Sample records for fiber injection scheme

  1. Measuring optical fiber length by use of a short-pulse optical fiber ring laser in a self-injection seeding scheme.

    PubMed

    Wang, Yi-Ping; Wang, Dong Ning; Jin, Wei

    2006-09-01

    A method for measuring the length of an optical fiber by use of an optical fiber ring laser pulse source is proposed and demonstrated. The key element of the optical fiber ring laser is a gain-switched Fabry-Perot laser diode operated in a self-injection seeding scheme. This method is especially suitable for measuring a medium or long fiber, and a resolution of 0.1 m is experimentally achieved. The measurement is implemented by accurately determining the pulse frequency that can maximize the output power of the fiber ring laser. The measurement results depend only on the refractive index of the fiber corresponding to this single wavelength, instead of the group index of the fiber, which represents a great advantage over both optical time-domain reflectometry and optical low-coherence reflectometry methods.

  2. A novel approach for clock recovery without pattern effect from degraded signal

    NASA Astrophysics Data System (ADS)

    Wang, Zhaoxin; Wang, Tong; Lou, Caiyun; Huo, Li; Gao, Yizhi

    2003-04-01

    A novel clock recovery scheme using two-ring injection mode-locked fiber ring laser based on all 10 GHz bandwidth components was demonstrated. With this scheme, the clock with low timing jitter was obtained from a degraded 10 Gb/s optical data stream. Optical clock recovery was also achieved from a degraded 20 Gb/s optical data train when the clock division technique in the opto-electronic oscillator (OEO) and the rational harmonic mode-locking technique in the fiber ring laser were applied. No pattern effect was observed in the experiments.

  3. Optical arbitrary waveform generation based on multi-wavelength semiconductor fiber ring laser

    NASA Astrophysics Data System (ADS)

    Li, Peili; Ma, Xiaolu; Shi, Weihua; Xu, Enming

    2017-09-01

    A new scheme of generating optical arbitrary waveforms based on multi-wavelength semiconductor fiber ring laser (SFRL) is proposed. In this novel scheme, a wide and flat optical frequency comb (OFC) is provided directly by multi-wavelength SFRL, whose central frequency and comb spacing are tunable. OFC generation, de-multiplexing, amplitude and phase modulation, and multiplexing are implementing in an intensity and phase tunable comb filter, as induces the merits of high spectral coherence, satisfactory waveform control and low system loss. By using the mode couple theory and the transfer matrix method, the theoretical model of the scheme is established. The impacts of amplitude control, phase control, number of spectral line, and injection current of semiconductor optical amplifier (SOA) on the waveform similarity are studied using the theoretical model. The results show that, amplitude control and phase control error should be smaller than 1% and 0.64% respectively to achieve high similarity. The similarity of the waveform is improved with the increase of the number of spectral line. When the injection current of SOA is in a certain range, the optical arbitrary waveform reaches a high similarity.

  4. Microwave fiber optics delay line

    NASA Astrophysics Data System (ADS)

    Slayman, C.; Yen, H. W.

    1980-01-01

    A microwave delay line is one of the devices used in EW systems for preserving the frequency and phase contents of RF signals. For such applications, delay lines are required to have large dynamic range, wide bandwidth, low insertion loss, and a linear response. The basic components of a fiber-optics delay line are: an optical source, a wideband optical modulator, a spool of single-mode fiber with appropriate length to provide a given microwave signal delay, and a high-speed photodetector with an RF amplifier. This contract program is to study the feasibility of such a fiber-optic delay line in the frequency range of 4.0 to 6.5 GHz. The modulation scheme studied is the direct modulation of injection lasers. The most important issue identified is the frequency response of the injection laser and the photodetector.

  5. Hybrid fiber links for accurate optical frequency comparison

    NASA Astrophysics Data System (ADS)

    Lee, Won-Kyu; Stefani, Fabio; Bercy, Anthony; Lopez, Olivier; Amy-Klein, Anne; Pottie, Paul-Eric

    2017-05-01

    We present the experimental demonstration of a local two-way optical frequency comparison over a 43-km-long urban fiber network without any requirement for measurement synchronization. We combined the local two-way scheme with a regular active noise compensation scheme that was implemented on another parallel fiber leading to a highly reliable and robust frequency transfer. This hybrid scheme allowed us to investigate the major limiting factors of the local two-way comparison. We analyzed the contributions of the interferometers at both local and remote locations to the phase noise of the local two-way signal. Using the ability of this setup to be injected by either a single laser or two independent lasers, we measured the contributions of the demodulated laser instabilities to the long-term instability. We show that a fractional frequency instability level of 10-20 at 10,000 s can be obtained using this simple setup after propagation over a distance of 43 km in an urban area.

  6. Studies on low-loss coupling of non-node anti-resonant hollow-core fiber and tapered fiber

    NASA Astrophysics Data System (ADS)

    Zhang, Naiqian; Wang, Zefeng; Liu, Wenbo; Xi, Xiaoming

    2017-10-01

    Up to now, near almost optical fiber gas lasers employ/adopt the scheme of free-space coupling, which increases the difficulty to adjust the optical path, and has poor stability. All-fiber structure fiber-gas lasers are important development directions in the future. We established the numerical model of SMF-28 type tapered single-mode fiber and non-node hollow-core fiber. When the SMF-28 type single-mode fiber has a waist diameter of 40μm when the light source is LP01 fundamental mode with 1550nm wavelength, the mode field diameter is the largest. Meanwhile, we simulated that the equivalent mode field diameter of non-node anti-resonant hollow-core fiber is about 75μm at the same 1550nm wavelength light source. Then, we use different waist diameters of SMF-28 type tapered fibers injected to the non-node anti-resonant hollow-core fiber in simulation and experiments. In the scheme of the single-ended low-loss coupling, the simulation results indicate that the best waist diameter of tapered fiber is 40μm, and the calculated maximum coupling efficiency is 83.55%. Meanwhile, the experimental result of maximum coupling efficiency is 80.74% when the best waist diameter of tapered fiber is also 40μm. As for the double-ended low-loss coupling, the calculated maximum coupling efficiency is near 83.38%.

  7. Frequency division multiplexed radio-over-fiber transmission using an optically injected laser diode

    NASA Astrophysics Data System (ADS)

    Chan, Sze-Chun

    2008-04-01

    Nonlinear dynamics of semiconductor lasers have recently attracted much attention in the area of microwave photonics. By invoking the nonlinear dynamics of an optically injected laser diode, high-speed microwave oscillation can be generated using the period-one oscillation state. The oscillation is harnessed for application as a photonic microwave source in radio-over-fiber (RoF) systems. It is advantageous over conventional direct current modulation because it alleviates the modulation bandwidth limitation and naturally generates single sideband signals. The method is thus applicable to wireless communication systems even when the subcarrier frequency increases to 60 GHz. Because RoF is usually incorporated with standard wireless schemes that involve frequency division multiplexing (FDM), we investigate the performance of the optical injection system under simultaneous current injection of multiple data streams. Frequency mixings and competition for locking among subcarriers result in intermodulation distortion (IMD). The relative weightings of different channels should be optimized to ensure acceptable signal qualities. The results illustrate the feasibility of applying the optical injection system for FDM RoF transmission at high subcarrier frequencies.

  8. Demonstration of L-band DP-QPSK transmission over FSO and fiber channels employing InAs/InP quantum-dash laser source

    NASA Astrophysics Data System (ADS)

    Shemis, M. A.; Khan, M. T. A.; Alkhazraji, E.; Ragheb, A. M.; Esmail, M. A.; Fathallah, H.; Qureshi, K. K.; Alshebeili, S.; Khan, M. Z. M.

    2018-03-01

    The next generation of optical access communication networks that support 100 Gbps and beyond, require advances in modulation schemes, spectrum utilization, new transmission bands, and efficient devices, particularly laser diodes. In this paper, we investigated the viability of new-class of InAs/InP Quantum-dash laser diode (Qdash-LD) exhibiting multiple longitudinal light modes in the L-band to carry high-speed data rate for access network applications. We exploited external and self injection-locking techniques on Qdash-LD to generate large number of stable and tunable locked modes, and compared them. To stem the capability of each locked mode as a potential subcarrier, data transmission is carried out over two mediums; single mode fiber (SMF) and free space optics (FSO) to emulate real deployment scenarios of optical networks. The results showed that with external-injection locking (EIL), an error-free transmission of 100 Gbps dual polarization quadrature phase shift keying (DP-QPSK) signal is demonstrated over 10 km SMF and 4 m indoor FSO channels, with capability of reaching up to 128 Gbps, demonstrated under back-to-back (BTB) configuration. On the other hand, using self-injection locking (SIL) scheme, a successful data transmission of 64 Gbps and 128 Gbps DP-QPSK signal over 20 km SMF and 10 m indoor FSO links, respectively, is achieved.

  9. Fiber Volume Fraction Influence on Fiber Compaction in Tapered Resin Injection Pultrusion Manufacturing

    NASA Astrophysics Data System (ADS)

    Masuram, N. B.; Roux, J. A.; Jeswani, A. L.

    2016-06-01

    Liquid resin is injected into the tapered injection chamber through the injection slots to completely wetout the fiber reinforcements in a resin injection pultrusion process. As the resin penetrates through the fibers, the resin also pushes the fibers away from the wall towards the centerline causing compaction of the fiber reinforcements. The fibers are squeezed together due to compaction, making resin penetration more difficult; thus higher resin injection pressures are required to effectively penetrate through the fibers and achieve complete wetout. Fiber volume fraction in the final pultruded composite is a key to decide the mechanical and/or chemical properties of the composite. If the fiber volume fraction is too high, more fibers are squeezed together creating a fiber lean region near the wall and fiber rich region away from the wall. Also, the design of the injection chamber significantly affects the minimum injection pressure required to completely wet the fibers. A tapered injection chamber is considered such that wetout occurs at lower injection pressures due to the taper angle of the injection chamber. In this study, the effect of fiber volume fraction on the fiber reinforcement compaction and complete fiber wetout for a tapered injection chamber is investigated.

  10. Micromechanical modeling of short glass-fiber reinforced thermoplastics-Isotropic damage of pseudograins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kammoun, S.; Brassart, L.; Doghri, I.

    A micromechanical damage modeling approach is presented to predict the overall elasto-plastic behavior and damage evolution in short fiber reinforced composite materials. The practical use of the approach is for injection molded thermoplastic parts reinforced with short glass fibers. The modeling is proceeded as follows. The representative volume element is decomposed into a set of pseudograins, the damage of which affects progressively the overall stiffness and strength up to total failure. Each pseudograin is a two-phase composite with aligned inclusions having same aspect ratio. A two-step mean-field homogenization procedure is adopted. In the first step, the pseudograins are homogenized individuallymore » according to the Mori-Tanaka scheme. The second step consists in a self-consistent homogenization of homogenized pseudograins. An isotropic damage model is applied at the pseudograin level. The model is implemented as a UMAT in the finite element code ABAQUS. Model is shown to reproduce the strength and the anisotropy (Lankford coefficient) during uniaxial tensile tests on samples cut under different directions relative to the injection flow direction.« less

  11. Micromechanical modeling of short glass-fiber reinforced thermoplastics-Isotropic damage of pseudograins

    NASA Astrophysics Data System (ADS)

    Kammoun, S.; Brassart, L.; Robert, G.; Doghri, I.; Delannay, L.

    2011-05-01

    A micromechanical damage modeling approach is presented to predict the overall elasto-plastic behavior and damage evolution in short fiber reinforced composite materials. The practical use of the approach is for injection molded thermoplastic parts reinforced with short glass fibers. The modeling is proceeded as follows. The representative volume element is decomposed into a set of pseudograins, the damage of which affects progressively the overall stiffness and strength up to total failure. Each pseudograin is a two-phase composite with aligned inclusions having same aspect ratio. A two-step mean-field homogenization procedure is adopted. In the first step, the pseudograins are homogenized individually according to the Mori-Tanaka scheme. The second step consists in a self-consistent homogenization of homogenized pseudograins. An isotropic damage model is applied at the pseudograin level. The model is implemented as a UMAT in the finite element code ABAQUS. Model is shown to reproduce the strength and the anisotropy (Lankford coefficient) during uniaxial tensile tests on samples cut under different directions relative to the injection flow direction.

  12. Photonic generation of ultra-wideband doublet pulse using a semiconductor-optical-amplifier based polarization-diversified loop.

    PubMed

    Luo, Bowen; Dong, Jianji; Yu, Yuan; Yang, Ting; Zhang, Xinliang

    2012-06-15

    We propose and demonstrate a novel scheme of ultra-wideband (UWB) doublet pulse generation using a semiconductor optical amplifier (SOA) based polarization-diversified loop (PDL) without any assistant light. In our scheme, the incoming gaussian pulse is split into two parts by the PDL, and each of them is intensity modulated by the other due to cross-gain modulation (XGM) in the SOA. Then, both parts are recombined with incoherent summation to form a UWB doublet pulse. Bi-polar UWB doublet pulse generation is demonstrated using an inverted gaussian pulse injection. Moreover, pulse amplitude modulation of UWB doublet is also experimentally demonstrated. Our scheme shows some advantages, such as simple implementation without assistant light and single optical carrier operation with good fiber dispersion tolerance.

  13. Radio-over-fiber system with octuple frequency optical millimeter-wave signal generation using dual-parallel Mach-Zehnder modulator based on four-wave mixing in semiconductor optical amplifier

    NASA Astrophysics Data System (ADS)

    Zhou, Hui; Zeng, Yuting; Chen, Ming; Shen, Yunlong

    2018-03-01

    We have proposed a scheme of radio-over-fiber (RoF) system employing a dual-parallel Mach-Zehnder modulator (DP-MZM) based on four-wave mixing (FWM) in a semiconductor optical amplifier (SOA). In this scheme, the pump and the signal are generated by properly adjusting the direct current bias, modulation index of the DP-MZM, and the phase difference between the sub-MZMs. Because of the pump and the signal deriving from the same optical wave, the polarization states of the two lightwaves are copolarized. The single-pump FWM is polarization insensitive. After FWM and optical filtering, the optical millimeter-wave with octuple frequency is generated. About 40-GHz RoF system with a 2.5-Gbit / s signal is implemented by numerical simulation; the result shows that it has a good performance after the signal is transmitted over 40-km single-mode fiber. Then, the effects of the SOA's injection current and the carrier-to-sideband ratio on the system performance are discussed by simulation, and the optimum value for the system is obtained.

  14. Resin Viscosity Influence on Fiber Compaction in Tapered Resin Injection Pultrusion Manufacturing

    NASA Astrophysics Data System (ADS)

    Masuram, N. B.; Roux, J. A.; Jeswani, A. L.

    2018-06-01

    Viscosity of the liquid resin effects the chemical and mechanical properties of the pultruded composite. In resin injection pultrusion manufacturing the liquid resin is injected into a specially designed tapered injection chamber through the injection slots present on top and bottom of the chamber. The resin is injected at a pressure so as to completely wetout the fiber reinforcements inside the tapered injection chamber. As the resin penetrates through the fibers, the resin also pushes the fibers away from the wall towards the center of chamber causing compaction of the fiber reinforcements. The fibers are squeezed together due to compaction, making resin penetration more difficult; thus higher resin injection pressures are required to efficaciously penetrate through the compacted fibers and achieve complete wetout. The impact of resin viscosity on resin flow, fiber compaction, wetout and on the final product is further discussed. Injection chamber design predominantly effects the resin flow inside the chamber and the minimum injection pressure required to completely wet the fibers. Therefore, a desirable injection chamber design is such that wetout occurs at lower injection pressures and at low internal pressures inside the injection chamber.

  15. Resin Viscosity Influence on Fiber Compaction in Tapered Resin Injection Pultrusion Manufacturing

    NASA Astrophysics Data System (ADS)

    Masuram, N. B.; Roux, J. A.; Jeswani, A. L.

    2017-08-01

    Viscosity of the liquid resin effects the chemical and mechanical properties of the pultruded composite. In resin injection pultrusion manufacturing the liquid resin is injected into a specially designed tapered injection chamber through the injection slots present on top and bottom of the chamber. The resin is injected at a pressure so as to completely wetout the fiber reinforcements inside the tapered injection chamber. As the resin penetrates through the fibers, the resin also pushes the fibers away from the wall towards the center of chamber causing compaction of the fiber reinforcements. The fibers are squeezed together due to compaction, making resin penetration more difficult; thus higher resin injection pressures are required to efficaciously penetrate through the compacted fibers and achieve complete wetout. The impact of resin viscosity on resin flow, fiber compaction, wetout and on the final product is further discussed. Injection chamber design predominantly effects the resin flow inside the chamber and the minimum injection pressure required to completely wet the fibers. Therefore, a desirable injection chamber design is such that wetout occurs at lower injection pressures and at low internal pressures inside the injection chamber.

  16. A 12 GHz wavelength spacing multi-wavelength laser source for wireless communication systems

    NASA Astrophysics Data System (ADS)

    Peng, P. C.; Shiu, R. K.; Bitew, M. A.; Chang, T. L.; Lai, C. H.; Junior, J. I.

    2017-08-01

    This paper presents a multi-wavelength laser source with 12 GHz wavelength spacing based on a single distributed feedback laser. A light wave generated from the distributed feedback laser is fed into a frequency shifter loop consisting of 50:50 coupler, dual-parallel Mach-Zehnder modulator, optical amplifier, optical filter, and polarization controller. The frequency of the input wavelength is shifted and then re-injected into the frequency shifter loop. By re-injecting the shifted wavelengths multiple times, we have generated 84 optical carriers with 12 GHz wavelength spacing and stable output power. For each channel, two wavelengths are modulated by a wireless data using the phase modulator and transmitted through a 25 km single mode fiber. In contrast to previously developed schemes, the proposed laser source does not incur DC bias drift problem. Moreover, it is a good candidate for radio-over-fiber systems to support multiple users using a single distributed feedback laser.

  17. Photonic Crystal Fiber Based Entangled Photon Sources

    DTIC Science & Technology

    2014-03-01

    5 Figure 2: The diagram of the counter- propagating scheme. FP: fiber port ( free - space to fiber). PBS: polarization beam splitter. LP: Linear... entangled photon -pairs using the highly nonlinear fiber in a counter- propagating scheme (CPS). With the HNLF at room temperature, we obtain a... propagating scheme for generating polarization entangled photon pairs at telecom wavelengths. We use 10 m of highly nonlinear fiber. We measure a

  18. Influence of injection molding process parameters on fiber concentration distribution in long glass fiber reinforced polypropylene

    NASA Astrophysics Data System (ADS)

    Scantamburlo, Andrea; Gazzola, Luca; Sorgato, Marco; Lucchetta, Giovanni

    2018-05-01

    In parts manufactured by injection molding of long glass fiber reinforced polypropylene, the local fiber orientation, fiber concentration and fiber length distribution varies along both the thickness direction and the flow path. This heterogeneous microstructure significantly influences the mechanical properties variability in the molded parts. The aim of this work is to investigate the influence of the matrix viscosity, the injection speed and the mold geometry on the fiber concentration distribution. In particular, the factors involved in fiber-matrix separation and fiber pull-out during the injection phases were analyzed in order to understand the phenomenon.

  19. Self-healing ring-based WDM-PON

    NASA Astrophysics Data System (ADS)

    Zhou, Yang; Gan, Chaoqin; Zhu, Long

    2010-05-01

    In this paper, a survivable ring-based wavelength-division-multiplexing (WDM)-passive optical network (PON) for fiber protection is proposed. Protections for feeder fiber and distributed fiber are independent in the scheme. Optical line terminal (OLT) and optical network units (ONUs) can automatically switch to protection link when fiber failure occurs. Protection distributed fiber is not required in the scheme. Cost-effective components are used in ONUs to minimize costs of network. A simulation study is performed to demonstrate the scheme. Its result shows good performance of upstream and downstream signals.

  20. A hybrid single-end-access MZI and Φ-OTDR vibration sensing system with high frequency response

    NASA Astrophysics Data System (ADS)

    Zhang, Yixin; Xia, Lan; Cao, Chunqi; Sun, Zhenhong; Li, Yanting; Zhang, Xuping

    2017-01-01

    A hybrid single-end-access Mach-Zehnder interferometer (MZI) and phase sensitive OTDR (Φ-OTDR) vibration sensing system is proposed and demonstrated experimentally. In our system, the narrow optical pulses and the continuous wave are injected into the fiber through the front end of the fiber at the same time. And at the rear end of the fiber, a frequency-shift-mirror (FSM) is designed to back propagate the continuous wave modulated by the external vibration. Thus the Rayleigh backscattering signals (RBS) and the back propagated continuous wave interfere with the reference light at the same end of the sensing fiber and a single-end-access configuration is achieved. The RBS can be successfully separated from the interference signal (IS) through digital signal process due to their different intermediate frequency based on frequency division multiplexing technique. There is no influence between these two schemes. The experimental results show 10 m spatial resolution and up to 1.2 MHz frequency response along a 6.35 km long fiber. This newly designed single-end-access setup can achieve vibration events locating and high frequency events response, which can be widely used in health monitoring for civil infrastructures and transportation.

  1. Gauss-Kronrod-Trapezoidal Integration Scheme for Modeling Biological Tissues with Continuous Fiber Distributions

    PubMed Central

    Hou, Chieh; Ateshian, Gerard A.

    2015-01-01

    Fibrous biological tissues may be modeled using a continuous fiber distribution (CFD) to capture tension-compression nonlinearity, anisotropic fiber distributions, and load-induced anisotropy. The CFD framework requires spherical integration of weighted individual fiber responses, with fibers contributing to the stress response only when they are in tension. The common method for performing this integration employs the discretization of the unit sphere into a polyhedron with nearly uniform triangular faces (finite element integration or FEI scheme). Although FEI has proven to be more accurate and efficient than integration using spherical coordinates, it presents three major drawbacks: First, the number of elements on the unit sphere needed to achieve satisfactory accuracy becomes a significant computational cost in a finite element analysis. Second, fibers may not be in tension in some regions on the unit sphere, where the integration becomes a waste. Third, if tensed fiber bundles span a small region compared to the area of the elements on the sphere, a significant discretization error arises. This study presents an integration scheme specialized to the CFD framework, which significantly mitigates the first drawback of the FEI scheme, while eliminating the second and third completely. Here, integration is performed only over the regions of the unit sphere where fibers are in tension. Gauss-Kronrod quadrature is used across latitudes and the trapezoidal scheme across longitudes. Over a wide range of strain states, fiber material properties, and fiber angular distributions, results demonstrate that this new scheme always outperforms FEI, sometimes by orders of magnitude in the number of computational steps and relative accuracy of the stress calculation. PMID:26291492

  2. A Gauss-Kronrod-Trapezoidal integration scheme for modeling biological tissues with continuous fiber distributions.

    PubMed

    Hou, Chieh; Ateshian, Gerard A

    2016-01-01

    Fibrous biological tissues may be modeled using a continuous fiber distribution (CFD) to capture tension-compression nonlinearity, anisotropic fiber distributions, and load-induced anisotropy. The CFD framework requires spherical integration of weighted individual fiber responses, with fibers contributing to the stress response only when they are in tension. The common method for performing this integration employs the discretization of the unit sphere into a polyhedron with nearly uniform triangular faces (finite element integration or FEI scheme). Although FEI has proven to be more accurate and efficient than integration using spherical coordinates, it presents three major drawbacks: First, the number of elements on the unit sphere needed to achieve satisfactory accuracy becomes a significant computational cost in a finite element (FE) analysis. Second, fibers may not be in tension in some regions on the unit sphere, where the integration becomes a waste. Third, if tensed fiber bundles span a small region compared to the area of the elements on the sphere, a significant discretization error arises. This study presents an integration scheme specialized to the CFD framework, which significantly mitigates the first drawback of the FEI scheme, while eliminating the second and third completely. Here, integration is performed only over the regions of the unit sphere where fibers are in tension. Gauss-Kronrod quadrature is used across latitudes and the trapezoidal scheme across longitudes. Over a wide range of strain states, fiber material properties, and fiber angular distributions, results demonstrate that this new scheme always outperforms FEI, sometimes by orders of magnitude in the number of computational steps and relative accuracy of the stress calculation.

  3. Numerical prediction of fiber orientation in injection-molded short-fiber/thermoplastic composite parts with experimental validation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thi, Thanh Binh Nguyen; Morioka, Mizuki; Yokoyama, Atsushi

    Numerical prediction of the fiber orientation in the short-glass fiber (GF) reinforced polyamide 6 (PA6) composites with the fiber weight concentration of 30%, 50%, and 70% manufactured by the injection molding process is presented. And the fiber orientation was also directly observed and measured through X-ray computed tomography. During the injection molding process of the short-fiber/thermoplastic composite, the fiber orientation is produced by the flow states and the fiber-fiber interaction. Folgar and Tucker equation is the well known for modeling the fiber orientation in a concentrated suspension. They included into Jeffrey’s equation a diffusive type of term by introducing amore » phenomenological coefficient to account for the fiber-fiber interaction. Our developed model for the fiber-fiber interaction was proposed by modifying the rotary diffusion term of the Folgar-Tucker equation. This model was presented in a conference paper of the 29{sup th} International Conference of the Polymer Processing Society published by AIP conference proceeding. For modeling fiber interaction, the fiber dynamic simulation was introduced in order to obtain a global fiber interaction coefficient, which is sum function of the fiber concentration, aspect ratio, and angular velocity. The fiber orientation is predicted by using the proposed fiber interaction model incorporated into a computer aided engineering simulation package C-Mold. An experimental program has been carried out in which the fiber orientation distribution has been measured in 100 x 100 x 2 mm injection-molded plate and 100 x 80 x 2 mm injection-molded weld by analyzed with a high resolution 3D X-ray computed tomography system XVA-160α, and calculated by X-ray computed tomography imaging. The numerical prediction shows a good agreement with experimental validation. And the complex fiber orientation in the injection-molded weld was investigated.« less

  4. Numerical prediction of fiber orientation in injection-molded short-fiber/thermoplastic composite parts with experimental validation

    NASA Astrophysics Data System (ADS)

    Thi, Thanh Binh Nguyen; Morioka, Mizuki; Yokoyama, Atsushi; Hamanaka, Senji; Yamashita, Katsuhisa; Nonomura, Chisato

    2015-05-01

    Numerical prediction of the fiber orientation in the short-glass fiber (GF) reinforced polyamide 6 (PA6) composites with the fiber weight concentration of 30%, 50%, and 70% manufactured by the injection molding process is presented. And the fiber orientation was also directly observed and measured through X-ray computed tomography. During the injection molding process of the short-fiber/thermoplastic composite, the fiber orientation is produced by the flow states and the fiber-fiber interaction. Folgar and Tucker equation is the well known for modeling the fiber orientation in a concentrated suspension. They included into Jeffrey's equation a diffusive type of term by introducing a phenomenological coefficient to account for the fiber-fiber interaction. Our developed model for the fiber-fiber interaction was proposed by modifying the rotary diffusion term of the Folgar-Tucker equation. This model was presented in a conference paper of the 29th International Conference of the Polymer Processing Society published by AIP conference proceeding. For modeling fiber interaction, the fiber dynamic simulation was introduced in order to obtain a global fiber interaction coefficient, which is sum function of the fiber concentration, aspect ratio, and angular velocity. The fiber orientation is predicted by using the proposed fiber interaction model incorporated into a computer aided engineering simulation package C-Mold. An experimental program has been carried out in which the fiber orientation distribution has been measured in 100 x 100 x 2 mm injection-molded plate and 100 x 80 x 2 mm injection-molded weld by analyzed with a high resolution 3D X-ray computed tomography system XVA-160α, and calculated by X-ray computed tomography imaging. The numerical prediction shows a good agreement with experimental validation. And the complex fiber orientation in the injection-molded weld was investigated.

  5. Influence of botulinum toxin on rabbit jaw muscle activity and anatomy.

    PubMed

    Korfage, J A M; Wang, Jeffrey; Lie, S H J T J; Langenbach, Geerling E J

    2012-05-01

    Muscles can adapt their fiber properties to accommodate to new conditions. We investigated the extent to which a decrease in muscle activation can cause an adaptation of fiber properties in synergistic and antagonistic jaw muscles. Three months after the injection of botulinum toxin type A in one masseter (anterior or posterior) muscle changes in fiber type composition and fiber cross-sectional areas in jaw muscles were studied at the microscopic level. The injected masseter showed a steep increase in myosin type IIX fibers, whereas fast fibers decreased by about 50% in size. Depending on the injection site, both synergistic and antagonistic muscles showed a significant increase in the size of their fast IIA fibers, sometimes combined with an increased number of IIX fibers. Silencing the activity in the masseter not only causes changes in the fibers of the injected muscle but also leads to changes in other jaw muscles. Copyright © 2012 Wiley Periodicals, Inc.

  6. FIBER ORIENTATION IN INJECTION MOLDED LONG CARBON FIBER THERMOPLASTIC COMPOSITES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Jin; Nguyen, Ba Nghiep; Mathur, Raj N.

    2015-03-23

    A set of edge-gated and center-gated plaques were injection molded with long carbon fiber-reinforced thermoplastic composites, and the fiber orientation was measured at different locations of the plaques. Autodesk Simulation Moldflow Insight (ASMI) software was used to simulate the injection molding of these plaques and to predict the fiber orientation, using the anisotropic rotary diffusion and the reduced strain closure models. The phenomenological parameters of the orientation models were carefully identified by fitting to the measured orientation data. The fiber orientation predictions show very good agreement with the experimental data.

  7. A self-restorable architecture for bidirectional wavelength-division-multiplexed passive optical network with colorless ONUs

    NASA Astrophysics Data System (ADS)

    Lee, Kwanil; Lee, Sang Bae; Lee, Ju Han; Han, Young-Geun; Mun, Sil-Gu; Lee, Sang-Mook; Lee, Chang-Hee

    2007-04-01

    We propose and experimentally demonstrate a novel protection scheme for wavelength-division-multiplexed passive optical network (WDM-PON) employing colorless optical transceivers. The proposed network employs 2 × N arrayed waveguide grating (AWG) to utilize its routing characteristics. The colorless operation is achieved by using wavelength-locked Fabry-Perot laser diodes (FP-LDs) injected with spectrum-sliced amplified spontaneous emission (ASE) light. The experimental results show that the restoration can be achieved within 8 ms against the feeder fiber fault and the power penalty introduced by the restoration process is negligible.

  8. Numerical study on a single-mode continuous-wave thermally guiding very-large-mode-area fiber amplifier

    NASA Astrophysics Data System (ADS)

    Cao, Jianqiu; Liu, Wenbo; Ying, Hanyuan; Chen, Jinbao; Lu, Qisheng

    2018-03-01

    The characteristics of a single-mode continuous-wave thermally guiding very-large-mode-area fiber amplifier are investigated numerically using the rate-equation model while taking thermal transfer into account. It is revealed that the seed power should play an important role in the fiber amplifier and should be large enough to ensure high output efficiency. The effects of three pumping schemes (i.e. the co-, counter- and bi-directional pumping schemes) and the initial refraction index difference are also studied. It is revealed that the optimum fiber length changes with the pumping scheme, and the initial refraction index difference should be lower than 10-4 in order to ensure the linear increment of the output signal power with the pump power. Furthermore, a brief comparison between the thermally induced waveguides in the fiber amplifiers for three pumping schemes is also made.

  9. Effects of mold geometry on fiber orientation of powder injection molded metal matrix composites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahmad, Faiz, E-mail: faizahmad@petronas.com.my; Aslam, Muhammad, E-mail: klaira73@gmail.com; Altaf, Khurram, E-mail: khurram.altaf@petronas.com.my

    2015-07-22

    Fiber orientations in metal matrix composites have significant effect on improving tensile properties. Control of fiber orientations in metal injection molded metal composites is a difficult task. In this study, two mold cavities of dimensions 6x6x90 mm and 10x20x180 mm were used for comparison of fiber orientation in injection molded metal composites test parts. In both mold cavities, convergent and divergent flows were developed by modifying the sprue dimensions. Scanning electron microscope (SEM) was used to examine the fiber orientations within the test samples. The results showed highly aligned fiber in injection molded test bars developed from the convergent melt flow. Randommore » orientation of fibers was noted in the composites test bars produced from divergent melt flow.« less

  10. Long-range distributed optical fiber hot-wire anemometer based on chirped-pulse ΦOTDR.

    PubMed

    Garcia-Ruiz, Andres; Dominguez-Lopez, Alejandro; Pastor-Graells, Juan; Martins, Hugo F; Martin-Lopez, Sonia; Gonzalez-Herraez, Miguel

    2018-01-08

    We demonstrate a technique allowing to develop a fully distributed optical fiber hot-wire anemometer capable of reaching a wind speed uncertainty of ≈ ±0.15m/s (±0.54km/h) at only 60 mW/m of dissipated power in the sensing fiber, and within only four minutes of measurement time. This corresponds to similar uncertainty values than previous papers on distributed optical fiber anemometry but requires two orders of magnitude smaller dissipated power and covers at least one order of magnitude longer distance. This breakthrough is possible thanks to the extreme temperature sensitivity and single-shot performance of chirped-pulse phase-sensitive optical time domain reflectometry (ΦOTDR), together with the availability of metal-coated fibers. To achieve these results, a modulated current is fed through the metal coating of the fiber, causing a modulated temperature variation of the fiber core due to Joule effect. The amplitude of this temperature modulation is strongly dependent on the wind speed at which the fiber is subject. Continuous monitoring of the temperature modulation along the fiber allows to determine the wind speed with singular low power injection requirements. Moreover, this procedure makes the system immune to temperature drifts of the fiber, potentially allowing for a simple field deployment. Being a much less power-hungry scheme, this method also allows for monitoring over much longer distances, in the orders of 10s of km. We expect that this system can have application in dynamic line rating and lateral wind monitoring in railway catenary wires.

  11. Experimental demonstration of the transmission performance for LDPC-coded multiband OFDM ultra-wideband over fiber system

    NASA Astrophysics Data System (ADS)

    He, Jing; Wen, Xuejie; Chen, Ming; Chen, Lin; Su, Jinshu

    2015-01-01

    To improve the transmission performance of multiband orthogonal frequency division multiplexing (MB-OFDM) ultra-wideband (UWB) over optical fiber, a pre-coding scheme based on low-density parity-check (LDPC) is adopted and experimentally demonstrated in the intensity-modulation and direct-detection MB-OFDM UWB over fiber system. Meanwhile, a symbol synchronization and pilot-aided channel estimation scheme is implemented on the receiver of the MB-OFDM UWB over fiber system. The experimental results show that the LDPC pre-coding scheme can work effectively in the MB-OFDM UWB over fiber system. After 70 km standard single-mode fiber (SSMF) transmission, at the bit error rate of 1 × 10-3, the receiver sensitivities are improved about 4 dB when the LDPC code rate is 75%.

  12. Bidirectional fiber-wireless and fiber-IVLLC integrated system based on polarization-orthogonal modulation scheme.

    PubMed

    Lu, Hai-Han; Li, Chung-Yi; Chen, Hwan-Wei; Ho, Chun-Ming; Cheng, Ming-Te; Huang, Sheng-Jhe; Yang, Zih-Yi; Lin, Xin-Yao

    2016-07-25

    A bidirectional fiber-wireless and fiber-invisible laser light communication (IVLLC) integrated system that employs polarization-orthogonal modulation scheme for hybrid cable television (CATV)/microwave (MW)/millimeter-wave (MMW)/baseband (BB) signal transmission is proposed and demonstrated. To our knowledge, it is the first one that adopts a polarization-orthogonal modulation scheme in a bidirectional fiber-wireless and fiber-IVLLC integrated system with hybrid CATV/MW/MMW/BB signal. For downlink transmission, carrier-to-noise ratio (CNR), composite second-order (CSO), composite triple-beat (CTB), and bit error rate (BER) perform well over 40-km single-mode fiber (SMF) and 10-m RF/50-m optical wireless transport scenarios. For uplink transmission, good BER performance is obtained over 40-km SMF and 50-m optical wireless transport scenario. Such a bidirectional fiber-wireless and fiber-IVLLC integrated system for hybrid CATV/MW/MMW/BB signal transmission will be an attractive alternative for providing broadband integrated services, including CATV, Internet, and telecommunication services. It is shown to be a prominent one to present the advancements for the convergence of fiber backbone and RF/optical wireless feeder.

  13. Numerical simulation of fiber interaction in short-fiber injection-molded composite using different cavity geometries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thi, Thanh Binh Nguyen, E-mail: nttbinh@kit.ac.jp; Yokoyama, Atsushi, E-mail: yokoyama@kit.ac.jp; Hamanaka, Senji

    The theoretical fiber-interaction model for calculating the fiber orientation in the injection molded short fiber/thermoplastic composite parts was proposed. The proposed model included the fiber dynamics simulation in order to obtain an equation of the global interaction coefficient and accurate estimate of the fiber interacts at all orientation states. The steps to derive the equation for this coefficient in short fiber suspension as a function of the fiber aspect ratio, volume fraction and general shear rate are delineated. Simultaneously, the high-resolution 3D X-ray computed tomography system XVA-160α was used to observe fiber distribution of short-glass-fiber-reinforced polyamide specimens using different cavitymore » geometries. The fiber orientation tensor components are then calculated. Experimental orientation measurements of short-glass-fiber-reinforced polyamide is used to check the ability of present theory for predicting orientation. The experiments and predictions show a quantitative agreement and confirm the basic understanding of fiber orientation in injection-molded composites.« less

  14. Numerical simulation of fiber interaction in short-fiber injection-molded composite using different cavity geometries

    NASA Astrophysics Data System (ADS)

    Thi, Thanh Binh Nguyen; Yokoyama, Atsushi; Hamanaka, Senji; Yamashita, Katsuhisa; Nonomura, Chisato

    2016-03-01

    The theoretical fiber-interaction model for calculating the fiber orientation in the injection molded short fiber/thermoplastic composite parts was proposed. The proposed model included the fiber dynamics simulation in order to obtain an equation of the global interaction coefficient and accurate estimate of the fiber interacts at all orientation states. The steps to derive the equation for this coefficient in short fiber suspension as a function of the fiber aspect ratio, volume fraction and general shear rate are delineated. Simultaneously, the high-resolution 3D X-ray computed tomography system XVA-160α was used to observe fiber distribution of short-glass-fiber-reinforced polyamide specimens using different cavity geometries. The fiber orientation tensor components are then calculated. Experimental orientation measurements of short-glass-fiber-reinforced polyamide is used to check the ability of present theory for predicting orientation. The experiments and predictions show a quantitative agreement and confirm the basic understanding of fiber orientation in injection-molded composites.

  15. 1.55 µm high speed low chirp electroabsorption modulated laser arrays based on SAG scheme.

    PubMed

    Cheng, Yuanbing; Wang, Qi Jie; Pan, Jiaoqing

    2014-12-15

    We demonstrate a cost-effective 1.55 µm low chirp 4 × 25 Gbit/s electroabsorption modulated laser (EML) array with 0.8 nm channel spacing by varying ridge width of the lasers and using selective area growth (SAG) integration scheme. The devices for all the 4 channels within the EML array show uniform threshold currents around 18 mA and high SMSRs over 45 dB. The output optical power of each channel is about 9 mW at an injection current of 100 mA. The typical chirp value of single EML measured by a fiber resonance method varied from 2.2 to -4 as the bias voltage was increased from 0 V to 2.5 V. These results show that the EML array is a suitable light source for 100 Gbit/s optical transmissions.

  16. Critical fiber length technique for composite manufacturing processes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sivley, G.N.; Vandiver, T.L.; Dougherty, N.S.

    1996-12-31

    An improved injection technique for composite structures has been cooperatively developed by the U.S. Army Missile Command (MICOM) and Rockwell International (RI). This process simultaneously injects chopped fiberglass fibers and an epoxy resin matrix into a mold. Four injection techniques: (1){open_quotes}Little Willie{close_quotes} RTM system, (2) Pressure Vat system, (3) Pressure Vat system with vacuum assistance, and (4) Injection gun system, were investigated for use with a 304.8 mm x 304.8 mm x 5.08 mm (12 in x 12 in x 0.2 in) flat plaque mold. The driving factors in the process optimization included: fiber length, fiber weight, matrix viscosity, injectionmore » pressure, flow rate, and tool design. At fiber weights higher than 30 percent, the injection gun appears to have advantages over the other systems investigated. Results of an experimental investigation are reviewed in this paper. The investigation of injection techniques is the initial part of the research involved in a developing process, {open_quotes}Critical Fiber Length Technique{close_quotes}. This process will use the data collected in injection experiment along with mechanical properties derived from coupon test data to be incorporated into a composite material design code. The {open_quotes}Critical Fiber Length Technique{close_quotes} is part of a Cooperative Research and Development Agreement (CRADA) established in 1994 between MICOM and RI.« less

  17. New methods of multimode fiber interferometer signal processing

    NASA Astrophysics Data System (ADS)

    Vitrik, Oleg B.; Kulchin, Yuri N.; Maxaev, Oleg G.; Kirichenko, Oleg V.; Kamenev, Oleg T.; Petrov, Yuri S.

    1995-06-01

    New methods of multimode fiber interferometers signal processing are suggested. For scheme of single fiber multimode interferometers with two excited modes, the method based on using of special fiber unit is developed. This unit provides the modes interaction and further sum optical field filtering. As a result the amplitude of output signal is modulated by external influence on interferometer. The stabilization of interferometer sensitivity is achieved by using additional special modulation of output signal. For scheme of single fiber multimode interferometers with excitation of wide mode spectrum, the signal of intermode interference is registered by photodiode matrix and then special electronic unit performs correlation processing. For elimination of temperature destabilization, the registered signal is adopted to multimode interferometers optical signal temperature changes. The achieved parameters for double mode scheme: temporary stability--0.6% per hour, sensitivity to interferometer length deviations--3,2 nm; for multimode scheme: temperature stability--(0.5%)/(K), temporary nonstability--0.2% per hour, sensitivity to interferometer length deviations--20 nm, dynamic range--35 dB.

  18. Photonic jet: key role of injection for etchings with a shaped optical fiber tip.

    PubMed

    Pierron, Robin; Zelgowski, Julien; Pfeiffer, Pierre; Fontaine, Joël; Lecler, Sylvain

    2017-07-15

    We demonstrate the key role of the laser injection into a multimode fiber to obtain a photonic jet (PJ). PJ, a high concentrated propagating beam with a full width at half-maximum smaller than the diffraction limit, is here generated with a shaped optical fiber tip using a pulsed laser source (1064 nm, 100 ns, 35 kHz). Three optical injection systems of light are compared. For similar etched marks on silicon with diameters around 1 μm, we show that the required ablation energy is minimum when the injected light beam is close to the fundamental mode diameter of the fiber. Thus, we confirm experimentally that to obtain a PJ out of an optical fiber, light injection plays a role as important as that of the tip shape and, therefore, the role of the fundamental mode in the process.

  19. A novel 'Gold on Gold' biosensing scheme for an on-fiber immunoassay

    NASA Astrophysics Data System (ADS)

    Punjabi, N.; Satija, J.; Mukherji, S.

    2015-05-01

    In this paper, we propose a novel „gold on gold‟ biosensing scheme for absorbance based fiber-optic biosensor. First, a self-assembled monolayer of gold nanoparticles is formed at the sensing region of the fiber-optic probe by incubating an amino-silanized probe in a colloidal gold solution. Thereafter, the receptor moieties, i.e. Human immunoglobulin G (HIgG) were immobilized by using standard alkanethiol and classic carbodiimide coupling chemistry. Finally, biosensing experiments were performed with different concentrations of gold nanoparticle-tagged analyte, i.e. Goat anti- Human immunoglobulin G (Nanogold-GaHIgG). The sensor response was observed to be more than five-fold compared to the control bioassay, in which the sensor matrix was devoid of gold nanoparticle film. Also, the response was found to be ~10 times higher compared to the FITC-tagged scheme and ~14.5 times better compared to untagged scheme. This novel scheme also demonstrated the potential in improving the limit of detection for the fiber-optic biosensors.

  20. Upstream vertical cavity surface-emitting lasers for fault monitoring and localization in WDM passive optical networks

    NASA Astrophysics Data System (ADS)

    Wong, Elaine; Zhao, Xiaoxue; Chang-Hasnain, Connie J.

    2008-04-01

    As wavelength division multiplexed passive optical networks (WDM-PONs) are expected to be first deployed to transport high capacity services to business customers, real-time knowledge of fiber/device faults and the location of such faults will be a necessity to guarantee reliability. Nonetheless, the added benefit of implementing fault monitoring capability should only incur minimal cost associated with upgrades to the network. In this work, we propose and experimentally demonstrate a fault monitoring and localization scheme based on a highly-sensitive and potentially low-cost monitor in conjunction with vertical cavity surface-emitting lasers (VCSELs). The VCSELs are used as upstream transmitters in the WDM-PON. The proposed scheme benefits from the high reflectivity of the top distributed Bragg reflector (DBR) mirror of optical injection-locked (OIL) VCSELs to reflect monitoring channels back to the central office for monitoring. Characterization of the fault monitor demonstrates high sensitivity, low bandwidth requirements, and potentially low output power. The added advantage of the proposed fault monitoring scheme incurs only a 0.5 dB penalty on the upstream transmissions on the existing infrastructure.

  1. On a two-pass scheme without a faraday mirror for free-space relativistic quantum cryptography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kravtsov, K. S.; Radchenko, I. V.; Korol'kov, A. V.

    2013-05-15

    The stability of destructive interference independent of the input polarization and the state of a quantum communication channel in fiber optic systems used in quantum cryptography plays a principal role in providing the security of communicated keys. A novel optical scheme is proposed that can be used both in relativistic quantum cryptography for communicating keys in open space and for communicating them over fiber optic lines. The scheme ensures stability of destructive interference and admits simple automatic balancing of a fiber interferometer.

  2. Three-dimensional smoothed particle hydrodynamics simulation for injection molding flow of short fiber-reinforced polymer composites

    NASA Astrophysics Data System (ADS)

    He, Liping; Lu, Gang; Chen, Dachuan; Li, Wenjun; Lu, Chunsheng

    2017-07-01

    This paper investigates the three-dimensional (3D) injection molding flow of short fiber-reinforced polymer composites using a smoothed particle hydrodynamics (SPH) simulation method. The polymer melt was modeled as a power law fluid and the fibers were considered as rigid cylindrical bodies. The filling details and fiber orientation in the injection-molding process were studied. The results indicated that the SPH method could effectively predict the order of filling, fiber accumulation, and heterogeneous distribution of fibers. The SPH simulation also showed that fibers were mainly aligned to the flow direction in the skin layer and inclined to the flow direction in the core layer. Additionally, the fiber-orientation state in the simulation was quantitatively analyzed and found to be consistent with the results calculated by conventional tensor methods.

  3. DAMAGE MODELING OF INJECTION-MOLDED SHORT- AND LONG-FIBER THERMOPLASTICS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nguyen, Ba Nghiep; Kunc, Vlastimil; Bapanapalli, Satish K.

    2009-10-30

    This article applies the recent anisotropic rotary diffusion – reduced strain closure (ARD-RSC) model for predicting fiber orientation and a new damage model for injection-molded long-fiber thermoplastics (LFTs) to analyze progressive damage leading to total failure of injection-molded long-glass-fiber/polypropylene (PP) specimens. The ARD-RSC model was implemented in a research version of the Autodesk Moldflow Plastics Insight (MPI) processing code, and it has been used to simulate injection-molding of a long-glass-fiber/PP plaque. The damage model combines micromechanical modeling with a continuum damage mechanics description to predict the nonlinear behavior due to plasticity coupled with damage in LFTs. This model has beenmore » implemented in the ABAQUS finite element code via user-subroutines and has been used in the damage analyses of tensile specimens removed from the injection-molded long-glass-fiber/PP plaques. Experimental characterization and mechanical testing were performed to provide input data to support and validate both process modeling and damage analyses. The predictions are in agreement with the experimental results.« less

  4. Fiber-Bragg-Grating-Based Optical Code-Division Multiple Access Passive Optical Network Using Dual-Baseband Modulation Scheme

    NASA Astrophysics Data System (ADS)

    Lin, Wen-Piao; Wu, He-Long

    2005-08-01

    We propose a fiber-Bragg-grating (FBG)-based optical code-division multiple access passive optical network (OCDMA-PON) using a dual-baseband modulation scheme. A mathematical model is developed to study the performance of this scheme. According to the analyzed results, this scheme can allow a tolerance of the spectral power distortion (SPD) ratio of 25% with a bit error rate (BER) of 10-9 when the modified pseudorandom noise (PN) code length is 16. Moreover, we set up a simulated system to evaluate the baseband and radio frequency (RF) band transmission characteristics. The simulation results demonstrate that our proposed OCDMA-PON can provide a cost-effective and scalable fiber-to-the-home solution.

  5. Characterization of ultrafast devices using novel optical techniques

    NASA Astrophysics Data System (ADS)

    Ali, Md Ershad

    Optical techniques have been extensively used to examine the high frequency performance of a number of devices including High Electron Mobility Transistors (HEMTs), Heterojunction Bipolar Phototransistors (HPTs) and Low Temperature GaAs (LT-GaAs) Photoconductive Switches. To characterize devices, frequency and time domain techniques, namely optical heterodyning and electro-optic sampling, having measurement bandwidths in excess of 200 GHz, were employed. Optical mixing in three-terminal devices has been extended for the first time to submillimeter wave frequencies. Using a new generation of 50-nm gate pseudomorphic InP-based HEMTs, optically mixed signals were detected to 552 GHz with a signal-to-noise ratio of approximately 5 dB. To the best of our knowledge, this is the highest frequency optical mixing obtained in three- terminal devices to date. A novel harmonic three-wave detection scheme was used for the detection of the optically generated signals. The technique involved downconversion of the signal in the device by the second harmonic of a gate-injected millimeter wave local oscillator. Measurements were also conducted up to 212 GHz using direct optical mixing and up to 382 GHz using a fundamental three-wave detection scheme. New interesting features in the bias dependence of the optically mixed signals have been reported. An exciting novel development from this work is the successful integration of near-field optics with optical heterodyning. The technique, called near-field optical heterodyning (NFOH), allows for extremely localized injection of high-frequency stimulus to any arbitrary point of an ultrafast device or circuit. Scanning the point of injection across the sample provides details of the high frequency operation of the device with high spatial resolution. For the implementation of the technique, fiber-optic probes with 100 nm apertures were fabricated. A feedback controlled positioning system was built for accurate placement and scanning of the fiber probe with nanometric precision. The applicability of the NFOH technique was first confirmed by measurements on heterojunction phototransistors at 100 GHz. Later NFOH scans were performed at 63 GHz on two other important devices, HEMTs and LT-GaAs Photoconductive Switches. Spatially resolved response characteristics of these devices revealed interesting details of their operation.

  6. System for testing optical fibers

    DOEpatents

    Golob, John E. [Olathe, KS; Looney, Larry D. [Los Alamos, NM; Lyons, Peter B. [Los Alamos, NM; Nelson, Melvin A. [Santa Barbara, CA; Davies, Terence J. [Santa Barbara, CA

    1980-07-15

    A system for measuring a combination of optical transmission properties of fiber optic waveguides. A polarized light pulse probe is injected into one end of the optical fiber. Reflections from discontinuities within the fiber are unpolarized whereas reflections of the probe pulse incident to its injection remain polarized. The polarized reflections are prevented from reaching a light detector whereas reflections from the discontinuities reaches the detector.

  7. Long-distance thermal temporal ghost imaging over optical fibers

    NASA Astrophysics Data System (ADS)

    Yao, Xin; Zhang, Wei; Li, Hao; You, Lixing; Wang, Zhen; Huang, Yidong

    2018-02-01

    A thermal ghost imaging scheme between two distant parties is proposed and experimentally demonstrated over long-distance optical fibers. In the scheme, the weak thermal light is split into two paths. Photons in one path are spatially diffused according to their frequencies by a spatial dispersion component, then illuminate the object and record its spatial transmission information. Photons in the other path are temporally diffused by a temporal dispersion component. By the coincidence measurement between photons of two paths, the object can be imaged in a way of ghost imaging, based on the frequency correlation between photons in the two paths. In the experiment, the weak thermal light source is prepared by the spontaneous four-wave mixing in a silicon waveguide. The temporal dispersion is introduced by single mode fibers of 50 km, which also could be looked as a fiber link. Experimental results show that this scheme can be realized over long-distance optical fibers.

  8. Effect of fiber content on flexural properties of glass fiber-reinforced polyamide-6 prepared by injection molding.

    PubMed

    Nagakura, Manamu; Tanimoto, Yasuhiro; Nishiyama, Norihiro

    2017-07-26

    The use of non-metal clasp denture (NMCD) materials may seriously affect the remaining tissues because of the low rigidity of NMCD materials such as polyamides. The purpose of this study was to develop a high-rigidity glass fiber-reinforced thermoplastic (GFRTP) composed of E-glass fiber and polyamide-6 for NMCDs using an injection molding. The reinforcing effects of fiber on the flexural properties of GFRTPs were investigated using glass fiber content ranging from 0 to 50 mass%. Three-point bending tests indicated that the flexural strength and elastic modulus of a GFRTP with a fiber content of 50 mass% were 5.4 and 4.7 times higher than those of unreinforced polyamide-6, respectively. The result showed that the physical characteristics of GFRTPs were greatly improved by increasing the fiber content, and the beneficial effects of fiber reinforcement were evident. The findings suggest that the injection-molded GFRTPs are adaptable to NMCDs because of their excellent mechanical properties.

  9. Fiber-optic polarization diversity detection for rotary probe optical coherence tomography.

    PubMed

    Lee, Anthony M D; Pahlevaninezhad, Hamid; Yang, Victor X D; Lam, Stephen; MacAulay, Calum; Lane, Pierre

    2014-06-15

    We report a polarization diversity detection scheme for optical coherence tomography with a new, custom, miniaturized fiber coupler with single mode (SM) fiber inputs and polarization maintaining (PM) fiber outputs. The SM fiber inputs obviate matching the optical lengths of the X and Y OCT polarization channels prior to interference and the PM fiber outputs ensure defined X and Y axes after interference. Advantages for this scheme include easier alignment, lower cost, and easier miniaturization compared to designs with free-space bulk optical components. We demonstrate the utility of the detection system to mitigate the effects of rapidly changing polarization states when imaging with rotating fiber optic probes in Intralipid suspension and during in vivo imaging of human airways.

  10. Therapeutic angiogenesis in ischemic muscles after local injection of fragmented fibers with loaded traditional Chinese medicine

    NASA Astrophysics Data System (ADS)

    Li, Huiyan; Wan, Huiying; Xia, Tian; Chen, Maohua; Zhang, Yun; Luo, Xiaoming; Li, Xiaohong

    2015-07-01

    Therapeutic angiogenesis remains the most effective method to re-establish a proper blood flow in ischemic tissues. There is a great clinical need to identify an injectable format to achieve a well accumulation following local administration and a sustained delivery of biological factors at the ischemic sites. In the current study, fragmented nanofibers with loaded traditional Chinese medicines, astragaloside IV (AT), the main active ingredient of astragalus, and ferulic acid (FA), the main ingredient of angelica, were proposed to promote the microvessel formation after intramuscular injection into ischemic hindlimbs. Fragmented fibers with average lengths of 5 (FF-5), 20 (FF-20) and 80 μm (FF-80) were constructed by the cryocutting of aligned electrospun fibers. Their dispersion in sodium alginate solution (0.2%) indicated good injectability. After injection into the quadriceps muscles of the hindlimbs, FF-20 and FF-80 fiber fragments showed higher tissue retentions than FF-5, and around 90% of the injected doses were determined after 7 days. On a hindlimb ischemia model established by ligating the femoral arteries, intramuscular injection of the mixtures of FA-loaded and AT-loaded FF-20 fiber fragments substantially reduced the muscle degeneration with minimal fibrosis formation, significantly enhanced the neovessel formation and hindlimb perfusion in the ischemic tissues, and efficiently promoted the limb salvage with few limb losses. Along with the easy manipulation and lower invasiveness for in vivo administration, fragmented fibers should become potential drug carriers for disease treatment, wound recovery and tissue repair after local injection.

  11. Improved passive optical network architectures to support local area network emulation and protection

    NASA Astrophysics Data System (ADS)

    Wong, Elaine; Nadarajah, Nishaanthan; Chae, Chang-Joon; Nirmalathas, Ampalavanapillai; Attygalle, Sanjeewa M.

    2006-01-01

    We describe two optical layer schemes which simultaneously facilitate local area network emulation and automatic protection switching against distribution fiber breaks in passive optical networks. One scheme employs a narrowband fiber Bragg grating placed close to the star coupler in the feeder fiber of the passive optical network, while the other uses an additional short length distribution fiber from the star coupler to each customer for the redirection of the customer traffic. Both schemes use RF subcarrier multiplexed transmission for intercommunication between customers in conjunction with upstream access to the central office at baseband. Failure detection and automatic protection switching are performed independently by each optical network unit that is located at the customer premises in a distributed manner. The restoration of traffic transported between the central office and an optical network unit in the event of the distribution fiber break is performed by interconnecting adjacent optical network units and carrying out signal transmissions via an independent but interconnected optical network unit. Such a protection mechanism enables multiple adjacent optical network units to be simultaneously protected by a single optical network unit utilizing its maximum available bandwidth. We experimentally verify the feasibility of both schemes with 1.25 Gb/s upstream baseband transmission to the central office and 155 Mb/s local area network data transmission on a RF subcarrier frequency. The experimental results obtained from both schemes are compared, and the power budgets are calculated to analyze the scalability of each scheme.

  12. Computational flow field in energy efficient engine (EEE)

    NASA Astrophysics Data System (ADS)

    Miki, Kenji; Moder, Jeff; Liou, Meng-Sing

    2016-11-01

    In this paper, preliminary results for the recently-updated Open National Combustor Code (Open NCC) as applied to the EEE are presented. The comparison between two different numerical schemes, the standard Jameson-Schmidt-Turkel (JST) scheme and the advection upstream splitting method (AUSM), is performed for the cold flow and the reacting flow calculations using the RANS. In the cold flow calculation, the AUSM scheme predicts a much stronger reverse flow in the central recirculation zone. In the reacting flow calculation, we test two cases: gaseous fuel injection and liquid spray injection. In the gaseous fuel injection case, the overall flame structures of the two schemes are similar to one another, in the sense that the flame is attached to the main nozzle, but is detached from the pilot nozzle. However, in the exit temperature profile, the AUSM scheme shows a more uniform profile than that of the JST scheme, which is close to the experimental data. In the liquid spray injection case, we expect different flame structures in this scenario. We will give a brief discussion on how two numerical schemes predict the flame structures inside the Eusing different ways to introduce the fuel injection. Supported by NASA's Transformational Tools and Technologies project.

  13. Computational Flow Field in Energy Efficient Engine (EEE)

    NASA Technical Reports Server (NTRS)

    Miki, Kenji; Moder, Jeff; Liou, Meng-Sing

    2016-01-01

    In this paper, preliminary results for the recently-updated Open National Combustion Code (Open NCC) as applied to the EEE are presented. The comparison between two different numerical schemes, the standard Jameson-Schmidt-Turkel (JST) scheme and the advection upstream splitting method (AUSM), is performed for the cold flow and the reacting flow calculations using the RANS. In the cold flow calculation, the AUSM scheme predicts a much stronger reverse flow in the central recirculation zone. In the reacting flow calculation, we test two cases: gaseous fuel injection and liquid spray injection. In the gaseous fuel injection case, the overall flame structures of the two schemes are similar to one another, in the sense that the flame is attached to the main nozzle, but is detached from the pilot nozzle. However, in the exit temperature profile, the AUSM scheme shows a more uniform profile than that of the JST scheme, which is close to the experimental data. In the liquid spray injection case, we expect different flame structures in this scenario. We will give a brief discussion on how two numerical schemes predict the flame structures inside the EEE using different ways to introduce the fuel injection.

  14. Experimental evaluation and simulation of volumetric shrinkage and warpage on polymeric composite reinforced with short natural fibers

    NASA Astrophysics Data System (ADS)

    Santos, Jonnathan D.; Fajardo, Jorge I.; Cuji, Alvaro R.; García, Jaime A.; Garzón, Luis E.; López, Luis M.

    2015-09-01

    A polymeric natural fiber-reinforced composite is developed by extrusion and injection molding process. The shrinkage and warpage of high-density polyethylene reinforced with short natural fibers of Guadua angustifolia Kunth are analyzed by experimental measurements and computer simulations. Autodesk Moldflow® and Solid Works® are employed to simulate both volumetric shrinkage and warpage of injected parts at different configurations: 0 wt.%, 20 wt.%, 30 wt.% and 40 wt.% reinforcing on shrinkage and warpage behavior of polymer composite. Become evident the restrictive effect of reinforcing on the volumetric shrinkage and warpage of injected parts. The results indicate that volumetric shrinkage of natural composite is reduced up to 58% with fiber increasing, whereas the warpage shows a reduction form 79% to 86% with major fiber content. These results suggest that it is a highly beneficial use of natural fibers to improve the assembly properties of polymeric natural fiber-reinforced composites.

  15. Dual CARS and SHG image acquisition scheme that combines single central fiber and multimode fiber bundle to collect and differentiate backward and forward generated photons

    PubMed Central

    Weng, Sheng; Chen, Xu; Xu, Xiaoyun; Wong, Kelvin K.; Wong, Stephen T. C.

    2016-01-01

    In coherent anti-Stokes Raman scattering (CARS) and second harmonic generation (SHG) imaging, backward and forward generated photons exhibit different image patterns and thus capture salient intrinsic information of tissues from different perspectives. However, they are often mixed in collection using traditional image acquisition methods and thus are hard to interpret. We developed a multimodal scheme using a single central fiber and multimode fiber bundle to simultaneously collect and differentiate images formed by these two types of photons and evaluated the scheme in an endomicroscopy prototype. The ratio of these photons collected was calculated for the characterization of tissue regions with strong or weak epi-photon generation while different image patterns of these photons at different tissue depths were revealed. This scheme provides a new approach to extract and integrate information captured by backward and forward generated photons in dual CARS/SHG imaging synergistically for biomedical applications. PMID:27375938

  16. A Model for Fiber Length Attrition in Injection-Molded Long-Fiber Composites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    TuckerIII, Charles L.; Phelps, Jay H; El-Rahman, Ahmed Abd

    2013-01-01

    Long-fiber thermoplastic (LFT) composites consist of an engineering thermoplastic matrix with glass or carbon reinforcing fibers that are initially 10 to 13 mm long. When an LFT is injection molded, flow during mold filling orients the fibers and degrades the fiber length. Fiber orientation models for injection molding are well developed, and special orientation models for LFTs have been developed. Here we present a detailed quantitative model for fiber length attrition in a flowing fiber suspension. The model tracks a discrete fiber length distribution (FLD) at each spatial node. Key equations are a conservation equation for total fiber length, andmore » a breakage rate equation. The breakage rate is based on buckling of fibers due to hydrodynamic forces, when the fibers are in unfavorable orientations. The FLD model is combined with a mold filling simulation to predict spatial and temporal variations in fiber length distribution in a mold cavity during filling. The predictions compare well to experiments on a glassfiber/ PP LFT molding. Fiber length distributions predicted by the model are easily incorporated into micromechanics models to predict the stress-strain behavior of molded LFT materials. Author to whom correspondence should be addressed; electronic mail: ctucker@illinois.edu 1« less

  17. System for testing optical fibers

    DOEpatents

    Golob, J.E.; Looney, L.D.; Lyons, P.B.; Nelson, M.A.; Davies, T.J.

    1980-07-15

    A system for measuring a combination of optical transmission properties of fiber optic waveguides. A polarized light pulse probe is injected into one end of the optical fiber. Reflections from discontinuities within the fiber are unpolarized whereas reflections of the probe pulse incident to its injection remain polarized. The polarized reflections are prevented from reaching a light detector whereas reflections from the discontinuities reaches the detector. 2 figs.

  18. Anisotropic mechanical behavior of an injection molded short fiber reinforced thermoplastic

    NASA Astrophysics Data System (ADS)

    Lopez, Delphine; Thuillier, Sandrine; Bessières, Nicolas; Grohens, Yves

    2016-10-01

    A short fiber reinforced thermoplastic was injected into a rectangular mold, in order to prepare samples to characterize the mechanical behavior of the material. The injection process was simulated with Moldflow and a cutting pattern was deduced from the predicted fiber orientation, leading to samples with several well-defined orientations with respect to the injection direction. Monotonic tensile tests up to rupture, as well as complex cycles made of loading steps followed by relaxation steps at different strain levels were performed, in order to check the reproducibility for a given orientation. Moreover, the fiber orientation in the central part of the tensile samples was also analyzed with X-ray tomography. The results show that the mechanical behavior for each orientation (among 6) was rather reproducible, thus validating the cutting pattern.

  19. Distributed fiber-optic laser-ultrasound generation based on ghost-mode of tilted fiber Bragg gratings.

    PubMed

    Tian, Jiajun; Zhang, Qi; Han, Ming

    2013-03-11

    Active ultrasonic testing is widely used for medical diagnosis, material characterization and structural health monitoring. Ultrasonic transducer is a key component in active ultrasonic testing. Due to their many advantages such as small size, light weight, and immunity to electromagnetic interference, fiber-optic ultrasonic transducers are particularly attractive for permanent, embedded applications in active ultrasonic testing for structural health monitoring. However, current fiber-optic transducers only allow effective ultrasound generation at a single location of the fiber end. Here we demonstrate a fiber-optic device that can effectively generate ultrasound at multiple, selected locations along a fiber in a controllable manner based on a smart light tapping scheme that only taps out the light of a particular wavelength for laser-ultrasound generation and allow light of longer wavelengths pass by without loss. Such a scheme may also find applications in remote fiber-optic device tuning and quasi-distributed biochemical fiber-optic sensing.

  20. The behavior of glass fibers in the rat following intraperitoneal injection.

    PubMed

    Collier, C G; Morris, K J; Launder, K A; Humphreys, J A; Morgan, A; Eastes, W; Townsend, S

    1994-12-01

    Potential carcinogenicity of fibers is believed to be determined by three factors: the dose, dimensions and durability of the fibers concerned. Currently there is considerable debate on the appropriateness of using results from intraperitoneal (i.p.) injection studies to predict the potential carcinogenicity of airborne fibers following inhalation. For ip results to have any significance to potential inhalation hazards, there should be some relation between the biopersistence, dose, and dose distribution of fibers in the serosal cavity and in the lung. Preliminary results on the durability of one experimental glass fiber in the peritoneal cavity suggest differences in dissolution when compared with durability in the lung. In the lung, the diameters of the long fibers (> 20 microns) were observed to decline at a rate consistent with their exposure to a neutral pH environment. The diameter of shorter fibers declined much more slowly, consistent with exposure to a more acidic environment such as is found in the phagolysosomes of alveolar macrophages. In the peritoneal cavity all fibers, regardless of length, dissolved at the same rate as short fibers in the lung. The effect of dose on the distribution of fibers in the peritoneal cavity was investigated using similar experimental glass fibers and compared with that of a powder made from ground fibers. For both materials at doses up to 1.5 mg, material was taken up by the peritoneal organs roughly in proportion to their surface area. This uptake was complete 1-2 days after injection. At higher doses, the majority of the material in excess of this 1.5 mg formed clumps of fibers (nodules) which were either free in the peritoneal cavity or loosely bound to peritoneal organs. These nodules displayed classic foreign body reactions with an associated granulomatous inflammatory response. The findings on both durability in the peritoneal cavity and the presence of two distinct populations of material following i.p. injection have implications for the justification of the use of i.p. injections to assess potential carcinogenicity of fibers following inhalation.

  1. Numerical approach of the injection molding process of fiber-reinforced composite with considering fiber orientation

    NASA Astrophysics Data System (ADS)

    Nguyen Thi, T. B.; Yokoyama, A.; Ota, K.; Kodama, K.; Yamashita, K.; Isogai, Y.; Furuichi, K.; Nonomura, C.

    2014-05-01

    One of the most important challenges in the injection molding process of the short-glass fiber/thermoplastic composite parts is being able to predict the fiber orientation, since it controls the mechanical and the physical properties of the final parts. Folgar and Tucker included into the Jeffery equation a diffusive type of term, which introduces a phenomenological coefficient for modeling the randomizing effect of the mechanical interactions between the fibers, to predict the fiber orientation in concentrated suspensions. Their experiments indicated that this coefficient depends on the fiber volume fraction and aspect ratio. However, a definition of the fiber interaction coefficient, which is very necessary in the fiber orientation simulations, hasn't still been proven yet. Consequently, this study proposed a developed fiber interaction model that has been introduced a fiber dynamics simulation in order to obtain a global fiber interaction coefficient. This supposed that the coefficient is a sum function of the fiber concentration, aspect ratio, and angular velocity. The proposed model was incorporated into a computer aided engineering simulation package C-Mold. Short-glass fiber/polyamide-6 composites were produced in the injection molding with the fiber weight concentration of 30 wt.%, 50 wt.%, and 70 wt.%. The physical properties of these composites were examined, and their fiber orientation distributions were measured by micro-computed-tomography equipment μ-CT. The simulation results showed a good agreement with experiment results.

  2. A study of bending effect on the femtosecond-pulse inscribed fiber Bragg gratings in a dual-core fiber

    NASA Astrophysics Data System (ADS)

    Yakushin, Sergey S.; Wolf, Alexey A.; Dostovalov, Alexandr V.; Skvortsov, Mikhail I.; Wabnitz, Stefan; Babin, Sergey A.

    2018-07-01

    Fiber Bragg gratings with different reflection wavelengths have been inscribed in different cores of a dual-core fiber section. The effect of fiber bending on the FBG reflection spectra has been studied. Various interrogation schemes are presented, including a single-end scheme based on a cross-talk between the cores that uses only standard optical components. Simultaneous interrogation of the FBGs in both cores allows to achieve a bending sensitivity of 12.8 pm/m-1, being free of temperature and strain influence. The technology enables the development of real-time bending sensors with high spatial resolution based on series of FBGs with different wavelength inscribed along the multi-core fiber.

  3. Assessment of Current Process Modeling Approaches to Determine Their Limitations, Applicability and Developments Needed for Long-Fiber Thermoplastic Injection Molded Composites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nguyen, Ba Nghiep; Holbery, Jim; Smith, Mark T.

    2006-11-30

    This report describes the status of the current process modeling approaches to predict the behavior and flow of fiber-filled thermoplastics under injection molding conditions. Previously, models have been developed to simulate the injection molding of short-fiber thermoplastics, and an as-formed composite part or component can then be predicted that contains a microstructure resulting from the constituents’ material properties and characteristics as well as the processing parameters. Our objective is to assess these models in order to determine their capabilities and limitations, and the developments needed for long-fiber injection-molded thermoplastics (LFTs). First, the concentration regimes are summarized to facilitate the understandingmore » of different types of fiber-fiber interaction that can occur for a given fiber volume fraction. After the formulation of the fiber suspension flow problem and the simplification leading to the Hele-Shaw approach, the interaction mechanisms are discussed. Next, the establishment of the rheological constitutive equation is presented that reflects the coupled flow/orientation nature. The decoupled flow/orientation approach is also discussed which constitutes a good simplification for many applications involving flows in thin cavities. Finally, before outlining the necessary developments for LFTs, some applications of the current orientation model and the so-called modified Folgar-Tucker model are illustrated through the fiber orientation predictions for selected LFT samples.« less

  4. Hydrogel fibers encapsulating hiPSC-MSCs, hESC-MSCs and hUCMSCs in injectable calcium phosphate scaffold for bone tissue engineering

    PubMed Central

    Wang, Lin; Wang, Ping; Weir, Michael D.; Reynolds, Mark A.; Zhao, Liang; Xu, Hockin H. K.

    2016-01-01

    Human induced pluripotent stem cells (hiPSCs), human embryonic stem cells (hESCs) and human umbilical cord MSCs (hUCMSCs) are exciting cell sources for use in regenerative medicine. There has been no report on long hydrogel fibers encapsulating stem cells inside injectable calcium phosphate cement (CPC) scaffold for bone tissue engineering. The objectives of this study were to: (1) develop a novel injectable CPC construct containing hydrogel fibers encapsulating cells for bone engineering, and (2) investigate and compare cell viability, proliferation and osteogenic differentiation of hiPSC-MSCs, hESC-MSCs and hUCMSCs in injectable CPC. The stem cell-encapsulating pastes were fully injectable under a small injection force, and the injection did not harm the cells, compared to cells without injection (p > 0.1). Mechanical properties of stem cell-CPC construct were much higher than previous injectable polymers and hydrogels for cell delivery. hiPSC-MSCs, hESC-MSCs and hUCMSCs in hydrogel fibers in CPC had excellent proliferation and osteogenic differentiation. All three cells yielded high alkaline phosphatase, runt-related transcription factor, collagen I, and osteocalcin expressions (mean ± sd; n = 6). Cell-synthesized minerals increased substantially with time (p < 0.05), with no significant difference among the three types of cells (p > 0.1). Mineralization by hiPSC-MSCs, hESC-MSCs and hUCMSCs in CPC at 14 d was 13-fold that at 1 d. In conclusion, all three types of cells (hiPSC-MSCs, hESC-MSCs and hUCMSCs) in CPC scaffold showed high potential for bone tissue engineering, and the novel injectable CPC construct with cell-encapsulating hydrogel fibers is promising to enhance bone regeneration in dental, craniofacial and orthopedic applications. PMID:27811389

  5. Effects of GABAA receptor inhibition on response properties of barrel cortical neurons in C-fiber-depleted rats.

    PubMed

    Farazifard, Rasoul; Kiani, Roozbeh; Esteky, Hossein

    2005-07-19

    C-fiber depletion results in expansion of low threshold somatosensory mechanoreceptive fields. In this study, we investigated the role of intact C-fibers in GABAA-mediated inhibition in barrel cortical neurons. We used electronically controlled mechanical stimulation of whiskers to quantitatively examine the responses of barrel cells to whisker displacements. After systemic injection of picrotoxin neuronal responses were recorded at 5 min intervals for 20 min and then at 10 min intervals for 100 min. Picrotoxin injection caused a 3-fold increase in response magnitude of adjacent whisker stimulation and 1.4-fold increase in response magnitude of principal whisker stimulation with a maximum enhancement 50 min after the injection. There was no significant change in spontaneous activity following picrotoxin injection. The response enhancement and receptive field expansion observed in normal rats were completely absent in the C-fiber-depleted rats. These results suggest that the GABAA-mediated inhibition that modulates the receptive field functional organization of the barrel cortex depends on intact C-fibers.

  6. Strain and temperature measurement in pultrusion processes by fiber Bragg grating sensors

    NASA Astrophysics Data System (ADS)

    Tucci, Fausto; Rubino, Felice; Carlone, Pierpaolo

    2018-05-01

    Injection Pultrusion (IP) is one of the most effective processes, in terms of productivity and costs, to manufacture fiber reinforced polymers. In IP roving of fiber are driven through an injection chamber in which they are impregnated by the resin and then formed in a shaped die. The die is heated in order to cure the resin. Pultruded products are in most cases characterized by constant cross-section profile, whereas unidirectional long fibers are mainly used as reinforcing material. Two relevant phenomena occur within the injection chamber and the heated die, namely the impregnation of the fibers and the polymerization of the resin. Furthermore, thermal expansion, resin chemical shrinkage and the interaction between the die and the impregnated fibers strongly influence the process [1]. Clearly, thermal and mechanical fields significantly impact on these strictly chained behaviours. The use of thermocouples to evaluate temperature within pultrusion die is already widespread, but they are not capable to acquire any information concerning stress-strain levels. In the present work Fibers Bragg Gratings (FBG) sensors were used to measure thermal and strain profiles in selected material location within the injection chamber and the curing die. Being the differences among the spectres transmitted and received are related to the variations in both temperature and strain, commercial FBG sensors were opportunely modified and calibrated. The optical fibers were hooked to the fibers entering into the injection pultrusion die. Taking the pulling speed into account, each waveform acquired was correlated to a position within the die. Obtained data highlight the effect of the heat generation due to resin reaction as well as longitudinal strains related to the pulling force, the thermal expansion and the chemical shrinkage of the resin system.

  7. Edge-dip air core fiber for improvement of the transmission of higher-order OAM modes

    NASA Astrophysics Data System (ADS)

    Sun, Xibo; Geng, Yuanchao; Zhu, Qihua; Feng, Xi; Huang, Wanqing; Zhang, Ying; Wang, Wenyi; Liu, Lanqin

    2018-03-01

    We presented a novel scheme to improve the stability of the orbital angular momentum (OAM) modes transmission by adding a dip at the edge of the annular high-index region of the air-core fiber. The simulation indicated a larger effective index difference of the vector modes that composed OAM modes in the same order, promising a stable transmission of the OAM modes. The intensity of the modes was concentrated better in this scheme decreasing the crosstalk between adjacent fibers. The propagation properties of the OAM modes in bent fiber were investigated.

  8. Phase-generated carrier demodulation scheme for fiber Fabry-Pérot interferometric sensor with high finesse

    NASA Astrophysics Data System (ADS)

    Rao, Wei; Niu, Siliang; Zhang, Nan; Cao, Chunyan; Hu, Yongmin

    2011-09-01

    This paper presents a demodulation scheme using phase-generated carrier (PGC) for a fiber Fabry-Pérot interferometric (FFPI) sensor with high finesse. The FFPI is constructed by a polarization maintaining fiber ring resonator with dual-coupler (PMDC-FRR), which can eliminate the polarization induced fading phenomenon. Compared with the former phase demodulation methods, the PGC scheme in this paper does not assume a two-beam interferometric approximation for the Fabry-Pérot cavity, and can work at arbitrary value of finesse in theory. Two PMDC-FRRs with reflective coefficients of 0.5 and 0.9 are made in experiments for demodulation. Both the single-frequency and the wideband signals are successfully demodulated from the transmission intensities using the PGC demodulation scheme. The experimental results demonstrate that the PGC demodulation scheme is feasible for the FFPI sensor with high finesse. The effects of the reflective coefficient and the intensity loss to the finesse are also discussed.

  9. Recent progress on mid-IR sensing with optical fibers

    NASA Astrophysics Data System (ADS)

    Kellner, Robert A.; Gobel, R.; Goetz, R.; Lendl, B.; Edl-Mizaikoff, B.; Tacke, Maurus; Katzir, Abraham

    1995-09-01

    Chemical sensors are analytical systems for the evaluation of compound- or ion-specific or - selective signals produced by specific or selective chemical reactions taking place at the interface between the chemically modified sensor surface and the substrate. The well known electrochemical sensing schemes have greatly contributed that sensors are considered now as the 'third supporting pillar of analytical chemistry' besides chromatography and spectroscopy. The aim of this paper is to describe the novel capabilities of chemical modified IR-transparent fibers as chemical IR-sensors for the on-line analysis of chlorinated hydrocarbons and organic compounds in aqueous solutions and gaseous mixtures, glucose, and sucrose in aqueous solution as developed in our laboratory. Moreover, the relative merits of this new method wil be depicted in comparison to other sensing techniques. Optical fiber sensors are novel analysis systems, based on molecular spectroscopy in the UV/VIS/IR-range. They benefit from the tremendous development in the field of optical fibers, an offspring of the telecommunication industry and the electronic revolution during the last few years. With the development of new materials besides the well known quartz fibers for the UV/VIS/NIR-range the optical window for fiber optic sensors was enlarged from 0,2 to 20 micrometers recently. The fiber length was increased recently to up to 2 meters for silver halides and approximately 10 meters for chalcogenides. New applications for environmental, food, and clinical sensing as well as process analysis are the driving force for modern research in IR-optical fiber sensors using mainly sapphire (Al2O3), chalcogenide (As-Se-Te) and silver halide (AgBr/AgCl) fibers and flow injection analysis (FIA) systems. Few representative examples for each of the various optical sensor types will be presented. Particular attention will be given to the use of silver halide fibers for the simultaneous determination of traces of chlorinated hydrocarbons in water and to FIA-systems for the process analysis of beverages.

  10. ONU Power Saving Scheme for EPON System

    NASA Astrophysics Data System (ADS)

    Mukai, Hiroaki; Tano, Fumihiko; Tanaka, Masaki; Kozaki, Seiji; Yamanaka, Hideaki

    PON (Passive Optical Network) achieves FTTH (Fiber To The Home) economically, by sharing an optical fiber among plural subscribers. Recently, global climate change has been recognized as a serious near term problem. Power saving techniques for electronic devices are important. In PON system, the ONU (Optical Network Unit) power saving scheme has been studied and defined in XG-PON. In this paper, we propose an ONU power saving scheme for EPON. Then, we present an analysis of the power reduction effect and the data transmission delay caused by the ONU power saving scheme. According to the analysis, we propose an efficient provisioning method for the ONU power saving scheme which is applicable to both of XG-PON and EPON.

  11. Frequency transfer via a two-way optical phase comparison on a multiplexed fiber network.

    PubMed

    Calosso, C E; Bertacco, E; Calonico, D; Clivati, C; Costanzo, G A; Frittelli, M; Levi, F; Mura, A; Godone, A

    2014-03-01

    We performed a two-way remote optical phase comparison on optical fiber. Two optical frequency signals were launched in opposite directions in an optical fiber and their phases were simultaneously measured at the other end. In this technique, the fiber noise is passively canceled, and we compared two optical frequencies at the ultimate 10(-21) stability level. The experiment was performed on a 47 km fiber that is part of the metropolitan network for Internet traffic. The technique relies on the synchronous measurement of the optical phases at the two ends of the link, which is here performed by digital electronics. This scheme offers some advantages with respect to active noise cancellation schemes, as the light travels only once in the fiber.

  12. Heat-Stress effects on the myosin heavy chain phenotype of rat soleus fibers during the early stages of regeneration.

    PubMed

    Oishi, Yasuharu; Roy, Roland R; Ogata, Tomonori; Ohira, Yoshinobu

    2015-12-01

    We investigated heat-stress effects on the adult myosin heavy chain (MyHC) profile of soleus muscle fibers at an early stage of regeneration. Regenerating fibers in adult rats were analyzed 2, 4, or 6 days after bupivacaine injection. Rats were heat stressed by immersion in water (42 ± 1°C) for 30 minutes 24 hours after bupivacaine injection and every other day thereafter. No adult MyHC isoforms were observed after 2 days, whereas some fibers expressed only fast MyHC after 4 days. Heat stress increased fast and slow MyHC in regenerating fibers after 6 days. Regenerating fibers expressing only slow MyHC were observed only in heat-stressed muscles. Bupivacaine injection increased the number of Pax7(+) and MyoD(+) satellite cells in regenerating fibers, more so in heat-stressed rats. The results indicate that heat stress accelerates fast-to-slow MyHC phenotype conversion in regenerating fibers via activation of satellite cells. © 2015 Wiley Periodicals, Inc.

  13. Novel Schemes for Local Area Network Emulation in Passive Optical Networks With RF Subcarrier Multiplexed Customer Traffic

    NASA Astrophysics Data System (ADS)

    Nadarajah, Nishaanthan; Attygalle, Manik; Wong, Elaine; Nirmalathas, Ampalavanapillai

    2005-10-01

    This paper proposes two novel optical layer schemes for intercommunication between customers in a passive optical network (PON). The proposed schemes use radio frequency (RF) subcarrier multiplexed transmission for intercommunication between customers in conjunction with upstream access to the central office (CO) at baseband. One scheme employs a narrowband fiber Bragg grating (FBG) placed close to the star coupler in the feeder fiber of the PON, while the other uses an additional short-length distribution fiber from the star coupler to each customer unit for the redirection of customer traffic. In both schemes, only one optical transmitter is required at each optical network unit (ONU) for the transmission of customer traffic and upstream access traffic. Moreover, downstream bandwidth is not consumed by customer traffic unlike in previously reported techniques. The authors experimentally verify the feasibility of both schemes with 1.25 Gb/s upstream baseband transmission to the CO and 155 Mb/s customer data transmission on the RF carrier. The experimental results obtained from both schemes are compared, and the power budgets are calculated to analyze the scalability of each scheme. Further, the proposed schemes were discussed in terms of upgradability of the transmission bit rates for the upstream access traffic, bandwidth requirements at the customer premises, dispersion tolerance, and stability issues for the practical implementations of the network.

  14. Numerical approach of the injection molding process of fiber-reinforced composite with considering fiber orientation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nguyen Thi, T. B., E-mail: thanhbinh.skku@gmail.com, E-mail: yokoyama@kit.ac.jp; Yokoyama, A., E-mail: thanhbinh.skku@gmail.com, E-mail: yokoyama@kit.ac.jp; Ota, K., E-mail: kei-ota@toyobo.jp, E-mail: katsuhiro-kodama@toyobo.jp, E-mail: katsuhisa-yamashita@toyobo.jp, E-mail: yumiko-isogai@toyobo.jp, E-mail: kenji-furuichi@toyobo.jp, E-mail: chisato-nonomura@toyobo.jp

    2014-05-15

    One of the most important challenges in the injection molding process of the short-glass fiber/thermoplastic composite parts is being able to predict the fiber orientation, since it controls the mechanical and the physical properties of the final parts. Folgar and Tucker included into the Jeffery equation a diffusive type of term, which introduces a phenomenological coefficient for modeling the randomizing effect of the mechanical interactions between the fibers, to predict the fiber orientation in concentrated suspensions. Their experiments indicated that this coefficient depends on the fiber volume fraction and aspect ratio. However, a definition of the fiber interaction coefficient, whichmore » is very necessary in the fiber orientation simulations, hasn't still been proven yet. Consequently, this study proposed a developed fiber interaction model that has been introduced a fiber dynamics simulation in order to obtain a global fiber interaction coefficient. This supposed that the coefficient is a sum function of the fiber concentration, aspect ratio, and angular velocity. The proposed model was incorporated into a computer aided engineering simulation package C-Mold. Short-glass fiber/polyamide-6 composites were produced in the injection molding with the fiber weight concentration of 30 wt.%, 50 wt.%, and 70 wt.%. The physical properties of these composites were examined, and their fiber orientation distributions were measured by micro-computed-tomography equipment μ-CT. The simulation results showed a good agreement with experiment results.« less

  15. Long period gratings in multimode optical fibers: application in chemical sensing

    NASA Astrophysics Data System (ADS)

    Thomas Lee, S.; Dinesh Kumar, R.; Suresh Kumar, P.; Radhakrishnan, P.; Vallabhan, C. P. G.; Nampoori, V. P. N.

    2003-09-01

    We propose and demonstrate a new technique for evanescent wave chemical sensing by writing long period gratings in a bare multimode plastic clad silica fiber. The sensing length of the present sensor is only 10 mm, but is as sensitive as a conventional unclad evanescent wave sensor having about 100 mm sensing length. The minimum measurable concentration of the sensor reported here is 10 nmol/l and the operating range is more than 4 orders of magnitude. Moreover, the detection is carried out in two independent detection configurations viz., bright field detection scheme that detects the core-mode power and dark field detection scheme that detects the cladding mode power. The use of such a double detection scheme definitely enhances the reliability and accuracy of the results. Furthermore, the cladding of the present fiber need not be removed as done in conventional evanescent wave fiber sensors.

  16. A review of experimental evidence for the carcinogenicity of man-made vitreous fibers.

    PubMed

    Davis, J M

    1986-01-01

    This paper reviews experimental studies on the carcinogenicity of man-made vitreous fibers. Long-term inhalation studies using several animal species and dust preparations of fibrous glass, rock wool or slag wool have produced little evidence of pulmonary fibrosis or pulmonary tumors. While some intratracheal injection studies found almost no pathological changes in lung tissue, some showed that pulmonary fibrosis can occur. Only one intratracheal injection study has reported that vitreous fibers can be carcinogenic; in contrast, many workers have reported that, following intrapleural or intraperitoneal injection, man-made vitreous fibers are highly carcinogenic, and tumor production appears to be closely related to fiber size. In vitro tests confirm that vitreous fibers can be toxic and can cause neoplastic transformation of cultured cells. The discrepancies between some experimental studies probably result from the relatively high solubility of most vitreous fibers. It seems likely that, while these fibers can survive in body cavities long enough to cause tumor production, they dissolve in lung tissue fast enough to have relatively little harmful effect. Rock-wool fibers appear more durable than glass- or slag-wool fibers, and, with similar fiber numbers and sizes in any dust cloud, this material is the most likely to have harmful potential.

  17. Experimental circular quantum secret sharing over telecom fiber network.

    PubMed

    Wei, Ke-Jin; Ma, Hai-Qiang; Yang, Jian-Hui

    2013-07-15

    We present a robust single photon circular quantum secret sharing (QSS) scheme with phase encoding over 50 km single mode fiber network using a circular QSS protocol. Our scheme can automatically provide a perfect compensation of birefringence and remain stable for a long time. A high visibility of 99.3% is obtained. Furthermore, our scheme realizes a polarization insensitive phase modulators. The visibility of this system can be maintained perpetually without any adjustment to the system every time we test the system.

  18. Secure communication in fiber optic systems via transmission of broad-band optical noise.

    PubMed

    Buskila, O; Eyal, A; Shtaif, M

    2008-03-03

    We propose a new scheme for data encryption in the physical layer. Our scheme is based on the distribution of a broadband optical noise-like signal between Alice and Bob. The broadband signal is used for the establishment of a secret key that can be used for the secure transmission of information by using the one-time-pad method. We characterize the proposed scheme and study its applicability to the existing fiber-optics communications infrastructure.

  19. Outgassing rate analysis of a velvet cathode and a carbon fiber cathode

    NASA Astrophysics Data System (ADS)

    Li, An-Kun; Fan, Yu-Wei; Qian, Bao-Liang; Zhang, Zi-cheng; Xun, Tao

    2017-11-01

    In this paper, the outgassing-rates of a carbon fiber array cathode and a polymer velvet cathode are tested and discussed. Two different methods of measurements are used in the experiments. In one scheme, a method based on dynamic equilibrium of pressure is used. Namely, the cathode works in the repetitive mode in a vacuum diode, a dynamic equilibrium pressure would be reached when the outgassing capacity in the chamber equals the pumping capacity of the pump, and the outgassing rate could be figured out according to this equilibrium pressure. In another scheme, a method based on static equilibrium of pressure is used. Namely, the cathode works in a closed vacuum chamber (a hard tube), and the outgassing rate could be calculated from the pressure difference between the pressure in the chamber before and after the work of the cathode. The outgassing rate is analyzed from the real time pressure evolution data which are measured using a magnetron gauge in both schemes. The outgassing rates of the carbon fiber array cathode and the velvet cathode are 7.3 ± 0.4 neutrals/electron and 85 ± 5 neutrals/electron in the first scheme and 9 ± 0.5 neutrals/electron and 98 ± 7 neutrals/electron in the second scheme. Both the results of two schemes show that the outgassing rate of the carbon fiber array cathode is an order smaller than that of the velvet cathode under similar conditions, which shows that this carbon fiber array cathode is a promising replacement of the velvet cathode in the application of magnetically insulated transmission line oscillators and relativistic magnetrons.

  20. The Solution to Pollution is Distribution: Design Your Own Chaotic Flow

    NASA Astrophysics Data System (ADS)

    Tigera, R. G.; Roth, E. J.; Neupauer, R.; Mays, D. C.

    2015-12-01

    Plume spreading promotes the molecular mixing that drives chemical reactions in porous media in general, and remediation reactions in groundwater aquifers in particular. Theoretical analysis suggests that engineered injection and extraction, a specific sequence of pumping through wells surrounding a contaminant plume, can improve groundwater remediation through chaotic advection. Selection of an engineered injection and extraction scheme is difficult, however, because the engineer is faced with the difficulty of recommending a pumping scheme for a contaminated site without having any previous knowledge of how the scheme will perform. To address this difficulty, this presentation describes a Graphical User Interface (GUI) designed to help engineers develop, test, and observe pumping schemes as described in previous research (Mays, D.C. and Neupauer, R.M., 2012, Plume spreading in groundwater by stretching and folding, Water Resour. Res., 48, W07501, doi:10.1029/2011WR011567). The inputs allow the user to manipulate the model conditions such as number of wells, plume size, and pumping scheme. Plume evolution is modeled, assuming no diffusion or dispersion, using analytical solutions for injection or extraction through individual wells or pairs or wells (i.e., dipoles). Using the GUI, an engineered injection and extraction scheme can be determined that best fits the remediation needs of the contaminated site. By creating multiple injection and extraction schemes, the user can learn about the plume shapes created from different schemes and, ultimately, recommend a pumping scheme based on some experience of fluid flow as shown in the GUI. The pumping schemes developed through this GUI are expected to guide more advanced modeling and laboratory studies that account for the crucial role of dispersion in groundwater remediation.

  1. Numerical prediction of flow induced fibers orientation in injection molded polymer composites

    NASA Astrophysics Data System (ADS)

    Oumer, A. N.; Hamidi, N. M.; Mat Sahat, I.

    2015-12-01

    Since the filling stage of injection molding process has important effect on the determination of the orientation state of the fibers, accurate analysis of the flow field for the mold filling stage becomes a necessity. The aim of the paper is to characterize the flow induced orientation state of short fibers in injection molding cavities. A dog-bone shaped model is considered for the simulation and experiment. The numerical model for determination of the fibers orientation during mold-filling stage of injection molding process was solved using Computational Fluid Dynamics (CFD) software called MoldFlow. Both the simulation and experimental results showed that two different regions (or three layers of orientation structures) across the thickness of the specimen could be found: a shell region which is near to the mold cavity wall, and a core region at the middle of the cross section. The simulation results support the experimental observations that for thin plates the probability of fiber alignment to the flow direction near the mold cavity walls is high but low at the core region. It is apparent that the results of this study could assist in decisions regarding short fiber reinforced polymer composites.

  2. Modeling of short fiber reinforced injection moulded composite

    NASA Astrophysics Data System (ADS)

    Kulkarni, A.; Aswini, N.; Dandekar, C. R.; Makhe, S.

    2012-09-01

    A micromechanics based finite element model (FEM) is developed to facilitate the design of a new production quality fiber reinforced plastic injection molded part. The composite part under study is composed of a polyetheretherketone (PEEK) matrix reinforced with 30% by volume fraction of short carbon fibers. The constitutive material models are obtained by using micromechanics based homogenization theories. The analysis is carried out by successfully coupling two commercial codes, Moldflow and ANSYS. Moldflow software is used to predict the fiber orientation by considering the flow kinetics and molding parameters. Material models are inputted into the commercial software ANSYS as per the predicted fiber orientation and the structural analysis is carried out. Thus in the present approach a coupling between two commercial codes namely Moldflow and ANSYS has been established to enable the analysis of the short fiber reinforced injection moulded composite parts. The load-deflection curve is obtained based on three constitutive material model namely an isotropy, transversely isotropy and orthotropy. Average values of the predicted quantities are compared to experimental results, obtaining a good correlation. In this manner, the coupled Moldflow-ANSYS model successfully predicts the load deflection curve of a composite injection molded part.

  3. Generation of surface-wave microwave microplasmas in hollow-core photonic crystal fiber based on a split-ring resonator.

    PubMed

    Vial, Florian; Gadonna, Katell; Debord, Benoît; Delahaye, Frédéric; Amrani, Foued; Leroy, Olivier; Gérôme, Frédéric; Benabid, Fetah

    2016-05-15

    We report on a new and highly compact scheme for the generation and sustainment of microwave-driven plasmas inside the core of an inhibited coupling Kagome hollow-core photonic crystal fiber. The microwave plasma generator consists of a split-ring resonator that efficiently couples the microwave field into the gas-filled fiber. This coupling induces the concomitant generation of a microwave surface wave at the fiber core surround and a stable plasma column confined in the fiber core. The scheme allowed the generation of several centimeters long argon microplasma columns with a very low excitation power threshold. This result represents an important step toward highly compact plasma lasers or plasma-based photonic components.

  4. Constant envelope OFDM scheme for 6PolSK-QPSK

    NASA Astrophysics Data System (ADS)

    Li, Yupeng; Ding, Ding

    2018-03-01

    A constant envelope OFDM scheme with phase modulator (PM-CE-OFDM) for 6PolSK-QPSK modulation was demonstrated. Performance under large fiber launch power is measured to check its advantages in counteracting fiber nonlinear impairments. In our simulation, PM-CE-OFDM, RF-assisted constant envelope OFDM (RF-CE-OFDM) and conventional OFDM (Con-OFDM) are transmitted through 80 km standard single mode fiber (SSMF) single channel and WDM system. Simulation results confirm that PM-CE-OFDM has best performance in resisting fiber nonlinearity. In addition, benefiting from the simple system structure, the complexity and cost of PM-CE-OFDM system could be reduced effectively.

  5. Distributed measurement of polarization mode coupling in fiber ring based on P-OTDR complete polarization state detection.

    PubMed

    Huang, Zejia; Wu, Chongqing; Wang, Zhi; Wang, Jian; Liu, Lanlan

    2018-02-19

    Using a quaternion method, the polarization mode-coupling coefficient can be derived from three components of the Stokes vectors at three adjacent points along a fiber. A complete polarization optical time-domain reflectometry scheme for polarization mode coupling distributed measurement in polarization-maintaining fiber ring is proposed based on the above theoretical derivations. By comparing the measurement results of two opposite incident directions and two orthogonal polarization axes of polarization-maintaining fiber rings with different lengths, the feasibility and repeatability of the measurement scheme are verified experimentally with a positioning spatial resolution of 1 meter.

  6. 20 W continuous-wave cladding-pumped Nd-doped fiber laser at 910 nm.

    PubMed

    Laroche, M; Cadier, B; Gilles, H; Girard, S; Lablonde, L; Robin, T

    2013-08-15

    We demonstrate a double-clad fiber laser operating at 910 nm with a record power of 20 W. Laser emission on the three-level scheme is enabled by the combination of a small inner cladding-to-core diameter ratio and a high brightness pump source at 808 nm. A laser conversion efficiency as high as 44% was achieved in CW operating regime by using resonant fiber Bragg reflectors at 910 nm that prevent the lasing at the 1060 nm competing wavelength. Furthermore, in a master oscillator power-amplifier scheme, an amplified power of 14.8 W was achieved at 914 nm in the same fiber.

  7. Regeneration of Airy pulses in fiber-optic links with dispersion management of the two leading dispersion terms of opposite signs

    NASA Astrophysics Data System (ADS)

    Driben, R.; Meier, T.

    2014-04-01

    Dispersion management of periodically alternating fiber sections with opposite signs of two leading dispersion terms is applied for the regeneration of self-accelerating truncated Airy pulses. It is demonstrated that for such a dispersion management scheme, the direction of the acceleration of the pulse is reversed twice within each period. In this scheme the system features light hot spots in the center of each fiber section, where the energy of the light pulse is tightly focused in a short temporal slot. Comprehensive numerical studies demonstrate a long-lasting propagation also under the influence of a strong fiber Kerr nonlinearity.

  8. A Study of Dispersion Compensation of Polarization Multiplexing-Based OFDM-OCDMA for Radio-over-Fiber Transmissions

    PubMed Central

    Yen, Chih-Ta; Chen, Wen-Bin

    2016-01-01

    Chromatic dispersion from optical fiber is the most important problem that produces temporal skews and destroys the rectangular structure of code patterns in the spectra-amplitude-coding-based optical code-division multiple-access (SAC-OCDMA) system. Thus, the balance detection scheme does not work perfectly to cancel multiple access interference (MAI) and the system performance will be degraded. Orthogonal frequency-division multiplexing (OFDM) is the fastest developing technology in the academic and industrial fields of wireless transmission. In this study, the radio-over-fiber system is realized by integrating OFDM and OCDMA via polarization multiplexing scheme. The electronic dispersion compensation (EDC) equalizer element of OFDM integrated with the dispersion compensation fiber (DCF) is used in the proposed radio-over-fiber (RoF) system, which can efficiently suppress the chromatic dispersion influence in long-haul transmitted distance. A set of length differences for 10 km-long single-mode fiber (SMF) and 4 km-long DCF is to verify the compensation scheme by relative equalizer algorithms and constellation diagrams. In the simulation result, the proposed dispersion mechanism successfully compensates the dispersion from SMF and the system performance with dispersion equalizer is highly improved. PMID:27618042

  9. Carbon nanotube mode lockers with enhanced nonlinearity via evanescent field interaction in D-shaped fibers

    NASA Astrophysics Data System (ADS)

    Song, Yong-Won; Yamashita, Shinji; Goh, Chee S.; Set, Sze Y.

    2007-01-01

    We demonstrate a novel passive mode-locking scheme for pulsed lasers enhanced by the interaction of carbon nanotubes (CNTs) with the evanescent field of propagating light in a D-shaped optical fiber. The scheme features all-fiber operation as well as a long lateral interaction length, which guarantees a strong nonlinear effect from the nanotubes. Mode locking is achieved with less than 30% of the CNTs compared with the amount of nanotubes used for conventional schemes. Our method also ensures the preservation of the original morphology of the individual CNTs. The demonstrated pulsed laser with our CNT mode locker has a repetition rate of 5.88 MHz and a temporal pulse width of 470 fs.

  10. Carbon nanotube mode lockers with enhanced nonlinearity via evanescent field interaction in D-shaped fibers.

    PubMed

    Song, Yong-Won; Yamashita, Shinji; Goh, Chee S; Set, Sze Y

    2007-01-15

    We demonstrate a novel passive mode-locking scheme for pulsed lasers enhanced by the interaction of carbon nanotubes (CNTs) with the evanescent field of propagating light in a D-shaped optical fiber. The scheme features all-fiber operation as well as a long lateral interaction length, which guarantees a strong nonlinear effect from the nanotubes. Mode locking is achieved with less than 30% of the CNTs compared with the amount of nanotubes used for conventional schemes. Our method also ensures the preservation of the original morphology of the individual CNTs. The demonstrated pulsed laser with our CNT mode locker has a repetition rate of 5.88 MHz and a temporal pulse width of 470 fs.

  11. Faraday-Michelson system for quantum cryptography.

    PubMed

    Mo, Xiao-Fan; Zhu, Bing; Han, Zheng-Fu; Gui, You-Zhen; Guo, Guang-Can

    2005-10-01

    Quantum key distribution provides unconditional security for communication. Unfortunately, current experimental schemes are not suitable for long-distance fiber transmission because of phase drift or Rayleigh backscattering. In this Letter we present a unidirectional intrinsically stable scheme that is based on Michelson-Faraday interferometers, in which ordinary mirrors are replaced with 90 degree Faraday mirrors. With the scheme, a demonstration setup was built and excellent stability of interference fringe visibility was achieved over a fiber length of 175 km. Through a 125 km long commercial communication fiber cable between Beijing and Tianjin, the key exchange was performed with a quantum bit-error rate of less than 6%, which is to our knowledge the longest reported quantum key distribution experiment under field conditions.

  12. Picometer-resolution dual-comb spectroscopy with a free-running fiber laser.

    PubMed

    Zhao, Xin; Hu, Guoqing; Zhao, Bofeng; Li, Cui; Pan, Yingling; Liu, Ya; Yasui, Takeshi; Zheng, Zheng

    2016-09-19

    Dual-comb spectroscopy holds the promise as real-time, high-resolution spectroscopy tools. However, in its conventional schemes, the stringent requirement on the coherence between two lasers requires sophisticated control systems. By replacing control electronics with an all-optical dual-comb lasing scheme, a simplified dual-comb spectroscopy scheme is demonstrated using one dual-wavelength, passively mode-locked fiber laser. Pulses with a intracavity-dispersion-determined repetition-frequency difference are shown to have good mutual coherence and stability. Capability to resolve the comb teeth and a picometer-wide optical spectral resolution are demonstrated using a simple data acquisition system. Energy-efficient, free-running fiber lasers with a small comb-tooth-spacing could enable low-cost dual-comb systems.

  13. Applications of polyamide/cellulose fiber/wollastonite composites for microcellular injection molding

    Treesearch

    Herman Winata; Lih-Sheng Turng; Daniel F. Caulfield; Tom Kuster; Rick Spindler; Rod Jacobson

    2003-01-01

    In this study, a cellulose-fiber-reinforced Polyamide-6 (PA-6) composite, a hybrid composite (PA-6/cellulose/Wollastonite), and the neat PA-6 resin were injection molded into ASTM test–bar samples with conventional and microcellular injection molding. The impact and tensile strengths of molded samples were measured and the Scanning Electron Microscopy (SEM) images were...

  14. Role of fiber dissolution in biological activity in rats.

    PubMed

    Eastes, W; Hadley, J G

    1994-12-01

    This report deals with the role of dissolution in removing long fibers from the lung and with a mathematical model that predicts chronic effects in rats following inhalation or intraperitoneal (i.p.) injection of fibers. Results of intratracheal instillation studies and inhalation studies in rats demonstrate clearly that long vitreous fibers dissolve in vivo at about the same rate measured in vitro in fluid designed to stimulate the extracellular lung fluid. For the glass, rock, and slag wool fibers tested, dissolution removed most of the fibers longer than 20 microns inhaled into the rats' lungs within 6 months after both short-term (5 days) and long-term (1 to 2 years) exposures. A mathematical model was developed that is based on fiber dissolution and allows one to predict the development of chronic lung diseases in rats. The model predicted the incidence of fibrosis and lung tumors in a series of recent inhalation studies and tumors following ip injection to within about the error of the experiments. The model suggests that all fibers, regardless of their dissolution rate in lung fluid, can produce tumors after ip injection because the dose can be unlimited by this route. After inhalation, in contrast, dissolution of many types of long vitreous fibers occurs rapidly, and disease does not ensue for these fibers.

  15. Mechanical recycling of continuous fiber-reinforced thermoplastic sheets

    NASA Astrophysics Data System (ADS)

    Moritzer, Elmar; Heiderich, Gilmar

    2016-03-01

    This contribution examines possible material recycling of offcuts generated during the production of continuous-fiber-reinforced composite sheets. These sheets consist of a polyamide 6 matrix and glass fiber fabric. In the initial step, the offcut is shredded to obtain particles; following that, the particles are processed in a twin-screw process to produce fiber-reinforced plastic pellets with varying fiber contents. These pellets are intended for use in injection molding processes as a substitution for new raw materials. This investigation centers on the mechanical properties which can be achieved with the recycled material after both the twin-screw process and injection molding.

  16. Nanosensor for detection of glucose

    NASA Astrophysics Data System (ADS)

    Del Villar, Ignacio; Matias, Ignacio R.; Arregui, Francisco J.

    2004-06-01

    A novel fiber-optic sensor sensitive to glucose has been designed based on electrostatic self-assembly method. The polycation of the structure is a mixture of poly(allylamine hydrochloride) (PAH) and Prussian Blue, whereas the polyanion is well-known enzyme gluocose oxidase (GOx). The range of glucose concentration that can be measured is submilimolar and is located between 0.1 and 2 mM. Measures are based on a new detection scheme based on the slope of the change of signal produced by injection of glucose, yielding to a linear response. The sensor responses in a PH range between 4 and 7.4, which includes the physiological PH of blood. Some rules for esitmation of the refractive index of the material deposited and the thickness of bilayers are also given.

  17. Developments in photonic and mm-wave component technology for fiber radio

    NASA Astrophysics Data System (ADS)

    Iezekiel, Stavros

    2013-01-01

    A review of photonic component technology for fiber radio applications at 60 GHz will be given. We will focus on two architectures: (i) baseband-over-fiber and (ii) RF-over-fiber. In the first approach, up-conversion to 60 GHz is performed at the picocell base stations, with data being transported over fiber, while in the second both the data and rum­ wave carrier are transported over fiber. For the baseband-over-fiber scheme, we examine techniques to improve the modulation efficiency of directly­ modulated fiber links. These are based on traveling-wave structures applied to series cascades of lasers. This approach combines the improvement in differential quantum efficiency with the ability to tailor impedance matching as required. In addition, we report on various base station transceiver architectures based on optically-controlled :tvfMIC self­ oscillating mixers, and their application to 60 GHz fiber radio. This approach allows low cost optoelectronic transceivers to be used for the baseband fiber link, whilst minimizing the impact of dispersion. For the RF-over-fiber scheme, we report on schemes for optical generation of 100 GHz. These use modulation of a Mach-Zehnder modulator at Vπ bias in cascade with a Mach-Zehnder driven by 1.25 Gb/s data. One of the issues in RF-over-fiber is dispersion, while reduced modulation efficiency due to the presence of the optical carrier is also problematic. We examine the use of silicon nitride micro-ring resonators for the production of optical single sideband modulation in order to combat dispersion, and for the reduction of optical carrier power in order to improve link modulation efficiency.

  18. Degeneration and regeneration of neuromuscular junction architecture in rat skeletal muscle fibers damaged by bupivacaine hydrochloride.

    PubMed

    Nishizawa, Tomie; Tamaki, Hiroyuki; Kasuga, Norikatsu; Takekura, Hiroaki

    2003-01-01

    We evaluated the degeneration and regeneration of neuromuscular junctions (NMJs) on the extensor digitorum longus muscle of Fischer 344 rats between 4 h and 3 weeks after bupivacaine hydrochloride (BPVC) injection, which induces muscle fiber necrosis, using histochemical staining by acetylcholine esterase (AchE)-silver and electron microscopy. Degeneration of muscle fibers and NMJs was observed 4 h after BPVC injection. One week after BPVC injection, some terminal axons were almost completely retracted, and the level of basal lamina-associated AchE in some NMJ regions had gradually disappeared. At that time, the depression contained a few, mostly pit-like or elongated oval invaginations: the incipient junctional folds and some NMJs did not have any secondary junctional fold. By 2 weeks after the BPVC injection, secondary junctional folds began to develop: however, the number of secondary junctional folds was clearly less than that in normal NMJs. At 3 weeks when regeneration of muscle fibers was well advanced, the staining for AchE at the end-plates became stronger and better-defined. The volume density of mitochondria in the terminal area of the terminal significantly decreased upon BPVC-induced destruction of the NMJ, and the density reached the lowest value 24 h after BPVC injection. Significant changes in the ultrastructural features of the architecture of NMJs occurred in skeletal muscle fibers damaged by BPVC during both the degeneration and regeneration processes. The changes in the ultrastructural and morphological features of the NMJ architecture during the regeneration of degenerated muscle fibers resembled those that occur during the differentiation of normal muscle fibers.

  19. Demonstration of ultra-wideband (UWB) over fiber based on optical pulse-injected semiconductor laser.

    PubMed

    Juan, Yu-Shan; Lin, Fan-Yi

    2010-04-26

    We experimentally demonstrated the ultra-wideband (UWB) signal generation utilizing nonlinear dynamics of an optical pulse-injected semiconductor laser. The UWB signals generated are fully in compliant with the FCC mask for indoor radiation, while a large fractional bandwidth of 93% is achieved. To show the feasibility of UWB-over-fiber, transmission over a 2 km single-mode fiber and a wireless channel utilizing a pair of broadband antennas are examined. Moreover, proof of concept experiment on data encoding and decoding with 250 Mb/s in the optical pulse-injected laser is successfully demonstrated.

  20. A fiber orientation-adapted integration scheme for computing the hyperelastic Tucker average for short fiber reinforced composites

    NASA Astrophysics Data System (ADS)

    Goldberg, Niels; Ospald, Felix; Schneider, Matti

    2017-10-01

    In this article we introduce a fiber orientation-adapted integration scheme for Tucker's orientation averaging procedure applied to non-linear material laws, based on angular central Gaussian fiber orientation distributions. This method is stable w.r.t. fiber orientations degenerating into planar states and enables the construction of orthotropic hyperelastic energies for truly orthotropic fiber orientation states. We establish a reference scenario for fitting the Tucker average of a transversely isotropic hyperelastic energy, corresponding to a uni-directional fiber orientation, to microstructural simulations, obtained by FFT-based computational homogenization of neo-Hookean constituents. We carefully discuss ideas for accelerating the identification process, leading to a tremendous speed-up compared to a naive approach. The resulting hyperelastic material map turns out to be surprisingly accurate, simple to integrate in commercial finite element codes and fast in its execution. We demonstrate the capabilities of the extracted model by a finite element analysis of a fiber reinforced chain link.

  1. Digital phase demodulation for low-coherence interferometry-based fiber-optic sensors

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Strum, R.; Stiles, D.; Long, C.; Rakhman, A.; Blokland, W.; Winder, D.; Riemer, B.; Wendel, M.

    2018-03-01

    We describe a digital phase demodulation scheme for low-coherence interferometry-based fiber-optic sensors by employing a simple generation of phase-shifted signals at the interrogation interferometer. The scheme allows a real-time calibration process and offers capability of measuring large variations (up to the coherence of the light source) at the bandwidth that is only limited by the data acquisition system. The proposed phase demodulation method is analytically derived and its validity and performance are experimentally verified using fiber-optic Fabry-Perot sensors for measurement of strains and vibrations.

  2. Few-mode fiber based Raman distributed temperature sensing.

    PubMed

    Wang, Meng; Wu, Hao; Tang, Ming; Zhao, Zhiyong; Dang, Yunli; Zhao, Can; Liao, Ruolin; Chen, Wen; Fu, Songnian; Yang, Chen; Tong, Weijun; Shum, Perry Ping; Liu, Deming

    2017-03-06

    We proposed and experimentally demonstrated a few mode fiber (FMF) based Raman distributed temperature sensor (RDTS) to extend the sensing distance with enhanced signal-to-noise ratio (SNR) of backscattered anti-Stokes spontaneous Raman scattering. Operating in the quasi-single mode (QSM) with efficient fundamental mode excitement, the FMF allows much larger input pump power before the onset of stimulated Raman scattering compared with the standard single mode fiber (SSMF) and mitigates the detrimental differential mode group delay (DMGD) existing in the conventional multimode fiber (MMF) based RDTS system. Comprehensive theoretical analysis has been conducted to reveal the benefits of RDTS brought by QSM operated FMFs with the consideration of geometric/optical parameters of different FMFs. The measurement uncertainty of FMF based scheme has also been evaluated. Among fibers being investigated and compared (SSMF, 2-mode and 4-mode FMFs, respectively), although an ideal 4-mode FMF based RDTS has the largest SNR enhancement in principle, real fabrication imperfections and larger splicing loss degrade its performance. While the 2-mode FMF based system outperforms in longer distance measurement, which agrees well with the theoretical calculations considering real experimental parameters. Using the conventional RDTS hardware, a 30-ns single pulse at 1550nm has been injected as the pump; the obtained temperature resolutions at 20km distance are estimated to be about 10°C, 7°C and 6°C for the SSMF, 4-mode and 2-mode FMFs, respectively. About 4°C improvement over SSMF on temperature resolution at the fiber end with 3m spatial resolution within 80s measuring time over 20km 2-mode FMFs have been achieved.

  3. A hybrid quantum eraser scheme for characterization of free-space and fiber communication channels

    NASA Astrophysics Data System (ADS)

    Nape, Isaac; Kyeremah, Charlotte; Vallés, Adam; Rosales-Guzmán, Carmelo; Buah-Bassuah, Paul K.; Forbes, Andrew

    2018-02-01

    We demonstrate a simple projective measurement based on the quantum eraser concept that can be used to characterize the disturbances of any communication channel. Quantum erasers are commonly implemented as spatially separated path interferometric schemes. Here we exploit the advantages of redefining the which-path information in terms of spatial modes, replacing physical paths with abstract paths of orbital angular momentum (OAM). Remarkably, vector modes (natural modes of free-space and fiber) have a non-separable feature of spin-orbit coupled states, equivalent to the description of two independently marked paths. We explore the effects of fiber perturbations by probing a step-index optical fiber channel with a vector mode, relevant to high-order spatial mode encoding of information for ultra-fast fiber communications.

  4. Quality of Recovery Evaluation of the Protection Schemes for Fiber-Wireless Access Networks

    NASA Astrophysics Data System (ADS)

    Fu, Minglei; Chai, Zhicheng; Le, Zichun

    2016-03-01

    With the rapid development of fiber-wireless (FiWi) access network, the protection schemes have got more and more attention due to the risk of huge data loss when failures occur. However, there are few studies on the performance evaluation of the FiWi protection schemes by the unified evaluation criterion. In this paper, quality of recovery (QoR) method was adopted to evaluate the performance of three typical protection schemes (MPMC scheme, OBOF scheme and RPMF scheme) against the segment-level failure in FiWi access network. The QoR models of the three schemes were derived in terms of availability, quality of backup path, recovery time and redundancy. To compare the performance of the three protection schemes comprehensively, five different classes of network services such as emergency service, prioritized elastic service, conversational service, etc. were utilized by means of assigning different QoR weights. Simulation results showed that, for the most service cases, RPMF scheme was proved to be the best solution to enhance the survivability when planning the FiWi access network.

  5. A Novel Cost-effective OFDM WDM-PON Radio Over Fiber System Employing FBG to Generate Optical mm-wave

    NASA Astrophysics Data System (ADS)

    Nguyen, HoangViet

    2015-03-01

    We have investigated and demonstrated a novel scheme to generate 2.5 Gbit/s 64 QAM orthogonal frequency division multiplexing (OFDM) signals for Radio Over Fiber (ROF) systems. We employ Fiber Bragg Grating (FBG) because the repetitive frequency of the RF source and the bandwidth of the optical modulator are largely reduced and the architecture of the ROF system is simpler. Wavelength-Division-Multiplexed Passive Optical Network (WDM-PON) has been considered as a promising solution for future broadband access networks. Principle of WDM-PON access network compatible with OFDM-ROF systems is investigated. This novel scheme which has multiple double-frequency technique to generate mm-wave signal to carry OFDM signals is a practical scheme to be applied for future broadband access networks.

  6. Evaluation of selective control information detection scheme in orthogonal frequency division multiplexing-based radio-over-fiber and visible light communication links

    NASA Astrophysics Data System (ADS)

    Dalarmelina, Carlos A.; Adegbite, Saheed A.; Pereira, Esequiel da V.; Nunes, Reginaldo B.; Rocha, Helder R. O.; Segatto, Marcelo E. V.; Silva, Jair A. L.

    2017-05-01

    Block-level detection is required to decode what may be classified as selective control information (SCI) such as control format indicator in 4G-long-term evolution systems. Using optical orthogonal frequency division multiplexing over radio-over-fiber (RoF) links, we report the experimental evaluation of an SCI detection scheme based on a time-domain correlation (TDC) technique in comparison with the conventional maximum likelihood (ML) approach. When compared with the ML method, it is shown that the TDC method improves detection performance over both 20 and 40 km of standard single mode fiber (SSMF) links. We also report a performance analysis of the TDC scheme in noisy visible light communication channel models after propagation through 40 km of SSMF. Experimental and simulation results confirm that the TDC method is attractive for practical orthogonal frequency division multiplexing-based RoF and fiber-wireless systems. Unlike the ML method, another key benefit of the TDC is that it requires no channel estimation.

  7. Fiber-FSO/wireless convergent systems based on dual-polarization and one optical sideband transmission schemes

    NASA Astrophysics Data System (ADS)

    Huang, Xu-Hong; Lu, Hai-Han; Li, Chung-Yi; Wang, Yun-Chieh; Chang, Jen-Chieh; Jheng, Yu-Bo; Tsai, Wen-Shing

    2018-06-01

    A bidirectional fiber-free-space optical (FSO)/wireless convergent system that uses dual-polarization and one optical sideband transmission schemes for hybrid vestigial sideband (VSB)–four-level pulse amplitude modulation (PAM4)/millimeter-wave signal transmission is proposed and demonstrated. Using a dual-polarization scheme, one optical sideband that is modulated by a 56 Gb s‑1 VSB–PAM4 signal (x-polarization) and another optical sideband that is modulated by a 10 Gbps data stream (y-polarization) are separated and polarized orthogonally. One optical sideband modulated by a 10 Gbps data stream (y-polarization) is delivered to efficaciously suppress the dispersion-induced limitation due to a span of 40 km single-mode fiber (SMF) and the distortion due to the beating among multiple sidebands. The proposed bidirectional fiber-FSO/wireless convergent system is a prominent one for providing broadband integrated services, such as the Internet, telecommunication, and 5G mobile networks.

  8. Insight into interfacial effect on effective physical properties of fibrous materials. I. The volume fraction of soft interfaces around anisotropic fibers.

    PubMed

    Xu, Wenxiang; Wang, Han; Niu, Yanze; Bai, Jingtao

    2016-01-07

    With advances in interfacial properties characterization technologies, the interfacial volume fraction is a feasible parameter for evaluating effective physical properties of materials. However, there is a need to determine the interfacial volume fraction around anisotropic fibers and a need to assess the influence of such the interfacial property on effective properties of fibrous materials. Either ways, the accurate prediction of interfacial volume fraction is required. Towards this end, we put forward both theoretical and numerical schemes to determine the interfacial volume fraction in fibrous materials, which are considered as a three-phase composite structure consisting of matrix, anisotropic hard spherocylinder fibers, and soft interfacial layers with a constant dimension coated on the surface of each fiber. The interfacial volume fraction actually represents the fraction of space not occupied by all hard fibers and matrix. The theoretical scheme that adopts statistical geometry and stereological theories is essentially an analytic continuation from spherical inclusions. By simulating such three-phase chopped fibrous materials, we numerically derive the interfacial volume fraction. The theoretical and numerical schemes provide a quantitative insight that the interfacial volume fraction depends strongly on the fiber geometries like fiber shape, geometric size factor, and fiber size distribution. As a critical interfacial property, the present contribution can be further drawn into assessing effective physical properties of fibrous materials, which will be demonstrated in another paper (Part II) of this series.

  9. All-optical UWB generation and modulation using SOA-XPM effect and DWDM-based multi-channel frequency discrimination.

    PubMed

    Wang, Fei; Dong, Jianji; Xu, Enming; Zhang, Xinliang

    2010-11-22

    An all-optical UWB pulses generation and modulation scheme using cross phase modulation (XPM) effect of semiconductor optical amplifier (SOA) and DWDM-based multi-channel frequency discrimination is proposed and demonstrated, which has potential application in multiuser UWB-Over-Fiber communication systems. When a Gaussian pulse light and a wavelength-tunable CW probe light are together injected into the SOA, the probe light out from the SOA will have a temporal chirp due to SOA-XPM effect. When the chirped probe light is tuned to the slopes of single DWDM channel transmittance curve, the optical phase modulation to intensity modulation conversion is achieved at DWDM that serves as a multi-channel frequency discriminator, the inverted polarity Gaussian monocycle and doublet pulse is detected by a photodetector, respectively. If the probe lights are simultaneously aimed to different slopes of several DWDM channels, multi-channel or binary-phase-coded UWB signal generation can be acquired. Using proposed scheme, pulse amplitude modulation (PAM), pulse polarity modulation (PPM) and pulse shape modulation (PSM) to UWB pulses also can be conveniently realized.

  10. Optical Injection Locking of Vertical Cavity Surface-Emitting Lasers: Digital and Analog Applications

    NASA Astrophysics Data System (ADS)

    Parekh, Devang

    With the rise of mobile (cellphones, tablets, notebooks, etc.) and broadband wireline communications (Fiber to the Home), there are increasing demands being placed on transmitters for moving data from device to device and around the world. Digital and analog fiber-optic communications have been the key technology to meet this challenge, ushering in ubiquitous Internet and cable TV over the past 20 years. At the physical layer, high-volume low-cost manufacturing of semiconductor optoelectronic devices has played an integral role in allowing for deployment of high-speed communication links. In particular, vertical cavity surface emitting lasers (VCSEL) have revolutionized short reach communications and are poised to enter more markets due to their low cost, small size, and performance. However, VCSELs have disadvantages such as limited modulation performance and large frequency chirp which limits fiber transmission speed and distance, key parameters for many fiber-optic communication systems. Optical injection locking is one method to overcome these limitations without re-engineering the VCSEL at the device level. By locking the frequency and phase of the VCSEL by the direct injection of light from another laser oscillator, improved device performance is achieved in a post-fabrication method. In this dissertation, optical injection locking of VCSELs is investigated from an applications perspective. Optical injection locking of VCSELs can be used as a pathway to reduce complexity, cost, and size of both digital and analog fiber-optic communications. On the digital front, reduction of frequency chirp via bit pattern inversion for large-signal modulation is experimentally demonstrated showing up to 10 times reduction in frequency chirp and over 90 times increase in fiber transmission distance. Based on these results, a new reflection-based interferometric model for optical injection locking was established to explain this phenomenon. On the analog side, the resonance frequency enhancement was exploited for millimeter-wave radio over fiber communications. Experimental demonstration of 4 Gb/s data transmission over 20 km of fiber and 3 m of wireless transmission at a 60 GHz carrier frequency was achieved. Additionally, optical injection of multi-transverse mode (MM) VCSELs was investigated showing record resonance frequency enhancement of > 54 GHz and 3-dB bandwidth of 38 GHz. Besides these applications, a number of other intriguing applications are also discussed, including an optoelectronic oscillator (OEO) and wavelength-division multiplexed passive optical networks (WDM-PON). Finally, the future of optical injection locking and its direction going forward will be discussed.

  11. Injection port derivatization following ion-pair hollow fiber-protected liquid-phase microextraction for determining acidic herbicides by gas chromatography/mass spectrometry.

    PubMed

    Wu, Jingming; Lee, Hian Kee

    2006-10-15

    Injection port derivatization following ion-pair hollow fiber-protected liquid-phase microextraction (LPME) for the trace determination of acidic herbicides (2,4-dichlorobenzoic acid, 2,4-dichlorophenoxyacetic acid, 2-(2,4-dichlorophenoxy)propionic acid, 3,5-dichlorobenzoic acid, 2-(2,4,5-trichlorophenoxy)propionic acid) in aqueous samples by gas chromatography/mass spectrometry (GC/MS) was developed. Prior to GC injection port derivatization, acidic herbicides were converted into their ion-pair complexes with tetrabutylammonium chloride in aqueous samples and then extracted by 1-octanol impregnated in the hollow fiber. Upon injection, ion pairs of acidic herbicides were quantitatively derivatized to their butyl esters in the GC injection port. Thus, several parameters related to the derivatization process (i.e., injection temperature, purge-off time) were evaluated, and main parameters affecting the hollow fiber-protected LPME procedure such as extraction organic solvent, ion-pair reagent type, pH of aqueous medium, concentration of ion-pair reagent, sodium chloride concentration added to the aqueous medium, stirring speed, and extraction time profile, optimized. At the selected extraction and derivatization conditions, no matrix effects were observed. This method proved good repeatability (RSDs <12.3%, n = 6) and good linearity (r2 > or = 0.9939) for spiked deionized water samples for five analytes. The limits of detection were in the range of 0.51-13.7 ng x L(-1) (S/N =3) under GC/MS selected ion monitoring mode. The results demonstrated that injection port derivatization following ion-pair hollow fiber-protected LPME was a simple, rapid, and accurate method for the determination of trace acidic herbicides from aqueous samples. In addition, this method proved to be environmentally friendly since it completely avoided open derivatization with potentially hazardous reagents.

  12. Implementation of New Process Models for Tailored Polymer Composite Structures into Processing Software Packages

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nguyen, Ba Nghiep; Jin, Xiaoshi; Wang, Jin

    2010-02-23

    This report describes the work conducted under the Cooperative Research and Development Agreement (CRADA) (Nr. 260) between the Pacific Northwest National Laboratory (PNNL) and Autodesk, Inc. to develop and implement process models for injection-molded long-fiber thermoplastics (LFTs) in processing software packages. The structure of this report is organized as follows. After the Introduction Section (Section 1), Section 2 summarizes the current fiber orientation models developed for injection-molded short-fiber thermoplastics (SFTs). Section 3 provides an assessment of these models to determine their capabilities and limitations, and the developments needed for injection-molded LFTs. Section 4 then focuses on the development of amore » new fiber orientation model for LFTs. This model is termed the anisotropic rotary diffusion - reduced strain closure (ARD-RSC) model as it explores the concept of anisotropic rotary diffusion to capture the fiber-fiber interaction in long-fiber suspensions and uses the reduced strain closure method of Wang et al. to slow down the orientation kinetics in concentrated suspensions. In contrast to fiber orientation modeling, before this project, no standard model was developed to predict the fiber length distribution in molded fiber composites. Section 5 is therefore devoted to the development of a fiber length attrition model in the mold. Sections 6 and 7 address the implementations of the models in AMI, and the conclusions drawn from this work is presented in Section 8.« less

  13. Injection efficiency of bound modes. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Egalon, Claudio Oliveira

    1990-01-01

    Previous work on efficiency of light injection into the core of a fiber from a thin film and a bulk distribution of sources in the cladding have used the fields of a weakly guiding fiber. This approximation simplifies the analysis of the power efficiency by introducing universal values for the eigenvalues of different fibers with the same V-number, but cannot predict accurately the behavior of the injected light into a fiber with arbitrary differences in indices of refraction. The exact field solution was used in the expressions of the power efficiency, p sub eff, and its behavior as a function of the fiber parameter was analyzed. Weakly guiding results obtained previously are confirmed. However, P sub eff does not always increase with the V-number but with the difference in the indices of refraction, eta sub core-eta sub clad. For the bulk distribution it was found that P sub eff increases with the wavelength, lambda, and decreases with the fiber core radius, a, i.e., it decreases with the V-number. However, for the thin film, the P sub eff remains almost constant with lambda and the fiber core radius.

  14. Top-up injection schemes for future circular lepton collider

    NASA Astrophysics Data System (ADS)

    Aiba, M.; Goddard, B.; Oide, K.; Papaphilippou, Y.; Saá Hernández, Á.; Shwartz, D.; White, S.; Zimmermann, F.

    2018-02-01

    Top-up injection is an essential ingredient for the future circular lepton collider (FCC-ee) to maximize the integrated luminosity and it determines the design performance. In ttbar operation mode, with a beam energy of 175 GeV, the design lifetime of ∼1 h is the shortest of the four anticipated operational modes, and the beam lifetime may be even shorter in actual operation. A highly robust top-up injection scheme is consequently imperative. Various top-up methods are investigated and a number of suitable schemes are considered in developing alternative designs for the injection straight section of the collider ring. For the first time, we consider multipole-kicker off-energy injection, for minimizing detector background in top-up operation, and the use of a thin wire septum in a lepton storage ring, for maximizing the luminosity.

  15. Laser-phased-array beam steering based on crystal fiber

    NASA Astrophysics Data System (ADS)

    Yang, Deng-cai; Zhao, Si-si; Wang, Da-yong; Wang, Zhi-yong; Zhang, Xiao-fei

    2011-06-01

    Laser-phased-array system provides an elegant means for achieving the inertial-free, high-resolution, rapid and random beam steering. In laser-phased-array system, phase controlling is the most important factor that impacts the system performance. A novel scheme is provided in this paper, the beam steering is accomplished by using crystal fiber array, the difference length between adjacent fiber is fixed. The phase difference between adjacent fiber decides the direction of the output beam. When the wavelength of the input fiber laser is tuned, the phase difference between the adjacent elements has changed. Therefore, the laser beam direction has changed and the beam steering has been accomplished. In this article, based on the proposed scheme, the steering angle of the laser beam is calculated and analyzed theoretically. Moreover, the far-field steering beam quality is discussed.

  16. Modular separation-based fiber-optic sensors for remote in situ monitoring.

    PubMed

    Dickens, J; Sepaniak, M

    2000-02-01

    A modular separation-based fiber-optic sensor (SBFOS) with an integrated electronically controlled injection device is described for potential use in remote environmental monitoring. An SBFOS is a chemical monitor that integrates the separation selectivity and versatility afforded by capillary electrophoresis with the remote and high sensitivity capabilities of fiber-optic-based laser-induced fluorescence sensing. The detection module of the SBFOS accommodates all essential sensing components for dual-optical fiber, on-capillary fluorescence detection. An injection module, similar to injection platforms on micro-analysis chips, is also integrated to the SBFOS. The injection module allows for electronically controlled injection of the sample onto the separation capillary. The design and operational characteristics of the modular SBFOS are discussed in this paper. A micellar electrokinetic capillary chromatography mode of separation is employed to evaluate the potential of the sensor for in situ monitoring of neutral toxins (aflatoxins). The analytical figures of merit for the modular SBFOS include analysis times of between 5 and 10 min, separation efficiencies of approximately 10(4) theoretical plates, detection limits for aflatoxins in the mid-to-low nanomolar range, and controllable operation that results in sensor performance that is largely immune to sample matrix effects.

  17. A novel OCS millimeter-wave generation scheme with data carried only by one sideband and wavelength reuse for uplink connection

    NASA Astrophysics Data System (ADS)

    Zhu, Zihang; Zhao, Shanghong; Yao, Zhoushi; Tan, Qinggui; Li, Yongjun; Chu, Xingchun; Shi, Lei; Hou, Rui

    2012-11-01

    We propose a novel optical carrier suppression (OCS) millimeter-wave generation scheme with data carried only by one sideband using a dual-drive Mach-Zehnder modulator (MZM) in radio-over-fiber system, and the transmission performance is also investigated. As the signal is transmitted along the fiber, there is no time shifting of the codes caused by chromatic dispersion. Simulation results show that the eye diagram keeps open and clear even when the optical millimeter-waves are transmitted over 110 km and the power penalty is about 1.9 dB after fiber transmission distance of 60 km. Furthermore, due to the +1 order sideband carrying no data, a full duplex radio-over-fiber link based on wavelength reuse is also built to simplify the base station. The bidirectional 2.5 Gbit/s data is successfully transmitted over a 40 km standard single mode fiber with less than 0.8 dB power penalty in the simulation. Both theoretical analysis and simulation results show that our scheme is feasible and we can obtain a simple cost-efficient configuration and good performance over long-distance transmission.

  18. Comparison of behavior in muscle fiber regeneration after bupivacaine hydrochloride- and acid anhydride-induced myonecrosis.

    PubMed

    Akiyama, C; Kobayashi, S; Nonaka, I

    1992-01-01

    We compared the morphologic characteristics of muscle fiber necrosis and subsequent regeneration after injury induced by intramuscular injections of bupivacaine hydrochloride (BPVC) and a variety of solutions at acid and alkaline pH (acetic anhydride, citric acid buffer, and sodium carbonate buffer). After BPVC injection the necrotic muscle fibers were rapidly invaded by phagocytic cells, followed by active regeneration and very little fibrous scar formation. The regenerating muscle fibers increased rapidly in size and attained complete fiber type differentiation and regained their initial fiber diameter within 1 month. Both alkaline and acid solutions induced muscle fiber necrosis followed by regeneration. Fiber necrosis induced by alkaline buffers and acetic anhydride solutions above pH 5.0 produced changes quite similar to that induced by BPVC. However, injection with 0.1 M acetic anhydride at pH below 4.0 resulted in coagulative necrosis of the injured muscle with very little phagocytic infiltration with poor regenerative activity and dense fibrous tissue scarring. Thus, pH 4.0 appears to be the critical pH determining the type of muscle injury and subsequent poor phagocytic and regenerative activities. This model of acidic acetic anhydride injury may lead to the identification of factors which interfere with regeneration and cause fibrous tissue scarring in human muscular dystrophy.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sanadi, A.R.; Caulfield, D.F.; Jacobson, R.E.

    Kenaf (Hibiscus Cannabinus) is a fast growing annual growth plant that is harvested for its bast fibers. These fibers have excellent specific properties and have potential to be outstanding reinforcing fillers in plastics. In our experiments, the fibers and polypropylene (PP) were blended in a thermokinetic mixer and then injection molded, with the fiber weight fractions varying to 60%. A maleated polypropylene was used to improve the interaction and adhesion between the non-polar matrix and the polar lignocellulosic fibers. The specific tensile and flexural moduli of a 50 % by volume (39 % by volume) of kenaf-PP composites compares favorablymore » with a 40 % by weight of glass fiber-PP injection molded composites, These results suggest that kenaf fibers are a viable alternative to inorganic/mineral based reinforcing fibers as long as the right processing conditions are used and for applications where the higher water absorption is not critical.« less

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sanadi, A.R.; Caulfield, D.F.; Jacobson, R.E.

    Kenaf (Hibiscus cannabinus) is a fast growing annual growth plant that is harvested for its bast fibers. These fibers have excellent specific properties and have potential to be outstanding reinforcing fillers in plastics. In these experiments, the fibers and polypropylene (PP) were blended in a thermokinetic mixer and then injection molded, with the fiber weight fractions varying to 60%. A maleated polypropylene was used to improve the interaction and adhesion between the nonpolar matrix and the polar lignocellulosic fibers. The specific tensile and flexural moduli of a 50% by weight (39% by volume) of kenaf-PP composite compare favorably with amore » 40% by weight of glass fiber-PP injection-molded composite. These results suggest that kenaf fibers are a viable alternative to inorganic/mineral-based reinforcing fibers as long as the right processing conditions are used and they are used in applications where the higher water absorption is not critical.« less

  1. Digital phase demodulation for low-coherence interferometry-based fiber-optic sensors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Y.; Strum, R.; Stiles, D.

    In this paper, we describe a digital phase demodulation scheme for low-coherence interferometry-based fiber-optic sensors by employing a simple generation of phase-shifted signals at the interrogation interferometer. The scheme allows a real-time calibration process and offers capability of measuring large variations (up to the coherence of the light source) at the bandwidth that is only limited by the data acquisition system. Finally, the proposed phase demodulation method is analytically derived and its validity and performance are experimentally verified using fiber-optic Fabry–Perot sensors for measurement of strains and vibrations.

  2. Digital phase demodulation for low-coherence interferometry-based fiber-optic sensors

    DOE PAGES

    Liu, Y.; Strum, R.; Stiles, D.; ...

    2017-11-20

    In this paper, we describe a digital phase demodulation scheme for low-coherence interferometry-based fiber-optic sensors by employing a simple generation of phase-shifted signals at the interrogation interferometer. The scheme allows a real-time calibration process and offers capability of measuring large variations (up to the coherence of the light source) at the bandwidth that is only limited by the data acquisition system. Finally, the proposed phase demodulation method is analytically derived and its validity and performance are experimentally verified using fiber-optic Fabry–Perot sensors for measurement of strains and vibrations.

  3. Analysis of Dual-Order Backward Pumping Schemes in Distributed Raman Amplification System

    NASA Astrophysics Data System (ADS)

    Singh, Kulwinder; Patterh, Manjeet Singh; Bhamrah, Manjit Singh

    2018-04-01

    Backward pumping in fiber Raman amplifiers has been investigated in this paper in terms of on-off Raman gain, noise figure and optical signal-to-noise ratio. The results exhibit that with four first-order pumps and one second-order pump scheme can be employed to achieve 8.2 dB noise figure in 64 channel fiber optic communication system. It has also been reported that 2.65 dB gain ripple, 0.87 dB noise figure tilt and 2.02 dB OSNR tilt can be attained with the second-order pumping in fiber Raman amplifiers. The main advantage of the scheme is that only 50 mW second-order pump shows appreciable improvement in the system performance. It shows that further increase in first-order and second-order pump powers increase system noise implications.

  4. Broadband supercontinuum generation with femtosecond pulse width in erbium-doped fiber laser (EDFL)

    NASA Astrophysics Data System (ADS)

    Rifin, S. N. M.; Zulkifli, M. Z.; Hassan, S. N. M.; Munajat, Y.; Ahmad, H.

    2016-11-01

    We demonstrate two flat plateaus and the low-noise spectrum of supercontinuum generation (SCG) in a highly nonlinear fiber (HNLF), injected by an amplified picosecond pulse seed of a carbon nanotube-based passively mode locked erbium-doped fiber laser. A broad spectrum of width approximately 1090 nm spanning the range 1130-2220 nm is obtained and the pulse width is compressed to the shorter duration of 70 fs. Variations of the injected peak power up to 33.78 kW into the HNLF are compared and the broad spectrum SCG profiles slightly expand for each of the injected peak powers. This straightforward configuration of SCG offers low output power and ultra-narrow femtosecond pulse width. The results facilitate the development of all fiber time-domain spectroscopy systems based on the photoconductive antenna technique.

  5. 2-kW single-mode fiber laser employing bidirectional-pump scheme

    NASA Astrophysics Data System (ADS)

    Zhang, Fan; Zheng, Wenyou; Shi, Pengyang; Zhang, Xinhai

    2018-01-01

    2kW single-mode fiber laser with two cascade home-made cladding light strippers (CLSs) by employing bidirectionalpump scheme has been demonstrated. 2.009 kW signal power is obtained when pump power is 2.63 kW and the slope efficiency is 76.6%. Raman Stokes light is less than -47 dB at 2.009 kW even with a 10-m delivery fiber with core/inner cladding diameter of 20/400um. The beam quality M2<=1.2 and the spectral FWHM bandwidth is 4.34nm. There is no transverse mode instability and the output power stability of +/-0.14% is achieved by special thermal management for a more uniform temperature distribution on the Yb-doped gain fiber.

  6. Investigating palygorskite's role in the development of mesothelioma in southern Nevada: Insights into fiber-induced carcinogenicity.

    PubMed

    Larson, David; Powers, Amy; Ambrosi, Jean-Paul; Tanji, Mika; Napolitano, Andrea; Flores, Erin G; Baumann, Francine; Pellegrini, Laura; Jennings, Cormac J; Buck, Brenda J; McLaurin, Brett T; Merkler, Doug; Robinson, Cleo; Morris, Paul; Dogan, Meral; Dogan, A Umran; Pass, Harvey I; Pastorino, Sandra; Carbone, Michele; Yang, Haining

    2016-01-01

    Similar to asbestos fibers, nonregulated mineral fibers can cause malignant mesothelioma (MM). Recently, increased proportions of women and young individuals with MM were identified in southern Nevada, suggesting that environmental exposure to carcinogenic fibers was causing the development of MM. Palygorskite, a fibrous silicate mineral with a history of possible carcinogenicity, is abundant in southern Nevada. In this study, our aim was to determine whether palygorskite was contributing to the development of MM in southern Nevada. While palygorskite, in vitro, displayed some cytotoxicity toward primary human mesothelial (HM) cells and reduced their viability, the effects were roughly half of those observed when using similar amounts of crocidolite asbestos. No Balb/c (0/19) or MexTAg (0/18) mice injected with palygorskite developed MM, while 3/16 Balb/c and 13/14 MexTAg mice injected with crocidolite did. Lack of MM development was associated with a decreased acute inflammatory response, as injection of palygorskite resulted in lower percentages of macrophages (p = .006) and neutrophils (p = .02) in the peritoneal cavity 3 d after exposure compared to injection of crocidolite. Additionally, compared to mice injected with crocidolite, palygorskite-injected mice had lower percentages of M2 (tumor-promoting) macrophages (p = .008) in their peritoneal cavities when exposed to fiber for several weeks. Our study indicates that palygorskite found in the environment in southern Nevada does not cause MM in mice, seemingly because palygorskite, in vivo, fails to elicit inflammation that is associated with MM development. Therefore, palygorskite is not a likely contributor to the MM cases observed in southern Nevada.

  7. Development of simplified external control techniques for broad area semiconductor lasers

    NASA Technical Reports Server (NTRS)

    Davis, Christopher C.

    1993-01-01

    The goal of this project was to injection lock a 500 mW broad area laser diode (BAL) with a single mode low power laser diode with injection beam delivery through a single mode optical fiber (SMF). This task was completed successfully with the following significant accomplishments: (1) injection locking of a BAL through a single-mode fiber using a master oscillator and integrated miniature optics; (2) generation of a single-lobed, high-power far-field pattern from the injection-locked BAL that steers with drive current; and (3) a comprehensive theoretical analysis of a model that describes the observed behavior of the injection locked oscillator.

  8. Sensors with centroid-based common sensing scheme and their multiplexing

    NASA Astrophysics Data System (ADS)

    Berkcan, Ertugrul; Tiemann, Jerome J.; Brooksby, Glen W.

    1993-03-01

    The ability to multiplex sensors with different measurands but with a common sensing scheme is of importance in aircraft and aircraft engine applications; this unification of the sensors into a common interface has major implications for weight, cost, and reliability. A new class of sensors based on a common sensing scheme and their E/O Interface has been developed. The approach detects the location of the centroid of a beam of light; the set of fiber optic sensors with this sensing scheme include linear and rotary position, temperature, pressure, as well as duct Mach number. The sensing scheme provides immunity to intensity variations of the source or due to environmental effects on the fiber. A detector spatially multiplexed common electro-optic interface for the sensors has been demonstrated with a position and a temperature sensor.

  9. Research on mechanical properties of carbon fiber /polyamide reinforced PP composites

    NASA Astrophysics Data System (ADS)

    Chen, Xinghui; Yu, Qiang; Liu, Lixia; Ji, Wenhua; Yang, Li; Fan, Dongli

    2017-10-01

    The polyamide composites reinforced by carbon fiber/polypropylene are produced by injection molding processing. The flow abilities and mechanical properties of the CF/PA/PP composite materials are studied by the fusion index instrument and the universal testing machine. The results show that with the content of carbon fiber/polyamide increase, the impact breaking strength and the tensile property of the composite materials increase, which is instructive to the actual injection production of polypropylene products.

  10. Fabrication of Composite Material Using Gettou Fiber by Injection Molding

    NASA Astrophysics Data System (ADS)

    Setsuda, Roy; Fukumoto, Isao; Kanda, Yasuyuki

    This study investigated the mechanical properties of composite using gettou (shell ginger) fiber as reinforcement fabricated from injection molding. Gettou fiber is a natural fiber made from gettou, a subtropical plant that is largely abundant in Okinawa, Japan. We used the stem part of gettou plant and made the gettou fiber by crushing the stem. The composite using gettou fiber contributed to low shrinkage ratio, high bending strength and high flexural modulus. The mechanical strength of composite using long gettou fiber showed higher value than composite using short gettou fiber. Next, because gettou is particularly known for its anti-mold characteristic, we investigated the characteristic in gettou plastic composite. The composite was tested against two molds: aspergillius niger and penicillium funiculosum. The 60% gettou fiber plastic composite was found to satisfy the JISZ2801 criterion. Finally, in order to predict the flexural modulus of composite using gettou fiber by Halpin-Tsai equation, the tensile elastic modulus of single gettou fiber was measured. The tendency of the experimental results of composite using gettou fiber was in good agreement with Halpin-Tsai equation.

  11. Sensitivity to injected cholera toxin of the sodium efflux in single barnacle muscle fibers.

    PubMed

    Bittar, E E; Nwoga, J

    1984-01-01

    A study has been made of the effect of microinjected cholera toxin (CT) on the efflux in single barnacle muscle fibers. Characteristically, injected CT causes sustained stimulation of the ouabain-insensitive Na efflux but only after a lag phase. An effect is seen with as little as a 10(-7) M-solution of CT. Sustained stimulation after a lag phase is also seen following injection of subunit A fragment. Enrichment of fibers with NAD+ fails to enhance the response to CT. Prior injection of GTP or its non-hydrolyzeable analogue, Gpp(NH)p, markedly reduces the response to CT, whilst prior injection of CT reduces the response to guanine nucleotides. Evidence is also brought forward that omission of external Ca2+ reversibly reduces the response to CT and that pre- or postinjection of EGTA markedly reduces the response to CT. In addition, fibers preinjected with CT show increased aequorin light emission. Whereas verapamil and Cd2+ are ineffective, both Mg2+ and trace metals, e.g. Fe and Zn, reverse the response to CT following injection. Prior injection of protein kinase inhibitor reduces the response to CT. As for calmodulin inhibitors, e.g. chlorpromazine, imipramine and mepacrine, they are effective in reducing the response to CT but not calmodulin antibody (IgG). Collectively, the above results are compatible with the view that sustained stimulation of the ouabain-insensitive Na efflux by injected CT is due to persistent activation of adenylate cyclase by the toxin and that a fall in myoplasmic pCa facilitates or augments this activation mechanism.

  12. Fabrication et applications des reseaux de Bragg ultra-longs

    NASA Astrophysics Data System (ADS)

    Gagne, Mathieu

    This thesis presents the principal accomplishments realized during the PhD project. The thesis is presented by publication format and is a collection of four published articles having fiber Bragg gratings as a central theme. First achieved in 1978, UV writing of fiber Bragg gratings is nowadays a common and mature technology being present in both industry and academia. The property of reflecting light guided by optical fibers lead to diverse applications in telecommunication, lasers as well as several types of sensors. The conventional fabrication technique is generally based on the use of generally expensive phase masks which determine the obtained characteristics of the fiber Bragg grating. The fiber being photosensitive at those wavelengths, a periodic pattern can be written into it. The maximal length, the period, the chirp, the index contrast and the apodisation are all characteristics that depend on the phase mask. The first objective of the research project is to be able to go beyond this strong dependance on the phase mask without deteriorating grating quality. This is what really sets apart the technique presented in this thesis from other long fiber Bragg grating fabrication techniques available in the literature. The fundamental approach to obtain ultra long fiber Bragg gratings of arbitrary profile is to replace the scheme of scanning a UV beam across a phase mask to expose a fixed fiber by a scheme where the UV beam and phase mask are fixed and where the fiber is moving instead. To obtain a periodic index variation, the interference pattern itself must be synchronized with the moving fiber. Two variations of this scheme were implanted: the first one using electro-optical phase modulator placed in each arm of a Talbot interferometer and the second one using a phase mask mounted on a piezo electric actuator. A new scheme that imparts fine movements of the interferometer is also implemented for the first time and showed to be essential to achieve high quality ultra long fiber Bragg gratings. High quality theory matching ultra long fiber Bragg gratings up to 1 meter long are obtained for the first time. The possibility of fabricating high quality ultra long fiber Bragg grating of more than 10 cm (approximately the maximal phase mask length) opens a variety of new applications otherwise impossible with short fiber Bragg grating technology. Ultra long fiber Bragg gratings have unique characteristics such as high reflectivity, high dispersion and ultra narrow bandwidth. Those characteristics can be used to do advanced signal processing, non linear propagation experiments, distributed feedback fiber lasers and dispersion compensator for telecommunication or optical tomography. The second objective of this project is to use these ultra-long fiber Bragg gratings as an optical cavity for fiber lasers. Alot of research in the past years have been concentrated on those lasers, particularly on distributed feedback fiber lasers where the gratings spans all the gain media. A new random fiber laser configuration is presented. It is based on passive or active insertion of phase shifts along the Bragg grating to obtained a phenomenon called light localization which is the optical equivalent of Anderson localization. This complex wave phenomenon has the unique property to mimic the reflection of a uniform photonic crystal with the random diffusion of light among the elements of a random media. Being commonly obtained in fine powders which must respect a certain set of rules, the realization of 1D structures is vastly simplified in optical fibers. Two random fiber laser schemes based on light localization, one using erbium dopant and the other one Raman scattering, are demonstrated for the first time and compared to traditional distributed feedback fiber lasers.

  13. Investigation of combustion characteristics in a scramjet combustor using a modified flamelet model

    NASA Astrophysics Data System (ADS)

    Zhao, Guoyan; Sun, Mingbo; Wang, Hongbo; Ouyang, Hao

    2018-07-01

    In this study, the characteristics of supersonic combustion inside an ethylene-fueled scramjet combustor equipped with multi-cavities were investigated with different injection schemes. Experimental results showed that the flames concentrated in the cavity and separated boundary layer downstream of the cavity, and they occupied the flow channel further enhancing the bulk flow compression. The flame structure in distributed injection scheme differed from that in centralized injection scheme. In numerical simulations, a modified flamelet model was introduced to consider that the pressure distribution is far from homogenous inside the scramjet combustor. Compared with original flamelet model, numerical predictions based on the modified model showed better agreement with the experimental results, validating the reliability of the calculations. Based on the modified model, the simulations with different injection schemes were analysed. The predicted flame agreed reasonably with the experimental observations in structure. The CO masses were concentrated in cavity and subsonic region adjacent to the cavity shear layer leading to intense heat release. Compared with centralized scheme, the higher jet mixing efficiency in distributed scheme induced an intense combustion in posterior upper cavity and downstream of the cavity. From streamline and isolation surfaces, the combustion at trail of lower cavity was depressed since the bulk flow downstream of the cavity is pushed down.

  14. Experience from a long-term carcinogenicity study with intraperitoneal injection of biosoluble synthetic mineral fibers.

    PubMed

    Grimm, Hans G; Bernstein, David M; Attia, Mahmoud; Richard, Jacques; De Reydellet, Aymon

    2002-08-01

    The carcinogenic potential in the intraperitoneal cavity of three newly developed biosoluble insulation glass wool fibers (M, P, and V) and one newly developed biosoluble insulation stone wool fiber (O) was investigated and compared to that of a previously developed soluble glass fiber (B). The in vitro dissolution coefficient of the three glass wool fibers ranged from 450 to 1037 ng/cm(2) x h and was 523 ng/cm(2) x h for the stone wool fiber. The in vitro dissolution coefficient of the B fiber was 580 ng/cm(2) x h. Groups of female Wistar rats (strain Crl: Wi BR) were exposed by repeated injections to doses of 0.5, 2, and 5 x 10(9) WHO fibers, which corresponds to between 41 mg to 724 mg fiber injected. In addition, 2 groups of crocidolite were used as positive controls at doses of 0.1 x 10(9) and 1 x 10(9) WHO fibers (0.5 and 5 mg). The in vitro dissolution coefficient of crocidolite is estimated to be approximately 1 ng/cm(2) x h. The protocol of the study and the size distribution of the test samples conformed to the European Commission Protocol EUR 18748 EN, and the study was executed under Good Laboratory Practice conditions. Two of the new insulation wools, fibers M and 0, showed no statistically significant tumorigenic response even at the very high dose of 5 x 10(9) WHO fibers injected. Fibers P and V showed a small tumorigenic response in the ip cavity similar in magnitude to the B fiber, which has been declared in the German fiber regulations as a noncarcinogenic fiber. The response to the soluble insulation fibers was notably different from that of the known carcinogen crocidolite, which produced 53% tumors at a comparatively low dose of 0.1 x 10(9) WHO fibers. The incidence of mesothelioma was found to be highly correlated to the incidence of intra-abdominal nodules and masses at different sites. The incidence of abdominal nodules and masses was highly correlated to the number of animals with ascites. The incidence of chronic peritonitis with fibrotic nodules at different organs also correlated with the incidence of mesotheliomas. Differences in etiology were observed between the massive doses of the highly soluble insulation wools when injected directly into the ip cavity and the lower doses of the extremely insoluble fiber crocidolite. The variability in this reaction and the impairment of animal health put into question the value of these massive doses in evaluating the carcinogenic response of soluble insulation wools. All of the fibers tested fulfilled the exoneration criteria with respect to carcinogenicity according to the European Directive 97/69/EC ("an appropriate intra-peritoneal test has not expressed signs of excessive carcinogenicity"). The dose as defined in the EC-Protocol EUR 18748 EN was 1 x 10(9) WHO fibers with a defined geometric spectrum. The influence of fiber dimensions on the ip tumor response and the difficulty in assessing the influence of the difference in background levels between this and previous studies make direct application of the German TRGS 905 criteria difficult; however, by comparison to fiber B, which in the TRGS 905 is considered as a noncarcinogenic fiber, all of the synthetic mineral fiber types tested in this study also appear to meet the intended German criteria for exoneration.

  15. Energy-efficient writing scheme for magnetic domain-wall motion memory

    NASA Astrophysics Data System (ADS)

    Kim, Kab-Jin; Yoshimura, Yoko; Ham, Woo Seung; Ernst, Rick; Hirata, Yuushou; Li, Tian; Kim, Sanghoon; Moriyama, Takahiro; Nakatani, Yoshinobu; Ono, Teruo

    2017-04-01

    We present an energy-efficient magnetic domain-writing scheme for domain wall (DW) motion-based memory devices. A cross-shaped nanowire is employed to inject a domain into the nanowire through current-induced DW propagation. The energy required for injecting the magnetic domain is more than one order of magnitude lower than that for the conventional field-based writing scheme. The proposed scheme is beneficial for device miniaturization because the threshold current for DW propagation scales with the device size, which cannot be achieved in the conventional field-based technique.

  16. Apparatus for injecting high power laser light into a fiber optic cable

    DOEpatents

    Sweatt, William C.

    1997-01-01

    High intensity laser light is evenly injected into an optical fiber by the combination of a converging lens and a multisegment kinoform (binary optical element). The segments preferably have multi-order gratings on each which are aligned parallel to a radial line emanating from the center of the kinoform and pass through the center of the element. The grating in each segment causes circumferential (lateral) dispersion of the light, thereby avoiding detrimental concentration of light energy within the optical fiber.

  17. Chondroitinase injection improves keloid pathology by reorganizing the extracellular matrix with regenerated elastic fibers.

    PubMed

    Ishiko, Toshihiro; Naitoh, Motoko; Kubota, Hiroshi; Yamawaki, Satoko; Ikeda, Mika; Yoshikawa, Katsuhiro; Fujita, Hiroshi; Yamaguchi, Hiroaki; Kurahashi, Yasuhiro; Suzuki, Shigehiko

    2013-05-01

    Keloids are a proliferative fibrotic disease characterized by abnormal accumulation of extracellular matrix in the dermis. Keloid lesions lack skin plasticity due to deficiencies in elastic fiber formation in the extracellular matrix. The loss of elastic fiber is caused by excessive accumulation of chondroitin sulfate (CS), a sulfated glycosaminoglycan. However, there is no radical cure for keloids. Using a model system, we show herein that treatment of keloid tissues with chondroitinase ABC, an enzyme that specifically digests CS, improves clinical features of keloids. Keloid tissues obtained from patients were grafted on nude mice, and chondroitinase ABC was injected into the grafted keloid tissues. Chondroitinase ABC treatment significantly reduced the volume of keloid implants concomitant with recovery of elastic fiber formation. These results suggest that chondroitinase ABC injection is an effective therapy for keloid. © 2013 Japanese Dermatological Association.

  18. A hybrid lightwave transmission system based on light injection/optoelectronic feedback techniques and fiber-VLLC integration

    NASA Astrophysics Data System (ADS)

    Tsai, Wen-Shing; Lu, Hai-Han; Li, Chung-Yi; Chen, Bo-Rui; Lin, Hung-Hsien; Lin, Dai-Hua

    2016-04-01

    A hybrid lightwave transmission system based on light injection/optoelectronic feedback techniques and fiber-visible laser light communication (VLLC) integration is proposed and experimentally demonstrated. To be the first one of its kind in employing light injection and optoelectronic feedback techniques in a fiber-VLLC integration lightwave transmission system, the light is successfully directly modulated with Community Access Television (CATV), 16-QAM, and 16-QAM-OFDM signals. Over a 40 km SMF and a 10 m free-space VLLC transport, good performances of carrier-to-noise ratio (CNR)/composite second-order (CSO)/composite triple-beat (CTB)/bit error rate (BER) are achieved for CATV/16-QAM/16-QAM-OFDM signals transmission. Such a hybrid lightwave transmission system would be very useful since it can provide broadband integrated services including CATV, Internet, and telecommunication services over both distribute fiber and in-building networks.

  19. Experimental research of UWB over fiber system employing 128-QAM and ISFA-optimized scheme

    NASA Astrophysics Data System (ADS)

    He, Jing; Xiang, Changqing; Long, Fengting; Chen, Zuo

    2018-05-01

    In this paper, an optimized intra-symbol frequency-domain averaging (ISFA) scheme is proposed and experimentally demonstrated in intensity-modulation and direct-detection (IMDD) multiband orthogonal frequency division multiplexing (MB-OFDM) ultra-wideband over fiber (UWBoF) system. According to the channel responses of three MB-OFDM UWB sub-bands, the optimal ISFA window size for each sub-band is investigated. After 60-km standard single mode fiber (SSMF) transmission, the experimental results show that, at the bit error rate (BER) of 3.8 × 10-3, the receiver sensitivity of 128-quadrature amplitude modulation (QAM) can be improved by 1.9 dB using the proposed enhanced ISFA combined with training sequence (TS)-based channel estimation scheme, compared with the conventional TS-based channel estimation. Moreover, the spectral efficiency (SE) is up to 5.39 bit/s/Hz.

  20. Quantifying white matter tract diffusion parameters in the presence of increased extra-fiber cellularity and vasogenic edema

    PubMed Central

    Chiang, Chia-Wen; Wang, Yong; Sun, Peng; Lin, Tsen-Hsuan; Trinkaus, Kathryn; Cross, Anne H.; Song, Sheng-Kwei

    2014-01-01

    The effect of extra-fiber structural and pathological components confounding diffusion tensor imaging (DTI) computation was quantitatively investigated using data generated by both Monte-Carlo simulations and tissue phantoms. Increased extent of vasogenic edema, by addition of various amount of gel to fixed normal mouse trigeminal nerves or by increasing non-restricted isotropic diffusion tensor components in Monte-Carlo simulations, significantly decreased fractional anisotropy (FA), increased radial diffusivity, while less significantly increased axial diffusivity derived by DTI. Increased cellularity, mimicked by graded increase of the restricted isotropic diffusion tensor component in Monte-Carlo simulations, significantly decreased FA and axial diffusivity with limited impact on radial diffusivity derived by DTI. The MC simulation and tissue phantom data were also analyzed by the recently developed diffusion basis spectrum imaging (DBSI) to simultaneously distinguish and quantify the axon/myelin integrity and extra-fiber diffusion components. Results showed that increased cellularity or vasogenic edema did not affect the DBSI-derived fiber FA, axial or radial diffusivity. Importantly, the extent of extra-fiber cellularity and edema estimated by DBSI correlated with experimentally added gel and Monte-Carlo simulations. We also examined the feasibility of applying 25-direction diffusion encoding scheme for DBSI analysis on coherent white matter tracts. Results from both phantom experiments and simulations suggested that the 25-direction diffusion scheme provided comparable DBSI estimation of both fiber diffusion parameters and extra-fiber cellularity/edema extent as those by 99-direction scheme. An in vivo 25-direction DBSI analysis was performed on experimental autoimmune encephalomyelitis (EAE, an animal model of human multiple sclerosis) optic nerve as an example to examine the validity of derived DBSI parameters with post-imaging immunohistochemistry verification. Results support that in vivo DBSI using 25-direction diffusion scheme correctly reflect the underlying axonal injury, demyelination, and inflammation of optic nerves in EAE mice. PMID:25017446

  1. Durability Characteristics Analysis of Plastic Worm Wheel with Glass Fiber Reinforced Polyamide.

    PubMed

    Kim, Gun-Hee; Lee, Jeong-Won; Seo, Tae-Il

    2013-05-10

    Plastic worm wheel is widely used in the vehicle manufacturing field because it is favorable for weight lightening, vibration and noise reduction, as well as corrosion resistance. However, it is very difficult for general plastics to secure the mechanical properties that are required for vehicle gears. If the plastic resin is reinforced by glass fiber in the fabrication process of plastic worm wheel, it is possible to achieve the mechanical properties of metallic material levels. In this study, the mechanical characteristic analysis of the glass-reinforced plastic worm wheel, according to the contents of glass fiber, is performed by analytic and experimental methods. In the case of the glass fiber-reinforced resin, the orientation and contents of glass fibers can influence the mechanical properties. For the characteristic prediction of plastic worm wheel, computer-aided engineering (CAE) analysis processes such as structural and injection molding analysis were executed with the polyamide resin reinforcement glass fiber (25 wt %, 50 wt %). The injection mold for fabricating the prototype plastic worm wheel was designed and made to reflect the CAE analysis results. Finally, the durability of prototype plastic worm wheel fabricated by the injection molding process was evaluated by the experimental method and the characteristics according to the glass fiber contents.

  2. Durability Characteristics Analysis of Plastic Worm Wheel with Glass Fiber Reinforced Polyamide

    PubMed Central

    Kim, Gun-Hee; Lee, Jeong-Won; Seo, Tae-Il

    2013-01-01

    Plastic worm wheel is widely used in the vehicle manufacturing field because it is favorable for weight lightening, vibration and noise reduction, as well as corrosion resistance. However, it is very difficult for general plastics to secure the mechanical properties that are required for vehicle gears. If the plastic resin is reinforced by glass fiber in the fabrication process of plastic worm wheel, it is possible to achieve the mechanical properties of metallic material levels. In this study, the mechanical characteristic analysis of the glass-reinforced plastic worm wheel, according to the contents of glass fiber, is performed by analytic and experimental methods. In the case of the glass fiber-reinforced resin, the orientation and contents of glass fibers can influence the mechanical properties. For the characteristic prediction of plastic worm wheel, computer-aided engineering (CAE) analysis processes such as structural and injection molding analysis were executed with the polyamide resin reinforcement glass fiber (25 wt %, 50 wt %). The injection mold for fabricating the prototype plastic worm wheel was designed and made to reflect the CAE analysis results. Finally, the durability of prototype plastic worm wheel fabricated by the injection molding process was evaluated by the experimental method and the characteristics according to the glass fiber contents. PMID:28809248

  3. High-sensitivity bend angle measurements using optical fiber gratings.

    PubMed

    Rauf, Abdul; Zhao, Jianlin; Jiang, Biqiang

    2013-07-20

    We present a high-sensitivity and more flexible bend measurement method, which is based on the coupling of core mode to the cladding modes at the bending region in concatenation with optical fiber grating serving as band reflector. The characteristics of a bend sensing arm composed of bending region and optical fiber grating is examined for different configurations including single fiber Bragg grating (FBG), chirped FBG (CFBG), and double FBGs. The bend loss curves for coated, stripped, and etched sections of fiber in the bending region with FBG, CFBG, and double FBG are obtained experimentally. The effect of separation between bending region and optical fiber grating on loss is measured. The loss responses for single FBG and CFBG configurations are compared to discover the effectiveness for practical applications. It is demonstrated that the sensitivity of the double FBG scheme is twice that of the single FBG and CFBG configurations, and hence acts as sensitivity multiplier. The bend loss response for different fiber diameters obtained through etching in 40% hydrofluoric acid, is measured in double FBG scheme that resulted in a significant increase in the sensitivity, and reduction of dead-zone.

  4. Laser multiplexing system

    DOEpatents

    Johnson, Steve A.; English, Jr., Ronald Edward; White, Ronald K.

    2001-01-01

    A plurality of copper lasers, as radiant power sources, emits a beam of power carrying radiation. A plurality of fiber injection assemblies receives power from the plurality of copper lasers and injects such power into a plurality of fibers for individually transmitting the received power to a plurality of power-receiving devices. The power-transmitting fibers of the system are so arranged that power is delivered therethrough to each of the power-receiving devices such that, even if a few of the radiant power sources and/or fibers fail, the power supply to any of the power receiving devices will not completely drop to zero but will drop by the same proportionate amount.

  5. QKD using polarization encoding with active measurement basis selection

    NASA Astrophysics Data System (ADS)

    Duplinskiy, A.; Ustimchik, V.; Kanapin, A.; Kurochkin, Y.

    2017-11-01

    We report a proof-of-principle quantum key distribution experiment using a one-way optical scheme with polarization encoding implementing the BB84 protocol. LiNbO3 phase modulators are used for generating polarization states for Alice and active basis selection for Bob. This allows the former to use a single laser source, while the latter needs only two single-photon detectors. The presented optical scheme is simple and consists of standard fiber components. Calibration algorithm for three polarization controllers used in the scheme has been developed. The experiment was carried with 10 MHz repetition frequency laser pulses over a distance of 50 km of standard telecom optical fiber.

  6. Processing-microstructure models for short- and long-fiber thermoplastic composites

    NASA Astrophysics Data System (ADS)

    Phelps, Jay H.

    The research for this thesis has explored the important microstructural variables for injection-molded thermoplastic composites with discontinuous fiber reinforcement. Two variables, the distributions of fiber orientation and fiber length after processing, have proven to be not only important for correct material property prediction but also difficult to predict using currently available modeling and simulation techniques. In this work, we develop new models for the prediction of these two microstructural variables. Previously, the Folgar-Tucker model has been widely used to predict fiber orientation in injection molded SFT composites. This model accounts for the effects of both hydrodynamics and fiber-fiber interactions in order to give a prediction for a tensorial measure of fiber orientation. However, when applied to at least some classes of LFTs, this model does not match all components of experimental fiber orientation tensor data. In order to address this shortcoming of the model, we hypothesize that Folgar and Tucker's phenomenological treatment of the effects of fiber-fiber interactions with an isotropic rotary diffusion contribution to the rate of change of orientation is insufficient for materials with longer fibers. Instead, this work develops a fiber orientation model that incorporates anisotropic rotary diffusion (ARD). From kinetic theory we derive a general family of evolution equations for the second-order orientation tensor, correcting errors in earlier treatments, and identify a specific equation that is useful for predicting orientation in LFTs. The amount of diffusivity in this model used to approximate the effect of fiber-fiber interactions in each direction is assumed to depend on a second-order space tensor, which is taken to be a function of the orientation state and the rate of deformation. Also, concentrated fiber suspensions align more slowly with respect to strain than the Folgar-Tucker model predicts. Here, we borrow the technique of Wang et al. (2008) to incorporate this behavior in an objective fashion in this new model. Model parameters are selected by matching the experimental steady-state orientation in simple shear flow, and by requiring stable steady states and physically realizable solutions. Utilizing two separate techniques, we identify model parameters for three different materials. We then show that once a set of parameters that meets all previously established criteria has been identified, the differences in model behavior are negligible within that set of parameters. The final model with the proper parameter set is suitable for use in mold filling and other flow simulations, and does give improved predictions of fiber orientation for injection molded LFTs. Although significant fiber length degradation in LFTs has been observed both in literature and in this work, there are no quantitative fiber breakage models to predict either fiber length distributions or average fiber length measures. This work reviews the suspected causes of fiber breakage during the processing of discontinuously-reinforced thermoplastics, specifically LFTs, and introduces a phenomenological fiber breakage model based on the buckling force in a hydrodynamically loaded fiber. This breakage model is incorporated into a conservation equation for total fiber length, and a phenomenological model for the evolution of the fiber length distribution is developed. From this model, we also develop separate, approximate models for the evolution of both the number-average and weight-average fiber length measures. By applying these models to both a simple numerical example and a more complex mold-filling simulation, a qualitative agreement between experiment and prediction is observed. Although these results are promising, the breakage models have only been applied to the mold cavity in injection molding simulation. Both a literature review and our experimental data strongly suggest that the majority of fiber length degradation occurs in the earlier stages of injection molding, in the screw nozzle, runners, and gate. A better understanding of the melting and flow conditions upstream of the mold cavity, the simulation of which is beyond the scope of this work, is needed before these breakage models can be properly applied to the entire injection molding process. (Abstract shortened by UMI.)

  7. Long-Term Effects of Botulinum Toxin Complex Type A Injection on Mechano- and Metabo-Sensitive Afferent Fibers Originating from Gastrocnemius Muscle

    PubMed Central

    Caron, Guillaume; Marqueste, Tanguy; Decherchi, Patrick

    2015-01-01

    The aim of the present study was to investigate long term effects of motor denervation by botulinum toxin complex type A (BoNT/A) from Clostridium Botulinum, on the afferent fibers originating from the gastrocnemius muscle of rats. Animals were divided in 2 experimental groups: 1) untreated animals acting as control and 2) treated animals in which the toxin was injected in the left muscle, the latter being itself divided into 3 subgroups according to their locomotor recovery with the help of a test based on footprint measurements of walking rats: i) no recovery (B0), ii) 50% recovery (B50) and iii) full recovery (B100). Then, muscle properties, metabosensitive afferent fiber responses to potassium chloride (KCl) and lactic acid injections and Electrically-Induced Fatigue (EIF), and mechanosensitive responses to tendon vibrations were measured. At the end of the experiment, rats were killed and the toxin injected muscles were weighted. After toxin injection, we observed a complete paralysis associated to a loss of force to muscle stimulation and a significant muscle atrophy, and a return to baseline when the animals recover. The response to fatigue was only decreased in the B0 group. The responses to KCl injections were only altered in the B100 groups while responses to lactic acid were altered in the 3 injected groups. Finally, our results indicated that neurotoxin altered the biphasic pattern of response of the mechanosensitive fiber to tendon vibrations in the B0 and B50 groups. These results indicated that neurotoxin injection induces muscle afferent activity alterations that persist and even worsen when the muscle has recovered his motor activity. PMID:26485650

  8. Long-Term Effects of Botulinum Toxin Complex Type A Injection on Mechano- and Metabo-Sensitive Afferent Fibers Originating from Gastrocnemius Muscle.

    PubMed

    Caron, Guillaume; Marqueste, Tanguy; Decherchi, Patrick

    2015-01-01

    The aim of the present study was to investigate long term effects of motor denervation by botulinum toxin complex type A (BoNT/A) from Clostridium Botulinum, on the afferent fibers originating from the gastrocnemius muscle of rats. Animals were divided in 2 experimental groups: 1) untreated animals acting as control and 2) treated animals in which the toxin was injected in the left muscle, the latter being itself divided into 3 subgroups according to their locomotor recovery with the help of a test based on footprint measurements of walking rats: i) no recovery (B0), ii) 50% recovery (B50) and iii) full recovery (B100). Then, muscle properties, metabosensitive afferent fiber responses to potassium chloride (KCl) and lactic acid injections and Electrically-Induced Fatigue (EIF), and mechanosensitive responses to tendon vibrations were measured. At the end of the experiment, rats were killed and the toxin injected muscles were weighted. After toxin injection, we observed a complete paralysis associated to a loss of force to muscle stimulation and a significant muscle atrophy, and a return to baseline when the animals recover. The response to fatigue was only decreased in the B0 group. The responses to KCl injections were only altered in the B100 groups while responses to lactic acid were altered in the 3 injected groups. Finally, our results indicated that neurotoxin altered the biphasic pattern of response of the mechanosensitive fiber to tendon vibrations in the B0 and B50 groups. These results indicated that neurotoxin injection induces muscle afferent activity alterations that persist and even worsen when the muscle has recovered his motor activity.

  9. R & D on Beam Injection and Bunching Schemes in the Fermilab Booster

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhat, C. M.

    2016-01-01

    Fermilab is committed to upgrade its accelerator complex to support HEP experiments at the intensity frontier. The ongoing Proton Improvement Plan (PIP) enables us to reach 700 kW beam power on the NuMI neutrino targets. By the end of the next decade, the current 400 MeV normal conducting LINAC will be replaced by an 800 MeV superconducting LINAC (PIP-II) with an increased beam power >50% of the PIP design goal. Both in PIP and PIP-II era, the existing Booster is going to play a very significant role, at least for next two decades. In the meanwhile, we have recently developedmore » an innovative beam injection and bunching scheme for the Booster called "early injection scheme" that continues to use the existing 400 MeV LINAC and implemented into operation. This scheme has the potential to increase the Booster beam intensity by >40% from the PIP design goal. Some benefits from the scheme have already been seen. In this paper, I will describe the basic principle of the scheme, results from recent beam experiments, our experience with the new scheme in operation, current status, issues and future plans. This scheme fits well with the current and future intensity upgrade programs at Fermilab.« less

  10. Observing Exoplanets with High-dispersion Coronagraphy. II. Demonstration of an Active Single-mode Fiber Injection Unit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mawet, D.; Ruane, G.; Xuan, W.

    2017-04-01

    High-dispersion coronagraphy (HDC) optimally combines high-contrast imaging techniques such as adaptive optics/wavefront control plus coronagraphy to high spectral resolution spectroscopy. HDC is a critical pathway toward fully characterizing exoplanet atmospheres across a broad range of masses from giant gaseous planets down to Earth-like planets. In addition to determining the molecular composition of exoplanet atmospheres, HDC also enables Doppler mapping of atmosphere inhomogeneities (temperature, clouds, wind), as well as precise measurements of exoplanet rotational velocities. Here, we demonstrate an innovative concept for injecting the directly imaged planet light into a single-mode fiber, linking a high-contrast adaptively corrected coronagraph to a high-resolutionmore » spectrograph (diffraction-limited or not). Our laboratory demonstration includes three key milestones: close-to-theoretical injection efficiency, accurate pointing and tracking, and on-fiber coherent modulation and speckle nulling of spurious starlight signal coupling into the fiber. Using the extreme modal selectivity of single-mode fibers, we also demonstrated speckle suppression gains that outperform conventional image-based speckle nulling by at least two orders of magnitude.« less

  11. Observing Exoplanets with High-dispersion Coronagraphy. II. Demonstration of an Active Single-mode Fiber Injection Unit

    NASA Astrophysics Data System (ADS)

    Mawet, D.; Ruane, G.; Xuan, W.; Echeverri, D.; Klimovich, N.; Randolph, M.; Fucik, J.; Wallace, J. K.; Wang, J.; Vasisht, G.; Dekany, R.; Mennesson, B.; Choquet, E.; Delorme, J.-R.; Serabyn, E.

    2017-04-01

    High-dispersion coronagraphy (HDC) optimally combines high-contrast imaging techniques such as adaptive optics/wavefront control plus coronagraphy to high spectral resolution spectroscopy. HDC is a critical pathway toward fully characterizing exoplanet atmospheres across a broad range of masses from giant gaseous planets down to Earth-like planets. In addition to determining the molecular composition of exoplanet atmospheres, HDC also enables Doppler mapping of atmosphere inhomogeneities (temperature, clouds, wind), as well as precise measurements of exoplanet rotational velocities. Here, we demonstrate an innovative concept for injecting the directly imaged planet light into a single-mode fiber, linking a high-contrast adaptively corrected coronagraph to a high-resolution spectrograph (diffraction-limited or not). Our laboratory demonstration includes three key milestones: close-to-theoretical injection efficiency, accurate pointing and tracking, and on-fiber coherent modulation and speckle nulling of spurious starlight signal coupling into the fiber. Using the extreme modal selectivity of single-mode fibers, we also demonstrated speckle suppression gains that outperform conventional image-based speckle nulling by at least two orders of magnitude.

  12. Coded excitation for infrared non-destructive testing of carbon fiber reinforced plastics.

    PubMed

    Mulaveesala, Ravibabu; Venkata Ghali, Subbarao

    2011-05-01

    This paper proposes a Barker coded excitation for defect detection using infrared non-destructive testing. Capability of the proposed excitation scheme is highlighted with recently introduced correlation based post processing approach and compared with the existing phase based analysis by taking the signal to noise ratio into consideration. Applicability of the proposed scheme has been experimentally validated on a carbon fiber reinforced plastic specimen containing flat bottom holes located at different depths.

  13. Dynamic fracture toughness of cellulose-fiber-reinforced polypropylene : preliminary investigation of microstructural effects

    Treesearch

    Craig M. Clemons; Daniel F. Caulfield; A. Jeffrey Giacomin

    1999-10-01

    In this study, the microstructure of injection-molded polypropylene reinforced with cellulose fiber was investigated. Scanning electron microscopy of the fracture surfaces and X-ray diffraction were used to investigate fiber orientation. The polypropylene matrix was removed by solvent extraction, and the lengths of the residual fibers were optically determined. Fiber...

  14. Reinforcing and Toughening Effects of Bamboo Pulp Fiber on Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) Fiber Composites.

    USDA-ARS?s Scientific Manuscript database

    Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV)/bamboo pulp fiber composites were melt-compounded and injection-molded. Tensile, impact and dynamic mechanical properties of the composites were studied. In contrast to many other short natural fiber reinforced biocomposites which demonstrate decre...

  15. The impact of surface-polish on the angular and wavelength dependence of fiber focal ratio degradation

    NASA Astrophysics Data System (ADS)

    Eigenbrot, Arthur D.; Bershady, Matthew A.; Wood, Corey M.

    2012-09-01

    We present measurements of how multimode fiber focal-ratio degradation (FRD) and throughput vary with levels of fiber surface polish from 60 to 0.5 micron grit. Measurements used full-beam and laser injection methods at wavelengths between 0.4 and 0.8 microns on 17 meter lengths of Polymicro FBP 300 and 400 μm core fiber. Full-beam injection probed input focal-ratios between f/3 and f/13.5, while laser injection allowed us to isolate FRD at discrete injection angles up to 17 degrees (f/1.6 marginal ray). We find (1) FRD effects decrease as grit size decreases, with the largest gains in beam quality occurring at grit sizes above 5 μm (2) total throughput increases as grit size decreases, reaching 90% at 790 nm with the finest polishing levels; (3) total throughput is higher at redder wavelengths for coarser polishing grit, indicating surface-scattering as the primary source of loss. We also quantify the angular dependence of FRD as a function of polishing level. Our results indicate that a commonly adopted micro-bending model for FRD is a poor descriptor of the observed phenomenon.

  16. Polylactide-based renewable green composites from agricultural residues and their hybrids.

    PubMed

    Nyambo, Calistor; Mohanty, Amar K; Misra, Manjusri

    2010-06-14

    Agricultural natural fibers like jute, kenaf, sisal, flax, and industrial hemp have been extensively studied in green composites. The continuous supply of biofibers in high volumes to automotive part makers has raised concerns. Because extrusion followed by injection molding drastically reduces the aspect ratio of biofibers, the mechanical performance of injection molded agricultural residue and agricultural fiber-based composites are comparable. Here, the use of inexpensive agricultural residues and their hybrids that are 8-10 times cheaper than agricultural fibers is demonstrated to be a better way of getting sustainable materials with better performance. Green renewable composites from polylactide (PLA), agricultural residues (wheat straw, corn stover, soy stalks, and their hybrids) were successfully prepared through twin-screw extrusion, followed by injection molding. The effect on mechanical properties of varying the wheat straw amount from 10 to 40 wt % in PLA-wheat straw composites was studied. Tensile moduli were compared with theoretical calculations from the rule of mixture (ROM). Combination of agricultural residues as hybrids is proved to reduce the supply chain concerns for injection molded green composites. Densities of the green composites were found to be lower than those of conventional glass fiber composites.

  17. Scheme for generating the singlet state of three atoms trapped in distant cavities coupled by optical fibers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Dong-Yang; Wen, Jing-Ji; Bai, Cheng-Hua

    2015-09-15

    An effective scheme is proposed to generate the singlet state with three four-level atoms trapped in three distant cavities connected with each other by three optical fibers, respectively. After a series of appropriate atom–cavity interactions, which can be arbitrarily controlled via the selective pairing of Raman transitions and corresponding optical switches, a three-atom singlet state can be successfully generated. The influence of atomic spontaneous decay, photon leakage of cavities and optical fibers on the fidelity of the state is numerically simulated showing that the three-atom singlet state can be generated with high fidelity by choosing the experimental parameters appropriately.

  18. High-power Yb-fiber comb with feed-forward control of nonlinear-polarization-rotation mode-locking and large-mode-area fiber amplification.

    PubMed

    Yan, Ming; Li, Wenxue; Yang, Kangwen; Zhou, Hui; Shen, Xuling; Zhou, Qian; Ru, Qitian; Bai, Dongbi; Zeng, Heping

    2012-05-01

    We report on a simple scheme to precisely control carrier-envelope phase of a nonlinear-polarization-rotation mode-locked self-started Yb-fiber laser system with an average output power of ∼7  W and a pulse width of 130 fs. The offset frequency was locked to the repetition rate of ∼64.5  MHz with a relative linewidth of ∼1.4  MHz by using a self-referenced feed-forward scheme based on an acousto-optic frequency shifter. The phase noise and timing jitter were calculated to be 370 mrad and 120 as, respectively.

  19. A scheme for recording a fast process at nanosecond scale by using digital holographic interferometry with continuous wave laser

    NASA Astrophysics Data System (ADS)

    Wang, Jun; Zhao, Jianlin; Di, Jianglei; Jiang, Biqiang

    2015-04-01

    A scheme for recording fast process at nanosecond scale by using digital holographic interferometry with continuous wave (CW) laser is described and demonstrated experimentally, which employs delayed-time fibers and angular multiplexing technique and can realize the variable temporal resolution at nanosecond scale and different measured depths of object field at certain temporal resolution. The actual delay-time is controlled by two delayed-time fibers with different lengths. The object field information in two different states can be simultaneously recorded in a composite hologram. This scheme is also suitable for recording fast process at picosecond scale, by using an electro-optic modulator.

  20. High-precision two-way optic-fiber time transfer using an improved time code.

    PubMed

    Wu, Guiling; Hu, Liang; Zhang, Hao; Chen, Jianping

    2014-11-01

    We present a novel high-precision two-way optic-fiber time transfer scheme. The Inter-Range Instrumentation Group (IRIG-B) time code is modified by increasing bit rate and defining new fields. The modified time code can be transmitted directly using commercial optical transceivers and is able to efficiently suppress the effect of the Rayleigh backscattering in the optical fiber. A dedicated codec (encoder and decoder) with low delay fluctuation is developed. The synchronization issue is addressed by adopting a mask technique and combinational logic circuit. Its delay fluctuation is less than 27 ps in terms of the standard deviation. The two-way optic-fiber time transfer using the improved codec scheme is verified experimentally over 2 m to100 km fiber links. The results show that the stability over 100 km fiber link is always less than 35 ps with the minimum value of about 2 ps at the averaging time around 1000 s. The uncertainty of time difference induced by the chromatic dispersion over 100 km is less than 22 ps.

  1. Bidirectional phase-modulated hybrid cable television/radio-over-fiber lightwave transport systems.

    PubMed

    Chen, Chia-Yi; Wu, Po-Yi; Lu, Hai-Han; Lin, Ying-Pyng; Gao, Ming-Cian; Wen, Jian-Ying; Chen, Hwan-Wen

    2013-02-15

    A bidirectional phase-modulated hybrid cable television/radio-over-fiber lightwave transport system employing fiber Bragg grating tilt filter as a phase modulation-to-intensity modulation conversion scheme is proposed and demonstrated. Impressive performances of carrier-to-noise ratio, composite second-order, composite triple-beat, and bit-error rate are obtained in our proposed systems over a combination of 40 km single-mode fiber-and 1.43 km photonic crystal fiber transmission.

  2. Improving the in-flight security by employing seat occupancy sensors based on Fiber Bragg grating technology

    NASA Astrophysics Data System (ADS)

    Zhang, Hongtao; Wang, Pengfei

    2012-06-01

    The current schemes of detecting the status of passengers in airplanes cannot satisfy the more strict regulations recently released by the United States Transportation Security Administration. In basis of investigation on the current seat occupancy sensors for vehicles, in this paper we present a novel scheme of seat occupancy sensors based on Fiber Bragg Grating technology to improve the in-flight security of airplanes. This seat occupancy sensor system can be used to detect the status of passengers and to trigger the airbags to control the inflation of air bags, which have been installed in the airplanes of some major airlines under the new law. This scheme utilizes our previous research results of Weight-In- Motion sensor system based on optical fiber Bragg grating. In contrast to the current seat occupancy sensors for vehicles, this new seat occupancy sensor has so many merits that it is very suitable to be applied in aerospace industry or high speed railway system. Moreover, combined with existing Fiber Bragg Grating strain or temperature sensor systems built in airplanes, this proposed method can construct a complete airline passenger management system.

  3. Hierarchical Control Scheme for Improving Transient Voltage Recovery of a DFIG-Based WPP

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Jinho; Muljadi, Eduard; Kang, Yong Cheol

    Modern grid codes require that wind power plants (WPPs) inject reactive power according to the voltage dip at a point of interconnection (POI). This requirement helps to support a POI voltage during a fault. However, if a fault is cleared, the POI and wind turbine generator (WTG) voltages are likely to exceed acceptable levels unless the WPP reduces the injected reactive power quickly. This might deteriorate the stability of a grid by allowing the disconnection of WTGs to avoid any damage. This paper proposes a hierarchical control scheme of a doubly-fed induction generator (DFIG)-based WPP. The proposed scheme aims tomore » improve the reactive power injecting capability during the fault and suppress the overvoltage after the fault clearance. To achieve the former, an adaptive reactive power-to-voltage scheme is implemented in each DFIG controller so that a DFIG with a larger reactive power capability will inject more reactive power. To achieve the latter, a washout filter is used to capture a high frequency component contained in the WPP voltage, which is used to remove the accumulated values in the proportional-integral controllers. Test results indicate that the scheme successfully supports the grid voltage during the fault, and recovers WPP voltages without exceeding the limit after the fault clearance.« less

  4. Detection of small degree of nonuniformity in dialysate flow in hollow-fiber dialyzer using proton magnetic resonance imaging.

    PubMed

    Osuga, T; Obata, T; Ikehira, H

    2004-04-01

    A small degree of nonuniformity in dialysate flow in a hollow-fiber dialyzer was detected using proton magnetic resonance imaging (MRI). Since paramagnetic ions reduce the spin-lattice relaxation time of protons around them, MRI can detect Gd in water. An aqueous solution of a chelate compound of Gd was impulsively injected into the dialysate flow path at a flow rate of 500 cm(3) /m, which is that utilized in actual dialysis. Despite the apparent elimination of Gd from the dialysate flow path by the newly injected dialysate fluid after the injection of Gd was terminated, MRI revealed that Gd remained in the interior of the hollow fiber. The observed structure pattern of the Gd concentration profile revealed that the dialysate flow had a small degree of nonuniformity despite the currently established design to restrict channeling in dialysate flow. Local nonuniformity of the hollow-fiber density and vortex generation in the dialysate flow were considered to cause the nonuniformity in the dialysate flow.

  5. Development of a solid-state sodium Doppler lidar using an all-fiber-coupled injection seeding unit for simultaneous temperature and wind measurements in the mesopause region.

    PubMed

    Xia, Yuan; Du, LiFang; Cheng, XueWu; Li, FaQuan; Wang, JiHong; Wang, ZeLong; Yang, Yong; Lin, Xin; Xun, YuChang; Gong, ShunSheng; Yang, GuoTao

    2017-03-06

    A solid-state sodium (Na) Doppler lidar developed at YanQing Station, Beijing, China (40°N, 116°E) aiming to simultaneous wind and temperature measurement of mesopause region was reported. The 589 nm pulse laser was produced by two injection seeded 1064 nm and 1319 nm Nd:YAG pulse lasers using the sum-frequency generation (SFG) technique. A fiber amplifier is implemented to boost the seed power at 1064 nm, enabling a robust, all-fiber-coupled design for seeding laser unit, absolute laser frequency locking, and cyclic three-frequency switching necessary for simultaneous temperature and wind measurements. The all-fiber-coupled injection seeding configuration together with the solid-state Nd:YAG lasers make the Na Doppler lidar more compact and greatly reduce the system maintenance, which is conducive to transportable and unattended operation. A preliminary observational result obtained with this solid-state sodium Doppler lidar was also reported in this paper.

  6. Hybrid wireless-over-fiber transmission system based on multiple injection-locked FP LDs.

    PubMed

    Li, Chung-Yi; Lu, Hai-Han; Chu, Chien-An; Ying, Cheng-Ling; Lu, Ting-Chien; Peng, Peng-Chun

    2015-07-27

    A hybrid wireless-over-fiber (WoF) transmission system based on multiple injection-locked Fabry-Perot laser diodes (FP LDs) is proposed and experimentally demonstrated. Unlike the traditional hybrid WoF transmission systems that require multiple distributed feedback (DFB) LDs to support different kinds of services, the proposed system employs multiple injection-locked FP LDs to provide different kinds of applications. Such a hybrid WoF transmission system delivers downstream intensity-modulated 20-GHz microwave (MW)/60-GHz millimeter-wave (MMW)/550-MHz cable television (CATV) signals and upstream phase-remodulated 20-GHz MW signal. Excellent bit error rate (BER), carrier-to-noise ratio (CNR), composite second-order (CSO), and composite triple-beat (CTB) are observed over a 40-km single-mode fiber (SMF) and a 4-m radio frequency (RF) wireless transport. Such a hybrid WoF transmission system has practical applications for fiber-wireless convergence to provide broadband integrated services, including telecommunication, data communication, and CATV services.

  7. 1.2-ps mode-locked semiconductor optical amplifier fiber laser pulses generated by 60-ps backward dark-optical comb injection and soliton compression.

    PubMed

    Lin, Gong-Ru; Chiu, I-Hsiang; Wu, Ming-Chung

    2005-02-07

    Optically harmonic mode-locking of a semiconductor optical amplifier fiber laser (SOAFL) induced by backward injecting a dark-optical comb is demonstrated for the first time. The dark-optical comb with 60-ps pulsewidth is generated from a Mach-Zehnder modulator, which is driven by an electrical comb at a DC offset of 0.3Vn. Theoretical simulation indicates that the backward injection of dark-optical comb results in a narrow gain window of 60 ps within one modulating period, providing a cross-gainmodulation induced mode-locking in the SOAFL with a shortest pulsewidth of 15 ps at repetition frequency of 1 GHz. The mode-locked SOAFL pulsewidth can be slightly shortened to 10.8 ps with a 200m-long dispersion compensating fiber. After nonlinearly soliton compression in a 5km-long single mode fiber, the pulsewidth, linewidth and time-bandwidth product become 1.2 ps, 2.06 nm and 0.31, respectively.

  8. Local mechanical properties of LFT injection molded parts: Numerical simulations versus experiments

    NASA Astrophysics Data System (ADS)

    Desplentere, F.; Soete, K.; Bonte, H.; Debrabandere, E.

    2014-05-01

    In predictive engineering for polymer processes, the proper prediction of material microstructure from known processing conditions and constituent material properties is a critical step forward properly predicting bulk properties in the finished composite. Operating within the context of long-fiber thermoplastics (LFT, length < 15mm) this investigation concentrates on the prediction of the local mechanical properties of an injection molded part. To realize this, the Autodesk Simulation Moldflow Insight 2014 software has been used. In this software, a fiber breakage algorithm for the polymer flow inside the mold is available. Using well known micro mechanic formulas allow to combine the local fiber length with the local orientation into local mechanical properties. Different experiments were performed using a commercially available glass fiber filled compound to compare the measured data with the numerical simulation results. In this investigation, tensile tests and 3 point bending tests are considered. To characterize the fiber length distribution of the polymer melt entering the mold (necessary for the numerical simulations), air shots were performed. For those air shots, similar homogenization conditions were used as during the injection molding tests. The fiber length distribution is characterized using automated optical method on samples for which the matrix material is burned away. Using the appropriate settings for the different experiments, good predictions of the local mechanical properties are obtained.

  9. High-resolution quantization based on soliton self-frequency shift and spectral compression in a bi-directional comb-fiber architecture

    NASA Astrophysics Data System (ADS)

    Zhang, Xuyan; Zhang, Zhiyao; Wang, Shubing; Liang, Dong; Li, Heping; Liu, Yong

    2018-03-01

    We propose and demonstrate an approach that can achieve high-resolution quantization by employing soliton self-frequency shift and spectral compression. Our approach is based on a bi-directional comb-fiber architecture which is composed of a Sagnac-loop-based mirror and a comb-like combination of N sections of interleaved single-mode fibers and high nonlinear fibers. The Sagnac-loop-based mirror placed at the terminal of a bus line reflects the optical pulses back to the bus line to achieve additional N-stage spectral compression, thus single-stage soliton self-frequency shift (SSFS) and (2 N - 1)-stage spectral compression are realized in the bi-directional scheme. The fiber length in the architecture is numerically optimized, and the proposed quantization scheme is evaluated by both simulation and experiment in the case of N = 2. In the experiment, a quantization resolution of 6.2 bits is obtained, which is 1.2-bit higher than that of its uni-directional counterpart.

  10. Brainstem projections of neurons located in various subdivisions of the dorsolateral hypothalamic area-an anterograde tract-tracing study.

    PubMed

    Papp, Rege S; Palkovits, Miklós

    2014-01-01

    The projections from the dorsolateral hypothalamic area (DLH) to the lower brainstem have been investigated by using biotinylated dextran amine (BDA), an anterograde tracer in rats. The DLH can be divided into 3 areas (dorsomedial hypothalamus, perifornical area, lateral hypothalamic area), and further subdivided into 8 subdivisions. After unilateral stereotaxic injections of BDA into individual DLH subdivisions, the correct sites of injections were controlled histologically, and the distribution patterns of BDA-positive fibers were mapped on serial sections between the hypothalamus and spinal cord in 22 rats. BDA-labeled fibers were observable over 100 different brainstem areas, nuclei, or subdivisions. Injections into the 8 DLH subdivisions established distinct topographical patterns. In general, the density of labeled fibers was low in the lower brainstem. High density of fibers was seen only 4 of the 116 areas: in the lateral and ventrolateral parts of the periaqueductal gray, the Barrington's, and the pedunculopontine tegmental nuclei. All of the biogenic amine cell groups in the lower brainstem (9 noradrenaline, 3 adrenaline, and 9 serotonin cell groups) received labeled fibers, some of them from all, or at least 7 DLH subdivisions, mainly from perifornical and ventral lateral hypothalamic neurons. Some of the tegmental nuclei and nuclei of the reticular formation were widely innervated, although the density of the BDA-labeled fibers was generally low. No definitive descending BDA-positive pathway, but long-run solitaire BDA-labeled fibers were seen in the lower brainstem. These descending fibers joined some of the large tracts or fasciculi in the brainstem. The distribution pattern of BDA-positive fibers of DLH origin throughout the lower brainstem was comparable to patterns of previously published orexin- or melanin-concentrating hormone-immunoreactive fibers with somewhat differences.

  11. Brainstem projections of neurons located in various subdivisions of the dorsolateral hypothalamic area—an anterograde tract-tracing study

    PubMed Central

    Papp, Rege S.; Palkovits, Miklós

    2014-01-01

    The projections from the dorsolateral hypothalamic area (DLH) to the lower brainstem have been investigated by using biotinylated dextran amine (BDA), an anterograde tracer in rats. The DLH can be divided into 3 areas (dorsomedial hypothalamus, perifornical area, lateral hypothalamic area), and further subdivided into 8 subdivisions. After unilateral stereotaxic injections of BDA into individual DLH subdivisions, the correct sites of injections were controlled histologically, and the distribution patterns of BDA-positive fibers were mapped on serial sections between the hypothalamus and spinal cord in 22 rats. BDA-labeled fibers were observable over 100 different brainstem areas, nuclei, or subdivisions. Injections into the 8 DLH subdivisions established distinct topographical patterns. In general, the density of labeled fibers was low in the lower brainstem. High density of fibers was seen only 4 of the 116 areas: in the lateral and ventrolateral parts of the periaqueductal gray, the Barrington's, and the pedunculopontine tegmental nuclei. All of the biogenic amine cell groups in the lower brainstem (9 noradrenaline, 3 adrenaline, and 9 serotonin cell groups) received labeled fibers, some of them from all, or at least 7 DLH subdivisions, mainly from perifornical and ventral lateral hypothalamic neurons. Some of the tegmental nuclei and nuclei of the reticular formation were widely innervated, although the density of the BDA-labeled fibers was generally low. No definitive descending BDA-positive pathway, but long-run solitaire BDA-labeled fibers were seen in the lower brainstem. These descending fibers joined some of the large tracts or fasciculi in the brainstem. The distribution pattern of BDA-positive fibers of DLH origin throughout the lower brainstem was comparable to patterns of previously published orexin- or melanin-concentrating hormone-immunoreactive fibers with somewhat differences. PMID:24904303

  12. Sub-100 fs pulses from an all-polarization maintaining Yb-fiber oscillator with an anomalous dispersion higher-order-mode fiber.

    PubMed

    Verhoef, A J; Zhu, L; Israelsen, S Møller; Grüner-Nielsen, L; Unterhuber, A; Kautek, W; Rottwitt, K; Baltuška, A; Fernández, A

    2015-10-05

    We present an Yb-fiber oscillator with an all-polarization-maintaining cavity with a higher-order-mode fiber for dispersion compensation. The polarization maintaining higher order mode fiber introduces not only negative second order dispersion but also negative third order dispersion in the cavity, in contrast to dispersion compensation schemes used in previous demonstrations of all-polarization maintaining Yb-fiber oscillators. The performance of the saturable absorber mirror modelocked oscillator, that employs a free space scheme for coupling onto the saturable absorber mirror and output coupling, was investigated for different settings of the intracavity dispersion. When the cavity is operated with close to zero net dispersion, highly stable 0.5-nJ pulses externally compressed to sub-100-fs are generated. These are to our knowledge the shortest pulses generated from an all-polarization-maintaining Yb-fiber oscillator. The spectral phase of the output pulses is well behaved and can be compensated such that wing-free Fourier transform limited pulses can be obtained. Further reduction of the net intracavity third order dispersion will allow generating broader output spectra and consequently shorter pulses, without sacrificing pulse fidelity.

  13. RTM simulations and experiments for fiber-reinforced turbine blades forming

    NASA Astrophysics Data System (ADS)

    Nguyen, Tuan Linh; Marchand, Christophe

    2018-05-01

    The one-shot (full part) forming of tidal turbine blades by RTM (Resin Transfer Molding) process is a complex process due to the complexity of reinforcements and geometry of blades. In this work, beside the experimental tests which have been realized using IRT JV high capacity machines, the RTM simulations using Moldex3D RTM software have been carried out. First of all, simulations have been done on a 1/7th scale part in order to determine the best injection strategy. Different tested strategies vary by the disposition of injection points (Inlet)/vacuum points (Outlet). Then, the chosen strategy has been applied on the full scale part (˜ 7m length) of high thickness with more complex reinforcement draping. In both cases, the stage of meshing is important to take into account the draping plan with different fiber orientation and fiber types. Attention should be paid on the neck of the blade as the structure of reinforcement changes. A sensitivity study of different parameters (permeability, pressure, temperature) has been then done to understand their influence on the injection time. The permeability which lies to the choice of reinforcement type and fiber volume fraction plays an important role. As the thickness of the part is high, an experimental campaign for measuring the 3D permeability is required. Among the process controllable parameters, the pressure seems the fastest way to reduce the injection time. However, increasing the injection pressure (or the vacuum) could deform the reinforcement. Moreover, the maximal pressure depends on the machine capacity. The influence of temperature shows the thermo-dependence of resin viscosity, the injection time thus decreases as the temperature increases. Nevertheless, the gel time is more limited for injection stage if the resin is heated too much.

  14. High speed, high performance, portable, dual-channel, optical fiber Bragg grating (FBG) demodulator

    NASA Astrophysics Data System (ADS)

    Zhang, Hongtao; Wei, Zhanxiong; Fan, Lingling; Wang, Pengfei; Zhao, Xilin; Wang, Zhenhua; Yang, Shangming; Cui, Hong-Liang

    2009-10-01

    A high speed, high performance, portable, dual-channel, optical Fiber Bragg Grating demodulator based on fiber Fabry- Pérot tunable filter (FFP-FT) is reported in this paper. The high speed demodulation can be achieved to detect the dynamical loads of vehicles with speed of 15 mph. However, the drifts of piezoelectric transducer (PZT) in the cavity of FFP-FT dramatically degrade the stability of system. Two schemes are implemented to improve the stability of system. Firstly, a temperature control system is installed to effectively remove the thermal drifts of PZT. Secondly, a scheme of changing the bias voltage of FFP-FT to restrain non-thermal drifts has been realized at lab and will be further developed to an automatic control system based on microcontroller. Although this demodulator is originally used in Weight-In- Motion (WIM) sensing system, it can be extended into other aspects and the schemes presented in this paper will be useful in many applications.

  15. 3D Fiber Orientation Simulation for Plastic Injection Molding

    NASA Astrophysics Data System (ADS)

    Lin, Baojiu; Jin, Xiaoshi; Zheng, Rong; Costa, Franco S.; Fan, Zhiliang

    2004-06-01

    Glass fiber reinforced polymer is widely used in the products made using injection molding processing. The distribution of fiber orientation inside plastic parts has direct effects on quality of molded parts. Using computer simulation to predict fiber orientation distribution is one of most efficient ways to assist engineers to do warpage analysis and to find a good design solution to produce high quality plastic parts. Fiber orientation simulation software based on 2-1/2D (midplane /Dual domain mesh) techniques has been used in industry for a decade. However, the 2-1/2D technique is based on the planar Hele-Shaw approximation and it is not suitable when the geometry has complex three-dimensional features which cannot be well approximated by 2D shells. Recently, a full 3D simulation software for fiber orientation has been developed and integrated into Moldflow Plastics Insight 3D simulation software. The theory for this new 3D fiber orientation calculation module is described in this paper. Several examples are also presented to show the benefit in using 3D fiber orientation simulation.

  16. Before and After Photos: Treatment of Hypertrophic Scars

    MedlinePlus

    ... Injectable Poly-l-lactic Acid Injectable Polymethylmethacrylate + Bovine Collagen Filler Injectable Calcium Hydroxylapatite Back Laser/light Therapy ... attempts to repair these lesions by forming new collagen fibers. These repairs usually aren't as smooth ...

  17. Ultrafast charge separation dynamics in opaque, operational dye-sensitized solar cells revealed by femtosecond diffuse reflectance spectroscopy

    PubMed Central

    Ghadiri, Elham; Zakeeruddin, Shaik M.; Hagfeldt, Anders; Grätzel, Michael; Moser, Jacques-E.

    2016-01-01

    Efficient dye-sensitized solar cells are based on highly diffusive mesoscopic layers that render these devices opaque and unsuitable for ultrafast transient absorption spectroscopy measurements in transmission mode. We developed a novel sub-200 femtosecond time-resolved diffuse reflectance spectroscopy scheme combined with potentiostatic control to study various solar cells in fully operational condition. We studied performance optimized devices based on liquid redox electrolytes and opaque TiO2 films, as well as other morphologies, such as TiO2 fibers and nanotubes. Charge injection from the Z907 dye in all TiO2 morphologies was observed to take place in the sub-200 fs time scale. The kinetics of electron-hole back recombination has features in the picosecond to nanosecond time scale. This observation is significantly different from what was reported in the literature where the electron-hole back recombination for transparent films of small particles is generally accepted to occur on a longer time scale of microseconds. The kinetics of the ultrafast electron injection remained unchanged for voltages between +500 mV and –690 mV, where the injection yield eventually drops steeply. The primary charge separation in Y123 organic dye based devices was clearly slower occurring in two picoseconds and no kinetic component on the shorter femtosecond time scale was recorded. PMID:27095505

  18. Quasi-interferometric scheme improved by fiber Bragg grating written on macrostructure defect in silica multimode optical fiber operating in a few-mode regime

    NASA Astrophysics Data System (ADS)

    Evtushenko, Alexander S.; Faskhutdinov, Lenar M.; Kafarova, Anastasia M.; Kuznetzov, Artem A.; Minaeva, Alina Yu.; Sevruk, Nikita L.; Nureev, Ilnur I.; Vasilets, Alexander A.; Andreev, Vladimir A.; Morozov, Oleg G.; Burdin, Vladimir A.; Bourdine, Anton V.

    2017-04-01

    This work presents results of experimental approbation of earlier on proposed modified fiber optic stress sensor based on a few-mode effects occurring during laser-excited optical signal propagation over silica multimode optical fiber (MMF). Modification is concerned with a passage to quasi-interferometric scheme realized by two multimode Y-couplers with equalized arm lengths improved by fiber Bragg grating (FBG) written on preliminary formed precision macrostructure defects in silica multimode graded-index optical fibers and special offset launching conditions providing laser-based excitation of higher-order modes. The "arms" of quasi-interferometer are two equalized lengths of MMF Cat. OM2 with great central dip of refractive index profile and strong pulse splitting due to high differential mode delay (DMD). We tested FBGs with Bragg wavelength both 1310 nm and 1550 nm written over tapers or up-tapers preliminary formed in short pieces of MMF Cat. OM2+/OM3 and further jointed to the end of one of the arms before output Y-coupler. Researches were focused on comparison analysis of pulse responses under changing of selected excited mode mixing and power diffusion processes due to stress distributed action to sensor fiber depending. Here we considered FBGs not only as particular wavelength reflector during spectral response measurement but also as local periodic microstructure defect which strongly effects on few-mode signal components mixing process also improved by combination with macro-defect like taper or up-taper that should provide response variation. Some results pulse response measurements produced for different scheme configuration and their comparison analysis are represented.

  19. Heat stress increases myonuclear number and fiber size via satellite cell activation in rat regenerating soleus fibers.

    PubMed

    Oishi, Yasuharu; Hayashida, Mari; Tsukiashi, Shinsuke; Taniguchi, Kohachi; Kami, Katsuya; Roy, Roland R; Ohira, Yoshinobu

    2009-11-01

    To investigate the effects of heat stress (hyperthermia) on muscle degeneration-regeneration, the soleus muscles of adult male Wistar rats were injected bilaterally with a single injection of bupivacaine. The rats were assigned to a sedentary control (Con), heat stress (Heat), bupivacaine-injected (BPVC), or bupivacaine-injected plus heat stress (BPVC+Heat) group. Heat stress was induced in the Heat and BPVC+Heat groups by immersion of the lower half of the body into water maintained at 42 +/- 1 degrees C for 30 min 48 h after the injection of bupivacaine and every other day during the following 1 or 2 wk. The soleus muscles in all groups were excised 24 h after the final bout of heat stress. Mean muscle weight, fiber cross-sectional area, myonuclear number, and heat shock protein 72 (Hsp72) and calcineurin protein levels were lower in the BPVC than in the Con or Heat groups at both time points. In contrast, several of these parameters in the BPVC+Heat group were not different or higher than in the Con or Heat groups at the 1- and/or 2-wk time points. The number of total and activated satellite cells, estimated by analyses of Pax7-negative, M-cadherin-negative, and MyoD-positive nuclei, was greater in BPVC+Heat than in all other groups. Combined, the results indicate that heat stress-related activation of satellite cells and upregulation of Hsp72 and calcineurin expression played important roles in the regeneration of the soleus fibers after bupivacaine injection.

  20. Cascaded-cladding-pumped cascaded Raman fiber amplifier.

    PubMed

    Jiang, Huawei; Zhang, Lei; Feng, Yan

    2015-06-01

    The conversion efficiency of double-clad Raman fiber laser is limited by the cladding-to-core area ratio. To get high conversion efficiency, the inner-cladding-to-core area ratio has to be less than about 8, which limits the brightness enhancement. To overcome the problem, a cascaded-cladding-pumped cascaded Raman fiber laser with multiple-clad fiber as the Raman gain medium is proposed. A theoretical model of Raman fiber amplifier with multiple-clad fiber is developed, and numerical simulation proves that the proposed scheme can improve the conversion efficiency and brightness enhancement of cladding pumped Raman fiber laser.

  1. Long pulse production from short pulses

    DOEpatents

    Toeppen, J.S.

    1994-08-02

    A method of producing a long output pulse from a short pump pulse is disclosed, using an elongated amplified fiber having a doped core that provides an amplifying medium for light of one color when driven into an excited state by light of a shorter wavelength and a surrounding cladding. A seed beam of the longer wavelength is injected into the core at one end of the fiber and a pump pulse of the shorter wavelength is injected into the cladding at the other end of the fiber. The counter-propagating seed beam and pump pulse will produce an amplified output pulse having a time duration equal to twice the transit time of the pump pulse through the fiber plus the length of the pump pulse. 3 figs.

  2. Validation of New Process Models for Large Injection-Molded Long-Fiber Thermoplastic Composite Structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nguyen, Ba Nghiep; Jin, Xiaoshi; Wang, Jin

    2012-02-23

    This report describes the work conducted under the CRADA Nr. PNNL/304 between Battelle PNNL and Autodesk whose objective is to validate the new process models developed under the previous CRADA for large injection-molded LFT composite structures. To this end, the ARD-RSC and fiber length attrition models implemented in the 2013 research version of Moldflow was used to simulate the injection molding of 600-mm x 600-mm x 3-mm plaques from 40% glass/polypropylene (Dow Chemical DLGF9411.00) and 40% glass/polyamide 6,6 (DuPont Zytel 75LG40HSL BK031) materials. The injection molding was performed by Injection Technologies, Inc. at Windsor, Ontario (under a subcontract by Oakmore » Ridge National Laboratory, ORNL) using the mold offered by the Automotive Composite Consortium (ACC). Two fill speeds under the same back pressure were used to produce plaques under slow-fill and fast-fill conditions. Also, two gating options were used to achieve the following desired flow patterns: flows in edge-gated plaques and in center-gated plaques. After molding, ORNL performed measurements of fiber orientation and length distributions for process model validations. The structure of this report is as follows. After the Introduction (Section 1), Section 2 provides a summary of the ARD-RSC and fiber length attrition models. A summary of model implementations in the latest research version of Moldflow is given in Section 3. Section 4 provides the key processing conditions and parameters for molding of the ACC plaques. The validations of the ARD-RSC and fiber length attrition models are presented and discussed in Section 5. The conclusions will be drawn in Section 6.« less

  3. Potassium methyl siliconate-treated pulp fibers and their effects on wood plastic composites: Water sorption and dimensional stability

    Treesearch

    Cheng Piao; Zhiyong Cai; Nicole M. Stark; Charles J. Monlezun

    2013-01-01

    Potassium methyl siliconate (PMS) was investigated as a new nano modifier of wood fiber and wood flour to improve the compatibility between the fiber/flour and the plastic matrix in fiber reinforced plastic composites. Before injection molding, bleached and brown pulp fibers and mixed species wood flour were pretreated in PMS solutions. The morphology of the treated...

  4. Pre-compensation combined with TS-aided and ISFA-enhanced scheme for UWB system

    NASA Astrophysics Data System (ADS)

    He, Jing; Xiang, Changqing; Long, Fengting; Wu, Kaiquan; Chen, Lin

    2017-08-01

    In this paper, a pre-compensation combined with training sequence (TS)-aided and intra-symbol frequency-domain averaging (ISFA)-enhanced scheme is proposed to improve the transmission performance in 64-quadrature amplitude modulation multiband orthogonal-frequency-division-multiplexing ultra-wide band over fiber (64QAM MB-OFDM UWBoF) system. We theoretically analyze and experimentally demonstrate that the proposed scheme is suitable for the 64QAM MB-OFDM UWBoF system in contrast with two other cases: (I) only pilot-aided channel estimation and (II) pilot-aided and pre-compensation combined with ISFA-enhanced channel estimation. The experimental results demonstrate that the performance of system with the proposed scheme can be improved by about 1.25 dB and 0.37 dB compared with the case I and the case II, respectively, at the BER of 3.8×10-3 after 70 km transmission in standard single mode fiber (SSMF).

  5. Influence of the power law index on the fiber breakage during injection molding by numerical simulations

    NASA Astrophysics Data System (ADS)

    Desplentere, Frederik; Six, Wim; Bonte, Hilde; Debrabandere, Eric

    2013-04-01

    In predictive engineering for polymer processes, the proper prediction of material microstructure from known processing conditions and constituent material properties is a critical step forward properly predicting bulk properties in the finished composite. Operating within the context of long-fiber thermoplastics (LFT, length > 15mm) this investigation concentrates on the influence of the power law index on the final fiber length distribution within the injection molded part. To realize this, the Autodesk Simulation Moldflow Insight Scandium 2013 software has been used. In this software, a fiber breakage algorithm is available from this release on. Using virtual material data with realistic viscosity levels allows to separate the influence of the power law index on the fiber breakage from the other material and process parameters. Applying standard settings for the fiber breakage parameters results in an obvious influence on the fiber length distribution through the thickness of the part and also as function of position in the part. Finally, the influence of the shear rate constant within the fiber breakage model has been investigated illustrating the possibility to fit the virtual fiber length distribution to the possible experimentally available data.

  6. Injection Process Control of the Well at the Hydrodynamic Research of Coalbed

    NASA Astrophysics Data System (ADS)

    Odnokopylov, I. G.; Galtseva, O. V.; Krasnov, I. Yu; Smirnov, A. O.; Karpov, M. S.; Surzhikova, O. A.; Kuznetsov, V. V.; Li, J.

    2017-04-01

    This scientific work is devoted to the study results of water injection process into the well at the hydrodynamic research by using the high pressure unregulated pump. The injection process should be accompanied by the retention of some hydraulic parameters at constant level during some time. Various variants for use of mechatronic nodes for automatization of water injection process are considered. Scheme for reducing the load on the pump and equipment in hydraulic system and also for improving the quality control system with high accuracy is shown. Simulation results of injection process into the well at the pressure and consumption fixation and recommendations for the use of the proposed schemes depending on the technological process are given.

  7. Impact toughness of cellulose-fiber reinforced polypropylene : influence of microstructure in laminates and injection molded composites

    Treesearch

    Craig Clemons; Daniel Caulfield; A. Jeffrey Giacomin

    2003-01-01

    Unlike their glass reinforced counterparts, microstructure and dynamic fracture behavior of natural fiber-reinforced thermoplastics have hardly been investigated. Here, we characterize the microstructure of cellulose fiber-reinforced polypropylene and determined its effect on impact toughness. Fiber lengths were reduced by one-half when compounded in a high-intensity...

  8. Tensile Characterization of Injection-Molded Fuzzy Glass Fiber/Nylon Composite Material

    DTIC Science & Technology

    2016-05-01

    enhanced reinforcement ( CER ) in a nylon matrix. A majority of the masterbatch CER material research is focused on electromagnetic shielding applications...however, the CER system, with the CNT network fixed to the host fiber, provides a novel approach of minimizing CNT agglomeration. Tensile specimens are...injection molded with varying weight percentages of CER to evaluate effect of the reinforcement on the mechanical properties. Tension testing showed

  9. Experimental investigation of colorless ONU employing superstructured fiber Bragg gratings in WDM/OCDMA-PON

    NASA Astrophysics Data System (ADS)

    Wang, Dawei; Cheng, Liang; Chen, Biao

    2009-11-01

    Colorless optical network unit (ONU) is a very important concept for the wavelength division multiplexing (WDM) based passive optical networks (PON). We present a novel scheme to construct non-wavelength-selective ONUs in WDM/OCDMA-PON by making use of the broad spectrum band of superstructure fiber Bragg gratings (SSFBGs). The experiment results reveal that the spectrum-sliced encoded signals from different wavelength channels can be successfully decoded with the same SSFBGs, and thus the proposed colorless ONU scheme is proved to be feasible.

  10. Fast generation of three-qubit Greenberger-Horne-Zeilinger state based on the Lewis-Riesenfeld invariants in coupled cavities.

    PubMed

    Huang, Xiao-Bin; Chen, Ye-Hong; Wang, Zhe

    2016-05-24

    In this paper, we propose an efficient scheme to fast generate three-qubit Greenberger-Horne-Zeilinger (GHZ) state by constructing shortcuts to adiabatic passage (STAP) based on the "Lewis-Riesenfeld (LR) invariants" in spatially separated cavities connected by optical fibers. Numerical simulations illustrate that the scheme is not only fast, but robust against the decoherence caused by atomic spontaneous emission, cavity losses and the fiber photon leakages. This might be useful to realize fast and noise-resistant quantum information processing for multi-qubit systems.

  11. Noninvasive blood pressure measurement scheme based on optical fiber sensor

    NASA Astrophysics Data System (ADS)

    Liu, Xianxuan; Yuan, Xueguang; Zhang, Yangan

    2016-10-01

    Optical fiber sensing has many advantages, such as volume small, light quality, low loss, strong in anti-jamming. Since the invention of the optical fiber sensing technology in 1977, optical fiber sensing technology has been applied in the military, national defense, aerospace, industrial, medical and other fields in recent years, and made a great contribution to parameter measurement in the environment under the limited condition .With the rapid development of computer, network system, the intelligent optical fiber sensing technology, the sensor technology, the combination of computer and communication technology , the detection, diagnosis and analysis can be automatically and efficiently completed. In this work, we proposed a noninvasive blood pressure detection and analysis scheme which uses optical fiber sensor. Optical fiber sensing system mainly includes the light source, optical fiber, optical detector, optical modulator, the signal processing module and so on. wavelength optical signals were led into the optical fiber sensor and the signals reflected by the human body surface were detected. By comparing actual testing data with the data got by traditional way to measure the blood pressure we can establish models for predicting the blood pressure and achieve noninvasive blood pressure measurement by using spectrum analysis technology. Blood pressure measurement method based on optical fiber sensing system is faster and more convenient than traditional way, and it can get accurate analysis results in a shorter period of time than before, so it can efficiently reduce the time cost and manpower cost.

  12. Nandrolone decanoate increases satellite cell numbers in the chicken pectoralis muscle.

    PubMed

    Allouh, Mohammed Z; Rosser, Benjamin W C

    2010-02-01

    The anabolic androgenic steroid nandrolone decanoate has minimal androgenic effects and, thus, is widely used to induce muscle hypertrophy in both patients and athletes. Although increases in satellite cell numbers and satellite cells giving rise to new myonuclei are associated with hypertrophy in many experimental models, the relationship between nandrolone and satellite cells is poorly understood. Here we test the hypothesis that nandrolone administration is associated with an increase in satellite cell numbers in muscle. Nandrolone was injected at weekly intervals for four weeks into the right pectoralis muscle of female white leghorn chickens aged 63 days post hatch. Age/size/sex matched control birds received saline injections. The contralateral pectoralis was excised for study from each control and nandrolone treated bird. An antibody against Pax7 and immunocytochemical techniques were used to identify satellite cells. Nandrolone significantly increased mean pectoralis mass by approximately 22%, and mean fiber diameter by about 24%. All satellite cell indices that were quantified increased significantly in chicken pectoralis with administration of nandrolone. Nandrolone injected birds had on average higher satellite cell frequencies (#SC nuclei/all nuclei within basal lamina), number of satellite cells per millimeter of fiber, and satellite cell concentrations (closer together). Myonuclei were further apart (less concentrated) in nandrolone injected muscle. However, an overall increase in myonuclear numbers was revealed by a significantly greater mean number of myonuclei per millimeter of fiber in nandrolone injected muscle. Our results suggest that satellite cells may be key cellular vectors for nandrolone induced muscle fiber hypertrophy.

  13. Theoretical model for a thin cylindrical film optical fiber fluorosensor

    NASA Technical Reports Server (NTRS)

    Egalon, Claudio O.; Rogowski, Robert S.

    1992-01-01

    The analytical treatment of power efficiency (P(eff) is undertaken for the case of a positively guiding optical fiber with a thin-film source distributed in the core-cladding interface. The approach adopts the exact solution of the cylindrical optical fiber with an infinite cladding to account for differences between the indices of refraction of the core and the cladding. The excitation of low-loss leaky modes by the cladding is ignored, and only the injection by the evanescent field is considered. The formulas permit the analysis of the power-injection efficiency of fibers with arbitrary differences in indices of refraction. P(eff) does not always increase with V number, but rather varies slightly with wavelength and fiber-core radius and varies significantly with the difference in the indices of refraction. The theoretical results of the work are of interest for designing an atomic-O chemical sensor based on evanescent-wave coupling.

  14. Numerically design the injection process parameters of parts fabricated with ramie fiber reinforced green composites

    NASA Astrophysics Data System (ADS)

    Chen, L. P.; He, L. P.; Chen, D. C.; Lu, G.; Li, W. J.; Yuan, J. M.

    2017-01-01

    The warpage deformation plays an important role on the performance of automobile interior components fabricated with natural fiber reinforced composites. The present work investigated the influence of process parameters on the warpage behavior of A pillar trim made of ramie fiber (RF) reinforced polypropylene (PP) composites (RF/PP) via numerical simulation with orthogonal experiment method and range analysis. The results indicated that fiber addition and packing pressure were the most important factors affecting warpage. The A pillar trim can achieved the minimum warpage value as of 2.124 mm under the optimum parameters. The optimal process parameters are: 70% percent of the default value of injection pressure for the packing pressure, 20 wt% for the fiber addition, 185 °C for the melt °C for the mold temperature, 7 s for the filling time and 17 s for the packing time.

  15. Fiber optic connector

    DOEpatents

    Rajic, Slobodan; Muhs, Jeffrey D.

    1996-01-01

    A fiber optic connector and method for connecting composite materials within which optical fibers are imbedded. The fiber optic connector includes a capillary tube for receiving optical fibers at opposing ends. The method involves inserting a first optical fiber into the capillary tube and imbedding the unit in the end of a softened composite material. The capillary tube is injected with a coupling medium which subsequently solidifies. The composite material is machined to a desired configuration. An external optical fiber is then inserted into the capillary tube after fluidizing the coupling medium, whereby the optical fibers are coupled.

  16. Bit-rate transparent DPSK demodulation scheme based on injection locking FP-LD

    NASA Astrophysics Data System (ADS)

    Feng, Hanlin; Xiao, Shilin; Yi, Lilin; Zhou, Zhao; Yang, Pei; Shi, Jie

    2013-05-01

    We propose and demonstrate a bit-rate transparent differential phase shift-keying (DPSK) demodulation scheme based on injection locking multiple-quantum-well (MQW) strained InGaAsP FP-LD. By utilizing frequency deviation generated by phase modulation and unstable injection locking state with Fabry-Perot laser diode (FP-LD), DPSK to polarization shift-keying (PolSK) and PolSK to intensity modulation (IM) format conversions are realized. We analyze bit error rate (BER) performance of this demodulation scheme. Experimental results show that different longitude modes, bit rates and seeding power have influences on demodulation performance. We achieve error free DPSK signal demodulation under various bit rates of 10 Gbit/s, 5 Gbit/s, 2.5 Gbit/s and 1.25 Gbit/s with the same demodulation setting.

  17. Capturing reflected cladding modes from a fiber Bragg grating with a double-clad fiber coupler.

    PubMed

    Baiad, Mohamad Diaa; Gagné, Mathieu; Lemire-Renaud, Simon; De Montigny, Etienne; Madore, Wendy-Julie; Godbout, Nicolas; Boudoux, Caroline; Kashyap, Raman

    2013-03-25

    We present a novel measurement scheme using a double-clad fiber coupler (DCFC) and a fiber Bragg grating (FBG) to resolve cladding modes. Direct measurement of the optical spectra and power in the cladding modes is obtained through the use of a specially designed DCFC spliced to a highly reflective FBG written into slightly etched standard photosensitive single mode fiber to match the inner cladding diameter of the DCFC. The DCFC is made by tapering and fusing two double-clad fibers (DCF) together. The device is capable of capturing backward propagating low and high order cladding modes simply and efficiently. Also, we demonstrate the capability of such a device to measure the surrounding refractive index (SRI) with an extremely high sensitivity of 69.769 ± 0.035 μW/RIU and a resolution of 1.433 × 10(-5) ± 8 × 10(-9) RIU between 1.37 and 1.45 RIU. The device provides a large SRI operating range from 1.30 to 1.45 RIU with sufficient discrimination for all individual captured cladding modes. The proposed scheme can be adapted to many different types of bend, temperature, refractive index and other evanescent wave based sensors.

  18. Polarization characteristics of Whispering-Gallery-Mode fiber lasers based on evanescent-wave-coupled gain.

    PubMed

    Zhang, Yuan-Xian; Pu, Xiao-Yun; Feng, Li; Han, De-Yu; Ren, Yi-Tao

    2013-05-20

    The polarization characteristics of Whispering-Gallery-Mode (WGM) fiber lasers based on evanescent-wave-coupled gain are investigated. For the laser gain is excited by side-pumping scheme, it is found that the polarization property of lasing emission is simply dependent on the polarized states of the pump beams. The polarization property of lasing emission depends on the propagating situation of the pump beams in an optical fiber if the laser gain is excited by evanescent-wave pumping scheme, that is, if the pump beams within the fiber are meridional beams, the lasing emission is a transverse electric (TE) wave that forms a special radial polarization emission. However, if the pump beams within the fiber are skew beams, both transverse magnetic (TM) and TE waves exist simultaneously in lasing emission that forms a special axially and radially mixed polarization emission. Pumped by skew beams, the wave-number differences between TE and TM waves are also investigated quantitatively, the results demonstrate that the wave-number difference decreases with the increase of the fiber diameter and the refractive index (RI) of the cladding solution. The observed polarization characteristics have been well explained based on lasing radiation mechanism of WGM fiber laser of gain coupled by evanescent wave.

  19. Optical Fiber Networks for Remote Fiber Optic Sensors

    PubMed Central

    Fernandez-Vallejo, Montserrat; Lopez-Amo, Manuel

    2012-01-01

    This paper presents an overview of optical fiber sensor networks for remote sensing. Firstly, the state of the art of remote fiber sensor systems has been considered. We have summarized the great evolution of these systems in recent years; this progress confirms that fiber-optic remote sensing is a promising technology with a wide field of practical applications. Afterwards, the most representative remote fiber-optic sensor systems are briefly explained, discussing their schemes, challenges, pros and cons. Finally, a synopsis of the main factors to take into consideration in the design of a remote sensor system is gathered. PMID:22666011

  20. Long distance, distributed gas sensing based on micro-nano fiber evanescent wave quartz-enhanced photoacoustic spectroscopy

    NASA Astrophysics Data System (ADS)

    He, Ying; Ma, Yufei; Tong, Yao; Yu, Xin; Peng, Zhenfang; Gao, Jing; Tittel, Frank K.

    2017-12-01

    A long distance, distributed gas sensing using the micro-nano fiber evanescent wave (FEW) quartz enhanced photoacoustic spectroscopy technique was demonstrated. Such a sensor scheme has the advantages of higher detection sensitivity, distributed gas sensing ability, lower cost, and a simpler fabrication procedure compared to conventional FEW gas sensors using a photonic crystal fiber or a tapered fiber with chemical sputtering. A 3 km single mode fiber with multiple tapers and an erbium doped fiber amplifier with an output optical power of 700 mW were employed to perform long distance, distributed gas measurements.

  1. Injectable calcium phosphate with hydrogel fibers encapsulating induced pluripotent, dental pulp and bone marrow stem cells for bone repair

    PubMed Central

    Wang, Lin; Zhang, Chi; Li, Chunyan; Weir, Michael D.; Wang, Ping; Reynolds, Mark A.; Zhao, Liang; Xu, Hockin H.K.

    2017-01-01

    Human induced pluripotent stem cell-derived mesenchymal stem cells (hiPSC-MSCs), dental pulp stem cells (hDPSCs) and bone marrow MSCs (hBMSCs) are exciting cell sources in regenerative medicine. However, there has been no report comparing hDPSCs, hBMSCs and hiPSC-MSCs for bone engineering in an injectable calcium phosphate cement (CPC) scaffold. The objectives of this study were to: (1) develop a novel injectable CPC containing hydrogel fibers encapsulating stem cells for bone engineering, and (2) compare cell viability, proliferation and osteogenic differentiation of hDPSCs, hiPSC-MSCs from bone marrow (BM-hiPSC-MSCs) and from foreskin (FS-hiPSC-MSCs), and hBMSCs in CPC for the first time. The results showed that the injection did not harm cell viability. The porosity of injectable CPC was 62%. All four types of cells proliferated and differentiated down the osteogenic lineage inside hydrogel fibers in CPC. hDPSCs, BM-hiPSC-MSCs, and hBMSCs exhibited high alkaline phosphatase, runt-related transcription factor, collagen I, and osteocalcin gene expressions. Cell-synthesized minerals increased with time (p < 0.05), with no significant difference among hDPSCs, BM-hiPSC-MSCs and hBMSCs (p > 0.1). Mineralization by hDPSCs, BM-hiPSC-MSCs, and hBMSCs inside CPC at 14 d was 14-fold that at 1 d. FS-hiPSC-MSCs were inferior in osteogenic differentiation compared to the other cells. In conclusion, hDPSCs, BM-hiPSC-MSCs and hBMSCs are similarly and highly promising for bone tissue engineering; however, FS-hiPSC-MSCs were relatively inferior in osteogenesis. The novel injectable CPC with cell-encapsulating hydrogel fibers may enhance bone regeneration in dental, craniofacial and orthopedic applications. PMID:27612810

  2. Ultra-low power fiber-coupled gallium arsenide photonic crystal cavity electro-optic modulator.

    PubMed

    Shambat, Gary; Ellis, Bryan; Mayer, Marie A; Majumdar, Arka; Haller, Eugene E; Vučković, Jelena

    2011-04-11

    We demonstrate a gallium arsenide photonic crystal cavity injection-based electro-optic modulator coupled to a fiber taper waveguide. The fiber taper serves as a convenient and tunable waveguide for cavity coupling with minimal loss. Localized electrical injection of carriers into the cavity region via a laterally doped p-i-n diode combined with the small mode volume of the cavity enable ultra-low energy modulation at sub-fJ/bit levels. Speeds of up to 1 GHz are demonstrated with photoluminescence lifetime measurements revealing that the ultimate limit goes well into the tens of GHz. © 2011 Optical Society of America

  3. PASSIVE MECHANICAL PROPERTIES AND RELATED PROTEINS CHANGE WITH BOTULINUM NEUROTOXIN A INJECTION OF NORMAL SKELETAL MUSCLE

    PubMed Central

    Thacker, Bryan E.; Tomiya, Akihito; Hulst, Jonah B.; Suzuki, Kentaro P.; Bremner, Shannon N.; Gastwirt, Randy F.; Greaser, Marion L.; Lieber, Richard L.; Ward, Samuel R.

    2011-01-01

    Summary The effects of botulinum neurotoxin A on the passive mechanical properties of skeletal muscle have not been investigated, but may have significant impact in the treatment of neuromuscular disorders including spasticity. Single fiber and fiber bundle passive mechanical testing was performed on rat muscles treated with botulinum neurotoxin A. Myosin heavy chain and titin composition of single fibers was determined by gel electrophoresis. Muscle collagen content was determined using a hydroxyproline assay. Neurotoxin-treated single fiber passive elastic modulus was reduced compared to control fibers (53.00 kPa versus 63.43 kPa). Fiber stiffness and slack sarcomere length were also reduced compared to control fibers and myosin heavy chain composition shifted from faster to slower isoforms. Average titin molecular weight increased 1.77% after treatment. Fiber bundle passive elastic modulus increased following treatment (168.83 kPa versus 75.14 kPa). Bundle stiffness also increased while collagen content per mass of muscle tissue increased 38%. Injection of botulinum neurotoxin A produces an effect on the passive mechanical properties of normal muscle that is opposite to the changes observed in spastic muscles. PMID:21853457

  4. Passive mechanical properties and related proteins change with botulinum neurotoxin A injection of normal skeletal muscle.

    PubMed

    Thacker, Bryan E; Tomiya, Akihito; Hulst, Jonah B; Suzuki, Kentaro P; Bremner, Shannon N; Gastwirt, Randy F; Greaser, Marion L; Lieber, Richard L; Ward, Samuel R

    2012-03-01

    The effects of botulinum neurotoxin A on the passive mechanical properties of skeletal muscle have not been investigated, but may have significant impact in the treatment of neuromuscular disorders including spasticity. Single fiber and fiber bundle passive mechanical testing was performed on rat muscles treated with botulinum neurotoxin A. Myosin heavy chain and titin composition of single fibers was determined by gel electrophoresis. Muscle collagen content was determined using a hydroxyproline assay. Neurotoxin-treated single fiber passive elastic modulus was reduced compared to control fibers (53.00 kPa vs. 63.43 kPa). Fiber stiffness and slack sarcomere length were also reduced compared to control fibers and myosin heavy chain composition shifted from faster to slower isoforms. Average titin molecular weight increased 1.77% after treatment. Fiber bundle passive elastic modulus increased following treatment (168.83  kPa vs. 75.14 kPa). Bundle stiffness also increased while collagen content per mass of muscle tissue increased 38%. Injection of botulinum neurotoxin A produces an effect on the passive mechanical properties of normal muscle that is opposite to the changes observed in spastic muscles. Copyright © 2011 Orthopaedic Research Society.

  5. Response of automated tow placed laminates to stress concentrations

    NASA Technical Reports Server (NTRS)

    Cairns, Douglas S.; Ilcewicz, Larry B.; Walker, Tom

    1993-01-01

    In this study, the response of laminates with stress concentrations is explored. Automated Tow Placed (ATP, also known as Fiber Placement) laminates are compared to conventional tape layup manufacturing. Previous tensile fracture tests on fiber placed laminates show an improvement in tensile fracture of large notches over 20 percent compared to tape layup laminates. A hierarchial modeling scheme is presented. In this scheme, a global model is developed for laminates with notches. A local model is developed to study the influence of inhomogeneities at the notch tip, which are a consequence of the fiber placement manufacturing technique. In addition, a stacked membrane model was developed to study delaminations and splitting on a ply-by-ply basis. The results indicate that some benefit with respect to tensile fracture (up to 11 percent) can be gained from inhomogeneity alone, but that the most improvement may be obtained with splitting and delaminations which are more severe in the case of fiber placement compared to tape layup. Improvements up to 36 percent were found from the model for fiber placed laminates with damage at the notch tip compared to conventional tape layup.

  6. Evaluation of viscous drag reduction schemes for subsonic transports

    NASA Technical Reports Server (NTRS)

    Marino, A.; Economos, C.; Howard, F. G.

    1975-01-01

    The results are described of a theoretical study of viscous drag reduction schemes for potential application to the fuselage of a long-haul subsonic transport aircraft. The schemes which were examined included tangential slot injection on the fuselage and various synergetic combinations of tangential slot injection and distributed suction applied to wing and fuselage surfaces. Both passive and mechanical (utilizing turbo-machinery) systems were examined. Overall performance of the selected systems was determined at a fixed subsonic cruise condition corresponding to a flight Mach number of free stream M = 0.8 and an altitude of 11,000 m. The nominal aircraft to which most of the performance data was referenced was a wide-body transport of the Boeing 747 category. Some of the performance results obtained with wing suction are referenced to a Lockheed C-141 Star Lifter wing section. Alternate designs investigated involved combinations of boundary layer suction on the wing surfaces and injection on the fuselage, and suction and injection combinations applied to the fuselage only.

  7. Simulations of RF capture with barrier bucket in booster at injection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gardner, C.J.

    2012-01-23

    As part of the effort to increase the number of ions per bunch in RHIC, a new scheme for RF capture of EBIS ions in Booster at injection has been developed. The scheme was proposed by M. Blaskiewicz and J.M. Brennan. It employs a barrier bucket to hold a half turn of beam in place during capture into two adjacent harmonic 4 buckets. After acceleration, this allows for 8 transfers of 2 bunches from Booster into 16 buckets on the AGS injection porch. During the Fall of 2011 the necessary hardware was developed and implemented by the RF and Controlsmore » groups. The scheme is presently being commissioned by K.L. Zeno with Au32+ ions from EBIS. In this note we carry out simulations of the RF capture. These are meant to serve as benchmarks for what can be achieved in practice. They also allow for an estimate of the longitudinal emittance of the bunches on the AGS injection porch.« less

  8. PT-symmetry of coupled fiber lasers

    NASA Astrophysics Data System (ADS)

    Smirnov, Sergey V.; Churkin, Dmitry V.; Makarenko, Maxim; Vatnik, Ilya; Suchkov, Sergey V.; Sukhorukov, Andrey A.

    2017-10-01

    In this work, we propose a concept of a coupled fiber laser exhibiting PT-symmetry properties. We consider a system operated via Raman gain. The scheme comprises two identical fiber loops (ring cavities) connected by means of two fiber couplers with variable phase shift between them. We show that by changing the phase shift one can switch between generation regimes, realizing either PT-symmetric or PT-broken solution. Furthermore, the paper investigates some peculiarities of the system such as power oscillations and the role of nonlinear phase shift in fiber rings.

  9. Improved performance of laser wakefield acceleration by tailored self-truncated ionization injection

    NASA Astrophysics Data System (ADS)

    Irman, A.; Couperus, J. P.; Debus, A.; Köhler, A.; Krämer, J. M.; Pausch, R.; Zarini, O.; Schramm, U.

    2018-04-01

    We report on tailoring ionization-induced injection in laser wakefield acceleration so that the electron injection process is self-truncating following the evolution of the plasma bubble. Robust generation of high-quality electron beams with shot-to-shot fluctuations of the beam parameters better than 10% is presented in detail. As a novelty, the scheme was found to enable well-controlled yet simple tuning of the injected charge while preserving acceleration conditions and beam quality. Quasi-monoenergetic electron beams at several 100 MeV energy and 15% relative energy spread were routinely demonstrated with a total charge of the monoenergetic feature reaching 0.5 nC. Finally these unique beam parameters, suggesting unprecedented peak currents of several 10 kA, are systematically related to published data on alternative injection schemes.

  10. Fundamental-mode MMF transmission enabled by mode conversion

    NASA Astrophysics Data System (ADS)

    Wu, Zhongying; Li, Juhao; Tian, Yu; Ge, Dawei; Zhu, Jinglong; Ren, Fang; Mo, Qi; Yu, Jinyi; Li, Zhengbin; Chen, Zhangyuan; He, Yongqi

    2018-03-01

    Modal dispersion in conventional multi-mode fiber (MMF) will cause serious signal degradation and an effective solution is to restrict the signal transmission in the fundamental mode of MMF. In this paper, unlike previous methods by filtering out higher-order modes, we propose to adopt low-modal-crosstalk mode converters to realize fundamental-mode MMF transmission. We design and fabricate all-fiber mode-selective couplers (MSC), which perform mode conversion between the fundamental mode in single-mode fiber (SMF) and fundamental mode in MMF. The proposed scheme is experimentally compared with center launching method under different MMF links and then its wavelength division multiplexing (WDM) transmission performance is investigated. Experimental results indicate that the proposed mode conversion scheme could achieve better transmission performance and works well for the whole C-band.

  11. Study of Polydiacetylene-Poly (Ethylene Oxide) Electrospun Fibers Used as Biosensors

    PubMed Central

    Alam, A K M Mashud; Yapor, Janet P.; Reynolds, Melissa M.; Li, Yan Vivian

    2016-01-01

    Polydiacetylene (PDA) is an attractive conjugated material for use in biosensors due to its unique characteristic of undergoing a blue-to-red color change in response to external stimuli. 10,12-Pentacosadiynoic acid (PCDA) and poly (ethylene oxide) (PEO) were used in this study to develop fiber composites via an electrospinning method at various mass ratios of PEO to PCDA, solution concentrations, and injection speeds. The PEO-PDA fibers in blue phase were obtained via photo-polymerization upon UV-light irritation. High mass ratios of PEO to PCDA, low polymer concentrations of spinning solution, and low injection speeds promoted fine fibers with small diameters and smooth surfaces. The colorimetric transition of the fibers was investigated when the fibers were heated at temperatures ranging from 25 °C to 120 °C. A color switch from blue to red in the fibers was observed when the fibers were heated at temperatures greater than 60 °C. The color transition was more sensitive in the fibers made with a low mass ratio of PEO to PCDA due to high fraction of PDA in the fibers. The large diameter fibers also promoted the color switch due to high reflectance area in the fibers. All of the fibers were analyzed using Fourier transform infrared spectroscopy (FT-IR) and differential scanning calorimetry (DSC) and compared before and after the color change occurred. The colorimetric transitional mechanism is proposed to occur due to conformational changes in the PDA macromolecules. PMID:28773326

  12. Study of Polydiacetylene-Poly (Ethylene Oxide) Electrospun Fibers Used as Biosensors.

    PubMed

    Alam, A K M Mashud; Yapor, Janet P; Reynolds, Melissa M; Li, Yan Vivian

    2016-03-16

    Polydiacetylene (PDA) is an attractive conjugated material for use in biosensors due to its unique characteristic of undergoing a blue-to-red color change in response to external stimuli. 10,12-Pentacosadiynoic acid (PCDA) and poly (ethylene oxide) (PEO) were used in this study to develop fiber composites via an electrospinning method at various mass ratios of PEO to PCDA, solution concentrations, and injection speeds. The PEO-PDA fibers in blue phase were obtained via photo-polymerization upon UV-light irritation. High mass ratios of PEO to PCDA, low polymer concentrations of spinning solution, and low injection speeds promoted fine fibers with small diameters and smooth surfaces. The colorimetric transition of the fibers was investigated when the fibers were heated at temperatures ranging from 25 °C to 120 °C. A color switch from blue to red in the fibers was observed when the fibers were heated at temperatures greater than 60 °C. The color transition was more sensitive in the fibers made with a low mass ratio of PEO to PCDA due to high fraction of PDA in the fibers. The large diameter fibers also promoted the color switch due to high reflectance area in the fibers. All of the fibers were analyzed using Fourier transform infrared spectroscopy (FT-IR) and differential scanning calorimetry (DSC) and compared before and after the color change occurred. The colorimetric transitional mechanism is proposed to occur due to conformational changes in the PDA macromolecules.

  13. Using an interference spectrum as a short-range absolute rangefinder with fiber and wideband source

    NASA Astrophysics Data System (ADS)

    Hsieh, Tsung-Han; Han, Pin

    2018-06-01

    Recently, a new type of displacement instrument using spectral-interference has been found, which utilizes fiber and a wideband light source to produce an interference spectrum. In this work, we develop a method that measures the absolute air-gap distance by taking wavelengths at two interference spectra minima. The experimental results agree with the theoretical calculations. It is also utilized to produce and control the spectral switch, which is much easier than other previous methods using other control mechanisms. A scanning mode of this scheme for stepped surface measurement is suggested, which is verified by a standard thickness gauge test. Our scheme is different to one available on the market that may use a curve-fitting method, and some comparisons are made between our scheme and that one.

  14. Injection of electrons with predominantly perpendicular energy into an area of toroidal field ripple in a tokamak plasma to improve plasma confinement

    DOEpatents

    Ono, Masayuki; Furth, Harold

    1993-01-01

    An electron injection scheme for controlling transport in a tokamak plasma. Electrons with predominantly perpendicular energy are injected into a ripple field region created by a group of localized poloidal field bending magnets. The trapped electrons then grad-B drift vertically toward the plasma interior until they are detrapped, charging the plasma negative. Calculations indicate that the highly perpendicular velocity electrons can remain stable against kinetic instabilities in the regime of interest for tokamak experiments. The penetration distance can be controlled by controlling the "ripple mirror ratio", the energy of the injected electrons, and their v.sub..perp. /v.sub.51 ratio. In this scheme, the poloidal torque due to the injected radial current is taken by the magnets and not by the plasma. Injection is accomplished by the flat cathode containing an ECH cavity to pump electrons to high v.sub..perp..

  15. The influence of botulinum toxin type A (BTX) on the immunohistochemical characteristics of noradrenergic and cholinergic nerve fibers supplying the porcine urinary bladder wall.

    PubMed

    Lepiarczyk, E; Bossowska, A; Kaleczyc, J; Majewski, M

    2011-01-01

    Botulinum toxin (BTX) belongs to a family of neurotoxins which strongly influence the function of autonomic neurons supplying the urinary bladder. Accordingly, BTX has been used as an effective drug in experimental therapies of a range of neurogenic bladder disorders. However, there is no detailed information dealing with the influence of BTX on the morphological and chemical properties of nerve fibres supplying the urinary bladder wall. Therefore, the present study investigated, using double-labeling immunohistochemistry, the distribution, relative frequency and chemical coding of cholinergic and noradrenergic nerve fibers supplying the wall of the urinary bladder in normal female pigs (n = 6) and in the pigs (n = 6) after intravesical BTX injections. In the pigs injected with BTX, the number of adrenergic (DbetaH-positive) nerve fibers distributed in the bladder wall (urothelium, submucosa and muscle coat) was distinctly higher while the number of cholinergic (VAChT-positive) nerve terminals was lower than that found in the control animals. Moreover, the injections of BTX resulted in some changes dealing with the chemical coding of the adrenergic nerve fibers. In contrast to the normal pigs, in BTX injected animals the number of DbetaH/NPY- or DbetaH/CGRP-positive axons was higher in the muscle coat, and some fibres distributed in the urothelium and submucosa expressed immunoreactivity to CGRP. The results obtained suggest that the therapeutic effects of BTX on the urinary bladder might be dependent on changes in the distribution and chemical coding of nerve fibers supplying this organ.

  16. Modulation limit of semiconductor lasers by some parametric modulation schemes

    NASA Astrophysics Data System (ADS)

    Iga, K.

    1985-07-01

    Using the simple rate equations and small signal analysis, the modulation speed limit of semiconductor lasers with modulation schemes such as gain switching, modulation of nonradiative recombination lifetime of minority carriers, and cavity Q modulation, is calculated and compared with the injection modulation scheme of Ikegami and Suematsu (1968). It is found that the maximum modulation frequency for the gain and Q modulation can exceed the resonance-like frequency by a factor equal to the coefficient of the time derivative of the modulation parameter, though the nonradiative lifetime modulation is not shown to be different from the injection modulation. A solution for the carrier lifetime modulation of LED is obtained, and the possibility of wideband modulation in this scheme is demonstrated.

  17. Fiber optic connector

    DOEpatents

    Rajic, S.; Muhs, J.D.

    1996-10-22

    A fiber optic connector and method for connecting composite materials within which optical fibers are imbedded are disclosed. The fiber optic connector includes a capillary tube for receiving optical fibers at opposing ends. The method involves inserting a first optical fiber into the capillary tube and imbedding the unit in the end of a softened composite material. The capillary tube is injected with a coupling medium which subsequently solidifies. The composite material is machined to a desired configuration. An external optical fiber is then inserted into the capillary tube after fluidizing the coupling medium, whereby the optical fibers are coupled. 3 figs.

  18. Can local corticosteroid injection in the retrocalcaneal bursa lead to rupture of the Achilles tendon and the medial head of the gastrocnemius muscle?

    PubMed

    Turmo-Garuz, A; Rodas, G; Balius, R; Til, L; Miguel-Perez, M; Pedret, C; Del Buono, A; Maffulli, N

    2014-08-01

    The purpose of the study is to explain the cause-effect relationship in three patients who reported combined ruptures of the Achilles tendon and the gastrosoleus complex 6 months after they had received corticosteroids injections for the management of retrocalcaneal bursitis. Three cryopreserved cadavers (three men, three left legs) were examined to assess the anatomic connection between the retrocalcaneal bursa and the Achilles tendon (distal and anterior fibers). Blue triptan medium contrast was injected. An unexpected connection between the retrocalcaneal bursa and the anterior fibers of the Achilles tendon was found in all instances. Local corticosteroid injection of the retrocalcaneal bursa may help the symptoms of retrocalcanear bursitis, but pose a risk of Achilles tendon rupture. This risk-benefit has to be taken into account when corticosteroid injections are prescribed to professional and high-level athletes.

  19. Evaluation of Biodistribution and Safety of Adenovirus Vectors Containing Group B Fibers after Intravenous Injection into Baboons

    PubMed Central

    NI, SHAOHENG; BERNT, KATHRIN; GAGGAR, ANUJ; LI, ZONG-YI; KIEM, HANS-PETER; LIEBER, ANDRÉ

    2005-01-01

    Vectors containing group B adenovirus (Ad) fibers are able to efficiently transduce gene therapy targets that are refractory to infection with standard Ad serotype 5 (Ad5) vectors, including malignant tumor cells, hematopoietic stem cells, and dendritic cells. Preliminary studies in mice indicate that, after intravenous injection, B-group fiber-containing Ads do not efficiently transduce most organs and cause less acute toxicity than Ad5 vectors. However, biodistribution and safety studies in mice are of limited value because the mouse analog of the B-group Ad receptor, CD46, is expressed only in the testis, whereas in humans, CD46 is expressed on all nucleated cells. Unlike mice, baboons have CD46 expression patterns and levels that closely mimic those in humans. We conducted a biodistribution and toxicity study of group B Ad fiber-containing vectors in baboons. Animals received phosphate-buffered saline, Ad5-bGal (a first-generation Ad5 vector), or B-group fiber-containing Ads (Ad5/35-bGal and Ad5/11-bGal) at a dose of 2 × 1012 VP/kg, and vector biodistribution and safety was analyzed over 3 days. The amount of Ad5/35-bGal and Ad5/11-bGal vector genomes was in most tissues one to three orders of magnitude below that of Ad5. Significant Ad5/35- and Ad5/11-mediated transgene (β-galactosidase) expression was seen only in the marginal zone of splenic follicles. Compared with the animal that received Ad5-bGal, all animals injected with B-group fiber-containing Ad vectors had lower elevations in serum proinflammatory cytokine levels. Gross and histopathology were normal in animals that received B-group Ad fiber-containing Ads, in contrast to the Ad5-infused animal, which showed widespread endothelial damage and inflammation. In a further study, a chimeric Ad5/35 vector carrying proapoptotic TRAIL and Ad E1A genes under tumor-specific regulation was well tolerated in a 30-day toxicity study. No major clinical, serologic, or pathologic abnormalities were noticed in this animal. OVERVIEW SUMMARY B-group Ad fiber-containing vectors are promising tools for gene therapy, for example, for the treatment of metastatic cancer or cardiovascular diseases, or for vaccination/immunotherapy. However, only a few studies of vectors containing B-group Ad fibers in mice have been conducted so far, and little is known about the mechanisms and effects of B-group Ad vector delivery in vivo. Before these vectors can be considered for clinical application, this knowledge gap must be filled. We performed biodistribution and safety studies after intravenous injection of chimeric Ad5 vectors containing Ad35 and Ad11 fibers into baboons. Our study suggests that Ad vectors possessing B-group Ad fibers have a better safety profile after intravenous injection than do conventional Ad5-based vectors. PMID:15960598

  20. Dimensional stability of wood-plastic composites reinforced with potassium methyl siliconate modified fiber and sawdust made from beetle-killed trees

    Treesearch

    Cheng Piao; Zhiyong Cai; Nicole M. Stark; Charles J. Montezun

    2014-01-01

    Wood fromtwovarieties of beetle-killed trees was used to fabricate wood–plastic composites. Loblolly pine and lodgepole pine beetle-killed trees were defibrated mechanically and thermomechanically, respectively, into fiber. Fiber and sawdust produced from the trees were modified with potassium methyl siliconate (PMS) and injection-molded into fiber/sawdust reinforced...

  1. Ultraviolet emission in Tm3+-doped fluoride fiber pumped with two infrared wavelengths

    NASA Astrophysics Data System (ADS)

    Mejía, E. B.

    2006-12-01

    An infrared, two-wavelength pumping scheme for generating UV in Tm3+-doped fibers is investigated and proposed as an alternative because the pump wavelengths are accessible from laser diodes. Spectral characterizations of fiber samples with different concentrations revealed that moderate concentrations are best suitable to produce UV (348-362nm) emission when single—or double-line pumping with 1117 and 725nm. Detailed spectroscopic measurements realized to the fiber with the best performance, the 2000ppmwt, allowed to obtain the copumping wavelengths (in the ˜725nm region) that enhanced the UV emission. For example, when applying tens of milliwatts at 725nm, which represented a 28% increase of total pump power, the UV emission increased in an avalanchelike fashion up to three orders of magnitude. Then, a high-power 1117nm source that currently exists in the market and a moderate power 725nm source under development are possible to be used as pumps for this scheme.

  2. Unobtrusive monitoring of heart rate using a cost-effective speckle-based SI-POF remote sensor

    NASA Astrophysics Data System (ADS)

    Pinzón, P. J.; Montero, D. S.; Tapetado, A.; Vázquez, C.

    2017-03-01

    A novel speckle-based sensing technique for cost-effective heart-rate monitoring is demonstrated. This technique detects periodical changes in the spatial distribution of energy on the speckle pattern at the output of a Step-Index Polymer Optical Fiber (SI-POF) lead by using a low-cost webcam. The scheme operates in reflective configuration thus performing a centralized interrogation unit scheme. The prototype has been integrated into a mattress and its functionality has been tested with 5 different patients lying on the mattress in different positions without direct contact with the fiber sensing lead.

  3. Fiber-optic extrinsic Fabry-Perot interferometer sensors with three-wavelength digital phase demodulation.

    PubMed

    Schmidt, M; Fürstenau, N

    1999-05-01

    A three-wavelength-based passive quadrature digital phase-demodulation scheme has been developed for readout of fiber-optic extrinsic Fabry-Perot interferometer vibration, acoustic, and strain sensors. This scheme uses a superluminescent diode light source with interference filters in front of the photodiodes and real-time arctan calculation. Quasi-static strain and dynamic vibration sensing with up to an 80-kHz sampling rate is demonstrated. Periodic nonlinearities owing to dephasing with increasing fringe number are corrected for with a suitable algorithm, resulting in significant improvement of the linearity of the sensor characteristics.

  4. Injection-Molded Long-Fiber Thermoplastic Composites: From Process Modeling to Prediction of Mechanical Properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nguyen, Ba Nghiep; Kunc, Vlastimil; Jin, Xiaoshi

    2013-12-18

    This article illustrates the predictive capabilities for long-fiber thermoplastic (LFT) composites that first simulate the injection molding of LFT structures by Autodesk® Simulation Moldflow® Insight (ASMI) to accurately predict fiber orientation and length distributions in these structures. After validating fiber orientation and length predictions against the experimental data, the predicted results are used by ASMI to compute distributions of elastic properties in the molded structures. In addition, local stress-strain responses and damage accumulation under tensile loading are predicted by an elastic-plastic damage model of EMTA-NLA, a nonlinear analysis tool implemented in ABAQUS® via user-subroutines using an incremental Eshelby-Mori-Tanaka approach. Predictedmore » stress-strain responses up to failure and damage accumulations are compared to the experimental results to validate the model.« less

  5. Long pulse production from short pulses

    DOEpatents

    Toeppen, John S.

    1994-01-01

    A method of producing a long output pulse (SA) from a short pump pulse (P), using an elongated amplified fiber (11) having a doped core (12) that provides an amplifying medium for light of one color when driven into an excited state by light of a shorter wavelength and a surrounding cladding 13. A seed beam (S) of the longer wavelength is injected into the core (12) at one end of the fiber (11) and a pump pulse (P) of the shorter wavelength is injected into the cladding (13) at the other end of the fiber (11). The counter-propagating seed beam (S) and pump pulse (P) will produce an amplified output pulse (SA) having a time duration equal to twice the transit time of the pump pulse (P) through the fiber (11) plus the length of the pump pulse (P).

  6. Special purpose modes in photonic band gap fibers

    DOEpatents

    Spencer, James; Noble, Robert; Campbell, Sara

    2013-04-02

    Photonic band gap fibers are described having one or more defects suitable for the acceleration of electrons or other charged particles. Methods and devices are described for exciting special purpose modes in the defects including laser coupling schemes as well as various fiber designs and components for facilitating excitation of desired modes. Results are also presented showing effects on modes due to modes in other defects within the fiber and due to the proximity of defects to the fiber edge. Techniques and devices are described for controlling electrons within the defect(s). Various applications for electrons or other energetic charged particles produced by such photonic band gap fibers are also described.

  7. Compact millijoule diode-seeded two-stage fiber master oscillator power amplifier using a multipass and forward pumping scheme.

    PubMed

    Lai, Po-Yen; Chang, Chun-Lin; Huang, Sheng-Lung; Chen, Shih-Hung

    2018-05-01

    The multipass scheme for a diode-seeded fiber master oscillator power amplifier with a nanojoule-to-millijoule output energy level at a repetition rate of <100  kHz is numerically analyzed for comparison to an experimental benchmark. For a 6/125 single-mode preamplifier with a small input energy (<1  nJ), there is a significant improvement in the output energy from 0.7% to 80% and 95% of the maximum extractable energy using the double-pass and four-pass schemes, respectively. For a 30/250 large-mode-area power amplifier using the double-pass and forward pumping scheme, the required input energy is decreased from 100 μJ to 18 μJ for millijoule energy extraction with accompanying Stokes waves of less than 10% of the total energy. The system based on the full master oscillator power amplifier configuration with an output energy exceeding millijoule level can be optimally simplified to two stages for commercialization.

  8. Fibered Confocal Fluorescence Microscopy for the Noninvasive Imaging of Langerhans Cells in Macaques.

    PubMed

    Todorova, Biliana; Salabert, Nina; Tricot, Sabine; Boisgard, Raphaël; Rathaux, Mélanie; Le Grand, Roger; Chapon, Catherine

    2017-01-01

    We developed a new approach to visualize skin Langerhans cells by in vivo fluorescence imaging in nonhuman primates. Macaques were intradermally injected with a monoclonal, fluorescently labeled antibody against HLA-DR molecule and were imaged for up to 5 days by fibered confocal microscopy (FCFM). The network of skin Langerhans cells was visualized by in vivo fibered confocal fluorescence microscopy. Quantification of Langerhans cells revealed no changes to cell density with time. Ex vivo experiments confirmed that injected fluorescent HLA-DR antibody specifically targeted Langerhans cells in the epidermis. This study demonstrates the feasibility of single-cell, in vivo imaging as a noninvasive technique to track Langerhans cells in nontransgenic animals.

  9. Regenerative capability of skeletal muscle in chicken muscular dystrophy.

    PubMed

    Nonaka, I; Fujita, T; Sugita, H

    1984-06-01

    To examine the morphological sequence of regenerating fibers after myonecrosis in dystrophic muscles, 0.5 ml of 0.5% bupivacaine hydrochloride (BPVC) (Marcaine) solution, a local anesthetic with a cytotoxic effect on the muscle fibers, was injected directly into the dystrophic (line 413) and nondystrophic (line 412) posterior latissimus dorsi (PLD) muscles of young and adult chickens. Although the dystrophic muscles after BPVC injection showed a rapid recovery with a similar tempo to that of nondystrophic ones, they showed different morphological behavior in the early phase of regeneration, including marked variability in the size of fibers and in the intracytoplasmic enzyme activities of nicotinamide adenine dinucleotide, reduced-tetrazolium reductase (NADH-TR), acetylcholinesterase (AChE), and nonspecific esterase (NSE).

  10. Fiber optic cables for transmission of high-power laser pulses in spaceflight applications

    NASA Astrophysics Data System (ADS)

    Thomes, W. J.; Ott, M. N.; Chuska, R. F.; Switzer, R. C.; Blair, D. E.

    2017-11-01

    Lasers with high peak power pulses are commonly used in spaceflight missions for a wide range of applications, from LIDAR systems to optical communications. Due to the high optical power needed, the laser has to be located on the exterior of the satellite or coupled through a series of free space optics. This presents challenges for thermal management, radiation resistance, and mechanical design. Future applications will require multiple lasers located close together, which further complicates the design. Coupling the laser energy into a fiber optic cable allows the laser to be relocated to a more favorable position on the spacecraft. Typical fiber optic termination procedures are not sufficient for injection of these high-power laser pulses without catastrophic damage to the fiber endface. In the current study, we will review the causes of fiber damage during high-power injection and discuss our new manufacturing procedures that overcome these issues to permit fiber use with high reliability in these applications. We will also discuss the proper methods for launching the laser pulses into the fiber to avoid damage and how this is being implemented for current spaceflight missions.

  11. Fiber Optic Cables for Transmission of High-Power Laser Pulses in Spaceflight Applications

    NASA Technical Reports Server (NTRS)

    Thomes, W. J., Jr.; Ott, M. N.; Chuska, R. F.; Switzer, R. C.; Blair, D. E.

    2010-01-01

    Lasers with high peak power pulses are commonly used in spaceflight missions for a wide range of applications, from LIDAR systems to optical communications. Due to the high optical power needed, the laser has to be located on the exterior of the satellite or coupled through a series of free space optics. This presents challenges for thermal management, radiation resistance, and mechanical design. Future applications will require multiple lasers located close together, which further complicates the design. Coupling the laser energy into a fiber optic cable allows the laser to be relocated to a more favorable position on the spacecraft. Typical fiber optic termination procedures are not sufficient for injection of these high-power laser pulses without catastrophic damage to the fiber endface. In the current study, we will review the causes of fiber damage during high-power injection and discuss our new manufacturing procedures that overcome these issues to permit fiber use with high reliability in these applications. We will also discuss the proper methods for launching the laser pulses into the fiber to avoid damage and how this is being implemented for current spaceflight missions.

  12. CEPC booster design study

    DOE PAGES

    Bian, Tianjian; Gao, Jie; Zhang, Chuang; ...

    2017-12-10

    In September 2012, Chinese scientists proposed a Circular Electron Positron Collider (CEPC) in China at 240 GeV center-of-mass energy for Higgs studies. The booster provides 120 GeV electron and positron beams to the CEPC collider for top-up injection at 0.1 Hz. The design of the full energy booster ring of the CEPC is a challenge. The ejected beam energy is 120 GeV and the injected beam energy is 6 GeV. Here in this paper we describe two alternative schemes, the wiggler bend scheme and the normal bend scheme. For the wiggler bend scheme, we propose to operate the booster ringmore » as a large wiggler at low energy and as a normal ring at high energy to avoid the problem of very low dipole magnet fields. Finally, for the normal bend scheme, we implement the orbit correction to correct the earth field.« less

  13. CEPC booster design study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bian, Tianjian; Gao, Jie; Zhang, Chuang

    In September 2012, Chinese scientists proposed a Circular Electron Positron Collider (CEPC) in China at 240 GeV center-of-mass energy for Higgs studies. The booster provides 120 GeV electron and positron beams to the CEPC collider for top-up injection at 0.1 Hz. The design of the full energy booster ring of the CEPC is a challenge. The ejected beam energy is 120 GeV and the injected beam energy is 6 GeV. Here in this paper we describe two alternative schemes, the wiggler bend scheme and the normal bend scheme. For the wiggler bend scheme, we propose to operate the booster ringmore » as a large wiggler at low energy and as a normal ring at high energy to avoid the problem of very low dipole magnet fields. Finally, for the normal bend scheme, we implement the orbit correction to correct the earth field.« less

  14. Comprehensive validation scheme for in situ fiber optics dissolution method for pharmaceutical drug product testing.

    PubMed

    Mirza, Tahseen; Liu, Qian Julie; Vivilecchia, Richard; Joshi, Yatindra

    2009-03-01

    There has been a growing interest during the past decade in the use of fiber optics dissolution testing. Use of this novel technology is mainly confined to research and development laboratories. It has not yet emerged as a tool for end product release testing despite its ability to generate in situ results and efficiency improvement. One potential reason may be the lack of clear validation guidelines that can be applied for the assessment of suitability of fiber optics. This article describes a comprehensive validation scheme and development of a reliable, robust, reproducible and cost-effective dissolution test using fiber optics technology. The test was successfully applied for characterizing the dissolution behavior of a 40-mg immediate-release tablet dosage form that is under development at Novartis Pharmaceuticals, East Hanover, New Jersey. The method was validated for the following parameters: linearity, precision, accuracy, specificity, and robustness. In particular, robustness was evaluated in terms of probe sampling depth and probe orientation. The in situ fiber optic method was found to be comparable to the existing manual sampling dissolution method. Finally, the fiber optic dissolution test was successfully performed by different operators on different days, to further enhance the validity of the method. The results demonstrate that the fiber optics technology can be successfully validated for end product dissolution/release testing. (c) 2008 Wiley-Liss, Inc. and the American Pharmacists Association

  15. Full-duplex radio over fiber link with colorless source-free base station based on single sideband optical mm-wave signal with polarization rotated optical carrier

    NASA Astrophysics Data System (ADS)

    Ma, Jianxin

    2016-07-01

    A full-duplex radio-over fiber (RoF) link scheme based on single sideband (SSB) optical millimeter (mm)-wave signal with polarization-rotated optical carrier is proposed to realize the source-free colorless base station (BS), in which a polarization beam splitter (PBS) is used to abstract part of the optical carrier for conveying the uplink data. Since the optical carrier for the uplink does not bear the downlink signal, no cross-talk from the downlink contaminates the uplink signal. The simulation results demonstrate that both down- and up-links maintain good performance. The mm-wave signal distribution network based on the proposed full duplex fiber link scheme can use the uniform source-free colorless BSs, which makes the access system very simpler.

  16. High-Sensitivity Fiber-Optic Ultrasound Sensors for Medical Imaging Applications

    PubMed Central

    Wen, H.; Wiesler, D.G.; Tveten, A.; Danver, B.; Dandridge, A.

    2010-01-01

    This paper presents several designs of high-sensitivity, compact fiber-optic ultrasound sensors that may be used for medical imaging applications. These sensors translate ultrasonic pulses into strains in single-mode optical fibers, which are measured with fiber-based laser interferometers at high precision. The sensors are simpler and less expensive to make than piezoelectric sensors, and are not susceptible to electromagnetic interference. It is possible to make focal sensors with these designs, and several schemes are discussed. Because of the minimum bending radius of optical fibers, the designs are suitable for single element sensors rather than for arrays. PMID:9691368

  17. Improved distribution of small molecules and viral vectors in the murine brain using a hollow fiber catheter

    PubMed Central

    Seunguk, Oh; Odland, Rick; Wilson, Scott R.; Kroeger, Kurt M.; Liu, Chunyan; Lowenstein, Pedro R.; Castro, Maria G.; Hall, Walter A.; Ohlfest, John R.

    2008-01-01

    Object A hollow fiber catheter was developed to improve the distribution of drugs administered via direct infusion into the central nervous system (CNS). It is a porous catheter that significantly increases the surface area of brain tissue into which a drug is infused. Methods Dye was infused into the mouse brain through convection-enhanced delivery (CED) using a 28-gauge needle compared with a 3-mm-long hollow fiber catheter. To determine whether a hollow fiber catheter could increase the distribution of gene therapy vectors, a recombinant adenovirus expressing the firefly luciferase reporter was injected into the mouse striatum. Gene expression was monitored using in vivo bioluminescent imaging. To assess the distribution of gene transfer, an adenovirus expressing green fluorescent protein was injected into the striatum using a hollow fiber catheter or a needle. Results Hollow fiber catheter—mediated infusion increased the volume of brain tissue labeled with dye by 2.7 times relative to needle-mediated infusion. In vivo imaging revealed that catheter-mediated infusion of adenovirus resulted in gene expression that was 10 times greater than that mediated by a needle. The catheter appreciably increased the area of brain transduced with adenovirus relative to a needle, affecting a significant portion of the injected hemisphere. Conclusions The miniature hollow fiber catheter used in this study significantly increased the distribution of dye and adenoviral-mediated gene transfer in the mouse brain compared with the levels reached using a 28-gauge needle. Compared with standard single-port clinical catheters, the hollow fiber catheter has the advantage of millions of nanoscale pores to increase surface area and bulk flow in the CNS. Extending the scale of the hollow fiber catheter for the large mammalian brain shows promise in increasing the distribution and efficacy of gene therapy and drug therapy using CED. PMID:17886557

  18. Recycled newspaper fibers as reinforcing fillers in thermoplastics. Part I, Analysis of tensile and impact properties in polypropylene

    Treesearch

    A. R. Sanadi; R. A. Young; C. Clemons; R. M. Rowell

    1994-01-01

    Recycled newspaper fibers (ONP) are potentially outstanding nonabrasive reinforcing fibers with high specific properties. In this study, a high energy thermokinetic mixer was used to mix these fibers in a polypropylene (PP) matrix, and the blends were then injection molded in order to observe the tensile and impact strengths of the composites. A 40% (weight) of ONP in...

  19. Applications of 1.55 μm optically injection-locked VCSELs in wavelength division multiplexed passive optical networks

    NASA Astrophysics Data System (ADS)

    Wong, Elaine; Zhao, Xiaoxue; Chang-Hasnain, Connie J.; Hofmann, Werner; Amann, Marcus C.

    2007-11-01

    In this paper, we will discuss the utilization of optically injection-locked (OIL) 1.55 μm vertical-cavity surface-emitting lasers (VCSELs) for operation as low-cost, stable, directly modulated, and potentially uncooled transmitters, whereby the injection-locking master source is furnished by modulated downstream signals. Such a transmitter will find useful application in wavelength division multiplexed passive optical networks (WDM-PONs) which is actively being developed to meet the ever-increasing bandwidth demands of end users. Our scheme eliminates the need for external injection locking optical sources, external modulators, and wavelength stabilization circuitry. We show through experiments that the injection-locked VCSEL favors low injection powers and responds only strongly to the carrier but not the modulated data of the downstream signal. Further, we will discuss results from experimental studies performed on the dependence of OIL-VCSELs in bidirectional networks on the degree of Rayleigh backscattered signal and extinction ratio. We show that error-free upstream performance can be achieved when the upstream signal to Rayleigh backscattering ratio is greater than 13.4 dB, and with minimal dependence on the downstream extinction ratio. We will also review a fault monitoring and localization scheme based on a highly-sensitive yet low-cost monitor comprising a low output power broadband source and low bandwidth detectors. The proposed scheme benefits from the high reflectivity top distributed Bragg reflector mirror of the OIL-VCSEL, incurring only a minimal penalty on the upstream transmissions of the existing infrastructure. Such a scheme provides fault monitoring without having to further invest in the upgrade of customer premises.

  20. Continuous-Wave Single-Frequency Operation of Fabry-Perot Laser Diodes by Self-Injection Phase Locking Using Feedback from a Fiber Bragg Grating

    NASA Technical Reports Server (NTRS)

    Duerksen, Gary L.; Krainak, Michael A.

    1998-01-01

    Single-frequency operation of uncoated Fabry-Perot laser diodes is demonstrated by phase- locking the laser oscillations through self-injection seeding with feedback from a fiber Bragg grating. By precisely tuning the laser temperature so that an axial-mode coincides with the short-wavelength band edge of the grating, the phase of the feedback is made conjugate to that of the axial mode, locking the phase of the laser oscillations to that mode.

  1. Intracellular calcium movements during excitation–contraction coupling in mammalian slow-twitch and fast-twitch muscle fibers

    PubMed Central

    Hollingworth, Stephen

    2012-01-01

    In skeletal muscle fibers, action potentials elicit contractions by releasing calcium ions (Ca2+) from the sarcoplasmic reticulum. Experiments on individual mouse muscle fibers micro-injected with a rapidly responding fluorescent Ca2+ indicator dye reveal that the amount of Ca2+ released is three- to fourfold larger in fast-twitch fibers than in slow-twitch fibers, and the proportion of the released Ca2+ that binds to troponin to activate contraction is substantially smaller. PMID:22450485

  2. Photonic lantern adaptive spatial mode control in LMA fiber amplifiers.

    PubMed

    Montoya, Juan; Aleshire, Chris; Hwang, Christopher; Fontaine, Nicolas K; Velázquez-Benítez, Amado; Martz, Dale H; Fan, T Y; Ripin, Dan

    2016-02-22

    We demonstrate adaptive-spatial mode control (ASMC) in few-moded double-clad large mode area (LMA) fiber amplifiers by using an all-fiber-based photonic lantern. Three single-mode fiber inputs are used to adaptively inject the appropriate superposition of input modes in a multimode gain fiber to achieve the desired mode at the output. By actively adjusting the relative phase of the single-mode inputs, near-unity coherent combination resulting in a single fundamental mode at the output is achieved.

  3. Photonic quantum digital signatures operating over kilometer ranges in installed optical fiber

    NASA Astrophysics Data System (ADS)

    Collins, Robert J.; Fujiwara, Mikio; Amiri, Ryan; Honjo, Toshimori; Shimizu, Kaoru; Tamaki, Kiyoshi; Takeoka, Masahiro; Andersson, Erika; Buller, Gerald S.; Sasaki, Masahide

    2016-10-01

    The security of electronic communications is a topic that has gained noteworthy public interest in recent years. As a result, there is an increasing public recognition of the existence and importance of mathematically based approaches to digital security. Many of these implement digital signatures to ensure that a malicious party has not tampered with the message in transit, that a legitimate receiver can validate the identity of the signer and that messages are transferable. The security of most digital signature schemes relies on the assumed computational difficulty of solving certain mathematical problems. However, reports in the media have shown that certain implementations of such signature schemes are vulnerable to algorithmic breakthroughs and emerging quantum processing technologies. Indeed, even without quantum processors, the possibility remains that classical algorithmic breakthroughs will render these schemes insecure. There is ongoing research into information-theoretically secure signature schemes, where the security is guaranteed against an attacker with arbitrary computational resources. One such approach is quantum digital signatures. Quantum signature schemes can be made information-theoretically secure based on the laws of quantum mechanics while comparable classical protocols require additional resources such as anonymous broadcast and/or a trusted authority. Previously, most early demonstrations of quantum digital signatures required dedicated single-purpose hardware and operated over restricted ranges in a laboratory environment. Here, for the first time, we present a demonstration of quantum digital signatures conducted over several kilometers of installed optical fiber. The system reported here operates at a higher signature generation rate than previous fiber systems.

  4. Design of high energy laser pulse delivery in a multimode fiber for photoacoustic tomography.

    PubMed

    Ai, Min; Shu, Weihang; Salcudean, Tim; Rohling, Robert; Abolmaesumi, Purang; Tang, Shuo

    2017-07-24

    In photoacoustic tomography (PAT), delivering high energy pulses through optical fiber is critical for achieving high quality imaging. A fiber coupling scheme with a beam homogenizer is demonstrated for coupling high energy pulses in a single multimode fiber. This scheme can benefit PAT applications that require miniaturized illumination or internal illumination with a small fiber. The beam homogenizer is achieved by using a cross cylindrical lens array, which provides a periodic spatial modulation on the phase of the input light. Thus the lens array acts as a phase grating which diffracts the beam into a 2D diffraction pattern. Both theoretical analysis and experiments demonstrate that the focused beam can be split into a 2D spot array that can reduce the peak power on the fiber tip surface and thus enhance the coupling performance. The theoretical analysis of the intensity distribution of the focused beam is carried out by Fourier optics. In experiments, coupled energy at 48 mJ/pulse and 60 mJ/pulse have been achieved and the corresponding coupling efficiency is 70% and 90% in a 1000-μm and a 1500-μm-core-diameter fiber, respectively. The high energy pulses delivered by the multimode fiber are further tested for PAT imaging in phantoms. PAT imaging of a printed dot array shows a large illumination area of 7 cm 2 under 5 mm thick chicken breast tissue. In vivo imaging is also demonstrated on the human forearm. The large improvement in coupling energy can potentially benefit PAT with single fiber delivery to achieve large area imaging and deep penetration detection.

  5. MODELING REFLECTANCE AND TRANSMITTANCE OF QUARTZ-FIBER FILTER SAMPLES CONTAINING ELEMENTAL CARBON PARTICLES: IMPLICATIONS FOR THERMAL/OPTICAL ANALYSIS. (R831086)

    EPA Science Inventory

    A radiative transfer scheme that considers absorption, scattering, and distribution of light-absorbing elemental carbon (EC) particles collected on a quartz-fiber filter was developed to explain simultaneous filter reflectance and transmittance observations prior to and during...

  6. Respiratory function monitoring using a real-time three-dimensional fiber-optic shaping sensing scheme based upon fiber Bragg gratings

    NASA Astrophysics Data System (ADS)

    Allsop, Thomas; Bhamber, Ranjeet; Lloyd, Glynn; Miller, Martin R.; Dixon, Andrew; Webb, David; Ania Castañón, Juan Diego; Bennion, Ian

    2012-11-01

    An array of in-line curvature sensors on a garment is used to monitor the thoracic and abdominal movements of a human during respiration. The results are used to obtain volumetric changes of the human torso in agreement with a spirometer used simultaneously at the mouth. The array of 40 in-line fiber Bragg gratings is used to produce 20 curvature sensors at different locations, each sensor consisting of two fiber Bragg gratings. The 20 curvature sensors and adjoining fiber are encapsulated into a low-temperature-cured synthetic silicone. The sensors are wavelength interrogated by a commercially available system from Moog Insensys, and the wavelength changes are calibrated to recover curvature. A three-dimensional algorithm is used to generate shape changes during respiration that allow the measurement of absolute volume changes at various sections of the torso. It is shown that the sensing scheme yields a volumetric error of 6%. Comparing the volume data obtained from the spirometer with the volume estimated with the synchronous data from the shape-sensing array yielded a correlation value 0.86 with a Pearson's correlation coefficient p<0.01.

  7. Spectral Properties of Er3+/Tm3+ Co-Doped ZBLAN Glasses and Fibers

    PubMed Central

    Liao, Xili; Jiang, Xiaobo; Yang, Qiuhong; Wang, Longfei; Chen, Danping

    2017-01-01

    A series of Er3+/Tm3+ co-doped fluoride (ZBLAN) glasses and fibers was prepared and their fluorescence spectra was measured under excitation at 793 nm and 980 nm. Correlation between the self-absorption effect of rare-earth ions and the shift of the emission peak was investigated. With the increasing length of fiber, the emission peaks red-shift when self-absorption occurs at the upper level of emission transition or blue-shift when that occurs at the lower level. As a result of the strong self-absorption effect, Er3+/Tm3+ co-doped fibers mainly yield 1390–1470, 1850–1980, and 2625–2750 nm emissions when excited at 793 nm, and 1480–1580, 1800–1980, and 2625–2750 nm emissions when excited at 980 nm. Further, a broadband emission in the range of 1410–1580 nm covering the S + C communication band was obtained by the dual-pumping scheme of 793 nm and 980 nm. Results suggest that the dual-pumping scheme would be more effective and important for an Er3+/Tm3+ co-doped fiber amplifier working in the S + C communication band. PMID:28772846

  8. Spectral Properties of Er3+/Tm3+ Co-Doped ZBLAN Glasses and Fibers.

    PubMed

    Liao, Xili; Jiang, Xiaobo; Yang, Qiuhong; Wang, Longfei; Chen, Danping

    2017-05-03

    A series of Er 3+ /Tm 3+ co-doped fluoride (ZBLAN) glasses and fibers was prepared and their fluorescence spectra was measured under excitation at 793 nm and 980 nm. Correlation between the self-absorption effect of rare-earth ions and the shift of the emission peak was investigated. With the increasing length of fiber, the emission peaks red-shift when self-absorption occurs at the upper level of emission transition or blue-shift when that occurs at the lower level. As a result of the strong self-absorption effect, Er 3+ /Tm 3+ co-doped fibers mainly yield 1390-1470, 1850-1980, and 2625-2750 nm emissions when excited at 793 nm, and 1480-1580, 1800-1980, and 2625-2750 nm emissions when excited at 980 nm. Further, a broadband emission in the range of 1410-1580 nm covering the S + C communication band was obtained by the dual-pumping scheme of 793 nm and 980 nm. Results suggest that the dual-pumping scheme would be more effective and important for an Er 3+ /Tm 3+ co-doped fiber amplifier working in the S + C communication band.

  9. Spectral bandwidth-efficient four-wave mixing minimization scheme for C-band dense wavelength division multiplexed system

    NASA Astrophysics Data System (ADS)

    Singh, Gurpreet; Singh, Maninder Lal

    2017-07-01

    A hybrid suboptimum channel separation (S-CS) scheme is presented. The distinct feature of the scheme is that it selectively minimizes the four-wave mixing (FWM) effect on the worst-affected channels and enhances the performance and spectral bandwidth efficiency in a controlled way. The scheme is helpful in the precise adjustment of tradeoff between immunity from FWM and spectral bandwidth requirement. The simulative comparison of the S-CS with optimum unequal channel separation (OUCS) and equal channel separation (ECS) schemes is performed to show its effectiveness. A dense wavelength division multiplexed system having a total capacity of 1.64 Tb/s in C band is implemented using the presented scheme. A maximum of 82 channels spaced at minimum CS of 50 GHz operating at a data rate of 20 Gb/s for each of the channels is realized using a S-CS (n=12) hybrid scheme. The simulations are performed in the presence of all the linear and nonlinear impairments and noises. A maximum of 480- and 300-km distances using SSMF and ITUT.G655 fibers, respectively, is realized using dispersion-compensating fibers for 82 channels. The ECS and hybrid OUCS can be realized to cover the same distances but with 73 and 79 channels, respectively, due to the realization problem and bandwidth inefficiency.

  10. Accelerated weathering of natural fiber-thermoplastic composites : effects of ultraviolet exposure on bending strength and stiffness

    Treesearch

    Thomas Lundin; Robert H. Falk; Colin Felton

    2002-01-01

    Mechanical properties of bending stiffness and yield stress were used to evaluate the effects of ultraviolet exposure on natural fiber-thermoplastic composites. Four different specimen formulations were evaluated. Injection molded high density polyethylene (HDPE) served as the polymer base for all formulations. Two lignocellulosic fillers, wood flour and kenaf fiber,...

  11. Multimode optical fibers: steady state mode exciter.

    PubMed

    Ikeda, M; Sugimura, A; Ikegami, T

    1976-09-01

    The steady state mode power distribution of the multimode graded index fiber was measured. A simple and effective steady state mode exciter was fabricated by an etching technique. Its insertion loss was 0.5 dB for an injection laser. Deviation in transmission characteristics of multimode graded index fibers can be avoided by using the steady state mode exciter.

  12. The use of image analysis in evaluation of the fibers orientation in Wood-polymer composites (WPC)

    NASA Astrophysics Data System (ADS)

    Bednarz, Arkadiusz; Frącz, Wiesław; Janowski, Grzegorz

    2016-12-01

    In this paper a novel way of a digital analysis of fibers orientation with a five-step algorithmwas presented. In the study, a molded piece with a dumbbell shape prepared from wood-polymer composite was used. The injection molding process was examined in experimental and numerical way. Based on the developed mathematical algorithm, a significant compliance of fiber orientation in different areas of the molded piece was obtained. The main aim of thisworkwas fiber orientation analysis of wood-polymer composites. An additional goal of thiswork was the comparison of the results reached in numerical analysis with results obtained from an experiment. The results of this research were important for the scientific and also from the practical point of view. In future works the prepared algorithm could be used to reach optimal parameters of the injection molding process.

  13. Early Beam Injection Scheme for the Fermilab Booster: A Path for Intensity Upgrade

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhat, C. M.

    Over the past decade, Fermilab has focused efforts on the intensity frontier physics and is committed to increase the average beam power delivered to the neutrino and muon programs substantially. Many upgrades to the existing injector accelerators, namely, the current 400 MeV LINAC and the Booster, are in progress under the Proton Improvement Plan (PIP). Proton Improvement Plan-II (PIP-II) proposes to replace the existing 400 MeV LINAC by a new 800 MeV LINAC, as an injector to the Booster which will increase Booster output power by nearly a factor of two from the PIP design value by the end ofmore » its completion. In any case, the Fermilab Booster is going to play a very significant role for nearly next two decades. In this context, I have developed and investigated a new beam injection scheme called "early injection scheme" (EIS) for the Booster with the goal to significantly increase the beam intensity output from the Booster thereby increasing the beam power to the HEP experiments even before PIP-II era. The scheme, if implemented, will also help improve the slip-stacking efficiency in the MI/RR. Here I present results from recent simulations, beam studies, current status and future plans for the new scheme.« less

  14. Theoretical analysis and simulation study of the deep overcompression mode of velocity bunching for a comblike electron bunch train

    NASA Astrophysics Data System (ADS)

    Wang, Dan; Yan, Lixin; Du, YingChao; Huang, Wenhui; Gai, Wei; Tang, Chuanxiang

    2018-02-01

    Premodulated comblike electron bunch trains are used in a wide range of research fields, such as for wakefield-based particle acceleration and tunable radiation sources. We propose an optimized compression scheme for bunch trains in which a traveling wave accelerator tube and a downstream drift segment are together used as a compressor. When the phase injected into the accelerator tube for the bunch train is set to ≪-10 0 ° , velocity bunching occurs in a deep overcompression mode, which reverses the phase space and maintains a velocity difference within the injected beam, thereby giving rise to a compressed comblike electron bunch train after a few-meter-long drift segment; we call this the deep overcompression scheme. The main benefits of this scheme are the relatively large phase acceptance and the uniformity of compression for the bunch train. The comblike bunch train generated via this scheme is widely tunable: For the two-bunch case, the energy and time spacings can be continuously adjusted from +1 to -1 MeV and from 13 to 3 ps, respectively, by varying the injected phase of the bunch train from -22 0 ° to -14 0 ° . Both theoretical analysis and beam dynamics simulations are presented to study the properties of the deep overcompression scheme.

  15. Optical fiber-fault surveillance for passive optical networks in S-band operation window

    NASA Astrophysics Data System (ADS)

    Yeh, Chien-Hung; Chi, Sien

    2005-07-01

    An S-band (1470 to 1520 nm) fiber laser scheme, which uses multiple fiber Bragg grating (FBG) elements as feedback elements on each passive branch, is proposed and described for in-service fault identification in passive optical networks (PONs). By tuning a wavelength selective filter located within the laser cavity over a gain bandwidth, the fiber-fault of each branch can be monitored without affecting the in-service channels. In our experiment, an S-band four-branch monitoring tree-structured PON system is demonstrated and investigated experimentally.

  16. Fiber-Optic Distribution Of Pulsed Power To Multiple Sensors

    NASA Technical Reports Server (NTRS)

    Kirkham, Harold

    1996-01-01

    Optoelectronic systems designed according to time-sharing scheme distribute optical power to multiple integrated-circuit-based sensors in fiber-optic networks. Networks combine flexibility of electronic sensing circuits with advantage of electrical isolation afforded by use of optical fibers instead of electrical conductors to transmit both signals and power. Fiber optics resist corrosion and immune to electromagnetic interference. Sensor networks of this type useful in variety of applications; for example, in monitoring strains in aircraft, buildings, and bridges, and in monitoring and controlling shapes of flexible structures.

  17. Utilization of Space Shuttle External Tank materials by melting and powder metallurgy

    NASA Technical Reports Server (NTRS)

    Chern, T. S.

    1985-01-01

    The Crucible Melt Extraction Process was demonstrated to convert scraps of aluminum alloy 2219, used in the Space Shuttle External Tank, into fibers. The cast fibers were then consolidated by cold welding. The X-ray diffraction test of the cast fibers was done to examine the crystallinity and oxide content of the fibers. The compressive stress-strain behavior of the consolidated materials was also examined. Two conceptual schemes which would adapt the as-developed Crucible Melt Extraction Process to the microgravity condition in space were finally proposed.

  18. Utilization of space shuttle external tank materials by melting and powder metallurgy

    NASA Astrophysics Data System (ADS)

    Chern, Terry S.

    The Crucible Melt Extraction Process was demonstrated to convert scraps of aluminum alloy 2219, used in the Space Shuttle External Tank, into fibers. The cast fibers were then consolidated by cold welding. The X-ray diffraction test of the cast fibers was done to examine the crystallinity and oxide content of the fibers. The compressive stress-strain behavior of the consolidated materials was also examined. Two conceptual schemes which would adapt the as-developed Crucible Melt Extraction Process to the microgravity condition in space were finally proposed.

  19. Optical fiber-fault surveillance for passive optical networks in S-band operation window.

    PubMed

    Yeh, Chien-Hung; Chi, Sien

    2005-07-11

    An S-band (1470 to 1520 nm) fiber laser scheme, which uses multiple fiber Bragg grating (FBG) elements as feedback elements on each passive branch, is proposed and described for in-service fault identification in passive optical networks (PONs). By tuning a wavelength selective filter located within the laser cavity over a gain bandwidth, the fiber-fault of each branch can be monitored without affecting the in-service channels. In our experiment, an S-band four-branch monitoring tree-structured PON system is demonstrated and investigated experimentally.

  20. Performance Evaluation of Single Sideband Radio over Fiber System through Modulation Index Enhancement

    NASA Astrophysics Data System (ADS)

    Chen, Xiaogang; Hu, Xizhen; Huang, Dexiu

    2014-09-01

    The transmission performance of single sideband (SSB) radio over fiber (RoF) system is evaluated through tuning the modulation index of Mach-Zehnder modulator, two different data modulation schemes and the influence of fiber dispersion are considered. The quantitative simulation results validate that there exist an optimum modulation index, and the system performance could be improved if the data signal is modulated on only optical carrier or sidebands.

  1. Waveguide-loaded silica fibers for coupling to high-index micro-resonators

    NASA Astrophysics Data System (ADS)

    Latawiec, P.; Burek, M. J.; Venkataraman, V.; Lončar, M.

    2016-01-01

    Tapered silica fibers are often used to rapidly probe the optical properties of micro-resonators. However, their low refractive index precludes phase-matching when coupling to high-index micro-resonators, reducing efficiency. Here, we demonstrate efficient optical coupling from tapered fibers to high-index micro-resonators by loading the fibers with an ancillary adiabatic waveguide-coupler fabricated via angled-etching. We demonstrate greatly enhanced coupling to a silicon multimode micro-resonator when compared to coupling via the bare fiber only. Signatures of resonator optical bistability are observed at high powers. This scheme can be applied to resonators of any size and material, increasing the functional scope of fiber coupling.

  2. Fabrication of versatile cladding light strippers and fiber end-caps with CO2 laser radiation

    NASA Astrophysics Data System (ADS)

    Steinke, M.; Theeg, T.; Wysmolek, M.; Ottenhues, C.; Pulzer, T.; Neumann, J.; Kracht, D.

    2018-02-01

    We report on novel fabrication schemes of versatile cladding light strippers and end-caps via CO2 laser radiation. We integrated cladding light strippers in SMA-like connectors for reliable and stable fiber-coupling of high-power laser diodes. Moreover, the application of cladding light strippers in typical fiber geometries for high-power fiber lasers was evaluated. In addition, we also developed processes to fuse end-caps to fiber end faces via CO2 laser radiation and inscribe the fibers with cladding light strippers near the end-cap. Corresponding results indicate the great potential of such devices as a monolithic and low-cost alternative to SMA connectors.

  3. Tailoring Meridional and Seasonal Radiative Forcing by Sulfate Aerosol Solar Geoengineering

    NASA Astrophysics Data System (ADS)

    Dai, Z.; Weisenstein, D. K.; Keith, D. W.

    2018-01-01

    We study the possibility of designing solar radiation management schemes to achieve a desired meridional radiative forcing (RF) profile using a two-dimensional chemistry-transport-aerosol model. Varying SO2 or H2SO4 injection latitude, altitude, and season, we compute RF response functions for a broad range of possible injection schemes, finding that linear combinations of these injection cases can roughly achieve RF profiles that have been proposed to accomplish various climate objectives. Globally averaged RF normalized by the sulfur injection rate (the radiative efficacy) is largest for injections at high altitudes, near the equator, and using emission of H2SO4 vapor into an aircraft wake to produce accumulation-mode particles. There is a trade-off between radiative efficacy and control as temporal and spatial control is best achieved with injections at lower altitudes and higher latitudes. These results may inform studies using more realistic models that couple aerosol microphysics, chemistry, and stratospheric dynamics.

  4. Remote beating of parallel or orthogonally polarized dual-wavelength optical carriers for 5G millimeter-wave radio-over-fiber link.

    PubMed

    Wang, Huai-Yung; Chi, Yu-Chieh; Lin, Gong-Ru

    2016-08-08

    A novel millimeter-wave radio over fiber (MMW-RoF) link at carrier frequency of 35-GHz is proposed with the use of remotely beating MMW generation from reference master and injected slave colorless laser diode (LD) carriers at orthogonally polarized dual-wavelength injection-locking. The slave colorless LD supports lasing one of the dual-wavelength master modes with orthogonal polarizations, which facilitates the single-mode direct modulation of the quadrature amplitude modulation (QAM) orthogonal frequency division multiplexing (OFDM) data. Such an injected single-carrier encoding and coupled dual-carrier transmission with orthogonal polarization effectively suppresses the cross-heterodyne mode-beating intensity noise, the nonlinear modulation (NLM) and four-wave mixing (FWM) sidemodes during injection locking and fiber transmission. In 25-km single-mode fiber (SMF) based wireline system, the dual-carrier under single-mode encoding provides baseband 24-Gbit/s 64-QAM OFDM transmission with an error vector magnitude (EVM) of 8.8%, a bit error rate (BER) of 3.7 × 10-3, a power penalty of <1.5 dB. After remotely self-beating for wireless transmission, the beat MMW carrier at 35 GHz can deliver the passband 16-QAM OFDM at 4 Gbit/s to show corresponding EVM and BER of 15.5% and 1.4 × 10-3, respectively, after 25-km SMF and 1.6-m free-space transmission.

  5. Automated detection and quantification of residual brain tumor using an interactive computer-aided detection scheme

    NASA Astrophysics Data System (ADS)

    Gaffney, Kevin P.; Aghaei, Faranak; Battiste, James; Zheng, Bin

    2017-03-01

    Detection of residual brain tumor is important to evaluate efficacy of brain cancer surgery, determine optimal strategy of further radiation therapy if needed, and assess ultimate prognosis of the patients. Brain MR is a commonly used imaging modality for this task. In order to distinguish between residual tumor and surgery induced scar tissues, two sets of MRI scans are conducted pre- and post-gadolinium contrast injection. The residual tumors are only enhanced in the post-contrast injection images. However, subjective reading and quantifying this type of brain MR images faces difficulty in detecting real residual tumor regions and measuring total volume of the residual tumor. In order to help solve this clinical difficulty, we developed and tested a new interactive computer-aided detection scheme, which consists of three consecutive image processing steps namely, 1) segmentation of the intracranial region, 2) image registration and subtraction, 3) tumor segmentation and refinement. The scheme also includes a specially designed and implemented graphical user interface (GUI) platform. When using this scheme, two sets of pre- and post-contrast injection images are first automatically processed to detect and quantify residual tumor volume. Then, a user can visually examine segmentation results and conveniently guide the scheme to correct any detection or segmentation errors if needed. The scheme has been repeatedly tested using five cases. Due to the observed high performance and robustness of the testing results, the scheme is currently ready for conducting clinical studies and helping clinicians investigate the association between this quantitative image marker and outcome of patients.

  6. Exposures to nanoparticles and fibers during injection molding and recycling of carbon nanotube reinforced polycarbonate composites.

    PubMed

    Boonruksa, Pongsit; Bello, Dhimiter; Zhang, Jinde; Isaacs, Jacqueline A; Mead, Joey L; Woskie, Susan R

    2017-07-01

    In this study, the characteristics of airborne particles generated during injection molding and grinding processes of carbon nanotube reinforced polycarbonate composites (CNT-PC) were investigated. Particle number concentration, size distribution, and morphology of particles emitted from the processes were determined using real-time particle sizers and transmission electron microscopy. The air samples near the operator's breathing zone were collected on filters and analyzed using scanning electron microscope for particle morphology and respirable fiber count. Processing and grinding during recycling of CNT-PC released airborne nanoparticles (NPs) with a geometric mean (GM) particle concentration from 4.7 × 10 3 to 1.7 × 10 6 particles/cm 3 . The ratios of the GM particle concentration measured during the injection molding process with exhaust ventilation relative to background were up to 1.3 (loading), 1.9 (melting), and 1.4 (molding), and 101.4 for grinding process without exhaust ventilation, suggesting substantial NP exposures during these processes. The estimated mass concentration was in the range of 1.6-95.2 μg/m 3 . Diverse particle morphologies, including NPs, NP agglomerates, particles with embedded or protruding CNTs and fibers, were observed. No free CNTs were found during any of the investigated processes. The breathing zone respirable fiber concentration during the grinding process ranged from non-detectable to 0.13 fiber/cm 3 . No evidence was found that the emissions were affected by the number of recycling cycles. Institution of exposure controls is recommended during these processes to limit exposures to airborne NPs and CNT-containing fibers.

  7. Diaphragmatic lymphatic vessel behavior during local skeletal muscle contraction.

    PubMed

    Moriondo, Andrea; Solari, Eleonora; Marcozzi, Cristiana; Negrini, Daniela

    2015-02-01

    The mechanism through which the stresses developed in the diaphragmatic tissue during skeletal muscle contraction sustain local lymphatic function was studied in 10 deeply anesthetized, tracheotomized adult Wistar rats whose diaphragm was exposed after thoracotomy. To evaluate the direct effect of skeletal muscle contraction on the hydraulic intraluminal lymphatic pressures (Plymph) and lymphatic vessel geometry, the maximal contraction of diaphragmatic fibers adjacent to a lymphatic vessel was elicited by injection of 9.2 nl of 1 M KCl solution among diaphragmatic fibers while Plymph was recorded through micropuncture and vessel geometry via stereomicroscopy video recording. In lymphatics oriented perpendicularly to the longitudinal axis of muscle fibers and located at <300 μm from KCl injection, vessel diameter at maximal skeletal muscle contraction (Dmc) decreased to 61.3 ± 1.4% of the precontraction value [resting diameter (Drest)]; however, if injection was at >900 μm from the vessel, Dmc enlarged to 131.1 ± 2.3% of Drest. In vessels parallel to muscle fibers, Dmc increased to 122.8 ± 2.9% of Drest. During contraction, Plymph decreased as much as 22.5 ± 2.6 cmH2O in all submesothelial superficial vessels, whereas it increased by 10.7 ± 5.1 cmH2O in deeper vessels running perpendicular to contracting muscle fibers. Hence, the three-dimensional arrangement of the diaphragmatic lymphatic network seems to be finalized to efficiently exploit the stresses exerted by muscle fibers during the contracting inspiratory phase to promote lymph formation in superficial submesothelial lymphatics and its further propulsion in deeper intramuscular vessels. Copyright © 2015 the American Physiological Society.

  8. Multicolor Fluorescence Detection for Droplet Microfluidics Using Optical Fibers

    PubMed Central

    Cole, Russell H.; Gartner, Zev J.; Abate, Adam R.

    2016-01-01

    Fluorescence assays are the most common readouts used in droplet microfluidics due to their bright signals and fast time response. Applications such as multiplex assays, enzyme evolution, and molecular biology enhanced cell sorting require the detection of two or more colors of fluorescence. Standard multicolor detection systems that couple free space lasers to epifluorescence microscopes are bulky, expensive, and difficult to maintain. In this paper, we describe a scheme to perform multicolor detection by exciting discrete regions of a microfluidic channel with lasers coupled to optical fibers. Emitted light is collected by an optical fiber coupled to a single photodetector. Because the excitation occurs at different spatial locations, the identity of emitted light can be encoded as a temporal shift, eliminating the need for more complicated light filtering schemes. The system has been used to detect droplet populations containing four unique combinations of dyes and to detect sub-nanomolar concentrations of fluorescein. PMID:27214249

  9. Recent Progress In Optical Oxygen Sensing

    NASA Astrophysics Data System (ADS)

    Wolfbeis, Otto S.; Leiner, Marc J. P.

    1988-06-01

    Following a brief review on the history of optical oxygen sensing (which shows that a variety of ideas exists in the literature that awaits the extension to fiber optic sensing schemes), the present state of probing oxygen by optical methods is discussed in terms of new methods and materials for sensor construction. Promising sensing schemes include simultaneous measurement of parameters such as oxygen and carbon dioxide with one fiber, measurement of fluorescence lifetimes and radiative energy transfer efficiency as well as phosphorescence quenching. New longwave-excitable fluorophores have been introduced recently, two-band emit-ting indicators can help to eliminate drift problems, and new methods have been found by which both indicators and enzymes may be entrapped in silicone rubber, which opens the way for the design of new biosensors. In a final chapter, the application of fiber optic oxygen sensors for blood gas measurement and as transducers in biosensors are presented.

  10. Experimental verification of a theoretical model of an active cladding optical fiber fluorosensor

    NASA Technical Reports Server (NTRS)

    Albin, Sacharia; Briant, Alvin L.; Egalon, Claudio O.; Rogowski, Robert S.; Nankung, Juock S.

    1993-01-01

    Experiments were conducted to verify a theoretical model on the injection efficiency of sources in the cladding of an optical fiber. The theoretical results predicted an increase in the injection efficiency for higher differences in refractive indices between the core and cladding. The experimental apparatus used consisted of a glass rod 50 cm long, coated at one end with a thin film of fluorescent substance. The fluorescent substance was excited with side illumination, perpendicular to the rod axis, using a 476 nm Argon-ion laser. Part of the excited fluorescence was injected into the core and guided to a detector. The signal was measured for several different cladding refractive indices. The cladding consisted of sugar dissolved in water and the refractive index was changed by varying the sugar concentration in the solution. The results indicate that the power injected into the rod, due to evanescent wave injection, increases with the difference in refractive index which is in qualitative agreement with theory.

  11. Tunable negative-tap photonic microwave filter based on a cladding-mode coupler and an optically injected laser of large detuning.

    PubMed

    Chan, Sze-Chun; Liu, Qing; Wang, Zhu; Chiang, Kin Seng

    2011-06-20

    A tunable negative-tap photonic microwave filter using a cladding-mode coupler together with optical injection locking of large wavelength detuning is demonstrated. Continuous and precise tunability of the filter is realized by physically sliding a pair of bare fibers inside the cladding-mode coupler. Signal inversion for the negative tap is achieved by optical injection locking of a single-mode semiconductor laser. To couple light into and out of the cladding-mode coupler, a pair of matching long-period fiber gratings is employed. The large bandwidth of the gratings requires injection locking of an exceptionally large wavelength detuning that has never been demonstrated before. Experimentally, injection locking with wavelength detuning as large as 27 nm was achieved, which corresponded to locking the 36-th side mode. Microwave filtering with a free-spectral range tunable from 88.6 MHz to 1.57 GHz and a notch depth larger than 35 dB was obtained.

  12. Spatial Frequency Multiplexing of Fiber-Optic Interferometric Refractive Index Sensors Based on Graded-Index Multimode Fibers

    PubMed Central

    Liu, Li; Gong, Yuan; Wu, Yu; Zhao, Tian; Wu, Hui-Juan; Rao, Yun-Jiang

    2012-01-01

    Fiber-optic interferometric sensors based on graded-index multimode fibers have very high refractive-index sensitivity, as we previously demonstrated. In this paper, spatial-frequency multiplexing of this type of fiber-optic refractive index sensors is investigated. It is estimated that multiplexing of more than 10 such sensors is possible. In the multiplexing scheme, one of the sensors is used to investigate the refractive index and temperature responses. The fast Fourier transform (FFT) of the combined reflective spectra is analyzed. The intensity of the FFT spectra is linearly related with the refractive index and is not sensitive to the temperature.

  13. Simple pre-distortion schemes for improving the power efficiency of SOA-based IR-UWB over fiber systems

    NASA Astrophysics Data System (ADS)

    Taki, H.; Azou, S.; Hamie, A.; Al Housseini, A.; Alaeddine, A.; Sharaiha, A.

    2017-01-01

    In this paper, we investigate the usage of SOA for reach extension of an impulse radio over fiber system. Operating in the saturated regime translates into strong nonlinearities and spectral distortions, which drops the power efficiency of the propagated pulses. After studying the SOA response versus operating conditions, we have enhanced the system performance by applying simple analog pre-distortion schemes for various derivatives of the Gaussian pulse and their combination. A novel pulse shape has also been designed by linearly combining three basic Gaussian pulses, offering a very good spectral efficiency (> 55 %) for a high power (0 dBm) at the amplifier input. Furthermore, the potential of our technique has been examined considering a 1.5 Gbps-OOK and 0.75 Gbps-PPM modulation schemes. Pre-distortion proved an advantage for a large extension of optical link (150 km), with an inline amplification via SOA at 40 km.

  14. Virtual optical network mapping and core allocation in elastic optical networks using multi-core fibers

    NASA Astrophysics Data System (ADS)

    Xuan, Hejun; Wang, Yuping; Xu, Zhanqi; Hao, Shanshan; Wang, Xiaoli

    2017-11-01

    Virtualization technology can greatly improve the efficiency of the networks by allowing the virtual optical networks to share the resources of the physical networks. However, it will face some challenges, such as finding the efficient strategies for virtual nodes mapping, virtual links mapping and spectrum assignment. It is even more complex and challenging when the physical elastic optical networks using multi-core fibers. To tackle these challenges, we establish a constrained optimization model to determine the optimal schemes of optical network mapping, core allocation and spectrum assignment. To solve the model efficiently, tailor-made encoding scheme, crossover and mutation operators are designed. Based on these, an efficient genetic algorithm is proposed to obtain the optimal schemes of the virtual nodes mapping, virtual links mapping, core allocation. The simulation experiments are conducted on three widely used networks, and the experimental results show the effectiveness of the proposed model and algorithm.

  15. Bi-Directional Brillouin Optical Time Domain Analyzer System for Long Range Distributed Sensing.

    PubMed

    Guo, Nan; Wang, Liang; Wang, Jie; Jin, Chao; Tam, Hwa-Yaw; Zhang, A Ping; Lu, Chao

    2016-12-16

    We propose and experimentally demonstrate a novel scheme of bi-directional Brillouin time domain analyzer (BD-BOTDA) to extend the sensing range. By deploying two pump-probe pairs at two different wavelengths, the Brillouin frequency shift (BFS) distribution over each half of the whole fiber can be obtained with the simultaneous detection of Brillouin signals in both channels. Compared to the conventional unidirectional BOTDA system of the same sensing range, the proposed BD-BOTDA scheme enables distributed sensing with a performance level comparable to the conventional one with half of the sensing range and a spatial resolution of 2 m, while maintaining the Brillouin signal-to-noise ratio (SNR) and the BFS uncertainty. Based on this technique, we have achieved distributed temperature sensing with a measurement range of 81.9 km fiber at a spatial resolution of 2 m and BFS uncertainty of ~0.44 MHz without introducing any complicated components or schemes.

  16. Optical single sideband millimeter-wave signal generation and transmission using 120° hybrid coupler

    NASA Astrophysics Data System (ADS)

    Zheng, Zhiwei; Peng, Miao; Zhou, Hui; Chen, Ming; Jiang, Leyong; Tan, Li; Dai, Xiaoyu; Xiang, Yuanjiang

    2018-03-01

    We propose a novel 60 GHz optical single sideband (OSSB) millimeter-wave (mm-wave) signal generation scheme using 120° hybrid coupler based on external integrated Mach-Zehnder modulator (MZM). The proposed scheme shows that the bit error ratio (BER) performance is improved by suppressing the +2nd-order sideband. Meanwhile, the transmission distance is extended as only the optical +1st-order sideband is modulated by using 5 Gbit/s baseband signal while the carrier is blank, owing to the elimination of walk-off effect suffered from fiber dispersion. The simulation results demonstrated that the eye diagrams of the generated 60 GHz OSSB signal keep open and clear after 100 km standard single-mode fiber (SSMF). In addition, the proposed scheme can achieve 2 dB receiver sensitivity improvements than the conventional 90° hybrid coupler when transmitted over 100 km SSMF at a BER of 10-9.

  17. The scheme of a blindless positioning structure with parallel adjusting tables and swing rods for 4000 optical fibres of LAMOST.

    NASA Astrophysics Data System (ADS)

    Yunguo, Gao

    1996-12-01

    This scheme structure is for positioning 4000 optical fibres of LAMOST telescope. It adopts the swing rods adjusted parallel and simultaneously by many small tables. The problems, for example, positioning accuracy of the optical fibers, the time to readjust all the 4000 optical fibres and error correction, etc. have been considered in the scheme. The structure has no blind area.

  18. Novel Designs and Coupling Schemes for Affordable High Energy Laser Modules

    DTIC Science & Technology

    2007-09-28

    possibility of single polarization operation of phase- locked multicore fiber lasers and amplifiers. 5.5. UV...transverse direction (propagation and polarization vectors shown as solid arrows and dashed lines, respectively) having a dipole-like wave front from an...31 5.4. Phase Locking in Monolithic Multicore Fiber Laser..................................................... 38 5.5. UV

  19. Direct Spectroscopy in Hollow Optical with Fiber-Based Optical Frequency Combs

    DTIC Science & Technology

    2015-07-09

    scheme is that the generation of carrier-envelope offset frequency f0 can be avoided, which reduces the system complexity . However, a high performance RF...Peterson, "Saturated absorption in acetylene and hydrogen cyanide in hollow-core photonic bandgap fibers," Opt. Express 13, 10475-10482 (2005). 56. C

  20. Development of ultra-precision micro-cavity measurement technique in HIT-UOI

    NASA Astrophysics Data System (ADS)

    Cui, Jiwen; Li, Lei; Tan, Jiubin

    2010-08-01

    Micro cavities with high aspect ratio are widely used in different fields including aerospace and defense industries with the development of manufacturing technology. So how to measure the dimension of these cavities has become one of the major research subjects in the field of measurement and instrument. This paper describes some activities of the precision micro cavity measurement technique in Center of Ultra-precision Optoelectronic Instrument (UOI), Harbin Institute of Technology (HIT). The key issue of micro cavity measurement in UOI is called touch-trigger measurement method. The first scheme is double optical fiber coupling, in which light coming from the incident optical fiber is transmitted in the reversal direction via the optical fiber coupling into the effluent optical fiber, the lateral displacement of the touch-trigger sensor is transformed into the deflexion of light coming out from the effluent optical fiber, and the deflexion is transformed into an image signal by the object lens and CCD capturing system. And the second scheme is micro focal-length collimation, in which a fiber stem with a ball mounted on its end is used as a probe and a small segment of it is used as a cylindrical lens to collimate a point light source and image it to a camera, the deflection of the fiber stem can be inferred from the change in image acquired by the camera with ultrahigh displacement sensitivity. Experiments for these activities will be given with a focus on the measurement results and repeatability uncertainty.

  1. A study of topologies and protocols for fiber optic local area network

    NASA Technical Reports Server (NTRS)

    Yeh, C.; Gerla, M.; Rodrigues, P.

    1985-01-01

    The emergence of new applications requiring high data traffic necessitates the development of high speed local area networks. Optical fiber is selected as the transmission medium due to its inherent advantages over other possible media and the dual optical bus architecture is shown to be the most suitable topology. Asynchronous access protocols, including token, random, hybrid random/token, and virtual token schemes, are developed and analyzed. Exact expressions for insertion delay and utilization at light and heavy load are derived, and intermediate load behavior is investigated by simulation. A new tokenless adaptive scheme whose control depends only on the detection of activity on the channel is shown to outperform round-robin schemes under uneven loads and multipacket traffic and to perform optimally at light load. An approximate solution to the queueing delay for an oscillating polling scheme under chaining is obtained and results are compared with simulation. Solutions to the problem of building systems with a large number of stations are presented, including maximization of the number of optical couplers, and the use of passive star/bus topologies, bridges and gateways.

  2. Photonic-crystal fiber as a multifunctional optical sensor and sample collector.

    PubMed

    Konorov, Stanislav; Zheltikov, Aleksei; Scalora, Michael

    2005-05-02

    Two protocols of optical sensing realized with the same photonic-crystal fiber are compared. In the first protocol, diode-laser radiation is delivered to a sample through the central core of a dual-cladding photonic-crystal fiber with a diameter of a few micrometers, while the large-diameter fiber cladding serves to collect the fluorescent response from the sample and to guide it to a detector in the backward direction. In the second scheme, liquid sample is collected by a microcapillary array in the fiber cladding and is interrogated by laser radiation guided in the fiber modes. For sample fluids with refractive indices exceeding the refractive index of the fiber material, fluid channels in photonic-crystal fibers can guide laser light by total internal reflection, providing an 80% overlap of interrogating radiation with sample fluid.

  3. Monolithic diffraction-limited 976-nm laser based on saddle-shaped photo darkening-free Yb-doped fiber

    NASA Astrophysics Data System (ADS)

    Aleshkina, Svetlana S.; Lipatov, Denis S.; Levchenko, Andrei E.; Medvedkov, Oleg I.; Bobkov, Konstantin K.; Bubnov, Mikhail M.; Guryanov, Alexei N.; Likhachev, Mikhail E.

    2018-02-01

    Monolithic 976 nm laser design based on a newly developed saddle-shaped Yb-doped fiber has been proposed. The fiber has central single-mode part with core diameter of about 12 μm and ultra-thin square-shaped clad with side of about 42x42 μm. At the both ends of the saddle-shaped fiber the core and the clad sizes were adiabatically increased up to 20/(70x70) μm and the fiber could be spliced with standard (80..125 μm clad) passive fibers using commercially available equipment. Single-mode laser at 976 nm based on the developed fiber has been fabricated and photodarkening-free operation with output power of 10.6 W, which is the record high for all-fiber laser schemes, has been demonstrated.

  4. Simulations of Merging Helion Bunches on the AGS Injection Porch

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gardner, C. J.

    During the setup of helions for the FY2014 RHIC run it was discovered that the standard scheme for merging bunches on the AGS injection porch required an injection kicker pulse shorter than what was available. To overcome this difficulty, K. Zeno proposed and developed an interesting and unusual alternative which uses RF harmonic numbers 12, 4, 2 (rather than the standard 8, 4, 2) to merge 8 helion bunches into 2. In this note we carry out simulations that illustrate how the alternative scheme works and how it compares with the standard scheme. This is done in Sections 13 andmore » 14. A scheme in which 6 bunches are merged into 1 is simulated in Section 15. This may be useful if more helions per merged bunch are needed in future runs. General formulae for the simulations are given in Sections 9 through 12. For completeness, Sections 1 through 8 give a derivation of the turn-by-turn equations of longitudinal motion at constant magnetic field. The derivation is based on the work of MacLachlan. The reader may wish to skip over these Sections and start with Section 9.« less

  5. Contraction produced by intracellular injection of calcium, strontium, and barium in the single crayfish muscle fibers.

    PubMed

    Matsumura, M; Mashima, H

    1976-01-01

    Ca ions were ionophoretically injected through an intracellular microelectrode into the single muscle fiber of a crayfish, and the resulting contraction sphere was observed under a microscope and photographed with a movie camera. The minimum contraction produced by the threshold current involved usually three or four, sometimes two, sarcomers on both sides of the injecting pipette but contraction involving only one sarcomere was not observered. The rheobase of the Ca-injecting current was 3.2 X 10(-9) A. The strength-duration curves were determined for Ca-, Sr-, and Ba-injecting currents; all fitted a similar hyperbolic equation. The threshold amount of Ca above rheobasic injection was 2.1 X 10(-15)mol, and the ratios between threshold amounts were Ca: Sr: Ba=1: 1.9: 3.0. The effects of Ca and Sr were additive for the contraction. More current was required for the Ca-injection to produce the contraction in the K-depolarized-or 15mM-procaine-treated muscle, although less current was sufficient for the muscle treated with 0.5-1.0 mM of caffeine. The participation of the Ca-induced Ca release mechanism in the contraction produced by Ca injection and the role of Sr or Ba as a substitute for Ca were discussed.

  6. Objective-lens-free Fiber-based Position Detection with Nanometer Resolution in a Fiber Optical Trapping System.

    PubMed

    Ti, Chaoyang; Ho-Thanh, Minh-Tri; Wen, Qi; Liu, Yuxiang

    2017-10-13

    Position detection with high accuracy is crucial for force calibration of optical trapping systems. Most existing position detection methods require high-numerical-aperture objective lenses, which are bulky, expensive, and difficult to miniaturize. Here, we report an affordable objective-lens-free, fiber-based position detection scheme with 2 nm spatial resolution and 150 MHz bandwidth. This fiber based detection mechanism enables simultaneous trapping and force measurements in a compact fiber optical tweezers system. In addition, we achieved more reliable signal acquisition with less distortion compared with objective based position detection methods, thanks to the light guiding in optical fibers and small distance between the fiber tips and trapped particle. As a demonstration of the fiber based detection, we used the fiber optical tweezers to apply a force on a cell membrane and simultaneously measure the cellular response.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Usman, Yasir; Kim, Jinho; Muljadi, Eduard

    Wake effects cause wind turbine generators (WTGs) within a wind power plant (WPP) to produce different levels of active power and subsequent reactive power capabilities. Further, the impedance between a WTG and the point of interconnection (POI)-which depends on the distance between them-impacts the WPP's reactive power injection capability at the POI. This paper proposes a voltage control scheme for a WPP based on the available reactive current of the doubly-fed induction generators (DFIGs) and its impacts on the POI to improve the reactive power injection capability of the WPP. In this paper, a design strategy for modifying the gainmore » of DFIG controller is suggested and the comprehensive properties of these control gains are investigated. In the proposed scheme, the WPP controller, which operates in a voltage control mode, sends the command signal to the DFIGs based on the voltage difference at the POI. The DFIG controllers, which operate in a voltage control mode, employ a proportional controller with a limiter. The gain of the proportional controller is adjusted depending on the available reactive current of the DFIG and the series impedance between the DFIG and the POI. The performance of the proposed scheme is validated for various disturbances such as a reactive load connection and grid fault using an EMTP-RV simulator. Furthermore, simulation results demonstrate that the proposed scheme promptly recovers the POI voltage by injecting more reactive power after a disturbance than the conventional scheme.« less

  8. 1.7  μm band narrow-linewidth tunable Raman fiber lasers pumped by spectrum-sliced amplified spontaneous emission.

    PubMed

    Zhang, Peng; Wu, Di; Du, Quanli; Li, Xiaoyan; Han, Kexuan; Zhang, Lizhong; Wang, Tianshu; Jiang, Huilin

    2017-12-10

    A 1.7 μm band tunable narrow-linewidth Raman fiber laser based on spectrally sliced amplified spontaneous emission (SS-ASE) and multiple filter structures is proposed and experimentally demonstrated. In this scheme, an SS-ASE source is employed as a pump source in order to avoid stimulated Brillouin scattering. The ring configuration includes a 500 m long high nonlinear optical fiber and a 10 km long dispersion shifted fiber as the gain medium. A segment of un-pumped polarization-maintaining erbium-doped fiber is used to modify the shape of the spectrum. Furthermore, a nonlinear polarization rotation scheme is applied as the wavelength selector to generate lasers. A high-finesse ring filter and a ring filter are used to narrow the linewidth of the laser, respectively. We demonstrate tuning capabilities of a single laser over 28 nm between 1652 nm and 1680 nm by adjusting the polarization controller (PC) and tunable filter. The tunable laser has a 0.023 nm effective linewidth with the high-finesse ring filter. The stable multi-wavelength laser operation of up to four wavelengths can be obtained by adjusting the PC carefully when the pump power increases.

  9. Dual frequency comb metrology with one fiber laser

    NASA Astrophysics Data System (ADS)

    Zhao, Xin; Takeshi, Yasui; Zheng, Zheng

    2016-11-01

    Optical metrology techniques based on dual optical frequency combs have emerged as a hotly studied area targeting a wide range of applications from optical spectroscopy to microwave and terahertz frequency measurement. Generating two sets of high-quality comb lines with slightly different comb-tooth spacings with high mutual coherence and stability is the key to most of the dual-comb schemes. The complexity and costs of such laser sources and the associated control systems to lock the two frequency combs hinder the wider adoption of such techniques. Here we demonstrate a very simple and rather different approach to tackle such a challenge. By employing novel laser cavity designs in a mode-locked fiber laser, a simple fiber laser setup could emit dual-comb pulse output with high stability and good coherence between the pulse trains. Based on such lasers, comb-tooth-resolved dual-comb optical spectroscopy is demonstrated. Picometer spectral resolving capability could be realized with a fiber-optic setup and a low-cost data acquisition system and standard algorithms. Besides, the frequency of microwave signals over a large range can be determined based on a simple setup. Our results show the capability of such single-fiber-laser-based dual-comb scheme to reduce the complexity and cost of dual-comb systems with excellent quality for different dual-comb applications.

  10. Scintillator-fiber charged-particle track-imaging detector

    NASA Technical Reports Server (NTRS)

    Binns, W. R.; Israel, M. H.; Klarmann, J.

    1983-01-01

    A scintillator-fiber charged-particle track-imaging detector has been developed using a bundle of square cross-section plastic scintillator fiber optics, proximity focused onto an image intensified Charge Injection Device (CID) camera. Detector to beams of 15 MeV protons and relativistic Neon, Manganese, and Gold nuclei have been exposed and images of their tracks are obtained. This paper presents details of the detector technique, properties of the tracks obtained, and range measurements of 15 MeV protons stopping in the fiber bundle.

  11. Comment on "A new method for treating fecal incontinence by implanting stem cells derived from human adipose tissue: preliminary findings of a randomized double-blind clinical trial".

    PubMed

    El-Said, Mohammed Mohammed; Emile, Sameh Hany

    2018-04-25

    In the study by Sarveazad et al. adipose tissue-derived stem cells were injected to reinforce anal sphincter repair. The authors came to the conclusion that injection of stem cells during repair surgery for fecal incontinence may cause replacement of fibrous tissue, which may be a key point in treatment of fecal incontinence. The authors emphasized in their "Discussion" section that the ability of stem cells to differentiate into muscle fibers, replacing the fibrous tissue at the site of repair, is their main action, which may not be accurate. We think that healing of repaired anal sphincter begins with granulation tissue formation, which then matures into fibrous tissue that becomes infiltrated by muscle fibers from the approximated cut ends of the sphincter, resulting in regain of sphincter muscle continuity. This is supported by many experimental studies that have evaluated local injection of stem cells during sphincteroplasty in rats and shown that the injected stem cells do not differentiate into muscle fibers but may induce healing by a strong fibrous tissue. Further studies are needed to determine the main mechanism of action of mesenchymal stems cells in augmenting anal sphincter repair.

  12. Energy Conservation in Optical Fibers With Distributed Brick-Walls Filters

    NASA Astrophysics Data System (ADS)

    Garcia, Javier; Ghozlan, Hassan; Kramer, Gerhard

    2018-05-01

    A band-pass filtering scheme is proposed to mitigate spectral broadening and channel coupling in the Nonlinear Schr\\"odinger (NLS) fiber optic channel. The scheme is modeled by modifying the NLS Equation to include an attenuation profile with multiple brick-wall filters centered at different frequencies. It is shown that this brick-walls profile conserves the total in-band energy of the launch signal. Furthermore, energy fluctuations between the filtered channels are characterized, and conditions on the channel spacings are derived that ensure energy conservation in each channel. The maximum spectral efficiency of such a system is derived, and a constructive rule for achieving it using Sidon sequences is provided.

  13. Stable radio frequency dissemination by simple hybrid frequency modulation scheme.

    PubMed

    Yu, Longqiang; Wang, Rong; Lu, Lin; Zhu, Yong; Wu, Chuanxin; Zhang, Baofu; Wang, Peizhang

    2014-09-15

    In this Letter, we propose a fiber-based stable radio frequency transfer system by a hybrid frequency modulation scheme. Creatively, two radio frequency signals are combined and simultaneously transferred by only one laser diode. One frequency component is used to detect the phase fluctuation, and the other one is the derivative compensated signal providing a stable frequency for the remote end. A proper ratio of the frequencies of the components is well maintained by parameter m to avoid interference between them. Experimentally, a stable 200 MHz signal is transferred over 100 km optical fiber with the help of a 1 GHz detecting signal, and fractional instability of 2×10(-17) at 10(5) s is achieved.

  14. Predictive Engineering Tools for Injection-Molded Long-Carbon-Fiber Thermoplastic Composites. Topical Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nguyen, Ba Nghiep; Fifield, Leonard S.; Wang, Jin

    2016-06-01

    This project aimed to integrate, optimize, and validate the fiber orientation and length distribution models previously developed and implemented in the Autodesk® Simulation Moldflow® Insight (ASMI) software package for injection-molded long-carbon-fiber (LCF) thermoplastic composite structures. The project was organized into two phases. Phase 1 demonstrated the ability of the advanced ASMI package to predict fiber orientation and length distributions in LCF/polypropylene (PP) and LCF/polyamide-6, 6 (PA66) plaques within 15% of experimental results. Phase 2 validated the advanced ASMI package by predicting fiber orientation and length distributions within 15% of experimental results for a complex three-dimensional (3D) Toyota automotive part injection-moldedmore » from LCF/PP and LCF/PA66 materials. Work under Phase 2 also included estimate of weight savings and cost impacts for a vehicle system using ASMI and structural analyses of the complex part. The present report summarizes the completion of Phases 1 and 2 work activities and accomplishments achieved by the team comprising Pacific Northwest National Laboratory (PNNL); Purdue University (Purdue); Virginia Polytechnic Institute and State University (Virginia Tech); Autodesk, Inc. (Autodesk); PlastiComp, Inc. (PlastiComp); Toyota Research Institute North America (Toyota); Magna Exteriors and Interiors Corp. (Magna); and University of Illinois. Figure 1 illustrates the technical approach adopted in this project that progressed from compounding LCF/PP and LCF/PA66 materials, to process model improvement and implementation, to molding and modeling LCF/PP and LCF/PA66 plaques. The lessons learned from the plaque study and the successful validation of improved process models for fiber orientation and length distributions for these plaques enabled the project to go to Phase 2 to mold, model, and optimize the 3D complex part.« less

  15. Single-fiber electromyography analysis of botulinum toxin diffusion in patients with fatigue and pseudobotulism.

    PubMed

    Ruet, Alexis; Durand, Marie Christine; Denys, Pierre; Lofaso, Frederic; Genet, François; Schnitzler, Alexis

    2015-06-01

    To characterize electromyographic abnormalities according to symptoms (asymptomatic, fatigue, pseudobotulism) reported 1 month after botulinum toxin injection. Retrospective, single-center study comparing single-fiber electromyography (SFEMG) in the extensor digitorum communis (EDC) or orbicularis oculi (OO) muscles. Hospital. Four groups of adults treated for spasticity or neurologic bladder hyperactivity (N=55): control group (asymptomatic patients: n=17), fatigue group (unusual fatigue with no weakness: n=15), pseudobotulism group (muscle weakness and/or visual disturbance: n=20), and botulism group (from intensive care unit of the same hospital: n=3). Not applicable. Mean jitter, percentage of pathologic fibers, and percentage of blocked fibers were compared between groups. SFEMG was abnormal for 17.6% of control patients and 75% of patients in the pseudobotulism group. There were no differences between the control and fatigue groups. Mean jitter, percentage of pathologic fibers, and percentage of blocked fibers of the EDC muscle were significantly higher in the pseudobotulism group than in the fatigue and control groups. There were no differences between groups for the OO muscle. The SFEMG results in the botulism group were qualitatively similar to those of the pseudobotulism group. SFEMG of the EDC muscle confirmed diffusion of the toxin into muscles distant from the injection site in the pseudobotulism group. SFEMG in the OO muscle is not useful for the diagnosis of diffusion. No major signs of diffusion of botulinum toxin type A were found away from the injection site in patients with fatigue but no motor weakness. Such fatigue may be related to other mechanisms. Copyright © 2015 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  16. Diesel engine emissions reduction by multiple injections having increasing pressure

    DOEpatents

    Reitz, Rolf D.; Thiel, Matthew P.

    2003-01-01

    Multiple fuel charges are injected into a diesel engine combustion chamber during a combustion cycle, and each charge after the first has successively greater injection pressure (a higher injection rate) than the prior charge. This injection scheme results in reduced emissions, particularly particulate emissions, and can be implemented by modifying existing injection system hardware. Further enhancements in emissions reduction and engine performance can be obtained by using known measures in conjunction with the invention, such as Exhaust Gas Recirculation (EGR).

  17. Preserving flying qubit in single-mode fiber with Knill Dynamical Decoupling (KDD)

    NASA Astrophysics Data System (ADS)

    Gupta, Manish; Navarro, Erik; Moulder, Todd; Mueller, Jason; Balouchi, Ashkan; Brown, Katherine; Lee, Hwang; Dowling, Jonathan

    2015-03-01

    The implementation of information-theoretic-crypto protocol is limited by decoherence caused by the birefringence of a single-mode fiber. We propose the Knill dynamical decoupling scheme, implemented using half-wave plates, to minimize decoherence and show that a fidelity greater than 96% can be achieved even in presence of rotation error.

  18. Comparative genetic analysis of lint yield and fiber quality among single, three-way, and double crosses in upland cotton

    USDA-ARS?s Scientific Manuscript database

    Decisions on the appropriate crossing systems to employ for genetic improvement of quantitative traits are critical in cotton breeding. Determination of genetic variance for lint yield and fiber quality in three different crossing schemes, i.e., single cross (SC), three-way cross (TWC), and double ...

  19. Uncertainty quantification of fiber orientation distribution measurements for long-fiber-reinforced thermoplastic composites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharma, Bhisham N.; Naragani, Diwakar; Nguyen, Ba Nghiep

    Here, we present a detailed methodology for experimental measurement of fiber orientation distribution in injection-molded discontinuous fiber composites using the method of ellipses on two-dimensional cross sections. Best practices to avoid biases occurring during surface preparation and optical imaging of carbon-fiber-reinforced thermoplastics are discussed. We developed a marker-based watershed transform routine for efficient image segmentation and the separation of touching fiber ellipses. The sensitivity of the averaged orientation tensor to the image sample size is studied for the case of long-fiber thermoplastics. A Mori–Tanaka implementation of the Eshelby model is then employed to quantify the sensitivity of elastic stiffness predictionsmore » to biases in the fiber orientation distribution measurements.« less

  20. Uncertainty quantification of fiber orientation distribution measurements for long-fiber-reinforced thermoplastic composites

    DOE PAGES

    Sharma, Bhisham N.; Naragani, Diwakar; Nguyen, Ba Nghiep; ...

    2017-09-28

    Here, we present a detailed methodology for experimental measurement of fiber orientation distribution in injection-molded discontinuous fiber composites using the method of ellipses on two-dimensional cross sections. Best practices to avoid biases occurring during surface preparation and optical imaging of carbon-fiber-reinforced thermoplastics are discussed. We developed a marker-based watershed transform routine for efficient image segmentation and the separation of touching fiber ellipses. The sensitivity of the averaged orientation tensor to the image sample size is studied for the case of long-fiber thermoplastics. A Mori–Tanaka implementation of the Eshelby model is then employed to quantify the sensitivity of elastic stiffness predictionsmore » to biases in the fiber orientation distribution measurements.« less

  1. Inter-comparison of unrelated fiber evidence.

    PubMed

    Houck, Max M

    2003-08-12

    The foreign textile fibers recovered from one item of evidence from each of 20 unrelated crimes in three categories (bank robbery, kidnapping, and homicide) were cross-compared. The items of evidence were scraped to remove the trace evidence and a sample of the collected fibers was examined using a standard scheme of analysis. The fibers were examined with light microscopy (including polarized light microscopy), fluorescence microscopy, and microspectrophotometry. The fibers were divided into natural and manufactured groups and then categorized by color and generic (polymer) class. Cross-comparing all 2083 fibers resulted in 2,168,403 comparisons, after removing duplicate (same fiber) comparisons. Colorless and denim fibers were excluded from this study. No two fibers were found to exhibit the same microscopic characteristics and analytical properties. Therefore, it is rare to find two unrelated items that have foreign fibers that are analytically indistinguishable. These results corroborate other population studies conducted in Europe and target fiber studies conducted both in the US and in Europe.

  2. Frequency comb-based time transfer over a 159 km long installed fiber network

    NASA Astrophysics Data System (ADS)

    Lessing, M.; Margolis, H. S.; Brown, C. T. A.; Marra, G.

    2017-05-01

    We demonstrate a frequency comb-based time transfer technique on a 159 km long installed fiber link. Timing information is superimposed onto the optical pulse train of an ITU-channel-filtered mode-locked laser using an intensity modulation scheme. The environmentally induced optical path length fluctuations are compensated using a round-trip phase noise cancellation technique. When the fiber link is stabilized, a time deviation of 300 fs at 5 s and an accuracy at the 100 ps level are achieved.

  3. Changes in Retinal Nerve Fiber Layer Thickness after Multiple Injections of Novel VEGF Decoy Receptor Conbercept for Various Retinal Diseases.

    PubMed

    Zhang, Zhihua; Yang, Xiaolu; Jin, Huiyi; Qu, Yuan; Zhang, Yuan; Liu, Kun; Xu, Xun

    2016-12-06

    Conbercept is a recombinant fusion protein with high affinity for all vascular endothelial growth factor isoforms and placental growth factor. The repeated intravitreal injection of conbercept may cause intraocular pressure (IOP) fluctuations and long-term suppression of neurotrophic cytokines, which could lead to retinal nerve fiber layer (RNFL) damage. This retrospective fellow-eye controlled study included 98 eyes of 49 patients. The changes in IOP and RNFL thickness as well as the correlation between RNFL changes and associated factors were evaluated. The IOP value between the baseline and the last follow-up visit in the injection group and the IOP value of the last follow-up visit between the injection and non-injection groups were not significantly different (p = 0.452 and 0.476, respectively). The global average thickness of the RNFL (μm) in the injection group decreased from 108.9 to 106.1; however, the change was not statistically significant (p = 0.118). No significant difference in the average RNFL thickness was observed at the last follow-up visit between the injection and non-injection groups (p = 0.821). The type of disease was the only factor associated with RNFL thickness changes. In conclusion, repeated intravitreal injections with 0.05 mL conbercept revealed an excellent safety profile for RNFL thickness, although short-term IOP changes were observed.

  4. Wavelength-stepped, actively mode-locked fiber laser based on wavelength-division-multiplexed optical delay lines

    NASA Astrophysics Data System (ADS)

    Lee, Eunjoo; Kim, Byoung Yoon

    2017-12-01

    We propose a new scheme for an actively mode-locked wavelength-swept fiber laser that produces a train of discretely wavelength-stepped pulses from a short fiber cavity. Pulses with different wavelengths are split and combined by standard wavelength division multiplexers with fiber delay lines. As a proof of concept, we demonstrate a laser using an erbium doped fiber amplifier and commercially available wavelength-division multiplexers with wavelength spacing of 0.8 nm. The results show simultaneous mode-locking at three different wavelengths. Laser output parameters in time domain, optical and radio frequency spectral domain, and the noise characteristics are presented. Suggestions for the improved design are discussed.

  5. Electropolymerized fluorinated aniline-based fiber for headspace solid-phase microextraction and gas chromatographic determination of benzaldehyde in injectable pharmaceutical formulations.

    PubMed

    Mohammadi, Ali; Mohammadi, Somayeh; Bayandori Moghaddam, Abdolmajid; Masoumi, Vahideh; Walker, Roderick B

    2014-10-01

    In this study, a simple method was developed and validated to detect trace levels of benzaldehyde in injectable pharmaceutical formulations by solid-phase microextraction coupled with gas chromatography-flame ionization detector. Polyaniline was electrodeposited on a platinum wire in trifluoroacetic acid solvent by cyclic voltammetry technique. This fiber shows high thermal and mechanical stability and high performance in extraction of benzaldehyde. Extraction and desorption time and temperature, salt effect and gas chromatography parameters were optimized as key parameters. At the optimum conditions, the fiber shows good linearity between peak area ratio of benzaldehyde/3-chlorobenzaldehyde and benzaldehyde concentration in the range of 50-800 ng/mL with percent relative standard deviation values ranging from 0.75 to 8.64% (n = 3). The limits of quantitation and detection were 50 and 16 ng/mL, respectively. The method has the requisite selectivity, sensitivity, accuracy and precision to assay benzaldehyde in injectable pharmaceutical dosage forms. © The Author [2013]. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  6. Development of a solid-state sodium Doppler lidar using an all-fiber-coupled injection seeding unit for simultaneous temperature and wind measurements in the mesopause region

    NASA Astrophysics Data System (ADS)

    Yang, Guotao; Xia, Yuan; Cheng, Xuewu; Du, Lifang; Wang, Jihong; Xun, Yuchang

    2017-04-01

    We present a solid-state sodium (Na) Doppler lidar developed at YanQing Station, Beijing, China (40°N, 116°E) to achieve simultaneous wind and temperature measurements of mesopause region. The 589nm pulse laser is produced by two injection seeded 1064nm and 1319nm Nd:YAG pulse lasers using the sum-frequency generation (SFG) technique. An all-fiber-coupled seeding laser unit was designed to enable absolute laser frequency locking and cycling the measurements among three different operating frequencies. Experimental observations were carried out using this Na lidar system and the preliminary results were described and compared with the temperature of the Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) and the horizontal wind of the meteor Radar, demonstrating the reliability and good performance of this lidar system. The all-fiber-coupled injection seeding configuration together with the solid-state Nd:YAG lasers make the Na Doppler lidar more compact and greatly reduce the system maintenance, which is conducive to transportable and unattended operation.

  7. Injection-controlled laser resonator

    DOEpatents

    Chang, J.J.

    1995-07-18

    A new injection-controlled laser resonator incorporates self-filtering and self-imaging characteristics with an efficient injection scheme. A low-divergence laser signal is injected into the resonator, which enables the injection signal to be converted to the desired resonator modes before the main laser pulse starts. This injection technique and resonator design enable the laser cavity to improve the quality of the injection signal through self-filtering before the main laser pulse starts. The self-imaging property of the present resonator reduces the cavity induced diffraction effects and, in turn, improves the laser beam quality. 5 figs.

  8. Injection-controlled laser resonator

    DOEpatents

    Chang, Jim J.

    1995-07-18

    A new injection-controlled laser resonator incorporates self-filtering and self-imaging characteristics with an efficient injection scheme. A low-divergence laser signal is injected into the resonator, which enables the injection signal to be converted to the desired resonator modes before the main laser pulse starts. This injection technique and resonator design enable the laser cavity to improve the quality of the injection signal through self-filtering before the main laser pulse starts. The self-imaging property of the present resonator reduces the cavity induced diffraction effects and, in turn, improves the laser beam quality.

  9. Application of separate pressure test in oilfield development

    NASA Astrophysics Data System (ADS)

    Jingjun, Guo

    2018-06-01

    Based on the analysis of separate pressure testing data of injection wells and the actual situations of oilfield development, this paper discusses several application examples of these testing data in evaluating the effect of reservoir development, optimizating injection wells scheme adjustment, guiding oil and water wells to increase production and injection and preventing casing damage.

  10. A CLS-based survivable and energy-saving WDM-PON architecture

    NASA Astrophysics Data System (ADS)

    Zhu, Min; Zhong, Wen-De; Zhang, Zhenrong; Luan, Feng

    2013-11-01

    We propose and demonstrate an improved survivable and energy-saving WDM-PON with colorless ONUs. It incorporates both energy-saving and self-healing operations. A simple effective energy-saving scheme is proposed by including an energy-saving control unit in the OLT and a control unit at each ONU. The energy-saving scheme realizes both dozing and sleep (offline) modes, which greatly improves the energy-saving efficiency for WDM-PONs. An intelligent protection switching scheme is designed in the OLT, which can distinguish if an ONU is in dozing/sleep (offline) state or a fiber is faulty. Moreover, by monitoring the optical power of each channel on both working and protection paths, the OLT can know the connection status of every fiber path, thus facilitating an effective protection switching and a faster failure recovery. The improved WDM-PON architecture not only significantly reduces energy consumption, but also performs self-healing operation in practical operation scenarios. The scheme feasibility is experimentally verified with 10 Gbit/s downstream and 1.25 Gbit/s upstream transmissions. We also examine the energy-saving efficiency of our proposed energy-saving scheme by simulation, which reveals that energy saving mainly arises from the dozing mode, not from the sleep mode when the ONU is in the online state.

  11. Fiber optic extrinsic Fabry-Perot accelerometer using laser emission frequency modulated phase generated carrier demodulation scheme

    NASA Astrophysics Data System (ADS)

    Wang, Dai-Hua; Jia, Ping-Gang

    2013-05-01

    The principle of a fiber optic Fabry-Perot (F-P) accelerometer (FOFPA) system using the laser emission frequency modulated phase generated carrier (FMPGC) demodulation scheme is first described and experimentally demonstrated. The F-P cavity, which is constituted by placing the end face of a gradient-index lens in parallel with the reflector on the inertial mass, directly translates the inertial mass's displacement generated by the measured acceleration into phase shifts of the interference output from the F-P cavity. An FMPGC demodulation scheme based on the arctangent (Arctan) algorithm is adapted to demodulate the phase shifts. The sensing model for the FOFPA system using the FMPGC-Arctan demodulation scheme is established and the sensing characteristics are theoretically analyzed. On these bases, the FOFPA is designed and fabricated and a prototyping system is built and tested. The results indicate that: (1) the nonlinearity of the FOFPA system using the FMPGC-Arctan demodulation scheme is less than 0.58%, (2) the resonant frequency, on-axial sensitivity, and resolution are 393 Hz, 13.11 rad/g, and 450 μ, respectively, and (3) the maximum deviation of the phase sensitivity of the FOFPA within the temperature range of 30 to 80°C is 0.49 dB re 1 rad/g.

  12. Efficient Permeability Measurement and Numerical Simulation of the Resin Flow in Low Permeability Preform Fabricated by Automated Dry Fiber Placement

    NASA Astrophysics Data System (ADS)

    Agogue, Romain; Chebil, Naziha; Deleglise-Lagardere, Mylène; Beauchene, Pierre; Park, Chung Hae

    2017-10-01

    We propose a new experimental method using a Hassler cell and air injection to measure the permeability of fiber preform while avoiding a race tracking effect. This method was proven to be particularly efficient to measure very low through-thickness permeability of preform fabricated by automated dry fiber placement. To validate the reliability of the permeability measurement, the experiments of viscous liquid infusion into the preform with or without a distribution medium were performed. The experimental data of flow front advancement was compared with the numerical simulation result using the permeability values obtained by the Hassler cell permeability measurement set-up as well as by the liquid infusion experiments. To address the computational cost issue, the model for the equivalent permeability of distribution medium was employed in the numerical simulation of liquid flow. The new concept using air injection and Hassler cell for the fiber preform permeability measurement was shown to be reliable and efficient.

  13. Supernova feedback in numerical simulations of galaxy formation: separating physics from numerics

    NASA Astrophysics Data System (ADS)

    Smith, Matthew C.; Sijacki, Debora; Shen, Sijing

    2018-07-01

    While feedback from massive stars exploding as supernovae (SNe) is thought to be one of the key ingredients regulating galaxy formation, theoretically it is still unclear how the available energy couples to the interstellar medium and how galactic scale outflows are launched. We present a novel implementation of six sub-grid SN feedback schemes in the moving-mesh code AREPO, including injections of thermal and/or kinetic energy, two parametrizations of delayed cooling feedback and a `mechanical' feedback scheme that injects the correct amount of momentum depending on the relevant scale of the SN remnant resolved. All schemes make use of individually time-resolved SN events. Adopting isolated disc galaxy set-ups at different resolutions, with the highest resolution runs reasonably resolving the Sedov-Taylor phase of the SN, we aim to find a physically motivated scheme with as few tunable parameters as possible. As expected, simple injections of energy overcool at all but the highest resolution. Our delayed cooling schemes result in overstrong feedback, destroying the disc. The mechanical feedback scheme is efficient at suppressing star formation, agrees well with the Kennicutt-Schmidt relation, and leads to converged star formation rates and galaxy morphologies with increasing resolution without fine-tuning any parameters. However, we find it difficult to produce outflows with high enough mass loading factors at all but the highest resolution, indicating either that we have oversimplified the evolution of unresolved SN remnants, require other stellar feedback processes to be included, and require a better star formation prescription or most likely some combination of these issues.

  14. Supernova feedback in numerical simulations of galaxy formation: separating physics from numerics

    NASA Astrophysics Data System (ADS)

    Smith, Matthew C.; Sijacki, Debora; Shen, Sijing

    2018-04-01

    While feedback from massive stars exploding as supernovae (SNe) is thought to be one of the key ingredients regulating galaxy formation, theoretically it is still unclear how the available energy couples to the interstellar medium and how galactic scale outflows are launched. We present a novel implementation of six sub-grid SN feedback schemes in the moving-mesh code AREPO, including injections of thermal and/or kinetic energy, two parametrizations of delayed cooling feedback and a `mechanical' feedback scheme that injects the correct amount of momentum depending on the relevant scale of the SN remnant resolved. All schemes make use of individually time-resolved SN events. Adopting isolated disk galaxy setups at different resolutions, with the highest resolution runs reasonably resolving the Sedov-Taylor phase of the SN, we aim to find a physically motivated scheme with as few tunable parameters as possible. As expected, simple injections of energy overcool at all but the highest resolution. Our delayed cooling schemes result in overstrong feedback, destroying the disk. The mechanical feedback scheme is efficient at suppressing star formation, agrees well with the Kennicutt-Schmidt relation and leads to converged star formation rates and galaxy morphologies with increasing resolution without fine tuning any parameters. However, we find it difficult to produce outflows with high enough mass loading factors at all but the highest resolution, indicating either that we have oversimplified the evolution of unresolved SN remnants, require other stellar feedback processes to be included, require a better star formation prescription or most likely some combination of these issues.

  15. Anatomical evidence for red nucleus projections to motoneuronal cell groups in the spinal cord of the monkey

    NASA Technical Reports Server (NTRS)

    Holstege, Gert; Blok, Bertil F.; Ralston, Diane Daly

    1988-01-01

    In four rhesus monkeys wheat germ agglutinin-horseradish peroxidase (WGA-HRP) injections were made in the mesencephalic tegmentum. In three cases with injections involving the red nucleus (RN), rubrospinal fibers descended mainly contralaterally to terminate in laminae V, VI and dorsal VII of the spinal cord and in the lateral motoneuronal cell groups at the level of the cervical and lumbosacral enlargements. In all four cases the area of the interstitial nucleus of Cajal (INC) was injected, which resulted in labeled interstitiospinal fibers in the medial part of the ipsilateral ventral funiculus of the spinal cord. The results indicate that there is no major qualitative difference between the mesencephalic (RN and INC) and motor cortical projections to the spinal cord.

  16. High-efficiency, 154  W CW, diode-pumped Raman fiber laser with brightness enhancement.

    PubMed

    Glick, Yaakov; Fromzel, Viktor; Zhang, Jun; Ter-Gabrielyan, Nikolay; Dubinskii, Mark

    2017-01-20

    We demonstrate a high-power, high-efficiency Raman fiber laser pumped directly by laser diode modules at 978 nm. 154 W of CW power were obtained at a wavelength of 1023 nm with an optical to optical efficiency of 65%. A commercial graded-index (GRIN) core fiber acts as the Raman fiber in a power oscillator configuration, which includes spectral selection to prevent generation of the second Stokes. In addition, brightness enhancement of the pump beam by a factor of 8.4 is attained due to the Raman gain distribution profile in the GRIN fiber. To the best of our knowledge this is the highest power and highest efficiency Raman fiber laser demonstrated in any configuration allowing brightness enhancement (i.e., in either cladding-pumped configuration or with GRIN fibers, excluding step-index core pumped), regardless of pumping scheme (i.e., either diode pumped or fiber laser pumped).

  17. Multiplex CARS imaging with spectral notch shaped laser pulses delivered by optical fibers.

    PubMed

    Oh, Seung Ryeol; Park, Joo Hyun; Kim, Kyung-Soo; Lee, Jae Yong; Kim, Soohyun

    2017-12-11

    We present an experimental demonstration of single-pulse coherent anti-Stokes Raman spectroscopy (CARS) using a spectrally shaped broadband laser that is delivered by an optical fiber to a sample at its distal end. The optical fiber consists of a fiber Bragg grating component to serve as a narrowband notch filter and a combined large-mode-area fiber to transmit such shaped ultrashort laser pulses without spectral distortion in a long distance. Experimentally, our implementation showed a capability to measure CARS spectra of various samples with molecular vibrations in the fingerprint region. Furthermore, CARS imaging of poly(methyl methacrylate) bead samples was carried out successfully under epi-CARS geometry in which backward-scattered CARS signals were collected into a multimode optical fiber. A compatibility of single-pulse CARS scheme with fiber optics, verified in this study, implies a potential for future realization of compact all-fiber CARS spectroscopic imaging systems.

  18. Multi-Stress Monitoring System with Fiber-Optic Mandrels and Fiber Bragg Grating Sensors in a Sagnac Loop

    PubMed Central

    Kim, Hyunjin; Sampath, Umesh; Song, Minho

    2015-01-01

    Fiber Bragg grating sensors are placed in a fiber-optic Sagnac loop to combine the grating temperature sensors and the fiber-optic mandrel acoustic emission sensors in single optical circuit. A wavelength-scanning fiber-optic laser is used as a common light source for both sensors. A fiber-optic attenuator is placed at a specific position in the Sagnac loop in order to separate buried Bragg wavelengths from the Sagnac interferometer output. The Bragg wavelength shifts are measured with scanning band-pass filter demodulation and the mandrel output is analyzed by applying a fast Fourier transform to the interference signal. This hybrid-scheme could greatly reduce the size and the complexity of optical circuitry and signal processing unit, making it suitable for low cost multi-stress monitoring of large scale power systems. PMID:26230700

  19. All-fiber 80-Gbit/s wavelength converter using 1-m-long Bismuth Oxide-based nonlinear optical fiber with a nonlinearity gamma of 1100 W-1km-1.

    PubMed

    Lee, Ju Han; Kikuchi, Kazuro; Nagashima, Tatsuo; Hasegawa, Tomoharu; Ohara, Seiki; Sugimoto, Naoki

    2005-04-18

    We experimentally demonstrate the use of our fabricated 1-m-long Bi2O3 optical fiber (Bi-NLF) with an ultra-high nonlinearity of ~1100 W-1km-1 for wavelength conversion of OTDM signals. With successfully performed fusion splicing of the Bi-NLF to conventional silica fibers an all-fiber wavelength converter is readily implemented by use of a conventional Kerr shutter configuration. Owing to the extremely short fiber length, no additional scheme was employed for suppression of signal polarization fluctuation induced by local birefringence fluctuation, which is usually observed in a long-fiber Kerr shutter. The wavelength converter, composed of the 1-m Bi-NLF readily achieves error-free wavelength conversion of an 80-Gbit/s input signal.

  20. Using Fiber Optic Distributed Acoustic Sensing to Measure Hydromechanics in a Crystalline Rock Aquifer

    NASA Astrophysics Data System (ADS)

    Ciervo, C.; Becker, M.; Cole, M. C.; Coleman, T.; Mondanos, M.

    2016-12-01

    Measuring hydromechanical behavior in fractured rock is important for hydraulic fracturing and stimulation in petroleum reservoirs, predicting thermal effects in geothermal fields, and monitoring geologic carbon sequestration injection. We present a new method for measuring geomechanical response to fluid pressure in fractures that employs fiber optic Distributed Acoustic Sensing (DAS). DAS was designed to measure acoustic and seismic signals, often in petroleum wells. DAS seismic monitoring has been proposed as a particularly useful tool for performing seismic testing for carbon sequestration and geothermal projects because fiber optic cable is able to withstand high temperatures and pressures. DAS measures seismic vibration in the Hz to kHz frequency range by measuring strain rate in the fiber optic cable. We adapted this technology to measure rock strain in response to periodic hydraulic pulses in the mHz frequency range. A field experiment was conducted in a low-permeability fractured crystalline bedrock to test the ability of DAS to measure hydromechanical response to periodic pumping and injection. The fiber optic cable was coupled to the borehole wall using a flexible liner designed with an air coupled transducer to measure fluid pressure. Both strain and pressure were measured across a known fracture zone hydraulically connected to the pumping/injection well 30 m away. Periodic strain with amplitudes as small as 50 nm were measured in response to head amplitudes of 2 mm. Clean strain signals were detected at all tested periods of hydraulic oscillation ranging from 2 to 18 minutes. A non-linear relationship was found between opening and closing of the fracture (as measured by cable strain) and fluid pressure in the fracture. The response was also sensitive to the fiber optic cable design. This field test suggests potential for measuring hydraulic connectivity and hydromechanical behavior in fractured formations through cementing fiber optic cable in wellbores outside of well casings.

  1. New kind of injection-locked oscillator and its corresponding long-term stability control.

    PubMed

    Hong, Jun; Liu, An; Wang, Xiao-hu; Yao, Sheng-xing; Li, Zu-ling

    2015-09-20

    A new type of opto-electronic hybrid oscillator is proposed for the first time, to the best of our knowledge, and verified by experiments in this paper. Typical electronic oscillator-dielectric resonator oscillator as the first injection source is used to injection lock the first long-fiber loop-based opto-electronic oscillator (OEO); then its output is used to injection lock the second long-fiber opto-electronic oscillator. Using this method, low-phase noise output signal can be obtained. Experiments show that single side-band (SSB) phase noise of a 9.5 GHz oscillation signal at 10 kHz offset frequency decreases from -123 to -135  dBc/Hz after the first injection, then, through the second injection, the SSB phase noise drops down to -146  dBc/Hz. In order to solve the long-term stability problem of the above oscillator, a new stability-control circuit also is designed and verified by experiments. Experiments show that the Allan deviation decreases from 9.0×10(-11) to 2.2×10(-12) during 1 s after the long-term stability-control circuit being used.

  2. Optical Injection Locking of a VCSEL in an OEO

    NASA Technical Reports Server (NTRS)

    Strekalov, Dmitry; Matsko, Andrey; Savchenkov, Anatoliy; Yu, Nan; Maleki, Lute

    2009-01-01

    Optical injection locking has been demonstrated to be effective as a means of stabilizing the wavelength of light emitted by a vertical-cavity surface- emitting laser (VCSEL) that is an active element in the frequency-control loop of an opto-electronic oscillator (OEO) designed to implement an atomic clock based on an electromagnetically- induced-transparency resonance. This particular optical-injection- locking scheme is expected to enable the development of small, low-power, high-stability atomic clocks that would be suitable for use in applications involving precise navigation and/or communication. In one essential aspect of operation of an OEO of the type described above, a microwave modulation signal is coupled into the VCSEL. Heretofore, it has been well known that the wavelength of light emitted by a VCSEL depends on its temperature and drive current, necessitating thorough stabilization of these operational parameters. Recently, it was discovered that the wavelength also depends on the microwave power coupled into the VCSEL. Inasmuch as the microwave power circulating in the frequency-control loop is a dynamic frequency-control variable (and, hence, cannot be stabilized), there arises a need for another means of stabilizing the wavelength. The present optical-injection-locking scheme satisfies the need for a means to stabilize the wavelength against microwave- power fluctuations. It is also expected to afford stabilization against temperature and current fluctuations. In an experiment performed to demonstrate this scheme, wavelength locking was observed when about 200 W of the output power of a commercial tunable diode laser was injected into a commercial VCSEL, designed to operate in the wavelength range of 795+/-3 nm, that was generating about 200 microW of optical power. (The use of relatively high injection power levels is a usual practice in injection locking of VCSELs.)

  3. Electron injection and acceleration in the plasma bubble regime driven by an ultraintense laser pulse combined with using dense-plasma wall and block

    NASA Astrophysics Data System (ADS)

    Zhao, Xue-Yan; Xie, Bai-Song; Wu, Hai-Cheng; Zhang, Shan; Hong, Xue-Ren; Aimidula, Aimierding

    2012-03-01

    An optimizing and alternative scheme for electron injection and acceleration in the wake bubble driven by an ultraintense laser pulse is presented. In this scheme, the dense-plasma wall with an inner diameter matching the expected bubble size is placed along laser propagation direction. Meanwhile, a dense-plasma block dense-plasma is adhered inward transversely at some certain position of the wall. Particle-in-cell simulations are performed, which demonstrate that the block plays an important role in the first electron injection and acceleration. The result shows that a collimated electron bunch with a total number of about 4.04×108μm-1 can be generated and accelerated stably to 1.61 GeV peak energy with 2.6% energy spread. The block contributes about 50% to the accelerated electron injection bunch by tracing and sorting statistically the source.

  4. Study Trapped Charge Distribution in P-Channel Silicon-Oxide-Nitride-Oxide-Silicon Memory Device Using Dynamic Programming Scheme

    NASA Astrophysics Data System (ADS)

    Li, Fu-Hai; Chiu, Yung-Yueh; Lee, Yen-Hui; Chang, Ru-Wei; Yang, Bo-Jun; Sun, Wein-Town; Lee, Eric; Kuo, Chao-Wei; Shirota, Riichiro

    2013-04-01

    In this study, we precisely investigate the charge distribution in SiN layer by dynamic programming of channel hot hole induced hot electron injection (CHHIHE) in p-channel silicon-oxide-nitride-oxide-silicon (SONOS) memory device. In the dynamic programming scheme, gate voltage is increased as a staircase with fixed step amplitude, which can prohibits the injection of holes in SiN layer. Three-dimensional device simulation is calibrated and is compared with the measured programming characteristics. It is found, for the first time, that the hot electron injection point quickly traverses from drain to source side synchronizing to the expansion of charged area in SiN layer. As a result, the injected charges quickly spread over on the almost whole channel area uniformly during a short programming period, which will afford large tolerance against lateral trapped charge diffusion by baking.

  5. Self-injection-locking linewidth narrowing in a semiconductor laser coupled to an external fiber-optic ring resonator

    NASA Astrophysics Data System (ADS)

    Korobko, Dmitry A.; Zolotovskii, Igor O.; Panajotov, Krassimir; Spirin, Vasily V.; Fotiadi, Andrei A.

    2017-12-01

    We develop a theoretical framework for modeling of semiconductor laser coupled to an external fiber-optic ring resonator. The developed approach has shown good qualitative agreement between theoretical predictions and experimental results for particular configuration of a self-injection locked DFB laser delivering narrow-band radiation. The model is capable of describing the main features of the experimentally measured laser outputs such as laser line narrowing, spectral shape of generated radiation, mode-hoping instabilities and makes possible exploring the key physical mechanisms responsible for the laser operation stability.

  6. Substance P in the nucleus of the solitary tract augments bronchopulmonary C fiber reflex output.

    PubMed

    Mutoh, T; Bonham, A C; Joad, J P

    2000-10-01

    Bronchopulmonary C fibers defend the lungs against injury from inhaled agents by a central nervous system reflex consisting of apnea, cough, bronchoconstriction, hypotension, and bradycardia. Glutamate is the putative neurotransmitter at the first central synapses in the nucleus of the solitary tract (NTS), but substance P, also released in the NTS, may modulate the transmission. To test the hypothesis that substance P in the NTS augments bronchopulmonary C fiber input and hence reflex output, we stimulated the C fibers with left atrial capsaicin (LA CAP) injections and compared the changes in phrenic nerve discharge, tracheal pressure (TP), arterial blood pressure (ABP), and heart rate (HR) in guinea pigs before and after substance P injections (200 microM, 25 nl) in the NTS. Substance P significantly augmented LA CAP-evoked increases in expiratory time by 10-fold and increases in TP and decreases in ABP and HR by threefold, effects prevented by neurokinin-1 (NK1) receptor antagonism. Thus substance P acting at NTS NK1 receptors can exaggerate bronchopulmonary C fiber reflex output. Because substance P synthesis in vagal airway C fibers may be enhanced in pathological conditions such as allergic asthma, the findings may help explain some of the associated respiratory symptoms including cough and bronchoconstriction.

  7. 3-dimensional dark traps for low refractive index bio-cells using a single optical fiber Bessel beam.

    PubMed

    Zhang, Yu; Tang, Xiaoyun; Zhang, Yaxun; Su, Wenjie; Liu, Zhihai; Yang, Xinghua; Zhang, Jianzhong; Yang, Jun; Oh, Kyunghwan; Yuan, Libo

    2018-06-15

    We proposed and experimentally demonstrated 3-dimensional dark traps for low refractive index bio-cells using a single optical fiber Bessel beam. The Bessel beam was produced by concatenating single-mode fiber and a step index multimode fiber, which was then focused by a high refractive index glass microsphere integrated on the fiber end facet. The focused Bessel beam provided two dark fields along the axial direction, where stable trapping of low refractive index bio-cells was realized in a high refractive index liquid bath. The all-fiber and seamlessly integrated structure of the proposed scheme can find ample potential as a micro-optical probe in in situ characterization and manipulation of multiple bio-cells with refractive indices lower than that of the liquid bath.

  8. Full-duplex radio-over-fiber system with tunable millimeter-wave signal generation and wavelength reuse for upstream signal.

    PubMed

    Wang, Yiqun; Pei, Li; Li, Jing; Li, Yueqin

    2017-06-10

    A full-duplex radio-over-fiber system is proposed, which provides both the generation of a millimeter-wave (mm-wave) signal with tunable frequency multiplication factors (FMFs) and wavelength reuse for uplink data. A dual-driving Mach-Zehnder modulator and a phase modulator are cascaded to form an optical frequency comb. An acousto-optic tunable filter based on a uniform fiber Bragg grating (FBG-AOTF) is employed to select three target optical sidebands. Two symmetrical sidebands are chosen to generate mm waves with tunable FMFs up to 16, which can be adjusted by changing the frequency of the applied acoustic wave. The optical carrier is reused at the base station for uplink connection. FBG-AOTFs driven by two acoustic wave signals are experimentally fabricated and further applied in the proposed scheme. Results of the research indicate that the 2-Gbit/s data can be successfully transmitted over a 25-km single-mode fiber for bidirectional full-duplex channels with power penalty of less than 2.6 dB. The feasibility of the proposed scheme is verified by detailed simulations and partial experiments.

  9. Microstructure characterization based on the type of deformed grains in cold-rolled, Cu-added, bake-hardenable steel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, J.S.; Kim, S.I.; Choi, S.-H., E-mail: shihoon@sunchon.ac.kr

    2014-06-01

    The electron backscatter diffraction technique has been used to characterize the microstructure of deformed grains in cold-rolled, Cu-added, bake-hardenable steel. A new scheme based on the kind and number of average orientations, as determined from a unique grain map of the deformed grains, was developed in order to classify deformed grains by type. The α-fiber components, γ-fiber components and random orientations, those which could not be assigned to either γ-fiber or α-fiber components, were used to define the average orientation of unique grains within individual deformed grains. The microstructures of deformed grains in as-rolled specimens were analyzed based on themore » Taylor factor, stored energy, and misorientation. The relative levels and distributions of the Taylor factor, the stored energy and the misorientation were examined in terms of the types of deformed grains. - Highlights: • We characterized the microstructure of Cu-added BH steel using EBSD. • A new scheme was developed in order to classify deformed grains by type. • Stored energy and misorientation are strongly dependent on the type of deformed grains. • Microstructure was examined in terms of the types of deformed grains.« less

  10. Integration of FTTH and GI-POF in-house networks based on injection locking and direct-detection techniques.

    PubMed

    Peng, Hsiao-Chun; Lu, Hai-Han; Li, Chung-Yi; Su, Heng-Sheng; Hsu, Chin-Tai

    2011-03-28

    An integration of fiber-to-the-home (FTTH) and graded-index plastic optical fiber (GI-POF) in-house networks based on injection-locked vertical cavity surface emitting lasers (VCSELs) and direct-detection technique is proposed and experimentally demonstrated. Sufficient low bit error rate (BER) values were obtained over a combination of 20-km single-mode fiber (SMF) and 50-m GI-POF links. Signal qualities satisfy the worldwide interoperability for microwave access (WiMAX) requirement with data signals of 20 Mbps/5.8 GHz and 70 Mbps/10 GHz, respectively. Since our proposed network does not use sophisticated and expensive RF devices in premises, it reveals a prominent one with simpler and more economic advantages. Our proposed architecture is suitable for the SMF-based primary and GI-POF-based in-house networks.

  11. Experimental multiplexing of quantum key distribution with classical optical communication

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Liu-Jun; Chen, Luo-Kan; Ju, Lei

    2015-02-23

    We demonstrate the realization of quantum key distribution (QKD) when combined with classical optical communication, and synchronous signals within a single optical fiber. In the experiment, the classical communication sources use Fabry-Pérot (FP) lasers, which are implemented extensively in optical access networks. To perform QKD, multistage band-stop filtering techniques are developed, and a wavelength-division multiplexing scheme is designed for the multi-longitudinal-mode FP lasers. We have managed to maintain sufficient isolation among the quantum channel, the synchronous channel and the classical channels to guarantee good QKD performance. Finally, the quantum bit error rate remains below a level of 2% across themore » entire practical application range. The proposed multiplexing scheme can ensure low classical light loss, and enables QKD over fiber lengths of up to 45 km simultaneously when the fibers are populated with bidirectional FP laser communications. Our demonstration paves the way for application of QKD to current optical access networks, where FP lasers are widely used by the end users.« less

  12. Uncertainty quantification of fiber orientation distribution measurements for long-fiber-reinforced thermoplastic composites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharma, Bhisham N.; Naragani, Diwakar; Nguyen, Ba Nghiep

    We present a detailed methodology for experimental measurement of fiber orientation distribution (FOD) in injection-molded discontinuous fiber composites using the method of ellipses on 2D cross sections. Best practices to avoid biases occurring during surface preparation and optical imaging of carbon-fiber-reinforced thermoplastics are discussed. A marker-based watershed transform routine for efficient image segmentation and the separation of touching fiber ellipses is developed. The sensitivity of the averaged orientation tensor to the image sample size is studied for the case of long-fiber thermoplastics. A Mori-Tanaka implementation of the Eshelby model is then employed to quantify the sensitivity of elastic stiffness predictionsmore » to biases in the FOD measurements.« less

  13. Ultrafast high-repetition imaging of fuel sprays using picosecond fiber laser.

    PubMed

    Purwar, Harsh; Wang, Hongjie; Tang, Mincheng; Idlahcen, Saïd; Rozé, Claude; Blaisot, Jean-Bernard; Godin, Thomas; Hideur, Ammar

    2015-12-28

    Modern diesel injectors operate at very high injection pressures of about 2000 bar resulting in injection velocities as high as 700 m/s near the nozzle outlet. In order to better predict the behavior of the atomization process at such high pressures, high-resolution spray images at high repetition rates must be recorded. However, due to extremely high velocity in the near-nozzle region, high-speed cameras fail to avoid blurring of the structures in the spray images due to their exposure time. Ultrafast imaging featuring ultra-short laser pulses to freeze the motion of the spray appears as an well suited solution to overcome this limitation. However, most commercial high-energy ultrafast sources are limited to a few kHz repetition rates. In the present work, we report the development of a custom-designed picosecond fiber laser generating ∼ 20 ps pulses with an average power of 2.5 W at a repetition rate of 8.2 MHz, suitable for high-speed imaging of high-pressure fuel jets. This fiber source has been proof tested by obtaining backlight images of diesel sprays issued from a single-orifice injector at an injection pressure of 300 bar. We observed a consequent improvement in terms of image resolution compared to standard white-light illumination. In addition, the compactness and stability against perturbations of our fiber laser system makes it particularly suitable for harsh experimental conditions.

  14. Experimental investigation on flexure and impact properties of injection molded polypropylene-nylon 6-glass fiber polymer composites

    NASA Astrophysics Data System (ADS)

    Nuruzzaman, D. M.; Kusaseh, N. M.; Chowdhury, M. A.; Rahman, N. A. N. A.; Oumer, A. N.; Fatchurrohman, N.; Iqbal, A. K. M. A.; Ismail, N. M.

    2018-04-01

    In this research study, glass fiber (GF) reinforced polypropylene (PP)-nylon 6 (PA6) polymer blend composites were prepared using injection molding process. Specimens of four different compositions such as 80%PP+20%PA6, 80%PP+18%PA6+2%GF, 80%PP+16%PA6+4%GF and 80%PP+14%PA6+6%GF were prepared. In the injection molding process, suitable process parameters were selected depending on the type of composite specimen in producing defects free dog bone shaped specimens. Flexure and impact tests were carried out according to ASTM standard. The important flexure properties such as flexural modulus, flexural yield strength, flexural strength and flexural strain were investigated. The obtained results revealed that flexural modulus of 80%PP+20%PA6 polymer blend is the lowest and the polymer blend composite shows steadily improved modulus as the glass fiber content is increased. Results also showed that flexural strength of pure polymer blend is the lowest but it improves gradually when the glass fiber content is increased. Impact test results revealed that impact strength of 80%PP+20%PA6 polymer blend is the highest whereas all the composites show reduced impact strength or toughness. It is noticed that 80%PP+14%PA6+6%GF composite exhibits the lowest impact strength.

  15. Fiber optic multiplexed optical transmission systems for space vehicle launch facilities

    NASA Technical Reports Server (NTRS)

    Bell, C. H.

    1975-01-01

    Low loss Fiber Optic Cable is being evaluated as a potential future replacement for Kennedy Space Center's 13,000 mile Wideband cable system. In order to make economical use of the wide bandwidth characteristic of glass fibers, a Frequency Division Multiplexing (FDM) scheme has been devised to stack many analog and digital data channels on a single fiber. The Multiplexed Optical Transmission System (MOTS) will offer a unique flexibility of plug-in modularity to meet changing data and bandwidth requirements in addition to the standard 'goodies' of immunity to lightning and other EMI, RFI type interferences, and of smaller size and lighter weight.

  16. FIBER AND INTEGRATED OPTICS: Compact fiber-optic compressor of ultrashort pulses

    NASA Astrophysics Data System (ADS)

    Nikitin, S. P.; Onishchukov, G. I.; Fomichev, A. A.

    1992-02-01

    A theoretical design of a universal compact fiber-optic compressor based on a monochromator with a spherical mirror in the plane of its exit slit was considered. Ultrashort pulses emitted by an actively mode-locked YAG:Nd3+ laser, whose spectrum was broadened in a fiber-optic waveguide, were compressed experimentally to 2.7 ns. A universal compact compressor was developed: it produced 4-ns pulses with an average radiation power of about 1 W. The dimensions of this compressor were several times smaller than those of a traditional scheme using a diffraction grating to compress pulses having an initial duration of about 100 ns.

  17. Fiber optic light collection system for scanning-tunneling-microscope-induced light emission.

    PubMed

    Watkins, Neil J; Long, James P; Kafafi, Zakya H; Mäkinen, Antti J

    2007-05-01

    We report a compact light collection scheme suitable for retrofitting a scanning tunneling microscope (STM) for STM-induced light emission experiments. The approach uses a pair of optical fibers with large core diameters and high numerical apertures to maximize light collection efficiency and to moderate the mechanical precision required for alignment. Bench tests indicate that efficiency reduction is almost entirely due to reflective losses at the fiber ends, while losses due to fiber misalignment have virtually been eliminated. Photon-map imaging with nanometer features is demonstrated on a stepped Au(111) surface with signal rates exceeding 10(4) counts/s.

  18. Extremely short relativistic-electron-bunch generation in the laser wakefield via novel bunch injection scheme

    NASA Astrophysics Data System (ADS)

    Khachatryan, A. G.; van Goor, F. A.; Boller, K.-J.; Reitsma, A. J.; Jaroszynski, D. A.

    2004-12-01

    Recently a new electron-bunch injection scheme for the laser wakefield accelerator has been proposed [

    JETP Lett. 74, 371 (2001)JTPLA20021-364010.1134/1.1427124
    ;
    Phys. Rev. E 65, 046504 (2002)PLEEE81063-651X10.1103/PhysRevE.65.046504
    ]. In this scheme, a low energy electron bunch, sent in a plasma channel just before a high-intensity laser pulse, is trapped in the laser wakefield, considerably compressed and accelerated to an ultrarelativistic energy. In this paper we show the possibility of the generation of an extremely short (on the order of 1 μm long or a few femtoseconds in duration) relativistic-electron-bunch by this mechanism. The initial electron bunch, which can be generated, for example, by a laser-driven photocathode rf gun, should have an energy of a few hundred keVs to a few MeVs, a duration in the picosecond range or less and a relatively low concentration. The trapping conditions and parameters of an accelerated bunch are investigated. The laser pulse dynamics as well as a possible experimental setup for the demonstration of the injection scheme are also considered.

  19. Projections from the nucleus reticularis magnocellularis to the rat cervical cord using electrical stimulation and iontophoretic injection methods.

    PubMed

    Watanabe, Shigeo; Kitamura, Taiko; Watanabe, Lisa; Sato, Hitoshi; Yamada, Jinzo

    2003-03-01

    The aim of this study is to clarify the fiber distribution of the nucleus reticularis magnocellularis (NRMC) and adjacent areas in the rat spinal cord. Biotinylated dextran amine was injected iontophoretically through a glass capillary into the areas, in which a single cell responded to noxious electrical stimulation of the sciatic nerve and to a pinch of the thigh skin with multiple spikes. Labeled fibers descended bilaterally through the ventral funiculi of the medulla oblongata and then through the ventral and lateral funiculi of the cervical cord with an ipsilateral predominance, and terminated in the spinal gray (laminae I-X). A single fiber sometimes ran through several laminae while bifurcating many short branches with axon varicosities and terminal buttons in one transverse section, that is, through laminae V, VII and X, through laminae V, IIl-IV and I-II, and through laminae VII to I-II. The present study showed that the wide distribution of a single fiber and a mass of fibers descending from the NRMC and adjacent areas might modulate not only somatic sensory and motor functions but also autonomic functions in the spinal cord.

  20. Loss of spinal substance P pain transmission under the condition of LPA1 receptor-mediated neuropathic pain.

    PubMed

    Inoue, Makoto; Yamaguchi, Asuka; Kawakami, Megumi; Chun, Jerold; Ueda, Hiroshi

    2006-08-16

    Among various machineries occurring in the experimental neuropathic pain model, there exists the loss of pain transmission through C-fiber neurons as well as the hypersensitivity through A-fibers. The current study reveals that molecular machineries underlying the latter hypersensitivity are derived from the events through LPA1 receptor and its downstream RhoA-activation following peripheral nerve injury. The loss of C-fiber responses, which are mediated by spinal substance P (SP) pain transmission was observed with the nociceptive flexor responses by intraplantar injection of SP in nerve-injured mice. The immunohistochemistry revealed that SP signal in the dorsal horn was markedly reduced in such mice. All these changes were completely abolished in LPA1-/- mice or by the pretreatment with BoNT/C3, a RhoA inhibitor. In addition, the loss of C-fiber responses and the down-regulation of spinal SP signal induced by single intrathecal LPA injection were also abolished in such treatments. All these results suggest that the loss of pain transmission through polymodal C-fiber neurons is also mediated by the LPA1 activation following nerve injury.

  1. FIBER AND INTEGRATED OPTICS. OTHER TOPICS IN QUANTUM ELECTRONICS: Fiber-optic interferometers: control of spectral composition of the radiation and formation of high-intensity optical pulses

    NASA Astrophysics Data System (ADS)

    Bulushev, A. G.; Dianov, Evgenii M.; Kuznetsov, A. V.; Okhotnikov, O. G.; Paramonov, Vladimir M.; Tsarev, Vladimir A.

    1990-05-01

    A study was made of the use of single-mode fiber ring interferometers in narrowing the emission lines of semiconductor lasers and increasing the optical radiation power. Efficient coupling of radiation, emitted by a multifrequency injection laser with an external resonator, into a fiber ring interferometer was achieved both under cw and mode-locking conditions. Matching of the optical lengths of the external resonator and the fiber interferometer made it possible to determine the mode width for this laser. A method for generation of optical pulses in a fiber ring interferometer from cw frequency modulated radiation was developed.

  2. 10-Gbps optical duobinary signal generated by bandwidth-limited reflective semiconductor optical amplifier in colorless optical network units and compensated by fiber Bragg grating-based equalizer in optical line terminal

    NASA Astrophysics Data System (ADS)

    Fu, Meixia; Zhang, Min; Wang, Danshi; Cui, Yue; Han, Huanhuan

    2016-10-01

    We propose a scheme of optical duobinary-modulated upstream transmission system for reflective semiconductor optical amplifier-based colorless optical network units in 10-Gbps wavelength-division multiplexed passive optical network (WDM-PON), where a fiber Bragg grating (FBG) is adopted as an optical equalizer for better performance. The demodulation module is extremely simple, only needing a binary intensity modulation direct detection receiver. A better received sensitivity of -16.98 dBm at bit rate error (BER)=1.0×10-4 can be achieved at 120 km without FBG, and the BER at the sensitivity of -18.49 dBm can be up to 2.1×10-5 at the transmission distance of 160 km with FBG, which demonstrates the feasibility of our proposed scheme. Moreover, it could be a high cost-effectiveness scheme for WDM-PON in the future.

  3. Bi-Directional Brillouin Optical Time Domain Analyzer System for Long Range Distributed Sensing

    PubMed Central

    Guo, Nan; Wang, Liang; Wang, Jie; Jin, Chao; Tam, Hwa-Yaw; Zhang, A. Ping; Lu, Chao

    2016-01-01

    We propose and experimentally demonstrate a novel scheme of bi-directional Brillouin time domain analyzer (BD-BOTDA) to extend the sensing range. By deploying two pump-probe pairs at two different wavelengths, the Brillouin frequency shift (BFS) distribution over each half of the whole fiber can be obtained with the simultaneous detection of Brillouin signals in both channels. Compared to the conventional unidirectional BOTDA system of the same sensing range, the proposed BD-BOTDA scheme enables distributed sensing with a performance level comparable to the conventional one with half of the sensing range and a spatial resolution of 2 m, while maintaining the Brillouin signal-to-noise ratio (SNR) and the BFS uncertainty. Based on this technique, we have achieved distributed temperature sensing with a measurement range of 81.9 km fiber at a spatial resolution of 2 m and BFS uncertainty of ~0.44 MHz without introducing any complicated components or schemes. PMID:27999250

  4. Source polarization effects in an optical fiber fluorosensor

    NASA Technical Reports Server (NTRS)

    Egalon, Claudio O.; Rogowski, Robert S.

    1992-01-01

    The exact field solution of a step-index profile fiber was used to determine the injection efficiency of a thin-film distribution of polarized sources located in the cladding of an optical fiber. Previous results for random source orientation were confirmed. The behavior of the power efficiency, P(eff), of a polarized distribution of sources was found to be similar to the behavior of a fiber with sources with random orientation. However, for sources polarized in either the x or y direction, P(eff) was found to be more efficient.

  5. Optical stealth transmission based on super-continuum generation in highly nonlinear fiber over WDM network.

    PubMed

    Zhu, Huatao; Wang, Rong; Pu, Tao; Fang, Tao; Xiang, Peng; Zheng, Jilin; Chen, Dalei

    2015-06-01

    In this Letter, the optical stealth transmission carried by super-continuum spectrum optical pulses generated in highly nonlinear fiber is proposed and experimentally demonstrated. In the proposed transmission scheme, super-continuum signals are reshaped in the spectral domain through a wavelength-selective switch and are temporally spread by a chromatic dispersion device to achieve the same noise-like characteristic as the noise in optical networks, so that in both the time domain and the spectral domain, the stealth signals are hidden in public channel. Our experimental results show that compared with existing schemes where stealth channels are carried by amplified spontaneous emission noise, super-continuum signal can increase the transmission performance and robustness.

  6. Interrogation of miniature extrinsic Fabry-Pérot sensor using path matched differential interferometer and phase generated carrier scheme

    NASA Astrophysics Data System (ADS)

    Wang, Fuyin; Xie, Jiehui; Hu, Zhengliang; Xiong, Shuidong; Luo, Hong; Hu, Yongming

    2014-05-01

    Study of fiber optic extrinsic Fabry-Pérot sensors utilizing state-of-the-art MEMS technology mostly focus on sensor fabrication for various applications, while the signal interrogation is still insatiable to current application. In this paper, we propose a white light path matched differential interferometer dynamic sensing system utilizing phase generated carrier demodulation scheme. A step motor with a movable mirror and a fiber-wound piezoelectric transducer string are used to act path matching and phase modulation respectively. Experimental results show that the sensing signal could be correctly recovered with low distortion and the phase noise spectrum level is less than -100 dB re. rad/√Hz above 2.5 kHz.

  7. Adaptively loaded SP-offset-QAM OFDM for IM/DD communication systems.

    PubMed

    Zhao, Jian; Chan, Chun-Kit

    2017-09-04

    In this paper, we propose adaptively loaded set-partitioned offset quadrature amplitude modulation (SP-offset-QAM) orthogonal frequency division multiplexing (OFDM) for low-cost intensity-modulation direct-detection (IM/DD) communication systems. We compare this scheme with multi-band carrier-less amplitude phase modulation (CAP) and conventional OFDM, and demonstrate >40 Gbit/s transmission over 50-km single-mode fiber. It is shown that the use of SP-QAM formats, together with the adaptive loading algorithm specifically designed to this group of formats, results in significant performance improvement for all these three schemes. SP-offset-QAM OFDM exhibits greatly reduced complexity compared to SP-QAM based multi-band CAP, via parallelized implementation and minimized memory length for spectral shaping. On the other hand, this scheme shows better performance than SP-QAM based conventional OFDM at both back-to-back and after transmission. We also characterize the proposed scheme in terms of enhanced tolerance to fiber intra-channel nonlinearity and the potential to increase the communication security. The studies show that adaptive SP-offset-QAM OFDM is a promising IM/DD solution for medium- and long-reach optical access networks and data center connections.

  8. Low-cost and high-resolution interrogation scheme for LPG-based temperature sensor

    NASA Astrophysics Data System (ADS)

    Venkata Reddy, M.; Srimannarayana, K.; Venkatappa Rao, T.; Vengal Rao, P.

    2015-09-01

    A low-cost and high-resolution interrogation scheme for a long-period fiber grating (LPG) temperature sensor with adjustable temperature range has been designed, developed and tested. In general LPGs are widely used as optical sensors and can be used as optical edge filters to interrogate the wavelength encoded signal from sensors such as fiber Bragg grating (FBG) by converting it into intensity modulated signal. But the interrogation of LPG sensors using FBG is a bit novel and it is to be studied experimentally. The sensor works based on measurement of shift in attenuation band of LPG corresponding to the applied temperature. The wavelength shift of LPG attenuation band is monitored using an optical spectrum analyser (OSA). Further the bulk and expensive OSA is replaced with a low-cost interrogation system that employ an FBG, photodiode and a transimpedance amplifier (TIA). The designed interrogation scheme makes the system low-cost, fast in response, and also enhances its resolution up to 0.1°C. The measurable temperature range using the proposed scheme is limited to 120 °C. However this range can be shifted within 15-450 °C by means of adjusting the Bragg wavelength of FBG.

  9. High spatial resolution fiber optical sensors for simultaneous temperature and chemical sensing for energy industries

    NASA Astrophysics Data System (ADS)

    Yan, Aidong; Huang, Sheng; Li, Shuo; Zaghloul, Mohamed; Ohodnicki, Paul; Buric, Michael; Chen, Kevin P.

    2017-05-01

    This paper demonstrates optical fibers as high-temperature sensor platforms. Through engineering and onfiber integration of functional metal oxide sensory materials, we report the development of an integrated sensor solution to perform temperature and chemical measurements for high-temperature energy applications. Using the Rayleigh optical frequency domain reflectometry (OFDR) distributed sensing scheme, the temperature and hydrogen concentration were measured along the fiber. To overcome the weak Rayleighbackscattering intensity exhibited by conventional optical fibers, an ultrafast laser was used to enhance the Rayleigh scattering by a direct laser writing method. Using the Rayleigh-enhanced fiber as sensor platform, both temperature and hydrogen reaction were monitored at high temperature up to 750°C with 4-mm spatial resolution.

  10. High-sensitivity fiber optic acoustic sensors

    NASA Astrophysics Data System (ADS)

    Lu, Ping; Liu, Deming; Liao, Hao

    2016-11-01

    Due to the overwhelming advantages compared with traditional electronicsensors, fiber-optic acoustic sensors have arisen enormous interest in multiple disciplines. In this paper we present the recent research achievements of our group on fiber-optic acoustic sensors. The main point of our research is high sensitivity interferometric acoustic sensors, including Michelson, Sagnac, and Fabry-Pérot interferometers. In addition, some advanced technologies have been proposed for acoustic or acoustic pressure sensing such as single-mode/multimode fiber coupler, dual FBGs and multi-longitudinal mode fiber laser based acoustic sensors. Moreover, our attention we have also been paid on signal demodulation schemes. The intensity-based quadrature point (Q-point) demodulation, two-wavelength quadrature demodulation and symmetric 3×3 coupler methodare discussed and compared in this paper.

  11. Packaging of fiber lasers and components for use in harsh environments

    NASA Astrophysics Data System (ADS)

    Creeden, Daniel; Johnson, Benjamin R.; Jones, Casey; Ibach, Charles; Lemons, Michael; Budni, Peter A.; Zona, James P.; Marcinuk, Adam; Willis, Chris; Sweeney, James; Setzler, Scott D.

    2016-03-01

    High power continuous and pulsed fiber lasers and amplifiers have become more prevalent in laser systems over the last ten years. In fielding such systems, strong environmental and operational factors drive the packaging of the components. These include large operational temperature ranges, non-standard wavelengths of operation, strong vibration, and lack of water cooling. Typical commercial fiber components are not designed to survive these types of environments. Based on these constraints, we have had to develop and test a wide range of customized fiber-based components and systems to survive in these conditions. In this paper, we discuss some of those designs and detail the testing performed on those systems and components. This includes the use of commercial off-the-shelf (COTS) components, modified to survive extended temperature ranges, as well as customized components designed specifically for performance in harsh environments. Some of these custom components include: ruggedized/monolithic fiber spools; detachable and repeatable fiber collimators; low loss fiber-to-fiber coupling schemes; and high power fiber-coupled isolators.

  12. Effect of different wall injection schemes on the flow-field of hydrogen fuelled strut-based scramjet combustor

    NASA Astrophysics Data System (ADS)

    Choubey, Gautam; Pandey, K. M.

    2018-04-01

    The multi-strut injector is one of the most favourable perspectives for the mixing improvement in between the hydrogen and the high-speed air, and its parametric investigation has drawn an increasing attention among the researchers. Hence the flow-field aspects of a particular multi-strut based scramjet combustor have been investigated numerically with the addition of four wall injectors and at the same time, the influence of combination of different strut as well as wall injector scheme on the performance of multi-strut scramjet engine has also been explored. Moreover, the current computational approach has been validated against the experimental data present in the open literature in case of single strut scramjet engine. The attained results reveal that the collaboration of multi-strut along with 2 wall injectors' improves the efficiency of scramjet as compared to other multi-strut + wall injection scheme as this combination achieve higher penetration height which will boost to a wider temperature and robust combustion area adjacent to the wall. Again, the appearance of extra H2 in the separated flow region precisely ahead of the wall injection region is mainly reasonable for the abrupt decrease in the mixing as well combustion efficiency plot in all the multi-strut + wall injection strategy.

  13. An Optical Fiber Communication System Based on Coherent Modulation. Part 1.

    DTIC Science & Technology

    1985-06-01

    the’ local oscillator signal. In the receiver the two signals are recombined optically using a single mode fiber coupler or a beam splitter , and the...Fig. 2. Design of practical systems may imply the use of non - ideal laser diodes. In a cooperation with British Telecom Research Labora- tories we...frequency stabilisation *the transmission fiber - *injection locking of semiconductor lasers *the coherent receiver Our next target is complete design

  14. S-band optical amplification by an internally generated pump in thulium ytterbium codoped fiber.

    PubMed

    Chang, Jun; Wang, Qing-Pu; Zhang, Xingyu; Liu, Zhejin; Liu, Zhaojun; Peng, Gang-Ding

    2005-05-30

    We propose a novel scheme in which Yb3+ codoping and a laser cavity are introduced in Tm3+ doped fiber to achieve efficient S-band optical amplification with a 980 nm pump source. This scheme makes it possible for conventional 980 nm pump sources for Er3+ doped fiber amplifiers to be used for S-band Tm3+ doped fiber amplifiers (TDFAs). By introducing a laser cavity into an amplifier, an internally generated pump from Yb3+ at a desirable wavelength for pumping Tm3+ could be produced. We establish and analyze, for the first time to our knowledge, a new theoretical model that takes into consideration both the internal lasing operation inside the optical amplification process and the energy transfer between the Tm3+ and the Yb3+ ions in TDFAs. Various situations such as Tm3+ doping concentration and cavity reflectivity have been investigated. The results show that high optical gain and high pump efficiency can be achieved by use of 980 nm sources. With a laser cavity of 1050 nm in Tm3+ and Yb3+ codoped fiber, for example, it is possible to achieve high optical gain of greater than 20 dB, a noise figure of approximately 5 dB in the wavelength range from 1450 to 1480 nm with a 0.3 W power at 980 nm pump source.

  15. Use of Anticlines for Geologic Sequestration of Carbon Dioxide in a Saline Aquifer in Northwestern Taiwan

    NASA Astrophysics Data System (ADS)

    Lin, Shin-Hsun; Liou, Tai-Sheng

    2013-04-01

    In this study, migration of CO2 in a deep saline aquifer with anticlines under various injection schemes was numerically simulated using the ECO2N simulator. The hypothetical study site was selected at the Taoyuan Plateau near the second largest coal-fired power plant, Datan power plant (annual CO2 emission of 1.5 Mt/yr), in Northwestern Taiwan. A 15x15 km2 simulation domain, containing two sub-parallel east-northeast Hukou and Pingzhen anticlines, was discretized into unstructured grid with spatial refinement at the injection borehole. Kueichulin sandstone and Chinshui shale in the simulation domain were considered as the storage formation and the cap rock, respectively. It was assumed that no CO2 exists in the aquifer prior to injection, and that the aquifer has a hydrostatic pressure distribution and a constant salinity of 3%. All boundaries were assumed to be "open". Isothermal simulations with 1 Mt/yr injection rate and 20 years of injection period were considered. van Genuchten capillary pressure and Corey relative permeability were assumed for all rock formations. Simulation results indicated that pressure buildup characterized the CO2 migration into three different phases: drainage of brine, formation dry-out, and dissolution and gravity take-over . It was found that the worst leakage scenario occurs if a single injection borehole is placed along the anticline axis. In this case, rock formations near the anticline axis provide a leakage path such that CO2 ultimately leaks out of the upper boundary. On the other hand, CO2 can be safely sequestrated in the storage formation if the injection borehole was placed away from the anticline axis. This is because gas phase CO2 migrates along the counter dipping direction of the anticline as a result of buoyancy. More favorable scenarios were found if a multiple-borehole injection scheme was used. In such cases, not only pressure buildup was significantly mitigated but the amount of precipitated salt was reduced. If a five-borehole scheme was used, for example, pressure buildup and the amount of precipitated salt can be reduced by 20% and 90%, respectively. More interestingly, if injection borehole was placed midway between the two anticlines, buoyancy dominates the migration of CO2 such that most CO2 is accumulated under the apex of anticline. Therefore, it is suggested that a multiple-borehole injection scheme would be a preferable scenario because of the reduced risks of pressure buildup and salt precipitation. Moreover, it would be better to place the injection boreholes away from the anticline axis in order to make good use of all possible trapping mechanisms to permanently sequestrate CO2 in deep rock formations.

  16. A novel method for simultaneous measurement of doped optical fiber parameters

    NASA Astrophysics Data System (ADS)

    Karimi, M.; Seraji, F. E.

    2010-05-01

    Simultaneous measurement technique of evaluating the doped optical fibers (DOF) parameters is a suitable scheme for DOF production industries. In this paper, we introduce a novel technique to characterize simultaneously the main parameters of DOF such as absorption and emission cross-sections (ACS, ECS), background loss coefficient (BLC), and low dopant concentration using the gain equation of DOFs. We used this new method to determine the ACS, ECS, BLC in a standard sample of Al-P-Erbium doped optical fiber. The results have been analyzed and compared with other reports.

  17. FIBER OPTICS: Nonclassical states of light in tunnel-coupled optical fibers and possibilities for experimental realization in the beams of low-power high-coherence cw lasers

    NASA Astrophysics Data System (ADS)

    Alodzhants, A. P.; Dzheĭranyan, G. A.; Gevorkyan, L. P.; Arakelyan, S. M.

    1993-08-01

    The creation of nonclassical states of light in tunnel-coupled optical fibers is analyzed. It is possible to achieve a 40% suppression of quantum (vacuum) fluctuations in one quadrature of the field of a standard cw He-Ne laser with an intensity as low as 1 kW/cm2 (i.e., a power of ~ 1 mW). The possibility of experimental implementation of this scheme for generating squeezed quantum states is discussed.

  18. High-density fiber-optic DNA random microsphere array.

    PubMed

    Ferguson, J A; Steemers, F J; Walt, D R

    2000-11-15

    A high-density fiber-optic DNA microarray sensor was developed to monitor multiple DNA sequences in parallel. Microarrays were prepared by randomly distributing DNA probe-functionalized 3.1-microm-diameter microspheres in an array of wells etched in a 500-microm-diameter optical imaging fiber. Registration of the microspheres was performed using an optical encoding scheme and a custom-built imaging system. Hybridization was visualized using fluorescent-labeled DNA targets with a detection limit of 10 fM. Hybridization times of seconds are required for nanomolar target concentrations, and analysis is performed in minutes.

  19. Accurate determination of Brillouin frequency based on cross recurrence plot analysis in Brillouin distributed fiber sensor

    NASA Astrophysics Data System (ADS)

    Haneef, Shahna M.; Srijith, K.; Venkitesh, D.; Srinivasan, B.

    2017-04-01

    We propose and demonstrate the use of cross recurrence plot analysis (CRPA) to accurately determine the Brillouin shift due to strain and temperature in a Brillouin distributed fiber sensor. This signal processing technique, which is implemented in Brillouin sensors for the first time relies on apriori data i.e, the lineshape of the Brillouin gain spectrum and its similarity with the spectral features measured at different locations along the fiber. Analytical and experimental investigation of the proposed scheme is presented in this paper.

  20. Scintillator-fiber charged particle track-imaging detector

    NASA Technical Reports Server (NTRS)

    Binns, W. R.; Israel, M. H.; Klarmann, J.

    1983-01-01

    A scintillator-fiber charged-particle track-imaging detector was developed using a bundle of square cross section plastic scintillator fiber optics, proximity focused onto an image intensified charge injection device (CID) camera. The tracks of charged particle penetrating into the scintillator fiber bundle are projected onto the CID camera and the imaging information is read out in video format. The detector was exposed to beams of 15 MeV protons and relativistic Neon, Manganese, and Gold nuclei and images of their tracks were obtained. Details of the detector technique, properties of the tracks obtained, and preliminary range measurements of 15 MeV protons stopping in the fiber bundle are presented.

  1. Optical fiber dispersion characterization study

    NASA Technical Reports Server (NTRS)

    Geeslin, A.; Arriad, A.; Riad, S. M.; Padgett, M. E.

    1979-01-01

    The theory, design, and results of optical fiber pulse dispersion measurements are considered. Both the hardware and software required to perform this type of measurement are described. Hardware includes a thermoelectrically cooled injection laser diode source, an 800 GHz gain bandwidth produce avalanche photodiode and an input mode scrambler. Software for a HP 9825 computer includes fast Fourier transform, inverse Fourier transform, and optimal compensation deconvolution. Test set construction details are also included. Test results include data collected on a 1 Km fiber, a 4 Km fiber, a fused spliced, eight 600 meter length fibers concatenated to form 4.8 Km, and up to nine optical connectors.

  2. Mechano- and metabosensitive alterations after injection of botulinum toxin into gastrocnemius muscle.

    PubMed

    Caron, Guillaume; Rouzi, Talifujiang; Grelot, Laurent; Magalon, Guy; Marqueste, Tanguy; Decherchi, Patrick

    2014-07-01

    This study was designed to investigate effects of motor denervation by Clostridium botulinum toxin serotype A (BoNT/A) on the afferent activity of fibers originating from the gastrocnemius muscle of rats. Animals were randomized in two groups, 1) untreated animals acting as control and 2) treated animals in which the toxin was injected in the left muscle. Locomotor activity was evaluated once per day during 12 days with a test based on footprint measurements of walking rats (sciatic functional index). At the end of the functional assessment period, electrophysiological tests were used to measure muscle properties, metabosensitive afferent fiber responses to chemical (KCl and lactic acid) injections, electrically induced fatigue (EIF), and mechanosensitive responses to tendon vibrations. Additionally, ventilatory response was recorded during repetitive muscle contractions. Then, rats were sacrificed, and the BoNT/A-injected muscles were weighed. Twelve days postinjection we observed a complete motor denervation associated with a significant muscle atrophy and loss of force to direct muscle stimulation. In the BoNT/A group, the metabosensitive responses to KCl injections were unaltered. However, we observed alterations in responses to EIF and to 1 mM of lactic acid (which induces the greatest activation). The ventilatory adjustments during repetitive muscle activation were abolished, and the mechanosensitive fiber responses to tendon vibrations were reduced. These results indicate that BoNT/A alters the sensorimotor loop and may induce insufficient motor and physiological adjustments in patients in whom a motor denervation with BoNT/A was performed. Copyright © 2014 Wiley Periodicals, Inc.

  3. Digital holographic microtomography of fusion spliced optical fibers

    NASA Astrophysics Data System (ADS)

    Deng, Yating; Xiao, Wen; Ma, Xichao; Pan, Feng

    2017-03-01

    In this paper, we report three-dimensional(3D) measurement results of structural parameters of fusion spliced optical fibers using digital holographic microtomography. A holographic setup in microscopy configuration with the sample-fixed and setup-rotating scheme is established. A series of holograms is recorded from various incident angles. Then the filtered backprojection algorithm is applied to reconstruct the 3D refractive index (RI) distributions of the fusion spliced optical fibers inserted in the index-matching liquid. Experimental results exhibit the internal and external shapes of three kinds of fusion splices between different fibers, including a single-mode fiber(SMF) and a multimode fiber, an SMF and a panda polarization maintaining fiber (Panda PMF), and an SMF and a bow-tie polarization maintaining fiber (Bow-Tie PMF). With 3D maps of RI, it is intuitive to observe internal structural details of fused fibers and evaluate the splicing quality. This paper describes a powerful method for non-invasive microscopic measurement of fiber splicing. Furthermore, it provides the possibility of detecting fiber splicing loss by 3D structures.

  4. Novel approaches for alleviation of electrical hazards of graphite-fiber composites. [aircraft safety

    NASA Technical Reports Server (NTRS)

    Ramohalli, K.

    1979-01-01

    Four basically different approaches were considered: gasification of fibers, retention in the matrix, clumping to prevent entrainment, and electrical insulation of fibers. The techniques used to achieve them are described in some detail. These involved surface treatment of fibers to improve the wettability of fibers and coating the fibers with the selected substances before laying them up for composite fabrication. Thermogravimetric analyses were performed on the plain and treated fibers in inert (nitrogen, argon) and reactive (air) atmospheres. The treated fibers embedded in epoxy were ignited in a Bunsen flame to determine the efficiency of these treatments. A simple apparatus was assembled to detect the time for the first short circuit (in a typical electrical circuit) when exposed to the combustion products from a graphite fiber composite fire. The state-of-the-art and treated fibers cast in typical epoxy were burned and ranked for potential success. It was inferred that the gasification schemes appear promising when reduction or oxidation is tried. It was also found that some very promising candidates were available for the clumping and for the electrical insulation of fibers.

  5. Self-match based on polling scheme for passive optical network monitoring

    NASA Astrophysics Data System (ADS)

    Zhang, Xuan; Guo, Hao; Jia, Xinhong; Liao, Qinghua

    2018-06-01

    We propose a self-match based on polling scheme for passive optical network monitoring. Each end-user is equipped with an optical matcher that exploits only the specific length patchcord and two different fiber Bragg gratings with 100% reflectivity. The simple and low-cost scheme can greatly simplify the final recognition processing of the network link status and reduce the sensitivity of the photodetector. We analyze the time-domain relation between reflected pulses and establish the calculation model to evaluate the false alarm rate. The feasibility of the proposed scheme and the validity of the time-domain relation analysis are experimentally demonstrated.

  6. Optical generation of millimeter-wave pulses using a fiber Bragg grating in a fiber-optics system.

    PubMed

    Ye, Qing; Qu, Ronghui; Fang, Zujie

    2007-04-10

    A scheme is proposed to transform an optical pulse into a millimeter-wave frequency modulation pulse by using a weak fiber Bragg grating (FBG) in a fiber-optics system. The Fourier transformation method is used to obtain the required spectrum response function of the FBG for the Gaussian pulse, soliton pulse, and Lorenz shape pulse. On the condition of the first-order Born approximation of the weak fiber grating, the relation of the refractive index distribution and the spectrum response function of the FBG satisfies the Fourier transformation, and the corresponding refractive index distribution forms are obtained for single-frequency modulation and linear-frequency modulation millimeter-wave pulse generation. The performances of the designed fiber gratings are also studied by a numerical simulation method for a supershort pulse transmission.

  7. Broadband superluminescent erbium source with multiwave pumping

    NASA Astrophysics Data System (ADS)

    Petrov, Andrey B.; Gumenyuk, Regina; Alimbekov, Mikhail S.; Zhelezov, Pavel E.; Kikilich, Nikita E.; Aleynik, Artem S.; Meshkovsky, Igor K.; Golant, Konstantin M.; Chamorovskii, Yuri K.; Odnoblyudov, Maxim; Filippov, Valery

    2018-04-01

    We demonstrate the superbroad luminescence source based on pure Er-doped fiber and two wavelength-pumping scheme. This source is capable to provide over 80 nm of spectrum bandwidth with flat spectrum shape close to Gaussian distribution. The corresponding coherence and decoherence lengths were as small as 7 μm and 85 μm, correspondingly. The parameters of Er-doped fiber luminescence source were explored theoretically and experimentally.

  8. Gain and temperature in a slit nozzle supersonic chemical oxygen-iodine laser with transonic and supersonic injection of iodine

    NASA Astrophysics Data System (ADS)

    Rosenwaks, Salman; Barmashenko, Boris D.; Bruins, Esther; Furman, Dov; Rybalkin, Victor; Katz, Arje

    2002-05-01

    Spatial distributions of the gain and temperament across the flow were studied for transonic and supersonic schemes of the iodine injection in a slit nozzle supersonic chemical oxygen-iodine laser as a function of the iodine and secondary nitrogen flow rate, jet penetration parameter and gas pumping rate. The mixing efficiency for supersonic injection of iodine is found to be much larger than for transonic injection, the maximum values of the gain being approximately 0.65 percent/cm for both injection schemes. Measurements of the gain distribution as a function of the iodine molar flow rate nI2 were carried out. For transonic injection the optimal value of nI2 at the flow centerline is smaller than that at the off axis location. The temperature is distributed homogeneously across the flow, increasing only in the narrow boundary layers near the walls. Opening a leak downstream of the cavity in order to decease the Mach number results in a decrease of the gain and increase of the temperature. The mixing efficiency in this case is much larger than for closed leak.

  9. Property of Regenerating Serotonin Fibers in the Hippocampus of Human Migration Disorders Model

    NASA Astrophysics Data System (ADS)

    Ueda, Shuichi; Ehara, Ayuka; Ohmomo, Hideki

    Individual mood and mental conditions exert a great influence on one's own kansei. Abnormality or dysfunction of the 5-HT neuron system in the developing and/or adult brain is closely associated with their conditions. Thus, the 5-HT neuron system may play an important role in the neuronal mechanisms underlying kansei. Interestingly, previous studies have shown that heterotopic clusters in the hippocampus (hippocampal heterotopia), deriving from neocortical neurons, after prenatally treated with methylazoxymethanol acetate in rat (MAM rat), exhibit abundant 5-HT innervation. After neonatal intracisternal 5, 7-dihydroxytryptamine (DHT) injection, these 5-HT fibers degenerate and disappear throughout the forebrain, and then regenerating 5-HT fibers densely innervate in the hippocampal heterotopia. The 5-HT fiber system in the hippocampal heterotopia of MAM rat provides useful experimental models for study the plasticity of human migration disorder. In the present study, to evaluate the properties of regenerating 5-HT fibers in the hippocampal heterotopia of MAM rats, we examined the origin of these projections by combined retrograde transport and immunohistochemical methods. Prenatal exposure to MAM resulted in the formation of hippocampal heterotopia in the dorsal hippocampus. Regenerating 5-HT fibers formed a dense innervation within the hippocampal heterotopia after neonatal DHT injection. These projections appeared to arise mainly from 5-HT neurons in the median raphe nucleus, with a small portion from 5-HT neurons in the dorsal raphe nucleus. These findings suggest a specific profile of regenerating 5-HT fibers, providing the new insights for serotonergic plasticity.

  10. Drinking Water Quality Criterion - Based site Selection of Aquifer Storage and Recovery Scheme in Chou-Shui River Alluvial Fan

    NASA Astrophysics Data System (ADS)

    Huang, H. E.; Liang, C. P.; Jang, C. S.; Chen, J. S.

    2015-12-01

    Land subsidence due to groundwater exploitation is an urgent environmental problem in Choushui river alluvial fan in Taiwan. Aquifer storage and recovery (ASR), where excess surface water is injected into subsurface aquifers for later recovery, is one promising strategy for managing surplus water and may overcome water shortages. The performance of an ASR scheme is generally evaluated in terms of recovery efficiency, which is defined as percentage of water injected in to a system in an ASR site that fulfills the targeted water quality criterion. Site selection of an ASR scheme typically faces great challenges, due to the spatial variability of groundwater quality and hydrogeological condition. This study proposes a novel method for the ASR site selection based on drinking quality criterion. Simplified groundwater flow and contaminant transport model spatial distributions of the recovery efficiency with the help of the groundwater quality, hydrological condition, ASR operation. The results of this study may provide government administrator for establishing reliable ASR scheme.

  11. [Pro re nata anti-VEGF treatment results for neovascular age-related macular degeneration in routine clinical treatment: comparison of single with triple injections].

    PubMed

    Wintergerst, M W M; Larsen, P P; Heimes, B; Pauleikhoff, D; Holz, F G; Finger, R P

    2018-06-19

    Different injection regimens from continuous to pro re nata (PRN) have been proposed for treatment of neovascular age-related macular degeneration (nAMD). So far the PRN single injection on reactivation regimen has not been compared to the PRN triple injection on reactivation regimen (IVAN scheme). Comparison of the two nAMD PRN injection regimens with single and triple injections on reactivation in a real-world setting in a retrospective case series in two German treatment centers. Naïve nAMD patients, who started treatment according to either the single or triple injection regimen were included. Endpoints were best corrected visual acuity (LogMAR), central retinal thickness on optical coherence tomography (μm) and number of injections, all at 3, 6, 12, 18 and 24 months after treatment initiation. A total of 146 patients with single injection and 148 patients with triple injection regimens were included. There were no significant differences between the two treatment regimens in best corrected visual acuity (single vs. triple injection scheme: 0.50 ± 0.42 vs. 0.56 ± 0.42, p = 0.14), central retinal thickness (303 ± 76.2 vs. 306 ± 110, p = 0.79) and number of injections (13 ± 4.4 vs. 12 ± 5.4, p = 0.31). This was the case for all analyzed time points. There were no significant functional or morphological differences between the two PRN injection regimens with single and triple injections on reactivation after 24 months. For evaluation of long-term therapy results further studies are warranted.

  12. In vivo fiber-optic confocal reflectance microscope with an injection-molded plastic miniature objective lens.

    PubMed

    Carlson, Kristen; Chidley, Matthew; Sung, Kung-Bin; Descour, Michael; Gillenwater, Ann; Follen, Michele; Richards-Kortum, Rebecca

    2005-04-01

    For in vivo optical diagnostic technologies to be distributed to the developed and developing worlds, optical imaging systems must be constructed of inexpensive components. We present a fiber-optic confocal reflectance microscope with a cost-effective injection-molded plastic miniature objective lens for in vivo imaging of human tissues in near real time. The measured lateral resolution is less than 2.2 microm, and the measured axial resolution is 10 microm. Confocal images of ex vivo cervical tissue biopsies and in vivo human lip taken at 15 frames/s demonstrate the microscope's capability of imaging cell morphology and tissue architecture.

  13. Tunable single frequency fiber laser based on FP-LD injection locking.

    PubMed

    Zhang, Aiqin; Feng, Xinhuan; Wan, Minggui; Li, Zhaohui; Guan, Bai-ou

    2013-05-20

    We propose and demonstrate a tunable single frequency fiber laser based on Fabry Pérot laser diode (FP-LD) injection locking. The single frequency operation principle is based on the fact that the output from a FP-LD injection locked by a multi-longitudinal-mode (MLM) light can have fewer longitudinal-modes number and narrower linewidth. By inserting a FP-LD in a fiber ring laser cavity, single frequency operation can be possibly achieved when stable laser oscillation established after many roundtrips through the FP-LD. Wavelength switchable single frequency lasing can be achieved by adjusting the tunable optical filter (TOF) in the cavity to coincide with different mode of the FP-LD. By adjustment of the drive current of the FP-LD, the lasing modes would shift and wavelength tunable operation can be obtained. In experiment, a wavelength tunable range of 32.4 nm has been obtained by adjustment of the drive current of the FP-LD and a tunable filter in the ring cavity. Each wavelength has a side-mode suppression ratio (SMSR) of at least 41 dB and a linewidth of about 13 kHz.

  14. High Power Spark Delivery System Using Hollow Core Kagome Lattice Fibers

    PubMed Central

    Dumitrache, Ciprian; Rath, Jordan; Yalin, Azer P.

    2014-01-01

    This study examines the use of the recently developed hollow core kagome lattice fibers for delivery of high power laser pulses. Compared to other photonic crystal fibers (PCFs), the hollow core kagome fibers have larger core diameter (~50 µm), which allows for higher energy coupling in the fiber while also maintaining high beam quality at the output (M2 = 1.25). We have conducted a study of the maximum deliverable energy versus laser pulse duration using a Nd:YAG laser at 1064 nm. Pulse energies as high as 30 mJ were transmitted for 30 ns pulse durations. This represents, to our knowledge; the highest laser pulse energy delivered using PCFs. Two fiber damage mechanisms were identified as damage at the fiber input and damage within the bulk of the fiber. Finally, we have demonstrated fiber delivered laser ignition on a single-cylinder gasoline direct injection engine. PMID:28788155

  15. Two-photon in vivo flow cytometry using a fiber probe

    NASA Astrophysics Data System (ADS)

    Chang, Yu-Chung; Ye, Jing Yong; Thomas, Thommey P.; Cao, Zhengyi; Kotlyar, Alina; Tkaczyk, Eric R.; Baker, James R., Jr.; Norris, Theodore B.

    2009-02-01

    We have demonstrated the use of a double-clad fiber probe to conduct two-photon excited flow cytometry in vitro and in vivo. We conducted two-channel detection to measure fluorescence at two distinct wavelengths simultaneously. Because the scattering and absorption problems from whole blood were circumvented by the fiber probe, the detected signal strength from the cells were found to be similar in PBS and in whole blood. We achieved the same detection efficiency of the membrane-binding lipophilic dye DiD labeled cells in PBS and in whole blood. High detection efficiency of green fluorescent protein (GFP)-expressing cells in whole blood was demonstrated. DiD-labeled untransfected and GFP-transfected cells were injected into live mice and the circulation dynamics of the externally injected cells were monitored. The detection efficiency of GFP-expressing cells in vivo was consistent with that observed in whole blood.

  16. Role of vagal afferents in the ventilatory response to naloxone during loaded breathing in the rabbit.

    PubMed

    Delpierre, S; Pugnat, C; Duté, N; Jammes, Y

    1995-02-15

    It was previously shown that inspiratory resistive loading (IRL) increases the cerebrospinal fluid (CSF) level of beta endorphin in awake goats, and also that the slower ventilation induced by injection of this substance into the CSF of anesthetized dogs is suppressed after vagotomy. In the present study, performed on anesthetized rabbits, we evaluated the part played by vagal afferents in the ventilatory response to IRL after opioid receptor blockade by naloxone. During unloaded breathing, naloxone injection did not modify baseline ventilation. Conversely, naloxone partially reversed IRL-induced hypoventilation through an increase in respiratory rate. This effect was abolished after either vagotomy or cold blockade of large vagal fibers, but it persisted after procaine blockade of thin vagal fibers. These results suggest that pulmonary stretch receptors, which are connected to some large vagal afferent fibers, would play a major role in the ventilatory response to IRL under opioid receptor inhibition.

  17. Supermode-noise-free eighth-order femtosecond soliton from a backward dark-optical-comb-injection mode-locked semiconductor optical amplifier fiber laser.

    PubMed

    Lin, Gong-Ru; Pan, Ci-Ling; Chiu, I-Hsiang

    2006-03-15

    A backward dark-optical-comb-injection mode-locked semiconductor optical amplifier fiber laser (SOAFL) with a femtosecond pulse width and an ultrahigh supermode-noise suppressing ratio (SMSR) is primarily demonstrated. The mode-locked SOAFL pulse with a spectral linewidth of 0.45 nm is shortened from 15 to 8.6 ps under chirp compensation in a 420 m long dispersion-compensated fiber, corresponding to a time-bandwidth product of 0.48. The eighth-order soliton is obtained by the nonlinearly soliton's compression of the chirp-compensated SOAFL pulse in a 112 m long single-mode fiber at an input peak power of 51 W, providing the pulse width, the linewidth, and the nearly transform-limited time-bandwidth product are <200 fs, 13.8 nm, and 0.34, respectively. The phase noise and integrated timing jitter at an offset frequency below 1 MHz are -105 dBc/Hz and 0.8 ps, respectively. An ultrahigh pulse-compression ratio of 43 and a SMSR of 87 dB for the eighth-order SOAFL soliton are reported.

  18. Functional significance of M-type potassium channels in nociceptive cutaneous sensory endings

    PubMed Central

    Passmore, Gayle M.; Reilly, Joanne M.; Thakur, Matthew; Keasberry, Vanessa N.; Marsh, Stephen J.; Dickenson, Anthony H.; Brown, David A.

    2012-01-01

    M-channels carry slowly activating potassium currents that regulate excitability in a variety of central and peripheral neurons. Functional M-channels and their Kv7 channel correlates are expressed throughout the somatosensory nervous system where they may play an important role in controlling sensory nerve activity. Here we show that Kv7.2 immunoreactivity is expressed in the peripheral terminals of nociceptive primary afferents. Electrophysiological recordings from single afferents in vitro showed that block of M-channels by 3 μM XE991 sensitized Aδ- but not C-fibers to noxious heat stimulation and induced spontaneous, ongoing activity at 32°C in many Aδ-fibers. These observations were extended in vivo: intraplantar injection of XE991 selectively enhanced the response of deep dorsal horn (DH) neurons to peripheral mid-range mechanical and higher range thermal stimuli, consistent with a selective effect on Aδ-fiber peripheral terminals. These results demonstrate an important physiological role of M-channels in controlling nociceptive Aδ-fiber responses and provide a rationale for the nocifensive behaviors that arise following intraplantar injection of the M-channel blocker XE991. PMID:22593734

  19. Differential Profiling of Volatile Organic Compound Biomarker Signatures Utilizing a Logical Statistical Filter-Set and Novel Hybrid Evolutionary Classifiers

    DTIC Science & Technology

    2012-04-01

    for automated SPME headspace sampling and in-line with a Thermo DSQII single quadrupole mass spectrometer. Collection of organic volatiles from the...urine was accomplished using a 2cm CAR/DVB/PDMS solid phase micro extraction fiber ( SPME ), Supelco supplier, inserted by the Triplus autosampler into...automated direct injection. Volatiles gathered by the SPME fiber were analyzed through desorption of the fiber by heating to elevated temperature and

  20. Meeting Future C3I (Command-Control-Communications-Intelligence) Needs with Fiber Optics,

    DTIC Science & Technology

    1985-05-01

    Frequency dependence of the sensitivity of fibers with hard coatings is relatively small. Nylon gives the weakest dependence, while the soft UV -cured...elastomer gives the strongest. Maximum sensitivity is obtained with Teflon TFE, while the minimum is achieved with the soft UV coating. With the latter...fiber-optics systems: the LED (Light Emitting Diode) and ILD (Injection Laser Diode). These devices emit light when an electric current is applied. The

  1. In vivo effects of metal ions on conformation and mechanical performance of silkworm silks.

    PubMed

    Wang, Xin; Li, Yi; Liu, Qingsong; Chen, Quanmei; Xia, Qingyou; Zhao, Ping

    2017-03-01

    The mechanism of silk fiber formation is of particular interest. Although in vitro evidence has shown that metal ions affect conformational transitions of silks, the in vivo effects of metal ions on silk conformations and mechanical performance are still unclear. This study explored the effects of metal ions on silk conformations and mechanical properties of silk fibers by adding K + and Cu 2+ into the silk fibroin solutions or injecting them into the silkworms. Aimed by CD analysis, FTIR analysis, and mechanical testing, the conformational and mechanical changes of the silks were estimated. By using BION Web Server, the interactions of K + and N-terminal of silk fibroin were also simulated. We presented that K + and Cu 2+ induced the conformational transitions of silk fibroin by forming β-sheet structures. Moreover, the mechanical parameters of silk fibers, such as strength, toughness and Young's modulus, were also improved after K + or Cu 2+ injection. Using BION Web Server, we found that potassium ions may have strong electrostatic interactions with the negatively charged residues. We suggest that K + and Cu 2+ play crucial roles in the conformation and mechanical performances of silks and they are involved in the silk fiber formation in vivo. Our results are helpful for clarifying the mechanism of silk fiber formation, and provide insights for modifying the mechanical properties of silk fibers. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Study of phase-locked diode laser array and DFB/DBR surface emitting laser diode

    NASA Astrophysics Data System (ADS)

    Hsin, Wei

    New types of phased-array and surface-emitting lasers are designed. The importance and approaches (or structures) of different phased array and surface emitting laser diodes are reviewed. The following are described: (1) a large optical cavity channel substrate planar laser array with layer thickness chirping; (2) a vertical cavity surface emitter with distributed feedback (DFB) optical cavity and a transverse junction buried heterostructure; (3) a microcavity distributed Bragg reflector (DBR) surface emitter; and (4) two surface emitting laser structures which utilized lateral current injection schemes to overcome the problems occurring in the vertical injection scheme.

  3. Single-fiber myosin heavy chain polymorphism during postnatal development: modulation by hypothyroidism

    NASA Technical Reports Server (NTRS)

    di Maso, N. A.; Caiozzo, V. J.; Baldwin, K. M.

    2000-01-01

    The primary objective of this study was to follow the developmental time course of myosin heavy chain (MHC) isoform transitions in single fibers of the rodent plantaris muscle. Hypothyroidism was used in conjunction with single-fiber analyses to better describe a possible linkage between the neonatal and fast type IIB MHC isoforms during development. In contrast to the general concept that developmental MHC isoform transitions give rise to muscle fibers that express only a single MHC isoform, the single-fiber analyses revealed a very high degree of MHC polymorphism throughout postnatal development. In the adult state, MHC polymorphism was so pervasive that the rodent plantaris muscles contained approximately 12-15 different pools of fibers (i.e., fiber types). The degree of polymorphism observed at the single-fiber level made it difficult to determine specific developmental schemes analogous to those observed previously for the rodent soleus muscle. However, hypothyroidism was useful in that it confirmed a possible link between the developmental regulation of the neonatal and fast type IIB MHC isoforms.

  4. Seeing More by Showing Less: Orientation-Dependent Transparency Rendering for Fiber Tractography Visualization.

    PubMed

    Tax, Chantal M W; Chamberland, Maxime; van Stralen, Marijn; Viergever, Max A; Whittingstall, Kevin; Fortin, David; Descoteaux, Maxime; Leemans, Alexander

    2015-01-01

    Fiber tractography plays an important role in exploring the architectural organization of fiber trajectories, both in fundamental neuroscience and in clinical applications. With the advent of diffusion MRI (dMRI) approaches that can also model "crossing fibers", the complexity of the fiber network as reconstructed with tractography has increased tremendously. Many pathways interdigitate and overlap, which hampers an unequivocal 3D visualization of the network and impedes an efficient study of its organization. We propose a novel fiber tractography visualization approach that interactively and selectively adapts the transparency rendering of fiber trajectories as a function of their orientation to enhance the visibility of the spatial context. More specifically, pathways that are oriented (locally or globally) along a user-specified opacity axis can be made more transparent or opaque. This substantially improves the 3D visualization of the fiber network and the exploration of tissue configurations that would otherwise be largely covered by other pathways. We present examples of fiber bundle extraction and neurosurgical planning cases where the added benefit of our new visualization scheme is demonstrated over conventional fiber visualization approaches.

  5. Design and investigation of a novel concentrator used in solar fiber lamp

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    He, Kaiyan; School of Physical Science and Technology, Guangxi University, Nanning 530004; Zheng, Hongfei

    2009-11-15

    A novel concentrator used in solar fiber lamp has been designed and made. The method of the design has been introduced. The lamp has been tested under the real solar condition and the experiment curves have been given. The light transmission will be influenced by the structure of the lamp and the diameter of the fiber, which has been studied in this paper. The experimental results show that the brightness of this solar fiber lamp is about the brightness of a 6-W ordinary electrical energy-saving lamp. The computer simulation for the lamp has been presented and the improvement schemes aremore » proposed. (author)« less

  6. Reference-frame-independent quantum-key-distribution server with a telecom tether for an on-chip client.

    PubMed

    Zhang, P; Aungskunsiri, K; Martín-López, E; Wabnig, J; Lobino, M; Nock, R W; Munns, J; Bonneau, D; Jiang, P; Li, H W; Laing, A; Rarity, J G; Niskanen, A O; Thompson, M G; O'Brien, J L

    2014-04-04

    We demonstrate a client-server quantum key distribution (QKD) scheme. Large resources such as laser and detectors are situated at the server side, which is accessible via telecom fiber to a client requiring only an on-chip polarization rotator, which may be integrated into a handheld device. The detrimental effects of unstable fiber birefringence are overcome by employing the reference-frame-independent QKD protocol for polarization qubits in polarization maintaining fiber, where standard QKD protocols fail, as we show for comparison. This opens the way for quantum enhanced secure communications between companies and members of the general public equipped with handheld mobile devices, via telecom-fiber tethering.

  7. Picosecond and sub-picosecond flat-top pulse generation using uniform long-period fiber gratings

    NASA Astrophysics Data System (ADS)

    Park, Y.; Kulishov, M.; Slavík, R.; Azaña, J.

    2006-12-01

    We propose a novel linear filtering scheme based on ultrafast all-optical differentiation for re-shaping of ultrashort pulses generated from a mode-locked laser into flat-top pulses. The technique is demonstrated using simple all-fiber optical filters, more specifically uniform long period fiber gratings (LPGs) operated in transmission. The large bandwidth typical for these fiber filters allows scaling the technique to the sub-picosecond regime. In the experiments reported here, 600-fs and 1.8-ps Gaussian-like optical pulses (@ 1535 nm) have been re-shaped into 1-ps and 3.2-ps flat-top pulses, respectively, using a single 9-cm long uniform LPG.

  8. A simple system for 160GHz optical terahertz wave generation and data modulation

    NASA Astrophysics Data System (ADS)

    Li, Yihan; He, Jingsuo; Sun, Xueming; Shi, Zexia; Wang, Ruike; Cui, Hailin; Su, Bo; Zhang, Cunlin

    2018-01-01

    A simple system based on two cascaded Mach-Zehnder modulators, which can generate 160GHz optical terahertz waves from 40GHz microwave sources, is simulated and tested in this paper. Fiber grating filter is used in the system to filter out optical carrier. By properly adjusting the modulator DC bias voltages and the signal voltages and phases, 4-tupling optical terahertz wave can be generated with fiber grating. This notch fiber grating filter is greatly suitable for terahertz over fiber (TOF) communication system. This scheme greatly reduces the cost of long-distance terahertz communication. Furthermore, 10Gbps digital signal is modulated in the 160GHz optical terahertz wave.

  9. Application of fiber tapers in astronomy

    NASA Astrophysics Data System (ADS)

    Marcel, Jaclyn; Haynes, Roger; Bland-Hawthorn, Joss

    2006-06-01

    Fiber tapers have the potential to significantly advance instrument technology into the realm of fully integrated optical systems. Our initial investigation was directed at the use of fiber tapers as f-ratio transformation devices. Using a technique developed for testing focal ratio degradation (FRD), a collimated light source was injected at different angles into various fiber taper samples and the far-field profile of the fiber output was observed. We compare the FRD present in the optical fiber tapers with conventional fibers and determine how effectively fiber tapers perform as image converters. We demonstrate that while silica fiber tapers may have slightly more intrinsic FRD than conventional fibers they still show promise as adiabatic mode transformers and are worth investigating further for their potential use in astronomical instruments. In this paper we present a brief review of the current status of fiber tapers with particular focus on the astronomical applications. We demonstrate the conservation of etendue in the taper transformation process and present the experimental results for a number of different taper profiles and manufacturers.

  10. Carcinogenicity of multi-walled carbon nanotubes: challenging issue on hazard assessment.

    PubMed

    Fukushima, Shoji; Kasai, Tatsuya; Umeda, Yumi; Ohnishi, Makoto; Sasaki, Toshiaki; Matsumoto, Michiharu

    2018-01-25

    This report reviews the carcinogenicity of multi-walled carbon nanotubes (MWCNTs) in experimental animals, concentrating on MWNT-7, a straight fibrous MWCNT. MWCNTs were administered to mice and rats by intraperitoneal injection, intrascrotal injection, subcutaneous injection, intratracheal instillation and inhalation. Intraperitoneal injection of MWNT-7 induced peritoneal mesothelioma in mice and rats. Intrascrotal injection induced peritoneal mesothelioma in rats. Intratracheal instillation of MWCNT-N (another straight fibrous MWCNT) induced both lung carcinoma and pleural mesothelioma in rats. In the whole body inhalation studies, in mice MWNT-7 promoted methylcholanthrene-initiated lung carcinogenesis. In rats, inhalation of MWNT-7 induced lung carcinoma and lung burdens of MWNT-7 increased with increasing concentration of airborne MWNT-7 and increasing duration of exposure. Straight, fibrous MWCNTs exerted carcinogenicity in experimental animals. Phagocytosis of MWCNT fibers by macrophages was very likely to be a principle factor in MWCNT lung carcinogenesis. Using no-observed-adverse-effect level-based approach, we calculated that the occupational exposure limit (OEL) of MWNT-7 for cancer protection is 0.15 μg/m 3 for a human worker. Further studies on the effects of the shape and size of MWCNT fibers and mode of action on the carcinogenicity are required.

  11. Novel MDM-PON scheme utilizing self-homodyne detection for high-speed/capacity access networks.

    PubMed

    Chen, Yuanxiang; Li, Juhao; Zhu, Paikun; Wu, Zhongying; Zhou, Peng; Tian, Yu; Ren, Fang; Yu, Jinyi; Ge, Dawei; Chen, Jingbiao; He, Yongqi; Chen, Zhangyuan

    2015-12-14

    In this paper, we propose a cost-effective, energy-saving mode-division-multiplexing passive optical network (MDM-PON) scheme utilizing self-homodyne detection for high-speed/capacity access network based on low modal-crosstalk few-mode fiber (FMF) and all-fiber mode multiplexer/demultiplexer (MUX/DEMUX). In the proposed scheme, one of the spatial modes is used to transmit a portion of signal carrier (namely pilot-tone) as the local oscillator (LO), while the others are used for signal-bearing channels. At the receiver, the pilot-tone and the signal can be separated without strong crosstalk and sent to the receiver for coherent detection. The spectral efficiency (SE) is significantly enhanced when multiple spatial channels are used. Meanwhile, the self-homodyne detection scheme can effectively suppress laser phase noise, which relaxes the requirement for the lasers line-width at the optical line terminal or optical network units (OLT/ONUs). The digital signal processing (DSP) at the receiver is also simplified since it removes the need for frequency offset compensation and complex phase correction, which reduces the computational complexity and energy consumption. Polarization division multiplexing (PDM) that offers doubled SE is also supported by the scheme. The proposed scheme is scalable to multi-wavelength application when wavelength MUX/DEMUX is utilized. Utilizing the proposed scheme, we demonstrate a proof of concept 4 × 40-Gb/s orthogonal frequency division multiplexing (OFDM) transmission over 55-km FMF using low modal-crosstalk two-mode FMF and MUX/DEMUX with error free operation. Compared with back to back case, less than 1-dB Q-factor penalty is observed after 55-km FMF of the four channels. Signal power and pilot-tone power are also optimized to achieve the optimal transmission performance.

  12. Capacity allocation mechanism based on differentiated QoS in 60 GHz radio-over-fiber local access network

    NASA Astrophysics Data System (ADS)

    Kou, Yanbin; Liu, Siming; Zhang, Weiheng; Shen, Guansheng; Tian, Huiping

    2017-03-01

    We present a dynamic capacity allocation mechanism based on the Quality of Service (QoS) for different mobile users (MU) in 60 GHz radio-over-fiber (RoF) local access networks. The proposed mechanism is capable for collecting the request information of MUs to build a full list of MU capacity demands and service types at the Central Office (CO). A hybrid algorithm is introduced to implement the capacity allocation which can satisfy the requirements of different MUs at different network traffic loads. Compared with the weight dynamic frames assignment (WDFA) scheme, the Hybrid scheme can keep high priority MUs in low delay and maintain the packet loss rate less than 1% simultaneously. At the same time, low priority MUs have a relatively better performance.

  13. 480 Mbit/s UWB bi-directional radio over fiber CWDM PON using ultra-low cost and power VCSELs.

    PubMed

    Quinlan, Terence; Morant, Maria; Dudley, Sandra; Llorente, Roberto; Walker, Stuart

    2011-12-12

    Radio-over-fiber (RoF) schemes offer the possibility of permitting direct access to native format services for the domestic user. A low power requirement and cost effectiveness are crucial to both the service provider and the end user. Here, we present an ultra-low cost and power RoF scheme using direct modulation of commercially-available 1344 nm and 1547 nm VCSELs by band-group 1 UWB wireless signals (ECMA-368) at near broadcast power levels. As a result, greatly simplified electrical-optical-electrical conversion is accomplished. A successful demonstration over a transmission distance of 20.1 km is described using a SSMF, CWDM optical network. EVMs of better than -18.3 dB were achieved. © 2011 Optical Society of America

  14. Voltage control for a wind power plant based on the available reactive current of a DFIG and its impacts on the point of interconnection

    DOE PAGES

    Usman, Yasir; Kim, Jinho; Muljadi, Eduard; ...

    2016-01-01

    Wake effects cause wind turbine generators (WTGs) within a wind power plant (WPP) to produce different levels of active power and subsequent reactive power capabilities. Further, the impedance between a WTG and the point of interconnection (POI)-which depends on the distance between them-impacts the WPP's reactive power injection capability at the POI. This paper proposes a voltage control scheme for a WPP based on the available reactive current of the doubly-fed induction generators (DFIGs) and its impacts on the POI to improve the reactive power injection capability of the WPP. In this paper, a design strategy for modifying the gainmore » of DFIG controller is suggested and the comprehensive properties of these control gains are investigated. In the proposed scheme, the WPP controller, which operates in a voltage control mode, sends the command signal to the DFIGs based on the voltage difference at the POI. The DFIG controllers, which operate in a voltage control mode, employ a proportional controller with a limiter. The gain of the proportional controller is adjusted depending on the available reactive current of the DFIG and the series impedance between the DFIG and the POI. The performance of the proposed scheme is validated for various disturbances such as a reactive load connection and grid fault using an EMTP-RV simulator. Furthermore, simulation results demonstrate that the proposed scheme promptly recovers the POI voltage by injecting more reactive power after a disturbance than the conventional scheme.« less

  15. Exploiting solitons in all-optical networks

    NASA Astrophysics Data System (ADS)

    Atieh, Ahmad K.

    Two key components, the pulse generator and optical signal demultiplexer, needed for the implementation of all-optical soliton-based local area and wide area networks are investigated. The technology of generating a bright soliton pulse train from a sinusoidal pulse train produced as the beat signal of two distributed feedback laser diodes passed through a so-called comblike fiber structure is developed. A design methodology for this structure is discussed, and using this approach a soliton pulse source is constructed generating 1553 nm pulses at a repetition rate of 50 GHz, with pulses of full width at half maximum of 2.0 ps. The fiber structure used to generate the bright soliton pulse train employs the lowest average power for the beat signal ever reported in the literature, and the shortest length of fiber. The same structure (with a different design) is also used to produce a 47.6 GHz dark soliton pulse train with a full width at half maximum of 3.8 ps. This is the first reported use of this structure to generate dark solitons. It is shown that the comblike dispersion profile fiber structures may also be exploited for soliton pulse compression producing widths as short as 200 fs. Two approaches to implementation of optical signal demultiplexing are discussed. These are the nonlinear optical loop mirror (NOLM) and the separation of multilevel time division multiplexed signal pulses in the frequency domain by exploiting the relationship between the pulse's energy (i.e. pulse amplitude and width) and the Raman self-frequency shift. A modification of the NOLM scheme is investigated where feedback that adjusts the power of the control signal (by controlling the gain of an erbium-doped fiber amplifier introduced into the control signal input path) is employed to make the structure insensitive to the state of polarization of the signal and control pulses. In order to better understand the physical phenomena exploited in optical fiber soliton transmission and the above schemes, two experiments are conducted to measure the fiber nonlinear ratio (n2/Aeff) and the Raman time constant (TR) in single-mode fibers at 1550 nm. The fiber nonlinear ratio was measured for standard telecommunication fiber, dispersion shifted fiber, and dispersion compensating fiber. A value of 3.0 fs for the Raman time constant was measured and is recommended for soliton pulse propagation modeling in single-mode optical fibers.

  16. Injection repair of carbon fiber/bismaleimide composite panels with bisphenol E cyanate ester resin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thunga, Mahendra; Bauer, Amy; Obusek, Kristine

    2014-08-01

    Resin injection of bisphenol E cyanate ester, a low viscosity resin that cures into a high temperature thermoset polymer, is investigated as a reliable repair method to restore strength and stiffness in delaminated carbon fiber/bismaleimide composites used in aircraft panels. The influence of temperature on the viscosity of the uncured resin was measured to optimize the injection conditions for high resin infiltration into the delaminations. The repair efficiency of the resin was evaluated by varying the panel thickness and the method by which the delamination damage was created in the composite specimens. Ultrasonic scanning (C-scan), flash thermography images, and cross-sectionmore » analysis of repaired panels revealed excellent resin infiltration into the damaged region. Evaluation of mechanical repair efficiency using both bending stiffness and in-plain compressive strength of the composite panels as the repair metrics showed values exceeding 100%.« less

  17. A Summary of the Naval Postgraduate School Research Program.

    DTIC Science & Technology

    1982-05-01

    and testing of PCM modu- lation formats, design and test of an underwater video line using a diver’s handheld camera and bi-directional interconnection...to design and develop advanced control schemes which successfully optimize the tor- pedo steering performance for Project Courageous. cummary: Work...investigating the feasibility and design of fiber optic communications in underwater torpedo ranges. Summary: An underwater fiber optic video uplink was

  18. Nanofiber Composite Membranes for Alkaline Fuel Cells: Generation of Compositional, Morphological, and Functional Property Relationships

    DTIC Science & Technology

    2015-12-01

    and chemical stability. Also in Year 3, membranes were prepared by simultaneously electrospinning brominated poly(phenylene oxide) ( PPO ) and... PPO fibers (preventing water solubility when charged groups were added to the PPO ), as shown in Scheme 3. Subsequent mat processing included...brominated PPO fibers), and reaction of the resulting films with either trimethylamine or 1,2-dimethylimidazole to create cationic groups at those

  19. High-temperature optically activated GaAs power switching for aircraft digital electronic control

    NASA Technical Reports Server (NTRS)

    Berak, J. M.; Grantham, D. H.; Swindal, J. L.; Black, J. F.; Allen, L. B.

    1983-01-01

    Gallium arsenide high-temperature devices were fabricated and assembled into an optically activated pulse-width-modulated power control for a torque motor typical of the kinds used in jet engine actuators. A bipolar heterojunction phototransistor with gallium aluminum arsenide emitter/window, a gallium arsenide junction field-effect power transistor and a gallium arsenide transient protection diode were designed and fabricated. A high-temperature fiber optic/phototransistor coupling scheme was implemented. The devices assembled into the demonstrator were successfully tested at 250 C, proving the feasibility of actuator-located switching of control power using optical signals transmitted by fibers. Assessments of the efficiency and technical merits were made for extension of this high-temperature technology to local conversion of optical power to electrical power and its control at levels useful for driving actuators. Optical power sources included in the comparisons were an infrared light-emitting diode, an injection laser diode, tungsten-halogen lamps and arc lamps. Optical-to-electrical power conversion was limited to photovoltaics located at the actuator. Impedance matching of the photovoltaic array to the load was considered over the full temperature range, -55 C to 260 C. Loss of photovoltaic efficiency at higher temperatures was taken into account. Serious losses in efficiency are: (1) in the optical source and the cooling which they may require in the assumed 125 C ambient, (2) in the decreased conversion efficiency of the gallium arsenide photovoltaic at 260 C, and (3) in impedance matching. Practical systems require improvements in these areas.

  20. Solar Power Satellite (SPS) fiber optic link assessment

    NASA Technical Reports Server (NTRS)

    1980-01-01

    A feasibility demonstration of a 980 MHz fiber optic link for the Solar Power Satellite (SPS) phase reference distribution system was accomplished. A dual fiber-optic link suitable for a phase distribution frequency of 980 MHz was built and tested. The major link components include single mode injection laser diodes, avalanche photodiodes, and multimode high bandwidth fibers. Signal throughput was demonstrated to be stable and of high quality in all cases. For a typical SPS link length of 200 meters, the transmitted phase at 980 MHz varies approximately 2.5 degrees for every deg C of fiber temperature change. This rate is acceptable because of the link length compensation feature of the phase control design.

  1. Octave-spanning spectrum generation in tapered silica photonic crystal fiber by Yb:fiber ring laser above 500 MHz.

    PubMed

    Jiang, Tongxiao; Wang, Guizhong; Zhang, Wei; Li, Chen; Wang, Aimin; Zhang, Zhigang

    2013-02-15

    We report octave-spanning spectrum generated in a tapered silica photonic crystal fiber by a mode-locked Yb:fiber ring laser at a repetition rate as high as 528 MHz. The output pulses from this laser were compressed to 62 fs. By controlling the hole expansion and core diameter, a silica PCF was tapered to 20 cm with an optimal d/Λ ratio of 0.6. Pulses with the energy of 280 pJ and the peak power of 4.5 kW were injected into the tapered fiber and the pulse spectrum was expanded from 500 to 1600 nm at the level of -30 dB.

  2. LP01 to LP11 mode convertor based on side-polished small-core single-mode fiber

    NASA Astrophysics Data System (ADS)

    Liu, Yan; Li, Yang; Li, Wei-dong

    2018-03-01

    An all-fiber LP01-LP11 mode convertor based on side-polished small-core single-mode fibers (SMFs) is numerically demonstrated. The linearly polarized incident beam in one arm experiences π shift through a fiber half waveplate, and the side-polished parts merge into an equivalent twin-core fiber (TCF) which spatially shapes the incident LP01 modes to the LP11 mode supported by the step-index few-mode fiber (FMF). Optimum conditions for the highest conversion efficiency are investigated using the beam propagation method (BPM) with an approximate efficiency as high as 96.7%. The proposed scheme can operate within a wide wavelength range from 1.3 μm to1.7 μm with overall conversion efficiency greater than 95%. The effective mode area and coupling loss are also characterized in detail by finite element method (FEM).

  3. Fiber-optic evanescent-field sensor for attitude measurement

    NASA Astrophysics Data System (ADS)

    Liu, Yun; Chen, Shimeng; Liu, Zigeng; Guang, Jianye; Peng, Wei

    2017-11-01

    We proposed a new approach to attitude measurement by an evanescent field-based optical fiber sensing device and demonstrated a liquid pendulum. The device consisted of three fiber-optic evanescent-filed sensors which were fabricated by tapered single mode fibers and immersed in liquid. Three fiber Bragg gratings were used to measure the changes in evanescent field. And their reflection peaks were monitored in real time as measurement signals. Because every set of reflection responses corresponded to a unique attitude, the attitude of the device could be measured by the three fiber-optic evanescent-filed sensors. After theoretical analysis, computerized simulation and experimental verification, regular responses were obtained using this device for attitude measurement. The measurement ranges of dihedral angle and direction angle were 0°-50° and 0°-360°. The device is based on cost-effective power-referenced scheme. It can be used in electromagnetic or nuclear radiation environment.

  4. Fabrication of polymer microlenses on single mode optical fibers for light coupling

    NASA Astrophysics Data System (ADS)

    Zaboub, Monsef; Guessoum, Assia; Demagh, Nacer-Eddine; Guermat, Abdelhak

    2016-05-01

    In this paper, we present a technique for producing fibers optics micro-collimators composed of polydimethylsiloxane PDMS microlenses of different radii of curvature. The waist and working distance values obtained enable the optimization of optical coupling between optical fibers, fibers and optical sources, and fibers and detectors. The principal is based on the injection of polydimethylsiloxane (PDMS) into a conical micro-cavity chemically etched at the end of optical fibers. A spherical microlens is then formed that is self-centered with respect to the axis of the fiber. Typically, an optimal radius of curvature of 10.08 μm is obtained. This optimized micro-collimator is characterized by a working distance of 19.27 μm and a waist equal to 2.28 μm for an SMF 9/125 μm fiber. The simulation and experimental results reveal an optical coupling efficiency that can reach a value of 99.75%.

  5. Partial transformation from fast to slow muscle fibers induced by deafferentation of capsaicin-sensitive muscle afferents.

    PubMed

    Brunetti, O; Barazzoni, A M; Della Torre, G; Clavenzani, P; Pettorossi, V E; Bortolami, R

    1997-11-01

    Mechanical and histochemical characteristics of the lateral gastrocnemius (LG) muscle of the rat were examined 21 days after capsaicin injection into the LG muscle. The capsaicin caused a decrease in generation rate of twitch and tetanic tension and an increase in fatigue resistance of LG muscle. The histochemical muscle fiber profile evaluated by myosin adenosine triphosphatase and reduced nicotinamide adenine dinucleotide tetrazolium reductase methods showed an increase of type I and IIC fibers and a decrease of the type IIB in whole muscle, and a decrease of the IIA, IIX fibers in the red part accompanied by their increase in the white part. Therefore the capsaicin treatment, which selectively eliminated fibers belonging to the III and IV groups of muscle afferents, induced muscle fiber transformation from fast contracting fatiguing fibers to slowly contracting nonfatiguing ones.

  6. All linear optical quantum memory based on quantum error correction.

    PubMed

    Gingrich, Robert M; Kok, Pieter; Lee, Hwang; Vatan, Farrokh; Dowling, Jonathan P

    2003-11-21

    When photons are sent through a fiber as part of a quantum communication protocol, the error that is most difficult to correct is photon loss. Here we propose and analyze a two-to-four qubit encoding scheme, which can recover the loss of one qubit in the transmission. This device acts as a repeater, when it is placed in series to cover a distance larger than the attenuation length of the fiber, and it acts as an optical quantum memory, when it is inserted in a fiber loop. We call this dual-purpose device a "quantum transponder."

  7. The manipulated left-handedness in a rare-earth-ion-doped optical fiber by the incoherent pumping field

    NASA Astrophysics Data System (ADS)

    Zhao, Shun-Cai; Guo, Hong-Wei; Wei, Xiao-Jing

    2017-10-01

    The left-handedness was demonstrated by the simulation with a three-level quantum system in an Er3+ -dopped ZrF4-BaF2-LaF3- AlF3-NaF (ZBLAFN) optical fiber. And the left-handedness can be regulated by the incoherent pumping field. Our scheme may provide a solid candidate other than the coherent atomic vapor for left-handedness, and may extend the application of the rare-earth-ion-doped optical fiber in metamaterials and of the incoherent pumping light field in quantum optics.

  8. Stress-relaxation behavior of lignocellulosic high-density polyethlene composites

    Treesearch

    Babak Mirzaei; Mehdi Tajvidi; Robert H. Falk; Colin Felton

    2011-01-01

    In this study, stress-relaxation performance of HDPE-based injection-molded composites containing four types of natural fibers (i.e., wood flour, rice hulls, newsprint, and kenaf fiber) at 25 and 50 wt% contents, and the effect of prescribed strain levels were investigated. The results indicated that incorporating more filler causes lower relaxation values and rates,...

  9. Injection molded composites from kenaf and recycled plastic

    Treesearch

    Poo Chow; Dilpreet S. Bajwa; Wen-da Lu; John A. Youngquist; Nicole M. Stark; Qiang Li; Brent English

    1998-01-01

    Kenaf-based thermoplastic composites were developed and evaluated in this study. The kenaf stems were collected from farms in central Illinois. The kenaf fibers were blended with commercial virgin plastic or polypropylene and with recycled plastics or low-cost polyethylene in form of post-consumer film wastes and shrink wraps. Investigations on the fiber properties and...

  10. Transduction of satellite cells after prenatal intramuscular administration of lentiviral vectors.

    PubMed

    MacKenzie, Tippi C; Kobinger, Gary P; Louboutin, Jean-Pierre; Radu, Antoneta; Javazon, Elizabeth H; Sena-Esteves, Miguel; Wilson, James M; Flake, Alan W

    2005-01-01

    We have previously reported long-term expression of lacZ in myocytes after in utero intramuscular injection of Mokola and Ebola pseudotyped lentiviral vectors. In further experiments, we have noted that these vectors also transduce small cells at the periphery of the muscle fibers that have the morphology of satellite cells, or muscle stem cells. In this study we performed experiments to further define the morphology and function of these cells. Balb/c mice at 14-15 days gestation were injected intramuscularly with Ebola or Mokola pseudotyped lentiviral vectors carrying CMV-lacZ. Animals were harvested at various time points, muscles were stained with X-gal, and processed for electron microscopy (EM) and immunofluorescence. To determine whether transduced satellite cells were functionally capable of regenerating injured muscles, animals were injected with notexin in the same area 8 weeks after the in utero injection of viral vector. Transmission EM of transduced cells confirmed the ultrastructural appearance of satellite cells. Double immunofluorescence for beta-galactosidase and satellite cell markers demonstrated co-localization of these markers in transduced cells. In the notexin-injured animals, small blue cells were seen at the areas of regeneration that co-localized beta-galactosidase with markers of regenerating satellite cells. Central nucleated blue fibers were seen at late time points, indicating regenerated muscle fibers arising from a transduced satellite cell. This study demonstrates transduction of muscle satellite cells following prenatal viral vector mediated gene transfer. These findings may have important implications for gene therapy strategies directed toward muscular dystrophy.

  11. Photon statistics of pulse-pumped four-wave mixing in fiber with weak signal injection

    NASA Astrophysics Data System (ADS)

    Nan-Nan, Liu; Yu-Hong, Liu; Jia-Min, Li; Xiao-Ying, Li

    2016-07-01

    We study the photon statistics of pulse-pumped four-wave mixing in fibers with weak coherent signal injection by measuring the intensity correlation functions of individual signal and idler fields. The experimental results show that the intensity correlation function of individual signal (idler) field decreases with the intensity of signal injection. After applying narrow band filter in signal (idler) band, the value of decreases from 1.9 ± 0.02 (1.9 ± 0.02) to 1.03 ± 0.02 (1.05 ± 0.02) when the intensity of signal injection varies from 0 to 120 photons/pulse. The results indicate that the photon statistics changes from Bose-Einstein distribution to Poisson distribution. We calculate the intensity correlation functions by using the multi-mode theory of four-wave mixing in fibers. The theoretical curves well fit the experimental results. Our investigation will be useful for mitigating the crosstalk between quantum and classical channels in a dense wavelength division multiplexing network. Project supported by the National Natural Science Foundation of China (Grant No. 11527808), the State Key Development Program for Basic Research of China (Grant No. 2014CB340103), the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20120032110055), the Natural Science Foundation of Tianjin, China (Grant No. 14JCQNJC02300), the Program for Changjiang Scholars and Innovative Research Team in University, China, and the Program of Introducing Talents of Discipline to Universities, China (Grant No. B07014).

  12. Stacking with stochastic cooling

    NASA Astrophysics Data System (ADS)

    Caspers, Fritz; Möhl, Dieter

    2004-10-01

    Accumulation of large stacks of antiprotons or ions with the aid of stochastic cooling is more delicate than cooling a constant intensity beam. Basically the difficulty stems from the fact that the optimized gain and the cooling rate are inversely proportional to the number of particles 'seen' by the cooling system. Therefore, to maintain fast stacking, the newly injected batch has to be strongly 'protected' from the Schottky noise of the stack. Vice versa the stack has to be efficiently 'shielded' against the high gain cooling system for the injected beam. In the antiproton accumulators with stacking ratios up to 105 the problem is solved by radial separation of the injection and the stack orbits in a region of large dispersion. An array of several tapered cooling systems with a matched gain profile provides a continuous particle flux towards the high-density stack core. Shielding of the different systems from each other is obtained both through the spatial separation and via the revolution frequencies (filters). In the 'old AA', where the antiproton collection and stacking was done in one single ring, the injected beam was further shielded during cooling by means of a movable shutter. The complexity of these systems is very high. For more modest stacking ratios, one might use azimuthal rather than radial separation of stack and injected beam. Schematically half of the circumference would be used to accept and cool new beam and the remainder to house the stack. Fast gating is then required between the high gain cooling of the injected beam and the low gain stack cooling. RF-gymnastics are used to merge the pre-cooled batch with the stack, to re-create free space for the next injection, and to capture the new batch. This scheme is less demanding for the storage ring lattice, but at the expense of some reduction in stacking rate. The talk reviews the 'radial' separation schemes and also gives some considerations to the 'azimuthal' schemes.

  13. Integrated Approach to Free Space Optical Communications in Strong Turbulence

    DTIC Science & Technology

    2011-09-01

    fades at the receiver caused by atmospheric turbulence . In an attempt to mitigate the impact of intensity fades, the use of various modulation schemes... turbulence . Additionally, adaptive optics can be used to maximize fiber coupling efficiency [64]. The research in Chapters IV–VI attempts to minimize...the effect of atmospheric turbulence through signal diversity without the use of complicated higher-order wavefront control schemes. 40 3.4 Modulation

  14. Channel access schemes and fiber optic configurations for integrated-services local area networks

    NASA Astrophysics Data System (ADS)

    Nassehi, M. Mehdi

    1987-03-01

    Local Area Networks are in common use for data communications and have enjoyed great success. Recently, there is a growing interest in using a single network to support many applications in addition to traditional data traffic. These additional applications introduce new requirements in terms of volume of traffic and real-time delivery of data which are not met by existing networks. To satisfy these requirements, a high-bandwidth tranmission medium, such as fiber optics, and a distributed channel access scheme for the efficient sharing of the bandwidth among the various applications are needed. As far as the throughput-delay requirements of the various application are concerned, a network structure along with a distributed channel access are proposed which incorporate appropriate scheduling policies for the transmission of outstanding messages on the network. A dynamic scheduling policy was devised which outperforms all existing policies in terms of minimizing the expected cost per message. A broadcast mechanism was devised for the efficient dissemination of all relevant information. Fiber optic technology is considered for the high-bandwidth transmisison medium.

  15. Channel access schemes and fiber optic configurations for integrated-services local area networks. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Nassehi, M. Mehdi

    1987-01-01

    Local Area Networks are in common use for data communications and have enjoyed great success. Recently, there is a growing interest in using a single network to support many applications in addition to traditional data traffic. These additional applications introduce new requirements in terms of volume of traffic and real-time delivery of data which are not met by existing networks. To satisfy these requirements, a high-bandwidth tranmission medium, such as fiber optics, and a distributed channel access scheme for the efficient sharing of the bandwidth among the various applications are needed. As far as the throughput-delay requirements of the various application are concerned, a network structure along with a distributed channel access are proposed which incorporate appropriate scheduling policies for the transmission of outstanding messages on the network. A dynamic scheduling policy was devised which outperforms all existing policies in terms of minimizing the expected cost per message. A broadcast mechanism was devised for the efficient dissemination of all relevant information. Fiber optic technology is considered for the high-bandwidth transmisison medium.

  16. Seeing More by Showing Less: Orientation-Dependent Transparency Rendering for Fiber Tractography Visualization

    PubMed Central

    Tax, Chantal M. W.; Chamberland, Maxime; van Stralen, Marijn; Viergever, Max A.; Whittingstall, Kevin; Fortin, David; Descoteaux, Maxime; Leemans, Alexander

    2015-01-01

    Fiber tractography plays an important role in exploring the architectural organization of fiber trajectories, both in fundamental neuroscience and in clinical applications. With the advent of diffusion MRI (dMRI) approaches that can also model “crossing fibers”, the complexity of the fiber network as reconstructed with tractography has increased tremendously. Many pathways interdigitate and overlap, which hampers an unequivocal 3D visualization of the network and impedes an efficient study of its organization. We propose a novel fiber tractography visualization approach that interactively and selectively adapts the transparency rendering of fiber trajectories as a function of their orientation to enhance the visibility of the spatial context. More specifically, pathways that are oriented (locally or globally) along a user-specified opacity axis can be made more transparent or opaque. This substantially improves the 3D visualization of the fiber network and the exploration of tissue configurations that would otherwise be largely covered by other pathways. We present examples of fiber bundle extraction and neurosurgical planning cases where the added benefit of our new visualization scheme is demonstrated over conventional fiber visualization approaches. PMID:26444010

  17. Q-plates as higher order polarization controllers for orbital angular momentum modes of fiber.

    PubMed

    Gregg, P; Mirhosseini, M; Rubano, A; Marrucci, L; Karimi, E; Boyd, R W; Ramachandran, S

    2015-04-15

    We demonstrate that a |q|=1/2 plate, in conjunction with appropriate polarization optics, can selectively and switchably excite all linear combinations of the first radial mode order |l|=1 orbital angular momentum (OAM) fiber modes. This enables full mapping of free-space polarization states onto fiber vector modes, including the radially (TM) and azimuthally polarized (TE) modes. The setup requires few optical components and can yield mode purities as high as ∼30  dB. Additionally, just as a conventional fiber polarization controller creates arbitrary elliptical polarization states to counteract fiber birefringence and yield desired polarizations at the output of a single-mode fiber, q-plates disentangle degenerate state mixing effects between fiber OAM states to yield pure states, even after long-length fiber propagation. We thus demonstrate the ability to switch dynamically, potentially at ∼GHz rates, between OAM modes, or create desired linear combinations of them. We envision applications in fiber-based lasers employing vector or OAM mode outputs, as well as communications networking schemes exploiting spatial modes for higher dimensional encoding.

  18. Mechanical and thermal properties of high density polyethylene – dried distillers grains with solubles composites

    USDA-ARS?s Scientific Manuscript database

    Dried Distillers Grain with Solubles (DDGS) is evaluated as a bio-based fiber reinforcement. Injection molded composites of high density polyethylene (HDPE), 25% by weight of DDGS, and either 5% of 0% by weight of maleated polyethylene (MAPE) were produced by twin screw compounding and injection mo...

  19. Properties of high density polyethylene – Paulownia wood flour composites via injection molding

    USDA-ARS?s Scientific Manuscript database

    Paulownia wood (PW) flour is evaluated as a bio-based fiber reinforcement. Composites of high density polyethylene (HDPE), 25% by weight of PW, and either 0% or 5% by weight of maleated polyethylene (MAPE) were produced by twin screw compounding followed by injection molding. Molded test composite...

  20. A novel anatomical short glass fiber reinforced post in an endodontically treated premolar mechanical resistance evaluation using acoustic emission under fatigue testing.

    PubMed

    Wang, Hsuan-Wen; Chang, Yen-Hsiang; Lin, Chun-Li

    2017-01-01

    This study evaluates the fracture resistance in an endodontically treated tooth using circular fiber-reinforced composite (FRC) and innovated anatomical short glass fiber reinforced (SGFR) posts under fatigue testing, monitored using the acoustic emission (AE) technique. An anatomical SGFR fiber post with an oval shape and slot/notch design was manufactured using an injection-molding machine. Crown/core maxillary second premolar restorations were executed using the anatomical SGFR and commercial cylindrical fiber posts under fatigue test to understand the mechanical resistances. The load versus AE signals in the fracture and fatigue tests were recorded to evaluate the restored tooth failure resistance. The static fracture resistance results showed that teeth restored using the anatomical SGFR post presented higher resistance than teeth restored using the commercial FRC post. The fatigue test endurance limitation (1.2×10 6 cycles) was 207.1N for the anatomical SGFR fiber post, higher than the 185.3N found with the commercial FRC post. The average accumulated number of AE signals and corresponding micro cracks for the anatomical SGFR fiber post (153.0 hits and 2.44 cracks) were significantly lower than those for the commercial FRC post (194.7 hits and 4.78 cracks) under 40% of the static maximum resistance fatigue test load (pass 1.2×10 6 cycles). This study concluded that the anatomical SGFR fiber post with surface slot/notch design made using precise injection molding presented superior static fracture resistance and fatigue endurance limitation than those for the commercial FRC post in an endodontically treated premolar. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Permanent downhole fiber optic pressure and temperature monitoring during CO2 injection

    NASA Astrophysics Data System (ADS)

    Schmidt-Hattenberger, C.; Moeller, F.; Liebscher, A.; Koehler, S.

    2009-04-01

    Permanent downhole monitoring of pressure and temperature, ideally over the entire length of the injection string, is essential for any smooth and safe CO2 injection within the framework of geological CO2 storage: i) To avoid fracturing of the cap-rock, a certain, site dependent pressure threshold within the reservoir should not be exceeded; ii) Any CO2 phase transition within the injection string, i.e. either condensation or evaporation, should be avoided. Such phase transitions cause uncontrolled and undetermined P-T regimes within the injection string that may ultimately result in a shut-in of the injection facility; and iii) Precise knowledge of the P and T response of the reservoir to the CO2 injection is a prerequisite to any reservoir modeling. The talk will present first results from our permanent downhole P-T monitoring program from the Ketzin CO2 storage test site (CO2SINK). At Ketzin, a fiber Bragg grating pressure sensor has been installed at the end of the injection string in combination with distributed temperature profiling over the entire length (about 550 m) of the string for continuous P-T monitoring during operation. Such fiber optic monitoring technique is used by default in the oil and gas industry but has not yet been applied as standard on a long-term routine mode for CO2 injection. Pressure is measured every 5 seconds with a resolution of < 1 bar. The data are later processed by user-defined program. The temperature logs along the injection string are measured every 3 minutes with a spatial resolution of one meter and with a temperature resolution of about 0.1°C. The long-term stability under full operational conditions is currently under investigation. The main computer of the P-T system operates as a stand-alone data-acquisition unit, and is connected with a secure intranet in order to ensure remote data access and system maintenance. The on-line measurements are displayed on the operator panel of the injection facility for direct control. The monitoring program started already prior to CO2 injection and runs since 6 months without any fatal errors. The recorded data cover the pre-injection well-testing phase, the initial injection phase as well as several shut-in and re-start phases during routine injection. Especially during the initial and re-start phases the monitoring results significantly optimized and improved the operation of the injection facility in terms of injection rate and injection temperature. Due to the high qualitative and also quantitative resolution of this technique even shortest-term transient disturbances of the reservoir and injection regime could be monitored as they may occur due to fluid sampling or logging in neighboring wells. Such short-term transient effects are normally overlooked using non-permanent monitoring techniques. On the long-term perspective, this monitoring technique will also support the control of CO2 injection tubing integrity, which is a prerequisite for any secure long-lasting CO2 injection and storage.

  2. Porous protective solid phase micro-extractor sheath

    DOEpatents

    Andresen, Brian D.; Randich, Erik

    2005-03-29

    A porous protective sheath for active extraction media used in solid phase microextraction (SPME). The sheath permits exposure of the media to the environment without the necessity of extending a fragile coated fiber from a protective tube or needle. Subsequently, the sheath can pierce and seal with GC-MS septums, allowing direct injection of samples into inlet ports of analytical equipment. Use of the porous protective sheath, within which the active extraction media is contained, mitigates the problems of: 1) fiber breakage while the fiber is extended during sampling, 2) active media coating loss caused by physical contact of the bare fiber with the sampling environment; and 3) coating slough-off during fiber extension and retraction operations caused by rubbing action between the fiber and protective needle or tube.

  3. Orbital-angular-momentum mode-group multiplexed transmission over a graded-index ring-core fiber based on receive diversity and maximal ratio combining

    NASA Astrophysics Data System (ADS)

    Zhang, Junwei; Zhu, Guoxuan; Liu, Jie; Wu, Xiong; Zhu, Jiangbo; Du, Cheng; Luo, Wenyong; Chen, Yujie; Yu, Siyuan

    2018-02-01

    An orbital-angular-momentum (OAM) mode-group multiplexing (MGM) scheme based on a graded-index ring-core fiber (GIRCF) is proposed, in which a single-input two-output (or receive diversity) architecture is designed for each MG channel and simple digital signal processing (DSP) is utilized to adaptively resist the mode partition noise resulting from random intra-group mode crosstalk. There is no need of complex multiple-input multiple-output (MIMO) equalization in this scheme. Furthermore, the signal-to-noise ratio (SNR) of the received signals can be improved if a simple maximal ratio combining (MRC) technique is employed on the receiver side to efficiently take advantage of the diversity gain of receiver. Intensity-modulated direct-detection (IM-DD) systems transmitting three OAM mode groups with total 100-Gb/s discrete multi-tone (DMT) signals over a 1-km GIRCF and two OAM mode groups with total 40-Gb/s DMT signals over an 18-km GIRCF are experimentally demonstrated, respectively, to confirm the feasibility of our proposed OAM-MGM scheme.

  4. Transmission of multiplexed video signals in multimode optical fiber systems

    NASA Technical Reports Server (NTRS)

    White, Preston, III

    1988-01-01

    Kennedy Space Center has the need for economical transmission of two multiplexed video signals along multimode fiberoptic systems. These systems must span unusual distances and must meet RS-250B short-haul standards after reception. Bandwidth is a major problem and studies of the installed fibers, available LEDs and PINFETs led to the choice of 100 MHz as the upper limit for the system bandwidth. Optical multiplexing and digital transmission were deemed inappropriate. Three electrical multiplexing schemes were chosen for further study. Each of the multiplexing schemes included an FM stage to help meet the stringent S/N specification. Both FM and AM frequency division multiplexing methods were investigated theoretically and these results were validated with laboratory tests. The novel application of quadrature amplitude multiplexing was also considered. Frequency division multiplexing of two wideband FM video signal appears the most promising scheme although this application requires high power highly linear LED transmitters. Futher studies are necessary to determine if LEDs of appropriate quality exist and to better quantify performance of QAM in this application.

  5. Predictive Engineering Tools for Injection-Molded Long-Carbon-Fiber Thermoplastic Composites - Fourth FY 2015 Quarterly Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nguyen, Ba Nghiep; Fifield, Leonard S.; Wollan, Eric J.

    2015-11-13

    During the last quarter of FY 2015, the following technical progress has been made toward project milestones: 1) PlastiComp used the PlastiComp direct in-line (D-LFT) Pushtrusion system to injection mold 40 30wt% LCF/PP parts with ribs, 40 30wt% LCF/PP parts without ribs, 10 30wt% LCF/PA66 parts with ribs, and 35 30wt% LCF/PA66 parts without ribs. In addition, purge materials from the injection molding nozzle were obtained for fiber length analysis, and molding parameters were sent to PNNL for process modeling. 2) Magna cut samples at four selected locations (named A, B, C and D) from the non-ribbed Magna-molded parts basedmore » on a plan discussed with PNNL and the team and shipped these samples to Virginia Tech for fiber orientation and length measurements. 3) Virginia Tech started fiber orientation and length measurements for the samples taken from the complex parts using Virginia Tech’s established procedure. 4) PNNL and Autodesk built ASMI models for the complex parts with and without ribs, reviewed process datasheets and performed preliminary analyses of these complex parts using the actual molding parameters received from Magna and PlastiComp to compare predicted to experimental mold filling patterns. 5) Autodesk assisted PNNL in developing the workflow to use Moldflow fiber orientation and length results in ABAQUS® simulations. 6) Autodesk advised the team on the practicality and difficulty of material viscosity characterization from the D-LFT process. 7) PNNL developed a procedure to import fiber orientation and length results from a 3D ASMI analysis to a 3D ABAQUS® model for structural analyses of the complex part for later weight reduction study. 8) In discussion with PNNL and Magna, Toyota developed mechanical test setups and built fixtures for three-point bending and torsion tests of the complex parts. 9) Toyota built a finite element model for the complex parts subjected to torsion loading. 10) PNNL built the 3D ABAQUS® model of the complex ribbed part subjected to 3-point bending. 11) University of Illinois (Prof. C.L. Tucker) advised the team on fiber orientation and fiber length measurement options, modeling issues as well as interpretation of data.« less

  6. Remote heterodyne millimeter-wave over fiber based OFDM-PON with master-to-slave injected dual-mode colorless FPLD pair.

    PubMed

    Chen, Hsiang-Yu; Chi, Yu-Chieh; Lin, Gong-Ru

    2015-08-24

    A remote heterodyne millimeter-wave (MMW) carrier at 47.7 GHz over fiber synthesized with the master-to-slave injected dual-mode colorless FPLD pair is proposed, which enables the future connection between the wired fiber-optic 64-QAM OFDM-PON at 24 Gb/s with the MMW 4-QAM OFDM wireless network at 2 Gb/s. Both the single- and dual-mode master-to-slave injection-locked colorless FPLD pairs are compared to optimize the proposed 64-QAM OFDM-PON. For the unamplified single-mode master, the slave colorless FPLD successfully performs the 64-QAM OFDM data at 24 Gb/s with EVM, SNR and BER of 8.5%, 21.5 dB and 2.9 × 10(-3), respectively. In contrast, the dual-mode master-to-slave injection-locked colorless FPLD pair with amplified and unfiltered master can transmit 64-QAM OFDM data at 18 Gb/s over 25-km SMF to provide EVM, SNR and BER of 8.2%, 21.8 dB and 2.2 × 10(-3), respectively. For the dual-mode master-to-slave injection-locked colorless FPLD pair, even though the modal dispersion occurred during 25-km SMF transmission makes it sacrifice the usable OFDM bandwidth by only 1 GHz, which guarantees the sufficient encoding bitrate for the optically generated MMW carrier to implement the fusion of MMW wireless LAN and DWDM-PON with cost-effective and compact architecture. As a result, the 47.7-GHz MMW carrier remotely beat from the dual-mode master-to-slave injection-locked colorless FPLD pair exhibits an extremely narrow bandwidth of only 0.48 MHz. After frequency down-conversion operation, the 47.7-GHz MMW carrier successfully delivers 4-QAM OFDM data up to 2 Gb/s with EVM, SNR and BER of 33.5%, 9.51 dB and 1.4 × 10(-3), respectively.

  7. Method for operating a spark-ignition, direct-injection internal combustion engine

    DOEpatents

    Narayanaswamy, Kushal; Koch, Calvin K.; Najt, Paul M.; Szekely, Jr., Gerald A.; Toner, Joel G.

    2015-06-02

    A spark-ignition, direct-injection internal combustion engine is coupled to an exhaust aftertreatment system including a three-way catalytic converter upstream of an NH3-SCR catalyst. A method for operating the engine includes operating the engine in a fuel cutoff mode and coincidentally executing a second fuel injection control scheme upon detecting an engine load that permits operation in the fuel cutoff mode.

  8. Rematching AGS Booster synchrotron injection lattice for smaller transverse beam emittances

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, C.; Beebe-Wang, J.; Brown, K.

    2017-01-25

    The polarized proton beam is injected into the booster via the charge-exchange (H- to H+) scheme. The emittance growth due to scattering at the stripping foil is proportional to the beta functions at the foil. It was demonstrated that the current scheme of reducing the beta functions at the stripping foil preserves the emittance better; however the betatron tunes are above but very close to half integer. Due to concern of space charge and half integer in general, options of lattice designs aimed towards reducing the beta functions at the stripping foil with tunes at more favorable places are explored.

  9. Monolithic carrier-envelope phase-stabilization scheme.

    PubMed

    Fuji, Takao; Rauschenberger, Jens; Apolonski, Alexander; Yakovlev, Vladislav S; Tempea, Gabriel; Udem, Thomas; Gohle, Christoph; Hänsch, Theodor W; Lehnert, Walter; Scherer, Michael; Krausz, Ferenc

    2005-02-01

    A new scheme for stabilizing the carrier-envelope (CE) phase of a few-cycle laser pulse train is demonstrated. Self-phase modulation and difference-frequency generation in a single periodically poled lithium niobate crystal that transmits the main laser beam allows CE phase locking directly in the usable output. The monolithic scheme obviates the need for splitting off a fraction of the laser output for CE phase control, coupling into microstructured fiber, and separation and recombination of spectral components. As a consequence, the output yields 6-fs, 800-nm pulses with an unprecedented degree of short- and long-term reproducibility of the electric field waveform.

  10. Matrix crack extension at a frictionally constrained fiber

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Selvadurai, A.P.S.

    1994-07-01

    The paper presents the application of a boundary element scheme to the study of the behavior of a penny-shaped matrix crack which occurs at an isolated fiber which is frictionally constrained. An incremental technique is used to examine the progression of self similar extension of the matrix crack due to the axial straining of the composite region. The extension of the crack occurs at the attainment of the critical stress intensity factor in the crack opening mode. Iterative techniques are used to determine the extent to crack enlargement and the occurrence of slip and locked regions in the frictional fiber-matrixmore » interface. The studies illustrate the role of fiber-matrix interface friction on the development of stable cracks in such frictionally constrained zones. The methodologies are applied to typical isolated fiber configurations of interest to fragmentation tests.« less

  11. Perturbed dark and singular optical solitons in polarization preserving fibers by modified simple equation method

    NASA Astrophysics Data System (ADS)

    Yaşar, Emrullah; Yıldırım, Yakup; Zhou, Qin; Moshokoa, Seithuti P.; Ullah, Malik Zaka; Triki, Houria; Biswas, Anjan; Belic, Milivoj

    2017-11-01

    This paper obtains optical soliton solution to perturbed nonlinear Schrödinger's equation by modified simple equation method. There are four types of nonlinear fibers studied in this paper. They are Anti-cubic law, Quadratic-cubic law, Cubic-quintic-septic law and Triple-power law. Dark and singular soliton solutions are derived. Additional solutions such as singular periodic solutions also fall out of the integration scheme.

  12. Distributed optical fiber-based monitoring approach of spatial seepage behavior in dike engineering

    NASA Astrophysics Data System (ADS)

    Su, Huaizhi; Ou, Bin; Yang, Lifu; Wen, Zhiping

    2018-07-01

    The failure caused by seepage is the most common one in dike engineering. As to the characteristics of seepage in dike, such as longitudinal extension engineering, the randomness, strong concealment and small initial quantity order, by means of distributed fiber temperature sensor system (DTS), adopting an improved optical fiber layer layout scheme, the location of initial interpolation point of the saturation line is obtained. With the barycentric Lagrange interpolation collocation method (BLICM), the infiltrated surface of dike full-section is generated. Combined with linear optical fiber monitoring seepage method, BLICM is applied in an engineering case, which shows that a real-time seepage monitoring technique is presented in full-section of dike based on the combination method.

  13. Fiber optic submarine cables cuts cost modeling and cable protection aspects

    NASA Astrophysics Data System (ADS)

    Al-Lawati, Ali

    2015-03-01

    This work presents a model to calculate costs associated with submarine fiber optic cable cuts. It accounts for both fixed and variable factors determining cost of fixing cables and restoring data transmission. It considers duration of a cut, capacity of fibers, number of fiber pairs and expected number of cuts during cable life time. Moreover, it provides templates for initial feasibility assessments by comparing cut costs to cost of different cable protection schemes. It offers a needed tool to assist in guiding decision makers in selecting type of cable, length and depth of cable burial in terms of increase in initial investment due to adapting such protection methods, and compare it to cost of cuts repair and alternative restoration paths for data.

  14. Simple and reliable light launch from a conventional single-mode fiber into a helical-core fiber through an adiabatically tapered splice.

    PubMed

    Kim, Hyuntai; Kim, Jongki; Jung, Yongmin; Vazquez-Zuniga, Luis Alonso; Lee, Seung Jong; Choi, Geunchang; Oh, Kyunghwan; Wang, Pu; Clarkson, W A; Jeong, Yoonchan

    2012-11-05

    We propose a simple and efficient light launch scheme for a helical-core fiber (HCF) by using an adiabatically tapered splice technique, through which we overcome its inherent difficulty with light launch owing to the large lateral offset and angular tilt of its core. We experimentally demonstrate single-mode excitation in the HCF in this configuration, which yields the coupling efficiency of around -5.9 dB (26%) for a ~1.1-μm light input when the splice joint is tapered down to 30 μm in diameter. To our knowledge, this is the first proof-of-principle report on the fusion-splice coupling between an HCF and a conventional single-mode fiber.

  15. Reset Tree-Based Optical Fault Detection

    PubMed Central

    Lee, Dong-Geon; Choi, Dooho; Seo, Jungtaek; Kim, Howon

    2013-01-01

    In this paper, we present a new reset tree-based scheme to protect cryptographic hardware against optical fault injection attacks. As one of the most powerful invasive attacks on cryptographic hardware, optical fault attacks cause semiconductors to misbehave by injecting high-energy light into a decapped integrated circuit. The contaminated result from the affected chip is then used to reveal secret information, such as a key, from the cryptographic hardware. Since the advent of such attacks, various countermeasures have been proposed. Although most of these countermeasures are strong, there is still the possibility of attack. In this paper, we present a novel optical fault detection scheme that utilizes the buffers on a circuit's reset signal tree as a fault detection sensor. To evaluate our proposal, we model radiation-induced currents into circuit components and perform a SPICE simulation. The proposed scheme is expected to be used as a supplemental security tool. PMID:23698267

  16. Phase Recovery Acceleration of Quantum-Dot Semiconductor Optical Amplifiers by Optical Pumping to Quantum-Well Wetting Layer

    NASA Astrophysics Data System (ADS)

    Kim, Jungho

    2013-11-01

    We theoretically investigate the phase recovery acceleration of quantum-dot (QD) semiconductor optical amplifiers (SOAs) by means of the optical pump injection to the quantum-well (QW) wetting layer (WL). We compare the ultrafast gain and phase recovery responses of QD SOAs in either the electrical or the optical pumping scheme by numerically solving 1088 coupled rate equations. The ultrafast gain recovery responses on the order of sub-picosecond are nearly the same for the two pumping schemes. The ultrafast phase recovery is not significantly accelerated by increasing the electrical current density, but greatly improved by increasing the optical pumping power to the QW WL. Because the phase recovery time of QD SOAs with the optical pumping scheme can be reduced down to several picoseconds, the complete phase recovery can be achieved when consecutive pulse signals with a repetition rate of 100 GHz is injected.

  17. Reduced 3d modeling on injection schemes for laser wakefield acceleration at plasma scale lengths

    NASA Astrophysics Data System (ADS)

    Helm, Anton; Vieira, Jorge; Silva, Luis; Fonseca, Ricardo

    2017-10-01

    Current modelling techniques for laser wakefield acceleration (LWFA) are based on particle-in-cell (PIC) codes which are computationally demanding. In PIC simulations the laser wavelength λ0, in μm-range, has to be resolved over the acceleration lengths in meter-range. A promising approach is the ponderomotive guiding center solver (PGC) by only considering the laser envelope for laser pulse propagation. Therefore only the plasma skin depth λp has to be resolved, leading to speedups of (λp /λ0) 2. This allows to perform a wide-range of parameter studies and use it for λ0 <<λp studies. We present the 3d version of a PGC solver in the massively parallel, fully relativistic PIC code OSIRIS. Further, a discussion and characterization of the validity of the PGC solver for injection schemes on the plasma scale lengths, such as down-ramp injection, magnetic injection and ionization injection, through parametric studies, full PIC simulations and theoretical scaling, is presented. This work was partially supported by Fundacao para a Ciencia e Tecnologia (FCT), Portugal, through Grant No. PTDC/FIS-PLA/2940/2014 and PD/BD/105882/2014.

  18. Monte Carlo analysis of the Titan III/Transfer Orbit Stage guidance system for the Mars Observer mission

    NASA Astrophysics Data System (ADS)

    Bell, Stephen C.; Ginsburg, Marc A.; Rao, Prabhakara P.

    An important part of space launch vehicle mission planning for a planetary mission is the integrated analysis of guidance and performance dispersions for both booster and upper stage vehicles. For the Mars Observer mission, an integrated trajectory analysis was used to maximize the scientific payload and to minimize injection errors by optimizing the energy management of both vehicles. This was accomplished by designing the Titan III booster vehicle to inject into a hyperbolic departure plane, and the Transfer Orbit Stage (TOS) to correct any booster dispersions. An integrated Monte Carlo analysis of the performance and guidance dispersions of both vehicles provided sensitivities, an evaluation of their guidance schemes and an injection error covariance matrix. The polynomial guidance schemes used for the Titan III variable flight azimuth computations and the TOS solid rocket motor ignition time and burn direction derivations accounted for a wide variation of launch times, performance dispersions, and target conditions. The Mars Observer spacecraft was launched on 25 September 1992 on the Titan III/TOS vehicle. The post flight analysis indicated that a near perfect park orbit injection was achieved, followed by a trans-Mars injection with less than 2sigma errors.

  19. Modulation response characteristics of optical injection-locked cascaded microring laser

    NASA Astrophysics Data System (ADS)

    Yu, Shaowei; Pei, Li; Liu, Chao; Wang, Yiqun; Weng, Sijun

    2014-09-01

    Modulation bandwidth and frequency chirping of the optical injection-locked (OIL) microring laser (MRL) in the cascaded configuration are investigated. The unidirectional operation of the MRL under strong injection allows simple and cost-saving monolithic integration of the OIL system on one chip as it does not need the use of isolators between the master and slave lasers. Two cascading schemes are discussed in detail by focusing on the tailorable modulation response. The chip-to-power ratio of the cascaded optical injection-locked configuration has decreased by up to two orders of magnitude, compared with the single optical injection-locked configuration.

  20. Robust, Brillouin Active Embedded Fiber-Is-The-Sensor System in Smart Composite Structures

    NASA Technical Reports Server (NTRS)

    Yu, Chung

    1996-01-01

    Extensive review of our proposed sensing scheme, based mainly on the forward Guided Acoustic Wave Brillouin Scattering (GAWBS) with backward stimulated Brillouin scattering (sBs) as an auxiliary scheme for system fault tolerance has been completed during this project period. This preliminary study is conducted for a number of reasons. The most significant reasons lie in the essential capability of the system to measure temperature and pressure. These two measurands have been proposed to be sensed by sBs in our proposal. Temperature and pressure/strain are important measurands in structural monitoring, so that the effectiveness of sensing by sBs needs to be further examined. It has been pointed out initially that sBs shift will be dependent on temperature and pressure/strain simultaneously. The shift versus temperature or strain is linear. Now, the question is how can these two measurands be separated when sBs is used to sense an environment, in which both temperature and strain are changing simultaneously. Typical sBs shift plotted versus strain and varying temperature is shown in Fig. 1. As is clear, a fiber initially stressed will relax with rising temperature. This is verified by a displacement to the right with rising temperature of the sBs shift vs strain curves in the figure. A way to circumvent this ambiguity is by employing two fibers, one pre-stressed and the other is a free fiber. The latter will measure temperature and subtracting data in the latter fiber from those of the former will give us net strain readings. This is a laborious approach, since it involves the use of two identical fibers, and this is hard to accomplish, especially when many sensors are needed. Additional multiplexing of the data stream for data subtraction becomes a necessity.

  1. Superconductor fiber elongation with a heated injected gas

    DOEpatents

    Zeigler, D.D.; Conrad, B.L.; Gleixner, R.A.

    1998-06-02

    An improved method and apparatus for producing flexible fibers of superconducting material includes a crucible for containing a charge of the superconducting material. The material is melted in the crucible and falls in a stream through a bottom hole in the crucible. The stream falls through a protecting collar which maintains the stream at high temperatures. The stream is then supplied through a downwardly directed nozzle where it is subjected to a high velocity of a heated gas which breaks the melted superconducting material into ligaments which solidify into the flexible fibers. The fibers are collected by directing them against a collection filter. 10 figs.

  2. Bit-error-rate testing of fiber optic data links for MMIC-based phased array antennas

    NASA Technical Reports Server (NTRS)

    Shalkhauser, K. A.; Kunath, R. R.; Daryoush, A. S.

    1990-01-01

    The measured bit-error-rate (BER) performance of a fiber optic data link to be used in satellite communications systems is presented and discussed. In the testing, the link was measured for its ability to carry high burst rate, serial-minimum shift keyed (SMSK) digital data similar to those used in actual space communications systems. The fiber optic data link, as part of a dual-segment injection-locked RF fiber optic link system, offers a means to distribute these signals to the many radiating elements of a phased array antenna. Test procedures, experimental arrangements, and test results are presented.

  3. Dynamic optical arbitrary waveform shaping based on cascaded optical modulators of single FBG.

    PubMed

    Chen, Jingyuan; Li, Peili

    2015-08-10

    A dynamic optical arbitrary waveform generation (O-AWG) with amplitude and phase independently controlled in optical modulators of single fiber Bragg Grating (FBG) has been proposed. This novel scheme consists of several optical modulators. In the optical modulator (O-MOD), a uniform FBG is used to filter spectral component of the input signal. The amplitude is controlled by fiber stretcher (FS) in Mach-Zehnder interference (MZI) structure through interference of two MZI arms. The phase is manipulated via the second FS in the optical modulator. This scheme is investigated by simulation. Consequently, optical pulse trains with different waveforms as well as pulse trains with nonuniform pulse intensity, pulse spacing and pulse width within each period are obtained through FSs adjustment to alter the phase shifts of signal in each O-MOD.

  4. Interferometer design and controls for pulse stacking in high power fiber lasers

    NASA Astrophysics Data System (ADS)

    Wilcox, Russell; Yang, Yawei; Dahlen, Dar; Xu, Yilun; Huang, Gang; Qiang, Du; Doolittle, Lawrence; Byrd, John; Leemans, Wim; Ruppe, John; Zhou, Tong; Sheikhsofla, Morteza; Nees, John; Galvanauskas, Almantas; Dawson, Jay; Chen, Diana; Pax, Paul

    2017-03-01

    In order to develop a design for a laser-plasma accelerator (LPA) driver, we demonstrate key technologies that enable fiber lasers to produce high energy, ultrafast pulses. These technologies must be scalable, and operate in the presence of thermal drift, acoustic noise, and other perturbations typical of an operating system. We show that coherent pulse stacking (CPS), which requires optical interferometers, can be made robust by image-relaying, multipass optical cavities, and by optical phase control schemes that sense pulse train amplitudes from each cavity. A four-stage pulse stacking system using image-relaying cavities is controlled for 14 hours using a pulse-pattern sensing algorithm. For coherent addition of simultaneous ultrafast pulses, we introduce a new scheme using diffractive optics, and show experimentally that four pulses can be added while a preserving pulse width of 128 fs.

  5. Cross stratum resources protection in fog-computing-based radio over fiber networks for 5G services

    NASA Astrophysics Data System (ADS)

    Guo, Shaoyong; Shao, Sujie; Wang, Yao; Yang, Hui

    2017-09-01

    In order to meet the requirement of internet of things (IoT) and 5G, the cloud radio access network is a paradigm which converges all base stations computational resources into a cloud baseband unit (BBU) pool, while the distributed radio frequency signals are collected by remote radio head (RRH). A precondition for centralized processing in the BBU pool is an interconnection fronthaul network with high capacity and low delay. However, it has become more complex and frequent in the interaction between RRH and BBU and resource scheduling among BBUs in cloud. Cloud radio over fiber network has been proposed in our previous work already. In order to overcome the complexity and latency, in this paper, we first present a novel cross stratum resources protection (CSRP) architecture in fog-computing-based radio over fiber networks (F-RoFN) for 5G services. Additionally, a cross stratum protection (CSP) scheme considering the network survivability is introduced in the proposed architecture. The CSRP with CSP scheme can effectively pull the remote processing resource locally to implement the cooperative radio resource management, enhance the responsiveness and resilience to the dynamic end-to-end 5G service demands, and globally optimize optical network, wireless and fog resources. The feasibility and efficiency of the proposed architecture with CSP scheme are verified on our software defined networking testbed in terms of service latency, transmission success rate, resource occupation rate and blocking probability.

  6. Special cascade LMS equalization scheme suitable for 60-GHz RoF transmission system.

    PubMed

    Liu, Siming; Shen, Guansheng; Kou, Yanbin; Tian, Huiping

    2016-05-16

    We design a specific cascade least mean square (LMS) equalizer and to the best of our knowledge, it is the first time this kind of equalizer has been employed for 60-GHz millimeter-wave (mm-wave) radio over fiber (RoF) system. The proposed cascade LMS equalizer consists of two sub-equalizers which are designated for optical and wireless channel compensations, respectively. We control the linear and nonlinear factors originated from optical link and wireless link separately. The cascade equalization scheme can keep the nonlinear distortions of the RoF system in a low degree. We theoretically and experimentally investigate the parameters of the two sub-equalizers to reach their best performances. The experiment results show that the cascade equalization scheme has a faster convergence speed. It needs a training sequence with a length of 10000 to reach its stable status, which is only half as long as the traditional LMS equalizer needs. With the utility of a proposed equalizer, the 60-GHz RoF system can successfully transmit 5-Gbps BPSK signal over 10-km fiber and 1.2-m wireless link under forward error correction (FEC) limit 10-3. An improvement of 4dBm and 1dBm in power sensitivity at BER 10-3 over traditional LMS equalizer can be observed when the signals are transmitted through Back-to-Back (BTB) and 10-km fiber 1.2-m wireless links, respectively.

  7. A novel laser-induced fluorescence scheme for Ar-I in a plasma.

    PubMed

    Short, Zachary D; Siddiqui, M Umair; Henriquez, Miguel F; McKee, John S; Scime, Earl E

    2016-01-01

    Here we describe a novel infrared laser-induced fluorescence scheme for the 1s2 state of Ar-I using an 841.052 nm (vacuum) Sacher tunable diode laser oscillator and compare it to an established 667.913 nm (vacuum) 1s4-pumping Ar-I LIF scheme using a master oscillator power amplifier laser [A. M. Keesee et al. Rev. Sci. Instrum. 75, 4091 (2004)]. The novel scheme exhibits a significantly greater signal-to-noise ratio for a given injected laser power than the established scheme. We argue that this is caused by less intense spontaneous Ar-I radiation near the LIF emission wavelength for the 1s2 scheme as compared to the 1s4 scheme. In addition we present an updated iodine cell spectrum around the 1s4 LIF scheme pump wavelength.

  8. EMTA-NLA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    2009-10-14

    EMTA-NLA is a computer program for analyzing the nonlinear stiffness, strength, and thermo-elastic properties of discontinuous fiber composite materials. Discontinuous fiber composites are chopped-fiber reinforced polymer materials that are formed by injection molding or compression molding techniques. The fibers tend to align during forming as the composite flows and fills the mold. EMTA-NLA can read the fiber orientation data from the molding software, Autodesk Moldflow Plastics Insight, and calculate the local material properties for accurately analyzing the warpage, stiffness, and strength of the as-formed composite part using the commercial NLA software. Therefore, EMTA-NLA is a unique assembly of mathematical algorithmsmore » that provide a one-of-a-kind composites constitutive model that links these two powerful commercial software packages.« less

  9. High-power ultralong-wavelength Tm-doped silica fiber laser cladding-pumped with a random distributed feedback fiber laser

    PubMed Central

    Jin, Xiaoxi; Du, Xueyuan; Wang, Xiong; Zhou, Pu; Zhang, Hanwei; Wang, Xiaolin; Liu, Zejin

    2016-01-01

    We demonstrated a high-power ultralong-wavelength Tm-doped silica fiber laser operating at 2153 nm with the output power exceeding 18 W and the slope efficiency of 25.5%. A random distributed feedback fiber laser with the center wavelength of 1173 nm was employed as pump source of Tm-doped fiber laser for the first time. No amplified spontaneous emissions or parasitic oscillations were observed when the maximum output power reached, which indicates that employing 1173 nm random distributed feedback fiber laser as pump laser is a feasible and promising scheme to achieve high-power emission of long-wavelength Tm-doped fiber laser. The output power of this Tm-doped fiber laser could be further improved by optimizing the length of active fiber, reflectivity of FBGs, increasing optical efficiency of pump laser and using better temperature management. We also compared the operation of 2153 nm Tm-doped fiber lasers pumped with 793 nm laser diodes, and the maximum output powers were limited to ~2 W by strong amplified spontaneous emission and parasitic oscillation in the range of 1900–2000 nm. PMID:27416893

  10. High-power ultralong-wavelength Tm-doped silica fiber laser cladding-pumped with a random distributed feedback fiber laser.

    PubMed

    Jin, Xiaoxi; Du, Xueyuan; Wang, Xiong; Zhou, Pu; Zhang, Hanwei; Wang, Xiaolin; Liu, Zejin

    2016-07-15

    We demonstrated a high-power ultralong-wavelength Tm-doped silica fiber laser operating at 2153 nm with the output power exceeding 18 W and the slope efficiency of 25.5%. A random distributed feedback fiber laser with the center wavelength of 1173 nm was employed as pump source of Tm-doped fiber laser for the first time. No amplified spontaneous emissions or parasitic oscillations were observed when the maximum output power reached, which indicates that employing 1173 nm random distributed feedback fiber laser as pump laser is a feasible and promising scheme to achieve high-power emission of long-wavelength Tm-doped fiber laser. The output power of this Tm-doped fiber laser could be further improved by optimizing the length of active fiber, reflectivity of FBGs, increasing optical efficiency of pump laser and using better temperature management. We also compared the operation of 2153 nm Tm-doped fiber lasers pumped with 793 nm laser diodes, and the maximum output powers were limited to ~2 W by strong amplified spontaneous emission and parasitic oscillation in the range of 1900-2000 nm.

  11. Model of a thin film optical fiber fluorosensor

    NASA Technical Reports Server (NTRS)

    Egalon, Claudio O.; Rogowski, Robert S.

    1991-01-01

    The efficiency of core-light injection from sources in the cladding of an optical fiber is modeled analytically by means of the exact field solution of a step-profile fiber. The analysis is based on the techniques by Marcuse (1988) in which the sources are treated as infinitesimal electric currents with random phase and orientation that excite radiation fields and bound modes. Expressions are developed based on an infinite cladding approximation which yield the power efficiency for a fiber coated with fluorescent sources in the core/cladding interface. Marcuse's results are confirmed for the case of a weakly guiding cylindrical fiber with fluorescent sources uniformly distributed in the cladding, and the power efficiency is shown to be practically constant for variable wavelengths and core radii. The most efficient fibers have the thin film located at the core/cladding boundary, and fibers with larger differences in the indices of refraction are shown to be the most efficient.

  12. All-fiber orbital angular momentum mode generation and transmission system

    NASA Astrophysics Data System (ADS)

    Heng, Xiaobo; Gan, Jiulin; Zhang, Zhishen; Qian, Qi; Xu, Shanhui; Yang, Zhongmin

    2017-11-01

    We proposed and demonstrated an all-fiber system for generating and transmitting orbital angular momentum (OAM) mode light. A specially designed multi-core fiber (MCF) was used to endow with guide modes different phase change and two tapered transition regions were used for providing low-loss interfaces between different fiber structures. By arranging the refractive index distribution among the multi-cores and controlling the length of MCF, which essentially change the phase difference between the neighboring cores, OAM modes with different topological charge l can be generated selectively. Through two tapered transition regions, the non-OAM mode light can be effectively injected into the MCF and the generated OAM mode light can be easily launched into OAM mode supporting fiber for long distance and high purity transmission. Such an all-fiber OAM mode generation and transmission system owns the merits of flexibility, compactness, portability, and would have practical application value in OAM optical fiber communication systems.

  13. Hollow fiber clinostat for simulating microgravity in cell culture

    NASA Technical Reports Server (NTRS)

    Rhodes, Percy H. (Inventor); Miller, Teresa Y. (Inventor); Snyder, Robert S. (Inventor)

    1992-01-01

    A clinostat for simulating microgravity on cell systems carried in a fiber fixedly mounted in a rotatable culture vessel is disclosed. The clinostat is rotated horizontally along its longitudinal axis to simulate microgravity or vertically as a control response. Cells are injected into the fiber and the ends of the fiber are sealed and secured to spaced end pieces of a fiber holder assembly which consists of the end pieces, a hollow fiber, a culture vessel, and a tension spring with three alignment pins. The tension spring is positioned around the culture vessel with its ends abutting the end pieces for alignment of the spring. After the fiber is secured, the spring is decompressed to maintain tension on the fiber while it is being rotated. This assures that the fiber remains aligned along the axis of rotation. The fiber assembly is placed in the culture vessel and culture medium is added. The culture vessel is then inserted into the rotatable portion of the clinostat and subjected to rotate at selected rpms. The internal diameter of the hollow fiber determines the distance the cells are from the axis of rotation.

  14. Present state of HDTV coding in Japan and future prospect

    NASA Astrophysics Data System (ADS)

    Murakami, Hitomi

    The development status of HDTV digital codecs in Japan is evaluated; several bit rate-reduction codecs have been developed for 1125 lines/60-field HDTV, and performance trials have been conducted through satellite and optical fiber links. Prospective development efforts will attempt to achieve more efficient coding schemes able to reduce the bit rate to as little as 45 Mbps, as well as to apply coding schemes to automated teller machine networks.

  15. Multi-parameter fiber optic sensors based on fiber random grating

    NASA Astrophysics Data System (ADS)

    Xu, Yanping; Zhang, Mingjiang; Lu, Ping; Mihailov, Stephen; Bao, Xiaoyi

    2017-04-01

    Two novel configurations of multi-parameter fiber-optic sensing systems based on the fiber random grating are reported. The fiber random grating is fabricated through femtosecond laser induced refractive index modification over a 10cm standard telecom single mode fiber. In one configuration, the reflective spectrum of the fiber random grating is directly detected and a wavelength-division spectral cross-correlation algorithm is adopted to extract the spectral shifts for simultaneous measurement of temperature, axial strain, and surrounding refractive index. In the other configuration, a random fiber ring laser is constructed by incorporating the random feedback from the random grating. Numerous polarization-dependent spectral filters are formed along the random grating and superimposed to provide multiple lasing lines with high signal-to-noise ratio up to 40dB, which enables a high-fidelity multi-parameter sensing scheme by monitoring the spectral shifts of the lasing lines. Without the need of phase mask for fabrication and with the high physical strength, the random grating based sensors are much simpler and more compact, which could be potentially an excellent alternative for liquid medical sample sensing in biomedical and biochemical applications.

  16. Comparison of histopathological effects of perineural administration of bupivacaine and bupivacaine-dexmedetomidine in rat sciatic nerve.

    PubMed

    Memari, Elham; Hosseinian, Mohammad-Ali; Mirkheshti, Ali; Arhami-Dolatabadi, Ali; Mirabotalebi, Mojtaba; Khandaghy, Mohsen; Daneshbod, Yahya; Alizadeh, Leila; Shirian, Sadegh

    2016-11-01

    Injection of a variety of drugs such as local anesthetics (LAs) for peripheral nerve block has been shown to cause damage to peripheral nerves. Bupivacaine is a local anesthetic widely used in surgical procedures. The aim of this study was to evaluate the neurotoxicity of LAs including Bupivacaine and dexmedetomidine (DEX)-Bupivacaine on sciatic nerve tissue at histopathological level. In addition, we investigated whether perineural administration of DEX can attenuate Bupivacaine-induced neurotoxicity. Twenty adult Sprague Dawley rats received unilateral sciatic nerve blocks with either 0.2ml of 0.5% bupivacaine (n=8) or 0.5% bupivacaine plus 0.005% DEX (n=8) or normal saline (0.9%, as control group) (n=4) in the left hind extremity. Sciatic nerves were harvested at 14days post-injection and analyzed for nerve damage using ultrastructure and histopathologic analysis. Histopathology of sciatic nerve at day 14 post-injection showed a variable degree of neuronal injury associated with perineural inflammation in each treatment group and was classified as none or mild, intermediate or severe. Administration of both LAs resulted in a significant decrease in the total number of myelinated fibers per nerve (95% CI for group difference: Bupivacaine, P=0.001, DEX-Bupivacaine, P=0.036) compared to the saline control group. Animals that received these perineural local anesthetics (LAs) injections showed increased severity of injury compared to the control group. Animals in the DEX-Bupivacaine group had higher perineural inflammation and nerve damage than those of the saline control group and less than those of the Bupivacaine group at day 14 post-injection. Quantitatively, average total nerve fiber per nerve and average myelinated nerve fiber density in the injured region of the Bupivacaine-treated group was less than that of the DEX-Bupivacaine-treated group. LAs injection into the nerve causes peripheral nerve damage and remains an important clinical danger. Bupivacaine is associated with considerable histopathological changes, including edema of the perineurium and myelin degeneration with Wallerian degeneration, when injected perineurally. Perineural DEX added to a clinical concentration of bupivacaine attenuates the Bupivacaine-induced injuries. Copyright © 2016 Elsevier GmbH. All rights reserved.

  17. 21 THz quantum-cascade laser operating up to 144 K based on a scattering-assisted injection design

    DOE PAGES

    Khanal, Sudeep; Reno, John L.; Kumar, Sushil

    2015-07-22

    A 2.1 THz quantum cascade laser (QCL) based on a scattering-assisted injection and resonant-phonon depopulation design scheme is demonstrated. The QCL is based on a four-well period implemented in the GaAs/Al 0.15Ga 0.85As material system. The QCL operates up to a heat-sink temperature of 144 K in pulsed-mode, which is considerably higher than that achieved for previously reported THz QCLs operating around the frequency of 2 THz. At 46 K, the threshold current-density was measured as ~745 A/cm 2 with a peak-power output of ~10 mW. Electrically stable operation in a positive differential-resistance regime is achieved by a careful choicemore » of design parameters. The results validate the robustness of scattering-assisted injection schemes for development of low-frequency (ν < 2.5 THz) QCLs.« less

  18. Effects of Injection Scheme on Rotating Detonation Engine Operation

    NASA Astrophysics Data System (ADS)

    Chacon, Fabian; Duvall, James; Gamba, Mirko

    2017-11-01

    In this work, we experimentally investigate the operation and performance characteristics of a rotating detonation engine (RDE) operated with different fuel injection schemes and operating conditions. In particular, we investigate the detonation and operation characteristics produced with an axial flow injector configuration and semi-impinging injector configurations. These are compared to the characteristics produced with a canonical radial injection system (AFRL injector). Each type produces a different flowfield and mixture distribution, leading to a different detonation initiation, injector dynamic response, and combustor pressure rise. By using a combination of diagnostics, we quantify the pressure loses and gains in the system, the ability to maintain detonation over a range of operating points, and the coupling between the detonation and the air/fuel feed lines. We particularly focus on how this coupling affects both the stability and the performance of the detonation wave. This work is supported by the DOE/UTSR program under project DE-FE0025315.

  19. 2.1 THz quantum-cascade laser operating up to 144 K based on a scattering-assisted injection design.

    PubMed

    Khanal, Sudeep; Reno, John L; Kumar, Sushil

    2015-07-27

    A 2.1 THz quantum cascade laser (QCL) based on a scattering-assisted injection and resonant-phonon depopulation design scheme is demonstrated. The QCL is based on a four-well period implemented in the GaAs/Al0.15Ga0.85As material system. The QCL operates up to a heat-sink temperature of 144 K in pulsed-mode, which is considerably higher than that achieved for previously reported THz QCLs operating around the frequency of 2 THz. At 46 K, the threshold current-density was measured as ∼ 745 A/cm2 with a peak-power output of ∼10 mW. Electrically stable operation in a positive differential-resistance regime is achieved by a careful choice of design parameters. The results validate the robustness of scattering-assisted injection schemes for development of low-frequency (ν < 2.5 THz) QCLs.

  20. Soluble Dietary Fibers Can Protect the Small Intestinal Mucosa Without Affecting the Anti-inflammatory Effect of Indomethacin in Adjuvant-Induced Arthritis Rats.

    PubMed

    Satoh, Hiroshi; Matsumoto, Hiroki; Hirakawa, Tomoe; Wada, Naoki

    2016-01-01

    How to prevent the small intestinal damage induced by NSAIDs is an urgent issue to be resolved. In the present study, we examined the effects of soluble dietary fibers on both anti-inflammatory and ulcerogenic effects of indomethacin in arthritic rats. Male Wistar rats weighing 180-220 g were used. Arthritis was induced by injecting Freund's complete adjuvant (killed M. tuberculosis) into the plantar region of the right hindpaw. The animals were fed a regular powder diet for rats or a diet supplemented with soluble dietary fibers such as pectin or guar gum. Indomethacin was administered once a day for 3 days starting 14 days after the adjuvant injection, when marked arthritis was observed. The volumes of the hindpaw were measured before and after indomethacin treatment to evaluate the effect of indomethacin on edema. The lesions in the small intestine were examined 24 h after the final dosing of indomethacin. Hindpaw volume was increased about 3 times 14 days after injection of the adjuvant. Indomethacin (3-10 mg/kg, p.o.) decreased hindpaw volume dose-dependently, but caused severe lesions in the small intestine at doses of 6 and 10 mg/kg. The addition of pectin (1-10 %) or guar gum (10 %) to the diet markedly decreased the lesion formation without affecting the anti-edema action of indomethacin. The same effects of pectin were observed when indomethacin was administered subcutaneously. It is suggested that soluble dietary fibers can prevent intestinal damage induced by NSAIDs without affecting the anti-inflammatory effect of these agents.

  1. Neurons innervating the lamina in the butterfly, Papilio xuthus.

    PubMed

    Hamanaka, Yoshitaka; Shibasaki, Hiromichi; Kinoshita, Michiyo; Arikawa, Kentaro

    2013-05-01

    The butterfly Papilio xuthus has compound eyes with three types of ommatidia. Each type houses nine spectrally heterogeneous photoreceptors (R1-R9) that are divided into six spectral classes: ultraviolet, violet, blue, green, red, and broad-band. Analysis of color discrimination has shown that P. xuthus uses the ultraviolet, blue, green, and red receptors for foraging. The ultraviolet and blue receptors are long visual fibers terminating in the medulla, whereas the green and red receptors are short visual fibers terminating in the lamina. This suggests that processing of wavelength information begins in the lamina in P. xuthus, unlike in flies. To establish the anatomical basis of color discrimination mechanisms, we examined neurons innervating the lamina by injecting neurobiotin into this neuropil. We found that in addition to photoreceptors and lamina monopolar cells, three distinct groups of cells project fibers into the lamina. Their cell bodies are located (1) at the anterior rim of the medulla, (2) between the proximal surface of the medulla and lobula plate, and (3) in the medulla cell body rind. Neurobiotin injection also labeled distinct terminals in medulla layers 1, 2, 3, 4 and 5. Terminals in layer 4 belong to the long visual fibers (R1, 2 and 9), while arbors in layers 1, 2 and 3 probably correspond to terminals of three subtypes of lamina monopolar cells, respectively. Immunocytochemistry coupled with neurobiotin injection revealed their transmitter candidates; neurons in (1) and a subset of neurons in (2) are immunoreactive to anti-serotonin and anti-γ-aminobutyric acid, respectively.

  2. Design and development of an injection-molded demultiplexer for optical communication systems in the visible range.

    PubMed

    Höll, S; Haupt, M; Fischer, U H P

    2013-06-20

    Optical simulation software based on the ray-tracing method offers easy and fast results in imaging optics. This method can also be applied in other fields of light propagation. For short distance communications, polymer optical fibers (POFs) are gradually gaining importance. This kind of fiber offers a larger core diameter, e.g., the step index POF features a core diameter of 980 μm. Consequently, POFs have a large number of modes (>3 million modes) in the visible range, and ray tracing could be used to simulate the propagation of light. This simulation method is applicable not only for the fiber itself but also for the key components of a complete POF network, e.g., couplers or other key elements of the transmission line. In this paper a demultiplexer designed and developed by means of ray tracing is presented. Compared to the classical optical design, requirements for optimal design differ particularly with regard to minimizing the insertion loss (IL). The basis of the presented key element is a WDM device using a Rowland spectrometer setup. In this approach the input fiber carries multiple wavelengths, which will be divided into multiple output fibers that transmit only one wavelength. To adapt the basic setup to POF, the guidance of light in this element has to be changed fundamentally. Here, a monolithic approach is presented with a blazed grating using an aspheric mirror to minimize most of the aberrations. In the simulations the POF is represented by an area light source, while the grating is analyzed for different orders and the highest possible efficiency. In general, the element should be designed in a way that it can be produced with a mass production technology like injection molding in order to offer a reasonable price. However, designing the elements with regard to injection molding leads to some inherent challenges. The microstructure of an optical grating and the thick-walled 3D molded parts both result in high demands on the injection molding process. This also requires complex machining of the molding tool. Therefore, different experiments are done to optimize the process parameter, find the best molding material, and find a suitable machining method for the molding tool. The paper will describe the development of the demultiplexer by means of ray-tracing simulations step by step. Also, the process steps and the realized solutions for the injection molding are described.

  3. Real-time needle guidance with photoacoustic and laser-generated ultrasound probes

    NASA Astrophysics Data System (ADS)

    Colchester, Richard J.; Mosse, Charles A.; Nikitichev, Daniil I.; Zhang, Edward Z.; West, Simeon; Beard, Paul C.; Papakonstantinou, Ioannis; Desjardins, Adrien E.

    2015-03-01

    Detection of tissue structures such as nerves and blood vessels is of critical importance during many needle-based minimally invasive procedures. For instance, unintentional injections into arteries can lead to strokes or cardiotoxicity during interventional pain management procedures that involve injections in the vicinity of nerves. Reliable detection with current external imaging systems remains elusive. Optical generation and reception of ultrasound allow for depth-resolved sensing and they can be performed with optical fibers that are positioned within needles used in clinical practice. The needle probe developed in this study comprised separate optical fibers for generating and receiving ultrasound. Photoacoustic generation of ultrasound was performed on the distal end face of an optical fiber by coating it with an optically absorbing material. Ultrasound reception was performed using a high-finesse Fabry-Pérot cavity. The sensor data was displayed as an M-mode image with a real-time interface. Imaging was performed on a biological tissue phantom.

  4. The LED and fiber based calibration system for the photomultiplier array of SNO+

    NASA Astrophysics Data System (ADS)

    Seabra, L.; Alves, R.; Andringa, S.; Bradbury, S.; Carvalho, J.; Clark, K.; Coulter, I.; Descamps, F.; Falk, L.; Gurriana, L.; Kraus, C.; Lefeuvre, G.; Maio, A.; Maneira, J.; Mottram, M.; Peeters, S.; Rose, J.; Sinclair, J.; Skensved, P.; Waterfield, J.; White, R.; Wilson, J.; SNO+ Collaboration

    2015-02-01

    A new external LED/fiber light injection calibration system was designed for the calibration and monitoring of the photomultiplier array of the SNO+ experiment at SNOLAB. The goal of the calibration system is to allow an accurate and regular measurement of the photomultiplier array's performance, while minimizing the risk of radioactivity ingress. The choice in SNO+ was to use a set of optical fiber cables to convey into the detector the light pulses produced by external LEDs. The quality control was carried out using a modified test bench that was used in QC of optical fibers for TileCal/ATLAS. The optical fibers were characterized for transmission, timing and angular dispersions. This article describes the setups used for the characterization and quality control of the system based on LEDs and optical fibers and their results.

  5. Recent development on high-power tandem-pumped fiber laser

    NASA Astrophysics Data System (ADS)

    Zhou, Pu; Xiao, Hu; Leng, Jinyong; Zhang, Hanwei; Xu, Jiangmin; Wu, Jian

    2016-11-01

    High power fiber laser is attracting more and more attention due to its advantage in excellent beam quality, high electricto- optical conversion efficiency and compact system configuration. Power scaling of fiber laser is challenged by the brightness of pump source, nonlinear effect, modal instability and so on. Pumping active fiber by using high-brightness fiber laser instead of common laser diode may be the solution for the brightness limitation. In this paper, we will present the recent development of various kinds of high power fiber laser based on tandem pumping scheme. According to the absorption property of Ytterbium-doped fiber, Thulium-doped fiber and Holmium-doped fiber, we have theoretically studied the fiber lasers that operate at 1018 nm, 1178 nm and 1150 nm, respectively in detail. Consequently, according to the numerical results we have optimized the fiber laser system design, and we have achieved (1) 500 watt level 1018nm Ytterbium-doped fiber laser (2) 100 watt level 1150 nm fiber laser and 100 watt level random fiber laser (3) 30 watt 1178 nm Ytterbium-doped fiber laser, 200 watt-level random fiber laser. All of the above-mentioned are the record power for the corresponded type of fiber laser to the best of our knowledge. By using the high-brightness fiber laser operate at 1018 nm, 1178 nm and 1150 nm that we have developed, we have achieved the following high power fiber laser (1) 3.5 kW 1090 nm Ytterbium-doped fiber amplifier (2) 100 watt level Thulium-doped fiber laser and (3) 50 watt level Holmium -doped fiber laser.

  6. DAS Microseismic and Strain Monitoring During Hydraulic Fracturing

    NASA Astrophysics Data System (ADS)

    Kahn, D.; Karrenbach, M. H.; Cole, S.; Boone, K.; Ridge, A.; Rich, J.; Langton, D.; Silver, K.

    2017-12-01

    Hydraulic fracturing operations in unconventional subsurface reservoirs are typically monitored using geophones located either at the surface or in adjacent wellbores. A novel approach to record hydraulic stimulations utilizes fiber-optic Distributed Acoustic Sensing (DAS). A fiber-optic cable was installed in a treatment well in a subsurface reservoir (Meramec formation). DAS data were recorded during fluid injection of same fibered well and also during injection into a nearby treatment well at a distance of 350m. For both scenarios the DAS sensing array consisted of approximately 1000 channels at a fine spatial and temporal sampling and with a large sensing aperture. Thus, the full strain wave field is measured along the borehole over its entire length. A variety of physical effects, such as temperature, low-frequency strain and microseismicity were measured and correlated with the treatment program during hydraulic fracturing of the wells. These physical effects occur at various frequency scales and produce complementary measurements. Microseismic events in the magnitude range of -0.5 and -2.0 at a maximum distance of 500m were observed and analyzed for recordings from the fiber-equipped treatment well and also neighboring treatment well. The analysis of this DAS data set demonstrates that current fiber-optic sensing technology can provide enough sensitivity to detect a significant number of microseismic events and that these events can be integrated with temperature and strain measurements for an improved subsurface reservoir description.

  7. Widely tunable opto-electronic oscillator

    NASA Astrophysics Data System (ADS)

    Maxin, J.; Pillet, G.; Morvan, L.; Dolfi, D.

    2012-03-01

    We present here a widely tunable opto-electronic oscillator (OEO) based on an Er,Yb:glass Dual Frequency Laser (DFL) at 1.53 μm. The beatnote is stabilized with an optical fiber delay line. Compared to classical optoelectronic oscillators, this architecture does not need RF filter and offers a wide tunability. We measured a reduction of 67 dB of the phase noise power spectral density (PSD) at 10 Hz of the carrier optical fiber leading to a level of -27 dBc/Hz with only 100 m optical fiber. Moreover, the scheme offers a microwave signal tunability from 2.5 to 5.5 GHz limited by the RF components.

  8. Enhancement of the sensitivity of a temperature sensor based on fiber Bragg gratings via weak value amplification.

    PubMed

    Salazar-Serrano, L J; Barrera, D; Amaya, W; Sales, S; Pruneri, V; Capmany, J; Torres, J P

    2015-09-01

    We present a proof-of-concept experiment aimed at increasing the sensitivity of Fiber-Bragg-gratings temperature sensors by making use of a weak-value-amplification scheme. The technique requires only linear optics elements for its implementation and appears as a promising method for increasing the sensitivity than state-of the-art sensors can currently provide. The device implemented here is able to generate a shift of the centroid of the spectrum of a pulse of ∼0.035  nm/°C, a nearly fourfold increase in sensitivity over the same fiber-Bragg-grating system interrogated using standard methods.

  9. Automatic deformable diffusion tensor registration for fiber population analysis.

    PubMed

    Irfanoglu, M O; Machiraju, R; Sammet, S; Pierpaoli, C; Knopp, M V

    2008-01-01

    In this work, we propose a novel method for deformable tensor-to-tensor registration of Diffusion Tensor Images. Our registration method models the distances in between the tensors with Geode-sic-Loxodromes and employs a version of Multi-Dimensional Scaling (MDS) algorithm to unfold the manifold described with this metric. Defining the same shape properties as tensors, the vector images obtained through MDS are fed into a multi-step vector-image registration scheme and the resulting deformation fields are used to reorient the tensor fields. Results on brain DTI indicate that the proposed method is very suitable for deformable fiber-to-fiber correspondence and DTI-atlas construction.

  10. Cladding-pumped passively mode-locked fiber laser generating femtosecond and picosecond pulses

    NASA Astrophysics Data System (ADS)

    Fermann, M. E.; Harter, D.; Minelly, J. D.; Vienne, G. G.

    1996-07-01

    Passively mode-locked fiber lasers cladding pumped by broad-area diode-laser arrays are described. With a dispersion-compenstated erbium-ytterbium fiber oscillator, 200-fs pulses with pulse energies up to 100 pJ are generated at a wavelength of 1560 nm. In a highly dispersive cavity, pulse widths of 3 ps with pulse energies up to 1 nJ are obtained. A saturable absorber is used for pulse startup, whereas nonlinear polarization evolution is exploited for steady-state pulse shaping. An environmentally stable design is ensured by use of a compensation scheme for linear polarization drifts in the cavity.

  11. Cladding-pumped passively mode-locked fiber laser generating femtosecond and picosecond pulses.

    PubMed

    Fermann, M E; Harter, D; Minelly, J D; Vienne, G G

    1996-07-01

    Passively mode-locked fiber lasers cladding pumped by broad-area diode-laser arrays are described. With a dispersion-compenstated erbium-ytterbium fiber oscillator, 200-fs pulses with pulse energies up to 100 pJ are generated at a wavelength of 1560 nm. In a highly dispersive cavity, pulse widths of 3 ps with pulse energies up to 1 nJ are obtained. A saturable absorber is used for pulse startup, whereas nonlinear polarization evolution is exploited for steady-state pulse shaping. An environmentally stable design is ensured by use of a compensation scheme for linear polarization drifts in the cavity.

  12. Switchable dual-wavelength single-longitudinal-mode erbium fiber laser utilizing a dual-ring scheme with a saturable absorber

    NASA Astrophysics Data System (ADS)

    Yang, Zi-Qing; Huang, Tzu-Jung; Chang, Yao-Jen; Yeh, Chien-Hung; Chow, Chi-Wai; Chen, Jing-Heng; Chen, Kun-Huang

    2018-06-01

    In this work, we propose and demonstrate a switchable dual-wavelength erbium-doped fiber (EDF) ring laser with stable single-longitudinal-mode (SLM) output. Here, a dual-ring (DR) structure with an unpumped EDF of 2 m is designed to achieve SLM oscillation. Five fiber Bragg gratings (FBGs) are applied in the laser cavity serving as the reflective element to generate different dual-wavelength outputs. In the measurement, six sets of generated dual-wavelengths with various mode-spacing (Δλ) can be achieved via the five FBGs. Additionally, the stability performance of the proposed EDF DR laser is also demonstrated.

  13. Developing single-laser sources for multimodal coherent anti-Stokes Raman scattering microscopy

    NASA Astrophysics Data System (ADS)

    Pegoraro, Adrian Frank

    Coherent anti-Stokes Raman scattering (CARS) microscopy has developed rapidly and is opening the door to new types of experiments. This work describes the development of new laser sources for CARS microscopy and their use for different applications. It is specifically focused on multimodal nonlinear optical microscopy—the simultaneous combination of different imaging techniques. This allows us to address a diverse range of applications, such as the study of biomaterials, fluid inclusions, atherosclerosis, hepatitis C infection in cells, and ice formation in cells. For these applications new laser sources are developed that allow for practical multimodal imaging. For example, it is shown that using a single Ti:sapphire oscillator with a photonic crystal fiber, it is possible to develop a versatile multimodal imaging system using optimally chirped laser pulses. This system can perform simultaneous two photon excited fluorescence, second harmonic generation, and CARS microscopy. The versatility of the system is further demonstrated by showing that it is possible to probe different Raman modes using CARS microscopy simply by changing a time delay between the excitation beams. Using optimally chirped pulses also enables further simplification of the laser system required by using a single fiber laser combined with nonlinear optical fibers to perform effective multimodal imaging. While these sources are useful for practical multimodal imaging, it is believed that for further improvements in CARS microscopy sensitivity, new excitation schemes are necessary. This has led to the design of a new, high power, extended cavity oscillator that should be capable of implementing new excitation schemes for CARS microscopy as well as other techniques. Our interest in multimodal imaging has led us to other areas of research as well. For example, a fiber-coupling scheme for signal collection in the forward direction is demonstrated that allows for fluorescence lifetime imaging without significant temporal distortion. Also highlighted is an imaging artifact that is unique to CARS microscopy that can alter image interpretation, especially when using multimodal imaging. By combining expertise in nonlinear optics, laser development, fiber optics, and microscopy, we have developed systems and techniques that will be of benefit for multimodal CARS microscopy.

  14. Dynamic control of droplets and pockets formation in homogeneous porous media immiscible displacements

    NASA Astrophysics Data System (ADS)

    Lins, T. F.; Azaiez, J.

    2018-03-01

    Interfacial instabilities of immiscible two-phase radial flow displacements in homogeneous porous media are analyzed for constant and time-dependent sinusoidal cyclic injection schemes. The analysis is carried out through numerical simulations based on the immersed interface and level set methods. The effects of the fluid properties and the injection flow parameters, namely, the period and the amplitude, on the formation of droplets and pockets are analyzed. It was found that larger capillary numbers or smaller viscosity ratios lead to more droplets/pockets that tend to appear earlier in time. Furthermore, the period and amplitude of the cyclic schemes were found to have a strong effect on droplets/pockets formations, and depending on their values, these can be enhanced or attenuated. In particular, the results revealed that there is a critical amplitude above which droplets and pockets formation is suppressed up to a specified time. This critical amplitude depends on the fluid properties, namely, the viscosity ratio and surface tension as well as on the period of the time-dependent scheme. The results of this study indicate that it is possible to use time-dependent cyclic schemes to control the formation and development of droplets/pockets in the flow and in particular to delay their appearance through an appropriate combination of the displacement scheme's amplitude and period.

  15. Time Transfer Through Optical Fibers (TTTOF): First Results of Calibrated Clock Comparisons

    DTIC Science & Technology

    2009-11-01

    satellite time and frequency transfer ( TWSTFT ) scheme. We discuss procedures for a proper calibration of such time transfer through optical fibers links... TWSTFT ground stations, which are currently spread over the PTB campus, to a common location at a Report Documentation Page Form ApprovedOMB No. 0704...PTTI) Meeting 90 new site (see Figure 1 and [6] for details). From late 2010 onwards, the TWSTFT stations will be installed on top of a high

  16. Evaluating the advances and use of hypodermic needles in dentistry.

    PubMed

    Boynes, Sean G

    2014-10-01

    Different injection techniques and patient management methodologies have been proposed to decrease the fear patients may have concerning dental needles. Dental providers should have an understanding of the technological advances, changes in techniques, and patient perceptions associated with the hypodermic needle. This article provides an overview of the pain perception process associated with dental injections. It reviews the two main sensory nerve fibers associated with injection pain and discusses needle properties as well as complications and adverse occurrences.

  17. Laser-induced microjet injection into preablated skin for more effective transdermal drug delivery

    NASA Astrophysics Data System (ADS)

    Jang, Hun-jae; Hur, Eugene; Kim, Yoonkwan; Lee, Seol-Hoon; Kang, Nae G.; Yoh, Jack J.

    2014-11-01

    A breakthrough in the efficient transdermal delivery of drug via the laser-driven microjet is reported. A single source of laser beam is split into two: one beam ablates a targeted spot on a skin and another beam drives the injector for fast microjet ejection into a preablated spot. This combined ablation and microjet injection scheme using a beam splitter utilizes 1∶4 laser energy sharing between generation of the microhole via ablation and the microjet which is generated using the Er:YAG laser beam at a 2940-nm wavelength and 150-μs pulse duration. A careful analysis of the injection mechanism is carried out by studying the response of the elastic membrane that separates a driving water unit for bubble expansion from a drug unit for a microjet ejection. The efficiency of the present delivery scheme is evaluated by the abdominal porcine skin test using the fluorescein isothiocyanate staining and the confocal microscopy for quantitative delivery confirmation. The depth of penetration and the injected volume of the drug are also confirmed by polyacrylamide gel tests.

  18. Laser-induced microjet injection into preablated skin for more effective transdermal drug delivery.

    PubMed

    Jang, Hun-Jae; Hur, Eugene; Kim, Yoonkwan; Lee, Seol-Hoon; Kang, Nae G; Yoh, Jack J

    2014-11-01

    A breakthrough in the efficient transdermal delivery of drug via the laser-driven microjet is reported. A single source of laser beam is split into two: one beam ablates a targeted spot on a skin and another beam drives the injector for fast microjet ejection into a preablated spot. This combined ablation and microjet injection scheme using a beam splitter utilizes laser energy sharing between generation of the microhole via ablation and the microjet which is generated using the Er:YAG laser beam at a 2940-nm wavelength and pulse duration. A careful analysis of the injection mechanism is carried out by studying the response of the elastic membrane that separates a driving water unit for bubble expansion from a drug unit for a microjet ejection. The efficiency of the present delivery scheme is evaluated by the abdominal porcine skin test using the fluorescein isothiocyanate staining and the confocal microscopy for quantitative delivery confirmation. The depth of penetration and the injected volume of the drug are also confirmed by polyacrylamide gel tests.

  19. Blood pulse wave velocity and pressure sensing via fiber based and free space based optical sensors

    NASA Astrophysics Data System (ADS)

    Sirkis, Talia; Beiderman, Yevgeny; Agdarov, Sergey; Beiderman, Yafim; Zalevsky, Zeev

    2017-02-01

    Continuous noninvasive measurement of vital bio-signs, such as cardiopulmonary parameters, is an important tool in evaluation of the patient's physiological condition and health monitoring. On the demand of new enabling technologies, some works have been done in continuous monitoring of blood pressure and pulse wave velocity. In this paper, we introduce two techniques for non-contact sensing of vital bio signs. In the first approach the optical sensor is based on single mode in-fibers Mach-Zehnder interferometer (MZI) to detect heartbeat, respiration and pulse wave velocity (PWV). The introduced interferometer is based on a new implanted scheme. It replaces the conventional MZI realized by inserting of discontinuities in the fiber to break the total internal reflection and scatter/collect light. The proposed fiber sensor was successfully incorporated into shirt to produce smart clothing. The measurements obtained from the smart clothing could be obtained in comfortable manner and there is no need to have an initial calibration or a direct contact between the sensor and the skin of the tested individual. In the second concept we show a remote noncontact blood pulse wave velocity and pressure measurement based on tracking the temporal changes of reflected secondary speckle patterns produced in human skin when illuminated by a laser beams. In both concept experimental validation of the proposed schemes is shown and analyzed.

  20. SIMULATIONS OF TRANSVERSE STACKING IN THE NSLS-II BOOSTER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fliller III, R.; Shaftan, T.

    2011-03-28

    The NSLS-II injection system consists of a 200 MeV linac and a 3 GeV booster. The linac needs to deliver 15 nC in 80 - 150 bunches to the booster every minute to achieve current stability goals in the storage ring. This is a very stringent requirement that has not been demonstrated at an operating light source. We have developed a scheme to transversely stack two bunch trains in the NSLS-II booster in order to alleviate the charge requirements on the linac. This scheme has been outlined previously. In this paper we show particle tracking simulations of the tracking scheme.more » We show simulations of the booster ramp with a stacked beam for a variety of lattice errors and injected beam parameters. In all cases the performance of the proposed stacking method is sufficient to reduce the required charge from the linac. For this reason the injection system of the NSLS-II booster is being designed to include this feature. The NSLS-II injection system consists of a 200 MeV linac and a 3 GeV booster. The injectors must provide 7.5nC in bunch trains 80-150 bunches long every minute for top off operation of the storage ring. Top off then requires that the linac deliver 15nC of charge once losses in the injector chain are taken into consideration. This is a very stringent requirement that has not been demonstrated at an operating light source. For this reason we have developed a method to transversely stack two bunch trains in the booster while maintaining the charge transport efficiency. This stacking scheme has been discussed previously. In this paper we show the simulations of the booster ramp with a single bunch train in the booster. Then we give a brief overview of the stacking scheme. Following, we show the results of stacking two bunch trains in the booster with varying beam emittances and train separations. The behavior of the beam through the ramp is examined showing that it is possible to stack two bunch trains in the booster.« less

  1. Nonlinear combining and compression in multicore fibers

    DOE PAGES

    Chekhovskoy, I. S.; Rubenchik, A. M.; Shtyrina, O. V.; ...

    2016-10-25

    In this paper, we demonstrate numerically light-pulse combining and pulse compression using wave-collapse (self-focusing) energy-localization dynamics in a continuous-discrete nonlinear system, as implemented in a multicore fiber (MCF) using one-dimensional (1D) and 2D core distribution designs. Large-scale numerical simulations were performed to determine the conditions of the most efficient coherent combining and compression of pulses injected into the considered MCFs. We demonstrate the possibility of combining in a single core 90% of the total energy of pulses initially injected into all cores of a 7-core MCF with a hexagonal lattice. Finally, a pulse compression factor of about 720 can bemore » obtained with a 19-core ring MCF.« less

  2. Radio-over-fiber using an optical antenna based on Rydberg states of atoms

    NASA Astrophysics Data System (ADS)

    Deb, A. B.; Kjærgaard, N.

    2018-05-01

    We provide an experimental demonstration of a direct fiber-optic link for RF transmission ("radio-over-fiber") using a sensitive optical antenna based on a rubidium vapor cell. The scheme relies on measuring the transmission of laser light at an electromagnetically induced transparency resonance that involves highly excited Rydberg states. By dressing pairs of Rydberg states using microwave fields that act as local oscillators, we encoded RF signals in the optical frequency domain. The light carrying the information is linked via a virtually lossless optical fiber to a photodetector where the signal is retrieved. We demonstrate a signal bandwidth in excess of 1 MHz limited by the available coupling laser power and atomic optical density. Our sensitive, non-metallic and readily scalable optical antenna for microwaves allows extremely low-levels of optical power (˜1 μW) throughput in the fiber-optic link. It offers a promising future platform for emerging wireless network infrastructures.

  3. Beam combining and SBS suppression in white noise and pseudo-random modulated amplifiers

    NASA Astrophysics Data System (ADS)

    Anderson, Brian; Flores, Angel; Holten, Roger; Ehrenreich, Thomas; Dajani, Iyad

    2015-03-01

    White noise phase modulation (WNS) and pseudo-random binary sequence phase modulation (PRBS) are effective techniques for mitigation of nonlinear effects such as stimulated Brillouin scattering (SBS); thereby paving the way for higher power narrow linewidth fiber amplifiers. However, detailed studies comparing both coherent beam combination and the SBS suppression of these phase modulation schemes have not been reported. In this study an active fiber cutback experiment is performed comparing the enhancement factor of a PRBS and WNS broadened seed as a function of linewidth and fiber length. Furthermore, two WNS and PRBS modulated fiber lasers are coherently combined to measure and compare the fringe visibility and coherence length as a function of optical path length difference. Notably, the discrete frequency comb of PRBS modulation provides a beam combining re-coherence effect where the lasers periodically come back into phase. Significantly, this may reduce path length matching complexity in coherently combined fiber laser systems.

  4. Compensation for effects of ambient temperature on rare-earth doped fiber optic thermometer

    NASA Technical Reports Server (NTRS)

    Adamovsky, G.; Sotomayor, J. L.; Krasowski, M. J.; Eustace, J. G.

    1989-01-01

    Variations in ambient temperature have a negative effect on the performance of any fiber optic sensing system. A change in ambient temperature may alter the design parameters of fiber optic cables, connectors, sources, detectors, and other fiber optic components and eventually the performance of the entire system. The thermal stability of components is especially important in a system which employs intensity modulated sensors. Several referencing schemes have been developed to account for the variable losses that occur within the system. However, none of these conventional compensating techniques can be used to stabilize the thermal drift of the light source in a system based on the spectral properties of the sensor material. The compensation for changes in ambient temperature becomes especially important in fiber optic thermometers doped with rare earths. Different approaches to solving this problem are searched and analyzed.

  5. Compensation for effects of ambient temperature on rare-earth doped fiber optic thermometer

    NASA Technical Reports Server (NTRS)

    Adamovsky, G.; Sotomayor, J. L.; Krasowski, M. J.; Eustace, J. G.

    1990-01-01

    Variations in ambient temperature have a negative effect on the performance of any fiber optic sensing system. A change in ambient temperature may alter the design parameters of fiber optic cables, connectors, sources, detectors, and other fiber optic components and eventually the performance of the entire system. The thermal stability of components is especially important in a system which employs intensity modulated sensors. Several referencing schemes have been developed to account for the variable losses that occur within the system. However, none of these conventional compensating techniques can be used to stabilize the thermal drift of the light source in a system based on the spectral properties of the sensor material. The compensation for changes in ambient temperature becomes especially important in fiber optic thermometers doped with rare earths. Different approaches to solving this problem are searched and analyzed.

  6. Performance analysis of fiber-based free-space optical communications with coherent detection spatial diversity.

    PubMed

    Li, Kangning; Ma, Jing; Tan, Liying; Yu, Siyuan; Zhai, Chao

    2016-06-10

    The performances of fiber-based free-space optical (FSO) communications over gamma-gamma distributed turbulence are studied for multiple aperture receiver systems. The equal gain combining (EGC) technique is considered as a practical scheme to mitigate the atmospheric turbulence. Bit error rate (BER) performances for binary-phase-shift-keying-modulated coherent detection fiber-based free-space optical communications are derived and analyzed for EGC diversity receptions through an approximation method. To show the net diversity gain of a multiple aperture receiver system, BER performances of EGC are compared with a single monolithic aperture receiver system with the same total aperture area (same average total incident optical power on the aperture surface) for fiber-based free-space optical communications. The analytical results are verified by Monte Carlo simulations. System performances are also compared for EGC diversity coherent FSO communications with or without considering fiber-coupling efficiencies.

  7. Fiber sensor for non-contact estimation of vital bio-signs

    NASA Astrophysics Data System (ADS)

    Sirkis, Talia; Beiderman, Yevgeny; Agdarov, Sergey; Beiderman, Yafim; Zalevsky, Zeev

    2017-05-01

    Continuous noninvasive measurement of vital bio-signs, such as cardiopulmonary parameters, is an important tool in evaluation of the patient's physiological condition and health monitoring. On the demand of new enabling technologies, some works have been done in arterial pulse monitoring using optical fiber sensors. In this paper, we introduce a novel device based on single mode in-fibers Mach-Zehnder interferometer (MZI) to detect heartbeat, respiration and pulse wave velocity (PWV). The introduced interferometer is based on a new implanted scheme. It replaces the conventional MZI realized by inserting of discontinuities in the fiber to break the total internal reflection and scatter/collect light. The proposed fiber sensor was successfully incorporated into shirt to produce smart clothing. The measurements obtained from the smart clothing could be obtained in comfortable manner and there is no need to have an initial calibration or a direct contact between the sensor and the skin of the tested individual.

  8. Doping management for high-power fiber lasers: 100 W, few-picosecond pulse generation from an all-fiber-integrated amplifier.

    PubMed

    Elahi, P; Yılmaz, S; Akçaalan, O; Kalaycıoğlu, H; Oktem, B; Senel, C; Ilday, F Ö; Eken, K

    2012-08-01

    Thermal effects, which limit the average power, can be minimized by using low-doped, longer gain fibers, whereas the presence of nonlinear effects requires use of high-doped, shorter fibers to maximize the peak power. We propose the use of varying doping levels along the gain fiber to circumvent these opposing requirements. By analogy to dispersion management and nonlinearity management, we refer to this scheme as doping management. As a practical first implementation, we report on the development of a fiber laser-amplifier system, the last stage of which has a hybrid gain fiber composed of high-doped and low-doped Yb fibers. The amplifier generates 100 W at 100 MHz with pulse energy of 1 μJ. The seed source is a passively mode-locked fiber oscillator operating in the all-normal-dispersion regime. The amplifier comprises three stages, which are all-fiber-integrated, delivering 13 ps pulses at full power. By optionally placing a grating compressor after the first stage amplifier, chirp of the seed pulses can be controlled, which allows an extra degree of freedom in the interplay between dispersion and self-phase modulation. This way, the laser delivers 4.5 ps pulses with ~200 kW peak power directly from fiber, without using external pulse compression.

  9. Photonic bandgap narrowing in conical hollow core Bragg fibers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ozturk, Fahri Emre; Yildirim, Adem; Kanik, Mehmet

    2014-08-18

    We report the photonic bandgap engineering of Bragg fibers by controlling the thickness profile of the fiber during the thermal drawing. Conical hollow core Bragg fibers were produced by thermal drawing under a rapidly alternating load, which was applied by introducing steep changes to the fiber drawing speed. In conventional cylindrical Bragg fibers, light is guided by omnidirectional reflections from interior dielectric mirrors with a single quarter wave stack period. In conical fibers, the diameter reduction introduced a gradient of the quarter wave stack period along the length of the fiber. Therefore, the light guided within the fiber encountered slightlymore » smaller dielectric layer thicknesses at each reflection, resulting in a progressive blueshift of the reflectance spectrum. As the reflectance spectrum shifts, longer wavelengths of the initial bandgap cease to be omnidirectionally reflected and exit through the cladding, which narrows the photonic bandgap. A narrow transmission bandwidth is particularly desirable in hollow waveguide mid-infrared sensing schemes, where broadband light is coupled to the fiber and the analyte vapor is introduced into the hollow core to measure infrared absorption. We carried out sensing simulations using the absorption spectrum of isopropyl alcohol vapor to demonstrate the importance of narrow bandgap fibers in chemical sensing applications.« less

  10. Innovative design of composite structures: Use of curvilinear fiber format to improve structural efficiency

    NASA Technical Reports Server (NTRS)

    Hyer, M. W.; Charette, R. F.

    1987-01-01

    To increase the effectiveness and efficiency of fiber-reinforced materials, the use of fibers in a curvilinear rather than the traditional straightline format is explored. The capacity of a laminated square plate with a central circular hole loaded in tension is investigated. The orientation of the fibers is chosen so that the fibers in a particular layer are aligned with the principle stress directions in that layer. Finite elements and an iteration scheme are used to find the fiber orientation. A noninteracting maximum strain criterion is used to predict load capacity. The load capacities of several plates with different curvilinear fibers format are compared with the capacities of more conventional straightline format designs. It is found that the most practical curvilinear design sandwiches a group of fibers in a curvilinear format between a pair of +/-45 degree layers. This design has a 60% greater load capacity than a conventional quasi-isotropic design with the same number of layers. The +/-45 degree layers are necessary to prevent matrix cracking in the curvilinear layers due to stresses perpendicular to the fibers in those layers. Greater efficiencies are achievable with composite structures than now realized.

  11. A novel laser-induced fluorescence scheme for Ar-I in a plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Short, Zachary D., E-mail: zdshort@mix.wvu.edu; Siddiqui, M. Umair; Henriquez, Miguel F.

    Here we describe a novel infrared laser-induced fluorescence scheme for the 1s{sub 2} state of Ar-I using an 841.052 nm (vacuum) Sacher tunable diode laser oscillator and compare it to an established 667.913 nm (vacuum) 1s{sub 4}-pumping Ar-I LIF scheme using a master oscillator power amplifier laser [A. M. Keesee et al. Rev. Sci. Instrum. 75, 4091 (2004)]. The novel scheme exhibits a significantly greater signal-to-noise ratio for a given injected laser power than the established scheme. We argue that this is caused by less intense spontaneous Ar-I radiation near the LIF emission wavelength for the 1s{sub 2} scheme asmore » compared to the 1s{sub 4} scheme. In addition we present an updated iodine cell spectrum around the 1s{sub 4} LIF scheme pump wavelength.« less

  12. On the performance of the moment approximation for the numerical computation of fiber stress in turbulent channel flow

    NASA Astrophysics Data System (ADS)

    Gillissen, J. J. J.; Boersma, B. J.; Mortensen, P. H.; Andersson, H. I.

    2007-03-01

    Fiber-induced drag reduction can be studied in great detail by means of direct numerical simulation [J. S. Paschkewitz et al., J. Fluid Mech. 518, 281 (2004)]. To account for the effect of the fibers, the Navier-Stokes equations are supplemented by the fiber stress tensor, which depends on the distribution function of fiber orientation angles. We have computed this function in turbulent channel flow, by solving the Fokker-Planck equation numerically. The results are used to validate an approximate method for calculating fiber stress, in which the second moment of the orientation distribution is solved. Since the moment evolution equations contain higher-order moments, a closure relation is required to obtain as many equations as unknowns. We investigate the performance of the eigenvalue-based optimal fitted closure scheme [J. S. Cintra and C. L. Tucker, J. Rheol. 39, 1095 (1995)]. The closure-predicted stress and flow statistics in two-way coupled simulations are within 10% of the "exact" Fokker-Planck solution.

  13. Mach-Zehnder atom interferometer inside an optical fiber

    NASA Astrophysics Data System (ADS)

    Xin, Mingjie; Leong, Wuiseng; Chen, Zilong; Lan, Shau-Yu

    2017-04-01

    Precision measurement with light-pulse grating atom interferometry in free space have been used in the study of fundamental physics and applications in inertial sensing. Recent development of photonic band-gap fibers allows light for traveling in hollow region while preserving its fundamental Gaussian mode. The fibers could provide a very promising platform to transfer cold atoms. Optically guided matter waves inside a hollow-core photonic band-gap fiber can mitigate diffraction limit problem and has the potential to bring research in the field of atomic sensing and precision measurement to the next level of compactness and accuracy. Here, we will show our experimental progress towards an atom interferometer in optical fibers. We designed an atom trapping scheme inside a hollow-core photonic band-gap fiber to create an optical guided matter waves system, and studied the coherence properties of Rubidium atoms in this optical guided system. We also demonstrate a Mach-Zehnder atom interferometer in the optical waveguide. This interferometer is promising for precision measurements and designs of mobile atomic sensors.

  14. All-fiber tunable MMI fiber laser

    NASA Astrophysics Data System (ADS)

    Antonio-Lopez, J. E.; Castillo-Guzman, A.; May-Arrioja, D. A.; Selvas-Aguilar, R.; LiKamWa, P.

    2009-05-01

    We report on a novel tuning mechanism to fabricate an all-fiber tunable laser based on multimode interference (MMI) effects. It is well known that the wavelength response of MMI devices exhibits a linear dependence when the length of the multimode fiber (MMF) section. Therefore, tuning in the MMI filter is achieved using a ferrule (capillary tube of 127 μm diameter) filled with a liquid with a higher refractive index than that of the ferrule, which creates a variable liquid MMF. This liquid MMF is used to increase the effective length of the MMI filter and tuning takes place. Using this simple scheme, a tuning range of 30 nm was easily achieved, with very small insertion losses. The filter was tested within a typical Erbium doped fiber (EDF) ring laser cavity, and a tunable EDF laser covering the full C-band was demonstrated. The advantage of our laser is of course the simplicity of the tunable MMI filter, which results in an inexpensive tunable fiber laser.

  15. Discrete tuning concept for fiber-integrated lasers based on tailored FBG arrays and a theta cavity layout.

    PubMed

    Tiess, Tobias; Becker, Martin; Rothhardt, Manfred; Bartelt, Hartmut; Jäger, Matthias

    2017-03-15

    We demonstrate a novel tuning concept for pulsed fiber-integrated lasers with a fiber Bragg grating (FBG) array as a discrete and tailored spectral filter, as well as a modified laser design. Based on a theta cavity layout, the structural delay lines originating from the FBG array are balanced, enabling a constant repetition rate and stable pulse properties over the full tuning range. The emission wavelength is electrically tuned with respect to the filter properties based on an adapted temporal gating scheme using an acousto-optic modulator. This concept has been investigated with an Yb-doped fiber laser, demonstrating excellent emission properties with high signal contrast (>35  dB) and narrow linewidth (<150  pm) over a tuning range of 25 nm.

  16. Cognitive fiber Bragg grating sensors system based on fiber Fabry-Perot tunable filter technology

    NASA Astrophysics Data System (ADS)

    Zhang, Hongtao; Wang, Pengfei; Zou, Jilin; Xie, Jing; Cui, Hong-Liang

    2011-05-01

    The wavelength demodulation based on a Fiber Fabry-Pérot Tunable Filter (FFP-TF) is a common method for multiplexing Fiber Bragg Grating (FBG) sensors. But this method cannot be used to detect high frequency signals due to the limitation by the highest scanning rate that the FFP-TF can achieve. To overcome this disadvantage, in this paper we present a scheme of cognitive sensors network based on FFP-TF technology. By perceiving the sensing environment, system can automatically switch into monitoring signals in two modes to obtain better measurement results: multi measurement points, low frequency (<1 KHz) signal, and few measurement points but high frequency (~50 KHz) signals. This cognitive sensors network can be realized in current technology and satisfy current most industrial requirements.

  17. Low threshold linear cavity mode-locked fiber laser using microfiber-based carbon nanotube saturable absorber

    NASA Astrophysics Data System (ADS)

    Lau, K. Y.; Ng, E. K.; Abu Bakar, M. H.; Abas, A. F.; Alresheedi, M. T.; Yusoff, Z.; Mahdi, M. A.

    2018-06-01

    In this work, we demonstrate a linear cavity mode-locked erbium-doped fiber laser in C-band wavelength region. The passive mode-locking is achieved using a microfiber-based carbon nanotube saturable absorber. The carbon nanotube saturable absorber has low saturation fluence of 0.98 μJ/cm2. Together with the linear cavity architecture, the fiber laser starts to produce soliton pulses at low pump power of 22.6 mW. The proposed fiber laser generates fundamental soliton pulses with a center wavelength, pulse width, and repetition rate of 1557.1 nm, 820 fs, and 5.41 MHz, respectively. This mode-locked laser scheme presents a viable option in the development of low threshold ultrashort pulse system for deployment as a seed laser.

  18. Natural Fiber Composite Retting, Preform Manufacture and Molding (Project 18988/Agreement 16313)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simmons, Kevin L.; Howe, Daniel T.; Laddha, Sachin

    2009-12-31

    Plant-based natural fibers can be used in place of glass in fiber reinforced automotive composites to reduce weight, cost and provide environmental benefits. Current automotive applications use natural fibers in injection molded thermoplastics for interior, non-structural applications. Compression molded natural fiber reinforced thermosets have the opportunity to extend natural fiber composite applications to structural and semi-structural parts and exterior parts realizing further vehicle weight savings. The development of low cost molding and fiber processing techniques for large volumes of natural fibers has helped in understanding the barriers of non-aqueous retting. The retting process has a significant effect on the fibermore » quality and its processing ability that is related to the natural fiber composite mechanical properties. PNNL has developed a compression molded fiber reinforced composite system of which is the basis for future preforming activities and fiber treatment. We are using this process to develop preforming techniques and to validate fiber treatment methods relative to OEM provided application specifications. It is anticipated for next fiscal year that demonstration of larger quantities of SMC materials and molding of larger, more complex components with a more complete testing regimen in coordination with Tier suppliers under OEM guidance.« less

  19. EFFECT OF INTRAVITREAL RANIBIZUMAB ON GANGLION CELL COMPLEX AND PERIPAPILLARY RETINAL NERVE FIBER LAYER IN NEOVASCULAR AGE-RELATED MACULAR DEGENERATION USING SPECTRAL DOMAIN OPTICAL COHERENCE TOMOGRAPHY.

    PubMed

    Zucchiatti, Ilaria; Cicinelli, Maria V; Parodi, Maurizio Battaglia; Pierro, Luisa; Gagliardi, Marco; Accardo, Agostino; Bandello, Francesco

    2017-07-01

    To analyze the changes in ganglion cell complex and peripapillary retinal nerve fiber layer thickness, in central macular thickness and choroidal thickness on spectral domain optical coherence tomography in patients with neovascular age-related macular degeneration treated with intravitreal ranibizumab injections. All consecutive patients with untreated neovascular age-related macular degeneration received loading phase of three monthly intravitreal ranibizumab, followed by retreatments on a pro re nata protocol for 12 months. changes in ganglion cell complex and retinal nerve fiber layer at the end of follow-up. Secondary outcome: changes in best-corrected visual acuity, central macular thickness, and choroidal thickness at the end of follow-up. Choroidal thickness was measured at 500 μm, 1000 μm, and 1,500 μm intervals nasally, temporally, superiorly, and inferiorly to the fovea, respectively, on horizontal and vertical line scans centered on the fovea. Twenty-four eyes were included. Ganglion cell complex and peripapillary retinal nerve fiber layer thickness did not show statistically significant changes through 12 months (55.6 ± 18.5 and 81.9 ± 9.9 μm at baseline, 52.7 ± 19.3 and 84.6 ± 15.5 μm at month 12, P > 0.05). Central macular thickness showed progressive decrease from baseline to month 12, with maximum reduction at month 3 (P < 0.001). Statistically significant reduction in choroidal thickness was registered in the nasal 500, 1000, and 1,500 μm from the fovea, corresponding to the papillomacular region (from 169.6 ± 45.3 to 153.9 ± 46.9, P < 0.001). Intravitreal ranibizumab injections did not affect retinal nerve fiber layer and ganglion cell complex thickness in 1-year follow-up. Choroidal thickness in papillomacular area and central macular thickness was significantly reduced at the end of treatment. Further studies, with larger sample, longer follow-up, and greater number of injections, are warranted.

  20. Chaos-based CAZAC scheme for secure transmission in OFDM-PON

    NASA Astrophysics Data System (ADS)

    Fu, Xiaosong; Bi, Meihua; Zhou, Xuefang; Yang, Guowei; Lu, Yang; Hu, Miao

    2018-01-01

    To effectively resist malicious eavesdropping and performance deterioration, a novel chaos-based secure transmission scheme is proposed to enhance the physical layer security and reduce peak-to-average power ratio (PAPR) in orthogonal frequency division multiplexing passive optical network (OFDM-PON). By the randomly extracting operation of common CAZAC values, the specially-designed constant amplitude zero autocorrelation (CAZAC) is created for system encryption and PAPR reduction enhancing the transmission security. This method is verified in {10-Gb/s encrypted OFDM-PON with 20-km fiber transmission. Results show that, compared to common OFDM-PON, our scheme achieves {3-dB PAPR reduction and {1-dB receiver sensitivity improvement.

Top