedded into a dielectric media, showing promising results for electro-optic sensing applications.
A narrow linewidth tunable single longitudinal mode Ga-EDF fiber laser
NASA Astrophysics Data System (ADS)
Mohamed Halip, N. H.; Abu Bakar, M. H.; Latif, A. A.; Muhd-Yasin, S. Z.; Zulkifli, M. I.; Mat-Sharif, K. A.; Omar, N. Y. M.; Mansoor, A.; Abdul-Rashid, H. A.; Mahdi, M. A.
2018-05-01
A tunable ring cavity single longitudinal mode (SLM) fiber laser incorporating Gallium-Erbium co-doped fiber (Ga-EDF) gain medium and several mode filtration techniques is demonstrated. With Ga-EDF, high emission power was accorded in short fiber length, allowing shorter overall cavity length and wider free spectral range. Tunable bandpass filter, sub-ring structure, and cascaded dissimilar fiber taper were utilized to filter multi-longitudinal modes. Each of the filter mechanism was tested individually within the laser cavity to assess its performance. Once the performance of each filter was obtained, all of them were deployed into the laser system. Ultimately, the 1561.47 nm SLM laser achieved a narrow linewidth laser, optical signal-to-noise ratio, and power fluctuation of 1.19 kHz, 61.52 dB and 0.16 dB, respectively. This work validates the feasibility of Ga-EDF to attain a stable SLM output in simple laser configuration.
Novel method of detecting movement of the interference fringes using one-dimensional PSD.
Wang, Qi; Xia, Ji; Liu, Xu; Zhao, Yong
2015-06-02
In this paper, a method of using a one-dimensional position-sensitive detector (PSD) by replacing charge-coupled device (CCD) to measure the movement of the interference fringes is presented first, and its feasibility is demonstrated through an experimental setup based on the principle of centroid detection. Firstly, the centroid position of the interference fringes in a fiber Mach-Zehnder (M-Z) interferometer is solved in theory, showing it has a higher resolution and sensitivity. According to the physical characteristics and principles of PSD, a simulation of the interference fringe's phase difference in fiber M-Z interferometers and PSD output is carried out. Comparing the simulation results with the relationship between phase differences and centroid positions in fiber M-Z interferometers, the conclusion that the output of interference fringes by PSD is still the centroid position is obtained. Based on massive measurements, the best resolution of the system is achieved with 5.15, 625 μm. Finally, the detection system is evaluated through setup error analysis and an ultra-narrow-band filter structure. The filter structure is configured with a one-dimensional photonic crystal containing positive and negative refraction material, which can eliminate background light in the PSD detection experiment. This detection system has a simple structure, good stability, high precision and easily performs remote measurements, which makes it potentially useful in material small deformation tests, refractivity measurements of optical media and optical wave front detection.
Highly efficient all-fiber tunable polarization filter using torsional acoustic wave.
Lee, Kwang Jo; Park, Hyun Chul; Kim, Byoung Yoon
2007-09-17
We demonstrate an all-fiber tunable polarization filter with high coupling efficiency based on acousto-optic coupling between two optical polarization modes of the LP(01) mode propagating in a highly birefringent single mode optical fiber. An over-coupling between the two polarization modes is realized over the wavelength range from 1530 nm to 1610 nm using traveling torsional acoustic wave. The measured 3-dB optical bandwidth of the filter was 4.8 nm at the wavelength around 1550 nm. The details of the filter transmission and the coupling characteristics are discussed.
Zhang, Z X; Xu, Z W; Zhang, L
2012-11-19
We report the generation of tunable single- and dual-wavelength dissipative solitons in an all-normal-dispersion mode-locked Yb-doped fiber laser, to the best of our knowledge, for the first time. Besides single-wavelength mode-locking, dual-wavelength mode-locking was achieved using an in-line birefringence fiber filter with periodic multiple passbands, which not only allows multiple wavelengths to oscillate simultaneously but also performs spectrum modulation on highly chirped dissipative pulse. Furthermore, taking advantage of the tunability of the birefringence fiber filter, wavelength tuning for both single- and dual-wavelength dissipative soliton mode-locking was realized. The dual-wavelength operation is also switchable. The all-fiber dissipative laser with flexible outputs can meet diverse application needs.
NASA Astrophysics Data System (ADS)
Hirabayashi, Katsuhiko
2005-03-01
Simple Pb_1-x La_x(Zr_y Ti_z)_1-x/4 O3 (PLZT) electrooptic ceramic photonic device arrays for surface-normal operation have been developed for application to polarization-controller arrays and Fabry-Pérot tunable filter arrays. These arrays are inserted in trenches cut across fiber arrays. Each element of the arrayed structure corresponds to one optical beam and takes the form of a cell. Each sidewall of the cell (width: 50-80 μm) is coated to form an electrode. The arrays have 16 elements at a pitch of 250 μm. The phase modulator has about 1 dB of loss and a half-wavelength voltage of 120 V. A cascade of two PLZT phase modulators (thickness: 300 μm), with each attached to a polyimide lambda/2 plate (thickness:15 μm), is capable of converting an arbitrary polarization to the transverse-electric (TE) or transverse-magnetic (TM) polarization. The response time is 1 μs. The Fabry-Pérot tunable filters have a thickness of 50 μm . The front and back surfaces of each cell are coated by 99%-reflective mirror. The free spectral range (FSR) of the filters is about 10 nm, tunable range is about 10 nm, loss is 2.2 dB, and finesse is 150. The tuning speed of these devices is high, taking only 1 μs.
Polarization-independent optical wavelength filter for channel dropping applications
Deri, R.J.; Patterson, F.
1996-05-07
The polarization dependence of optical wavelength filters is eliminated by using waveguide directional couplers. Material birefringence is used to compensate for the waveguide (electromagnetic) birefringence which is the original cause of the polarization dependence. Material birefringence is introduced in a controllable fashion by replacing bulk waveguide layers by finely layered composites, such as multiple quantum wells using III-V semiconductor materials. The filter has use in wavelength-division multiplexed fiber optic communication systems. This filter has broad application for wavelength-tunable receivers in fiber optic communication links, which may be used for telecommunications, optical computer interconnect links, or fiber optic sensor systems. Since multiple-wavelength systems are increasingly being used for all of these applications, the filter is useable whenever a rapidly tunable, wavelength-filtering receiver is required. 14 figs.
Polarization-independent optical wavelength filter for channel dropping applications
Deri, Robert J.; Patterson, Frank
1996-01-01
The polarization dependence of optical wavelength filters is eliminated by using waveguide directional couplers. Material birefringence is used to compensate for the waveguide (electromagnetic) birefringence which is the original cause of the polarization dependence. Material birefringence is introduced in a controllable fashion by replacing bulk waveguide layers by finely layered composites, such as multiple quantum wells using III-V semiconductor materials. The filter has use in wavelength-division-multiplexed fiber optic communication systems. This filter has broad application for wavelength-tunable receivers in fiber optic communication links, which may be used for telecommunications, optical computer interconnect links, or fiber optic sensor systems. Since multiple-wavelength systems are increasingly being used for all of these applications, the filter is useable whenever a rapidly tunable, wavelength-filtering receiver is required.
NASA Astrophysics Data System (ADS)
Li, Peng; Zong, Yichen; Zhang, Yingying; Yang, Mengmeng; Zhang, Rufan; Li, Shuiqing; Wei, Fei
2013-03-01
We fabricated depth-type hierarchical CNT/quartz fiber (QF) filters through in situ growth of CNTs upon quartz fiber (QF) filters using a floating catalyst chemical vapor deposition (CVD) method. The filter specific area of the CNT/QF filters is more than 12 times higher than that of the pristine QF filters. As a result, the penetration of sub-micron aerosols for CNT/QF filters is reduced by two orders of magnitude, which reaches the standard of high-efficiency particulate air (HEPA) filters. Simultaneously, due to the fluffy brush-like hierarchical structure of CNTs on QFs, the pore size of the hybrid filters only has a small increment. The pressure drop across the CNT/QF filters only increases about 50% with respect to that of the pristine QF filters, leading to an obvious increased quality factor of the CNT/QF filters. Scanning electron microscope images reveal that CNTs are very efficient in capturing sub-micron aerosols. Moreover, the CNT/QF filters show high water repellency, implying their superiority for applications in humid conditions.We fabricated depth-type hierarchical CNT/quartz fiber (QF) filters through in situ growth of CNTs upon quartz fiber (QF) filters using a floating catalyst chemical vapor deposition (CVD) method. The filter specific area of the CNT/QF filters is more than 12 times higher than that of the pristine QF filters. As a result, the penetration of sub-micron aerosols for CNT/QF filters is reduced by two orders of magnitude, which reaches the standard of high-efficiency particulate air (HEPA) filters. Simultaneously, due to the fluffy brush-like hierarchical structure of CNTs on QFs, the pore size of the hybrid filters only has a small increment. The pressure drop across the CNT/QF filters only increases about 50% with respect to that of the pristine QF filters, leading to an obvious increased quality factor of the CNT/QF filters. Scanning electron microscope images reveal that CNTs are very efficient in capturing sub-micron aerosols. Moreover, the CNT/QF filters show high water repellency, implying their superiority for applications in humid conditions. Electronic supplementary information (ESI) available: Schematic of the synthesis process of the CNT/QF filter; typical size distribution of atomized polydisperse NaCl aerosols used for air filtration testing; images of a QF filter and a CNT/QF filter; SEM image of a CNT/QF filter after 5 minutes of sonication in ethanol; calculation of porosity and filter specific area. See DOI: 10.1039/c3nr34325a
Use of Whatman-41 filters in air quality sampling networks (with applications to elemental analysis)
NASA Technical Reports Server (NTRS)
Neustadter, H. E.; Sidik, S. M.; King, R. B.; Fordyce, J. S.; Burr, J. C.
1974-01-01
The operation of a 16-site parallel high volume air sampling network with glass fiber filters on one unit and Whatman-41 filters on the other is reported. The network data and data from several other experiments indicate that (1) Sampler-to-sampler and filter-to-filter variabilities are small; (2) hygroscopic affinity of Whatman-41 filters need not introduce errors; and (3) suspended particulate samples from glass fiber filters averaged slightly, but not statistically significantly, higher than from Whatman-41-filters. The results obtained demonstrate the practicability of Whatman-41 filters for air quality monitoring and elemental analysis.
Fiber Bragg grating filter using evaporated induced self assembly of silica nano particles
NASA Astrophysics Data System (ADS)
Hammarling, Krister; Zhang, Renyung; Manuilskiy, Anatoliy; Nilsson, Hans-Erik
2014-03-01
In the present work we conduct a study of fiber filters produced by evaporation of silica particles upon a MM-fiber core. A band filter was designed and theoretically verified using a 2D Comsol simulation model of a 3D problem, and calculated in the frequency domain in respect to refractive index. The fiber filters were fabricated by stripping and chemically etching the middle part of an MM-fiber until the core was exposed. A mono layer of silica nano particles were evaporated on the core using an Evaporation Induced Self-Assembly (EISA) method. The experimental results indicated a broader bandwidth than indicated by the simulations which can be explained by the mismatch in the particle size distributions, uneven particle packing and finally by effects from multiple mode angles. Thus, there are several closely connected Bragg wavelengths that build up the broader bandwidth. The experimental part shows that it is possible by narrowing the particle size distributing and better control of the particle packing, the filter effectiveness can be greatly improved.
Qin, Peng; Song, Youjian; Kim, Hyoji; Shin, Junho; Kwon, Dohyeon; Hu, Minglie; Wang, Chingyue; Kim, Jungwon
2014-11-17
Fiber lasers mode-locked with normal cavity dispersion have recently attracted great attention due to large output pulse energy and femtosecond pulse duration. Here we accurately characterized the timing jitter of normal-dispersion fiber lasers using a balanced cross-correlation method. The timing jitter characterization experiments show that the timing jitter of normal-dispersion mode-locked fiber lasers can be significantly reduced by using narrow band-pass filtering (e.g., 7-nm bandwidth filtering in this work). We further identify that the timing jitter of the fiber laser is confined in a limited range, which is almost independent of cavity dispersion map due to the amplifier-similariton formation by insertion of the narrow bandpass filter. The lowest observed timing jitter reaches 0.57 fs (rms) integrated from 10 kHz to 10 MHz Fourier frequency. The rms relative intensity noise (RIN) is also reduced from 0.37% to 0.02% (integrated from 1 kHz to 5 MHz Fourier frequency) by the insertion of narrow band-pass filter.
Effect of waist diameter and twist on tapered asymmetrical dual-core fiber MZI filter.
Liu, Yan; Li, Yang; Yan, Xiaojun; Li, Weidong
2015-10-01
A compact in-fiber Mach-Zehnder interferometer (MZI) filter fabricated from custom-designed asymmetrical dual-core fiber is numerically analyzed in detail and experimentally verified. The asymmetrical dual-core fiber has core diameters and a core pitch of 6.9, 6, and 19.9 μm, respectively. The fiber tapering technique is introduced to fuse the originally uncoupled cores into strong coupling tapered regions. The length and diameter of the waist region have a close impact on the splitting ratio, which further affects the spectral properties of the MZI filter. The field evolution with varied waist parameters is characterized by the finite element method and beam propagation method. Repeatable comb filters with ∼15 dB extinction ratio are successfully achieved under the guidance of simulated optimum conditions. The twist-induced circular birefringence gives rise to a retardance that causes the spectral shifts of the MZI filter. The theoretical and experimental results confirm that the relative wavelength shift is proportional to the retardance, which follows a sinc function in the limit of a large twist rate.
A radiative transfer scheme that considers absorption, scattering, and distribution of light-absorbing elemental carbon (EC) particles collected on a quartz-fiber filter was developed to explain simultaneous filter reflectance and transmittance observations prior to and during...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Loh, K. K.; Yeo, K. S.; Shee, Y. G.
2015-04-24
A microwave photonic filter based on double-Brillouin-frequency spaced multiwavelength Brillouin-erbium fiber laser (BEFL) is experimentally demonstrated. The filter selectivity can be easily adjusted by tuning and apodizing the optical taps generated from the multiwavelength BEFL. Reconfiguration of different frequency responses are demonstrated.
Geng, Youfu; Li, Xuejin; Tan, Xiaoling; Deng, Yuanlong; Yu, Yongqin
2013-07-15
In this paper, an in-line comb filter with flat-top spectral response is proposed and constructed based on a cascaded all-solid photonic bandgap fiber modal interferometer. It consists of two short pieces of all-solid photonic bandgap fiber and two standard single-mode fibers as lead fibers with core-offset splices between them. The theoretical and experimental results demonstrated that by employing a cut and resplice process on the central position of all-solid photonic bandgap fiber, the interference spectra are well tailored and flat-top spectral profiles could be realized by the controllable offset amount of the resplice. The channel position also could be tuned by applying longitudinal torsion with up to 4 nm tuning range. Such a flat-top fiber comb filter is easy-to-fabricate and with a designable passband width and flat-top profile.
Spectrally tailored supercontinuum generation from single-mode-fiber amplifiers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hao, Qiang; Guo, Zhengru; Zhang, Qingshan
Spectral filtering of an all-normal-dispersion Yb-doped fiber laser was demonstrated effective for broadband supercontinuum generation in the picosecond time region. The picosecond pump pulses were tailored in spectrum with 1 nm band-pass filter installed between two single-mode fiber amplifiers. By tuning the spectral filter around 1028 nm, four-wave mixing was initiated in a photonic crystal fiber spliced with single-mode fiber, as manifested by the simultaneous generation of Stokes wave at 1076 nm and anti-Stokes wave at 984 nm. Four-wave mixing took place in cascade with the influence of stimulated Raman scattering and eventually extended the output spectrum more than 900 nm of 10 dB bandwidth.more » This technique allows smooth octave supercontinuum generation by using simple single-mode fiber amplifiers rather than complicated multistage large-mode-area fiber amplifiers.« less
Fiber-Coupled Acousto-Optical-Filter Spectrometer
NASA Technical Reports Server (NTRS)
Levin, Kenneth H.; Li, Frank Yanan
1993-01-01
Fiber-coupled acousto-optical-filter spectrometer steps rapidly through commanded sequence of wavelengths. Sample cell located remotely from monochromator and associated electronic circuitry, connected to them with optical fibers. Optical-fiber coupling makes possible to monitor samples in remote, hazardous, or confined locations. Advantages include compactness, speed, and no moving parts. Potential applications include control of chemical processes, medical diagnoses, spectral imaging, and sampling of atmospheres.
Zumberge, Mark A; Berger, Jonathan; Hedlin, Michael A H; Husmann, Eric; Nooner, Scott; Hilt, Richard; Widmer-Schnidrig, Rudolf
2003-05-01
A new distributed sensor for detecting pressure variations caused by distant sources has been developed. The instrument reduces noise due to air turbulence in the infrasound band by averaging pressure along a line by means of monitoring strain in a long tubular diaphragm with an optical fiber interferometer. Above 1 Hz, the optical fiber infrasound sensor (OFIS) is less noisy than sensors relying on mechanical filters. Records collected from an 89-m-long OFS indicate a new low noise limit in the band from 1 to 10 Hz. Because the OFIS integrates pressure variations at light-speed rather than the speed of sound, phase delays of the acoustical signals caused by the sensor are negligible. Very long fiber-optic sensors are feasible and hold the promise of better wind-noise reduction than can be achieved with acoustical-mechanical systems.
The purpose of this SOP is to describe methods for extracting and preparing an air sample consisting of a quartz fiber filter (Pallflex) and an XAD-2 cartridge for analysis of pesticides and polyaromatic hydrocarbons (PAHs). It covers the preparation of samples that are to be an...
Fibrous filter efficiency and pressure drop in the viscous-inertial transition flow regime.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sanchez, Andres L.; Brockmann, John E.; Dellinger, Jennifer Gwynne
2011-10-01
Fibrous filter pressure drop and aerosol collection efficiency were measured at low air pressures (0.2 to 0.8 atm) and high face velocities (5 to 20 meters per second) to give fiber Reynolds numbers in the viscous-inertial transition flow regime (1 to 16). In this regime, contemporary filtration theory based on Kuwabara's viscous flow through an ensemble of fibers under-predicts single fiber impaction by several orders of magnitude. Streamline curvature increases substantially as inertial forces become dominant. Dimensionless pressure drop measurements followed the viscous-inertial theory of Robinson and Franklin rather than Darcy's linear pressure-velocity relationship (1972). Sodium chloride and iron nano-agglomeratemore » test aerosols were used to evaluate the effects of particle density and shape factor. Total filter efficiency collapsed when plotted against the particle Stokes and fiber Reynolds numbers. Efficiencies were then fitted with an impactor type equation where the cutpoint Stokes number and a steepness parameter described data well in the sharply increasing portion of the curve (20% to 80% efficiency). The cutpoint Stokes number was a linearly decreasing function of fiber Reynolds number. Single fiber efficiencies were calculated from total filter efficiencies and compared to contemporary viscous flow impaction theory (Stechkina et al. 1969), and numerical simulations from the literature. Existing theories under-predicted measured single fiber efficiencies although the assumption of uniform flow conditions for each successive layer of fibers is questionable; the common exponential relationship between single fiber efficiency and total filter efficiency may not be appropriate in this regime.« less
NASA Astrophysics Data System (ADS)
London, Yosef; Diamandi, Hilel Hagai; Zadok, Avi
2017-04-01
An opto-electronic radio-frequency oscillator that is based on forward scattering by the guided acoustic modes of a standard single-mode optical fiber is proposed and demonstrated. An optical pump wave is used to stimulate narrowband, resonant guided acoustic modes, which introduce phase modulation to a co-propagating optical probe wave. The phase modulation is converted to an intensity signal at the output of a Sagnac interferometer loop. The intensity waveform is detected, amplified, and driven back to modulate the optical pump. Oscillations are achieved at a frequency of 319 MHz, which matches the resonance of the acoustic mode that provides the largest phase modulation of the probe wave. Oscillations at the frequencies of competing acoustic modes are suppressed by at least 40 dB. The linewidth of the acoustic resonance is sufficiently narrow to provide oscillations at a single longitudinal mode of the hybrid cavity. Competing longitudinal modes are suppressed by at least 38 dB as well. Unlike other opto-electronic oscillators, no radio-frequency filtering is required within the hybrid cavity. The frequency of oscillations is entirely determined by the fiber opto-mechanics.
Clymo, Amelia S; Shin, Jin Young; Holmen, Britt A
2005-01-15
Tillage-induced erosion of herbicides bound to airborne soil particles has not been quantified as a mechanism for offsite herbicide transport. This study quantifies the release of two preemergent herbicides, metolachlor and pendimethalin, to the atmosphere as gas- and particle-phase species during soil incorporation operations. Fine particulate matter (PM2.5) and gas-phase samples were collected at three sampling heights during herbicide disking into the soil in Davis, CA, in May 2000 and May 2001 using filter/PUF sampling. Quartz fiber filters (QFFs) were used in May 2000, and Teflon membrane filters (TMFs) were used in May 2001. The field data were combined with laboratory filter/PUF partitioning experiments to account for adsorption to the filter surfaces and quantify the mass of PM2.5-bound herbicides in the field samples. Laboratory results indicate a significant adsorption of metolachlor, but not pendimethalin, to the quartz filter surfaces. Metolachlor partitioning to PM2.5 collected on TMF filters resulted in corrected PM2.5 field partition coefficient values, Kp,corr = Cp/Cg, of approximately 10(-3.5) m3/microg, indicating its preference for the gas phase. Pendimethalin exhibited more semivolatile behavior,with Kp,corr values that ranged from 10(-3) to 10(-1) m3/ microg and increased with sampling height and distance downwind of the operation. An increase in pendimethalin enrichment at a height of 5 m suggests winnowing of finer, more sorptive soil components with corresponding higher transport potential. Pendimethalin was enriched in the PM2.5 samples by up to a factor of 250 compared to the field soil, indicating thatfurther research on the processes controlling the generation of PM-bound herbicides during agricultural operations is warranted to enable prediction of off-site mass fluxes by this mechanism.
NASA Astrophysics Data System (ADS)
Zunoubi, Mohammad R.; Anderson, Brian; Naderi, Shadi A.; Madden, Timothy J.; Dajani, Iyad
2017-03-01
The development of high-power fiber lasers is of great interest due to the advantages they offer relative to other laser technologies. Currently, the maximum power from a reportedly single-mode fiber amplifier stands at 10 kW. Though impressive, this power level was achieved at the cost of a large spectral linewidth, making the laser unsuitable for coherent or spectral beam combination techniques required to reach power levels necessary for airborne tactical applications. An effective approach in limiting the SBS effect is to insert an electro-optic phase modulator at the low-power end of a master oscillator power amplifier (MOPA) system. As a result, the optical power is spread among spectral sidebands; thus raising the overall SBS threshold of the amplifier. It is the purpose of this work to present a comprehensive numerical scheme that is based on the extended nonlinear Schrodinger equations that allows for accurate analysis of phase modulated fiber amplifier systems in relation to the group velocity dispersion and Kerr nonlinearities and their effect on the coherent beam combining efficiency. As such, we have simulated a high-power MOPA system modulated via filtered pseudo-random bit sequence format for different clock rates and power levels. We show that at clock rates of ≥30 GHz, the combination of GVD and self-phase modulation may lead to a drastic drop in beam combining efficiency at the multi-kW level. Furthermore, we extend our work to study the effect of cross-phase modulation where an amplifier is seeded with two laser sources.
NASA Astrophysics Data System (ADS)
Wang, Anbo; Miller, Mark S.; Plante, Angela J.; Gunther, Michael F.; Murphy, Kent A.; Claus, Richard O.
1996-05-01
A self-referencing technique compensating for fiber losses and source fluctuations in reflective air-gap intensity-based optical fiber sensors is described. A dielectric multilayer short-wave-pass filter is fabricated onto or attached to the output end face of the lead-in-lead-out multimode fiber. The incoming broadband light from a white light or a light-emitting diode is partially reflected at the filter. The transmitted light through the filter projects onto a mirror. The light returning from the reflecting mirror is recoupled into the lead-in-lead-out fiber. These two reflections from the filter and the reflecting mirror are spectrally separated at the detector end. The power ratio of these two reflections is insensitive to source fluctuations and fiber-bending loss. However, because the second optical signal depends on the air-gap separation between the end face of the lead-in-lead-out fiber and the reflecting mirror, the ratio provides the information on the air-gap length. A resolution of 0.13 mu m has been obtained over a microdisplacement measurement range of 0-254 mu m. The sensor is shown to be insensitive to both fiber-bending losses and variations in source power. Based on this approach, a fiber-strain sensor was fabricated with a multilayer interference filter directly fabricated on the end face of the fiber. A resolution of 13.4 microstrain was obtained over a measurement range of 0-20,000 microstrain with a gauge length of 10 mm. The split-spectrum method is also incorporated into a diaphragm displacement-based pressure sensor with a demonstrated resolution of 450 Pa over a measurement range of 0-0.8 MPa.
Single-fiber multi-color pyrometry
Small, IV, Ward; Celliers, Peter
2004-01-27
This invention is a fiber-based multi-color pyrometry set-up for real-time non-contact temperature and emissivity measurement. The system includes a single optical fiber to collect radiation emitted by a target, a reflective rotating chopper to split the collected radiation into two or more paths while modulating the radiation for lock-in amplification (i.e., phase-sensitive detection), at least two detectors possibly of different spectral bandwidths with or without filters to limit the wavelength regions detected and optics to direct and focus the radiation onto the sensitive areas of the detectors. A computer algorithm is used to calculate the true temperature and emissivity of a target based on blackbody calibrations. The system components are enclosed in a light-tight housing, with provision for the fiber to extend outside to collect the radiation. Radiation emitted by the target is transmitted through the fiber to the reflective chopper, which either allows the radiation to pass straight through or reflects the radiation into one or more separate paths. Each path includes a detector with or without filters and corresponding optics to direct and focus the radiation onto the active area of the detector. The signals are recovered using lock-in amplification. Calibration formulas for the signals obtained using a blackbody of known temperature are used to compute the true temperature and emissivity of the target. The temperature range of the pyrometer system is determined by the spectral characteristics of the optical components.
Single-fiber multi-color pyrometry
Small, IV, Ward; Celliers, Peter
2000-01-01
This invention is a fiber-based multi-color pyrometry set-up for real-time non-contact temperature and emissivity measurement. The system includes a single optical fiber to collect radiation emitted by a target, a reflective rotating chopper to split the collected radiation into two or more paths while modulating the radiation for lock-in amplification (i.e., phase-sensitive detection), at least two detectors possibly of different spectral bandwidths with or without filters to limit the wavelength regions detected and optics to direct and focus the radiation onto the sensitive areas of the detectors. A computer algorithm is used to calculate the true temperature and emissivity of a target based on blackbody calibrations. The system components are enclosed in a light-tight housing, with provision for the fiber to extend outside to collect the radiation. Radiation emitted by the target is transmitted through the fiber to the reflective chopper, which either allows the radiation to pass straight through or reflects the radiation into one or more separate paths. Each path includes a detector with or without filters and corresponding optics to direct and focus the radiation onto the active area of the detector. The signals are recovered using lock-in amplification. Calibration formulas for the signals obtained using a blackbody of known temperature are used to compute the true temperature and emissivity of the target. The temperature range of the pyrometer system is determined by the spectral characteristics of the optical components.
Pulse shaping in mode-locked fiber lasers by in-cavity spectral filter.
Boscolo, Sonia; Finot, Christophe; Karakuzu, Huseyin; Petropoulos, Periklis
2014-02-01
We numerically show the possibility of pulse shaping in a passively mode-locked fiber laser by inclusion of a spectral filter into the laser cavity. Depending on the amplitude transfer function of the filter, we are able to achieve various regimes of advanced temporal waveform generation, including ones featuring bright and dark parabolic-, flat-top-, triangular- and saw-tooth-profiled pulses. The results demonstrate the strong potential of an in-cavity spectral pulse shaper for controlling the dynamics of mode-locked fiber lasers.
Kuhn, Ryan C; Oshima, Kevin H
2002-06-01
An optimized hollow-fiber ultrafiltration system (50 000 MWCO) was developed to concentrate Cryptosporidium oocysts from 10-L samples of environmental water. Seeded experiments were conducted using a number of surface-water samples from the southwestern U.S.A. and source water from four water districts with histories of poor oocyst recovery. Ultrafiltration produced a mean recovery of 47.9% from 19 water samples (55.3% from 39 individual tests). We also compared oocyst recoveries using the hollow-fiber ultrafiltration system with those using the Envirochek filter. In limited comparison tests, the hollow-fiber ultrafiltration system produced recoveries similar to those of the Envirochek filter (hollow fiber, 74.1% (SD = 2.8); Envirochek, 71.9% (SD = 5.2)) in low-turbidity (3.9 NTU) samples and performed better than the Envirochek filter in high-turbidity (159.0 NTU) samples (hollow fiber, 27.5%; Envirochek, 0.4%). These results indicate that hollow-fiber ultrafiltration can efficiently recover oocysts from a wide variety of surface waters and may be a cost-effective alternative for concentrating Cryptosporidium from water, given the reusable nature of the filter.
Mukhopadhyay, Pranab K; Gupta, Pradeep K; Singh, Amarjeet; Sharma, Sunil K; Bindra, Kushvinder S; Oak, Shrikant M
2014-05-01
A multimode interference filter with narrow transmission bandwidth and large self-imaging wavelength interval is constructed and implemented in an ytterbium doped fiber laser in all-fiber format for broad wavelength tunability as well as narrow spectral width of the output beam. The peak transmission wavelength of the multimode interference filter was tuned with the help of a standard in-fiber polarization controller. With this simple mechanism more than 30 nm (1038 nm-1070 nm) tuning range is demonstrated. The spectral width of the output beam from the laser was measured to be 0.05 nm.
NASA Astrophysics Data System (ADS)
Mukhopadhyay, Pranab K.; Gupta, Pradeep K.; Singh, Amarjeet; Sharma, Sunil K.; Bindra, Kushvinder S.; Oak, Shrikant M.
2014-05-01
A multimode interference filter with narrow transmission bandwidth and large self-imaging wavelength interval is constructed and implemented in an ytterbium doped fiber laser in all-fiber format for broad wavelength tunability as well as narrow spectral width of the output beam. The peak transmission wavelength of the multimode interference filter was tuned with the help of a standard in-fiber polarization controller. With this simple mechanism more than 30 nm (1038 nm-1070 nm) tuning range is demonstrated. The spectral width of the output beam from the laser was measured to be 0.05 nm.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mukhopadhyay, Pranab K., E-mail: pkm@rrcat.gov.in; Gupta, Pradeep K.; Singh, Amarjeet
2014-05-15
A multimode interference filter with narrow transmission bandwidth and large self-imaging wavelength interval is constructed and implemented in an ytterbium doped fiber laser in all-fiber format for broad wavelength tunability as well as narrow spectral width of the output beam. The peak transmission wavelength of the multimode interference filter was tuned with the help of a standard in-fiber polarization controller. With this simple mechanism more than 30 nm (1038 nm–1070 nm) tuning range is demonstrated. The spectral width of the output beam from the laser was measured to be 0.05 nm.
Narrow-band generation in random distributed feedback fiber laser.
Sugavanam, Srikanth; Tarasov, Nikita; Shu, Xuewen; Churkin, Dmitry V
2013-07-15
Narrow-band emission of spectral width down to ~0.05 nm line-width is achieved in the random distributed feedback fiber laser employing narrow-band fiber Bragg grating or fiber Fabry-Perot interferometer filters. The observed line-width is ~10 times less than line-width of other demonstrated up to date random distributed feedback fiber lasers. The random DFB laser with Fabry-Perot interferometer filter provides simultaneously multi-wavelength and narrow-band (within each line) generation with possibility of further wavelength tuning.
NASA Astrophysics Data System (ADS)
Hellwig, Tim; Brinkmann, Maximilian; Fallnich, Carsten
2018-02-01
We present a femtosecond fiber-based optical parametric oscillator (FOPO) for multiphoton microscopy with wavelength tuning by electronic repetition rate tuning in combination with a dispersive filter in the FOPO cavity. The all-spliced, all-fiber FOPO cavity is based on polarization-maintaining fibers and a broadband output coupler, allowing to get access to the resonant signal pulses as well as the idler pulses simultaneously. The system was pumped by a gain-switched fiber-coupled laser diode emitting pulses at a central wavelength of 1030 nm and an electronically tunable repetition frequency of about 2 MHz. The pump pulses were amplified in an Ytterbium fiber amplifier system with a pulse duration after amplification of 13 ps. Tuning of the idler (1140 nm - 1300 nm) and signal wavelengths (850 nm - 940 nm) was achieved by changing the repetition frequency of the pump laser by about 4 kHz. The generated signal pulses reached a pulse energy of up to 9.2 nJ at 920 nm and were spectrally broadened to about 6 nm in the FOPO by a combination of self-phase and cross-phase modulation. We showed external compression of the idler pulses at 920 nm to about 430 fs and appleid them to two-photon excitation microscopy with green fluorescent dyes. The presented system constitutes an important step towards a fully fiber-integrated all-electronically tunable and, thereby, programmable light source and already embodies a versatile and flexible light source for applications, e.g., for smart microscopy.
Yin, Bin; Feng, Suchun; Liu, Zhibo; Bai, Yunlong; Jian, Shuisheng
2014-09-22
A tunable and switchable dual-wavelength single polarization narrow linewidth single-longitudinal-mode (SLM) erbium-doped fiber (EDF) ring laser based on polarization-maintaining chirped moiré fiber Bragg grating (PM-CMFBG) filter is proposed and demonstrated. For the first time as we know, the CMFBG inscribed on the PM fiber is applied for the wavelength-tunable and-switchable dual-wavelength laser. The PM-CMFBG filter with ultra-narrow transmission band (0.1 pm) and a uniform polarization-maintaining fiber Bragg grating (PM-FBG) are used to select the laser longitudinal mode. The stable single polarization SLM operation is guaranteed by the PM-CMFBG filter and polarization controller. A tuning range of about 0.25 nm with about 0.075 nm step is achieved by stretching the uniform PM-FBG. Meanwhile, the linewidth of the fiber laser for each wavelength is approximate 6.5 and 7.1 kHz with a 20 dB linewidth, which indicates the laser linewidth is approximate 325 Hz and 355 Hz FWHM.
Delgado-Pinar, M; Mora, J; Díez, A; Andrés, M V; Ortega, B; Capmany, J
2005-01-01
We present an all-optical novel configuration for implementing multitap transversal filters by use of a broadband source sliced by fiber Bragg grating arrays generated by propagating an acoustic wave along a strong uniform fiber Bragg grating. The tunability and reconfigurability of the microwave filter are demonstrated.
Cho, Kyungmin Jacob; Turkevich, Leonid; Miller, Matthew; McKay, Roy; Grinshpun, Sergey A.; Ha, KwonChul; Reponen, Tiina
2015-01-01
This study investigated differences in penetration between fibers and spherical particles through faceseal leakage of an N95 filtering facepiece respirator. Three cyclic breathing flows were generated corresponding to mean inspiratory flow rates (MIF) of 15, 30, and 85 L/min. Fibers had a mean diameter of 1 μm and a median length of 4.9 μm (calculated aerodynamic diameter, dae = 1.73 μm). Monodisperse polystyrene spheres with a mean physical diameter of 1.01 μm (PSI) and 1.54 μm (PSII) were used for comparison (calculated dae = 1.05 and 1.58 μm, respectively). Two optical particle counters simultaneously determined concentrations inside and outside the respirator. Geometric means (GMs) for filter penetration of the fibers were 0.06, 0.09, and 0.08% at MIF of 15, 30, and 85 L/min, respectively. Corresponding values for PSI were 0.07, 0.12, and 0.12%. GMs for faceseal penetration of fibers were 0.40, 0.14, and 0.09% at MIF of 15, 30, and 85 L/min, respectively. Corresponding values for PSI were 0.96, 0.41, and 0.17%. Faceseal penetration decreased with increased breathing rate for both types of particles (p ≤ 0.001). GMs of filter and faceseal penetration of PSII at an MIF of 30 L/min were 0.14% and 0.36%, respectively. Filter penetration and faceseal penetration of fibers were significantly lower than those of PSI (p < 0.001) and PSII (p < 0.003). This confirmed that higher penetration of PSI was not due to slightly smaller aerodynamic diameter, indicating that the shape of fibers rather than their calculated mean aerodynamic diameter is a prevailing factor on deposition mechanisms through the tested respirator. In conclusion, faceseal penetration of fibers and spherical particles decreased with increasing breathing rate, which can be explained by increased capture by impaction. Spherical particles had 2.0–2.8 times higher penetration through faceseal leaks and 1.1–1.5 higher penetration through filter media than fibers, which can be attributed to differences in interception losses. PMID:23339437
Cho, Kyungmin Jacob; Turkevich, Leonid; Miller, Matthew; McKay, Roy; Grinshpun, Sergey A; Ha, KwonChul; Reponen, Tiina
2013-01-01
This study investigated differences in penetration between fibers and spherical particles through faceseal leakage of an N95 filtering facepiece respirator. Three cyclic breathing flows were generated corresponding to mean inspiratory flow rates (MIF) of 15, 30, and 85 L/min. Fibers had a mean diameter of 1 μm and a median length of 4.9 μm (calculated aerodynamic diameter, d(ae) = 1.73 μm). Monodisperse polystyrene spheres with a mean physical diameter of 1.01 μm (PSI) and 1.54 μm (PSII) were used for comparison (calculated d(ae) = 1.05 and 1.58 μm, respectively). Two optical particle counters simultaneously determined concentrations inside and outside the respirator. Geometric means (GMs) for filter penetration of the fibers were 0.06, 0.09, and 0.08% at MIF of 15, 30, and 85 L/min, respectively. Corresponding values for PSI were 0.07, 0.12, and 0.12%. GMs for faceseal penetration of fibers were 0.40, 0.14, and 0.09% at MIF of 15, 30, and 85 L/min, respectively. Corresponding values for PSI were 0.96, 0.41, and 0.17%. Faceseal penetration decreased with increased breathing rate for both types of particles (p ≤ 0.001). GMs of filter and faceseal penetration of PSII at an MIF of 30 L/min were 0.14% and 0.36%, respectively. Filter penetration and faceseal penetration of fibers were significantly lower than those of PSI (p < 0.001) and PSII (p < 0.003). This confirmed that higher penetration of PSI was not due to slightly smaller aerodynamic diameter, indicating that the shape of fibers rather than their calculated mean aerodynamic diameter is a prevailing factor on deposition mechanisms through the tested respirator. In conclusion, faceseal penetration of fibers and spherical particles decreased with increasing breathing rate, which can be explained by increased capture by impaction. Spherical particles had 2.0-2.8 times higher penetration through faceseal leaks and 1.1-1.5 higher penetration through filter media than fibers, which can be attributed to differences in interception losses.
Developing particulate thin filter using coconut fiber for motor vehicle emission
NASA Astrophysics Data System (ADS)
Wardoyo, A. Y. P.; Juswono, U. P.; Riyanto, S.
2016-03-01
Amounts of motor vehicles in Indonesia have been recognized a sharply increase from year to year with the increment reaching to 22 % per annum. Meanwhile motor vehicles produce particulate emissions in different sizes with high concentrations depending on type of vehicles, fuels, and engine capacity. Motor Particle emissions are not only to significantly contribute the atmosphric particles but also adverse to human health. In order to reduce the particle emission, it is needed a filter. This study was aimed to develop a thin filter using coconut fiber to reduce particulate emissions for motor vehicles. The filter was made of coconut fibers that were grinded into power and mixed with glues. The filter was tested by the measurements of particle concentrations coming out from the vehicle exhaust directly and the particle concentrations after passing through the filter. The efficiency of the filter was calculated by ratio of the particle concentrations before comming in the filter to the particle conentrations after passing through the filter. The results showed that the efficiency of the filter obtained more than 30 %. The efficiency increases sharply when a number of the filters are arranged paralelly.
Filtering effect of SiO2 optical waveguide ring resonator applied to optoelectronic oscillator.
Chen, Jiamin; Zheng, Yongqiu; Xue, Chenyang; Zhang, Chengfei; Chen, Yi
2018-05-14
Single-mode oscillation is crucial to the practicality of optoelectronic oscillator (OEO). Due to the limited by bandwidth and precision of radio frequency (RF) filters, it is difficult to be achieved for the OEO based on the long fiber-optic delay line. So instead of the long fiber-optic delay line, SiO 2 optical waveguide ring resonator (OWRR) with high-Q and mode selection is first presented to be applied to OEO. The OEOs based on the minimum loop and SiO 2 OWRR are constructed. The oscillation characteristics of the minimum loop OEO and the transmission characteristics of the SiO 2 OWRR are simulated by MATLAB, respectively. The filtering effect of the SiO 2 OWRR applied to the OEO is verified theoretically by comparing these simulation results. Subsequently, the contrastive experiments of the above two OEOs on oscillation modes are carried out. The oscillation mode spacing of 40.32 MHz and 2.137 GHz are obtained. These results show that the SiO 2 OWRR can function as an excellent 'filter' in the minimum loop of the OEO. Moreover, the side mode suppression ratio and the phase noise of the OEO have been improved. Our experimental results demonstrate that the OEO adopting SiO 2 OWRR is feasible to achieve the single-mode oscillation and obtain better performance microwave signals.
Optical back propagation for fiber optic networks with hybrid EDFA Raman amplification.
Liang, Xiaojun; Kumar, Shiva
2017-03-06
We have investigated an optical back propagation (OBP) method to compensate for propagation impairments in fiber optic networks with lumped Erbium doped fiber amplifier (EDFA) and/or distributed Raman amplification. An OBP module consists of an optical phase conjugator (OPC), optical amplifiers and dispersion varying fibers (DVFs). We derived a semi-analytical expression that calculates the dispersion profile of DVF. The OBP module acts as a nonlinear filter that fully compensates for the nonlinear distortions due to signal propagation in a transmission fiber, and is applicable for fiber optic networks with reconfigurable optical add-drop multiplexers (ROADMs). We studied a wavelength division multiplexing (WDM) network with 3000 km transmission distance and 64-quadrature amplitude modulation (QAM) modulation. OBP brings 5.8 dB, 5.9 dB and 6.1 dB Q-factor gains over linear compensation for systems with full EDFA amplification, hybrid EDFA/Raman amplification, and full Raman amplification, respectively. In contrast, digital back propagation (DBP) or OPC-only systems provide only 0.8 ~ 1.5 dB Q-factor gains.
Sugavanam, S; Yan, Z; Kamynin, V; Kurkov, A S; Zhang, L; Churkin, D V
2014-02-10
Multiwavelength lasing in the random distributed feedback fiber laser is demonstrated by employing an all fiber Lyot filter. Stable multiwavelength generation is obtained, with each line exhibiting sub-nanometer line-widths. A flat power distribution over multiple lines is obtained, which indicates that the power between lines is redistributed in nonlinear mixing processes. The multiwavelength generation is observed both in first and second Stokes waves.
Multi-Gigabit Fiber Optic Wide Area Network Development.
1991-07-01
to propagate, no modal dispersion can occur. In multimode fiber , a parabolic index profile across the core is often used so that mode travel times are...In the fiber plant, such as connectors, splices couplers, splitters, switches, tunable filters , wavelength division multiplexers and demultiplexers...losses are much higher, at around 0.5 dB, and are usually avoided in long-haul systems. 30 Some fiber plant components have a filtering effect on the
Park, Jae Hong; Yoon, Ki Young; Na, Hyungjoo; Kim, Yang Seon; Hwang, Jungho; Kim, Jongbaeg; Yoon, Young Hun
2011-09-01
We grew multi-walled carbon nanotubes (MWCNTs) on a glass fiber air filter using thermal chemical vapor deposition (CVD) after the filter was catalytically activated with a spark discharge. After the CNT deposition, filtration and antibacterial tests were performed with the filters. Potassium chloride (KCl) particles (<1 μm) were used as the test aerosol particles, and their number concentration was measured using a scanning mobility particle sizer. Antibacterial tests were performed using the colony counting method, and Escherichia coli (E. coli) was used as the test bacteria. The results showed that the CNT deposition increased the filtration efficiency of nano and submicron-sized particles, but did not increase the pressure drop across the filter. When a pristine glass fiber filter that had no CNTs was used, the particle filtration efficiencies at particle sizes under 30 nm and near 500 nm were 48.5% and 46.8%, respectively. However, the efficiencies increased to 64.3% and 60.2%, respectively, when the CNT-deposited filter was used. The reduction in the number of viable cells was determined by counting the colony forming units (CFU) of each test filter after contact with the cells. The pristine glass fiber filter was used as a control, and 83.7% of the E. coli were inactivated on the CNT-deposited filter. Copyright © 2011 Elsevier B.V. All rights reserved.
Li, Manqing; Feng, Yingnan; Wang, Kaiyu; Yong, Wai Fen; Yu, Liya; Chung, Tai-Shung
2017-09-05
Severe air pollution has become a global concern, and there is a pressing need to develop effective and efficient air filters for removing airborne particulate matters (PMs). In this work, a highly permeable poly(ether sulfone) (PES) based hollow fiber membrane was developed via a one-step dry-jet wet spinning. For the first time, a hollow fiber membrane was used in removing the ultrafine particles (PMs with aerodynamic equivalent diameters of less than 100 nm) in PM 2.5 . The novel air filter was designed to possess the synergistic advantages of porous filters and fibrous filters with a sievelike outer surface and a fibrouslike porous substrate. A filtration efficiency of higher than 99.995% could be easily achieved when the self-support hollow fiber was challenged with less than 300 nm particulates. Without losses of the structural advantages, we have demonstrated that the permeation properties of the hollow fiber membrane can be facilely tailored via manipulation of the dope and bore fluid formulations. Various cleaning strategies were explored to regenerate the membrane performance after fouling. Both water rinse and backwash showed effectiveness to restore the membrane permeance for repetitive usage.
To measure airborne asbestos and other fibers, an air sample must represent the actual number and size of fibers. Typically, mixed cellulose ester (MCE, 0.45 or 0.8 µm pore size) and to a much lesser extent, capillary-pore polycarbonate (PC, 0.4 µm pore size) membrane filters are...
Micro-optical fiber probe for use in an intravascular Raman endoscope.
Komachi, Yuichi; Sato, Hidetoshi; Aizawa, Katsuo; Tashiro, Hideo
2005-08-01
We believe that we have developed the narrowest optical-fiber Raman probe ever reported, 600 microm in total diameter, that can be inserted into coronary arteries. The selection of suitable optical fibers, filters, and a processing method is discussed. Custom-made filters attached to the front end of a probe eliminate the background Raman signals of the optical fiber itself. The experimental evaluation of various optical fibers is carried out for the selection of suitable fibers. Measurement of the Raman spectra of an atherosclerotic lesion of a rabbit artery in vitro demonstrates the excellent performance of the micro-Raman probe.
NASA Astrophysics Data System (ADS)
Kwon, Yong-Seok; Naeem, Khurram; Jeon, Min Yong; Kwon, Il-bum
2017-04-01
We analyze the relations of parameters in moving average method to enhance the event detectability of phase sensitive optical time domain reflectometer (OTDR). If the external events have unique frequency of vibration, then the control parameters of moving average method should be optimized in order to detect these events efficiently. A phase sensitive OTDR was implemented by a pulsed light source, which is composed of a laser diode, a semiconductor optical amplifier, an erbium-doped fiber amplifier, a fiber Bragg grating filter, and a light receiving part, which has a photo-detector and high speed data acquisition system. The moving average method is operated with the control parameters: total number of raw traces, M, number of averaged traces, N, and step size of moving, n. The raw traces are obtained by the phase sensitive OTDR with sound signals generated by a speaker. Using these trace data, the relation of the control parameters is analyzed. In the result, if the event signal has one frequency, then the optimal values of N, n are existed to detect the event efficiently.
Optical arbitrary waveform generation based on multi-wavelength semiconductor fiber ring laser
NASA Astrophysics Data System (ADS)
Li, Peili; Ma, Xiaolu; Shi, Weihua; Xu, Enming
2017-09-01
A new scheme of generating optical arbitrary waveforms based on multi-wavelength semiconductor fiber ring laser (SFRL) is proposed. In this novel scheme, a wide and flat optical frequency comb (OFC) is provided directly by multi-wavelength SFRL, whose central frequency and comb spacing are tunable. OFC generation, de-multiplexing, amplitude and phase modulation, and multiplexing are implementing in an intensity and phase tunable comb filter, as induces the merits of high spectral coherence, satisfactory waveform control and low system loss. By using the mode couple theory and the transfer matrix method, the theoretical model of the scheme is established. The impacts of amplitude control, phase control, number of spectral line, and injection current of semiconductor optical amplifier (SOA) on the waveform similarity are studied using the theoretical model. The results show that, amplitude control and phase control error should be smaller than 1% and 0.64% respectively to achieve high similarity. The similarity of the waveform is improved with the increase of the number of spectral line. When the injection current of SOA is in a certain range, the optical arbitrary waveform reaches a high similarity.
Fine dust filtration using a metal fiber bed.
Lee, Kyung Mi; Lee, Young Sup; Jo, Young Min
2006-08-01
A bed-type filter composed of thin metal alloy fiber was closely examined with dust capturing in cold and hot runs. The investigation of an individual mechanism across the filter bed indicated that the aerated dust could be initially collected by depth filtration, and after a while, surface filtration dominated the overall dust collection. The present metal fiber bed was comparable to the conventional ceramic filters because of its good collection efficiency with low pressure drop. It also showed potential to be used as a prefilter in a diesel exhaust trapping system.
A simple gold-coated microstructure fiber polarization filter in two communication windows
NASA Astrophysics Data System (ADS)
Feng, Xinxing; Li, Shuguang; Du, Huijing; Zhang, Yinan; Liu, Qiang
2018-03-01
A polarization filter is designed at two communication windows of 1310 and 1550 nm based on microstructured optical fiber. The model has four large diameter air holes and two gold-coated air holes. The influence of the geometrical parameters of the photonic crystal fiber on the performance of the polarization filter is analyzed by the finite element method. The numerical simulation shows that when the fiber length is 300 μm, the corresponding extinction ratio is 209.7 dB and 179.8 dB, the bandwidth of extinction ratio (ER) better than 20 dB is 150 nm and 350 nm at the communication wavelength of 1310 nm and 1550 nm.
Picosecond and sub-picosecond flat-top pulse generation using uniform long-period fiber gratings
NASA Astrophysics Data System (ADS)
Park, Y.; Kulishov, M.; Slavík, R.; Azaña, J.
2006-12-01
We propose a novel linear filtering scheme based on ultrafast all-optical differentiation for re-shaping of ultrashort pulses generated from a mode-locked laser into flat-top pulses. The technique is demonstrated using simple all-fiber optical filters, more specifically uniform long period fiber gratings (LPGs) operated in transmission. The large bandwidth typical for these fiber filters allows scaling the technique to the sub-picosecond regime. In the experiments reported here, 600-fs and 1.8-ps Gaussian-like optical pulses (@ 1535 nm) have been re-shaped into 1-ps and 3.2-ps flat-top pulses, respectively, using a single 9-cm long uniform LPG.
Improved method for concentration of Giardia, Cryptosporidium, and poliovirus from water.
Watt, Pamela M; Johnson, Dana C; Gerba, Charles P
2002-03-01
Methods for the concentration of enteric viruses and the protozoan parasites, Giardia and Cryptosporidium, from drinking water currently require the use of two different types of filters. Electropositive or electronegative microporous filters (0.2-0.45 microm nominal porosity) are used for the collection of enteroviruses, while polypropylene spun-fiber filters (1 microm porosity) and small pleated cartridge filters are used for the collection of protozoan parasites from water. Since the filter mechanically traps the protozoa by size exclusion, a microporous filter with an appropriately small nominal porosity could possibly be used for co-collection of both protozoa and enteroviruses. This study compared the concentration efficiencies of a polypropylene fiber cartridge (DPPPY) filter and two different microporous filters (Filterite and IMDS) with poliovirus (type 1), with respect to their ability to concentrate Giardia and Cryptosporidium from water. Giardia cysts and Cryptosporidium oocysts were added to 4001 of either tap water or tertiary treated wastewater and passed through the test filter. The protozoa were eluted from the polypropylene filter by hand-washing in a detergent solution. Viruses and protozoa were eluted from the microporous filter by two consecutive back-washes with a 1.5% beef extract, 0.1% Tween 80 solution. The eluent was then centrifuged to remove the parasites and the supernatant assayed for viruses. The overall efficiency was greater for the Filterite filter (40.4% for Giardia; 36.6% for Cryptosporidium) when compared to the spun fiber filter (10.1% for Giardia; 16.0% for Cryptosporidium). The Filterite filters were easier and faster to process than the polypropylene spun fiber filters. There was no significant difference in the recovery of protozoa from 1MDS and DPPPY filters. Co-collection of viruses and protozoan parasites from water onto the same filter is possible and can reduce the time and cost of routine water monitoring.
Simandl, Ronald F.; Brown, John D.; Whinnery, Jr., LeRoy L.
1999-01-01
In an improved ozone decomposing air filter carbon fibers are held together with a carbonized binder in a perforated structure. The structure is made by combining rayon fibers with gelatin, forming the mixture in a mold, freeze-drying, and vacuum baking.
Consumer perception of risk associated with filters contaminated with glass fibers.
Cummings, K M; Hastrup, J L; Swedrock, T; Hyland, A; Perla, J; Pauly, J L
2000-09-01
The filters in Eclipse, a new cigarette-like smoking article marketed by R. J. Reynolds Tobacco Company, are contaminated with glass fibers, fragments, and particles. Reported herein are the results of a study in which consumers were questioned about their opinions as to whether exposure to glass fibers in such a filter poses an added health risk beyond that from smoking and whether the manufacturer has an obligation to inform consumers about the glass contamination problem. The study queried 137 adults who were interviewed while waiting at a Division of Motor Vehicles office in Erie County, New York in 1997. All but one person expressed the view that the presence of glass fibers on the filters poses an added health risk beyond that associated with exposure to tobacco smoke alone. Nearly all expressed the position that the cigarette manufacturer has a duty to inform the public about the potential for glass exposure.
Cigarette Smoke Cadmium Breakthrough from Traditional Filters: Implications for Exposure
Pappas, R. Steven; Fresquez, Mark R.; Watson, Clifford H.
2015-01-01
Cadmium, a carcinogenic metal, is highly toxic to renal, skeletal, nervous, respiratory, and cardiovascular systems. Accurate and precise quantification of mainstream smoke cadmium levels in cigarette smoke is important because of exposure concerns. The two most common trapping techniques for collecting mainstream tobacco smoke particulate for analysis are glass fiber filters and electrostatic precipitators. We observed that a significant portion of total cadmium passed through standard glass fiber filters that are used to trap particulate matter. We therefore developed platinum traps to collect the cadmium that passed through the filters and tested a variety of cigarettes with different physical parameters for quantities of cadmium that passed though the filters. We found less than 1% cadmium passed through electrostatic precipitators. In contrast, cadmium that passed through 92 mm glass fiber filters on a rotary smoking machine was significantly higher, ranging from 3.5% to 22.9% of total smoke cadmium deliveries. Cadmium passed through 44 mm filters typically used on linear smoking machines to an even greater degree, ranging from 13.6% to 30.4% of the total smoke cadmium deliveries. Differences in the cadmium that passed through from the glass fiber filters and electrostatic precipitator could be explained in part if cadmium resides in the smaller mainstream smoke aerosol particle sizes. Differences in particle size distribution could have toxicological implications and could help explain the pulmonary and cardiovascular cadmium uptake in smokers. PMID:25313385
Ultra-wideband microwave photonic link based on single-sideband modulation
NASA Astrophysics Data System (ADS)
Li, Jingnan; Wang, Yunxin; Wang, Dayong; Zhou, Tao; Zhong, Xin; Xu, Jiahao; Yang, Dengcai; Rong, Lu
2017-10-01
Comparing with the conventional double-sideband (DSB) modulation in communication system, single-sideband (SSB) modulation only demands half bandwidth of DSB in transmission. Two common ways are employed to implement SSB modulation by using optical filter (OF) or electrical 90° phase shift, respectively. However, the bandwidth of above methods is limited by characteristics of current OF and electrical phase shift. To overcome this problem, an ultra-wideband microwave photonic link based on SSB modulation is proposed and demonstrated. The radio frequency (RF) signal modulates a single-drive dual-parallel Mach-Zehnder modulator, and the SSB modulation is realized by combining an electrical 90° hybrid coupler and an optical bandpass filter. The experimental results indicate that the system can achieve SSB modulation for RF signal from 2 to 40 GHz. The proposed microwave photonic link provides an ultra-wideband approach based on SSB modulation for radio-over-fiber system.
High-Speed Interrogation for Large-Scale Fiber Bragg Grating Sensing
Hu, Chenyuan; Bai, Wei
2018-01-01
A high-speed interrogation scheme for large-scale fiber Bragg grating (FBG) sensing arrays is presented. This technique employs parallel computing and pipeline control to modulate incident light and demodulate the reflected sensing signal. One Electro-optic modulator (EOM) and one semiconductor optical amplifier (SOA) were used to generate a phase delay to filter reflected spectrum form multiple candidate FBGs with the same optical path difference (OPD). Experimental results showed that the fastest interrogation delay time for the proposed method was only about 27.2 us for a single FBG interrogation, and the system scanning period was only limited by the optical transmission delay in the sensing fiber owing to the multiple simultaneous central wavelength calculations. Furthermore, the proposed FPGA-based technique had a verified FBG wavelength demodulation stability of ±1 pm without average processing. PMID:29495263
High-Speed Interrogation for Large-Scale Fiber Bragg Grating Sensing.
Hu, Chenyuan; Bai, Wei
2018-02-24
A high-speed interrogation scheme for large-scale fiber Bragg grating (FBG) sensing arrays is presented. This technique employs parallel computing and pipeline control to modulate incident light and demodulate the reflected sensing signal. One Electro-optic modulator (EOM) and one semiconductor optical amplifier (SOA) were used to generate a phase delay to filter reflected spectrum form multiple candidate FBGs with the same optical path difference (OPD). Experimental results showed that the fastest interrogation delay time for the proposed method was only about 27.2 us for a single FBG interrogation, and the system scanning period was only limited by the optical transmission delay in the sensing fiber owing to the multiple simultaneous central wavelength calculations. Furthermore, the proposed FPGA-based technique had a verified FBG wavelength demodulation stability of ±1 pm without average processing.
[Method for concentration determination of mineral-oil fog in the air of workplace].
Xu, Min; Zhang, Yu-Zeng; Liu, Shi-Feng
2008-05-01
To study the method of concentration determination of mineral-oil fog in the air of workplace. Four filter films such as synthetic fabric filter film, beta glass fiber filter film, chronic filter paper and microporous film were used in this study. Two kinds of dust samplers were used to collect the sample, one sampling at fast flow rate in a short time and the other sampling at slow flow rate with long duration. Subsequently, the filter membrane was weighed with electronic analytical balance. According to sampling efficiency and incremental size, the adsorbent ability of four different filter membranes was compared. When the flow rate was between 10 approximately 20 L/min and the sampling time was between 10 approximately 15 min, the average sampling efficiency of synthetic fabric filter film was 95.61% and the increased weight ranged from 0.87 to 2.60 mg. When the flow rate was between 10 approximately 20 L/min and sampling time was between 10 approximately 15 min, the average sampling efficiency of beta glass fiber filter film was 97.57% and the increased weight was 0.75 approximately 2.47 mg. When the flow rate was between 5 approximately 10 L/min and the sampling time between 10 approximately 20 min, the average sampling efficiency of chronic filter paper and microporous film was 48.94% and 63.15%, respectively and the increased weight was 0.75 approximately 2.15 mg and 0.23 approximately 0.85 mg, respectively. When the flow rate was 3.5 L/min and the sampling time was between 100 approximately 166 min, the average sampling efficiency of filter film were 94.44% and 93.45%, respectively and the average increased weight was 1.28 mg for beta glass fiber filter film and 0.78 mg for beta glass fiber filter film and synthetic fabric synthetic fabric filter film. The average sampling efficiency of chronic filter paper and microporous film were 37.65% and 88.21%, respectively. The average increased weight was 4.30 mg and 1.23 mg, respectively. Sampling with synthetic fabric filter film and beta glass fiber filter film is credible, accurate, simple and feasible for determination of the concentration of mineral-oil fog in workplaces.
Side-polished fiber based gain-flattening filter for erbium doped fiber amplifiers
NASA Astrophysics Data System (ADS)
Varshney, R. K.; Singh, A.; Pande, K.; Pal, B. P.
2007-03-01
A simple and accurate novel normal mode analysis has been developed to take into account the effect of the non-uniform depth of polishing in the study of the transmission characteristics of optical waveguide devices based on loading of a side-polished fiber half-coupler with a multimode planar waveguide. We apply the same to design and fabricate a gain-flattening filter suitable for fiber amplifiers. The wavelength dependent filtering action of the overall device could demonstrate flattening of an EDFA gain spectrum within ±0.7 dB over a bandwidth of 30 nm in the C-band. Results obtained by the present analysis agree very well with our experimental results. This present analysis should be very useful in the accurate design and analysis of any SPF-MMOW device/component including side-polished fiber based sensors.
NASA Astrophysics Data System (ADS)
Chen, W. G.; Lou, S. Q.; Feng, S. C.; Wang, L. W.; Li, H. L.; Guo, T. Y.; Jian, S. S.
2009-11-01
Switchable multi-wavelength fiber ring laser with an in-fiber Mach-Zehnder interferometer incorporated into the ring cavity serving as wavelength-selective filter at room temperature is demonstrated. The filter is formed by splicing a section of few-mode photonic crystal fiber (PCF) and two segments of single mode fiber (SMF) with the air-holes on the both sides of PCF intentionally collapsed in the vicinity of the splices. By adjusting the states of the polarization controller (PC) appropriately, the laser can be switched among the stable single-, dual- and triple-wavelength lasing operations by exploiting polarization hole burning (PHB) effect.
Tunable thulium-doped fiber laser based on an abrupt-tapered in-fiber interferometer
NASA Astrophysics Data System (ADS)
Hernández-Arriaga, M. V.; Durán-Sánchez, M.; Ibarra-Escamilla, B.; Álvarez-Tamayo, R. I.; Santiago-Hernández, H.; Bello-Jiménez, M.; Kuzin, E. A.
2017-11-01
An experimental study of an all-fiber tunable thulium-doped fiber laser based on an abrupt-tapered in-fiber interferometer is presented. A microfiber filter with length of 6 mm and diameter of 20 μm is used to achieve single laser wavelength tuning in a range of 19.4 nm and dual-wavelength laser operation at 1761.8 and 1793.4 nm with a channel spacing of 31.6 nm. The abrupt-tapered structure allows multi-modal interference at the air-cladding interface. The proposed in-fiber interferometer exhibits characteristics of low cost and simple fabrication, making it suitable for practical applications in wavelength filtering and wavelength selection in all-fiber lasers.
A wavelength-tunable fiber laser using a novel filter based on a compound interference effect
NASA Astrophysics Data System (ADS)
Zou, Hui; Lou, Shuqin; Su, Wei; Han, Bolin; Shen, Xiao
2015-01-01
A wavelength-tunable erbium-doped fiber laser is proposed and experimentally demonstrated by using a novel filter which is formed from a 2 × 2 3 dB multimode coupler incorporating a segment of polarization maintaining fiber (PMF). By using the filter with 2.1 m lengths of PMF in a ring fiber laser, a stable single wavelength lasing is obtained experimentally. Its 3 dB bandwidth is less than 0.0147 nm and the side mode suppression ratio (SMSR) is higher than 58.91 dB. Experimental results demonstrate that mode competition can be effectively suppressed and the SMSR can be improved due to the compound interference effect aroused by the novel filter. Meanwhile the stability of the output lasing can be enhanced. By appropriately adjusting the polarization controllers (PCs), the output lasing wavelength can be tuned from 1563.51 to 1568.21 nm. This fiber laser has the advantage of a simple structure and stable operation at room temperature.
Rajgarhia, Stuti S; Jana, Sadhan C; Chase, George G
2016-08-24
Polymer nanofibers with interpenetrating network (IPN) morphology are used in this work for the development of composite, hydrophobic filter media in conjunction with glass fibers for removal of water droplets from ultralow sulfur diesel (ULSD). The nanofibers are produced from hydrophobic polyvinyl acetate (PVAc) and hydrophilic polyvinylpyrrolidone (PVP) by spinning the polymer solutions using gas jet fiber (GJF) method. The nanofibers coat the individual glass fibers due to polar-polar interactions during the spinning process and render the filter media highly hydrophobic with a water contact angle approaching 150°. The efficiency of the resultant filter media is evaluated in terms of separation of water droplets of average size 20 μm from the suspensions in ULSD.
Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) onboard calibration system
NASA Technical Reports Server (NTRS)
Chrien, Thomas G.; Eastwood, Mike; Green, Robert O.; Sarture, Charles; Johnson, Howell; Chovit, Chris; Hajek, Pavel
1995-01-01
The AVIRIS instrument uses an onboard calibration system to provide auxiliary calibration data. The system consist of a tungsten halogen cycle lamp imaged onto a fiber bundle through an eight position filter wheel. The fiber bundle illuminates the back side of the foreoptics shutter during a pre-run and post-run calibration sequence. The filter wheel contains two neutral density filters, five spectral filters and one blocked position. This paper reviews the general workings of the onboard calibrator system and discusses recent modifications.
Gaussian Filtering with Tapered Oil-Filled Photonic Bandgap Fibers
NASA Astrophysics Data System (ADS)
Brunetti, A. C.; Scolari, L.; Weirich, J.; Eskildsen, L.; Bellanca, G.; Bassi, P.; Bjarklev, A.
2008-10-01
A tunable Gaussian filter based on a tapered oil-filled photonic crystal fiber is demonstrated. The filter is centered at λ = 1364 nm with a bandwidth (FWHM) of 237nm. Tunability is achieved by changing the temperature of the filter. A shift of 210nm of the central wavelength has been observed by increasing the temperature from 25 °C to 100 °C. The measurements are compared to a simulated spectrum obtained by means of a vectorial Beam Propagation Method model.
Modal Filters for Infrared Interferometry
NASA Technical Reports Server (NTRS)
Ksendzov, Alexander; MacDonald, Daniel R.; Soibel, Alexander
2009-01-01
Modal filters in the approximately equal to 10-micrometer spectral range have been implemented as planar dielectric waveguides in infrared interferometric applications such as searching for Earth-like planets. When looking for a small, dim object ("Earth") in close proximity to a large, bright object ("Sun"), the interferometric technique uses beams from two telescopes combined with a 180 phase shift in order to cancel the light from a brighter object. The interferometer baseline can be adjusted so that, at the same time, the light from the dimmer object arrives at the combiner in phase. This light can be detected and its infrared (IR) optical spectra can be studied. The cancellation of light from the "Sun" to approximately equal to 10(exp 6) is required; this is not possible without special devices-modal filters- that equalize the wavefronts arriving from the two telescopes. Currently, modal filters in the approximately equal to 10-micrometer spectral range are implemented as single- mode fibers. Using semiconductor technology, single-mode waveguides for use as modal filters were fabricated. Two designs were implemented: one using an InGaAs waveguide layer matched to an InP substrate, and one using InAlAs matched to an InP substrate. Photon Design software was used to design the waveguides, with the main feature all designs being single-mode operation in the 10.5- to 17-micrometer spectral range. Preliminary results show that the filter's rejection ratio is 26 dB.
NASA Astrophysics Data System (ADS)
Luo, Zhi-Chao; Luo, Ai-Ping; Xu, Wen-Cheng
2011-08-01
We propose and demonstrate a novel tunable and switchable all-fiber comb filter by employing a polarization beam splitter (PBS)-based two-stage cascaded Mach-Zehnder (M-Z) interferometer. The proposed comb filter consists of a rotatable polarizer, a fiber PBS, a non-3-dB coupler and a 3-dB coupler. By simply adjusting the polarization state of the input light, the dual-function of channel spacing tunable and wavelength switchable (interleaving) operations can be efficiently obtained. The theoretical analysis is verified by the experimental results. A comb filter with both the channel spacing tunable from 0.18 nm to 0.36 nm and the wavelength switchable functions is experimentally demonstrated.
Zhang, Peng; Wu, Di; Du, Quanli; Li, Xiaoyan; Han, Kexuan; Zhang, Lizhong; Wang, Tianshu; Jiang, Huilin
2017-12-10
A 1.7 μm band tunable narrow-linewidth Raman fiber laser based on spectrally sliced amplified spontaneous emission (SS-ASE) and multiple filter structures is proposed and experimentally demonstrated. In this scheme, an SS-ASE source is employed as a pump source in order to avoid stimulated Brillouin scattering. The ring configuration includes a 500 m long high nonlinear optical fiber and a 10 km long dispersion shifted fiber as the gain medium. A segment of un-pumped polarization-maintaining erbium-doped fiber is used to modify the shape of the spectrum. Furthermore, a nonlinear polarization rotation scheme is applied as the wavelength selector to generate lasers. A high-finesse ring filter and a ring filter are used to narrow the linewidth of the laser, respectively. We demonstrate tuning capabilities of a single laser over 28 nm between 1652 nm and 1680 nm by adjusting the polarization controller (PC) and tunable filter. The tunable laser has a 0.023 nm effective linewidth with the high-finesse ring filter. The stable multi-wavelength laser operation of up to four wavelengths can be obtained by adjusting the PC carefully when the pump power increases.
FILTER FOR HIGH VELOCITY GAS STREAMS
Heckman, R.A.; Warner, H.F.
1963-11-01
An air filter that is particularly useful in air-sampling rockets is presented. The filter comprises a cellulose fiber mat having an evenly disposed thin coating of stearic acid. Protective loose weave fabric covers are stitched to the front and back of the fiber mat, the stitching being in the form of a sine wave spiraled from the midpoint of the mat out to its periphery. (AEC)
Lee, Eun Gyung; Nelson, John H.; Kashon, Michael L.; Harper, Martin
2015-01-01
A Japanese round-robin study revealed that analysts who used a dark-medium (DM) objective lens reported higher fiber counts from American Industrial Hygiene Association (AIHA) Proficiency Analytical Testing (PAT) chrysotile samples than those using a standard objective lens, but the cause of this difference was not investigated at that time. The purpose of this study is to determine any major source of this difference by performing two sets of round-robin studies. For the first round-robin study, 15 AIHA PAT samples (five each of chrysotile and amosite generated by water-suspended method, and five chrysotile generated by aerosolization method) were prepared with relocatable cover slips and examined by nine laboratories. A second round-robin study was then performed with six chrysotile field sample slides by six out of nine laboratories who participated in the first round-robin study. In addition, two phase-shift test slides to check analysts’ visibility and an eight-form diatom test plate to compare resolution between the two objectives were examined. For the AIHA PAT chrysotile reference slides, use of the DM objective resulted in consistently higher fiber counts (1.45 times for all data) than the standard objective (P-value < 0.05), regardless of the filter generation (water-suspension or aerosol) method. For the AIHA PAT amosite reference and chrysotile field sample slides, the fiber counts between the two objectives were not significantly different. No statistically significant differences were observed in the visibility of blocks of the test slides between the two objectives. Also, the DM and standard objectives showed no pattern of differences in viewing the fine lines and/or dots of each species images on the eight-form diatom test plate. Among various potential factors that might affect the analysts’ performance of fiber counts, this study supports the greater contrast caused by the different phase plate absorptions as the main cause of high counts for the AIHA PAT chrysotile slides using the DM objective. The comparison of fiber count ratios (DM/standard) between the AIHA PAT chrysotile samples and chrysotile field samples indicates that there is a fraction of fibers in the PAT samples approaching the theoretical limit of visibility of the phase-contrast microscope with 3-degree phase-shift. These fibers become more clearly visible through the greater contrast from the phase plate absorption of the DM objective. However, as such fibers are not present in field samples, no difference in counts between the two objectives was observed in this study. The DM objective, therefore, could be allowed for routine fiber counting as it will maintain continuity with risk assessments based on earlier phase-contrast microscopy fiber counts from field samples. Published standard methods would need to be modified to allow a higher aperture specification for the objective. PMID:25737333
Two-mode elliptical-core weighted fiber sensors for vibration analysis
NASA Technical Reports Server (NTRS)
Vengsarkar, Ashish M.; Murphy, Kent A.; Fogg, Brian R.; Miller, William V.; Greene, Jonathan A.; Claus, Richard O.
1992-01-01
Two-mode, elliptical-core optical fibers are demonstrated in weighted, distributed and selective vibration-mode-filtering applications. We show how appropriate placement of optical fibers on a vibrating structure can lead to vibration mode filtering. Selective vibration-mode suppression on the order of 10 dB has been obtained using tapered two-mode, circular-core fibers with tapering functions that match the second derivatives of the modes of vibration to be enhanced. We also demonstrate the use of chirped, two-mode gratings in fibers as spatial modal sensors that are equivalents of shaped piezoelectric sensors.
Method and apparatus for assaying wood pulp fibers
Gustafson, Richard [Bellevue, WA; Callis, James B [Seattle, WA; Mathews, Jeffrey D [Neenah, WI; Robinson, John [Issaquah, WA; Bruckner, Carsten A [San Mateo, CA; Suvamakich, Kuntinee [Seattle, WA
2009-05-26
Paper pulp is added to a stain solution. The stain solution and pulp fibers are mixed to form a slurry. Samples are removed from the slurry and are admixed with dilution water and a bleach. Then, the fibers are moved into a flow cell where they are subjected to a light source adapted to stimulate fluorescence from the stained pulp fiber. Before the fiber slurry enters the flow cell it is mixed with a dilution water of bleach to reduce background fluorescence. The fluorescent light is collimated and directed through a dichroic filter onto a fluorescence splitting dichroic filter.
Reconfigurable microwave photonic in-phase and quadrature detector for frequency agile radar.
Emami, Hossein; Sarkhosh, Niusha
2014-06-01
A microwave photonic in-phase and quadrature detector is conceived and practically demonstrated. The detector has the ability to become electronically reconfigured to operate at any frequency over a wide range. This makes it an excellent candidate for frequency agile radars and other electronic warfare systems based on frequency hopping. The detector exhibits a very low amplitude and phase imbalance, which removes the need for any imbalance compensation technique. The system is designed based on the transversal filtering concept and reconfigurability is achieved via wavelength control in a dispersive fiber. The system operation was demonstrated over a frequency range of 3.5-35 GHz, with a maximum of -32 dB amplitude imbalance.
Kotb, Hussein; Abdelalim, Mohamed A; Anis, Hanan
2015-11-16
A significant change in active similariton characteristics, both numerically and experimentally, is observed as a function of the location of the lumped spectral filter. The closer the spectral filter is to the input of the Yb(3+)-doped fiber, the shorter the de-chirped pulse width. The peak power of the de-chirped pulse has its maximum value at a certain location of the spectral filter. Four different positions of the spectral filter inside the laser cavity have been theoretically studied and two of them have been verified experimentally.
Sun, Chunran; Wang, Muguang; Jian, Shuisheng
2017-08-21
In this paper, a novel quasi-fan Solc structure filter based on elliptical-core spun fiber for twist sensing has been experimentally investigated and theoretically analyzed. The discrete model of spun fiber has been built to analyze the transmission characteristics of proposed sensor. Both experimental and simulated results indicate that the extinction ratio of the comb spectrum based on quasi-fan Solc birefringent fiber filter varies with twist angle and agrees well with each other. Based on the intensity modulation, the proposed twist sensor exhibits a high sensitivity of 0.02219 dB/(°/m). Moreover, thanks to the invariability of the fiber birefringence and the state of polarization of the input light, the proposed twist sensor has a very low temperature and strain sensitivity, which can avoid the cross-sensitivity problem existing in most twist sensors.
Harish, Achar V; Varghese, Bibin; Rao, Babu; Balasubramaniam, Krishnan; Srinivasan, Balaji
2015-07-01
Use of in-fiber Fabry-Perot (FP) filters based on fiber Bragg gratings as both sensor as well as an interrogator for enhancing the detection limit of elastic wave sensing is investigated in this paper. The sensitivity of such a demodulation scheme depends on the spectral discrimination of the sensor and interrogator gratings. Simulations have shown that the use of in-fiber FP filters with high finesse provide better performance in terms of sensitivity compared to the demodulation using fiber Bragg gratings. Based on these results, a dynamic interrogator capable of sensing acoustic waves with amplitude of less than 1 micro-strain over frequencies of 10 kHz to several 100 kHz has been implemented. Frequency response of the fiber Bragg gratings in the given experimental setup has been compared to that of the conventional piezo sensors demonstrating that fiber Bragg gratings can be used over a relatively broad frequency range. Dynamic interrogator has been packaged in a compact box without any degradation in its performance. Copyright © 2015 Elsevier B.V. All rights reserved.
Wavelength-tunable thulium-doped fiber laser by employing a self-made Fabry-Perot filter
NASA Astrophysics Data System (ADS)
Wang, Y. P.; Ju, Y. L.; Wu, C. T.; Liu, W.; Yang, C.
2017-06-01
In this demonstration, we proposed a novel wavelength-tunable thulium-doped fiber laser (TDFL) with a self-made Fabry-Perot (F-P) filter. When the F-P filter was not inserted, the maximum output power of 11.1 W was achieved when the pump power was 70.2 W. The corresponding optical-to-optical conversion efficiency was 15.8% and the slope efficiency was 22.1%. When the F-P filter was inserted, the output wavelength could be tuned from 1952.9 to 1934.9 nm with the change of cavity length of F-P filter which was fixed on a piezoelectric ceramic transducer (PZT) controlled by the voltage applied to it. The full width at half maximum (FWHM) was no more than 0.19 nm. Furthermore, the wavelength fluctuations of the tunable fiber laser were kept within ±0.2 nm.
FILTER PLANT DESIGN FOR ASBESTOS FIBER REMOVAL
Water filtration plants used to remove asbestos fibers should be designed to produce filtered water with very low turbidity (0.10 ntu or lower). Flexibility in plant operation, especially with respect to conditioning raw water for filtration, is a key design factor. Preconditioni...
INERTIAL CASCADE IMPACTOR SUBSTRATE MEDIA FOR FLUE GAS SAMPLING
The report summarizes Southern Research Institute's experience with greases and glass fiber filter material used as collection substrates in inertial cascade impactors. Available greases and glass fiber filter media have been tested to determine which are most suitable for flue g...
Bio-composite Nonwoven Media Based on Chitosan and Empty Fruit Bunches for Wastewater Application
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sadikin, Aziatul Niza; Nawawi, Mohd Ghazali Mohd; Othman, Norasikin
2011-01-17
Fibrous filter media in the form of non-woven filters have been used extensively in water treatment as pre-filters or to support the medium that does the separation. Lignocellulosic such as empty fruit bunches have potential to be used as a low cost filter media as they represent unused resources, widely available and are environmentally friendly. Laboratory filtration tests were performed to investigate the potential application of empty fruit bunches that enriched with chitosan as a fiber filter media to remove suspended solids, oil and grease, and organics in terms of chemical oxygen demand from palm oil mill effluent. The presentmore » paper studies the effect of chitosan concentration on the filter media performance. Bench-scaled experiment results indicated that pre-treatment using the fiber filtration system removed up to 67.3% of total suspended solid, 65.1% of oil and grease and 46.1% of chemical oxygen demand. The results show that the lignocellulosic fiber filter could be a potential technology for primary wastewater treatment.« less
Characterization of Mid-Infrared Single Mode Fibers as Modal Filters
NASA Technical Reports Server (NTRS)
Ksendzov, A.; Lay, O.; Martin, S.; Sanghera, J. S.; Busse, L. E.; Kim, W. H.; Pureza, P. C.; Nguyen, V. Q.; Aggarwal, I. D.
2007-01-01
We present a technique for measuring the modal filtering ability of single mode fibers. The ideal modal filter rejects all input field components that have no overlap with the fundamental mode of the filter and does not attenuate the fundamental mode. We define the quality of a nonideal modal filter Q(sub f) as the ratio of transmittance for the fundamental mode to the transmittance for an input field that has no overlap with the fundamental mode. We demonstrate the technique on a 20 cm long mid-infrared fiber that was produced by the U.S. Naval Research Laboratory. The filter quality Q(sub f) for this fiber at 10.5 micron wavelength is 1000 +/- 300. The absorption and scattering losses in the fundamental mode are approximately 8 dB/m. The total transmittance for the fundamental mode, including Fresnel reflections, is 0.428 +/- 0.002. The application of interest is the search for extrasolar Earthlike planets using nulling interferometry. It requires high rejection ratios to suppress the light of a bright star, so that the faint planet becomes visible. The use of modal filters increases the rejection ratio (or, equivalently, relaxes requirements on the wavefront quality) by reducing the sensitivity to small wavefront errors. We show theoretically that, exclusive of coupling losses, the use of a modal filter leads to the improvement of the rejection ratio in a two-beam interferometer by a factor of Q(sub f).
Real-time alkali monitoring system
Goff, David R.; Romanosky, Robert R.; Hensel, Peter
1990-01-01
A fiber optics based optical emission line monitoring system is provided in which selected spectral emission lines, such as the sodium emission line, may be detected in the presence of interfering background radiation. A combustion flame is fed by a diverted portion of a process stream and the common end of a bifurcated or quadfurcated fiber optic light guide is adapted to collect light from the flame. The light is guided through the branches of the fiber optic cable to bandpass filters, one of which is adapted to each of the branches of the fiber optic light guide. The bandpass filters are centered at wavelengths corresponding to the emission lines to be detected and two separate filters are required for each species being detected. The first filter has a bandwidth of about 3 nms and the second filter has a bandwidth of about 10 nms. Light detectors are located to view the light passing through the bandpass filters and amplifiers are connected to receive signals from the light detectors. The amplifier corresponding to the bandpass filter having the narrower bandwidth is preset to scale the signal by a factor equal to the ratio of the wide and narrow bandwidths of the bandpass filters. This scaling produces a scaled signal from which the difference between the scaled signal on the other signal can be calculated to produce a signal having an amplitude directly proportional to the concentration of the species of interest and independent of background radiation.
Development of an optical fiber SERS microprobe for minimally invasive sensing applications
NASA Astrophysics Data System (ADS)
Mamun, Md Abdullah Al; Juodkazis, Saulius; Mahadevan-Jansen, Anita; Stoddart, Paul R.
2018-02-01
Numerous potential biomedical sensing applications of surface-enhanced Raman scattering (SERS) have been reported, but its practical use has been limited by the lack of a robust sensing platform. Optical fiber SERS probes show great promise, but are limited by the prominent silica Raman background, which requires the use of bulky optics for filtering the signal collection and excitation delivery paths. In the present study, a SERS microprobe has been designed and developed to eliminate the bottlenecks outlined above. For efficient excitation and delivery of the SERS signal, both hollow core photonic crystal fiber and double clad fiber have been investigated. While the hollow core fiber was still found to have excessive silica background, the double clad fiber allows efficient signal collection via the multi-mode inner cladding. A micro filtering mechanism has been designed, which can be integrated into the tip of the optical fiber SERS probe, providing filtering to suppress silica Raman background and thus avoiding the need for bulky optics. The design also assists in the efficient collection of SERS signal from the sample by rejecting Rayleigh scattered light from the sample. Optical fiber cleaving using ultra-short laser pulses was tested for improved control of the fiber tip geometry. With this miniaturized and integrated filtering mechanism, it is expected that the developed probe will promote the use of SERS for minimally invasive biomedical monitoring and sensing applications in future. The probe could potentially be placed inside a small gauge hypodermic needle and would be compatible with handheld portable spectrometers.
Department of Defense Enhanced Particulate Matter Surveillance Program (EPMSP)
2008-02-01
on Teflon® membrane, 23,807 on quartz fiber, and several million single particle analyses on Nuclepore® filters. Analytical results were...Nuclepore® filters, the sampling period was two hours, so as to provide lightly loaded filters with dispersed single particles, as required for CCSEM...membrane, 23,807 on quartz fiber, and several million single particle analyses on Nuclepore®. All results, together with summary tables and more than
NASA Astrophysics Data System (ADS)
Zhang, Cheng; Xu, Shan; Zhao, Junfa; Li, Hongqiang; Bai, Hua; Miao, Changyun
2017-12-01
A differential intensity-modulated refractive index (RI) sensor consisting of a no-core fiber (NCF) filter, a circulator and two fiber Bragg gratings (FBGs) is proposed and demonstrated. A section of the NCF is sandwiched between two parts of single mode fibers (SMFs) to form a band-pass filter. The Bragg wavelengths of the FBGs are chosen at the two edges of the filter, respectively. The peak wavelength of the NCF filter has a red-shift with the increase of the surrounding refractive index (SRI) while the Bragg wavelengths have no change, which results in the variation of the difference of the two FBGs reflective intensities, thus the differential intensity modulation to the SRI can be accomplished. Compared with directly connecting the NCF filter and the FBGs, this sensing structure can increase the output power so as to improve the measuring resolution. The experimental results show that the RI sensitivities are -99.191 dB/RIU and -139.958 dB/RIU at the range of 1.3329-1.3781 and 1.3781-1.401, respectively. In addition, the disturbance from the light source fluctuation and temperature cross sensitivity can be minimized effectively, which has great potential in actual applications.
NASA Astrophysics Data System (ADS)
Liu, Xuan; Liu, Bo; Zhang, Li-jia; Xin, Xiang-jun; Zhang, Qi; Wang, Yong-jun; Tian, Qing-hua; Tian, Feng; Mao, Ya-ya
2018-01-01
Traditional clock recovery scheme achieves timing adjustment by digital interpolation, thus recovering the sampling sequence. Based on this, an improved clock recovery architecture joint channel equalization for coherent optical communication system is presented in this paper. The loop is different from the traditional clock recovery. In order to reduce the interpolation error caused by the distortion in the frequency domain of the interpolator and to suppress the spectral mirroring generated by the sampling rate change, the proposed algorithm joint equalization, improves the original interpolator in the loop, along with adaptive filtering, and makes error compensation for the original signals according to the balanced pre-filtering signals. Then the signals are adaptive interpolated through the feedback loop. Furthermore, the phase splitting timing recovery algorithm is adopted in this paper. The time error is calculated according to the improved algorithm when there is no transition between the adjacent symbols, making calculated timing error more accurate. Meanwhile, Carrier coarse synchronization module is placed before the beginning of timing recovery to eliminate the larger frequency offset interference, which effectively adjust the sampling clock phase. In this paper, the simulation results show that the timing error is greatly reduced after the loop is changed. Based on the phase splitting algorithm, the BER and MSE are better than those in the unvaried architecture. In the fiber channel, using MQAM modulation format, after 100 km-transmission of single-mode fiber, especially when ROF(roll-off factor) values tends to 0, the algorithm shows a better clock performance under different ROFs. When SNR values are less than 8, the BER could achieve 10-2 to 10-1 magnitude. Furthermore, the proposed timing recovery is more suitable for the situation with low SNR values.
Programmable controlled mode-locked fiber laser using a digital micromirror device.
Liu, Wu; Fan, Jintao; Xie, Chen; Song, Youjian; Gu, Chenlin; Chai, Lu; Wang, Chingyue; Hu, Minglie
2017-05-15
A digital micromirror device (DMD)-based arbitrary spectrum amplitude shaper is incorporated into a large-mode-area photonic crystal fiber laser cavity. The shaper acts as an in-cavity programmable filter and provides large tunable dispersion from normal to anomalous. As a result, mode-locking is achieved in different dispersion regimes with watt-level high output power. By programming different filter profiles on the DMD, the laser generates femtosecond pulse with a tunable central wavelength and controllable bandwidth. Under conditions of suitable cavity dispersion and pump power, design-shaped spectra are directly obtained by varying the amplitude transfer function of the filter. The results show the versatility of the DMD-based in-cavity filter for flexible control of the pulse dynamics in a mode-locked fiber laser.
Developments in fiber optics for distribution automation
NASA Technical Reports Server (NTRS)
Kirkham, H.; Friend, H.; Jackson, S.; Johnston, A.
1991-01-01
An optical fiber based communications system of unusual design is described. The system consists of a network of optical fibers overlaid on the distribution system. It is configured as a large number of interconnected rings, with some spurs. Protocols for access to and control of the network are described. Because of the way they function, the protocols are collectively called AbNET, in commemoration of the microbiologists' abbreviation Ab for antibody. Optical data links that could be optically powered are described. There are two versions, each of which has a good frequency response and minimal filtering requirements. In one, a conventional FM pulse train is used at the transmitter, and a novel form of phase-locked loop is used as demodulator. In the other, the FM transmitter is replaced with a pulse generator arranged so that the period between pulses represents the modulating signal. Transmitter and receiver designs, including temperature compensation methods, are presented. Experimental results are given.
Tunable radio-frequency photonic filter based on an actively mode-locked fiber laser.
Ortigosa-Blanch, A; Mora, J; Capmany, J; Ortega, B; Pastor, D
2006-03-15
We propose the use of an actively mode-locked fiber laser as a multitap optical source for a microwave photonic filter. The fiber laser provides multiple optical taps with an optical frequency separation equal to the external driving radio-frequency signal of the laser that governs its repetition rate. All the optical taps show equal polarization and an overall Gaussian apodization, which reduces the sidelobes. We demonstrate continuous tunability of the filter by changing the external driving radio-frequency signal of the laser, which shows good fine tunability in the operating range of the laser from 5 to 10 GHz.
Tunable multiwavelength fiber laser based on a θ-shaped microfiber filter
NASA Astrophysics Data System (ADS)
Li, Yue; Xu, Zhilin; Luo, Yiyang; Xiang, Yang; Yan, Zhijun; Liu, Deming; Sun, Qizhen
2018-06-01
We propose and experimentally demonstrate a flexibly tunable multiwavelength fiber ring laser based on a θ-shaped microfiber filter in conjunction with an erbium-doped fiber amplifier. The stable operation of the multiwavelength lasing is successfully achieved at room temperature, with the peak power fluctuation less than 0.519 dB. By micro-adjusting the cavity length of the filter, the channel spacing can be independently tuned within the gain range of the optical amplifier. We have achieved 0.084 nm-spacing 48 channel, 0.147 nm-spacing 25 channel, 0.190 nm-spacing 20 channel and 0.302 nm-spacing 15 channel lasing wavelengths at room temperature.
All-fiber broadband supercontinuum generation in a single-mode high nonlinear silica fiber
NASA Astrophysics Data System (ADS)
Gao, Weiqing; Liao, Meisong; Yang, Lingzhen; Yan, Xin; Suzuki, Takenobu; Ohishi, Yasutake
2012-06-01
We demonstrate an all-fiber broadband supercontinuum (SC) source with high efficiency in a single-mode high nonlinear silica fiber. The SC is pumped by the 1557 nm sub-picosecond pulse, which is generated by a homemade passively mode-locked fiber laser, amplified by an EDFA and compressed to 600 fs. The high nonlinear fiber used in experiments has the zero-dispersion wavelength of 1584 nm with low dispersion slope. The pump pulse is in the normal dispersion region and the SC generation is initiated by the SPM effect. When the long-wave band of the spectrum is extended to the anomalous dispersion region, the soliton effects and intra-pulse Raman effects extend the spectrum further. Meanwhile, the dispersive waves shorter than 1100 nm begin to emerge because the phase matching condition is satisfied and the intensity increases with increasing the pump intensity. The broad SC spectrum with the spectral range from 840 to 2390 nm is obtained at the pump peak power of 46.71 kW, and the 10 dB bandwidth from 1120 nm to 2245 nm of the SC covers one octave assuming the peak near 1550 nm is filtered. The temporal trace of the SC has the repetition rate of 16.7 MHz, and some satellite pulses are generated during the nonlinear process. The SC source system is constructed by all-fiber components, which can be fusion spliced together directly with low loss less than 0.1 dB and improves the energy transfer efficiency from the pump source to the SC greatly. The maximum SC average power of 332 mW is obtained for the total spectral range, and the slop efficiency to the pump source is about 70.3%, which will be lower when the peaks near 1550 nm are filtered, but is higher than those in PCFs. The spectral density for the 10 dB bandwidth is in the range from -17.3 to -7.3 dBm/nm.
Single frequency 1083nm ytterbium doped fiber master oscillator power amplifier laser.
Huang, Shenghong; Qin, Guanshi; Shirakawa, Akira; Musha, Mitsuru; Ueda, Ken-Ichi
2005-09-05
Single frequency 1083nm ytterbium fiber master oscillator power amplifier system was demonstrated. The oscillator was a linear fiber cavity with loop mirror filter and polarization controller. The loop mirror with unpumped ytterbium fiber as a narrow bandwidth filter discriminated and selected laser longitudinal modes efficiently. Spatial hole burning effect was restrained by adjusting polarization controller appropriately in the linear cavity. The amplifier was 5 m ytterbium doped fiber pumped by 976nm pigtail coupled laser diode. The linewidth of the single frequency laser was about 2 KHz. Output power up to 177 mW was produced under the launched pump power of 332 mW.
Zheng, Jianyu; Wang, Hui; Fu, Jianbin; Wei, Li; Pan, Shilong; Wang, Lixian; Liu, Jianguo; Zhu, Ninghua
2014-03-10
A fiber-distributed Ultra-wideband (UWB) noise radar was achieved, which consists of a chaotic UWB noise source based on optoelectronic oscillator (OEO), a fiber-distributed transmission link, a colorless base station (BS), and a cross-correlation processing module. Due to a polarization modulation based microwave photonic filter and an electrical UWB pass-band filter embedded in the feedback loop of the OEO, the power spectrum of chaotic UWB signal could be shaped and notch-filtered to avoid the spectrum-overlay-induced interference to the narrow band signals. Meanwhile, the wavelength-reusing could be implemented in the BS by means of the distributed polarization modulation-to-intensity modulation conversion. The experimental comparison for range finding was carried out as the chaotic UWB signal was notch-filtered at 5.2 GHz and 7.8 GHz or not. Measured results indicate that space resolution with cm-level could be realized after 3-km fiber transmission thanks to the excellent self-correlation property of the UWB noise signal provided by the OEO. The performance deterioration of the radar raised by the energy loss of the notch-filtered noise signal was negligible.
Fair comparison of complexity between a multi-band CAP and DMT for data center interconnects.
Wei, J L; Sanchez, C; Giacoumidis, E
2017-10-01
We present, to the best of our knowledge, the first known detailed analysis and fair comparison of complexity of a 56 Gb/s multi-band carrierless amplitude and phase (CAP) and discrete multi-tone (DMT) over 80 km dispersion compensation fiber-free single-mode fiber links based on intensity modulation and direct detection for data center interconnects. We show that the matched finite impulse response filters and inverse fast Fourier transform (IFFT)/FFT take the majority of the complexity of the multi-band CAP and DMT, respectively. The choice of the multi-band CAP sub-band count and the DMT IFFT/FFT size makes significant impact on the system complexity or performance, and trade-off must be considered.
Optical fiber sources and transmission controls for multi-Tb/s systems
NASA Astrophysics Data System (ADS)
Nowak, George Adelbert
The accelerating demand for bandwidth capacity in backbone links of terrestrial communications systems is projected to exceed 1Tb/s by 2002. Lightwave carrier frequencies and fused-silica optical fibers provide the natural combination of high passband frequencies and low- loss medium to satisfy this evolving demand for bandwidth capacity. This thesis addresses three key technologies for enabling multi-Tb/s optical fiber communication systems. The first technology is a broadband source based on supercontinuum generation in optical fiber. Using a single modelocked laser with output pulsewidths of 0.5psec pulses, we generate in ~2m of dispersion-shifted fiber more that 200nm of spectral continuum in the vicinity of 1550nm that is flat to better than +/- 0.5 dB over more than 60nm. The short fiber length prevents degradation of timing jitter of the seed pulses and preserves coherence of the continuum by inhibiting environmental perturbations and mapping of random noise from the vicinity of the input pulse across the continuum. Through experiments and simulations, we find that the continuum characteristics result from 3rd order dispersion effects on higher-order soliton compression. We determine optimal fiber properties to provide desired continuum broadness and flatness for given input pulsewidth and energy conditions. The second technology is a novel delay-shifted nonlinear optical loop mirror (DS-NOLM) that performs a transmission control function by serving as an intensity filter and frequency compensator for <5psec soliton transmission systems. A theoretical and experimental study of the DS-NOLM as a transmission control element in a periodically amplified soliton transmission system is presented. We show that DS-NOLMs enable 4ps soliton transmission over 75km of standard dispersion fiber, with 25km spacing between amplifiers, by filtering the dispersive waves and compensating for Raman-induced soliton self-frequency shift. The third technology is all-fiber wavelength conversion employing induced modulational instability. We obtain wavelength conversion over 40nm with a peak conversion efficiency of 28dB using 600mW pump pulses in 720m of high-nonlinearity optical fiber. We show that the high- nonlinearity fiber enhances the phase-matching bandwidth as well as reducing the required fiber lengths and pump powers.
Kim, Myoung Jin; Jung, Yong Min; Kim, Bok Hyeon; Han, Won-Taek; Lee, Byeong Ha
2007-08-20
We demonstrate a fiber-based bandpass filter with an ultra-wide spectral bandwidth. The ultra-wide band feature is achieved by inscribing a long-period fiber grating (LPG) in a specially-designed low index core single mode fiber. To get the bandpass function, the evanescent field coupling between two attached fibers is utilized. By applying strain, the spectral shape of the pass-band is adjusted to flat-top and Gaussian shapes. For the flat-top case, the bandwidth is obtained ~ 160 nm with an insertion loss of ~ 2 dB. With strain, the spectral shape is switched into a Gaussian one, which has ~ 120 nm FWHM and ~ 4.18 dB insertion loss at the peak.
Hollow core waveguide as mid-infrared laser modal beam filter
DOE Office of Scientific and Technical Information (OSTI.GOV)
Patimisco, P.; Giglio, M.; Spagnolo, V.
2015-09-21
A novel method for mid-IR laser beam mode cleaning employing hollow core waveguide as a modal filter element is reported. The influence of the input laser beam quality on fiber optical losses and output beam profile using a hollow core waveguide with 200 μm-bore size was investigated. Our results demonstrate that even when using a laser with a poor spatial profile, there will exist a minimum fiber length that allows transmission of only the Gaussian-like fundamental waveguide mode from the fiber, filtering out all the higher order modes. This essentially single mode output is preserved also when the waveguide is bentmore » to a radius of curvature of 7.5 cm, which demonstrates that laser mode filtering can be realized even if a curved light path is required.« less
Nan, Yinbo; Huo, Li; Lou, Caiyun
2005-05-20
We present a theoretical study of a supercontinuum (SC) continuous-wave (cw) optical source generation in highly nonlinear fiber and its noise properties through numerical simulations based on the nonlinear Schrödinger equation. Fluctuations of pump pulses generate substructures between the longitudinal modes that result in the generation of white noise and then in degradation of coherence and in a decrease of the modulation depths and the signal-to-noise ratio (SNR). A scheme for improvement of the SNR of a multiwavelength cw optical source based on a SC by use of the combination of a highly nonlinear fiber (HNLF), an optical bandpass filter, and a Fabry-Perot (FP) filter is presented. Numerical simulations show that the improvement in modulation depth is relative to the HNLF's length, the 3-dB bandwidth of the optical bandpass filter, and the reflection ratio of the FP filter and that the average improvement in modulation depth is 13.7 dB under specified conditions.
Methods of producing cermet materials and methods of utilizing same
Kong, Peter C [Idaho Falls, ID
2008-12-30
Methods of fabricating cermet materials and methods of utilizing the same such as in filtering particulate and gaseous pollutants from internal combustion engines having intermetallic and ceramic phases. The cermet material may be made from a transition metal aluminide phase and an alumina phase. The mixture may be pressed to form a green compact body and then heated in a nitrogen-containing atmosphere so as to melt aluminum particles and form the cermet. Filler materials may be added to increase the porosity or tailor the catalytic properties of the cermet material. Additionally, the cermet material may be reinforced with fibers or screens. The cermet material may also be formed so as to pass an electrical current therethrough to heat the material during use.
Methods of fabricating cermet materials and methods of utilizing same
Kong, Peter C.
2006-04-04
Methods of fabricating cermet materials and methods of utilizing the same such as in filtering particulate and gaseous pollutants from internal combustion engines having intermetallic and ceramic phases. The cermet material may be made from a transition metal aluminide phase and an aluminia phase. The mixture may be pressed to form a green compact body and then heated in a nitrogen-containing atmosphere so as to melt aluminum particles and form the cermet. Filler materials may be added to increase the porosity or tailor the catalytic properties of the cermet material. Additionally, the cermet material may be reinforced with fibers or screens. The cermet material may also be formed so as to pass an electrical current therethrough to heat the material during use.
FiberNet--a new embolic protection device for carotid artery stenting.
Bauer, C; Franke, J; Bertog, S C; Woerner, V; Ghasemzadeh-Asl, S; Sievert, H
2014-05-01
Though distal filter protection during carotid stenting reduces the risk of cerebrovascular events, periprocedural stroke remains a risk despite their broad usage. This observation may be related to the pore size of common filters. The FiberNet distal filter system is unique by its very small pore size (40 µm) as well as its low profile and flexibility. Little data is available regarding the clinical performance and safety of this device. The aim was the evaluation of the safety of the FiberNet embolic protection system during carotid artery stenting. All consecutive patients treated with carotid stenting at our institution using the FiberNet device were systematically followed. Primary endpoint was the rate of all death and stroke within 30 days of the procedure. Carotid artery stenting using the FiberNet embolic protection system was performed in 54 patients. The procedure was technical successful in all patients. Three patients (5.5%) had a TIA. Amauosis fugax occurred in two patients (3.7%). One patient (1.9%) had a minor stroke with hemiparesis of the left arm and face which resolved completely within 48 hr after the procedure. No patient died or suffered a major stroke. The safety and feasibility of the FiberNet distal protection system appears to be at least equivalent to that reported in studies using conventional distal filter protection. Copyright © 2013 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Wang, Anbo; Wang, George Z.; Murphy, Kent A.; Claus, Richard O.
1995-05-01
Dielectric-multilayer-filter-based, optical-fiber temperature sensors based on differential spectral transmittance/reflectivity were shown experimentally. A resolution of 0.2 C was achieved over a measurement range of 30-120 C. The sensor was shown to possess low immunity to variations in light-source power and fiber-bending loss. A wavelength-division-multiplexed sensing system was also fabricated by cascading three such filters with distinct cutoff wavelengths along a single multimode fiber. A resolution of 0.5 C was achieved over a temperature spectrum of 50-100 C. Furthermore, cross talk between sensors was examined.
Tunable dual-wavelength fiber laser based on an MMI filter in a cascaded Sagnac loop interferometer
NASA Astrophysics Data System (ADS)
Ma, Lin; Kang, Zexin; Qi, Yanhui; Jian, Shuisheng
2014-04-01
A widely tunable dual-wavelength erbium-doped fiber laser based on a cascaded Sagnac loop interferometer incorporating a multimode interference filter is proposed and experimentally demonstrated in this paper. The mode selection is implemented by using the cascaded Sagnac loop interferometer with two segments of polarization maintaining fibers, and the wavelength tuning was achieved by using the refractive index characteristic of multimode interference effects. The tunable dual-wavelength fiber laser has a wavelength tuning of about 40 nm with a signal-to-noise ratio of more than 50 dB.
Fiber Optic Sensor System Using Birefringent Filters For Spectral Encoding
NASA Astrophysics Data System (ADS)
Dorsch, Friedhelm; Ulrich, Reinhard
1989-02-01
A system of multimode fiber optic sensors is described for the remote measurement of position, angle, force, pressure and other measurands that can be converted into a rotation of polarization. A birefringent filter encodes the polarization angle into the power ratio of two interleaved comb spectra or, in a modified implementation, into the absolute spectral position of a comb spectrum. By using identical filters in all transducers and in the evaluation unit, transducers for the same or different measurands become interchange-able. All sensors are of the incremental type, with accuracies reaching 0.5 % of one period of the measurand, independent of variations in the attenuation of the fiber link of up to 20dB.
A novel fiber Bragg grating wavelength demodulation system based on F-P etalon
NASA Astrophysics Data System (ADS)
Yang, Gang; Guo, Jinghong; Xu, Guoliang; Lv, Lidong; Tu, Guojie; Xia, Lan
2014-10-01
This paper designs and implies a high precision FBG demodulation system which based on F-P etalon. In order to reduce the influence of the temperature drift effect, the peristaltic effect, and the nonlinear effect of F-P filter in traditional tunable filter method, F-P etalon is added as dynamical calibration and wavelength reference. Meanwhile segmentation demodulation which uses ASE spectral characteristics is applied to achieve high accuracy of the center wavelength of FBG. The experiment shows that the stability, resolution are 0.65pm, 0.23pm, respectively. Key words: fiber optics; fiber Bragg grating sensor system; tunable Fabry-Perot filter; F-P etalon; spectrum segmentation demodulation
1994-01-01
second gate indicating that the intruder is a runner or a fast truck. FILTER ASCPNFIER ONESHOT AND LOGIC BUS B note: t 0 0 7 the Q--. BISTABLE MV...Minutes of the PINTSITIWG Meeting. Test Integration Working Group, Fort Belvoir Research . Development and Engineering Center, Ft. Belvoir. VA, 22 April...MP-CD ADVANCED RESEARCH PROJECT AGENCY ATTN: ATZN-MP-DE ATTN: EAO ATTN: ATZN-MP-TB ATTN: STO N DOHERTY ATTN: ATZN-MP-TS DEFENSE INTELLIGENCE AGENCY U
Optical emission line monitor with background observation and cancellation
Goff, D.R.; Notestein, J.E.
1985-01-04
A fiber optics based optical emission line monitoring system is provided in which selected spectral emission lines, such as the sodium D-line emission in coal combustion, may be detected in the presence of interferring background or blackbody radiation with emissions much greater in intensity than that of the emission line being detected. A bifurcated fiber optic light guide is adapted at the end of one branch to view the combustion light which is guided to a first bandpass filter, adapted to the common trunk end of the fiber. A portion of the light is reflected back through the common trunk portion of the fiber to a second bandpass filter adapted to the end of the other branch of the fiber. The first filter bandpass is centered at a wavelength corresponding to the emission line to be detected with a bandwidth of about three nanometers (nm). The second filter is centered at the same wavelength but having a width of about 10 nm. First and second light detectors are located to view the light passing through the first and second filters respectively. Thus, the second detector is blind to the light corresponding to the emission line of interest detected by the first detector and the difference between the two detector outputs is uniquely indicative of the intensity of only the combustion flame emission of interest. This instrument can reduce the effects of interfering blackbody radiation by greater than 20 dB.
Optical emission line monitor with background observation and cancellation
Goff, David R.; Notestein, John E.
1986-01-01
A fiber optics based optical emission line monitoring system is provided in which selected spectral emission lines, such as the sodium D-line emission in coal combustion, may be detected in the presence of interferring background or blackbody radiation with emissions much greater in intensity than that of the emission line being detected. A bifurcated fiber optic light guide is adapted at the end of one branch to view the combustion light which is guided to a first bandpass filter, adapted to the common trunk end of the fiber. A portion of the light is reflected back through the common trunk portion of the fiber to a second bandpass filter adapted to the end of the other branch of the fiber. The first filter bandpass is centered at a wavelength corresponding to the emission line to be detected with a bandwidth of about three nanometers (nm). The second filter is centered at the same wavelength but having a width of about 10 nm. First and second light detectors are located to view the light passing through the first and second filters respectively. Thus, the second detector is blind to the light corresponding to the emission line of interest detected by the first detector and the difference between the two detector outputs is uniquely indicative of the intensity of only the combustion flame emission of interest. This instrument can reduce the effects of interferring blackbody radiation by greater than 20 dB.
Switchable multiwavelength thulium-doped fiber ring lasers
NASA Astrophysics Data System (ADS)
Zhao, Shui; Lu, Ping; Liu, Deming; Zhang, Jiangshan
2013-08-01
Two kinds of thulium-doped fiber ring lasers based on a spatial mode beating filter and comb filtering effect are presented and experimentally demonstrated, which all show multiwavelength laser spectrum around 2 μm. In the implementation of the first type of experiment configuration by the use of a piece of multimode fiber (MMF) as a spatial mode beating filter, dual-,triple-, and quadruple-wavelengths appeared whose extinction noise ratio is 25 dB by adjusting the angle of polarization controller. Different wavelength spaces are obtained by inserting different lengths of MMF. The second type is achieved by inserting a Sagnac loop mirror, which was constructed by a 3-dB coupler and a piece of polarization maintaining fiber. Seven stable wavelengths with channel spacing of 0.65 nm and an extinction ratio of 35 dB was achieved. These systems are simple and easy to construct, which can be useful for 2 μm wavelength-division-multiplexed applications.
Design of distributed FBG vibration measuring system based on Fabry-Perot tunable filter
NASA Astrophysics Data System (ADS)
Zhang, Cheng; Miao, Changyun; Li, Hongqiang; Gao, Hua; Gan, Jingmeng
2011-11-01
A distributed optical fiber grating wavelength interrogator based on fiber Fabry Perot tunable filter(FFP-TF) was proposed, which could measure dynamic strain or vibration of multi-sensing fiber gratings in one optical fiber by time division way. The wavelength demodulated mathematical model was built, the formulas of system output voltage and sensitivity were deduced and the method of finding static operating point was determined. The wavelength drifting characteristic of FFP-TF was discussed when the center wavelength of FFP-TF was set on the static operating point. A wavelength locking method was proposed by introducing a high-frequency driving voltage signal. A demodulated system was established based on Labview and its demodulated wavelength dynamic range is 290pm in theory. In experiment, by digital filtering applied to the system output data, 100Hz and 250Hz vibration signals were measured. The experiment results proved the feasibility of the demodulated method.
NASA Astrophysics Data System (ADS)
Han, Young-Geun; Dong, Xinyong; Lee, Ju Han; Lee, Sang Bae
2006-12-01
We propose and experimentally demonstrate a simple and flexible scheme for a wavelength-spacing-tunable multichannel filter exploiting a sampled chirped fiber Bragg grating based on a symmetrical modification of the chirp ratio. Symmetrical bending along a sampled chirped fiber Bragg grating attached to a flexible cantilever beam induces a variation of the chirp ratio and a reflection chirp bandwidth of the grating without a center wavelength shift. Accordingly, the wavelength spacing of a sampled chirped fiber Bragg grating is continuously controlled by the reflection chirp bandwidth variation of the grating corresponding to the bending direction, which allows for realization of an effective wavelength-spacing-tunable multichannel filter. Based on the proposed technique, we achieve the continuous tunability of the wavelength spacing in a range from 1.51 to 6.11 nm, depending on the bending direction of the cantilever beam.
Wang, Jun; Zheng, Jiao; Lu, Hong; Yan, Qing; Wang, Li; Liu, Jingjing; Hua, Dengxin
2017-11-01
Atmospheric temperature is one of the important parameters for the description of the atmospheric state. Most of the detection approaches to atmospheric temperature monitoring are based on rotational Raman scattering for better understanding atmospheric dynamics, thermodynamics, atmospheric transmission, and radiation. In this paper, we present a fine-filter method based on wavelength division multiplexing, incorporating a fiber Bragg grating in the visible spectrum for the rotational Raman scattering spectrum. To achieve high-precision remote sensing, the strong background noise is filtered out by using the secondary cascaded light paths. Detection intensity and the signal-to-noise ratio are improved by increasing the utilization rate of return signal form atmosphere. Passive temperature compensation is employed to reduce the temperature sensitivity of fiber Bragg grating. In addition, the proposed method provides a feasible solution for the filter system with the merits of miniaturization, high anti-interference, and high stability in the space-based platform.
Temperature-stabilized, narrowband tunable fiber-Bragg gratings for matched-filter receiver
NASA Astrophysics Data System (ADS)
Roth, Jeffrey M.; Kummer, Joseph W.; Minch, Jeffrey R.; Malinsky, Bryan G.; Scalesse, Vincent; Walther, Frederick G.
2017-02-01
We report on a 1550-nm matched filter based on a pair of fiber Bragg gratings (FBGs) that is actively stabilized over temperature. The filter is constructed of a cascaded pair of athermally-packaged FBGs. The tandem FBG pair produces an aggregate 3-dB bandwidth of 3.9-GHz that is closely matched to a return-to-zero, 2.880-GHz differential-phase-shift-keyed optical waveform. The FBGs comprising the filter are controlled in wavelength using a custom-designed, pulse-width modulation (PWM) heater controller. The controllers allow tuning of the FBGs over temperature to compensate and cancel out native temperature dependence of the athermal FBG (AFBG) package. Two heaters are bonded to each FBG device, one on each end. One heater is a static offset that biases the FBG wavelength positively. The second heater is a PWM controller that actively moves the FBG wavelength negatively. A temperature sensor measures the FBGs' temperature, and a feed-forward control loop adjusts the PWM signal to hold the wavelength within a desired range. This stabilization technique reduces the device's native temperature dependence from approximately 0.65 pm/°C to 0.06 pm/°C, improving the temperature stability by tenfold, while retaining some control for poten- tial long-term drifts. The technique demonstrates that the FBGs can be held to +/-1.5 pm (+/-188 MHz) of the target wavelength over a 0 to +50°C temperature range. The temperature-stabilized FBGs are integrated into a low-noise, optical pre-amplifier that operates over a wide temperature range for a laser communication system.
Simmons, O. D.; Sobsey, M.D.; Heaney, C.D.; Schaefer, F. W.; Francy, D.S.
2001-01-01
The protozoan parasite Cryptosporidium parvum is known to occur widely in both source and drinking water and has caused waterborne outbreaks of gastroenteritis. To improve monitoring, the U.S. Environmental Protection Agency developed method 1622 for isolation and detection of Cryptosporidium oocysts in water. Method 1622 is performance based and involves filtration, concentration, immunomagnetic separation, fluorescent-antibody staining and 4???,6-diamidino-2-phenylindole (DAPI) counterstaining, and microscopic evaluation. The capsule filter system currently recommended for method 1622 was compared to a hollow-fiber ultrafilter system for primary concentration of C. parvum oocysts in seeded reagent water and untreated surface waters. Samples were otherwise processed according to method 1622. Rates of C. parvum oocyst recovery from seeded 10-liter volumes of reagent water in precision and recovery experiments with filter pairs were 42% (standard deviation [SD], 24%) and 46% (SD, 18%) for hollow-fiber ultrafilters and capsule filters, respectively. Mean oocyst recovery rates in experiments testing both filters on seeded surface water samples were 42% (SD, 27%) and 15% (SD, 12%) for hollow-fiber ultrafilters and capsule filters, respectively. Although C. parvum oocysts were recovered from surface waters by using the approved filter of method 1622, the recovery rates were significantly lower and more variable than those from reagent grade water. In contrast, the disposable hollow-fiber ultrafilter system was compatible with subsequent method 1622 processing steps, and it recovered C. parvum oocysts from seeded surface waters with significantly greater efficiency and reliability than the filter suggested for use in the version of method 1622 tested.
NASA Technical Reports Server (NTRS)
Cooper, John B.; Wise, Kent L.; Jensen, Brian J.
1997-01-01
A modification to a commercial FT-Raman spectrometer is presented for the elimination of thermal backgrounds in FT-Raman spectra. The modification involves the use of a mechanical chopper to modulate the CW laser, remote collection of the signal via fiber optics, and connection of a dual-phase digital signal processor lock-in amplifier between the detector and the spectrometer's collection electronics to demodulate and filter the optical signals. The resulting modulated FT-Raman fiber-optic spectrometer is capable of completely eliminating thermal backgrounds at temperatures exceeding 370 C. In addition, the signal/noise of generated Raman spectra is greater than for spectra collected with the conventional FT-Raman under identical conditions and incident laser power. This is true for both room-temperature and hot samples. The method allows collection of data using preexisting spectrometer software. The total cost of the modification (excluding fiber optics) is approximately $3000 and requires less than 2 h to implement. This is the first report of Fr-Raman spectra collected at temperatures in excess of 300 C in the absence of thermal backgrounds.
Tunable self-seeded multi-wavelength Brillouin-erbium fiber laser based on few-mode fiber filter
NASA Astrophysics Data System (ADS)
Zou, Hui; Ma, Lei; Xiong, Hui; Zhang, Yun-shan; Liu, Chun-xiao
2017-11-01
A tunable self-seeded multi-wavelength Brillouin-erbium fiber laser (BEFL) is proposed and demonstrated based on a few-mode fiber filter (FMFF) with varying temperature. The FMFF configuration is a section of uncoated few-mode fiber (FMF) sandwiched between two up-tapers. As the temperature varies from 25 °C to 125 °C, the transmission spectrum of FMFF moves towards the longer wavelength. The self-excited Brillouin pump is internally achieved by cascaded stimulated Brillouin scattering (SBS) in the single mode fiber (SMF). Then employing the FMFF temperature variation characteristics in the ring cavity fiber laser, the multi-wavelength of the output laser can be tuned, and the tunable range is about 8.0 nm. The generation of up to 15 Brillouin Stokes wavelengths with 16 dB optical signal- to-noise ratio ( OSNR) is realized.
Baladi, Fadwa; Lee, Min Won; Burie, Jean-René; Bettiati, Mauro A; Boudrioua, Azzedine; Fischer, Alexis P A
2016-07-01
A highly detailed and extended map of low-frequency fluctuations is established for a high-power multi-mode 980 nm laser diode subject to filtered optical feedback from a fiber Bragg grating. The low-frequency fluctuations limits and substructures exhibit substantial differences with previous works.
2006-03-01
Filter to separate the Stokes and the residual pump light. This is shown in Figure 4 below. The Edge Filter was manufactured by Semrock and is a...Photonics. New York: John Wiley & Sons, 1991. 13. Semrock Image, “Transmission Spectra”. February 16, 2006 http://www.semrock.com/Catalog
Switchable multi-wavelength fiber laser based on modal interference
NASA Astrophysics Data System (ADS)
Ma, Lin; Jiang, Sun; Qi, Yan-Hui; Kang, Ze-Xin; Jian, Shui-Sheng
2015-08-01
A comb fiber filter based on modal interference is proposed and demonstrated in this paper. Here two cascaded up-tapers are used to excite the cladding mode, and a core-offset jointing point is used to act as an interference component. Experimental results show that this kind of structure possesses a comb filter property in a range of the C-band. The measured extinction ratio is better than 12 dB with an insertion loss of about 11 dB. A switchable multi-wavelength erbium-doped fiber laser based on this novel comb filter is demonstrated. By adjusting the polarization controller, the output laser can be switched among single-, dual-, and three-wavelengths with a side mode suppression ratio of better than 45 dB.
NASA Astrophysics Data System (ADS)
Biswas, Apratim
In the absence of atmosphere and hydrosphere, there are few collisions between dust particles in the lunar environment. Further, particles become charged in presence of cosmic rays and similarly charged particles repel each other. Hence particles retain sharp edges and often have high aspect ratios. When exposed to lunar dust, humans show symptoms similar to hay fever. Such particles are also damaging to equipment. Humans and robots, used in operations, can bring such dust particles inside the human habitat making them airborne. High efficiency particulate air (HEPA) filters provide an effective way to trap such particles. But due to environment conditions, polymer based filters are susceptible to mechanical erosion. The presence of high energy radiation, due to the absence of atmosphere and magnetic fields, is also damaging to polymers. Ceramic materials are resistant to abrasion and radiation and hence were chosen as the preferred class of materials for the filtration media. Among all the ceramics, TiO2 was selected for its photocatalytic activity which may play a key role in energy-efficient survival in space or lunar stations. Such fibers are multi-functional with the advantage of self-cleaning property in presence of radiation. However ceramic fibers, including TiO 2 fibers, have a significant disadvantage of their own. They are brittle and were considered too prone to failure to be successfully used as a filtration media when they reach nanometer dimensions. This dissertation describes the advances in fabrication and understanding of fundamentals in overcoming these challenges. In absence of crack initiation sites, amorphous ceramic fibers have near theoretical strength and strain to failure. Amorphous TiO2 -SiO2 fibermats, with lower flaw populations and exceptional surface quality, have been developed. They can be rolled to a radius of curvature of 3.4 mm -- exhibiting flexibility. The fibermats are also mechanically robust and can withstand the stress associated with general handling and fixture used for holding the filtration media. Electrospinning was selected as the fabrication method due to superior performance towards fiber diameter uniformity and the ability to decrease fiber diameters to the nm level. Filtration tests have been carried out on such fibermats concerning a number of key variables such as fiber diameter, particle size, pressure drop and more. Multifunctionality, as filter material and as photocatalyst, allows the filters to be regenerable. Furthermore, organic vapors (odors) and plant super hormones (ethylene gas) can be oxidized. This is key for a sustainable human base where food needs to be grown and the level of odors in habitat has to be minimized. Ceramic materials based on TiO2 and titania composites where selected. To enhance the catalytic properties doping with a pentavalent ion, viz. niobium, with varying concentrations was done. Materials were electrospun and characterized. An increase of niobium yields stabilization of the anatase phase at 600°C as evident from XRD patterns. Higher treatment temperatures allow a transformation to rutile. This is important since the semiconductor junction of anatase to rutile decreases electron-hole recombination rate, which enhances the photocatalytic activity. Furthermore, doping anatase with niobium increases the porosity and with it the catalytically active area. In fact the specific surface area of titania fibers increases by almost 6 times when doped with only 2.5 at% niobium. However, in this work reduced photocatalytic activity was observed. It is hypothesized that phase separation of the niobium rather than doping in a solid solution occurred which will change the properties of the semiconductor junction in an unfavorable way. The other possible explanation is the decrease in the anatase -- rutile semiconductor junction in niobium doped titania.
NASA Astrophysics Data System (ADS)
Wang, Qi; Song, Huaqing; Wang, Xingpeng; Wang, Dongdong; Li, Li
2018-03-01
In this paper, we demonstrated thermally tunable 1- μm single-frequency fiber lasers utilizing loop mirror filters (LMFs) with unpumped Yb-doped fibers. The frequency selection and tracking was achieved by combining a fiber Bragg grating (FBG) and a dynamic grating established inside the LMF. The central emission wavelength was at 1064.07 nm with a tuning range of 1.4 nm, and the measured emission linewidth was less than 10 kHz. We also systematically studied the wavelength-tracking thermal stability of the LMF with separate thermal treatment upon the FBG and LMF, respectively. Finally, we presented a selection criterion for the minimum unpumped doped fiber length inside the LMF with experimental verification.
NASA Astrophysics Data System (ADS)
Lee, Seihyoung; Lim, Kwon-Seob; Lee, Jong Jin; Kang, Hyun Seo
2009-10-01
The optical wavelength-division-multiplex filter for bidirectional optical subassembly (BOSA) is embedded to the fiber core, which results in simplicity of the BOSA module. The fiber cladding is 45-deg angle polished to receive a downstream signal. The core is etched by a femtosecond laser to have a normal core facet and to transmit an upstream signal. The downstream signal, which is core mode, is coupled to the cladding mode by the long-period fiber grating and then detected by a photodiode by means of the total internal reflection effect at the 45-deg angle polished cladding facet. The measured transmitted and received coupling efficiencies are 27.3 and 43.8%, respectively.
21 CFR 177.2260 - Filters, resin-bonded.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Filters, resin-bonded. 177.2260 Section 177.2260... Use § 177.2260 Filters, resin-bonded. Resin-bonded filters may be safely used in producing... filters are prepared from natural or synthetic fibers to which have been added substances required in...
Methods to assess carbonaceous aerosol sampling artifacts for IMPROVE and other long-term networks.
Watson, John G; Chow, Judith C; Chen, L W Antony; Frank, Neil H
2009-08-01
Volatile organic compounds (VOCs) and semi-volatile organic compounds (SVOCs) adsorb to quartz fiber filters during fine and coarse particulate matter (PM2.5 and PM10, respectively) sampling for thermal/optical carbon analysis that measures organic carbon (OC) and elemental carbon (EC). Particulate SVOCs can evaporate after collection, with a small portion adsorbed within the filter. Adsorbed organic gases are measured as particulate OC, so passive field blanks, backup filters, prefilter organic denuders, and regression methods have been applied to compensate for positive OC artifacts in several long-term chemical speciation networks. Average backup filter OC levels from the Interagency Monitoring of Protected Visual Environments (IMPROVE) network were approximately 19% higher than field blank values. This difference is within the standard deviation of the average and likely results from low SVOC concentrations in the rural to remote environments of most IMPROVE sites. Backup filters from an urban (Fort Meade, MD) site showed twice the OC levels of field blanks. Sectioning backup filters from top to bottom showed nonuniform OC densities within the filter, contrary to the assumption that VOCs and SVOCs on a backup filter equal those on the front filter. This nonuniformity may be partially explained by evaporation and readsorption of vapors in different parts of the front and backup quartz fiber filter owing to temperature, relative humidity, and ambient concentration changes throughout a 24-hr sample duration. OC-PM2.5 regression analysis and organic denuder approaches demonstrate negative sampling artifact from both Teflon membrane and quartz fiber filters.
Mukhopadhyay, N; Bose, P K
2009-10-01
Soot particulate emission reduction from diesel engine is one of the most emerging problems associated with the exhaust pollution. Diesel particulate filters (DPF) hold out the prospects of substantially reducing regulated particulate emissions but the question of the reliable regeneration of filters still remains a difficult hurdle to overcome. Many of the solutions proposed to date suffer from design complexity, cost, regeneration problem and energy demands. This study presents a computer aided theoretical analysis for controlling diesel soot particulate emission by cyclone separator--a non contact type particulate removal system considering outer vortex flow, inner vortex flow and packed ceramic fiber filter at the end of vortex finder tube. Cyclone separator with low initial cost, simple construction produces low back pressure and reasonably high collection efficiencies with reduced regeneration problems. Cyclone separator is modified by placing a continuous ceramic packed fiber filter placed at the end of the vortex finder tube. In this work, the grade efficiency model of diesel soot particulate emission is proposed considering outer vortex, inner vortex and the continuous ceramic packed fiber filter. Pressure drop model is also proposed considering the effect of the ceramic fiber filter. Proposed model gives reasonably good collection efficiency with permissible pressure drop limit of diesel engine operation. Theoretical approach is predicted for calculating the cut size diameter considering the effect of Cunningham molecular slip correction factor. The result shows good agreements with existing cyclone and DPF flow characteristics.
Temperature insensitive refractive index sensor based on concatenated long period fiber gratings
NASA Astrophysics Data System (ADS)
Tripathi, Saurabh M.; Bock, Wojtek J.; Mikulic, Predrag
2013-10-01
We propose and demonstrate a temperature immune biosensor based on two concatenated LPGs incorporating a suitable inter-grating-space (IGS). Compensating the thermal induced phase changes in the grating region by use of an appropriate length of the IGS the temperature insensitivity has been achieved. Using standard telecommunication grade single-mode fibers we show that a length ratio of ~8.2 is sufficient to realize the proposed temperature insensitivity. The resulting sensor shows a refractive index sensitivity of 423.28 nm/RIU displaying the capability of detecting an index variation of 2.36 × 10-6 RIU in the bio-samples. The sensor can also be applied as a temperature insensitive WMD channel isolation filter in the optical communication systems, removing the necessity of any external thermal insulation packaging.
Vision-based weld pool boundary extraction and width measurement during keyhole fiber laser welding
NASA Astrophysics Data System (ADS)
Luo, Masiyang; Shin, Yung C.
2015-01-01
In keyhole fiber laser welding processes, the weld pool behavior is essential to determining welding quality. To better observe and control the welding process, the accurate extraction of the weld pool boundary as well as the width is required. This work presents a weld pool edge detection technique based on an off axial green illumination laser and a coaxial image capturing system that consists of a CMOS camera and optic filters. According to the difference of image quality, a complete developed edge detection algorithm is proposed based on the local maximum gradient of greyness searching approach and linear interpolation. The extracted weld pool geometry and the width are validated by the actual welding width measurement and predictions by a numerical multi-phase model.
NASA Astrophysics Data System (ADS)
Zeng, Ziyi; Yang, Aiying; Guo, Peng; Feng, Lihui
2018-01-01
Time-domain CD equalization using finite impulse response (FIR) filter is now a common approach for coherent optical fiber communication systems. The complex weights of FIR taps are calculated from a truncated impulse response of the CD transfer function, and the modulus of the complex weights is constant. In our work, we take the limited bandwidth of a single channel signal into account and propose weighted FIRs to improve the performance of CD equalization. The key in weighted FIR filters is the selection and optimization of weighted functions. In order to present the performance of different types of weighted FIR filters, a square-root raised cosine FIR (SRRC-FIR) and a Gaussian FIR (GS-FIR) are investigated. The optimization of square-root raised cosine FIR and Gaussian FIR are made in term of the bit rate error (BER) of QPSK and 16QAM coherent detection signal. The results demonstrate that the optimized parameters of the weighted filters are independent of the modulation format, symbol rate and the length of transmission fiber. With the optimized weighted FIRs, the BER of CD equalization signal is decreased significantly. Although this paper has investigated two types of weighted FIR filters, i.e. SRRC-FIR filter and GS-FIR filter, the principle of weighted FIR can also be extended to other symmetric functions super Gaussian function, hyperbolic secant function and etc.
NASA Astrophysics Data System (ADS)
Nguyen, Linh V.; Warren-Smith, Stephen C.; Ebendorff-Heidepriem, Heike; Monro, Tanya M.
2016-04-01
We report a high temperature fiber sensor based on the multimode interference effect within a suspended core microstructured optical fiber (SCF). By splicing a short section of SCF with a lead-in single-mode fiber (SMF), the sensor head was formed. A complex interference pattern was obtained in the reflection spectrum as the result of the multiple excited modes in the SCF. The complexity of the interference indicates that there are more than two dominantly excited modes in the SCF, as resolved by Fast Fourier Transform (FFT) analysis of the interference. The proposed sensor was subjected to temperature variation from 20°C to 1100°C. The fringe of the filtered spectrum red-shifted linearly with respect to temperature varying between 20°C and 1100°C, with similar temperature sensitivity for increasing and decreasing temperature. Phase monitoring was used for an extended temperature experiment (80 hours) in which the sensor was subjected to several different temperature variation conditions namely (i) step-wise increase/decrease with 100°C steps between 20°C and 1100°C, (ii) dwelling overnight at 400°C, (iii) free fall from 1100°C to 132°C, and (iv) continuous increase of temperature from 132°C to 1100°C. Our approach serves as a simple and cost-effective alternative to the better-known high temperature fiber sensors such as the fiber Bragg grating (FBG) in sapphire fibers or regenerated FBG in photosensitive optical fibers.
Tunable fiber Bragg grating ring lasers using macro fiber composite actuators
NASA Astrophysics Data System (ADS)
Geddis, Demetris L.; Allison, Sidney G.; Shams, Qamar A.
2006-10-01
The research reported herein includes the fabrication of a tunable optical fiber Bragg grating (FBG) fiber ring laser (FRL)1 from commercially available components as a high-speed alternative tunable laser source for NASA Langley's optical frequency domain reflectometer (OFDR) interrogator, which reads low reflectivity FBG sensors. A Macro-Fiber Composite (MFC) actuator invented at NASA Langley Research Center (LaRC) was selected to tune the laser. MFC actuators use a piezoelectric sheet cut into uniaxially aligned rectangular piezo-fibers surrounded by a polymer matrix and incorporate interdigitated electrodes to deliver electric fields along the length of the piezo-fibers. This configuration enables MFC actuators to produce displacements larger than the original uncut piezoelectric sheet. The FBG filter was sandwiched between two MFC actuators, and when strained, produced approximately 3.62 nm of wavelength shift in the FRL when biasing the MFC actuators from -500 V to 2000 V. This tunability range is comparable to that of other tunable lasers and is adequate for interrogating FBG sensors using OFDR technology. Three different FRL configurations were studied. Configuration A examined the importance of erbium-doped fiber length and output coupling. Configuration B demonstrated the importance of the FBG filter. Configuration C added an output coupler to increase the output power and to isolate the filter. Only configuration C was tuned because it offered the best optical power output of the three configurations. Use of Plastic Optical Fiber (POF) FBG's holds promise for enhanced tunability in future research.
Tunable Fiber Bragg Grating Ring Lasers using Macro Fiber Composite Actuators
NASA Technical Reports Server (NTRS)
Geddis, Demetris L.; Allison, Sidney G.; Shams, Qamar A.
2006-01-01
The research reported herein includes the fabrication of a tunable optical fiber Bragg grating (FBG) fiber ring laser (FRL)1 from commercially available components as a high-speed alternative tunable laser source for NASA Langley s optical frequency domain reflectometer (OFDR) interrogator, which reads low reflectivity FBG sensors. A Macro-Fiber Composite (MFC) actuator invented at NASA Langley Research Center (LaRC) was selected to tune the laser. MFC actuators use a piezoelectric sheet cut into uniaxially aligned rectangular piezo-fibers surrounded by a polymer matrix and incorporate interdigitated electrodes to deliver electric fields along the length of the piezo-fibers. This configuration enables MFC actuators to produce displacements larger than the original uncut piezoelectric sheet. The FBG filter was sandwiched between two MFC actuators, and when strained, produced approximately 3.62 nm of wavelength shift in the FRL when biasing the MFC actuators from 500 V to 2000 V. This tunability range is comparable to that of other tunable lasers and is adequate for interrogating FBG sensors using OFDR technology. Three different FRL configurations were studied. Configuration A examined the importance of erbium-doped fiber length and output coupling. Configuration B demonstrated the importance of the FBG filter. Configuration C added an output coupler to increase the output power and to isolate the filter. Only configuration C was tuned because it offered the best optical power output of the three configurations. Use of Plastic Optical Fiber (POF) FBG s holds promise for enhanced tunability in future research.
Technical note: improved methodology for analyses of acid detergent fiber and acid detergent lignin.
Raffrenato, E; Van Amburgh, M E
2011-07-01
The objective of this study was to evaluate the methodology of the acid detergent lignin (ADL) assay in an effort to evaluate particle loss, improve repeatability, and decrease variation within and among samples. The original ADL method relied on asbestos as a filtering aid, but that was removed in 1989 with the mandate from the Environmental Protection Agency to eliminate asbestos in the environment. Furthermore, recent work on fiber methodology indicated that pore size in the Gooch sintered glass crucible (40-60 μm) was too large to trap all of the small particles associated with neutral detergent fiber (NDF) and acid detergent fiber (ADF). Thus, any loss of ADF could potentially result in a loss of ADL. Sixty forages including conventional and brown midrib corn silages, alfalfa silages and hays, mature grasses, early vegetative grasses, and 9 feces samples, were analyzed sequentially for ADF and ADL as outlined in the 1973 procedure of Van Soest except for the use of the asbestos fiber. A glass microfiber filter with a 1.5-μm pore size was chosen as a filtering aid because it met the criteria required by the assay: glass, heat resistant, acid resistant, chemically inert, and hydrophobic. To compare with the current ADF and ADL assays, the assays were conducted with either no filter or the glass filter inserted into crucibles, rinsed with acetone, and then according to the 1973 procedure of Van Soest. The samples analyzed covered a range from 18.11 to 55.79% ADF and from 0.96 to 9.94% ADL on a dry matter (DM) basis. With the use of the filter, the mean ADF values increased 4.2% and mean ADL values increased 18.9%. Overall, both ADF and ADL values were greater with the use of the glass microfiber filter than without, indicating that as the type of sample analyzed changed, use of the Gooch crucible without the filtering aid results in particle loss. The adoption of the use of a small pore size (1.5 μm) glass microfiber filter to improve filtration and recovery of ADF and ADL and to reduce variation in the ADL assay is recommended, especially when sintered glass bottom crucibles are used. These differences in recovery and repeatability have implications for other fiber and lignin methods, as well as for estimating the potential changes in digestibility of fibrous feeds and feed quality. Copyright © 2011 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Sohn, Kyung-Rak; Song, Jae-Won
2002-03-01
Using a side-polished single-mode fiber covered with a polished LiNbO 3 overlay and an intermediate coupling layer, tunable fiber-optic comb filters are demonstrated. The device behaviors based on the modal properties of the fiber and the planar LiNbO 3 waveguide are analyzed by two dimensional beam propagation methods (2-D BPM) and discussed the role of an intermediate coupling layer in terms of coupling efficiency. We also show that the thermo-optic effects of this layer can be utilized to tune the comb filter. When the polished x-cut LiNbO 3 with 200 μm thickness is used as a multimode overlay waveguide, the comb output spectra with free spectral range of 4 nm are measured in 1550 nm wavelength range. The tuning rate as a function of the refractive index of an intermediate coupling layer, Δλ/ Δnb, is about -0.129 nm/-0.001. The experimental results are in good agreement with the calculated results.
Travelers' Health: Water Disinfection for Travelers
... hand-pump or gravity-drip filters with various designs and types of filter media are commercially available ... salts, thus achieving desalination. One new portable filter design incorporates hollow fiber technology, which is a cluster ...
Method for Salmonella concentration from water at pH 3.5, using micro-fiber glass filters.
Block, J C; Rolland, D
1979-01-01
A method is described for the concentration of Salmonella from water. As is done with enterovirus, Salmonella bacteria were concentrated from water in two steps: by pH 3.5 adsorption on and pH 9.5 elution from 8-micron porosity micro-fiber glass filter tubes. This method worked in less than 30 min, and Salmonella typhimurium was inactivated only slightly in spite of rapid pH variations (pH 3.5 to 9.5). It was demonstrated that the retention by the filters stems from two phenomena: a low retention in the micro-fiber glass labyrinth for small filtered volumes, and a high retention by adsorption at pH 3.5 for any filtered volume (experiments done with 15- and 80-liter samples). Addition in tap water of trivalent ions like Al3+ did not increase Salmonella adsorption. In most of the trials, Salmonella recovery varied from 42 to 93%. Preliminary field investigations indicate that enterovirus and Salmonella may both be concentrated from the same water sample by this procedure. PMID:39501
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weaver, K.D.
The objective of this work was to develop optically transparent glass fiber reinforced poly(methyl methacrylate) composites by matching the refractive index of the glass fiber to that of the PMMA matrix. A pressure curing process [65[degrees]C under 6.9 MPa N[sub 2] for 18 hrs] is described for preparing composites 10 [times] 15 [times] 0.6 cm which typically contain [approximately]10 vol% of 13[mu]m diameter fiber and have 84% optical transmission (92% maximum for PMMA) at 600 nm and 25[degrees]C. Evidence is presented relating the interfacial bonding strength and the optical transmission of transparent, glass fiber (13 [mu]m) reinforced PMMA composites. Themore » temperature dependent (20-50[degrees]C) transmission of composites containing uncoated fiber and fiber coated with divinyltetramethyl disilazane or 3-(trimethoxysilyl)propyl methacrylate was found to decrease in the same order as the bond strength of the PMMA/fiber interface, namely, silane coated, disilazane coated, and uncoated fiber. By using annealed (1 1/3 hours/400[degrees]C) 13 [mu]m BK10 fiber, these pressure-cured composites function optically as ultra-violet Solid Matrix Christiansen Filters. The composite filters have an optical transmission of 51% at 51[degrees]C and 305 nm with a half-height bandwidth of only 28 nm, which is more wavelength selective than reported solid matrix Christiansen filters and typical band pass filters. While the density (1.18-1.19 g/ml at 23[degrees]C) and coefficient of thermal expansion (9.9[times]10[sup [minus]5] K[sup [minus]1]) show no change at these curing conditions, the minimum stress to craze (33 wt% toluene in isobutyl acetate) for pressure-cured [65[degrees]C/6.9 MPa N[sub 2]/18 hrs] PMMA was found to be improved.« less
Nanocellulose in spun continuous fibers: A review and future outlook
Craig Clemons
2016-01-01
Continuous fibers are commonly manufactured for a wide variety of uses such as filters, textiles, and composites. For example, most fibrous reinforcements (e.g., carbon fiber, glass fiber) for advanced composites are continuous fibers or yarns, fabrics, and preforms made from them. This allows broad flexibility in design and manufacturing approaches by controlling...
Carbon Fiber Risk Analysis. [conference
NASA Technical Reports Server (NTRS)
1979-01-01
The scope and status of the effort to assess the risks associated with the accidental release of carbon/graphite fibers from civil aircraft is presented. Vulnerability of electrical and electronic equipment to carbon fibers, dispersal of carbon fibers, effectiveness of filtering systems, impact of fiber induced failures, and risk methodology are among the topics covered.
NASA Astrophysics Data System (ADS)
Tian, Shili; Pan, Yuepeng; Wang, Jian; Wang, Yuesi
2016-11-01
Current science and policy requirements have focused attention on the need to expand and improve particulate matter (PM) sampling methods. To explore how sampling filter type affects artifacts in PM composition measurements, size-resolved particulate SO42-, NO3- and NH4+ (SNA) were measured on quartz fiber filters (QFF), glass fiber filters (GFF) and cellulose membranes (CM) concurrently in an urban area of Beijing on both clean and hazy days. The results showed that SNA concentrations in most of the size fractions exhibited the following patterns on different filters: CM > QFF > GFF for NH4+; GFF > QFF > CM for SO42-; and GFF > CM > QFF for NO3-. The different patterns in coarse particles were mainly affected by filter acidity, and that in fine particles were mainly affected by hygroscopicity of the filters (especially in size fraction of 0.65-2.1 μm). Filter acidity and hygroscopicity also shifted the peaks of the annual mean size distributions of SNA on QFF from 0.43-0.65 μm on clean days to 0.65-1.1 μm on hazy days. However, this size shift was not as distinct for samples measured with CM and GFF. In addition, relative humidity (RH) and pollution levels are important factors that can enhance particulate size mode shifts of SNA on clean and hazy days. Consequently, the annual mean size distributions of SNA had maxima at 0.65-1.1 μm for QFF samples and 0.43-0.65 μm for GFF and CM samples. Compared with NH4+ and SO42-, NO3- is more sensitive to RH and pollution levels, accordingly, the annual mean size distribution of NO3- exhibited peak at 0.65-1.1 μm for CM samples instead of 0.43-0.65 μm. These methodological uncertainties should be considered when quantifying the concentrations and size distributions of SNA under different RH and haze conditions.
NASA Astrophysics Data System (ADS)
Honda, Nazuki; Izumita, Hisashi; Nakamura, Minoru
2006-06-01
In the fiber-to-the-home era, thousands of optical fibers will have to be accommodated in the central offices of optical access networks. To reduce maintenance costs and improve the service reliability of optical fiber networks, the authors must develop an optical fiber line testing system with a function for in-service line monitoring that uses a test light with a wavelength different from the communication light wavelength. To monitor an in-service line in an optical network, the effective rejection ratio of the test light must be taken into account. This ratio depends on the spectrum of the test light from the optical time-domain reflectometer and the rejection band of the filter in front of the optical network unit. The dependence of the effective rejection ratio as a function of the sideband suppression ratio (SBSR) and of the ratio of the rejection band to the bandwidth of the sideband noise d/D is clarified. When d/D =0.1 and the target effective rejection ratio of the filter is -40 dB, the SBSR and the filter loss of the termination cable must be -70 and -43 dB, respectively, or the SBSR must be -80 dB. When d/D < 0.5 and the target effective rejection ratio of the filter is -40 dB, the SBSR is also required to be -80 dB. In-service line monitoring for a 10-Gb/s transmission using a 1650-nm test light with an SBSR of -80 dB is also demonstrated.
Fiber optical vibrometer based on a phononic crystal filter
NASA Astrophysics Data System (ADS)
Lin, Sijing; Chai, Quan; Zhang, Jianzhong
2012-02-01
We propose that phononic crystals could be used as a packaging method in a fiber optical vibrometer system to filter the vibration at unwanted frequency range. A simple FBG based vibrometer and a aluminum-silicone rubber based 1D phononic crystal with the designed phononic band gap are built up, and the corresponding experimental results are demonstrated to show the feasibility of our proposal. Our proposal also points out that optical fiber sensors could be an excellent candidate to research the inner acoustic response of more complex phononic crystals.
Efficient generation and characterization of spectrally factorable biphotons.
Chen, Changchen; Bo, Cao; Niu, Murphy Yuezhen; Xu, Feihu; Zhang, Zheshen; Shapiro, Jeffrey H; Wong, Franco N C
2017-04-03
Spectrally unentangled biphotons with high single-spatiotemporal-mode purity are highly desirable for many quantum information processing tasks. We generate biphotons with an inferred heralded-state spectral purity of 99%, the highest to date without any spectral filtering, by pulsed spontaneous parametric downconversion in a custom-fabricated periodically-poled KTiOPO4 crystal under extended Gaussian phase-matching conditions. To efficiently characterize the joint spectral intensity of the generated biphotons at high spectral resolution, we employ a commercially available dispersion compensation module (DCM) with a dispersion equivalent to 100 km of standard optical fiber and with an insertion loss of only 2.8 dB. Compared with the typical method of using two temperature-stabilized equal-length fibers that incurs an insertion loss of 20 dB per fiber, the DCM approach achieves high spectral resolution in a much shorter measurement time. Because the dispersion amount and center wavelengths of DCMs can be easily customized, spectral characterization in a wide range of quantum photonic applications should benefit significantly from this technique.
21 CFR 177.2260 - Filters, resin-bonded.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Filters, resin-bonded. 177.2260 Section 177.2260... Components of Articles Intended for Repeated Use § 177.2260 Filters, resin-bonded. Resin-bonded filters may... of this section. (a) Resin-bonded filters are prepared from natural or synthetic fibers to which have...
21 CFR 177.2260 - Filters, resin-bonded.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Filters, resin-bonded. 177.2260 Section 177.2260... Components of Articles Intended for Repeated Use § 177.2260 Filters, resin-bonded. Resin-bonded filters may... of this section. (a) Resin-bonded filters are prepared from natural or synthetic fibers to which have...
21 CFR 177.2260 - Filters, resin-bonded.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Filters, resin-bonded. 177.2260 Section 177.2260... Components of Articles Intended for Repeated Use § 177.2260 Filters, resin-bonded. Resin-bonded filters may... of this section. (a) Resin-bonded filters are prepared from natural or synthetic fibers to which have...
21 CFR 177.2260 - Filters, resin-bonded.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Filters, resin-bonded. 177.2260 Section 177.2260... Components of Articles Intended for Repeated Use § 177.2260 Filters, resin-bonded. Resin-bonded filters may... of this section. (a) Resin-bonded filters are prepared from natural or synthetic fibers to which have...
Design of a robust thin-film interference filter for erbium-doped fiber amplifier gain equalization
NASA Astrophysics Data System (ADS)
Verly, Pierre G.
2002-06-01
Gain-flattening filters (GFFs) are key wavelength division multiplexing components in fiber-optics telecommunications. Challenging issues in the design of thin-film GFFs were recently the subject of a contest organized at the 2001 Conference on Optical Interference Coatings. The interest and main difficulty of the proposed problem was to minimize the sensitivity of a GFF to simulated fabrication errors. A high-yield solution and its design philosophy are described. The approach used to control the filter robustness is explained and illustrated by numerical results.
Design of a robust thin-film interference filter for erbium-doped fiber amplifier gain equalization.
Verly, Pierre G
2002-06-01
Gain-flattening filters (GFFs) are key wavelength division multiplexing components in fiber-optics telecommunications. Challenging issues in the design of thin-film GFFs were recently the subject of a contest organized at the 2001 Conference on Optical Interference Coatings. The interest and main difficulty of the proposed problem was to minimize the sensitivity of a GFF to simulated fabrication errors. A high-yield solution and its design philosophy are described. The approach used to control the filter robustness is explained and illustrated by numerical results.
NASA Astrophysics Data System (ADS)
Qiu, Jianrong; Shen, Yi; Shangguan, Ziwei; Bao, Wen; Yang, Shanshan; Li, Peng; Ding, Zhihua
2018-04-01
Although methods have been proposed to maintain high transverse resolution over an increased depth range, it is not straightforward to scale down the bulk-optic solutions to minimized probes of optical coherence tomography (OCT). In this paper, we propose a high-efficient fiber-based filter in an all-fiber OCT probe to realize an extended depth of focus (DOF) while maintaining a high transverse resolution. Mode interference in the probe is exploited to modulate the complex field with controllable radial distribution. The principle of DOF extension by the fiber-based filter is theoretically analyzed. Numerical simulations are conducted to evaluate the performances of the designed probes. A DOF extension ratio of 2.6 over conventional Gaussian beam is obtainable in one proposed probe under a focused beam diameter of 4 . 6 μm. Coupling efficiencies of internal interfaces of the proposed probe are below -40 dB except the last probe-air interface, which can also be depressed to be -44 dB after minor modification in lengths for the filter. Length tolerance of the proposed probe is determined to be - 28 / + 20 μm, which is readily satisfied in fabrication. With the merits of extended-DOF, high-resolution, high-efficiency and easy-fabrication, the proposed probe is promising in endoscopic applications.
All-fiber tunable laser based on an acousto-optic tunable filter and a tapered fiber.
Huang, Ligang; Song, Xiaobo; Chang, Pengfa; Peng, Weihua; Zhang, Wending; Gao, Feng; Bo, Fang; Zhang, Guoquan; Xu, Jingjun
2016-04-04
An all-fiber tunable laser was fabricated based on an acousto-optic tunable filter and a tapered fiber. The structure was of a high signal-to-noise ratio, therefore, no extra gain flattening was needed in the laser. In the experiment, the wavelength of the laser could be tuned from 1532.1 nm to 1570.4 nm with a 3-dB bandwidth of about 0.2 nm. Given enough nonlinearity in the laser cavity, it could also generate a sliding-frequency pulse train. The laser gains advantages of fast tuning and agility in pulse generation, and its simple structure is low cost for practical applications.
Mode-routed fiber-optic add-drop filter
NASA Technical Reports Server (NTRS)
Moslehi, Behzad (Inventor); Black, Richard James (Inventor); Shaw, Herbert John (Inventor)
2000-01-01
New elements mode-converting two-mode grating and mode-filtering two-mode coupler are disclosed and used as elements in a system for communications, add-drop filtering, and strain sensing. Methods of fabrication for these new two-mode gratings and mode-filtering two-mode couplers are also disclosed.
NASA Astrophysics Data System (ADS)
Walbaum, T.; Fallnich, C.
2012-07-01
We present the tuning of multimode interference bandpass filters made of standard fibers by mechanical bending. Our setup allows continuous adjustment of the bending radius from infinity down to about 5 cm. The impact of bending on the transmission spectrum and on polarization is investigated experimentally, and a filter with a continuous tuning range of 13.6 nm and 86 % peak transmission was realized. By use of numerical simulations employing a semi-analytical mode expansion approach, we obtain quantitative understanding of the underlying physics. Further breakdown of the governing equations enables us to identify the fiber parameters that are relevant for the design of customized filters.
Energy Conservation in Optical Fibers With Distributed Brick-Walls Filters
NASA Astrophysics Data System (ADS)
Garcia, Javier; Ghozlan, Hassan; Kramer, Gerhard
2018-05-01
A band-pass filtering scheme is proposed to mitigate spectral broadening and channel coupling in the Nonlinear Schr\\"odinger (NLS) fiber optic channel. The scheme is modeled by modifying the NLS Equation to include an attenuation profile with multiple brick-wall filters centered at different frequencies. It is shown that this brick-walls profile conserves the total in-band energy of the launch signal. Furthermore, energy fluctuations between the filtered channels are characterized, and conditions on the channel spacings are derived that ensure energy conservation in each channel. The maximum spectral efficiency of such a system is derived, and a constructive rule for achieving it using Sidon sequences is provided.
Brightness enhancement limits in pulsed cladding-pumped fiber Raman amplifiers
NASA Astrophysics Data System (ADS)
Ji, Junhua; Codemard, Christophe A.; Nilsson, Johan
2010-02-01
We analyze theoretically limitations on brightness enhancement of a multimode pump beam into a diffraction-limited Stokes beam in efficient cladding-pumped fiber Raman amplifiers. Firstly, the power-scaling of the 1st Stokes (hence the brightness enhancement) is limited by the generation of the 2nd order Stokes. Thus using a spectral waveguide filter such as a W-type fiber core, it is possible to improve this limit to nearly five times that of a normal fiber without spectral filter. Secondly, we analyze limits set by glass damage, propagation loss, and pump-signal pulse walk-off in the multimode fiber. We show that a well-designed fiber with a propagation loss of 3.5 dB/km allows for a pump-to-signal brightness improvement of over 1000 times for pulses longer than 40 ns and up to 3500 times in the cw regime.
Wang, Pan; Zhao, Kangjun; Xiao, Xiaosheng; Yang, Changxi
2017-11-27
We report on the first demonstration of dual-wavelength square-wave pulses in a thulium-doped fiber laser. Under appropriate cavity parameters, dual-wavelength dissipative soliton resonances (DSRs) and domain wall solitons (DWSs) are successively obtained. Meanwhile, dark pulses generation is achieved at the dual-wavelength DWSs region due to the overlap of the two domain wall pulses. The fiber-based Lyot filter, conducted by inserting PMF between an in-line PBS and a PD-ISO, facilitates the generation of dual-wavelength operation. The polarization-resolved investigation suggests that the cross coupling between two orthogonal polarization components in the high nonlinear fiber plays an important role in the square-wave pulses formation. The investigation may be helpful for further understanding the square-wave pulse formation and has potential in application filed of multi-wavelength pulsed fiber lasers.
NASA Astrophysics Data System (ADS)
Wang, M.; Huang, Y. J.; Ruan, S. C.
2018-04-01
In this paper, we have demonstrated a theta cavity passively Q-switched dual-wavelength fiber laser based on a multimode interference filter and a semiconductor saturable absorber. Relying on the properties of the fiber theta cavity, the laser can operate unidirectionally without an optical isolator. A semiconductor saturable absorber played the role of passive Q-switch while a section of single-mode-multimode-single-mode fiber structure served as an multimode interference filter and was used for selecting the lasing wavelengths. By suitably manipulating the polarization controller, stable dual-wavelength Q-switched operation was obtained at ~1946.8 nm and ~1983.8 nm with maximum output power and minimum pulse duration of ~47 mW and ~762.5 ns, respectively. The pulse repetition rate can be tuned from ~20.2 kHz to ~79.7 kHz by increasing the pump power from ~2.12 W to ~5.4 W.
Digital signal processing techniques for coherent optical communication
NASA Astrophysics Data System (ADS)
Goldfarb, Gilad
Coherent detection with subsequent digital signal processing (DSP) is developed, analyzed theoretically and numerically and experimentally demonstrated in various fiber-optic transmission scenarios. The use of DSP in conjunction with coherent detection unleashes the benefits of coherent detection which rely on the preservaton of full information of the incoming field. These benefits include high receiver sensitivity, the ability to achieve high spectral-efficiency and the use of advanced modulation formats. With the immense advancements in DSP speeds, many of the problems hindering the use of coherent detection in optical transmission systems have been eliminated. Most notably, DSP alleviates the need for hardware phase-locking and polarization tracking, which can now be achieved in the digital domain. The complexity previously associated with coherent detection is hence significantly diminished and coherent detection is once gain considered a feasible detection alternative. In this thesis, several aspects of coherent detection (with or without subsequent DSP) are addressed. Coherent detection is presented as a means to extend the dispersion limit of a duobinary signal using an analog decision-directed phase-lock loop. Analytical bit-error ratio estimation for quadrature phase-shift keying signals is derived. To validate the promise for high spectral efficiency, the orthogonal-wavelength-division multiplexing scheme is suggested. In this scheme the WDM channels are spaced at the symbol rate, thus achieving the spectral efficiency limit. Theory, simulation and experimental results demonstrate the feasibility of this approach. Infinite impulse response filtering is shown to be an efficient alternative to finite impulse response filtering for chromatic dispersion compensation. Theory, design considerations, simulation and experimental results relating to this topic are presented. Interaction between fiber dispersion and nonlinearity remains the last major challenge deterministic effects pose for long-haul optical data transmission. Experimental results which demonstrate the possibility to digitally mitigate both dispersion and nonlinearity are presented. Impairment compensation is achieved using backward propagation by implementing the split-step method. Efficient realizations of the dispersion compensation operator used in this implementation are considered. Infinite-impulse response and wavelet-based filtering are both investigated as a means to reduce the required computational load associated with signal backward-propagation. Possible future research directions conclude this dissertation.
NASA Astrophysics Data System (ADS)
Zhang, Zhen; Li, Shuguang; Liu, Qiang; Zhang, Shuhuan; Wang, Yujun; Wu, Junjun
2018-02-01
A broad bandwidth and 600-μm length photonic crystal fiber polarization filter at the communication window of 1.55 μm is proposed. The physical parameters are analyzed by the finite element method. In the structure, the loss is 705.81 dB/cm for y-polarized mode and 24.06 dB/cm for x-polarized mode at the wavelength of 1.55 μm; the y-polarized mode will be filtered out because of this property. The bandwidth of an extinction ratio (ER) better than -20 dB is 65 nm when the filter length is 600 μm, and the ER is -41 dB at the communication wavelength of 1.55 μm. The filter structure is simple and easy to produce, and it can be used to produce a single-polarization filter.
Optical Sensing Device Containing Fiber Bragg Gratings
2000-08-01
Fabry - Perot (SFP) filter-based interrogation (Kersey et al. Opt. Lett.. 18, 1370-2. 1993), tunable acousto-optic filter inteiTOgation (Geiger et al...a tunable Fabry - Perot filter, and a tunable acousto-optical filter. Alternatively, scanning filter 28 can be omitted in device 10 of the present...invention when broadband light source 20 is a tunable broadband light source. More preferably, scanning filter 28 is a tunable Fabry - Perot filter
Joint Multi-Fiber NODDI Parameter Estimation and Tractography Using the Unscented Information Filter
Reddy, Chinthala P.; Rathi, Yogesh
2016-01-01
Tracing white matter fiber bundles is an integral part of analyzing brain connectivity. An accurate estimate of the underlying tissue parameters is also paramount in several neuroscience applications. In this work, we propose to use a joint fiber model estimation and tractography algorithm that uses the NODDI (neurite orientation dispersion diffusion imaging) model to estimate fiber orientation dispersion consistently and smoothly along the fiber tracts along with estimating the intracellular and extracellular volume fractions from the diffusion signal. While the NODDI model has been used in earlier works to estimate the microstructural parameters at each voxel independently, for the first time, we propose to integrate it into a tractography framework. We extend this framework to estimate the NODDI parameters for two crossing fibers, which is imperative to trace fiber bundles through crossings as well as to estimate the microstructural parameters for each fiber bundle separately. We propose to use the unscented information filter (UIF) to accurately estimate the model parameters and perform tractography. The proposed approach has significant computational performance improvements as well as numerical robustness over the unscented Kalman filter (UKF). Our method not only estimates the confidence in the estimated parameters via the covariance matrix, but also provides the Fisher-information matrix of the state variables (model parameters), which can be quite useful to measure model complexity. Results from in-vivo human brain data sets demonstrate the ability of our algorithm to trace through crossing fiber regions, while estimating orientation dispersion and other biophysical model parameters in a consistent manner along the tracts. PMID:27147956
Reddy, Chinthala P; Rathi, Yogesh
2016-01-01
Tracing white matter fiber bundles is an integral part of analyzing brain connectivity. An accurate estimate of the underlying tissue parameters is also paramount in several neuroscience applications. In this work, we propose to use a joint fiber model estimation and tractography algorithm that uses the NODDI (neurite orientation dispersion diffusion imaging) model to estimate fiber orientation dispersion consistently and smoothly along the fiber tracts along with estimating the intracellular and extracellular volume fractions from the diffusion signal. While the NODDI model has been used in earlier works to estimate the microstructural parameters at each voxel independently, for the first time, we propose to integrate it into a tractography framework. We extend this framework to estimate the NODDI parameters for two crossing fibers, which is imperative to trace fiber bundles through crossings as well as to estimate the microstructural parameters for each fiber bundle separately. We propose to use the unscented information filter (UIF) to accurately estimate the model parameters and perform tractography. The proposed approach has significant computational performance improvements as well as numerical robustness over the unscented Kalman filter (UKF). Our method not only estimates the confidence in the estimated parameters via the covariance matrix, but also provides the Fisher-information matrix of the state variables (model parameters), which can be quite useful to measure model complexity. Results from in-vivo human brain data sets demonstrate the ability of our algorithm to trace through crossing fiber regions, while estimating orientation dispersion and other biophysical model parameters in a consistent manner along the tracts.
Demodulation of a fiber Bragg grating strain sensor by a multiwavelength fiber laser
NASA Astrophysics Data System (ADS)
Cong, Shan; Sun, Yunxu; Zhao, Yuxi; Pan, Lifeng
2012-04-01
A fiber Bragg grating (FBG) sensors system utilizing a multi-wavelength erbium-doped fiber lasers (EDFL) with frequency shifter is proposed. The system is one fiber laser cavity with two FBG sensors as its filters. One is for strain sensing, and the other one is for temperature compensation. A frequency shifter is used to suppress the mode competition to lase two wavelengths that correspond with FBGs. The wavelength shift of the EDFL represents the sensing quantity, which is demodulated by Fiber Fabry-Perot (FFP) filter. The sensor's response to strain is measured by experiment. Because of exploiting the dual-wavelength fiber laser with a frequency shifter forming the feedback as the light source, many advantages of this system are achieved, especially high signal-to-noise ratio, high detected power, and low power consuming comparing with conventional FBG sensor system utilizing broadband light as the light source. What's more, this structure is also easy to combine with FBG array.
NASA Astrophysics Data System (ADS)
Manzo, Gabriel
Coalescing filters are used to remove small liquid droplets from air streams. They have numerous industrial applications including dehumidification, cabin air filtration, compressed air filtration, metal working, CCV, and agriculture. In compressed air systems, oils used for lubrication of compressor parts can aerosolize into the main air stream causing potential contamination concerns for downstream applications. In many systems, humid air can present problems to sensitive equipment and sensors. As the humid air cools, small water drops condense and can disrupt components that need to be kept dry. Fibrous nonwoven filter media are commonly used to coalesce small drops into larger drops for easier removal. The coalescing performance of a medium is dependent upon several parameters including permeability, porosity, and wettability. In many coalescing filters, glass fibers are used. In this work, the properties of steel fiber media are measured to see how these properties compare to glass fiber media. Steel fiber media has different permeability, porosity and wettability to oil and water than fiber glass media. These differences can impact coalescence performance. The impact of these differences in properties on coalescence filtration performance was evaluated in a coalescence test apparatus. The overall coalescence performance of the steel and glass nonwoven fiber media are compared using a filtration efficiency and filtration index. In many cases, the stainless steel media performed comparably to fiber glass media with efficiencies near 90%. Since stainless steel media had lower pressure drops than fiber glass media, its filtration index values were significantly higher. Broader impact of this work is the use of stainless steel fiber media as an alternative to fiber glass media in applications where aerosol filtration is needed to protect the environment or sensitive equipment and sensors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kertzscher, G; Beddar, S
Purpose: To study the promising potential of inorganic scintillator detectors (ISDs) and investigate various unwanted luminescence properties which may compromise their accuracy. Methods: The ISDs were comprised of a ruby crystal coupled to a polymethyl methacrylate (PMMA) fiber-optic cable and a charged coupled device camera. A new type of ISD was manufactured and included a long-pass filter that was sandwiched between the crystal and the fiber-optic cable. The purpose of the filter was to suppress the Cerenkov and fluorescence background light induced in the PMMA (the stem signal) from striking the ruby crystal, generating unwanted ruby excitation. A variety ofmore » experiments were performed to characterize the ruby based ISDs. The relative contribution of the induced ruby signal and the stem signal were quantified while exposing the detector and a bare fiber-optic cable to a high dose rate (HDR) brachytherapy (BT) source, respectively. The unwanted ruby excitation was quantified while irradiating the fiber-optic cable with the detector volume shielded. Other experiments addressed time-dependent luminescence properties and a comparison to other commonly used organic scintillator detectors (BCF-12, BCF-60). Results: When the BT source dwelled 0.5 cm away from the fiber-optic cable, the unwanted ruby excitation amounted to >5% of the total signal if the source-distance from the scintillator was >7 cm. However, the unwanted excitation was suppressed to <1% if the ISD incorporated an optic filter. The stem signal was suppressed with a 20 nm band-pass filter and was <3% as long as the source-distance was <7 cm. The ruby based ISDs generated signal up to 20(40) times that of BCF-12(BCF-60). Conclusion: The study presents solutions to unwanted luminescence properties of ruby based ISDs for HDR BT. An optic filter should be sandwiched between the scintillator volume and the fiber-optic cable to prevent the stem signal to excite the ruby crystal.« less
Ruby-based inorganic scintillation detectors for 192Ir brachytherapy
NASA Astrophysics Data System (ADS)
Kertzscher, Gustavo; Beddar, Sam
2016-11-01
We tested the potential of ruby inorganic scintillation detectors (ISDs) for use in brachytherapy and investigated various unwanted luminescence properties that may compromise their accuracy. The ISDs were composed of a ruby crystal coupled to a poly(methyl methacrylate) fiber-optic cable and a charge-coupled device camera. The ISD also included a long-pass filter that was sandwiched between the ruby crystal and the fiber-optic cable. The long-pass filter prevented the Cerenkov and fluorescence background light (stem signal) induced in the fiber-optic cable from striking the ruby crystal, which generates unwanted photoluminescence rather than the desired radioluminescence. The relative contributions of the radioluminescence signal and the stem signal were quantified by exposing the ruby detectors to a high-dose-rate brachytherapy source. The photoluminescence signal was quantified by irradiating the fiber-optic cable with the detector volume shielded. Other experiments addressed time-dependent luminescence properties and compared the ISDs to commonly used organic scintillator detectors (BCF-12, BCF-60). When the brachytherapy source dwelled 0.5 cm away from the fiber-optic cable, the unwanted photoluminescence was reduced from >5% to <1% of the total signal as long as the ISD incorporated the long-pass filter. The stem signal was suppressed with a band-pass filter and was <3% as long as the source distance from the scintillator was <7 cm. Some ruby crystals exhibited time-dependent luminescence properties that altered the ruby signal by >5% within 10 s from the onset of irradiation and after the source had retracted. The ruby-based ISDs generated signals of up to 20 times that of BCF-12-based detectors. The study presents solutions to unwanted luminescence properties of ruby-based ISDs for high-dose-rate brachytherapy. An optic filter should be sandwiched between the ruby crystal and the fiber-optic cable to suppress the photoluminescence. Furthermore, we recommend avoiding ruby crystals that exhibit significant time-dependent luminescence.
Ruby-based inorganic scintillation detectors for 192Ir brachytherapy
Kertzscher, Gustavo; Beddar, Sam
2016-01-01
We tested the potential of ruby inorganic scintillation detectors (ISDs) for use in brachytherapy and investigated various unwanted luminescence properties that may compromise their accuracy. The ISDs were composed of a ruby crystal coupled to a poly(methyl methacrylate) fiber-optic cable and a charge-coupled device camera. The ISD also included a long-pass filter that was sandwiched between the ruby crystal and the fiber-optic cable. The long-pass filter prevented the Cerenkov and fluorescence background light (stem signal) induced in the fiber-optic cable from striking the ruby crystal, which generates unwanted photoluminescence rather than the desired radioluminescence. The relative contributions of the radioluminescence signal and the stem signal were quantified by exposing the ruby detectors to a high-dose-rate brachytherapy source. The photoluminescence signal was quantified by irradiating the fiber-optic cable with the detector volume shielded. Other experiments addressed time-dependent luminescence properties and compared the ISDs to commonly used organic scintillator detectors (BCF-12, BCF-60). When the brachytherapy source dwelled 0.5 cm away from the fiber-optic cable, the unwanted photoluminescence was reduced from > 5% to < 1% of the total signal as long as the ISD incorporated the long-pass filter. The stem signal was suppressed with a band-pass filter and was < 3% as long as the source distance from the scintillator was < 7 cm. Some ruby crystals exhibited time-dependent luminescence properties that altered the ruby signal by > 5% within 10 s from the onset of irradiation and after the source had retracted. The ruby-based ISDs generated signals of up to 20 times that of BCF-12-based detectors. The study presents solutions to unwanted luminescence properties of ruby-based ISDs for high-dose-rate brachytherapy. An optic filter should be sandwiched between the ruby crystal and the fiber-optic cable to suppress the photoluminescence. Furthermore, we recommend avoiding ruby crystals that exhibit significant time-dependent luminescence. PMID:27740947
Ruby-based inorganic scintillation detectors for 192Ir brachytherapy.
Kertzscher, Gustavo; Beddar, Sam
2016-11-07
We tested the potential of ruby inorganic scintillation detectors (ISDs) for use in brachytherapy and investigated various unwanted luminescence properties that may compromise their accuracy. The ISDs were composed of a ruby crystal coupled to a poly(methyl methacrylate) fiber-optic cable and a charge-coupled device camera. The ISD also included a long-pass filter that was sandwiched between the ruby crystal and the fiber-optic cable. The long-pass filter prevented the Cerenkov and fluorescence background light (stem signal) induced in the fiber-optic cable from striking the ruby crystal, which generates unwanted photoluminescence rather than the desired radioluminescence. The relative contributions of the radioluminescence signal and the stem signal were quantified by exposing the ruby detectors to a high-dose-rate brachytherapy source. The photoluminescence signal was quantified by irradiating the fiber-optic cable with the detector volume shielded. Other experiments addressed time-dependent luminescence properties and compared the ISDs to commonly used organic scintillator detectors (BCF-12, BCF-60). When the brachytherapy source dwelled 0.5 cm away from the fiber-optic cable, the unwanted photoluminescence was reduced from >5% to <1% of the total signal as long as the ISD incorporated the long-pass filter. The stem signal was suppressed with a band-pass filter and was <3% as long as the source distance from the scintillator was <7 cm. Some ruby crystals exhibited time-dependent luminescence properties that altered the ruby signal by >5% within 10 s from the onset of irradiation and after the source had retracted. The ruby-based ISDs generated signals of up to 20 times that of BCF-12-based detectors. The study presents solutions to unwanted luminescence properties of ruby-based ISDs for high-dose-rate brachytherapy. An optic filter should be sandwiched between the ruby crystal and the fiber-optic cable to suppress the photoluminescence. Furthermore, we recommend avoiding ruby crystals that exhibit significant time-dependent luminescence.
CTEPP STANDARD OPERATING PROCEDURE FOR PRE-CLEANING FILTERS AND XAD-2 (SOP-5.10)
This SOP summarizes the method for pre-cleaning XAD-2 resin and quartz fiber filters. The procedure provides a cleaning method to help reduce potential background contamination in the resin and filters.
NASA Astrophysics Data System (ADS)
Yan, Bei; Wang, Anran; Liu, Exian; Tan, Wei; Xie, Jianlan; Ge, Rui; Liu, Jianjun
2018-04-01
A novel polarization filter based on a sunflower-type photonic quasi-crystal fiber (PQF) is proposed in this paper. We also discuss different methods to tune the filter wavelength. The proposed filter can efficiently produce polarized light with visible wavelengths by using the resonance between the second-order surface plasmon polariton mode and the core mode of the PQF. The filtered wavelength can be tuned between 0.55 µm and 0.68 µm by adjusting the thickness of the gold film. When the thickness of the gold film is 25.3 nm, the resonance loss in the y-polarized direction reaches 11707 dB m‑1 for a wavelength of 0.6326 µm, and the full width at half maximum is only 5 nm. Due to the flexible design and absence of both polarization coupling and polarization dispersion, this polarization filter can be used in devices that require narrow-band filtering.
Wang, Zhen; Yuan, Xinxin; Cong, Shan; Chen, Zhigang; Li, Qingwen; Geng, Fengxia; Zhao, Zhigang
2018-05-02
Air pollution is one of the most serious issues affecting the world today. Instead of expensive and energy-intensive air filtering devices, a fiber-based transparent air filter coated on a window screen is seen as one of the state-of-the-art filtration technologies to combat the seriously growing problem, delivering the advantages of simplicity, convenience, and high filtering efficiency. However, such a window screen is currently limited to particulate matter (PM) filtration and ineffective with other air pollutants. Here, we report the use of a newfangled type of color-changing fibers, porous Prussian blue analogues (CuHCF)/polymer composite microfibers, for transparent window screens toward air pollutant filtration. To increase pollution filtration, pores and dimples are purposely introduced to the fibers using binary solvent systems through a nonsolvent-induced phase separation mechanism. Such composite microfibers overcome some of the limitations of those previously used fibers and could simultaneously capture PM 2.5 , PM 10 , and NH 3 with high efficiency. More interestingly, a distinct color change is observed upon exposure to air pollutants in such window screens, which provides multifunctional capability of simultaneous pollutant capture and naked eye screening of the pollutant amount. Specifically, in the case of long-term exposure to low-concentration NH 3 , the symbol displayed in such window screens changes from yellow color to brown and the coloration rate is directly controlled by the NH 3 concentration, which may serve as a careful reminder for those people who are repeatedly exposed to low-concentration ammonia gas (referred to as chronic poisoning). In contrast, after short-term exposure to a high concentration of ammonia gas, the yellow symbol immediately becomes blackened, which provides timely information about the risk of acute ammonia poisoning or even ammonia explosion. Further spectroscopic results show that the chromatic behaviors in response to different concentrations of NH 3 are fundamentally different, which is related to the different locations of ammonia in the lattice of CuHCF, either in its interstitial sites or at the Fe(CN) 6 vacancy sites, largely distinguished by the absence or presence of atmospheric moisture.
Analysis of self-homodyne detection for 6-mode fiber with low-modal crosstalk
NASA Astrophysics Data System (ADS)
Guo, Meng; Hu, Guijun
2017-12-01
In this paper, we present an appropriate analysis on self-homodyne coherent system with 56 × 5 × 3 Gb / s WDM-PDM-MDM quadrature phase-shift keying (QPSK) signals using 6-mode weakly coupled few mode fiber. The mode division technology can effectively improve the spectral efficiency (SE) of self-homodyne detection. Of all the LP modes, LP01 mode is used to transmit the pilot tone (PT), while the others for signal channels. The influence of inter-mode crosstalk is analyzed. The proposed frequency domain MMA shows a better BER performance for intra-mode crosstalk elimination. The path-length misalignment's influence caused by mode differential group delay (MDGD) is also investigated. The system tolerance for different laser's line-width is compared as well as the influence of PT filter's bandwidth.
NASA Astrophysics Data System (ADS)
Tian, Jiajun; Jiao, Yuzhu; Ji, Shaobo; Dong, Xiaolong; Yao, Yong
2018-04-01
We propose and demonstrate a fiber sensor for simultaneous temperature and strain measurements. The proposed sensor is implemented by a cascaded-cavity Fabry-Perot (FP) fiber interferometer. The two cascaded FP cavities comprise a micro-air-cavity in a hollow-core tube fiber and a micro-silica-cavity in a standard single-mode fiber. To separate the interference spectrum of each FP cavity, the total spectrum is filtered in the frequency domain through band-pass filters, whose central frequencies were predesigned based on the relationship between the spatial frequency and free spectral range of each FP cavity. The different cross-sectional areas and thermal-optic coefficients of the two FP cavities confer different sensitivities to temperature and strain. Both parameters were measured simultaneously by tracking the wavelength shifts in the filtered interference spectra of the FP cavities. Moreover, the temperature-strain cross-sensitivity was compensated by solving a sensitivity-coefficient matrix equation for the two cavities, using the calibrated temperatures and strains. Other advantages of the proposed sensor are simple fabrication and an all-fiber structure. Owing to these properties, the proposed sensor is potentially applicable to real sensing applications.
NASA Astrophysics Data System (ADS)
Valle-Atilano, F. J.; Estudillo-Ayala, J. M.; Filoteo-Razo, J. D.; Hernández-García, J. C.; Jáuregui-Vázquez, D.; Sierra-Hernández, J. M.; Rojas-Laguna, R.; Mata-Chavez, R. I.; Samano-Aguilar, L. F.
2016-09-01
In this work, we study the changes of polarization at different wavelengths in a supercontinuum source generated through a microchip laser in the IR spectrum. We use a microchip laser pulsed as pumped source, 1064 nm of wavelength, and a photonic crystal fiber by generated a supercontinuum spectrum. We twist the fiber to the purpose to induce birefringence and study the changes of the state of polarization, and through bandpass filters we observe a single wavelength of the broad spectrum obtained. Besides, ellipticity study for different filters and its relation with the supercontinuum results is discussed.
NASA Technical Reports Server (NTRS)
Kiin, K.; Fujimura, M.; Hashimoto, Y.
1981-01-01
Methods for the fractional collection of trace amounts of atmospheric ammonia gas and ammonium particles on a two staged glass fiber filter are summarized. A standard glass fiber filter washed with distilled water and dried at 120 to 130 C was used. A second filter was impregnated with a mixture of 3% boric acid and 25% glycerin solution. The blank of glass fiber filters impregnated with a mixture of the above solution was very low for ammonia, i.e. 0.06 micrograms in a filter of 47 mm in diameter. The mean concentrations of ammonia and ammonium in air at Kawasaki, a polluted area, were 7.6 and 2.3 micrograms cu m, and those at Sanriku, an unpolluted area 0.9 and 0.2 micrograms cu m, respectively. Ratios of concentration levels of ammonium to total ammonia in the atmosphere were 0.3 and 0.2 for the polluted and unpolluted areas, respectively. Ammonium salts in air at both areas were not correlated with relative humidity. Variations in time of ammonia concentrations and sources in surrounding areas are also considered.
A high-temperature fiber sensor using a low cost interrogation scheme.
Barrera, David; Sales, Salvador
2013-09-04
Regenerated Fibre Bragg Gratings have the potential for high-temperature monitoring. In this paper, the inscription of Fibre Bragg Gratings (FBGs) and the later regeneration process to obtain Regenerated Fiber Bragg Gratings (RFBGs) in high-birefringence optical fiber is reported. The obtained RFBGs show two Bragg resonances corresponding to the slow and fast axis that are characterized in temperature terms. As the temperature increases the separation between the two Bragg resonances is reduced, which can be used for low cost interrogation. The proposed interrogation setup is based in the use of optical filters in order to convert the wavelength shift of each of the Bragg resonances into optical power changes. The design of the optical filters is also studied in this article. In first place, the ideal filter is calculated using a recursive method and defining the boundary conditions. This ideal filter linearizes the output of the interrogation setup but is limited by the large wavelength shift of the RFBG with temperature and the maximum attenuation. The response of modal interferometers as optical filters is also analyzed. They can be easily tuned shifting the optical spectrum. The output of the proposed interrogation scheme is simulated in these conditions improving the sensitivity.
A High-Temperature Fiber Sensor Using a Low Cost Interrogation Scheme
Barrera, David; Sales, Salvador
2013-01-01
Regenerated Fibre Bragg Gratings have the potential for high-temperature monitoring. In this paper, the inscription of Fibre Bragg Gratings (FBGs) and the later regeneration process to obtain Regenerated Fiber Bragg Gratings (RFBGs) in high-birefringence optical fiber is reported. The obtained RFBGs show two Bragg resonances corresponding to the slow and fast axis that are characterized in temperature terms. As the temperature increases the separation between the two Bragg resonances is reduced, which can be used for low cost interrogation. The proposed interrogation setup is based in the use of optical filters in order to convert the wavelength shift of each of the Bragg resonances into optical power changes. The design of the optical filters is also studied in this article. In first place, the ideal filter is calculated using a recursive method and defining the boundary conditions. This ideal filter linearizes the output of the interrogation setup but is limited by the large wavelength shift of the RFBG with temperature and the maximum attenuation. The response of modal interferometers as optical filters is also analyzed. They can be easily tuned shifting the optical spectrum. The output of the proposed interrogation scheme is simulated in these conditions improving the sensitivity. PMID:24008282
Tunable compensation of GVD-induced FM-AM conversion in the front end of high-power lasers.
Li, Rao; Fan, Wei; Jiang, Youen; Qiao, Zhi; Zhang, Peng; Lin, Zunqi
2017-02-01
Group velocity dispersion (GVD) is one of the main factors leading to frequency modulation (FM) to amplitude modulation (AM) conversion in the front end of high-power lasers. In order to compensate the FM-AM modulation, the influence of GVD, which is mainly induced by the phase filter effect, is theoretically investigated. Based on the theoretical analysis, a high-precision, high-stability, tunable GVD compensatory using gratings is designed and experimentally demonstrated. The results indicate that the compensator can be implemented in high-power laser facilities to compensate the GVD of fiber with a length between 200-500 m when the bandwidth of a phase-modulated laser is 0.34 nm or 0.58 nm and the central wavelength is in the range of 1052.3217-1053.6008 nm. Due to the linear relationship between the dispersion and the spacing distance of the gratings, the compensator can easily achieve closed-loop feedback controlling. The proposed GVD compensator promises significant applications in large laser facilities, especially in the future polarizing fiber front end of high-power lasers.
Thermal tuning On narrow linewidth fiber laser
NASA Astrophysics Data System (ADS)
Han, Peiqi; Liu, Tianshan; Gao, Xincun; Ren, Shiwei
2010-10-01
At present, people have been dedicated to high-speed and large-capacity optical fiber communication system. Studies have been shown that optical wavelength division multiplexing (WDM) technology is an effective means of communication to increase the channel capacity. Tunable lasers have very important applications in high-speed, largecapacity optical communications, and distributed sensing, it can provide narrow linewidth and tunable laser for highspeed optical communication. As the erbium-doped fiber amplifier has a large gain bandwidth, the erbium-doped fiber laser can be achieved lasing wavelength tunable by adding a tunable filter components, so tunable filter device is the key components in tunable fiber laser.At present, fiber laser wavelength is tuned by PZT, if thermal wavelength tuning is combined with PZT, a broader range of wavelength tuning is appearance . Erbium-doped fiber laser is used in the experiments,the main research is the physical characteristics of fiber grating temperature-dependent relationship and the fiber grating laser wavelength effects. It is found that the fiber laser wavelength changes continuously with temperature, tracking several temperature points observed the self-heterodyne spectrum and found that the changes in spectra of the 3dB bandwidth of less than 1kHz, and therefore the fiber laser with election-mode fiber Bragg grating shows excellent spectral properties and wavelength stability.
Fabrication and characterization of polycaprolactone-graphene powder electrospun nanofibers
NASA Astrophysics Data System (ADS)
Ginestra, Paola; Ghazinejad, Maziar; Madou, Marc; Ceretti, Elisabetta
2016-09-01
Porous fibrous membranes having multiple scales geometries and tailored properties have become attractive microfabrication materials in recent years. Due to the feasibility of incorporating graphene in electrospun nanofibres and the growing interest on these nanomaterials, the present paper focuses on the electrospinning of Poly (ɛ-Caprolactone) (PCL) solutions in the presence of different amounts of Graphene platelets. Electrospinning is a process whereby ultrafine fibers are formed in a high-voltage electrostatic field. The morphological appearance, fiber diameter, and structure of PCL nanofibers produced by the electrospinning process were studied in the presence of different concentration of graphene. Moreover, the effect of a successful incorporation of graphene nanosheets into PCL polymer nanofibers was analyzed. Scanning electron microscope micrographs of the electrospun fibers showed that the average fiber diameter increases in the presence of graphene. Furthermore, the intrinsic properties developed due to the interactions of graphene and PCL improved the mechanical properties of the nanofibers. The results reveal the effect of various graphene concentrations on PCL and the strong interfacial interactions between the graphene platelets phase and the polymer matrix. The functional complexity of the electrospun fibers provides significant advantages over other techniques and shows the promise of these fibers for many applications including air/water filters, sensors, organic solar cells, smart textiles, biocompatible scaffolds for tissue engineering and load-bearing applications. Optimizing deposition efficiency, however, is a necessary milestone for the widespread use of this technique.
Removing Pathogens Using Nano-Ceramic-Fiber Filters
NASA Technical Reports Server (NTRS)
Tepper, Frederick; Kaledin, Leonid
2005-01-01
A nano-aluminum-oxide fiber of only 2 nanometers in diameter was used to develop a ceramic-fiber filter. The fibers are electropositive and, when formulated into a filter material (NanoCeram(TradeMark)), would attract electro-negative particles such as bacteria and viruses. The ability to detect and then remove viruses as well as bacteria is of concern in space cabins since they may be carried onboard by space crews. Moreover, an improved filter was desired that would polish the effluent from condensed moisture and wastewater, producing potable drinking water. A laboratory- size filter was developed that was capable of removing greater than 99.9999 percent of bacteria and virus. Such a removal was achieved at flow rates hundreds of times greater than those through ultraporous membranes that remove particles by sieving. Because the pore size of the new filter was rather large as compared to ultraporous membranes, it was found to be more resistant to clogging. Additionally, a full-size cartridge is being developed that is capable of serving a full space crew. During this ongoing effort, research demonstrated that the filter media was a very efficient adsorbent for DNA (deoxyribonucleic acid), RNA (ribonucleic acid), and endotoxins. Since the adsorption is based on the charge of the macromolecules, there is also a potential for separating proteins and other particulates on the basis of their charge differences. The separation of specific proteins is a major new thrust of biotechnology. The principal application of NanoCeram filters is based on their ability to remove viruses from water. The removal of more than 99.9999 percent of viruses was achieved by a NanoCeram polishing filter added to the effluent of an existing filtration device. NanoCeram is commercially available in laboratory-size filter discs and in the form of a syringe filter. The unique characteristic of the filter can be demonstrated by its ability to remove particulate dyes such as Metanyl yellow. Its particle size is only 2 nanometers, about the size of a DNA molecule, yet the NanoCeram syringe filter is capable of retaining the dyes as the fluid is passed through the syringe, without much back-pressure. Endotoxins, which are contaminants that are part of the residue of destroyed bacteria, can cause toxic shock and are therefore of major concern in pharmaceutical products. The NanoCeram syringe filter is capable of removing greater than 99.96 percent of the endotoxins.
Kerkhoff, M.J.; Lee, T.M.; Allen, E.R.; Lundgren, D.A.; Winefordner, J.D.
1985-01-01
A high-volume sampler fitted with a glass-fiber filter and backed by polyurethane foam (PUF) was employed to collect airborne particulate and gas-phase polycylic aromatic hydrocarbons (PAHs) in ambient air. Samples were collected from four sources representing a range of environmental conditions: gasoline engine exhaust, diesel engine exhaust, air near a heavily traveled interstate site, and air from a moderately polluted urban site. Spectral fingerprints of the unseparated particulate and gas-phase samples were obtained by constant energy synchronous luminescence spectroscopy (CESLS). Five major PAHs in the gas-phase extracts were characterized and estimated. The compatibility of a high-volume sampling method using polyurethane foam coupled with CESLS detection is explored for use as a screening technique for PAHs in ambient air. ?? 1985 American Chemical Society.
The mechanisms of filter feeding on oil droplets: Theoretical considerations.
Mehrabian, Sasan; Letendre, Francis; Cameron, Christopher B
2018-04-01
Filter feeding animals capture food particles and oil droplets from the fluid environment using cilia or appendages composed of arrays of fibers. Here we review the theoretical models that have provided a foundation for observations on the efficiency of particle capture. We then provide the mathematical theoretical framework to characterize the efficient filtration of oil droplets. In the aquatic and marine environments oil droplets are released from the decay of organisms or as hydrocarbons. Droplet size and flow velocity, oil-to-water viscosity ratio, oil-water interfacial tension, oil and water density difference, and the surface wettability, or surface texture, of the filter fiber are the key parameters for oil droplet capture. Following capture, capillary force maintains the droplet at its location due to the oil-water interfacial tension. If the oil-coated fiber is subject to any external force such as viscous or gravitational forces, it may deform and separate from the fiber and re-enter the fluid stream. We show oil droplet capture in Daphnia and the barnacle Balanus glandula, and outline some of the ecological unknowns regarding oil capture in the oceans. Awareness of these mechanisms and their interrelationships will provide a foundation for investigations into the efficiency of various modes of filter feeding on oil droplets. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
He, Wei; Zhu, Lianqing; Dong, Mingli; Lou, Xiaoping; Luo, Fei
2018-04-01
This paper proposes and tests a ring cavity-based, erbium-doped fiber laser that incorporates a Mach-Zehnder interferometer and tunable filter. A four-m-long erbium-doped fiber was selected as the gain medium. The all-fiber Mach-Zehnder interferometer was composed of two 2 × 2 optical couplers, and the tunable filter was used as wavelength reflector. A lasing threshold of 103 mW was used in the experiment, and the tunable laser with stable single and dual wavelengths was implemented by adjusting the tunable filter. The channel spacing was 0.6 nm within the range 1539.4-1561.6 nm, where the power difference between the lines was less than 0.4 dB. The side-mode suppression ratio was higher than 36 dB and the 3 dB linewidth was 0.02 nm. When a single-wavelength laser was implemented at 1557.4 nm, the power fluctuations were lower than 0.34 dB within 20 min of scan time. When lasers at wavelengths of 1558.6 nm and 1559.2 nm were simultaneously applied, the power shifts were lower than 0.29 dB and 0.43 dB, respectively, at room temperature.
Choi, Dong Yun; Heo, Ki Joon; Kang, Juhee; An, Eun Jeong; Jung, Soo-Ho; Lee, Byung Uk; Lee, Hye Moon; Jung, Jae Hee
2018-06-05
Here, we introduce a reusable bifunctional polyester/aluminum (PET/Al) air filter for the high efficiency simultaneous capture and inactivation of airborne microorganisms. Both bacteria of Escherichia coli and Staphylococcus epidermidis were collected on the PET/Al filter with a high efficiency rate (∼99.99%) via the electrostatic interactions between the charged bacteria and fibers without sacrificing pressure drop. The PET/Al filter experienced a pressure drop approximately 10 times lower per thickness compared with a commercial high-efficiency particulate air filter. As the Al nanograins grew on the fibers, the antimicrobial activity against airborne E. coli and S. epidermidis improved to ∼94.8% and ∼96.9%, respectively, due to the reinforced hydrophobicity and surface roughness of the filter. Moreover, the capture and antimicrobial performances were stably maintained during a cyclic washing test of the PET/Al filter, indicative of its reusability. The PET/Al filter shows great potential for use in energy-efficient bioaerosol control systems suitable for indoor environments. Copyright © 2018 Elsevier B.V. All rights reserved.
Wang, Yiqun; Pei, Li; Li, Jing; Li, Yueqin
2017-06-10
A full-duplex radio-over-fiber system is proposed, which provides both the generation of a millimeter-wave (mm-wave) signal with tunable frequency multiplication factors (FMFs) and wavelength reuse for uplink data. A dual-driving Mach-Zehnder modulator and a phase modulator are cascaded to form an optical frequency comb. An acousto-optic tunable filter based on a uniform fiber Bragg grating (FBG-AOTF) is employed to select three target optical sidebands. Two symmetrical sidebands are chosen to generate mm waves with tunable FMFs up to 16, which can be adjusted by changing the frequency of the applied acoustic wave. The optical carrier is reused at the base station for uplink connection. FBG-AOTFs driven by two acoustic wave signals are experimentally fabricated and further applied in the proposed scheme. Results of the research indicate that the 2-Gbit/s data can be successfully transmitted over a 25-km single-mode fiber for bidirectional full-duplex channels with power penalty of less than 2.6 dB. The feasibility of the proposed scheme is verified by detailed simulations and partial experiments.
Supersymmetric Transformations in Optical Fibers
NASA Astrophysics Data System (ADS)
Macho, Andrés; Llorente, Roberto; García-Meca, Carlos
2018-01-01
Supersymmetry (SUSY) has recently emerged as a tool to design unique optical structures with degenerate spectra. Here, we study several fundamental aspects and variants of one-dimensional SUSY in axially symmetric optical media, including their basic spectral features and the conditions for degeneracy breaking. Surprisingly, we find that the SUSY degeneracy theorem is partially (totally) violated in optical systems connected by isospectral (broken) SUSY transformations due to a degradation of the paraxial approximation. In addition, we show that isospectral constructions provide a dimension-independent design control over the group delay in SUSY fibers. Moreover, we find that the studied unbroken and isospectral SUSY transformations allow us to generate refractive-index superpartners with an extremely large phase-matching bandwidth spanning the S +C +L optical bands. These singular features define a class of optical fibers with a number of potential applications. To illustrate this, we numerically demonstrate the possibility of building photonic lanterns supporting broadband heterogeneous supermodes with large effective area, a broadband all-fiber true-mode (de)multiplexer requiring no mode conversion, and different mode-filtering, mode-conversion, and pulse-shaping devices. Finally, we discuss the possibility of extrapolating our results to acoustics and quantum mechanics.
Multimode fiber devices with single-mode performance
NASA Astrophysics Data System (ADS)
Leon-Saval, S. G.; Birks, T. A.; Bland-Hawthorn, J.; Englund, M.
2005-10-01
A taper transition can couple light between a multimode fiber and several single-mode fibers. If the number of single-mode fibers matches the number of spatial modes in the multimode fiber, the transition can have low loss in both directions. This enables the high performance of single-mode fiber devices to be attained in multimode fibers. We report an experimental proof of concept by using photonic crystal fiber techniques to make the transitions, demonstrating a multimode fiber filter with the transmission spectrum of a single-mode fiber grating.
The development of novel Ytterbium fiber lasers and their applications
NASA Astrophysics Data System (ADS)
Nie, Bai
The aim of my Ph.D. research is to push the fundamental limits holding back the development of novel Yb fiber lasers with high pulse energy and short pulse duration. The purpose of developing these lasers is to use them for important applications such as multiphoton microscopy and laser-induced breakdown spectroscopy. My first project was to develop a short-pulse high-energy ultrafast fiber laser for multiphoton microscopy. To achieve high multiphoton efficiency and depth resolved tissue imaging, ultrashort pulse duration and high pulse energy are required. In order to achieve this, an all-normal dispersion cavity design was adopted. Output performances of the built lasers were investigated by varying several cavity parameters, such as pump laser power, fiber length and intra-cavity spectral filter bandwidth. It was found that the length of the fiber preceding the gain fiber is critical to the laser performance. Generally, the shorter the fiber is, the broader the output spectrum is. The more interesting parameter is the intra-cavity spectral filter bandwidth. Counter intuitively, laser cavities using narrower bandwidth spectral filters generated much broader spectra. It was also found that fiber lasers with very narrow spectral filters produced laser pulses with parabolic profile, which are referred to as self-similar pulses or similaritons. This type of pulse can avoid wave-breaking and is an optimal approach to generate pulses with high pulse energy and ultrashort pulse duration. With a 3nm intra-cavity spectral filter, output pulses with about 20 nJ pulse energy were produced and compressed to about 41 fs full-width-at-half-maximum (FWHM) pulse duration. Due to the loss in the compression device, the peak power of the compressed pulses is about 250 kW. It was the highest peak power generated from a fiber oscillator when this work was published. This laser was used for multiphoton microscopy on living tissues like Drosophila larva and fruit fly wings. Several imaging methods, such as two-photon-excited fluorescence, second harmonic generation, and third harmonic generation, were performed. Not only were single layers of thin tissue imaged, but also depth resolved imaging of thick samples was tested, and three-dimensional image reconstruction was demonstrated. The other project was to develop a simple fiber oscillator for laser-induced breakdown spectroscopy (LIBS). Laser pulses with high energy, high ablation efficiency and low ablation threshold are desirable for this application. We built a fiber laser using up to 200 m long fiber and scaled the output pulse energy up to 450 nJ. This laser was operated in an unusual mode-locking regime and produced noise-like pulses, which have a picosecond long pulse envelope containing multiple irregular femtosecond sub-pulses. This type of pulse was mostly ignored by many earlier researchers. Intra-cavity spectral filters did not affect the laser performance as much as in the similariton lasers and were removed from the laser cavity. Characteristics of our noise-like laser, such as MHz repetition rate, broad spectrum, and picosecond-long pulse envelope containing multiple femtosecond sub-pulses, were found to meet the requirement of an ideal laser source for LIBS. A simple LIBS setup using our laser was demonstrated and atomic emission spectra with very good signal-to-noise ratio were obtained. Composition detection, qualitative concentration determination, and trace detection were also tested. These tests show that our noise-like fiber laser is an ideal laser source for a low-cost and portable LIBS system.
NASA Astrophysics Data System (ADS)
Selvas-Aguilar, R.; Martínez-Rios, A.; Anzueto-Sánchez, G.; Castillo-Guzmán, A.; Hernández-Luna, M. C.; Robledo-Fava, R.
2014-10-01
We present a wavelength tuning of an Erbium-Doped Fiber Ring Laser (EDFRL) based in a Mach-Zehnder fiber interferometer (MZFI) that consists on two tapers fabricated on commercial SMF28 from Corning as an intracavity filter. The MZFI spectral interference pattern is modified by external refractive index changes that alter the light transmission characteristics. In this work, the fiber device is immersed into a glycerol solution with higher dispersion in its refractive index in relation with temperature. Since the temperature sensitiveness of the glycerol is much higher than that of the fiber in a temperature range from 25-110 °C, therefore, the spectral changes are mainly due to the dispersion of glycerol refractive index when heat increases. Also, when this device is inserted into the EDFRL cavity, the gain spectrum of the EDF is modified accordingly and the changes, which can be controlled in an electrical heater, allow the tuning of the laser wavelength determined by the interference fringes. A wavelength shift as high as 180 pm/°C and a tunable range of 12 nm are obtained. The side mode suppression ratio (SMSR) of the fiber laser is around 25-30 dB depending on the notch filtering position. The insertion losses of the filter are below 0.3 dB and the measured wavelength shift has a quasilinear dependence as a function of temperature in the 80-110 °C. This method is very simple, portable and inexpensive over traditional methods to tune a fiber laser.
NASA Astrophysics Data System (ADS)
Aguayo-Rodríguez, Gustavo; Zaldívar-Huerta, Ignacio E.; Rodríguez-Asomoza, Jorge; García-Juárez, Alejandro; Alonso-Rubio, Paul
2010-01-01
The generation, distribution and processing of microwave signals in the optical domain is a topic of research due to many advantages such as low loss, light weight, broadband width, and immunity to electromagnetic interference. In this sense, a novel all-optical microwave photonic filter scheme is proposed and experimentally demonstrated in the frequency range of 0.01-15.0 GHz. A microwave signal generated by optical mixing drives the microwave photonic filter. Basically, photonic filter is composed by a multimode laser diode, an integrated Mach- Zehnder intensity modulator, and 28.3-Km of single-mode standard fiber. Frequency response of the microwave photonic filter depends of the emission spectral characteristics of the multimode laser diode, the physical length of the single-mode standard fiber, and the chromatic dispersion factor associated to this type of fiber. Frequency response of the photonic filter is composed of a low-pass band centered at zero frequency, and several band-pass lobes located periodically on the microwave frequency range. Experimental results are compared by means of numerical simulations in Matlab exhibiting a small deviation in the frequency range of 0.01-5.0 GHz. However, this deviation is more evident when higher frequencies are reached. In this paper, we evaluate the causes of this deviation in the range of 5.0-15.0 GHz analyzing the parameters involved in the frequency response. This analysis permits to improve the performance of the photonic microwave filter to higher frequencies.
End coating on optical fibers for multiplexers-demultiplexers in optical communications
NASA Astrophysics Data System (ADS)
Richier, Robert; Grezes-Besset, Catherine; Pelletier, Emile P.
1993-03-01
Economical multiplexers-demultiplexers can be made from cut optical fibers coated at their ends with multidielectric filters and then put together. An optical multilayer deposited at the end of a fiber has a spectral response which is different from that obtained when the multilayer is classically used in oblique incidence. We show that it is possible to forecast the multi- demultiplexer performances on multimode fibers with a numerical model using a divergent beam of angular width `a' at a mean incidence `i.' As we know the design of the multilayer used, we can correctly predict the cross-talk and the losses of multi-demultiplexers. Then we show how a series of different experiments are exploited for this study. Nevertheless, the development of a higher selectivity spectral filter and the use of a single mode fiber necessitate further improvement concerning the test for the validity of the model used.
NASA Astrophysics Data System (ADS)
Zhang, Haiwei; Shi, Wei; Bai, Xiaolei; Sheng, Quan; Xue, Lifang; Yao, Jianquan
2018-02-01
We obtain a switchable and tunable dual-wavelength single-frequency Er-doped ring fiber laser. In order to realize single-longitudinal output, two saturable-absorber-based tracking narrow-band filters are formed in 3- meter-long unpumped Er-doped fiber to narrow the linewidth via using the PM-FBG as a reflection filter. The maximum output power is 2.11 mW centered at 1550.16 nm and 1550.54 nm when the fiber laser operates in dual-wavelength mode. The corresponding linewidths of those two wavelengths are measured to be 769 Hz and 673 Hz, respectively. When the temperature around the PM-FBG is changed from 15 °C to 55 °C, the dual-wavelength single-frequency fiber laser can be tuned from 1550.12 nm to 1550.52 nm and from 1550.49 nm to 1550.82 nm, respectively.
Porous block nanofiber composite filters
Ginley, David S.; Curtis, Calvin J.; Miedaner, Alexander; Weiss, Alan J.; Paddock, Arnold
2016-08-09
Porous block nano-fiber composite (110), a filtration system (10) and methods of using the same are disclosed. An exemplary porous block nano-fiber composite (110) includes a porous block (100) having one or more pores (200). The porous block nano-fiber composite (110) also includes a plurality of inorganic nano-fibers (211) formed within at least one of the pores (200).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nave, S.E.
Recent advances in fiber optics, diode lasers, CCD detectors, dielectric and holographic optical filters, grating spectrometers, and chemometric data analysis have greatly simplified Raman spectroscopy. In order to make a rugged fiber optic Raman probe for solids/slurries like these at Savannah River, we have designed a probe that eliminates as many optical elements and surfaces as possible. The diffuse reflectance probe tip is modified for Raman scattering by installing thin dielectric in-line filters. Effects of each filter are shown for the NaNO{sub 3} Raman spectrum. By using a diode laser excitation at 780 nm, fluorescence is greatly reduced, and excellentmore » spectra may be obtained from organic solids. At SRS, fiber optic Raman probes are being developed for in situ chemical mapping of radioactive waste storage tanks. Radiation darkening of silica fiber optics is negligible beyond 700 nm. Corrosion resistance is being evaluated. Analysis of process gas (off-gas from SRS processes) is investigated in some detail: hydrogen in nitrogen with NO{sub 2} interference. Other applications and the advantages of the method are pointed out briefly.« less
Simulated mossy fiber associated feedforward circuit functioning as a highpass filter.
Zalay, Osbert C; Bardakjian, Berj L
2006-01-01
Learning and memory rely on the strict regulation of communication between neurons in the hippocampus. The mossy fiber (MF) pathway connects the dentate gyrus to the auto-associative CA3 network, and the information it carries is controlled by a feedforward circuit combining disynaptic inhibition with monosynaptic excitation. Analysis of the MF associated circuit using a mapped clock oscillator (MCO) model reveals the circuit to be a highpass filter.
FPGA-Based Optical Cavity Phase Stabilization for Coherent Pulse Stacking
Xu, Yilun; Wilcox, Russell; Byrd, John; ...
2017-11-20
Coherent pulse stacking (CPS) is a new time-domain coherent addition technique that stacks several optical pulses into a single output pulse, enabling high pulse energy from fiber lasers. We develop a robust, scalable, and distributed digital control system with firmware and software integration for algorithms, to support the CPS application. We model CPS as a digital filter in the Z domain and implement a pulse-pattern-based cavity phase detection algorithm on an field-programmable gate array (FPGA). A two-stage (2+1 cavities) 15-pulse stacking system achieves an 11.0 peak-power enhancement factor. Each optical cavity is fed back at 1.5kHz, and stabilized at anmore » individually-prescribed round-trip phase with 0.7deg and 2.1deg rms phase errors for Stages 1 and 2, respectively. Optical cavity phase control with nanometer accuracy ensures 1.2% intensity stability of the stacked pulse over 12 h. The FPGA-based feedback control system can be scaled to large numbers of optical cavities.« less
FPGA-Based Optical Cavity Phase Stabilization for Coherent Pulse Stacking
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Yilun; Wilcox, Russell; Byrd, John
Coherent pulse stacking (CPS) is a new time-domain coherent addition technique that stacks several optical pulses into a single output pulse, enabling high pulse energy from fiber lasers. We develop a robust, scalable, and distributed digital control system with firmware and software integration for algorithms, to support the CPS application. We model CPS as a digital filter in the Z domain and implement a pulse-pattern-based cavity phase detection algorithm on an field-programmable gate array (FPGA). A two-stage (2+1 cavities) 15-pulse stacking system achieves an 11.0 peak-power enhancement factor. Each optical cavity is fed back at 1.5kHz, and stabilized at anmore » individually-prescribed round-trip phase with 0.7deg and 2.1deg rms phase errors for Stages 1 and 2, respectively. Optical cavity phase control with nanometer accuracy ensures 1.2% intensity stability of the stacked pulse over 12 h. The FPGA-based feedback control system can be scaled to large numbers of optical cavities.« less
Identification of dangerous fibers: some examples in Northern Italy
NASA Astrophysics Data System (ADS)
Zanetti, Giovanna; Marini, Paola; Giorgis, Ilaria
2016-04-01
The presence of asbestiform minerals has to be foreseen in the planning of infrastructural activities: Asbestos can be a component of sedimentary rocks or of mafic and ultra mafic metamorphic rocks. Surveys and core drilling, in addition to providing important information on the quality of the rock and its geotechnical characteristics, allow for a prediction of the presence of asbestiform minerals in the areas affected by mining or infrastructural activities. During the excavation, workers can be exposed to the asbestos risk, therefore, the control of the air quality and of the excavated materials are fundamental for the safety of involved people. In this work some problems we met in the analysis of airborne filters and bulk samples from sites in northern Italy are presented. The asbestos fibers present in rocks as accessory minerals, are often different in habit and dimension from the well-known asbestos fibers used as industrial minerals and moreover can be erroneously identified as minerals morphologically and chemically similar present in the same rock or environment. In the case of tunnel muck it could be contaminated by substances used for the excavation that could modify colours and optical properties of asbestos minerals. In the PCOM (Phase Contrast Optical Microscope) analysis chrysotile, sepiolite and antigorite, due to their different refraction index, when the fibers have dimension > 0,5 micron and aren't contaminated by lubricant can be easely identified even if the morphology of chrysotile is very similar to that of sepiolite. In Electron Scanning Microscope (SEM) the discrimination between chrysotile and antigorite on the airborne filters is not always possible because the fibers of thin dimensions show similar habit and spectrum. In the case of the tremolite amphibole, morphology changes from prismatic to fibrous depending on its origin (p.eg. Monastero, Val Grana, Verrayes, Brachiello). Both prismatic and asbestiform tremolite (Gamble and Gibbs, 2007; Addison and McConnel, 2007) may show inhalable elements with width less than 3 micron, length more than 5 micron and width length ratio 1:3, whose dangerousness (fiber coming from fibrous tremolite or the cleavage fragments coming from prismatic tremolite) could be different and it is object of epidemiologic studies.
Ternon, Eva; Tolosa, Imma
2015-07-24
Solid-phase extraction of both aliphatic (AHs) and aromatic polycyclic hydrocarbons (PAHs) from seawater samples was evaluated using a GFF filter stacked upon an octadecyl bonded silica (C18) disk. Stable-isotope measurements were developed on hydrocarbons extracted from both GFF and C18-disks in order to characterize the source of hydrocarbons. A clear partition of hydrocarbon compounds between the dissolved and the particulate phase was highlighted. PAHs showed a higher affinity with the dissolved phase (recoveries efficiency of 48-71%) whereas AHs presented strong affinity with the particulate phase (up to 76% of extraction efficiency). Medium volumes of seawater samples were tested and no breakthrough was observed for a 5L sample. Isotopic fractionation was investigated within all analytical steps but none was evidenced. This method has been applied to harbor seawater samples and very low AH and PAH concentrations were achieved. Due to the low concentration levels of hydrocarbons in the samples, the source of hydrocarbons was determined by molecular indices rather than isotopic measurements and a pyrolytic origin was evidenced. The aliphatic profile also revealed the presence of long-chain linear alkylbenzenes (LABs). The methodology presented here would better fit to polluted coastal environments affected by recent oil spills. Copyright © 2015 Elsevier B.V. All rights reserved.
Industrial filter bags cleaned by high-frequency vibration: A concept
NASA Technical Reports Server (NTRS)
Kooy, A. V.
1973-01-01
System holds filter bag around fine-mesh metal screen and vibrates screen at its resonant frequency. This removes deposited byproducts and protects bag fibers from damaging forces. Because filter bags represent 20 to 40% of any industrial filtering investment, this method of extending bag life should be of interest to those responsible for plant maintenance.
Short cavity active mode locking fiber laser for optical sensing and imaging
NASA Astrophysics Data System (ADS)
Lee, Hwi Don; Han, Ga Hee; Jeong, Syung Won; Jeong, Myung Yung; Kim, Chang-Seok; Shin, Jun Geun; Lee, Byeong Ha; Eom, Tae Joong
2014-05-01
We demonstrate a highly linear wavenumber- swept active mode locking (AML) fiber laser for optical sensing and imaging without any wavenumber-space resampling process. In this all-electric AML wavenumber-swept mechanism, a conventional wavelength selection filter is eliminated and, instead, the suitable programmed electric modulation signal is directly applied to the gain medium. Various types of wavenumber (or wavelength) tunings can be implemented because of the filter-less cavity configuration. Therefore, we successfully demonstrate a linearly wavenumber-swept AML fiber laser with 26.5 mW of output power to obtain an in-vivo OCT image at the 100 kHz swept rate.
NASA Astrophysics Data System (ADS)
Takaya, Masaaki; Honda, Hiroyasu; Narita, Yoshihiro; Yamamoto, Fumihiko; Arakawa, Koji
2006-04-01
We report on a newly developed in-service measurement technique that can be used from a central office to find and identify any filter in front of an ONU on an optical fiber access network. Using this system, in-service tests can be performed because the test lights are modulated at a high frequency. Moreover, by using the equipment we developed, this confirmation operation can be performed continuously and automatically with existing automatic fiber testing systems. The developed technique is effective for constructing a fiber line testing system with an optical time domain reflectometer.
NASA Astrophysics Data System (ADS)
Shi, Guannan; Fu, Shijie; Sheng, Quan; Shi, Wei; Yao, Jianquan
2018-02-01
We report on the generation of dual-wavelength noise-like pulse (NLP) from a passively mode-locked all-fiber laser based on multimode interference (MMI) effect. The theory to evaluate and design transmission spectrum of MMI filter is analyzed. A homemade MMI filter was employed in an Er-doped fiber ring laser with NPE configuration and dual-wavelength NLP at 1530 and 1600 nm was obtained with 3-dB bandwidth of 18.1 and 41.9 nm, respectively. The output had a signal-to-noise ratio higher than 35 dB and can achieve self-started operation.
Tiess, Tobias; Becker, Martin; Rothhardt, Manfred; Bartelt, Hartmut; Jäger, Matthias
2017-03-15
We demonstrate a novel tuning concept for pulsed fiber-integrated lasers with a fiber Bragg grating (FBG) array as a discrete and tailored spectral filter, as well as a modified laser design. Based on a theta cavity layout, the structural delay lines originating from the FBG array are balanced, enabling a constant repetition rate and stable pulse properties over the full tuning range. The emission wavelength is electrically tuned with respect to the filter properties based on an adapted temporal gating scheme using an acousto-optic modulator. This concept has been investigated with an Yb-doped fiber laser, demonstrating excellent emission properties with high signal contrast (>35 dB) and narrow linewidth (<150 pm) over a tuning range of 25 nm.
Jung, Yongmin; Brambilla, Gilberto; Richardson, David J
2008-09-15
We report the use of a sub-wavelength optical wire (SOW) with a specifically designed transition region as an efficient tool to filter higher-order modes in multimode waveguides. Higher-order modes are effectively suppressed by controlling the transition taper profile and the diameter of the sub-wavelength optical wire. As a practical example, single-mode operation of a standard telecom optical fiber over a broad spectral window (400 approximately 1700 nm) was demonstrated with a 1microm SOW. The ability to obtain robust and stable single-mode operation over a very broad range of wavelengths offers new possibilities for mode control within fiber devices and is relevant to a range of application sectors including high performance fiber lasers, sensors, photolithography, and optical coherence tomography systems.
Cognitive fiber Bragg grating sensors system based on fiber Fabry-Perot tunable filter technology
NASA Astrophysics Data System (ADS)
Zhang, Hongtao; Wang, Pengfei; Zou, Jilin; Xie, Jing; Cui, Hong-Liang
2011-05-01
The wavelength demodulation based on a Fiber Fabry-Pérot Tunable Filter (FFP-TF) is a common method for multiplexing Fiber Bragg Grating (FBG) sensors. But this method cannot be used to detect high frequency signals due to the limitation by the highest scanning rate that the FFP-TF can achieve. To overcome this disadvantage, in this paper we present a scheme of cognitive sensors network based on FFP-TF technology. By perceiving the sensing environment, system can automatically switch into monitoring signals in two modes to obtain better measurement results: multi measurement points, low frequency (<1 KHz) signal, and few measurement points but high frequency (~50 KHz) signals. This cognitive sensors network can be realized in current technology and satisfy current most industrial requirements.
NASA Astrophysics Data System (ADS)
Valle-Atilano, F. J.; Estudillo-Ayala, J. M.; Filoteo-Razo, J. D.; Hernández-Garcia, J. C.; Lauterio-Cruz, J. P.; Jáuregui-Vázquez, D.; Ibarra-Escamilla, B.; Rojas-Laguna, R.; Pottiez, O.; Kuzin, E. A.
2016-03-01
In this work we show the changes of polarization at different wavelengths in the end of a photonic crystal fiber (PCF) by means bandpass filters in a supercontinuum light source. A linear and circular polarization was introduced in a piece of PCF, showing the changes of the polarization for each wavelength of each one of the filters from 450 to 700nm. We used a microchip laser as pumping source with wavelength of 532nm and short pulses of 650ps with repetition rate of 5kHz. We obtained a continuous spectrum in the visible spectral region, showing a comparison of the polarization state at the fiber input with respect to polarization state in the fiber output for different wavelengths by rotating the axes of the PCF.
40 CFR 63.11398 - What definitions apply to this subpart?
Code of Federal Regulations, 2013 CFR
2013-07-01
... acrylonitrile units: acrylic fiber or modacrylic fiber. Acrylonitrile solution polymerization means a process where acrylonitrile and comonomers are dissolved in a solvent to form a polymer solution (typically... resulting reactor polymer solution (spin dope) is filtered and pumped directly to the fiber spinning process...
40 CFR 63.11398 - What definitions apply to this subpart?
Code of Federal Regulations, 2014 CFR
2014-07-01
... acrylonitrile units: acrylic fiber or modacrylic fiber. Acrylonitrile solution polymerization means a process where acrylonitrile and comonomers are dissolved in a solvent to form a polymer solution (typically... resulting reactor polymer solution (spin dope) is filtered and pumped directly to the fiber spinning process...
Tsai, Candace Su-Jung; Hofmann, Mario; Hallock, Marilyn; Ellenbecker, Michael; Kong, Jing
2015-11-01
This study performed a workplace evaluation of emission control using available air sampling filters and characterized the emitted particles captured in filters. Characterized particles were contained in the exhaust gas released from carbon nanotube (CNT) synthesis using chemical vapor deposition (CVD). Emitted nanoparticles were collected on grids to be analyzed using transmission electron microscopy (TEM). CNT clusters in the exhaust gas were collected on filters for investigation. Three types of filters, including Nalgene surfactant-free cellulose acetate (SFCA), Pall A/E glass fiber, and Whatman QMA quartz filters, were evaluated as emission control measures, and particles deposited in the filters were characterized using scanning transmission electron microscopy (STEM) to further understand the nature of particles emitted from this CNT production. STEM analysis for collected particles on filters found that particles deposited on filter fibers had a similar morphology on all three filters, that is, hydrophobic agglomerates forming circular beaded clusters on hydrophilic filter fibers on the collecting side of the filter. CNT agglomerates were found trapped underneath the filter surface. The particle agglomerates consisted mostly of elemental carbon regardless of the shapes. Most particles were trapped in filters and no particles were found in the exhaust downstream from A/E and quartz filters, while a few nanometer-sized and submicrometer-sized individual particles and filament agglomerates were found downstream from the SFCA filter. The number concentration of particles with diameters from 5 nm to 20 µm was measured while collecting particles on grids at the exhaust piping. Total number concentration was reduced from an average of 88,500 to 700 particle/cm(3) for the lowest found for all filters used. Overall, the quartz filter showed the most consistent and highest particle reduction control, and exhaust particles containing nanotubes were successfully collected and trapped inside this filter. As concern for the toxicity of engineered nanoparticles grows, there is a need to characterize emission from carbon nanotube synthesis processes and to investigate methods to prevent their environmental release. At this time, the particles emitted from synthesis were not well characterized when collected on filters, and limited information was available about filter performance to such emission. This field study used readily available sampling filters to collect nanoparticles from the exhaust gas of a carbon nanotube furnace. New agglomerates were found on filters from such emitted particles, and the performance of using the filters studied was encouraging in terms of capturing emissions from carbon nanotube synthesis.
NASA Astrophysics Data System (ADS)
Wang, Qing; Liu, Xiaoming; Xing, Lei; Feng, Xue; Zhou, Bingkun
2005-11-01
Inhomogeneous loss generated by multimode laser linewidth broadening in an optical fiber is experimentally studied. With this mechanism, multiwavelength lasing is achieved by use of either fiber Raman gain or erbium-doped fiber gain. Through various pump powers and optical filter bandwidths, the relationship between inhomogeneous loss and the performance of a multiwavelength fiber laser is studied, and a physical explanation is provided.
High temperature sensing using higher-order-mode rejected sapphire-crystal fiber gratings
NASA Astrophysics Data System (ADS)
Zhan, Chun; Kim, Jae Hun; Lee, Jon; Yin, Stuart; Ruffin, Paul; Luo, Claire
2007-09-01
In this paper, we report the fabrication of higher-order-mode rejected fiber Bragg gratings (FBGs) in sapphire crystal fiber using infrared (IR) femtosecond laser illumination. The grating is tested in high temperature furnace up to 1600 degree Celsius. As sapphire fiber is only available as highly multimode fiber, a scheme to filter out higher order modes in favor for the fundamental mode is theoretically evaluated and experimentally demonstrated. The approach is to use an ultra thin sapphire crystal fiber (60 micron in diameter) to decrease the number of modes. The small diameter fiber also enables bending the fiber to certain radius which is carefully chosen to provide low loss for the fundamental mode LP01 and high loss for the other high-order modes. After bending, less-than-2-nm resonant peak bandwidth is achieved. The grating spectrum is improved, and higher resolution sensing measurement can be achieved. This mode filtering method is very easy to implement. Furthermore, the sapphire fiber is sealed with hi-purity alumina ceramic cement inside a flexible high temperature titanium tube, and the highly flexible titanium tube offers a robust packaging to sapphire fiber. Our high temperature sapphire grating sensor is very promising in extremely high temperature sensing application.
Apparatus for synthesis of a solar spectrum
Sopori, Bhushan L.
1993-01-01
A xenon arc lamp and a tungsten filament lamp provide light beams that together contain all the wavelengths required to accurately simulate a solar spectrum. Suitable filter apparatus selectively direct visible and ultraviolet light from the xenon arc lamp into two legs of a trifurcated randomized fiber optic cable. Infrared light selectively filtered from the tungsten filament lamp is directed into the third leg of the fiber optic cable. The individual optic fibers from the three legs are brought together in a random fashion into a single output leg. The output beam emanating from the output leg of the trifurcated randomized fiber optic cable is extremely uniform and contains wavelengths from each of the individual filtered light beams. This uniform output beam passes through suitable collimation apparatus before striking the surface of the solar cell being tested. Adjustable aperture apparatus located between the lamps and the input legs of the trifurcated fiber optic cable can be selectively adjusted to limit the amount of light entering each leg, thereby providing a means of "fine tuning" or precisely adjusting the spectral content of the output beam. Finally, an adjustable aperture apparatus may also be placed in the output beam to adjust the intensity of the output beam without changing the spectral content and distribution of the output beam.
NASA Astrophysics Data System (ADS)
Chocat, Noemie
The emergence of multimaterial fibers that combine a multiplicity of solid materials with disparate electrical, optical, and mechanical properties into a single fiber presents new opportunities for extending fiber applications well beyond optical transmission. Fiber reflectors, thermal detectors, photodetectors, chemical sensors, surface-emitting fiber lasers, fiber diodes, and other functional fiber devices have been demonstrated with this approach. Yet, throughout this development and indeed the development of fibers in general, a key premise has remained unchanged : that fibers are essentially static devices incapable of controllably changing their properties at high frequencies. Unique opportunities would arise if a rapid, electrically-driven mechanism for changing fiber properties existed. A wide spectrum of hitherto passive fiber devices could at once become active with applications spanning electronics, mechanics, acoustics, and optics, with the benefits of large surface-area, structural robustness, and mechanical flexibility. This thesis addresses the challenges and opportunities associated with the realization of electromechanical transduction in fibers through the integration of internal piezoelectric and electrostrictive domains. The fundamental challenges related to the fabrication of piezoelectric devices in fiber form are analyzed from a materials perspective, and candidate materials and geometries are selected that are compatible with the thermal drawing process. The first realization of a thermally drawn piezoelectric fiber device is reported and its piezoelectric response is established over a wide range of frequencies. The acoustic properties of piezoelectric fiber devices are characterized and related to their mechanical and geometric properties. Collective effects in multi-fiber constructs are discussed and demonstrated by the realization of a linear phased array of piezoelectric fibers capable of acoustic beam steering. High strain actuation capabilities in a fiber are demonstrated based on the integration of a highly electrostrictive relaxor ferroelectric polymer. The potential of this approach to realize integrated microelectromechanical systems in fibers is illustrated by the fabrication of a hybrid fiber comprising an electrostrictive device and an adjacent Fabry-Perot optical filter. Amplitude modulation of the light reflected from the Fabry-Perot cavity is demonstrated through electric field induced tuning of the cavity resonance. (Copies available exclusively from MIT Libraries, libraries.mit.edu/docs - docs@mit.edu)
27 CFR 24.243 - Filtering aids.
Code of Federal Regulations, 2010 CFR
2010-04-01
... fibers, pulps, earths, or similar materials, may be used as filtering aids in the cellar treatment and finishing of wine. Agar-agar, carrageenan, cellulose, and diatomaceous earth are commonly employed inert...
27 CFR 24.243 - Filtering aids.
Code of Federal Regulations, 2011 CFR
2011-04-01
... fibers, pulps, earths, or similar materials, may be used as filtering aids in the cellar treatment and finishing of wine. Agar-agar, carrageenan, cellulose, and diatomaceous earth are commonly employed inert...
Efficiency of several micro-fiber glass filters for recovery of poliovirus from tape water.
Payment, P; Trudel, M
1979-01-01
Micro-fiber glass filters from Gelman, Filterite, Johns-Manville, and Whatman were compared with Millipore membrane filters on the basis of their virus adsorbancy, flow rate, clogging resistance, and virus concentration efficiency by using tap water at 2 nephelometric turbidity units. As virus adsorbants the Johns-Manville D39, Filterite 0.25-micron, Filterite 0.45-micron, and Millipore 0.45-micron filters were the most efficient, retaining more than 99% of the added virus in water at pH 3.5 and 0.0005 M aluminum chloride. The Johns-Manville D79 and D49 filters retained 92 and 96% of the virus, respectively, whereas the Whatman GF-D, Whatman GF-F, Gelman A-E, and Millipore AP-20 filters retained only 28, 78, 56, and 34% of the virus, respectively. The best flow rate and clogging resistance were obtained with the Johns-Manville D79 filter or with this filter acting as a prefilter to the Johns-Manville D49, Johns-Manville D39, or Filterite 0.45-micron filter. Finally, poliovirus experimentally seeded in 20 liters of tape water was recovered from Johns-Manville D79-Johns-Manville D39 or Johns-Manville D79-Filterite 0.45 micron 142-mm filter combinations was a efficiencies of 86 and 85%, respectively. PMID:231414
Distributed acoustic sensing: how to make the best out of the Rayleigh-backscattered energy?
NASA Astrophysics Data System (ADS)
Eyal, A.; Gabai, H.; Shpatz, I.
2017-04-01
Coherent fading noise (also known as speckle noise) affects the SNR and sensitivity of Distributed Acoustic Sensing (DAS) systems and makes them random processes of position and time. As in speckle noise, the statistical distribution of DAS SNR is particularly wide and its standard deviation (STD) roughly equals its mean (σSNR/
Sahu, P P
2008-02-10
A thermally tunable erbium-doped fiber amplifier (EDFA) gain equalizer filter based on compact point symmetric cascaded Mach-Zehnder (CMZ) coupler is presented with its mathematical model and is found to be polarization dependent due to stress anisotropy caused by local heating for thermo-optic phase change from its mathematical analysis. A thermo-optic delay line structure with a stress releasing groove is proposed and designed for the reduction of polarization dependent characteristics of the high index contrast point symmetric delay line structure of the device. It is found from thermal analysis by using an implicit finite difference method that temperature gradients of the proposed structure, which mainly causes the release of stress anisotropy, is approximately nine times more than that of the conventional structure. It is also seen that the EDFA gain equalized spectrum by using the point symmetric CMZ device based on the proposed structure is almost polarization independent.
NASA Astrophysics Data System (ADS)
Chung, Sung Han
Optical regeneration has the potential to significantly increase the reach of long-haul transmission systems. In this thesis, wavelength-preserving polarization-insensitive all-optical 3R regeneration is investigated and demonstrated for 10 and 40 Gb/s signals. The all-optical regenerator utilizes a self-pulsating laser for clock recovery, cross-phase modulation (XPM) based spectral broadening in a highly nonlinear fiber (HNLF) and offset filtering for retiming, and self-phase modulation based spectral broadening in a HNLF and offset filtering for reshaping. Raman amplification is used to increase the XPM-based spectral broadening and thus allow a design that meets the tradeoffs involved in simultaneously achieving good retiming and reshaping performance. The regenerator is shown to reduce amplitude noise and timing jitter while not causing a BER penalty. To fully validate the regeneration scheme, the cascadability is demonstrated using a recirculating loop. For a 10 Gb/s signal, with a regenerator spacing of 240 km, a return-to-zero, on-off-keyed (RZ-OOK) signal was transmitted over 18,000 km (75 loops) with a power penalty of 1.6 dB at a BER of 10 -9 compared to the back-to-back case. For a 40 Gb/s signal, with a regenerator spacing of 80 km, a RZ-OOK signal was transmitted over 8,000 km (100 loops) with a power penalty of 1.2 dB. In addition, all-optical 3R regeneration is demonstrated using a multimode quantum-dot Fabry Perot laser with ultra-low timing jitter.
NONLINEAR AND FIBER OPTICS: Propagation of femtosecond solitons in a fiber-optic loop
NASA Astrophysics Data System (ADS)
Zakhidov, É. A.; Mirtadzhiev, F. M.; Khaĭdarov, D. V.; Kuznetsov, A. V.; Okhotnikov, A. G.
1991-03-01
An investigation was made of the propagation of fundamental femtosecond soliton pulses in a fiber-optic loop, which is an element with promising applications in logic operations. It is shown that such a loop can filter off the nonsoliton component effectively. The conditions for high-contrast self-switching of fundamental solitons in a fiber-optic loop are identified.
Infrared fiber coupled acousto-optic tunable filter spectrometer
NASA Technical Reports Server (NTRS)
Levin, K. H.; Kindler, E.; Ko, T.; Lee, F.; Tran, D. C.; Tapphorn, R. M.
1990-01-01
A spectrometer design is introduced which combines an acoustooptic tunable filter (AOTF) and IR-transmitting flouride-glass fibers. The AOTF crystal is fabricated from TeO2 and permits random access to any wavelength in less than 50 microseconds, and the resulting spectrometer is tested for the remote analysis of gases and hydrocarbons. The AOTF spectrometer, when operated with a high-speed frequency synthesizer and optimized algorithms, permits accurate high-speed spectroscopy in the mid-IR spectral region.
Particle leakage in extracorporeal blood purification systems based on microparticle suspensions.
Hartmann, Jens; Schildboeck, Claudia; Brandl, Martin; Falkenhagen, Dieter
2005-01-01
The newly developed 'Microspheres based Detoxification System' (MDS) designed for any extracorporeal adsorption therapy uses microparticles as adsorbents characterized by a size of 1-20 microm in diameter which are recirculated in the secondary (filtrate) circuit connected to a hollow fiber filter located in the primary (blood) circuit. In the case of a leakage or rupture in the hollow fiber filter, microspheres can enter patients' blood circuits and cause embolic episodes in different organs with varying degrees of clinical relevance. Aim of this study was to determine the amount of particles infused to a patient during a long-term treatment under different failure conditions of the filter. The filters were prepared by cutting single hollow fibers. Fresh-frozen plasma (FFP) and a mixture of glycerol and water were used as a medium together with microparticles potentially used in the MDS. The amounts of particles transferred from the filtrate into the primary circuit were measured. The analysis of particle transfer in the case of a single cut hollow fiber inside the membrane results in particle volumes of up to 26 ml calculated for 10 h. Particle leakage in microparticle suspension based detoxification systems can lead to considerable particle transfer to the patient. Therefore, a particle detection unit which is able to detect critical amounts of particles (<1 ml particle volume/treatment) in the extracorporeal blood line is necessary for patient safety. (c) 2005 S. Karger AG, Basel.
NASA Technical Reports Server (NTRS)
1973-01-01
A variety of technologies were investigated to determine the benefits to be derived from space activities. The subjects accepted for product development are: (1) eutectics for cold cathodes, (2) higher putiry fiber optics, (3) fluidic wafers, (4) large germanium wafers for gamma ray camera, (5) improved batteries and capacitors, (6) optical filters, (7) corrosion resistant electrodes, (8) high strength carbon-based filaments for plastic reinforcement, and (9) new antibiotics. In addition, three ideas for services, involving disposal of radioactive wastes, blood analysis, and enhanced solar insolation were proposed.
Analytical model and figures of merit for filtered Microwave Photonic Links.
Gasulla, Ivana; Capmany, José
2011-09-26
The concept of filtered Microwave Photonic Links is proposed in order to provide the most general and versatile description of complex analog photonic systems. We develop a field propagation model where a global optical filter, characterized by its optical transfer function, embraces all the intermediate optical components in a linear link. We assume a non-monochromatic light source characterized by an arbitrary spectral distribution which has a finite linewidth spectrum and consider both intensity modulation and phase modulation with balanced and single detection. Expressions leading to the computation of the main figures of merit concerning the link gain, noise and intermodulation distortion are provided which, to our knowledge, are not available in the literature. The usefulness of this derivation resides in the capability to directly provide performance criteria results for complex links just by substituting in the overall closed-form formulas the numerical or measured optical transfer function characterizing the link. This theory is presented thus as a potential tool for a wide range of relevant microwave photonic application cases which is extendable to multiport radio over fiber systems. © 2011 Optical Society of America
NASA Astrophysics Data System (ADS)
Videau, Laurent; Bar, Emmanuel; Rouyer, Claude; Gouedard, Claude; Garnier, Josselin C.; Migus, Arnold
1999-07-01
We study nonlinear effects in amplification of partially coherent pulses in a high power laser chain. We compare statistical models with experimental results for temporal and spatial effects. First we show the interplay between self-phase modulation which broadens spectrum bandwidth and gain narrowing which reduces output spectrum. Theoretical results are presented for spectral broadening and energy limitation in case of time-incoherent pulses. In a second part, we introduce spatial incoherence with a multimode optical fiber which provides a smoothed beam. We show with experimental result that spatial filter pinholes are responsible for additive energy losses in the amplification. We develop a statistical model which takes into account the deformation of the focused beam as a function of B integral. We estimate the energy transmission of the spatial filter pinholes and compare this model with experimental data. We find a good agreement between theory and experiments. As a conclusion, we present an analogy between temporal and spatial effects with spectral broadening and spectral filter. Finally, we propose some solutions to control energy limitations in smoothed pulses amplification.
Tang, Haitao; Yu, Yuan; Wang, Ziwei; Xu, Lu; Zhang, Xinliang
2018-05-15
A novel wideband tunable optoelectronic oscillator based on a microwave photonic filter (MPF) with an ultra-narrow passband is proposed and experimentally demonstrated. The single-passband MPF is realized by cascading an MPF based on stimulated Brillouin scattering and an infinite impulse response (IIR) MPF based on an active fiber recirculating delay loop. The measured full width at half-maximum bandwidth of the cascaded MPFs is 150 kHz. To the best of my knowledge, this is the first time realizing such a narrow passband in single-passband MPF. The oscillation frequency of the OEO can be tuned from 0 to 40 GHz owing to the wideband tunability of the MPF. Thanks to the ultrahigh mode selectivity of the IIR filter, the mode hopping is successfully suppressed. A stable microwave signal at 8.18 GHz is obtained with a phase noise of -113 dBc/Hz at 10 kHz, and the side mode noise is below -95 dBc/Hz. The signal-to-noise ratio exceeds 50 dB during the tuning process.
PAPER FIBERS AS A CARBON SOURCE FOR THE DE NOVO FORMATION OF POLYCHLORINATED DIOXINS AND FURANS
Formation of polychlorinated dibenzo-p-dioxins and polychlorinated dibenzefurans (PCDDs/Fs) from carbons that were produced from pyrolysis of paper fibers and from a wood charcoal was investigated experimentally. Fibers obtained from a filter paper were pyrolyzed at 300 and 800 d...
Furusawa, Naoto
2006-09-01
A technique is presented for the economical, routine, and quantitative analysis of contamination by dichloro-diphenyl-trichloroethanes (DDTs) [pp'-DDT, pp'-dichlorodiphenyl dichloroethylene, and pp'-dichlorodiphenyl dichloreothane in beef tallow and chicken fat samples, based on their separation using matrix solid-phase dispersion (MSPD) extraction with Toyobo-KF, an activated carbon fiber. Toyobo-KF is a newly applied MSPD sorbent, and it is followed by reversed-phase high-performance liquid chromatography (HPLC) with a photodiode array detector. The resulting analytical performance parameters [recoveries of spiked DDTs (0.1, 0.2, and 0.4 microg/g) > or = 81%, with relative standard deviations of < or = 8% (n = 5), and quantitation limits < or = 0.03 microg/g], with minimal handling and cost-efficiency, indicate that the present MSPD-HPLC method may be a useful tool for routine monitoring of DDT contamination in meat.
Methods and apparatus for broadband frequency comb stabilization
Cox, Jonathan A; Kaertner, Franz X
2015-03-17
Feedback loops can be used to shift and stabilize the carrier-envelope phase of a frequency comb from a mode-locked fibers laser or other optical source. Compared to other frequency shifting and stabilization techniques, feedback-based techniques provide a wideband closed-loop servo bandwidth without optical filtering, beam pointing errors, or group velocity dispersion. It also enables phase locking to a stable reference, such as a Ti:Sapphire laser, continuous-wave microwave or optical source, or self-referencing interferometer, e.g., to within 200 mrad rms from DC to 5 MHz. In addition, stabilized frequency combs can be coherently combined with other stable signals, including other stabilized frequency combs, to synthesize optical pulse trains with pulse durations of as little as a single optical cycle. Such a coherent combination can be achieved via orthogonal control, using balanced optical cross-correlation for timing stabilization and balanced homodyne detection for phase stabilization.
Solid-Core Photonic Bandgap Fibers for Cladding-Pumped Raman Amplification
2011-06-03
L. Leick, J. Broeng, and S. Selleri, “Single-mode analysis of Yb- doped double-cladding distributed spectral filtering photonic crystal fibers ,” Opt... fiber amplifiers are analyzed theoretically as possible candidates for power scaling. An example fiber design with a mode field diameter of 46 µm and... doped fiber laser with true single-mode output using W-type structure,” in Conference on Lasers and Electro-Optics, (Optical Society of America, 2006
NASA Astrophysics Data System (ADS)
Liu, Ling
The primary goal of this research is the analysis, development, and experimental demonstration of an adaptive phase-locked fiber array system for free-space optical communications and laser beam projection applications. To our knowledge, the developed adaptive phase-locked system composed of three fiber collimators (subapertures) with tip-tilt wavefront phase control at each subaperture represents the first reported fiber array system that implements both phase-locking control and adaptive wavefront tip-tilt control capabilities. This research has also resulted in the following innovations: (a) The first experimental demonstration of a phase-locked fiber array with tip-tilt wave-front aberration compensation at each fiber collimator; (b) Development and demonstration of the fastest currently reported stochastic parallel gradient descent (SPGD) system capable of operation at 180,000 iterations per second; (c) The first experimental demonstration of a laser communication link based on a phase-locked fiber array; (d) The first successful experimental demonstration of turbulence and jitter-induced phase distortion compensation in a phase-locked fiber array optical system; (e) The first demonstration of laser beam projection onto an extended target with a randomly rough surface using a conformal adaptive fiber array system. Fiber array optical systems, the subject of this study, can overcome some of the draw-backs of conventional monolithic large-aperture transmitter/receiver optical systems that are usually heavy, bulky, and expensive. The primary experimental challenges in the development of the adaptive phased-locked fiber-array included precise (<5 microrad) alignment of the fiber collimators and development of fast (100kHz-class) phase-locking and wavefront tip-tilt control systems. The precise alignment of the fiber collimator array is achieved through a specially developed initial coarse alignment tool based on high precision piezoelectric picomotors and a dynamic fine alignment mechanism implemented with specially designed and manufactured piezoelectric fiber positioners. Phase-locking of the fiber collimators is performed by controlling the phases of the output beams (beamlets) using integrated polarization-maintaining (PM) fiber-coupled LiNbO3 phase shifters. The developed phase-locking controllers are based on either the SPGD algorithm or the multi-dithering technique. Subaperture wavefront phase tip-tilt control is realized using piezoelectric fiber positioners that are controlled using a computer-based SPGD controller. Both coherent (phase-locked) and incoherent beam combining in the fiber array system are analyzed theoretically and experimentally. Two special fiber-based beam-combining testbeds have been built to demonstrate the technical feasibility of phase-locking compensation prior to free-space operation. In addition, the reciprocity of counter-propagating beams in a phase-locked fiber array system has been investigated. Coherent beam combining in a phase-locking system with wavefront phase tip-tilt compensation at each subaperture is successfully demonstrated when laboratory-simulated turbulence and wavefront jitters are present in the propagation path of the beamlets. In addition, coherent beam combining with a non-cooperative extended target in the control loop is successfully demonstrated.
Impact of laser phase and amplitude noises on streak camera temporal resolution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wlotzko, V., E-mail: wlotzko@optronis.com; Optronis GmbH, Ludwigstrasse 2, 77694 Kehl; Uhring, W.
2015-09-15
Streak cameras are now reaching sub-picosecond temporal resolution. In cumulative acquisition mode, this resolution does not entirely rely on the electronic or the vacuum tube performances but also on the light source characteristics. The light source, usually an actively mode-locked laser, is affected by phase and amplitude noises. In this paper, the theoretical effects of such noises on the synchronization of the streak system are studied in synchroscan and triggered modes. More precisely, the contribution of band-pass filters, delays, and time walk is ascertained. Methods to compute the resulting synchronization jitter are depicted. The results are verified by measurement withmore » a streak camera combined with a Ti:Al{sub 2}O{sub 3} solid state laser oscillator and also a fiber oscillator.« less
NASA Astrophysics Data System (ADS)
Polynkin, Alexander; Polynkin, Pavel; Schülzgen, Axel; Mansuripur, Masud; Peyghambarian, N.
2005-02-01
We report over 2 W of single spatial-mode output power at 1.5 µm from an 8-cm-long, large-core phosphate fiber laser. The fiber has a numerical aperture of simeq 0.17 and a 25-µm-wide core, heavily doped with 1% Er+3 and 8% Yb+3. The laser utilizes a scalable evanescent-field-based pumping scheme and can be pumped by as many as eight individual multimode pigtailed diode laser sources at a wavelength of 975 nm. Nearly diffraction-limited laser output with a beam quality factor M^2 simeq 1.1 is achieved by use of a simple intracavity all-fiber spatial-mode filter. Both spectrally broadband and narrowband operation of the laser are demonstrated.
NASA Astrophysics Data System (ADS)
Othman, Muhammad A.; Sabry, Yasser M.; Sadek, Mohamed; Nassar, Ismail M.; Khalil, Diaa A.
2016-03-01
In this work we report a novel optical MEMS deeply-etched mirror with metallic coating and vertical slot, where the later allows reflection and transmission by the micromirror. The micromirror as well as fiber grooves are fabricated using deep reactive ion etching technology, where the optical axis is in-plane and the components are self-aligned. The etching depth is 150 μm chosen to improve the micromirror optical throughput. The vertical optical structure is Al metal coated using the shadow mask technique. A fiber-coupled Fabry-Pérot filter is successfully realized using the fabricated structure. Experimental measurements were obtained based on a dielectric-coated optical fiber inserted into a fiber groove facing the slotted micromirror. A versatile performance in terms of the free spectral range and 3-dB bandwidth is achieved.
Kale, Sushrut; Micheyl, Christophe; Heinz, Michael G.
2013-01-01
Listeners with sensorineural hearing loss (SNHL) often show poorer thresholds for fundamental-frequency (F0) discrimination, and poorer discrimination between harmonic and frequency-shifted (inharmonic) complex tones, than normal-hearing (NH) listeners—especially when these tones contain resolved or partially resolved components. It has been suggested that these perceptual deficits reflect reduced access to temporal-fine-structure (TFS) information, and could be due to degraded phase-locking in the auditory nerve (AN) with SNHL. In the present study, TFS and temporal-envelope (ENV) cues in single AN-fiber responses to bandpass-filtered harmonic and inharmonic complex tones were measured in chinchillas with either normal hearing or noise-induced SNHL. The stimuli were comparable to those used in recent psychophysical studies of F0 and harmonic/inharmonic discrimination. As in those studies, the rank of the center component was manipulated to produce different resolvability conditions, different phase relationships (cosine and random phase) were tested, and background noise was present. Neural TFS and ENV cues were quantified using cross-correlation coefficients computed using shuffled cross-correlograms between neural responses to REF (harmonic) and TEST (F0- or frequency-shifted) stimuli. In animals with SNHL, AN-fiber tuning curves showed elevated thresholds, broadened tuning, best-frequency shifts, and downward shifts in the dominant TFS response component; however, no significant degradation in the ability of AN fibers to encode TFS or ENV cues was found. Consistent with optimal-observer analyses, the results indicate that TFS and ENV cues depended only on the relevant frequency shift in Hz and thus were not degraded because phase-locking remained intact. These results suggest that perceptual “TFS-processing” deficits do not simply reflect degraded phase-locking at the level of the AN. To the extent that performance in F0 and harmonic/inharmonic discrimination tasks depend on TFS cues, it is likely through a more complicated (sub-optimal) decoding mechanism, which may involve “spatiotemporal” (place-time) neural representations. PMID:23716215
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miura, T.; Kimura, K.
1959-12-01
Dust filters were examined using a radioactive solidaerosol, decay product daughters of Rn/sup 220/. An examination with a thermal precipitator revealed that the major part of particles in the radioactive aerosol were smaller than 0.5 mu in diameter. Twenty-one kinds of filters were tested. The filtering efficiency was highest in asbestos fiber filters. A radioautographic examination revealed that the radioactive substance penetrated as deep as 1.4 to 1.5 mm into the filter layer. (auth)
Boetti, Nadia G; Lousteau, Joris; Negro, Davide; Mura, Emanuele; Scarpignato, Gerardo; Abrate, Silvio; Milanese, Daniel
2012-02-27
We present a microstructured fiber whose 9 µm diameter core consists in three concentric rings made of three active glasses having different rare earth oxide dopants, Yb3+/Er3+, Yb3+/Tm3+ and Yb3+/Pr3+, respectively. Morphological and optical characterization of the optical fiber are presented. The photoluminescence spectrum is investigated for different pumping conditions using a commercial 980 nm laser diode. Tuning of the RGB (or white light) emission is demonstrated not only by adjusting the pump power but also by using an optical iris as spatial filter which, thanks to the microstructured core, also acts as a spectral filter.
NASA Astrophysics Data System (ADS)
Bykovskii, Iu. A.; Kul'Chin, Iu. N.; Obukh, V. F.; Smirnov, V. L.
1990-08-01
The correlated tuning of the speckle pattern in the radiation field of a single-fiber multimode interferometer is investigated experimentally and analytically in the presence of external action. It is found that correlated changes in the speckle pattern are observed in both the near and the far emission fields of the waveguide. An expression is obtained which provides a way to determine the maximum size of the speckle correlation region. The use of spatial filtering for isolating the effect of correlated speckle pattern tuning is suggested. It is shown that the use of a spatial filter makes it possible to increase the efficiency of fiber-optic transducers.
Sim, Kyoung Mi; Kim, Kyung Hwan; Hwang, Gi Byoung; Seo, SungChul; Bae, Gwi-Nam; Jung, Jae Hee
2014-09-15
Activated carbon fiber (ACF) filters have a wide range of applications, including air purification, dehumidification, and water purification, due to their large specific surface area, high adsorption capacity and rate, and specific surface reactivity. However, when airborne microorganisms such as bacteria and fungi adhere to the carbon substrate, ACF filters can become a source of microbial contamination, and their filter efficacy declines. Antimicrobial treatments are a promising means of preventing ACF bio-contamination. In this study, we demonstrate the use of Sophora flavescens in antimicrobial nanoparticles coated onto ACF filters. The particles were prepared using an aerosol process consisting of nebulization-thermal drying and particle deposition. The extract from S. flavescens is an effective, natural antimicrobial agent that exhibits antibacterial activity against various pathogens. The efficiency of Staphylococcus epidermidis inactivation increased with the concentration of S. flavescens nanoparticles in the ACF filter coating. The gas adsorption efficiency of the coated antimicrobial ACF filters was also evaluated using toluene. The toluene-removal capacity of the ACF filters remained unchanged while the antimicrobial activity was over 90% for some nanoparticle concentrations. Our results provide a scientific basis for controlling both bioaerosol and gaseous pollutants using antimicrobial ACF filters coated with S. flavescens nanoparticles. Copyright © 2014 Elsevier B.V. All rights reserved.
Development of a high resolution optical-fiber tilt sensor by F-P filter
NASA Astrophysics Data System (ADS)
Pan, Jianjun; Nan, Qiuming; Li, Shujie; Hao, Zhonghua
2017-04-01
A high-resolution tilt sensor is developed, which is composed of a pair of optical fiber collimators and a simple pendulum with an F-P filter. The tilt angle is measured by demodulating the shift of center wavelength of F-P filter, which is caused by incidence angle changing. The relationship between tilted angle and the center wavelength is deduced. Calibration experiment results also confirm the deduction, and show that it is easy to obtain a high resolution. Setting the initial angle to 6degree, the measurement range is ±3degree, its average sensitivity is 1104pm/degree, and its average resolution is as high as 0.0009degree.
Burr formation detector for fiber laser cutting based on a photodiode sensor system
NASA Astrophysics Data System (ADS)
Schleier, Max; Adelmann, Benedikt; Neumeier, Benedikt; Hellmann, Ralf
2017-11-01
We report a unique sensor system based on a InGaAs photodiode to detect the formation of burr during near infrared fiber laser cutting. The sensor approach encompasses the measurement of the thermal radiation form the process zone, optical filtering, digitalized sampling at 20 kHz, digital filtering using an elliptical band-pass filter 12th order and calculation of the standard deviation. We find a linear correlation between the deduced sensor signal and the generated burr height with this functionality being experimentally confirmed for laser cutting of mild and stainless steel of different thicknesses. The underlying mechanism of this transducer concept is attributed to the melt flow dynamics inside the cut kerf.
Field Testing Pulsed Power Inverters in Welding Operations to Control Heavy Metal Emissions
2009-12-01
diameter glass fiber media material. After gases passed through the CI, they entered four glass impingers, in series, that were chilled in an ice...Vanadium 0.05 0.05 0.01 (as V2O5 ) 0.00038 - Zinc 2 (as ZnO) 5 (as ZnO) 5 (as ZnO) 0.058 0.166 1...the impactor’s requirement for a specific optimum volumetric flow range. Filter media for each stage of the cascade impactor ( glass fiber filter
The transfer of carbon fibers through a commercial aircraft water separator and air cleaner
NASA Technical Reports Server (NTRS)
Meyers, J. A.
1979-01-01
The fraction of carbon fibers passing through a water separator and an air filter was determined in order to estimate the proportion of fibers outside a closed aircraft that are transmitted to the electronics through the air conditioning system. When both devices were used together and only fibers 3 mm or larger were considered, a transfer function of .001 was obtained.
Cell Measurements | Photovoltaic Research | NREL
two tungsten and two Xe lamps along with filters to produce light in nine wavelength regions in fiber filters on four filter wheels; adjustable chopping frequency 1-kW Xe 280 to 1,900 nm 10 nm full width at of Isc in the range of 0 to 2 suns using two lamps and neutral-density filters. If the sample is
Optofluidic tuning of multimode interference fiber filters
NASA Astrophysics Data System (ADS)
Antonio-Lopez, J. E.; May-Arrioja, D. A.; LiKamWa, P.
2009-05-01
We report on the optofluidic tuning of MMI-based bandpass filters. It is well known that MMI devices exhibit their highest sensitivity when their diameter (D) is modified, since they have a D2 wavelength dependence. In order to increase the MMF diameter we use a special fiber, called No-Core fiber, which is basically a MMF with a diameter of 125 μm with air as the cover. Therefore, when this No-Core fiber is immersed in liquids with different refractive indexes, as a result of the Goes-Hänchen shift the effective width (fundamental mode width) of the No-Core fiber is increased, and thus the peak wavelength is tuned. A tunability of almost 40 nm in going from air (n=1.333) to ethylene glycol (n=1.434) was easily obtained, with a minimum change in peak transmission, contrast, and bandwidth. Moreover, since replacing the entire liquid can be difficult, the device was placed vertically and the liquid was covering the No-Core fiber in small steps. This provided similar amount of tuning as before, but a more controllable tuning mechanism.
Tunable multiwavelength Tm-doped fiber laser based on the multimode interference effect.
Zhang, Peng; Wang, Tianshu; Ma, Wanzhuo; Dong, Keyan; Jiang, Huilin
2015-05-20
A simple multiwavelength Tm-doped fiber laser at the 2 μm band based on multimode interference (MMI) is proposed and experimentally demonstrated. In this scheme, a 4 m Tm-doped single-mode fiber is pumped by a 1568 nm laser, and a single-mode-multimode-single-mode (SMS) fiber structure is used as an MMI filter in which the multimode fiber is used to tune the laser. Laser operation of up to three wavelengths is obtained based on the MMI filter. The wavelengths can be tuned by adjusting the polarization controller and rotating the multimode fiber in the SMS structure, and the tuning region is about 24 nm, i.e., 1892-1916 nm. The side-mode suppression ratio of the laser is about 54 dB. The 3 dB linewidth is less than 0.04 nm. Peak fluctuation at each wavelength is analyzed, and the results show that the power fluctuation is less than 3 dB around the average power.
Stimulated Brillouin scattering continuous wave phase conjugation in step-index fiber optics.
Massey, Steven M; Spring, Justin B; Russell, Timothy H
2008-07-21
Continuous wave (CW) stimulated Brillouin scattering (SBS) phase conjugation in step-index optical fibers was studied experimentally and modeled as a function of fiber length. A phase conjugate fidelity over 80% was measured from SBS in a 40 m fiber using a pinhole technique. Fidelity decreases with fiber length, and a fiber with a numerical aperture (NA) of 0.06 was found to generate good phase conjugation fidelity over longer lengths than a fiber with 0.13 NA. Modeling and experiment support previous work showing the maximum interaction length which yields a high fidelity phase conjugate beam is inversely proportional to the fiber NA(2), but find that fidelity remains high over much longer fiber lengths than previous models calculated. Conditions for SBS beam cleanup in step-index fibers are discussed.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-06-01
... Hydrogen Peroxide Filter Extraction'' In this method, total suspended particulate matter (TSP) is collected on glass fiber filters according to 40 CFR Appendix G to part 50, EPA Reference Method for the Determination of Lead in Suspended Particulate Matter Collected From Ambient Air. The filter samples are...
76 FR 74708 - National Emission Standards for Hazardous Air Pollutants for Source Categories
Federal Register 2010, 2011, 2012, 2013, 2014
2011-12-01
... as follows: Bag leak detection system means a monitoring device for a fabric filter that identifies an increase in particulate matter emissions resulting from a broken filter bag or other malfunction... thermoset a binder on the mineral wool fiber used to make bonded products. Fabric filter means an air...
40 CFR Table 4 of Subpart Aaaaaaa... - Operating Limits
Code of Federal Regulations, 2010 CFR
2010-07-01
... Roofing Manufacturing Other Requirements and Information Who implements and enforces this subpart? Pt. 63... filter or fiber bed filter a. Inlet gas temperature b, andb. Pressure drop across device b The 3-hour... temperature and pressure drop, you can use a leak detection system that identifies when the filter media has...
40 CFR Table 4 of Subpart Aaaaaaa... - Operating Limits
Code of Federal Regulations, 2011 CFR
2011-07-01
... Roofing Manufacturing Other Requirements and Information Who implements and enforces this subpart? Pt. 63... filter or fiber bed filter a. Inlet gas temperature b, andb. Pressure drop across device b The 3-hour... temperature and pressure drop, you can use a leak detection system that identifies when the filter media has...
Photothermal effects in phase shifted FBG with varied light wavelength and intensity.
Ding, Meng; Chen, Dijun; Fang, Zujie; Wang, Di; Zhang, Xi; Wei, Fang; Yang, Fei; Ying, Kang; Cai, Haiwen
2016-10-31
The intensity enhancement effect of a phase-shifted fiber Bragg grating (PSFBG) is investigated theoretically and experimentally in this paper. Due to the effect, both of the FBG reflection bands and the transmission peak show red-shift with the increase of pump light wavelength from the shorter side to the longer side of the Bragg wavelength. The transmission peak shifts in pace with the pump's wavelength, which is much faster than the reflection band. The maximum shift increases with the pump power. In contrast, the red-shift is very small when the pump light deceases from the longer side of the Bragg wavelength. Such asymmetric behavior is checked dynamically by using a frequency modulated laser in a serrated wave, showing push-pull behavior. The effect of the characteristics of thermal dissipation conditions is also measured. The fiber loss coefficient of FBG being tested is estimated from the measured data to be about 0.001 mm-1, which may be attributed to the H2-loading and UV exposure in FBG fabrication. The observed phenomena are believed of importance in application where PSFBG is utilized as a narrow linewidth filter.
Myla, Subbarao; Bacharach, J Michael; Ansel, Gary M; Dippel, Eric J; McCormick, Daniel J; Popma, Jeffrey J
2010-05-01
The multicenter EPIC (FiberNet Embolic Protection System in Carotid Artery Stenting Trial) single-arm trial evaluated the 30-day outcomes of a new design concept for embolic protection during carotid artery stenting (CAS). Embolic protection filters available for use during CAS include fixed and over-the-wire systems that rely on embolic material capture within a "basket" structure. The FiberNet Embolic Protection System (EPS), which features a very low crossing profile, consists of a three-dimensional fiber-based filter distally mounted on a 0.014 inch guidewire with integrated aspiration during filter retrieval. The trial enrolled 237 patients from 26 centers. Demographics, clinical and lesion characteristics, as well as adverse events through a 30-day follow-up were recorded. The mean age of the patients was 74 years, 64% were male and 20% had symptomatic carotid artery disease. The combined major adverse event (MAE) rate at 30 days for all death, stroke, and myocardial infarction was 3.0%. There were three major strokes (two ischemic and one hemorrhagic) and two minor strokes (both ischemic) for a 2.1% 30-day stroke rate. The procedural technical success rate was 97.5% and macroscopic evidence of debris was reported in 90.9% of the procedures. The FiberNet EPS, used with commercially available stents, produced low stroke rates following CAS in high surgical risk patients presenting with carotid artery disease. The unique filter design including aspiration during retrieval may have contributed to the low 30-day stroke rate reported during CAS in patients considered at high risk for complications following carotid endarterectomy (CEA). Copyright 2010 Wiley-Liss, Inc.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-05-14
...; filter paper; technical books and manuals; textile-covered foam shielding; ceramic hardware and fittings... cables (including fiber optic cable); insulators; filters; lenses; mirrors; prisms; other optical...
Effect of exposure factors on image quality in screening mammography.
Alkhalifah, K; Brindabhan, A; Alsaeed, R
2017-11-01
The aim of this research was to study the effect of exposure factors on image quality for digital screening mammography units in Kuwait which use Tungsten (W) targets with Rhodium (Rh) and Silver (Ag) as filters. Mammography Accreditation Phantom Model 015 was imaged using a Hologic Selenia Digital mammography unit with W targets and Rh and Ag filters. Four images, each at 26, 28, 30, and 32 kVp, were obtained using each target-filter combination (W/Rh and W/Ag). The images were evaluated by five senior technologists for the number of specks, fibers and masses visible on each image. Statistical analysis was carried out using non-parametric tests at p = 0.05 level. There were significant changes in the visibility of fibers and specks between different kVp values with W/Rh (p < 0.001). However, with W/Ag combination, significant differences were observed in the fibers only (p < 0.001). Among the kVp values used, 28 kV emerged as the optimal value. Comparison of images obtained with the two filter materials, led to significant differences in the visibility of fibers and specks (p < 0.008). At 32 kVp, there were significant differences in the visibility of specks only (p < 0.008). A W/Rh target-filter combination provides better image quality than that provided by W/Ag. In particular, 30 and 32 kVp X-ray beams produce higher quality images than the lower kV values. Copyright © 2017 The College of Radiographers. Published by Elsevier Ltd. All rights reserved.
Effects of millimeter wave carbon fibers on filter-feeding freshwater invertebrates.
Soucek, David J; Dickinson, Amy; Cropek, Donald M
2010-05-01
The purpose of our study was to investigate the sub-lethal effects of millimeter wave carbon fibers (MWCF), a military obscurant, on filter-feeding freshwater invertebrates. We observed decreased survival, reproduction, and oxygen consumption in Daphnia magna at realistic loading rates. In experiments with the Asiatic clam (Corbicula fluminea), soft tissue dry weight and tissue condition index were not significantly different among control and MWCF exposed treatments; however, using a (15)N labeled alga as food, we observed decreased nitrogen turnover in tissues of clams exposed to MWCF, suggesting lower filtering or ingestion rates. Our findings combined with previous demonstrations of MWCF toxicity to green algae suggest that over a period of several months, bivalve growth may be inhibited, and cladoceran populations may be even more strongly affected by MWCF. Given that these fibers are persistent, further experiments should be conducted to determine the longer-term effects of contamination of water bodies with MWCF. Copyright 2009 Elsevier Inc. All rights reserved.
Yin, Mojuan; Huang, Shenghong; Lu, Baole; Chen, Haowei; Ren, Zhaoyu; Bai, Jintao
2013-09-20
A high-slope-efficiency single-frequency (SF) ytterbium-doped fiber laser, based on a Sagnac loop mirror filter (LMF), was demonstrated. It combined a simple linear cavity with a Sagnac LMF that acted as a narrow-bandwidth filter to select the longitudinal modes. And we introduced a polarization controller to restrain the spatial hole burning effect in the linear cavity. The system could operate at a stable SF oscillating at 1064 nm with the obtained maximum output power of 32 mW. The slope efficiency was found to be primarily dependent on the reflectivity of the fiber Bragg grating. The slope efficiency of multi-longitudinal modes was higher than 45%, and the highest slope efficiency of the single longitudinal mode we achieved was 33.8%. The power stability and spectrum stability were <2% and <0.1%, respectively, and the signal-to-noise ratio measured was around 60 dB.
Applications of plastic optical fiber in communication
NASA Astrophysics Data System (ADS)
Tayahi, Moncef Ben
In this thesis, we report the results of our theoretical and experimental studies of large core polymer fibers. This relatively low loss and high bandwidth plastic optical fiber (POF) potentially have important applications in LAN. We measured the power penalty due to modal noise. We also developed a model to calculate the signal to noise ratio (SNR) and the bit error rate (BER) floor just by knowing the coupling coefficient in the mode selective loss being considered. The calculated bandwidth using the WKB approximation was found to be 0.44 GHz per 100 m, which is much lower than the measured bandwidth of 3 GHz per 100 m. This discrepancy was explained by the presence of strong mode coupling in POFs. We studied distortions products in CATV systems. Composite second order (CSO) and composite triple beat (CTB) for different channels were measured using a spectrum analyzer and adjustable band pass filter. Since the CSO and the CTB did not meet the CATV standard, a predistortion circuit was used to minimize CSO and CTB products produced by the laser. The predistortion circuit provides a signal comprising multiple subcarrier signals substantially equal in magnitude and opposite in phase to those associated with the nonlinear transfer function of the laser being deployed. The RF signal is split into a primary branch that has a time delayed portion (80% of the RF signal), the secondary branch (10% of the RF signal) is where the second order products are generated with a 180 °phase shift from the fundamental, and the last remaining 10% of the RF signal is where the third order distortion products are generated with a 180 °phase shift from the fundamental. The output signal is taken as the summation of three signals processed by the branch circuits and coupled to the directly to the laser to be linearized. Finally, using cyclic transparent optical polymer (CYTOP), a perfluorinated graded index fiber, different transmission characteristics were investigated. CYTOP fiber has many outstanding characteristics superior to any other polymer waveguide. It can support multi-Gb/s date rates from 800 run to 1300 nm.
NASA Technical Reports Server (NTRS)
1985-01-01
Filtration technology originated in a mid 1960's NASA study. The results were distributed to the filter industry, an HR Textron responded, using the study as a departure for the development of 421 Filter Media. The HR system is composed of ultrafine steel fibers metallurgically bonded and compressed so that the pore structure is locked in place. The filters are used to filter polyesters, plastics, to remove hydrocarbon streams, etc. Several major companies use the product in chemical applications, pollution control, etc.
Single mode variable-sensitivity fiber optic sensors
NASA Technical Reports Server (NTRS)
Murphy, K. A.; Fogg, B. R.; Gunther, M. F.; Claus, R. O.
1992-01-01
We review spatially-weighted optical fiber sensors that filter specific vibration modes from one dimensional beams placed in clamped-free and clamped-clamped configurations. The sensitivity of the sensor is varied along the length of the fiber by tapering circular-core, dual-mode optical fibers. Selective vibration mode suppression on the order of 10 dB was obtained. We describe experimental results and propose future extensions to single mode sensor applications.
Processes and applications of silicon carbide nanocomposite fibers
NASA Astrophysics Data System (ADS)
Shin, D. G.; Cho, K. Y.; Jin, E. J.; Riu, D. H.
2011-10-01
Various types of SiC such as nanowires, thin films, foam, and continuous fibers have been developed since the early 1980s, and their applications have been expanded into several new applications, such as for gas-fueled radiation heater, diesel particulate filter (DPF), ceramic fiber separators and catalyst/catalyst supports include for the military, aerospace, automobile and electronics industries. For these new applications, high specific surface area is demanded and it has been tried by reducing the diameter of SiC fiber. Furthermore, functional nanocomposites show potentials in various harsh environmental applications. In this study, silicon carbide fiber was prepared through electrospinning of the polycarbosilane (PCS) with optimum molecular weight distribution which was synthesized by new method adopting solid acid catalyst such as ZSM-5 and γ-Al2O3. Functional elements such as aluminum, titanium, tungsten and palladium easily doped in the precursor fiber and remained in the SiC fiber after pyrolysis. The uniform SiC fibers were produced at the condition of spinning voltage over 20 kV from the PCS solution as the concentration of 1.3 g/ml in DMF/Toluene (3:7) and pyrolysis at 1200°C. Pyrolyzed products were processed into several interesting applications such as thermal batteries, hydrogen sensors and gas filters.
Shen, Ying-Jie; Wu, Guang-Xia; Fan, Yao-Bo; Zhong, Hui; Wu, Lin-Lin; Zhang, Shao-Lai; Zhao, Xian-Hong; Zhang, Wei-Jun
2007-01-01
Using the surface of poly (sulfone) hollow fiber membrane segments as grafted layer, the hydrophilic acrylamide chain was grafted on by UV-photoinduced grafting polymerization. The gained improvement of surface wettability for the modified membrane was tested by measuring the contact-angle as well as FTIR spectra. Then correlation between the hydrophilic ability of support material and the biofilm adherence ability was demonstrated by comparing the pollutant removal rates from urban wastewater via two identical lab-scale up-flow biological aerated filters, one employed the surface wettability modified poly (sulfone) hollow fiber membrane segment as biofilm carrier and the other employed unmodified membrane segment as biofilm carrier. The experimental results showed that under the conditions of influent flux 5 L/h, hydraulic retention time 9 h and gas to liquid ratio (G/L) 10:1, the removal rates of chemical oxygen demand (COD) and ammonium nitrogen (NH4(+)-N) for the modified packing filter and the unmodified packing filter was averaged at 83.64% and 96.25%, respectively, with the former filter being 5%-20% more than the latter. The effluent concentration of COD, NH4(+)-N and turbidity for the modified packing filter was 25.25 mg/L, 2 mg/L and 8 NTU, respectively. Moreover, the ammonium nitrogen removal performance of the filter packing the modified PSF was compared with the other bioreactor packing of an efficient floating medium. The biomass test indicated that the modified membrane matrixes provided better specific adhesion (3310-5653 mg TSS/L support), which gave a mean of 1000 mg TSS/L more than the unmodified membrane did. In addition, the phenomenon of simultaneous denitrification on the inner surface of the support and nitrification on the outer surface was found in this work.
Stable multi-wavelength fiber lasers for temperature measurements using an optical loop mirror.
Diaz, Silvia; Socorro, Abian Bentor; Martínez Manuel, Rodolfo; Fernandez, Ruben; Monasterio, Ioseba
2016-10-10
In this work, two novel stable multi-wavelength fiber laser configurations are proposed and demonstrated by using a spool of a single-mode fiber as an optical loop mirror and one or two fiber ring cavities, respectively. The lasers are comprised of fiber Bragg grating reflectors as the oscillation wavelength selecting filters. The influence of the length of the spool of fiber on the laser stability both in terms of wavelength and laser output power was investigated. An application for temperature measurement is also shown.
Design Techniques for Uniform-DFT, Linear Phase Filter Banks
NASA Technical Reports Server (NTRS)
Sun, Honglin; DeLeon, Phillip
1999-01-01
Uniform-DFT filter banks are an important class of filter banks and their theory is well known. One notable characteristic is their very efficient implementation when using polyphase filters and the FFT. Separately, linear phase filter banks, i.e. filter banks in which the analysis filters have a linear phase are also an important class of filter banks and desired in many applications. Unfortunately, it has been proved that one cannot design critically-sampled, uniform-DFT, linear phase filter banks and achieve perfect reconstruction. In this paper, we present a least-squares solution to this problem and in addition prove that oversampled, uniform-DFT, linear phase filter banks (which are also useful in many applications) can be constructed for perfect reconstruction. Design examples are included illustrate the methods.
NASA Technical Reports Server (NTRS)
Grant, Joseph; Jackson, Kurt V.; Wang, Y.; Sharma, A.; Burdine, Robert V. (Technical Monitor)
2002-01-01
Fiber Optic Bragg Grating taps are fabricated and characterized at various wavelengths using a modified Talbot interferometric technique. Gratings are fabricated by tilting the photosensitive fiber to angles up to 45 degrees w.r.t. the writing angle. Diffraction characteristics of the tilted grating is monitored in first and second orders.
Self-Referenced Fiber Optic System For Remote Methane Detection
NASA Astrophysics Data System (ADS)
Zientkiewicz, Jacek K.
1989-10-01
The paper discusses a fiber optic multisensor methane detection system matched to topology and environment of the underground mine. The system involves time domain multiplexed (TDM) methane sensors based on selective absorption of source radiation by atomic/molecular species in the gas sensing heads. A two-wavelength ratiometric approach allows simple self-referencing, cancels out errors arising from other contaminants, and improves the measurement contrast. The laboratory system consists of a high radiance LED source, multimode fiber, optical sensing head, optical bandpass filters, and involves synchronous detection with low noise photodiodes and a lock-in amplifier. Detection sensitivity versus spectral resolution of the optical filters has also been investigated and described. The system performance was evaluated and the results are presented.
Core-pumped mode-locked ytterbium-doped fiber laser operating around 980 nm
NASA Astrophysics Data System (ADS)
Zhou, Yue; Dai, Yitang; Li, Jianqiang; Yin, Feifei; Dai, Jian; Zhang, Tian; Xu, Kun
2018-07-01
In this letter, we first demonstrate a core-pumped passively mode-locked all-normal-dispersion ytterbium-doped fiber oscillator based on nonlinear polarization evolution operating around 980 nm. The dissipative soliton fiber laser pulse can be compressed down to 250 fs with 1 nJ pulse energy, and the slope efficiency of the oscillator can be as high as 19%. To improve the dissipative soliton laser output spectrum smoothness, we replace the birefringent plate based intracavity filter with a diffraction-grating based filter. The output pulse duration can then be further compressed down to 180 fs with improved spectral-smoothness. These schemes have potential applications in seeding cryogenic Yb:YLF amplifiers and underwater exploration of marine resources.
Application of based on improved wavelet algorithm in fiber temperature sensor
NASA Astrophysics Data System (ADS)
Qi, Hui; Tang, Wenjuan
2018-03-01
It is crucial point that accurate temperature in distributed optical fiber temperature sensor. In order to solve the problem of temperature measurement error due to weak Raman scattering signal and strong noise in system, a new based on improved wavelet algorithm is presented. On the basis of the traditional modulus maxima wavelet algorithm, signal correlation is considered to improve the ability to capture signals and noise, meanwhile, combined with wavelet decomposition scale adaptive method to eliminate signal loss or noise not filtered due to mismatch scale. Superiority of algorithm filtering is compared with others by Matlab. At last, the 3km distributed optical fiber temperature sensing system is used for verification. Experimental results show that accuracy of temperature generally increased by 0.5233.
Optical filter finesses enhancement based on nested coupled cavities and active medium
NASA Astrophysics Data System (ADS)
Adib, George A.; Sabry, Yasser M.; Khalil, Diaa
2016-04-01
Optical filters with relatively large FSR and narrow linewidth are simultaneously needed for different applications. The ratio between the FSR and the 3-dB linewidth is given by finesse of the filter, which is solely determined by the different energy loss mechanisms limited by the technology advancement. In this work, we present a novel coupled-cavity configuration embedding an optical filter and a gain medium; allowing an overall finesse enhancement and simultaneous FSR and 3-dB linewidth engineering beyond the technological limits of the filter fabrication method. The configuration consists of two resonators. An active ring resonator comprises an optical gain medium and a passive resonator. In one configuration, the optical filter is the passive resonator itself. In a second configuration, the passive resonator is another ring resonator that embeds the optical filter. The presented configurations using a semiconductor optical amplifier are applied one time to a mechanically Fabry-Perot filter in the first presented configuration; and a second time to a fiber ring filter in the second presented configuration. The mechanical filter has an original 3-dB linewidth of 1nm and an FSR that is larger than 100nm while the enhanced linewidth is about 0.3nm. The fiber ring filter length is 4 m and directional coupler ratios of 90/10corresponding to a 3-dBlinewidth of about 4MHz and an FSR of 47 MHz. The enhanced 3- dBlinewidth of the overall filter configuration is 200kHz, demonstrating finesse enhancement up to20 times the original finesse of the filter.
Solbu, K; Thorud, S; Hersson, M; Ovrebø, S; Ellingsen, D G; Lundanes, E; Molander, P
2007-08-17
Methodology for personal occupational exposure assessment of airborne trialkyl and triaryl organophosphates originating from hydraulic fluids by active combined aerosol and vapor sampling at 1.5L/min is presented. Determination of the organophosphates was performed by gas chromatography-mass spectrometry. Combinations of adsorbents (Anasorb 747, Anasorb CSC, Chromosorb 106, XAD-2 and silica gel) with an upstream cassette with glass fiber or PTFE filters and different desorption/extraction solvents (CS(2), CS(2)-dimethylformamide (50:1, v/v), toluene, dichloromethane, methyl-t-butyl ether and methanol) have been evaluated for optimized combined vapor and aerosol air sampling of the organophosphates tri-isobutyl, tri-n-butyl, triphenyl, tri-o-cresyl, tri-m-cresyl and tri-p-cresyl phosphates. The combination of Chromosorb 106 and 37 mm filter cassette with glass fiber filter and dichloromethane as desorption/extraction solvent was the best combination for mixed phase air sampling of the organophosphates originating from hydraulic fluids. The triaryl phosphates were recovered solely from the filter, while the trialkyl phosphates were recovered from both the filter and the adsorbent. The total sampling efficiency on the combined sampler was in the range 92-101% for the studied organophosphates based on spiking experiments followed by pulling air through the sampler. Recoveries after 28 days storage were 98-102% and 99-101% when stored at 5 and -20 degrees C, respectively. The methodology was further evaluated in an exposure chamber with generated oil aerosol atmospheres with both synthetic and mineral base oils with added organophosphates in various concentrations, yielding total sampling efficiencies in close comparison to the spiking experiments. The applicability of the method was demonstrated by exposure measurements in a mechanical workshop where system suitability tests are performed on different aircraft components in a test bench, displaying tricresyl phosphate air concentrations of 0.024 and 0.28 mg/m(3), as well as during aircraft maintenance displaying tri-n-butyl phosphate air concentrations of 0.061 and 0.072 mg/m(3).
Federal Register 2010, 2011, 2012, 2013, 2014
2011-03-22
... on a particle filter. Because this new measurement approach is being approved for NAAQS compliance... Lead (Pb) on TSP High-Volume Filters.'' A sample of total suspended particulate matter (TSP) is collected on a glass fiber filter, using the sampler and procedure of the EPA Reference Method for the...
Particulate emissions from a mid-latitude prescribed chaparral fire
Wesley R. Cofer; Joel S. Levine; Daniel I. Sebacher; Edward L. Winstead; Philip J. Riggan; James A. Brass; Vincent G. Ambrosia
1988-01-01
Smoke aerosol was collected on filters from a helicopter during a 400-acre (1.62 km2) prescribed chaparral burn in the San Dimas Experimental Forest on December 12, 1986. Hi-Vol samplers were used to collect particles on both Teflon and glass fiber filters. Scanning electron microscopy of the filters revealed particles that ranged in size from...
NASA Astrophysics Data System (ADS)
Zhang, Rongchun; Ramamoorthy, Ayyalusamy
2015-05-01
Dynamics plays important roles in determining the physical, chemical, and functional properties of a variety of chemical and biological materials. However, a material (such as a polymer) generally has mobile and rigid regions in order to have high strength and toughness at the same time. Therefore, it is difficult to measure the role of mobile phase without being affected by the rigid components. Herein, we propose a highly sensitive solid-state NMR approach that utilizes a dipolar-coupling based filter (composed of 12 equally spaced 90° RF pulses) to selectively measure the correlation of 1H chemical shifts from the mobile regions of a material. It is interesting to find that the rotor-synchronized dipolar filter strength decreases with increasing inter-pulse delay between the 90° pulses, whereas the dipolar filter strength increases with increasing inter-pulse delay under static conditions. In this study, we also demonstrate the unique advantages of proton-detection under ultrafast magic-angle-spinning conditions to enhance the spectral resolution and sensitivity for studies on small molecules as well as multi-phase polymers. Our results further demonstrate the use of finite-pulse radio-frequency driven recoupling pulse sequence to efficiently recouple weak proton-proton dipolar couplings in the dynamic regions of a molecule and to facilitate the fast acquisition of 1H/1H correlation spectrum compared to the traditional 2D NOESY (Nuclear Overhauser effect spectroscopy) experiment. We believe that the proposed approach is beneficial to study mobile components in multi-phase systems, such as block copolymers, polymer blends, nanocomposites, heterogeneous amyloid mixture of oligomers and fibers, and other materials.
A source-synchronous filter for uncorrelated receiver traces from a swept-frequency seismic source
Lord, Neal; Wang, Herbert; Fratta, Dante
2016-09-01
We have developed a novel algorithm to reduce noise in signals obtained from swept-frequency sources by removing out-of-band external noise sources and distortion caused from unwanted harmonics. The algorithm is designed to condition nonstationary signals for which traditional frequency-domain methods for removing noise have been less effective. The source synchronous filter (SSF) is a time-varying narrow band filter, which is synchronized with the frequency of the source signal at all times. Because the bandwidth of the filter needs to account for the source-to-receiver propagation delay and the sweep rate, SSF works best with slow sweep rates and moveout-adjusted waveforms tomore » compensate for source-receiver delays. The SSF algorithm was applied to data collected during a field test at the University of California Santa Barbara’s Garner Valley downhole array site in Southern California. At the site, a 45 kN shaker was mounted on top of a one-story structure and swept from 0 to 10 Hz and back over 60 s (producing useful seismic waves greater than 1.6 Hz). The seismic data were captured with small accelerometer and geophone arrays and with a distributed acoustic sensing array, which is a fiber-optic-based technique for the monitoring of elastic waves. The result of the application of SSF on the field data is a set of undistorted and uncorrelated traces that can be used in different applications, such as measuring phase velocities of surface waves or applying convolution operations with the encoder source function to obtain traveltimes. Lastly, the results from the SSF were used with a visual phase alignment tool to facilitate developing dispersion curves and as a prefilter to improve the interpretation of the data.« less
A source-synchronous filter for uncorrelated receiver traces from a swept-frequency seismic source
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lord, Neal; Wang, Herbert; Fratta, Dante
We have developed a novel algorithm to reduce noise in signals obtained from swept-frequency sources by removing out-of-band external noise sources and distortion caused from unwanted harmonics. The algorithm is designed to condition nonstationary signals for which traditional frequency-domain methods for removing noise have been less effective. The source synchronous filter (SSF) is a time-varying narrow band filter, which is synchronized with the frequency of the source signal at all times. Because the bandwidth of the filter needs to account for the source-to-receiver propagation delay and the sweep rate, SSF works best with slow sweep rates and moveout-adjusted waveforms tomore » compensate for source-receiver delays. The SSF algorithm was applied to data collected during a field test at the University of California Santa Barbara’s Garner Valley downhole array site in Southern California. At the site, a 45 kN shaker was mounted on top of a one-story structure and swept from 0 to 10 Hz and back over 60 s (producing useful seismic waves greater than 1.6 Hz). The seismic data were captured with small accelerometer and geophone arrays and with a distributed acoustic sensing array, which is a fiber-optic-based technique for the monitoring of elastic waves. The result of the application of SSF on the field data is a set of undistorted and uncorrelated traces that can be used in different applications, such as measuring phase velocities of surface waves or applying convolution operations with the encoder source function to obtain traveltimes. Lastly, the results from the SSF were used with a visual phase alignment tool to facilitate developing dispersion curves and as a prefilter to improve the interpretation of the data.« less
Miller, Robert C.; Kozinski, Andrzej W.
1970-01-01
Bacteriophage T4 deoxyribonucleic acid (DNA)-protein complexes were retained preferentially on glass fiber filters. DNA polymerase activity in the complex was detected through the incorporation of 3H-labeled DNA precursors. The primer-product DNA hybridized with both phage and Escherichia coli DNA. Density labeling experiments showed that about 30% of incorporated 3H-deoxyadenosine triphosphate was found in DNA which hybridized with phage DNA; this DNA was found to be covalently attached to the primer DNA. PMID:5497903
Yang, Wenli; Holmén, Britt A
2007-06-01
This study quantified the release of seven relatively polar preemergence herbicides to the gas phase from soil-generated PM2.5-loaded quartz fiber filters (QFFs) and bare QFF as a function of relative humidity (RH). A 48-hour desorption fraction, F48, was defined to evaluate the relative desorption behavior of herbicides from two families, chloroacetanilide (alachlor, butachlor, metolachlor, and propachlor) and dinitroaniline (pendimethalin, prodiamine, and trifluralin) using temperature- (8 degrees C) and humidity- (10-64% RH) controlled air at a flow rate of 4 L/min. With increasing RH, an increase in F48 by a factor of 2-8 was observed for all herbicides, except metolachlor and butachlor, which showed significantly strong sorption to both sorbents. The conjugate carbonyl oxygen and amide nitrogen in the chloroacetanilide structure enables stronger specific interactions with the sorbents, leading to lower desorption compared to the dinitroaniline herbicides. Desorption of chloroacetanilides decreased in the order propachlor > alachlor > metolachlor approximately butachlor, and desorption of dinitroanilines decreased in the order trifluralin > pendimethalin > prodiamine. These orders are consistent with the different substituents in the herbicide molecules for each family and their relative tendencies to coordinate with surface moieties as indicated by electron-donating capacity. Henry's law constant and Abraham's H-acceptor parameter were found to be useful empirical parameters for describing the F48 desorption behavior for all seven herbicides.
Coherent UDWDM PON with joint subcarrier reception at OLT.
Kottke, Christoph; Fischer, Johannes Karl; Elschner, Robert; Frey, Felix; Hilt, Jonas; Schubert, Colja; Schmidt, Daniel; Wu, Zifeng; Lankl, Berthold
2014-07-14
In this contribution, we report on the experimental investigation of an ultra-dense wavelength-division multiplexing (UDWDM) upstream link with up to 700 × 2.488 Gb/s polarization-division multiplexing differential quadrature phase-shift keying parallel upstream user channels transmitted over 80 km of standard single-mode fiber. We discuss challenges of the digital signal processing in the optical line terminal arising from the joint reception of several upstream user channels. We present solutions for resource and cost-efficient realization of the required channel separation, matched filtering, down-conversion and decimation as well as realization of the clock recovery and polarization demultiplexing for each individual channel.
All-fiber Faraday Devices Based on Terbium-doped Fiber
NASA Astrophysics Data System (ADS)
Sun, Lei
Surface damage is one of the most problematic power limits in high-power fiber laser systems. All-fiber Faraday components are demonstrated as a solution to this problem, since they can be completely fusion-spliced into existing systems, eliminating all glass-air interfaces. Beam filamentation due to self-focusing places another limit on the peak power attainable from fiber laser systems. The limits imposed by this phenomenon are analyzed for the first time. The concept of an effective Verdet constant is proposed and experimentally validated. The effective Verdet constant of light propagation in a fiber includes contributions from the materials in both the core and the cladding. It is measured in a 25-wt% terbium-doped-core phosphate fiber to be --6.2 rad/(Tm) at 1053 nm, which is six times larger than silica fiber. The result agrees well with Faraday rotation theory in optical fiber. A compact all-fiber Faraday isolator and a Faraday mirror are demonstrated. At the core of each of these components is an all-fiber Faraday rotator made of a 4cm-long, 65-wt%-terbium-doped silicate fiber. The effective Verdet constant of the terbium-doped fiber is measured to be -32 rad/(Tm), which is 27x larger than that of silica fiber. This effective Verdet constant is the largest value measured to date in any fiber and is 83% of the Verdet constant of commercially available crystals used in bulk-optics-based isolators. Combining the all-fiber Faraday rotator with fiber polarizers results in a fully fusion-spliced all-fiber isolator whose isolation is measured to be 19 dB. Combining the all-fiber Faraday rotator with a fiber Bragg grating results in an all-fiber Faraday mirror that rotates the polarization state of the reflected light by 88 +/- 4°. An all-fiber optical magnetic field sensor is also demonstrated. It consists of a fiber Faraday rotator and a fiber polarizer. The fiber Faraday rotator uses a 2-cm-long section of 56-wt%-terbium-doped silicate fiber with a Verdet constant of -24.5 rad/(Tm) at 1053 nm. The fiber polarizer is Corning SP1060 single-polarization fiber. The sensor has a sensitivity of 0.49 rad/T and can measure magnetic fields from 0.02 to 3.2 T. An all-fiber wavelength-tunable laser based on Faraday rotation is proposed. It consists of an all-fiber wavelength-tunable filter in a conventional fiber laser cavity. The filter includes a fiber polarizer and a fiber Faraday mirror in which a chirped fiber Bragg grating is directly written onto the 65-wt% terbium fiber. The ytterbium-doped fiber in the laser is gain flattened using a. 1030/1090 rim WDM filter, resulting a net gain ripple that is measured to he less than 0.2 dB from 1047 to 1060 nm. The wavelength tuning range of the resulting fiber laser is therefore expected to be in this 1047 to 1060 nm range. Filamentation is one of the nonlinear peak-power-threshold limits in high-power fiber lasers. Starting from the paraxial wave equation, an analytic expression for the filamentation threshold in fiber lasers is derived using a perturbation method. The occurrence of filamentation is determined by the larger of two thresholds, one of perturbative gain and one of spatial confinement. The threshold value is around a few megawatts, depending on the parameters of the fiber.
Passively stabilized 215-W monolithic CW LMA-fiber laser with innovative transversal mode filter
NASA Astrophysics Data System (ADS)
Stutzki, Fabian; Jauregui, Cesar; Voigtländer, Christian; Thomas, Jens U.; Limpert, Jens; Nolte, Stefan; Tünnermann, Andreas
2010-02-01
We report on the development of a high power monolithic CW fiber oscillator with an output power of 215 W in a 20μm core diameter few-mode Large Mode Area fiber (LMA). The key parameters for stable operation are reviewed. With these optimizations the root mean square of the output power fluctuations can be reduced to less than 0.5 % on a timescale of 20 s, which represents an improvement of more than a factor 5 over a non-optimized fiber laser. With a real-time measurement of the mode content of the fiber laser it can be shown that the few-mode nature of LMA fibers is the main factor for the residual instability of our optimized fiber laser. The root of the problem is that Fiber Bragg Gratings (FBGs) written in multimode fibers exhibit a multi-peak reflexion spectrum in which each resonance corresponds to a different transversal mode. This reflectivity spectrum stimulates multimode laser operation, which results in power and pointing instabilities due to gain competition between the different transversal modes . To stabilize the temporal and spatial behavior of the laser output, we propose an innovative passive in-fiber transversal mode filter based on modified FBG-Fabry Perot structure. This structure provides different reflectivities to the different transversal modes according to the transversal distribution of their intensity profile. Furthermore, this structure can be completely written into the active fiber using fs-laser pulses. Moreover, this concept scales very well with the fiber core diameter, which implies that there is no performance loss in fibers with even larger cores. In consequence this structure is inherently power scalable and can, therefore, be used in kW-level fiber laser systems.
NASA Astrophysics Data System (ADS)
Iinuma, Yoshiteru; Böge, Olaf; Gnauk, Thomas; Herrmann, Hartmut
α-Pinene ozonolysis was carried out in the presence of ammonium sulfate or sulfuric acid seed particles in a 9 m 3 Teflon chamber at the mixing ratios of 100 ppbv for α-pinene and about 70 ppbv for ozone. The evolution of size distribution was measured by means of a differential mobility particle sizer (DMPS). The resulting secondary organic aerosol (SOA) was sampled by a denuder/quartz fiber filter combination for the determination of the total organic carbon concentration (TOC) in the particle phase, using a thermographic method and by a denuder/PTFE filter combination for the analysis of individual chemical species in the particle phase using capillary electrophoresis-electrospray ionization-mass spectrometry (CE-ESI-MS). cis-Pinic acid ( m/ z 185) and another species tentatively identified at m/ z 171 and 199 were the major particle phase species for both seed particles although the product yields were different, indicating the influence of seed particle acidity. A thermographic method for the determination of TOC showed an increase of particle phase organics by 40% for the experiments with higher acidity. CE-ESI-MS analysis showed a large increase in the concentration of compounds with Mw>300 from the experiments with sulfuric acid seed particles. These results suggest that the seed particle acidity enhances the yield of SOA and plays an important role in the formation of larger molecules in the particle phase. Our results from direct particle phase chemical analysis suggest for the first time that condensation of smaller organics takes place by polymerization or aldol condensation following the formation of aldehydes, such as pinonaldehyde from the terpene ozonolysis.
Investigation on filter method for smoothing spiral phase plate
NASA Astrophysics Data System (ADS)
Zhang, Yuanhang; Wen, Shenglin; Luo, Zijian; Tang, Caixue; Yan, Hao; Yang, Chunlin; Liu, Mincai; Zhang, Qinghua; Wang, Jian
2018-03-01
Spiral phase plate (SPP) for generating vortex hollow beams has high efficiency in various applications. However, it is difficult to obtain an ideal spiral phase plate because of its continuous-varying helical phase and discontinued phase step. This paper describes the demonstration of continuous spiral phase plate using filter methods. The numerical simulations indicate that different filter method including spatial domain filter, frequency domain filter has unique impact on surface topography of SPP and optical vortex characteristics. The experimental results reveal that the spatial Gaussian filter method for smoothing SPP is suitable for Computer Controlled Optical Surfacing (CCOS) technique and obtains good optical properties.
Ölçer, İbrahim; Öncü, Ahmet
2017-06-05
Distributed vibration sensing based on phase-sensitive optical time domain reflectometry ( ϕ -OTDR) is being widely used in several applications. However, one of the main challenges in coherent detection-based ϕ -OTDR systems is the fading noise, which impacts the detection performance. In addition, typical signal averaging and differentiating techniques are not suitable for detecting high frequency events. This paper presents a new approach for reducing the effect of fading noise in fiber optic distributed acoustic vibration sensing systems without any impact on the frequency response of the detection system. The method is based on temporal adaptive processing of ϕ -OTDR signals. The fundamental theory underlying the algorithm, which is based on signal-to-noise ratio (SNR) maximization, is presented, and the efficacy of our algorithm is demonstrated with laboratory experiments and field tests. With the proposed digital processing technique, the results show that more than 10 dB of SNR values can be achieved without any reduction in the system bandwidth and without using additional optical amplifier stages in the hardware. We believe that our proposed adaptive processing approach can be effectively used to develop fiber optic-based distributed acoustic vibration sensing systems.
NASA Astrophysics Data System (ADS)
Zhou, Hui; Zeng, Yuting; Chen, Ming; Shen, Yunlong
2018-03-01
We have proposed a scheme of radio-over-fiber (RoF) system employing a dual-parallel Mach-Zehnder modulator (DP-MZM) based on four-wave mixing (FWM) in a semiconductor optical amplifier (SOA). In this scheme, the pump and the signal are generated by properly adjusting the direct current bias, modulation index of the DP-MZM, and the phase difference between the sub-MZMs. Because of the pump and the signal deriving from the same optical wave, the polarization states of the two lightwaves are copolarized. The single-pump FWM is polarization insensitive. After FWM and optical filtering, the optical millimeter-wave with octuple frequency is generated. About 40-GHz RoF system with a 2.5-Gbit / s signal is implemented by numerical simulation; the result shows that it has a good performance after the signal is transmitted over 40-km single-mode fiber. Then, the effects of the SOA's injection current and the carrier-to-sideband ratio on the system performance are discussed by simulation, and the optimum value for the system is obtained.
Ölçer, İbrahim; Öncü, Ahmet
2017-01-01
Distributed vibration sensing based on phase-sensitive optical time domain reflectometry (ϕ-OTDR) is being widely used in several applications. However, one of the main challenges in coherent detection-based ϕ-OTDR systems is the fading noise, which impacts the detection performance. In addition, typical signal averaging and differentiating techniques are not suitable for detecting high frequency events. This paper presents a new approach for reducing the effect of fading noise in fiber optic distributed acoustic vibration sensing systems without any impact on the frequency response of the detection system. The method is based on temporal adaptive processing of ϕ-OTDR signals. The fundamental theory underlying the algorithm, which is based on signal-to-noise ratio (SNR) maximization, is presented, and the efficacy of our algorithm is demonstrated with laboratory experiments and field tests. With the proposed digital processing technique, the results show that more than 10 dB of SNR values can be achieved without any reduction in the system bandwidth and without using additional optical amplifier stages in the hardware. We believe that our proposed adaptive processing approach can be effectively used to develop fiber optic-based distributed acoustic vibration sensing systems. PMID:28587240
Diffraction-limited, 300-kW peak-power pulses from a coiled multimode fiber amplifier
NASA Astrophysics Data System (ADS)
di Teodoro, Fabio; Koplow, Jeffrey P.; Moore, Sean W.; Kliner, Dahv A. V.
2002-04-01
We report a multimode, double-clad, Yb-doped fiber amplifier that produces diffraction-limited, 0.8-ns pulses with energies of 255 μJ and peak powers in excess of 300 kW at a repetition rate of ~8 kHz. Single-transverse-mode operation was obtained by bend-loss-induced mode filtering of the gain fiber.
James S. Han
1999-01-01
Lignocellulosic materials were evaluated for their effectiveness in filtering toxic heavy metals from stormwater. Kenaf, alfalfa, juniper, and aspen fibers were used as models to evaluate the effectiveness and limitations of chemical modification and the extent of fiber degradation. Individual and mixed aqueous solutions of nickel, copper, zinc, and cadmium in various...
Muñoz-Matutano, G.; Barrera, D.; Fernández-Pousa, C.R.; Chulia-Jordan, R.; Seravalli, L.; Trevisi, G.; Frigeri, P.; Sales, S.; Martínez-Pastor, J.
2016-01-01
New optical fiber based spectroscopic tools open the possibility to develop more robust and efficient characterization experiments. Spectral filtering and light reflection have been used to produce compact and versatile fiber based optical cavities and sensors. Moreover, these technologies would be also suitable to study N-photon correlations, where high collection efficiency and frequency tunability is desirable. We demonstrated single photon emission of a single quantum dot emitting at 1300 nm, using a Fiber Bragg Grating for wavelength filtering and InGaAs Avalanche Photodiodes operated in Geiger mode for single photon detection. As we do not observe any significant fine structure splitting for the neutral exciton transition within our spectral resolution (46 μeV), metamorphic QD single photon emission studied with our all-fiber Hanbury Brown & Twiss interferometer could lead to a more efficient analysis of entangled photon sources at telecom wavelength. This all-optical fiber scheme opens the door to new first and second order interferometers to study photon indistinguishability, entangled photon and photon cross correlation in the more interesting telecom wavelengths. PMID:27257122
Kao, Hung Pin; Schoeniger, Joseph; Yang, Nancy
2001-01-01
A technique for increasing the excitation and collection of evanescent fluorescence radiation emanating from a fiber optic sensor having a high refractive index (n.sub.r), dielectric thin film coating has been disclosed and described. The invention comprises a clad optical fiber core whose cladding is removed on a distal end, the distal end coated with a thin, non-porous, titanium dioxide sol-gel coating. It has been shown that such a fiber will exhibit increased fluorescence coupling due in part by 1) increasing the intensity of the evanescent field at the fiber core surface by a constructive interference effect on the propagating light, and 2) increasing the depth of penetration of the field in the sample. The interference effect created by the thin film imposes a wavelength dependence on the collection of the fluorescence and also suggests a novel application of thin films for color filtering as well as increasing collected fluorescence in fiber sensors. Collected fluorescence radiation increased by up to 6-fold over that of a bare fused silica fiber having a numerical aperture (N.A.) of O.6.
Active phase compensation system for fiber optic holography
NASA Technical Reports Server (NTRS)
Mercer, Carolyn R.; Beheim, Glenn
1988-01-01
Fiber optic delivery systems promise to extend the application of holography to severe environments by simplifying test configurations and permitting the laser to be remotely placed in a more benign location. However, the introduction of optical fiber leads to phase stability problems. Environmental effects cause the pathlengths of the fibers to change randomly, preventing the formation of stationary interference patterns which are required for holography. An active phase control system has been designed and used with an all-fiber optical system to stabilize the phase difference between light emitted from two fibers, and to step the phase difference by 90 deg without applying any constraints on the placement of the fibers. The accuracy of the phase steps is shown to be better than 0.02 deg., and a stable phase difference can be maintained for 30 min. This system can be applied to both conventional and electro-optic holography, as well as to any system where the maintenance of an accurate phase difference between two coherent beams is required.
Active phase compensation system for fiber optic holography
NASA Technical Reports Server (NTRS)
Mercer, Carolyn R.; Beheim, Glenn
1989-01-01
Fiber optic delivery systems promise to extend the application of holography to severe environments by simplifying test configurations and permitting the laser to be remotely placed in a more benign location. However, the introduction of optical fiber leads to phase stability problems. Environmental effects cause the pathlengths of the fibers to change randomly, preventing the formation of stationary interference patterns which are required for holography. An active phase control system has been designed and used with an all-fiber optical system to stabilize the phase difference between light emitted from two fibers, and to step the phase difference by 90 deg without applying any constraints on the placement of the fibers. The accuracy of the phase steps is shown to be better than 0.02 deg., and a stable phase difference can be maintained for 30 min. This system can be applied to both conventional and electro-optic holography, as well as to any system where the maintenance of an accurate phase difference between two coherent beams is required.
Experimental investigation of air pressure affecting filtration performance of fibrous filter sheet.
Xu, Bin; Yu, Xiao; Wu, Ya; Lin, Zhongping
2017-03-01
Understanding the effect of air pressure on their filtration performance is important for assessing the effectiveness of fibrous filters under different practical circumstances. The effectiveness of three classes of air filter sheets were investigated in laboratory-based measurements at a wide range of air pressures (60-130 KPa). The filtration efficiency was found most sensitive to the air pressure change at smaller particle sizes. As the air pressure increased from 60 to 130 KPa, significant decrease in filtration efficiency (up to 15%) and increase in pressure drop (up to 90 Pa) were observed. The filtration efficiency of the filter sheet with largest fiber diameter and smallest solid volume fraction was affected most, while the pressure drop of the filter sheet with smallest fiber diameter and largest solid volume fraction was affected most. The effect of air pressure on the filtration efficiency was slightly larger at greater filter face air velocity. However, the effect of air pressure on the pressure drop was negligible. The filtration efficiency and pressure drop were explicitly expressed as functions of the air pressure. Two coefficients were empirically derived and successfully accounted for the effects of air pressure on filtration efficiency and pressure drop.
NASA Astrophysics Data System (ADS)
Zhang, W. J.; Yang, X. Y.; Li, H.; You, L. X.; Lv, C. L.; Zhang, L.; Zhang, C. J.; Liu, X. Y.; Wang, Z.; Xie, X. M.
2018-07-01
Superconducting nanowire single-photon detectors (SNSPDs) with both high system detection efficiency (SDE) and low dark count rate (DCR) play significant roles in quantum information processes and various applications. The background dark counts of SNSPDs originate from the room temperature blackbody radiation coupled to the device via a fiber. Therefore, a bandpass filter (BPF) operated at low temperature with minimal insert loss is necessary to suppress the background DCR. Herein, a low-loss BPF integrated on a single-mode fiber end-face was designed, fabricated and verified for the low temperature implement. The fiber end-face BPF was featured with a typical passband width about 40 nm in the 1550 nm telecom band and a peak transmittance of over 0.98. SNSPD with high SDE fabricated on a distributed Bragg reflector was coupled to the BPF. The device with such a BPF showed an SDE of 80% at a DCR of 0.5 Hz, measured at 2.1 K. Compared the same device without a BPF, the DCR was reduced by over 13 dB with an SDE decrease of <3%.
Electrically tunable liquid crystal photonic bandgap fiber laser
NASA Astrophysics Data System (ADS)
Olausson, Christina B.; Scolari, Lara; Wei, Lei; Noordegraaf, Danny; Weirich, Johannes; Alkeskjold, Thomas T.; Hansen, Kim P.; Bjarklev, Anders
2010-02-01
We demonstrate electrical tunability of a fiber laser using a liquid crystal photonic bandgap fiber. Tuning of the laser is achieved by combining the wavelength filtering effect of a liquid crystal photonic bandgap fiber device with an ytterbium-doped photonic crystal fiber. We fabricate an all-spliced laser cavity based on a liquid crystal photonic bandgap fiber mounted on a silicon assembly, a pump/signal combiner with single-mode signal feed-through and an ytterbium-doped photonic crystal fiber. The laser cavity produces a single-mode output and is tuned in the range 1040- 1065 nm by applying an electric field to the silicon assembly.
Liu, Ya; Zhao, Xin; Liu, Jiansheng; Hu, Guoqing; Gong, Zheng; Zheng, Zheng
2014-08-25
We demonstrate the generation of soliton pulses covering a nearly one order-of-magnitude pulsewidth range from a simple carbon nanotube (CNT) mode-locked fiber laser with birefringence. A polarization-maintaining-fiber-pigtailed, inline polarization beam splitter and its associated birefringence is leveraged to either enable additional nonlinear polarization evolution (NPE) mode-locking effect or result in a bandwidth-tunable Lyot filter, through adjusting the intracavity polarization settings. The large pulsewidth tuning range is achieved by exploiting both the nonlinear CNT-NPE hybrid mode-locking mechanism that narrows the pulses and the linear filtering effect that broadens them. Induced vector soliton pulses with pulsewidth from 360 fs to 3 ps can be generated, and their time-bandwidth products indicate they are close to transform-limited.
Lindquist, Erik D; George, C M; Perin, Jamie; Neiswender de Calani, Karen J; Norman, W Ray; Davis, Thomas P; Perry, Henry
2014-07-01
Safe domestic potable water supplies are urgently needed to reduce childhood diarrheal disease. In periurban neighborhoods in Cochabamba, Bolivia, we conducted a cluster randomized controlled trial to evaluate the efficacy of a household-level hollow fiber filter and/or behavior change communication (BCC) on water, sanitation, and hygiene (WASH) to reduce the diarrheal disease in children less than 5 years of age. In total, 952 households were followed for a period of 12 weeks post-distribution of the study interventions. Households using Sawyer PointONE filters had significantly less diarrheal disease compared with the control arm during the intervention period, which was shown by diarrheal prevalence ratios of 0.21 (95% confidence interval [95% CI] = 0.15-0.30) for the filter arm and 0.27 (95% CI = 0.22-0.34) for the filter and WASH BCC arm. A non-significant reduction in diarrhea prevalence was reported in the WASH BCC study arm households (0.71, 95% CI = 0.59-0.86). © The American Society of Tropical Medicine and Hygiene.
Lindquist, Erik D.; George, C. M.; Perin, Jamie; Neiswender de Calani, Karen J.; Norman, W. Ray; Davis, Thomas P.; Perry, Henry
2014-01-01
Safe domestic potable water supplies are urgently needed to reduce childhood diarrheal disease. In periurban neighborhoods in Cochabamba, Bolivia, we conducted a cluster randomized controlled trial to evaluate the efficacy of a household-level hollow fiber filter and/or behavior change communication (BCC) on water, sanitation, and hygiene (WASH) to reduce the diarrheal disease in children less than 5 years of age. In total, 952 households were followed for a period of 12 weeks post-distribution of the study interventions. Households using Sawyer PointONE filters had significantly less diarrheal disease compared with the control arm during the intervention period, which was shown by diarrheal prevalence ratios of 0.21 (95% confidence interval [95% CI] = 0.15–0.30) for the filter arm and 0.27 (95% CI = 0.22–0.34) for the filter and WASH BCC arm. A non-significant reduction in diarrhea prevalence was reported in the WASH BCC study arm households (0.71, 95% CI = 0.59–0.86). PMID:24865680
High-energy mode-locked fiber lasers using multiple transmission filters and a genetic algorithm.
Fu, Xing; Kutz, J Nathan
2013-03-11
We theoretically demonstrate that in a laser cavity mode-locked by nonlinear polarization rotation (NPR) using sets of waveplates and passive polarizer, the energy performance can be significantly increased by incorporating multiple NPR filters. The NPR filters are engineered so as to mitigate the multi-pulsing instability in the laser cavity which is responsible for limiting the single pulse per round trip energy in a myriad of mode-locked cavities. Engineering of the NPR filters for performance is accomplished by implementing a genetic algorithm that is capable of systematically identifying viable and optimal NPR settings in a vast parameter space. Our study shows that five NPR filters can increase the cavity energy by approximately a factor of five, with additional NPRs contributing little or no enhancements beyond this. With the advent and demonstration of electronic controls for waveplates and polarizers, the analysis suggests a general design and engineering principle that can potentially close the order of magnitude energy gap between fiber based mode-locked lasers and their solid state counterparts.
Fabrication, functionalization, and application of electrospun biopolymer nanofibers.
Kriegel, Christina; Arecchi, Alessandra; Arrechi, Alessandra; Kit, Kevin; McClements, D J; Weiss, Jochen
2008-09-01
The use of novel nanostructured materials has attracted considerable interest in the food industry for their utilization as highly functional ingredients, high-performance packaging materials, processing aids, and food quality and safety sensors. Most previous application interest has focused on the development of nanoparticles. However, more recently, the ability to produce non-woven mats composed of nanofibers that can be used in food applications is beginning to be investigated. Electrospinning is a novel fabrication technique that can be used to produce fibers with diameters below 100 nm from (bio-) polymer solutions. These nanofibers have been shown to possess unique properties that distinguish them from non-woven fibers produced by other methods, e.g., melt-blowing. This is because first the process involved results in a high orientation of polymers within the fibers that leads to mechanically superior properties, e.g., increased tensile strengths. Second, during the spinning of the fibers from polymer solutions, the solvent is rapidly evaporated allowing the production of fibers composed of polymer blends that would typically phase separate if spun with other processes. Third, the small dimensions of the fibers lead to very high specific surface areas. Because of this the fiber properties may be greatly influenced by surface properties giving rise to fiber functionalities not found in fibers of larger sizes. For food applications, the fibers may find uses as ingredients if they are composed solely of edible polymers and GRAS ingredients, (e.g., fibers could contain functional ingredients such as nutraceuticals, antioxidants, antimicrobials, and flavors), as active packaging materials or as processing aids (e.g., catalytic reactors, membranes, filters (Lala et al., 2007), and sensors (Manesh et al., 2007; Ren et al., 2006; Sawicka et al., 2005). This review is therefore intended to introduce interested food and agricultural scientists to the concept of nano-fiber manufacturing with a particular emphasis on the use of biopolymers. We will review typical fabrication set-ups, discuss the influence of process conditions on nanofiber properties, and then review previous studies that describe the production of biopolymer-based nanofibers. Finally we briefly discuss emerging methods to further functionalize fibers and discuss potential applications in the area of food science and technology.
Buyel, Johannes F.; Gruchow, Hannah M.; Fischer, Rainer
2015-01-01
The clarification of biological feed stocks during the production of biopharmaceutical proteins is challenging when large quantities of particles must be removed, e.g., when processing crude plant extracts. Single-use depth filters are often preferred for clarification because they are simple to integrate and have a good safety profile. However, the combination of filter layers must be optimized in terms of nominal retention ratings to account for the unique particle size distribution in each feed stock. We have recently shown that predictive models can facilitate filter screening and the selection of appropriate filter layers. Here we expand our previous study by testing several filters with different retention ratings. The filters typically contain diatomite to facilitate the removal of fine particles. However, diatomite can interfere with the recovery of large biopharmaceutical molecules such as virus-like particles and aggregated proteins. Therefore, we also tested filtration devices composed solely of cellulose fibers and cohesive resin. The capacities of both filter types varied from 10 to 50 L m−2 when challenged with tobacco leaf extracts, but the filtrate turbidity was ~500-fold lower (~3.5 NTU) when diatomite filters were used. We also tested pre–coat filtration with dispersed diatomite, which achieved capacities of up to 120 L m−2 with turbidities of ~100 NTU using bulk plant extracts, and in contrast to the other depth filters did not require an upstream bag filter. Single pre-coat filtration devices can thus replace combinations of bag and depth filters to simplify the processing of plant extracts, potentially saving on time, labor and consumables. The protein concentrations of TSP, DsRed and antibody 2G12 were not affected by pre-coat filtration, indicating its general applicability during the manufacture of plant-derived biopharmaceutical proteins. PMID:26734037
Buyel, Johannes F; Gruchow, Hannah M; Fischer, Rainer
2015-01-01
The clarification of biological feed stocks during the production of biopharmaceutical proteins is challenging when large quantities of particles must be removed, e.g., when processing crude plant extracts. Single-use depth filters are often preferred for clarification because they are simple to integrate and have a good safety profile. However, the combination of filter layers must be optimized in terms of nominal retention ratings to account for the unique particle size distribution in each feed stock. We have recently shown that predictive models can facilitate filter screening and the selection of appropriate filter layers. Here we expand our previous study by testing several filters with different retention ratings. The filters typically contain diatomite to facilitate the removal of fine particles. However, diatomite can interfere with the recovery of large biopharmaceutical molecules such as virus-like particles and aggregated proteins. Therefore, we also tested filtration devices composed solely of cellulose fibers and cohesive resin. The capacities of both filter types varied from 10 to 50 L m(-2) when challenged with tobacco leaf extracts, but the filtrate turbidity was ~500-fold lower (~3.5 NTU) when diatomite filters were used. We also tested pre-coat filtration with dispersed diatomite, which achieved capacities of up to 120 L m(-2) with turbidities of ~100 NTU using bulk plant extracts, and in contrast to the other depth filters did not require an upstream bag filter. Single pre-coat filtration devices can thus replace combinations of bag and depth filters to simplify the processing of plant extracts, potentially saving on time, labor and consumables. The protein concentrations of TSP, DsRed and antibody 2G12 were not affected by pre-coat filtration, indicating its general applicability during the manufacture of plant-derived biopharmaceutical proteins.
Podbreznik, Peter; Đonlagić, Denis; Lešnik, Dejan; Cigale, Boris; Zazula, Damjan
2013-10-01
A cost-efficient plastic optical fiber (POF) system for unobtrusive monitoring of human vital signs is presented. The system is based on speckle interferometry. A laser diode is butt-coupled to the POF whose exit face projects speckle patterns onto a linear optical sensor array. Sequences of acquired speckle images are transformed into one-dimensional signals by using the phase-shifting method. The signals are analyzed by band-pass filtering and a Morlet-wavelet-based multiresolutional approach for the detection of cardiac and respiratory activities, respectively. The system is tested with 10 healthy nonhospitalized persons, lying supine on a mattress with the embedded POF. Experimental results are assessed statistically: precisions of 98.8% ± 1.5% and 97.9% ± 2.3%, sensitivities of 99.4% ± 0.6% and 95.3% ± 3%, and mean delays between interferometric detections and corresponding referential signals of 116.6 ± 55.5 and 1299.2 ± 437.3 ms for the heartbeat and respiration are obtained, respectively.
A 12 GHz wavelength spacing multi-wavelength laser source for wireless communication systems
NASA Astrophysics Data System (ADS)
Peng, P. C.; Shiu, R. K.; Bitew, M. A.; Chang, T. L.; Lai, C. H.; Junior, J. I.
2017-08-01
This paper presents a multi-wavelength laser source with 12 GHz wavelength spacing based on a single distributed feedback laser. A light wave generated from the distributed feedback laser is fed into a frequency shifter loop consisting of 50:50 coupler, dual-parallel Mach-Zehnder modulator, optical amplifier, optical filter, and polarization controller. The frequency of the input wavelength is shifted and then re-injected into the frequency shifter loop. By re-injecting the shifted wavelengths multiple times, we have generated 84 optical carriers with 12 GHz wavelength spacing and stable output power. For each channel, two wavelengths are modulated by a wireless data using the phase modulator and transmitted through a 25 km single mode fiber. In contrast to previously developed schemes, the proposed laser source does not incur DC bias drift problem. Moreover, it is a good candidate for radio-over-fiber systems to support multiple users using a single distributed feedback laser.
Observation of thermodynamic phase noise using a slow-light resonance in a fiber Bragg grating
NASA Astrophysics Data System (ADS)
Skolianos, George; Arora, Arushi; Bernier, Martin; Digonnet, Michel
2017-02-01
Thermodynamic phase noise in passive fiber devices is generally so weak that in most devices, in particular fiber sensors, it has only been observed in fiber lengths in the range of 1 meter or much longer. Here we present a passive fiber strain sensor only 4.5 mm in length in which the noise in the frequency range of 1 kHz to 12 kHz is limited by thermal phase noise in the fiber. The phase noise could be measured in such a short fiber by utilizing a slow-light fiber Bragg grating (FBG) resonator in which the phase noise is magnified by the resonator's slowing-down factor ng/n ≈ 370, where ng is the group index. At the same time, the usually dominant laser frequency noise was brought below the level of the phase noise by using a short fiber and a low-noise laser with a linewidth under 200 Hz. At 4 kHz, the total measured noise expressed in units of strain is 110 fɛ/√Hz, and the phase noise accounts for 77% of it. This sensor resolves a single-pass thermodynamic length fluctuation of only 5 x10-16 m/√Hz. These measurements provide experimental support for the dependencies of the phase noise on the fiber resonator length and group index predicted by a recent model.
Improved Goldstein Interferogram Filter Based on Local Fringe Frequency Estimation.
Feng, Qingqing; Xu, Huaping; Wu, Zhefeng; You, Yanan; Liu, Wei; Ge, Shiqi
2016-11-23
The quality of an interferogram, which is limited by various phase noise, will greatly affect the further processes of InSAR, such as phase unwrapping. Interferometric SAR (InSAR) geophysical measurements', such as height or displacement, phase filtering is therefore an essential step. In this work, an improved Goldstein interferogram filter is proposed to suppress the phase noise while preserving the fringe edges. First, the proposed adaptive filter step, performed before frequency estimation, is employed to improve the estimation accuracy. Subsequently, to preserve the fringe characteristics, the estimated fringe frequency in each fixed filtering patch is removed from the original noisy phase. Then, the residual phase is smoothed based on the modified Goldstein filter with its parameter alpha dependent on both the coherence map and the residual phase frequency. Finally, the filtered residual phase and the removed fringe frequency are combined to generate the filtered interferogram, with the loss of signal minimized while reducing the noise level. The effectiveness of the proposed method is verified by experimental results based on both simulated and real data.
Improved Goldstein Interferogram Filter Based on Local Fringe Frequency Estimation
Feng, Qingqing; Xu, Huaping; Wu, Zhefeng; You, Yanan; Liu, Wei; Ge, Shiqi
2016-01-01
The quality of an interferogram, which is limited by various phase noise, will greatly affect the further processes of InSAR, such as phase unwrapping. Interferometric SAR (InSAR) geophysical measurements’, such as height or displacement, phase filtering is therefore an essential step. In this work, an improved Goldstein interferogram filter is proposed to suppress the phase noise while preserving the fringe edges. First, the proposed adaptive filter step, performed before frequency estimation, is employed to improve the estimation accuracy. Subsequently, to preserve the fringe characteristics, the estimated fringe frequency in each fixed filtering patch is removed from the original noisy phase. Then, the residual phase is smoothed based on the modified Goldstein filter with its parameter alpha dependent on both the coherence map and the residual phase frequency. Finally, the filtered residual phase and the removed fringe frequency are combined to generate the filtered interferogram, with the loss of signal minimized while reducing the noise level. The effectiveness of the proposed method is verified by experimental results based on both simulated and real data. PMID:27886081
Methodology for modeling the microbial contamination of air filters.
Joe, Yun Haeng; Yoon, Ki Young; Hwang, Jungho
2014-01-01
In this paper, we propose a theoretical model to simulate microbial growth on contaminated air filters and entrainment of bioaerosols from the filters to an indoor environment. Air filter filtration and antimicrobial efficiencies, and effects of dust particles on these efficiencies, were evaluated. The number of bioaerosols downstream of the filter could be characterized according to three phases: initial, transitional, and stationary. In the initial phase, the number was determined by filtration efficiency, the concentration of dust particles entering the filter, and the flow rate. During the transitional phase, the number of bioaerosols gradually increased up to the stationary phase, at which point no further increase was observed. The antimicrobial efficiency and flow rate were the dominant parameters affecting the number of bioaerosols downstream of the filter in the transitional and stationary phase, respectively. It was found that the nutrient fraction of dust particles entering the filter caused a significant change in the number of bioaerosols in both the transitional and stationary phases. The proposed model would be a solution for predicting the air filter life cycle in terms of microbiological activity by simulating the microbial contamination of the filter.
Opto-electronic microwave oscillator
NASA Astrophysics Data System (ADS)
Yao, X. Steve; Maleki, Lute
1996-12-01
Photonic applications are important in RF communication systems to enhance many functions including remote transfer of antenna signals, carrier frequency up or down conversion, antenna beam steering, and signal filtering. Many of these functions require reference frequency oscillators. However, traditional microwave oscillators cannot meet all the requirements of photonic communication systems that need high frequency and low phase noise signal generation. Because photonic systems involve signals in both optical and electrical domains, an ideal signal source should be able to provide electrical and optical signals. In addition, it should be possible to synchronize or control the signal source by both electrical and optical means. We present such a source1-2 that converts continuous light energy into stable and spectrally pure microwave signals. This Opto-Electronic Oscillator, OEO, consists of a pump laser and a feedback circuit including an intensity modulator, an optical fiber delay line, a photodetector, an amplifier, and a filter, as shown in Figure 1a. Its oscillation frequency, limited only by the speed of the modulator, can be up to 75 GHz.
Interferometric phase measurement techniques for coherent beam combining
NASA Astrophysics Data System (ADS)
Antier, Marie; Bourderionnet, Jérôme; Larat, Christian; Lallier, Eric; Primot, Jérôme; Brignon, Arnaud
2015-03-01
Coherent beam combining of fiber amplifiers provides an attractive mean of reaching high power laser. In an interferometric phase measurement the beams issued for each fiber combined are imaged onto a sensor and interfere with a reference plane wave. This registration of interference patterns on a camera allows the measurement of the exact phase error of each fiber beam in a single shot. Therefore, this method is a promising candidate toward very large number of combined fibers. Based on this technique, several architectures can be proposed to coherently combine a high number of fibers. The first one based on digital holography transfers directly the image of the camera to spatial light modulator (SLM). The generated hologram is used to compensate the phase errors induced by the amplifiers. This architecture has therefore a collective phase measurement and correction. Unlike previous digital holography technique, the probe beams measuring the phase errors between the fibers are co-propagating with the phase-locked signal beams. This architecture is compatible with the use of multi-stage isolated amplifying fibers. In that case, only 20 pixels per fiber on the SLM are needed to obtain a residual phase shift error below λ/10rms. The second proposed architecture calculates the correction applied to each fiber channel by tracking the relative position of the interference finges. In this case, a phase modulator is placed on each channel. In that configuration, only 8 pixels per fiber on the camera is required for a stable close loop operation with a residual phase error of λ/20rms, which demonstrates the scalability of this concept.
Phase shift of TE and TM modes in an optical fiber due to axial strain (exact solution)
NASA Technical Reports Server (NTRS)
Egalon, Claudio O.; Rogowski, Robert S.
1992-01-01
Axial strain may be determined by monitoring the phase shift of modes of a variety of optical fiber sensors. In this paper, the exact solution of a circular optical fiber is used to calculate the phase shift of the TE and TM modes. Whenever an optical fiber is stressed, the optical path length, the index of refraction, and the propagation constants of each fiber mode change. In consequence, the modal phase term, beta(ln)z, of the fields is shifted by an amount Delta phi. In certain cases, it is desirable to control the phase shift term in order to make the fiber either more or less sensitive to certain kinds of strain. It is shown that it can be accomplished by choosing appropriate fiber parameters.
Nazaripour, Ali; Yamini, Yadollah; Ebrahimpour, Behnam; Fasihi, Javad
2016-07-01
In this study, two-phase hollow-fiber liquid-phase microextraction and three-phase hollow-fiber liquid-phase microextraction based on two immiscible organic solvents were compared for extraction of oxazepam and Lorazepam. Separations were performed on a liquid chromatography with mass spectrometry instrument. Under optimal conditions, three-phase hollow-fiber liquid-phase microextraction based on two immiscible organic solvents has a better extraction efficiency. In a urine sample, for three-phase hollow fiber liquid-phase microextraction based on two immiscible organic solvents, the calibration curves were found to be linear in the range of 0.6-200 and 0.9-200 μg L(-1) and the limits of detection were 0.2 and 0.3 μg L(-1) for oxazepam and lorazepam, respectively. For two-phase hollow fiber liquid-phase microextraction, the calibration curves were found to be linear in the range of 1-200 and 1.5-200 μg L(-1) and the limits of detection were 0.3 and 0.5 μg L(-1) for oxazepam and lorazepam, respectively. In a urine sample, for three-phase hollow-fiber-based liquid-phase microextraction based on two immiscible organic solvents, relative standard deviations in the range of 4.2-4.5% and preconcentration factors in the range of 70-180 were obtained for oxazepam and lorazepam, respectively. Also for the two-phase hollow-fiber liquid-phase microextraction, preconcentration factors in the range of 101-257 were obtained for oxazepam and lorazepam, respectively. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Results from Evaluation of Proposed ASME AG-1 Section FI Metal Media Filters - 13063
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wilson, John A.; Giffin, Paxton K.; Parsons, Michael S.
High efficiency particulate air (HEPA) filtration technology is commonly used in Department of Energy (DOE) facilities that require control of radioactive particulate matter (PM) emissions due to treatment or management of radioactive materials. Although HEPA technology typically makes use of glass fiber media, metal and ceramic media filters are also capable of filtering efficiencies beyond the required 99.97%. Sintered metal fiber filters are good candidates for use in DOE facilities due to their resistance to corrosive environments and resilience at high temperature and elevated levels of relative humidity. Their strength can protect them from high differential pressure or pressure spikesmore » and allow for back pulse cleaning, extending filter lifetime. Use of these filters has the potential to reduce the cost of filtration in DOE facilities due to life cycle cost savings. ASME AG-1 section FI has not been approved due to a lack of protocols and performance criteria for qualifying section FI filters. The Institute for Clean Energy Technology (ICET) with the aid of the FI project team has developed a Section FI test stand and test plan capable of assisting in the qualification ASME AG-1 section FI filters. Testing done at ICET using the FI test stand evaluates resistance to rated air flow, test aerosol penetration and resistance to heated air of the section FI filters. Data collected during this testing consists of temperature, relative humidity, differential pressure, flow rate, upstream particle concentration, and downstream particle concentration. (authors)« less
Erusalimsky, J D; John, J; Hong, Y; Moore, M
1996-11-15
A filter binding assay that measures internucleosomal DNA fragmentation associated with apoptosis is described. The assay is based on a novel principle that consists of using simultaneously two kinds of glass fiber filters to harvest [3H]thymidine-prelabeled cells following their incubation with inducers of apoptosis. One filter, which is neutral, traps intact chromatin and high-molecular-weight DNA. The other filter, which is positively charged with DEAE active groups, traps low-molecular-weight DNA fragments. DNA fragmentation is quantified by measuring the radioactivity retained by each of the filters. The assay was evaluated with the histiocytic lymphoma cell line U937 and the topoisomerase inhibitors camptothecin, etoposide, and doxorubicin. These agents caused a dose-dependent decrease of radioactivity in the neutral filter and a parallel increase of radioactivity in the DEAE filter. Irradiation-induced single strand breaks and topoisomerase-mediated primary DNA damage were not detected by this method. Consistent with the detection of internucleosomal DNA fragmentation, the effects measured by this assay were prevented by the endonuclease inhibitor zinc acetate and by the metabolic inhibitor sodium azide. Results obtained using this assay were validated by observation of DNA ladders on agarose gels and by morphologic examination of apoptotic features. Evaluation of the assay in a mock screen demonstrated that the introduction of the DEAE filter increases the assay sensitivity and eliminates false positives. Thus, this assay may be used in high-throughput screening approaches to discover novel modulators of apoptosis.
NASA Astrophysics Data System (ADS)
Ikeda, Akihiko; Nomura, Toshihiro; Matsuda, Yasuhiro H.; Tani, Shuntaro; Kobayashi, Yohei; Watanabe, Hiroshi; Sato, Keisuke
2018-05-01
High-speed 100 MHz strain monitor using fiber Bragg grating (FBG) and an optical filter has been devised for the magnetostriction measurements under ultrahigh magnetic fields. The longitudinal magnetostriction of LaCoO 3 has been measured at room temperature, 115, 7 and 4.2 K up to the maximum magnetic field of 150 T. The field-induced lattice elongations are observed, which are attributed to the spin-state crossover from the low-spin ground state to excited spin-states.
NASA Astrophysics Data System (ADS)
Li, Shenping; Chan, K. T.
1999-05-01
A wavelength-tunable actively mode-locked erbium fiber ring laser was demonstrated using a Fabry-Perot semiconductor modulator. The modulator played the simultaneous roles of an intensity mode locker and a tunable optical filter. Stable single- or dual-wavelength nearly transform-limited picosecond pulses at gigabit repetition rates were generated. Continuous wavelength tuning was achieved by simply controlling the temperature of the modulator. Pulse train with a repetition rate up to 19.93 GHz (eight times the driving frequency) was obtained by using rational harmonic mode-locking technique.
NASA Astrophysics Data System (ADS)
Yeh, Chien-Hung; Yang, Zi-Qing; Huang, Tzu-Jung; Chow, Chi-Wai
2018-03-01
To achieve a steady single-longitudinal-mode (SLM) erbium-doped fiber (EDF) laser, the wheel-ring architecture is proposed in the laser cavity. According to Vernier effect, the proposed wheel-ring can produce three different free spectrum ranges (FSRs) to serve as the mode-filter for suppressing the densely multi-longitudinal-mode (MLM). Here, to complete wavelength-tunable EDF laser, an optical tunable bandpass filter (OTBF) is utilized inside the cavity for tuning arbitrarily. In addition, the entire output performances of the proposed EDF wheel-ring laser are also discussed and analyzed experimentally.
NASA Astrophysics Data System (ADS)
Ye, Jun; Xu, Jiangming; Song, Jiaxin; Wu, Hanshuo; Zhang, Hanwei; Wu, Jian; Zhou, Pu
2018-06-01
Through high-fidelity numerical modeling and careful system-parameter design, we demonstrate the spectral manipulation of a hundred-watt-level high-power random fiber laser (RFL) by employing a watt-level tunable optical filter. Consequently, a >100-W RFL with the spectrum-agile property is achieved. The central wavelength can be continuously tuned with a range of ∼20 nm, and the tuning range of the full width at half maximum linewidth, which is closely related to the central wavelength, covers ∼1.1 to ∼2.7 times of the minimum linewidth.
Measurement of the Minority Carrier Diffusion Rate in N-GaAs.
1980-12-01
allow insertion of a fiber -optic cable. This fiber -optic link was necessary to permit a reference signal to impinge upon the photo- multiplier for some...lens onto the entrance slit of the spectrometer. The spectrometer is coupled by means of a light-tight coupler to the photomultiplier, and a fiber ...optic light path is provided to allow a reference 2 ’i29 1 "-I Laser Doubler - 1.06 Filters Pellicle Photomultiplier 0Spectrometer Lens/ Fiber RG-715
Fiber Optic Temperature Sensor Based on Multimode Interference Effects
NASA Astrophysics Data System (ADS)
Aguilar-Soto, J. G.; Antonio-Lopez, J. E.; Sanchez-Mondragon, J. J.; May-Arrioja, D. A.
2011-01-01
A novel fiber optic temperature sensor based on multimode interference was designed, fabricated and tested. The sensor is very simple and inexpensive since we only need to splice a section of multimode fiber between two single mode fibers. Using this device a sensing range of 25°C to 375°C is demonstrated. We should also highlight that due to the pass-band filter response of MMI devices, multiplexing is rather simple by just changing the length of the multimode section.
40 CFR 63.11567 - Who implements and enforces this subpart?
Code of Federal Regulations, 2011 CFR
2011-07-01
...). 2. A high-efficiency air filter or fiber bed filter a. Inlet gas temperature b, andb. Pressure drop...) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES (CONTINUED) National Emission Standards for Hazardous Air Pollutants for Area Sources: Asphalt...