Laser-induced retinal nerve fiber layer injury in the nonhuman primate
NASA Astrophysics Data System (ADS)
Zwick, Harry; Belkin, Michael; Zuclich, Joseph A.; Lund, David J.; Schuschereba, Steven T.; Scales, David K.
1996-04-01
We have evaluated the acute effects of Argon laser injury to the retinal nerve fiber layer (NFL) in the non-human primate. Single Argon laser exposures of 150 millijoules were employed to induce retinal NFL injury. Retinal NFL injury is not acute; unlike its parallel in retinal disease it has two components that emanate from the acute retinal injury site. The ascending component is more visible, primarily because it is ascending toward the disk, representing ganglion cell axons cut off from their nutrient base, the ganglion cell body; the descending component may require up to 3 weeks to develop. Its characterization depends on the distribution of retinal NFL and the slower degeneration of the ganglion cell bodies. Fluorescein angiography suggest a retinal capillary loss that occurs in the capillary bed of the retinal NFL defect. It may reflect a reduced capillary vascular requirement of the NFL as well as a possible reduction of activity in the axonal transport mechanisms in the ascending NFL defect.
Klein, Barbara E K; Johnson, Chris A; Meuer, Stacy M; Lee, Kyungmoo; Wahle, Andreas; Lee, Kristine E; Kulkarni, Amruta; Sonka, Milan; Abràmoff, Michael D; Klein, Ronald
2017-04-01
To examine the associations of nerve fiber layer (NFL) thickness with other ocular characteristics in older adults. Participants in the Beaver Dam Eye Study (2008-2010) underwent spectral domain optical coherence tomography (SD-OCT) scans of the optic nerve head, imaging of optic discs, frequency doubling technology (FDT) perimetry, measurement of intraocular pressure (IOP), and an interview concerning their history of glaucoma and use of drops to lower eye pressure. Self-reported histories of glaucoma and the use of drops to lower eye pressure were obtained at follow-up examinations (2014-2016). NFL thickness measured on OCTs varied by location around the optic nerve. Age was associated with mean NFL thickness. Mean NFL was thinnest in eyes with larger cup/disc (C/D) ratios. Horizontal hemifield defects or other optic nerve-field defects were associated with thinner NFL. NFL in persons who reported taking eye drops for high intraocular pressure was thinner compared to those not taking drops. After accounting for the presence of high intraocular pressure, large C/D ratios or hemifield defects, eyes with thinner NFL in the arcades were more likely (OR = 2.3 for 30 micron thinner NFL, p = 0.04) to have incident glaucoma at examination 5 years later. Retinal NFL thickness was associated with a new history of self-reported glaucoma 5 years later. A trial testing the usefulness of NFL as part of a screening battery for predicting glaucoma in those previously undiagnosed might lead to improved case finding and, ultimately, to diminishing the risk of visual field loss.
Mukherjee, Dibyendu; Stinnett, Sandra S.; Cousins, Scott W.; Potter, Guy G.; Burke, James R.; Farsiu, Sina; Whitson, Heather E.
2018-01-01
Inner retina in Alzheimer's Disease (AD) may experience neuroinflammation resulting in atrophy. The objective of our study was to determine whether retinal GCIPL (ganglion cell-inner plexiform layer) or nerve fiber layer (NFL) thickness may serve as noninvasive biomarkers to diagnose AD. This cross-sectional case-control study enrolled 15 mild cognitive impairment (MCI) patients, 15 mild-moderate AD patients, and 18 cognitively normal adults. NFL and GCIPL thicknesses on optical coherence tomography (OCT) were measured using Duke Optical Coherence Tomography Retinal Analysis Program (DOCTRAP) and Spectralis software. We demonstrated that regional thicknesses of NFL or GCIPL on macular or nerve OCTs did not differ between groups. However, a multi-variate regression analysis identified macular areas with a significant thickening or thinning in NFL and GCIPL in MCI and AD patients. Our primary findings controvert previous reports of thinner NFL in moderate-to-severe AD. The areas of thickening of GCIPL and NFL in the macula adjacent to areas of thinning, as revealed by a more complex statistical model, suggest that NFL and GCIPL may undergo dynamic changes during AD progression. PMID:29420642
Elbendary, Amal M; Abd El-Latef, Mohamed Hafez; Elsorogy, Hisham I; Enaam, Kamal M
2017-08-01
To evaluate diagnostic accuracy of substructure of ganglion cell complex versus peripapillary nerve fiber layer (NFL) thickness using spectral domain optical coherence tomography (SD-OCT) in different stages of glaucoma. Thirty eyes were normal, 120 were glaucomatous. Glaucomatous eyes were classified into: early glaucoma (46), moderate glaucoma (48), and severe glaucoma (26). Perimetry and SD-OCT were done. Peripapillary NFL thickness, ganglion cell layer (GCL), macular NFL thickness, combined GCL and macular ganglion cell complex (GCC), were recorded. Area under receiver operating characteristic curves (AUCs) was used to verify performance of different OCT parameters. Peripapillary NFL, GCL, and GCC thickness values were significantly different in all stages of glaucoma. All comparisons were significantly different; normal versus early, early versus moderate and moderate versus severe. The best parameters that distinguished normal from early stage were: peripapillary NFL (AUC: 0.90), GCC (AUC: 0.75), early from moderate stage were: peripapillary NFL thickness (AUC: 0.85), GCL (0.81),GCC (0.81), moderate from severe stage were: GCC (AUC:0.95), macular NFL (AUC:0.91), GCL (AUC:0.89), and peripapillary NFL (AUC:0.88). Peripapllary NFL and GCC thinning showed paradoxical course. The most diagnosed parameter in early glaucoma was peripapillary NFL and in severe glaucoma was GCC. In severe glaucoma, macular NFL showed higher diagnostic power than GCL and peripapillary NFL. Ganglion cell complex mapping may provide good alternative to optic disc imaging in advanced glaucoma with poor fixation. Copyright © 2017 Canadian Ophthalmological Society. Published by Elsevier Inc. All rights reserved.
In-vivo imaging of retinal nerve fiber layer vasculature: imaging - histology comparison
Scoles, Drew; Gray, Daniel C; Hunter, Jennifer J; Wolfe, Robert; Gee, Bernard P; Geng, Ying; Masella, Benjamin D; Libby, Richard T; Russell, Stephen; Williams, David R; Merigan, William H
2009-01-01
Background Although it has been suggested that alterations of nerve fiber layer vasculature may be involved in the etiology of eye diseases, including glaucoma, it has not been possible to examine this vasculature in-vivo. This report describes a novel imaging method, fluorescence adaptive optics (FAO) scanning laser ophthalmoscopy (SLO), that makes possible for the first time in-vivo imaging of this vasculature in the living macaque, comparing in-vivo and ex-vivo imaging of this vascular bed. Methods We injected sodium fluorescein intravenously in two macaque monkeys while imaging the retina with an FAO-SLO. An argon laser provided the 488 nm excitation source for fluorescence imaging. Reflectance images, obtained simultaneously with near infrared light, permitted precise surface registration of individual frames of the fluorescence imaging. In-vivo imaging was then compared to ex-vivo confocal microscopy of the same tissue. Results Superficial focus (innermost retina) at all depths within the NFL revealed a vasculature with extremely long capillaries, thin walls, little variation in caliber and parallel-linked structure oriented parallel to the NFL axons, typical of the radial peripapillary capillaries (RPCs). However, at a deeper focus beneath the NFL, (toward outer retina) the polygonal pattern typical of the ganglion cell layer (inner) and outer retinal vasculature was seen. These distinguishing patterns were also seen on histological examination of the same retinas. Furthermore, the thickness of the RPC beds and the caliber of individual RPCs determined by imaging closely matched that measured in histological sections. Conclusion This robust method demonstrates in-vivo, high-resolution, confocal imaging of the vasculature through the full thickness of the NFL in the living macaque, in precise agreement with histology. FAO provides a new tool to examine possible primary or secondary role of the nerve fiber layer vasculature in retinal vascular disorders and other eye diseases, such as glaucoma. PMID:19698151
Larrosa, Jose M; Polo, Vicente; Ferreras, Antonio; García-Martín, Elena; Calvo, Pilar; Pablo, Luis E
2015-12-01
To compare the diagnostic performance of different segmentations of the nerve fiber layer (NFL) thickness measurements using an artificial neural network and to define the optimal number of sectors with best diagnostic ability for glaucoma diagnosis. A total of 117 glaucoma patients and 123 normal subjects were included in the study. NFL thickness measurements were performed using the Spectralis-OCT (Heidelberg Engineering) to obtain the NFL thickness average; measurements from 2 semicircles, 4 quadrants, and 6, 8, 12, 16, 24, 32, and 64 sectors; and 768 uniformly divided locations around the peripapillary NFL. An artificial neural network evaluation was performed to compare the influence of sector analysis on the diagnostic performance of optical coherence tomography. Receiver operating characteristic curves were used to compare the diagnostic ability of the different segmentation analyses. The 6 sectors divided by the horizontal division of the nasal and temporal quadrants were better than the 6 sectors divided by the vertical line through the superior and inferior quadrants [areas under curve, 0.778; 95% confidence interval (CI), 0.720-0.829 and 0.814; 95% CI, 0.759-0.861, respectively]. In the case of quadrants, clock quadrants (area under curve 0.770; 95% CI, 0.712-0.822) were better than the ISNT (inferior-superior-nasal-temporal) quadrants (area under curve, 0.770; 95% CI, 0.712-0.822; P=0.003). The first segmentation strategy that improved the diagnostic value of 4 ISNT quadrants was the 12-sector analysis (area under curve, 0.845; 95% CI, 0.793-0.889; P=0.001). The 2 best candidate strategies for the OCT report were the 12-sector analysis and the 4 planimetric quadrant (alternatively, the 4 clock quadrants) analysis.
2014-01-01
Background Glaucomatous optic neuropathy, a leading cause of blindness, can progress despite control of intraocular pressure - currently the main risk factor and target for treatment. Glaucoma progression shares mechanisms with neurodegenerative disease, including microglia activation. In the present model of ocular hypertension (OHT), we have recently described morphological signs of retinal microglia activation and MHC-II upregulation in both the untreated contralateral eyes and OHT eyes. By using immunostaining, we sought to analyze and quantify additional signs of microglia activation and differences depending on the retinal layer. Methods Two groups of adult Swiss mice were used: age-matched control (naïve, n = 12), and lasered (n = 12). In the lasered animals, both OHT eyes and contralateral eyes were analyzed. Retinal whole-mounts were immunostained with antibodies against Iba-1, MHC-II, CD68, CD86, and Ym1. The Iba-1+ cell number in the plexiform layers (PL) and the photoreceptor outer segment (OS), Iba-1+ arbor area in the PL, and area of the retina occupied by Iba-1+ cells in the nerve fiber layer-ganglion cell layer (NFL-GCL) were quantified. Results The main findings in contralateral eyes and OHT eyes were: i) ameboid microglia in the NFL-GCL and OS; ii) the retraction of processes in all retinal layers; iii) a higher level of branching in PL and in the OS; iv) soma displacement to the nearest cell layers in the PL and OS; v) the reorientation of processes in the OS; vi) MHC-II upregulation in all retinal layers; vii) increased CD68 immunostaining; and viii) CD86 immunolabeling in ameboid cells. In comparison with the control group, a significant increase in the microglial number in the PL, OS, and in the area occupied by Iba-1+ cells in the NFL-GCL, and significant reduction of the arbor area in the PL. In addition, rounded Iba-1+ CD86+ cells in the NFL-GCL, OS and Ym1+ cells, and rod-like microglia in the NFL-GCL were restricted to OHT eyes. Conclusions Several quantitative and qualitative signs of microglia activation are detected both in the contralateral and OHT eyes. Such activation extended beyond the GCL, involving all retinal layers. Differences between the two eyes could help to elucidate glaucoma pathophysiology. PMID:25064005
Zhi, Zhongwei; Chao, Jennifer R.; Wietecha, Tomasz; Hudkins, Kelly L.; Alpers, Charles E.; Wang, Ruikang K.
2014-01-01
Purpose. To evaluate early diabetes-induced changes in retinal thickness and microvasculature in a type 2 diabetic mouse model by using optical coherence tomography (OCT)/optical microangiography (OMAG). Methods. Twenty-two-week-old obese (OB) BTBR mice (n = 10) and wild-type (WT) control mice (n = 10) were imaged. Three-dimensional (3D) data volumes were captured with spectral domain OCT using an ultrahigh-sensitive OMAG scanning protocol for 3D volumetric angiography of the retina and dense A-scan protocol for measurement of the total retinal blood flow (RBF) rate. The thicknesses of the nerve fiber layer (NFL) and that of the NFL to the inner plexiform layer (IPL) were measured and compared between OB and WT mice. The linear capillary densities within intermediate and deep capillary layers were determined by the number of capillaries crossing a 500-μm line. The RBF rate was evaluated using an en face Doppler approach. These quantitative measurements were compared between OB and WT mice. Results. The retinal thickness of the NFL to IPL was significantly reduced in OB mice (P < 0.01) compared to that in WT mice, whereas the NFL thickness between the two was unchanged. 3D depth-resolved OMAG angiography revealed the first in vivo 3D model of mouse retinal microcirculation. Although no obvious differences in capillary vessel densities of the intermediate and deep capillary layers were detected between normal and OB mice, the total RBF rate was significantly lower (P < 0.05) in OB mice than in WT mice. Conclusions. We conclude that OB BTBR mice have significantly reduced NFL–IPL thicknesses and total RBF rates compared with those of WT mice, as imaged by OCT/OMAG. OMAG provides an unprecedented capability for high-resolution depth-resolved imaging of mouse retinal vessels and blood flow that may play a pivotal role in providing a noninvasive method for detecting early microvascular changes in patients with diabetic retinopathy. PMID:24458155
Wanek, Justin; Blair, Norman P.; Chau, Felix Y.; Lim, Jennifer I.; Leiderman, Yannek I.; Shahidi, Mahnaz
2016-01-01
Purpose This article reports a method for en face optical coherence tomography (OCT) imaging and quantitative assessment of alterations in both thickness and reflectance of individual retinal layers at different stages of diabetic retinopathy (DR). Methods High-density OCT raster volume scans were acquired in 29 diabetic subjects divided into no DR (NDR) or non-proliferative DR (NPDR) groups and 22 control subjects (CNTL). A customized image segmentation method identified eight retinal layer interfaces and generated en face thickness maps and reflectance images for nerve fiber layer (NFL), ganglion cell and inner plexiform layers (GCLIPL), inner nuclear layer (INL), outer plexiform layer (OPL), outer nuclear layer (ONL), photoreceptor outer segment layer (OSL), and retinal pigment epithelium (RPE). Mean thickness and intensity values were calculated in nine macular subfields for each retinal layer. Results En face thickness maps and reflectance images of retinal layers in CNTL subjects corresponded to normal retinal anatomy. Total retinal thickness correlated negatively with age in nasal subfields (R ≤−0.31; P ≤ 0.03, N = 51). In NDR subjects, NFL and OPL thickness were decreased (P = 0.05), and ONL thickness was increased (P = 0.04) compared to CNTL. In NPDR subjects, GCLIPL thickness was increased in perifoveal subfields (P < 0.05) and INL intensity was higher in all macular subfields (P = 0.04) compared to CNTL. Conclusions Depth and spatially resolved retinal thickness and reflectance measurements are potential biomarkers for assessment and monitoring of DR. PMID:27409491
Bhaduri, Basanta; Shelton, Ryan L; Nolan, Ryan M; Hendren, Lucas; Almasov, Alexandra; Labriola, Leanne T; Boppart, Stephen A
2017-11-01
Influence of diabetes mellitus (DM) and diabetic retinopathy (DR) on parafoveal retinal thicknesses and their ratios was evaluated. Six retinal layer boundaries were segmented from spectral-domain optical coherence tomography images using open-source software. Five study groups: (1) healthy control (HC) subjects, and subjects with (2) controlled DM, (3) uncontrolled DM, (4) controlled DR and (5) uncontrolled DR, were identified. The one-way analyses of variance (ANOVA) between adjacent study groups (i. e. 1 with 2, 2 with 3, etc) indicated differences in retinal thicknesses and ratios. Overall retinal thickness, ganglion cell layer (GCL) thickness, inner plexiform layer (IPL) thickness, and their combination (GCL+ IPL), appeared to be significantly less in the uncontrolled DM group when compared to controlled DM and controlled DR groups. Although the combination of nerve fiber layer (NFL) and GCL, and IPL thicknesses were not different, their ratio, (NFL+GCL)/IPL, was found to be significantly higher in the controlled DM group compared to the HC group. Comparisons of the controlled DR group with the controlled DM group, and with the uncontrolled DR group, do not show any differences in the layer thicknesses, though several significant ratios were obtained. Ratiometric analysis may provide more sensitive parameters for detecting changes in DR. Picture: A representative segmented OCT image of the human retina is shown. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Jacobson, Samuel G; Matsui, Rodrigo; Sumaroka, Alexander; Cideciyan, Artur V
2016-04-01
We reviewed and illustrated the most optimal retinal structural measurements to make in stem cell clinical trials. Optical coherence tomography (OCT) and autofluorescence (AF) imaging were used to evaluate patients with severe visual loss from nonsyndromic and syndromic retinitis pigmentosa (RP), ABCA4-Stargardt disease, and nonneovascular age-related macular degeneration (AMD). Outer nuclear layer (ONL), rod outer segment (ROS) layer, inner retina, ganglion cell layer (GCL), and nerve fiber layer (NFL) thicknesses were quantified. All patients had severely reduced visual acuities. Retinitis pigmentosa patients had limited visual fields; maculopathy patients had central scotomas with retained peripheral function. For the forms of RP illustrated, there was detectable albeit severely reduced ONL across the scanned retina, and normal or hyperthick GCL and NFL. Maculopathy patients had no measurable ONL centrally; it became detectable with eccentricity. Some maculopathy patients showed unexpected GCL losses. Autofluorescence imaging illustrated central losses of RPE integrity. A hypothetical scheme to relate patient data with different phases of retinal remodeling in animal models of retinal degeneration was presented. Stem cell science is advancing, but it is not too early to open the discussion of criteria for patient selection and monitoring. Available clinical tools, such as OCT and AF imaging, can provide inclusion/exclusion criteria and robust objective outcomes. Accepting that early trials may not lead to miraculous cures, we should be prepared to know why-scientifically and clinically-so we can improve subsequent trials. We also must determine if retinal remodeling is an impediment to efficacy.
Comparison of Glaucoma Progression Detection by Optical Coherence Tomography and Visual Field.
Zhang, Xinbo; Dastiridou, Anna; Francis, Brian A; Tan, Ou; Varma, Rohit; Greenfield, David S; Schuman, Joel S; Huang, David
2017-12-01
To compare longitudinal glaucoma progression detection using optical coherence tomography (OCT) and visual field (VF). Validity assessment. We analyzed subjects with more than 4 semi-annual follow-up visits (every 6 months) in the multicenter Advanced Imaging for Glaucoma Study. Fourier-domain optical coherence tomography (OCT) was used to map the thickness of the peripapillary retinal nerve fiber layer (NFL) and ganglion cell complex (GCC). OCT-based progression detection was defined as a significant negative trend for either NFL or GCC. VF progression was reached if either the event or trend analysis reached significance. The analysis included 356 glaucoma suspect/preperimetric glaucoma (GS/PPG) eyes and 153 perimetric glaucoma (PG) eyes. Follow-up length was 54.1 ± 16.2 months for GS/PPG eyes and 56.7 ± 16.0 for PG eyes. Progression was detected in 62.1% of PG eyes and 59.8% of GS/PPG eyes by OCT, significantly (P < .001) more than the detection rate of 41.8% and 27.3% by VF. In severity-stratified analysis of PG eyes, OCT had significantly higher detection rate than VF in mild PG (63.1% vs. 38.7%, P < .001), but not in moderate and advanced PG. The rate of NFL thinning slowed dramatically in advanced PG, but GCC thinning rate remained relatively steady and allowed good progression detection even in advanced disease. The Kaplan-Meier time-to-event analyses showed that OCT detected progression earlier than VF in both PG and GS/PPG groups. OCT is more sensitive than VF for the detection of progression in early glaucoma. While the utility of NFL declines in advanced glaucoma, GCC remains a sensitive progression detector from early to advanced stages. Copyright © 2017 Elsevier Inc. All rights reserved.
Zhang, Xinbo; Dastiridou, Anna; Francis, Brian A; Tan, Ou; Varma, Rohit; Greenfield, David S; Schuman, Joel S; Sehi, Mitra; Chopra, Vikas; Huang, David
2016-12-01
To identify baseline structural parameters that predict the progression of visual field (VF) loss in patients with open-angle glaucoma. Multicenter cohort study. Participants from the Advanced Imaging for Glaucoma (AIG) study were enrolled and followed up. VF progression is defined as either a confirmed progression event on Humphrey Progression Analysis or a significant (P < .05) negative slope for VF index (VFI). Fourier-domain optical coherence tomography (FDOCT) was used to measure optic disc, peripapillary retinal nerve fiber layer (NFL), and macular ganglion cell complex (GCC) thickness parameters. A total of 277 eyes of 188 participants were followed up for 3.7 ± 2.1 years. VF progression was observed in 83 eyes (30%). Several baseline NFL and GCC parameters, but not disc parameters, were found to be significant predictors of progression on univariate Cox regression analysis. The most accurate single predictors were the GCC focal loss volume (FLV), followed closely by NFL-FLV. An abnormal GCC-FLV at baseline increased risk of progression by a hazard ratio of 3.1. Multivariate Cox analysis showed that combining age and central corneal thickness with GCC-FLV in a composite index called "Glaucoma Composite Progression Index" (GCPI) further improved the accuracy of progression prediction. GCC-FLV and GCPI were both found to be significantly correlated with the annual rate of change in VFI. Focal GCC and NFL loss as measured by FDOCT are the strongest predictors for VF progression among the measurements considered. Older age and thinner central corneal thickness can enhance the predictive power using the composite risk model. Copyright © 2016 Elsevier Inc. All rights reserved.
Sohn, Elliott H; van Dijk, Hille W; Jiao, Chunhua; Kok, Pauline H B; Jeong, Woojin; Demirkaya, Nazli; Garmager, Allison; Wit, Ferdinand; Kucukevcilioglu, Murat; van Velthoven, Mirjam E J; DeVries, J Hans; Mullins, Robert F; Kuehn, Markus H; Schlingemann, Reinier Otto; Sonka, Milan; Verbraak, Frank D; Abràmoff, Michael David
2016-05-10
Diabetic retinopathy (DR) has long been recognized as a microvasculopathy, but retinal diabetic neuropathy (RDN), characterized by inner retinal neurodegeneration, also occurs in people with diabetes mellitus (DM). We report that in 45 people with DM and no to minimal DR there was significant, progressive loss of the nerve fiber layer (NFL) (0.25 μm/y) and the ganglion cell (GC)/inner plexiform layer (0.29 μm/y) on optical coherence tomography analysis (OCT) over a 4-y period, independent of glycated hemoglobin, age, and sex. The NFL was significantly thinner (17.3 μm) in the eyes of six donors with DM than in the eyes of six similarly aged control donors (30.4 μm), although retinal capillary density did not differ in the two groups. We confirmed significant, progressive inner retinal thinning in streptozotocin-induced "type 1" and B6.BKS(D)-Lepr(db)/J "type 2" diabetic mouse models on OCT; immunohistochemistry in type 1 mice showed GC loss but no difference in pericyte density or acellular capillaries. The results suggest that RDN may precede the established clinical and morphometric vascular changes caused by DM and represent a paradigm shift in our understanding of ocular diabetic complications.
NASA Astrophysics Data System (ADS)
Zwick, Harry; Zuclich, Joseph A.; Stuck, Bruce E.; Gagliano, Donald A.; Lund, David J.; Glickman, Randolph D.
1995-01-01
We have evaluated acute laser retinal exposure in non-human primates using a Rodenstock scanning laser ophthalmoscope (SLO) equipped with spectral imaging laser sources at 488, 514, 633, and 780 nm. Confocal spectral imaging at each laser wavelength allowed evaluation of the image plane from deep within the retinal vascular layer to the more superficial nerve fiber layer in the presence and absence of the short wavelength absorption of the macular pigment. SLO angiography included both fluorescein and indocyanine green procedures to assess the extent of damage to the sensory retina, the retinal pigment epithelium (RPE), and the choroidal vasculature. All laser exposures in this experiment were from a Q-switched Neodymium laser source at an exposure level sufficient to produce vitreous hemorrhage. Confocal imaging of the nerve fiber layer revealed discrete optic nerve sector defects between the lesion site and the macula (retrograde degeneration) as well as between the lesion site and the optic disk (Wallerian degeneration). In multiple hemorrhagic exposures, lesions placed progressively distant from the macula or overlapping the macula formed bridging scars visible at deep retinal levels. Angiography revealed blood flow disturbance at the retina as well as at the choroidal vascular level. These data suggest that acute parafoveal laser retinal injury can involve both direct full thickness damage to the sensory and non-sensory retina and remote nerve fiber degeneration. Such injury has serious functional implications for both central and peripheral visual function.
Glaucoma diagnosis by mapping macula with Fourier domain optical coherence tomography
NASA Astrophysics Data System (ADS)
Tan, Ou; Lu, Ake; Chopra, Vik; Varma, Rohit; Hiroshi, Ishikawa; Schuman, Joel; Huang, David
2008-03-01
A new image segmentation method was developed to detect macular retinal sub-layers boundary on newly-developed Fourier-Domain Optical Coherence Tomography (FD-OCT) with macular grid scan pattern. The segmentation results were used to create thickness map of macular ganglion cell complex (GCC), which contains the ganglion cell dendrites, cell bodies and axons. Overall average and several pattern analysis parameters were defined on the GCC thickness map and compared for the diagnosis of glaucoma. Intraclass correlation (ICC) is used to compare the reproducibility of the parameters. Area under receiving operative characteristic curve (AROC) was calculated to compare the diagnostic power. The result is also compared to the output of clinical time-domain OCT (TD-OCT). We found that GCC based parameters had good repeatability and comparable diagnostic power with circumpapillary nerve fiber layer (cpNFL) thickness. Parameters based on pattern analysis can increase the diagnostic power of GCC macular mapping.
Meregalli, Cristina; Fumagalli, Giulia; Alberti, Paola; Canta, Annalisa; Carozzi, Valentina Alda; Chiorazzi, Alessia; Monza, Laura; Pozzi, Eleonora; Sandelius, Åsa; Blennow, Kaj; Zetterberg, Henrik; Marmiroli, Paola; Cavaletti, Guido
2018-06-13
The objective of this study is to test the feasibility of using serum neurofilament light chain (NfL) as a disease biomarker in Chemotherapy Induced Peripheral Neuropathy (CIPN) since this easy accessible biological test may have a large impact on clinical management and safety of cancer patients. We performed this preclinical study using a well-characterized rat model based on repeated administration of the cytostatic drug vincristine (VCR, 0.2 mg/kg intravenously via the tail vein once/week for 4 times). Serial NfL serum concentration measured using the in-house Simoa NfL assay and peripheral neuropathy onset was measured by sensory and motor nerve conduction studies. Serum NfL measure in untreated and VCR-treated rats demonstrated a steady, and significant increase during the course of VCR administration, with a final 4-fold increase with respect to controls (p < .001) when sign of axonopathy and loss of intraepidermal nerve fibers were clearly evident and verified by behavioral, neurophysiological and pathological examination. This simple monitoring approach based on serum NfL concentration measures may be easily translated to clinical practice and should be considered as a putative marker of CIPN severity in a typical oncology outpatient setting. Further studies are needed to validate it's utility in cancer patients treated with different neurotoxic drugs. Copyright © 2017. Published by Elsevier Inc.
Clark, Simon J.; Keenan, Tiarnan D. L.; Fielder, Helen L.; Collinson, Lisa J.; Holley, Rebecca J.; Merry, Catherine L. R.; van Kuppevelt, Toin H.; Day, Anthony J.; Bishop, Paul N.
2011-01-01
Purpose. To map the distribution of different classes of glycosaminoglycans (GAGs) in the healthy human retina, choroid, and sclera. Methods. Frozen tissue sections were made from adult human donor eyes. The GAG chains of proteoglycans (PGs) were detected with antibodies directed against various GAG structures (either directly or after pretreatment with GAG-degrading enzymes); hyaluronan (HA) was detected using biotinylated recombinant G1-domain of human versican. The primary detection reagents were identified with FITC-labeled probes and analyzed by fluorescence microscopy. Results. Heparan sulfate (HS), chondroitin sulfate (CS), dermatan sulfate (DS), and HA were present throughout the retina and choroid, but keratan sulfate (KS) was detected only in the sclera. HS labeling was particularly strong in basement membrane–containing structures, the nerve fiber layer (NFL), and retinal pigment epithelium (RPE)—for example, intense staining was seen with an antibody that binds strongly to sequences containing 3-O-sulfation in the internal limiting membrane (ILM) and in the basement membrane of blood vessels. Unsulfated CS was seen throughout the retina, particularly in the ILM and interphotoreceptor matrix (IPM) with 6-O-sulfated CS also prominent in the IPM. There was labeling for DS throughout the retina and choroid, especially in the NFL, ganglion cell layer, and blood vessels. Conclusions. The detection of GAG chains with specific probes and fluorescence microscopy provides for the first time a detailed analysis of their compartmentalization in the human retina, by both GAG chain type and sulfation pattern. This reference map provides a basis for understanding the functional regulation of GAG-binding proteins in health and disease processes. PMID:21746802
An automated approach for early detection of diabetic retinopathy using SD-OCT images.
ElTanboly, Ahmed H; Palacio, Agustina; Shalaby, Ahmed M; Switala, Andrew E; Helmy, Omar; Schaal, Shlomit; El-Baz, Ayman
2018-01-01
This study was to demonstrate the feasibility of an automatic approach for early detection of diabetic retinopathy (DR) from SD-OCT images. These scans were prospectively collected from 200 subjects through the fovea then were automatically segmented, into 12 layers. Each layer was characterized by its thickness, tortuosity, and normalized reflectivity. 26 diabetic patients, without DR changes visible by funduscopic examination, were matched with 26 controls, according to age and sex, for purposes of statistical analysis using mixed effects ANOVA. The INL was narrower in diabetes (p = 0.14), while the NFL (p = 0.04) and IZ (p = 0.34) were thicker. Tortuosity of layers NFL through the OPL was greater in diabetes (all p < 0.1), while significantly greater normalized reflectivity was observed in the MZ and OPR (both p < 0.01) as well as ELM and IZ (both p < 0.5). A novel automated method enables to provide quantitative analysis of the changes in each layer of the retina that occur with diabetes. In turn, carries the promise to a reliable non-invasive diagnostic tool for early detection of DR.
Beltran, William A; Rohrer, Hermann; Aguirre, Gustavo D
2005-04-01
To characterize the site of expression of the alpha subunit of the receptor for ciliary neurotrophic factor (CNTFRalpha) in the retina of a variety of mammalian species, and determine whether CNTFRalpha is localized to photoreceptor cells. The cellular distribution of CNTFRalpha(protein) was examined by immunocytochemistry in the adult retinas of several mammalian species that included mouse, rat, dog, cat, sheep, pig, horse, monkey, and human. Developing retinas from 3-day-old and 6-day-old rats were also included in this study. The molecular weight of CNTFRalpha in rat, dog, cat, pig, and human retinas was determined by immunoblotting. CNTFRalpha immunolabeling was present in the retina of all species. A common pattern was observed in all species, and represented labeling of the nerve fiber layer (NFL), ganglion cell layer (GCL), inner plexiform layer (IPL), inner nuclear layer (INL), and outer plexiform layer (OPL). CNTFRalpha did not immunolocalize to photoreceptor cells in both adult and developing rodent retinas, but was consistently observed in both rods and cones of non-rodent species. The molecular weight of CNTFRalpha in mammalian retinas was approximately 61-64 kDa. These findings highlight a significant difference in the expression of CNTFRalpha in the retina of rodent and non-rodent mammalian species. The expression of CNTFRalpha by rods and cones in non-rodent species may suggest a direct mechanism of action if CNTF administration results in photoreceptor rescue.
Loewen, Nils A; Zhang, Xinbo; Tan, Ou; Francis, Brian A; Greenfield, David S; Schuman, Joel S; Varma, Rohit; Huang, David
2015-09-01
To improve the diagnostic power for glaucoma by combining measurements of peripapillary nerve fibre layer (NFL), macular ganglion cell complex (GCC) and disc variables obtained with Fourier-domain optical coherence tomography (FD-OCT) into the glaucoma structural diagnostic index (GSDI). In this observational, cross-sectional study of subjects from the Advanced Imaging of Glaucoma Study, GCC and NFL of healthy and perimetrical glaucoma subjects from four major academic referral centres of the Advanced Imaging of Glaucoma Study were mapped with the RTVue FD-OCT. Global loss volume and focal loss volume parameters were defined using NFL and GCC normative reference maps. Optimal weights for NFL, GCC and disc variables were combined using multivariate logistic regression to build the GSDI. Glaucoma severity was classified using the Enhanced Glaucoma Staging System (GSS2). Diagnostic accuracy was assessed by sensitivity, specificity and the area under the receiver operator characteristic curve (AUC). We analysed 118 normal eyes of 60 subjects, 236 matched eyes of 166 subjects with perimetrical glaucoma, and 105 eyes from a healthy reference group of 61 subjects. The GSDI included composite overall thickness and focal loss volume with weighted NFL and GCC components, as well as the vertical cup-to-disc ratio. The AUC of 0.922 from leave-one-out cross validation was better than the best component variable alone (p=0.047). The partial AUC in the high specificity region was also better (p=0.01), with a sensitivity of 69% at 99% specificity, and a sensitivity of 80.3% at 95% specificity. For GSS2 stages 3-5 the sensitivity was 98% at 99% specificity, and 100% at 95% specificity. Combining structural measurements of GCC, NFL and disc variables from FD-OCT created a GSDI that improved the accuracy for glaucoma diagnosis. NCT01314326. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
NASA Astrophysics Data System (ADS)
Ko, Tony H.; Hartl, Ingmar; Drexler, Wolfgang; Ghanta, Ravi K.; Fujimoto, James G.
2002-06-01
Quantitative, three-dimensional mapping of retinal architectural morphology was achieved using an ultrahigh resolution ophthalmic OCT system. This OCT system utilizes a broad bandwidth titanium-sapphire laser light source generating bandwidths of up to 300 nm near 800 nm center wavelength. The system enables real-time cross-sectional imaging of the retina with ~3 micrometers axial resolution. The macula and the papillomacular axis of a normal human subject were systematically mapped using a series of linear scans. Edge detection and segmentation algorithms were developed to quantify retinal and intraretinal thicknesses. Topographic mapping of the total retinal thickness and the total ganglion cell/inner plexiform layer thickness was achieved around the macula. A topographic mapping quantifying the progressive thickening of the nerve fiber layer (NFL) nasally approaching the optic disk was also demonstrated. The ability to create three-dimensional topographic mapping of retinal architectural morphology at ~3 micrometers axial resolution will be relevant for the diagnosis of many retinal diseases. The topographic quantification of these structures can serve as a powerful tool for developing algorithms and clinical scanning protocols for the screening and staging of ophthalmic diseases such as glaucoma.
Venkataramani, Atheendar S; Gandhavadi, Maheer; Jena, Anupam B
2018-02-27
Studies of the longevity of professional American football players have demonstrated lower mortality relative to the general population but they may have been susceptible to selection bias. To examine the association between career participation in professional American football and mortality risk in retirement. Retrospective cohort study involving 3812 retired US National Football League (NFL) players who debuted in the NFL between 1982 and 1992, including regular NFL players (n = 2933) and NFL "replacement players" (n = 879) who were temporarily hired to play during a 3-game league-wide player strike in 1987. Follow-up ended on December 31, 2016. NFL participation as a career player or as a replacement player. The primary outcome was all-cause mortality by December 31, 2016. Cox proportional hazards models were estimated to compare the observed number of years from age 22 years until death (or censoring), adjusted for birth year, body mass index, height, and position played. Information on player death and cause of death was ascertained from a search of the National Death Index and web-based sources. Of the 3812 men included in this study (mean [SD] age at first NFL activity, 23.4 [1.5] years), there were 2933 career NFL players (median NFL tenure, 5 seasons [interquartile range {IQR}, 2-8]; median follow-up, 30 years [IQR, 27-33]) and 879 replacement players (median NFL tenure, 1 season [IQR, 1-1]; median follow-up, 31 years [IQR, 30-33]). At the end of follow-up, 144 NFL players (4.9%) and 37 replacement players (4.2%) were deceased (adjusted absolute risk difference, 1.0% [95% CI, -0.7% to 2.7%]; P = .25). The adjusted mortality hazard ratio for NFL players relative to replacements was 1.38 (95% CI, 0.95 to 1.99; P = .09). Among career NFL players, the most common causes of death were cardiometabolic disease (n = 51; 35.4%), transportation injuries (n = 20; 13.9%), unintentional injuries (n = 15; 10.4%), and neoplasms (n = 15; 10.4%). Among NFL replacement players, the leading causes of death were cardiometabolic diseases (n = 19; 51.4%), self-harm and interpersonal violence (n = 5; 13.5%), and neoplasms (n = 4; 10.8%). Among NFL football players who began their careers between 1982 and 1992, career participation in the NFL, compared with limited NFL exposure obtained primarily as an NFL replacement player during a league-wide strike, was not associated with a statistically significant difference in long-term all-cause mortality. Given the small number of events, analysis of longer periods of follow-up may be informative.
The National Football League and chronic traumatic encephalopathy: legal implications.
Korngold, Caleb; Farrell, Helen M; Fozdar, Manish
2013-01-01
The growing awareness of chronic traumatic encephalopathy (CTE) has the potential to change the public perception and on-field rules of the National Football League (NFL). More than 3,000 ex-NFL players or their relatives are engaged in litigation alleging that the NFL failed to acknowledge and address the neuropsychiatric risks associated with brain injuries that result from playing in the NFL. This article explores the intersection between the medical and legal aspects of CTE in the NFL from a forensic psychiatry perspective.
Biomarker evidence of axonal injury in neuroasymptomatic HIV-1 patients.
Jessen Krut, Jan; Mellberg, Tomas; Price, Richard W; Hagberg, Lars; Fuchs, Dietmar; Rosengren, Lars; Nilsson, Staffan; Zetterberg, Henrik; Gisslén, Magnus
2014-01-01
Prevalence of neurocognitive impairment in HIV-1 infected patients is reported to be high. Whether this is a result of active HIV-related neurodegeneration is unclear. We examined axonal injury in HIV-1 patients by measuring the light subunit of neurofilament protein (NFL) in CSF with a novel, sensitive method. With a cross-sectional design, CSF concentrations of neurofilament protein light (NFL) (marker of neuronal injury), neopterin (intrathecal immunoactivation) and CSF/Plasma albumin ratio (blood-brain barrier integrity) were analyzed on CSF from 252 HIV-infected patients, subdivided into untreated neuroasymptomatics (n = 200), HIV-associated dementia (HAD) (n = 14) and on combinations antiretroviral treatment (cART) (n = 85), and healthy controls (n = 204). 46 HIV-infected patients were included in both treated and untreated groups, but sampled at different timepoints. Furthermore, 78 neuroasymptomatic patients were analyzed before and after treatment initiation. While HAD patients had the highest NFL concentrations, elevated CSF NFL was also found in 33% of untreated neuroasymptomatic patients, mainly in those with blood CD4+ cell counts below 250 cells/μL. CSF NFL concentrations in the untreated neuroasymptomatics and treated groups were equivalent to controls 18.5 and 3.9 years older, respectively. Neopterin correlated with NFL levels in untreated groups while the albumin ratio correlated with NFL in both untreated and treated groups. Increased CSF NFL indicates ongoing axonal injury in many neuroasymptomatic patients. Treatment decreases NFL, but treated patients retain higher levels than controls, indicating either continued virus-related injury or an aging-like effect of HIV infection. NFL correlates with neopterin and albumin ratio, suggesting an association between axonal injury, neuroinflammation and blood-brain barrier permeability. NFL appears to be a sensitive biomarker of subclinical and clinical brain injury in HIV and warrants further assessment for broader clinical use.
CSF neurofilament concentration reflects disease severity in frontotemporal degeneration
Scherling, Carole S.; Hall, Tracey; Berisha, Flora; Klepac, Kristen; Karydas, Anna; Coppola, Giovanni; Kramer, Joel H.; Rabinovici, Gil; Ahlijanian, Michael; Miller, Bruce L.; Seeley, William; Grinberg, Lea T.; Rosen, Howard; Meredith, Jere; Boxer, Adam L.
2014-01-01
Objective Cerebrospinal fluid (CSF) neurofilament light chain (NfL) concentration is elevated in neurological disorders including frontotemporal degeneration (FTD). We investigated the clinical correlates of elevated CSF NfL levels in FTD. Methods CSF NfL, amyloid-β42 (Aβ42), tau and phosphorylated tau (ptau) concentrations were compared in 47 normal controls (NC), 8 asymptomatic gene carriers (NC2) of FTD-causing mutations, 79 FTD (45 behavioral variant frontotemporal dementia [bvFTD], 18 progressive nonfluent aphasia [PNFA], 16 semantic dementia [SD]), 22 progressive supranuclear palsy, 50 Alzheimer’s disease, 6 Parkinson’s disease and 17 corticobasal syndrome patients. Correlations between CSF analyte levels were performed with neuropsychological measures and the Clinical Dementia Rating scale sum of boxes (CDRsb). Voxel-based morphometry of structural MR images determined the relationship between brain volume and CSF NfL. Results Mean CSF NfL concentrations were higher in bvFTD, SD and PNFA than other groups. NfL in NC2 was similar to NC. CSF NfL, but not other CSF measures, correlated with CDRsb and neuropsychological measures in FTD, and not in other diagnostic groups. Analyses in two independent FTD cohorts and a group of autopsy verified or biomarker enriched cases confirmed the larger group analysis. In FTD, gray and white matter volume negatively correlated with CSF NfL concentration, such that individuals with highest NfL levels exhibited the most atrophy. Interpretation CSF NfL is elevated in symptomatic FTD and correlates with disease severity. This measurement may be a useful surrogate endpoint of disease severity in FTD clinical trials. Longitudinal studies of CSF NfL in FTD are warranted. PMID:24242746
Teramoto, Masaru; Cross, Chad L; Willick, Stuart E
2016-05-01
The National Football League (NFL) Scouting Combine is held each year before the NFL Draft to measure athletic abilities and football skills of college football players. Although the NFL Scouting Combine can provide the NFL teams with an opportunity to evaluate college players for the upcoming NFL Draft, its value for predicting future success of players has been questioned. This study examined whether the NFL Combine measures can predict future performance of running backs (RBs) and wide receivers (WRs) in the NFL. We analyzed the 2000-09 Combine data of RBs (N = 276) and WRs (N = 447) and their on-field performance for the first 3 years after the draft and over their entire careers in the NFL, using correlation and regression analyses, along with a principal component analysis (PCA). The results of the analyses showed that, after accounting for the number of games played, draft position, height (HT), and weight (WT), the time on 10-yard dash was the most important predictor of rushing yards per attempt of the first 3 years (p = 0.002) and of the careers (p < 0.001) in RBs. For WRs, vertical jump was found to be significantly associated with receiving yards per reception of the first 3 years (p = 0.001) and of the careers (p = 0.004) in the NFL, after adjusting for the covariates above. Furthermore, HT was most important in predicting future performance of WRs. The analyses also revealed that the 8 athletic drills in the Combine seemed to have construct validity. It seems that the NFL Scouting Combine has some value for predicting future performance of RBs and WRs in the NFL.
Association of Plasma Neurofilament Light With Neurodegeneration in Patients With Alzheimer Disease.
Mattsson, Niklas; Andreasson, Ulf; Zetterberg, Henrik; Blennow, Kaj
2017-05-01
Existing cerebrospinal fluid (CSF) or imaging (tau positron emission tomography) biomarkers for Alzheimer disease (AD) are invasive or expensive. Biomarkers based on standard blood test results would be useful in research, drug development, and clinical practice. Plasma neurofilament light (NFL) has recently been proposed as a blood-based biomarker for neurodegeneration in dementias. To test whether plasma NFL concentrations are increased in AD and associated with cognitive decline, other AD biomarkers, and imaging evidence of neurodegeneration. In this prospective case-control study, an ultrasensitive assay was used to measure plasma NFL concentration in 193 cognitively healthy controls, 197 patients with mild cognitive impairment (MCI), and 180 patients with AD dementia from the Alzheimer's Disease Neuroimaging Initiative. The study dates were September 7, 2005, to February 13, 2012. The plasma NFL analysis was performed in September 2016. Associations were tested between plasma NFL and diagnosis, Aβ pathologic features, CSF biomarkers of neuronal injury, cognition, brain structure, and metabolism. Among 193 cognitively healthy controls, 197 patients with mild cognitive impairment, and 180 patients with AD with dementia, plasma NFL correlated with CSF NFL (Spearman ρ = 0.59, P < .001). Plasma NFL was increased in patients with MCI (mean, 42.8 ng/L) and patients with AD dementia (mean, 51.0 ng/L) compared with controls (mean, 34.7 ng/L) (P < .001) and had high diagnostic accuracy for patients with AD with dementia vs controls (area under the receiver operating characteristic curve, 0.87, which is comparable to established CSF biomarkers). Plasma NFL was particularly high in patients with MCI and patients with AD dementia with Aβ pathologic features. High plasma NFL correlated with poor cognition and AD-related atrophy (at baseline and longitudinally) and with brain hypometabolism (longitudinally). Plasma NFL is associated with AD diagnosis and with cognitive, biochemical, and imaging hallmarks of the disease. This finding implies a potential usefulness for plasma NFL as a noninvasive biomarker in AD.
Concussion Frequency Associates with Musculoskeletal Injury in Retired NFL Players.
Pietrosimone, Brian; Golightly, Yvonne M; Mihalik, Jason P; Guskiewicz, Kevin M
2015-11-01
Concussion is commonly associated with immediate and persistent alterations in motor function affecting postural control and gait. Patients with lower extremity joint injury have demonstrated functional alterations in the cerebral cortex, suggesting that musculoskeletal injury may be linked to alterations in brain function. Therefore, we examined the associations between concussion frequency and lower extremity musculoskeletal injury sustained during professional careers of National Football League (NFL) players in a cross-sectional study. An inclusive health history survey was mailed to 3647 NFL players who retired during 1930-2001. Respondents reported total concussion frequency (zero, one, two, or three or more) and presence (yes/no) of specific knee and ankle musculoskeletal injury during their NFL career. Separate logistic regression models were used to estimate associations between concussion frequency and each musculoskeletal injury type, adjusting for number of years played in the NFL, body mass index while playing in the NFL, and playing position. Data from 2429 players (66.6% response rate) were available for analysis. Nearly 61% reported experiencing a concussion while competing in the NFL. Meniscal tear was the most commonly reported musculoskeletal injury (32%). Compared with NFL players who did not sustain a concussion, retired NFL players with one, two, or three or more concussions had between 18% and 63%, 15% and 126%, and 73% and 165% higher odds of reporting various musculoskeletal injuries, respectively. A history of concussions was associated with a history of musculoskeletal injuries during NFL careers. These data suggest that a higher number of concussions is linked with higher odds of reporting a musculoskeletal injury.
Provencher, Matthew T; Chahla, Jorge; Cinque, Mark E; Sanchez, George; Kennedy, Nicholas I; Haber, Daniel B; Tisosky, Ashley J; Beaulieu-Jones, Brendin R; Price, Mark D; Whalen, James M; Moatshe, Gilbert; LaPrade, Robert F
2018-03-01
To (1) describe the magnetic resonance imaging (MRI) characteristics of knee chondral injuries identified at the National Football League (NFL) Combine and (2) assess in-game performance of prospective NFL players with previously untreated knee chondral injuries and compare it with matched controls. All players with knee chondral injuries identified at the NFL Combine (2009-2015) were retrospectively reviewed. Players with prior knee surgery were excluded. A knee MRI for each player was reviewed; location, modified International Cartilage Repair Society (ICRS) grade (I-IV), and associated compartment subchondral edema were documented. Position, respective NFL Draft pick selection number, games started, played, snap percentage, and position-specific performance metrics during the first 2 NFL seasons were recorded for the injury and injury-free control group composed of players with (1) no prior knee injury, (2) no significant missed time prior to the NFL (≤2 total missed games in college), (3) no history of knee surgery, and (4) drafted in the respective NFL Draft following the NFL Combine. Of the 2,285 players reviewed, 101 (4.4%) had an injury without prior knee surgery. The patella (63.4%) and trochlea (34%) were most commonly affected. Defensive linemen were at highest risk for unrecognized injuries (odds ratio 1.8, P = .015). Players with previously untreated injuries, compared with controls, were picked later (mean pick: 125.8) and played (mean: 23) and started (mean: 10.4) fewer games during the initial 2 NFL seasons (P < .001 for all). Particularly, subchondral bone edema and full-thickness cartilage injuries were associated with fewer games played (P = .003). The patellofemoral joint was most commonly affected in NFL Combine participants. Previously untreated knee articular injuries in players at the NFL Combine are associated with poorer early NFL performance in comparison to uninjured players. Subchondral bone edema and full-thickness cartilage injury on MRI were associated with fewer games played during the initial NFL career. Level III, case-control study. Copyright © 2017 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ozaki, Hana; Katoh, Tsuyoshi; Nakagawa, Ryoko
2016-09-02
Ca{sup 2+}/calmodulin-dependent protein kinase phosphatase (CaMKP/PPM1F) is a Ser/Thr phosphatase that belongs to the PPM family. Growing evidence suggests that PPM phosphatases including CaMKP act as a complex with other proteins to regulate cellular functions. In this study, using the two-dimensional far-western blotting technique with digoxigenin-labeled CaMKP as a probe, in conjunction with peptide mass fingerprinting analysis, we identified neurofilament L (NFL) as a CaMKP-binding protein in a Triton-insoluble fraction of rat brain. We confirmed binding of fluorescein-labeled CaMKP (F-CaMKP) to NFL in solution by fluorescence polarization. The analysis showed that the dissociation constant of F-CaMKP for NFL is 73 ± 17 nMmore » (n = 3). Co-immunoprecipitation assay using a cytosolic fraction of NGF-differentiated PC12 cells showed that endogenous CaMKP and NFL form a complex in cells. Furthermore, the effect of CaMKP on self-assembly of NFL was examined. Electron microscopy revealed that CaMKP markedly prevented NFL from forming large filamentous aggregates, suggesting that CaMKP-binding to NFL inhibits its filament association. These findings may provide new insights into a novel mechanism for regulating network formation of neurofilaments during neuronal differentiation. - Highlights: • NFL was identified as a CaMKP-binding protein in an insoluble fraction of rat brain. • CaMKP bound to NFL in solution with a K{sub d} value of 73 ± 17 nM. • A CaMKP-NFL complex was found in NGF-differentiated PC12 cells. • CaMKP-binding to NFL inhibited its filament association. • CaMKP may regulate network formation of neurofilaments in neurons.« less
Gisslén, Magnus; Price, Richard W; Andreasson, Ulf; Norgren, Niklas; Nilsson, Staffan; Hagberg, Lars; Fuchs, Dietmar; Spudich, Serena; Blennow, Kaj; Zetterberg, Henrik
2016-01-01
Cerebrospinal fluid (CSF) neurofilament light chain protein (NFL) is a sensitive marker of neuronal injury in a variety of neurodegenerative conditions, including the CNS dysfunction injury that is common in untreated HIV infection. However, an important limitation is the requirement for lumbar puncture. For this reason, a sensitive and reliable blood biomarker of CNS injury would represent a welcome advance in both clinical and research settings. To explore whether plasma concentrations of NFL might be used to detect CNS injury in HIV infection, an ultrasensitive Single molecule array (Simoa) immunoassay was developed. Using a cross-sectional design, we measured NFL in paired CSF and plasma samples from 121 HIV-infected subjects divided into groups according to stage of their systemic disease, presence of overt HIV-associated dementia (HAD), and after antiretroviral treatment (ART)-induced viral suppression. HIV-negative controls were also examined. Plasma and CSF NFL concentrations were very highly correlated (r = 0.89, P < 0.0001). While NFL was more than 50-fold lower plasma than CSF it was within the quantifiable range of the new plasma assay in all subjects, including the HIV negatives and the HIV positives with normal CSF NFL concentrations. The pattern of NFL changes were almost identical in plasma and CSF, both exhibiting similar age-related increases in concentrations along with highest values in HAD and substantial elevations in ART-naïve neuroasymptomatic subjects with low blood CD4(+) T cells. These results show that plasma NFL may prove a valuable tool to evaluate ongoing CNS injury in HIV infection that may be applied in the clinic and in research settings to assess the presence if active CNS injury. Because CSF NFL is also elevated in a variety of other CNS disorders, sensitive measures of plasma NFL may similarly prove useful in other settings.
Biomarker Evidence of Axonal Injury in Neuroasymptomatic HIV-1 Patients
Price, Richard W.; Hagberg, Lars; Fuchs, Dietmar; Rosengren, Lars; Nilsson, Staffan; Zetterberg, Henrik; Gisslén, Magnus
2014-01-01
Background Prevalence of neurocognitive impairment in HIV-1 infected patients is reported to be high. Whether this is a result of active HIV-related neurodegeneration is unclear. We examined axonal injury in HIV-1 patients by measuring the light subunit of neurofilament protein (NFL) in CSF with a novel, sensitive method. Methods With a cross-sectional design, CSF concentrations of neurofilament protein light (NFL) (marker of neuronal injury), neopterin (intrathecal immunoactivation) and CSF/Plasma albumin ratio (blood-brain barrier integrity) were analyzed on CSF from 252 HIV-infected patients, subdivided into untreated neuroasymptomatics (n = 200), HIV-associated dementia (HAD) (n = 14) and on combinations antiretroviral treatment (cART) (n = 85), and healthy controls (n = 204). 46 HIV-infected patients were included in both treated and untreated groups, but sampled at different timepoints. Furthermore, 78 neuroasymptomatic patients were analyzed before and after treatment initiation. Results While HAD patients had the highest NFL concentrations, elevated CSF NFL was also found in 33% of untreated neuroasymptomatic patients, mainly in those with blood CD4+ cell counts below 250 cells/μL. CSF NFL concentrations in the untreated neuroasymptomatics and treated groups were equivalent to controls 18.5 and 3.9 years older, respectively. Neopterin correlated with NFL levels in untreated groups while the albumin ratio correlated with NFL in both untreated and treated groups. Conclusions Increased CSF NFL indicates ongoing axonal injury in many neuroasymptomatic patients. Treatment decreases NFL, but treated patients retain higher levels than controls, indicating either continued virus-related injury or an aging-like effect of HIV infection. NFL correlates with neopterin and albumin ratio, suggesting an association between axonal injury, neuroinflammation and blood-brain barrier permeability. NFL appears to be a sensitive biomarker of subclinical and clinical brain injury in HIV and warrants further assessment for broader clinical use. PMID:24523921
Gisslén, Magnus; Price, Richard W.; Andreasson, Ulf; Norgren, Niklas; Nilsson, Staffan; Hagberg, Lars; Fuchs, Dietmar; Spudich, Serena; Blennow, Kaj; Zetterberg, Henrik
2015-01-01
Background Cerebrospinal fluid (CSF) neurofilament light chain protein (NFL) is a sensitive marker of neuronal injury in a variety of neurodegenerative conditions, including the CNS dysfunction injury that is common in untreated HIV infection. However, an important limitation is the requirement for lumbar puncture. For this reason, a sensitive and reliable blood biomarker of CNS injury would represent a welcome advance in both clinical and research settings. Methods To explore whether plasma concentrations of NFL might be used to detect CNS injury in HIV infection, an ultrasensitive Single molecule array (Simoa) immunoassay was developed. Using a cross-sectional design, we measured NFL in paired CSF and plasma samples from 121 HIV-infected subjects divided into groups according to stage of their systemic disease, presence of overt HIV-associated dementia (HAD), and after antiretroviral treatment (ART)-induced viral suppression. HIV-negative controls were also examined. Findings Plasma and CSF NFL concentrations were very highly correlated (r = 0.89, P < 0.0001). While NFL was more than 50-fold lower plasma than CSF it was within the quantifiable range of the new plasma assay in all subjects, including the HIV negatives and the HIV positives with normal CSF NFL concentrations. The pattern of NFL changes were almost identical in plasma and CSF, both exhibiting similar age-related increases in concentrations along with highest values in HAD and substantial elevations in ART-naïve neuroasymptomatic subjects with low blood CD4+ T cells. Interpretation These results show that plasma NFL may prove a valuable tool to evaluate ongoing CNS injury in HIV infection that may be applied in the clinic and in research settings to assess the presence if active CNS injury. Because CSF NFL is also elevated in a variety of other CNS disorders, sensitive measures of plasma NFL may similarly prove useful in other settings. PMID:26870824
Chatterjee, Pratishtha; Goozee, Kathryn; Sohrabi, Hamid R; Shen, Kaikai; Shah, Tejal; Asih, Prita R; Dave, Preeti; ManYan, Candice; Taddei, Kevin; Chung, Roger; Zetterberg, Henrik; Blennow, Kaj; Martins, Ralph N
2018-01-01
The disruption of neurofilament, an axonal cytoskeletal protein, in neurodegenerative conditions may result in neuronal damage and its release into the cerebrospinal fluid and blood. In Alzheimer's disease (AD), neurofilament light chain (NFL), a neurofilament subunit, is elevated in the cerebrospinal fluid and blood. Investigate the association of plasma NFL with preclinical-AD features, such as high neocortical amyloid-β load (NAL) and subjective memory complaints, and cognitive performance in cognitively normal older adults. Plasma NFL concentrations were measured employing the single molecule array platform in participants from the Kerr Anglican Retirement Village Initiative in Ageing Health cohort, aged 65- 90 years. Participants underwent a battery of neuropsychological testing to evaluate cognitive performance and were categorized as low NAL (NAL-, n = 65) and high NAL (NAL+, n = 35) assessed via PET, and further stratified into subjective memory complainers (SMC; nNAL- = 51, nNAL+ = 25) and non-SMC (nNAL- = 14, nNAL+ = 10) based on the Memory Assessment Clinic- Questionnaire. Plasma NFL inversely correlated with cognitive performance. No significant difference in NFL was observed between NAL+ and NAL- participants; however, within APOEɛ4 non-carriers, higher NAL was observed in individuals with NFL concentrations within quartiles 3 and 4 (versus quartile 1). Additionally, within the NAL+ participants, SMC had a trend of higher NFL compared to non-SMC. Plasma NFL is inversely associated with cognitive performance in elderly individuals. While plasma NFL may not reflect NAL in individuals with normal global cognition, the current observations indicate that onset of axonal injury, reflected by increased plasma NFL, within the preclinical phase of AD may contribute to the pathogenesis of AD.
Janelidze, Shorena; Hall, Sara; Magdalinou, Nadia; Lees, Andrew J.; Andreasson, Ulf; Norgren, Niklas; Linder, Jan; Forsgren, Lars; Constantinescu, Radu; Zetterberg, Henrik; Blennow, Kaj
2017-01-01
Objective: To determine if blood neurofilament light chain (NfL) protein can discriminate between Parkinson disease (PD) and atypical parkinsonian disorders (APD) with equally high diagnostic accuracy as CSF NfL, and can therefore improve the diagnostic workup of parkinsonian disorders. Methods: The study included 3 independent prospective cohorts: the Lund (n = 278) and London (n = 117) cohorts, comprising healthy controls and patients with PD, progressive supranuclear palsy (PSP), corticobasal syndrome (CBS), and multiple system atrophy (MSA), as well as an early disease cohort (n = 109) of patients with PD, PSP, MSA, or CBS with disease duration ≤3 years. Blood NfL concentration was measured using an ultrasensitive single molecule array (Simoa) method, and the diagnostic accuracy to distinguish PD from APD was investigated. Results: We found strong correlations between blood and CSF concentrations of NfL (ρ ≥ 0.73–0.84, p ≤ 0.001). Blood NfL was increased in patients with MSA, PSP, and CBS (i.e., all APD groups) when compared to patients with PD as well as healthy controls in all cohorts (p < 0.001). Furthermore, in the Lund cohort, blood NfL could accurately distinguish PD from APD (area under the curve [AUC] 0.91) with similar results in both the London cohort (AUC 0.85) and the early disease cohort (AUC 0.81). Conclusions: Quantification of blood NfL concentration can be used to distinguish PD from APD. Blood-based NfL might consequently be included in the diagnostic workup of patients with parkinsonian symptoms in both primary care and specialized clinics. Classification of evidence: This study provides Class III evidence that blood NfL levels discriminate between PD and APD. PMID:28179466
Gong, Zhong-Ying; Lv, Gao-Peng; Gao, Li-Na; Lu, Yi; Guo, Jie; Zang, Da-Wei
2018-06-13
There are no reliable biomarkers that could evaluate the disease burden in amyotrophic lateral sclerosis (ALS). The aim of our study is to evaluate the changes in cerebrospinal fluid (CSF) and serum neurofilament subunit L (NF-L) in patients with ALS and to analyze the correlations between the levels of NF-L and clinical parameters. CSF and serum samples were obtained from 80 ALS patients and 40 controls. The levels of NF-L in CSF and serum were assessed, and disease progression parameters including duration, revised ALS Functional Rating Scale (ALSFRS-r) score, disease progression rate (DPR), upper motor neuron (UMN) score, and survival were analyzed by registered neurologists. All samples were measured using a commercial enzyme-linked immunosorbent assay. Statistical analyses were performed using Prism software. Compared to the controls, the ALS patients displayed significantly increased levels of NF-L; these values were negatively correlated with the ALSFRS-r score and positively correlated with the decrease in ALSFRS-r score, DPR, and UMN score. There was no correlation between levels of NF-L and duration. In addition, the cumulative survival rate in ALS patients with a low level of NF-L was higher than in patients with a high level of NF-L. NF-L levels increased in CSF and serum of patients with ALS. NF-L may thus be a neurodegenerative biomarker for predicting ALS severity and progression, and the survival of patients with this disease. © 2018 S. Karger AG, Basel.
Robbins, Daniel W
2010-11-01
The objective of this study was to investigate the predictive ability of National Football League (NFL) combine physical test data to predict draft order over the years 2005-2009. The NFL combine provides a setting in which NFL personnel can evaluate top draft prospects. The predictive ability of combine data in its raw form and when normalized in both a ratio and allometric manner was examined for 17 positions. Data from 8 combine physical performance tests were correlated with draft order to determine the direction and strength of relationship between the various combine measures and draft order. Players invited to the combine and subsequently drafted in the same year (n = 1,155) were included in the study. The primary finding was that performance in the combine physical test battery, whether normalized or not, has little association with draft success. In terms of predicting draft order from outcomes of the 8 tests making up the combine battery, normalized data provided no advantage over raw data. Of the 8 performance measures investigated, straight sprint time and jumping ability seem to hold the most weight with NFL personnel responsible for draft decisions. The NFL should consider revising the combine test battery to reflect the physical characteristics it deems important. It may be that NFL teams are more interested in attributes other than the purely physical traits reflected in the combine test battery. Players with aspirations of entering the NFL may be well advised to develop mental and technical skills in addition to developing the physical characteristics necessary to optimize performance.
Price, Mark D.; Rossy, William H.; Sanchez, George; McHale, Kevin Jude; Logan, Catherine; Provencher, Matthew T.
2017-01-01
Objectives: Normal At the annual National Football League (NFL) Scouting Combine, the medical staff of each NFL franchise performs a comprehensive medical evaluation of all athletes potentially entering the NFL. Currently, little is known regarding the overall epidemiology of injuries identified at the Combine and their impact on NFL performance. The purpose of this study is to determine the epidemiology of injuries identified at the Combine and their impact on future NFL performance. Methods: All previous musculoskeletal injuries identified at the NFL combine (2009-2015) were retrospectively reviewed. Medical records and imaging reports were examined. Game statistics for the first two seasons of NFL play were obtained for all players from 2009 to 2013. Analysis of injury prevalence and overall impact on draft status and position-specific performance metrics of each injury was performed and compared versus a position-matched control group with no history of injury and surgery. Results: A total of 2,203 athletes over seven years were evaluated, including 1,490 (67.6%) drafted athletes and 1,040 (47.2%) who ultimately played at least two years in the NFL. The most common sites of injury were the ankle (1160, 52.7%), shoulder (1143, 51.9%), knee (1128, 51.2%), spine (785, 35.6%), and hand (739, 33.5%). Odds ratios (OR) demonstrated quarterbacks were most at risk of shoulder injury (OR 2.78, p=0.001) while running backs most commonly sustained ankle (OR 1.49, p=0.038) and shoulder injuries (OR 1.55, p=0.022). Ultimately, defensive players demonstrated a more negative impact than offensive players following injury with multiple performance metrics impacted for each defensive position analyzed whereas skilled offensive players (i.e. quarterbacks, running backs) demonstrated only one metric affected at each position. Conclusion: The most common sites of injury identified at the Combine were: (1) ankle, (2) shoulder, (3) knee, (4) spine, and (5) hand. Overall, performance in the NFL was significantly impacted by previous injuries. NFL performance was directly dependent on position played as well as anatomic location of injury. Defensive players were more negatively impacted than offensive players. Additional work is necessary to determine longer-term impact of these injuries on NFL career and post-NFL quality of life.
Gaetani, Lorenzo; Höglund, Kina; Parnetti, Lucilla; Pujol-Calderon, Fani; Becker, Bruno; Eusebi, Paolo; Sarchielli, Paola; Calabresi, Paolo; Di Filippo, Massimiliano; Zetterberg, Henrik; Blennow, Kaj
2018-01-23
Cerebrospinal fluid (CSF) neurofilament light (NfL) is a reliable marker of neuro-axonal damage in different neurological disorders that is related to disease severity. To date, all recent studies performed in human CSF have used the same enzyme-linked immunosorbent assay (ELISA). To confirm the large body of evidence for NfL, we developed a new ELISA method and here we present the performance characteristics of this new ELISA for CSF NfL in different neurological disorders. We produced two monoclonal antibodies (NfL21 and NfL23) directed against the NfL core domain, and developed a novel sandwich ELISA method that we evaluated in patients with: 1) inflammatory demyelinating diseases (IDD; n = 97), including multiple sclerosis (MS; n = 59), clinically isolated syndrome (CIS; n = 32), and radiologically isolated syndrome (RIS; n = 6); 2) Alzheimer's disease (AD; n = 72), including mild cognitive impairment due to AD (MCI-AD, n = 36) and probable AD dementia (AD-dem; n = 36); 3) Parkinson's disease (PD; n = 30); and 4) other neurological noninflammatory and non-neurodegenerative diseases (OND; n = 30). Our new NfL ELISA showed a good analytical performance (inter-plate coefficient of variation (CV) < 13%), with no cross-reactivity with neurofilament medium and heavy (NfM and NfH). With respect to the other available ELISAs, CSF NfL showed the same range of values with a strong correlation (r = 0.9984, p < 0.001) between the two methods. CSF NfL levels were significantly higher in MCI-AD/AD-dem and IDD patients as compared with both PD and OND patients. The highest discriminative power was obtained between IDD and OND patients (area under the curve (AUC) 0.87, 95% confidence interval (CI) 0.80-0.95). Within the IDD group, CSF NfL positively correlated with several clinical and radiological disease severity parameters. These results show a good analytical performance of the new ELISA for quantification of NfL concentrations in the CSF. CSF NfL is confirmed to be a reliable marker in AD and MS, and a disease-severity marker in MS patients.
Amor, Sandra; van der Star, Baukje J; Bosca, Isabel; Raffel, Joel; Gnanapavan, Sharmilee; Watchorn, Jonathan; Kuhle, Jens; Giovannoni, Gavin; Baker, David; Malaspina, Andrea; Puentes, Fabiola
2014-09-01
Increased levels of antibodies to neurofilament light protein (NF-L) in biological fluids have been found to reflect neuroinflammatory responses and neurodegeneration in multiple sclerosis (MS). To evaluate whether levels of serum antibodies against NF-L correlate with clinical variants and treatment response in MS. The autoantibody reactivity to NF-L protein was tested in serum samples from patients with relapsing-remitting MS (RRMS) (n=22) and secondary progressive MS (SPMS) (n=26). Two other cohorts of RRMS patients under treatment with natalizumab were analysed cross-sectionally (n=16) and longitudinally (n=24). The follow-up samples were taken at 6, 12, 18 and 24 months after treatment, and the NF-L antibody levels were compared against baseline levels. NF-L antibodies were higher in MS clinical groups than healthy controls and in RRMS compared to SPMS patients (p<0.001). NF-L antibody levels were lower in natalizumab treated than in untreated patients (p<0.001). In the longitudinal series, NF-L antibody levels decreased over time and a significant difference was found following 24 months of treatment compared with baseline measurements (p=0.001). Drug efficacy in MS treatment indicates the potential use of monitoring the content of antibodies against the NF-L chain as a predictive biomarker of treatment response in MS. © The Author(s) 2014.
Okoroha, Kelechi R.; Kadri, Omar; Keller, Robert A.; Marshall, Nathan; Cizmic, Zlatan; Moutzouros, Vasilios
2017-01-01
Background: National Football League (NFL) players who undergo anterior cruciate ligament (ACL) reconstruction have been shown to have a lower return to play (RTP) than previously expected. However, RTP in the NFL after revision ACL reconstruction (RACLR) is not well defined. Purpose/Hypothesis: The purpose of this study is to determine the RTP of NFL players after RACLR and evaluate factors that predict RTP. Our hypothesis was that more experienced and established players would be more likely to RTP after RACLR. Study Design: Cohort study; Level of evidence, 3. Methods: A total of 24 NFL players who underwent RACLR between 2007 and 2014 were reviewed and evaluated. Return to NFL play, time to return, seasons and games played prior to and after revision surgery, draft status, and demographic data were collected. Overall RTP was determined, and players who did RTP were compared with those unable to RTP. Data were also compared with control players matched for age, position, size, and experience. Results: After RACLR, 79% (19/24) of NFL players returned to NFL regular-season play at an average of 12.6 months. All players who were drafted in the first 4 rounds, played in at least 55 games, or played 4 seasons of NFL play prior to injury were able to RTP. Players drafted in the first 4 rounds of the NFL draft were more likely to RTP than those who were not (odds ratio, 0.1; 95% CI, 0.01-1.00; P = .05). Those who returned to NFL play played in significantly less games and seasons after their injury than before (P = .01 and P = .01, respectively). However, these values did not differ when compared with matched controls (P = .67 and P = .33). Conclusion: NFL players who RTP after RACLR do so at a similar rate but prolonged time period compared with after primary ACL reconstruction. Athletes who were drafted in earlier rounds were more likely to RTP than those who were not. Additionally, player experience prior to injury is an important factor when predicting RTP after RACLR. PMID:28451611
Vopat, Bryan; Beaulieu-Jones, Brendin R; Waryasz, Gregory; McHale, Kevin J; Sanchez, George; Logan, Catherine A; Whalen, James M; DiGiovanni, Christopher W; Provencher, Matthew T
2017-08-01
Navicular injuries can result in persistent pain, posttraumatic osteoarthritis, and diminished performance and function. To determine the epidemiology of navicular fracture in players participating in the National Football League (NFL) Scouting Combine and evaluate the impact of a navicular injury on the NFL draft position and NFL game play compared with matched controls. Cohort study; Level of evidence, 3. Data were collected on players who previously sustained a navicular injury and participated in the NFL Combine between 2009 and 2015. The epidemiology of navicular injury was determined through an evaluation of the number of injuries, surgeries, and collegiate games missed as well as the position played, a physical examination, the surgical technique, and imaging findings. Players with a previous navicular injury (2009-2013) were compared with a set of matched controls. NFL performance outcomes included the draft position, career length ≥2 years, and number of games played and started within the first 2 years. Between 2009 and 2015, 14 of 2285 (0.6%) players were identified as having sustained a navicular injury. A total of 11 of 14 (79%) athletes had sustained an overt navicular fracture, while 3 of 14 (21%) were diagnosed with stress reactions on magnetic resonance imaging. Eight patients who sustained a navicular fracture underwent surgery. There was evidence of ipsilateral talonavicular arthritis in 75% of players with a navicular fracture versus only 60% in the uninjured foot (odds ratio, 1.3; P = .04). Fifty-seven percent of players with navicular injury (72.7% of fractures) were undrafted versus 30.9% in the control group ( P = .001). Overall, 28.6% of players with navicular fracture played ≥2 years in the NFL compared with 69.6% in the control group ( P = .02). A previous navicular fracture results in a greater risk of developing posttraumatic osteoarthritis. Although only a low prevalence of navicular injury in prospective NFL players was noted, players with these injuries had a greater probability of not being drafted and not competing in at least 2 NFL seasons when compared with matched controls without an injury history to the NFL Combine.
Vopat, Bryan; Beaulieu-Jones, Brendin R.; Waryasz, Gregory; McHale, Kevin J.; Sanchez, George; Logan, Catherine A.; Whalen, James M.; DiGiovanni, Christopher W.; Provencher, Matthew T.
2017-01-01
Background: Navicular injuries can result in persistent pain, posttraumatic osteoarthritis, and diminished performance and function. Purpose: To determine the epidemiology of navicular fracture in players participating in the National Football League (NFL) Scouting Combine and evaluate the impact of a navicular injury on the NFL draft position and NFL game play compared with matched controls. Study Design: Cohort study; Level of evidence, 3. Methods: Data were collected on players who previously sustained a navicular injury and participated in the NFL Combine between 2009 and 2015. The epidemiology of navicular injury was determined through an evaluation of the number of injuries, surgeries, and collegiate games missed as well as the position played, a physical examination, the surgical technique, and imaging findings. Players with a previous navicular injury (2009-2013) were compared with a set of matched controls. NFL performance outcomes included the draft position, career length ≥2 years, and number of games played and started within the first 2 years. Results: Between 2009 and 2015, 14 of 2285 (0.6%) players were identified as having sustained a navicular injury. A total of 11 of 14 (79%) athletes had sustained an overt navicular fracture, while 3 of 14 (21%) were diagnosed with stress reactions on magnetic resonance imaging. Eight patients who sustained a navicular fracture underwent surgery. There was evidence of ipsilateral talonavicular arthritis in 75% of players with a navicular fracture versus only 60% in the uninjured foot (odds ratio, 1.3; P = .04). Fifty-seven percent of players with navicular injury (72.7% of fractures) were undrafted versus 30.9% in the control group (P = .001). Overall, 28.6% of players with navicular fracture played ≥2 years in the NFL compared with 69.6% in the control group (P = .02). Conclusion: A previous navicular fracture results in a greater risk of developing posttraumatic osteoarthritis. Although only a low prevalence of navicular injury in prospective NFL players was noted, players with these injuries had a greater probability of not being drafted and not competing in at least 2 NFL seasons when compared with matched controls without an injury history to the NFL Combine. PMID:28840151
McHale, Kevin Jude; Vopat, Bryan George; Sanchez, George; Rossy, William H.; Logan, Catherine; Provencher, Matthew T.
2017-01-01
Objectives: Lisfranc injuries may have a detrimental effect on athletic performance and an athlete’s career. Understanding the epidemiology of these injuries in collegiate football players and their impact on future performance may assist team physicians in counseling injured athletes and determining optimal treatment. The purposes of this study are to 1) determine the epidemiology of navicular fractures in players participating in the NFL Combine, 2) define positions and demographics that might be at higher risk for sustaining this injury, and 3) evaluate the radiographic healing and eventual impact the injury and radiographic findings has on Lisfranc injuries on NFL draft position and NFL game play compared to matched controls. Methods: All players who sustained a Lisfranc injury prior to Combine evaluation between 2009 and 2015 were evaluated. The prevalence, positions affected, treatment methods, and number of missed collegiate games were recorded. Radiographic outcomes were analyzed via Combine radiograph findings, while NFL performance outcomes were assessed for all Lisfranc injuries (2009-13) compared to matched controls in first two years of play. Results: A total of 41/2162 (1.8%) Combine participants were identified with Lisfranc injuries, of which 26/41 (63.4%) were managed operatively. When compared to players managed nonoperatively, those who underwent surgery were more likely to go undrafted (38.5% vs. 13.3%, p=0.04) and featured a worse NFL draft pick position (155.6 vs. 109, p=0.03). Lisfranc-injured players were noted to have a worse NFL draft position (142 vs. 111.3, p=0.04), NFL career length ≥2 years (62.5% vs. 69.6%, p=0.23) and fewer games played (16.9 vs. 23.3, p=0.001) and started (6.8 vs. 10.5, p=0.08) within the first two years of NFL career versus controls. Radiographs demonstrated 17/41 (41.5%) athletes with residual Lisfranc joint displacement >2mm compared to the contralateral foot. Lisfranc-injured athletes with >2mm residual displacement had lower draft position (111.2 vs. 156.9, p=0.009), and fewer games played (23.3 vs. 14.4, p=0.001) and started (10.5 vs. 3,1, p=0.03) versus matched controls. Moreover, athletes with >2mm residual displacement featured worse outcomes across all assessed NFL variables versus athletes with ≤2mm residual displacement. Conclusion: Lisfranc injuries identified at the NFL Combine have an adverse effect on an NFL athlete’s draft status, draft position and overall play during initial NFL seasons. In particular, residual displacement of the Lisfranc joint has a detrimental impact on the first two seasons of NFL play and may lead to long lasting negative effects on career.
Optical Coherence Tomography Angiography of Optic Disc Perfusion in Glaucoma
Jia, Yali; Wei, Eric; Wang, Xiaogang; Zhang, Xinbo; Morrison, John C.; Parikh, Mansi; Lombardi, Lori H.; Gattey, Devin M.; Armour, Rebecca L.; Edmunds, Beth; Kraus, Martin F.; Fujimoto, James G.; Huang, David
2014-01-01
Purpose To compare optic disc perfusion between normal and glaucoma subjects using optical coherence tomography (OCT) angiography and detect optic disc perfusion changes in glaucoma. Design Observational, cross-sectional study. Participants Twenty-four normal subjects and 11 glaucoma patients were included. Methods One eye of each subject was scanned by a high-speed 1050 nm wavelength swept-source OCT instrument. The split-spectrum amplitude-decorrelation angiography algorithm (SSADA) was used to compute three-dimensional optic disc angiography. A disc flow index was computed from four registered scans. Confocal scanning laser ophthalmoscopy (cSLO) was used to measure disc rim area, and stereo photography was used to evaluate cup/disc ratios. Wide field OCT scans over the discs were used to measure retinal nerve fiber layer (NFL) thickness. Main Outcome Measurements Variability was assessed by coefficient of variation (CV). Diagnostic accuracy was assessed by sensitivity and specificity. Comparisons between glaucoma and normal groups were analyzed by Wilcoxon rank-sum test. Correlations between disc flow index, structural assessments, and visual field (VF) parameters were assessed by linear regression. Results In normal discs, a dense microvascular network was visible on OCT angiography. This network was visibly attenuated in glaucoma subjects. The intra-visit repeatability, inter-visit reproducibility, and normal population variability of the optic disc flow index were 1.2%, 4.2%, and 5.0% CV respectively. The disc flow index was reduced by 25% in the glaucoma group (p = 0.003). Sensitivity and specificity were both 100% using an optimized cutoff. The flow index was highly correlated with VF pattern standard deviation (R2 = 0.752, p = 0.001). These correlations were significant even after accounting for age, cup/disc area ratio, NFL, and rim area. Conclusions OCT angiography, generated by the new SSADA algorithm, repeatably measures optic disc perfusion. OCT angiography could be useful in the evaluation of glaucoma and glaucoma progression. PMID:24629312
McCarty, Eric C; Kraeutler, Matthew J; Langner, Paula; Cook, Shane; Ellis, Byron; Godfrey, Jenna M
We conducted a study to identify and contrast patterns in the treatment of common injuries that occur in National Football League (NFL) players and National Collegiate Athletic Association (NCAA) Division I football players. Orthopedic team physicians for all 32 NFL and 119 NCAA Division I football teams were asked to complete a survey regarding demographics and preferred treatment of a variety of injuries encountered in football players. Responses were received from 31 (97%) of the 32 NFL and 111 (93%) of the 119 NCAA team physicians. Although patellar tendon autograft was the preferred graft choice for both groups of team physicians, the percentage of NCAA physicians who allowed return to football 6 months or less after anterior cruciate ligament reconstruction was significantly (P = .03) higher than that of NFL physicians. Prophylactic knee bracing, which may prevent medial collateral ligament injuries, was used at a significantly (P < .0001) higher rate by NCAA teams (89%) than by NFL teams (28%). Ketorolac injections were given by a significantly (P < .01) higher percentage of NFL teams (93%) than of NCAA teams (62%). Understanding the current trends in the management of these injuries is beneficial in designing studies that may help improve the treatment and prevention of injuries in football players.
McAdams, Timothy R; Deimel, Jay F; Ferguson, Jeff; Beamer, Brandon S; Beaulieu, Christopher F
2016-02-01
Although a recognized and discussed injury, chondral rib fractures in professional American football have not been previously reported in the literature. There currently exists no consensus on how to identify and treat these injuries or the expected return to play for the athlete. To present 2 cases of chondral rib injuries in the National Football League (NFL) and discuss the current practice patterns for management of these injuries among the NFL team physicians. Case series; Level of evidence, 4. Two cases of NFL players with chondral rib injuries are presented. A survey regarding work-up and treatment of these injuries was completed by team physicians at the 2014 NFL Combine. Our experience in identifying and treating these injuries is presented in conjunction with a survey of NFL team physicians' experiences. Two cases of rib chondral injuries were diagnosed by computed tomography (CT) and treated with rest and protective splinting. Return to play was 2 to 4 weeks. NFL Combine survey results show that NFL team physicians see a mean of 4 costal cartilage injuries per 5-year period, or approximately 1 case per year per team. Seventy percent of team physicians use CT scanning and 43% use magnetic resonance imaging for diagnosis of these injuries. An anesthetic block is used acutely in 57% and only electively in subsequent games by 39%. A high index of suspicion is necessary to diagnose chondral rib injuries in American football. CT scan is most commonly used to confirm diagnosis. Return to play can take up to 2 to 4 weeks with a protective device, although anesthetic blocks can be used to potentially expedite return. Chondral rib injuries are common among NFL football players, while there is no literature to support proper diagnosis and treatment of these injuries or expected duration of recovery. These injuries are likely common in other contact sports and levels of competition as well. Our series combined with NFL team physician survey results can aid team physicians in identifying these injuries, obtaining useful imaging, and counseling players and coaches and the expected time of recovery.
Graham, Dan J; Roberto, Christina A
2016-08-01
The U.S. Food and Drug Administration (FDA) has proposed modifying the Nutrition Facts Label (NFL) on food packages to increase consumer attention to this resource and to promote healthier dietary choices. The present study sought to determine whether the proposed NFL changes will affect consumer attention to the NFL or purchase intentions. This study compared purchase intentions (yes/no responses to "would you purchase this food?" for 64 products) and attention to NFLs (measured via high-speed eye-tracking camera) among 155 young adults randomly assigned to view products with existing versus modified NFLs. Attention to all individual components of the NFL (e.g., calories, fats, sugars) were analyzed separately to assess the impact of each proposed NFL modification on attention to that region. Data were collected in 2014; analysis was conducted in 2015. Modified NFLs did not elicit significantly more visual attention or lead to more healthful purchase intentions than did existing NFLs. Relocating the percent daily value component from the right side of the NFL to the left side, as proposed by the FDA, actually reduced participants' attention to this information. The proposed "added sugars" component was viewed on at least one label by a majority (58%) of participants. Results suggest that the proposed NFL changes may not achieve FDA's goals. Changes to nutrition labeling may need to take a different form to meaningfully influence dietary behavior. Young adults' visual attention and purchase intentions do not appear to be meaningfully affected by the proposed NFL modifications. © 2016 Society for Public Health Education.
Serum neurofilament light as a biomarker for mild traumatic brain injury in contact sports
Zetterberg, Henrik; Tegner, Yelverton; Blennow, Kaj
2017-01-01
Objective: To evaluate whether the axonal protein neurofilament light (NFL) in serum is a sensitive biomarker to detect subtle brain injury or concussion in contact sports athletes. Methods: Two prospective cohort studies involving (1) 14 Swedish amateur boxers who underwent fluid biomarker assessments at 7–10 days after bout and after 3 months of rest from boxing and (2) 35 Swedish professional hockey players who underwent blood biomarker assessment at 1, 12, 36, and 144 hours after concussion and when the players returned to play were performed. Fourteen healthy nonathletic controls and 12 athletic controls were also enrolled. Serum NFL was measured using ultrasensitive single molecule array technology. Results: Serum NFL concentrations were increased in boxers 7–10 days after bout as compared to the levels after 3 months rest as well as compared with controls (p = 0.0007 and p < 0.0001, respectively). NFL decreased following 3 months of rest, but was still higher than in controls (p < 0.0001). Boxers who received many (>15) hits to the head or were groggy after bout had higher concentrations of serum NFL as compared to those who received fewer hits to the head (p = 0.0023). Serum NFL increased over time in hockey players, and the levels returned to normal at return to play. Importantly, serum NFL could separate players with rapidly resolving postconcussion symptoms (PCS) from those with prolonged PCS. Conclusions: The results from these 2 independent cohort studies suggest that serum NFL is a highly sensitive biomarker for concussion. PMID:28404801
Pereira, Joana B; Westman, Eric; Hansson, Oskar
2017-10-01
The aggregation and deposition of amyloid-β (Aβ) peptides into plaques is an early event in Alzheimer's disease (AD), which is followed by different aspects of neurodegeneration that can be measured in the cerebrospinal fluid (CSF) or plasma using neurofilament light (NFL), neurogranin (Ng), total Tau (T-Tau), and phosphorylated tau (P-Tau) levels. The relationship between these biomarkers and regional brain atrophy across the different stages of AD remains largely unexplored. In this study, we assessed whether NFL, Ng, T-Tau, and P-Tau levels in CSF and NFL in plasma are associated with cortical thinning and subcortical volume loss in cognitively normal, mild cognitive impairment, and AD subjects with and without Aβ pathology. Our main findings showed that CSF NFL levels were associated with brain atrophy in all groups, but plasma NFL only correlated with atrophy in symptomatic cases. In contrast, Ng was associated with regional brain atrophy only in individuals with Aβ pathology. Altogether, our main findings suggest that Ng is strongly associated with Aβ pathology, whereas NFL is more unspecific. Copyright © 2017 Elsevier Inc. All rights reserved.
Superior Labrum Anterior-Posterior Tears in the National Football League.
Chambers, Caitlin C; Lynch, T Sean; Gibbs, Daniel B; Ghodasra, Jason H; Sahota, Shawn; Franke, Kristina; Mack, Christina D; Nuber, Gordon W
2017-01-01
Shoulder disorders are common in football players, with up to 50% of National Football League (NFL) recruits reporting a history of shoulder injuries. Superior labrum anterior-posterior (SLAP) tears are an entity with well-described detrimental effects on return to play in overhead-throwing athletes but with minimal data in contact athletes. To identify the incidence, predisposing factors, and effect of SLAP tears in NFL athletes and prospects as well as the treatment patterns of NFL team physicians. Descriptive epidemiology study. This study was a comprehensive analysis of SLAP tears in elite football players using a dual approach: (1) SLAP injuries recorded in the NFL Injury Surveillance System from 2000 to 2014 were evaluated by player position, type of play, days/games lost, and surgical intervention; (2) NFL Scouting Combine athletes from 2003 to 2011 with prior SLAP repair were evaluated for draft success, and drafted athletes were compared with matched controls for career length and performance scores. SLAP tears represented a small portion (3.1%) of shoulder injuries in NFL athletes from 2000 to 2014, occurring most commonly in offensive linemen (28%). Surgically treated SLAP tears (42%) resulted in more days missed than did nonoperatively managed tears (140.2 vs 21.5 days; P < .001) and more games missed (8.4 vs 2.6 games; P = .003). SLAP repairs were also rare in NFL Combine athletes (n = 25 of 2965 athletes), with most having been performed in offensive linemen (32%). As compared with control NFL Combine athletes without SLAP tears, those drafted into the NFL with prior SLAP repair played significantly fewer games (33.7 vs 48.3; P = .049) and had fewer game starts (19.6 vs 35.4; P = .036). In this comprehensive analysis of SLAP tears in elite football players, it is clear that these injuries have the potential to cause significant detriment to an athlete's career.
Shoulder instability in professional football players.
Leclere, Lance E; Asnis, Peter D; Griffith, Matthew H; Granito, David; Berkson, Eric M; Gill, Thomas J
2013-09-01
Shoulder instability is a common problem in American football players entering the National Football League (NFL). Treatment options include nonoperative and surgical stabilization. This study evaluated how the method of treatment of pre-NFL shoulder instability affects the rate of recurrence and the time elapsed until recurrence in players on 1 NFL team. Retrospective cohort. Medical records from 1980 to 2008 for 1 NFL team were reviewed. There were 328 players included in the study who started their career on the team and remained on the team for at least 2 years (mean, 3.9 years; range, 2-14 years). The history of instability prior to entering the NFL and the method of treatment were collected. Data on the occurrence of instability while in the NFL were recorded to determine the rate and timing of recurrence. Thirty-one players (9.5%) had a history of instability prior to entering the NFL. Of the 297 players with no history of instability, 39 (13.1%) had a primary event at a mean of 18.4 ± 22.2 months (range, 0-102 months) after joining the team. In the group of players with prior instability treated with surgical stabilization, there was no statistical difference in the rate of recurrence (10.5%) or the timing to the instability episode (mean, 26 months) compared with players with no history of instability. Twelve players had shoulder instability treated nonoperatively prior to the NFL. Five of these players (41.7%) had recurrent instability at a mean of 4.4 ± 7.0 months (range, 0-16 months). The patients treated nonoperatively had a significantly higher rate of recurrence (P = 0.02) and an earlier time of recurrence (P = 0.04). The rate of contralateral instability was 25.8%, occurring at a mean of 8.6 months. Recurrent shoulder instability is more common in NFL players with a history of nonoperative treatment. Surgical stabilization appears to restore the rate and timing of instability to that of players with no prior history of instability.
McHale, Kevin J; Vopat, Bryan G; Beaulieu-Jones, Brendin R; Sanchez, George; Whalen, James M; McDonald, Lucas S; DiGiovanni, Christopher W; Theodore, George H; Provencher, Matthew T
2017-07-01
Lisfranc injuries are challenging to treat and may have a detrimental effect on athletic performance. (1) Determine the epidemiological characteristics of Lisfranc injuries at the annual National Football League (NFL) Scouting Combine, (2) define player positions at risk for these injuries, and (3) evaluate the impact that these injuries and radiographic findings have on NFL draft position and performance. Cohort study; Level of evidence, 3. All players who sustained a Lisfranc injury prior to Combine evaluation between 2009 and 2015 were evaluated. The epidemiological characteristics, player positions affected, treatment methods, and number of missed collegiate games were recorded. Radiographic outcomes were analyzed via Combine radiograph findings, while NFL performance outcomes were assessed for all Lisfranc injuries (2009-2013) compared with matched controls in the first 2 years of play. A total of 41 of 2162 (1.8%) Combine participants were identified with Lisfranc injuries, of whom 26 of 41 (63.4%) were managed operatively. Players who underwent surgery were more likely to go undrafted compared with players managed nonoperatively (38.5% vs 13.3%, operative vs nonoperative management, respectively; P = .04) and featured a worse NFL draft pick position (155.6 vs 109; P = .03). Lisfranc-injured players when compared with controls were noted to have worse outcomes in terms of NFL draft position (142 vs 111.3, Lisfranc-injured players vs controls, respectively; P = .04), NFL career length 2 years or longer (62.5% vs 69.6%; P = .23), and number of games played (16.9 vs 23.3; P = .001) and started (6.8 vs 10.5; P = .08) within the first 2 years of their NFL career. Radiographs demonstrated that 17 of 41 (41.5%) athletes had residual Lisfranc joint displacement greater than 2 mm compared with the contralateral foot. Lisfranc-injured athletes with greater than 2 mm residual displacement, when compared with matched controls, had worse draft position (156.9 vs 111.2 for Lisfranc-injured players vs controls, respectively; P = .009) and fewer games played (14.4 vs 23.3; P = .001) and started (3.1 vs 10.5; P = .03). Moreover, athletes with greater than 2 mm residual displacement featured worse outcomes across all assessed NFL variables versus athletes with residual displacement of 2 mm or less. Lisfranc injuries identified at the NFL Combine have an adverse effect on an NFL athlete's draft status, draft position, and overall play during initial NFL seasons. In particular, residual displacement of the Lisfranc joint has a detrimental effect on the first 2 seasons of NFL play and may lead to long-lasting negative effects on the athlete's career.
Tortorella, C; Direnzo, V; Taurisano, P; Romano, R; Ruggieri, M; Zoccolella, S; Mastrapasqua, M; Popolizio, T; Blasi, G; Bertolino, A; Trojano, M
2015-04-01
Identifying markers of cognitive dysfunction in multiple sclerosis (MS) is extremely challenging since it means supplying potential biomarkers for neuroprotective therapeutic strategies. The aim of this study is to investigate the relationship between fMRI correlates of attention performance and cerebrospinal fluid (CSF) neurofilament light chain (NFL) levels in patients with clinically isolated syndrome (CIS) suggestive of MS. Twenty-one untreated, cognitively preserved CIS patients underwent BOLD-fMRI while performing the Variable Attentional Control (VAC) task, a cognitive paradigm requiring increasing levels of attentional control processing. CSF NFL was assessed by ELISA technique. SPM8 random-effects models were used for statistical analyses of fMRI data (p<0.05 corrected). Repeated-measures ANOVA on imaging data showed an interaction between attentional control load and NFL levels in the right putamen. At the high level of attentional control demand CIS patients with "low NFL levels" showed greater activity in the putamen compared with subjects with "high NFL levels" (p=0.001). These results are independent of cognitive impairment index. Our findings suggest a relationship between CSF NFL levels and load-dependent failure of putaminal recruitment pattern during sustained attention in CIS and suggest a role of CSF NFL as a marker of subclinical abnormality of cognitive pathway recruitment in CIS. © The Author(s), 2014.
Neurofilament light protein in blood predicts regional atrophy in Huntington disease
Johnson, Eileanoir B.; Byrne, Lauren M.; Gregory, Sarah; Rodrigues, Filipe B.; Blennow, Kaj; Durr, Alexandra; Leavitt, Blair R.; Roos, Raymund A.; Zetterberg, Henrik; Tabrizi, Sarah J.; Scahill, Rachael I.
2018-01-01
Objective Neurofilament light (NfL) protein in blood plasma has been proposed as a prognostic biomarker of neurodegeneration in a number of conditions, including Huntington disease (HD). This study investigates the regional distribution of NfL-associated neural pathology in HD gene expansion carriers. Methods We examined associations between NfL measured in plasma and regionally specific atrophy in cross-sectional (n = 198) and longitudinal (n = 177) data in HD gene expansion carriers from the international multisite TRACK-HD study. Using voxel-based morphometry, we measured associations between baseline NfL levels and both baseline gray matter and white matter volume; and longitudinal change in gray matter and white matter over the subsequent 3 years in HD gene expansion carriers. Results After controlling for demographics, associations between increased NfL levels and reduced brain volume were seen in cortical and subcortical gray matter and within the white matter. After also controlling for known predictors of disease progression (age and CAG repeat length), associations were limited to the caudate and putamen. Longitudinally, NfL predicted subsequent occipital gray matter atrophy and widespread white matter reduction, both before and after correction for other predictors of disease progression. Conclusions These findings highlight the value of NfL as a dynamic marker of brain atrophy and, more generally, provide further evidence of the strong association between plasma NfL level, a candidate blood biomarker, and pathologic neuronal change. PMID:29367444
Giving It the Old College Try: Understanding Degree Commitment among Division I FBS NFL Aspirants
ERIC Educational Resources Information Center
Martinez, Guadalupe Federico.
2012-01-01
Building on sociological studies regarding college choice and persistence, this qualitative study investigates the college and post college experiences of 15 current students with NFL aspirations and 13 former students who held NFL aspirations, all from Division I Football Bowl Series (FBS) programs. A phenomenological design is implemented to…
Solomon, Gary S; Kuhn, Andrew
2014-04-01
There are limited empirical data available regarding the relationship between concussion history and neurocognitive functioning in active National Football League (NFL) players in general and NFL draft picks in particular. Potential NFL draft picks undergo 2 neurocognitive tests at the National Invitational Camp (Scouting Combine) every year: the Wonderlic and, since 2011, the Immediate Post-concussion Assessment and Cognitive Testing (ImPACT). After conclusion of the combine and before the draft, NFL teams invite potential draft picks to their headquarters for individual visits where further assessment may occur. To examine the relationship between concussion history and neurocognitive performance (ImPACT and Wonderlic) in a sample of elite NFL draft picks. Cohort study; Level of evidence, 3. Over 7 years, 226 potential draft picks were invited to visit a specific NFL team's headquarters after the combine. The athletes were divided into 3 groups based on self-reported concussion history: no prior concussions, 1 prior concussion, and 2 or more prior concussions. Neurocognitive measures of interest included Wonderlic scores (provided by the NFL team) and ImPACT composite scores (administered either at the combine or during a visit to the team headquarters). The relationship between concussion history and neurocognitive scores was assessed, as were the relationships among the 2 neurocognitive tests. Concussion history had no relationship to neurocognitive performance on either the Wonderlic or ImPACT. Concussion history did not affect performance on either neurocognitive test, suggesting that for this cohort, a history of concussion may not have adverse effects on neurocognitive functioning as measured by these 2 tests. This study reveals no correlation between concussion history and neurocognitive test scores (ImPACT, Wonderlic) in soon-to-be active NFL athletes.
Solomon, Gary S; Haase, Richard F; Kuhn, Andrew
2013-02-01
Sports neuropsychology has emerged as a specialty area within the field of clinical neuropsychology. The role of the sports neuropsychologist, rooted in baseline and post-concussion testing, has evolved to include other clinical domains, including the clinical assessment of potential draft picks. There is no published information on the neurocognitive characteristics of these draft picks. We sought to determine whether elite NFL draft picks differed from NFL roster athletes on neurocognitive (ImPACT) and biopsychosocial characteristics, and given that no published data exists for this population, adopted null hypotheses. Null hypotheses were rejected for two of the four ImPACT scores, as elite draft picks scored higher on measures of visual motor speed and reaction time than roster NFL athletes. Subtle but distinct neurocognitive differences are noted when comparing elite NFL draft picks with norms from a cumulative roster of a single NFL team.
Yilmaz, Aylin; Blennow, Kaj; Hagberg, Lars; Nilsson, Staffan; Price, Richard W; Schouten, Judith; Spudich, Serena; Underwood, Jonathan; Zetterberg, Henrik; Gisslén, Magnus
2017-08-01
Several CSF biomarkers of neuronal injury have been studied in people living with HIV. At this time, the most useful is the light subunit of the neurofilament protein (NFL). This major structural component of myelinated axons is essential to maintain axonal caliber and to facilitate effective nerve conduction. CSF concentrations of NFL provide a sensitive marker of CNS injury in a number of neurological diseases, including HIV-related neuronal injury. Areas Covered: In this review, the authors describe CSF NFL concentrations across the spectrum of HIV-infection, from its early acute phase to severe immunosuppression, with and without neurological conditions, and with and without antiretroviral treatment (n = 516). Furthermore, in order to provide more precise estimates of age-related upper limits of CSF NFL concentrations, the authors present data from a large number (n = 359) of HIV-negative controls. Expert Commentary: Recently a new ultrasensitive diagnostic assay for quantification of NFL in plasma has been developed, providing a convenient way to assess neuronal damage without having to perform a lumbar puncture. This review also considers our current knowledge of plasma NFL in HIV CNS infection.
Godek, Sandra Fowkes; Bartolozzi, Arthur R; Peduzzi, Chris; Heinerichs, Scott; Garvin, Eugene; Sugarman, Eric; Burkholder, Richard
2010-01-01
Considerable controversy regarding fluid replacement during exercise currently exists. To compare fluid turnover between National Football League (NFL) players who have constant fluid access and collegiate football players who replace fluids during water breaks in practices. Observational study. Respective preseason training camps of 1 National Collegiate Athletic Association Division II (DII) football team and 1 NFL football team. Both morning and afternoon practices for DII players were 2.25 hours in length, and NFL players practiced for 2.25 hours in the morning and 1 hour in the afternoon. Environmental conditions did not differ. Eight NFL players (4 linemen, 4 backs) and 8 physically matched DII players (4 linemen, 4 backs) participated. All players drank fluids only from their predetermined individual containers. The NFL players could consume both water and sports drinks, and the DII players could only consume water. We measured fluid consumption, sweat rate, total sweat loss, and percentage of sweat loss replaced. Sweat rate was calculated as change in mass adjusted for fluids consumed and urine produced. Mean sweat rate was not different between NFL (2.1 +/- 0.25 L/h) and DII (1.8 +/- 0.15 L/h) players (F(1,12) = 2, P = .18) but was different between linemen (2.3 +/- 0.2 L/h) and backs (1.6 +/- 0.2 L/h) (t(14) = 3.14, P = .007). We found no differences between NFL and DII players in terms of percentage of weight loss (t(7) = -0.03, P = .98) or rate of fluid consumption (t(7) = -0.76, P = .47). Daily sweat loss was greater in DII (8.0 +/- 2.0 L) than in NFL (6.4 +/- 2.1 L) players (t(7) = -3, P = .02), and fluid consumed was also greater in DII (5.0 +/- 1.5 L) than in NFL (4.0 +/- 1.1 L) players (t(7) = -2.8, P = .026). We found a correlation between sweat loss and fluids consumed (r = 0.79, P < .001). During preseason practices, the DII players drinking water at water breaks replaced the same volume of fluid (66% of weight lost) as NFL players with constant access to both water and sports drinks.
Beaulieu-Jones, Brendin R; Rossy, William H; Sanchez, George; Whalen, James M; Lavery, Kyle P; McHale, Kevin J; Vopat, Bryan G; Van Allen, Joseph J; Akamefula, Ramesses A; Provencher, Matthew T
2017-07-01
At the annual National Football League (NFL) Scouting Combine, the medical staff of each NFL franchise performs a comprehensive medical evaluation of all athletes potentially entering the NFL. Currently, little is known regarding the overall epidemiology of injuries identified at the combine and their impact on NFL performance. To determine the epidemiology of injuries identified at the combine and their impact on initial NFL performance. Cohort study; Level of evidence, 3. All previous musculoskeletal injuries identified at the NFL Combine from 2009 to 2015 were retrospectively reviewed. Medical records and imaging reports were examined. Game statistics for the first 2 seasons of NFL play were obtained for all players from 2009 to 2013. Analysis of injury prevalence and overall impact on the draft status and position-specific performance metrics of each injury was performed and compared with a position-matched control group with no history of injury or surgery. A total of 2203 athletes over 7 years were evaluated, including 1490 (67.6%) drafted athletes and 1040 (47.2%) who ultimately played at least 2 years in the NFL. The most common sites of injury were the ankle (1160, 52.7%), shoulder (1143, 51.9%), knee (1128, 51.2%), spine (785, 35.6%), and hand (739, 33.5%). Odds ratios (ORs) demonstrated that quarterbacks were most at risk of shoulder injury (OR, 2.78; P = .001), while running backs most commonly sustained ankle (OR, 1.39; P = .040) and shoulder injuries (OR, 1.55; P = .020) when compared with all other players. Ultimately, defensive players demonstrated a greater negative impact due to injury than offensive players, with multiple performance metrics significantly affected for each defensive position analyzed, whereas skilled offensive players (eg, quarterbacks, running backs) demonstrated only 1 metric significantly affected at each position. The most common sites of injury identified at the combine were (1) ankle, (2) shoulder, (3) knee, (4) spine, and (5) hand. Overall, performance in the NFL tended to worsen with injury history, with a direct correlation found between injury at a certain anatomic location and position of play. Defensive players tended to perform worse compared with offensive players if injury history was present.
Beaulieu-Jones, Brendin R.; Rossy, William H.; Sanchez, George; Whalen, James M.; Lavery, Kyle P.; McHale, Kevin J.; Vopat, Bryan G.; Van Allen, Joseph J.; Akamefula, Ramesses A.; Provencher, Matthew T.
2017-01-01
Background: At the annual National Football League (NFL) Scouting Combine, the medical staff of each NFL franchise performs a comprehensive medical evaluation of all athletes potentially entering the NFL. Currently, little is known regarding the overall epidemiology of injuries identified at the combine and their impact on NFL performance. Purpose: To determine the epidemiology of injuries identified at the combine and their impact on initial NFL performance. Study Design: Cohort study; Level of evidence, 3. Methods: All previous musculoskeletal injuries identified at the NFL Combine from 2009 to 2015 were retrospectively reviewed. Medical records and imaging reports were examined. Game statistics for the first 2 seasons of NFL play were obtained for all players from 2009 to 2013. Analysis of injury prevalence and overall impact on the draft status and position-specific performance metrics of each injury was performed and compared with a position-matched control group with no history of injury or surgery. Results: A total of 2203 athletes over 7 years were evaluated, including 1490 (67.6%) drafted athletes and 1040 (47.2%) who ultimately played at least 2 years in the NFL. The most common sites of injury were the ankle (1160, 52.7%), shoulder (1143, 51.9%), knee (1128, 51.2%), spine (785, 35.6%), and hand (739, 33.5%). Odds ratios (ORs) demonstrated that quarterbacks were most at risk of shoulder injury (OR, 2.78; P = .001), while running backs most commonly sustained ankle (OR, 1.39; P = .040) and shoulder injuries (OR, 1.55; P = .020) when compared with all other players. Ultimately, defensive players demonstrated a greater negative impact due to injury than offensive players, with multiple performance metrics significantly affected for each defensive position analyzed, whereas skilled offensive players (eg, quarterbacks, running backs) demonstrated only 1 metric significantly affected at each position. Conclusion: The most common sites of injury identified at the combine were (1) ankle, (2) shoulder, (3) knee, (4) spine, and (5) hand. Overall, performance in the NFL tended to worsen with injury history, with a direct correlation found between injury at a certain anatomic location and position of play. Defensive players tended to perform worse compared with offensive players if injury history was present. PMID:28812033
Neurofilament light protein in blood predicts regional atrophy in Huntington disease.
Johnson, Eileanoir B; Byrne, Lauren M; Gregory, Sarah; Rodrigues, Filipe B; Blennow, Kaj; Durr, Alexandra; Leavitt, Blair R; Roos, Raymund A; Zetterberg, Henrik; Tabrizi, Sarah J; Scahill, Rachael I; Wild, Edward J
2018-02-20
Neurofilament light (NfL) protein in blood plasma has been proposed as a prognostic biomarker of neurodegeneration in a number of conditions, including Huntington disease (HD). This study investigates the regional distribution of NfL-associated neural pathology in HD gene expansion carriers. We examined associations between NfL measured in plasma and regionally specific atrophy in cross-sectional (n = 198) and longitudinal (n = 177) data in HD gene expansion carriers from the international multisite TRACK-HD study. Using voxel-based morphometry, we measured associations between baseline NfL levels and both baseline gray matter and white matter volume; and longitudinal change in gray matter and white matter over the subsequent 3 years in HD gene expansion carriers. After controlling for demographics, associations between increased NfL levels and reduced brain volume were seen in cortical and subcortical gray matter and within the white matter. After also controlling for known predictors of disease progression (age and CAG repeat length), associations were limited to the caudate and putamen. Longitudinally, NfL predicted subsequent occipital gray matter atrophy and widespread white matter reduction, both before and after correction for other predictors of disease progression. These findings highlight the value of NfL as a dynamic marker of brain atrophy and, more generally, provide further evidence of the strong association between plasma NfL level, a candidate blood biomarker, and pathologic neuronal change. © 2018 The Author(s). Published by Wolters Kluwer Health, Inc. on behalf of the American Academy of Neurology.
Knapik, Derrick M; Gillespie, Robert J; Salata, Michael J; Voos, James E
2017-08-01
Bony augmentation of the anterior glenoid is used in athletes with recurrent shoulder instability and bone loss; however, the prevalence and impact of repair in elite American football athletes are unknown. To evaluate the prevalence and impact of glenoid augmentation in athletes invited to the National Football League (NFL) Scouting Combine from 2012 to 2015. Case series; Level of evidence, 4. A total of 1311 athletes invited to the NFL Combine from 2012 to 2015 were evaluated for history of either Bristow or Latarjet surgery for recurrent anterior shoulder instability. Athlete demographics, surgical history, imaging, and physical examination results were recorded using the NFL Combine database. Prospective participation data with regard to draft status, games played, games started, and status after the athletes' first season in the NFL were gathered using publicly available databases. Surgical repair was performed on 10 shoulders in 10 athletes (0.76%), with the highest prevalence in defensive backs (30%; n = 3). Deficits in shoulder motion were exhibited in 70% (n = 7) of athletes, while 40% (n = 4) had evidence of mild glenohumeral arthritis and 80% demonstrated imaging findings consistent with a prior instability episode (8 labral tears, 2 Hill-Sachs lesions). Prospectively, 40% (n = 4) of athletes were drafted into the NFL. In the first season after the combine, athletes with a history of glenoid augmentation were not found to be at significant risk for diminished participation with regard to games played or started when compared with athletes with no history of glenoid augmentation or athletes undergoing isolated shoulder soft tissue repair. After the conclusion of the first NFL season, 60% (n = 6 athletes) were on an active NFL roster. Despite being drafted at a lower rate than their peers, there were no significant limitations in NFL participation for athletes with a history of glenoid augmentation when compared with athletes without a history of shoulder surgery or those with isolated soft tissue shoulder repair. Glenohumeral arthritis and advanced imaging findings of labral tearing and Hill-Sachs lesions in elite American football players with a history of glenoid augmentation did not significantly affect NFL participation 1 year after the combine.
Distal Fibula Fractures in National Football League Athletes.
Werner, Brian C; Mack, Christina; Franke, Kristina; Barnes, Ronnie P; Warren, Russell F; Rodeo, Scott A
2017-09-01
Despite the frequency of distal fibula fractures in elite athletes and the significant potential impact on the athletes' season and future careers, little data exist characterizing the epidemiology of these injuries or, more importantly, return to competition. To (1) evaluate the incidence of acute distal fibula fractures in National Football League (NFL) athletes, including isolated distal fibula and combined ankle fracture patterns; (2) analyze distal fibula fracture rates in NFL athletes by position, type of play, and contact type; (3) determine the rates of distal fibula fracture surgery in NFL athletes; and (4) report the days missed due to distal fibula fractures in NFL athletes. Descriptive epidemiology study. A retrospective review of distal fibula fractures reported to the NFL from 2000 to 2014 was performed using the NFL Injury Surveillance System. All distal fibula fractures were included, along with isolated and combined fracture patterns. Stress fractures and proximal fibula fractures were excluded. Epidemiological data and rates of surgery were determined. Return to sport was calculated and stratified by injury pattern and management. Overall, 237 distal fibula fractures in NFL athletes from 2000 to 2014 were included; 197 (83%) were isolated distal fibula fractures. A mean of 16 distal fibula fractures occurred each year (median, 16 per year). Fractures occurred most frequently on running (38%) and passing (24%) plays, but the frequency was next highest on kickoffs (16%), despite the relative infrequency of kickoffs during the average game compared with other play types. Surgery was reported for more than half of all distal fibula fractures (n = 128, 54%). Overall, patients who underwent surgery missed significantly more days (mean, 123.8 days) than players who did not undergo surgery (mean, 75.3 days) ( P < .001). Players with isolated distal fibula fractures had significantly fewer days missed (mean, 93.6 days) compared with those with combined patterns (mean, 132.3 days) ( P = .0004). Fibula fractures affect a number of NFL athletes and result in significant time missed from competition. Further research is required to determine the optimal management of fibula fractures in NFL athletes. In this study, time to return to play depended on both the fracture pattern and whether surgery was required and ranged from 72 to 145 days.
Midfoot sprains in the National Football League.
Osbahr, Daryl C; O'Loughlin, Padhraig F; Drakos, Mark C; Barnes, Ronnie P; Kennedy, John G; Warren, Russell F
2014-12-01
Midfoot sprains in the National Football League (NFL) are uncommon. There are few studies on midfoot sprains in professional athletes, as most studies focus on severe traumatic injuries resulting in Lisfranc fracture-dislocations. We conducted a study to evaluate midfoot sprains in NFL players to allow for better identification and management of these injuries. All midfoot sprains from a single NFL team database were reviewed over a 15-year period, and 32 NFL team physicians completed a questionnaire detailing their management approach. A comparative analysis was performed analyzing several variables, including diagnosis, treatment methods, and time lost from participation. Fifteen NFL players sustained midfoot sprains. Most injuries occurred during games as opposed to practice, and the injury typically resulted from direct impact rather than torsion. Twelve players had nonoperative treatment, and 3 had operative treatment. Nonoperative management resulted in a mean of 11.7 days of time lost from participation. However, there was a significant (P=.047) difference in mean (SD) time lost between the grade 1 sprain group, 3.1 (1.9) days, and the grade 2 sprain group, 36 (26.1) days. Of the 3 operative grade 3 patients, 1 returned in 73 days, and 2 were injured late in the season and returned the next season. Eleven (92%) of the 12 players who had nonoperative treatment had a successful return to play, and 10 (83%) of the 12 played more games and seasons after their midfoot injury. Depending on the diastasis category, NFL team physicians vary treatment: no diastasis (84% cam walker), latent diastasis (47% surgery, 34% cam walker), and frank diastasis (94% surgery). In the NFL, midfoot sprains can be a source of significant disability. Successful return to play can be achieved with nonoperative management for grade 1 injuries within 1 week and grade 2 injuries within 5 weeks. However, severe injuries with frank diastasis that require operative management will necessitate a more significant delay in return to play. Either way, most NFL athletes will have a successful NFL career after their midfoot sprain injury.
ERIC Educational Resources Information Center
Graham, Dan J.; Roberto, Christina A.
2016-01-01
Background: The U.S. Food and Drug Administration (FDA) has proposed modifying the Nutrition Facts Label (NFL) on food packages to increase consumer attention to this resource and to promote healthier dietary choices. Aims: The present study sought to determine whether the proposed NFL changes will affect consumer attention to the NFL or purchase…
Ascending Aortic Dimensions in Former National Football League Athletes.
Gentry, James L; Carruthers, David; Joshi, Parag H; Maroules, Christopher D; Ayers, Colby R; de Lemos, James A; Aagaard, Philip; Hachamovitch, Rory; Desai, Milind Y; Roselli, Eric E; Dunn, Reginald E; Alexander, Kezia; Lincoln, Andrew E; Tucker, Andrew M; Phelan, Dermot M
2017-11-01
Ascending aortic dimensions are slightly larger in young competitive athletes compared with sedentary controls, but rarely >40 mm. Whether this finding translates to aortic enlargement in older, former athletes is unknown. This cross-sectional study involved a sample of 206 former National Football League (NFL) athletes compared with 759 male subjects from the DHS-2 (Dallas Heart Study-2; mean age of 57.1 and 53.6 years, respectively, P <0.0001; body surface area of 2.4 and 2.1 m 2 , respectively, P <0.0001). Midascending aortic dimensions were obtained from computed tomographic scans performed as part of a NFL screening protocol or as part of the DHS. Compared with a population-based control group, former NFL athletes had significantly larger ascending aortic diameters (38±5 versus 34±4 mm; P <0.0001). A significantly higher proportion of former NFL athletes had an aorta of >40 mm (29.6% versus 8.6%; P <0.0001). After adjusting for age, race, body surface area, systolic blood pressure, history of hypertension, current smoking, diabetes mellitus, and lipid profile, the former NFL athletes still had significantly larger ascending aortas ( P <0.0001). Former NFL athletes were twice as likely to have an aorta >40 mm after adjusting for the same parameters. Ascending aortic dimensions were significantly larger in a sample of former NFL athletes after adjusting for their size, age, race, and cardiac risk factors. Whether this translates to an increased risk is unknown and requires further evaluation. © 2017 American Heart Association, Inc.
Prevalence of Jones Fracture Repair and Impact on Short-Term NFL Participation.
Tu, Leigh-Anne; Knapik, Derrick M; Sheehan, Joseph; Salata, Michael J; Voos, James E
2018-01-01
Elite American football athletes are at high risk for Jones fractures. Fixation is recommended to minimize nonunion and allow early return to play. The purpose of this investigation was to evaluate the prevalence of Jones fracture repair in athletes invited to the National Football League (NFL) Combine and the impact of fracture repair on short-term NFL participation compared to athletes with no history of repair. A total of 1311 athletes participating in the Combine from 2012 to 2015 were evaluated. Athletes with history of Jones fracture repair were identified. Athlete demographic information was collected while physical examination findings were recorded. Radiographs were evaluated to determine fixation type and the presence of nonunion. Future participation in the NFL was evaluated based on draft status, games played, and games started in the athlete's first season following the Combine. Fixation was performed for 41 Jones fractures in 40 athletes (3.1%). The highest prevalence was in defensive linemen (n = 10 athletes), with the greatest rate in tight ends (5.1%, n = 4 of 79 athletes). Intramedullary screw fixation was used for all fractures. Incomplete bony union was present in 3 (8%) fractures. Athletes with a history of repair were not at significant risk for going undrafted ( P = .61), playing ( P = .23), or starting ( P = .76) fewer NFL games compared to athletes with no history of repair during athletes' first NFL season. Athletes with a history of Jones fracture repair were not at significant risk of going undrafted or for diminished participation during their first season in the NFL. Level IV, case series.
Bernick, Charles; Zetterberg, Henrik; Shan, Guogen; Banks, Sarah; Blennow, Kaj
2018-04-02
The objective of this study is to evaluate longitudinal change in plasma neurofilament light (NF-L) and tau levels in relationship to clinical and radiological measures in professional fighters. Participants (active and retired professional fighters and control group) underwent annual blood sampling, 3 Tesla MRI brain imaging, computerized cognitive testing, and assessment of exposure to head trauma. Plasma tau and NF-L concentrations were measured using Simoa assays. Multiple linear regression models were used to compare the difference across groups in regard to baseline measurements, while mixed linear models was used for the longitudinal data with multiple measurements for each participant. Plasma samples were available on 471 participants. Baseline NF-L measures differed across groups (F_3,393=6.99, p=0.0001), with the active boxers having the highest levels. Higher NF-L levels at baseline were correlated with lower baseline MRI regional volumes and lower cognitive scores. The number of sparring rounds completed by the active fighters was correlated with NF-L (95% CI 0.0116-0.4053, p=0.0381), but not tau, levels. Among 126 subjects having multiple yearly samples, there was a significant difference in average yearly percentage change in tau across groups (F_3,83=3.87, p=0.0121).). We conclude that plasma NF-L and tau behave differently in a group of active and retired fighters; NF-L better reflects acute exposure whereas the role of plasma tau levels in signifying chronic change in brain structure over time requires further study.
Serum neurofilament light in familial Alzheimer disease: A marker of early neurodegeneration.
Weston, Philip S J; Poole, Teresa; Ryan, Natalie S; Nair, Akshay; Liang, Yuying; Macpherson, Kirsty; Druyeh, Ronald; Malone, Ian B; Ahsan, R Laila; Pemberton, Hugh; Klimova, Jana; Mead, Simon; Blennow, Kaj; Rossor, Martin N; Schott, Jonathan M; Zetterberg, Henrik; Fox, Nick C
2017-11-21
To investigate whether serum neurofilament light (NfL) concentration is increased in familial Alzheimer disease (FAD), both pre and post symptom onset, and whether it is associated with markers of disease stage and severity. We recruited 48 individuals from families with PSEN1 or APP mutations to a cross-sectional study: 18 had symptomatic Alzheimer disease (AD) and 30 were asymptomatic but at 50% risk of carrying a mutation. Serum NfL was measured using an ultrasensitive immunoassay on the single molecule array (Simoa) platform. Cognitive testing and MRI were performed; 33 participants had serial MRI, allowing calculation of atrophy rates. Genetic testing established mutation status. A generalized least squares regression model was used to compare serum NfL among symptomatic mutation carriers, presymptomatic carriers, and noncarriers, adjusting for age and sex. Spearman coefficients assessed associations between serum NfL and (1) estimated years to/from symptom onset (EYO), (2) cognitive measures, and (3) MRI measures of atrophy. Nineteen of the asymptomatic participants were mutation carriers (mean EYO -9.6); 11 were noncarriers. Compared with noncarriers, serum NfL concentration was higher in both symptomatic ( p < 0.0001) and presymptomatic mutation carriers ( p = 0.007). Across all mutation carriers, serum NfL correlated with EYO (ρ = 0.81, p < 0.0001) and multiple cognitive and imaging measures, including Mini-Mental State Examination (ρ = -0.62, p = 0.0001), Clinical Dementia Rating Scale sum of boxes (ρ = 0.79, p < 0.0001), baseline brain volume (ρ = -0.62, p = 0.0002), and whole-brain atrophy rate (ρ = 0.53, p = 0.01). Serum NfL concentration is increased in FAD prior to symptom onset and correlates with measures of disease stage and severity. Serum NfL may thus be a feasible biomarker of early AD-related neurodegeneration. Copyright © 2017 The Author(s). Published by Wolters Kluwer Health, Inc. on behalf of the American Academy of Neurology.
Limbic system structure volumes and associated neurocognitive functioning in former NFL players.
Lepage, Christian; Muehlmann, Marc; Tripodis, Yorghos; Hufschmidt, Jakob; Stamm, Julie; Green, Katie; Wrobel, Pawel; Schultz, Vivian; Weir, Isabelle; Alosco, Michael L; Baugh, Christine M; Fritts, Nathan G; Martin, Brett M; Chaisson, Christine; Coleman, Michael J; Lin, Alexander P; Pasternak, Ofer; Makris, Nikos; Stern, Robert A; Shenton, Martha E; Koerte, Inga K
2018-05-19
Chronic traumatic encephalopathy (CTE) is a neurodegenerative disease associated with exposure to repetitive head impacts. CTE has been linked to disruptions in cognition, mood, and behavior. Unfortunately, the diagnosis of CTE can only be made post-mortem. Neuropathological evidence suggests limbic structures may provide an opportunity to characterize CTE in the living. Using 3 T magnetic resonance imaging, we compared select limbic brain regional volumes - the amygdala, hippocampus, and cingulate gyrus - between symptomatic former National Football League (NFL) players (n = 86) and controls (n = 22). Moreover, within the group of former NFL players, we examined the relationship between those limbic structures and neurobehavioral functioning (n = 75). The former NFL group comprised eighty-six men (mean age = 55.2 ± 8.0 years) with at least 12 years of organized football experience, at least 2 years of active participation in the NFL, and self-reported declines in cognition, mood, and behavior within the last 6 months. The control group consisted of men (mean age = 57.0 ± 6.6 years) with no history of contact-sport involvement or traumatic brain injury. All control participants provided neurobehavioral data. Compared to controls, former NFL players exhibited reduced volumes of the amygdala, hippocampus, and cingulate gyrus. Within the NFL group, reduced bilateral cingulate gyrus volume was associated with worse attention and psychomotor speed (r = 0.4 (right), r = 0.42 (left); both p < 0.001), while decreased right hippocampal volume was associated with worse visual memory (r = 0.25, p = 0.027). Reduced volumes of limbic system structures in former NFL players are associated with neurocognitive features of CTE. Volume reductions in the amygdala, hippocampus, and cingulate gyrus may be potential biomarkers of neurodegeneration in those at risk for CTE.
Nerve Fiber Flux Analysis Using Wide-Field Swept-Source Optical Coherence Tomography.
Tan, Ou; Liu, Liang; Liu, Li; Huang, David
2018-02-01
To devise a method to quantify nerve fibers over their arcuate courses over an extended peripapillary area using optical coherence tomography (OCT). Participants were imaged with 8 × 8-mm volumetric OCT scans centered at the optic disc. A new quantity, nerve fiber flux (NFF), represents the cross-sectional area transected perpendicular to the nerve fibers. The peripapillary area was divided into 64 tracks with equal flux. An iterative algorithm traced the trajectory of the tracks assuming that the relative distribution of the NFF was conserved with compensation for fiber connections to ganglion cells on the macular side. Average trajectory was averaged from normal eyes and use to calculate the NFF maps for glaucomatous eyes. The NFF maps were divided into eight sectors that correspond to visual field regions. There were 24 healthy and 10 glaucomatous eyes enrolled. The algorithm converged on similar patterns of NFL tracks for all healthy eyes. In glaucomatous eyes, NFF correlated with visual field sensitivity in the arcuate sectors (Spearman ρ = 0.53-0.62). Focal nerve fiber loss in glaucomatous eyes appeared as uniform tracks of NFF defects that followed the expected arcuate fiber trajectory. Using an algorithm based on the conservation of flux, we derived nerve fiber trajectories in the peripapillary area. The NFF map is useful for the visualization of focal defects and quantification of sector nerve fiber loss from wide-area volumetric OCT scans. NFF provides a cumulative measure of volumetric loss along nerve fiber tracks and could improve the detection of focal glaucoma damage.
Lopez-Picon, Francisco; Puustinen, Niina; Kukko-Lukjanov, Tiina-Kaisa; Holopainen, Irma E
2004-12-01
Neurofilament (NF) proteins, the major constituent of intermediate filaments in neurons, have an important role in cellular stability and plasticity. We have now studied the short-term (hours) and long-term (up to 1 week) effects of kainic acid (KA)-induced status epilepticus (SE) on the reactivity of NF proteins, and mossy fiber (MF) sprouting and neuronal death up to 4 weeks in 9-day-old rats. In Western blotting, the expression of the phosphorylation-independent epitopes of NF-L, NF-M, and NF-H rapidly but transiently increased after the treatment, whereas the phosphorylated NF-M remained elevated for 7 days. However, the treatment did not change the immunoreactivity of NF proteins, and no neuronal death or mossy fiber sprouting was detected at any time point. Our findings indicate seizure-induced reactivity of NF proteins but their resistance to degradation, which could be of importance in neuronal survival and may also prevent MF sprouting in the developing hippocampus.
Knapik, Derrick M.; Gillespie, Robert J.; Salata, Michael J.; Voos, James E.
2017-01-01
Background: Bony augmentation of the anterior glenoid is used in athletes with recurrent shoulder instability and bone loss; however, the prevalence and impact of repair in elite American football athletes are unknown. Purpose: To evaluate the prevalence and impact of glenoid augmentation in athletes invited to the National Football League (NFL) Scouting Combine from 2012 to 2015. Study Design: Case series; Level of evidence, 4. Methods: A total of 1311 athletes invited to the NFL Combine from 2012 to 2015 were evaluated for history of either Bristow or Latarjet surgery for recurrent anterior shoulder instability. Athlete demographics, surgical history, imaging, and physical examination results were recorded using the NFL Combine database. Prospective participation data with regard to draft status, games played, games started, and status after the athletes’ first season in the NFL were gathered using publicly available databases. Results: Surgical repair was performed on 10 shoulders in 10 athletes (0.76%), with the highest prevalence in defensive backs (30%; n = 3). Deficits in shoulder motion were exhibited in 70% (n = 7) of athletes, while 40% (n = 4) had evidence of mild glenohumeral arthritis and 80% demonstrated imaging findings consistent with a prior instability episode (8 labral tears, 2 Hill-Sachs lesions). Prospectively, 40% (n = 4) of athletes were drafted into the NFL. In the first season after the combine, athletes with a history of glenoid augmentation were not found to be at significant risk for diminished participation with regard to games played or started when compared with athletes with no history of glenoid augmentation or athletes undergoing isolated shoulder soft tissue repair. After the conclusion of the first NFL season, 60% (n = 6 athletes) were on an active NFL roster. Conclusion: Despite being drafted at a lower rate than their peers, there were no significant limitations in NFL participation for athletes with a history of glenoid augmentation when compared with athletes without a history of shoulder surgery or those with isolated soft tissue shoulder repair. Glenohumeral arthritis and advanced imaging findings of labral tearing and Hill-Sachs lesions in elite American football players with a history of glenoid augmentation did not significantly affect NFL participation 1 year after the combine. PMID:28840148
Amen, Daniel G; Willeumier, Kristen; Omalu, Bennet; Newberg, Andrew; Raghavendra, Cauligi; Raji, Cyrus A
2016-04-25
National Football League (NFL) players are exposed to multiple head collisions during their careers. Increasing awareness of the adverse long-term effects of repetitive head trauma has raised substantial concern among players, medical professionals, and the general public. To determine whether low perfusion in specific brain regions on neuroimaging can accurately separate professional football players from healthy controls. A cohort of retired and current NFL players (n = 161) were recruited in a longitudinal study starting in 2009 with ongoing interval follow up. A healthy control group (n = 124) was separately recruited for comparison. Assessments included medical examinations, neuropsychological tests, and perfusion neuroimaging with single photon emission computed tomography (SPECT). Perfusion estimates of each scan were quantified using a standard atlas. We hypothesized that hypoperfusion particularly in the orbital frontal, anterior cingulate, anterior temporal, hippocampal, amygdala, insular, caudate, superior/mid occipital, and cerebellar sub-regions alone would reliably separate controls from NFL players. Cerebral perfusion differences were calculated using a one-way ANOVA and diagnostic separation was determined with discriminant and automatic linear regression predictive models. NFL players showed lower cerebral perfusion on average (p < 0.01) in 36 brain regions. The discriminant analysis subsequently distinguished NFL players from controls with 90% sensitivity, 86% specificity, and 94% accuracy (95% CI 95-99). Automatic linear modeling achieved similar results. Inclusion of age and clinical co-morbidities did not improve diagnostic classification. Specific brain regions commonly damaged in traumatic brain injury show abnormally low perfusion on SPECT in professional NFL players. These same regions alone can distinguish this group from healthy subjects with high diagnostic accuracy. This study carries implications for the neurological safety of NFL players.
Amen, Daniel G.; Willeumier, Kristen; Omalu, Bennet; Newberg, Andrew; Raghavendra, Cauligi; Raji, Cyrus A.
2016-01-01
Background: National Football League (NFL) players are exposed to multiple head collisions during their careers. Increasing awareness of the adverse long-term effects of repetitive head trauma has raised substantial concern among players, medical professionals, and the general public. Objective: To determine whether low perfusion in specific brain regions on neuroimaging can accurately separate professional football players from healthy controls. Method: A cohort of retired and current NFL players (n = 161) were recruited in a longitudinal study starting in 2009 with ongoing interval follow up. A healthy control group (n = 124) was separately recruited for comparison. Assessments included medical examinations, neuropsychological tests, and perfusion neuroimaging with single photon emission computed tomography (SPECT). Perfusion estimates of each scan were quantified using a standard atlas. We hypothesized that hypoperfusion particularly in the orbital frontal, anterior cingulate, anterior temporal, hippocampal, amygdala, insular, caudate, superior/mid occipital, and cerebellar sub-regions alone would reliably separate controls from NFL players. Cerebral perfusion differences were calculated using a one-way ANOVA and diagnostic separation was determined with discriminant and automatic linear regression predictive models. Results: NFL players showed lower cerebral perfusion on average (p < 0.01) in 36 brain regions. The discriminant analysis subsequently distinguished NFL players from controls with 90% sensitivity, 86% specificity, and 94% accuracy (95% CI 95-99). Automatic linear modeling achieved similar results. Inclusion of age and clinical co-morbidities did not improve diagnostic classification. Conclusion: Specific brain regions commonly damaged in traumatic brain injury show abnormally low perfusion on SPECT in professional NFL players. These same regions alone can distinguish this group from healthy subjects with high diagnostic accuracy. This study carries implications for the neurological safety of NFL players. PMID:27128374
Peluso, Michael J.; Valcour, Victor; Ananworanich, Jintanat; Sithinamsuwan, Pasiri; Chalermchai, Thep; Fletcher, James L. K.; Lerdlum, Sukalya; Chomchey, Nitiya; Slike, Bonnie; Sailasuta, Napapon; Gisslén, Magnus; Zetterberg, Henrik; Spudich, Serena
2015-01-01
Background. It is unknown whether neuronal injury begins during acute human immunodeficiency virus (HIV) infection, and whether immediate initiation of combination antiretroviral therapy (cART) prevents neuronal injury. Methods. Cerebrospinal fluid (CSF) neurofilament light chain (NFL), a measure of axonal injury, was assessed before and after cART initiation in individuals starting treatment during acute or chronic HIV infection. Nonparametric statistics examined relationships between NFL and disease progression, neuroinflammation, and cognitive performance. Results. Before treatment, subjects with acute infection had lower CSF NFL levels, with elevations for their age in 1 of 32 subjects with acute infection (3.1%) and 10 of 32 with chronic infection (31%) (P = .006). This persisted after cART initiation, with 1 of 25 acute (4%) and 4 of 9 chronic subjects (44%) showing elevated NFL levels (P = .01). In acute infection, pre-cART NFL levels were inversely correlated with proton magnetic resonance spectroscopic findings of N-acetylaspartate/creatine in frontal gray matter (r = −0.40; P = .03), frontal white matter (r = −0.46; P = .01), and parietal gray matter (r = −0.47; P = .01); correlations persisted after treatment in the frontal white matter (r = −0.51; P = .02) and parietal gray matter (r = −0.46; P = .04). Conclusions. CSF NFL levels are not elevated in untreated acute HIV infection or after 6 months of immediately initiated cART but are abnormal in chronic HIV infection before and after treatment. In acute HIV infection, CSF NFL levels are inversely associated with neuroimaging markers of neuronal health. PMID:25995196
Peluso, Michael J; Valcour, Victor; Ananworanich, Jintanat; Sithinamsuwan, Pasiri; Chalermchai, Thep; Fletcher, James L K; Lerdlum, Sukalya; Chomchey, Nitiya; Slike, Bonnie; Sailasuta, Napapon; Gisslén, Magnus; Zetterberg, Henrik; Spudich, Serena
2015-12-01
It is unknown whether neuronal injury begins during acute human immunodeficiency virus (HIV) infection, and whether immediate initiation of combination antiretroviral therapy (cART) prevents neuronal injury. Cerebrospinal fluid (CSF) neurofilament light chain (NFL), a measure of axonal injury, was assessed before and after cART initiation in individuals starting treatment during acute or chronic HIV infection. Nonparametric statistics examined relationships between NFL and disease progression, neuroinflammation, and cognitive performance. Before treatment, subjects with acute infection had lower CSF NFL levels, with elevations for their age in 1 of 32 subjects with acute infection (3.1%) and 10 of 32 with chronic infection (31%) (P = .006). This persisted after cART initiation, with 1 of 25 acute (4%) and 4 of 9 chronic subjects (44%) showing elevated NFL levels (P = .01). In acute infection, pre-cART NFL levels were inversely correlated with proton magnetic resonance spectroscopic findings of N-acetylaspartate/creatine in frontal gray matter (r = -0.40; P = .03), frontal white matter (r = -0.46; P = .01), and parietal gray matter (r = -0.47; P = .01); correlations persisted after treatment in the frontal white matter (r = -0.51; P = .02) and parietal gray matter (r = -0.46; P = .04). CSF NFL levels are not elevated in untreated acute HIV infection or after 6 months of immediately initiated cART but are abnormal in chronic HIV infection before and after treatment. In acute HIV infection, CSF NFL levels are inversely associated with neuroimaging markers of neuronal health. © The Author 2015. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Predictive value of orthopedic evaluation and injury history at the NFL combine.
Brophy, Robert H; Chehab, Eric L; Barnes, Ronnie P; Lyman, Stephen; Rodeo, Scott A; Warren, Russell F
2008-08-01
The National Football League (NFL) holds an annual combine to evaluate college football athletes likely to be drafted for physical skills, to review their medical history, and to perform a physical examination. The athletes receive an orthopedic grade on their ability to participate in the NFL. The purpose of this study was to test the hypothesis that this orthopedic rating at the combine predicts the percent of athletes who play in the NFL and the length of their careers. A database for all athletes reviewed at the combine by the medical staff of one team from 1987 to 2000 was created and linked to a data set containing the number of seasons and the games played in the NFL for each athlete. Players were grouped by orthopedic grade: high, low, and orthopedic failure. The percent of players who played in the NFL and the mean length of their careers was calculated and compared for these groups. The orthopedic grade assigned at the NFL combine correlated with the probability of playing in the league. Whereas 58% of athletes with a high grade and 55% of athletes with a low grade played at least one game, only 36% of athletes given a failing grade did so (P < 0.001). Players with a high grade had a mean career of 41.5 games compared with 34.2 games for players with a low grade and 19.0 games for orthopedic failures. This is the first study to report on the predictive value of a grading system for college athletes before participation in professional sports. Other professional sports may benefit from using a similar grading system for the evaluation of potential players.
ERIC Educational Resources Information Center
Saint-Maurice, Pedro F.; Bai, Yang; Welk, Gregory J.; Bandelli, Lorraine N.; Allums-Featherston, Kelly; Candelaria, Norma
2017-01-01
Background: We examined the impact of the Fuel Up to Play 60 (FUTP60) program on children's body mass index (BMI) and aerobic capacity (AC). Methods: Participation in the FUTP60 and both BMI and AC profiles were collected through the NFL PLAY 60 FitnessGram Partnership Project involving over 100 schools from 22 US states. We specifically examined…
Godek, Sandra Fowkes; Bartolozzi, Arthur R.; Peduzzi, Chris; Heinerichs, Scott; Garvin, Eugene; Sugarman, Eric; Burkholder, Richard
2010-01-01
Abstract Context: Considerable controversy regarding fluid replacement during exercise currently exists. Objective: To compare fluid turnover between National Football League (NFL) players who have constant fluid access and collegiate football players who replace fluids during water breaks in practices. Design: Observational study. Setting: Respective preseason training camps of 1 National Collegiate Athletic Association Division II (DII) football team and 1 NFL football team. Both morning and afternoon practices for DII players were 2.25 hours in length, and NFL players practiced for 2.25 hours in the morning and 1 hour in the afternoon. Environmental conditions did not differ. Patients or Other Participants: Eight NFL players (4 linemen, 4 backs) and 8 physically matched DII players (4 linemen, 4 backs) participated. Intervention(s): All players drank fluids only from their predetermined individual containers. The NFL players could consume both water and sports drinks, and the DII players could only consume water. Main Outcome Measure(s): We measured fluid consumption, sweat rate, total sweat loss, and percentage of sweat loss replaced. Sweat rate was calculated as change in mass adjusted for fluids consumed and urine produced. Results: Mean sweat rate was not different between NFL (2.1 ± 0.25 L/h) and DII (1.8 ± 0.15 L/h) players (F1,12 = 2, P = .18) but was different between linemen (2.3 ± 0.2 L/h) and backs (1.6 ± 0.2 L/h) (t14 = 3.14, P = .007). We found no differences between NFL and DII players in terms of percentage of weight loss (t7 = −0.03, P = .98) or rate of fluid consumption (t7 = −0.76, P = .47). Daily sweat loss was greater in DII (8.0 ± 2.0 L) than in NFL (6.4 ± 2.1 L) players (t7 = −3, P = .02), and fluid consumed was also greater in DII (5.0 ± 1.5 L) than in NFL (4.0 ± 1.1 L) players (t7 = −2.8, P = .026). We found a correlation between sweat loss and fluids consumed (r = 0.79, P < .001). Conclusions: During preseason practices, the DII players drinking water at water breaks replaced the same volume of fluid (66% of weight lost) as NFL players with constant access to both water and sports drinks. PMID:20210616
Knapik, Derrick M; Gebhart, Jeremy J; Nho, Shane J; Tanenbaum, Joseph E; Voos, James E; Salata, Michael J
2017-05-01
To examine the prevalence and impact of athletic pubalgia (AP) surgery in elite American football athletes participating in the National Football League (NFL) Combine. Results from 1,311 athletes participating in the Combine from 2012 to 2015 were evaluated. Athletes with a history of AP repair were identified using the NFL Combine Database. Athlete history and available imaging was reviewed. NFL performance based on draft status, games played, games started, and current status in the NFL was gathered using publicly available databases. Statistical analysis was performed to detect for significant associations between athlete history and NFL performance in the presence of AP repair and pelvic pathology on postsurgical magnetic resonance imaging (MRI). AP repair was identified in 4.2% (n = 55) of athletes. MRI was performed in 35% (n = 19 of 55) with AP repair, of which 53% (n = 10 of 19) had positive pathology. Athletes with repair were not at risk of playing (P = .87) or starting (P = .45) fewer regular season games, going undrafted (P = .27), or not being on an active NFL roster (P = .51). Compared with athletes with negative imaging findings, positive pathology on MRI did not have a significant impact on games played (P = .74), games started (P = .48), draft status (P = .26), or being on an active roster (P = .74). Offensive linemen (P = .005) and athletes with a history of repair within 1 year of the Combine (P = .03) had a significantly higher risk of possessing positive pathology on MRI. Athletes with a history of successful AP surgery invited to the NFL Combine and those with persistent pathology on MRI are not at increased risk for diminished performance in the NFL. Offensive linemen and athletes less than 1 year out from surgery have a higher risk for positive MRI findings at the pubic symphysis. Level IV, prognostic study-case series. Copyright © 2017 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.
Dodson, Christopher C; Secrist, Eric S; Bhat, Suneel B; Woods, Daniel P; Deluca, Peter F
2016-03-01
There is a high incidence of anterior cruciate ligament (ACL) injuries among National Football League (NFL) athletes; however, the incidence of reinjury in this population is unknown. This retrospective epidemiological study analyzed all publicly disclosed ACL tears occurring in NFL players between 2010 and 2013 to characterize injury trends and determine the incidence of reinjury. Descriptive epidemiological study. A comprehensive online search identified any NFL player who had suffered an ACL injury from 2010 to 2013. Position, playing surface, activity, and date were recorded. Each player was researched for any history of previous ACL injury. The NFL games database from USA Today was used to determine the incidence of ACL injuries on artificial turf and grass fields. Databases from Pro Football Focus and Pro Football Reference were used to determine the injury rate for each position. NFL players suffered 219 ACL injuries between 2010 and 2013. Forty players (18.3%) had a history of previous ACL injury, with 27 (12.3%) retears and 16 (7.3%) tears contralateral to a previous ACL injury. Five players (2.28%) suffered their third ACL tear. Receivers (wide receivers and tight ends) and backs (linebackers, fullbacks, and halfbacks) had significantly greater injury risk than the rest of the NFL players, while perimeter linemen (defensive ends and offensive tackles) had significantly lower injury risk than the rest of the players. Interior linemen (offensive guards, centers, and defensive tackles) had significantly greater injury risk compared with perimeter linemen. ACL injury rates per team games played were 0.050 for grass and 0.053 for turf fields (P > .05). In this retrospective epidemiological study of ACL tears in NFL players, retears and ACL tears contralateral to a previously torn ACL constituted a substantial portion (18.3%) of total ACL injuries. The significant majority of ACL injuries in players with a history of previous ACL injury were retears. Skilled offensive players and linebackers had the greatest injury risk, and significantly more ACL tears occurred among interior linemen than perimeter linemen. The month of August had the highest incidence of ACL injuries, probably because of expanded roster sizes at that point in the NFL season.
Knapik, Derrick M; Gebhart, Jeremy J; Sheehan, Joseph; Tanenbaum, Joseph E; Salata, Michael J; Voos, James E
2018-01-01
To investigate the prevalence of shoulder labral repair and utility of magnetic resonance imaging (MRI) in determining the risks of recurrent labral tearing and impact on future participation in the National Football League (NFL). Athletes invited to the NFL Combine between 2012 and 2015 were retrospectively reviewed. Athletes with a history of labral repair and MRI of the operative shoulder at the Combine were included in the study for further analysis, excluding athletes without a history of labral repair, labral repair without MRI at the Combine, additional procedure to the operative shoulder, or athletes still undergoing rehabilitation at the time of the Combine after labral repair. All MRIs were reviewed to determine initial labral repair location, the presence of recurrent tearing, and any concomitant shoulder pathology. Prospective information on future NFL participation in regard to draft status, games played, and games started in the athlete's first NFL season after the Combine was compared between athletes with a history of labral repair with and without recurrent tearing versus all other athletes participating in the Combine. A total of 132 (10.1%) athletes underwent 146 shoulder labral repair procedures before the NFL Combine, of whom 32% (n = 39 athletes, n = 46 shoulders) had recurrent labral tears on MRI. Athletes with recurrent tears were more likely to have undergone bilateral labral repairs (P = .048) and possess concomitant shoulder pathology (P < .001). Recurrent labral tearing was significantly more common in the posterior labrum in athletes with a history of posterior labral repairs (P = .032). Prospective participation in the NFL in terms of games played (P = .38) or started (P = .98) was not significantly reduced in athletes with a history of labral repair compared with those without repair. Participation was not diminished in athletes with recurrent labral tears compared with those with intact repairs or those with evidence of degenerative joint disease. Athletes invited to the NFL Scouting Combine with a history of bilateral repair, posterior labral repair, and concomitant shoulder pathology are at high risk of recurrent labral tearing on MRI. No significant reduction in NFL participation the year after the Combine was seen in athletes with a history of labral repair, recurrent labral tearing, or degenerative joint disease who were successfully drafted into the NFL. In athletes with a history of labral repair, assessment of labral integrity on MRI alone is not predictive of future short-term participation. Level IV, prognostic study-case series. Copyright © 2017 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.
2017-01-26
jsc2017e009777 (01/26/2017) --- Former NFL player Kevin Williams (Vikings, Seahawks, Saints) enjoys the tour at the Johnson Space Center (JSC) while getting a hands on look in the NASA Space Shuttle cockpit. Kevin was invited with the other former NFL players to visit JSC as part of the JSC Super Bowl tailgate event. The former NFL players got a chance to visit Mission Control and well as many other areas in the Space Center. They also took time to sign autographs and give picture opportunities to the JSC Staff.
Return to Play After Partial Lateral Meniscectomy in National Football League Athletes.
Aune, Kyle T; Andrews, James R; Dugas, Jeffrey R; Cain, E Lyle
2014-08-01
Lateral meniscal injury is a common and possibly career-threatening injury among players in the National Football League (NFL). The rate of return to play (RTP) and factors that affect RTP after lateral meniscal injury in NFL players are currently not defined. The aims of this study were to determine the rate of RTP to regular-season NFL game play of NFL players after arthroscopic partial lateral meniscectomy and to identify factors that can predict the ability to return to play. Case series; Level of evidence, 4. Seventy-two patients undergoing 77 arthroscopic lateral partial meniscectomies were followed to determine the rate of RTP (defined as successful RTP in at least 1 regular-season NFL game after meniscectomy) and factors predicting players' ability to return to play. Perioperative variables were recorded using retrospective chart review. Players' heights and weights, dates of return, draft rounds, and counts of games, starts, and seasons both before and after meniscectomy were all collected from statistical databases maintained by the NFL. Chi-square and Student t tests were performed to assess differences among covariates with respect to an athlete's ability to return to play, and odds ratios were calculated as appropriate. All percentages were calculated as percent of total procedures performed (n = 77). Of the 77 partial lateral meniscectomies performed, 61% (n = 47) resulted in the athlete returning to play at his previous level of competition with an average length of time to RTP of 8.5 months; 19 (40%) of those who returned were still active in the NFL at the time of follow-up. Age at time of surgery, games and seasons played before surgery, and individual position were not significantly different between those who did and did not return to play. Undergoing a concomitant procedure did not affect an athlete's ability to return to play, nor did concurrent arthroscopic anterior cruciate ligament reconstruction affect a player's likelihood to return to play. Players drafted in the first 4 rounds of the NFL draft were 3.7 times more likely to return to play than players drafted after the fourth round, and players who started more than 46.2% of their games played (the mean value for this population) were 2.8 times more likely to return to play. Speed-position players (running backs, receivers, linebackers, and defensive backs) were 4.0 times less likely to return to play than non-speed position players (linemen and tight ends). The majority of NFL players undergoing arthroscopic lateral meniscectomy are able to return to play. Players selected earlier in the NFL draft and who are listed as starters in more of their games are more likely to return to play, as are linemen and tight ends. It is significantly more difficult for running backs, receivers, linebackers, and defensive backs to return to play. © 2014 The Author(s).
Concussions in the National Football League: A Current Concepts Review.
Yengo-Kahn, Aaron M; Johnson, Daniel J; Zuckerman, Scott L; Solomon, Gary S
2016-03-01
Significant attention has been directed toward the immediate and long-term effects of sport-related concussions on athletes participating in contact sports, particularly football. The highest level of football, the National Football League (NFL), has received significant attention and criticism regarding player management and safety after mild traumatic brain injury (mTBI). Several review articles have reported data related to concussion in the NFL, but a succinct review and synthesis of data regarding NFL concussions is currently lacking. To (1) review systematically the published data regarding concussion in the NFL and assess limitations of the studies, (2) elucidate areas where further research is needed, and (3) identify methods to improve future investigations of concussion in the NFL. Systematic review of literature. English-language titles and abstracts published between 1900 and September 2014 were searched systematically across electronic databases, and a review was conducted in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement. Peer-reviewed journal articles were included if they contained NFL concussion data with or without additional associated long-term effects. Reviews, editorials, letters to the editor, and comments were not included. Of the 344 records screened for review, 88 articles were assessed for eligibility. There were 31 studies that met the inclusion criteria and formed the basis of the evidence synthesis. Included in the current review were 8 case-control studies (Oxford Centre for Evidence-Based Medicine evidence level 3b), 6 descriptive epidemiological studies (level 4), 6 cross-sectional studies (level 4), 6 cohort studies (level 2b), and 5 case series (level 4). The study of concussions in the NFL has been limited by lack of recent empirical data, reliance on self-reported concussion history, and ascertainment bias of brains donated for autopsy studies. The scientific community as well as the public should be cautious in interpreting the current literature surrounding concussion. © 2015 The Author(s).
Kraeutler, Matthew J; Carver, Trevor J; Belk, John W; McCarty, Eric C
2018-06-01
Kraeutler, MJ, Carver, TJ, Belk, JW, and McCarty, EC. What is the value of a National Football League draft pick? An analysis based on changes made in the collective bargaining agreement. J Strength Cond Res 32(6): 1656-1661, 2018-The purpose of this study was to analyze and compare the value of players drafted in early rounds of the National Football League (NFL) Draft since the new collective bargaining agreement began in 2011. The NFL's player statistics database and database of player contract details were searched for players drafted in the first 3 rounds of the 2011 to 2013 NFL Drafts. Performance outcomes specific to each position were divided by each player's salary to calculate a value statistic. Various demographics, NFL Combine results, and total number of games missed because of injury were also recorded for each player. These statistics were compared within each position between players selected in the first round of the NFL Draft (group A) vs. those drafted in the second or third round (group B). A total of 147 players were included (group A 35, group B 112). Overall, players in group A were significantly taller (p ≤ 0.01) and heavier (p = 0.037) than players in group B. Group B demonstrated significantly greater value statistics than group A for quarterbacks (p = 0.028), wide receivers (p ≤ 0.001), defensive tackles (p = 0.019), and cornerbacks (p ≤ 0.001). No significant differences were found between groups with regard to number of games missed because of injury. Players drafted in the second or third rounds of the NFL Draft often carry more value than those drafted in the first round. NFL teams may wish to more frequently trade down in the Draft rather than trading up.
Knapik, Derrick M; Sheehan, Joe; Nho, Shane J; Voos, James E; Salata, Michael J
2018-02-01
Intra-articular injuries to the hip in elite athletes represent a source of significant pain and disability. Hip arthroscopic surgery has become the gold standard for the treatment of disorders involving the hip joint. To examine the incidence of and abnormalities treated with hip arthroscopic surgery as well as the impact on future participation in American football athletes invited to the National Football League (NFL) Scouting Combine with a history of hip arthroscopic surgery. Cohort study; Level of evidence, 3. Athletes invited to the NFL Combine from 2012 to 2015 were evaluated for a history of hip arthroscopic surgery. Athlete demographics, imaging findings, and physical examination results were gathered using the NFL Combine database. Information on prospective participation in the NFL with regard to draft status, games played, games started, and current status was gathered using publicly available databases and compared against all other athletes participating in the combine. Fourteen athletes (15 hips) had a history of arthroscopic hip surgery. Acetabular labral tears were treated in 93% (14 hips), with femoroacetabular impingement decompression performed in 33% (5 hips). Compared with athletes who had no history of hip arthroscopic surgery, those undergoing arthroscopic surgery did not possess a lower likelihood of being drafted (66% vs 71%, respectively; P = .78) or of being on an active roster (52% vs 43%, respectively; P = .44) after their first season in the NFL. Moreover, there was no significant difference in the number of regular-season games played (10.9 ± 4.8 with arthroscopic surgery vs 11.0 ± 5.1 without; P = .96) or started (7.0 ± 3.6 with arthroscopic surgery vs 7.1 ± 5.3 without; P = .98). American football athletes invited to the NFL Combine with a history of hip arthroscopic surgery were not at risk for diminished participation when compared with all other athletes during their first season in the NFL.
Navarro, Sergio M.; Sokunbi, Olumide F.; Haeberle, Heather S.; Schickendantz, Mark S.; Mont, Michael A.; Figler, Richard A.; Ramkumar, Prem N.
2017-01-01
Background: A short-term protocol for evaluation of National Football League (NFL) athletes incurring concussion has yet to be fully defined and framed in the context of the short-term potential team and career longevity, financial risk, and performance. Purpose: To compare the short-term career outcomes for NFL players with concussions by analyzing the effect of concussions on (1) franchise release rate, (2) career length, (3) salary, and (4) performance. Study Design: Cohort study; Level of evidence, 3. Methods: NFL player transaction records and publicly available injury reports from August 2005 to January 2016 were analyzed. All players sustaining documented concussions were evaluated for a change to inactive or DNP (“did not participate”) status. A case-control design compared franchise release rates and remaining NFL career span. Career length was analyzed via survival analysis. Salary and performance differences were analyzed with publicly available contract data and a performance-scoring algorithm based on position/player level. Results: Of the 5894 eligible NFL players over the 11-year period, 307 sustained publicly reported concussions resulting in the DNP injury protocol. Analysis of the probability of remaining in the league demonstrated a statistically significantly shorter career length for the concussion group at 3 and 5 years after concussion. The year-over-year change in contract value for the concussion group resulted in a mean overall salary reduction of $300,000 ± $1,300,000 per year (interquartile range, –$723,000 to $450,000 per year). The performance score reduction for all offensive scoring players sustaining concussions was statistically significant. Conclusion: This retrospective study demonstrated that NFL players who sustain a concussion face a higher overall franchise release rate and shorter career span. Players who sustained concussions may incur significant salary reductions and perform worse after concussion. Short-term reductions in longevity, performance, and salary after concussion exist and deserve additional consideration. PMID:29226164
Navarro, Sergio M; Sokunbi, Olumide F; Haeberle, Heather S; Schickendantz, Mark S; Mont, Michael A; Figler, Richard A; Ramkumar, Prem N
2017-11-01
A short-term protocol for evaluation of National Football League (NFL) athletes incurring concussion has yet to be fully defined and framed in the context of the short-term potential team and career longevity, financial risk, and performance. To compare the short-term career outcomes for NFL players with concussions by analyzing the effect of concussions on (1) franchise release rate, (2) career length, (3) salary, and (4) performance. Cohort study; Level of evidence, 3. NFL player transaction records and publicly available injury reports from August 2005 to January 2016 were analyzed. All players sustaining documented concussions were evaluated for a change to inactive or DNP ("did not participate") status. A case-control design compared franchise release rates and remaining NFL career span. Career length was analyzed via survival analysis. Salary and performance differences were analyzed with publicly available contract data and a performance-scoring algorithm based on position/player level. Of the 5894 eligible NFL players over the 11-year period, 307 sustained publicly reported concussions resulting in the DNP injury protocol. Analysis of the probability of remaining in the league demonstrated a statistically significantly shorter career length for the concussion group at 3 and 5 years after concussion. The year-over-year change in contract value for the concussion group resulted in a mean overall salary reduction of $300,000 ± $1,300,000 per year (interquartile range, -$723,000 to $450,000 per year). The performance score reduction for all offensive scoring players sustaining concussions was statistically significant. This retrospective study demonstrated that NFL players who sustain a concussion face a higher overall franchise release rate and shorter career span. Players who sustained concussions may incur significant salary reductions and perform worse after concussion. Short-term reductions in longevity, performance, and salary after concussion exist and deserve additional consideration.
Rossi, Daniela; Volanti, Paolo; Brambilla, Liliana; Colletti, Tiziana; Spataro, Rossella; La Bella, Vincenzo
2018-03-01
Elevated cerebrospinal fluid (CSF), Neurofilament Light (NF-L) and phosphorylated Heavy (pNF-H) chain levels have been found in Amyotrophic Lateral Sclerosis (ALS), with studies reporting a correlation of both neurofilaments (NFs) with the disease progression. Here, we measured NF-L and pNF-H concentrations in the CSF of ALS patients from a single tertiary Center and investigated their relationship with disease-related variables. A total of 190 ALS patients (Bulbar, 29.9%; Spinal, 70.1%; M/F = 1.53) and 130 controls with mixed neurological diseases were recruited. Demographic and clinical variables were recorded, and ΔFS was used to rate the disease progression. Controls were divided into two cohorts: (1) patients with non-inflammatory neurological diseases (CTL-1); (2) patients with acute/subacute inflammatory diseases and tumors, expected to lead to significant axonal and tissue damage (CTL-2). For each patient and control, CSF was taken at the time of the diagnostic work-up and stored following the published guidelines. CSF NF-L and pNF-H were assayed with commercially available ELISA-based methods. Standard curves (from independent ELISA kits) were highly reproducible for both NFs, with a coefficient of variation < 20%. We found that CSF NF-L and pNF-H levels in ALS were significantly increased when compared to CTL-1 (NF-L: ALS, 4.7 ng/ml vs CTL-1, 0.61 ng/ml, p < 0.001; pNF-H: ALS, 1.7 ng/ml vs CTL-1, 0.03 ng/ml, p < 0.0001), but not to CTL-2. Analysis of different clinical and prognostic variables disclosed meaningful correlations with both NF-L and pNF-H levels. Our results, from a relatively large ALS cohort, confirm that CSF NF-L and pNF-H represent valuable diagnostic and prognostic biomarkers in ALS.
Knapik, Derrick M.; Sheehan, Joe; Nho, Shane J.; Voos, James E.; Salata, Michael J.
2018-01-01
Background: Intra-articular injuries to the hip in elite athletes represent a source of significant pain and disability. Hip arthroscopic surgery has become the gold standard for the treatment of disorders involving the hip joint. Purpose: To examine the incidence of and abnormalities treated with hip arthroscopic surgery as well as the impact on future participation in American football athletes invited to the National Football League (NFL) Scouting Combine with a history of hip arthroscopic surgery. Study Design: Cohort study; Level of evidence, 3. Methods: Athletes invited to the NFL Combine from 2012 to 2015 were evaluated for a history of hip arthroscopic surgery. Athlete demographics, imaging findings, and physical examination results were gathered using the NFL Combine database. Information on prospective participation in the NFL with regard to draft status, games played, games started, and current status was gathered using publicly available databases and compared against all other athletes participating in the combine. Results: Fourteen athletes (15 hips) had a history of arthroscopic hip surgery. Acetabular labral tears were treated in 93% (14 hips), with femoroacetabular impingement decompression performed in 33% (5 hips). Compared with athletes who had no history of hip arthroscopic surgery, those undergoing arthroscopic surgery did not possess a lower likelihood of being drafted (66% vs 71%, respectively; P = .78) or of being on an active roster (52% vs 43%, respectively; P = .44) after their first season in the NFL. Moreover, there was no significant difference in the number of regular-season games played (10.9 ± 4.8 with arthroscopic surgery vs 11.0 ± 5.1 without; P = .96) or started (7.0 ± 3.6 with arthroscopic surgery vs 7.1 ± 5.3 without; P = .98). Conclusion: American football athletes invited to the NFL Combine with a history of hip arthroscopic surgery were not at risk for diminished participation when compared with all other athletes during their first season in the NFL. PMID:29435469
Wrenn, Jr., George E.; Holcombe, Jr., Cressie E.
1988-01-01
A multilayered thermal insulating composite is formed of a first layer of zirconia-bonded zirconia fibers for utilization near the hot phase or surface of a furnace or the like. A second layer of zirconia-bonded metal oxide fibers is attached to the zirconia fiber layer by a transition layer formed of intermingled zirconia fibers and metal oxide fibers. The thermal insulation is fabricated by vacuum molding with the layers being sequentially applied from aqueous solutions containing the fibers to a configured mandrel. A portion of the solution containing the fibers forming the first layer is intermixed with the solution containing the fibers of the second layer for forming the layer of mixed fibers. The two layers of fibers joined together by the transition layer are saturated with a solution of zirconium oxynitrate which provides a zirconia matrix for the composite when the fibers are sintered together at their nexi.
Wrenn, G.E. Jr.; Holcombe, C.E. Jr.
1988-09-13
A multilayered thermal insulating composite is formed of a first layer of zirconia-bonded zirconia fibers for utilization near the hot phase or surface of a furnace or the like. A second layer of zirconia-bonded metal oxide fibers is attached to the zirconia fiber layer by a transition layer formed of intermingled zirconia fibers and metal oxide fibers. The thermal insulation is fabricated by vacuum molding with the layers being sequentially applied from aqueous solutions containing the fibers to a configured mandrel. A portion of the solution containing the fibers forming the first layer is intermixed with the solution containing the fibers of the second layer for forming the layer of mixed fibers. The two layers of fibers joined together by the transition layer are saturated with a solution of zirconium oxynitrate which provides a zirconia matrix for the composite when the fibers are sintered together at their nexi.
Neurofilament L gene is not a genetic factor of sporadic and familial Parkinson's disease.
Rahner, Nils; Holzmann, Carsten; Krüger, Rejko; Schöls, Ludger; Berger, Klaus; Riess, Olaf
2002-09-27
Mutations in two genes, alpha-synuclein and parkin, have been identified as some rare causes for familial Parkinson's disease (PD). alpha-Synuclein and parkin protein have subsequently been identified in Lewy bodies (LB). To gain further insight into the pathogenesis of PD we investigated the role of neurofilament light (NF-L), another component of LB aggregation. A detailed mutation search of the NF-L gene in 328 sporadic and familial PD patients of German ancestry revealed three silent DNA changes (G163A, C224T, C487T) in three unrelated patients. Analysis of the promoter region of the NF-L gene identified a total of three base pair substitutions defining five haplotypes. Association studies based on these haplotypes revealed no significant differences between PD patients and 344 control individuals. Therefore, NF-L is unlikely to play a major role in the pathogenesis of PD.
Hypoconnectivity and hyperfrontality in retired American football players.
Hampshire, Adam; MacDonald, Alex; Owen, Adrian M
2013-10-17
Recent research has raised concerns about the long-term neurological consequences of repetitive concussive and sub-concussive injuries in professional players of American Football. Despite this interest, the neural and psychological status of retired players remains unknown. Here, we evaluated the performances and brain activation patterns of retired National Football League players (NFL alumni) relative to controls using an fMRI-optimised neuropsychological test of executive function. Behaviourally, the NFL alumni showed only modest performance deficits on the executive task. By contrast, they showed pronounced hyperactivation and hypoconnectivity of the dorsolateral frontal and frontopolar cortices. Critically, abnormal frontal-lobe function was correlated with the number of times that NFL alumni reported having been removed from play after head injury and was evident in individual players. These results support the hypothesis that NFL alumni have a heightened probability of developing executive dysfunction and suggest that fMRI provides the most sensitive biomarker of the underlying neural abnormality.
Hypoconnectivity and Hyperfrontality in Retired American Football Players
NASA Astrophysics Data System (ADS)
Hampshire, Adam; MacDonald, Alex; Owen, Adrian M.
2013-10-01
Recent research has raised concerns about the long-term neurological consequences of repetitive concussive and sub-concussive injuries in professional players of American Football. Despite this interest, the neural and psychological status of retired players remains unknown. Here, we evaluated the performances and brain activation patterns of retired National Football League players (NFL alumni) relative to controls using an fMRI-optimised neuropsychological test of executive function. Behaviourally, the NFL alumni showed only modest performance deficits on the executive task. By contrast, they showed pronounced hyperactivation and hypoconnectivity of the dorsolateral frontal and frontopolar cortices. Critically, abnormal frontal-lobe function was correlated with the number of times that NFL alumni reported having been removed from play after head injury and was evident in individual players. These results support the hypothesis that NFL alumni have a heightened probability of developing executive dysfunction and suggest that fMRI provides the most sensitive biomarker of the underlying neural abnormality.
Syndesmosis and lateral ankle sprains in the National Football League.
Osbahr, Daryl C; Drakos, Mark C; O'Loughlin, Padhraig F; Lyman, Stephen; Barnes, Ronnie P; Kennedy, John G; Warren, Russell F
2013-11-01
Syndesmosis sprains in the National Football League (NFL) can be a persistent source of disability, especially compared with lateral ankle injuries. This study evaluated syndesmosis and lateral ankle sprains in NFL players to allow for better identification and management of these injuries. Syndesmosis and lateral ankle sprains from a single NFL team database were reviewed over a 15-year period, and 32 NFL team physicians completed a questionnaire detailing their management approach. A comparative analysis was performed analyzing several variables, including diagnosis, treatment methods, and time lost from sports participation. Thirty-six syndesmosis and 53 lateral ankle sprains occurred in the cohort of NFL players. The injury mechanism typically resulted from direct impact in the syndesmosis and torsion in the lateral ankle sprain group (P=.034). All players were managed nonoperatively. The mean time lost from participation was 15.4 days in the syndesmosis and 6.5 days in the lateral ankle sprain groups (P⩽.001). National Football League team physicians varied treatment for syndesmosis sprains depending on the category of diastasis but recommended nonoperative management for lateral ankle sprains. Syndesmosis sprains in the NFL can be a source of significant disability compared with lateral ankle sprains. Successful return to play with nonoperative management is frequently achieved for syndesmosis and lateral ankle sprains depending on injury severity. With modern treatment algorithms for syndesmosis sprains, more aggressive nonoperative treatment is advocated. Although the current study shows that syndesmosis injuries require longer rehabilitation periods when compared with lateral ankle sprains, the time lost from participation may not be as prolonged as previously reported. Copyright 2013, SLACK Incorporated.
Anterior Cruciate Ligament Injuries in National Football League Athletes From 2010 to 2013
Dodson, Christopher C.; Secrist, Eric S.; Bhat, Suneel B.; Woods, Daniel P.; Deluca, Peter F.
2016-01-01
Background: There is a high incidence of anterior cruciate ligament (ACL) injuries among National Football League (NFL) athletes; however, the incidence of reinjury in this population is unknown. Purpose: This retrospective epidemiological study analyzed all publicly disclosed ACL tears occurring in NFL players between 2010 and 2013 to characterize injury trends and determine the incidence of reinjury. Study Design: Descriptive epidemiological study. Methods: A comprehensive online search identified any NFL player who had suffered an ACL injury from 2010 to 2013. Position, playing surface, activity, and date were recorded. Each player was researched for any history of previous ACL injury. The NFL games database from USA Today was used to determine the incidence of ACL injuries on artificial turf and grass fields. Databases from Pro Football Focus and Pro Football Reference were used to determine the injury rate for each position. Results: NFL players suffered 219 ACL injuries between 2010 and 2013. Forty players (18.3%) had a history of previous ACL injury, with 27 (12.3%) retears and 16 (7.3%) tears contralateral to a previous ACL injury. Five players (2.28%) suffered their third ACL tear. Receivers (wide receivers and tight ends) and backs (linebackers, fullbacks, and halfbacks) had significantly greater injury risk than the rest of the NFL players, while perimeter linemen (defensive ends and offensive tackles) had significantly lower injury risk than the rest of the players. Interior linemen (offensive guards, centers, and defensive tackles) had significantly greater injury risk compared with perimeter linemen. ACL injury rates per team games played were 0.050 for grass and 0.053 for turf fields (P > .05). Conclusion: In this retrospective epidemiological study of ACL tears in NFL players, retears and ACL tears contralateral to a previously torn ACL constituted a substantial portion (18.3%) of total ACL injuries. The significant majority of ACL injuries in players with a history of previous ACL injury were retears. Skilled offensive players and linebackers had the greatest injury risk, and significantly more ACL tears occurred among interior linemen than perimeter linemen. The month of August had the highest incidence of ACL injuries, probably because of expanded roster sizes at that point in the NFL season. PMID:26998501
Zetterberg, Henrik; Skillbäck, Tobias; Mattsson, Niklas; Trojanowski, John Q; Portelius, Erik; Shaw, Leslie M; Weiner, Michael W; Blennow, Kaj
2016-01-01
The extent to which large-caliber axonal degeneration contributes to Alzheimer disease (AD) progression is unknown. Cerebrospinal fluid (CSF) neurofilament light (NFL) concentration is a general marker of damage to large-caliber myelinated axons. To test whether CSF NFL concentration is associated with cognitive decline and imaging evidence of neurodegeneration and white matter change in AD. A commercially available immunoassay was used to analyze CSF NFL concentration in a cohort of patients with AD (n = 95) or mild cognitive impairment (MCI) (n = 192) and in cognitively normal individuals (n = 110) from the Alzheimer's Disease Neuroimaging Initiative. The study dates were January 2005 to December 2007. The NFL analysis was performed in November 2014. Correlation was investigated among baseline CSF NFL concentration and longitudinal cognitive impairment, white matter change, and regional brain atrophy within each diagnostic group. Cerebrospinal fluid NFL concentration (median [interquartile range]) was higher in the AD dementia group (1479 [1134-1842] pg/mL), stable MCI group (no progression to AD during follow-up; 1182 [923-1687] pg/mL), and progressive MCI group (MCI with progression to AD dementia during follow-up; 1336 [1061-1693] pg/mL) compared with control participants (1047 [809-1265] pg/mL) (P < .001 for all) and in the AD dementia group compared with the stable MCI group (P = .01). In the MCI group, a higher CSF NFL concentration was associated with faster brain atrophy over time as measured by changes in whole-brain volume (β = -4177, P = .003), ventricular volume (β = 1835, P < .001), and hippocampus volume (β = -54.22, P < .001); faster disease progression as reflected by decreased Mini-Mental State Examination scores (β = -1.077, P < .001) and increased Alzheimer Disease Assessment Scale cognitive subscale scores (β = 2.30, P < .001); and faster white matter intensity change (β = 598.7, P < .001). Cerebrospinal fluid NFL concentration is increased by the early clinical stage of AD and is associated with cognitive deterioration and structural brain changes over time. This finding corroborates the contention that degeneration of large-caliber axons is an important feature of AD neurodegeneration.
ERIC Educational Resources Information Center
Frame, Laurence
This teacher's guide contains the following sections: Teacher Objectives; Student Objectives; Teacher Aide Suggestions; Objectives Overview; Scope and Sequence (K-8); Teacher's Guide; NFL Public Relations Director; NFL Team Addresses and Art (Helmet) Pages; Football Field Dimensions; Age Problems; Statistics from a Newspaper; Standings; Weight…
Alosco, Michael L; Jarnagin, Johnny; Tripodis, Yorghos; Martin, Brett; Chaisson, Christine; Baugh, Christine M; Torres, Alcy; Nowinski, Christopher J; Cantu, Robert C; Stern, Robert A
2017-01-01
Former National Football League (NFL) players' working knowledge of concussion has not yet been evaluated, despite this population being a major clinical research target due to the association between repetitive head impacts (RHI) and long-term clinical impairments. This study examined former NFL players' understanding of the current concussion definition, and the association between number of concussions with clinical function. 95 former NFL players (mean age = 55.29; mean NFL year = 8.10) self-reported number of concussions before being provided with a concussion definition and after being read a modern definition of concussion. Subjects reported number of concussions with loss of consciousness (LOC). Principal Component Analysis of a battery of tests generated behaviour/mood, psychomotor speed/executive function, and verbal and visual memory factor scores. Post-definition number of concussions (median = 50) was five times the pre-definition (median = 10; p < 0.001). Greater pre- (p = 0.019) and post-definition concussions (p = 0.036) correlated with worse behaviour/mood scores, after controlling for years of football played, with specific effects for depressive symptoms and impulsivity. LOC did not account for variance beyond number of concussions. Practitioners and clinical researchers should provide a definition of concussion in the assessment of concussion history in former football players to facilitate accuracy and standardization.
Immunosuppressive therapy reduces axonal damage in progressive multiple sclerosis.
Axelsson, Markus; Malmeström, Clas; Gunnarsson, Martin; Zetterberg, Henrik; Sundström, Peter; Lycke, Jan; Svenningsson, Anders
2014-01-01
In progressive multiple sclerosis (PMS), disease-modifying therapies have not been shown to reduce disability progression. The impact from immunosuppressive therapy in PMS was explored by analyzing cerebrospinal fluid (CSF) biomarkers of axonal damage (neurofilament light protein, NFL), astrogliosis (glial fibrillary acidic protein, GFAP), and B-cell regulation (CXCL13). CSF was obtained from 35 patients with PMS before and after 12-24 months of mitoxantrone (n=30) or rituximab (n=5) treatment, and from 14 age-matched healthy control subjects. The levels of NFL, GFAP, and CXCL13 were determined by immunoassays. The mean NFL level decreased by 51% (1781 ng/l, SD 2018 vs. 874 ng/l, SD 694, p=0.007), the mean CXCL13 reduction was 55% (9.71 pg/ml, SD 16.08, vs. 4.37 pg/ml, SD 1.94, p=0.008), while GFAP levels remained unaffected. Subgroup analysis showed that the NFL reduction was confined to previously untreated patients (n=20) and patients with Gd-enhancing lesions on magnetic resonance imaging (n=12) prior to study baseline. Our data imply that 12-24 months of immunosuppressive therapy reduces axonal damage in PMS, particularly in patients with ongoing disease activity. Determination of NFL levels in CSF is a potential surrogate marker for treatment efficacy and as endpoint in phase II trials of MS.
Return to play after chondroplasty of the knee in National Football League athletes.
Scillia, Anthony J; Aune, Kyle T; Andrachuk, John S; Cain, E Lyle; Dugas, Jeffrey R; Fleisig, Glenn S; Andrews, James R
2015-03-01
Knee injuries, including articular cartilage damage, are common in football players and are potentially career threatening. The rate of return to play (RTP) as well as the factors affecting return after arthroscopic chondroplasty of the knee is performed in National Football League (NFL) athletes are not known. To determine the rate of return to regular season NFL competition after arthroscopic knee surgery including chondroplasty of articular cartilage lesions. In addition, identification of factors that influence successful return was investigated. Case series; Level of evidence, 4. Athletes in the NFL who underwent arthroscopic chondroplasty at a single institution were identified. Retrospective chart review and review of the NFL online database were utilized to determine the rate of RTP and factors affecting an athlete's ability to return. Chi-square and Student t tests were used to assess differences among players who were and were not able to RTP, and logistic regression was employed to determine a player's odds of return. There were 52 patients (54 procedures) identified from the surgical database who met the inclusion criteria for the study operated on between August 1, 2001, and March 31, 2011. Of these players, 36 (67%) were able to return to regular season NFL game play at an average of 8.2 months, including 13 (24%) who were still active in the NFL. The average time to follow-up was 5.9 years, and all players were allowed at least 2 years of follow-up. There was no significant correlation of RTP to athlete age, lesion size, lesion location, position played, or round selected in the NFL draft. Players who underwent concomitant microfracture were 4.4 times less likely to return to the NFL than were those who did not undergo this procedure (95% CI, 1.3-15.5). Athletes who played more than 11.6 games per season were 4.7 times more likely to RTP than were those who played fewer games per season (95% CI, 1.4-16.6). Athletes who returned to play competed in 56 fewer games, 3.3 fewer seasons, and played in 3.2 fewer games per season compared with their level of competition before surgery. A majority (67%) of NFL players are able to RTP after arthroscopic knee surgery including chondroplasty of articular cartilage lesions. Athletes who play more games per season are more likely to RTP after chondroplasty of articular cartilage lesions of the knee, but those undergoing concomitant microfracture are less likely to return. No statistical significance was determined when comparing the athletes who returned to play with respect to age at surgery, lesion location, lesion size, lesion grade, position that the athlete played, or draft round. © 2015 The Author(s).
Nwachukwu, Benedict U; Bedi, Asheesh; Premkumar, Ajay; Draovitch, Pete; Kelly, Bryan T
2018-01-01
Previous studies have reported that hip abnormalities may account for 10% of injuries in professional football players. The effect of femoroacetabular impingement (FAI) and arthroscopic FAI surgery in National Football League (NFL) athletes has not been well studied. To investigate the effect of arthroscopic FAI surgery on return to play (RTP) and RTP performance in NFL players. Cohort study; Level of evidence, 3. NFL athletes undergoing arthroscopic FAI surgery at a single institution between 2006 and 2014 were identified. Medical records were reviewed for demographic, clinical, and operative variables. RTP and RTP performance were assessed based on a review of publicly available NFL player statistics. RTP and RTP performance data included time to RTP; games played before and after the injury; yearly total yards and touchdowns for offensive players; and yearly total tackles, sacks, and interceptions for defensive players. The offensive power rating (OPR = [total yards/10] + [total touchdowns × 6]) and defensive power rating (DPR = total tackles + [total sacks × 2] + [total interceptions × 2]) were calculated. Paired t tests comparing preinjury and postinjury seasons were performed. A matched cohort of NFL players was created to compare trends for OPR, DPR, and career longevity. Forty-eight hips in 40 NFL players (mean age, 25.6 years) with symptomatic FAI were included; 8 players underwent staged bilateral hip arthroscopic procedures. The majority of players were offensive (n = 24; 60.0%), with offensive lineman (n = 11; 27.5%) being the most common of all positions. Of the 48 included hips, all had labral tears, and 41 (85.4%) underwent labral repair. Forty-two of the 48 hips (87.5%) underwent cam decompression, and 10 (20.8%) underwent rim decompression. Of the 40 included players, 37 (92.5%) achieved RTP to professional competition after their hip arthroscopic surgery at a mean of 6.0 months. Before the injury, included patients played in a mean of 11.0 games compared with 9.5 games in their postoperative season ( P = .26). The mean OPR and DPR demonstrated a nonsignificant decline in the postoperative season (preinjury OPR, 40.2; postinjury OPR, 32.3; P = .34) (preinjury DPR, 49.6; postinjury DPR, 36.4; P = .10). A similar decline in the OPR and DPR across seasons was observed in the control group. NFL athletes played, on average, 3.3 ± 1.5 seasons after undergoing hip arthroscopic surgery; this was not significantly different from the controls (2.5 ± 1.5 seasons; P = .47). There was no significant difference in mean annual salaries based on contracts negotiated before the injury and the first negotiated contract after surgery ($3.3 million vs $3.6 million, respectively; P = .58). There was a very high rate of RTP in the NFL after arthroscopic FAI surgery; this rate is higher than what has been previously reported for other orthopaedic procedures in NFL athletes. Additionally, these NFL athletes achieved RTP at a faster time frame (6 months) than previously reported for other procedures. These findings have important implications for counseling elite football players about the expected outcome of arthroscopic FAI surgery.
Constantinescu, R; Krýsl, D; Bergquist, F; Andrén, K; Malmeström, C; Asztély, F; Axelsson, M; Menachem, E B; Blennow, K; Rosengren, L; Zetterberg, H
2016-04-01
Clinical symptoms and long-term outcome of autoimmune encephalitis are variable. Diagnosis requires multiple investigations, and treatment strategies must be individually tailored. Better biomarkers are needed for diagnosis, to monitor disease activity and to predict long-term outcome. The value of cerebrospinal fluid (CSF) markers of neuronal [neurofilament light chain protein (NFL), and total tau protein (T-tau)] and glial cell [glial fibrillary acidic protein (GFAP)] damage in patients with autoimmune encephalitis was investigated. Demographic, clinical, magnetic resonance imaging, CSF and antibody-related data of 25 patients hospitalized for autoimmune encephalitis and followed for 1 year were retrospectively collected. Correlations between these data and consecutive CSF levels of NFL, T-tau and GFAP were investigated. Disability, assessed by the modified Rankin scale, was used for evaluation of disease activity and long-term outcome. The acute stage of autoimmune encephalitis was accompanied by high CSF levels of NFL and T-tau, whereas normal or significantly lower levels were observed after clinical improvement 1 year later. NFL and T-tau reacted in a similar way but at different speeds, with T-tau reacting faster. CSF levels of GFAP were initially moderately increased but did not change significantly later on. Final outcome (disability at 1 year) directly correlated with CSF-NFL and CSF-GFAP levels at all time-points and with CSF-T-tau at 3 ± 1 months. This correlation remained significant after age adjustment for CSF-NFL and T-tau but not for GFAP. In autoimmune encephalitis, CSF levels of neuronal and glial cell damage markers appear to reflect disease activity and long-term disability. © 2016 EAN.
Zhang, Ping; Tan, Cheng-Wen; Chen, Gui-Hai; Ge, Yi-Jun; Xu, Jing; Xia, Lan; Wang, Fang; Li, Xue-Yan; Kong, Xiao-Yi
2018-02-13
The aims of this study were to investigate whether serum levels of neurofilaments heavy chain (NfH) and light chain (NfL), neuron-specific enolase (NSE) and S100 calcium binding protein B (S100B): (1) change, (2) alleviate in post-therapy and (3) are associated with sleep quality and cognitive dysfunction, in patients with chronic insomnia disorder (CID). Forty CID outpatients constituted free-therapy group (ft-CID), in which twenty-four patients completed follow-up after six-month treatment to form re-visiting group (rv-CID), and twenty healthy good sleepers constituted control group (HC). All subjects completed questionnaires, polysomnography, Chinese-Beijing Version of Montreal Cognitive Assessment (MoCA-C) and Nine Box Maze Test (NBMT) to assess sleep and neuropsychological function. The serum levels of NfH, NfL, NSE and S100B were detected using enzyme-linked immunosorbent assay. The ft-CID had higher levels of NfH, NfL, NSE and S100B than the HC. Of note, the levels of NfH, NfL and NSE were significantly reduced in the rv-CID compared to the ft-CID, but not the level of S100B. Principal components analysis revealed that in these serum biomarkers, NfL and S100B had a substantial correlation with subjective and objective sleep parameters. The CID patients had elevated serum levels of NfH, NfL, NSE and S100B, indicating existence of damaged brain microstructure, including neurons, astrocytes and neuronal terminals, which were associated with the insomniac severity or/and cognitive dysfunction and could significantly reduce after effective therapy apart from the S100B. Copyright © 2018 Elsevier B.V. All rights reserved.
CSF neurofilament light chain and phosphorylated tau 181 predict disease progression in PSP.
Rojas, Julio C; Bang, Jee; Lobach, Iryna V; Tsai, Richard M; Rabinovici, Gil D; Miller, Bruce L; Boxer, Adam L
2018-01-23
To determine the ability of CSF biomarkers to predict disease progression in progressive supranuclear palsy (PSP). We compared the ability of baseline CSF β-amyloid 1-42 , tau, phosphorylated tau 181 (p-tau), and neurofilament light chain (NfL) concentrations, measured by INNO-BIA AlzBio3 or ELISA, to predict 52-week changes in clinical (PSP Rating Scale [PSPRS] and Schwab and England Activities of Daily Living [SEADL]), neuropsychological, and regional brain volumes on MRI using linear mixed effects models controlled for age, sex, and baseline disease severity, and Fisher F density curves to compare effect sizes in 50 patients with PSP. Similar analyses were done using plasma NfL measured by single molecule arrays in 141 patients. Higher CSF NfL concentration predicted more rapid decline (biomarker × time interaction) over 52 weeks in PSPRS ( p = 0.004, false discovery rate-corrected) and SEADL ( p = 0.008), whereas lower baseline CSF p-tau predicted faster decline on PSPRS ( p = 0.004). Higher CSF tau concentrations predicted faster decline by SEADL ( p = 0.004). The CSF NfL/p-tau ratio was superior for predicting change in PSPRS, compared to p-tau ( p = 0.003) or NfL ( p = 0.001) alone. Higher NfL concentrations in CSF or blood were associated with greater superior cerebellar peduncle atrophy (fixed effect, p ≤ 0.029 and 0.008, respectively). Both CSF p-tau and NfL correlate with disease severity and rate of disease progression in PSP. The inverse correlation of p-tau with disease severity suggests a potentially different mechanism of tau pathology in PSP as compared to Alzheimer disease. Copyright © 2017 American Academy of Neurology.
Singh, Sameer K; George, Andrew; Kadakia, Anish R; Hsu, Wellington K
2018-04-27
Professional National Football League (NFL) and rugby athletes have high rates of Lisfranc injuries. Although favorable return-to-play rates have been previously reported, a thorough assessment of postinjury performance is lacking. Professional NFL and rugby athletes who sustained a Lisfranc injury were identified using a well-established protocol confirmed by multiple sources of the public record. Return-to-play rate and time to return were determined for each athlete. League participation and game performance were collected 1 season prior to injury and up to 3 seasons after injury. Statistical analysis was performed, with P≤.05 being significant. A total of 47 athletes (NFL=35, rugby=12) with Lisfranc injuries were identified, having 23 ligamentous injuries and 24 fractures. Thirty-five (75%) were treated operatively. Among NFL players, 29 (83%) returned to play, taking 10.0±2.9 months to do so. Overall, NFL players started fewer games 2 and 3 seasons following surgery (P=.002 and .035, respectively) and showed a significant decline in performance 1 season after return compared with preinjury levels (21%; P=.05). Offensive players had a significantly greater decline in statistical performance compared with defensive counterparts (P=.02). Although professional NFL athletes return to play at a high rate (83%) following Lisfranc injury, their league participation and performance is significantly decreased on return. Ligamentous and bony injuries have similar prognoses; however, offensive players show greater declines in performance compared with defensive players. To best guide therapy, players, coaches, and team physicians should be aware of the impact of Lisfranc injuries on career performance and longevity. [Orthopedics. 201x; xx(x):xx-xx.]. Copyright 2018, SLACK Incorporated.
Olfactory Function and Associated Clinical Correlates in Former National Football League Players
Alosco, Michael L.; Jarnagin, Johnny; Tripodis, Yorghos; Platt, Michael; Martin, Brett; Chaisson, Christine E.; Baugh, Christine M.; Fritts, Nathan G.; Cantu, Robert C.
2017-01-01
Abstract Professional American football players incur thousands of repetitive head impacts (RHIs) throughout their lifetime. The long-term consequences of RHI are not well characterized, but may include olfactory dysfunction. RHI has been associated with changes to brain regions involved in olfaction, and olfactory impairment is common after traumatic brain injury. Olfactory dysfunction is a frequent early sequelae of neurodegenerative diseases (e.g., Alzheimer's disease), and RHI is associated with the neurodegenerative disease, chronic traumatic encephalopathy (CTE). We examined olfaction, and its association with clinical measures, in former National Football League (NFL) players. Ninety-five former NFL players (ages 40–69) and 28 same-age controls completed a neuropsychological and neuropsychiatric evaluation as part of a National Institutes of Health–funded study. The Brief Smell Identification Test (B-SIT) assessed olfaction. Principal component analysis generated a four-factor structure of the clinical measures: behavioral/mood, psychomotor speed/executive function, and verbal and visual memory. Former NFL players had worse B-SIT scores relative to controls (p = 0.0096). A B-SIT cutoff of 11 had the greatest accuracy (c-statistic = 0.61) and specificity (79%) for discriminating former NFL players from controls. In the former NFL players, lower B-SIT scores correlated with greater behavioral/mood impairment (p = 0.0254) and worse psychomotor speed/executive functioning (p = 0.0464) after controlling for age and education. Former NFL players exhibited lower olfactory test scores relative to controls, and poorer olfactory test performance was associated with worse neuropsychological and neuropsychiatric functioning. Future work that uses more-comprehensive tests of olfaction and structural and functioning neuroimaging may improve understanding on the association between RHI and olfaction. PMID:27430424
Olfactory Function and Associated Clinical Correlates in Former National Football League Players.
Alosco, Michael L; Jarnagin, Johnny; Tripodis, Yorghos; Platt, Michael; Martin, Brett; Chaisson, Christine E; Baugh, Christine M; Fritts, Nathan G; Cantu, Robert C; Stern, Robert A
2017-02-15
Professional American football players incur thousands of repetitive head impacts (RHIs) throughout their lifetime. The long-term consequences of RHI are not well characterized, but may include olfactory dysfunction. RHI has been associated with changes to brain regions involved in olfaction, and olfactory impairment is common after traumatic brain injury. Olfactory dysfunction is a frequent early sequelae of neurodegenerative diseases (e.g., Alzheimer's disease), and RHI is associated with the neurodegenerative disease, chronic traumatic encephalopathy (CTE). We examined olfaction, and its association with clinical measures, in former National Football League (NFL) players. Ninety-five former NFL players (ages 40-69) and 28 same-age controls completed a neuropsychological and neuropsychiatric evaluation as part of a National Institutes of Health-funded study. The Brief Smell Identification Test (B-SIT) assessed olfaction. Principal component analysis generated a four-factor structure of the clinical measures: behavioral/mood, psychomotor speed/executive function, and verbal and visual memory. Former NFL players had worse B-SIT scores relative to controls (p = 0.0096). A B-SIT cutoff of 11 had the greatest accuracy (c-statistic = 0.61) and specificity (79%) for discriminating former NFL players from controls. In the former NFL players, lower B-SIT scores correlated with greater behavioral/mood impairment (p = 0.0254) and worse psychomotor speed/executive functioning (p = 0.0464) after controlling for age and education. Former NFL players exhibited lower olfactory test scores relative to controls, and poorer olfactory test performance was associated with worse neuropsychological and neuropsychiatric functioning. Future work that uses more-comprehensive tests of olfaction and structural and functioning neuroimaging may improve understanding on the association between RHI and olfaction.
Treatment of Facial Photodamage With Mass Market Topical Products vs Non-ablative Fractional Laser.
Reich, Hilary; Wallander, Irmina; Schulte, Lacie; Goodier, Molly; Zelickson, Brian
2016-11-01
In this split-face, evaluator-blinded study, 18 subjects were randomly assigned to receive either the SSR or NFL treatments on each side of the face. For the SSR facial sides subjects followed two morning-evening regimens. On the NFL sides subjects were treated 3 times with the 1927-nm laser at 4-week intervals. Three physician evaluators were asked to rate hyperpigmentation, global photoaging, and ne lines and wrinkles for each side of the face at baseline and at 3 months using a 5-point scale. The SSR and NFL treatments provided comparable results for each skin attribute. Improvement from baseline was signi - cant in both treatment programs for each skin attribute. The greatest 3-month improvement for both programs was in hyperpigmen- tation. For global photoaging and ne lines and wrinkles, positive responses were slightly greater in the NFL than in the SSR facial sides. Subject preference for the SSR over the NFL was greatest for ne lines around the eyes, ne lines around the mouth, smooth texture, radiant complexion, and overall improvement while the NFL was preferred for skin rmness and evenness. When the study was completed5 of 18 split-face subjects decided to undergo NFR laser treatment on the non laser treated side along with using the SSR product and 13 of the 18 subjects continued to use the SSR products to their full face after the study. The mass market skin care system of the present study provides improvement in hyperpigmentation, global photoaging, and ne lines and wrinkles comparable to that of a series of treatments with a non-ablative fractional laser. J Drugs Dermatol. 2016;15(11):1366-1372..
Metal matrix coated fiber composites and the methods of manufacturing such composites
Weeks, Jr., Joseph K.; Gensse, Chantal
1993-01-01
A fiber coating which allows ceramic or metal fibers to be wetted by molten metals is disclosed. The coating inhibits degradation of the physical properties caused by chemical reaction between the fiber and the coating itself or between the fiber and the metal matrix. The fiber coating preferably includes at least a wetting layer, and in some applications, a wetting layer and a barrier layer between the fiber and the wetting layer. The wetting layer promotes fiber wetting by the metal matrix. The barrier layer inhibits fiber degradation. The fiber coating permits the fibers to be infiltrated with the metal matrix resulting in composites having unique properties not obtainable in pure materials.
Metal matrix coated fiber composites and the methods of manufacturing such composites
Weeks, J.K. Jr.; Gensse, C.
1993-09-14
A fiber coating which allows ceramic or metal fibers to be wetted by molten metals is disclosed. The coating inhibits degradation of the physical properties caused by chemical reaction between the fiber and the coating itself or between the fiber and the metal matrix. The fiber coating preferably includes at least a wetting layer, and in some applications, a wetting layer and a barrier layer between the fiber and the wetting layer. The wetting layer promotes fiber wetting by the metal matrix. The barrier layer inhibits fiber degradation. The fiber coating permits the fibers to be infiltrated with the metal matrix resulting in composites having unique properties not obtainable in pure materials. 8 figures.
Y. M. Dai; Miao, H.; Xing, L. Y.; ...
2015-09-15
A series of LiFe 1–xCo xAs compounds with different Co concentrations by transport, optical spectroscopy, angle-resolved photoemission spectroscopy, and nuclear magnetic resonance. We observe a Fermi-liquid to non-Fermi-liquid to Fermi-liquid (FL-NFL-FL) crossover alongside a monotonic suppression of the superconductivity with increasing Co content. In parallel to the FL-NFL-FL crossover, we find that both the low-energy spin fluctuations and Fermi surface nesting are enhanced and then diminished, strongly suggesting that the NFL behavior in LiFe 1–xCo xAs is induced by low-energy spin fluctuations that are very likely tuned by Fermi surface nesting. Our study reveals a unique phase diagram of LiFemore » 1–xCo xAs where the region of NFL is moved to the boundary of the superconducting phase, implying that they are probably governed by different mechanisms.« less
Genome-wide association study identifies two loci influencing plasma neurofilament light levels.
Li, Jie-Qiong; Yuan, Xiang-Zhen; Li, Hai-Yan; Cao, Xi-Peng; Yu, Jin-Tai; Tan, Lan; Chen, Wei-An
2018-05-10
Plasma neurofilament light (NFL) is a promising biomarker for Alzheimer disease (AD), which increases in the early stage of AD and is associated with the progression of AD. We performed a genome-wide association study (GWAS) of plasma NFL in Alzheimer's Disease Neuroimaging Initiative 1 (ADNI-1) cohort to identify novel variants associated with AD. This study included 179 cognitively healthy controls (HC), 176 patients with mild cognitive impairment (MCI), and 172 patients with AD. All subjects were restricted to non-Hispanic Caucasian derived from the ADNI cohort and met all quality control (QC) criteria. Association of plasma NFL with the genetic variants was assessed using PLINK with an additive genetic model, i.e.dose-dependent effect of the minor alleles. The influence of a genetic variant associated with plasma NFL (rs7943454) on brain structure was further assessed using PLINK with a linear regression model. The minor allele (T) of rs7943454 in leucine zipper protein 2 gene (LUZP2) was associated with higher plasma NFL at suggestive levels (P = 1.39 × 10 - 6 ) in a dose-dependent fashion. In contrast, the minor allele (G) of rs640476 near GABRB2 was associated with lower plasma NFL at suggestive levels (P = 6.71 × 10 - 6 ) in a dose-dependent effect in all diagnostic groups except the MCI group. Furthermore, the minor allele (T) of rs7943454 within LUZP2 increased the onset risk of AD (odds ratio = 1.547, confidence interval 95% = 1.018-2.351) and was associated with atrophy of right middle temporal gyrus in the whole cohort in the longitudinal study (P = 0.0234). GWAS found the associations of two single nucleotide polymorphisms (rs7943454 and rs640476) with plasma NFL at suggestive levels. Rs7943454 in LUZP2 was associated with the onset risk of AD and atrophy of right middle temporal gyrusin the whole cohort. Using an endophenotype-based approach, we identified rs7943454 as a new AD risk locus.
Design and Evaluation of the NFL PLAY 60 FITNESSGRAM® Partnership Project
ERIC Educational Resources Information Center
Welk, Gregory J.; Bai, Yang; Saint-Maurice, Pedro F.; Allums-Featherston, Kelly; Candelaria, Norma
2016-01-01
This article describes the conceptual design and evaluation strategies used in the NFL PLAY 60 FITNESSGRAM® Partnership Project, a large participatory research network focused on building effective school physical education programming. The article summarizes the unique participatory design, recruitment methods, programming strategies, and…
Secondary polymer layered impregnated tile
NASA Technical Reports Server (NTRS)
Tran, Huy K. (Inventor); Rasky, Daniel J. (Inventor); Szalai, Christine E. (Inventor); Carroll, Joseph A. (Inventor); Hsu, Ming-ta S. (Inventor)
2005-01-01
A low density organic polymer impregnated preformed fibrous ceramic article includes a plurality of layers. A front layer includes ceramic fibers or carbon fibers or combinations of ceramic fibers and carbon fibers, and is impregnated with an effective amount of at least one organic polymer. A middle layer includes polymer impregnated ceramic fibers. A back layer includes ceramic fibers or carbon fibers or combinations of ceramic fibers and carbon fibers, and is impregnated with an effective amount of at least one low temperature pyrolyzing organic polymer capable of decomposing without depositing residues.
Lawrence, David W.; Hutchison, Michael G.; Comper, Paul
2015-01-01
Background: The risk of all-cause injury and concussion associated with football is significant. The National Football League (NFL) has implemented changes to increase player safety warranting investigation into the incidence and patterns of injury. Purpose: To document the incidence and patterns of all-cause injury and concussions in the NFL. Study Design: Descriptive epidemiology study. Methods: Injury data were collected prospectively from official NFL injury reports over 2 regular seasons from 2012 to 2014, with identification of injury incidence rates and patterns. Concussion rate ratios were calculated using previously reported NFL rates. Results: A total of 4284 injuries were identified, including 301 concussions. The all-cause injury rate was 395.8 per 1000 athletes at risk (AAR) and concussion incidence was 27.8 per 1000 AAR. Only 2.3% of team games were injury free. Wide receivers, tight ends, and defensive backs had the highest incidence of injury and concussion. Concussion incidence was 1.61-fold higher in 2012 to 2014 compared with 2002 to 2007. The knee was injured most frequently, followed by the ankle, hamstring, shoulder, and head. Conclusion: The incidence of all-cause injury and concussion in the NFL is significant. Concussion injury rates are higher than previous reports, potentially reflecting an improvement in recognition and awareness. Injury prevention efforts should continue to reduce the prevalence of injury associated with football. PMID:26675321
Ramkumar, Prem; Navarro, Sergio Michael
2017-01-01
Objectives: The primary goal of this study was to assess the short-term outcomes among National Football League (NFL) players following concussion in terms of: (1) DNP protocol activation, (2) release rate at one and three years, and (3) mean salary reduction. A secondary goal of the study was to stratify the post-concussive release rate by franchise and player position. Methods: NFL player transaction records and publicly available weekly injury reports from August 2005 to January 2016 for NFL players were analyzed. All players immediately sustaining recorded concussions were evaluated for a change to inactive or do-not-play (DNP) status. The one-year and three-year release rate following concussion was defined as any player transitioning to inactivation, retirement, free agency, or any failure to return for a successive season on the same team’s active roster after one or three years from the initial concussion. Student’s t-test was used to compare release rates between non-concussed and concussed players at one and three years. Mean salary reduction per year following concussion was calculated using publicly available player contracts. Additionally, franchise-level and position-based analyses of the release rate were performed. Results: Of the total 5,451 NFL players retrospectively analyzed over the 11-year period, 373 sustained publicly reported concussions resulting in DNP protocol activation. The release rate of the post-concussive versus non-concussive player was 26% vs. 20% at 1 year (p<0.01) and 31% vs. 19% at 3 years (p<0.01). After analyzing individual player contracts, the mean year-over-year change in contract value for concussed players after DNP protocol activation was an overall salary reduction of $760,000/year ± $2,380,000. Figure 1 depicts the tendency of each NFL franchise to release an athlete following concussion within one and three years. Table 1 reports a position-based analysis in terms of concussion rate, mean salary reduction, and NFL career longevity. Conclusion: Our retrospective study demonstrates that NFL concussions resulting in DNP protocol activation leads to a statistically greater release rate among concussed NFL players than non-concussed players. Released players suffered reduction in year-over-year accumulated earnings, and particular franchises tended to release concussed players more than others. Position-based Concussion Statistics of Players by DNP Activation, Salary Reduction, Career LengthPosition GroupDNP ConcussionsMean Salary Reduction ($/yr)Average Career Length (yrs)DB75 (20.1%)280,0007.0WR66 (17.7%)1,760,0007.3OL49 (13.1%)1,190,0005.5TE46 (12.3%)333,0007.7RB40 (10.7%)140,0005.1LB39 (10.5%)720,0004.9DL31 (8.3%)540,0007.0QB27 (7.2%)2,440,0007.3Total373760,0006.4
2017-01-26
jsc2017e009669 (01/26/2017) --- Former NFL players sign autographs for Johnson Space Center (JSC) staff members as part of the JSC Super Bowl Tailgate event. The former NFL Prayers were invited to tour JSC as guests of the Center Director the week before the Super Bowl game. NASA Photographer: Lauren Harnett
Management of concussion in the professional football player.
Pieroth, Elizabeth M; Hanks, Christopher
2014-01-01
There is no other sport that has come under greater scrutiny surrounding the incidence and treatment of concussion than football, and there is no other professional sports league that has experienced more intense focus of its handling of concussions than the National Football League (NFL). The NFL has received significant criticism of their management of concussion in players from both the popular press and the medical community. However, those working with active NFL players have changed their assessment and treatment of these injuries as the knowledge of concussions has evolved over time. We review the current approach to the management of concussions in the professional football player. © 2014 S. Karger AG, Basel.
U.S. National Football League athletes seeking unproven stem cell treatments.
Matthews, Kirstin R W; Cuchiara, Maude L
2014-12-01
From professionals to weekend warriors, many athletes seek unproven stem cell (SC) treatments in an effort to heal injuries nonsurgically and/or to accelerate recovery times after surgery. Among the elite athletes opting for these treatments are high-profile U.S. National Football League (NFL) players. Over the past 5 years, several NFL players have publicly advocated for SC types of treatments and credit them as a major reason they could continue their careers after injuries. In this article, we describe the current problems associated with unproven SC treatments, focusing on treatments without U.S. Food and Drug Administration approval undertaken by NFL players in the past 5 years. Specifically, we highlight the types of treatments obtained and how the clinics advertise specifically to athletes. We also review the intended and unintended consequences of high-profile players receiving and advocating for these types of therapies. Our findings suggest that NFL players increasingly seek out unproven SC therapies to help accelerate recoveries from injuries. While most seem to receive treatment within the United States, several have traveled abroad for therapies unavailable domestically.
NASA Technical Reports Server (NTRS)
Wolpert, David H.; Macready, William G.
2005-01-01
Recent work on the foundations of optimization has begun to uncover its underlying rich structure. In particular, the "No Free Lunch" (NFL) theorems [WM97] state that any two algorithms are equivalent when their performance is averaged across all possible problems. This highlights the need for exploiting problem-specific knowledge to achieve better than random performance. In this paper we present a general framework covering most search scenarios. In addition to the optimization scenarios addressed in the NFL results, this framework covers multi-armed bandit problems and evolution of multiple co-evolving agents. As a particular instance of the latter, it covers "self-play" problems. In these problems the agents work together to produce a champion, who then engages one or more antagonists in a subsequent multi-player game In contrast to the traditional optimization case where the NFL results hold, we show that in self-play there are free lunches: in coevolution some algorithms have better performance than other algorithms, averaged across all possible problems. However in the typical coevolutionary scenarios encountered in biology, where there is no champion, NFL still holds.
Association between Plasma Homocysteine Levels and Neuronal Injury in HIV Infection
Ahlgren, Erika; Hagberg, Lars; Fuchs, Dietmar; Andersson, Lars-Magnus; Nilsson, Staffan; Zetterberg, Henrik; Gisslén, Magnus
2016-01-01
Objective To investigate the role of homocysteine in neuronal injury in HIV infection. Methods Using a cross-sectional design and archived samples, we compared concentrations of plasma homocysteine and cerebrospinal fluid (CSF) neurofilament light protein (NFL), a sensitive marker of neuronal injury, in 83 HIV-1-infected subjects without antiretroviral treatment. We also analyzed plasma vitamin B12, serum folate, CSF, and plasma HIV RNA, the immune activation marker neopterin in CSF and serum, and albumin ratio as a marker of blood-brain barrier integrity. Twenty-two subjects provided a second sample median of 12.5 months after antiretroviral treatment initiation. Results A significant correlation was found between plasma homocysteine and CSF NFL concentrations in untreated individuals (r = 0.52, p < 0.0001). As expected, there was a significant inverse correlation between homocysteine and B12 (r = –0.41, p < 0.001) and folate (r = –0.40, p = < 0.001) levels. In a multiple linear regression analysis homocysteine stood out as an independent predictor of CSF NFL in HIV-1-infected individuals. The correlation of plasma homocysteine and CSF NFL was also present in the group receiving antiretroviral therapy (r = 0.51, p = 0.016). Conclusion A correlation between plasma homocysteine and axonal injury, as measured by CSF NFL, was found in both untreated and treated HIV. While this study is not able to prove a causal link, homocysteine and functional B12/folate deficiency appear to play a role in neural injury in HIV-infected individuals. PMID:27441551
Association between Plasma Homocysteine Levels and Neuronal Injury in HIV Infection.
Ahlgren, Erika; Hagberg, Lars; Fuchs, Dietmar; Andersson, Lars-Magnus; Nilsson, Staffan; Zetterberg, Henrik; Gisslén, Magnus
2016-01-01
To investigate the role of homocysteine in neuronal injury in HIV infection. Using a cross-sectional design and archived samples, we compared concentrations of plasma homocysteine and cerebrospinal fluid (CSF) neurofilament light protein (NFL), a sensitive marker of neuronal injury, in 83 HIV-1-infected subjects without antiretroviral treatment. We also analyzed plasma vitamin B12, serum folate, CSF, and plasma HIV RNA, the immune activation marker neopterin in CSF and serum, and albumin ratio as a marker of blood-brain barrier integrity. Twenty-two subjects provided a second sample median of 12.5 months after antiretroviral treatment initiation. A significant correlation was found between plasma homocysteine and CSF NFL concentrations in untreated individuals (r = 0.52, p < 0.0001). As expected, there was a significant inverse correlation between homocysteine and B12 (r = -0.41, p < 0.001) and folate (r = -0.40, p = < 0.001) levels. In a multiple linear regression analysis homocysteine stood out as an independent predictor of CSF NFL in HIV-1-infected individuals. The correlation of plasma homocysteine and CSF NFL was also present in the group receiving antiretroviral therapy (r = 0.51, p = 0.016). A correlation between plasma homocysteine and axonal injury, as measured by CSF NFL, was found in both untreated and treated HIV. While this study is not able to prove a causal link, homocysteine and functional B12/folate deficiency appear to play a role in neural injury in HIV-infected individuals.
Steinacker, Petra; Huss, André; Mayer, Benjamin; Grehl, Torsten; Grosskreutz, Julian; Borck, Guntram; Kuhle, Jens; Lulé, Dorothée; Meyer, Thomas; Oeckl, Patrick; Petri, Susanne; Weishaupt, Jochen; Ludolph, Albert C; Otto, Markus
2017-02-01
There is a need for diagnostic, prognostic, and monitoring blood biomarkers for ALS. We aimed to analyse and compare proposed candidate markers for disease progression in the course of ALS. Blood samples were taken from 125 ALS patients, including nine patients with C9orf72 or SOD1 mutation, at regular intervals of six months. ALS patients were characterized by the ALS functional rating scale (ALSFRS-R) and the Edinburgh Cognitive and Behavioural ALS Screen (ECAS). We quantified neurofilament light chain (NF-L), S100B, and progranulin (PGRN) and analysed it in relation to disease progression. Results showed that, at baseline, serum concentrations of NF-L but not PGRN or S100B discriminated significantly between ALS and controls. Within 24 months follow-up the marker concentrations remained stable. Baseline serum NF-L levels correlated with survival time, which was confirmed in subgroups with fast, intermediate, and slow disease progression and there was a weak association with disease duration. For S100B and PGRN we found an association with ALSFRS-R score changes and a trend for decreased levels in the fast progressor subgroup. In conclusion, serum NF-L in any ALS disease stage is a promising marker to support diagnosis and predict outcome, while serum PGRN and S100B are only of minor prognostic value.
Aligned Layers of Silver Nano-Fibers.
Golovin, Andrii B; Stromer, Jeremy; Kreminska, Liubov
2012-02-01
We describe a new dichroic polarizers made by ordering silver nano-fibers to aligned layers. The aligned layers consist of nano-fibers and self-assembled molecular aggregates of lyotropic liquid crystals. Unidirectional alignment of the layers is achieved by means of mechanical shearing. Aligned layers of silver nano-fibers are partially transparent to a linearly polarized electromagnetic radiation. The unidirectional alignment and density of the silver nano-fibers determine degree of polarization of transmitted light. The aligned layers of silver nano-fibers might be used in optics, microwave applications, and organic electronics.
Neurofilament light chain level is a weak risk factor for the development of MS
Arrambide, Georgina; Eixarch, Herena; Villar, Luisa M.; Alvarez-Cermeño, José C.; Picón, Carmen; Kuhle, Jens; Disanto, Giulio; Kappos, Ludwig; Sastre-Garriga, Jaume; Pareto, Deborah; Simon, Eva; Comabella, Manuel; Río, Jordi; Nos, Carlos; Tur, Carmen; Castilló, Joaquín; Vidal-Jordana, Angela; Galán, Ingrid; Arévalo, Maria J.; Auger, Cristina; Rovira, Alex; Montalban, Xavier
2016-01-01
Objective: To determine the prognostic value of selected biomarkers in clinically isolated syndromes (CIS) for conversion to multiple sclerosis (MS) and disability accrual. Methods: Data were acquired from 2 CIS cohorts. The screening phase evaluated patients developing clinically definite MS (CIS-CDMS) and patients who remained as CIS during a 2-year minimum follow-up (CIS-CIS). We determined levels of neurofascin, semaphorin 3A, fetuin A, glial fibrillary acidic protein, and neurofilament light (NfL) and heavy chains in CSF (estimated mean [95% confidence interval; CI]). We evaluated associations between biomarker levels, conversion, disability, and magnetic resonance parameters. In the replication phase, we determined NfL levels (n = 155) using a 900 ng/L cutoff. Primary endpoints in uni- and multivariate analyses were CDMS and 2010 McDonald MS. Results: The only biomarker showing significant differences in the screening was NfL (CIS-CDMS 1,553.1 [1,208.7–1,897.5] ng/L and CIS-CIS 499.0 [168.8–829.2] ng/L, p < 0.0001). The strongest associations were with brain parenchymal fraction change (rs = −0.892) and percentage brain volume change (rs = −0.842) at 5 years. NfL did not correlate with disability. In the replication phase, more NfL-positive patients, according to the cutoff, evolved to MS. Every 100-ng/L increase in NfL predicted CDMS (hazard ratio [HR] = 1.009, 95% CI 1.005–1.014) and McDonald MS (HR = 1.009, 95% CI 1.005–1.013), remaining significant for CDMS in the multivariate analysis (adjusted HR = 1.005, 95% CI 1.000–1.011). This risk was lower than the presence of oligoclonal bands or T2 lesions. Conclusions: NfL is a weak independent risk factor for MS. Its role as an axonal damage biomarker may be more relevant as suggested by its association with medium-term brain volume changes. PMID:27521440
Hart, John; Kraut, Michael A; Womack, Kyle B; Strain, Jeremy; Didehbani, Nyaz; Bartz, Elizabeth; Conover, Heather; Mansinghani, Sethesh; Lu, Hanzhang; Cullum, C Munro
2013-03-01
OBJECTIVES To assess cognitive impairment and depression in aging former professional football (National Football League [NFL]) players and to identify neuroimaging correlates of these dysfunctions. DESIGN We compared former NFL players with cognitive impairment and depression, cognitively normal retired players who were not depressed, and matched healthy control subjects. SETTING Research center in the North Texas region of the United States. PATIENTS Cross-sectional sample of former NFL players with and without a history of concussion recruited from the North Texas region and age-, education-, and IQ-matched controls. Thirty-four retired NFL players (mean age, 61.8 years) underwent neurological and neuropsychological assessment. A subset of 26 players also underwent detailed neuroimaging; imaging data in this subset were compared with imaging data acquired in 26 healthy matched controls. MAIN OUTCOME MEASURES Neuropsychological measures, clinical diagnoses of depression, neuroimaging mea-sures of white matter pathology, and a measure of cerebral blood flow. RESULTS Of the 34 former NFL players, 20 were cognitively normal. Four were diagnosed as having a fixed cognitive deficit; 8, mild cognitive impairment; 2, dementia; and 8, depression. Of the subgroup in whom neuroimaging data were acquired, cognitively impaired participants showed the greatest deficits on tests of naming, word finding, and visual/verbal episodic memory. We found significant differences in white matter abnormalities in cognitively impaired and depressed retired players compared with their respective controls. Regional blood flow differences in the cognitively impaired group (left temporal pole, inferior parietal lobule, and superior temporal gyrus) corresponded to regions associated with impaired neurocognitive performance (problems with memory, naming, and word finding). CONCLUSIONS Cognitive deficits and depression appear to be more common in aging former NFL players compared with healthy controls. These deficits are correlated with white matter abnormalities and changes in regional cerebral blood flow.
Fitzgerald, Corey F; Jensen, Randall L
2018-06-06
Fitzgerald, CF and Jensen, RL. A Comparison of the National Football League's annual National Football League combine 1999-2000 to 2015-2016. J Strength Cond Res XX(X): 000-000, 2018-The purpose of this study was to determine if elite football players are becoming bigger, faster, and stronger over the past decade by analyzing individual performances at the National Football League's (NFL) Combine. This study was conducted with (N = 1,263) subjects from the 1999-2000 (99-00) NFL Combines (n = 635) and the 2015-2016 (15-16) NFL Combines (n = 628) separated by position. Data were collected for height, weight, 40-yd (36.58 m) dash, NFL 225 lb. (102.06 kg) repetitions test, vertical jump (VJ), broad jump (BJ), pro-agility shuttle, and 3-cone drill. Statistical significance between the years for all subjects participating in the NFL Combine was found for the 40-yd dash (99-00: mean ± SD = 4.85 ± 3.2; 15-16: 4.80 ± 3.5; p = 0.002) and VJ (99-00 = 32.30 ± 4.08; 15-16: 32.86 ± 4.17; p = 0.028) at the alpha p < 0.05 level. Statistical significance was also found for BJ (99-00 = 111.37 ± 8.81; 15-16: 115.03 ± 9.22; p < 0.001) and the 3-cone drill (99-00 = 7.41 ± 0.42; 15-16: 7.29 ± 4.1; p < 0.001) at the alpha p < 0.001 level. There were no statistically significant findings (p > 0.05) for weight or height found across all subjects by combine years. Results indicate that elite football players have improved their performance, when comparing results from 1999-2000 to 2015-2016. These finding may be beneficial to NFL franchises in their prospective player assessments.
Makhni, Eric C; Buza, John A; Byram, Ian; Ahmad, Christopher S
2014-05-01
The increased physical demands of professional athletes predispose this patient population to a unique set of injuries typically not seen in the general population. This systematic literature review investigates the nature of injury reporting (both orthopedic and nonorthopedic conditions) in the medical literature of professional athletes in the National Football League (NFL), Major League Baseball (MLB), the National Basketball Association (NBA), and the National Hockey League (NHL). Rigorous reporting of sports injuries helps clinicians better understand disease mechanisms relevant to specific sports. The nature of injury reporting will differ within each professional sport and reflect the anatomic emphasis of each sport. An electronic literature search of all publications addressing injuries and medical conditions among professional athletes in the NFL, MLB, NBA, and NHL was conducted using the Pubmed/Medline, Scopus, and Embase databases through January 2013. Retrieved publications were categorized by journal type, medical type, and area of focus. A total of 536 publications met all inclusion criteria. There were a higher number of articles regarding the NFL (n = 211) and MLB (n = 216) when compared with the NBA (n = 34) or NHL (n = 75). The NFL had significantly more articles addressing nonorthopedic injuries/medical issues than were found with the MLB, NBA, or NHL (109 vs 75, 14, 41, respectively). Both the NFL (33 of 109, 30%) and NHL (6 of 41, 15%) had a relatively high percentage of articles regarding concussions/neurology, and MLB had a relatively high percentage of articles dedicated to vascular medicine (13 of 65, 20%). The proportion of publications dedicated to the knee/lower leg were highest in the NFL (29 of 102, 28%) and NBA (9 of 20, 45%), those dedicated to the shoulder/elbow were highest in MLB (113 of 151, 75%), and those dedicated to the hip/pelvis were highest in the NHL (16 of 34, 47%). The number and type of publications vary among the 4 professional sports leagues, and generally reflect the nature of the sport being played.
Coughlin, Jennifer M; Wang, Yuchuan; Munro, Cynthia A; Ma, Shuangchao; Yue, Chen; Chen, Shaojie; Airan, Raag; Kim, Pearl K; Adams, Ashley V; Garcia, Cinthya; Higgs, Cecilia; Sair, Haris I; Sawa, Akira; Smith, Gwenn; Lyketsos, Constantine G; Caffo, Brian; Kassiou, Michael; Guilarte, Tomas R; Pomper, Martin G
2015-02-01
There are growing concerns about potential delayed, neuropsychiatric consequences (e.g, cognitive decline, mood or anxiety disorders) of sports-related traumatic brain injury (TBI). Autopsy studies of brains from a limited number of former athletes have described characteristic, pathologic changes of chronic traumatic encephalopathy (CTE) leading to questions about the relationship between these pathologic and the neuropsychiatric disturbances seen in former athletes. Research in this area will depend on in vivo methods that characterize molecular changes in the brain, linking CTE and other sports-related pathologies with delayed emergence of neuropsychiatric symptoms. In this pilot project we studied former National Football League (NFL) players using new neuroimaging techniques and clinical measures of cognitive functioning. We hypothesized that former NFL players would show molecular and structural changes in medial temporal and parietal lobe structures as well as specific cognitive deficits, namely those of verbal learning and memory. We observed a significant increase in binding of [(11)C]DPA-713 to the translocator protein (TSPO), a marker of brain injury and repair, in several brain regions, such as the supramarginal gyrus and right amygdala, in 9 former NFL players compared to 9 age-matched, healthy controls. We also observed significant atrophy of the right hippocampus. Finally, we report that these same former players had varied performance on a test of verbal learning and memory, suggesting that these molecular and pathologic changes may play a role in cognitive decline. These results suggest that localized brain injury and repair, indicated by increased [(11)C]DPA-713 binding to TSPO, may be linked to history of NFL play. [(11)C]DPA-713 PET is a promising new tool that can be used in future study design to examine further the relationship between TSPO expression in brain injury and repair, selective regional brain atrophy, and the potential link to deficits in verbal learning and memory after NFL play. Copyright © 2014 Elsevier Inc. All rights reserved.
Bale, Shridhar; Martiné, Alexandra; Wilson, Richard; Behrens, Anna-Janina; Le Fourn, Valérie; de Val, Natalia; Sharma, Shailendra K.; Tran, Karen; Torres, Jonathan L.; Girod, Pierre-Alain; Ward, Andrew B.; Crispin, Max; Wyatt, Richard T.
2018-01-01
Native flexibly linked (NFL) HIV-1 envelope glycoprotein (Env) trimers are cleavage-independent and display a native-like, well-folded conformation that preferentially displays broadly neutralizing determinants. The NFL platform simplifies large-scale production of Env by eliminating the need to co-transfect the precursor-cleaving protease, furin that is required by the cleavage-dependent SOSIP trimers. Here, we report the development of a CHO-M cell line that expressed BG505 NFL trimers at a high level of homogeneity and yields of ~1.8 g/l. BG505 NFL trimers purified by single-step lectin-affinity chromatography displayed a native-like closed structure, efficient recognition by trimer-preferring bNAbs, no recognition by non-neutralizing CD4 binding site-directed and V3-directed antibodies, long-term stability, and proper N-glycan processing. Following negative-selection, formulation in ISCOMATRIX adjuvant and inoculation into rabbits, the trimers rapidly elicited potent autologous tier 2 neutralizing antibodies. These antibodies targeted the N-glycan “hole” naturally present on the BG505 Env proximal to residues at positions 230, 241, and 289. The BG505 NFL trimers that did not expose V3 in vitro, elicited low-to-no tier 1 virus neutralization in vivo, indicating that they remained intact during the immunization process, not exposing V3. In addition, BG505 NFL and BG505 SOSIP trimers expressed from 293F cells, when formulated in Adjuplex adjuvant, elicited equivalent BG505 tier 2 autologous neutralizing titers. These titers were lower in potency when compared to the titers elicited by CHO-M cell derived trimers. In addition, increased neutralization of tier 1 viruses was detected. Taken together, these data indicate that both adjuvant and cell-type expression can affect the elicitation of tier 2 and tier 1 neutralizing responses in vivo.
Werner, Brian C; Belkin, Nicole S; Kennelly, Steve; Weiss, Leigh; Barnes, Ronnie P; Rodeo, Scott A; Warren, Russell F; Hotchkiss, Robert N
2017-01-01
Thumb collateral ligament injuries occur frequently in the National Football League (NFL). In the general population or in recreational athletes, pure metacarpophalangeal (MCP) abduction or adduction mechanisms yield isolated ulnar collateral ligament (UCL) and radial collateral ligament (RCL) tears, respectively, while NFL athletes may sustain combined mechanism injury patterns. To evaluate the incidence of simultaneous combined thumb UCL and RCL tears among all thumb MCP collateral ligament injuries in NFL athletes on a single team. Case series; Level of evidence, 4. A retrospective review of all thumb injuries on a single NFL team from 1991 to 2014 was performed. All players with a thumb MCP collateral ligament injury were included. Collateral ligament injuries were confirmed by review of both physical examination findings and magnetic resonance imaging. Player demographics, surgical details, and return-to-play data were obtained from the team electronic medical record and surgeons' records. A total of 36 thumbs in 32 NFL players were included in the study, yielding an incidence of 1.6 thumb MCP collateral ligament injuries per year on a single NFL team. Of these, 9 thumbs (25%) had a simultaneous combined UCL and RCL tear injury pattern confirmed on both physical examination and MRI. The remaining 27 thumbs (75%) were isolated UCL injuries. All combined UCL/RCL injuries required surgery due to dysfunction from instability; 63.0% of isolated UCL injuries required surgical repair ( P = .032) due to continued pain and dysfunction from instability. Repair, when required, was delayed until the end of the season. All players with combined UCL/RCL injuries and isolated UCL injuries returned to play professional football the following season. Simultaneous combined thumb UCL and RCL tear is a previously undescribed injury pattern that occurred in 25% of thumb MCP collateral ligament injuries on a single NFL team over a 23-year period. All players with combined thumb UCL/RCL injuries required surgical repair, which was significantly higher compared with players with isolated UCL injuries. Team physicians and hand surgeons treating elite football players with suspected thumb collateral ligament injuries should examine for RCL and UCL instability and consider MRI if any concern exists for a combined ligament injury pattern, as this injury is likely frequently missed.
The Longitudinal Impact of NFL PLAY 60 Programming on Youth Aerobic Capacity and BMI.
Bai, Yang; Saint-Maurice, Pedro F; Welk, Gregory J; Russell, Daniel W; Allums-Featherston, Kelly; Candelaria, Norma
2017-03-01
The NFL PLAY 60 campaign has actively promoted physical activity and healthy eating in youth through programs such as the PLAY 60 Challenge and Fuel Up to PLAY 60. The purpose of the study was to evaluate the impact of NFL PLAY 60 programming on longitudinal trajectories of youth aerobic capacity and BMI. Data were from the NFL PLAY 60 FitnessGram Partnership Project, a large participatory research project designed to promote physical activity and healthy eating among Kindergarten through 12th grade children and adolescents. The programming was led by teachers in school settings across 32 NFL franchise markets. A range of 50,000-100,000 students from 497 schools completed FitnessGram assessments annually starting in 2011 and continuing through 2015. The analysis was conducted in 2015. Adoption of NFL PLAY 60 programming was encouraged but not required and the program implementation was evaluated each year. The adoption was evaluated through self-reported annual survey. School assessments of aerobic capacity and BMI were evaluated using FitnessGram standards to calculate the percentage of students meeting the Healthy Fitness Zone for each test. Growth curve modeling was used to estimate the longitudinal trajectories. About 19% of schools were classified as programming schools. Annual improvements in aerobic capacity were significantly greater in schools that participated in the programs for both girls (3.0%, p<0.01) and boys (2.9%, p<0.01) compared with non-programming schools. The annual improvements in BMI Healthy Fitness Zone achievement were also higher in girls (1.3%, p<0.05) and in boys (1.2%, p<0.05) from schools that participated in the programs versus non-participating schools. Schools that implemented the programs for the entire 4-year period tended to have better improvements in aerobic capacity than schools enrolled for only 2 or 3 years (p<0.05). The results of these longitudinal analyses support the utility of the NFL PLAY 60 physical activity promotion programs for improving youth aerobic capacity and potentially helping to reverse the prevalence of overweight/obesity. However, the overall program adoption rate is low. Copyright © 2017 American Journal of Preventive Medicine. Published by Elsevier Inc. All rights reserved.
Chahla, Jorge; Kennedy, Nicholas I; Cinque, Mark E; Sanchez, George; Logan, Catherine; Vopat, Bryan G; Beaulieu-Jones, Brendin; Price, Mark; Whalen, Jim; LaPrade, Robert F; Provencher, Matthew T
2018-03-01
(1) To determine the epidemiology, examination findings, imaging findings, and associated injuries of posterolateral corner (PLC) injuries in players participating in the National Football League (NFL) Combine and (2) to evaluate the impact of PLC injuries on performance compared with matched controls. All PLC injuries identified at the NFL Combine between 2009 and 2015 were reviewed. The inclusion criteria were any player who had clinical findings or a previous surgical procedure consistent with a PLC injury and who participated in medical and performance testing at the NFL Combine. PLC injuries were identified by evaluating the side-to-side difference in lateral-compartment laxity with varus stress and reviewing magnetic resonance imaging studies. NFL performance outcomes (draft position and number of games played or started within the first 2 years) were compared with matched controls. Of the 2,285 players assessed at the NFL Combine, 16 (0.7%) were identified with a history of a grade II or III PLC tear and surgical management whereas 7 additional players (0.3%) had a PLC injury diagnosed on clinical examination, for 23 total PLC injuries (1%). On examination, 13 of 22 knees (59%) were shown to be stable; however, most of those managed surgically had significantly improved stability (13 of 15 stable) versus none of those managed nonsurgically (0 of 7 stable). Surgically managed PLC-injured athletes started significantly fewer games than controls (5.3 vs 10.5, P = .03); the mean draft position for players with surgically treated PLC injuries was 139.7 versus controls' mean draft position of 111.3. Of the 16 athletes treated operatively, 2 reported a PLC injury recurrence; both were managed nonoperatively. A small percentage of players at the NFL Combine had evidence of a previous PLC injury (1%), with 0.4% having residual varus asymmetry on clinical examination. A worse overall mean draft position for isolated PLC-injured athletes versus controls was found: 132.8 versus 111.3 (P = .02). It is recommended that the use of varus stress radiographs be considered for NFL Combine athletes to objectively determine their grade of injury. LEVEL OF EVIDENCE: Level IV, retrospective case series. Copyright © 2017 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.
Chahla, Jorge; Cinque, Mark E; Godin, Jonathan A; Sanchez, George; Lebus, George F; Whalen, James M; Price, Mark D; Kennedy, Nicholas I; Moatshe, Gilbert; LaPrade, Robert F; Provencher, Matthew T
2018-01-01
The effect of prior meniscectomy and the resulting reduction in meniscal tissue on a potential National Football League (NFL) player's articular cartilage status and performance remain poorly elucidated. Purpose/Hypothesis: (1) To determine the epidemiology, imaging characteristics, and associated articular cartilage pathology of the knee among players with a previous meniscectomy who were participating in the NFL Combine and (2) to evaluate the effect of these injuries on performance as compared with matched controls. The hypothesis was that players with less meniscal tissue would have worse cartilage status and inferior performance metrics in their first 2 NFL seasons. Cohort study; Level of evidence, 3. All athletes with a history of a meniscectomy and magnetic resonance imaging scan of the knee who participated in the NFL Combine (2009-2015) were identified. Medical records and imaging were analyzed, and surgical history, games missed in college, position played, and draft position were documented. The conditions of the meniscus and cartilage were graded with modified ISAKOS scores (International Society of Arthroscopy, Knee Surgery and Orthopaedic Sports Medicine) and ICRS scores (International Cartilage Repair Society), respectively. Players with a previous meniscectomy of at least 10% of total medial or lateral meniscal volume excised (ISAKOS meniscus grade ≤8) and matched controls without a significant pre-Combine injury were similarly evaluated and compared by position of play through analysis of draft position, number of games played and started, and how many eligible plays they participated in (snap percentage) within the first 2 NFL seasons. Of the 2285 players who participated in the NFL Combine (2009-2015), 287 players (322 knees) had a prior meniscectomy (206 lateral, 81 medial). Among these players, 247 (85%) had a total of 249 chondral lesions, most commonly on the lateral femoral condyle (111 lesions, 45%). There was a significant inverse correlation found between the ISAKOS medial and lateral meniscus grade and the corresponding compartment chondral lesion grade ( P = .001). A poorer meniscus score was also associated with worse chondral pathology, especially in the lateral compartment. After controlling for position of play, the injury-free control group had a significantly greater number of total games played and games started and higher snap percentage versus those with a prior meniscectomy of at least 10% volume (ISAKOS meniscus grade ≤8). Players with severe chondral lesions (ICRS grade 4) in the medial and lateral compartments had significantly worse performance metrics when compared with matched controls. Previous meniscectomy of at least 10% of total medial or lateral meniscus volume in prospective NFL players was significantly correlated with larger and more severe chondral lesions. Chondral and meniscal defects of the knee were found to result in a significant decrease in objective performance measures during a player's initial NFL career versus matched controls. Given these findings, players with a prior meniscectomy with evidence of chondral damage should be evaluated carefully for their overall functional levels; however, additional work is needed to fully clarify the effect of prior knee meniscal surgery on overall NFL performance.
Analysis of Thursday Night NFL Winning Margins
ERIC Educational Resources Information Center
Vaughan, Timothy S.
2015-01-01
This paper introduces a dataset and associated analysis of the scores of National Football League (NFL) games over the 2012, 2013, and first five weeks of the 2014 season. In the face of current media attention to "lopsided" scores in Thursday night games in the early part of the 2014 season, t-test results indicate no statistically…
Metal/fiber laminate and fabrication using a porous metal/fiber preform
NASA Technical Reports Server (NTRS)
Hales, Stephen J. (Inventor); Alexa, Joel A. (Inventor); Jensen, Brian J. (Inventor); Cano, Roberto J. (Inventor); Weiser, Erik S. (Inventor)
2011-01-01
A metal/fiber laminate has a plurality of adjacent layers. Each layer is porous and includes an arrangement of fibers. At least one of the layers has its fibers coated with a metal. A polymer matrix permeates each such arrangement.
Metal/fiber laminate and fabrication using a porous metal/fiber preform
NASA Technical Reports Server (NTRS)
Hales, Stephen J. (Inventor); Alexa, Joel A. (Inventor); Jensen, Brian J. (Inventor); Cano, Roberto J. (Inventor); Weiser, Erik S. (Inventor)
2010-01-01
A metal/fiber laminate has a plurality of adjacent layers. Each layer is porous and includes an arrangement of fibers. At least one of the layers has its fibers coated with a metal. A polymer matrix permeates each such arrangement.
Methods of making wind turbine rotor blades
Livingston, Jamie T.; Burke, Arthur H. E.; Bakhuis, Jan Willem; Van Breugel, Sjef; Billen, Andrew
2008-04-01
A method of manufacturing a root portion of a wind turbine blade includes, in an exemplary embodiment, providing an outer layer of reinforcing fibers including at least two woven mats of reinforcing fibers, providing an inner layer of reinforcing fibers including at least two woven mats of reinforcing fibers, and positioning at least two bands of reinforcing fibers between the inner and outer layers, with each band of reinforcing fibers including at least two woven mats of reinforcing fibers. The method further includes positioning a mat of randomly arranged reinforcing fibers between each pair of adjacent bands of reinforcing fibers, introducing a polymeric resin into the root potion of the wind turbine blade, infusing the resin through the outer layer, the inner layer, each band of reinforcing fibers, and each mat of random reinforcing fibers, and curing the resin to form the root portion of the wind turbine blade.
Lépinoux-Chambaud, Claire; Barreau, Kristell; Eyer, Joël
2016-07-01
Targeting neural stem cells (NSCs) in the adult brain represents a promising approach for developing new regenerative strategies, because these cells can proliferate, self-renew, and differentiate into new neurons, astrocytes, and oligodendrocytes. Previous work showed that the NFL-TBS.40-63 peptide, corresponding to the sequence of a tubulin-binding site on neurofilaments, can target glioblastoma cells, where it disrupts their microtubules and inhibits their proliferation. We show that this peptide targets NSCs in vitro and in vivo when injected into the cerebrospinal fluid. Although neurosphere formation was not altered by the peptide, the NSC self-renewal capacity and proliferation were reduced and were associated with increased adhesion and differentiation. These results indicate that the NFL-TBS.40-63 peptide represents a new molecular tool to target NSCs to develop new strategies for regenerative medicine and the treatment of brain tumors. In the present study, the NFL-TBS.40-63 peptide targeted neural stem cells in vitro when isolated from the subventricular zone and in vivo when injected into the cerebrospinal fluid present in the lateral ventricle. The in vitro formation of neurospheres was not altered by the peptide; however, at a high concentration of the peptide, the neural stem cell (NSC) self-renewal capacity and proliferation were reduced and associated with increased adhesion and differentiation. These results indicate that the NFL-TBS.40-63 peptide represents a new molecular tool to target NSCs to develop new strategies for regenerative medicine and the treatment of brain tumors. ©AlphaMed Press.
Håkansson, I; Tisell, A; Cassel, P; Blennow, K; Zetterberg, H; Lundberg, P; Dahle, C; Vrethem, M; Ernerudh, J
2017-05-01
Improved biomarkers are needed to facilitate clinical decision-making and as surrogate endpoints in clinical trials in multiple sclerosis (MS). We assessed whether neurodegenerative and neuroinflammatory markers in cerebrospinal fluid (CSF) at initial sampling could predict disease activity during 2 years of follow-up in patients with clinically isolated syndrome (CIS) and relapsing-remitting MS. Using multiplex bead array and enzyme-linked immunosorbent assay, CXCL1, CXCL8, CXCL10, CXCL13, CCL20, CCL22, neurofilament light chain (NFL), neurofilament heavy chain, glial fibrillary acidic protein, chitinase-3-like-1, matrix metalloproteinase-9 and osteopontin were analysed in CSF from 41 patients with CIS or relapsing-remitting MS and 22 healthy controls. Disease activity (relapses, magnetic resonance imaging activity or disability worsening) in patients was recorded during 2 years of follow-up in this prospective longitudinal cohort study. In a logistic regression analysis model, NFL in CSF at baseline emerged as the best predictive marker, correctly classifying 93% of patients who showed evidence of disease activity during 2 years of follow-up and 67% of patients who did not, with an overall proportion of 85% (33 of 39 patients) correctly classified. Combining NFL with either neurofilament heavy chain or osteopontin resulted in 87% overall correctly classified patients, whereas combining NFL with a chemokine did not improve results. This study demonstrates the potential prognostic value of NFL in baseline CSF in CIS and relapsing-remitting MS and supports its use as a predictive biomarker of disease activity. © 2017 EAN.
Game Schedules and Rate of Concussions in the National Football League.
Teramoto, Masaru; Cushman, Daniel M; Cross, Chad L; Curtiss, Heather M; Willick, Stuart E
2017-11-01
Concussion prevention in the National Football League (NFL) is an important priority for player safety. The NFL now has modified game schedules, and one concern is that unconventional game schedules, such as a shortened rest period due to playing on a Thursday rather than during the weekend, may lead to an increased risk of injuries. Unconventional game schedules in the NFL are associated with an increased rate of concussion. Descriptive epidemiological study. This study analyzed concussions and game schedules over the NFL regular seasons from 2012 to 2015 (4 years). Documented numbers of concussions, identified by use of the online database PBS Frontline Concussion Watch, were summarized by regular-season weeks. Association of days of rest and game location (home, away, or overseas) with the rate of concussion was examined by use of the χ 2 test. Logistic regression analysis was performed to examine the relationships of days of rest and home/away games to the risk of repeated concussions, with adjustment for player position. A total of 582 concussions were analyzed in this study. A significantly greater number of concussions occurred in the second half of the season ( P < .01). No significant association was found between the rate of concussion and the days of rest, game location, or timing of the bye week by the team or the opponent ( P > .05). Game schedules were not significantly associated with the occurrence of repeat concussions ( P > .05). Unconventional game schedules in the NFL, including playing on Thursday and playing overseas, do not seem to put players at increased risk of concussions.
NFL Films audio, video, and film production facilities
NASA Astrophysics Data System (ADS)
Berger, Russ; Schrag, Richard C.; Ridings, Jason J.
2003-04-01
The new NFL Films 200,000 sq. ft. headquarters is home for the critically acclaimed film production that preserves the NFL's visual legacy week-to-week during the football season, and is also the technical plant that processes and archives football footage from the earliest recorded media to the current network broadcasts. No other company in the country shoots more film than NFL Films, and the inclusion of cutting-edge video and audio formats demands that their technical spaces continually integrate the latest in the ever-changing world of technology. This facility houses a staggering array of acoustically sensitive spaces where music and sound are equal partners with the visual medium. Over 90,000 sq. ft. of sound critical technical space is comprised of an array of sound stages, music scoring stages, audio control rooms, music writing rooms, recording studios, mixing theaters, video production control rooms, editing suites, and a screening theater. Every production control space in the building is designed to monitor and produce multi channel surround sound audio. An overview of the architectural and acoustical design challenges encountered for each sophisticated listening, recording, viewing, editing, and sound critical environment will be discussed.
NMR studies of non-Fermi-liquid behavior in disordered Kondo systems
NASA Astrophysics Data System (ADS)
Liu, Chia-Ying
A number of heavy-fermion alloys have been discovered to have non-Fermi-liquid (NFL) properties in contrast to the Fermi-liquid behavior expected for normal metals. Since nuclear magnetic resonance (NMR) studies in the heavy-fermion UCusb{5-x}Pdsb{x} by our group, the "Kondo disorder" model has been recognized as one of the possible origins of NFL behavior. This dissertation describes the use of NMR to study NFL behavior in the two heavy-fermion systems Ce(Rusb{1-x}Rhsb{x})sb2Sisb2 (x = 0.5) and Usb{1-x}Thsb{x}Pdsb2Alsb3\\ (x > 0.6). The cerium compound is disordered on non-f atoms (ligand disordered), whereas the uranium system is disordered on the f sublattice. Both exhibit complex phase diagrams and NFL behavior. sp{29}Si powder-pattern NMR spectra from a randomly-oriented powder sample of CeRhRuSisb2 show broad linewidths at low temperature, consistent with disorder-induced NFL behavior. The spectra from a field-aligned sample further confirm that these broad linewidths are due to distributions of local susceptibilities. The NMR widths are in good agreement with the distribution P(Tsb{K}) of Kondo temperatures Tsb{K} derived from the previous analysis of Graf et al., Phys. Rev. Lett. 78, 3769 (1997), including a "hole" in P(Tsb{K}) for small Tsb{K}\\ lbrack P(Tsb{K} = 0) = 0rbrack which describes the return to Fermi-liquid behavior below 1 K observed in the specific heat. The Kondo disorder model successfully explains the NMR linewidth and the NFL behavior in CeRhRuSisb2 either with or without consideration of RKKY interaction between Ce moments. In Usb{1-x}Thsb{x}Pdsb2Alsb3 (x = 0.7, 0.8, 0.9) the sp{27}Al NMR spectra in unaligned powders were initially thought to indicate a metallugical problem, namely, the existence of a second phase. After careful comparison of the behavior of Knight shifts in different concentrations, those extra lines were recognized as impurity satellites instead of coming from a second phase. These impurity satellites are due to specific U near-neighbor configurations to Al sites and appear clearly in the field-aligned spectra. The intensities of the impurity satellites are proportional to the probabilities of finding occupied U sites in specific near-neighbor shells around an Al site. Comparison of the calculated and observed satellite intensities allows us to reconstruct the spectra taken from field-aligned powders with the c axis both perpendicular and parallel to the external field. The narrow linewidths observed at low temperatures suggests that "Kondo disorder" is not the cause of NFL behavior in these alloys. Several theoretical models have been proposed to explain the source of the NFL behavior in Usb{1-x}Thsb{x}Pdsb2Alsb3.
Corman, Gregory Scot
2003-04-15
A coating is applied to reinforcing fibers arranged into a tow by coaxially aligning the tow with an adjacent separation layer and winding or wrapping the tow and separation layer onto a support structure in an interleaved manner so that the separation layer separates a wrap of the tow from an adjacent wrap of the tow. A coating can then be uniformly applied to the reinforcing fibers without defects caused by fiber tow to fiber tow contact. The separation layer can be a carbon fiber veil.
Lumbar Spine Injury/Pathology as a Predictor of Outcomes in National Football League Athletes
Lynch, Thomas Sean; Schroeder, Greg; Gibbs, Daniel; Chow, Ian; LaBelle, Mark; Savage, Jason W.; Patel, Alpesh; Hsu, Wellington; Nuber, Gordon W.
2014-01-01
Objectives: The purpose of this study is to determine if a pre-existing lumbar diagnosis such as spondylosis, a herniated lumbar disc, or spondylolysis affects a football player’s draft status or his performance and longevity in the NFL. Methods: The written medical evaluations and imaging reports of prospective professional American football athletes from 2003-2011 from one NFL franchise during the NFL combine (annual college football player evaluation prior to the NFL draft) were compiled and evaluated. All players were evaluated for a pre-existing lumbar diagnosis which were compiled from previous injury/medical records including radiographic imaging reports. Those players with a lumbar spine diagnosis and with appropriate radiograph, MRI and CT imaging were included in this study. These athletes were then matched by age, position, year, and round drafted to control draftees without a lumbar spine diagnosis. Career statistics were compiled including length of play and number of games started. Additionally, a previously established “Performance Score” was calculated for all players excluding offensive linemen. The continuous variables of each cohort were compared using a two-sided (tailed) Student’s t-test for normally distributed data. A chi-squared analysis was performed to analyze the categorical data. Statistical significance was accepted with a p < 0.05. Results: Out of a total of 2,965 athletes evaluated from the NFL combine, 414 players were identified with a pre-existing lumbar spine diagnosis. Athletes who attended the NFL combine without a lumbar spine diagnosis were significantly more likely to be drafted than those with one (74% vs. 61% respectively, p < 0.01). There was no difference between the investigational and control group with regard to round drafted, age, year drafted, or position. Overall, athletes with a lumbar spine injury compared to the control group had no difference in the number of years played (4.0 vs. 4.3 years, respectively, p = 0.13), games played (46.5 vs. 50.7, respectively, p = 0.15), games started (28.1 vs. 30.6, respectively, p = 0.39) or performance score (1.4 vs. 1.8, respectively, p = 0.3) (Figure 1). Conclusion: The data in this study suggests that a pre-existing lumbar spine diagnosis was associated with a significantly lower draft status for NFL athletes. However, the data in our study suggests that such a diagnosis did not affect a player’s career longevity or performance. Further study will be required to determine the individual effects of specific conditions on performance.
Outcomes of Lisfranc Injuries in the National Football League.
McHale, Kevin J; Rozell, Joshua C; Milby, Andrew H; Carey, James L; Sennett, Brian J
2016-07-01
Tarsometatarsal (Lisfranc) joint injuries commonly occur in National Football League (NFL) competition; however, the career effect of these injuries is unknown. To define the time to return to competition for NFL players who sustained Lisfranc injuries and to quantify the effect on athletic performance. Case-control study; Level of evidence, 3. Data on NFL players who sustained a Lisfranc injury between 2000 and 2010 were collected for analysis. Outcomes data included time to return to competition, total games played after season of injury, yearly total yards and touchdowns for offensive players, and yearly total tackles, sacks, and interceptions for defensive players. Offensive power ratings (OPR = [total yards/10] + [total touchdowns × 6]) and defensive power ratings (DPR = total tackles + [total sacks × 2] + [total interceptions × 2]) were calculated for the injury season and for 3 seasons before and after the injury season. Offensive and defensive control groups consisted of all players without an identified Lisfranc injury who competed in the 2005 season. The study group was composed of 28 NFL athletes who sustained Lisfranc injuries during the study period, including 11 offensive and 17 defensive players. While 2 of 28 (7.1%) players never returned to the NFL, 26 (92.9%) athletes returned to competition at a median of 11.1 (interquartile range [IQR], 10.3-12.5) months from time of injury and missed a median of 8.5 (IQR, 6.3-13.0) regular-season games. Analysis of pre- and postinjury athletic performance revealed no statistically significant changes after return to sport after Lisfranc injury. The magnitude of change in median OPR and DPR observed in offensive and defensive Lisfranc-injured study groups, -34.8 (IQR, -64.4 to 1.4) and -13.5 (-30.9 to 4.3), respectively, was greater than that observed in offensive and defensive control groups, -18.8 (-52.9 to 31.5) and -5.0 (-22.0 to 14.0), respectively; however, these differences did not reach statistical significance (P = .33 and .21, respectively). Evaluation of the durability of injured players after the season of injury revealed no statistically significant difference in career length compared with controls. More than 90% of NFL athletes who sustained Lisfranc injuries returned to play in the NFL at a median of 11.1 months from time of injury. Offensive and defensive players experienced a decrease in performance after return from injury that did not reach statistical significance compared with their respective control groups over a similar time period. © 2016 The Author(s).
Coughlin, Jennifer M; Wang, Yuchuan; Minn, Il; Bienko, Nicholas; Ambinder, Emily B; Xu, Xin; Peters, Matthew E; Dougherty, John W; Vranesic, Melin; Koo, Soo Min; Ahn, Hye-Hyun; Lee, Merton; Cottrell, Chris; Sair, Haris I; Sawa, Akira; Munro, Cynthia A; Nowinski, Christopher J; Dannals, Robert F; Lyketsos, Constantine G; Kassiou, Michael; Smith, Gwenn; Caffo, Brian; Mori, Susumu; Guilarte, Tomas R; Pomper, Martin G
2017-01-01
Microglia, the resident immune cells of the central nervous system, play an important role in the brain's response to injury and neurodegenerative processes. It has been proposed that prolonged microglial activation occurs after single and repeated traumatic brain injury, possibly through sports-related concussive and subconcussive injuries. Limited in vivo brain imaging studies months to years after individuals experience a single moderate to severe traumatic brain injury suggest widespread persistent microglial activation, but there has been little study of persistent glial cell activity in brains of athletes with sports-related traumatic brain injury. To measure translocator protein 18 kDa (TSPO), a marker of activated glial cell response, in a cohort of National Football League (NFL) players and control participants, and to report measures of white matter integrity. This cross-sectional, case-control study included young active (n = 4) or former (n = 10) NFL players recruited from across the United States, and 16 age-, sex-, highest educational level-, and body mass index-matched control participants. This study was conducted at an academic research institution in Baltimore, Maryland, from January 29, 2015, to February 18, 2016. Positron emission tomography-based regional measures of TSPO using [11C]DPA-713, diffusion tensor imaging measures of regional white matter integrity, regional volumes on structural magnetic resonance imaging, and neuropsychological performance. The mean (SD) ages of the 14 NFL participants and 16 control participants were 31.3 (6.1) years and 27.6 (4.9) years, respectively. Players reported a mean (SD) of 7.0 (6.4) years (range, 1-21 years) since the last self-reported concussion. Using [11C]DPA-713 positron emission tomographic data from 12 active or former NFL players and 11 matched control participants, the NFL players showed higher total distribution volume in 8 of the 12 brain regions examined (P < .004). We also observed limited change in white matter fractional anisotropy and mean diffusivity in 13 players compared with 15 control participants. In contrast, these young players did not differ from control participants in regional brain volumes or in neuropsychological performance. The results suggest that localized brain injury and repair, indicated by higher TSPO signal and white matter changes, may be associated with NFL play. Further study is needed to confirm these findings and to determine whether TSPO signal and white matter changes in young NFL athletes are related to later onset of neuropsychiatric symptoms.
The Overtime Rule in the National Football League: Fair or Unfair?
ERIC Educational Resources Information Center
Gorgievski, Nicholas; DeFranco, Thomas C.; Swaminatha, Hariharan; Sofronas, Kimberly S.
2010-01-01
In 1974, the National Football League (NFL) initiated a sudden death overtime rule for games ending in a tie score at the end of regulation time. The rule states that the sudden death system of determining the winner shall prevail when the score is tied at the end of the regulation playing time of all NFL games. The team scoring first during…
The Role of Drosophila Merlin in the Control of Mitosis Exit and Development
2005-07-01
Abstract presented to the 2005 CTF International Consortium for the Molecular Biology of NFl, NF2, and Schwannomatosis ). Experiments are in progress...Drosophila Spermatogenesis. Abstract presented to the 2005 CTF International Consortium for the Molecular Biology of NFl, NF2, and Schwannomatosis . We...and Schwannomatosis . By combining bioinformatics and phylogenetic approaches, we demonstrated a monophyletic origin of the merlin proteins with the
Mai, Harry T; Chun, Danielle S; Schneider, Andrew D; Erickson, Brandon J; Freshman, Ryan D; Kester, Benjamin; Verma, Nikhil N; Hsu, Wellington K
2017-08-01
Excellent outcomes have been reported for anterior cruciate ligament (ACL) reconstruction (ACLR) in professional athletes in a number of different sports. However, no study has directly compared these outcomes between sports. To determine if differences in performance-based outcomes exist after ACLR between professional athletes of each sport. Cohort study; Level of evidence, 3. National Football League (NFL), National Basketball Association (NBA), National Hockey League (NHL), and Major League Baseball (MLB) athletes undergoing primary ACLR for an acute rupture were identified through an established protocol of injury reports and public archives. Sport-specific performance statistics were collected before and after surgery for each athlete. Return to play (RTP) was defined as a successful return to the active roster for at least 1 regular-season game after ACLR. Of 344 professional athletes who met the inclusion criteria, a total of 298 (86.6%) returned to play. NHL players had a significantly higher rate of RTP (95.8% vs 83.4%, respectively; P = .04) and a shorter recovery time (258 ± 110 days vs 367 ± 268 days, respectively; P < .001) than athletes in all the other sports. NFL athletes experienced significantly shorter careers postoperatively than players in all the other sports (2.1 vs 3.2 years, respectively; P < .001). All athletes played fewer games ( P ≤ .02) 1 season postoperatively, while those in the NFL had the lowest rate of active players 2 and 3 seasons postoperatively (60%; P = .002). NBA and NFL players showed decreased performance at season 1 after ACLR ( P ≤ .001). NFL players continued to have lower performance at seasons 2 and 3 ( P = .002), while NBA players recovered to baseline performance. The data indicate that NFL athletes fare the worst after ACLR with the lowest survival rate, shortest postoperative career length, and sustained decreases in performance. NHL athletes fare the best with the highest rates of RTP, highest survival rates, longest postoperative career lengths, and no significant changes in performance. The unique physical demand that each sport requires is likely one of the explanations for these differences in outcomes.
Design and analysis of three-layer-core optical fiber
NASA Astrophysics Data System (ADS)
Zheng, Siwen; Liu, Yazhuo; Chang, Guangjian
2018-03-01
A three-layer-core single-mode large-mode-area fiber is investigated. The three-layer structure in the core, which is composed of a core-index layer, a cladding-index layer, and a depression-index layer, could achieve a large effective area Aeff while maintaining an ultralow bending loss without deteriorating cutoff behaviors. The single-mode large mode area of 100 to 330 μm2 could be achieved in the fiber. The effective area Aeff can be further enlarged by adjusting the layer parameters. Furthermore, the bending property could be improved in this three-layer-core structure. The bending loss could decrease by 2 to 4 orders of magnitude compared with the conventional step-index fiber with the same Aeff. These characteristics of three-layer-core fiber suggest that it can be used in large-mode-area wide-bandwidth high-capacity transmission or high-power optical fiber laser and amplifier in optical communications, which could be used for the basic physical layer structure of big data storage, reading, calculation, and transmission applications.
Investigations of the mechanical properties of bi-layer and trilayer fiber reinforced composites
NASA Astrophysics Data System (ADS)
Jayakrishna, K.; Balasubramani, K.; Sultan, M. T. H.; Karthikeyan, S.
2016-10-01
Natural fibers are renewable raw materials with an environmental-friendly properties and they are recyclable. The mechanical properties of bi-layer and tri-layer thermoset polymer composites have been analyzed. The bi-layer composite consists of basalt and jute mats, while the tri-layer composite consists of basalt fiber, jute fiber and glass fiber mats. In both cases, the epoxy resin was used as the matrix and PTFE as a filler in the composites. The developed trilayer natural fiber composite can be used in various industrial applications such as automobile parts, construction and manufacturing. Furthermore, it also can be adopted in aircraft interior decoration and designed body parts. Flexural, impact, tensile, compression, shear and hardness tests, together with density measurement, were conducted to study the mechanical properties of both bi-layer and tri-layer composites. From the comparison, the tri-layer composite was found to perform in a better way in all tests.
Abdellatif, Mona K; Fouad, Mohamed M
2018-03-01
To investigate the factors in migraine that have the highest significance on retinal and choroidal layers' thickness. Ninety patients with migraine and 40 age-matched healthy participants were enrolled in this observational, cross-sectional study. After full ophthalmological examination, spectral domain-optical coherence tomography was done for all patients measuring the thickness of ganglion cell layer and retinal nerve fiber layer. Enhanced depth imaging technique was used to measure the choroidal thickness. There was significant thinning in the superior and inferior ganglion cell layers, all retinal nerve fiber layer quadrants, and all choroidal quadrants (except for the central subfield) in migraineurs compared to controls. The duration of migraine was significantly correlated with ganglion cell layer, retinal nerve fiber layer, and all choroidal quadrants, while the severity of migraine was significantly correlated with ganglion cell layer and retinal nerve fiber layer only. Multiregression analysis showed that the duration of migraine is the most important determinant factor of the superior retinal nerve fiber layer quadrant (β = -0.375, p = 0.001) and in all the choroidal quadrants (β = -0.531, -0.692, -0.503, -0.461, -0.564, respectively, p < 0.001), while severity is the most important determinant factor of inferior, nasal, and temporal retinal nerve fiber layer quadrants (β = -0.256, -0.335, -0.308; p = 0.036, 0.005, 0.009, respectively) and the inferior ganglion cell layer hemisphere (β = -0.377 and p = 0.001). Ganglion cell layer, retinal nerve fiber layer, and choroidal thickness are significantly thinner in patients with migraine. The severity of migraine has more significant influence in the thinning of ganglion cell layer and retinal nerve fiber layer, while the duration of the disease affected the choroidal thickness more.
Being Right Isn't Always Enough: NFL Culture and Team Physicians' Conflict of Interest.
McKinney, Ross
2016-11-01
The job of being a sports team physician is difficult, regardless of the level, from high school to the National Football League. When a sports league receives the intensity of attention leveled at the NFL, though, a difficult occupation becomes even more challenging. Even for the NFL players themselves, players' best interests regarding health issues are often unclear. Football players are, as a lot, highly competitive individuals. They want to win, and they want to help the team win. It's a warrior culture, and respect is earned by playing hurt. Should the team physician respect a player's autonomy when this means allowing him to make choices that might lead to further personal harm, especially if the player's choices align with the preference of the coach and management? Or should the doctor set limits and balance the player's choices with a paternalistic set of constraints, perhaps in opposition to both the player's and the team's desires? Simplification of this web of conflicts of interest is the goal of the model proposed by Glenn Cohen, Holly Lynch, and Christopher Deubert. In my view, their proposal is very clever. As an idea, it meets the expectations its authors set, namely, to minimize the problem of conflict of interest in the delivery of health care services to NFL football players. The ethics of the proposal align well with certain moral goals, like treating the player's interests more fairly and treating the player's health as an end instead of as the means to an end. But will such a proposal ever make headway in the pressurized environment of the NFL? © 2016 The Hastings Center.
Khandpur, Neha; Graham, Dan J; Roberto, Christina A
2017-07-01
Proposed variations to Nutrition Facts Labels (NFL) have included the display of added sugars (AS) content, but its impact on consumer understanding is poorly understood. To examine the degree to which different formats for displaying AS influence consumer understanding, perceptions, and purchase intentions. Randomized-controlled online experiment. A sample of 2509 U.S adults. Participants were randomized to 1 of 8 conditions and viewed 10 food or beverage images with either: (1) no label (control); (2) the current NFL (without AS); (3) the proposed NFL without AS; or the proposed NFL with AS in (4) grams, (5) grams and teaspoons, (6) grams and percent Daily Value (%DV), (7) grams with high/medium/low text, or (8) grams with high/medium/low text and %DV. ANCOVAs compared scores on quizzes that assessed the accuracy of judgments about AS, overall nutrition understanding and purchase intentions. Presenting AS in grams plus high/medium/low text with and without %DV led to the highest AS understanding scores (85% and 83% correct, respectively) compared to 70% correct when AS was not on the label or was displayed in grams only (74% correct). Displaying AS in teaspoons did not significantly improve understanding beyond grams alone. Consumers were best able to determine which of two products was healthier when AS was presented as %DV (68% correct) versus displayed in grams alone (60% correct), but %DV did not differ from high/medium/low text or teaspoons. None of the labels influenced purchase intentions relative to no label. Displaying AS on the NFL in grams with high/medium/low text, %DV, or the combination of the two, improved consumer understanding more than presenting it in grams or teaspoons. Copyright © 2017 Elsevier Ltd. All rights reserved.
Exploration of US men's professional sport organization concussion policies.
Cochrane, Graham Dean; Owen, Matthew; Ackerson, Joseph D; Hale, Matthew H; Gould, Sara
2017-05-01
Concussion policies are increasingly being developed and adopted among professional sports organizations. We sought to compare the policies of the National Hockey League (NHL), the National Basketball Association (NBA), the National Football League (NFL), and Major League Baseball (MLB). Our objective was to summarize each policy and evaluate the extent to which each policy is organization-specific and/or consistent with medical guidelines. We visited websites for the NHL, NBA, NFL, and MLB. We searched media articles reporting concussion policy. We utilized only publically available data. We collected information on each league's approach to the definition of concussion, education provided about concussion, baseline testing requirements, minimum return to play time and return to play protocol. We found that concussion policies vary across these organizations. Most organizations utilize the Concussion in Sport Group (CISG) definition (2013) to define concussion. The NFL and NBA mandate preseason education. All organizations require some type of baseline testing. All organizations require sideline evaluation after suspected concussion. The NFL and MLB require Sport Concussion Assessment Tool (SCAT) testing for sideline evaluation of suspected concussion. MLB is the only organization to require minimum time before return to play. There is a return to play protocol in place for each organization. The NFL and MLB require independent neurologic consultation as part of their return to play protocol. There is variability in concussion policy among the professional sports organizations. The most pronounced variation from the CISG consensus statement is the variability in the minimum time to return to play. Further, the rules of the individual sports have a role in how concussion policy can be designed and implemented. Professional sports set an example for thousands of recreational sports enthusiasts so their publically available policies on concussion have a large impact.
Paxton, E Scott; Moorman, Claude T; Chehab, Eric L; Barnes, Ronnie P; Warren, Russell F; Brophy, Robert H
2010-11-01
Hyperconcavity of the lumbar spine has been found in a disproportionate percentage of college football lineman evaluated at the National Football League (NFL) Combine compared with age-matched controls. College football linemen with hyperconcavity of the lumbar spine are more likely to play in the NFL and to have a longer career in professional football. Cohort study; Level of evidence, 3. Ninety three linemen from the 1992 and 1993 NFL Combines with hyperconcavity of the lumbar spine were compared with 191 linemen from the same combines without these changes in the lumbar spine. The percentage of athletes who played at least 1 game for an NFL team and the average length of career was calculated for both groups. In addition, the length of career for players with these changes was compared with those of matched controls based on other injuries and surgeries, year drafted, and round drafted. There was no difference in the likelihood of playing professional football between linemen with lumbar spine changes (54 of 93 [58%]) and those without (101 of 191 [53%]) (P = .41). There was no significant difference between the 2 groups in length of career in terms of years played, games played, or games started. Hyperconcavity of the lumbar spine does not appear to have any effect on the potential professional American football careers of college football linemen entering the NFL. Endplate changes on radiographs are not a significant screening tool for elite American football linemen. Further study of larger populations is needed to definitively answer whether these adaptive changes in the lumbar spine have any clinical relevance to these athletes.
Pokharel, Yashashwi; Nambi, Vijay; Martin, Seth S; Hoogeveen, Ron C; Nasir, Khurram; Khera, Amit; Wong, Nathan D; Jones, Peter H; Boone, Jeffrey; Roberts, Arthur J; Ballantyne, Christie M; Virani, Salim S
2014-10-01
Retired National Football League (NFL) players were reported to have high prevalence of cardiovascular risk factors. Lipoprotein Associated Phospholipase A2 (LpPLA2) has shown to be associated with cardiovascular disease in the general population, but it is unknown whether such an association exists in retired NFL players. Our objective was to assess whether LpPLA2 mass was associated with coronary artery calcium (CAC) and carotid artery plaque (CAP) in retired NFL players. LpPLA2 mass was assessed using a dual monoclonal antibody immunoassay. CAC presence was defined as CAC score>0. CAP was defined as focal thickening ≥50% than that of the surrounding vessel wall with a minimal thickness of 1.2 mm on carotid ultrasound. In 832 NFL players, the median (IQR) age and LpPLA2 levels were 54 (45-63) years and 142 (109-181) ng/mL respectively. LpPLA2 mass was positively correlated with low-density lipoprotein (LDL) cholesterol and high-density lipoprotein cholesterol; negatively correlated with LDL particle concentration and body mass index; and not correlated with high-sensitivity C-reactive protein. CAC was present in 659 (79%) and CAP in 544 (65%) players. In a fully adjusted model, LpPLA2 was not associated with CAC (OR per 1-SD increase, 0.85; 95% CI 0.71-1.02) or CAP (0.90, 0.75-1.08). LpPLA2 was also not associated with CAC burden in those with CAC>0. Results were similar when highest and lowest LpPLA2 tertiles were compared, and also in various subgroups. LpPLA2 mass was not associated with coronary or carotid subclinical atherosclerosis in retired NFL players. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Mann, J Bryan; Ivey, Pat A; Stoner, Josh D; Mayhew, Jerry L; Brechue, William F
2015-11-01
Numerous investigations have attested to the efficacy of the National Football League (NFL)-225 test to estimate one repetition maximum (1RM) bench press. However, no studies have assessed the efficacy of the test to track changes in strength across a training program. The purpose of this study was to determine the accuracy of the NFL-225 test for determining the change in 1RM bench press in National Collegiate Athletic Association Division IA college football players after training. Over a 4-year period, players (n = 203) were assessed before and after a 6-week off-season resistance program for 1RM bench press and repetitions completed with 102.3 kg (225 lbs). Test sessions typically occurred within 1 week of each other. Players significantly increased 1RM by 4.2 ± 8.6 kg and NFL-225 repetitions by 0.9 ± 2.3, although the effect size (ES) for each was trivial (ES = 0.03 and 0.07, respectively). National Football League 225 prediction equations had higher correlations with 1RM before training (intraclass correlation coefficient [ICC] = 0.95) than after training (ICC = 0.75). The correlation between the change in NFL-225 repetitions and change in 1RM was low and negative (r = -0.22, p < 0.02). Short-term heavy resistance training may alter the association between muscular strength and muscular endurance in college football players and render the NFL-225 test less effective in predicting the change in 1RM bench press strength after short-term training.
Concussion in professional football: neuropsychological testing--part 6.
Pellman, Elliot J; Lovell, Mark R; Viano, David C; Casson, Ira R; Tucker, Andrew M
2004-12-01
The National Football League (NFL) neuropsychological testing program is reviewed, and neuropsychological test data are presented on various samples of NFL athletes who sustained concussion (mild traumatic brain injury, MTBI). This study evaluated post-MTBI neuropsychological testing of NFL players from 1996 to 2001. All athletes completed a standardized battery of neuropsychological tests and underwent postinjury neuropsychological testing within a few days after concussion. Test scores were compared with baselines using analysis of variance for athletes having on-field memory dysfunction, three or more concussions, or 7+ days out from practice and play. The MTBI group did not display significant neuropsychological dysfunction relative to baseline scores within a few days of injury. However, a subsample of the injured athletes who displayed on-field memory dysfunction performed significantly more poorly on two of the memory tests. The neuropsychological test results of a group of athletes with a history of three or more MTBIs did not differ significantly compared with a group who had fewer than three concussions or compared with league-wide normative data. The neuropsychological performance of athletes who were out from full participation 7+ days was not significantly different from the group who returned to play within 7 days or the norms. Neuropsychological testing is used within the overall medical evaluation and care of NFL athletes. Players who experience MTBI generally demonstrate rapid recovery of neuropsychological performance, although poorer neuropsychological test results were related to on-field memory dysfunction. NFL players did not demonstrate evidence of neurocognitive decline after multiple (three or more) MTBIs or in those players out 7+ days. The data show that MTBI in this population is characterized by a rapid return of neuropsychological function in the days after injury.
The use and role of sport chiropractors in the national football league: a short report.
Stump, John L; Redwood, Daniel
2002-01-01
To analyze chiropractic utilization on National Football League (NFL) medical teams and the role played by chiropractors. Postal survey of head athletic trainers of the 36 teams. Survey questions were developed from responses to a questionnaire submitted to a pilot group of 30 sport chiropractors and a panel of 20 postdoctoral faculty of the sport chiropractic program of the American Chiropractic Board of Sport Physicians, as well as a representative from the University of South Alabama. Twenty-two of 36 questionnaires were returned for a return rate of 66%. Of the trainers who did respond, 45% have personally been treated by a chiropractor, and 55% have not. Seventy-seven percent of the trainers have referred to a chiropractor for evaluation or treatment, and 23% have not. Thirty-one percent of NFL teams use a chiropractor in an official capacity on their staffs, and 69% do not. When asked to identify conditions appropriate for referral to a chiropractor, the respondents identified low back pain (61%), "stingers" and "burners" usually associated with neck injury (31%), headaches (8%), asthma or other visceral disorders (0%). All respondents (100%) agree that some players use chiropractic care without referral from team medical staff. There is significant chiropractic participation in US professional football. Certified athletic trainers see a role for the sport chiropractor in the NFL, primarily as a spinal specialist treating low back and other musculoskeletal injuries. A substantial majority of NFL trainers have developed cooperative relationships with chiropractors, with 77% having referred a player to a chiropractor. Thirty-one percent of NFL teams have a chiropractor officially on staff, and an additional 12% of teams refer players to chiropractors but do not directly retain these chiropractors.
Depressive symptoms and concussions in aging retired NFL players.
Didehbani, Nyaz; Munro Cullum, C; Mansinghani, Sethesh; Conover, Heather; Hart, John
2013-08-01
We examined the relationship between a remote history of concussions with current symptoms of depression in retired professional athletes. Thirty retired National Football League (NFL) athletes with a history of concussion and 29 age- and IQ-matched controls without a history of concussion were recruited. We found a significant correlation between the number of lifetime concussions and depressive symptom severity using the Beck Depression Inventory II. Upon investigating a three-factor model of depressive symptoms (affective, cognitive, and somatic; Buckley et al., 2001) from the BDI-II, the cognitive factor was the only factor that was significantly related to concussions. In general, NFL players endorsed more symptoms of depression on all three Buckley factors compared with matched controls. Findings suggest that the number of self-reported concussions may be related to later depressive symptomology (particularly cognitive symptoms of depression).
NASA Technical Reports Server (NTRS)
Hyer, M. W.; Charette, R. F.
1987-01-01
To increase the effectiveness and efficiency of fiber-reinforced materials, the use of fibers in a curvilinear rather than the traditional straightline format is explored. The capacity of a laminated square plate with a central circular hole loaded in tension is investigated. The orientation of the fibers is chosen so that the fibers in a particular layer are aligned with the principle stress directions in that layer. Finite elements and an iteration scheme are used to find the fiber orientation. A noninteracting maximum strain criterion is used to predict load capacity. The load capacities of several plates with different curvilinear fibers format are compared with the capacities of more conventional straightline format designs. It is found that the most practical curvilinear design sandwiches a group of fibers in a curvilinear format between a pair of +/-45 degree layers. This design has a 60% greater load capacity than a conventional quasi-isotropic design with the same number of layers. The +/-45 degree layers are necessary to prevent matrix cracking in the curvilinear layers due to stresses perpendicular to the fibers in those layers. Greater efficiencies are achievable with composite structures than now realized.
Cense, B; Chen, T C; de Boer, J F
2006-01-01
Thinning of the retinal nerve fiber layer and changes in retinal nerve fiber layer birefringence may both precede clinically detectable glaucomatous vision loss. We present in vivo thickness and depth-resolved birefringence measurements of the human retinal nerve fiber layer (RNFL) by use of polarization-sensitive optical coherence tomography (PS-OCT). Using a fiber-based PS-OCT setup real-time images of the human retina in vivo were recorded, co-registered with retinal video images of the location of PS-OCT scans. PS-OCT scans around the optic nerve head (ONH) of two healthy young volunteers were made using 10 concentric circles of increasing radius. Both the mean retinal nerve fiber layer thickness and mean retinal nerve fiber birefringence for each of 48 sectors on a circle were determined. The retinal nerve fiber layer thickness and birefringence varied as a function of sector around the ONH. Measured double pass phase retardation per unit depth values around the ONH range between 0.10 and 0.35 degrees/microm. The retinal nerve fiber layer becomes thinner with increasing distance from the ONH. In contrast, the birefringence does not vary significantly with increasing distance from the ONH.
Gamradt, Seth C; Brophy, Robert H; Barnes, Ronnie; Warren, Russell F; Thomas Byrd, J W; Kelly, Bryan T
2009-07-01
Avulsion of the rectus femoris origin is a rare injury. The only previous report of this injury in professional American football has been limited to the kicking athlete. To describe the incidence and treatment of proximal rectus femoris avulsion in the National Football League (NFL). Case series; Level of evidence, 4. The NFL Injury Surveillance System (NFLISS) was reviewed for any proximal rectus femoris avulsion injuries from 1986 to 2006, including the type and mechanism of injury, player demographics, method of treatment, and time to return to play. The NFL team physicians and trainers were surveyed as to their experience with these injuries as well. A total of 11 cases of proximal rectus femoris avulsion were identified starting in 1997. These injuries occurred in athletes in a variety of positions. All of these were treated nonoperatively, and the mean return to play was 69.2 days. Rectus femoris avulsions are uncommon injuries in the NFL, occurring about once a year in the entire league (once magnetic resonance imaging facilitated correct diagnosis of these injuries). Conservative treatment of these injuries usually results in return to play after 6 to 12 weeks. Proximal avulsions of the rectus femoris can be treated nonoperatively with a high degree of predictability for return to full, unrestricted participation in professional American football.
Romme Christensen, Jeppe; Komori, Mika; von Essen, Marina Rode; Ratzer, Rikke; Börnsen, Lars; Bielekova, Bibi; Sellebjerg, Finn
2018-05-01
Development of treatments for progressive multiple sclerosis (MS) is challenged by the lack of sensitive and treatment-responsive biomarkers of intrathecal inflammation. To validate the responsiveness of cerebrospinal fluid (CSF) inflammatory biomarkers to treatment with natalizumab and methylprednisolone in progressive MS and to examine the relationship between CSF inflammatory and tissue damage biomarkers. CSF samples from two open-label phase II trials of natalizumab and methylprednisolone in primary and secondary progressive MS. CSF concentrations of 20 inflammatory biomarkers and CSF biomarkers of axonal damage (neurofilament light chain (NFL)) and demyelination were analysed using electrochemiluminescent assay and enzyme-linked immunosorbent assay (ELISA). In all, 17 natalizumab- and 23 methylprednisolone-treated patients had paired CSF samples. CSF sCD27 displayed superior standardised response means and highly significant decreases during both natalizumab and methylprednisolone treatment; however, post-treatment levels remained above healthy donor reference levels. Correlation analyses of CSF inflammatory biomarkers and NFL before, during and after treatment demonstrated that CSF sCD27 consistently correlates with NFL. These findings validate CSF sCD27 as a responsive and sensitive biomarker of intrathecal inflammation in progressive MS, capturing residual inflammation after treatment. Importantly, CSF sCD27 correlates with NFL, consistent with residual inflammation after anti-inflammatory treatment being associated with axonal damage.
Application of diffusion barriers to high modulus fibers
NASA Technical Reports Server (NTRS)
Veltri, R. D.; Douglas, F. C.; Paradis, E. L.; Galasso, F. S.
1977-01-01
Barrier layers were coated onto high-modulus fibers, and nickel and titanium layers were overcoated as simulated matrix materials. The objective was to coat the high-strength fibers with unreactive selected materials without degrading the fibers. The fibers were tungsten, niobium, and single-crystal sapphire, while the materials used as barrier coating layers were Al2O3, Y2O3, TiC, ZrC, WC with 14% Co, and HfO2. An ion-plating technique was used to coat the fibers. The fibers were subjected to high-temperature heat treatments to evaluate the effectiveness of the barrier layer in preventing fiber-metal interactions. Results indicate that Al2O3, Y2O3, and HfO2 can be used as barrier layers to minimize the nickel-tungsten interaction. Further investigation, including thermal cycling tests at 1090 C, revealed that HfO2 is probably the best of the three.
Hollow fiber membranes and methods for forming same
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhandari, Dhaval Ajit; McCloskey, Patrick Joseph; Howson, Paul Edward
2016-03-22
The invention provides improved hollow fiber membranes having at least two layers, and methods for forming the same. The methods include co-extruding a first composition, a second composition, and a third composition to form a dual layer hollow fiber membrane. The first composition includes a glassy polymer; the second composition includes a polysiloxane; and the third composition includes a bore fluid. The dual layer hollow fiber membranes include a first layer and a second layer, the first layer being a porous layer which includes the glassy polymer of the first composition, and the second layer being a polysiloxane layer whichmore » includes the polysiloxane of the second composition.« less
Bright Retinal Lesions Detection using Colour Fundus Images Containing Reflective Features
DOE Office of Scientific and Technical Information (OSTI.GOV)
Giancardo, Luca; Karnowski, Thomas Paul; Chaum, Edward
2009-01-01
In the last years the research community has developed many techniques to detect and diagnose diabetic retinopathy with retinal fundus images. This is a necessary step for the implementation of a large scale screening effort in rural areas where ophthalmologists are not available. In the United States of America, the incidence of diabetes is worryingly increasing among the young population. Retina fundus images of patients younger than 20 years old present a high amount of reflection due to the Nerve Fibre Layer (NFL), the younger the patient the more these reflections are visible. To our knowledge we are not awaremore » of algorithms able to explicitly deal with this type of reflection artefact. This paper presents a technique to detect bright lesions also in patients with a high degree of reflective NFL. First, the candidate bright lesions are detected using image equalization and relatively simple histogram analysis. Then, a classifier is trained using texture descriptor (Multi-scale Local Binary Patterns) and other features in order to remove the false positives in the lesion detection. Finally, the area of the lesions is used to diagnose diabetic retinopathy. Our database consists of 33 images from a telemedicine network currently developed. When determining moderate to high diabetic retinopathy using the bright lesions detected the algorithm achieves a sensitivity of 100% at a specificity of 100% using hold-one-out testing.« less
Lamina propria of the human vocal fold: histomorphometric study of collagen fibers.
Prades, Jean-Michel; Dumollard, Jean Marc; Duband, Sébastien; Timoshenko, Andrei; Richard, Céline; Dubois, Marie Dominique; Martin, Christian; Peoc'h, Michel
2010-04-01
Since the seminal work of M. Hirano, which defined the three-layered lamina propria of the human vocal fold, there has been confusion in the labeling of each layer. Recent studies described the composition of fibers and interstitial molecules within the lamina propria leading to various biomechanical properties. However, collagen fibers appear as the most important structure component. We used an optical analysis and the picrosirius-polarization method to describe collagen fibers from six adult and two fetal human larynges fixed in formalin and frontally sectioned in the middle part of the vocal fold. The deep layer of the lamina propria is the most densely organized band of collagen fibers penetrating the superficial muscle bundles of the vocal muscle. The mean thickness of this layer is about 36% of the lamina propria and shows a network of strongly birefringent fibers (collagen type I and III). The superficial layer of the lamina propria is a narrow band of collagen fibers immediately below the basement membrane of the epithelium. The mean thickness of this layer is about 13% of the lamina propria and shows strong birefringent fibers. The intermediate layer is the less densely organized band between the deep and superficial layers. The mean thickness of this layer is about 51% of the lamina propria and shows clear, green weakly birefringent fibers characterized as collagen type III. The fetal lamina propria contains only a monolayer distribution of loose collagen fibers between the epithelium and the vocal muscle. These results help describe the distribution of collagen fibers within the lamina propria of the human vocal fold and have implications to understand the cover-body theory of voice production both in the adult and newborn.
Pu, Juan; Komvopoulos, Kyriakos
2014-06-01
Bilayer fibrous membranes of poly(l-lactic acid) (PLLA) were fabricated by electrospinning, using a parallel-disk mandrel configuration that resulted in the sequential deposition of a layer with fibers aligned across the two parallel disks and a layer with randomly oriented fibers, both layers deposited in a single process step. Membrane structure and fiber alignment were characterized by scanning electron microscopy and two-dimensional fast Fourier transform. Because of the intricacies of the generated electric field, bilayer membranes exhibited higher porosity than single-layer membranes consisting of randomly oriented fibers fabricated with a solid-drum collector. However, despite their higher porosity, bilayer membranes demonstrated generally higher elastic modulus, yield strength and toughness than single-layer membranes with random fibers. Bilayer membrane deformation at relatively high strain rates comprised multiple abrupt microfracture events characterized by discontinuous fiber breakage. Bilayer membrane elongation yielded excessive necking of the layer with random fibers and remarkable fiber stretching (on the order of 400%) in the layer with fibers aligned in the stress direction. In addition, fibers in both layers exhibited multiple localized necking, attributed to the nonuniform distribution of crystalline phases in the fibrillar structure. The high membrane porosity, good mechanical properties, and good biocompatibility and biodegradability of PLLA (demonstrated in previous studies) make the present bilayer membranes good scaffold candidates for a wide range of tissue engineering applications. Copyright © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Kee, Changwon; Cho, Changhwan
2003-06-01
The authors investigated the correlation between visual field defects detected by automated perimetry and the thickness of the retinal nerve fiber layer measured with optical coherence tomography, and examined whether there is a decrease in retinal nerve fiber layer thickness in the apparently normal hemifield of glaucomatous eyes. Forty-one patients with glaucoma and 41 normal control subjects were included in this study. Statistical correlations between the sum of the total deviation of 37 stimuli of each hemifield and the ratio of decrease in retinal nerve fiber layer thickness were evaluated. The statistical difference between the retinal nerve fiber layer thickness of the apparently normal hemifield in glaucomatous eyes and that of the corresponding hemifield in normal subjects was also evaluated. There was a statistically significant correlation in the sum of the total deviation and retinal nerve fiber layer thickness decrease ratio (superior hemifield, P = 0.001; inferior hemifield, P = 0.003). There was no significant decrease in retinal nerve fiber layer thickness in the area that corresponded to the normal visual field in the hemifield defect with respect to the horizontal meridian in glaucomatous eyes (superior side, P = 0.148; inferior side, P = 0.341). Optical coherence tomography was capable of demonstrating and measuring retinal nerve fiber layer abnormalities. No changes in the retinal nerve fiber layer thickness of the apparently normal hemifield were observed in glaucomatous eyes.
Wounding-Induced Manifestations of Type 1 Neurofibromatosis
1999-10-01
No. 86-23, Revised 1985). X For the protection of human subjects, the investigator(s) adhered to policies of applicable Federal Law 45 CFR 46. SX_ In...understood how mutations at the NFl locus in specific skin cell type(s) cause these NFl skin manifestations, a role for the NF1 gene product...injures the skin and induces a wound-healing response (Scribner, 1978). Riccardi hypothesized a role for injury in pigmentation defects and tumor
Vibration control of multiferroic fibrous composite plates using active constrained layer damping
NASA Astrophysics Data System (ADS)
Kattimani, S. C.; Ray, M. C.
2018-06-01
Geometrically nonlinear vibration control of fiber reinforced magneto-electro-elastic or multiferroic fibrous composite plates using active constrained layer damping treatment has been investigated. The piezoelectric (BaTiO3) fibers are embedded in the magnetostrictive (CoFe2O4) matrix forming magneto-electro-elastic or multiferroic smart composite. A three-dimensional finite element model of such fiber reinforced magneto-electro-elastic plates integrated with the active constrained layer damping patches is developed. Influence of electro-elastic, magneto-elastic and electromagnetic coupled fields on the vibration has been studied. The Golla-Hughes-McTavish method in time domain is employed for modeling a constrained viscoelastic layer of the active constrained layer damping treatment. The von Kármán type nonlinear strain-displacement relations are incorporated for developing a three-dimensional finite element model. Effect of fiber volume fraction, fiber orientation and boundary conditions on the control of geometrically nonlinear vibration of the fiber reinforced magneto-electro-elastic plates is investigated. The performance of the active constrained layer damping treatment due to the variation of piezoelectric fiber orientation angle in the 1-3 Piezoelectric constraining layer of the active constrained layer damping treatment has also been emphasized.
NASA Astrophysics Data System (ADS)
Liu, Shichen; Lang, Lihui; Sherkatghanad, Ehsan; Wang, Yao; Xu, Wencai
2018-04-01
Glass-reinforced aluminum laminate (GLARE) is a new class of fiber metal laminates (FMLs) which has the advantages such as high tensile strength, outstanding fatigue, impact resistance, and excellent corrosion properties. GLARE has been extensively applied in advanced aerospace and automobile industries. However, the deformation behavior of the glass fiber during forming must be studied to the benefits of the good-quality part we form. In this research, we focus on the effect of fiber layer orientation on the GLARE laminate formability in stamp forming process. Experimental and numerical analysis of stamping a hemisphere part in different fiber orientation is investigated. The results indicate that unidirectional and multi-directional fiber in the middle layer make a significant effect on the thinning and also surface forming quality of the three layer sheet. Furthermore, the stress-strain distribution of the aluminum alloy and the unique anisotropic property of the fiber layer exhibit that fiber layer orientation can also affect the forming depths as well as the fracture modes of the laminate. According to the obtained results, it is revealed that multi-directional fiber layers are a good alternative compared to the unidirectional fibers especially when a better formability is the purpose.
Provencher, Matthew T; Bradley, James P; Chahla, Jorge; Sanchez, Anthony; Beaulieu-Jones, Brendin R; Arner, Justin W; Kennedy, Nicholas I; Sanchez, George; Kennedy, Mitchell I; Moatshe, Gilbert; Cinque, Mark E; LaPrade, Robert F
2018-05-19
To evaluate whether players with a history of an anterior cruciate ligament reconstruction (ACLR) before the National Football League (NFL) Combine played or started fewer games and/or participated in fewer eligible snaps compared with NFL Combine participants without a history of knee injury or surgery. We performed a retrospective review of all players who participated in the NFL Combine between 2009 and 2015 and who had a history of an ACLR. NFL Combine participants were included if they had a previous ACLR or combined anterior cruciate ligament (ACL) injury and nonoperatively managed medial collateral ligament injury. The number of games started, number of games played, draft number, overall draft pick, and snap percentage for each position were determined. The mean value of each outcome metric was compared between case and control players. We identified 110 players who had an ACL injury (n = 76) or a combined ACL and medial collateral ligament injury (n = 34). Players in the ACLR group had a significantly worse mean draft pick number (difference of 30.2, P = .002) and mean draft round (difference of 0.8, P = .019) versus controls. Compared with control players, players in the ACLR group started and played significantly fewer games in both season 1 (difference of 2.7 games started, P < .001; difference of 2.7 games played, P < .001) and season 2 (difference of 7.4 games started, P < .001; difference of 3.0 games played, P = .003) and had a significantly lower snap percentage in both season 1 (difference of 23.1%, P < .001) and season 2 (difference of 24.0%, P < .001). Athletes at the NFL Combine who previously underwent an ACLR had significantly lower early-career NFL player metrics, including fewer games started, fewer games played, and a lower snap percentage, than uninjured controls. Defensive linemen, defensive backs, and linebackers were the 3 most affected positions. Players with a prior ACLR and combined meniscal-chondral pathology had significantly lower numbers of games started and games played in seasons 1 and 2 and a significantly lower season 2 snap percentage. Level III, case-control study. Copyright © 2018 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.
Domb, Benjamin G; Carter, Chris; Finch, Nathan A; Hammarstedt, Jon E; Dunne, Kevin F; Stake, Christine E
2014-05-01
Professional American football is a physically demanding, high-impact sport with an elevated risk of injury. Orthopaedic injuries may impose acute, short-term or cumulative consequences throughout a player's lifetime. Several studies have addressed health and psychosocial concerns of an older, retired population of players in the National Football League (NFL); however, minimal research has examined the orthopaedic toll on younger, retired players. This study reports total whole-person impairment (WPI) percentages in a cohort of younger, retired NFL players who presented for disability evaluations based on the use of standardized American Medical Association (AMA) impairment guidelines. Case series; Level of evidence, 4. During the study period of February 2011 to August 2013, 65 younger retired NFL players presented for impairment evaluations. The mean time between retirement and impairment evaluation was 3.1 years (range, 0.3-16.4 years). A complete history and physical examination was performed on all symptomatic joints. A retrospective chart review was conducted on 100% of presenting players to assess orthopaedic burden. Body-part impairment (BPI) percentage for each affected joint was generated. The impairment data for each extremity were then combined with spine impairment data to create WPI percentage. Player demographics, including age, position, and playing time, were also recorded. The average WPI percentage was 37% (range, 19%-53%). Players participating in >30 games (n = 54) had a higher mean WPI percentage (38%) than those playing in <30 games (31%; n = 11) (P = .004). Players competing in >5 seasons (n = 46) were 2.4 times more likely to have a WPI of at least 37% (P = .007). The most common joints players reported as symptomatic were lumbar (n = 63; 97%) and cervical spine (n = 58; 89%). The mean age at evaluation was 33.5 years (range, 27-42 years), and the mean number of seasons played was 7.5 (range, 3-14 seasons). The mean number of games played was 98.4 (range, 2-236 games). This study demonstrated high WPI percentages related to symptomatic joints in a cohort of younger, retired NFL players. Further research is warranted to study potential cumulative physical and quality of life factors related to high impairment percentages in younger, retired NFL players.
Whole-Person Impairment in Younger Retired NFL Players
Domb, Benjamin G.; Carter, Chris; Finch, Nathan A.; Hammarstedt, Jon E.; Dunne, Kevin F.; Stake, Christine E.
2014-01-01
Background: Professional American football is a physically demanding, high-impact sport with an elevated risk of injury. Orthopaedic injuries may impose acute, short-term or cumulative consequences throughout a player’s lifetime. Several studies have addressed health and psychosocial concerns of an older, retired population of players in the National Football League (NFL); however, minimal research has examined the orthopaedic toll on younger, retired players. Purpose: This study reports total whole-person impairment (WPI) percentages in a cohort of younger, retired NFL players who presented for disability evaluations based on the use of standardized American Medical Association (AMA) impairment guidelines. Study Design: Case series; Level of evidence, 4. Methods: During the study period of February 2011 to August 2013, 65 younger retired NFL players presented for impairment evaluations. The mean time between retirement and impairment evaluation was 3.1 years (range, 0.3-16.4 years). A complete history and physical examination was performed on all symptomatic joints. A retrospective chart review was conducted on 100% of presenting players to assess orthopaedic burden. Body-part impairment (BPI) percentage for each affected joint was generated. The impairment data for each extremity were then combined with spine impairment data to create WPI percentage. Player demographics, including age, position, and playing time, were also recorded. Results: The average WPI percentage was 37% (range, 19%-53%). Players participating in >30 games (n = 54) had a higher mean WPI percentage (38%) than those playing in <30 games (31%; n = 11) (P = .004). Players competing in >5 seasons (n = 46) were 2.4 times more likely to have a WPI of at least 37% (P = .007). The most common joints players reported as symptomatic were lumbar (n = 63; 97%) and cervical spine (n = 58; 89%). The mean age at evaluation was 33.5 years (range, 27-42 years), and the mean number of seasons played was 7.5 (range, 3-14 seasons). The mean number of games played was 98.4 (range, 2-236 games). Conclusion: This study demonstrated high WPI percentages related to symptomatic joints in a cohort of younger, retired NFL players. Further research is warranted to study potential cumulative physical and quality of life factors related to high impairment percentages in younger, retired NFL players. PMID:26535333
Villain, Max A; Greenfield, David S
2003-01-01
To assess reproducibility of quadrantic and clock hour sectors of retinal nerve fiber layer thickness in normal eyes using optical coherence tomography. Normal eyes of healthy volunteers meeting eligibility criteria were imaged by two inexperienced operators. Six 360 degrees circular scans with a diameter of 3.4 mm centered on the optic disc were obtained during each scanning session, and a baseline image was formed using 3 high-quality images defined by the software. Images were obtained on three different days within a 4-week period. Variance and coefficient of variation (CV) were calculated for quadrantic and retinal nerve fiber layer clock hour sectors obtained from the baseline image. Five normal eyes were scanned. Intraoperator reproducibility was high. The mean (+/- SD) CV for total retinal nerve fiber layer thickness was 5.3 +/- 3.82% and 4.33 +/- 3.7% for operators 1 and 2, respectively. Interoperator reproducibility was good with statistically similar variance for all quadrantic and clock hour retinal nerve fiber layer parameters (P = .42 to .99). The nasal retinal nerve fiber layer was the most variable sector for both operators (mean CV: 10.42% and 7.83% for operators 1 and 2, respectively). Differences in mean total, nasal, temporal, and superior retinal nerve fiber layer thickness were not statistically significant between operators for all eyes; however, for inferior retinal nerve fiber layer thickness, there was a significant (P = .0007) difference between operators in one eye. Peripapillary retinal nerve fiber layer thickness assessments using optical coherence tomography have good intraoperator and interoperator reproducibility. Inexperienced operators can generate useful measurement data with acceptable levels of variance.
Zou, Jingyun; Liu, Dandan; Zhao, Jingna; Hou, Ligan; Liu, Tong; Zhang, Xiaohua; Zhao, Yonghao; Zhu, Yuntian T; Li, Qingwen
2018-03-07
Carbon nanotube (CNT) fiber has not shown its advantage as next-generation light-weight conductor due to the large contact resistance between CNTs, as reflected by its low conductivity and ampacity. Coating CNT fiber with a metal layer like Cu has become an effective solution to this problem. However, the weak CNT-Cu interfacial bonding significantly limits the mechanical and electrical performances. Here, we report that a strong CNT-Cu interface can be formed by introducing a Ni nanobuffer layer before depositing the Cu layer. The Ni nanobuffer layer remarkably promotes the load and heat transfer efficiencies between the CNT fiber and Cu layer and improves the quality of the deposited Cu layer. As a result, the new composite fiber with a 2 μm thick Cu layer can exhibit a superhigh effective strength >800 MPa, electrical conductivity >2 × 10 7 S/m, and ampacity >1 × 10 5 A/cm 2 . The composite fiber can also sustain 10 000 times of bending and continuously work for 100 h at 90% ampacity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jones, J.B.; Safinya, C.R.
Neurofilaments (NFs) are a major constituent of nerve cell axons that assemble from three subunit proteins of low (NF-L), medium (NF-M), and high (NF-H) molecular weight into a 10nm diameter rod with radiating sidearms to form a bottle-brush-like structure. Here, we reassemble NFs in vitro from varying weight ratios of the subunit proteins, purified from bovine spinal cord, to form homopolymers of NF-L or filaments composed of NF-L and NF-M (NF-LM), NF-L and NF-H (NF-LH), or all three subunits (NF-LMH). At high protein concentrations, NFs align to form a nematic liquid crystalline gel with a well-defined spacing determined with synchrotronmore » small angle x-ray scattering. Near physiological conditions (86mM monovalent salt and pH 6.8), NF-LM networks with a high NF-M grafting density favor nematic ordering whereas filaments composed of NF-LH transition to an isotropic gel at low protein concentrations as a function of increasing mole fraction of NF-H subunits. The interfilament distance decreases with NF-M grafting density, opposite the trend seen with NF-LH networks. This suggests a competition between the more attractive NF-M sidearms, forming a compact aligned nematic gel, and the repulsive NF-H sidearms, favoring a more expansive isotropic gel, at 86mM monovalent salt. These interactions are highly salt dependent and the nematic gel phase is stabilized with increasing monovalent salt.« less
Defining active progressive multiple sclerosis.
Sellebjerg, Finn; Börnsen, Lars; Ammitzbøll, Cecilie; Nielsen, Jørgen Erik; Vinther-Jensen, Tua; Hjermind, Lena Elisabeth; von Essen, Marina; Ratzer, Rikke Lenhard; Soelberg Sørensen, Per; Romme Christensen, Jeppe
2017-11-01
It is unknown whether disease activity according to consensus criteria (magnetic resonance imaging activity or clinical relapses) associate with cerebrospinal fluid (CSF) changes in progressive multiple sclerosis (MS). To compare CSF biomarkers in active and inactive progressive MS according to consensus criteria. Neurofilament light chain (NFL), myelin basic protein (MBP), IgG-index, chitinase-3-like-1 (CHI3L1), matrix metalloproteinase-9 (MMP-9), chemokine CXCL13, terminal complement complex, leukocyte counts and nitric oxide metabolites were measured in primary ( n = 26) and secondary progressive MS ( n = 26) and healthy controls ( n = 24). Progressive MS patients had higher CSF cell counts, IgG-index, CHI3L1, MMP-9, CXCL13, NFL and MBP concentrations. Active patients were younger and had higher NFL, CXCL13 and MMP-9 concentrations than inactive patients. Patients with active disease according to consensus criteria or detectable CXCL13 or MMP-9 in CSF were defined as having combined active progressive MS. These patients had increased CSF cell counts, IgG-index and MBP, NFL and CHI3L1 concentrations. Combined inactive patients only had increased IgG-index and MBP concentrations. Patients with combined active progressive MS show evidence of inflammation, demyelination and neuronal/axonal damage, whereas the remaining patients mainly show evidence of active demyelination. This challenges the idea that neurodegeneration independent of inflammation is crucial in disease progression.
Preexisting Rotator Cuff Tears as a Predictor of Outcomes in National Football League Athletes.
Gibbs, Daniel B; Lynch, T Sean; Gombera, M Mustafa; Saltzman, Matthew D; Nuber, Gordon W; Schroeder, Gregory D; Labelle, Mark; Hollett, Brian P
A preexisting rotator cuff tear may affect the draft status and career performance of National Football League (NFL) players. Preexisting rotator cuff tears decrease a player's draft status, performance, and longevity in the NFL. Retrospective cohort study. Level 3. Medical reports of prospective NFL players during the NFL Scouting Combine from 2003 to 2011 were evaluated to identify players with a previous rotator cuff tear. Athletes were matched to control draftees without documented shoulder pathology by age, position, year drafted, and round drafted. Career statistics and performance scores were calculated. Between 2003 and 2011, 2965 consecutive athletes were evaluated. Forty-nine athletes had preexisting rotator cuff tears: 22 athletes underwent surgical intervention for their tear and 27 were treated nonoperatively. Those with a rotator cuff tear were significantly less likely to be drafted than those without a previous injury (55.1% vs 77.5%, P = 0.002). The 27 drafted athletes with preexisting rotator cuff tears started significantly fewer games (23.7 vs 43.0, P = 0.02) and played significantly fewer years (4.3 vs 5.7, P = 0.04) and significantly fewer games (47.1 vs 68.4, P = 0.04) than matched control athletes without rotator cuff tears. Athletes with a preexisting rotator cuff tear were less likely to be drafted and had decreased career longevity.
Wu, Tong; Zhang, Jialing; Wang, Yuanfei; Li, Dandan; Sun, Binbin; El-Hamshary, Hany; Yin, Meng; Mo, Xiumei
2018-01-01
Designing a biomimetic and functional tissue-engineered vascular graft has been urgently needed for repairing and regenerating defected vascular tissues. Utilizing a multi-layered vascular scaffold is commonly considered an effective way, because multi-layered scaffolds can easily simulate the structure and function of natural blood vessels. Herein, we developed a novel tri-layer tubular graft consisted of Poly(L-lactide-co-caprolactone)/collagen (PLCL/COL) fibers and Poly(lactide-co-glycolide)/silk fibroin (PLGA/SF) yarns via a three-step electrospinning method. The tri-layer vascular graft consisted of PLCL/COL aligned fibers in inner layer, PLGA/SF yarns in middle layer, and PLCL/COL random fibers in outer layer. Each layer possessed tensile mechanical strength and elongation, and the entire tubular structure provided tensile and compressive supports. Furthermore, the human umbilical vein endothelial cells (HUVECs) and smooth muscle cells (SMCs) proliferated well on the materials. Fluorescence staining images demonstrated that the axially aligned PLCL/COL fibers prearranged endothelium morphology in lumen and the circumferential oriented PLGA/SF yarns regulated SMCs organization along the single yarns. The outside PLCL/COL random fibers performed as the fixed layer to hold the entire tubular structure. The in vivo results showed that the tri-layer vascular graft supported cell infiltration, scaffold biodegradation and abundant collagen production after subcutaneous implantation for 10weeks, revealing the optimal biocompatibility and tissue regenerative capability of the tri-layer graft. Therefore, the specially designed tri-layer vascular graft will be beneficial to vascular reconstruction. Copyright © 2017. Published by Elsevier B.V.
Shulman, S; Shorer, R; Wollman, J; Dotan, G; Paran, D
2017-11-01
Background Cognitive impairment is frequent in systemic lupus erythematosus. Atrophy of the corpus callosum and hippocampus have been reported in patients with systemic lupus erythematosus, and diffusion tensor imaging studies have shown impaired white matter integrity, suggesting that white matter damage in systemic lupus erythematosus may underlie the cognitive impairment as well as other neuropsychiatric systemic lupus erythematosus manifestations. Retinal nerve fiber layer thickness, as assessed by optical coherence tomography, has been suggested as a biomarker for white matter damage in neurologic disorders such as multiple sclerosis, Alzheimer's disease and Parkinson's disease. Retinal nerve fiber layer thinning may occur early, even in patients with mild clinical symptoms. Aim The objective of this study was to assess the association of retinal nerve fiber layer thickness, as a biomarker of white matter damage in systemic lupus erythematosus patients, with neuropsychiatric systemic lupus erythematosus manifestations, including cognitive impairment. Methods Twenty-one consecutive patients with systemic lupus erythematosus underwent neuropsychological testing using a validated computerized battery of tests as well as the Rey-Auditory verbal learning test. All 21 patients, as well as 11 healthy, age matched controls, underwent optical coherence tomography testing to assess retinal nerve fiber layer thickness. Correlations between retinal nerve fiber layer thickness and results in eight cognitive domains assessed by the computerized battery of tests as well as the Rey-Auditory verbal learning test were assessed in patients with systemic lupus erythematosus, with and without neuropsychiatric systemic lupus erythematosus, and compared to retinal nerve fiber layer thickness in healthy controls. Results No statistically significant correlation was found between retinal nerve fiber layer thickness in patients with systemic lupus erythematosus as compared to healthy controls. When evaluating by subgroups, no correlation was found between patients with or without neuropsychiatric systemic lupus erythematosus or cognitive impairment and retinal nerve fiber layer thickness. Conclusion Retinal nerve fiber layer thickness of systemic lupus erythematosus patients was not found to be statistically different compared to controls. Within systemic lupus erythematosus patients there was no correlation between retinal nerve fiber layer thickness and cognitive impairment or other neuropsychiatric systemic lupus erythematosus manifestations.
Method of Joining Graphite Fibers to a Substrate
NASA Technical Reports Server (NTRS)
Beringer, Durwood M. (Inventor); Caron, Mark E. (Inventor); Taddey, Edmund P. (Inventor); Gleason, Brian P. (Inventor)
2014-01-01
A method of assembling a metallic-graphite structure includes forming a wetted graphite subassembly by arranging one or more layers of graphite fiber material including a plurality of graphite fibers and applying a layer of metallization material to ends of the plurality of graphite fibers. At least one metallic substrate is secured to the wetted graphite subassembly via the layer of metallization material.
Rates of concussion are lower in National Football League games played at higher altitudes.
Myer, Gregory D; Smith, David; Barber Foss, Kim D; Dicesare, Christopher A; Kiefer, Adam W; Kushner, Adam M; Thomas, Staci M; Sucharew, Heidi; Khoury, Jane C
2014-03-01
Retrospective epidemiologic investigation. To investigate the relationship between altitude and concussion rate in the National Football League (NFL). Because of the physiologic responses that occur during acclimatization to altitude, it was hypothesized that games played on fields at a higher altitude would have reduced concussion rates compared to games played on fields at a lower altitude. Recent research indicates that the elevation above sea level at which football games are played may be associated with the likelihood of a concussion in high school football athletes. Data on incident concussions and athlete exposures for the first 16 weeks of the NFL 2012 and 2013 regular seasons were obtained from publicly available web-based sources and used to calculate competition concussion rates for each NFL stadium. Concussion rates were analyzed in relation to game elevation. During the first 16 weeks of the 2012 and 2013 NFL regular seasons, 300 concussions, involving 284 players, were reported (64.3 primary cases per 10,000 game exposures). The odds of a concussion were 30% lower when playing at a higher elevation (equal to or greater than 644 ft [196.3 m] above sea level) compared to a lower elevation (odds ratio = 0.70; 95% confidence interval: 0.53, 0.94). A multivariable generalized linear model controlling for season, week, and clustering of team at home and away confirmed these results, showing that the odds of at least 1 concussion were reduced by 32% in games played at higher elevation. The results of this epidemiological investigation indicate that increased altitude was associated with a reduction in the odds of a sport-related concussion in NFL athletes. The reported relationship of concussion incidence and field elevation should be further investigated, and, if verified, further work will be needed to understand why that relationship exists. Prognosis, level 2c.
Performance and Return to Sport After Sports Hernia Surgery in NFL Players
Jack, Robert A.; Evans, David C.; Echo, Anthony; McCulloch, Patrick C.; Lintner, David M.; Varner, Kevin E.; Harris, Joshua D.
2017-01-01
Background: Recognition, diagnosis, and treatment of athletic pubalgia (AP), also known as sports hernia, once underrecognized and undertreated in professional football, are becoming more common. Surgery as the final treatment for sports hernia when nonsurgical treatment fails remains controversial. Given the money involved and popularity of the National Football League (NFL), it is important to understand surgical outcomes in this patient population. Hypothesis: After AP surgery, players would: (1) return to sport (RTS) at a greater than 90% rate, (2) play fewer games for fewer years than matched controls, (3) have no difference in performance compared with before AP surgery, and (4) have no difference in performance versus matched controls. Study Design: Cohort study; Level of evidence, 3. Methods: Internet-based injury reports identified players who underwent AP surgery from January 1996 to August 2015. Demographic and performance data were collected for each player. A 1:1 matched control group and an index year analog were identified. Control and case performance scores were calculated using a standardized scoring system. Groups were compared using paired Student t tests. Results: Fifty-six NFL players (57 AP surgeries) were analyzed (mean age, 28.2 ± 3.1 years; mean years in NFL at surgery, 5.4 ± 3.2). Fifty-three players were able to RTS. Controls were in the NFL longer (P < .05) than players who underwent AP surgery (3.8 ± 2.4 vs 3.2 ± 2.1 years). Controls played more games per season (P < .05) than post-AP players (14.0 ± 2.3 vs 12.0 ± 3.4 games per season). There was no significant (P > .05) difference in pre- versus post-AP surgery performance scores and no significant (P > .05) difference in postoperative performance scores versus controls post-index. Conclusion: There was a high RTS rate after AP surgery without a significant difference in postoperative performance, though career length and games per season after AP surgery were significantly less than that of matched controls. PMID:28451612
Vitale, Jacopo A; Caumo, Andrea; Roveda, Eliana; Montaruli, Angela; La Torre, Antonio; Battaglini, Claudio L; Carandente, Franca
2016-10-01
Vitale, JA, Caumo, A, Roveda, E, Montaruli, A, La Torre, A, Battaglini, CL, and Carandente, F. Physical attributes and NFL Combine performance tests between Italian National League and American football players: a comparative study. J Strength Cond Res 30(10): 2802-2808, 2016-The purpose of this study was to examine anthropometric measurements and the results of a battery of performance tests administered during the National Football League (NFL) Combine between American football players who were declared eligible to participate in the NFL Combine and football players of a top Italian team (Rhinos Milan). Participants (N = 50) were categorized by position into 1 of 3 groups based on playing position: skill players (SP) included wide receivers, cornerbacks, free safeties, strong safeties, and running backs; big skill players (BSP) consisted of fullbacks, linebackers, tight ends, and defensive ends; lineman (LM) included centers, offensive guards, offensive tackles, and defensive tackles. A 1-way analysis of variance followed by the Tukey-Kramer post hoc test was used for comparisons between Italian players by playing position. Ninety-five percent CIs were used for comparisons between American and Italian football for the NFL Combine performance tests. Significant differences for all the variables between the 3 playing categories were observed among the Italian players; LM had higher anthropometric and body composition values than SP (p < 0.001) and BSP (p < 0.001), whereas LM performed significantly worse in the physical tests, except for the 225-lb bench press test when compared with SP (p < 0.002). American football players presented significantly higher anthropometric values and test performance scores when compared with Italian players. Administrators of professional football teams in Italy need to improve the player's physical attributes, so the gap that currently exists between American and Italian players can be reduced, which could significantly improve the quality of American football in Italy.
Cathcart, Nicole; Kitaev, Vladimir
2012-11-21
We describe the synthetic preparation of well-defined symmetric multifaceted prismatic silver nanoparticles with chemically controlled faceting advantageous for strong and tunable surface-enhanced Raman scattering, SERS. These silver nanoparticles, that have been termed nanoflowers, AgNFls for their characteristic morphologies, have been prepared by a one-pot aqueous reaction under ambient conditions. AgNFl faceting is synthetically controlled by selective nanoparticle growth driven by chloride ions. Selective chloride binding to the surface of growing AgNFls results in nanoparticle enlargement predominantly at the points of their highest energy. These growth points are located at the tips of prismatic polygons in precursor prismatic morphologies that have been produced from thiolate-protected silver clusters whose coalescence is triggered with a strong base. For the practical aspects of AgNFl synthesis, concentrations of thiol and a strong base were found to be the key variables reliably controlling the extent of AgNFl faceting, as well as the kinetics of AgNFl formation and their stability. The selective growth of AgNFls progresses slower compared to that of non-faceted prisms: fewer nuclei can form leading to larger AgNFls with the diameter ranging from 130 to 2250 nm and asperity sizes on the order of 20 to 100 nm. Self-assembly of AgNFls yields columnar stacking. AgNFls were demonstrated to function as a promising substrate for surface-enhanced Raman scattering. SERS measurements were performed for a series of AgNFls with variable faceting, where the enhancement factors of 4.6 × 10(8) and 425 have been achieved for dry solid films and aqueous dispersions of non-aggregated AgNFls with single-particle enhancement, respectively. These SERS results are promising, especially in combination with that AgNFl nanoscale asperities can be conveniently tailored synthetically. Overall, AgNFls offer valuable opportunities for a system with synthetically variable nanoscale asperities.
Performance and Return to Sport After Sports Hernia Surgery in NFL Players.
Jack, Robert A; Evans, David C; Echo, Anthony; McCulloch, Patrick C; Lintner, David M; Varner, Kevin E; Harris, Joshua D
2017-04-01
Recognition, diagnosis, and treatment of athletic pubalgia (AP), also known as sports hernia, once underrecognized and undertreated in professional football, are becoming more common. Surgery as the final treatment for sports hernia when nonsurgical treatment fails remains controversial. Given the money involved and popularity of the National Football League (NFL), it is important to understand surgical outcomes in this patient population. After AP surgery, players would: (1) return to sport (RTS) at a greater than 90% rate, (2) play fewer games for fewer years than matched controls, (3) have no difference in performance compared with before AP surgery, and (4) have no difference in performance versus matched controls. Cohort study; Level of evidence, 3. Internet-based injury reports identified players who underwent AP surgery from January 1996 to August 2015. Demographic and performance data were collected for each player. A 1:1 matched control group and an index year analog were identified. Control and case performance scores were calculated using a standardized scoring system. Groups were compared using paired Student t tests. Fifty-six NFL players (57 AP surgeries) were analyzed (mean age, 28.2 ± 3.1 years; mean years in NFL at surgery, 5.4 ± 3.2). Fifty-three players were able to RTS. Controls were in the NFL longer ( P < .05) than players who underwent AP surgery (3.8 ± 2.4 vs 3.2 ± 2.1 years). Controls played more games per season ( P < .05) than post-AP players (14.0 ± 2.3 vs 12.0 ± 3.4 games per season). There was no significant ( P > .05) difference in pre- versus post-AP surgery performance scores and no significant ( P > .05) difference in postoperative performance scores versus controls post-index. There was a high RTS rate after AP surgery without a significant difference in postoperative performance, though career length and games per season after AP surgery were significantly less than that of matched controls.
Mai, Harry T; Burgmeier, Robert J; Mitchell, Sean M; Hecht, Andrew C; Maroon, Joseph C; Nuber, Gordon W; Hsu, Wellington K
2016-12-01
Retrospective cohort study. The aim of this study was to determine whether the level of a cervical disc herniation (CDH) procedure will uniquely impact performance-based outcomes in elite athletes of the National Football League (NFL). Comparative assessments of postsurgical outcomes in NFL athletes with CDH at different levels are unknown. Further, the surgical decision-making for these types of injuries in professional football athletes remains controversial. NFL players with a CDH injury at a definitive cervical level were identified through a review of publicly available archives. Injuries were divided into upper- (C2-C4) and lower-level (C4-T1) CDH. The impact on player outcomes was determined by comparing return to play statistics and calculating a "Performance Score" for each player on the basis of pertinent statistical data, both before and after surgery. A total of 40 NFL athletes met inclusion criteria. In the upper-level group, 10 of 15 (66.6%) players successfully returned to play an average of 44.6 games over 2.6 years. The lower-level cohort had 18 of 25 (72%) players return to play with an average of 44.1 games over 3.1 years. There was no significant difference in the rate of return to play (P = 0.71). Postsurgical performance scores of the upper and lower-level groups were 1.47 vs. 0.69 respectively, with no significant difference between these groups (P = 0.06). Adjacent segment disease requiring reoperation occurred in 10% of anterior cervical discectomy and fusion patients. In 50% of foraminotomy patients, a subsequent fusion was required. A uniquely high percentage of upper-level disc herniations develop in NFL athletes, and although CDH injuries present career threatening implications, an upper-level CDH does not preclude a player from successfully returning to play at a competitive level. In fact, these athletes showed comparable postsurgical performance to those athletes who underwent CDH procedures at lower cervical levels. 4.
Player Selection Bias in National Football League Draftees.
Beyer, Kyle S; Fukuda, David H; Redd, Michael J; Stout, Jeffrey R; Hoffman, Jay R
2016-11-01
Beyer, KS, Fukuda, DH, Redd, MJ, Stout, JR, and Hoffman, JR. Player selection bias in National Football League draftees. J Strength Cond Res 30(11): 2965-2971, 2016-Relative age effects (RAEs) have been studied as a potential factor associated with player selection bias in numerous sports. However, little research has examined the role of RAEs among National Football League (NFL) draftees. The purpose of the current study was to determine the existence of RAEs in NFL draftees from the last 10 NFL drafts. Draftee birth dates were collected and divided into calendar and scholastic quarters (SQ1-SQ4). To determine the presence of RAEs in specific subsets, NFL draftees were grouped according to round drafted, position, level of conference play, and age at the time of the draft. Significant χ tests (p ≤ 0.05) comparing observed birth-date distributions vs. the expected birth-date distribution from the general population were followed up by calculating the standardized residual for each quarter (z > ±2.0 indicating significance). Overall, no RAEs were seen when birth-date distribution was assessed using calendar quarters (p = 0.47), but more draftees were born in SQ2 (December-February) than expected (p < 0.01; z = +2.2). Significantly more draftees were born in SQ2 than expected for middle-round draftees (p = 0.01; z = +2.4), skill positions (p = 0.03; z = +2.3), Power Five college draftees (p < 0.01; z = +2.6), and early draftees (p < 0.01; z = +3.1). However, reverse RAEs were seen among late draftees, with fewer draftees being born in SQ2 (z = -3.6) and more being born in SQ4 (June-August; z = +2.6) than expected. In contrast to previous research, the current study observed significant RAEs in NFL draftees from the last 10 years. This player selection bias should be considered when evaluating long-term athlete development models in American football.
A profile of a National Football League team.
Pryor, J Luke; Huggins, Robert A; Casa, Douglas J; Palmieri, Gerard A; Kraemer, William J; Maresh, Carl M
2014-01-01
The purpose of this study was to document the physical profiles of players on the 2011 New York Giants (NYG) team and to make comparisons with the historical literature on previous National Football League (NFL) player profiles. In this study, height, body mass (BM), body fat percentage (BF%) using skinfold measurements, and several predicted 1 repetition maximal strength and power measures in 30 returning players from the 2011 NYG team, who recently won the Super Bowl, were collected. Players were grouped by position: running back, quarterback (QB), wide receiver (WR), tight end, offensive lineman (OL), defensive lineman (DL), linebacker (LB), and defensive back (DB). Pooled and weighted mean differences (NYG - NFL) and effect sizes were used to evaluate height, BM, and BF% comparisons of NYG to previous NFL studies from 1998 to 2009. The characteristics of the players as a group were: age, height, BM, BF%: 26 ± 2 years, 183.8 ± 9.0 cm, 144.9 ± 20.8 kg, 14.3 ± 5.5%, respectively. Comparisons highlight distinct position-specific dissimilarity in strength measures, BM, and BF%, which reflect current strength training, conditioning, and team play strategy. As expected, NYG positional differences were found for height (p ≤ 0.05), BM (p ≤ 0.037), BF% (p ≤ 0.048), bench press (p ≤ 0.048), inclined bench press (p ≤ 0.013), and squat (p ≤ 0.026). Anthropometrics profiles did not significantly differ from previously published trends in NFL players indicating equity in physical characteristics over the past 13 years. However, NYG LBs, DLs, OLs, QBs, and WRs trended toward less BF% but generally similar BM compared with NFL players, suggesting greater lean BM in these positions. This study adds new players' data to prototypical position-specific databases that may be used as templates for comparison of players for draft selection or physical training.
Matava, Matthew; Brater, D Craig; Gritter, Nancy; Heyer, Robert; Rollins, Douglas; Schlegel, Theodore; Toto, Robert; Yates, Anthony
2012-09-01
Ketorolac tromethamine (Toradol(®)) is a non-steroidal anti-inflammatory drug that has potent analgesic and anti-inflammatory properties. It can be administered orally, intravenously, intramuscularly, or via a nasal route. Ketorolac injections have been used for several years in the National Football League (NFL), in both the oral and injectable forms, to treat musculoskeletal injuries and to prevent post-game soreness. In an attempt to determine the appropriate use of this medication in NFL players, the NFL Team Physician Society appointed a Task Force to consider the best available evidence as to how ketorolac should be used for pain management in professional football players. These treatment recommendations were established based on the available medical literature taking into consideration the pharmacokinetic properties of ketorolac, its accepted indications and contraindications, and the unique clinical challenges of the NFL. The Task Force recommended that 1) ketorolac should only be administered under the direct supervision and order of a team physician; 2) ketorolac should not be used prophylactically as a means of reducing anticipated pain either during or after participation in NFL games or practices and should be limited to those players diagnosed with an injury or condition and listed on the teams' injury report; 3) ketorolac should be given in the lowest effective therapeutic dose and should not be used in any form for more than 5 days; 4) ketorolac should be given in its oral preparation under typical circumstances; 5) ketorolac should not be taken concurrently with other NSAIDs or by those players with a history of allergic reaction to ketorolac, other NSAIDs or aspirin; and 6) ketorolac should not be used by a player with a history of significant gastrointestinal bleeding, renal compromise, or a past history of complications related to NSAIDs.
Matava, Matthew; Brater, D. Craig; Gritter, Nancy; Heyer, Robert; Rollins, Douglas; Schlegel, Theodore; Toto, Robert; Yates, Anthony
2012-01-01
Ketorolac tromethamine (Toradol®) is a non-steroidal anti-inflammatory drug that has potent analgesic and anti-inflammatory properties. It can be administered orally, intravenously, intramuscularly, or via a nasal route. Ketorolac injections have been used for several years in the National Football League (NFL), in both the oral and injectable forms, to treat musculoskeletal injuries and to prevent post-game soreness. In an attempt to determine the appropriate use of this medication in NFL players, the NFL Team Physician Society appointed a Task Force to consider the best available evidence as to how ketorolac should be used for pain management in professional football players. These treatment recommendations were established based on the available medical literature taking into consideration the pharmacokinetic properties of ketorolac, its accepted indications and contraindications, and the unique clinical challenges of the NFL. The Task Force recommended that 1) ketorolac should only be administered under the direct supervision and order of a team physician; 2) ketorolac should not be used prophylactically as a means of reducing anticipated pain either during or after participation in NFL games or practices and should be limited to those players diagnosed with an injury or condition and listed on the teams’ injury report; 3) ketorolac should be given in the lowest effective therapeutic dose and should not be used in any form for more than 5 days; 4) ketorolac should be given in its oral preparation under typical circumstances; 5) ketorolac should not be taken concurrently with other NSAIDs or by those players with a history of allergic reaction to ketorolac, other NSAIDs or aspirin; and 6) ketorolac should not be used by a player with a history of significant gastrointestinal bleeding, renal compromise, or a past history of complications related to NSAIDs. PMID:23016110
Method for optical and mechanically coupling optical fibers
Toeppen, J.S.
1996-10-01
A method and apparatus are disclosed for splicing optical fibers. A fluorescing solder glass frit having a melting point lower than the melting point of first and second optical fibers is prepared. The solder glass frit is then attached to the end of the first optical fiber and/or the end of the second optical fiber. The ends of the optical fibers are aligned and placed in close proximity to each other. The solder glass frit is then heated to a temperature which is lower than the melting temperature of the first and second optical fibers, but which is high enough to melt the solder glass frit. A force is applied to the first and second optical fibers pushing the ends of the fibers towards each other. As the solder glass flit becomes molten, the layer of molten solder glass is compressed into a thin layer between the first and second optical fibers. The thin compressed layer of molten solder glass is allowed to cool such that the first and second optical fibers are bonded to each other by the hardened layer of solder glass. 6 figs.
Method for optical and mechanically coupling optical fibers
Toeppen, John S.
1996-01-01
A method and apparatus for splicing optical fibers. A fluorescing solder glass frit having a melting point lower than the melting point of first and second optical fibers is prepared. The solder glass frit is then attached to the end of the first optical fiber and/or the end of the second optical fiber. The ends of the optical fibers are aligned and placed in close proximity to each other. The solder glass frit is then heated to a temperature which is lower than the melting temperature of the first and second optical fibers, but which is high enough to melt the solder glass frit. A force is applied to the first and second optical fibers pushing the ends of the fibers towards each other. As the solder glass flit becomes molten, the layer of molten solder glass is compressed into a thin layer between the first and second optical fibers. The thin compressed layer of molten solder glass is allowed to cool such that the first and second optical fibers are bonded to each other by the hardened layer of solder glass.
2014-01-01
were as follows: Blast TBI: Suicide drug overdose – blast years prior Ruptured aneurysm – blast years prior intraventricular hemorrhage...drug overdose Suicide blunt trauma - fall Cancer Cardiac Arrest Tissue fixation was highly variable because cases were obtained from 4 different...blast years prior Civilian Blast DOA Non-blast TBI: MVA – DOA MVA – DOS Suicide – NFL – GSW to chest Cardiac Arrest – NFL Controls: Suicide
NASA Technical Reports Server (NTRS)
Pindera, Marek-Jerzy; Freed, Alan D.; Arnold, Steven M.
1992-01-01
Examined here is the effect of fiber and interfacial layer morphologies on thermal fields in metal matrix composites (MMCs). A micromechanics model based on an arbitrarily layered concentric cylinder configuration is used to calculate thermal stress fields in MMCs subjected to spatially uniform temperature changes. The fiber is modelled as a layered material with isotropic or orthotropic elastic layers, whereas the surrounding matrix, including interfacial layers, is treated as a strain-hardening, elastoplastic, von Mises solid with temperature-dependent parameters. The solution to the boundary-value problem of an arbitrarily layered concentric cylinder under the prescribed thermal loading is obtained using the local/global stiffness matrix formulation originally developed for stress analysis of multilayered elastic media. Examples are provided that illustrate how the morphology of the SCS6 silicon carbide fiber and the use of multiple compliant layers at the fiber/matrix interface affect the evolution of residual stresses in SiC/Ti composites during fabrication cool-down.
Casson, Ira R.; Viano, David C.; Haacke, E. Mark; Kou, Zhifeng; LeStrange, Danielle G.
2014-01-01
Background: Neuropathology and surveys of retired National Football League (NFL) players suggest that chronic brain damage is a frequent result of a career in football. There is limited information on the neurological statuses of living retired players. This study aimed to fill the gap in knowledge by conducting in-depth neurological examinations of 30- to 60-year-old retired NFL players. Hypothesis: In-depth neurological examinations of 30- to 60-year-old retired players are unlikely to detect objective clinical abnormalities in the majority of subjects. Study Design: A day-long medical examination was conducted on 45 retired NFL players, including state-of-the-art magnetic resonance imaging (MRI; susceptibility weighted imaging [SWI], diffusion tensor imaging [DTI]), comprehensive neuropsychological and neurological examinations, interviews, blood tests, and APOE (apolipoprotein E) genotyping. Level of Evidence: Level 3. Methods: Participants’ histories focused on neurological and depression symptoms, exposure to football, and other factors that could affect brain function. The neurological examination included Mini-Mental State Examination (MMSE) evaluation of cognitive function and a comprehensive search for signs of dysarthria, pyramidal system dysfunction, extrapyramidal system dysfunction, and cerebellar dysfunction. The Beck Depression Inventory (BDI) and Patient Health Questionnaire (PHQ) measured depression. Neuropsychological tests included pen-and-paper and ImPACT evaluation of cognitive function. Anatomical examination SWI and DTI MRI searched for brain injuries. The results were statistically analyzed for associations with markers of exposure to football and related factors, such as body mass index (BMI), ethanol use, and APOE4 status. Results: The retired players’ ages averaged 45.6 ± 8.9 years (range, 30-60 years), and they had 6.8 ± 3.2 years (maximum, 14 years) of NFL play. They reported 6.9 ± 6.2 concussions (maximum, 25) in the NFL. The majority of retired players had normal clinical mental status and central nervous system (CNS) neurological examinations. Four players (9%) had microbleeds in brain parenchyma identified in SWI, and 3 (7%) had a large cavum septum pellucidum with brain atrophy. The number of concussions/dings was associated with abnormal results in SWI and DTI. Neuropsychological testing revealed isolated impairments in 11 players (24%), but none had dementia. Nine players (20%) endorsed symptoms of moderate or severe depression on the BDI and/or met criteria for depression on PHQ; however, none had dementia, dysarthria, parkinsonism, or cerebellar dysfunction. The number of football-related concussions was associated with isolated abnormalities on the clinical neurological examination, suggesting CNS dysfunction. The APOE4 allele was present in 38% of the players, a larger number than would be expected in the general male population (23%-26%). Conclusion: MRI lesions and neuropsychological impairments were found in some players; however, the majority of retired NFL players had no clinical signs of chronic brain damage. Clinical Relevance: These results need to be reconciled with the prevailing view that a career in football frequently results in chronic brain damage. PMID:25177413
Provencher, Matthew T; Chahla, Jorge; Sanchez, George; Cinque, Mark E; Kennedy, Nicholas I; Whalen, Jim; Price, Mark D; Moatshe, Gilbert; LaPrade, Robert F
2018-04-01
Provencher, MT, Chahla, J, Sanchez, G, Cinque, ME, Kennedy, NI, Whalen, J, Price, MD, Moatshe, G, and LaPrade, RF. Body mass index versus body fat percentage in prospective national football league athletes: overestimation of obesity rate in athletes at the national football league scouting combine. J Strength Cond Res 32(4): 1013-1019, 2018-Obesity has been previously noted as a major issue in the National Football League (NFL), where it has been shown that 97% of all players demonstrate a body mass index (BMI) of ≥25.0 with a reported obesity rate of 56% (BMI ≥ 30.0). However, BMI does not take into account body composition by mass, and may overestimate prevalence of obesity. The purposes of this study were (a) to determine the validity of BMI as a measure of body fat percentage and obesity in athletes at the NFL Combine, (b) to define the obesity rate based on body fat percentage compared with BMI, and (c) to determine the relationship between draft status and body composition. It was hypothesized that the rate of obesity, as measured by air displacement plethysmography (ADP), would be less than the rate of obesity as measured using BMI. Athletes who competed at the 2010 through 2016 NFL Combines were included in this study. Air displacement plethysmograph testing at the Combine was performed through BOD POD Body Composition Tracking System with collection of the following metrics: body fat percentage (%), and compared with BMI based on weight and height. In addition, the metrics were evaluated for differences over the 7-year study period to determine temporal changes and to determine draft status based on position relative to BOD POD calculations. A total of 1,958 NFL Combine participants completed ADP body composition testing. Based on BMI (≥30.0), the obesity rate was 53.4% versus an 8.9% obesity rate when using ADP. Drafted players demonstrated a significantly lower body fat percentage than undrafted players (p ≤ 0.05), with the exception of quarterbacks and running backs. All 8 positions of play, with the exception of defensive linemen, demonstrated a decrease in body fat percentage between 2010 and 2017. However, total body mass by position of play remained relatively constant with no significant change noted in any position. In conclusion, the obesity rate in prospective athletes at the NFL Combine was overestimated when calculated based on the BMI. Body fat percentage was more valid for determining an NFL player candidate's true body composition. Drafted players demonstrated a significantly lower body fat percentage in 6 of 8 positions compared with undrafted players. This is important to recognize for a strength and conditioning professional to use the correct metric when evaluating NFL players who could have been erroneously categorized in the obese population by their BMI. Furthermore, a higher percentage of fat translates to lower chances of becoming drafted.
Mechanical model of suture joints with fibrous connective layer
NASA Astrophysics Data System (ADS)
Miroshnichenko, Kateryna; Liu, Lei; Tsukrov, Igor; Li, Yaning
2018-02-01
A composite model for suture joints with a connective layer of aligned fibers embedded in soft matrix is proposed. Based on the principle of complementary virtual work, composite cylinder assemblage (CCA) approach and generalized self-consistent micro-mechanical models, a hierarchical homogenization methodology is developed to systematically quantify the synergistic effects of suture morphology and fiber orientation on the overall mechanical properties of sutures. Suture joints with regular triangular wave-form serve as an example material system to apply this methodology. Both theoretical and finite element mechanical models are developed and compared to evaluate the overall normal stiffness of sutures as a function of wavy morphology of sutures, fiber orientation, fiber volume fraction, and the mechanical properties of fibers and matrix in the interfacial layer. It is found that generally due to the anisotropy-induced coupling effects between tensile and shear deformation, the effective normal stiffness of sutures is highly dependent on the fiber orientation in the connective layer. Also, the effective shear modulus of the connective layer and the stiffness ratio between the fiber and matrix significantly influence the effects of fiber orientation. In addition, optimal fiber orientations are found to maximize the stiffness of suture joints.
Cornil, Yann; Chandon, Pierre
2013-10-01
Using archival and experimental data, we showed that vicarious defeats experienced by fans when their favorite football team loses lead them to consume less healthy food. On the Mondays following a Sunday National Football League (NFL) game, saturated-fat and food-calorie intake increase significantly in cities with losing teams, decrease in cities with winning teams, and remain at their usual levels in comparable cities without an NFL team or with an NFL team that did not play. These effects are greater in cities with the most committed fans, when the opponents are more evenly matched, and when the defeats are narrow. We found similar results when measuring the actual or intended food consumption of French soccer fans who had previously been asked to write about or watch highlights from victories or defeats of soccer teams. However, these unhealthy consequences of vicarious defeats disappear when supporters spontaneously self-affirm or are given the opportunity to do so.
NASA Technical Reports Server (NTRS)
Wolpert, David H.; Macready, William G.
2005-01-01
Recent work on the mathematical foundations of optimization has begun to uncover its rich structure. In particular, the "No Free Lunch" (NFL) theorems state that any two algorithms are equivalent when their performance is averaged across all possible problems. This highlights the need for exploiting problem-specific knowledge to achieve better than random performance. In this paper we present a general framework covering more search scenarios. In addition to the optimization scenarios addressed in the NFL results, this framework covers multi-armed bandit problems and evolution of multiple co-evolving players. As a particular instance of the latter, it covers "self-play" problems. In these problems the set of players work together to produce a champion, who then engages one or more antagonists in a subsequent multi-player game. In contrast to the traditional optimization case where the NFL results hold, we show that in self-play there are free lunches: in coevolution some algorithms have better performance than other algorithms, averaged across all possible problems. We consider the implications of these results to biology where there is no champion.
Leaf spring made of fiber-reinforced resin
NASA Technical Reports Server (NTRS)
Hori, J.
1986-01-01
A leaf spring made of a matrix reinforced by at least two types of reinforcing fibers with different Young's modulus is described in this Japanese patent. At least two layers of reinforcing fibers are formed by partially arranging the reinforcing fibers toward the direction of the thickness of the leaf spring. A mixture of different types of reinforced fibers is used at the area of boundary between the two layers of reinforced fibers. The ratio of blending of each type of reinforced fiber is frequently changed to eliminate the parts where discontinuous stress may be applied to the leaf spring. The objective of this invention is to prevent the rapid change in Young's modulus at the boundary area between each layer of reinforced fibers in the leaf spring.
Does Relative Age Affect Career Length in North American Professional Sports?
Steingröver, C; Wattie, N; Baker, J; Schorer, J
Relative age effects (RAEs) typically favour older members within a cohort; however, research suggests that younger players may experience some long-term advantages, such as longer career length. The purposes of this study were to replicate previous findings on RAEs among National Hockey League (NHL) ice hockey players, National Basketball Association (NBA) basketball players and National Football League (NFL) football players and to investigate the influence of relative age on career length in all three sports. Using official archives, birthdates and number of games played were collected for players drafted into the NBA ( N = 407), NFL ( N = 2380) and NHL ( N = 1028) from 1980 to 1989. We investigated the possibility that younger players might be able to maximize their career length by operationalizing career length as players' number of games played throughout their careers. There was a clear RAE for the NHL, but effects were not significant for the NBA or NFL. Moreover, there was a significant difference in matches played between birth quartiles in the NHL favouring relatively younger players. There were no significant quartiles by career length effects in the NBA or NFL. The significant relationship between relative age and career length provides further support for relative age as an important constraint on expertise development in ice hockey but not basketball or football. Currently, the reason why relatively younger players have longer careers is not known. However, it may be worth exploring the influence of injury risk or the development of better playing skills.
Edén, Arvid; Marcotte, Thomas D.; Heaton, Robert K.; Nilsson, Staffan; Zetterberg, Henrik; Fuchs, Dietmar; Franklin, Donald; Price, Richard W.; Grant, Igor; Letendre, Scott L.; Gisslén, Magnus
2016-01-01
Objective Although milder forms of HIV-associated neurocognitive disorder (HAND) remain prevalent, a correlation to neuronal injury has not been established in patients on antiretroviral therapy (ART). We examined the relationship between mild HAND and CSF neurofilament light protein (NFL), a biomarker of neuronal injury; and CSF neopterin, a biomarker of CNS immunoactivation, in virally suppressed patients on antiretroviral therapy (ART). Design and Methods We selected 99 subjects on suppressive ART followed longitudinally from the CNS HIV Anti-Retroviral Therapy Effects Research (CHARTER) study. Based on standardized comprehensive neurocognitive performance (NP) testing, subjects were classified as neurocognitively normal (NCN; n = 29) or impaired (NCI; n = 70). The NCI group included subjects with asymptomatic (ANI; n = 37) or mild (MND; n = 33) HAND. CSF biomarkers were analyzed on two occasions. Results Geometric mean CSF neopterin was 25% higher in the NCI group (p = 0.04) and NFL and neopterin were significantly correlated within the NCI group (r = 0.30; p<0.001) but not in the NCN group (r = -0.13; p = 0.3). Additionally, a trend towards higher NFL was seen in the NCI group (p = 0.06). Conclusions Mild HAND was associated with increased intrathecal immune activation, and the correlation between neopterin and NFL found in NCI subjects indicates an association between neurocognitive impairment, CNS inflammation and neuronal damage. Together these findings suggest that NCI despite ART may represent an active pathological process within the CNS that needs further characterization in prospective studies. PMID:27295036
Edén, Arvid; Marcotte, Thomas D; Heaton, Robert K; Nilsson, Staffan; Zetterberg, Henrik; Fuchs, Dietmar; Franklin, Donald; Price, Richard W; Grant, Igor; Letendre, Scott L; Gisslén, Magnus
2016-01-01
Although milder forms of HIV-associated neurocognitive disorder (HAND) remain prevalent, a correlation to neuronal injury has not been established in patients on antiretroviral therapy (ART). We examined the relationship between mild HAND and CSF neurofilament light protein (NFL), a biomarker of neuronal injury; and CSF neopterin, a biomarker of CNS immunoactivation, in virally suppressed patients on antiretroviral therapy (ART). We selected 99 subjects on suppressive ART followed longitudinally from the CNS HIV Anti-Retroviral Therapy Effects Research (CHARTER) study. Based on standardized comprehensive neurocognitive performance (NP) testing, subjects were classified as neurocognitively normal (NCN; n = 29) or impaired (NCI; n = 70). The NCI group included subjects with asymptomatic (ANI; n = 37) or mild (MND; n = 33) HAND. CSF biomarkers were analyzed on two occasions. Geometric mean CSF neopterin was 25% higher in the NCI group (p = 0.04) and NFL and neopterin were significantly correlated within the NCI group (r = 0.30; p<0.001) but not in the NCN group (r = -0.13; p = 0.3). Additionally, a trend towards higher NFL was seen in the NCI group (p = 0.06). Mild HAND was associated with increased intrathecal immune activation, and the correlation between neopterin and NFL found in NCI subjects indicates an association between neurocognitive impairment, CNS inflammation and neuronal damage. Together these findings suggest that NCI despite ART may represent an active pathological process within the CNS that needs further characterization in prospective studies.
Blood-brain barrier integrity, intrathecal immunoactivation, and neuronal injury in HIV.
Anesten, Birgitta; Yilmaz, Aylin; Hagberg, Lars; Zetterberg, Henrik; Nilsson, Staffan; Brew, Bruce J; Fuchs, Dietmar; Price, Richard W; Gisslén, Magnus
2016-12-01
Although blood-brain barrier (BBB) impairment has been reported in HIV-infected individuals, characterization of this impairment has not been clearly defined. BBB integrity was measured by CSF/plasma albumin ratio in this cross-sectional study of 631 HIV-infected individuals and 71 controls. We also analyzed CSF and blood HIV RNA and neopterin, CSF leukocyte count, and neurofilament light chain protein (NFL) concentrations. The HIV-infected participants included untreated neuroasymptomatic patients, patients with untreated HIV-associated dementia (HAD), and participants on suppressive antiretroviral treatment (ART). The albumin ratio was significantly increased in patients with HAD compared to all other groups. There were no significant differences between untreated neuroasymptomatic participants, treated participants, and controls. BBB integrity, however, correlated significantly with CSF leukocyte count, CSF HIV RNA, serum and CSF neopterin, and age in untreated neuroasymptomatic participants. In a multiple linear regression analysis, age, CSF neopterin, and CSF leukocyte count stood out as independent predictors of albumin ratio. A significant correlation was found between albumin ratio and CSF NFL in untreated neuroasymptomatic patients and in participants on ART. Albumin ratio, age, and CD4 cell count were confirmed as independent predictors of CSF NFL in multivariable analysis. BBB disruption was mainly found in patients with HAD, where BBB damage correlated with CNS immunoactivation. Albumin ratios also correlated with CSF inflammatory markers and NFL in untreated neuroasymptomatic participants. These findings give support to the association among BBB deterioration, intrathecal immunoactivation, and neuronal injury in untreated neuroasymptomatic HIV-infected individuals.
NASA Astrophysics Data System (ADS)
Zhou, W.; Ke, F.; Xu, Xiaofeng; Sankar, R.; Xing, X.; Xu, C. Q.; Jiang, X. F.; Qian, B.; Zhou, N.; Zhang, Y.; Xu, M.; Li, B.; Chen, B.; Shi, Z. X.
2017-11-01
Non-Fermi-liquid (NFL) phenomena associated with correlation effects have been widely observed in the phase diagrams of unconventional superconducting families. Exploration of the correlation between the normal state NFL, regardless of its microscopic origins, and the superconductivity has been argued as a key to unveiling the mystery of the high-Tc pairing mechanism. Here we systematically investigate the pressure-dependent in-plane resistivity (ρ ) and Hall coefficient (RH) of a high-quality 112-type Fe-based superconductor Ca1 -xLaxFe1 -yCoyAs2 (x =0.2 ,y =0.02 ). With increasing pressure, the normal-state resistivity of the studied sample exhibits a pronounced crossover from non-Fermi-liquid to Fermi-liquid behaviors. Accompanied with this crossover, Tc is gradually suppressed. In parallel, the extremum in the Hall coefficient RH(T ) curve, possibly due to anisotropic scattering induced by spin fluctuations, is also gradually suppressed. The symbiosis of NFL and superconductivity implies that these two phenomena are intimately related. Further study on the pressure-dependent upper critical field reveals that the two-band effects are also gradually weakened with increasing pressure and reduced to the one-band Werthamer-Helfand-Hohenberg limit in the low-Tc regime. Overall, our paper supports the picture that NFL, multigap, and extreme RH(T ) are all of the same magnetic origin, i.e., the spin fluctuations in the 112 iron arsenide superconductors.
Ellenbogen, Richard G; Batjer, Hunt; Cardenas, Javier; Berger, Mitchel; Bailes, Julian; Pieroth, Elizabeth; Heyer, Robert; Theodore, Nicholas; Hsu, Wellington; Nabel, Elizabeth; Maroon, Joe; Cantu, Robert; Barnes, Ronnie; Collins, James; Putukian, Margot; Lonser, Russell; Solomon, Gary; Sills, Allen
2018-03-16
One of the National Football League's (NFL) Head, Neck and Spine Committee's principal goals is to create a 'best practice' protocol for concussion diagnosis and management for its players. The science related to concussion diagnosis and management continues to evolve, thus the protocol has evolved contemporaneously. The Fifth International Conference on Concussion in Sport was held in Berlin in 2016, and guidelines for sports concussion diagnosis and management were revised and refined. The NFL Head, Neck and Spine Committee has synthesised the most recent empirical evidence for sports concussion diagnosis and management including the Berlin consensus statement and tailored it to the game played in the NFL. One of the goals of the Committee is to provide a standardised, reliable, efficient and evidence-based protocol for concussion diagnosis and management that can be applied in this professional sport during practice and game day. In this article, the end-of-season version of the 2017-18 NFL Concussion Diagnosis and Management Protocol is described along with its clinical rationale. Immediate actions for concussion programme enhancement and research are reviewed. It is the Committee's expectation that the protocol will undergo refinement and revision over time as the science and clinical practice related to concussion in sports crystallise. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
Tullberg, Mats; Blennow, Kaj; Månsson, Jan-Eric; Fredman, Pam; Tisell, Magnus; Wikkelsö, Carsten
2008-01-01
Background The aim of this study was to explore biochemical changes in the cerebrospinal fluid (CSF) induced by shunt surgery and the relationship between these changes and clinical improvement. Methods We measured clinical symptoms and analysed lumbar CSF for protein content, neurodegeneration and neurotransmission markers in patients with secondary (SNPH, n = 17) and idiopathic NPH (INPH, n = 18) before and 3 months after shunt surgery. Patients were divided into groups according to whether or not there was improvement in clinical symptoms after surgery. Results Preoperatively, the only pathological findings were elevated neurofilament protein (NFL), significantly more so in the SNPH patients than in the INPH patients, and elevated albumin content. Higher levels of NFL correlated with worse gait, balance, wakefulness and neuropsychological performance. Preoperatively, no differences were seen in any of the CSF biomarkers between patients that improved after surgery and those that did not improve. Postoperatively, a greater improvement in gait and balance performance correlated with a more pronounced reduction in NFL. Levels of albumin, albumin ratio, neuropeptide Y, vasoactive intestinal peptide and ganglioside GD3 increased significantly after shunting in both groups. In addition, Gamma amino butyric acid increased significantly in SNPH and tau in INPH. Conclusion We conclude that a number of biochemical changes occur after shunt surgery, but there are no marked differences between the SNPH and INPH patients. The results indicate that NFL may be a marker that can predict a surgically reversible state in NPH. PMID:18439296
High temperature, flexible, fiber-preform seal
NASA Technical Reports Server (NTRS)
Steinetz, Bruce M. (Inventor); Strocky, Paul J. (Inventor)
1992-01-01
A seal is mounted in a rectangular groove in a movable structural panel. The seal comprises a fiber preform constructed of multiple layers of fiber having a uniaxial core. Helical fibers are wound over the core. The fibers are of materials capable of withstanding high temperatures and are both left-hand and right-hand wound. An outer layer wrapped over said helical fibers prevents abrasion damage.
Read, Connor R; Aune, Kyle T; Cain, E Lyle; Fleisig, Glenn S
2017-07-01
Anterior cruciate ligament (ACL) injuries occur commonly in football. Recent work has reported ACL reconstruction (ACLR) as one of several orthopaedic procedures with unfavorable outcomes for professional athletes. The performance impact to defensive players after surgery has not been quantified. To quantify the effect of ACLR on the performance of defensive players by comparing them to a cohort of matched controls as well as to measure the effect of ACLR on athletes' career length in the National Football League (NFL). Case-control and cohort study; Level of evidence, 3. Thirty-eight NFL defensive players with a history of ACLR from 2006 to 2012 were identified. For each injured player, a matched control player was identified. Demographic and performance statistics were collected from the online NFL player database. Players who returned after ACLR (n = 23) were compared with players who did not return (n = 15) using t tests and chi-squared analyses. Similarly, players who returned after ACLR (n = 23) were compared with their matched controls with t tests and chi-squared analyses. Two-way repeated-measures analysis of variance was utilized to test for significant differences between performance before and after the season of the injury for the players in the ACLR group who returned (n = 23) and for their matched controls. Kaplan-Meier analysis was performed to test for differences in the rate of retirement between the groups. For all analyses, P values <.05 were considered significant. Approximately 74% (28/38) of athletes who underwent ACLR returned to play at least 1 NFL game, and 61% (23/38) successfully returned to play at least half a season (ie, 8 games). Athletes in the ACLR group who returned retired from the NFL significantly sooner and more often after surgery than their matched controls. In the seasons leading up to their injury, athletes who successfully returned to play started a greater percentage of their games (81%) and made more solo tackles per game (3.44 ± 1.47) compared with athletes in the ACLR group who did not return to play (54% and 1.82 ± 1.17, respectively) and compared with healthy control players (52% and 1.77 ± 1.19, respectively). After the season of surgery, athletes in the ACLR group who returned to play decreased to 57% games started and 2.38 ± 1.24 solo tackles per game, while their matched controls suffered no significant decreases. Players who successfully returned were above-average NFL players before their injury but comparatively average after their return.
Retinal nerve fiber layer changes after LASIK evaluated with optical coherence tomography.
Dementyev, Dmitriy D; Kourenkov, Vyacheslav V; Rodin, Alexander S; Fadeykina, Tatyana L; Diaz Martines, Tatyana E
2005-01-01
To determine whether the increase in intraocular pressure (IOP) during LASIK suction can induce a decrease in retinal nerve fiber layer thickness assessed by optical coherence tomography (OCT). Nineteen patients (38 eyes) were enrolled in the study. Intraocular pressure was normal at all pre- and postoperative examinations. Retinal nerve fiber layer thickness was measured using OCT-3 Stratus prior to and 1 week and 3 months after LASIK. Laser in situ keratomileusis was performed using the Bausch & Lomb Hansatome microkeratome and the NIDEK EC-5000 excimer laser. Optical coherence tomography mean retinal nerve fiber layer thickness values before and after LASIK were compared using the Student paired t test. Mean patient age was 27.8 years (range: 18 to 33 years). Mean preoperative spherical equivalent refractive error was -4.9 diopters (D) (range: -2.0 to -8.5 D). Mean time of microkeratome suction was 30 seconds (range: 20 to 50 seconds). Preoperatively, the mean retinal nerve fiber layer thickness obtained by OCT was 104.2+/-9.0 microm; at 1 week postoperatively the mean thickness was 101.9+/-6.9 microm, and 106.7+/-6.1 microm at 3 months postoperatively. Mean retinal nerve fiber layer thicknesses obtained by OCT were not significantly different between preoperative and 1 week and 3 months after LASIK (P > or = .05). Laser in situ keratomileusis performed on young myopic patients does not have a significant effect on retinal nerve fiber layer thickness determined by OCT. Further studies are required to reveal the risk of possible optic nerve or retinal nerve fiber layer damage by elevated IOP during LASIK.
Embedded sensor having an identifiable orientation
Bennett, Thomas E.; Nelson, Drew V.
2002-01-01
An apparatus and method is described wherein a sensor, such as a mechanical strain sensor, embedded in a fiber core, is "flagged" to identify a preferred orientation of the sensor. The identifying "flag" is a composite material, comprising a plurality of non-woven filaments distributed in a resin matrix, forming a small planar tab. The fiber is first subjected to a stimulus to identify the orientation providing the desired signal response, and then sandwiched between first and second layers of the composite material. The fiber, and therefore, the sensor orientation is thereby captured and fixed in place. The process for achieving the oriented fiber includes, after identifying the fiber orientation, carefully laying the oriented fiber onto the first layer of composite, moderately heating the assembled layer for a short period in order to bring the composite resin to a "tacky" state, heating the second composite layer as the first, and assembling the two layers together such that they merge to form a single consolidated block. The consolidated block achieving a roughly uniform distribution of composite filaments near the embedded fiber such that excess resin is prevented from "pooling" around the periphery of the fiber.
Multi-functional layered structure having structural and radiation shielding attributes
NASA Technical Reports Server (NTRS)
Kaul, Raj K. (Inventor); Barghouty, Abdulnasser Fakhri (Inventor); Penn, Benjamin G. (Inventor); Hulcher, Anthony Bruce (Inventor)
2010-01-01
A cosmic and solar radiation shielding structure that also has structural attributes is comprised of three layers. The first layer is 30-42 percent by volume of ultra-high molecular weight (UHMW) polyethylene fibers, 18-30 percent by volume of graphite fibers, and a remaining percent by volume of an epoxy resin matrix. The second layer is approximately 68 percent by volume of UHMW polyethylene fibers and a remaining percent by volume of a polyethylene matrix. The third layer is a ceramic material.
NASA Astrophysics Data System (ADS)
Pan'kov, A. A.
2018-05-01
The mathematical model of a piezoelectroluminescent fiber-optical sensor is developed for diagnostics of the 3D stress state of composite structures. The sensor model is a coaxial sector-compound layered cylinder consisting of a central optical fiber with electroluminescent and piezoelectric layers and an external uniform elastic buffer layer. The electroluminescent and piezoelectric layers are separated by radial-longitudinal boundaries, common for both layers, into geometrically equal six "measuring elements" — cylindrical two-layered sectors. The directions of 3D polarization of the piezoelectric phases and the frequencies of luminous efficacy of the electroluminescent phases are different in each sector. In the sensor, a thin translucent "internal" controlling electrode is located between the optical fiber and the electroluminescent layer, and the piezoelectric layer is coated by a thin "external" controlling electrode. The results of numerical modeling of the nonuniform coupled electroelastic fields of the piezoelectroluminescent fiber-optical sensor in the loaded "representative volume" of a composite, taking into account the action of the controlling voltage on the internal and external electrodes, of a numerical calculation of "informative and controlling coefficients" of the sensor, and of testing of an arbitrary 3D stress of state of a unidirectional glass-fiber plastic by the finite-element method are presented.
Thermomechanical Performance of C and SiC Multilayer, Fiber-Reinforced, CVI SiC Matrix Composites
NASA Technical Reports Server (NTRS)
Morscher, Gregory N.; Singh, Mrityunjay
2004-01-01
Hybrid fiber approaches have been attempted in the past to alloy desirable properties of different fiber-types for mechanical properties, thermal stress management, and oxidation resistance. Such an approach has potential for the CrSiC and SiCrSiC composite systems. SiC matrix composites with different stacking sequences of woven C fiber (T300) layers and woven Sic fiber (Hi-NicalonTM) layers were fabricated using the standard CVI process. Delamination occurred to some extent due to thermal mismatch for all of the composites. However, for the composites with a more uniform stacking sequence, minimal delamination occurred, enabling tensile properties to be determined at room temperature and elevated temperatures (stress-rupture in air). Composites were seal-coated with a CVI SiC layer as well as a proprietary C-B-Si (CBS) layer. Definite improvement in rupture behavior was observed in air for composites with increasing SiC fiber content and a CBS layer. The results will be compared to standard C fiber reinforced CVI SiC matrix and Hi-Nicalon reinforced CVI SiC matrix composites.
High-temperature effects on the light transmission through sapphire optical fiber
Wilson, Brandon A.; Petrie, Christian M.; Blue, Thomas E.
2018-03-13
Single crystal sapphire optical fiber was tested at high temperatures (1500°C) to determine its suitability for optical instrumentation in high-temperature environments. Broadband light transmission (450-2300 nm) through sapphire fiber was measured as a function of temperature as a test of the fiber's ability to survive and operate in high-temperature environments. Upon heating sapphire fiber to 1400°C, large amounts of light attenuation were measured across the entire range of light wavelengths that were tested. SEM and TEM images of the heated sapphire fiber indicated that a layer had formed at the surface of the fiber, most likely due to a chemicalmore » change at high temperatures. The microscopy results suggest that the surface layer may be in the form of aluminum hydroxide. Subsequent tests of sapphire fiber in an inert atmosphere showed minimal light attenuation at high temperatures along with the elimination of any surface layers on the fiber, indicating that the air atmosphere is indeed responsible for the increased attenuation and surface layer formation at high temperatures.« less
High-temperature effects on the light transmission through sapphire optical fiber
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wilson, Brandon A.; Petrie, Christian M.; Blue, Thomas E.
Single crystal sapphire optical fiber was tested at high temperatures (1500°C) to determine its suitability for optical instrumentation in high-temperature environments. Broadband light transmission (450-2300 nm) through sapphire fiber was measured as a function of temperature as a test of the fiber's ability to survive and operate in high-temperature environments. Upon heating sapphire fiber to 1400°C, large amounts of light attenuation were measured across the entire range of light wavelengths that were tested. SEM and TEM images of the heated sapphire fiber indicated that a layer had formed at the surface of the fiber, most likely due to a chemicalmore » change at high temperatures. The microscopy results suggest that the surface layer may be in the form of aluminum hydroxide. Subsequent tests of sapphire fiber in an inert atmosphere showed minimal light attenuation at high temperatures along with the elimination of any surface layers on the fiber, indicating that the air atmosphere is indeed responsible for the increased attenuation and surface layer formation at high temperatures.« less
NASA Astrophysics Data System (ADS)
Paimushin, V. N.; Kholmogorov, S. A.; Gazizullin, R. K.
2018-01-01
One-dimensional linearized problems on the possible buckling modes of an internal or peripheral layer of unidirectional multilayer composites with rectilinear fibers under compression in the fiber direction are considered. The investigations are carried out using the known Kirchhoff-Love and Timoshenko models for the layers. The binder, modeled as an elastic foundation, is described by the equations of elasticity theory, which are simplified in accordance to the model of a transversely soft layer and are integrated along the transverse coordinate considering the kinematic coupling relations for a layer and foundation layers. Exact analytical solutions of the problems formulated are found, which are used to calculate a composite made of an HSE 180 REM prepreg based on a unidirectional carbon fiber tape. The possible buckling modes of its internal and peripheral layers are identified. Calculation results are compared with experimental data obtained earlier. It is concluded that, for the composite studied, the flexural buckling of layers in the uniform axial compression of specimens along fibers is impossible — the failure mechanism is delamination with buckling of a fiber bundle according to the pure shear mode. It is realized (due to the low average transverse shear modulus) at the value of the ultimate compression stress equal to the average shear modulus. It is shown that such a shear buckling mode can be identified only on the basis of equations constructed using the Timoshenko shear model to describe the deformation process of layers.
Vector dissipative solitons in graphene mode locked fiber lasers
NASA Astrophysics Data System (ADS)
Zhang, Han; Tang, Dingyuan; Zhao, Luming; Bao, Qiaoliang; Loh, Kian Ping
2010-09-01
Vector soliton operation of erbium-doped fiber lasers mode locked with atomic layer graphene was experimentally investigated. Either the polarization rotation or polarization locked vector dissipative solitons were experimentally obtained in a dispersion-managed cavity fiber laser with large net cavity dispersion, while in the anomalous dispersion cavity fiber laser, the phase locked nonlinear Schrödinger equation (NLSE) solitons and induced NLSE soliton were experimentally observed. The vector soliton operation of the fiber lasers unambiguously confirms the polarization insensitive saturable absorption of the atomic layer graphene when the light is incident perpendicular to its 2-dimentional (2D) atomic layer.
Fiber optic mounted laser driven flyer plates
Paisley, Dennis L.
1991-01-01
A laser driven flyer plate where the flyer plate is deposited directly onto the squared end of an optical fiber. The plasma generated by a laser pulse drives the flyer plate toward a target. In another embodiment, a first metal layer is deposited onto the squared end of an optical fiber, followed by a layer of a dielectric material and a second metal layer. The laser pulse generates a plasma in the first metal layer, but the plasma is kept away from the second metal layer by the dielectric layer until the pressure reaches the point where shearing occurs.
Emergency medical care for spectators attending National Football League games.
Roberts, D M; Blackwell, T H; Marx, J A
1997-01-01
To analyze medical care facilities and resources available for spectators attending football games in the current National Football League (NFL) stadiums. A prospective, structured questionnaire regarding facilities, transportation, medications and equipment, personnel configuration, compensation, and communications was mailed to all 28 NFL organizations. Those falling to respond were interviewed by telephone using the identical questionnaire. Data were compiled using Lotus 1-2-3. Data were collected from all 28 NFL organizations. Because two teams use the same stadium, results were calculated for 27 facilities (n = 27). The number of stadium first aid rooms ranges from 1 to 7, with an average of 2.4 +/- 1.3 rooms per stadium (+/- 1 SD) and these vary in size from 120 to 2,000 square feet, with a mean of 434 +/- 377 square feet. Each room is equipped with an average of 3.3 +/- 2.9 stretchers (or tables), with telephones being present in 91% and sinks in 88% of all rooms. To provide contractual EMS coverage, stadiums use standard EMS system designs, including private (n = 19), fire department-based (n = 7), municipal (city/county) (n = 5), volunteer (n = 4), and hospital (n = 3). Nine stadiums employ more than one type of provider. All stadiums have a minimum of one ambulance dedicated on-site for spectators, with a range of 1 to 7, and a mean of 2.9 +/- 1.4. Golf carts are used for intrafacility patient transportation in 17 stadiums, with a range of 1 to 6, and a mean of 2.5 +/- 1.3. Advanced Cardiac Life Support (ACLS) medications and equipment are present in all NFL stadiums and are provided by the private EMS company (n = 16), stadium (n = 10), fire EMS (n = 7), hospitals (n = 4), municipal EMS (n = 2), and the local NFL organization (n = 1). Several facilities have more than one provider of ACLS medications and equipment. The majority of stadiums dispense acetaminophen (n = 25) and aspirin (n = 24). Some dispense antacids (n = 7) and antihistamines (n = 6). The average stadium staffs 8 EMT-Bs, 7 EMT-Ps, 3 registered nurses, and 2 physicians. Nine stadiums pay a predesignated fee per game to an agency to provide emergency care to spectators. Medical personnel are compensated by an hourly rate (n = 15), a fixed rate per event (n = 9), overtime wages (n = 3), or volunteerism (n = 4). Four NFL organizations pay their medical personnel by more than one type of compensation. Courtesy seats are provided to physicians and nurses in 1 stadium and to just physicians in 8 stadiums, with a range of 2 to 6 and a mean of 3.3 +/- 1.3. All stadiums use two-way radios for the communication and coordination of medical care in the stadium. Additionally, 20 use fixed telephones in the first aid rooms, 3 use cellular telephones, and 2 incorporate a pager system to dispatch personnel within the stadium. A wide variety of system designs, facilities, and personnel configurations are used to provide emergency medical care for spectators attending NFL games. This information may be useful for assisting those individuals responsible for organizing stadium medical coverage.
Guthoff, Rudolf F; Wienss, Holger; Hahnel, Christian; Wree, Andreas
2005-07-01
Evaluation of a new method to visualize distribution and morphology of human corneal nerves (Adelta- and C-fibers) by means of fluorescence staining, confocal laser scanning microscopy, and 3-dimensional (3D) reconstruction. Trephinates of corneas with a diagnosis of Fuchs corneal dystrophy were sliced into layers of 200 microm thickness using a Draeger microkeratome (Storz, Germany). The anterior lamella was stained with the Life/Dead-Kit (Molecular Probes Inc.), examined by the confocal laser scanning microscope "Odyssey XL," step size between 0.5 and 1 microm, and optical sections were digitally 3D-reconstructed. Immediate staining of explanted corneas by the Life/Dead-Kit gave a complete picture of the nerves in the central human cornea. Thin nerves running parallel to the Bowman layer in the subepithelial plexus perforate the Bowman layer orthogonally through tube-like structures. Passing the Bowman layer, Adelta- and C-fibers can be clearly distinguished by fiber diameter, and, while running in the basal epithelial plexus, by their spatial arrangement. Adelta-fibers run straight and parallel to the Bowman layer underneath the basal cell layer. C-fibers, after a short run parallel to the Bowman layer, send off multiple branches penetrating epithelial cell layers orthogonally, ending blindly in invaginations of the superficial cells. In contrast to C-fibers, Adelta-fibers show characteristic bulbous formations when kinking into the basal epithelial plexus. Ex-vivo fluorescence staining of the cornea and 3D reconstructions of confocal scans provide a fast and easily reproducible tool to visualize nerves of the anterior living cornea at high resolution. This may help to clarify gross variations of nerve fiber patterns under various clinical and experimental conditions.
Characterization of BN rich layer on ammonia treated Nextel{trademark}312 fibers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khasgiwale, N.R.; Butler, E.P.; Tsakalakos, L.
A BN rich layer grown on Nextel{trademark}312 fibers by appropriate ammonia treatments was evaluated using various complimentary techniques including X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Scanning Electron Microscopy (SEM), and Transmission Electron Microscopy (TEM)/Parallel Electron Energy Loss Spectroscopy (PEELS in TEM). Three different ammonia treatments were studied. Ammonia treatment resulted in crystallization of the Nextel{trademark}312 fiber. The BN rich surface layer formed due to ammonia treatment was clearly detected in XPS and PEELS both before and after oxidation. The layer thickness was estimated to be between 5--10 nm. The layer was stable after oxidation treatment at 600 C formore » 100 hours. High resolution TEM observations of the fiber surface revealed a variable BN rich layer thickness. Patches of turbostratic BN were observed under certain conditions, however mostly the layer appeared to be amorphous.« less
Static and Dynamic Behavior of High Modulus Hybrid Boron/Glass/Aluminum Fiber Metal Laminates
NASA Astrophysics Data System (ADS)
Yeh, Po-Ching
2011-12-01
This dissertation presents the investigation of a newly developed hybrid fiber metal laminates (FMLs) which contains commingled boron fibers, glass fibers, and 2024-T3 aluminum sheets. Two types of hybrid boron/glass/aluminum FMLs are developed. The first, type I hybrid FMLs, contained a layer of boron fiber prepreg in between two layers of S2-glass fiber prepreg, sandwiched by two aluminum alloy 2024-T3 sheets. The second, type II hybrid FMLs, contained three layer of commingled hybrid boron/glass fiber prepreg layers, sandwiched by two aluminum alloy 2024-T3 sheets. The mechanical behavior and deformation characteristics including blunt notch strength, bearing strength and fatigue behavior of these two types of hybrid boron/glass/aluminum FMLs were investigated. Compared to traditional S2-glass fiber reinforced aluminum laminates (GLARE), the newly developed hybrid boron/glass/aluminum fiber metal laminates possess high modulus, high yielding stress, and good blunt notch properties. From the bearing test result, the hybrid boron/glass/aluminum fiber metal laminates showed outstanding bearing strength. The high fiber volume fraction of boron fibers in type II laminates lead to a higher bearing strength compared to both type I laminates and traditional GLARE. Both types of hybrid FMLs have improved fatigue crack initiation lives and excellent fatigue crack propagation resistance compared to traditional GLARE. The incorporation of the boron fibers improved the Young's modulus of the composite layer in FMLs, which in turn, improved the fatigue crack initiation life and crack propagation rates of the aluminum sheets. Moreover, a finite element model was established to predict and verify the properties of hybrid boron/glass/aluminum FMLs. The simulated results showed good agreement with the experimental results.
Cellulose fiber-enzyme composites fabricated through layer-by-layer nanoassembly.
Xing, Qi; Eadula, Sandeep R; Lvov, Yuri M
2007-06-01
Cellulose microfibers were coated with enzymes, laccase and urease, through layer-by-layer assembly by alternate adsorption with oppositely charged polycations. The formation of organized polyelectrolyte and enzyme multilayer films of 15-20 nm thickness was demonstrated by quartz crystal microbalance, zeta-potential analysis, and confocal laser scanning microscopy. These biocomposites retained enzymatic catalytic activity, which was proportional to the number of coated enzyme layers. For laccase-fiber composites, around 50% of its initial activity was retained after 2 weeks of storage at 4 degrees C. The synthesis of calcium carbonate microparticles on urease-fiber composites confirmed urease functionality and demonstrated its possible applications. This strategy could be employed to fabricate fiber-based composites with novel biological functions.
Solomon, Gary S; Kuhn, Andrew W; Zuckerman, Scott L; Casson, Ira R; Viano, David C; Lovell, Mark R; Sills, Allen K
2016-05-01
A recent study found that an earlier age of first exposure (AFE) to tackle football was associated with long-term neurocognitive impairment in retired National Football League (NFL) players. To assess the association between years of exposure to pre-high school football (PreYOE) and neuroradiological, neurological, and neuropsychological outcome measures in a different sample of retired NFL players. Cross-sectional study; Level of evidence, 3. Forty-five former NFL players were included in this study. All participants prospectively completed extensive history taking, a neurological examination, brain magnetic resonance imaging, and a comprehensive battery of neuropsychological tests. To measure the associations between PreYOE and these outcome measures, multiple regression models were utilized while controlling for several covariates. After applying a Bonferroni correction for multiple comparisons, none of the neurological, neuroradiological, or neuropsychological outcome measures yielded a significant relationship with PreYOE. A second Bonferroni-corrected analysis of a subset of these athletes with self-reported learning disability yielded no significant relationships on paper-and-pencil neurocognitive tests but did result in a significant association between learning disability and computerized indices of visual motor speed and reaction time. The current study failed to replicate the results of a prior study, which concluded that an earlier AFE to tackle football might result in long-term neurocognitive deficits. In 45 retired NFL athletes, there were no associations between PreYOE and neuroradiological, neurological, and neuropsychological outcome measures. © 2016 The Author(s).
Blood–brain barrier integrity, intrathecal immunoactivation, and neuronal injury in HIV
Yilmaz, Aylin; Hagberg, Lars; Zetterberg, Henrik; Nilsson, Staffan; Brew, Bruce J.; Fuchs, Dietmar; Price, Richard W.; Gisslén, Magnus
2016-01-01
Objective: Although blood–brain barrier (BBB) impairment has been reported in HIV-infected individuals, characterization of this impairment has not been clearly defined. Methods: BBB integrity was measured by CSF/plasma albumin ratio in this cross-sectional study of 631 HIV-infected individuals and 71 controls. We also analyzed CSF and blood HIV RNA and neopterin, CSF leukocyte count, and neurofilament light chain protein (NFL) concentrations. The HIV-infected participants included untreated neuroasymptomatic patients, patients with untreated HIV-associated dementia (HAD), and participants on suppressive antiretroviral treatment (ART). Results: The albumin ratio was significantly increased in patients with HAD compared to all other groups. There were no significant differences between untreated neuroasymptomatic participants, treated participants, and controls. BBB integrity, however, correlated significantly with CSF leukocyte count, CSF HIV RNA, serum and CSF neopterin, and age in untreated neuroasymptomatic participants. In a multiple linear regression analysis, age, CSF neopterin, and CSF leukocyte count stood out as independent predictors of albumin ratio. A significant correlation was found between albumin ratio and CSF NFL in untreated neuroasymptomatic patients and in participants on ART. Albumin ratio, age, and CD4 cell count were confirmed as independent predictors of CSF NFL in multivariable analysis. Conclusions: BBB disruption was mainly found in patients with HAD, where BBB damage correlated with CNS immunoactivation. Albumin ratios also correlated with CSF inflammatory markers and NFL in untreated neuroasymptomatic participants. These findings give support to the association among BBB deterioration, intrathecal immunoactivation, and neuronal injury in untreated neuroasymptomatic HIV-infected individuals. PMID:27868081
Yuan, Yin; Xu, Xiu-yue; Lao, Jie; Zhao, Xin
2018-01-01
Nerve transfer is the most common treatment for total brachial plexus avulsion injury. After nerve transfer, the movement of the injured limb may be activated by certain movements of the healthy limb at the early stage of recovery, i.e., trans-hemispheric reorganization. Previous studies have focused on functional magnetic resonance imaging and changes in brain-derived neurotrophic factor and growth associated protein 43, but there have been no proteomics studies. In this study, we designed a rat model of total brachial plexus avulsion injury involving contralateral C7 nerve transfer. Isobaric tags for relative and absolute quantitation and western blot assay were then used to screen differentially expressed proteins in bilateral motor cortices. We found that most differentially expressed proteins in both cortices of upper limb were associated with nervous system development and function (including neuron differentiation and development, axonogenesis, and guidance), microtubule and cytoskeleton organization, synapse plasticity, and transmission of nerve impulses. Two key differentially expressed proteins, neurofilament light (NFL) and Thy-1, were identified. In contralateral cortex, the NFL level was upregulated 2 weeks after transfer and downregulated at 1 and 5 months. The Thy-1 level was upregulated from 1 to 5 months. In the affected cortex, the NFL level increased gradually from 1 to 5 months. Western blot results of key differentially expressed proteins were consistent with the proteomic findings. These results indicate that NFL and Thy-1 play an important role in trans-hemispheric organization following total brachial plexus root avulsion and contralateral C7 nerve transfer. PMID:29557385
Hybrid Composite Cryogenic Tank Structure
NASA Technical Reports Server (NTRS)
DeLay, Thomas
2011-01-01
A hybrid lightweight composite tank has been created using specially designed materials and manufacturing processes. The tank is produced by using a hybrid structure consisting of at least two reinforced composite material systems. The inner composite layer comprises a distinct fiber and resin matrix suitable for cryogenic use that is a braided-sleeve (and/or a filamentwound layer) aramid fiber preform that is placed on a removable mandrel (outfitted with metallic end fittings) and is infused (vacuum-assisted resin transfer molded) with a polyurethane resin matrix with a high ductility at low temperatures. This inner layer is allowed to cure and is encapsulated with a filamentwound outer composite layer of a distinct fiber resin system. Both inner and outer layer are in intimate contact, and can also be cured at the same time. The outer layer is a material that performs well for low temperature pressure vessels, and it can rely on the inner layer to act as a liner to contain the fluids. The outer layer can be a variety of materials, but the best embodiment may be the use of a continuous tow of carbon fiber (T-1000 carbon, or others), or other high-strength fibers combined with a high ductility epoxy resin matrix, or a polyurethane matrix, which performs well at low temperatures. After curing, the mandrel can be removed from the outer layer. While the hybrid structure is not limited to two particular materials, a preferred version of the tank has been demonstrated on an actual test tank article cycled at high pressures with liquid nitrogen and liquid hydrogen, and the best version is an inner layer of PBO (poly-pphenylenebenzobisoxazole) fibers with a polyurethane matrix and an outer layer of T-1000 carbon with a high elongation epoxy matrix suitable for cryogenic temperatures. A polyurethane matrix has also been used for the outer layer. The construction method is ideal because the fiber and resin of the inner layer has a high strain to failure at cryogenic temperatures, and will not crack or produce leaks. The outer layer serves as more of a high-performance structural unit for the inner layer, and can handle external environments.
Development of lightweight THUNDER with fiber composite layers
NASA Astrophysics Data System (ADS)
Yoon, Kwang J.; Shin, Sukjoon; Kim, Jusik; Park, Hoon C.; Kwak, Moon K.
2000-06-01
This paper is concerned with design, manufacturing and performance test of lightweight THUNDER using a top fiber composite layer with near-zero CTE, a PZT ceramic wafer and a bottom glass/epoxy layer with high CTE. The main point of this design is to replace the heavy metal layers of THUNDER by the lightweight fiber reinforced plastic layers without losing capabilities to generate high force and displacement. It is possible to save weight up to about 30 percent if we replace the metallic backing materials by the light fiber composite layer. We can also have design flexibility by selecting the fiber direction and the size of prepreg layers. In addition to the lightweight advantage and design flexibility, the proposed device can be manufactured without adhesive layers when we use epoxy resin prepreg system. Glass/epoxy prepregs, a ceramic wafer with electrode surfaces, and a graphite/epoxy prepreg were simply stacked and cured at an elevated temperature by following autoclave bagging process. It was found that the manufactured composite laminate device had a sufficient curvature after detaching form a flat mold. From experimental actuation tests, it was observed that the developed actuator could generate larger actuation displacement than THUNDER.
Flexural Progressive Failure of Carbon/Glass Interlayer and Intralayer Hybrid Composites.
Wang, Qingtao; Wu, Weili; Gong, Zhili; Li, Wei
2018-04-17
The flexural progressive failure modes of carbon fiber and glass fiber (C/G) interlayer and intralayer hybrid composites were investigated in this work. Results showed that the bending failure modes for interlayer hybrid composites are determined by the layup structure. Besides, the bending failure is characterized by the compression failure of the upper layer, when carbon fiber tends to distribute in the upper layer, the interlayer hybrid composite fails early, the failure force is characterized by a multi-stage slightly fluctuating decline and the fracture area exhibits a diamond shape. While carbon fiber distributes in the middle or bottom layer, the failure time starts late, and the failure process exhibits one stage sharp force/stress drop, the fracture zone of glass fiber above the carbon layers presents an inverted trapezoid shape, while the fracture of glass fiber below the carbon layers exhibits an inverted triangular shape. With regards to the intralayer hybrid composites, the C/G hybrid ratio plays a dominating role in the bending failure which could be considered as the mixed failures of four structures. The bending failure of intralayer hybrid composites occurs in advance since carbon fiber are located in each layer; the failure process shows a multi-stage fluctuating decline, and the decline slows down as carbon fiber content increases, and the fracture sound release has the characteristics of a low intensity and high frequency for a long time. By contrast, as glass fiber content increases, the bending failure of intralayer composites is featured with a multi-stage cliff decline with a high amplitude and low frequency for a short-time fracture sound release.
NASA Astrophysics Data System (ADS)
Arregui, Francisco J.; Matías, Ignacio R.; Claus, Richard O.
2007-07-01
The Layer-by-Layer Electrostatic Self-Assembly (ESA) method has been successfully used for the design and fabrication of nanostructured materials. More specifically, this technique has been applied for the deposition of thin films on optical fibers with the purpose of fabricating different types of optical fiber sensors. In fact, optical fiber sensors for measuring humidity, temperature, pH, hydrogen peroxide, glucose, volatile organic compounds or even gluten have been already experimentally demonstrated. The versatility of this technique allows the deposition of these sensing coatings on flat substrates and complex geometries as well. For instance, nanoFabry-Perots and microgratings have been formed on cleaved ends of optical fibers (flat surfaces) and also sensing coatings have been built onto long period gratings (cylindrical shape), tapered fiber ends (conical shape), biconically tapered fibers or even the internal side of hollow core fibers. Among the different materials used for the construction of these sensing nanostructured coatings, diverse types such as polymers, inorganic semiconductors, colorimetric indicators, fluorescent dyes, quantum dots or even biological elements as enzymes can be found. This technique opens the door to the fabrication of new types of optical fiber sensors.
Study of modeling aspects of long period fiber grating using three-layer fiber geometry
NASA Astrophysics Data System (ADS)
Singh, Amit
2015-03-01
The author studied and demonstrated the various modeling aspects of long period fiber grating (LPFG) such as the core effective index, cladding effective index, coupling coefficient, coupled mode theory, and transmission spectrum of the LPFG using three-layer fiber geometry. Actually, there are two different techniques used for theoretical modeling of the long period fiber grating. The first technique was used by Vengsarkar et al who described the phenomenon of long-period fiber gratings, and the second technique was reported by Erdogan who revealed the inaccuracies and shortcomings of the original method, thereby providing an accurate and updated alternative. The main difference between these two different approaches lies in their fiber geometry. Venserkar et al used two-layer fiber geometry which is simple but employs weakly guided approximation, whereas Erdogan used three-layer fiber geometry which is complex but also the most accurate technique for theoretical study of the LPFG. The author further discussed about the behavior of the transmission spectrum by altering different grating parameters such as the grating length, ultraviolet (UV) induced-index change, and grating period to achieve the desired flexibility. The author simulated the various results with the help of MATLAB.
Effects of Constituents and Lay-up Configuration on Drop-Weight Tests of Fiber-Metal Laminates
NASA Astrophysics Data System (ADS)
Liu, Yanxiong; Liaw, Benjamin
2010-02-01
Impact responses and damage of various fiber-metal laminates were studied using a drop-weight instrument with the post-impact damage characteristics being evaluated through ultrasonic and mechanical sectioning techniques. The first severe failure induced by the low-velocity drop-weight impact occurred as delamination between the aluminum and fiber-epoxy layers at the non-impact side. It was followed by a visible shear crack in the outer aluminum layer on the non-impact face. Through-thickness shear cracks in the aluminum sheets and severe damage in the fiber laminated layers (including delamination between adjacent fiber-epoxy laminae with different fiber orientations) developed under higher energy impacts. The impact properties of fiber-metal laminates varied with different constituent materials and fiber orientations. Since it was punched through easily, the aramid-fiber reinforced fiber-metal laminates (ARALL) offered poorer impact resistance than the glass-fiber reinforced fiber-metal laminates (GLARE). Tougher and more ductile aluminum alloys improved the impact resistance. GLARE made of cross-ply prepregs provided better impact resistance than GLARE with unidirectional plies.
Bent-core fiber structure: Experimental and theoretical studies of fiber stability
NASA Astrophysics Data System (ADS)
Bailey, C.; Gartland, E.; Jakli, A.
2007-03-01
Recent studies have shown that bent core liquid crystals in the B7 and B2 phases can form stable freestanding fibers with a so called ``jelly-roll'' layer configuration, which means that the smectic layers would be arranged in concentric cylindrical shells. This configuration shows layer curvature is necessary for fiber stability. Classically this effect would destabilize the fiber configuration because of the energy cost of layer distortions and surface tension. We propose a model that can predict fiber stability in the experimentally observed range of a few micrometers, by assuming that layer curvature can be stabilized by including a term dealing with the linear divergence of the polarization direction if the polarization is allowed to have a component normal to the smectic layers. We show that this term can stabilize the fiber configuration if its strength is larger than the surface tension. We also propose an entropic model to explain the strength of this term by considering steric effects. Finally we will take results from this model and apply them to better understand experimental findings of bent-core fibers. Financial support by NSF FRG under contract DMS-0456221. Prof. Daniel Phillips, Particia Bauman and Jie Shen at Purdue Univ., Prof. Maria Carme Calderer at Univ. of Minnesota, and Prof. Jonathan Selinger at Kent State Univ. Liou Qiu and Dr. O.D. Lavrentovich, Characterization Facilities, Liquid Crystal Institute, Kent State Univ. Julie Kim and Dr. Quan Li, Chemical Synthesis Facilities, Liquid Crystal Institute, Kent State Univ.
A polarization measurement method for the quantification of retardation in optic nerve fiber layer
NASA Astrophysics Data System (ADS)
Fukuma, Yasufumi; Okazaki, Yoshio; Shioiri, Takashi; Iida, Yukio; Kikuta, Hisao; Ohnuma, Kazuhiko
2008-02-01
The thickness measurement of the optic nerve fiber layer is one of the most important evaluations for carrying out glaucoma diagnosis. Because the optic nerve fiber layer has birefringence, the thickness can be measured by illuminating eye optics with circular polarized light and analyzing the elliptical rate of the detected polarized light reflected from the optic nerve fiber layer. In this method, the scattering light from the background and the retardation caused by the cornea disturbs the precise measurement. If the Stokes vector expressing the whole state of polarization can be detected, we can eliminate numerically the influence of the background scattering and of the retardation caused by the cornea. Because the retardation process of the eye optics can be represented by a numerical equation using the retardation matrix of each component and also the nonpolarized background scattering light, it can be calculated by using the Stokes vector. We applied a polarization analysis system that can detect the Stokes vector onto the fundus camera. The polarization analysis system is constructed with a CCD area image sensor, a linear polarizing plate, a micro phase plate array, and a circularly polarized light illumination unit. With this simply constructed system, we can calculate the retardation caused only by the optic nerve fiber layer and it can predict the thickness of the optic nerve fiber layer. We report the method and the results graphically showing the retardation of the optic nerve fiber layer without the retardation of the cornea.
Ceramic TBS/porous metal compliant layer
NASA Technical Reports Server (NTRS)
Tolokan, Robert P.; Jarrabet, G. P.
1992-01-01
Technetics Corporation manufactures metal fiber materials and components used in aerospace applications. Our technology base is fiber metal porous sheet material made from sinter bonded metal fibers. Fiber metals have percent densities (metal content by volume) from 10 to 65 percent. Various topics are covered and include the following: fiber metal materials, compliant layer thermal bayer coatings (TBC's), pad properties, ceramic/pad TBC design, thermal shock rig, fabrication, and applications.
NASA Astrophysics Data System (ADS)
Djordjevich, Alexandar; Simović, Ana; Savović, Svetislav; Drljača, Branko
2018-07-01
Infrared wavelength dependence of leaky mode losses and steady state distribution (SSD) in W-type glass optical fibers (doubly clad fibers with three layers) is investigated in this paper for parametrically varied depths and widths of the fiber's intermediate optical layer. This enables a tailoring of configuration of the W-type fiber to suit an application at hand. We have shown that the proposed W-type fiber has better transmission characteristics at longer infrared wavelengths.
Possible quantum valence criticality in CeCu6-xAux
NASA Astrophysics Data System (ADS)
Shiino, Takayuki; Nobe, Kohei; Imura, Keiichiro; Deguchi, Kazuhiko; Sato, Noriaki K.
2018-05-01
CeCu6-xAux is known as a heavy fermion compound that exhibits antiferromagnetism for x ≳ 0 . 1 and non-Fermi-liquid (NFL) behavior around the critical concentration xc ≈ 0 . 1. Although this material has been studied by means of a lot of experiments, the origin of its NFL is still veiled in mystery. In this study, we examine the magnetic properties of CeCu6-xAux for various values of x (0 ≤ x ≤ 0.8), and discuss the possibility that the quantum valence criticality might be responsible for the low-temperature magnetic properties.
Concussion classification via deep learning using whole-brain white matter fiber strains
Cai, Yunliang; Wu, Shaoju; Zhao, Wei; Li, Zhigang; Wu, Zheyang
2018-01-01
Developing an accurate and reliable injury predictor is central to the biomechanical studies of traumatic brain injury. State-of-the-art efforts continue to rely on empirical, scalar metrics based on kinematics or model-estimated tissue responses explicitly pre-defined in a specific brain region of interest. They could suffer from loss of information. A single training dataset has also been used to evaluate performance but without cross-validation. In this study, we developed a deep learning approach for concussion classification using implicit features of the entire voxel-wise white matter fiber strains. Using reconstructed American National Football League (NFL) injury cases, leave-one-out cross-validation was employed to objectively compare injury prediction performances against two baseline machine learning classifiers (support vector machine (SVM) and random forest (RF)) and four scalar metrics via univariate logistic regression (Brain Injury Criterion (BrIC), cumulative strain damage measure of the whole brain (CSDM-WB) and the corpus callosum (CSDM-CC), and peak fiber strain in the CC). Feature-based machine learning classifiers including deep learning, SVM, and RF consistently outperformed all scalar injury metrics across all performance categories (e.g., leave-one-out accuracy of 0.828–0.862 vs. 0.690–0.776, and .632+ error of 0.148–0.176 vs. 0.207–0.292). Further, deep learning achieved the best cross-validation accuracy, sensitivity, AUC, and .632+ error. These findings demonstrate the superior performances of deep learning in concussion prediction and suggest its promise for future applications in biomechanical investigations of traumatic brain injury. PMID:29795640
Concussion classification via deep learning using whole-brain white matter fiber strains.
Cai, Yunliang; Wu, Shaoju; Zhao, Wei; Li, Zhigang; Wu, Zheyang; Ji, Songbai
2018-01-01
Developing an accurate and reliable injury predictor is central to the biomechanical studies of traumatic brain injury. State-of-the-art efforts continue to rely on empirical, scalar metrics based on kinematics or model-estimated tissue responses explicitly pre-defined in a specific brain region of interest. They could suffer from loss of information. A single training dataset has also been used to evaluate performance but without cross-validation. In this study, we developed a deep learning approach for concussion classification using implicit features of the entire voxel-wise white matter fiber strains. Using reconstructed American National Football League (NFL) injury cases, leave-one-out cross-validation was employed to objectively compare injury prediction performances against two baseline machine learning classifiers (support vector machine (SVM) and random forest (RF)) and four scalar metrics via univariate logistic regression (Brain Injury Criterion (BrIC), cumulative strain damage measure of the whole brain (CSDM-WB) and the corpus callosum (CSDM-CC), and peak fiber strain in the CC). Feature-based machine learning classifiers including deep learning, SVM, and RF consistently outperformed all scalar injury metrics across all performance categories (e.g., leave-one-out accuracy of 0.828-0.862 vs. 0.690-0.776, and .632+ error of 0.148-0.176 vs. 0.207-0.292). Further, deep learning achieved the best cross-validation accuracy, sensitivity, AUC, and .632+ error. These findings demonstrate the superior performances of deep learning in concussion prediction and suggest its promise for future applications in biomechanical investigations of traumatic brain injury.
Continuous fiber reinforced mesh bond coat for environmental barrier coating system
Zhang, James; Das, Rupak; Roberts III, Herbert Chidsey; Delvaux, John McConnell
2017-09-26
A gas turbine blade may have a bond coat applied to its surface. A porous substrate may be applied to the bond layer and one or more protective layers may be applied to the bond layer such that the fiber mesh is embedded between the bond layer and the protective layer to prevent creep.
NASA Astrophysics Data System (ADS)
Gelikonov, V. M.; Gusovskiĭ, D. D.; Konoplev, Yu N.; Leonov, V. I.; Mamaev, Yu A.; Turkin, A. A.
1990-01-01
A model of a plane-layer waveguide is used in a theoretical analysis of the attenuation coefficients of the TM0 and TE0 waves in a fiber-optic polarizer with a metal film and two dielectric buffer layers, one of which is the residual part of the fiber cladding. A report is given of the construction and experimental investigation of polarizers with a buffer layer of magnesium fluoride and an aluminum film operating at wavelengths of 0.63 and 0.81 μm and characterized by extinction coefficients of at least 53 and 46 dB, respectively, and by losses not exceeding 0.5 dB.
Flexural Progressive Failure of Carbon/Glass Interlayer and Intralayer Hybrid Composites
Wu, Weili; Gong, Zhili
2018-01-01
The flexural progressive failure modes of carbon fiber and glass fiber (C/G) interlayer and intralayer hybrid composites were investigated in this work. Results showed that the bending failure modes for interlayer hybrid composites are determined by the layup structure. Besides, the bending failure is characterized by the compression failure of the upper layer, when carbon fiber tends to distribute in the upper layer, the interlayer hybrid composite fails early, the failure force is characterized by a multi-stage slightly fluctuating decline and the fracture area exhibits a diamond shape. While carbon fiber distributes in the middle or bottom layer, the failure time starts late, and the failure process exhibits one stage sharp force/stress drop, the fracture zone of glass fiber above the carbon layers presents an inverted trapezoid shape, while the fracture of glass fiber below the carbon layers exhibits an inverted triangular shape. With regards to the intralayer hybrid composites, the C/G hybrid ratio plays a dominating role in the bending failure which could be considered as the mixed failures of four structures. The bending failure of intralayer hybrid composites occurs in advance since carbon fiber are located in each layer; the failure process shows a multi-stage fluctuating decline, and the decline slows down as carbon fiber content increases, and the fracture sound release has the characteristics of a low intensity and high frequency for a long time. By contrast, as glass fiber content increases, the bending failure of intralayer composites is featured with a multi-stage cliff decline with a high amplitude and low frequency for a short-time fracture sound release. PMID:29673236
Liu, Zhi-Bo; He, Xiaoying; Wang, D N
2011-08-15
We demonstrate a nanosecond-pulse erbium-doped fiber laser that is passively mode locked by a hollow-core photonic crystal fiber filled with few-layered graphene oxide solution. Owing to the good solution processing capability of few-layered graphene oxide, which can be filled into the core of a hollow-core photonic crystal fiber through a selective hole filling process, a graphene saturable absorber can be successfully fabricated. The output pulses obtained have a center wavelength, pulse width, and repetition rate of 1561.2 nm, 4.85 ns, and 7.68 MHz, respectively. This method provides a simple and efficient approach to integrate the graphene into the optical fiber system. © 2011 Optical Society of America
Nwachukwu, Benedict U.; Premkumar, Ajay; Fader, Ryan; Bedi, Asheesh; Kelly, Bryan T.
2017-01-01
Objectives: There is an increased understanding of hip injury and femoroacetabular impingement (FAI) in elite athlete. Previous evidence suggests that hip pathology accounts for 10% of injuries in football players. The impact of FAI and arthroscopic FAI surgery has not been previously studied for National Football League (NFL) players. The purpose of this study was to investigate the impact of arthroscopic FAI surgery on return to play (RTP) and RTP performance in NFL players. Methods: NFL players undergoing arthroscopic FAI surgery between 2006 and 2014 by two surgeons were identified. Medical records were reviewed for demographic, clinical and operative variables. RTP and RTP performance was assessed based on a review of publically available NFL player statistics. RTP and RTP performance data included time to return to play, games played pre and post season of injury, yearly total yards and touchdowns for offensive players, and yearly total tackles, sacks, and interceptions for defensive players. Offensive power ratings (OPR = [total yards/10] + [total touchdowns × 6]) and defensive power ratings (DPR = total tackles + [total sacks × 2] + [total interceptions × 2]) were calculated for the pre-injury season and the post injury season. Paired t-tests comparing pre and post injury seasons were performed. Results: Forty-eight hips in 40 NFL players were included; eight players underwent bilateral hip arthroscopies. Included players underwent surgery at mean 25.6 years (SD+4.6) and had a mean body mass index of 31.3 (SD+4.6). The majority of players were offensive (N=24; 60%) with the offensive line (N=11; 27.5%) being the most common of all positions. Of the 48 included hips, all had labral tears and 41 (85.4%) underwent labral repair while the remainder had a debridement. Forty-two of the 48 hips (87.5%) underwent CAM decompression, 28 (58.3%) received Subspine decompression and ten (20.8%) underwent rim decompression. The capsule was repaired in 35 of the 48 (72.9%) hip surgeries. Of the 40 included players, 37 (92.5%) achieved RTP after their arthroscopic hip surgeries at mean of 6.0 months. Prior to injury, included patients played in a mean of 11.0 games compared to 9.5 games in their post surgery season (p=0.26). Mean offensive and defensive power ratings (OPR, DPR) demonstrated a non-significant decline in the post surgical season (OPR Pre-injury 40.2, OPR Post-Injury 32.3; p=0.34) (DPR Pre-Injury 49.6, DPR Post-Injury 36.4; p=0.10). There was no significant difference in mean annual salaries based on contracts negotiated pre-injury and the first negotiated contract after surgery (Pre-Injury: $3.3M; Post-Injury: $3.6M; p=0.58) Conclusion: There is a very high rate (92.5%) of return to play in the NFL after arthroscopic FAI surgery; this rate is higher than what has been previously reported for other orthopaedic procedures. Additionally, NFL players are able to achieve a return to sport at a faster time frame (6 months) than previously reported for other procedures. There does appear to be a non-significant decline in both offensive and defensive performance with defensive performance experiencing a greater magnitude of decline. It is unclear whether the decreased on-field statistics are attributable to the surgical procedure or an expected age related decline in performance. Undergoing surgery does not appear to have a financial impact however. These findings have important implications for counseling elite athletes about the expected impact of arthroscopic FAI surgery.
NASA Technical Reports Server (NTRS)
2004-01-01
We have successfully fabricate optical fiber with a thin layer of LiNbO3 at the boundary of the glass core and dear glass cladding. The construction of this fiber is based on our successful Semiconductor Cylinder Fibers (SCF). A schematic representation of a LiNbO3 Cylinder Fiber is shown. These fibers can be used as light modulators, sonar detectors and in other applications. The core diameter of the fiber is sufficiently small compared to the light wavelength and the indices of refraction of the core and cladding glasses are sufficiently close in value so that there is sufficient light at the core cladding boundary to interact with the LiNbO3 layer. This fiber functions best when just a single light mode propagates through the fiber. The idea for a LiNbO3 Cylinder Fiber came from Dr. Tracee Jamison of NASA. The optical properties of LiNbO3 can be changed with strain or the application of an electric field. Thus these fibers can be used as acoustic sensors as for example in a sonar. They can also be used as electric field operated light modulators. However, for this application the fibers would be made with a cross section in the form of a 'D'. The core with its surrounding LiNbO, layer would be close to the flat portion of the 'D' shaped fiber. Two metal contacts would be deposited on the flat portion of the fiber on either side of the core. A voltage applied across these contacts will result in an electric field in the core region that can be used for modulating the optical properties of the LiNbO, layer. To our knowledge this is the first ever LiNbO, Cylinder Fiber made.
NASA Technical Reports Server (NTRS)
Kornreich, Philip
2004-01-01
We have successfully fabricate optical fiber with a thin layer of LiNbO3 at the boundary of the glass core and clear glass cladding. The construction of this fiber is based on our successful Semiconductor Cylinder Fibers (SCF). A schematic representation of a LiN bo, Cylinder Fiber. These fibers can be used as light modulators, sonar detectors and in other applications. The core diameter of the fiber is sufficiently small compared to the light wavelength and the indices of refraction of the core and cladding glasses are sufficiently close in value so that there is sufficient light at the core cladding boundary to interact with the LiNbO3 layer. This fiber functions best when just a single light mode propagates through the fiber. The idea for a LiNbO3 Cylinder Fiber came from Dr. Tracee Jamison of NASA. The optical properties of LiNbO3 can be changed with strain or the application of an electric field. Thus these fibers can be used as acoustic sensors as for example in a sonar. They can also be used as electric field operated light modulators. However, for this application the fibers would be made with a cross section in the form of a "D". The core with its surrounding LiNbO, layer would be close to the flat portion of the "D" shaped fiber. Two metal contacts would be deposited on the flat portion of the fiber on either side of the core. A voltage applied across these contacts will result in an electric field in the core region that can be used for modulating the optical properties of the LiNbO3 layer. To our knowledge this is the first ever LiNbO3 Cylinder Fiber made.
Goossens, Joery; Bjerke, Maria; Van Mossevelde, Sara; Van den Bossche, Tobi; Goeman, Johan; De Vil, Bart; Sieben, Anne; Martin, Jean-Jacques; Cras, Patrick; De Deyn, Peter Paul; Van Broeckhoven, Christine; van der Zee, Julie; Engelborghs, Sebastiaan
2018-03-20
We explored the diagnostic performance of cerebrospinal fluid (CSF) biomarkers in allowing differentiation between frontotemporal lobar degeneration (FTLD) and Alzheimer's disease (AD), as well as between FTLD pathological subtypes. CSF levels of routine AD biomarkers (phosphorylated tau (p-tau 181 ), total tau (t-tau), and amyloid-beta (Aβ) 1-42 ) and neurofilament proteins, as well as progranulin levels in both CSF and serum were quantified in definite FTLD (n = 46), clinical AD (n = 45), and cognitively healthy controls (n = 20). FTLD subgroups were defined by genetic carrier status and/or postmortem neuropathological confirmation (FTLD-TDP: n = 34, including FTLD-C9orf72: n = 19 and FTLD-GRN: n = 9; FTLD-tau: n = 10). GRN mutation carriers had significantly lower progranulin levels compared to other FTLD patients, AD, and controls. Both t-tau and p-tau 181 were normal in FTLD patients, even in FTLD-tau. Aβ 1-42 levels were very variable in FTLD. Neurofilament light chain (Nf-L) was significantly higher in FTLD compared with AD and controls. The reference logistic regression model based on the established AD biomarkers could be improved by the inclusion of CSF Nf-L, which was also important for the differentiation between FTLD and controls. Within the FTLD cohort, no significant differences were found between FTLD-TDP and FTLD-tau, but GRN mutation carriers had higher t-tau and Nf-L levels than C9orf72 mutation carriers and FTLD-tau patients. There is an added value for Nf-L in the differential diagnosis of FTLD. Progranulin levels in CSF depend on mutation status, and GRN mutation carriers seem to be affected by more severe neurodegeneration.
Pokharel, Yashashwi; Macedo, Francisco Y; Nambi, Vijay; Martin, Seth S; Nasir, Khurram; Wong, Nathan D; Boone, Jeffrey; Roberts, Arthur J; Ballantyne, Christie M; Virani, Salim S
2014-07-01
Neck circumference (NC) is associated with metabolic syndrome (MetS) in the general population. It is not known if NC is associated with MetS and subclinical atherosclerosis in retired National Football League (NFL) players. We hypothesized that NC is associated with MetS and subclinical atherosclerosis (assessed as coronary artery calcium [CAC] and carotid artery plaque [CAP]) in retired NFL players. NC was measured midway between the midcervical spine and midanterior neck in 845 retired NFL players. CAC presence was defined as total CAC score >0. CAP was defined as carotid plaque of at least 50% greater than that of the surrounding vessel wall, with a minimal thickness of at least 1.2 mm on carotid ultrasound. Logistic regression analysis was used for the association of NC with CAC or CAP. Of the participants, 21% had MetS. CAC and CAP were present in 62% and 56%, respectively. Those with MetS had a higher median NC than those without MetS (17 vs 16 inches, P < 0.0001). NC was not associated with the presence of CAC or CAP in an unadjusted model and after adjusting for age, race, and cardiometabolic risk factors (odds ratio [OR]: 1.11, 95% confidence interval [CI]: 0.94-1.31 for CAC; OR: 0.96, 95% CI: 0.82-1.12 for CAP per 1-standard deviation increase in NC [3.8 inches]). The results were similar when the predictor variable was NC indexed to body mass index. In retired NFL players with a high prevalence of CAC and CAP, NC was not associated with coronary or carotid subclinical atherosclerosis. NC may not be the most appropriate risk marker for atherosclerosis. © 2014 Wiley Periodicals, Inc.
Pressure vessel with improved impact resistance and method of making the same
NASA Technical Reports Server (NTRS)
DeLay, Thomas K. (Inventor); Patterson, James E. (Inventor); Olson, Michael A. (Inventor)
2010-01-01
A composite overwrapped pressure vessel is provided which includes a composite overwrapping material including fibers disposed in a resin matrix. At least first and second kinds of fibers are used. These fibers typically have characteristics of high strength and high toughness to provide impact resistance with increased pressure handling capability and low weight. The fibers are applied to form a pressure vessel using wrapping or winding techniques with winding angles varied for specific performance characteristics. The fibers of different kinds are dispersed in a single layer of winding or wound in distinct separate layers. Layers of fabric comprised of such fibers are interspersed between windings for added strength or impact resistance. The weight percentages of the high toughness and high strength materials are varied to provide specified impact resistance characteristics. The resin matrix is formed with prepregnated fibers or through wet winding. The vessels are formed with or without liners.
The light transmission and distribution in an optical fiber coated with TiO2 particles.
Wang, Wen; Ku, Young
2003-03-01
The light delivery and distribution phenomena along the optical fiber coated with the P-25 TiO(2) particles by dipping was investigated. The surface properties (coverage, roughness and thickness) of the TiO(2) layer coated on the optical fiber were characterized by SEM micrographs. For TiO(2) layer prepared from solutions containing less than 20 wt.% of TiO(2) slurry, the thickness of layer was increased linearly with the TiO(2) slurry content in solutions. The UV light intensity transmitted along a TiO(2)-coated optical fiber decreased more rapidly than that transmitted along a non-coated fiber. Based on the experimental results, the light intensity distribution around a coated optical fiber was modeled to determine the optimum configuration for the design of optical fiber reactors under various operational conditions. Copyright 2002 Elsevier Science Ltd.
NASA Astrophysics Data System (ADS)
Xia, Hongyi; Steele, Charles R.; Puria, Sunil
2018-05-01
The gerbil basilar membrane (BM) differs from other mammalian BMs in that the lower collagen-fiber layer of the pectinate zone (PZ) forms an arch, the upper fiber layer is flat, and ground substance separates the two layers. The role of this arch has been unknown, but can be elucidated by models. In the standard simple beam model (SBM), the upper and lower collagen-fiber layers of the BM are represented as a single layer in both the PZ and the arcuate zone (AZ). In our new arch-beam model (ABM), the upper fiber layer is flat, the lower layer forms an arch in the PZ, and the two layers combine to form the flat portion of the BM in the AZ. This design is incorporated into a 3D finite-element tapered-box model of the cochlea with viscous fluid. We find in the model that the PZ rotates as a rigid body, so its specific properties have little influence, while the AZ thickness and collagen volume fraction primarily determine passive BM mechanics.
Khalf, Abdurizzagh; Madihally, Sundararajan V
2017-07-01
Recent advances in electrospinning allow the formation of multiple layers of micro and nanosize fibers to regulate drug/therapeutic agent release. Although there has been significant progress in fiber formation techniques and drug loading, fundamental models providing insights into controlling individual permeabilities is lacking. In this regard, we first explored forming coaxial hybrid fibers from hydrophobic poly(ε-caprolactone) (PCL) and hydrophilic gelatin (GT) in three different configurations, and the release of hydrophilic doxycycline (Dox) at 37°C over five days. Triaxial fibers were also formed with a GT layer between PCL/GT layers. Fibers were analyzed for fiber thickness, matrix porosity and thickness, surface morphologies, internal structures, stability in hydrated condition, viability and attachment of human adipocyte stem cells (hASC). Formed fibers were 10-30μm in diameter. hASC were viable, and showed attachment. Various release profiles were obtained from these fibers based on the combination of the core and shell polymers over five days. Using fiber characteristics and release profiles from each configuration, we obtained the overall permeability using Fick's first law and then individual layer permeability using resistance in series model. Calculated overall permeability showed dependency on fiber thickness and partition coefficient of the drug in the region where it was loaded. Our modeling approach helps in optimizing the electrospinning process, drug loading, and polymer solution configuration in regulating controlled release of a drug. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Charette, R. F.; Hyer, M. W.
1990-01-01
The influence is investigated of a curvilinear fiber format on load carrying capacity of a layered fiber reinforced plate with a centrally located hole. A curvilinear fiber format is descriptive of layers in a laminate having fibers which are aligned with the principal stress directions in those layers. Laminates of five curvilinear fiber format designs and four straightline fiber format designs are considered. A quasi-isotropic laminate having a straightline fiber format is used to define a baseline design for comparison with the other laminate designs. Four different plate geometries are considered and differentiated by two values of hole diameter/plate width equal to 1/6 and 1/3, and two values of plate length/plate width equal to 2 and 1. With the plates under uniaxial tensile loading on two opposing edges, alignment of fibers in the curvilinear layers with the principal stress directions is determined analytically by an iteration procedure. In-plane tensile load capacity is computed for all of the laminate designs using a finite element analysis method. A maximum strain failure criterion and the Tsai-Wu failure criterion are applied to determine failure loads and failure modes. Resistance to buckling of the laminate designs to uniaxial compressive loading is analyzed using the commercial code Engineering Analysis Language. Results indicate that the curvilinear fiber format laminates have higher in-plane tensile load capacity and comparable buckling resistance relative to the straightline fiber format laminates.
NASA Astrophysics Data System (ADS)
Burmistrova, Natalia A.; Bondarenko, Sergei D.; Bratashov, Daniil N.; Shuvalov, Andrei A.; Chibrova, Anastasiya A.; Khlebtsov, Boris N.; Skibina, Julia S.; Goryacheva, Irina Y.
2018-04-01
Photonic crystal fibers with hollow core (HC PCFs) are a specific class of optical fibers characterized by microstructure with periodic holes oriented along fiber. The combination of HC PCF with Raman spectroscopy for biosensors creation is attractive in the terms of the low sample volume, the possibility to increase the integration time without sample degradation and maintaining constant focus during experiments. Here we propose layer-by-layer polyelectrolyte coating of HC PCF inner surface in order to obtain charge-selective absorption of analyte, stabilization of Surface-Enhanced Raman scattering (SERS)-active gold nanoparticles. Distance between SERS hotspots and glass reduces nonlinear signals from glass, and increases signal-to-noise ratio of SERS spectra.
Composites with improved fiber-resin interfacial adhesion
NASA Technical Reports Server (NTRS)
Cizmecioglu, Muzaffer (Inventor)
1989-01-01
The adhesion of fiber reinforcement such as high modulus graphite to a matrix resin such as polycarbonate is greatly enhanced by applying a very thin layer, suitably from 50 Angstroms to below 1000 Angstroms, to the surface of the fiber such as by immersing the fiber in a dilute solution of the matrix resin in a volatile solvent followed by draining to remove excess solution and air drying to remove the solvent. The thin layer wets the fiber surface. The very dilute solution of matrix resin is able to impregnate multifilament fibers and the solution evenly flows onto the surface of the fibers. A thin uniform layer is formed on the surface of the fiber after removal of the solvent. The matrix resin coated fiber is completely wetted by the matrix resin during formation of the composite. Increased adhesion of the resin to the fibers is observed at fracture. At least 65 percent of the surface of the graphite fiber is covered with polycarbonate resin at fracture whereas uncoated fibers have very little matrix resin adhering to their surfaces at fracture and epoxy sized graphite fibers exhibit only slightly higher coverage with matrix resin at fracture. Flexural modulus of the composite containing matrix resin coated fibers is increased by 50 percent and flexural strength by 37 percent as compared to composites made with unsized fibers.
Theoretical investigation on multilayer nanocomposite-based fiber optic SPR sensor
NASA Astrophysics Data System (ADS)
Shojaie, Ehsan; Madanipour, Khosro; Gharibzadeh, Azadeh; Abbasi, Shabnam
2017-06-01
In this work, a multilayer nanocomposite based fiber optic SPR sensor is considered and especially designed for CO2 gas detection. This proposed fiber sensor consists of fiber core, gold-silver alloy and the absorber layers. The investigation is based on the evaluation of the transmitted-power derived under the transfer matrix method and the multiple-reflection in the sensing area. In terms of sensitivity, the sensor performance is studied theoretically under various conditions related to the metal layer and its gold and silver nanoparticles to form a single alloy film. Effect of additional parameters such as the ratio of the alloy composition and the thickness of the alloy film on the performance of the SPR sensor is studied, as well. Finally, a four-layer structure is introduced to detect carbon dioxide gas. It contains core fiber, gold-silver alloy layer, an absorbent layer of carbon dioxide gas (KOH) and measurement environment. Lower price and size are the main advantages of using such a sensor in compare with commercial (NDIR) gas sensor. Theoretical results show by increasing the metal layer thickness the sensitivity of sensor is increased, and by increasing the ratio of the gold in alloy the sensitivity is decreased.
NASA Astrophysics Data System (ADS)
Phanindra, V. Eswara; Agarwal, Piyush; Rana, D. S.
2018-01-01
The intertwined and competing energy scales of various interactions in rare-earth nickelates R Ni O3 (R =La to Lu) hold potential for a wide range of exotic ground states realized upon structural modulation. Using terahertz (THz) spectroscopy, the low-energy dynamics of a novel non-Fermi liquid (NFL) metallic phase induced in compressive PrNi O3 thin film was studied by evaluating the quasiparticle scattering rate in the light of two distinct models over a wide temperature range. First, evaluating THz conductivity in the framework of extended Drude model, the frequency-dependent scattering rate is found to deviate from the Landau Fermi liquid (LFL) behavior, thus, suggesting NFL-like phase at THz frequencies. Second, fitting THz conductivity to the multiband Drude-Lorentz model reveals the band-dependent scattering rates and provides microscopic interpretation of the carriers contributing to the Drude modes. This is first evidence of NFL-like behavior in nickelates at THz frequencies consistent with dc conductivity, which also suggests that THz technology is indispensable in understanding emerging electronic phases and associated phenomena. We further demonstrate that the metal-insulator transition in nickelates has the potential to design efficient THz modulators.
Pre-existing lumbar spine diagnosis as a predictor of outcomes in National Football League athletes.
Schroeder, Gregory D; Lynch, T Sean; Gibbs, Daniel B; Chow, Ian; LaBelle, Mark; Patel, Alpesh A; Savage, Jason W; Hsu, Wellington K; Nuber, Gordon W
2015-04-01
It is currently unknown how pre-existing lumbar spine conditions may affect the medical evaluation, draft status, and subsequent career performance of National Football League (NFL) players. To determine if a pre-existing lumbar diagnosis affects a player's draft status or his performance and longevity in the NFL. Cohort study; Level 3. The investigators evaluated the written medical evaluations and imaging reports of prospective NFL players from a single franchise during the NFL Scouting Combine from 2003 to 2011. Players with a reported lumbar spine diagnosis and with appropriate imaging were included in this study. Athletes were then matched to control draftees without a lumbar spine diagnosis by age, position, year, and round drafted. Career statistics and performance scores were calculated. Of a total of 2965 athletes evaluated, 414 were identified as having a pre-existing lumbar spine diagnosis. Players without a lumbar spine diagnosis were more likely to be drafted than were those with a diagnosis (80.2% vs. 61.1%, respectively, P < .001). Drafted athletes with pre-existing lumbar spine injuries had a decrease in the number of years played compared with the matched control group (4.0 vs. 4.3 years, respectively, P = .001), games played (46.5 vs. 50.8, respectively, P = .0001), and games started (28.1 vs. 30.6, respectively, P = .02) but not performance score (1.4 vs. 1.8, respectively, P = .13). Compared with controls, players were less likely to be drafted if they had been diagnosed with spondylosis (62.37% vs. 78.55%), a lumbar herniated disc (60.27% vs. 78.43%), or spondylolysis with or without spondylolisthesis (64.44% vs. 78.15%) (P < .001 for all), but there was no appreciable effect on career performance; however, the diagnosis of spondylolysis was associated with a decrease in career longevity (P < .05). Notably, 2 athletes who had undergone posterior lateral lumbar fusion were drafted. One played in 125 games, and the other is still active and has played in 108 games. The data in this study suggest that athletes with pre-existing lumbar spine conditions were less likely to be drafted and that the diagnosis is associated with a decrease in career longevity but not performance. Players with lumbar fusion have achieved successful careers in the NFL. © 2015 The Author(s).
Liu, Li; Hu, Shu; Wang, Lie; Sui, Guoyuan; Ma, Lei
2013-03-19
Although correctional officers (COs) clearly suffer from depression, positive resources for combating depression have been rarely studied in this population. The purpose of the study was to examine the associations of perceived organizational support (POS) and psychological capital (PsyCap) with depressive symptoms among Chinese COs. A cross-sectional survey was conducted in a province of northeast China during March-April 2011. A self-administered questionnaire was distributed to 1900 male COs from four male prisons. Depressive symptoms, POS, and PsyCap (self efficacy, hope, resilience, and optimism) were measured anonymously. A total of 1428 effective respondents with 953 frontline COs (FL-COs) and 475 non-frontline COs (NFL-COs) became our final sample. Hierarchical linear regression was performed to explore the factors associated with depressive symptoms. Asymptotic and resampling strategies were used to examine the mediating roles of PsyCap and its four components. The level of depressive symptoms of FL-COs was significantly higher than that of NFL-COs (t = 2.28, p = 0.023). There were significant negative associations of POS, PsyCap, hope, resilience, and optimism with depressive symptoms among FL-COs. In NFL-COs, POS, PsyCap, and optimism were negatively associated with depressive symptoms. POS was positively associated with PsyCap and its four components among both FL-COs and NFL-COs. For FL-COs, PsyCap (a*b = -0.143, BCa 95% CI: -0.186, -0.103, p < 0.05), resilience (a*b = -0.052, BCa 95% CI: -0.090, -0.017, p < 0.05), and optimism (a*b = -0.053, BCa 95% CI: -0.090, -0.016, p < 0.05) significantly mediated the association between POS and depressive symptoms. For NFL-COs, PsyCap (a*b = -0.126, BCa 95% CI: -0.186, -0.065, p < 0.05) and optimism (a*b = -0.066, BCa 95% CI: -0.116, -0.008, p < 0.05) significantly mediated the association. Perceived organizational support and psychological capital could be positive resources for combating depressive symptoms in Chinese male COs. Psychological capital and its components (resilience and optimism) partially mediate the association between perceived organizational support and depressive symptoms. Therefore, organizational support and psychological capital investment (especially resilience and optimism) should be included in depression preventions and treatments targeting Chinese male COs.
NASA Astrophysics Data System (ADS)
Iwai, Katsumasa; Takaku, Hiroyuki; Miyagi, Mitsunobu; Shi, Yi-Wei; Zhu, Xiao-Song; Matsuura, Yuji
2017-02-01
Flexible hollow fibers with 530-μm-bore size were developed for infrared laser delivery. Sturdy hollow fibers were fabricated by liquid-phase coating techniques. A silica glass capillary is used as the substrate. Acrylic silicone resin is used as a buffer layer and the buffer layer is firstly coated on the inner surface of the capillary to protect the glass tube from chemical damages due to the following silver plating process. A silver layer was inner-plated by using the conventional silver mirror-plating technique. To improve adhesion of catalyst to the buffer layer, a surface conditioner has been introduced in the method of silver mirror-plating technique. We discuss improvement of transmission properties of sturdy polymer-coated silver hollow fibers for the Er:YAG laser and red pilot beam delivery.
Acoustical evaluation of carbonized and activated cotton nonwovens.
Jiang, N; Chen, J Y; Parikh, D V
2009-12-01
An activated carbon fiber nonwoven (ACF) was manufactured from a cotton nonwoven fabric. For the ACF acoustic application, a nonwoven composite of ACF with cotton nonwoven as a base layer was developed. Also produced were the composites of the cotton nonwoven base layer with a layer of glassfiber nonwoven, and the cotton nonwoven base layer with a layer of cotton fiber nonwoven. Their noise absorption coefficients and sound transmission loss were measured using the Brüel and Kjaer impedance tube instrument. Statistical significance of the differences between the composites was tested using the method of Duncan's grouping. The study concluded that the ACF composite exhibited a greater ability to absorb normal incidence sound waves than the composites with either glassfiber or cotton fiber. The analysis of sound transmission loss revealed that the three composites still obeyed the mass law of transmission loss. The composite with the surface layer of cotton fiber nonwoven possessed a higher fabric density and therefore showed a better sound insulation than the composites with glassfiber and ACF.
Levillain, A; Orhant, M; Turquier, F; Hoc, T
2016-08-01
The linea alba is a complex structure commonly involved in hernia formation. Knowledge of its mechanical behavior is essential to design suitable meshes and reduce the risk of recurrence. The aim of this study was to investigate the relationships between the mechanical properties of the linea alba and the organization of collagen and elastin fibers. For that purpose, longitudinal and transversal samples were removed from four porcine and three human linea alba, to perform tensile tests under a biphotonic confocal microscope, in each direction. Microscopic observation revealed a tissue composed of two layers, made of transversal collagen fibers in the dorsal side and oblique collagen fibers in the ventral side. This particular architecture led to an anisotropic mechanical behavior, with higher stress in the transversal direction. During loading, oblique fibers of the ventral layer reoriented toward the tensile axis in both directions, while fibers of the dorsal layer remained in the transversal direction. This rotation of oblique fibers progressively increased the stiffness of the tissue and induced a non-linear stress-stretch relation. Elastin fibers formed a layer covering the collagen fibers and followed their movement, suggesting that they ensure their elastic recoil. All of these results demonstrated the strong relationships between the microstructure and the mechanical behavior of the linea alba. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Sohn, Kyung-Rak; Song, Jae-Won
2002-03-01
Using a side-polished single-mode fiber covered with a polished LiNbO 3 overlay and an intermediate coupling layer, tunable fiber-optic comb filters are demonstrated. The device behaviors based on the modal properties of the fiber and the planar LiNbO 3 waveguide are analyzed by two dimensional beam propagation methods (2-D BPM) and discussed the role of an intermediate coupling layer in terms of coupling efficiency. We also show that the thermo-optic effects of this layer can be utilized to tune the comb filter. When the polished x-cut LiNbO 3 with 200 μm thickness is used as a multimode overlay waveguide, the comb output spectra with free spectral range of 4 nm are measured in 1550 nm wavelength range. The tuning rate as a function of the refractive index of an intermediate coupling layer, Δλ/ Δnb, is about -0.129 nm/-0.001. The experimental results are in good agreement with the calculated results.
Massera, J; Ahmed, I; Petit, L; Aallos, V; Hupa, L
2014-04-01
This paper investigates the effect of fiber drawing on the thermal and structural properties as well as on the glass reactivity of a phosphate glass in tris(hydroxymethyl)aminomethane-buffered (TRIS) solution and simulated body fluid (SBF). The changes induced in the thermal properties suggest that the fiber drawing process leads to a weakening and probable re-orientation of the POP bonds. Whereas the fiber drawing did not significantly impact the release of P and Ca, an increase in the release of Na into the solution was noticed. This was probably due to small structural reorientations occurring during the fiber drawing process and to a slight diffusion of Na to the fiber surface. Both the powders from the bulk and the glass fibers formed a Ca-P surface layer when immersed in SBF and TRIS. The layer thickness was higher in the calcium and phosphate supersaturated SBF than in TRIS. This paper for the first time presents the in vitro reactivity and optical response of a phosphate-based bioactive glass (PBG) fiber when immersed in SBF. The light intensity remained constant for the first 48h after which a decrease with three distinct slopes was observed: the first decrease between 48 and 200h of immersion could be correlated to the formation of the Ca-P layer at the fiber surface. After this a faster decrease in light transmission was observed from 200 to ~425h in SBF. SEM analysis suggested that after 200h, the surface of the fiber was fully covered by a thin Ca-P layer which is likely to scatter light. For immersion times longer than ~425h, the thickness of the Ca-P layer increased and thus acted as a barrier to the dissolution process limiting further reduction in light transmission. The tracking of light transmission through the PBG fiber allowed monitoring of the fiber dissolution in vitro. These results are essential in developing new bioactive fiber sensors that can be used to monitor bioresponse in situ. Copyright © 2014 Elsevier B.V. All rights reserved.
Physical layer security in fiber-optic MIMO-SDM systems: An overview
NASA Astrophysics Data System (ADS)
Guan, Kyle; Cho, Junho; Winzer, Peter J.
2018-02-01
Fiber-optic transmission systems provide large capacities over enormous distances but are vulnerable to simple eavesdropping attacks at the physical layer. We classify key-based and keyless encryption and physical layer security techniques and discuss them in the context of optical multiple-input-multiple-output space-division multiplexed (MIMO-SDM) fiber-optic communication systems. We show that MIMO-SDM not only increases system capacity, but also ensures the confidentiality of information transmission. Based on recent numerical and experimental results, we review how the unique channel characteristics of MIMO-SDM can be exploited to provide various levels of physical layer security.
Triple-Layer Vascular Grafts Fabricated by Combined E-Jet 3D Printing and Electrospinning.
Huang, Ruiying; Gao, Xiangkai; Wang, Jian; Chen, Haoxiang; Tong, Chunyi; Tan, Yongjun; Tan, Zhikai
2018-05-29
Small-diameter tissue-engineered vascular grafts are urgently needed for clinic arterial substitute. To simulate the structures and functions of natural blood vessels, we designed a novel triple-layer poly(ε-caprolactone) (PCL) fibrous vascular graft by combining E-jet 3D printing and electrospinning techniques. The resultant vascular graft consisted of an interior layer comprising 3D-printed highly aligned strong fibers, a middle layer made by electrospun densely fibers, and an exterior structure composed of mixed fibers fabricated by co-electrospraying. The biocompatible triple-layer graft was used for in vivo implantation, and results demonstrated that the longitudinally-aligned fibers within the lumen of the graft could enhance the proliferation and migration of endothelial cells, while maintained good mechanical properties. The exterior layer provided a pathway that encouraged cells to migrate into the scaffold after implantation. This experimental graft overcame the limitations of conventionally electrospun vascular grafts of inadequate porosity and lowly cell penetration. The unique structure of the triple-layer vascular graft promoted cell growth and infiltration in vivo, thus provided an encouraging substitute for in situ tissue engineering.
Some features of the fabrication of multilayer fiber composites by explosive welding
NASA Technical Reports Server (NTRS)
Kotov, V. A.; Mikhaylov, A. N.; Cabelka, D.
1985-01-01
The fabrication of multilayer fiber composites by explosive welding is characterized by intense plastic deformation of the matrix material as it fills the spaces between fibers and by high velocity of the collision between matrix layers due to acceleration in the channels between fibers. The plastic deformation of the matrix layers and fiber-matrix friction provide mechanical and thermal activation of the contact surfaces, which contributes to the formation of a bond. An important feature of the process is that the fiber-matrix adhesion strength can be varied over a wide range by varying the parameters of impulsive loading.
NASA Astrophysics Data System (ADS)
SzelÄ g, M.; Lesiak, P.; Kuczkowski, M.; Domański, A. W.; Woliński, T. R.
2013-05-01
Results of our research on embedded highly birefringent polymer microstructured fibers are presented. A composite material sample with fibers embedded between two layers of a multi-layer composite structure is fabricated and characterized. Temperature sensitivities of the polymer fibers are measured in a free space and compared with the fibers embedded in the composite material. It appeared that highly birefringent polymer microstructured fibers exhibit a strong increase in temperature sensitivity when embedded in the composite material, which is due to the stress-induced changes in birefringence created by thermally-induced strain.
Bijelic-Donova, Jasmina; Garoushi, Sufyan; Lassila, Lippo V J; Vallittu, Pekka K
2015-02-01
An oxygen inhibition layer develops on surfaces exposed to air during polymerization of particulate filling composite. This study assessed the thickness of the oxygen inhibition layer of short-fiber-reinforced composite in comparison with conventional particulate filling composites. The effect of an oxygen inhibition layer on the shear bond strength of incrementally placed particulate filling composite layers was also evaluated. Four different restorative composites were selected: everX Posterior (a short-fiber-reinforced composite), Z250, SupremeXT, and Silorane. All composites were evaluated regarding the thickness of the oxygen inhibition layer and for shear bond strength. An equal amount of each composite was polymerized in air between two glass plates and the thickness of the oxygen inhibition layer was measured using a stereomicroscope. Cylindrical-shaped specimens were prepared for measurement of shear bond strength by placing incrementally two layers of the same composite material. Before applying the second composite layer, the first increment's bonding site was treated as follows: grinding with 1,000-grit silicon-carbide (SiC) abrasive paper, or treatment with ethanol or with water-spray. The inhibition depth was lowest (11.6 μm) for water-sprayed Silorane and greatest (22.9 μm) for the water-sprayed short-fiber-reinforced composite. The shear bond strength ranged from 5.8 MPa (ground Silorane) to 36.4 MPa (water-sprayed SupremeXT). The presence of an oxygen inhibition layer enhanced the interlayer shear bond strength of all investigated materials, but its absence resulted in cohesive and mixed failures only with the short-fiber-reinforced composite. Thus, more durable adhesion with short-fiber-reinforced composite is expected. © 2014 Eur J Oral Sci.
Effects of glass scraps powder and glass fiber on mechanical properties of polyester composites
NASA Astrophysics Data System (ADS)
Sonsakul, K.; Boongsood, W.
2017-11-01
One concern in bus manufacturing is the high cost of glass fiber reinforced in polyester composites parts. The composites of glass fiber and polyester are low elongation and high strength, and glass scraps powder displays high hardness and good chemical compatibility with the polymer matrix and glass fiber. This research aimed to study the effects of glass scraps powder and glass fiber on mechanical performance of polyester composites. Glass fiber was randomly oriented fiber and used as new. Glass scraps were obtained from a bus factory and crushed to powder sizes of 120 and 240 μm by a ball mill. Polyester composites were prepared using Vacuum Infusion Process (VIP).Polyester reinforced with 3 layers of glass fiber was an initial condition. Then, one layer of glass fiber was replaced with glass scraps powder. Flexural strength, tensile strength, impact strength and hardness of the polyester composites were determined. Hardness was increased with a combination of smaller size and higher volume of glass scraps powder. Pictures of specimens obtained by using scanning electron microscope (SEM) confirmed that the powder of glass scraps packed in the layers of glass fiber in polyester composites.
A Theoretical Model for Estimation of Yield Strength of Fiber Metal Laminate
NASA Astrophysics Data System (ADS)
Bhat, Sunil; Nagesh, Suresh; Umesh, C. K.; Narayanan, S.
2017-08-01
The paper presents a theoretical model for estimation of yield strength of fiber metal laminate. Principles of elasticity and formulation of residual stress are employed to determine the stress state in metal layer of the laminate that is found to be higher than the stress applied over the laminate resulting in reduced yield strength of the laminate in comparison with that of the metal layer. The model is tested over 4A-3/2 Glare laminate comprising three thin aerospace 2014-T6 aluminum alloy layers alternately bonded adhesively with two prepregs, each prepreg built up of three uni-directional glass fiber layers laid in longitudinal and transverse directions. Laminates with prepregs of E-Glass and S-Glass fibers are investigated separately under uni-axial tension. Yield strengths of both the Glare variants are found to be less than that of aluminum alloy with use of S-Glass fiber resulting in higher laminate yield strength than with the use of E-Glass fiber. Results from finite element analysis and tensile tests conducted over the laminates substantiate the theoretical model.
NASA Astrophysics Data System (ADS)
Yamanari, Masahiro; Miura, Masahiro; Makita, Shuichi; Yatagai, Toyohiko; Yasuno, Yoshiaki
2007-02-01
Birefringence of retinal nerve fiber layer is measured by polarization-sensitive spectral domain optical coherence tomography using the B-scan-oriented polarization modulation method. Birefringence of the optical fiber and the cornea is compensated by Jones matrix based analysis. Three-dimensional phase retardation map around the optic nerve head and en-face phase retardation map of the retinal nerve fiber layer are shown. Unlike scanning laser polarimetry, our system can measure the phase retardation quantitatively without using bow-tie pattern of the birefringence in the macular region, which enables diagnosis of glaucoma even if the patients have macular disease.
NASA Astrophysics Data System (ADS)
Khan, Zeeshan; Islam, Saeed; Shah, Rehan Ali; Khan, Muhammad Altaf; Bonyah, Ebenezer; Jan, Bilal; Khan, Aurangzeb
Modern optical fibers require a double-layer coating on the glass fiber in order to provide protection from signal attenuation and mechanical damage. The most important plastic resins used in wires and optical fibers are plastic polyvinyl chloride (PVC) and low and high density polyethylene (LDPE/HDPE), nylon and Polysulfone. One of the most important things which affect the final product after processing is the design of the coating die. In the present study, double-layer optical fiber coating is performed using melt polymer satisfying Oldroyd 8-constant fluid model in a pressure type die with the effect of magneto-hydrodynamic (MHD). Wet-on-wet coating process is applied for double-layer optical fiber coating. The coating process in the coating die is modeled as a simple two-layer Couette flow of two immiscible fluids in an annulus with an assigned pressure gradient. Based on the assumptions of fully developed laminar and MHD flow, the Oldroyd 8-constant model of non-Newtonian fluid of two immiscible resin layers is modeled. The governing nonlinear equations are solved analytically by the new technique of Optimal Homotopy Asymptotic Method (OHAM). The convergence of the series solution is established. The results are also verified by the Adomian Decomposition Method (ADM). The effect of important parameters such as magnetic parameter Mi , the dilatant constant α , the Pseodoplastic constant β , the radii ratio δ , the pressure gradient Ω , the speed of fiber optics V , and the viscosity ratio κ on the velocity profiles, thickness of coated fiber optics, volume flow rate, and shear stress on the fiber optics are investigated. At the end the result of the present work is also compared with the experimental results already available in the literature by taking non-Newtonian parameters tends to zero.
Indium oxide based fiber optic SPR sensor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shukla, Sarika; Sharma, Navneet K., E-mail: navneetk.sharma@jiit.ac.in
2016-05-06
Surface plasmon resonance based fiber optic sensor using indium oxide layer is presented and theoretically studied. It has been found that with increase in thickness of indium oxide layer beyond 170 nm, the sensitivity of SPR sensor decreases. 170 nm thick indium oxide layer based SPR sensor holds maximum sensitivity.
Acoustical Evaluation of Carbonized and Activated Cotton Nonwovens
USDA-ARS?s Scientific Manuscript database
An activated carbon fiber nonwoven (ACF) was manufactured from cotton nonowoven fabric. For the ACF acoustical application, a nonwoven composite of ACF with cotton nonwoven as a base layer was developed. Also produced were the composites of the cotton nonwoven base layer with a layer of glass fiber ...
NASA Astrophysics Data System (ADS)
Sadeghifar, Hamidreza
2018-05-01
The present study experimentally investigates the realistic functionality of in-plane and through-plane pressure drops of layered fibrous media with porosity, fiber diameter, fiber spacing, fiber-fiber angles and fiber-flow angles. The study also reveals that pressure drop may increase with porosity and fiber diameter under specific circumstances. This counter-intuitive point narrows down the validity range of widely-used permeability-porosity-diameter models or correlations. It is found that, for fibrous materials, the most important parameter that impacts the in-plane pressure drop is not their porosities but the number of fibers extended in the flow direction. It is also concluded that in-plane pressure drop is highly dependent upon the flow direction (fiber-flow angles), especially at lower porosities. Contrary to in-plane pressure drop, through-plane pressure drop is a weak function of fiber-fiber angles but is strongly impacted by fiber spacing, especially at lower porosities. At a given porosity, low through-plane pressure drops occur if fiber spacing does not change practically from one layer to another. Through-plane pressure drop also, insignificantly, increases with the intersecting angles between fibers. An optimized microstructure of fibrous media resulting in minimal in-plane and through-plane pressure drops is also offered for the first time in this work.
NASA Astrophysics Data System (ADS)
Akazawa, Y.; Miwa, K.; Honda, R.; Shiozaki, T.; Chiga, N.
2015-07-01
We are developing a cylindrical tracking detector for a Σp scattering experiment in J-PARC with scintillation fibers and the Pixelated Photon Detector (PPD) readout, which is called as cylindrical fiber tracker (CFT), in order to reconstruct trajectories of charged particles emitted inside CFT. CFT works not only as a tracking detector but also a particle identification detector from energy deposits. A prototype CFT consisting of two straight layers and one spiral layer was constructed. About 1100 scintillation fibers with a diameter of 0.75 mm (Kuraray SCSF-78 M) were used. Each fiber signal was read by Multi-Pixel Photon Counter (MPPC, HPK S10362-11-050P, 1×1 mm2, 400 pixels) fiber by fiber. MPPCs were handled with Extended Analogue Silicon Photomultipliers Integrated ReadOut Chip (EASIROC) boards, which were developed for the readout of a large number of MPPCs. The energy resolution of one layer was 28% for a 70 MeV proton where the energy deposit in fibers was 0.7 MeV.
Hybrid Cryogenic Tank Construction and Method of Manufacture Therefor
NASA Technical Reports Server (NTRS)
DeLay, Thomas K. (Inventor)
2011-01-01
A lightweight, high-pressure cryogenic tank construction includes an inner layer comprising a matrix of fiber and resin suitable for cryogenic use. An outer layer in intimate contact with the inner layer provides support of the inner layer, and is made of resin composite. The tank is made by placing a fiber preform on a mandrel and infusing the preform with the resin. The infused preform is then encapsulated within the outer layer.
Anti-rewet felt for use in a papermaking machine
Beck, David A.
2003-09-09
An anti-rewet fabric is used for carrying a fiber web through an air press. The anti-rewet fabric includes at least one air distribution fabric layer, one air distribution fabric layer being configured for contacting the fiber web, and a perforated film layer, the perforated film layer being made of a polyester film. The perforated film layer has a first film side and a second film side, the first film side being one of laminated and attached to the one air distribution fabric layer.
NASA Astrophysics Data System (ADS)
Yoon, K. J.; Park, K. H.; Lee, S. K.; Goo, N. S.; Park, H. C.
2004-06-01
This paper describes an analytical design model for a layered piezo-composite unimorph actuator and its numerical and experimental verification using a LIPCA (lightweight piezo-composite curved actuator) that is lighter than other conventional piezo-composite type actuators. The LIPCA is composed of top fiber composite layers with high modulus and low CTE (coefficient of thermal expansion), a middle PZT ceramic wafer, and base layers with low modulus and high CTE. The advantages of the LIPCA design are to replace the heavy metal layer of THUNDER by lightweight fiber-reinforced plastic layers without compromising the generation of high force and large displacement and to have design flexibility by selecting the fiber direction and the number of prepreg layers. In addition to the lightweight advantage and design flexibility, the proposed device can be manufactured without adhesive layers when we use a resin prepreg system. A piezo-actuation model for a laminate with piezo-electric material layers and fiber composite layers is proposed to predict the curvature and residual stress of the LIPCA. To predict the actuation displacement of the LIPCA with curvature, a finite element analysis method using the proposed piezo-actuation model is introduced. The predicted deformations are in good agreement with the experimental ones.
Multipurpose fiber-optic sensor with sloped tip
NASA Astrophysics Data System (ADS)
Melnik, Ivan S.; Krivokhizha, A. M.; Ptashnik, O. V.
1991-08-01
Fiber-optic sensors C FOS) are wi. del y used for rioncontact measurements due to their simplicity, small size, insensitivity to I nfl uence of el ectromagneti C fiel ds , hi gh metrol ogi cal characteristics, etc. The operation principle of FOS with intensity modul ati on techni que I s based on the photodetector regi strati on of 1ight , reflected from the control 1 ed surface E I ) . The i ntensi ty of detected 1 1 ght depends on th FOS' s di stance from the control 1 ed surface, its form and inclination to sensor's axis, FOS shift speed, etc. So they can be consider multipurpose. We are devel opi ng FOS wi th i ntensi ty modul ati on techni que wi th traight tips as well as with sloped tips. In FOS with sloped tips the light ring spot is appearing on the controlled surface due to the effect of symmetry. We use thi s phenomena to empl oy refl ected 1 i ght more efficiently and to increase the FOS characteristics. Tak i ng I nto account the fact that pr obl ems of cal cul aWl on of fibers with sloped tip were not analyzed in details earlier-, in particular, only the case of light distribution of parallel beams runni ng was consi dered E 2) we wi I 1 conduct a consi stent cal cul ati on of bounds of i rradi ance fi ci d , created by a fi ber wi th sl oped tip, esti mate I i ght di stri buti on I n a 1 1 ght spot , and determi. ne characteristics of the FOS with sloped tip.
Analysis of the tunable asymmetric fiber F-P cavity for fiber sensor edge-filter demodulation
NASA Astrophysics Data System (ADS)
Chen, Haitao; Liang, Youcheng
2014-12-01
An asymmetric fiber (Fabry-Pérot,F-P) interferometric cavity with good linearity and wide dynamic range is successfully designed basing on optical thin film characteristic matrix theory; by choosing the material of two different thin metallic layers, the asymmetric fiber F-P interferometric cavity is fabricated by depositing the multi-layer thin films on the optical fiber's end face. The demodulation method for the wavelength shift of fiber Bragg grating (FBG) sensor basing on the F-P cavity is demonstrated and a theoretical formula is obtained. And the experimental results coincide well with computational results obtained from the theoretical model.
Mechanical, Chemical and Microstructural Characterization of Monazite-Coated Silicon Carbide Fibers
NASA Technical Reports Server (NTRS)
Bansal, N. P.; Wheeler, D. R.; Chen, Y. L.
2000-01-01
Tensile strengths of as-received Hi-Nicalon and Sylramic fibers and those having monazite surface coatings, deposited by atmospheric pressure chemical vapor deposition, were measured at room temperature and the Weibull statistical parameters determined. The average tensile strengths of uncoated Hi-Nicalon and Sylramic fibers were 3.19 +/- 0.73 and 2.78 +/- 0.53 GPa with a Weibull modulus of 5.41 and 5.52, respectively. The monazite-coated Hi-Nicalon and Sylramic fibers showed strength loss of approx. 10 and 15 percent, respectively, compared with the as-received fibers. The elemental compositions of the fibers and the coatings were analyzed using scanning Auger microprobe and energy dispersive X-ray spectroscopy. The LaPO4 coating on Hi-Nicalon fibers was approximately stoichiometric and about 50 nm thick. The coating on the Sylramic fibers extended to a depth of about 100 to 150 nm. The coating may have been stoichiometric LaPO4 in the first 30 to 40 nm of the layer. However, the surface roughness of Sylramic fiber made this profile somewhat difficult to interpret. Microstructural analyses of the fibers and the coatings were done by scanning electron microscopy, transmission electron microscopy, and selected area electron diffraction. Hi-Nicalon fiber consists of fine beta-SiC nanocrystals ranging in size from 1 to 30 mn embedded in an amorphous matrix. Sylramic is a polycrystalline stoichiometric silicon carbide fiber consisting of submicron beta-SiC crystallites ranging from 100 to 300 nm. Small amount of TiB2 nanocrystallites (approx. 50 nm) are also present. The LaPO4 coating on Hi-Nicalon fibers consisted of a chain of peanut shape particles having monazite-(La) structure. The coating on Sylramic fibers consisted of two layers. The inner layer was a chain of peanut shape particles having monazite-(La) structure. The outer layer was comprised of much smaller particles with a microcrystalline structure.
NASA Astrophysics Data System (ADS)
Khan, Zeeshan; Shah, Rehan Ali; Islam, Saeed; Jan, Bilal; Imran, Muhammad; Tahir, Farisa
2016-10-01
Modern optical fibers require double-layer coating on the glass fiber to provide protection from signal attenuation and mechanical damage. The most important plastic resins used in wires and optical fibers are plastic polyvinyl chloride (PVC) and low-high density polyethylene (LDPE/HDPE), nylon and Polysulfone. In this paper, double-layer optical fiber coating is performed using melt polymer satisfying PTT fluid model in a pressure type die using wet-on-wet coating process. The assumption of fully developed flow of Phan-Thien-Tanner (PTT) fluid model, two-layer liquid flows of an immiscible fluid is modeled in an annular die, where the fiber is dragged at a higher speed. The equations characterizing the flow and heat transfer phenomena are solved exactly and the effects of emerging parameters (Deborah and slip parameters, characteristic velocity, radii ratio and Brinkman numbers on the axial velocity, flow rate, thickness of coated fiber optics, and temperature distribution) are reported in graphs. It is shown that an increase in the non-Newtonian parameters increase the velocity in the absence or presence of slip parameters which coincides with related work. The comparison is done with experimental work by taking λ → 0 (non-Newtonian parameter).
Khan, Zeeshan; Shah, Rehan Ali; Islam, Saeed; Jan, Bilal; Imran, Muhammad; Tahir, Farisa
2016-01-01
Modern optical fibers require double-layer coating on the glass fiber to provide protection from signal attenuation and mechanical damage. The most important plastic resins used in wires and optical fibers are plastic polyvinyl chloride (PVC) and low-high density polyethylene (LDPE/HDPE), nylon and Polysulfone. In this paper, double-layer optical fiber coating is performed using melt polymer satisfying PTT fluid model in a pressure type die using wet-on-wet coating process. The assumption of fully developed flow of Phan-Thien-Tanner (PTT) fluid model, two-layer liquid flows of an immiscible fluid is modeled in an annular die, where the fiber is dragged at a higher speed. The equations characterizing the flow and heat transfer phenomena are solved exactly and the effects of emerging parameters (Deborah and slip parameters, characteristic velocity, radii ratio and Brinkman numbers on the axial velocity, flow rate, thickness of coated fiber optics, and temperature distribution) are reported in graphs. It is shown that an increase in the non-Newtonian parameters increase the velocity in the absence or presence of slip parameters which coincides with related work. The comparison is done with experimental work by taking λ → 0 (non-Newtonian parameter). PMID:27708412
Khan, Zeeshan; Shah, Rehan Ali; Islam, Saeed; Jan, Bilal; Imran, Muhammad; Tahir, Farisa
2016-10-06
Modern optical fibers require double-layer coating on the glass fiber to provide protection from signal attenuation and mechanical damage. The most important plastic resins used in wires and optical fibers are plastic polyvinyl chloride (PVC) and low-high density polyethylene (LDPE/HDPE), nylon and Polysulfone. In this paper, double-layer optical fiber coating is performed using melt polymer satisfying PTT fluid model in a pressure type die using wet-on-wet coating process. The assumption of fully developed flow of Phan-Thien-Tanner (PTT) fluid model, two-layer liquid flows of an immiscible fluid is modeled in an annular die, where the fiber is dragged at a higher speed. The equations characterizing the flow and heat transfer phenomena are solved exactly and the effects of emerging parameters (Deborah and slip parameters, characteristic velocity, radii ratio and Brinkman numbers on the axial velocity, flow rate, thickness of coated fiber optics, and temperature distribution) are reported in graphs. It is shown that an increase in the non-Newtonian parameters increase the velocity in the absence or presence of slip parameters which coincides with related work. The comparison is done with experimental work by taking λ → 0 (non-Newtonian parameter).
The low coherence Fabry-Pérot interferometer with diamond and ZnO layers
NASA Astrophysics Data System (ADS)
Majchrowicz, D.; Den, W.; Hirsch, M.
2016-09-01
The authors present a fiber-optic Fabry-Pérot interferometer built with the application of diamond and zinc oxide (ZnO) thin layers. Thin ZnO films were deposited on the tip of a standard telecommunication single-mode optical fiber (SMF- 28) while the diamond layer was grown on the plate of silicon substrate. Investigated ZnO layers were fabricated by atomic layer deposition (ALD) and the diamond films were deposited using Microwave Plasma Enhanced Chemical Vapor Deposition (μPE CVD) system. Different thickness of layers was examined. The measurements were performed for the fiber-optic Fabry-Pérot interferometer working in the reflective mode. Spectra were registered for various thicknesses of ZnO layer and various length of the air cavity. As a light source, two superluminescent diodes (SLD) with central wavelength of 1300 nm and 1550 nm were used in measurement set-up.
Improved BN Coatings on SiC Fibers in SiC Matrices
NASA Technical Reports Server (NTRS)
Morscher, Gregory N.; Bhatt, Ramakrishna; Yun, Hee-Mann; DiCarlo, James A.
2004-01-01
Modifications of BN-based coatings that are used as interfacial layers between the fibers and matrices of SiCfiber/SiC-matrix composite materials have been investigated to improve the thermomechanical properties of these materials. Such interfacial coating layers, which are also known as interphases (not to be confused with interphase in the biological sense), contribute to strength and fracture toughness of a fiber/matrix composite material by providing for limited amounts of fiber/matrix debonding and sliding to absorb some of the energy that would otherwise contribute to the propagation of cracks. Heretofore, the debonding and sliding have been of a type called inside debonding because they have taken place predominantly on the inside surfaces of the BN layers that is, at the interfaces between the SiC fibers and the interphases. The modifications cause the debonding and sliding to include more of a type, called outside debonding, that takes place at the outside surfaces of the BN layers that is, at the interfaces between the interphases and the matrix (see figure). One of the expected advantages of outside debonding is that unlike in inside debonding, the interphases would remain on the crack-bridging fibers. The interphases thus remaining should afford additional protection against oxidation at high temperature and should delay undesired fiber/fiber fusion and embrittlement of the composite material. A secondary benefit of outside debonding is that the interphase/matrix interfaces could be made more compliant than are the fiber/interphase interfaces, which necessarily incorporate the roughness of the SiC fibers. By properly engineering BN interphase layers to favor outside debonding, it should be possible, not only to delay embrittlement at intermediate temperatures, but also to reduce the effective interfacial shear strength and increase the failure strain and toughness of the composite material. Two techniques have been proposed and partially experimentally verified as candidate means to promote outside debonding in state-of-the-art SiC/SiC composites.
Carbon nanotube and graphene nanoribbon-coated conductive Kevlar fibers.
Xiang, Changsheng; Lu, Wei; Zhu, Yu; Sun, Zhengzong; Yan, Zheng; Hwang, Chi-Chau; Tour, James M
2012-01-01
Conductive carbon material-coated Kevlar fibers were fabricated through layer-by-layer spray coating. Polyurethane was used as the interlayer between the Kevlar fiber and carbon materials to bind the carbon materials to the Kevlar fiber. Strongly adhering single-walled carbon nanotube coatings yielded a durable conductivity of 65 S/cm without significant mechanical degradation. In addition, the properties remained stable after bending or water washing cycles. The coated fibers were analyzed using scanning electron microcopy and a knot test. The as-produced fiber had a knot efficiency of 23%, which is more than four times higher than that of carbon fibers. The spray-coating of graphene nanoribbons onto Kevlar fibers was also investigated. These flexible coated-Kevlar fibers have the potential to be used for conductive wires in wearable electronics and battery-heated armors. © 2011 American Chemical Society
Allison, Linden; Hoxie, Steven; Andrew, Trisha L
2017-06-29
Traditional textile materials can be transformed into functional electronic components upon being dyed or coated with films of intrinsically conducting polymers, such as poly(aniline), poly(pyrrole) and poly(3,4-ethylenedioxythiophene). A variety of textile electronic devices are built from the conductive fibers and fabrics thus obtained, including: physiochemical sensors, thermoelectric fibers/fabrics, heated garments, artificial muscles and textile supercapacitors. In all these cases, electrical performance and device ruggedness is determined by the morphology of the conducting polymer active layer on the fiber or fabric substrate. Tremendous variation in active layer morphology can be observed with different coating or dyeing conditions. Here, we summarize various methods used to create fiber- and fabric-based devices and highlight the influence of the coating method on active layer morphology and device stability.
Multiple Concentric Cylinder Model (MCCM) user's guide
NASA Technical Reports Server (NTRS)
Williams, Todd O.; Pindera, Marek-Jerzy
1994-01-01
A user's guide for the computer program mccm.f is presented. The program is based on a recently developed solution methodology for the inelastic response of an arbitrarily layered, concentric cylinder assemblage under thermomechanical loading which is used to model the axisymmetric behavior of unidirectional metal matrix composites in the presence of various microstructural details. These details include the layered morphology of certain types of ceramic fibers, as well as multiple fiber/matrix interfacial layers recently proposed as a means of reducing fabrication-induced, and in-service, residual stress. The computer code allows efficient characterization and evaluation of new fibers and/or new coating systems on existing fibers with a minimum of effort, taking into account inelastic and temperature-dependent properties and different morphologies of the fiber and the interfacial region. It also facilitates efficient design of engineered interfaces for unidirectional metal matrix composites.
Elasto-plastic analysis of interface layers for fiber reinforced metal matrix composites
NASA Technical Reports Server (NTRS)
Doghri, I.; Leckie, F. A.
1991-01-01
The mismatch in coefficients of thermal expansion (CTE) of fiber and matrix in metal matrix composites reinforced with ceramic fibers induces high thermal stresses in the matrix. Elasto-plastic analyses - with different degrees of simplification and modelization - show that an interface layer with a sufficiently high CTE can reduce the tensile hoop stress in the matrix substantially.
Novel electric double-layer capacitor with a coaxial fiber structure.
Chen, Xuli; Qiu, Longbin; Ren, Jing; Guan, Guozhen; Lin, Huijuan; Zhang, Zhitao; Chen, Peining; Wang, Yonggang; Peng, Huisheng
2013-11-26
A coaxial electric double-layer capacitor fiber is developed from the aligned carbon nanotube fiber and sheet, which functions as two electrodes with a polymer gel sandwiched between them. The unique coaxial structure enables a rapid transportation of ions between the two electrodes with a high electrochemical performance. These energy storage fibers are also flexible and stretchable, and can be woven into and widely used for electronic textiles. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Fiber optic thermal/fast neutron and gamma ray scintillation detector
Neal, John S.; Mihalczo, John T.
2006-11-28
A detector system that combines a .sup.6Li loaded glass fiber scintillation thermal neutron detector with a fast scintillation detector in a single layered structure. Detection of thermal and fast neutrons and ionizing electromagnetic radiation is achieved in the unified detector structure. The fast scintillator replaces the polyethelene moderator layer adjacent the .sup.6Li loaded glass fiber panel of the neutron detector and acts as the moderator for the glass fibers. Fast neutrons, x-rays and gamma rays are detected in the fast scintillator. Thermal neutrons, x-rays and gamma rays are detected in the glass fiber scintillator.
Estimating added sugars in US consumer packaged goods: An application to beverages in 2007-08.
Ng, Shu Wen; Bricker, Gregory; Li, Kuo-Ping; Yoon, Emily Ford; Kang, Jiyoung; Westrich, Brian
2015-11-01
This study developed a method to estimate added sugar content in consumer packaged goods (CPG) that can keep pace with the dynamic food system. A team including registered dietitians, a food scientist and programmers developed a batch-mode ingredient matching and linear programming (LP) approach to estimate the amount of each ingredient needed in a given product to produce a nutrient profile similar to that reported on its nutrition facts label (NFL). Added sugar content was estimated for 7021 products available in 2007-08 that contain sugar from ten beverage categories. Of these, flavored waters had the lowest added sugar amounts (4.3g/100g), while sweetened dairy and dairy alternative beverages had the smallest percentage of added sugars (65.6% of Total Sugars; 33.8% of Calories). Estimation validity was determined by comparing LP estimated values to NFL values, as well as in a small validation study. LP estimates appeared reasonable compared to NFL values for calories, carbohydrates and total sugars, and performed well in the validation test; however, further work is needed to obtain more definitive conclusions on the accuracy of added sugar estimates in CPGs. As nutrition labeling regulations evolve, this approach can be adapted to test for potential product-specific, category-level, and population-level implications.
Stern, Robert A; Tripodis, Yorghos; Baugh, Christine M; Fritts, Nathan G; Martin, Brett M; Chaisson, Christine; Cantu, Robert C; Joyce, James A; Shah, Sahil; Ikezu, Tsuneya; Zhang, Jing; Gercel-Taylor, Cicek; Taylor, Douglas D
2016-01-01
Chronic traumatic encephalopathy (CTE) is a tauopathy associated with prior exposure to repetitive head impacts, such as those incurred through American football and other collision sports. Diagnosis is made through neuropathological examination. Many of the clinical features of CTE are common in the general population, with and without a history of head impact exposure, making clinical diagnosis difficult. As is now common in the diagnosis of other neurodegenerative disorders, such as Alzheimer's disease, there is a need for methods to diagnose CTE during life through objective biomarkers. The aim of this study was to examine tau-positive exosomes in plasma as a potential CTE biomarker. Subjects were 78 former National Football League (NFL) players and 16 controls. Extracellular vesicles were isolated from plasma. Fluorescent nanoparticle tracking analysis was used to determine the number of vesicles staining positive for tau. The NFL group had higher exosomal tau than the control group (p < 0.0001). Exosomal tau discriminated between the groups, with 82% sensitivity, 100% specificity, 100% positive predictive value, and 53% negative predictive value. Within the NFL group, higher exosomal tau was associated with worse performance on tests of memory (p = 0.0126) and psychomotor speed (p = 0.0093). These preliminary findings suggest that exosomal tau in plasma may be an accurate, noninvasive CTE biomarker.
Estimating added sugars in US consumer packaged goods: An application to beverages in 2007–08
Ng, Shu Wen; Bricker, Gregory; Li, Kuo-ping; Yoon, Emily Ford; Kang, Jiyoung; Westrich, Brian
2015-01-01
This study developed a method to estimate added sugar content in consumer packaged goods (CPG) that can keep pace with the dynamic food system. A team including registered dietitians, a food scientist and programmers developed a batch-mode ingredient matching and linear programming (LP) approach to estimate the amount of each ingredient needed in a given product to produce a nutrient profile similar to that reported on its nutrition facts label (NFL). Added sugar content was estimated for 7021 products available in 2007–08 that contain sugar from ten beverage categories. Of these, flavored waters had the lowest added sugar amounts (4.3g/100g), while sweetened dairy and dairy alternative beverages had the smallest percentage of added sugars (65.6% of Total Sugars; 33.8% of Calories). Estimation validity was determined by comparing LP estimated values to NFL values, as well as in a small validation study. LP estimates appeared reasonable compared to NFL values for calories, carbohydrates and total sugars, and performed well in the validation test; however, further work is needed to obtain more definitive conclusions on the accuracy of added sugar estimates in CPGs. As nutrition labeling regulations evolve, this approach can be adapted to test for potential product-specific, category-level, and population-level implications. PMID:26273127
El Beltagi, Tarek A; Bowd, Christopher; Boden, Catherine; Amini, Payam; Sample, Pamela A; Zangwill, Linda M; Weinreb, Robert N
2003-11-01
To determine the relationship between areas of glaucomatous retinal nerve fiber layer thinning identified by optical coherence tomography and areas of decreased visual field sensitivity identified by standard automated perimetry in glaucomatous eyes. Retrospective observational case series. Forty-three patients with glaucomatous optic neuropathy identified by optic disc stereo photographs and standard automated perimetry mean deviations >-8 dB were included. Participants were imaged with optical coherence tomography within 6 months of reliable standard automated perimetry testing. The location and number of optical coherence tomography clock hour retinal nerve fiber layer thickness measures outside normal limits were compared with the location and number of standard automated perimetry visual field zones outside normal limits. Further, the relationship between the deviation from normal optical coherence tomography-measured retinal nerve fiber layer thickness at each clock hour and the average pattern deviation in each visual field zone was examined by using linear regression (R(2)). The retinal nerve fiber layer areas most frequently outside normal limits were the inferior and inferior temporal regions. The least sensitive visual field zones were in the superior hemifield. Linear regression results (R(2)) showed that deviation from the normal retinal nerve fiber layer thickness at optical coherence tomography clock hour positions 6 o'clock, 7 o'clock, and 8 o'clock (inferior and inferior temporal) was best correlated with standard automated perimetry pattern deviation in visual field zones corresponding to the superior arcuate and nasal step regions (R(2) range, 0.34-0.57). These associations were much stronger than those between clock hour position 6 o'clock and the visual field zone corresponding to the inferior nasal step region (R(2) = 0.01). Localized retinal nerve fiber layer thinning, measured by optical coherence tomography, is topographically related to decreased localized standard automated perimetry sensitivity in glaucoma patients.
Huynh, Son C; Wang, Xiu Ying; Rochtchina, Elena; Mitchell, Paul
2006-09-01
To study the distribution of retinal nerve fiber layer (RNFL) thickness by ocular and demographic variables in a population-based study of young children. Population-based cross-sectional study. One thousand seven hundred sixty-five of 2238 (78.9%) eligible 6-year-old children participated in the Sydney Childhood Eye Study between 2003 and 2004. Mean age was 6.7 years (50.9% boys). Detailed examination included cycloplegic autorefraction and measurement of axial length. Retinal nerve fiber layer scans using an optical coherence tomographer were performed with a circular scan pattern of 3.4-mm diameter. Multivariate analyses were performed to examine the distribution of RNFL parameters with gender, ethnicity, axial length, and refraction. Peripapillary RNFL thickness and RNFL(estimated integral) (RNFL(EI)), which measures the total cross-sectional area of ganglion cell axons converging onto the optic nerve head. Peripapillary RNFL thickness and RNFL(EI) were normally distributed. The mean+/-standard deviation RNFL average thickness was 103.7+/-11.4 microm and RNFL(EI) was 1.05+/-0.12 mm2. Retinal nerve fiber layer thickness was least for the temporal quadrant (75.7+/-14.7 microm), followed by the nasal (81.7+/-19.6 microm), inferior (127.8+/-20.5 microm), and superior (129.5+/-20.6 microm) quadrants. Multivariate adjusted RNFL average thickness was marginally greater in boys than in girls (104.7 microm vs. 103.2 microm; P = 0.007) and in East Asian than in white children (107.7 microm vs. 102.7 microm; P<0.0001). The RNFL was thinner with greater axial length (P(trend)<0.0001) and less positive spherical equivalent refractions (P(trend) = 0.004). Retinal nerve fiber layer average thickness and RNFL(EI) followed a normal distribution. Retinal nerve fiber layer thickness varied marginally with gender, but differences were more marked between white and East Asian children. Retinal nerve fiber layer thinning was associated with increasing axial length and less positive refractions.
Nanoparticles based fiber optic SPR sensor
NASA Astrophysics Data System (ADS)
Shah, Kruti; Sharma, Navneet K.
2018-05-01
Localized surface plasmon resonance based fiber optic sensor using platinum nanoparticles is proposed and theoretically analyzed. Increase in thickness of nanoparticles layer increases the sensitivity of sensor. 50 nm thick platinum nanoparticles layer based sensor reveals highest sensitivity.
Yuan, Yinquan; Ding, Liyun
2011-10-24
For fiber optical sensor made of tapered fiber tip, the effects of the geometrical parameters of tapered tip on two important factors have been investigated. One factor is the intensity of the evanescent wave into fluorescent layer through core-medium interface; the other is the intensity of fluorescence signal transmitted from fluorescent layer to measurement end. A dependence relation of the intensity of fluorescence signal transmitted from fluorescent layer to measurement end upon the geometrical parameters of tapered tip has been obtained. Theoretical results show that the intensity of the evanescent wave into fluorescent layer rises with the decrease of the end diameter of tapered tip, and the increase of the tip length; and the transmitted power of fluorescence signal increases linearly with the increase of the tip length due to the contribution of the side area of tapered tip. © 2011 Optical Society of America
Shi, Yi Wei; Ito, Kentaro; Matsuura, Yuji; Miyagi, Mitsunobu
2005-11-01
We report on low-loss multiwavelength laser delivery of hollow optical fiber in a wide wavelength region, from the visible to the infrared. Improved methods of liquid-phase coating were used to fabricate the hollow fiber with inner films of a silver and a cyclic olefin polymer (COP) layer. The surface roughness of the silver layer was reduced dramatically by pretreatment on the inner glass surface with an SnCl2 solution. The COP layer roughness was also decreased by using an ambient atmosphere of tetrahydrofuran (THF) solvent during the COP layer formation. Owing to the smooth surfaces, hollow fiber with optimum COP film thickness for CO2 laser light simultaneously yields low losses for a Er:YAG laser and a red pilot beam. The power durability of CO2 and Er:YAG lasers, as well as the loss properties for the pilot beam, is demonstrated.
Efferent projections of the ectostriatum in the pigeon (Columba livia)
NASA Technical Reports Server (NTRS)
Husband, S. A.; Shimizu, T.
1999-01-01
The ectostriatum is a major visual component of the avian telencephalon. The core region of the ectostriatum (Ec) receives visual input from the optic tectum through thalamic nuclei. In the present study, the efferent projections of the ectostriatum were investigated by using the anterograde tracers Phaseolus vulgaris leucoagglutinin and biotinylated dextran amine. Projection patterns resulting from these tracers were confirmed by the retrograde tracer cholera toxin subunit B. When anterograde tracers were injected in Ec, primary projections were seen traveling dorsolaterally to the belt region of the ectostriatum (Ep) and the neostriatal area immediately surrounding Ep (Ep2). Neurons in Ep sent projections primarily to the overlying Ep2. The efferents of Ep2 traveled dorsolaterally to terminate in three telencephalic regions, from anterior to posterior: (1) neostriatum frontale, pars lateralis (NFL), (2) area temporo-parieto-occipitalis (TPO), and (3) neostriatum intermedium, pars lateralis (NIL). A part of the archistriatum intermedium and the lateral part of the neostriatum caudale also received somewhat minor projections. In addition, some neurons in Ec were also the source of direct, but minor, projections to the NFL, TPO, NIL, and archistriatum intermedium. The topographical relationship among the primary (Ec), secondary (Ep and Ep2), and tertiary (NFL, TPO, NIL) areas indicate that the neural populations for visual processing are organized along the rostral-caudal axis. Thus, the anterior Ec sent efferents to the anterior Ep, which in turn sent projections to anterior Ep2. Neurons in the anterior Ep2 sent projections to NFL and the anterior TPO. Similarly, the intermediate and posterior Ec sent projections to corresponding parts of Ep, whose efferents projected to intermediate and posterior Ep2, respectively. The intermediate Ep2 gave rise to major projections to TPO, whereas posterior Ep2 neurons sent efferents primarily to NIL. The organization of this neural circuit is compared with those of other sensory circuits in the avian telencephalon, as well as the laminar arrangement of the mammalian isocortex.
Serum Neurofilament Light in American Football Athletes over the Course of a Season.
Oliver, Jonathan M; Jones, Margaret T; Kirk, K Michele; Gable, David A; Repshas, Justin T; Johnson, Torie A; Andréasson, Ulf; Norgren, Niklas; Blennow, Kaj; Zetterberg, Henrik
2016-10-01
Despite being underreported, American football boasts the highest incidence of concussion among all team sports, likely due to exposure to head impacts that vary in number and magnitude over the season. This study compared a biological marker of head trauma in American football athletes with non-contact sport athletes and examined changes over the course of a season. Baseline serum neurofilament light polypeptide (NFL) was measured after 9 weeks of no contact and compared with a non-contact sport. Serum NFL was then measured over the course of the entire season at eight time-points coincident with expected changes in likelihood of increased head impacts. Data were compared between starters (n = 11) and non-starters (n = 9). Compared with non-starters (mean ± standard deviation) (7.30 ± 3.57 pg•mL -1 ) and controls (6.75 ± 1.68 pg•mL -1 ), serum NFL in starters (8.45 ± 5.90 pg•mL -1 ) was higher at baseline (mean difference; ±90% confidence interval) (1.69; ± 1.96 pg•mL -1 and 1.15; ± 1.4 pg•mL -1 , respectively). Over the course of the season, an increase (effect size [ES] = 1.8; p < 0.001) was observed post-camp relative to baseline (1.52 ± 1.18 pg•mL -1 ), which remained elevated until conference play, when a second increase was observed (ES = 2.6; p = 0.008) over baseline (4.82 ± 2.64 pg•mL -1 ). A lack of change in non-starters resulted in substantial differences between starters and non-starters over the course of the season. These data suggest that a season of collegiate American football is associated with elevations in serum NFL, which is indicative of axonal injury, as a result of head impacts.
CSF-Biomarkers in Olympic Boxing: Diagnosis and Effects of Repetitive Head Trauma
Neselius, Sanna; Brisby, Helena; Theodorsson, Annette; Blennow, Kaj; Zetterberg, Henrik; Marcusson, Jan
2012-01-01
Background Sports-related head trauma is common but still there is no established laboratory test used in the diagnostics of minimal or mild traumatic brain injuries. Further the effects of recurrent head trauma on brain injury markers are unknown. The purpose of this study was to investigate the relationship between Olympic (amateur) boxing and cerebrospinal fluid (CSF) brain injury biomarkers. Methods The study was designed as a prospective cohort study. Thirty Olympic boxers with a minimum of 45 bouts and 25 non-boxing matched controls were included in the study. CSF samples were collected by lumbar puncture 1–6 days after a bout and after a rest period for at least 14 days. The controls were tested once. Biomarkers for acute and chronic brain injury were analysed. Results NFL (mean ± SD, 532±553 vs 135±51 ng/L p = 0.001), GFAP (496±238 vs 247±147 ng/L p<0.001), T-tau (58±26 vs 49±21 ng/L p<0.025) and S-100B (0.76±0.29 vs 0.60±0.23 ng/L p = 0.03) concentrations were significantly increased after boxing compared to controls. NFL (402±434 ng/L p = 0.004) and GFAP (369±113 ng/L p = 0.001) concentrations remained elevated after the rest period. Conclusion Increased CSF levels of T-tau, NFL, GFAP, and S-100B in >80% of the boxers demonstrate that both the acute and the cumulative effect of head trauma in Olympic boxing may induce CSF biomarker changes that suggest minor central nervous injuries. The lack of normalization of NFL and GFAP after the rest period in a subgroup of boxers may indicate ongoing degeneration. The recurrent head trauma in boxing may be associated with increased risk of chronic traumatic brain injury. PMID:22496755
CSF-biomarkers in Olympic boxing: diagnosis and effects of repetitive head trauma.
Neselius, Sanna; Brisby, Helena; Theodorsson, Annette; Blennow, Kaj; Zetterberg, Henrik; Marcusson, Jan
2012-01-01
Sports-related head trauma is common but still there is no established laboratory test used in the diagnostics of minimal or mild traumatic brain injuries. Further the effects of recurrent head trauma on brain injury markers are unknown. The purpose of this study was to investigate the relationship between Olympic (amateur) boxing and cerebrospinal fluid (CSF) brain injury biomarkers. The study was designed as a prospective cohort study. Thirty Olympic boxers with a minimum of 45 bouts and 25 non-boxing matched controls were included in the study. CSF samples were collected by lumbar puncture 1-6 days after a bout and after a rest period for at least 14 days. The controls were tested once. Biomarkers for acute and chronic brain injury were analysed. NFL (mean ± SD, 532±553 vs 135±51 ng/L p = 0.001), GFAP (496±238 vs 247±147 ng/L p<0.001), T-tau (58±26 vs 49±21 ng/L p<0.025) and S-100B (0.76±0.29 vs 0.60±0.23 ng/L p = 0.03) concentrations were significantly increased after boxing compared to controls. NFL (402±434 ng/L p = 0.004) and GFAP (369±113 ng/L p = 0.001) concentrations remained elevated after the rest period. Increased CSF levels of T-tau, NFL, GFAP, and S-100B in >80% of the boxers demonstrate that both the acute and the cumulative effect of head trauma in Olympic boxing may induce CSF biomarker changes that suggest minor central nervous injuries. The lack of normalization of NFL and GFAP after the rest period in a subgroup of boxers may indicate ongoing degeneration. The recurrent head trauma in boxing may be associated with increased risk of chronic traumatic brain injury.
Krill, Michael K; Borchers, James R; Hoffman, Joshua T; Krill, Matthew L; Hewett, Timothy E
2017-09-01
Achilles tendon (AT) ruptures are a potentially career-altering and ending injury. Achilles tendon ruptures have a below average return-to-play rate compared to other common orthopaedic procedures for National Football League (NFL) players. The objective of this study was to monitor the incidence and injury rates (IR) of AT ruptures that occurred during the regular season in order to evaluate the influence of player position, time of injury, and playing surface on rupture rates. A thorough online review was completed to identify published injury reports and public information regarding AT ruptures sustained during regular season and post-season games in the National Football League (NFL) during the 2009-10 to 2016-17 seasons. Team schedules, player position details and stadium information was used to determine period of the season of injury and playing surface. IRs were calculated per 100 team games (TG). Injury rate ratios (IRR) were utilized to compare IRs. During eight monitored seasons, there were 44 AT ruptures in NFL games. A majority of AT ruptures were sustained in the first eight games of the regular season (n = 32, 72.7%). There was a significant rate difference for the first and second four-game segments of the regular season compared to the last two four-game segments of the regular season. Defensive players suffered a majority of AT ruptures (n = 32, 72.7%). The IR on grass was 1.00 per 100 TG compared to 1.08 per 100 TG on artificial turf (IRR: 0.93, p = .80). A significant increase in AT ruptures occurred in the first and second four game segments of the regular season compared to the last two-four game segments of the regular season. Defensive players suffered a majority of AT ruptures compared to offensive or specialist players. There was no difference between AT rupture rates and playing surface in games.
Radiation detector based on a matrix of crossed wavelength-shifting fibers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kross, Brian J.; Weisenberger, Andrew; Zorn, Carl
A radiation detection system comprising a detection grid of wavelength shifting fibers with a volume of scintillating material at the intersecting points of the fibers. Light detectors, preferably Silicon Photomultipliers, are positioned at the ends of the fibers. The position of radiation is determined from data obtained from the detection grid. The system is easily scalable, customizable, and also suitable for use in soil and underground applications. An alternate embodiment employs a fiber grid sheet or layer which is comprised of multiple fibers secured to one another within the same plane. This embodiment further includes shielding in order to preventmore » radiation cross-talk within the grid layer.« less
NASA Astrophysics Data System (ADS)
Song, Huaqing; Wang, Qi; Wang, Dongdong; Li, Li
2018-03-01
In this paper, we demonstrated passively Q-switched wavelength-tunable 1-μm fiber lasers utilizing few-layer black phosphorus saturable absorbers. The few-layer BP was deposited onto the tapered fibers by an optically driven process. The wavelength tunability was achieved with a fiber Sagnac loop comprised of a piece of polarization maintaining fiber and a polarization controller. Stable Q-switching laser operations were observed at wavelengths ranging from 1040.5 to 1044.6 nm at threshold pump power of 220 mW. Maximal pulse energy of 141.27 nJ at a repetition rate of 63 kHz was recorded under pump power of 445 mW.
USDA-ARS?s Scientific Manuscript database
The dynamic mechanical behavior and energy absorption characteristics of nano-enhanced functionally graded composites, consisting of 3 layers of vertically aligned carbon nanotube (VACNT) forests grown on woven fiber-glass (FG) layer and embedded within 10 layers of woven FG, with polyester (PE) and...
Chaloner, Charlene; Evans, Diana; Mathews, Amy; Cohan, Pejman; Wang, Christina; Swerdloff, Ronald; Sim, Myung-Shin; Lee, Jihey; Wright, Mathew J.; Kernan, Claudia; Barkhoudarian, Garni; Yuen, Kevin C.J.; Guskiewicz, Kevin
2014-01-01
Abstract Hypopituitarism is common after moderate and severe traumatic brain injury (TBI). Herein, we address the association between mild TBI (mTBI) and pituitary and metabolic function in retired football players. Retirees 30–65 years of age, with one or more years of National Football League (NFL) play and poor quality of life (QoL) based on Short Form 36 (SF-36) Mental Component Score (MCS) were prospectively enrolled. Pituitary hormonal and metabolic syndrome (MetS) testing was performed. Using a glucagon stimulation test, growth hormone deficiency (GHD) was defined with a standard cut point of 3 ng/mL and with a more stringent body mass index (BMI)-adjusted cut point. Subjects with and without hormonal deficiency (HD) were compared in terms of QoL, International Index of Erectile Function (IIEF) scores, metabolic parameters, and football career data. Of 74 subjects, 6 were excluded because of significant non-football-related TBIs. Of the remaining 68 subjects (mean age, 47.3±10.2 years; median NFL years, 5; median NFL concussions, 3; mean BMI, 33.8±6.0), 28 (41.2%) were GHD using a peak GH cutoff of <3 ng/mL. However, with a BMI-adjusted definition of GHD, 13 of 68 (19.1%) were GHD. Using this BMI-adjusted definition, overall HD was found in 16 (23.5%) subjects: 10 (14.7%) with isolated GHD; 3 (4.4%) with isolated hypogonadism; and 3 (4.4%) with both GHD and hypogonadism. Subjects with HD had lower mean scores on the IIEF survey (p=0.016) and trended toward lower scores on the SF-36 MCS (p=0.113). MetS was present in 50% of subjects, including 5 of 6 (83%) with hypogonadism, and 29 of 62 (46.8%) without hypogonadism (p=0.087). Age, BMI, median years in NFL, games played, number of concussions, and acknowledged use of performance-enhancing steroids were similar between HD and non-HD groups. In summary, in this cohort of retired NFL players with poor QoL, 23.5% had HD, including 19% with GHD (using a BMI-adjusted definition), 9% with hypogonadism, and 50% had MetS. Although the cause of HD is unclear, these results suggest that GHD and hypogonadism may contribute to poor QoL, erectile dysfunction, and MetS in this population. Further study of pituitary function is warranted in athletes sustaining repetitive mTBI. PMID:24552537
Kelly, Daniel F; Chaloner, Charlene; Evans, Diana; Mathews, Amy; Cohan, Pejman; Wang, Christina; Swerdloff, Ronald; Sim, Myung-Shin; Lee, Jihey; Wright, Mathew J; Kernan, Claudia; Barkhoudarian, Garni; Yuen, Kevin C J; Guskiewicz, Kevin
2014-07-01
Hypopituitarism is common after moderate and severe traumatic brain injury (TBI). Herein, we address the association between mild TBI (mTBI) and pituitary and metabolic function in retired football players. Retirees 30-65 years of age, with one or more years of National Football League (NFL) play and poor quality of life (QoL) based on Short Form 36 (SF-36) Mental Component Score (MCS) were prospectively enrolled. Pituitary hormonal and metabolic syndrome (MetS) testing was performed. Using a glucagon stimulation test, growth hormone deficiency (GHD) was defined with a standard cut point of 3 ng/mL and with a more stringent body mass index (BMI)-adjusted cut point. Subjects with and without hormonal deficiency (HD) were compared in terms of QoL, International Index of Erectile Function (IIEF) scores, metabolic parameters, and football career data. Of 74 subjects, 6 were excluded because of significant non-football-related TBIs. Of the remaining 68 subjects (mean age, 47.3±10.2 years; median NFL years, 5; median NFL concussions, 3; mean BMI, 33.8±6.0), 28 (41.2%) were GHD using a peak GH cutoff of <3 ng/mL. However, with a BMI-adjusted definition of GHD, 13 of 68 (19.1%) were GHD. Using this BMI-adjusted definition, overall HD was found in 16 (23.5%) subjects: 10 (14.7%) with isolated GHD; 3 (4.4%) with isolated hypogonadism; and 3 (4.4%) with both GHD and hypogonadism. Subjects with HD had lower mean scores on the IIEF survey (p=0.016) and trended toward lower scores on the SF-36 MCS (p=0.113). MetS was present in 50% of subjects, including 5 of 6 (83%) with hypogonadism, and 29 of 62 (46.8%) without hypogonadism (p=0.087). Age, BMI, median years in NFL, games played, number of concussions, and acknowledged use of performance-enhancing steroids were similar between HD and non-HD groups. In summary, in this cohort of retired NFL players with poor QoL, 23.5% had HD, including 19% with GHD (using a BMI-adjusted definition), 9% with hypogonadism, and 50% had MetS. Although the cause of HD is unclear, these results suggest that GHD and hypogonadism may contribute to poor QoL, erectile dysfunction, and MetS in this population. Further study of pituitary function is warranted in athletes sustaining repetitive mTBI.
Hsu, Andrew R; Lareau, Craig R; Anderson, Robert B
2015-11-01
Infolding and retraction of an avulsed deltoid complex after ankle fracture can be a source of persistent increased medial clear space, malreduction, and postoperative pain and medial instability. The purpose of this descriptive case series was to analyze the preliminary outcomes of acute superficial deltoid complex avulsion repair during ankle fracture fixation in a cohort of National Football League (NFL) players. We found that there is often complete avulsion of the superficial deltoid complex off the proximal aspect of the medial malleolus during high-energy ankle fractures in athletes. Between 2004 and 2014, the cases of 14 NFL players who underwent ankle fracture fixation with open deltoid complex repair were reviewed. Patients with chronic deltoid ligament injuries or ankle fractures more than 2 months old were excluded. Average age for all patients was 25 years and body mass index 34.4. Player positions included 1 wide receiver, 1 tight end, 1 safety, 1 running back, 1 linebacker, and 9 offensive linemen. Average time from injury to surgery was 7.5 days. Surgical treatment for all patients consisted of ankle arthroscopy and debridement, followed by fibula fixation with plate and screws, syndesmotic fixation with suture-button devices, and open deltoid complex repair with suture anchors. Patient demographics were recorded with position played, time from injury to surgery, games played before and after surgery, ability to return to play, and postoperative complications. Return to play was defined as the ability to successfully participate in at least 1 full regular-season NFL game after surgery. All NFL players were able to return to running and cutting maneuvers by 6 months after surgery. There were no significant differences in playing experience before surgery versus after surgery. Average playing experience before surgery was 3.3 seasons, 39 games played, and 22 games started. Average playing experience after surgery was 1.6 seasons, 16 games played, and 15 games started. Return to play was 86% for all players. There were no intraoperative or postoperative complications noted, and no players had clinical evidence of medial pain or instability at final follow-up with radiographic maintenance of anatomic mortise alignment. Superficial deltoid complex avulsion during high-energy ankle fractures in athletes is a distinct injury pattern that should be recognized and may benefit from primary open repair. The majority of NFL players treated surgically for this injury pattern are able to return to play after surgery with no reported complications or persistent medial ankle pain or instability. Level IV, retrospective case series. © The Author(s) 2015.
Hershman, Elliott B; Anderson, Robert; Bergfeld, John A; Bradley, James P; Coughlin, Michael J; Johnson, Robert J; Spindler, Kurt P; Wojtys, Edward; Powell, John W
2012-10-01
Players in the National Football League (NFL) sustain injuries every season as the result of their participation. One factor associated with the rate of injury is the type of playing surface on which the players participate. There is no difference in the rate of knee sprains and ankle sprains during NFL games when comparing rates of those injuries during games played on natural grass surfaces with rates of those injuries during games played on the artificial surface FieldTurf. Descriptive epidemiology study. The NFL records injury and exposure (ie, game) data as part of its injury surveillance system. During the 2000-2009 NFL seasons, there were 2680 games (5360 team games) played on grass or artificial surfaces. Specifically, 1356 team games were played on FieldTurf and 4004 team games were played on grass. We examined the 2000-2009 game-related injury data from those games as recorded by the injury surveillance system. The data included the injury diagnosis, the date of injury, and the surface at the time of injury. The injury data showed that 1528 knee sprains and 1503 ankle sprains occurred during those games. We calculated injury rates for knee sprains and ankle sprains-specifically, medial collateral ligament (MCL) sprains, anterior cruciate ligament (ACL) sprains, eversion ankle sprains, and inversion ankle sprains-using incidence density ratios (IDRs). We used a Poisson model and logistic regression odds ratios to validate the IDR analysis. A multivariate logistic regression model was used to adjust the odds ratio for weather conditions. The observed injury rate of knee sprains on FieldTurf was 22% (IDR = 1.22, 95% confidence interval [CI], 1.09-1.36) higher than on grass, and the injury rate of ankle sprains on FieldTurf was 22% (IDR = 1.22, 95% CI, 1.09-1.36) higher than on grass. These differences are statistically significant. Specifically, the observed injury rates of ACL sprains and eversion ankle sprains on FieldTurf surfaces were 67% (P < .001) and 31% (P < .001) higher than on grass surfaces and were statistically significant. The observed injury rates of MCL sprains and inversion ankle sprains were also not significantly higher on FieldTurf surfaces (P = .689 and .390, respectively). Injury rates for ACL sprains and eversion ankle sprains for NFL games played on FieldTurf were higher than rates for those injuries in games played on grass, and the differences were statistically significant.
Acromioclavicular joint injuries in the National Football League: epidemiology and management.
Lynch, T Sean; Saltzman, Matthew D; Ghodasra, Jason H; Bilimoria, Karl Y; Bowen, Mark K; Nuber, Gordon W
2013-12-01
Previous studies investigating acromioclavicular (AC) joint injuries in professional American football players have only been reported on quarterbacks during the 1980s and 1990s. These injuries have not been evaluated across all position players in the National Football League (NFL). The purpose of this study was 4-fold: (1) to determine the incidence of AC joint injuries among all NFL position players; (2) to investigate whether player position, competition setting, type of play, and playing surface put an athlete at an increased risk for this type of injury; (3) to determine the incidence of operative and nonoperative management of these injuries; and (4) to compare the time missed for injuries treated nonoperatively to the time missed for injuries requiring surgical intervention. Descriptive epidemiological study. All documented injuries of the AC joint were retrospectively analyzed using the NFL Injury Surveillance System (NFLISS) over a 12-season period from 2000 through 2011. The data were analyzed by the anatomic location, player position, field conditions, type of play, requirement of surgical management, days missed per injury, and injury incidence. Over 12 NFL seasons, there were a total of 2486 shoulder injuries, with 727 (29.2%) of these injuries involving the AC joint. The overall rate of AC joint injuries in these athletes was 26.1 injuries per 10,000 athlete exposures, with the majority of these injuries occurring during game activity on natural grass surfaces (incidence density ratio, 0.79) and most often during passing plays. These injuries occurred most frequently in defensive backs, wide receivers, and special teams players; however, the incidence of these injuries was greatest in quarterbacks (20.9 injuries per 100 players), followed by special teams players (20.7/100) and wide receivers (16.5/100). Overall, these athletes lost a mean of 9.8 days per injury, with quarterbacks losing the most time to injury (mean, 17.3 days). The majority of these injuries were low-grade AC joint sprains that were treated with nonoperative measures; only 13 (1.7%) required surgical management. Players who underwent surgical management lost a mean of 56.2 days. Shoulder injuries, particularly those of the AC joint, occur frequently in the NFL. These injuries can result in time lost but rarely require operative management. Quarterbacks had the highest incidence of injury; however, this incidence is lower than in previous investigations that evaluated these injuries during the 1980s and 1990s.
Return to Play in National Football League Players After Operative Jones Fracture Treatment.
Lareau, Craig R; Hsu, Andrew R; Anderson, Robert B
2016-01-01
Jones fractures commonly occur in professional athletes and operative treatment remains the standard of care in this patient population. In our clinical experience, an aggressive postoperative rehabilitation protocol for National Football League (NFL) players with an average return to play (RTP) between 8 and 10 weeks can have successful outcomes with few complications. The purpose of this study was to quantify RTP and rate of complications, including nonunion, refracture, and reoperation among a cohort of NFL players with operatively treated Jones fractures. Between 2004 and 2014, 25 consecutive NFL players who underwent acute Jones fracture fixation by a single surgeon were reviewed. Operative treatment for the majority of patients involved fixation with a Jones-specific intramedullary screw and iliac crest bone marrow aspirate with demineralized bone matrix injected at the fracture site. Additionally, our protocol involved the use of noninvasive bone stimulators, application of customized orthoses, and an aggressive patient-specific rehabilitation protocol. Patient demographics were recorded along with position played, seasons played after surgery, RTP, and complications. RTP was defined as the ability to play in a single regular-season NFL game after surgery. At the time of surgery, average age for all patients was 24.0 years and BMI 31.0. Player positions included 8 wide receivers, 4 linebackers, 4 tight ends, 2 defensive tackles, 2 cornerbacks, 1 offensive tackle, 1 center, 1 tackle, 1 defensive end, and 1 quarterback. Seventy-six percent of players underwent operative fixation during their first 3 seasons. Forty-eight percent were diagnosed before or during their rookie (first) season.RTP was 100% for all players and 80% were still playing at time of publication. Three patients (12.0%) refractured and required revision surgery. Time until RTP was influenced by other variables and difficult to measure because many surgeries were performed early in the offseason. All 9 players who underwent surgery between July and October, and were therefore eligible to return to play in the same season, had an average RTP of 8.7 weeks (range 5.9-13.6). With an appropriately placed intramedullary screw and an aggressive rehabilitation protocol, early RTP was achievable with a low refracture rate in professional athletes. All NFL players in this series were able to return to play after surgery. We observed that these injuries were more likely to occur in the first 3 seasons of play and in wide receivers, linebackers, and tight ends. This at-risk subset of players may benefit from improved preventative measures. Level IV, retrospective case series. © The Author(s) 2015.
Gür Güngör, Sirel; Akman, Ahmet; Sarıgül Sezenöz, Almila; Tanrıaşıkı, Gülşah
2016-12-01
The presence of retinal nerve fiber layer (RNFL) split bundles was recently described in normal eyes scanned using scanning laser polarimetry and by histologic studies. Split bundles may resemble RNFL loss in healthy eyes. The aim of our study was to determine the prevalence of nerve fiber layer split bundles in healthy people. We imaged 718 eyes of 359 healthy persons with the spectral domain optical coherence tomography in this cross-sectional study. All eyes had intraocular pressure of 21 mmHg or less, normal appearance of the optic nerve head, and normal visual fields (Humphrey Field Analyzer 24-2 full threshold program). In our study, a bundle was defined as 'split' when there is localized defect not resembling a wedge defect in the RNFL deviation map with a symmetrically divided RNFL appearance on the RNFL thickness map. The classification was performed by two independent observers who used an identical set of reference examples to standardize the classification. Inter-observer consensus was reached in all cases. Bilateral superior split bundles were seen in 19 cases (5.29%) and unilateral superior split was observed in 15 cases (4.16%). In 325 cases (90.52%) there was no split bundle. Split nerve fiber layer bundles, in contrast to single nerve fiber layer bundles, are not common findings in healthy eyes. In eyes with normal optic disc appearance, especially when a superior RNFL defect is observed in RNFL deviation map, the RNLF thickness map and graphs should also be examined for split nerve fiber layer bundles.
Multiscale modeling of PVDF matrix carbon fiber composites
NASA Astrophysics Data System (ADS)
Greminger, Michael; Haghiashtiani, Ghazaleh
2017-06-01
Self-sensing carbon fiber reinforced composites have the potential to enable structural health monitoring that is inherent to the composite material rather than requiring external or embedded sensors. It has been demonstrated that a self-sensing carbon fiber reinforced polymer composite can be created by using the piezoelectric polymer polyvinylidene difluoride (PVDF) as the matrix material and using a Kevlar layer to separate two carbon fiber layers. In this configuration, the electrically conductive carbon fiber layers act as electrodes and the Kevlar layer acts as a dielectric to prevent the electrical shorting of the carbon fiber layers. This composite material has been characterized experimentally for its effective d 33 and d 31 piezoelectric coefficients. However, for design purposes, it is desirable to obtain a predictive model of the effective piezoelectric coefficients for the final smart composite material. Also, the inverse problem can be solved to determine the degree of polarization obtained in the PVDF material during polarization by comparing the effective d 33 and d 31 values obtained in experiment to those predicted by the finite element model. In this study, a multiscale micromechanics and coupled piezoelectric-mechanical finite element modeling approach is introduced to predict the mechanical and piezoelectric performance of a plain weave carbon fiber reinforced PVDF composite. The modeling results show good agreement with the experimental results for the mechanical and electrical properties of the composite. In addition, the degree of polarization of the PVDF component of the composite is predicted using this multiscale modeling approach and shows that there is opportunity to drastically improve the smart composite’s performance by improving the polarization procedure.
Composite treatment of ceramic tile armor
Hansen, James G. R. [Oak Ridge, TN; Frame, Barbara J [Oak Ridge, TN
2010-12-14
An improved ceramic tile armor has a core of boron nitride and a polymer matrix composite (PMC) facing of carbon fibers fused directly to the impact face of the tile. A polyethylene fiber composite backing and spall cover are preferred. The carbon fiber layers are cured directly onto the tile, not adhered using a separate adhesive so that they are integral with the tile, not a separate layer.
Composite treatment of ceramic tile armor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hansen, James G. R.; Frame, Barbara J
An improved ceramic tile armor has a core of boron nitride and a polymer matrix composite (PMC) facing of carbon fibers fused directly to the impact face of the tile. A polyethylene fiber composite backing and spall cover are preferred. The carbon fiber layers are cured directly onto the tile, not adhered using a separate adhesive so that they are integral with the tile, not a separate layer.
NASA Astrophysics Data System (ADS)
He, Liping; Lu, Gang; Chen, Dachuan; Li, Wenjun; Lu, Chunsheng
2017-07-01
This paper investigates the three-dimensional (3D) injection molding flow of short fiber-reinforced polymer composites using a smoothed particle hydrodynamics (SPH) simulation method. The polymer melt was modeled as a power law fluid and the fibers were considered as rigid cylindrical bodies. The filling details and fiber orientation in the injection-molding process were studied. The results indicated that the SPH method could effectively predict the order of filling, fiber accumulation, and heterogeneous distribution of fibers. The SPH simulation also showed that fibers were mainly aligned to the flow direction in the skin layer and inclined to the flow direction in the core layer. Additionally, the fiber-orientation state in the simulation was quantitatively analyzed and found to be consistent with the results calculated by conventional tensor methods.
Non-synaptic signaling from cerebellar climbing fibers modulates Golgi cell activity.
Nietz, Angela K; Vaden, Jada H; Coddington, Luke T; Overstreet-Wadiche, Linda; Wadiche, Jacques I
2017-10-13
Golgi cells are the principal inhibitory neurons at the input stage of the cerebellum, providing feedforward and feedback inhibition through mossy fiber and parallel fiber synapses. In vivo studies have shown that Golgi cell activity is regulated by climbing fiber stimulation, yet there is little functional or anatomical evidence for synapses between climbing fibers and Golgi cells. Here, we show that glutamate released from climbing fibers activates ionotropic and metabotropic receptors on Golgi cells through spillover-mediated transmission. The interplay of excitatory and inhibitory conductances provides flexible control over Golgi cell spiking, allowing either excitation or a biphasic sequence of excitation and inhibition following single climbing fiber stimulation. Together with prior studies of spillover transmission to molecular layer interneurons, these results reveal that climbing fibers exert control over inhibition at both the input and output layers of the cerebellar cortex.
Hemodynamic monitoring in different cortical layers with a single fiber optical system
NASA Astrophysics Data System (ADS)
Yu, Linhui; Noor, M. Sohail; Kiss, Zelma H. T.; Murari, Kartikeya
2018-02-01
Functional monitoring of highly-localized deep brain structures is of great interest. However, due to light scattering, optical methods have limited depth penetration or can only measure from a large volume. In this research, we demonstrate continuous measurement of hemodynamics in different cortical layers in response to thalamic deep brain stimulation (DBS) using a single fiber optical system. A 200-μm-core-diameter multimode fiber is used to deliver and collect light from tissue. The fiber probe can be stereotaxically implanted into the brain region of interest at any depth to measure the di use reflectance spectra from a tissue volume of 0.02-0.03 mm3 near the fiber tip. Oxygenation is then extracted from the reflectance spectra using an algorithm based on Monte Carlo simulations. Measurements were performed on the surface (cortical layer I) and at 1.5 mm depth (cortical layer VI) of the motor cortex in anesthetized rats with thalamic DBS. Preliminary results revealed the oxygenation changes in response to DBS. Moreover, the baseline as well as the stimulus-evoked change in oxygenation were different at the two depths of cortex.
Morphology of the core fibrous layer of the cetacean tail fluke.
Gough, William T; Fish, Frank E; Wainwright, Dylan K; Bart-Smith, Hilary
2018-06-01
The cetacean tail fluke blades are not supported by any vertebral elements. Instead, the majority of the blades are composed of a densely packed collagenous fiber matrix known as the core layer. Fluke blades from six species of odontocete cetaceans were examined to compare the morphology and orientation of fibers at different locations along the spanwise and chordwise fluke blade axes. The general fiber morphology was consistent with a three-dimensional structure comprised of two-dimensional sheets of fibers aligned tightly in a laminated configuration along the spanwise axis. The laminated configuration of the fluke blades helps to maintain spanwise rigidity while allowing partial flexibility during swimming. When viewing the chordwise sectional face at the leading edge and mid-chord regions, fibers displayed a crossing pattern. This configuration relates to bending and structural support of the fluke blade. The trailing edge core was found to have parallel fibers arranged more dorso-ventrally. The fiber morphology of the fluke blades was dorso-ventrally symmetrical and similar in all species except the pygmy sperm whale (Kogia breviceps), which was found to have additional core layer fiber bundles running along the span of the fluke blade. These additional fibers may increase stiffness of the structure by resisting tension along their long spanwise axis. © 2018 Wiley Periodicals, Inc.
Fast detection of humidity with a subwavelength-diameter fiber taper coated with gelatin film.
Zhang, Lei; Gu, Fuxing; Lou, Jingyi; Yin, Xuefeng; Tong, Limin
2008-08-18
A subwavelength-diameter tapered optical fiber coated with gelatin layer for fast relative humidity (RH) sensing is reported. The sensing element is composed of a 680-nm-diameter fiber taper coated with a 80-nm-thickness 8-mm-length gelatin layer, and is operated at a wavelength of 1550 nm. When exposed to moisture, the change in refractive index of the gelatin layer changes the mode field of the guided mode of the coated fiber, and converts a portion of power from guided mode to radiation mode, resulting in RH-dependent loss for optical sensing. The sensor is operated within a wide humidity range (9-94% RH) with high sensitivity and good reversibility. Measured response time is about 70 ms, which is one or two orders of magnitude faster than other types of RH sensors relying on conventional optical fibers or films.
NASA Astrophysics Data System (ADS)
Longhitano, F.; Lo Presti, D.; Bonanno, D. L.; Bongiovanni, D. G.; Leonora, E.; Randazzo, N.; Reito, S.; Sipala, V.; Gallo, G.
2017-02-01
The fabrication and characterization of a charged particle imaging system composed of a tracker and a residual range detector (RRD) is described. The tracker is composed of four layers of scintillating fibers (SciFi), 500 μm side square section, arranged to form two planes orthogonal to each other. The fibers are coupled to two Multi-Pixel Photon Counter (MPPC) arrays by means of a channel reduction system patented by the Istituto Nazionale di Fisica Nucleare (INFN) (Presti, 2015) [1]. Sixty parallel layers of the same fibers used in the tracker compose the RRD. The various layers are optically coupled to a MPPC array by means of wavelength shifting (WLS) fibers. The sensitive area of the two detectors is 9×9 cm2. The results of the measurements, acquired by the prototypes with CATANA (Cirrone, 2008) [2] proton beam, and a comparison with the simulations of the detectors are presented.
Strain transfer analysis of optical fiber based sensors embedded in an asphalt pavement structure
NASA Astrophysics Data System (ADS)
Wang, Huaping; Xiang, Ping
2016-07-01
Asphalt pavement is vulnerable to random damage, such as cracking and rutting, which can be proactively identified by distributed optical fiber sensing technology. However, due to the material nature of optical fibers, a bare fiber is apt to be damaged during the construction process of pavements. Thus, a protective layer is needed for this application. Unfortunately, part of the strain of the host material is absorbed by the protective layer when transferring the strain to the sensing fiber. To account for the strain transfer error, in this paper a theoretical analysis of the strain transfer of a three-layered general model has been carried out by introducing Goodman’s hypothesis to describe the interfacial shear stress relationship. The model considers the viscoelastic behavior of the host material and protective layer. The effects of one crack in the host material and the sensing length on strain transfer relationship are been discussed. To validate the effectiveness of the strain transfer analysis, a flexible asphalt-mastic packaged distributed optical fiber sensor was designed and tested in a laboratory environment to monitor the distributed strain and appearance of cracks in an asphalt concrete beam at two different temperatures. The experimental results indicated that the developed strain transfer formula can significantly reduce the strain transfer error, and that the asphalt-mastic packaged optical fiber sensor can successfully monitor the distributed strain and identify local cracks.
Muscular innervation of the proximal duodenum of the guinea pig.
Iino, S
2000-10-01
We investigated the muscular structure and innervation of the gastroduodenal junction in the guinea pig. In the gastroduodenal junction, the innermost layer of the circular muscle contained numerous nerve fibers and terminals. Since this nerve network continued onto the deep muscular plexus (DMP) of the duodenum, we surmised that the numerous nerve fibers in the gastroduodenal junction were specialized DMP in the most proximal part of the duodenum. The innermost layer containing many nerve fibers was about 1,000 microm in length and 100 microm in thickness in the proximal duodenum. This layer contained numerous connective tissue fibers composed of collagen and elastic fibers. Five to 30 smooth muscle cells lay in contact with each other and were surrounded by fine connective tissue. The nerve fibers in the proximal duodenum contained nerve terminals immunoreactive for choline acetyltransferase, dynorphin, enkephalin, galanin, gastrin-releasing peptide, nitric oxide synthase, substance P, and vasoactive intestinal polypeptide. Adrenergic fibers which contained tyrosine hydroxylase immunoreactivity were rare in the proximal duodenum. In the innermost layer of the proximal duodenum, there were numerous c-Kit immunopositive cells that were in contact with nerve terminals. This study allowed us to clarify the specific architecture of the most proximal portion of the duodenum. The functional significance of the proximal duodenum in relation to the electrical connection and neural cooperation of the musculature between the antrum and the duodenum is also discussed.
Terahertz gas sensing based on time-domain-spectroscopy using a hollow-optical fiber gas cell
NASA Astrophysics Data System (ADS)
Suzuki, T.; Katagiri, T.; Matsuura, Y.
2018-02-01
Terahertz gas sensing system based on time-domain spectroscopy (THz-TDS) using a hollow-optical fiber gas cell is proposed. A hollow optical fiber functions as a long-path and low-volume gas cell and loading a dielectric layer on the inside of the fiber reduces the transmission loss and the dielectric layer also protects the metal layer of the fiber from deterioration. In the fabrication process, a polyethylene tube with a thin wall is drawn from a thick preform and a metal layer is formed on the outside of the tube. By using a 34-cm long fiber gas cell, NH3 gas with a concentration of 8.5 % is detected with a good SN ratio. However, the absorption peaks of NH3 and water vapor appeared at around 1.2 THz are not separated. To improve the frequency resolution in Fourier transformation, the time scan width that is decided by the scanning length of linear stage giving a time delay in the probing THz beam is enlarged. As a result, the absorption peaks at around 1.2 THz are successfully separated. In addition, by introducing a longer fiber gas cell of 60-cm length, the measurement sensitivity is improved and an absorption spectrum of NH3 gas with a concentration of 0.5 % is successfully detected.
Hybrid Fiber Layup and Fiber-Reinforced Polymeric Composites Produced Therefrom
NASA Technical Reports Server (NTRS)
Barnell, Thomas J. (Inventor); Garrigan, Sean P. (Inventor); Rauscher, Michael D. (Inventor); Dietsch, Benjamin A. (Inventor); Cupp, Gary N. (Inventor)
2018-01-01
Embodiments of a hybrid fiber layup used to form a fiber-reinforced polymeric composite, and a fiber-reinforced polymeric composite produced therefrom are disclosed. The hybrid fiber layup comprises one or more dry fiber strips and one or more prepreg fiber strips arranged side by side within each layer, wherein the prepreg fiber strips comprise fiber material impregnated with polymer resin and the dry fiber strips comprise fiber material without impregnated polymer resin.
Lu, Xin; Qu, Hang; Skorobogatiy, Maksim
2017-02-28
We report an all-polymer flexible piezoelectric fiber that uses both judiciously chosen geometry and advanced materials in order to enhance fiber piezoelectric response. The microstructured/nanostructured fiber features a soft hollow polycarbonate core surrounded by a spiral multilayer cladding consisting of alternating layers of piezoelectric nanocomposites (polyvinylidene enhanced with BaTiO 3 , PZT, or CNT) and conductive polymer (carbon-filled polyethylene). The conductive polymer layers serve as two electrodes, and they also form two spatially offset electric connectors on the fiber surface designed for the ease of connectorization. Kilometer-long piezoelectric fibers of sub-millimeter diameters are thermally drawn from a macroscopic preform. The fibers exhibit high output voltage of up to 6 V under moderate bending, and they show excellent mechanical and electrical durability in a cyclic bend-release test. The micron/nanosize multilayer structure enhances in-fiber poling efficiency due to the small distance between the conducting electrodes sandwiching the piezoelectric composite layers. Additionally, the spiral structure greatly increases the active area of the piezoelectric composite, thus promoting higher voltage generation and resulting in 10-100 higher power generation efficiency over the existing piezoelectric cables. Finally, we weave the fabricated piezoelectric fibers into technical textiles and demonstrate their potential applications in power generation when used as a sound detector, smart car seat upholstery, or wearable materials.
Preparation of ZnO nanorods on conductive PET-ITO-Ag fibers
NASA Astrophysics Data System (ADS)
Li, Yiwen; Ji, Shuai; Chen, Yuanyu; Zhang, Hong; Gong, Yumei; Guo, Jing
2016-12-01
We studied the vertical ZnO nanorods grown on conductive conventional polyethylene terephthalate (PET) fibers which are prepared by electroless silver depositing on tin-doped indium oxide (ITO) coated PET fibers through an efficient and low-cost green approach. The PET fibers were firstly functionalized with a layer of ITO gel synthesized through a sol-gel process at rather low temperature, simply by immersing the fibers into ITO sol for several minutes followed by gelation at 120 °C. Once the ITO gel layer surface was activated by SnCl2, a continuous, uniform, and compact layer of silver was carried out on the surface of the PET-ITO fibers through electroless plating operation at room temperature. The as-prepared PET-ITO-Ag fibers had good electrical conductivity, with surface resistivity as low as 0.23 mΩ cm. The overall procedure is simple, efficient, nontoxic, and controllable. The conductive PET-ITO-Ag fiber was used successfully as a flexible basal material to plant vertical ZnO nanorods through controlling the seeding and growth processes. The morphology of the PET-ITO, PET-ITO-Ag, and PET-ITO-Ag-ZnO fibers were observed by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Undergone the whole process, although the tensile strength of the fiber decreased slightly, they may still exert their applications in flexible electronic such as photovoltaic and piezoelectric devices.
STS-27 crew poses for inflight portrait on forward flight deck with football
NASA Technical Reports Server (NTRS)
1988-01-01
With WILSON NFL football freefloating in front of them, STS-27 astronauts pose on Atlantis', Orbiter Vehicle (OV) 104's, forward flight deck for inflight crew portrait. Crewmembers, wearing blue mission t-shirts, are (left to right) Commander Robert L. Gibson, Mission Specialist (MS) Richard M. Mullane, MS Jerry L. Ross, MS William M. Shepherd, and Pilot Guy S. Gardner. Forward flight deck overhead control panels are visible above crewmembers, commanders and pilots seats in front of them, and forward windows behind them. An auto-set 35mm camera mounted on the aft flight deck was used to take this photo. The football was later presented to the National Football League (NFL) at halftime of the Super Bowl in Miami.
Sugita, Shukei; Matsumoto, Takeo
2017-06-01
Elastin and collagen fibers play important roles in the mechanical properties of aortic media. Because knowledge of local fiber structures is required for detailed analysis of blood vessel wall mechanics, we investigated 3D microstructures of elastin and collagen fibers in thoracic aortas and monitored changes during pressurization. Using multiphoton microscopy, autofluorescence images from elastin and second harmonic generation signals from collagen were acquired in media from rabbit thoracic aortas that were stretched biaxially to restore physiological dimensions. Both elastin and collagen fibers were observed in all longitudinal-circumferential plane images, whereas alternate bright and dark layers were observed along the radial direction and were recognized as elastic laminas (ELs) and smooth muscle-rich layers (SMLs), respectively. Elastin and collagen fibers are mainly oriented in the circumferential direction, and waviness of collagen fibers was significantly higher than that of elastin fibers. Collagen fibers were more undulated in longitudinal than in radial direction, whereas undulation of elastin fibers was equibiaxial. Changes in waviness of collagen fibers during pressurization were then evaluated using 2-dimensional fast Fourier transform in mouse aortas, and indices of waviness of collagen fibers decreased with increases in intraluminal pressure. These indices also showed that collagen fibers in SMLs became straight at lower intraluminal pressures than those in EL, indicating that SMLs stretched more than ELs. These results indicate that deformation of the aorta due to pressurization is complicated because of the heterogeneity of tissue layers and differences in elastic properties of ELs, SMLs, and surrounding collagen and elastin.
Garcia-Martin, Elena; Pinilla, Isabel; Sancho, Eva; Almarcegui, Carmen; Dolz, Isabel; Rodriguez-Mena, Diego; Fuertes, Isabel; Cuenca, Nicolas
2012-09-01
To evaluate the ability of time-domain and Fourier-domain optical coherence tomographies (OCTs) to detect macular and retinal nerve fiber layer atrophies in retinitis pigmentosa (RP). To test the intrasession reproducibility using three OCT instruments (Stratus, Cirrus, and Spectralis). Eighty eyes of 80 subjects (40 RP patients and 40 healthy subjects) underwent a visual field examination, together with 3 macular scans and 3 optic disk evaluations by the same experienced examiner using 3 OCT instruments. Differences between healthy and RP eyes were compared. The relationship between measurements with each OCT instrument was evaluated. Repeatability was studied by intraclass correlation coefficients and coefficients of variation. Macular and retinal nerve fiber layer atrophies were detected in RP patients for all OCT parameters. Macular and retinal nerve fiber layer thicknesses, as determined by the different OCTs, were correlated but significantly different (P < 0.05). Reproducibility was moderately high using Stratus, good using Cirrus and Spectralis, and excellent using the Tru-track technology of Spectralis. In RP eyes, measurements showed higher variability compared with healthy eyes. Differences in thickness measurements existed between OCT instruments, despite there being a high degree of correlation. Fourier-domain OCT can be considered a valid and repeatability technique to detect retinal nerve fiber layer atrophy in RP patients.
NASA Astrophysics Data System (ADS)
Tsao, Yu-Chia; Yang, Yi-Wen; Tsai, Woo-Hu; Yan, Tsong-Rong
2008-02-01
Side-polished fiber immunosensor based on surface plasmon resonance (SPR) onto self-assembled protein A layer was proposed for the detection of Legionella pneumophila. A self-assembled protein A layer on gold (Au) surface was fabricated by adsorbing a mixture of 11-mercaptoundecanoic acid (MUA) and activated by N-Ethyl-N'-(3-dimethylaminopropyl) carbodiimide/ N-Hydroxysuccinimide (EDC/NHS). The formation of self-assembled protein A and gold layer on side-polished surface and the binding of antibody and antigen in series were confirmed by SPR response on spectrum. The binding protein A layer can improve the sensitivity, which indirectly supports the configurations that antibody layer is immobilized on the binding protein A layer with a well-ordered orientation. The surface morphology analyses of self-assembled protein A layer on Au substrate and monoclonal antibody against L. pneumophila immobilized on protein A were demonstrated by SPR dip shifts on optical spectrum analyzer. The SPR fiber immunosensor for detection of L. pneumophila was developed and the detection limit was 10 CFU/ml with the SPR dip shift in wavelength from 1070 to 1105nm. The current fabrication technique of a SPR immunosensor using optical fiber for the detection of Legionella pneumophila could be applied to construct other biosensor.
Deepthi, S; Nivedhitha Sundaram, M; Vijayan, Ponni; Nair, Shantikumar V; Jayakumar, R
2018-04-01
Electrospun tri-layered fibrous scaffold incorporating VEGF and Platelet Factor Concentrate (PFC) in multiple layers having different layer architectures was designed to mimic native artery. The scaffold consisted of longitudinally aligned poly(hydroxy butyrate-co-hydroxy valerate) (PHBV) and poly(vinyl alcohol) (PVA) nanofibers (inner layer), radially aligned PHBV-elastin nanofibers (middle layer) to provide the bi-directional alignment and combination of longitudinally aligned PHBV-elastin and random PHBV/PVA multiscale fibers (peripheral layer). Tubular constructs of diameter <6 mm were developed. The developed electrospun fibers were characterised by Scanning Electron Microscope (SEM), Fourier Transform Infrared Spectroscopy and Tensile tests. Further the burst strength, compliance and stiffness index of tri-layered tubular scaffold was evaluated. SEM images of fibrous layers showed the typical longitudinal and radial alignment of fibers in the tubular construct. SEM images showed that the prepared PHBV nanofibers were in the range of 500-800 nm and PHBV microfibers were of 1-2 μm in diameter in the tri-layered electrospun membrane. PVA nanofibers were of size 200-250 nm. The tensile strength, percentage compliance and stiffness index of tri-layered membrane was in accordance with that of native small blood vessels. The developed tri-layered membrane was blood compatible, with hemolysis degree 0.85 ± 0.21% and did not activate platelets. Controlled release of VEGF and PFC was observed from the scaffold. The biocompatibility of the tri-layered scaffold was evaluated using HUVECs, SMCs and MSCs and SMCs infiltration from the outer layer was also evaluated. Specific protein expression for the HUVECs and SMCs was evaluated by flow cytometry and immunocytochemistry. HUVECs and SMCs exhibited good elongation and alignment along the direction of fibers and was found to maintain its CD31, VE-Cadherin and αSMA expression respectively. The results highlight the importance of bi-directional fiber alignment on the tri-layered electrospun scaffold as a suitable architectural prototype for vascular scaffolds to mimic the native arteries. Copyright © 2017 Elsevier B.V. All rights reserved.
Hong, Soo-Kyung; Kim, Jee-Young; Jeon, Chang-Jin
2002-11-01
We localized calretinin-immunoreactive (IR) fibers and cells in the superior colliculus (SC) of the cat and studied the distribution and effect of enucleation on the distribution of this protein. Calretinin was localized with antibody immunocytochemistry. A dense plexus of anti-calretinin-IR fibers was found within the upper part of the superficial gray layer. Almost all of the labeled fibers were small diameter fibers with few varicosities. Monocular enucleation produced an almost complete reduction of calretinin-IR fibers in the SC contralateral to the enucleation. Furthermore, many calretinin-IR cells appeared in the contralateral SC. The newly appeared cells had small- to medium-sized vertical fusiform, oval or round, or stellate cell bodies. Two-color immunofluorescence revealed that no cells in the superficial layers expressed both calretinin and GABA. Many retinal ganglion cells were labeled after injections of retrograde axonal transport horseradish peroxidase (HRP) in the superficial layers. However, no large cells were double-labeled with calretinin and HRP. More than 95% of the double-labeled cells were small cells (<15 microm). Based on the retinal ganglion cell size, we believe that the vast majority of calretinin-IR retinocollicular fibers in cat SC are small gamma type cells that have W type physiologies.
Aligned and Electrospun Piezoelectric Polymer Fiber Assembly and Scaffold
NASA Technical Reports Server (NTRS)
Holloway, Nancy M. (Inventor); Scott-Carnell, Lisa A. (Inventor); Siochi, Emilie J. (Inventor); Leong, Kam W. (Inventor); Kulangara, Karina (Inventor)
2015-01-01
A scaffold assembly and related methods of manufacturing and/or using the scaffold for stem cell culture and tissue engineering applications are disclosed which at least partially mimic a native biological environment by providing biochemical, topographical, mechanical and electrical cues by using an electroactive material. The assembly includes at least one layer of substantially aligned, electrospun polymer fiber having an operative connection for individual voltage application. A method of cell tissue engineering and/or stem cell differentiation uses the assembly seeded with a sample of cells suspended in cell culture media, incubates and applies voltage to one or more layers, and thus produces cells and/or a tissue construct. In another aspect, the invention provides a method of manufacturing the assembly including the steps of providing a first pre-electroded substrate surface; electrospinning a first substantially aligned polymer fiber layer onto the first surface; providing a second pre-electroded substrate surface; electrospinning a second substantially aligned polymer fiber layer onto the second surface; and, retaining together the layered surfaces with a clamp and/or an adhesive compound.
Aligned and Electrospun Piezoelectric Polymer Fiber Assembly and Scaffold
NASA Technical Reports Server (NTRS)
Kulangara, Karina (Inventor); Scott Carnell, Lisa A. (Inventor); Holloway, Nancy M. (Inventor); Leong, Kam W. (Inventor); Siochi, Emilie J. (Inventor)
2017-01-01
A method of manufacturing and/or using a scaffold assembly for stem cell culture and tissue engineering applications is disclosed. The scaffold at least partially mimics a native biological environment by providing biochemical, topographical, mechanical and electrical cues by using an electroactive material. The assembly includes at least one layer of substantially aligned, electrospun polymer fiber having an operative connection for individual voltage application. A method of cell tissue engineering and/or stem cell differentiation that uses the assembly seeded with a sample of cells suspended in cell culture media, incubates and applies voltage to one or more layers, and thus produces cells and/or a tissue construct. In another aspect, the invention provides a method of manufacturing the assembly including the steps of providing a first pre-electroded substrate surface; electrospinning a first substantially aligned polymer fiber layer onto the first surface; providing a second pre-electroded substrate surface; electrospinning a second substantially aligned polymer fiber layer onto the second surface; and, retaining together the layered surfaces with a clamp and/or an adhesive compound.
Analysis of the tunable asymmetric fiber F-P cavity for fiber strain sensor edge-filter demodulation
NASA Astrophysics Data System (ADS)
Chen, Haotao; Liang, Youcheng
2014-12-01
An asymmetric fiber (Fabry-Pérot, F-P) interferometric cavity with the good linearity and wide dynamic range was successfully designed based on the optical thin film characteristic matrix theory; by adjusting the material of two different thin metallic layers, the asymmetric fiber F-P interferometric cavity was fabricated by depositing the multi-layer thin films on the optical fiber's end face. The asymmetric F-P cavity has the extensive potential application. In this paper, the demodulation method for the wavelength shift of the fiber Bragg grating (FBG) sensor based on the F-P cavity is demonstrated, and a theoretical formula is obtained. And the experimental results coincide well with the computational results obtained from the theoretical model.
Bulc, Michał; Gonkowski, Sławomir; Całka, Jarosław
2015-11-01
In the present study, the effect of streptozotocin-induced diabetes on the cocaine- and amphetamine-regulated transcript-like immunoreactive (CART-LI) enteric nervous structures was investigated within the porcine stomach. To induce diabetes, the pigs were administered intravenously streptozotocin at a dose of 150 mg/kg of body weight. A significant decrease of the number of CART-LI perikarya was observed in the myenteric plexus of the gastric antrum, corpus, and pylorus in the experimental group. In contrast, submucous plexus was devoid of CART-positive neuronal cells both in control and experimental animals. In the control group, the highest densities of CART-LI nerve fibers were observed in the circular muscle layer of antrum and slightly less nerve fibers were present in the muscle layer of corpus and pylorus. In turn, submucous layer of all studied stomach regions revealed relatively smaller number of CART-positive nerve fibers. Diabetes caused statistically significant decrease in the expression of CART-LI nerve fibers only in the antrum circular muscle layer. Also, no changes in the CART-like immunoreactivity in the intraganglionic nerve fibers were observed. The obtained results suggest that acute hyperglycemia produced significant reduction of the CART expression in enteric perikarya throughout entire stomach as well as decrease of density the CART-LI fibers in circular muscle layer of the antrum. Additionally, we suggest that CART might be involved in the regulation of stomach function especially in the gastric motility.
Oxazine-based sensor for contaminant detection, fabrication method therefor, and uses thereof
Nnanna, Agbai Agwu; Jalal, Ahmed Hasnian
2014-05-27
A sensor, a method for its fabrication, and a method for its use to detect contaminants, for example, ammonia, in stagnant and dynamic fluid media, especially liquid media. The sensor is an opto-chemical sensor that includes a polymer optical fiber, a sensing layer comprising oxazine 170 perchlorate on the polymer optical fiber, and a membrane layer on the sensing layer. The membrane layer is gas permeable and not permeable to the fluid in the fluid system, and moisture is entrapped by and between the sensing and membrane layers.
Fibrillar films obtained from sodium soap fibers and polyelectrolyte multilayers.
Zawko, Scott A; Schmidt, Christine E
2011-08-01
An objective of tissue engineering is to create synthetic polymer scaffolds with a fibrillar microstructure similar to the extracellular matrix. Here, we present a novel method for creating polymer fibers using the layer-by-layer method and sacrificial templates composed of sodium soap fibers. Soap fibers were prepared from neutralized fatty acids using a sodium chloride crystal dissolution method. Polyelectrolyte multilayers (PEMs) of polystyrene sulfonate and polyallylamine hydrochloride were deposited onto the soap fibers, crosslinked with glutaraldehyde, and then the soap fibers were leached with warm water and ethanol. The morphology of the resulting PEM structures was a dense network of fibers surrounded by a nonfibrillar matrix. Microscopy revealed that the PEM fibers were solid structures, presumably composed of polyelectrolytes complexed with residual fatty acids. These fibrillar PEM films were found to support the attachment of human dermal fibroblasts. Copyright © 2011 Wiley Periodicals, Inc.
Horn, Folkert K; Mardin, Christian Y; Laemmer, Robert; Baleanu, Delia; Juenemann, Anselm M; Kruse, Friedrich E; Tornow, Ralf P
2009-05-01
To study the correlation between local perimetric field defects and glaucoma-induced thickness reduction of the nerve layer measured in the peripapillary area with scanning laser polarimetry (SLP) and spectral domain optical coherence tomography (SOCT) and to compare the results with those of a theoretical model. The thickness of the retinal nerve fiber layer was determined in 32 sectors (11.25 degrees each) by using SLP with variable cornea compensation (GDxVCC; Laser Diagnostics, San Diego, CA) and the newly introduced high-resolution SOCT (Spectralis; Heidelberg Engineering, Heidelberg, Germany). Eighty-eight healthy subjects served as control subjects, to determine the thickness deviation in patients with glaucoma. The relationship between glaucomatous nerve fiber reduction and visual field losses was calculated in six nerve fiber bundle-related areas. Sixty-four patients at different stages of open-angle glaucoma and 26 patients with ocular hypertension underwent perimetry (Octopus G1; Haag-Streit, Köniz, Switzerland) and measurements with the two morphometric techniques. Sector-shaped analyses between local perimetric losses and reduction of the retinal nerve fiber layer thickness showed a significant association for corresponding areas except for the central visual field in SLP. Correlation coefficients were highest in the area of the nasal inferior visual field (SOCT, -0.81; SLP, -0.57). A linear model describes the association between structural and functional damage. Localized perimetric defects can be explained by reduced nerve fiber layer thickness. The data indicate that the present SOCT is useful for determining the functional-structural relationship in peripapillary areas and that association between perimetric defects and corresponding nerve fiber losses is stronger for SOCT than for the present SLP. (ClinicalTrials.gov number, NCT00494923.).
High performance methanol-oxygen fuel cell with hollow fiber electrode
NASA Technical Reports Server (NTRS)
Lawson, Daniel D. (Inventor); Ingham, John D. (Inventor)
1983-01-01
A methanol/air-oxygen fuel cell including an electrode formed by open-ended ion-exchange hollow fibers having a layer of catalyst deposited on the inner surface thereof and a first current collector in contact with the catalyst layer. A second current collector external of said fibers is provided which is immersed along with the hollow fiber electrode in an aqueous electrolyte body. Upon passage of air or oxygen through the hollow fiber electrode and introduction of methanol into the aqueous electrolyte, a steady current output is obtained. Two embodiments of the fuel cell are disclosed. In the first embodiment the second metal electrode is displaced away from the hollow fiber in the electrolyte body while in the second embodiment a spiral-wrap electrode is provided about the outer surface of the hollow fiber electrode.
Direct transfer of metallic photonic structures onto end facets of optical fibers
NASA Astrophysics Data System (ADS)
Zhang, Xinping; Liu, Feifei; Lin, Yuanhai
2016-07-01
We present a flexible approach to transfer metallic photonic crystals (MPCs) onto end facets of optical fibers. The MPCs were initially fabricated on a glass substrate with a spacer layer of indium tin oxide (ITO), which was used as a buffer layer in the transferring process. The fiber ends were firstly welded on the top surface of the MPCs by a drop of polymer solution after the solvent evaporated. The ITO layer was then etched by hydrochloric acid (HCl), so that the MPCs got off the substrate and were transferred to the fiber ends. Alternatively, the MPCs may be also etched off the substrate first by immersing the sample in HCl. The ultra-thin MPC sheet consisting of gold nanolines interlaced with photoresist gratings was then transferred to cap the fiber ends. In the later approach, we can choose which side of the MPCs to be used as the contact with the fiber facet. Such methods enabled convenient nanostructuring on optical fiber tips and achieving miniaturized MPC devices with compact integration, extending significantly applications of MPCs. In particular, the fabrications presented in this manuscript enrich the lab-on-fiber engineering techniques and the resultant devices have potential applications in remote sensing and detection systems.
Semiconductor cylinder fiber laser
NASA Astrophysics Data System (ADS)
Sandupatla, Abhinay; Flattery, James; Kornreich, Philipp
2015-12-01
We fabricated a fiber laser that uses a thin semiconductor layer surrounding the glass core as the gain medium. This is a completely new type of laser. The In2Te3 semiconductor layer is about 15-nm thick. The fiber laser has a core diameter of 14.2 μm, an outside diameter of 126 μm, and it is 25-mm long. The laser mirrors consist of a thick vacuum-deposited aluminum layer at one end and a thin semitransparent aluminum layer deposited at the other end of the fiber. The laser is pumped from the side with either light from a halogen tungsten incandescent lamp or a blue light emitting diode flash light. Both the In2Te3 gain medium and the aluminum mirrors have a wide bandwidth. Therefore, the output spectrum consists of a pedestal from a wavelength of about 454 to 623 nm with several peaks. There is a main peak at 545 nm. The main peak has an amplitude of 16.5 dB above the noise level of -73 dB.
NASA Technical Reports Server (NTRS)
Jansson, S.; Leckie, F. A.
1990-01-01
The potential of using an interface layer to reduce thermal stresses in the matrix of composites with a mismatch in coefficients of thermal expansion of fiber and matrix was investigated. It was found that compliant layers, with properties of readily available materials, do not have the potential to reduce thermal stresses significantly. However, interface layers with high coefficient of thermal expansion can compensate for the mismatch and reduce thermal stresses in the matrix significantly.
Preventing Conflicts of Interest of NFL Team Physicians.
Rothstein, Mark A
2016-11-01
At least since the time of Hippocrates, the physician-patient relationship has been the paradigmatic ethical arrangement for the provision of medical care. Yet, a physician-patient relationship does not exist in every professional interaction involving physicians and individuals they examine or treat. There are several "third-party" relationships, mostly arising where the individual is not a patient and is merely being examined rather than treated, the individual does not select or pay the physician, and the physician's services are provided for the benefit of another party. Physicians who treat NFL players have a physician-patient relationship, but physicians who merely examine players to determine their health status have a third-party relationship. As described by Glenn Cohen et al., the problem is that typical NFL team doctors perform both functions, which leads to entrenched conflicts of interest. Although there are often disputes about treatment, the main point of contention between players and team physicians is the evaluation of injuries and the reporting of players' health status to coaches and other team personnel. Cohen et al. present several thoughtful recommendations that deserve serious consideration. Rather than focusing on their specific recommendations, however, I would like to explain the rationale for two essential reform principles: the need to sever the responsibilities of treatment and evaluation by team physicians and the need to limit the amount of player medical information disclosed to teams. © 2016 The Hastings Center.
Cytoskeletal proteins in the cerebrospinal fluid as biomarker of multiple sclerosis.
Madeddu, Roberto; Farace, Cristiano; Tolu, Paola; Solinas, Giuliana; Asara, Yolande; Sotgiu, Maria Alessandra; Delogu, Lucia Gemma; Prados, Jose Carlos; Sotgiu, Stefano; Montella, Andrea
2013-02-01
The axonal cytoskeleton is a finely organized system, essential for maintaining the integrity of the axon. Axonal degeneration is implicated in the pathogenesis of unremitting disability of multiple sclerosis (MS). Purpose of this study is to evaluate levels of cytoskeletal proteins such as neurofilament light protein (NFL), glial fibrillary acidic protein (GFAP), and β-tubulin (β-Tub) isoforms II and III in the cerebrospinal fluid (CSF) of MS patients and their correlation with MS clinical indices. CSF levels of cytoskeletal proteins were determined in 51 patients: 33 with MS and 18 with other neurological diseases (OND). NFL, GFAP and β-Tub II proteins were significantly higher (p < 0.0001) in MS than in OND group; no significant difference (p > 0.05) was found between MS and OND with regard to β-Tub III. Interestingly, levels of β-Tub III and NFL were higher in progressive than in remitting MS forms; on the contrary, higher levels of β-Tub II and GFAP were found in remitting MS forms. However, with the exception of β-Tub III, all proteins tend to decrease their CSF levels concomitantly with the increasing disability (EDSS) score. Overall, our results might indicate β-Tub II as a potential candidate for diagnostic and β-Tub III as a possible prognostic biomarker of MS. Therefore, further analyses are legitimated and desirable.
The National Football League-225 Bench Press Test and the Size-Weight Illusion.
Luebbers, Paul E; Buckingham, Gavin; Butler, Michael S
2017-06-01
The purpose of this study was to test reports that size and arrangement manipulations of weight plates (i.e., inducing a size-weight illusion [SWI]) effect athletic weightlifting performance. The participants were 72 experienced, weight-trained collegiate American football players. Across three weeks, each athlete performed three different repetitions-to-fatigue bench press tests (NFL-225, SWI-225, and SWI-215). A multiple regression revealed a positive association between participants' strength relative to the test load and repetitions for NFL-225 and SWI-215, but no association with SWI-225. To explore these results, players were ranked into quartiles based on their one-repetition maximum relative to 102.27 kg (225 lb), and a 3 × 4 repeated measures analysis of variance was conducted. The primary finding was a significant Test Condition × Quartile interaction ( p = .004). Bonferroni-corrected pairwise comparisons revealed that Quartile 4 (those with lowest strength relative to test load) completed more repetitions for SWI-225 compared with NFL-225 ( p = .049). These results suggest that alternate weight plate arrangements may be beneficial for those whose bench press load is near the lifter's one-repetition maximum. However, variations of the SWI do not appear to affect the performance of repetitions-to-fatigue bench press tests for the majority of collegiate American football players.
Early death in active professional athletes: Trends and causes.
Lemez, S; Wattie, N; Baker, J
2016-05-01
The objective of the study was to examine mortality trends and causes of death among professional athletes from the four major sports in North America who died during their playing careers. 205 deceased athletes who were registered as active when they died from the National Basketball Association (NBA), National Football League (NFL), National Hockey League (NHL), and Major League Baseball (MLB) were examined. Results were compared with the Canadian and U.S. general population. The leading causes of death in players reflected the leading causes of death in the Canadian and U.S. general population (i.e., car accidents). Descriptively, NFL and NBA players had a higher likelihood of dying in a car accident (OR 1.75, 95% CI: 0.91-3.36) compared with NHL and MLB players. In addition, NFL and NBA players had a significantly higher likelihood of dying from a cardiac-related illness (OR 4.44, 95% CI: 1.59-12.43). Mortality trends were disproportionate to team size. Overall, death in active athletes is low. Out of 53 400 athletes who have historically played in the four leagues, only 205 died while active (0.38%). Future examinations into the trends and causes of mortality in elite athlete populations will create a better understanding of health-related risks in elite sport. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Early-onset arthritis in retired National Football League players.
Golightly, Yvonne M; Marshall, Stephen W; Callahan, Leigh F; Guskiewicz, Kevin
2009-09-01
Injury has been identified as a potential risk factor for osteoarthritis. However, no previous study has addressed playing-career injuries and subsequent osteoarthritis in a large sample of former athletes. The purpose of this study was to describe the prevalence and determinants of arthritis and osteoarthritis in retired professional football players. Self-reported arthritis prevalence and retrospectively-recalled injury history were examined in a cross-sectional survey of 2,538 retired football players. Football players reported a high incidence of injury from their professional playing days (52.8% reported knee injuries, 74.1% reported ligament/tendon injuries, and 14.2% reported anterior cruciate ligament tears). For those under 60 years, 40.6% of retired NFL players reported arthritis, compared with 11.7% of U.S. males (prevalence ratio = 3.5, 95% CI: 3.3 to 3.7). Within the retired NFL player cohort, osteoarthritis was more prevalent in those with a history of knee injury (prevalence ratio = 1.7, 95% CI: 1.5 to 1.9) and ligament/tendon injury (prevalence ratio = 1.6, 95% CI: 1.4 to 1.9). In males under the age of 60, arthritis is over 3 times more prevalent in retired NFL players than in the general U.S. population. This excess of early-onset arthritis may be due to the high incidence of injury in football.
Conductive paper fabricated by layer-by-layer assembly of polyelectrolytes and ITO nanoparticles
NASA Astrophysics Data System (ADS)
Peng, C. Q.; Thio, Y. S.; Gerhardt, R. A.
2008-12-01
A new salt-free approach was developed for fabricating conductive paper by layer-by-layer (LBL) assembly of conductive indium tin oxide (ITO) nanoparticles and polyelectrolytes onto wood fibers. Subsequent to the coating procedure, the fibers were manufactured into conductive paper using traditional paper making methods. The wood fibers were first coated with polyethyleneimine (PEI) and then LBL assembled with poly(sodium 4-styrenesulfonate) (PSS) and ITO for several bilayers. The surface charge intensity of both the ITO nanoparticles and the coated wood fibers were evaluated by measuring the ζ-potential of the nanoparticles and short fibers, respectively. The ITO nanoparticles were found to preferentially aggregate on defects on the fiber surfaces and formed interconnected paths, which led to the formation of conductive percolation paths throughout the whole paper. With ten bilayer coatings, the as-made paper was made DC conductive, and its σdc was measured to be 5.2 × 10-6 S cm-1 in the in-plane (IP) direction, while the conductivity was 1.9 × 10-8 S cm-1 in the through-the-thickness (TT) direction. The percolation phenomena in these LBL-assembled ITO-coated paper fibers was evaluated using scanning electron microscopy (SEM), current atomic force microscopy (I-AFM), and impedance measurements. The AC electrical properties are reported for frequencies ranging from 0.01 Hz to 1 MHz. A clear transition from insulating to conducting behavior is observed in the AC conductivity.
Dereci, Selim; Koca, Tuğba; Akçam, Mustafa; Türkyilmaz, Kemal
2015-07-01
We investigated the peripapillary retinal nerve fiber layer thickness with optical coherence tomography in epileptic children receiving valproic acid monotherapy. The study was conducted on children aged 8-16 years who were undergoing valproic acid monotherapy for epilepsy. The study group comprised a total of 40 children who met the inclusion criteria and 40 healthy age- and sex-matched children as a control group. Children with at least a 1-year history of epilepsy and taking 10-40 mg/kg/day treatment were included in the study. Peripapillary retinal nerve fiber layer thickness measurements were performed using Cirrus HD optical coherence tomography. All children and parents were informed about the study and informed consent was obtained from the parents of all the participants. The study group included 21 girls and 19 boys with a mean age of 10.6 ± 2.3 years. According to the results of optical coherence tomography measurements, the mean peripapillary retinal nerve fiber layer thickness was 91.6 ± 9.7 in the patient group and 95.5 ± 7.4 μm in the control group (P < 0.05). The superior peripapillary retinal nerve fiber layer thickness was 112.0 ± 13.2 in the patient group and 120.0 ± 14.7 μm in the control group (P < 0.02). According to the results of both measurements, the peripapillary retinal nerve fiber layer thickness was significantly lower in the patient group. Neither color vision loss nor visual field examination abnormality could be documented. According to the optical coherence tomography measurements, the average and superior peripapillary retinal nerve fiber layer thicknesses were thinner in patients with epilepsy who were receiving valproic acid monotherapy compared with healthy children. This situation can lead to undesirable results in terms of eye health. New studies are needed to investigate whether these findings are the result of epilepsy or can be attributed to valproic acid and whether there are adverse effects of valproic acid later in life. Copyright © 2015 Elsevier Inc. All rights reserved.
Chen, Jin-Hui; Liang, Zhao-Huan; Yuan, Lie-Rong; Li, Cheng; Chen, Min-Rui; Xia, Yi-Dong; Zhang, Xue-Jin; Xu, Fei; Lu, Yan-Qing
2017-03-09
Although photodetectors based on two dimensional (2D) materials have been intensively studied, there are few reports of optical fiber compatible devices. Herein we successfully fabricated an all-in fiber photodetector (FPD) based on an end-face bonded with few-layer molybdenum disulfide (MoS 2 ). Our FPD has a considerably high photo-responsivity of ∼0.6 A W -1 at a bias voltage of 4 V and 0.01 A W -1 under the bias-free conditions. We believe that the proposed platform may provide a new strategy for the integration of 2D materials in fibers and realization of optoelectronic and sensing applications.
NASA Astrophysics Data System (ADS)
Pang, Hongwei; Bai, Ruicheng; Shao, Qinsi; Gao, Yufang; Li, Aijun; Tang, Zhiyong
2015-12-01
A novel Ag catalyzation process using swelling impregnation pretreatment method was developed for electroless nickel (EN) deposition on Kevlar fiber. Firstly, the fiber was immersed into an aqueous dimethylsulfoxide (DMSO) solution of silver nitrate to impart silver nitrate into the inner part of the fiber near the surface. Subsequently silver nitrate was reduced to metal silver nanoparticles on the fiber surface by treatment with aqueous solution of sodium borohydride. After electroless plating, a dense and homogeneous nickel coating was obtained on the fiber surface. The silver nanoparticles formed at the fiber surface functioned as a catalyst for electroless deposition as well as an anchor for the plated layer. The study also revealed that the incorporation of surfactant sodium dodecyl sulfate (SDS) in electroless nickel plating bath can enhance the adhesion strength of EN layer with the fiber surface and minimize the surface roughness of the EN coating. The Ni plated Kevlar fiber possessed excellent corrosion resistance and high tensile strength.
Takayama, Kohei; Ooto, Sotaro; Hangai, Masanori; Ueda-Arakawa, Naoko; Yoshida, Sachiko; Akagi, Tadamichi; Ikeda, Hanako Ohashi; Nonaka, Atsushi; Hanebuchi, Masaaki; Inoue, Takashi; Yoshimura, Nagahisa
2013-05-01
To detect pathologic changes in retinal nerve fiber bundles in glaucomatous eyes seen on images obtained by adaptive optics (AO) scanning laser ophthalmoscopy (AO SLO). Prospective cross-sectional study. Twenty-eight eyes of 28 patients with open-angle glaucoma and 21 normal eyes of 21 volunteer subjects underwent a full ophthalmologic examination, visual field testing using a Humphrey Field Analyzer, fundus photography, red-free SLO imaging, spectral-domain optical coherence tomography, and imaging with an original prototype AO SLO system. The AO SLO images showed many hyperreflective bundles suggesting nerve fiber bundles. In glaucomatous eyes, the nerve fiber bundles were narrower than in normal eyes, and the nerve fiber layer thickness was correlated with the nerve fiber bundle widths on AO SLO (P < .001). In the nerve fiber layer defect area on fundus photography, the nerve fiber bundles on AO SLO were narrower compared with those in normal eyes (P < .001). At 60 degrees on the inferior temporal side of the optic disc, the nerve fiber bundle width was significantly lower, even in areas without nerve fiber layer defect, in eyes with glaucomatous eyes compared with normal eyes (P = .026). The mean deviations of each cluster in visual field testing were correlated with the corresponding nerve fiber bundle widths (P = .017). AO SLO images showed reduced nerve fiber bundle widths both in clinically normal and abnormal areas of glaucomatous eyes, and these abnormalities were associated with visual field defects, suggesting that AO SLO may be useful for detecting early nerve fiber bundle abnormalities associated with loss of visual function. Copyright © 2013 Elsevier Inc. All rights reserved.
Fiber optic chemical sensors: The evolution of high- density fiber-optic DNA microarrays
NASA Astrophysics Data System (ADS)
Ferguson, Jane A.
2001-06-01
Sensors were developed for multianalyte monitoring, fermentation monitoring, lactate analysis, remote oxygen detection for use in bioremediation monitoring and in a fuel spill clean-up project, heavy metal analysis, and high density DNA microarrays. The major focus of this thesis involved creating and improving high-density DNA gene arrays. Fiber optic sensors are created using fluorescent indicators, polymeric supports, and optical fiber substrates. The fluorescent indicator is entrapped in a polymer layer and attached to the tip of the optical fiber. The tip of the fiber bearing the sensing layer (the distal end) is placed in the sample of interest while the other end of the fiber (the proximal end) is connected to an analysis system. Any length of fiber can be used without compromising the integrity or sensitivity of the system. A fiber optic oxygen sensor was designed incorporating an oxygen sensitive fluorescent dye and a gas permeable polymer attached to an optical fiber. The construction simplicity and ruggedness of the sensor enabled its deployment for in situ chemical oxidation and bioremediation studies. Optical fibers were also used as the substrate to detect biomolecules in solution. To monitor bioprocesses, the production of the analyte of interest must be coupled with a species that is optically measurable. For example, oxygen is consumed in many metabolic functions. The fiber optic oxygen sensor is equipped with an additional sensing layer. Upon contact with a specific biochemical in the sample, a reaction occurs in the additional sensing layer that either consumes or produces oxygen. This dual layer system was used to monitor the presence of lactate, an important metabolite for clinical and bioprocess analysis. In many biological and environmental systems, the generation of one species occurs coincidentally with the generation or consumption of another species. A multianalyte sensor was prepared that can monitor the simultaneous activity of pH, CO2 and O2. This sensor is useful for monitoring bioprocesses such as (beer) fermentation and for clinical situations such as blood gas analysis. DNA sensors were created by attaching short single strands of DNA (probes) to the fiber tip. A matching single strand (target) forms a strong interacting pair with the probe upon contact. The target strands in a sample are labeled with a fluorescent dye. When a probe-target pair is formed and excitation light is sent down the fiber, the fiber bearing the pair emits light that is captured and detected. A high density DNA array was created by isolating thousands of discrete DNA sensors on the tip of an imaging optical fiber. This array was made possible by the formation of microwells on the imaging fiber tip. Microspheres functionalized with DNA were placed in the wells of the fiber and each microsphere was independently and simultaneously monitored. (Abstract shortened by UMI.)
Compact Hybrid Laser Rod and Laser System
NASA Technical Reports Server (NTRS)
Pierrottet, Diego F. (Inventor); Busch, George E. (Inventor); Amzajerdian, Farzin (Inventor)
2017-01-01
A hybrid fiber rod includes a fiber core and inner and outer cladding layers. The core is doped with an active element. The inner cladding layer surrounds the core, and has a refractive index substantially equal to that of the core. The outer cladding layer surrounds the inner cladding layer, and has a refractive index less than that of the core and inner cladding layer. The core length is about 30 to 2000 times the core diameter. A hybrid fiber rod laser system includes an oscillator laser, modulating device, the rod, and pump laser diode(s) energizing the rod from opposite ends. The rod acts as a waveguide for pump radiation but allows for free-space propagation of laser radiation. The rod may be used in a laser resonator. The core length is less than about twice the Rayleigh range. Degradation from single-mode to multi-mode beam propagation is thus avoided.
Low-temperature hermetic sealing of optical fiber components
Kramer, D.P.
1996-10-22
A method for manufacturing low-temperature hermetically sealed optical fiber components is provided. The method comprises the steps of: inserting an optical fiber into a housing, the optical fiber having a glass core, a glass cladding and a protective buffer layer disposed around the core and cladding; heating the housing to a predetermined temperature, the predetermined temperature being below a melting point for the protective buffer layer and above a melting point of a solder; placing the solder in communication with the heated housing to allow the solder to form an eutectic and thereby fill a gap between the interior of the housing and the optical fiber; and cooling the housing to allow the solder to form a hermetic compression seal between the housing and the optical fiber. 5 figs.
NASA Astrophysics Data System (ADS)
Liu, Shichen; Lang, Lihui; Guan, Shiwei; Alexandrov, Seigei; Zeng, Yipan
2018-04-01
Fiber-metal laminates (FMLs) such as Kevlar reinforced aluminum laminate (ARALL), Carbon reinforced aluminum laminate (CARALL), and Glass reinforced aluminum laminate (GLARE) offer great potential for weight reduction applications in automobile and aerospace construction. In order to investigate the feasibility for utilizing such materials in the form of laminates, sheet hydroforming technology are studied under the condition of uniform blank holder force for three-layered aluminum and aluminum-composite laminates using orthogonal carbon and Kevlar as well as glass fiber in the middle. The experimental results validate the finite element results and they exhibited that the forming limit of glass fiber in the middle is the highest among the studied materials, while carbon fiber material performs the worst. Furthermore, the crack modes are different for the three kinds of fiber materials investigated in the research. This study provides fundamental guidance for the selection of multi-layer sheet materials in the future manufacturing field.
Xu, Wenjie; Chen, Zhenyi; Chen, Na; Zhang, Heng; Liu, Shupeng; Hu, Xinmao; Wen, Jianxiang; Wang, Tingyun
2017-01-01
A taper-fiber SERS nanoprobe modified by gold nanoparticles (Au-NPs) with ultrathin alumina layers was fabricated and its ability to perform remote Raman detection was demonstrated. The taper-fiber nanoprobe (TFNP) with a nanoscale tip size under 80 nm was made by heated pulling combined with the chemical etching method. The Au-NPs were deposited on the TFNP surface with the electrostatic self-assembly technology, and then the TFNP was wrapped with ultrathin alumina layers by the atomic layer deposition (ALD) technique. The results told us that with the increasing thickness of the alumina film, the Raman signals decreased. With approximately 1 nm alumina film, the remote detection limit for R6G aqueous solution reached 10−6 mol/L. PMID:28245618
Stahl, D.B.; Paisley, D.L.
1994-04-12
A laser driven flyer plate is described utilizing an optical fiber connected to a laser. The end of the optical fiber has a layer of carbon and a metal layer deposited onto it. The carbon layer provides the laser induced plasma which is superior to the plasma produced from most metals. The carbon layer plasma is capable of providing a flatter flyer plate, converting more of the laser energy to driving plasma, promoting a higher flyer plate acceleration, and providing a more uniform pulse behind the plate. In another embodiment, the laser is in optical communication with a substrate onto which a layer of carbon and a layer of metal have been deposited. 2 figures.
Thin-film fiber optic hydrogen and temperature sensor system
Nave, S.E.
1998-07-21
The invention discloses a sensor probe device for monitoring of hydrogen gas concentrations and temperatures by the same sensor probe. The sensor probe is constructed using thin-film deposition methods for the placement of a multitude of layers of materials sensitive to hydrogen concentrations and temperature on the end of a light transparent lens located within the sensor probe. The end of the lens within the sensor probe contains a lens containing a layer of hydrogen permeable material which excludes other reactive gases, a layer of reflective metal material that forms a metal hydride upon absorbing hydrogen, and a layer of semi-conducting solid that is transparent above a temperature dependent minimum wavelength for temperature detection. The three layers of materials are located at the distal end of the lens located within the sensor probe. The lens focuses light generated by broad-band light generator and connected by fiber-optics to the sensor probe, onto a reflective metal material layer, which passes through the semi-conducting solid layer, onto two optical fibers located at the base of the sensor probe. The reflected light is transmitted over fiber optic cables to a spectrometer and system controller. The absence of electrical signals and electrical wires in the sensor probe provides for an elimination of the potential for spark sources when monitoring in hydrogen rich environments, and provides a sensor free from electrical interferences. 3 figs.
Moncelle, Michael E.
2003-01-01
An intake air separation system suitable for combustion air of an internal combustion engine. An air separation device of the system includes a plurality of fibers, each fiber having a tube with a permeation barrier layer on the outer surface thereof and a coalescing layer on the inner surface thereof, to restrict fluid droplets from contacting the permeation barrier layer.
Mesoporous-silica films, fibers, and powders by evaporation
Bruinsma, Paul J.; Baskaran, Suresh; Bontha, Jagannadha R.; Liu, Jun
2008-05-06
This invention pertains to surfactant-templated nanometer-scale porosity of a silica precursor solution and forming a mesoporous material by first forming the silica precursor solution into a preform having a high surface area to volume ratio, then rapid drying or evaporating a solvent from the silica precursor solution. The mesoporous material may be in any geometric form, but is preferably in the form of a film, fiber, powder or combinations thereof. The rapid drying or evaporation of solvent from the solution is accomplished by layer thinning, for example spin casting, liquid drawing, and liquid spraying respectively. Production of a film is by layer thinning, wherein a layer of the silica precursor solution is formed on a surface followed by removal of an amount of the silica precursor solution and leaving a geometrically thinner layer of the silica precursor solution from which the solvent quickly escapes via evaporation. Layer thinning may be by any method including but not limited to squeegeeing and/or spin casting. In powder formation by spray drying, the same conditions of fast drying exists as in spin-casting (as well as in fiber spinning) because of the high surface-area to volume ratio of the product. When a powder is produced by liquid spraying, the particles or micro-bubbles within the powder are hollow spheres with walls composed of mesoporous silica. Mesoporous fiber formation starts with a similar silica precursor solution but with an added pre-polymer making a pituitous mixture that is drawn into a thin strand from which solvent is evaporated leaving the mesoporous fiber(s).
Sun, Chao; Zhang, Jie; Gao, Shanglin; Zhang, Nan; Zhang, Yijun; Zhuang, Jian; Liu, Ming; Zhang, Xiaohui; Ren, Wei; Wu, Hua; Ye, Zuo-Guang
2018-06-18
The interphase between fiber and matrix plays an essential role in the performance of composites. Therefore, the ability to design or modify the interphase is a key technology needed to manufacture stronger and smarter composite. Recently, depositing nano-materials onto the surface of the fiber has become a promising approach to optimize the interphase and composites. But, the modified composites have not reached the highest strength yet, because the determining parameters, such as thickness of the nano-layer, are hardly controlled by the mentioned methods in reported works. Here, we deposit conformal ZnO nano-layer with various thicknesses onto the surfaces of glass fibers via the atomic layer deposition (ALD) method and a tremendous enhancement of interfacial shear strength of composites is achieved. Importantly, a critical thickness of ZnO nano-layer is obtained for the first time, giving rise to a maximal relative enhancement in the interfacial strength, which is more than 200% of the control fiber. In addition, the single modified fiber exhibits a potential application as a flexible, transparent, in-situ UV detector in composites. And, we find the UV-sensitivity also shows a strong correlation with the thickness of ZnO. To reveal the dependence of UV-sensitivity on thickness, a depletion thickness is estimated by a proposed model which is an essential guide to design the detectors with higher sensitivity. Consequently, such precise tailoring of the interphase offers an advanced way to improve and to flexibly control various macroscopic properties of multifunctional composites of the next generation.
Mesoporous-silica films, fibers, and powders by evaporation
Bruinsma, Paul J.; Baskaran, Suresh; Bontha, Jagannadha R.; Liu, Jun
1999-01-01
This invention pertains to surfactant-templated nanometer-scale porosity of a silica precursor solution and forming a mesoporous material by first forming the silica precursor solution into a preform having a high surface area to volume ratio, then rapid drying or evaporating a solvent from the silica precursor solution. The mesoporous material may be in any geometric form, but is preferably in the form of a film, fiber, powder or combinations thereof. The rapid drying or evaporation of solvent from the solution is accomplished by layer thinning, for example spin casting, liquid drawing, and liquid spraying respectively. Production of a film is by layer thinning, wherein a layer of the silica precursor solution is formed on a surface followed by removal of an amount of the silica precursor solution and leaving a geometrically thinner layer of the silica precursor solution from which the solvent quickly escapes via evaporation. Layer thinning may be by any method including but not limited to squeegeeing and/or spin casting. In powder formation by spray drying, the same conditions of fast drying exists as in spin-casting (as well as in fiber spinning) because of the high surface-area to volume ratio of the product. When a powder is produced by liquid spraying, the particles or micro-bubbles within the powder are hollow spheres with walls composed of mesoporous silica. Mesoporous fiber formation starts with a similar silica precursor solution but with an added pre-polymer making a pituitous mixture that is drawn into a thin strand from which solvent is evaporated leaving the mesoporous fiber(s).
Mesoporous-silica films, fibers, and powders by evaporation
Bruinsma, P.J.; Baskaran, S.; Bontha, J.R.; Liu, J.
1999-07-13
This invention pertains to surfactant-templated nanometer-scale porosity of a silica precursor solution and forming a mesoporous material by first forming the silica precursor solution into a preform having a high surface area to volume ratio, then rapid drying or evaporating a solvent from the silica precursor solution. The mesoporous material may be in any geometric form, but is preferably in the form of a film, fiber, powder or combinations thereof. The rapid drying or evaporation of solvent from the solution is accomplished by layer thinning, for example spin casting, liquid drawing, and liquid spraying respectively. Production of a film is by layer thinning, wherein a layer of the silica precursor solution is formed on a surface followed by removal of an amount of the silica precursor solution and leaving a geometrically thinner layer of the silica precursor solution from which the solvent quickly escapes via evaporation. Layer thinning may be by any method including but not limited to squeegeeing and/or spin casting. In powder formation by spray drying, the same conditions of fast drying exists as in spin-casting (as well as in fiber spinning) because of the high surface-area to volume ratio of the product. When a powder is produced by liquid spraying, the particles or micro-bubbles within the powder are hollow spheres with walls composed of mesoporous silica. Mesoporous fiber formation starts with a similar silica precursor solution but with an added pre-polymer making a pituitous mixture that is drawn into a thin strand from which solvent is evaporated leaving the mesoporous fiber(s). 24 figs.
Ulex europaeus I and glycine max bind to the human olfactory bulb.
Nagao, M; Oka, N; Kamo, H; Akiguchi, I; Kimura, J
1993-12-24
The distribution of binding sites for the fucose-selective lectin Ulex europaeus I and the terminal N-acetylgalactosamine-selective lectin glycine max in the human olfactory bulb were studied. These lectins bound to primary olfactory axons in the olfactory nerve layer and the glomerular layer. They also bound to fibers located in the deeper layers such as the external plexiform layer and the granular layer. Furthermore they projected to the olfactory stalk but not in the cerebrum. The deeper projections of the lectin binding fibers may affect the function of the olfactory bulb in humans.
Investigation of fiber tilt in paperboard
John M. Considine; David W. Vahey
2008-01-01
The introduction of short, tilted rods to reinforce polymer composite laminates has resulted in near doubling the strength of lap shear specimens. Paperboard is predominantly a multi-layered structure, similar to composite laminates in many ways. Improved bonding between layers should have a positive influence on mechanical performance. Tilted fibers, or z-direction...
Detection of Fiber Layer-Up Lamination Order of CFRP Composite Using Thermal-Wave Radar Imaging
NASA Astrophysics Data System (ADS)
Wang, Fei; Liu, Junyan; Liu, Yang; Wang, Yang; Gong, Jinlong
2016-09-01
In this paper, thermal-wave radar imaging (TWRI) is used as a nondestructive inspection method to evaluate carbon-fiber-reinforced-polymer (CFRP) composite. An inverse methodology that combines TWRI with numerical optimization technique is proposed to determine the fiber layer-up lamination sequences of anisotropic CFRP composite. A 7-layer CFRP laminate [0°/45°/90°/0°]_{{s}} is heated by a chirp-modulated Gaussian laser beam, and then finite element method (FEM) is employed to calculate the temperature field of CFRP laminates. The phase based on lock-in correlation between reference chirp signal and the thermal-wave signal is performed to obtain the phase image of TWRI, and the least square method is applied to reconstruct the cost function that minimizes the square of the difference between the phase of TWRI inspection and numerical calculation. A hybrid algorithm that combines the simulation annealing with Nelder-Mead simplex research method is employed to solve the reconstructed cost function and find the global optimal solution of the layer-up sequences of CFRP composite. The result shows the feasibility of estimating the fiber layer-up lamination sequences of CFRP composite with optimal discrete and constraint conditions.
NASA Astrophysics Data System (ADS)
Vlahos, Vasilios; Morgan, Dane; LaCour, Matthew; Golby, Ken; Shiffler, Don; Booske, John H.
2010-02-01
CsI coated C fiber cathodes are promising electron emitters utilized in field emission applications. Ab initio calculations, in conjunction with experimental investigations on CsI-spray coated C fiber cathodes, were performed in order to better understand the origin of the low turn-on E-field obtained, as compared to uncoated C fibers. One possible mechanism for lowering the turn-on E-field is surface dipole layers reducing the work function. Ab initio modeling revealed that surface monolayers of Cs, CsI, Cs2O, and CsO are all capable of producing low work function C fiber cathodes (1 eV<Φ<1.5 eV), yielding a reduction in the turn-on E-field by as much as ten times, when compared to the bare fiber. Although a CsI-containing aqueous solution is spray deposited on the C fiber surface, energy dispersive x-ray spectroscopy and scanning auger microscopy measurements show coabsorption of Cs and I into the fiber interior and Cs and O on the fiber surface, with no surface I. It is therefore proposed that a cesium oxide (CsxOy) surface coating is responsible, at least in part, for the low turn E-field and superior emission characteristics of this type of fiber cathode. This CsxOy layer could be formed during preconditioning heating. CsxOy surface layers cannot only lower the fiber work function by the formation of surface dipoles (if they are thin enough) but may also enhance surface emission through their ability to emit secondary electrons due to a process of grazing electron impact. These multiple electron emission processes may explain the reported 10-100 fold reduction in the turn-on E-field of coated C fibers.
Characteristics and formation mechanism for stainless steel fiber with periodic micro-fins
NASA Astrophysics Data System (ADS)
Tang, Tao; Wan, Zhenping; Lu, Longsheng; Tang, Yong
2016-05-01
Metal fibers have been widely used in many industrial applications due to their unique advantages. In certain applications, such as catalyst supports or orthopedic implants, a rough surface or tiny outshoots on the surface of metal fibers to increase surface area are needed. However, it has not been concerned about the surface morphologies of metal fiber in the current research of metal fiber manufacturing. In this paper, a special multi-tooth tool composed of a row of triangular tiny teeth is designed. The entire cutting layer of multi-tooth tool bifurcates into several thin cutting layers due to tiny teeth involved in cutting. As a result, several stainless steel fibers with periodic micro-fins are produced simultaneously. Morphology of periodic micro-fins is found to be diverse and can be classified into three categories: unilateral plane, unilateral tapering and bilateral. There are two forming mechanisms for the micro-fins. One is that periodic burrs remained on the free side of cutting layer of a tiny tooth create micro-fins of stainless steel fiber produced by the next neighboring tiny tooth; the other is that the connections between two fibers stuck together come to be micro-fins if the two fibers are finally detached. Influence of cutting conditions on formation of micro-fins is investigated. Experimental results show that cutting depth has no significant effect on micro-fin formation, high cutting speed is conducive to micro-fin formation, and feed should be between 0.12 mm/r and 0.2 mm/r to reliably obtain stainless steel fiber with micro-fins. This research presents a new pattern of stainless steel fiber characterized by periodic micro-fins formed on the edge of fiber and its manufacturing method.
Oliver, Jonathan M; Anzalone, Anthony J; Stone, Jason D; Turner, Stephanie M; Blueitt, Damond; Garrison, J Craig; Askow, Andrew T; Luedke, Joel A; Jagim, Andrew R
2018-05-29
OBJECTIVE Repetitive subconcussive head trauma is a consequence of participation in contact sports and may be linked to neurodegenerative diseases. The degree of neurological injury caused by subconcussive head trauma is not easily detectible, and this injury does not induce readily identifiable clinical signs or symptoms. Recent advancements in immunoassays make possible the detection and quantification of blood biomarkers linked to head trauma. Identification of a blood biomarker that can identify the extent of neurological injury associated with subconcussive head trauma may provide an objective measure for informed decisions concerning cumulative exposure to subconcussive head trauma. The purpose of the current study was to examine changes in the blood biomarkers of subconcussive head trauma over the course of an American football season. METHODS Thirty-five National Collegiate Athletic Association (NCAA) American football athletes underwent blood sampling throughout the course of a football season. Serial samples were obtained throughout the 2016 season, during which the number and magnitude of head impacts changed. Blood samples were analyzed for plasma concentrations of tau and serum concentrations of neurofilament light polypeptide (NF-L). Athletes were grouped based on their starter status, because athletes identified as starters are known to sustain a greater number of impacts. Between-group differences and time-course differences were assessed. RESULTS In nonstarters, plasma concentrations of tau decreased over the course of the season, with lower values observed in starters; this resulted in a lower area under the curve (AUC) (starters: 416.78 ± 129.17 pg/ml/day; nonstarters: 520.84 ± 163.19 pg/ml/day; p = 0.050). Plasma concentrations of tau could not be used to discern between starters and nonstarters. In contrast, serum concentrations of NF-L increased throughout the season as head impacts accumulated, specifically in those athletes categorized as starters. The higher serum concentrations of NF-L observed in starters resulted in a larger AUC (starters: 1605.03 ± 655.09 pg/ml/day; nonstarters: 1067.29 ± 272.33 pg/ml/day; p = 0.007). The AUC of the receiver operating characteristic curve analyses displayed fair to modest accuracy to identify athletes who were starters with the use of serum NF-L following periods of repetitive impacts. CONCLUSIONS The different patterns observed in serum NF-L and plasma tau concentrations provide preliminary evidence for the use of blood biomarkers to detect the neurological injury associated with repetitive subconcussive head trauma. Although further investigation is necessary, such findings might lay the foundation for the further development of an objective measure for the detection of neurological injury caused by subconcussive head trauma.
Rahman, Masoud; Tajabadi, Fariba; Shooshtari, Leyla; Taghavinia, Nima
2011-04-04
Hollow structures show both light scattering and light trapping, which makes them promising for dye-sensitized solar cell (DSSC) applications. In this work, nanoparticulate hollow TiO(2) fibers are prepared by layer-by-layer (LbL) self-assembly deposition of TiO(2) nanoparticles on natural cellulose fibers as template, followed by thermal removal of the template. The effect of LbL parameters such as the type and molecular weight of polyelectrolyte, number of dip cycles, and the TiO(2) dispersion (amorphous or crystalline sol) are investigated. LbL deposition with weak polyelectrolytes (polyethylenimine, PEI) gives greater nanoparticle deposition yield compared to strong polyelectrolytes (poly(diallyldimethylammonium chloride), PDDA). Decreasing the molecular weight of the polyelectrolyte results in more deposition of nanoparticles in each dip cycle with narrower pore size distribution. Fibers prepared by the deposition of crystalline TiO(2) nanoparticles show higher surface area and higher pore volume than amorphous nanoparticles. Scattering coefficients and backscattering properties of fibers are investigated and compared with those of commercial P25 nanoparticles. Composite P25-fiber films are electrophoretically deposited and employed as the photoanode in DSSC. Photoelectrochemical measurements showed an increase of around 50% in conversion efficiency. By employing the intensity-modulated photovoltage and photocurrent spectroscopy methods, it is shown that the performance improvement due to addition of fibers is mostly due to the increase in light-harvesting efficiency. The high surface area due to the nanoparticulate structure and strong light harvesting due to the hollow structure make these fibers promising scatterers in DSSCs. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Technical Reports Server (NTRS)
Arnold, Steven M.; Arya, Vinod K.; Melis, Matthew E.
1990-01-01
High residual stresses within intermetallic and metal matrix composite systems can develop upon cooling from the processing temperature to room temperature due to the coefficient of thermal expansion (CTE) mismatch between the fiber and matrix. As a result, within certain composite systems, radial, circumferential, and/or longitudinal cracks have been observed to form at the fiber-matrix interface. The compliant layer concept (insertion of a compensating interface material between the fiber and matrix) was proposed to reduce or eliminate the residual stress buildup during cooling and thus minimize cracking. The viability of the proposed compliant layer concept is investigated both elastically and elastoplastically. A detailed parametric study was conducted using a unit cell model consisting of three concentric cylinders to determine the required character (i.e., thickness and material properties) of the compliant layer as well as its applicability. The unknown compliant layer mechanical properties were expressed as ratios of the corresponding temperature dependent Ti-24Al-11Nb (a/o) matrix properties. The fiber properties taken were those corresponding to SCS-6 (SiC). Results indicate that the compliant layer can be used to reduce, if not eliminate, radial and circumferential residual stresses within the fiber and matrix and therefore also reduce or eliminate the radial cracking. However, with this decrease in in-plane stresses, one obtains an increase in longitudinal stress, thus potentially initiating longitudinal cracking. Guidelines are given for the selection of a specific compliant material, given a perfectly bonded system.
Mallow Fiber-Reinforced Epoxy Composites in Multilayered Armor for Personal Ballistic Protection
NASA Astrophysics Data System (ADS)
Nascimento, Lucio Fábio Cassiano; Louro, Luis Henrique Leme; Monteiro, Sergio Neves; Lima, Édio Pereira; da Luz, Fernanda Santos
2017-10-01
Lighter and less expensive polymer composites reinforced with natural fibers have been investigated as possible components of a multilayered armor system (MAS) for personal protection against high-velocity ammunition. Their ballistic performance was consistently found comparable with that of conventional Kevlar® synthetic aramid fiber. Among the numerous existing natural fibers with the potential for reinforcing polymer composites to replace Kevlar® in MAS, mallow fiber has not been fully investigated. Thus, the objective of this work is to evaluate the ballistic performance of epoxy composites reinforced with 30 vol.% of aligned mallow fibers as a second MAS layer backing a front ceramic plate. The results using high-velocity 7.62 ammunition show a similar indentation to a Kevlar® layer with the same thickness. An impedance matching calculation supports the similar ballistic performance of mallow fiber composite and Kevlar®. Reduced MAS costs associated with the mallow fiber composite are practical advantages over Kevlar®.
NASA Technical Reports Server (NTRS)
Yun, H. M.; Dicarlo, J. A.; Ogbuji, L. T.; Chen, Y. L.
2002-01-01
Tensile stress-strain curves were measured at room temperature and 1315 C for 2D-woven SiC/BN/SiC ceramic matrix composites (CMC) reinforced by two variations of Hi-Nicalon Type-S SiC fibers. These fibers, which contained a thin continuous carbon-rich layer on their as-produced surface, provided the as-fabricated CMC with good composite behavior and an ultimate strength and strain of -350 MPa and -0.5%, respectively. However, after un-stressed burner-rig exposure at 815 C for -100 hrs, CMC tensile specimens with cut edges and exposed interphases showed a significant decrease in ultimate properties with effectively no composite behavior. Microstructural observations show that the degradation was caused by internal fiber-fiber oxide bonding after removal of the carbon-rich fiber surface layer by the high-velocity combustion gases. On the other hand, SiC/BN/SiC CMC with Sylramic-iBN fibers without carbon-rich surfaces showed higher as-fabricated strength and no loss in strength after the same burner rig exposure. Based on the strong role of the carbon layer in these observations, a process method was developed and demonstrated for achieving better strength retention of Hi-Nicalon Type-S CMC during burner rig exposure. Other general approaches for minimizing this current deficiency with as-produced Type-S fibers are discussed.
Microcracking of Materials for Space
NASA Technical Reports Server (NTRS)
Brown, Timothy L.
1998-01-01
The effect of thermal-cycling-induced microcracking in fiber-reinforced polymer matrix composites is studied. Specific attention is focused on microcrack density as a function of the number of thermal cycles, and the effect of microcracking on the dimensional stability of composite materials. Changes in laminate coefficient of thermal expansion (CTE) and laminate stiffness are of primary concern. Included in the study are materials containing four different Thornel fiber types: a PAN-based T50 fiber and three pitch-based fibers, P55, P75, and P120. The fiber stiffnesses range from 55 Msi to 120 Msi. The fiber CTE's range from -0.50 x 1O(exp -6)/degrees F to -0.80 x 10(exp -6)/degrees F. Also included are three matrix types: Fiberite's 934 epoxy, Amoco's ERL1962 toughened epoxy, and YLA's RS3 cyanate ester. The lamination sequences of the materials considered include a cross-ply configuration, [0/90](sub 2s), and two quasi-isotropic configurations, [0/+45/-45/90](sub s), and [0/+45/90/-45](sub s). The layer thickness of the materials range from a nominal 0.001 in. to 0.005 in. In addition to the variety of materials considered, three different thermal cycling temperature ranges are considered. These temperature ranges are +/-250 degrees F, +/-l5O degrees F, and +/-50 degrees F. The combination of these material and geometric parameters and temperature ranges, combined with thermal cycling to thousands of cycles, makes this one of the most comprehensive studies of thermal-cycling-induced microcracking to date. Experimental comparisons are presented by examining the effect of layer thickness, fiber type, matrix type, and thermal cycling temperature range on microcracking and its influence on the laminates. Results regarding layer thickness effects indicate that thin-layer laminates microcrack more severely than identical laminates with thick layers. For some specimens in this study, the number of microcracks in thin-layer specimens exceeds that in thick-layer specimens by more than a factor of two. Despite the higher number of microcracks in the thin-layer specimens, small changes in CTE after thousands of cycles indicate that the thin-layer specimens are relatively unaffected by the presence of these cracks compared to the thick-layer specimens. Results regarding fiber type indicate that the number of microcracks and the change in CTE after thousands of cycles in the specimens containing PAN-based fibers are less than in the specimens containing comparable stiffness pitch-based fibers. Results for specimens containing the different pitch-based fibers indicate that after thousands of cycles, the number of microcracks in the specimens does not depend on the modulus or CTE of the fiber. The change in laminate CTE does, however, depend highly on the stiffness and CTE of the fiber. Fibers with higher stiffness and more negative CTE exhibit the lowest change in laminate CTE as a result of thermal cycling. The overall CTE of these specimens is, however, more negative as a result of the more negative CTE of the fiber. Results regarding matrix type based on the +/-250 degree F temperature range indicate that the RS3 cyanate ester resin system exhibits the greatest resistance to microcracking and the least change in CTE, particularly for cycles numbering 3000 and less. Extrapolations to higher numbers of cycles indicate, however, that the margin of increased performance is expected to decrease with additional thermal cycling. Results regarding thermal cycling temperature range depend on the matrix type considered and the layer thickness of the specimens. For the ERL1962 resin system, microcrack saturation is expected to occur in all specimens, regardless of the temperature range to which the specimens are exposed. By contrast, the RS3 resin system demonstrates a threshold effect such that cycled to less severe temperature ranges, microcracking does not occur. For the RS3 specimens with 0.005 in. layer thickness, no microcracking or changes in CTE are observed in specimens cycled between +/-150 degree F or +/- 50 degree F. For the RS3 specimens with 0.002 in. layer thickness, no microcracking or changes in CTE are observed in specimens cycled between +/-50 degree F. Results regarding laminate stiffness indicate negligible change in laminate stiffness due to thermal cycling for the materials and geometries considered in this investigation. The study includes X-ray examination of the specimens, showing that cracks observed at the edge of the specimens penetrate the entire width of the specimen. Glass transition temperatures of the specimens are measured, showing that resin chemistry is not altered as a result of thermal cycling. Results are also presented based on a one-dimensional shear lag analysis developed in the literature. The analysis requires material property information that is difficult to obtain experimentally. Using limited data from the present investigation, material properties associated with the analysis are modified to obtain reasonable agreement with measured microcrack densities. Based on these derived material properties, the analysis generally overpredicts the change in laminate CTE. Predicted changes in laminate stiffness show reasonable correlation with experimentally measured values.
Method of Fabricating a Composite Apparatus
NASA Technical Reports Server (NTRS)
Wilkie, W. Keats (Inventor); Bryant, Robert G. (Inventor); Fox, Robert L. (Inventor); Hellbaum, Richard F. (Inventor); High, James W. (Inventor); Jalink, Antony, Jr. (Inventor)
2007-01-01
A method for fabricating a piezoelectric macro-fiber composite actuator comprises making a piezoelectric fiber sheet by providing a plurality of wafers of piezoelectric material, bonding the wafers together with an adhesive material to from a stack of alternating layers of piezoelectric material and adhesive material, and cutting through the stack in a direction substantially parallel to the thickness of the stack and across the alternating layers of piezoelectric material and adhesive material to provide at least one piezoelectric fiber sheet having two sides comprising a plurality of piezoelectric fibers in juxtaposition to the adhesive material. The method further comprises bonding two electrically conductive films to the two sides of the piezoelectric fiber sheet. At least one conductive film has first and second conductive patterns formed thereon which are electrically isolated from one another and in electrical contact with the piezoelectric fiber sheet.
Choi, Bo-Hun; Kwon, Il-Bum
2015-03-09
We propose a distributed residual strain sensor that uses an Al-packaged optical fiber for the first time. The residual strain which causes Brillouin frequency shifts in the optical fiber was measured using Brillouin optical correlation domain analysis with 2 cm spatial resolution. We quantified the Brillouin frequency shifts in the Al-packaged optical fiber by the tensile stress and compared them for a varying number of Al layers in the optical fiber. The Brillouin frequency shift of an optical fiber with one Al layer had a slope of 0.038 MHz/με with respect to tensile stress, which corresponds to 78% of that for an optical fiber without Al layers. After removal of the stress, 87% of the strain remained as residual strain. When different tensile stresses were randomly applied, the strain caused by the highest stress was the only one detected as residual strain. The residual strain was repeatedly measured for a time span of nine months for the purpose of reliability testing, and there was no change in the strain except for a 4% reduction, which is within the error tolerance of the experiment. A composite material plate equipped with our proposed Al-packaged optical fiber sensor was hammered for impact experiment and the residual strain in the plate was successfully detected. We suggest that the Al-packaged optical fiber can be adapted as a distributed strain sensor for smart structures, including aerospace structures.
Kraeutler, Matthew J; Belk, John W; McCarty, Eric C
2017-02-01
In recent years, several studies have correlated pitch count with an increased risk for injury among baseball pitchers. However, no studies have attempted to draw a similar conclusion based on number of carries by running backs (RBs) in football. To determine whether there is a correlation between number of carries by RBs in the National Football League (NFL) and risk of injury or worsened performance in the subsequent season. Cohort study; Level of evidence, 3. The ESPN NFL statistics archives were searched from the 2004 through 2014 regular seasons. During each season, data were collected on RBs with 150 to 250 carries (group A) and 300+ carries (group B). The following data were collected for each player and compared between groups: number of carries and mean yards per carry during the regular season of interest and the subsequent season, number of games missed due to injury during the season of interest and the subsequent season, and the specific injuries resulting in missed playing time during the subsequent season. Matched-pair t tests were used to compare changes within each group from one season to the next in terms of number of carries, mean yards per carry, and games missed due to injury. During the seasons studied, a total of 275 RBs were included (group A, 212; group B, 63). In group A, 140 RBs (66%) missed at least 1 game the subsequent season due to injury, compared with 31 RBs (49%) in group B ( P = .016). In fact, players in group B missed significantly fewer games due to injury during the season of interest ( P < .0001) as well as the subsequent season ( P < .01). Mean yards per carry was not significantly different between groups in the preceding season ( P = .073) or the subsequent season ( P = .24). NFL RBs with a high number of carries are not placed at greater risk of injury or worsened performance during the subsequent season. These RBs may be generally less injury prone compared with other NFL RBs.
LeBus, George F; Chahla, Jorge; Sanchez, George; Akamefula, Ramesses; Moatshe, Gilbert; Phocas, Alexandra; Price, Mark D; Whalen, James M; LaPrade, Robert F; Provencher, Matthew T
2017-09-01
The Latarjet procedure is commonly performed in the setting of glenoid bone loss for treatment of recurrent anterior shoulder instability; however, little is known regarding the outcomes of this procedure in elite American football players. (1) Determine the prevalence, clinical features, and imaging findings of elite college football athletes who present to the National Football League (NFL) Combine with a previous Latarjet procedure and (2) describe these athletes' performance in the NFL in terms of draft status and initial playing time. Case series; Level of evidence, 4. After review of all football players who participated in the NFL Combine from 2009 to 2016, any player with a previous Latarjet procedure was included in this study. Medical records, position on the field, and draft position were recorded for each player. In addition, imaging studies were reviewed to determine fixation type, hardware complications, and status of the bone block. For those players who were ultimately drafted, performance was assessed based on games played and started, total snaps, and percentage of eligible snaps in which the player participated during his rookie season. Overall, 13 of 2617 (<1%) players at the combine were identified with a previous Latarjet procedure. Radiographically, 8 of 13 (61%) showed 2-screw fixation, while 5 of 13 (39%) had 1 screw. Of the 13 players, 6 (46%) players demonstrated hardware complications. All players had evidence of degenerative changes on plain radiographs, with 10 (77%) graded as mild, 1 (8%) as moderate, and 2 (15%) as severe according to the Samilson Prieto classification. Six of the 13 (46%) players went undrafted, while the remaining 7 (54%) were drafted; however, no player participated in more than half of the plays for which he was eligible during his rookie season. Only a small percentage of players at the NFL Combine (<1%) had undergone a Latarjet procedure. High rates of postoperative complications and radiographically confirmed degenerative change were observed. Athletes who had undergone a Latarjet procedure demonstrated a variable amount of playing time, but none participated in more than half of their eligible plays during their rookie season.
Stender, Michael E.; Raub, Christopher B.; Yamauchi, Kevin A.; Shirazi, Reza; Vena, Pasquale; Sah, Robert L.; Hazelwood, Scott J.; Klisch, Stephen M.
2013-01-01
A continuum mixture model with distinct collagen (COL) and glycosaminoglycan (GAG) elastic constituents was developed for the solid matrix of immature bovine articular cartilage. A continuous COL fiber volume fraction distribution function and a true COL fiber elastic modulus (Ef) were used. Quantitative polarized light microscopy (qPLM) methods were developed to account for the relatively high cell density of immature articular cartilage and used with a novel algorithm that constructs a 3D distribution function from 2D qPLM data. For specimens untreated and cultured in vitro, most model parameters were specified from qPLM analysis and biochemical assay results; consequently, Ef was predicted using an optimization to measured mechanical properties in uniaxial tension and unconfined compression. Analysis of qPLM data revealed a highly anisotropic fiber distribution, with principal fiber orientation parallel to the surface layer. For untreated samples, predicted Ef values were 175 and 422 MPa for superficial (S) and middle (M) zone layers, respectively. TGF-β1 treatment was predicted to increase and decrease Ef values for the S and M layers to 281 and 309 MPa, respectively. IGF-1 treatment was predicted to decrease Ef values for the S and M layers to 22 and 26 MPa, respectively. A novel finding was that distinct native depth-dependent fiber modulus properties were modulated to nearly homogeneous values by TGF-β1 and IGF-1 treatments, with modulated values strongly dependent on treatment. PMID:23266906
Transmission properties of dielectric-coated hollow optical fibers based on stainless tube
NASA Astrophysics Data System (ADS)
Iwai, Katsumasa; Takaku, Hiroyuki; Miyagi, Mitsunobu; Shi, Yi-Wei; Zhu, Xiao-Song; Matsuura, Yuji
2018-02-01
Stainless pipe is used as the supporting tube for the infrared hollow fiber to obtain high durability and strong mechanical strength. In order to reduce roughness of inner surface of stainless tubes which causes the additional transmission loss, an acrylic-silicon resin material is used as a buffer layer to the inner wall of stainless tube for a low-loss characteristic. For the dielectric inner-coating layer, cyclic olefin polymer (COP) is used to lower the transmission loss. The COP layer is formed by using liquid-phase coating method. The hollow fiber with optimized COP inner film thickness for CO2 laser light were fabricated and reasonable transmission loss was demonstrated.
[Nonarteritic ischemic optic neuropathy animal model and its treatment applications].
Chuman, Hideki
2014-04-01
Nonarteritic ischemic optic neuropathy (NAION) is one of the most common acute unilaterally onset optic nerve diseases. One management problem in terms of NAION is the difficulty of differential diagnosis between NAION and anterior optic neuritis (ON). A second problem is that there is no established treatment for the acute stage of NAION. A third problem is that there is no preventive treatment for a subsequent attack on the fellow eye, estimated to occur in 15 to 25% of patients with NAION. For differentiation of acute NAION from anterior optic neuritis, we investigated the usefulness of laser speckle flowgraphy (LSFG). In the normal control group, the tissue blood flow did not significantly differ between the right and left eyes. In the NAION group, all 6 patients had 29.5% decreased mean blur rate (MBR), which correlates to optic disc blood flow, of the NAION eye compared with the unaffected eye. In the anterior ON group, all 6 cases had 15.9% increased MBR of the anterior ON eye compared with the unaffected eye. Thus, LSFG showed a difference of the underlying pathophysiology between NAION and anterior ON despite showing disc swelling in both groups and could be useful for differentiating both groups. For the treatment of acute stage of NAION, we tried to reproduce the rodent model of NAION (rNAION) developed by Bernstein and colleagues. To induce rNAION, after the administration of rose bengal(RB) (2.5 mM) into the tail vein of SD rats, the small vessels of the left optic nerve were photoactivated using a 514 nm argon green laser (RB-laser-induction). In the RB-laser-induction eyes, the capillaries within the optic disc were reduced markedly, the optic disc became swollen, and fluorescein angiography showed filling defect in the choroid and the optic disc at an early stage, followed by hyperfluorescence at a late stage. Electrophysiological evaluation revealed that visual evoked potential (VEP) amplitude was significantly decreased but an electroretinogram (ERG) did not show a significant difference either in the b wave or in the oscillatory potentials. The scotopic threshold response (STR) was significantly reduced 3 days after induction. These findings are similar to those of rNAION and indicate that we succeeded in reproducing the rNAION. Histopathologic examination in the acute phase of rNAION, showed acellular NFL swelling anterior to the optic disc. No accumulation of inflammatory cells was noted in several microscopic sections of the optic nerve. In addition, immunochemical staining was negative throughout the retina and optic nerve. These results suggested that the rNAION-induced NFL swelling was not a result of inflammation. In the chronic phase of rNAION, the morphologic retinal changes were apparent in only the retinal ganglion cell(RGC) layer, with a reduction in the number of cells in the RGC layer. Thus, we need to evaluate the degree of the NFL swelling in the acute phase and the following thinning of the NFL in the chronic phase for efficacy of the treatment of rNAION. Therefore, we used optical coherence tomography (OCT) for the objective and quantitative evaluation of the retinal nerve fiber layer (RNFL) thickness around the optic disc changes in rNAION. The second method was to use the STR for the evaluation of the RGC function. The third method was to count the number of surviving RGCs observed and photographed through the fluorescence microscope with the Fluorogold staining. A possible rationale for treatment of NAION is that dilation of the posterior ciliary artery (PCA) increases the blood flow to the optic nerve and could improve the optic nerve function. To clarify the vasodilatory effects of medications, we used in vitro isometric tension recording methods and examined the vasodilatory effects of bevacizumab as an anti-vascular endothelial growth factor (VEGF) antibody, methylprednisolone as a corticosteroid and sodium nitroprusside (SNP, a nitric oxide donor) as a vasodilator on high-K (potassium) solution-induced contraction in isolated rabbit PCA. Bevacizumab did not relax rabbit PCA. Methylprednisolone relaxed rabbit PCA nitric oxide (NO) independently. SNP relaxed rabbit PCA by exogenous NO. On the basis of these results, we selected the following candidates for rNAION treatment: methylprednisolone as the corticosteroid and L-arginine as the NO related agent. Intravenous infusion of methylprednisolone significantly decreased the degree of acute disc edema but did not reduce inner retinal thinning, decrease STR amplitude, or decrease RGC numbers in rNAION. Intravenous infusion of L-arginine after rNAION induction significantly decreased the disc edema at the acute stage and the thinning of the inner retina, reduced the decrease in STR amplitude, and reduced the decrease in RGC numbers during rNAION. These results indicated that L-arginine treatment is effective for reducing the anatomical changes and improving visual function in the acute stage of rNAION. To strengthen the neuroprotective effect for rNAION, we tried treatment using transcorneal electric stimulation (TES). We evaluated the effect using STR and survival RGCs. Decreased amplitude in the STR of the TES group was significantly better preserved than in the control group on the 28th day after treatment. RGC survival in the TES group was significantly larger than in the control group on the 14th and 28th days. The neuroprotective effect of TES was better than that of L-arginine. For preventive treatment of subsequent attack in the fellow eye, we investigated whether pretreatment with L-arginine might reduce the severity of the anatomical changes associated with NAION and preserve the visual function when NAION occurs in the other eye. In the L-arginine pretreated eyes, the disc edema at the acute stage and the thinning of inner retina were significantly decreased, and the decrease of STR amplitude and the decrease in RGC numbers during rNAION were reserved. These results indicate that pretreatment with L-arginine is effective for the reduction of the severity during recurrence in the other eye. We will perform clinical trials in a small series of cases, and if the treatment is effective, we will proceed to multicenter randomized treatment trials. In addition to that, more work needs to be done to discover better treatment options for NAION.
Three-dimensional cross point readout detector design for including depth information
NASA Astrophysics Data System (ADS)
Lee, Seung-Jae; Baek, Cheol-Ha
2018-04-01
We designed a depth-encoding positron emission tomography (PET) detector using a cross point readout method with wavelength-shifting (WLS) fibers. To evaluate the characteristics of the novel detector module and the PET system, we used the DETECT2000 to perform optical photon transport in the crystal array. The GATE was also used. The detector module is made up of four layers of scintillator arrays, the five layers of WLS fiber arrays, and two sensor arrays. The WLS fiber arrays in each layer cross each other to transport light to each sensor array. The two sensor arrays are coupled to the forward and left sides of the WLS fiber array, respectively. The identification of three-dimensional pixels was determined using a digital positioning algorithm. All pixels were well decoded, with the system resolution ranging from 2.11 mm to 2.29 mm at full width at half maximum (FWHM).
Pulse compression using a tapered microstructure optical fiber.
Hu, Jonathan; Marks, Brian S; Menyuk, Curtis R; Kim, Jinchae; Carruthers, Thomas F; Wright, Barbara M; Taunay, Thierry F; Friebele, E J
2006-05-01
We calculate the pulse compression in a tapered microstructure optical fiber with four layers of holes. We show that the primary limitation on pulse compression is the loss due to mode leakage. As a fiber's diameter decreases due to the tapering, so does the air-hole diameter, and at a sufficiently small diameter the guided mode loss becomes unacceptably high. For the four-layer geometry we considered, a compression factor of 10 can be achieved by a pulse with an initial FWHM duration of 3 ps in a tapered fiber that is 28 m long. We find that there is little difference in the pulse compression between a linear taper profile and a Gaussian taper profile. More layers of air-holes allows the pitch to decrease considerably before losses become unacceptable, but only a moderate increase in the degree of pulse compression is obtained.
Thermal insulating conformal blanket
NASA Technical Reports Server (NTRS)
Barney, Andrea (Inventor); Whittington, Charles A (Inventor); Eilertson, Bryan (Inventor); Siminski, Zenon (Inventor)
2003-01-01
The conformal thermal insulating blanket may have generally rigid batting material covered by an outer insulating layer formed of a high temperature resistant woven ceramic material and an inner insulating layer formed of a woven ceramic fiber material. The batting and insulating layers may be fastened together by sewing or stitching using an outer mold layer thread fabricated of a high temperature resistant material and an inner mold layer thread of a ceramic fiber material. The batting may be formed to a composite structure that may have a firmness factor sufficient to inhibit a pillowing effect after the stitching to not more than 0.03 inch. The outer insulating layer and an upper portion of the batting adjacent the outer insulating layer may be impregnated with a ceramic coating material.
Investigation of cladding and coating stripping methods for specialty optical fibers
NASA Astrophysics Data System (ADS)
Lee, Jung-Ryul; Dhital, Dipesh; Yoon, Dong-Jin
2011-03-01
Fiber optic sensing technology is used extensively in several engineering fields, including smart structures, health and usage monitoring, non-destructive testing, minimum invasive sensing, safety monitoring, and other advanced measurement fields. A general optical fiber consists of a core, cladding, and coating layers. Many sensing principles require that the cladding or coating layer should be removed or modified. In addition, since different sensing systems are needed for different types of optical fibers, it is very important to find and sort out the suitable cladding or coating removal method for a particular fiber. This study focuses on finding the cladding and coating stripping methods for four recent specialty optical fibers, namely: hard polymer-clad fiber, graded-index plastic optical fiber, copper/carbon-coated optical fiber, and aluminum-coated optical fiber. Several methods, including novel laser stripping and conventional chemical and mechanical stripping, were tried to determine the most suitable and efficient technique. Microscopic investigation of the fiber surfaces was used to visually evaluate the mechanical reliability. Optical time domain reflectometric signals of the successful removal cases were investigated to further examine the optical reliability. Based on our results, we describe and summarize the successful and unsuccessful methods.
Electrospinning of calcium carbonate fibers and their conversion to nanocrystalline hydroxyapatite.
Holopainen, Jani; Santala, Eero; Heikkilä, Mikko; Ritala, Mikko
2014-12-01
Calcium carbonate (CaCO3) fibers were prepared by electrospinning followed by annealing. Solutions consisting of calcium nitrate tetrahydrate (Ca(NO3)2·4H2O) and polyvinylpyrrolidone (PVP) dissolved in ethanol or 2-methoxyethanol were used for the fiber preparation. By varying the precursor concentrations in the electrospinning solutions CaCO3 fibers with average diameters from 140 to 290 nm were obtained. After calcination the fibers were identified as calcite by X-ray diffraction (XRD). The calcination process was studied in detail with high temperature X-ray diffraction (HTXRD) and thermogravimetric analysis (TGA). The initially weak fiber-to-substrate adhesion was improved by adding a strengthening CaCO3 layer by spin or dip coating Ca(NO3)2/PVP precursor solution on the CaCO3 fibers followed by annealing of the gel formed inside the fiber layer. The CaCO3 fibers were converted to nanocrystalline hydroxyapatite (HA) fibers by treatment in a dilute phosphate solution. The resulting hydroxyapatite had a plate-like crystal structure with resemblance to bone mineral. The calcium carbonate and hydroxyapatite fibers are interesting materials for bone scaffolds and bioactive coatings. Copyright © 2014 Elsevier B.V. All rights reserved.
The aortic valve microstructure: effects of transvalvular pressure.
Sacks, M S; Smith, D B; Hiester, E D
1998-07-01
We undertook this study to establish a more quantitative understanding of the microstructural response of the aortic valve cusp to pressure loading. Fresh porcine aortic valves were fixed at transvalvular pressures ranging from 0 mmHg to 90 mmHg, and small-angle light scattering (SALS) was used to quantify the gross fiber structure of the valve cusps. At all pressures the fiber-preferred directions coursed along the circumferential direction. Increasing transvalvular pressure induced the greatest changes in fiber alignment between 0 and 1 mmHg, with no detectable change past 4 mmHg. When the fibrosa and ventricularis layers of the cusps were re-scanned separately, the fibrosa layer revealed a higher degree of orientation while the ventricularis was more randomly oriented. The degree of fiber orientation for both layers became more similar once the transvalvular pressure exceeded 4 mmHg, and the layers were almost indistinguishable by 60 mmHg. It is possible that, in addition to retracting the aortic cusp during systole, the ventricularis mechanically may contribute to the diastolic cuspal stiffness at high transvalvular pressures, which may help to prevent over distention of the cusp. Our results suggest a complex, highly heterogeneous structural response to transvalvular pressure on a fiber level that will have to be duplicated in future bioprosthetic heart valve designs.
Intestinal Mechanomorphological Remodeling Induced by Long-Term Low-Fiber Diet in Rabbits.
Liu, Yue; Zhao, Jingbo; Liao, Donghua; Wang, Guixue; Gregersen, Hans
2017-12-01
Short-term feeding with low-fiber diet remodels the mechanomorphological properties in the rabbit small intestine. The aims were to study the effect of feeding low-fiber diet for 5 months on mechanomorphological properties including the collagen fraction in the rabbit intestines. Fifteen rabbits were divided into an Intervention group (IG, n = 10) fed a low-fiber diet and a Control group (CG, n = 5) fed a normal diet for 5 months. Five months later, four 10-cm-long segments obtained from the duodenum, jejunum, ileum and large intestine were used for histological and mechanical analysis, respectively. The wall thickness, wall area, mucosa and muscle layer thickness decreased whereas the submucosa layer thickness increased in the IG (p < 0.05). The collagen fraction decreased in all layers and segments in the IG (p < 0.05). The opening angle increased in the large intestine and decreased in the ileum in the IG (p < 0.05). The intestinal stress-strain curves for IG shifted to the right, indicating softening. The creep did not change in the four segments. The wall stiffness was associated with wall thickness and collagen fraction in the submucosa layer. Long-term low-fiber diet in rabbits induced histomorphometric and biomechanical remodelling of the intestines.
Age of first exposure to football and later-life cognitive impairment in former NFL players
Stamm, Julie M.; Bourlas, Alexandra P.; Baugh, Christine M.; Fritts, Nathan G.; Daneshvar, Daniel H.; Martin, Brett M.; McClean, Michael D.; Tripodis, Yorghos
2015-01-01
Objective: To determine the relationship between exposure to repeated head impacts through tackle football prior to age 12, during a key period of brain development, and later-life executive function, memory, and estimated verbal IQ. Methods: Forty-two former National Football League (NFL) players ages 40–69 from the Diagnosing and Evaluating Traumatic Encephalopathy using Clinical Tests (DETECT) study were matched by age and divided into 2 groups based on their age of first exposure (AFE) to tackle football: AFE <12 and AFE ≥12. Participants completed the Wisconsin Card Sort Test (WCST), Neuropsychological Assessment Battery List Learning test (NAB-LL), and Wide Range Achievement Test, 4th edition (WRAT-4) Reading subtest as part of a larger neuropsychological testing battery. Results: Former NFL players in the AFE <12 group performed significantly worse than the AFE ≥12 group on all measures of the WCST, NAB-LL, and WRAT-4 Reading tests after controlling for total number of years of football played and age at the time of evaluation, indicating executive dysfunction, memory impairment, and lower estimated verbal IQ. Conclusions: There is an association between participation in tackle football prior to age 12 and greater later-life cognitive impairment measured using objective neuropsychological tests. These findings suggest that incurring repeated head impacts during a critical neurodevelopmental period may increase the risk of later-life cognitive impairment. If replicated with larger samples and longitudinal designs, these findings may have implications for safety recommendations for youth sports. PMID:25632088
Age of first exposure to football and later-life cognitive impairment in former NFL players.
Stamm, Julie M; Bourlas, Alexandra P; Baugh, Christine M; Fritts, Nathan G; Daneshvar, Daniel H; Martin, Brett M; McClean, Michael D; Tripodis, Yorghos; Stern, Robert A
2015-03-17
To determine the relationship between exposure to repeated head impacts through tackle football prior to age 12, during a key period of brain development, and later-life executive function, memory, and estimated verbal IQ. Forty-two former National Football League (NFL) players ages 40-69 from the Diagnosing and Evaluating Traumatic Encephalopathy using Clinical Tests (DETECT) study were matched by age and divided into 2 groups based on their age of first exposure (AFE) to tackle football: AFE <12 and AFE ≥12. Participants completed the Wisconsin Card Sort Test (WCST), Neuropsychological Assessment Battery List Learning test (NAB-LL), and Wide Range Achievement Test, 4th edition (WRAT-4) Reading subtest as part of a larger neuropsychological testing battery. Former NFL players in the AFE <12 group performed significantly worse than the AFE ≥12 group on all measures of the WCST, NAB-LL, and WRAT-4 Reading tests after controlling for total number of years of football played and age at the time of evaluation, indicating executive dysfunction, memory impairment, and lower estimated verbal IQ. There is an association between participation in tackle football prior to age 12 and greater later-life cognitive impairment measured using objective neuropsychological tests. These findings suggest that incurring repeated head impacts during a critical neurodevelopmental period may increase the risk of later-life cognitive impairment. If replicated with larger samples and longitudinal designs, these findings may have implications for safety recommendations for youth sports. © 2015 American Academy of Neurology.
Depressive symptoms and white matter dysfunction in retired NFL players with concussion history.
Strain, Jeremy; Didehbani, Nyaz; Cullum, C Munro; Mansinghani, Sethesh; Conover, Heather; Kraut, Michael A; Hart, John; Womack, Kyle B
2013-07-02
To determine whether correlates of white matter integrity can provide general as well as specific insight into the chronic effects of head injury coupled with depression symptom expression in professional football players. We studied 26 retired National Football League (NFL) athletes who underwent diffusion tensor imaging (DTI) scanning. Depressive symptom severity was measured using the Beck Depression Inventory II (BDI-II) including affective, cognitive, and somatic subfactor scores (Buckley 3-factor model). Fractional anisotropy (FA) maps were processed using tract-based spatial statistics from FSL. Correlations between FA and BDI-II scores were assessed using both voxel-wise and region of interest (ROI) techniques, with ROIs that corresponded to white matter tracts. Tracts demonstrating significant correlations were further evaluated using a receiver operating characteristic curve that utilized the mean FA to distinguish depressed from nondepressed subjects. Voxel-wise analysis identified widely distributed voxels that negatively correlated with total BDI-II and cognitive and somatic subfactors, with voxels correlating with the affective component (p < 0.05 corrected) localized to frontal regions. Four tract ROIs negatively correlated (p < 0.01) with total BDI-II: forceps minor, right frontal aslant tract, right uncinate fasciculus, and left superior longitudinal fasciculus. FA of the forceps minor differentiated depressed from nondepressed athletes with 100% sensitivity and 95% specificity. Depressive symptoms in retired NFL athletes correlate negatively with FA using either an unbiased voxel-wise or an ROI-based, tract-wise approach. DTI is a promising biomarker for depression in this population.
Whiting, Steven W; Maynes, Timothy D
2016-04-01
Contextual performance and workplace deviance likely influence team functioning and effectiveness and should therefore be considered when evaluating job candidates for team-based roles. However, obtaining this information is difficult given a lack of reliable sources and the desire of job applicants to present themselves in a favorable light. Thus, it is unknown whether those selecting employees for teams incorporate prior contextual performance and workplace deviance into their evaluations, or whether doing so improves the quality of selection decisions. To address these issues, we examined the impact of prior task performance, contextual performance, and workplace deviance on National Football League (NFL) decision maker (organizational insider) and external expert (organizational outsider) evaluations of college football players in the NFL draft, using a content analysis methodology to generate measures of contextual performance and workplace deviance. Our findings indicate that insiders value contextual performance more than outsiders, which is likely because of differing interests and goals that lead to different levels of motivation and/or ability to acquire information about prior contextual performance. We also propose that prior task performance, contextual performance, and workplace deviance will predict player performance in the NFL. Our results support this prediction for task and contextual performance. In addition, we investigated the quality of insider and outsider judgments using Brunswik's (1952) lens model. Implications of our findings for the team selection, contextual performance, and workplace deviance literatures are discussed. (c) 2016 APA, all rights reserved).
Han, Weining; Li, Yuejin; Bagaya, Bernard S.; Tian, Meijuan; Chamanian, Mastooreh; Zhu, Chuanwu; Shen, Jie; Gao, Yong
2016-01-01
Although the process of reverse transcription is well elucidated, it remains unclear if viral core disruption provides a more cellular or viral milieu for HIV-1 reverse transcription. We have devised a method to require mixing of viral cores or core constituents to produce infectious progeny virus by a bipartite subgenomic RNA (sgRNA) system, in which HIV-1 cplt_R/U5/gag/Δpol and nfl sgRNAs are complementary to each other and when together can complete viral reverse transcription. Only the heterodiploid virus containing both the nfl and cplt_R/U5/gag/Δpol sgRNAs can complete reverse transcription and propagate infectious virus upon de novo infection. Dual exposure of U87.CD4.CXCR4 cells with high titers of the homodimeric nfl and cplt_R/U5/gag/Δpol virus particles did not result in productive virus infection. On the other hand, in early endosomes, the HIV-1 sgRNAs released from viral cores can retain function and complete the reverse transcription and result in productive infection. These findings confirm the assumptions that, in natural infection, HIV-1 cores, and likely other retrovirus cores, remain largely intact and do not mix/fuse in the cytoplasm during the reverse transcription process, and circulating cytoplasmic HIV-1 sgRNA (produced through transfection) could not help the complementary sgRNA in the viral core to complement the reverse transcription process. PMID:27239643
Koronowicz, Aneta A.; Kopeć, Aneta; Master, Adam; Smoleń, Sylwester; Piątkowska, Ewa; Bieżanowska-Kopeć, Renata; Ledwożyw-Smoleń, Iwona; Skoczylas, Łukasz; Rakoczy, Roksana; Leszczyńska, Teresa; Kapusta-Duch, Joanna; Pysz, Mirosław
2016-01-01
Although iodization of salt is the most common method used to obtain iodine-enriched food, iodine deficiency disorders are still a global health problem and profoundly affect the quality of human life. Iodine is required for the synthesis of thyroid hormones, which are crucial regulators of human metabolism, cell growth, proliferation, apoptosis and have been reported to be involved in carcinogenesis. In this study, for the first time, we evaluated the effect of iodine-biofortified lettuce on transcriptomic profile of Caco-2 cancer cell line by applying the Whole Human Genome Microarray assay. We showed 1326 differentially expressed Caco-2 transcripts after treatment with iodine-biofortified (BFL) and non-fortified (NFL) lettuce extracts. We analysed pathways, molecular functions, biological processes and protein classes based on comparison between BFL and NFL specific genes. Iodine, which was expected to act as a free ion (KI-NFL) or at least in part to be incorporated into lettuce macromolecules (BFL), differently regulated pathways of numerous transcription factors leading to different cellular effects. In this study we showed the inhibition of Caco-2 cells proliferation after treatment with BFL, but not potassium iodide (KI), and BFL-mediated induction of mitochondrial apoptosis and/or cell differentiation. Our results showed that iodine-biofortified plants can be effectively used by cells as an alternative source of this trace element. Moreover, the observed differences in action of both iodine sources may suggest a potential of BFL in cancer treatment. PMID:26799209
EELS Analysis of Nylon 6 Nanofibers Reinforced with Nitroxide-Functionalized Graphene Oxide.
Leyva-Porras, César; Ornelas-Gutiérrez, C; Miki-Yoshida, M; Avila-Vega, Yazmín I; Macossay, Javier; Bonilla-Cruz, José
2014-01-01
A detailed analysis by transmission electron microscopy (TEM) and electron energy loss spectroscopy (EELS) of nitroxide-functionalized graphene oxide layers (GOFT) dispersed in Nylon 6 nanofibers is reported herein. The functionalization and exfoliation process of graphite oxide to GOFT was confirmed by TEM using electron diffraction patterns (EDP), wherein 1 to 4 graphene layers of GOFT were observed. The distribution and alignment of GOFT layers within a sample of Nylon 6 nanofiber reveals that GOFT platelets are mainly within the fiber, but some were partially protruding from it. Furthermore, Nylon 6 nanofibers exhibit an average diameter of 225 nm with several microns in length. GOFT platelets embedded into the fiber, the pristine fiber, and amorphous carbon were analyzed by EELS where each spectra [corresponding to the carbon edge (C-K)] exhibited changes in the fine structure, allowing a clear distinction between: i) GOFT single-layers, ii) Nylon-6 nanofibers, and iii) the carbon substrate. EELS analysis is presented here for the first time as a powerful tool to identify functionalized graphene single-layers (< 4 layers of GOFT) into a Nylon 6 nanofiber composite.
Morphological changes in diseased cementum layers: a scanning electron microscopy study.
Bilgin, E; Gürgan, C A; Arpak, M Nejat; Bostanci, H S; Güven, K
2004-05-01
The aim of this study was to compare the morphological changes that occurred in root cementum layers due to periodontal disease by using scanning electron microscopy (SEM). Ninety-two periodontally hopeless teeth extracted from 29 patients were studied. Measurements of probing depth (PD) and clinical attachment loss (CAL) were taken prior to extractions. After the longitudinal fracturing process of root specimens, healthy and diseased cementum layers of roots were evaluated by SEM for the thickness of the cementum and the morphological changes in collagen fibers. The result of SEM evaluation revealed a significant ( P < 0.001) decrease in the thickness of cementum layer on the diseased root surfaces compared to the healthy surfaces. There were denser and conspicuous collagen fibers with their interfibrillar matrix in cementum layers on the healthy root surfaces compared to the diseased surfaces. Within the limits of this study, the thickness of cementum layers in diseased areas was found to be significantly less than that in the healthy areas of root surfaces. However, there exist variations in the density and visibility of cemental fibers between individuals and within the individual.
EELS Analysis of Nylon 6 Nanofibers Reinforced with Nitroxide-Functionalized Graphene Oxide
Leyva-Porras, César; Ornelas-Gutiérrez, C.; Miki-Yoshida, M.; Avila-Vega, Yazmín I.; Macossay, Javier; Bonilla-Cruz, José
2014-01-01
A detailed analysis by transmission electron microscopy (TEM) and electron energy loss spectroscopy (EELS) of nitroxide-functionalized graphene oxide layers (GOFT) dispersed in Nylon 6 nanofibers is reported herein. The functionalization and exfoliation process of graphite oxide to GOFT was confirmed by TEM using electron diffraction patterns (EDP), wherein 1 to 4 graphene layers of GOFT were observed. The distribution and alignment of GOFT layers within a sample of Nylon 6 nanofiber reveals that GOFT platelets are mainly within the fiber, but some were partially protruding from it. Furthermore, Nylon 6 nanofibers exhibit an average diameter of 225 nm with several microns in length. GOFT platelets embedded into the fiber, the pristine fiber, and amorphous carbon were analyzed by EELS where each spectra [corresponding to the carbon edge (C-K)] exhibited changes in the fine structure, allowing a clear distinction between: i) GOFT single-layers, ii) Nylon-6 nanofibers, and iii) the carbon substrate. EELS analysis is presented here for the first time as a powerful tool to identify functionalized graphene single-layers (< 4 layers of GOFT) into a Nylon 6 nanofiber composite. PMID:24634536
Fabrication and Characterization of Plasma-Sprayed Carbon-Fiber-Reinforced Aluminum Composites
NASA Astrophysics Data System (ADS)
Xiong, Jiang-tao; Zhang, Hao; Peng, Yu; Li, Jing-long; Zhang, Fu-sheng
2018-04-01
Carbon fiber ( C f)/Al specimens were fabricated by plasma-spraying aluminum powder on unidirectional carbon fiber bundles (CFBs) layer by layer, followed by a densification heat treatment process. The microstructure and chemical composition of the C f/Al composites were examined by scanning electron microscopy and energy-dispersive spectrometry. The CFBs were completely enveloped by aluminum matrix, and the peripheral regions of the CFBs were wetted by aluminum. In the wetted region, no significant Al4C3 reaction layer was found at the interface between the carbon fibers and aluminum matrix. The mechanical properties of the C f/Al specimens were evaluated. When the carbon fiber volume fraction (CFVF) was 9.2%, the ultimate tensile strength (UTS) of the C f/Al composites reached 138.3 MPa with elongation of 4.7%, 2.2 times the UTS of the Al matrix (i.e., 63 MPa). This strength ratio (between the UTS of C f/Al and the Al matrix) is higher than for most C f/Al composites fabricated by the commonly used method of liquid-based processing at the same CFVF level.
Ceramic Fiber Structures for Cryogenic Load-Bearing Applications
NASA Technical Reports Server (NTRS)
Jaskowiak, Martha H.; Eckel, Andrew J.
2009-01-01
This invention is intended for use as a load-bearing device under cryogenic temperatures and/or abrasive conditions (i.e., during missions to the Moon). The innovation consists of small-diameter, ceramic fibers that are woven or braided into devices like ropes, belts, tracks, or cables. The fibers can be formed from a variety of ceramic materials like silicon carbide, carbon, aluminosilicate, or aluminum oxide. The fiber architecture of the weave or braid is determined by both the fiber properties and the mechanical requirements of the application. A variety of weave or braid architectures is possible for this application. Thickness of load-bearing devices can be achieved by using either a 3D woven structure, or a layered, 2D structure. For the prototype device, a belt approximately 0.10 in. (0.25 cm) thick, and 3.0 in. (7.6 cm) wide was formed by layering and stitching a 2D aluminosilicate fiber weave.
Carbide coated fibers in graphite-aluminum composites
NASA Technical Reports Server (NTRS)
Imprescia, R. J.; Levinson, L. S.; Reiswig, R. D.; Wallace, T. C.; Williams, J. M.
1975-01-01
The study of protective-coupling layers of refractory metal carbides on the graphite fibers prior to their incorporation into composites is presented. Such layers should be directly wettable by liquid aluminum and should act as diffusion barriers to prevent the formation of aluminum carbide. Chemical vapor deposition was used to uniformly deposit thin, smooth, continuous coats of ZrC on the carbon fibers of tows derived from both rayon and polyacrylonitrile. A wet chemical coating of the fibers, followed by high-temperature treatment, was used, and showed promise as an alternative coating method. Experiments were performed to demonstrate the ability of aluminum alloys to wet carbide surfaces. Titanium carbide, zirconium carbide and carbide-coated graphite surfaces were successfully wetted. Results indicate that initial attempts to wet surfaces of ZrC-coated carbon fibers appear successful.
Low-temperature hermetic sealing of optical fiber components
Kramer, Daniel P.
1996-10-22
A method for manufacturing low-temperature hermetically sealed optical fi components is provided. The method comprises the steps of: inserting an optical fiber into a housing, the optical fiber having a glass core, a glass cladding and a protective buffer layer disposed around the core and cladding; heating the housing to a predetermined temperature, the predetermined temperature being below a melting point for the protective buffer layer and above a melting point of a solder; placing the solder in communication with the heated housing to allow the solder to form an eutectic and thereby fill a gap between the interior of the housing and the optical fiber; and cooling the housing to allow the solder to form a hermetic compression seal between the housing and the optical fiber.
Wavelength-division multiplexed optical integrated circuit with vertical diffraction grating
NASA Technical Reports Server (NTRS)
Lang, Robert J. (Inventor); Forouhar, Siamak (Inventor)
1994-01-01
A semiconductor optical integrated circuit for wave division multiplexing has a semiconductor waveguide layer, a succession of diffraction grating points in the waveguide layer along a predetermined diffraction grating contour, a semiconductor diode array in the waveguide layer having plural optical ports facing the succession of diffraction grating points along a first direction, respective semiconductor diodes in the array corresponding to respective ones of a predetermined succession of wavelengths, an optical fiber having one end thereof terminated at the waveguide layer, the one end of the optical fiber facing the succession of diffraction grating points along a second direction, wherein the diffraction grating points are spatially distributed along the predetermined contour in such a manner that the succession of diffraction grating points diffracts light of respective ones of the succession of wavelengths between the one end of the optical fiber and corresponding ones of the optical ports.
Angiographic and structural imaging using high axial resolution fiber-based visible-light OCT
Pi, Shaohua; Camino, Acner; Zhang, Miao; Cepurna, William; Liu, Gangjun; Huang, David; Morrison, John; Jia, Yali
2017-01-01
Optical coherence tomography using visible-light sources can increase the axial resolution without the need for broader spectral bandwidth. Here, a high-resolution, fiber-based, visible-light optical coherence tomography system is built and used to image normal retina in rats and blood vessels in chicken embryo. In the rat retina, accurate segmentation of retinal layer boundaries and quantification of layer thicknesses are accomplished. Furthermore, three distinct capillary plexuses in the retina and the choriocapillaris are identified and the characteristic pattern of the nerve fiber layer thickness in rats is revealed. In the chicken embryo model, the microvascular network and a venous bifurcation are examined and the ability to identify and segment large vessel walls is demonstrated. PMID:29082087
Muqit, Mahiul M K; Young, Lorna B; McKenzie, Rod; John, Binu; Marcellino, George R; Henson, David B; Turner, George S; Stanga, Paulo E
2013-02-01
To investigate the short-term effects of high-density 20-ms laser on macular thickness using Pascal-targeted retinal photocoagulation (TRP) and reduced fluence/minimally-traumatic panretinal photocoagulation (MT-PRP) compared to standard-intensity PRP (SI-PRP) in proliferative diabetic retinopathy (PDR). Prospective randomised clinical trial. Treatment-naive PDR was treated with single-session 20-ms Pascal 2500 burns photocoagulation randomised to one of three treatment arms (TRP:MT-PRP:SI-PRP). Primary outcome measure was change in central retinal thickness (CRT) on OCT. Secondary outcomes at 4 and 12 weeks post-laser included: OCT peripapillary nerve fibre layer (NFL) thickness; PDR disease regression on Optos angiography; SITA-Std visual fields (VF); and, visual acuity (VA). 30 eyes of 24 patients were studied, ten eyes/arm. At 12 weeks, there were significant reductions in CRT after TRP (9.6 µm; 95% CI, 1.84 to 17.36; p=0.021) and MT-PRP (17.1 µm; 95% CI, 11 to 23.2; p=0.001), versus SI-PRP (+5.9 µm; 95% CI, -6.75 to 18.55; p=0.32). PDR regression was similar between groups (TRP 70%; MT-PRP 70%; SI-PRP 90%; κ=0.76). No significant changes in VA and NFL thickness developed between groups. The VF mean deviation scores increased significantly in all groups at 12 weeks ([TRP, +0.70dB; 95% CI, 0.07 to 1.48; p=0.07], [MT-PRP, +0.63dB; 95% CI, 0.12 to 1.15; p=0.02], [SI-PRP, +1.0dB; 95% CI, 0.19 to 1.74; p=0.02]). There were no laser-related ocular complications. This pilot study reports that high-density 20-ms Pascal TRP and MT-PRP using 2500 burns did not produce increased macular thickness or any ocular adverse events during the short-term.
Leozappa, M.; Ciani, S.; Ferrari, T. Micelli
2011-01-01
Keratoconus associated with myelinated retinal nerve fibers is not frequent and the relationship between the two pathologies is difficult to explain, therefore studies and further investigation are required. The etiology of each condition may suggest the role of genetic factors. Follow-up is important to evaluate the progression of keratoconus and myelination. Here we describe the unusual coexistence of keratoconus and ipsilateral myelinated retinal nerve fiber layer and, for the first time, the corneal cross-linking treatment in this condition. PMID:21475609
Thermal Strain Analysis of Optic Fiber Sensors
Her, Shiuh-Chuan; Huang, Chih-Ying
2013-01-01
An optical fiber sensor surface bonded onto a host structure and subjected to a temperature change is analytically studied in this work. The analysis is developed in order to assess the thermal behavior of an optical fiber sensor designed for measuring the strain in the host structure. For a surface bonded optical fiber sensor, the measuring sensitivity is strongly dependent on the bonding characteristics which include the protective coating, adhesive layer and the bonding length. Thermal stresses can be generated due to a mismatch of thermal expansion coefficients between the optical fiber and host structure. The optical fiber thermal strain induced by the host structure is transferred via the adhesive layer and protective coating. In this investigation, an analytical expression of the thermal strain and stress in the optical fiber is presented. The theoretical predictions are validated using the finite element method. Numerical results show that the thermal strain and stress are linearly dependent on the difference in thermal expansion coefficients between the optical fiber and host structure and independent of the thermal expansion coefficients of the adhesive and coating. PMID:23385407
NASA Technical Reports Server (NTRS)
Tran, Huy Kim; Sawko, Paul M.
1992-01-01
Silicon carbide (SiC) fiber is a material that may be used in advanced thermal protection systems (TPS) for future aerospace vehicles. SiC fiber's mechanical properties depend greatly on the presence or absence of sizing and its microstructure. In this research, silicon dioxide is found to be present on the surface of the fiber. Electron Spectroscopy for Chemical Analysis (ESCA) and Scanning Electron Microscopy (SEM) show that a thin oxide layer (SiO2) exists on the as-received fibers, and the oxide thickness increases when the fibers are exposed to high temperature. ESCA also reveals no evidence of Si-C bonding on the fiber surface on both as-received and heat treated fibers. The silicon oxide layer is thought to signal the decomposition of SiC bonds and may be partially responsible for the degradation in the breaking strength observed at temperatures above 400 C. The variation in electrical resistivity of the fibers with increasing temperature indicates a transition to a higher band gap material at 350 to 600 C. This is consistent with a decomposition of SiC involving silicon oxide formation.
Interface control and mechanical property improvements in silicon carbide/titanium composites
NASA Technical Reports Server (NTRS)
Brewer, W. D.; Unnam, J.
1982-01-01
Several composite systems made of titanium matrix reinforced with silicon carbide fiber were investigated to obtain a better understanding of composite-degradation mechanisms and to develop techniques to minimize loss of mechanical properties during fabrication and in service. Emphasis was on interface control by fiber or matrix coatings. X-ray diffraction studies on planar samples showed that the formation of titanium silicides was greatly inhibited by the presence of aluminum or Ti3A1 layers at the fiber-matrix interface, with the Ti3A1 being more effective in reducing the reactions. Fiber studies showed that coating the fiber with a 1-micron-thick layer of aluminum improved the as-fabricated strength of a stoichiometric SiC fiber and reduced the fiber degradation during exposure to composite-fabrication conditions. Applying an interfacial barrier by coating the matrix foils instead of the fibers was found to be an effective method for improving composite strength. Reducing the fabrication temperature also resulted in significant improvements in composite strengths. Good-quality, well-consolidated composites were fabricated at temperatures well below those currently used for SiC-Ti composite fabrication.
Abdal-Hay, Abdalla; Hasan, Anwarul; Kim, Yu-Kyoung; Yu-Kyoung; Lee, Min-Ho; Hamdy, Abdel Salam; Khalil, Khalil Abdelrazek
2016-01-01
This article demonstrates the use of hybrid nanofibers to improve the biodegradation rate and biocompatibility of AM50 magnesium alloy. Biodegradable hybrid membrane fiber layers containing nano-hydroxyapatite (nHA) particles and poly(lactide)(PLA) nanofibers were coated layer-by-layer (LbL) on AM50 coupons using a facile single-step air jet spinning (AJS) approach. The corrosion performance of coated and uncoated coupon samples was investigated by means of electrochemical measurements. The results showed that the AJS 3D membrane fiber layers, particularly the hybrid membrane layers containing a small amount of nHA (3 wt.%), induce a higher biocorrosion resistance and effectively decrease the initial degradation rate compared with the neat AM50 coupon samples. The adhesion strength improved highly due to the presence of nHA particles in the AJS layer. Furthermore, the long biodegradation rates of AM50 alloy in Hank's balanced salt solution (HBSS) were significantly controlled by the AJS-coatings. The results showed a higher cytocompatibility for AJS-coatings compared to that for neat Mg alloys. The nanostructured nHA embedded hybrid PLA nanofiber coating can therefore be a suitable coating material for Mg alloy as a potential material for biodegradable metallic orthopedic implants. Copyright © 2015 Elsevier B.V. All rights reserved.
Comparison of different photoresist buffer layers in SPR sensors based on D-shaped POF and gold film
NASA Astrophysics Data System (ADS)
Cennamo, Nunzio; Pesavento, Maria; De Maria, Letizia; Galatus, Ramona; Mattiello, Francesco; Zeni, Luigi
2017-04-01
A comparative analysis of two optical fiber sensing platforms is presented. The sensors are based on surface plasmon resonance (SPR) in a D-shaped plastic optical fiber (POF) with a photoresist buffer layer between the exposed POF core and the thin gold film. We show how the sensor's performances change when the photoresist layer changes. The photoresist layers proposed in this analysis are SU-8 3005 and S1813. The experimental results are congruent with the numerical studies and it is instrumental for chemical and bio-chemical applications. Usually, the photoresist layer is required in order to increase the performance of the SPR-POF sensor.
Black synthetic quartz glass layer for optical fiber cross-talk reduction fabricated by VAD method
NASA Astrophysics Data System (ADS)
Kobayashi, Soichi; Fukuda, Kaoru; Onishi, Gen; Fujii, Yusuke
2016-09-01
In this report the new black-glass fiber-preform fabricated by the vapor-phase axial deposition (VAD) method to realize high-resolution optical bundle fibers is discussed with the Energy Dispersive X-ray (EDX) analysis and the transmittance spectrum measurement. The black glass consists of SiO2, GeO2, Bi2O3 and Al2O3. Firstly, the rod-shaped soot of SiO2 and GeO2 is prepared by blowing SiCl4 and GeCl4 into the oxyhydrogen burner. Then the soot is dipped into the solution of the Bi and Al compounds. After drying the soot with Bi and Al penetrated, the soot is consolidated into the glass preform by heating with the carbon heater at 1650 degrees Celsius. The diameter of the obtained preform is 10.5 mm and the black glass layer thickness is 2.6 mm located at the periphery. The Bi concentration distribution shows the content of several wt% in the black glass layer. The black glass preform is drawn into the black optical fiber being expected to make a clear image because of no light leaking from the neighboring optical fibers as compared to the conventional fiber endoscope.
Interconnections of the visual cortex with the frontal cortex in the rat.
Sukekawa, K
1988-01-01
Horseradish peroxidase conjugated to wheat germ agglutinin (WGA-HRP) and autoradiography of tritiated leucine were used to trace the cortical origins and terminations of the connections between the visual and frontal cortices in the rat. Ipsilateral reciprocal connections between each subdivision of the visual cortex (areas 17, 18a and 18b) and the posterior half of the medial part of the frontal agranular cortex (PAGm), and their laminar organizations were confirmed. These connections did not appear to have a significant topographic organization. Although in areas 17 and 18b terminals or cells of origin in this fiber system were confined to the anterior half of these cortices, in area 18a they were observed spanning the anteroposterior extent of this cortex, with in part a column like organization. No evidence could be found for the participation of both the posterior parts of areas 17 and 18b and the anterior half of this frontal agranular cortex in these connections. Fibers from each subdivision of the visual cortex to the PAGm terminated predominantly in the lower part of layer I and in layer II. In area 17, this occipito-frontal projection was found to arise from the scattered pyramidal cells in layer V and more prominently from pyramidal cells in layer V of area 17/18a border. In area 18a, the fibers projecting to the PAGm originated mainly from pyramidal cells primarily in layer V and to a lesser extent in layers II, III and VI. Whereas in area 18b, this projection was found to arise mainly from pyramidal cells in layers II and III, to a lesser extent in layers V and VI, and less frequent in layer IV. On the other hand, the reciprocal projection to the visual cortex was found to originate largely from pyramidal cells in layers III and V of the PAGm. In areas 17 and 18a, these fibers terminated in layers I and VI, and in layers I, V and VI, respectively. Whereas in area 18b, they were distributed throughout all layers except layer II.
Align and random electrospun mat of PEDOT:PSS and PEDOT:PSS/RGO
NASA Astrophysics Data System (ADS)
Sarabi, Ghazale Asghari; Latifi, Masoud; Bagherzadeh, Roohollah
2018-01-01
In this research work we fabricated two ultrafine conductive nanofibrous layers to investigate the materilas composition and their properties for the preparation of supercapacitor materials application. In first layer, a polymer and a conductive polymer were used and second layer was a composition of polymer, conductive polymer and carbon-base material. In both cases align and randomized mat of conductive nanofibers were fabricated using electrospinning set up. Conductive poly (3,4-ethylenedioxythiophene)/ polystyrene sulfonate (PEDOT:PSS) nanofibers were electrospun by dissolving fiber-forming polymer and polyvinyl alcohol (PVA) in an aqueous dispersion of PEDOT:PSS. The effect of addition of reduced graphene oxide (RGO) was considered for nanocomposite layer. The ultrafine conductive polymer fibers and conductive nanocomposite fibrous materials were also fabricated using an electrospinning process. A fixed collector and a rotating drum were used for random and align nanofibers production, respectively. The resulted fibers were characterized and analyzed by SEM, FTIR and two-point probe conductivity test. The average diameter of nanofibers measured by ImageJ software indicated that the average fiber diameter for first layer was 100 nm and for nanocomposite layer was about 85 nm. The presence of PEDOT:PSS and RGO in the nanofibers was confirmed by FT-IR spectroscopy. The conductivity of align and random layers was characterized. The conductivity of PEDOT:PSS nanofibers showed higher enhancement by addition of RGO in aqueous dispersion. The obtained results showed that alignment of fibrous materials can be considered as an engineering tool for tuning the conductivity of fibrous materials for many different applications such as supercapacitors, conductive and transparent materials.
Akçam, H T; Capraz, I Y; Aktas, Z; Batur Caglayan, H Z; Ozhan Oktar, S; Hasanreisoglu, M; Irkec, C
2014-01-01
Purpose To compare both retinal nerve fiber layer thickness and orbital color Doppler ultrasonography parameters in patients with multiple sclerosis (MS) versus healthy controls. Methods This is an observational case–control study. Forty eyes from MS patients and twenty eyes from healthy volunteers were examined. Eyes were classified into three groups as group 1, eyes from MS patients with previous optic neuritis (n=20); group 2, eyes from MS patients without previous optic neuritis (n=20); and group 3, eyes from healthy controls (n=20). Following complete ophthalmologic examination and retinal nerve fiber layer thickness measurement for each group, blood flow velocities of posterior ciliary arteries, central retinal artery, ophthalmic artery, and superior ophthalmic vein were measured. Pourcelot index (resistive index), an indicator of peripheral vascular resistance, was also calculated. The statistical assessment was performed with the assistance of Pearson's Chi-square test, Mann–Whitney U-test, Kruskal–Wallis test, and Spearman's correlation test. Results The studied eyes exposed similar values in terms of intraocular pressure and central corneal thickness, implying no evidence in favor of glaucoma. All nerve fiber layer thickness values, except superior nasal quadrants, in group 1 were found to be significantly thinner than groups 2 and 3. Blood flow velocity and mean resistivity index parameters were similar in all the groups. Conclusions In MS patients, especially with previous optic neuritis, diminished retinal nerve fiber layer thickness was observed. Contrary to several studies in the current literature, no evidence supporting potential vascular origin of ocular involvement in MS was found. PMID:25081285
García-Bella, Javier; Martínez de la Casa, José M; Talavero González, Paula; Fernández-Vigo, José I; Valcarce Rial, Laura; García-Feijóo, Julián
2018-01-01
To establish the changes produced after implantation of a trifocal intraocular lens (IOL) on retinal nerve fiber layer measurements performed with Fourier-domain optical coherence tomography (OCT). This prospective study included 100 eyes of 50 patients with bilateral cataract in surgical range, no other associated ocular involvement, refractive errors between +5 and -5 spherical diopters, and less than 1.5 D of corneal astigmatism. The eyes were operated by phacoemulsification with implantation of 2 different trifocal IOLs (FineVision and AT LISA tri 839MP) in randomized equal groups. Cirrus OCT and Spectralis OCT were performed before surgery and 3 months later. Both analyzed the thickness of the nerve fiber layer and thickness divided by quadrants (6 in case of Spectralis and 4 in case of Cirrus HD). The mean age of patients was 67.5 ± 5.8 years. The global nerve fiber layer thickness measured with Spectralis OCT was 96.77 μm before surgery and 99.55 μm after. With Cirrus OCT, the global thickness was 85.29 μm before surgery and 89.77 μm after. Statistically significant differences in global thickness measurements between preimplantation and postimplantation of the IOL were found with both OCT in the 2 groups. Statistically significant differences were also found in temporal and superior quadrants. The implantation of a diffractive trifocal IOL alters the results of the optic nerve fiber layer on Fourier-domain OCT in these patients, which should be taken into account in the posterior study of these patients.
Kanamori, Akiyasu; Nakamura, Makoto; Matsui, Noriko; Nagai, Azusa; Nakanishi, Yoriko; Kusuhara, Sentaro; Yamada, Yuko; Negi, Akira
2004-12-01
To analyze retinal nerve fiber layer (RNFL) thickness in eyes with band atrophy by use of optical coherence tomography (OCT) and to evaluate the ability of OCT to detect this characteristic pattern of RNFL loss. Cross-sectional, retrospective study. Thirty-four eyes of 18 patients with bitemporal hemianopia caused by optic chiasm compression by chiasmal tumors were studied. All eyes were divided into 3 groups according to visual field loss grading after Goldmann perimetry. Retinal nerve fiber layer thickness measurements with OCT. Retinal nerve fiber layer thickness around the optic disc was measured by OCT (3.4-mm diameter circle). Calculation of the changes in OCT parameters, including the horizontal (nasal + temporal quadrant RNFL thickness) and vertical values (superior + inferior quadrant RNFL thickness) was based on data from 160 normal eyes. Comparison between the 3 visual field grading groups was done with the analysis of variance test. The receiver operating characteristic (ROC) curve for the horizontal and vertical value were calculated, and the areas under the curve (AUC) were compared. Retinal nerve fiber layer thickness in eyes with band atrophy decreased in all OCT parameters. The reduction rate in average and temporal RNFL thickness and horizontal value was correlated with visual field grading. The AUC of horizontal value was 0.970+/-0.011, which was significantly different from AUC of vertical value (0.903+/-0.022). The degree of RNFL thickness reduction correlated with that of visual field defects. Optical coherence tomography was able to identify the characteristic pattern of RNFL loss in these eyes.
Reduction in Retinal Nerve Fiber Layer Thickness in Young Adults with Autism Spectrum Disorders
ERIC Educational Resources Information Center
Emberti Gialloreti, Leonardo; Pardini, Matteo; Benassi, Francesca; Marciano, Sara; Amore, Mario; Mutolo, Maria Giulia; Porfirio, Maria Cristina; Curatolo, Paolo
2014-01-01
Recent years have seen an increase in the use of retinal nerve fiber layer (RNFL) evaluation as an easy-to-use, reproducible, proxy-measure of brain structural abnormalities. Here, we evaluated RNFL thickness in a group of subjects with high functioning autism (HFA) or with Asperger Syndrome (AS) to its potential as a tool to study autism…
Ostholm, T; Ekström, P; Ebbesson, S O
1990-09-01
Neurons displaying FMRFamide(Phe - Met - Arg - Phe - NH2)-like immunoreactivity have recently been implicated in neural plasticity in salmon. We now extend these findings by describing the extent of the FMRF-like immunoreactive (FMRF-IR) system in the brain, retina and olfactory system of sockeye salmon parr using the indirect peroxidase anti-peroxidase technique. FMRF-IR perikarya were found in the periventricular hypothalamus, mesencephalic laminar nucleus, nucleus nervi terminalis and retina (presumed amacrine cells), and along the olfactory nerves. FMRF-IR fibers were distributed throughout the brain with highest densities in the ventral area of the telencephalon, in the medial forebrain bundle, and at the borders between layers III/IV and IV/V in the optic tectum. High densities of immunoreactive fibers were also observed in the area around the torus semicircularis, in the medial hypothalamus, median raphe, ventromedial tegmentum, and central gray. In the retina, immunopositive fibers were localized to the inner plexiform layer, but several fiber elements were also found in the outer plexiform layer. The olfactory system displayed FMRF-IR fibers in the epithelium and along the olfactory nerves. These findings differ from those reported in other species as follows: (i) FMRF-IR cells in the retina have not previously been reported in teleosts; (ii) the presence of FMRF-IR fibers in the outer plexiform layer of the retina is a new finding for any species; (iii) the occurrence of immunopositive cells in the mesencephalic laminar nucleus has to our knowledge not been demonstrated previously.
Ahn, Ji Hyeon; Lee, Tae-Kyeong; Park, Joon Ha; Cho, Jeong Hwi; Kim, In Hye; Lee, Jae Chul; Hong, Seongkweon; Jeon, Yong Hwan; Kang, Il Jun; Lee, Young Joo
2017-01-01
Myelin degeneration is one of the characteristics of aging and degenerative diseases. This study investigated age-related alterations in expression of myelin basic protein (MBP) in the hippocampal subregions (dentate gyrus, CA2/3 and CA1 areas) of gerbils of various ages; young (1 month), adult (6 months) and aged (24 months), using western blot and immunohistochemistry. Western blot results showed tendencies of age-related reductions of MBP levels. MBP immunoreactivity was significantly decreased with age in synaptic sites of trisynaptic loops, perforant paths, mossy fibers, and Schaffer collaterals. In particular, MBP immunoreactive fibers in the dentate molecular cell layer (perforant path) was significantly reduced in adult and aged subjects. In addition, MBP immunoreactive mossy fibers in the dentate polymorphic layer and in the CA3 striatum radiatum was significantly decreased in the aged group. Furthermore, we observed similar age-related alterations in the CA1 stratum radiatum (Schaffer collaterals). However, the density of MBP immunoreactive fibers in the dentate granular cell layer and CA stratum pyramidale was decreased with aging. These findings indicate that expression of MBP is age-dependent and tissue specific according to hippocampal layers. PMID:29046699
Hur, Mi-Sun
2017-08-01
The aim of this study was to clarify the anatomical relationship of the procerus with the nose, especially focusing on the transverse part of the nasalis, the nasal ala, and the levator labii superioris alaeque nasi (LLSAN). The 53 faces from Korean cadavers were examined anatomically. The procerus originated from the superficial and deep layers in all specimens. Some fibers of the lateral part of the superficial layer extended to connect to the transverse part of the nasalis, while other such fibers extended to attach to the skin of the upper nasal ala in all specimens. The superficial and deep layers of the procerus merged and then intermingled with the frontalis. The anatomical relationship between the superficial layer of the procerus and the LLSAN was classified into the following two categories according to their connections. Some medial originating fibers of the LLSAN extended superomedially to blend in the area between the superficial layer of the procerus and the depressor supercilii (13.5%). And, some medial originating fibers of the LLSAN extended superomedially and then constituted the lateral portion of the superficial layer of the procerus (7.7%). This study has yielded crucial data for understanding the anatomical relationships and functions of the procerus in relation to the nose. They will be helpful when designing effective therapies involving botulinum toxin type A, performing various types of rhinoplasty and facial surgeries, and in electromyography analyses.
NASA Astrophysics Data System (ADS)
Seraji, Faramarz E.; Toutian, Golnoosh
This paper presents an analysis of the effect of temperature rise and hydrostatic pressure on microbending loss, refractive index change, and stress components of a double-coated optical fiber by considering coating material parameters such as Young's modulus and the Poisson ratio. It is shown that, when temperature rises, the microbending loss and refractive index changes would decrease with increase of thickness of primary coating layer and will increase after passing through a minima. Increase of thickness of secondary coating layer causes the microbending loss and refractive index changes to decrease. We have shown that the temperature rise affecting the fiber makes the microbending loss and refractive index decrease, linearly. At a particular temperature, the microbending loss takes negative values, due to tensile pressure applied on the fiber. The increase of Young's modulus and the Poisson ratio of primary coating would lower the microbending loss and refractive index change whereas in the secondary coating layer, the condition reverses.
Tensile Properties and Microstructural Characterization of Hi-Nicalon SiC/RBSN Composites
NASA Technical Reports Server (NTRS)
Bhatt, Ramakrishna T.
1998-01-01
The room temperature physical and mechanical properties of silicon carbide fiber-reinforced reaction-bonded silicon nitride matrix composites (SiC/RBSN) were measured, and the composite microstructure was analyzed. The composites consist of nearly 24 vol% of aligned Hi-Nicalon SiC fiber yarns in a approx. 30 vol% porous silicon nitride matrix. The fiber yarns were coated by chemical vapor deposition with a 0.8 mm layer of boron nitride (BN) followed by a 0.2 mm layer of SiC. In the as-fabricated condition, both 1-D and 2-D composites exhibited high strength and graceful failure, and showed improved properties w en compared with unreinforced matrix of comparable density. No indication of reaction between the SiC fiber and BN coating was noticed, but the outer SiC layer reacted locally with the nitridation enhancing additive in the RBSN matrix. A comparison is made between the predicted and measured values of matrix cracking strength.
Tensile Properties and Microstructural Characterization of Hi-Nicalon SiC/RBSN Composites
NASA Technical Reports Server (NTRS)
Bhatt, Ramakrishna T.
1998-01-01
The room temperature physical and mechanical properties of silicon carbide fiber-reinforced reaction-bonded silicon nitride matrix composites (SiC/RBSN) were measured, and the composite microstructure was analyzed. The composites consist of nearly 24 vol% of aligned Hi-Nicalon SiC fiber yarns in a approx. 30 vo1% porous silicon nitride matrix. The fiber yarns were coated by chemical vapor deposition with a 0.8 micron layer of boron nitride (BN) followed by a 0.2 micron layer of SiC. In the as-fabricated condition, both 1-D and 2-D composites exhibited high strength and graceful failure, and showed improved properties when compared with unreinforced matrix of comparable density. No indication of reaction between the SiC fiber and BN coating was noticed, but the outer SiC layer reacted locally with the nitridation enhancing additive in the RBSN matrix. A comparison is made between the predicted and measured values of matrix cracking strength.
Failures Analysis of E-Glass Fibre reinforced pipes in Oil and Gas Industry: A Review
NASA Astrophysics Data System (ADS)
Bobba, Sujith; Leman, Z.; Zainuddin, E. S.; Sapuan, S. M.
2017-07-01
A comprehensive review is conducted on the failures in the field of manufacturing and installation of E-glass fiber reinforced pipes (GFRP). Some of the failures which are mainly encountered after the installation of E-Glass fiber reinforced pipes are the for nation of air bubbles in between the polyester resin layer and the surface film, dispersion of moisture in between the tubing outer and inner layers after installation, heat released in between the layers of E-glass fiber reinforced pipes due to exothermic reaction which in turn results in the formation of cracks on the surface of the pipe. The recent findings and challenges performed in conducting research regarding the deterioration caused in glass fiber reinforced pipes are highlighted and each type of failure that was identified was illustrated with an appropriate high resolution photograph. Performing creep resistance and fatigue analysis are new aspects which are still requited to be analyzed which ave not been stated in the literature which are nominated.
Dr. Omalu Talks Childhood, Concussions, and CTE | Poster
Dr. Bennet Omalu, the famed forensic pathologist who discovered Chronic Traumatic Encephalopathy (CTE), recently spoke at NCI at Frederick about his upbringing as well as the trials he faced while working to educate the NFL about CTE.
Tofler, Ian R
2016-12-01
In the sporting context there is a significant nexus between adult workplace harassment and two other critical, developmentally related areas, that of child and adolescent bullying, and college hazing. These are all addressed, albeit obliquely and perhaps inadvertently, in the Miami Dolphins saga and the subsequent NFL Wells Report of 2013-2014. This is a significant document. It is even a brave, if politically expedient milestone. It evaluates the complex inter-personal and inter- and intra-systemic contributions within a sporting organization. Wells also elucidates a case where there is overlapping damage to individuals and systems as a result of malignant bullying, harassment, and hazing within overlapping systems. Constructive approaches to team building, and other positive alternatives to hazing may be the best place to initiate trust and verify institutional change at all these levels.
Low-Energy Electronic Properties of Clean CaRuO3: Elusive Landau Quasiparticles
NASA Astrophysics Data System (ADS)
Schneider, M.; Geiger, D.; Esser, S.; Pracht, U. S.; Stingl, C.; Tokiwa, Y.; Moshnyaga, V.; Sheikin, I.; Mravlje, J.; Scheffler, M.; Gegenwart, P.
2014-05-01
We have prepared high-quality epitaxial thin films of CaRuO3 with residual resistivity ratios up to 55. Shubnikov-de Haas oscillations in the magnetoresistance and a T2 temperature dependence in the electrical resistivity only below 1.5 K, the coefficient of which is substantially suppressed in large magnetic fields, establish CaRuO3 as a Fermi liquid (FL) with an anomalously low coherence scale. At T >1.5 K non-Fermi-liquid (NFL) behavior is found in the electrical resistivity. The high sample quality allows access to the intrinsic electronic properties via THz spectroscopy. For frequencies below 0.6 THz, the conductivity is Drude-like and can be modeled by FL concepts; for higher frequencies, non-Drude behavior is found, which is inconsistent with FL predictions. This establishes CaRuO3 as a prime example of optical NFL behavior in the THz range.
2006-02-02
From Space to the Super Bowl Members of the STS-129 shuttle mission present a specially minted silver medallion to National Football League officials on Wednesday, Jan. 27, 2010, at the Pro Football Hall of Fame in Canton, Ohio. The coin, which was flown in space during the November flight of Atlantis, will be used for the official coin toss prior to the kickoff of Super Bowl XLIV on Sunday, Feb. 7, 2010. One member of Atlantis' crew, Leland Melvin, was drafted by the NFL's Detroit Lions in 1986. The crew also flew other NFL-related memorabilia, including jerseys and a football inscribed with the name of every member of the Hall of Fame. From left: Astronauts Bobby Satcher, Randy Bresnik, and Charlie Hobaugh; Joe Horrigan, Vice President of Communications/Exhibits for the Pro Football Hall of Fame, Steve Perry, President/Executive Director of the Pro Football Hall of Fame; astronauts Berry Wilmore, Michael Foreman and Leland Melvin. Photo Credit: NASA/Marv Smith
"Deflategate": Time, Temperature, and Moisture Effects on Football Pressure
NASA Astrophysics Data System (ADS)
Blumenthal, Jack; Beljak, Lauren; Macatangay, Dahlia-Marie; Helmuth-Malone, Lilly; McWilliams, Catharina; Raptis, Sofia
2016-09-01
In a recent paper in TPT, DiLisi and Rarick used the National Football League "Deflategate" controversy to introduce to physics students the physics of a bouncing ball. In this paper, we measure and analyze the environmental effects of time, ambient temperature, and moisture on the internal pressure of an NFL football. We focus on the rate of pressure recovery that occurs when a cold football (either wet or dry) is returned to the warm locker room environment where the pressure was initially measured. Both studies stem from the so-called NFL "Deflategate" controversy in which footballs that initially met a minimum internal pressure requirement were rechecked at halftime of the AFC Championship game, and in some cases were reported to have fallen below the minimum pressure requirement. The question is whether the pressure changes were due to environmental exposure or rather to some air being released from the balls, or both.
Let's Weigh in on "Deflategate"
NASA Astrophysics Data System (ADS)
Toepker, Terrence
2016-09-01
The September 2015 paper "Bouncing Back from `Deflategate'" is a very interesting article from a physics viewpoint. However, we doubt that the National Football League (NFL) officials will bounce footballs and measure the coefficient of restitution to verify that the footballs remain properly inflated. The release of a few pounds per square inch (psi) from a football seems trivial until one reads about the millions of dollars in suspensions, fines, and legal fees that were accrued. What is a possible solution that the NFL might actually use? Weigh the ball! When a small amount of air is deliberately released, causing a change in pressure, the change in mass can be calculated and measured. Note that the change in mass can be measured without making another pressure measurement. This is important because the reinsertion of the needle of the gauge to make another measurement causes a small inadvertent loss of pressure and mass from the ball.
Zero-Field Ambient-Pressure Quantum Criticality in the Stoichiometric Non-Fermi Liquid System CeRhBi
NASA Astrophysics Data System (ADS)
Anand, Vivek K.; Adroja, Devashibhai T.; Hillier, Adrian D.; Shigetoh, Keisuke; Takabatake, Toshiro; Park, Je-Geun; McEwen, Keith A.; Pixley, Jedediah H.; Si, Qimiao
2018-06-01
We present the spin dynamics study of a stoichiometric non-Fermi liquid (NFL) system CeRhBi, using low-energy inelastic neutron scattering (INS) and muon spin relaxation (μSR) measurements. It shows evidence for an energy-temperature (E/T) scaling in the INS dynamic response and a time-field (t/Hη) scaling of the μSR asymmetry function indicating a quantum critical behavior in this compound. The E/T scaling reveals a local character of quantum criticality consistent with the power-law divergence of the magnetic susceptibility, logarithmic divergence of the magnetic heat capacity and T-linear resistivity at low temperature. The occurrence of NFL behavior and local criticality over a very wide dynamical range at zero field and ambient pressure without any tuning in this stoichiometric heavy fermion compound is striking, making CeRhBi a model system amenable to in-depth studies for quantum criticality.
Heterogeneous nucleation of a semicrystalline polymer on fiber surfaces
Sangyeob Lee; Todd f. Shupe; Leslie h. Groom; Chung Y. Hse
2006-01-01
Nucleation phenomenon as affected by the surface conditions of six identical wood/non-wood fibers with three levels of fiber treatments were investigated by a combination of complementary techniques. This study was based on results of a preliminary study on the influence of surface characteristics of thermomechanical pulp (TMP) fibers on the transcrystalline layer (TLC...
USDA-ARS?s Scientific Manuscript database
Harnessing natural fibers to produce polymer composites requires processing of fibers from harvest to the dried state, which can then be dispersed in the polymer resin. Bast fibers are found in the bark layer of fibrous plants such as kenaf (Hibiscus cannabinus), jute (Corchorus olitorius), and flax...
USDA-ARS?s Scientific Manuscript database
Bast fibers grow in the bark layer of many plants, and have been used for textiles and cordage for over 6000 years. Bast fibers of kenaf (Hibiscus cannabinus L.) are retted by three methods and a comparative assessment of available reactive groups on the fiber surface and mechanical properties are ...
Kotowski, Jacek; Wollstein, Gadi; Ishikawa, Hiroshi; Schuman, Joel S
2014-01-01
Because glaucomatous damage is irreversible early detection of structural changes in the optic nerve head and retinal nerve fiber layer is imperative for timely diagnosis of glaucoma and monitoring of its progression. Significant improvements in ocular imaging have been made in recent years. Imaging techniques such as optical coherence tomography, scanning laser polarimetry and confocal scanning laser ophthalmoscopy rely on different properties of light to provide objective structural assessment of the optic nerve head, retinal nerve fiber layer and macula. In this review, we discuss the capabilities of these imaging modalities pertinent for diagnosis of glaucoma and detection of progressive glaucomatous damage and provide a review of the current knowledge on the clinical performance of these technologies. Copyright © 2014 Elsevier Inc. All rights reserved.
Fiber-Type Random Laser Based on a Cylindrical Waveguide with a Disordered Cladding Layer.
Zhang, Wei Li; Zheng, Meng Ya; Ma, Rui; Gong, Chao Yang; Yang, Zhao Ji; Peng, Gang Ding; Rao, Yun Jiang
2016-05-25
This letter reports a fiber-type random laser (RL) which is made from a capillary coated with a disordered layer at its internal surface and filled with a gain (laser dye) solution in the core region. This fiber-type optical structure, with the disordered layer providing randomly scattered light into the gain region and the cylindrical waveguide providing confinement of light, assists the formation of random lasing modes and enables a flexible and efficient way of making random lasers. We found that the RL is sensitive to laser dye concentration in the core region and there exists a fine exponential relationship between the lasing intensity and particle concentration in the gain solution. The proposed structure could be a fine platform of realizing random lasing and random lasing based sensing.
Boundary-layer effects in composite laminates: Free-edge stress singularities, part 6
NASA Technical Reports Server (NTRS)
Wanag, S. S.; Choi, I.
1981-01-01
A rigorous mathematical model was obtained for the boundary-layer free-edge stress singularity in angleplied and crossplied fiber composite laminates. The solution was obtained using a method consisting of complex-variable stress function potentials and eigenfunction expansions. The required order of the boundary-layer stress singularity is determined by solving the transcendental characteristic equation obtained from the homogeneous solution of the partial differential equations. Numerical results obtained show that the boundary-layer stress singularity depends only upon material elastic constants and fiber orientation of the adjacent plies. For angleplied and crossplied laminates the order of the singularity is weak in general.
Taniguchi, Midori; Saito, Hirokazu; Mitsubayashi, Kohji
2017-01-01
A rapid and reproducible fiber-optic immunosensor for Escherichia coli O157:H7 (E. coli O157:H7) was described. The biosensor consisted of a flow cell, an optical fiber with a thin Ni layer, and a PC linked fluorometer. First, the samples with E. coli O157:H7 were incubated with magnetic beads coated with anti-E. coli O157:H7 antibodies and anti-E. coli O157:H7 antibodies labeled cyanine 5 (Cy5) to make sandwich complexes. Then the Cy5-(E. coli O157:H7)-beads were injected into a flow cell and pulled to the magnetized Ni layer on the optical fiber set in the flow cell. An excitation light (λ = 635 nm) was used to illuminate the optical fiber, and the Cy5 florescent molecules facing the optical fiber were exposed to an evanescent wave from the optical fiber. The 670 nm fluorescent light was measured using a photodiode. Finally, the magnetic intensity of the Ni layer was removed and the Cy5-E. coli O157:H7-beads were washed out for the next immunoassay. E. coli O157:H7, diluted with phosphate buffer (PB), was measured from 1 × 105 to 1 × 107 cells/mL. The total time required for an assay was less than 15 min (except for the pretreatment process) and repeating immunoassay on one optical fiber was made possible. PMID:28925937
Taniguchi, Midori; Saito, Hirokazu; Mitsubayashi, Kohji
2017-09-19
A rapid and reproducible fiber-optic immunosensor for Escherichia coli O157:H7 ( E. coli O157:H7) was described. The biosensor consisted of a flow cell, an optical fiber with a thin Ni layer, and a PC linked fluorometer. First, the samples with E. coli O157:H7 were incubated with magnetic beads coated with anti- E. coli O157:H7 antibodies and anti- E. coli O157:H7 antibodies labeled cyanine 5 (Cy5) to make sandwich complexes. Then the Cy5-( E. coli O157:H7)-beads were injected into a flow cell and pulled to the magnetized Ni layer on the optical fiber set in the flow cell. An excitation light (λ = 635 nm) was used to illuminate the optical fiber, and the Cy5 florescent molecules facing the optical fiber were exposed to an evanescent wave from the optical fiber. The 670 nm fluorescent light was measured using a photodiode. Finally, the magnetic intensity of the Ni layer was removed and the Cy5- E. coli O157:H7-beads were washed out for the next immunoassay. E. coli O157:H7, diluted with phosphate buffer (PB), was measured from 1 × 10⁵ to 1 × 10⁷ cells/mL. The total time required for an assay was less than 15 min (except for the pretreatment process) and repeating immunoassay on one optical fiber was made possible.
Dual membrane hollow fiber fuel cell and method of operating same
NASA Technical Reports Server (NTRS)
Ingham, J. D.; Lawson, D. D. (Inventor)
1978-01-01
A gaseous fuel cell is described which includes a pair of electrodes formed by open-ended, ion-exchange hollow fibers, each having a layer of metal catalyst deposited on the inner surface and large surface area current collectors such as braided metal mesh in contact with the metal catalyst layer. A fuel cell results when the electrodes are immersed in electrolytes and electrically connected. As hydrogen and oxygen flow through the bore of the fibers, oxidation and reduction reactions develop an electrical potential. Since the hollow fiber configuration provides large electrode area per unit volume and intimate contact between fuel and oxidizer at the interface, and due to the low internal resistance of the electrolyte, high power densities can be obtained.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aleksandrov, V. V.; Volkov, G. S.; Grabovski, E. V.
Results from experimental studies on the implosion of arrays made of kapron fibers coated with different metals (Al, In, Sn, and Bi) are presented. It is shown that the power, total energy, and spectrum of radiation emitted by the imploding array depend on the number of metallized fibers and the mass of the metal layer deposited on them but are independent of the metal characteristics (density, atomic number, etc.). Analysis of frame X-ray images shows that the Z-pinches formed in the implosion of metallized kapron fiber arrays are more stable than those formed in wire arrays and that MHD perturbationsmore » in them develop at a slower growth rate. Due to the lower rate of plasma production from kapron fibers, the plasma formed at the periphery of the array forms a layer that plays the role of a hohlraum wall partially trapping soft X-ray emission of the Z-pinch formed in the implosion of the material of the deposited metal layer. The closure of the anode aperture doubles the energy of radiation emitted in the radial direction.« less
NASA Astrophysics Data System (ADS)
Liu, Kun; Xue, Meng; Jiang, Junfeng; Wang, Tao; Chang, Pengxiang; Liu, Tiegen
2018-03-01
A coupled plasmon waveguide resonance (CPWR) sensor based on metal/dielectric-coated step index multimode optical fiber is proposed. Theoretical simulations using the four-layer Fresnel equations based on a bi-dimensional optical fiber model were implemented on four structures: Ag-ZnO, Au-ZnO, Ag-TiO2 and Au-TiO2. By controlling the thickness of dielectric layer, we managed to manipulate the CPWR resonance wavelengths. When a CPWR resonance dip is in the short wavelength region, it is insensitive to the change of surrounding refractive index (SRI) and can be used as a reference to improve the sensing accuracy of surface plasmon resonance (SPR) mode. With the increase of the thickness of the dielectric layer, the CPWR resonance dips shift to longer wavelength and the corresponding sensitivities increase. When the 1st CPWR resonance wavelength is near 1550 nm and SRI is around 1.333, the sensitivities of four structures reach 1360.61 nm/RIU, 1375.76 nm/RIU, 1048.48 nm/RIU and 1015.15 nm/RIU, respectively. The values are close to that of the conventional SPR optical fiber sensor while the spectral bandwidths of the optical fiber CPWR sensors are narrower.
NASA Astrophysics Data System (ADS)
Flores, Raquel; Janeiro, Ricardo; Dahlem, Marcus; Viegas, Jaime
2015-03-01
We report an optical fiber chemical sensor based on a focused ion beam processed optical fiber. The demonstrated sensor is based on a cavity formed onto a standard 1550 nm single-mode fiber by either chemical etching, focused ion beam milling (FIB) or femtosecond laser ablation, on which side channels are drilled by either ion beam milling or femtosecond laser irradiation. The encapsulation of the cavity is achieved by optimized fusion splicing onto a standard single or multimode fiber. The empty cavity can be used as semi-curved Fabry-Pérot resonator for gas or liquid sensing. Increased reflectivity of the formed cavity mirrors can be achieved with atomic layer deposition (ALD) of alternating metal oxides. For chemical selective optical sensors, we demonstrate the same FIB-formed cavity concept, but filled with different materials, such as polydimethylsiloxane (PDMS), poly(methyl methacrylate) (PMMA) which show selective swelling when immersed in different solvents. Finally, a reducing agent sensor based on a FIB formed cavity partially sealed by fusion splicing and coated with a thin ZnO layer by ALD is presented and the results discussed. Sensor interrogation is achieved with spectral or multi-channel intensity measurements.
Kwon, Young-Nam; Kim, In-Chul
2013-11-01
Hydrothermal stability of a porous nickel-supported silica membrane was successfully improved by deposition of titania multilayers on colloidal silica particles embedded in the porous nickel fiber support. Porous nickel-supported silica membranes were prepared by means of a dipping-freezing-fast drying (DFF) method. The titania layers were deposited on colloidal silica particles by repeating hydrolysis and condensation reactions of titanium isopropoxide on the silica particle surfaces. The deposition of thin titania layers on the nickel-supported silica membrane was verified by various analytical tools. The water flux and the solute rejection of the porous Ni fiber-supported silica membranes did not change after titania layer deposition, indicating that thickness of titania layers deposited on silica surface is enough thin not to affect the membrane performance. Moreover, improvement of the hydrothermal stability in the titania-deposited silica membranes was confirmed by stability tests, indicating that thin titania layers deposited on silica surface played an important role as a diffusion barrier against 90 degrees C water into silica particles.
Anisotropic fibrous thermal insulator of relatively thick cross section and method for making same
Reynolds, Carl D.; Ardary, Zane L.
1979-01-01
The present invention is directed to an anisotropic thermal insulator formed of carbon-bonded organic or inorganic fibers and having a thickness or cross section greater than about 3 centimeters. Delaminations and deleterious internal stresses generated during binder curing and carbonizing operations employed in the fabrication of thick fibrous insulation of thicknesses greater than 3 centimeters are essentially obviated by the method of the present invention. A slurry of fibers, thermosetting resin binder and water is vacuum molded into the selected insulator configuration with the total thickness of the molded slurry being less than about 3 centimeters, the binder is thermoset to join the fibers together at their nexaes, and then the binder is carbonized to form the carbon bond. A second slurry of the fibers, binder and water is then applied over the carbonized body with the vacuum molding, binder thermosetting and carbonizing steps being repeated to form a layered insulator with the binder providing a carbon bond between the layers. The molding, thermosetting and carbonizing steps may be repeated with additional slurries until the thermal insulator is of the desired final thickness. An additional feature of the present invention is provided by incorporating opacifying materials in any of the desired layers so as to provide different insulating properties at various temperatures. Concentration and/or type of additive can be varied from layer-to-layer.
Broadband light-emitting diode
Fritz, Ian J.; Klem, John F.; Hafich, Michael J.
1998-01-01
A broadband light-emitting diode. The broadband light-emitting diode (LED) comprises a plurality of III-V compound semiconductor layers grown on a semiconductor substrate, with the semiconductor layers including a pair of cladding layers sandwiched about a strained-quantum-well active region having a plurality of different energy bandgaps for generating light in a wavelength range of about 1.3-2 .mu.m. In one embodiment of the present invention, the active region may comprise a first-grown quantum-well layer and a last-grown quantum-well layer that are oppositely strained; whereas in another embodiment of the invention, the active region is formed from a short-period superlattice structure (i.e. a pseudo alloy) comprising alternating thin layers of InGaAs and InGaAlAs. The use a short-period superlattice structure for the active region allows different layers within the active region to be simply and accurately grown by repetitively opening and closing one or more shutters in an MBE growth apparatus to repetitively switch between different growth states therein. The broadband LED may be formed as either a surface-emitting LED or as an edge-emitting LED for use in applications such as chemical sensing, fiber optic gyroscopes, wavelength-division-multiplexed (WDM) fiber-optic data links, and WDM fiber-optic sensor networks for automobiles and aircraft.
Broadband light-emitting diode
Fritz, I.J.; Klem, J.F.; Hafich, M.J.
1998-07-14
A broadband light-emitting diode is disclosed. The broadband light-emitting diode (LED) comprises a plurality of III-V compound semiconductor layers grown on a semiconductor substrate, with the semiconductor layers including a pair of cladding layers sandwiched about a strained-quantum-well active region having a plurality of different energy bandgaps for generating light in a wavelength range of about 1.3--2 {micro}m. In one embodiment of the present invention, the active region may comprise a first-grown quantum-well layer and a last-grown quantum-well layer that are oppositely strained; whereas in another embodiment of the invention, the active region is formed from a short-period superlattice structure (i.e. a pseudo alloy) comprising alternating thin layers of InGaAs and InGaAlAs. The use a short-period superlattice structure for the active region allows different layers within the active region to be simply and accurately grown by repetitively opening and closing one or more shutters in an MBE growth apparatus to repetitively switch between different growth states therein. The broadband LED may be formed as either a surface-emitting LED or as an edge-emitting LED for use in applications such as chemical sensing, fiber optic gyroscopes, wavelength-divisionmultiplexed (WDM) fiber-optic data links, and WDM fiber-optic sensor networks for automobiles and aircraft. 10 figs.
Disc herniations in the national football league.
Gray, Benjamin L; Buchowski, Jacob M; Bumpass, David B; Lehman, Ronald A; Mall, Nathan A; Matava, Matthew J
2013-10-15
Retrospective analysis of a prospectively collected database. To determine the overall incidence, location, and type of disc herniations in professional football players to target treatment issues and prevention. Disc herniations represent a common and debilitating injury to the professional athlete. The NFL's (National Football League's) Sports Injury Monitoring System is a surveillance database created to monitor the league for all injuries, including injuries to the cervical, thoracic, and lumbar spine. A retrospective analysis was performed on all disc herniations to the cervical, thoracic, and lumbar spine during a 12-season period (2000-2012) using the NFL's surveillance database. The primary data points included the location of the injury, player position, activity at time of injury, and playing time lost due to injury. During the 12 seasons, 275 disc herniations occurred in the spine. In regard to location, 76% occurred in the lumbar spine and most frequently affected the L5-S1 disc. The offensive linemen were most frequently injured. As expected, blocking was the activity that caused most injuries. Lumbar disc herniations rose in prevalence and had a mean loss of playing time of more than half the season (11 games). Thoracic disc herniations led to the largest mean number of days lost overall, whereas players with cervical disc herniations missed the most practices. Disc herniations represent a significant cause of morbidity in the NFL. Although much attention is placed on spinal cord injuries, preventive measures targeting the cervical, thoracic, and lumbar spine may help to reduce the overall incidence of these debilitating injuries.Level of Evidence: N/A.
Disc herniations in the National Football League.
Gray, Benjamin L; Buchowski, Jacob M; Bumpass, David B; Lehman, Ronald A; Mall, Nathan A; Matava, Matthew J
2013-10-15
Retrospective analysis of a prospectively collected database. To determine the overall incidence, location, and type of disc herniations in professional football players to target treatment issues and prevention. Disc herniations represent a common and debilitating injury to the professional athlete. The NFL's (National Football League's) Sports Injury Monitoring System is a surveillance database created to monitor the league for all injuries, including injuries to the cervical, thoracic, and lumbar spine. A retrospective analysis was performed on all disc herniations to the cervical, thoracic, and lumbar spine during a 12-season period (2000–2012) using the NFL's surveillance database. The primary data points included the location of the injury, player position, activity at time of injury, and playing time lost due to injury. During the 12 seasons, 275 disc herniations occurred in the spine. In regard to location, 76% occurred in the lumbar spine and most frequently affected the L5–S1 disc. The offensive linemen were most frequently injured. As expected, blocking was the activity that caused most injuries. Lumbar disc herniations rose in prevalence and had a mean loss of playing time of more than half the season (11 games). Thoracic disc herniations led to the largest mean number of days lost overall, whereas players with cervical disc herniations missed the most practices. Disc herniations represent a significant cause of morbidity in the NFL. Although much attention is placed on spinal cord injuries, preventive measures targeting the cervical, thoracic, and lumbar spine may help to reduce the overall incidence of these debilitating injuries. N/A
New Methods of Enhancing the Thermal Durability of Silica Optical Fibers.
Wysokiński, Karol; Stańczyk, Tomasz; Gibała, Katarzyna; Tenderenda, Tadeusz; Ziołowicz, Anna; Słowikowski, Mateusz; Broczkowska, Małgorzata; Nasiłowski, Tomasz
2014-10-13
Microstructured optical fibers can be precisely tailored for many different applications, out of which sensing has been found to be particularly interesting. However, placing silica optical fiber sensors in harsh environments results in their quick destruction as a result of the hydrolysis process. In this paper, the degradation mechanism of bare and metal-coated optical fibers at high temperatures under longitudinal strain has been determined by detailed analysis of the thermal behavior of silica and metals, like copper and nickel. We furthermore propose a novel method of enhancing the lifetime of optical fibers by the deposition of electroless nickel-phosphorous alloy in a low-temperature chemical process. The best results were obtained for a coating comprising an inner layer of copper and outer layer of low phosphorous nickel. Lifetime values obtained during the annealing experiments were extrapolated to other temperatures by a dedicated model elaborated by the authors. The estimated copper-coated optical fiber lifetime under cycled longitudinal strain reached 31 h at 450 °C.
New Methods of Enhancing the Thermal Durability of Silica Optical Fibers
Wysokiński, Karol; Stańczyk, Tomasz; Gibała, Katarzyna; Tenderenda, Tadeusz; Ziołowicz, Anna; Słowikowski, Mateusz; Broczkowska, Małgorzata; Nasiłowski, Tomasz
2014-01-01
Microstructured optical fibers can be precisely tailored for many different applications, out of which sensing has been found to be particularly interesting. However, placing silica optical fiber sensors in harsh environments results in their quick destruction as a result of the hydrolysis process. In this paper, the degradation mechanism of bare and metal-coated optical fibers at high temperatures under longitudinal strain has been determined by detailed analysis of the thermal behavior of silica and metals, like copper and nickel. We furthermore propose a novel method of enhancing the lifetime of optical fibers by the deposition of electroless nickel-phosphorous alloy in a low-temperature chemical process. The best results were obtained for a coating comprising an inner layer of copper and outer layer of low phosphorous nickel. Lifetime values obtained during the annealing experiments were extrapolated to other temperatures by a dedicated model elaborated by the authors. The estimated copper-coated optical fiber lifetime under cycled longitudinal strain reached 31 h at 450 °C. PMID:28788224
Optical fiber humidity sensor based on evanescent-wave scattering.
Xu, Lina; Fanguy, Joseph C; Soni, Krunal; Tao, Shiquan
2004-06-01
The phenomenon of evanescent-wave scattering (EWS) is used to design an optical-fiber humidity sensor. Porous solgel silica (PSGS) coated on the surface of a silica optical-fiber core scatters evanescent waves that penetrate the coating layer. Water molecules in the gas phase surrounding the optical fiber can be absorbed into the inner surface of the pores of the porous silica. The absorbed water molecules form a thin layer of liquid water on the inner surface of the porous silica and enhance the EWS. The amount of water absorbed into the PSGS coating is in dynamic equilibrium with the water-vapor pressure in the gas phase. Therefore the humidity in the air can be quantitatively determined with fiber-optic EWS caused by the PSGS coating. The humidity sensor reported here is fast in response, reversible, and has a wide dynamic range. The possible interference caused by EWS to an optical-fiber gas sensor with a reagent-doped PSGS coating as a transducer is also discussed.
Microstructures of BN/SiC coatings on nicalon fibers
NASA Technical Reports Server (NTRS)
Dickerson, R. M.; Singh, M.
1995-01-01
The microstructures of Nicalon silicon carbide (SiC) fibers and layered coatings of boron nitride (BN) followed by chemical vapor infiltrated silicon carbide (CVI-SiC) were characterized using optical and electron microscopy. Two different precursors and reactions were used to produce the BN layers while the deposition of CVI silicon carbide was nearly identical. Coated tows were examined in cross-section to characterize the chemistry and structures of the constituents and the interfaces. One BN precursor yielded three sublayers while the other gave a relatively homogeneous nanocrystalline layer.
Turan, Kadriye Erkan; Sekeroglu, Hande Taylan; Baytaroglu, Ata; Bezci, Figen; Karahan, Sevilay
2018-01-01
To (a) determine the normative values for optical coherence tomography (OCT) parameters such as central macular thickness, retinal nerve fiber layer thickness, and choroidal thickness in healthy children; (b) investigate the relationships of these parameters with axial length, central corneal thickness, refractive errors, and intraocular pressure; and (c) determine interexaminer agreement for choroidal thickness measurements. In this cross-sectional study, 120 healthy children aged 8-15 years underwent detailed ophthalmological examination and OCT measurements. Choroidal thickness was measured at three separate locations by two independent examiners. The mean global retinal nerve fiber layer thickness was 98.75 ± 9.45 μm (79.0-121.0). The mean central macular thickness was 232.29 ± 29.37 μm (190.0-376.0). The mean subfoveal choroidal thickness obtained by examiner 1 was 344.38 ± 68.83 μm and that obtained by examiner 2 was 344.04 ± 68.92 μm. Interexaminer agreement was between 99.6%-99.8% for choroidal thickness at three separate locations. Central macular thickness increased with axial length (r=0.245, p=0.007). Choroidal thickness increased with age (r=0.291, p=0.001) and decreased with axial length (r=-0.191, p=0.037). Global retinal nerve fiber layer thickness decreased with axial length (r=-0.247, p=0.007) and increased with central corneal thickness (r=0.208, p=0.022). Global retinal nerve fiber layer thickness positively correlated with choroidal thickness (r=0.354, p<0.001). Global retinal nerve fiber layer thickness (r=0.223, p=0.014) and choroidal thickness (r=0.272, p=0.003) increased with the spherical equivalent (D). Optical coherence tomography parameters showed a wide range of variability in children. Retinal nerve fiber layer thickness, central macular thickness, and choroidal thickness were found to be either inter-related or correlated with age, central corneal thickness, axial length, and refractive errors. Furthermore, manual measurements of choroidal thickness showed high interexaminer agreement. Because normative values for optical coherence tomography parameters differed in children, the measurements should be interpreted according to an age-appropriate database.
NASA Astrophysics Data System (ADS)
Lesnikova, Yu I.; Smetannikov, O. Yu; Trufanov, A. N.; Trufanov, N. A.
2017-02-01
The impact of contact transverse forces on the birefringence of the single-mode polarization-maintaining Panda-type fiber is numerically modeled. It has been established that with a single-row power winding on a cylindrical mandrel, the fiber tension at winding is the principal factor that influences birefringence. When coiling the fiber based on the local defect microbending, the birefringence at the microbending point differs from that of the free fiber by 1.3%.
NASA Astrophysics Data System (ADS)
DeGostin, Matthew B.; Peracchio, Aldo A.; Myles, Timothy D.; Cassenti, Brice N.; Chiu, Wilson K. S.
2016-03-01
In this paper, a Fiber Network (FN) ion transport model is developed to simulate the three-dimensional fibrous microstructural morphology that results from the electrospinning membrane fabrication process. This model is able to approximate fiber layering within a membrane as well as membrane swelling due to water uptake. The discrete random fiber networks representing membranes are converted to resistor networks and solved for current flow and ionic conductivity. Model predictions are validated by comparison with experimental conductivity data from electrospun anion exchange membranes (AEM) and proton exchange membranes (PEM) for fuel cells as well as existing theories. The model is capable of predicting in-plane and thru-plane conductivity and takes into account detailed membrane characteristics, such as volume fraction, fiber diameter, fiber conductivity, and membrane layering, and as such may be used as a tool for advanced electrode design.
NASA Astrophysics Data System (ADS)
Zhang, Le; Han, Enlin; Wu, Yulun; Wang, Xiaodong; Wu, Dezhen
2018-06-01
The surface decoration of short-cut polyimide (PI) fibers with multi-walled carbon nanotubes (MWCNTs) was performed by fabricating a polydopamine (PDA) coating layer on the fiber surface and then immobilizing MWCNTs onto the coating layer via covalent bonding. This successful surface decoration was confirmed by scanning electron microscopy, X-ray photoelectron spectroscopy, Fourier-transform infrared microscopy and static water contact angle. The application of the surface-decorated PI fibers as reinforcing fibers for reinforcement of polycarbonate (PC)/acrylonitrile-butadiene-styrene copolymer (ABS) alloy was investigated, which indicated that the MWCNTs-decorated PI fibers not only could effectively reinforce the PC/ABS alloy but also generated a significant lightweighting effect on the resulting composites. The maximum mechanical properties were achieved for the composites at a fiber content of 20 wt.% and a fiber length of 3 mm. This significant reinforcement effect is attributed to the enhancement of interaction bonding strength between the fibers and matrix as a result of the surface decoration of PI fibers with MWCNTs. The morphological investigation suggested that fiber rupture was the major energy dissipation mechanism in the tensile and impact failures, whereas fiber debonding and pullout were partly involved in the fracture energy dissipation. In addition, the presence of surface-decorated PI fibers slightly enhanced the thermal stability and load bearing capability of composites. This work can provide a type of high-performance lightweight composite material for automobile and aviation industries.
Concussion in professional football: helmet testing to assess impact performance--part 11.
Pellman, Elliot J; Viano, David C; Withnall, Chris; Shewchenko, Nick; Bir, Cynthia A; Halstead, P David
2006-01-01
National Football League (NFL) concussions occur at an impact velocity of 9.3 +/- 1.9 m/s (20.8 +/- 4.2 mph) oblique on the facemask, side, and back of the helmet. There is a need for new testing to evaluate helmet performance for impacts causing concussion. This study provides background on new testing methods that form a basis for supplemental National Operating Committee on Standards for Athletic Equipment (NOCSAE) helmet standards. First, pendulum impacts were used to simulate 7.4 and 9.3 m/s impacts causing concussion in NFL players. An instrumented Hybrid III head was helmeted and supported on the neck, which was fixed to a sliding table for frontal and lateral impacts. Second, a linear pneumatic impactor was used to evaluate helmets at 9.3 m/s and an elite impact condition at 11.2 m/s. The upper torso of the Hybrid III dummy was used. It allowed interactions with shoulder pads and other equipment. The severity of the head responses was measured by a severity index, translational and rotational acceleration, and other biomechanical responses. High-speed videos of the helmet kinematics were also recorded. The tests were evaluated for their similarity to conditions causing NFL concussions. Finally, a new linear impactor was developed for use by NOCSAE. The pendulum test closely simulated the conditions causing concussion in NFL players. Newer helmet designs and padding reduced the risk of concussion in 7.4 and 9.3 m/s impacts oblique on the facemask and lateral on the helmet shell. The linear impactor provided a broader speed range for helmet testing and more interactions with safety equipment. NOCSAE has prepared a draft supplemental standard for the 7.4 and 9.3 m/s impacts using a newly designed pneumatic impactor. No helmet designs currently address the elite impact condition at 11.2 m/s, as padding bottoms out and head responses dramatically increase. The proposed NOCSAE standard is the first to address helmet performance in reducing concussion risks in football. Helmet performance has improved with thicker padding and fuller coverage by the shell. However, there remains a challenge for innovative designs that reduce risks in the 11.2 m/s elite impact condition.
Adler Award Lecture: Fermi-Liquid Instabilities in Strongly Correlated f-Electron Materials.^*
NASA Astrophysics Data System (ADS)
Maple, M. Brian
1996-03-01
Strongly correlated f-electron materials are replete with novel electronic states and phenomena ; e. g. , a metallic ``heavy electron'' state with a quasiparticle effective mass of several hundred times the free electron mass, anisotropic superconductivity with an energy gap that may vanish at points or along lines on the Fermi surface, the coexistence of superconductivity and antiferromagnetism over different parts of the Fermi surface, multiple superconducting phases in the hyperspace of chemical composition, temperature, pressure, and magnetic field, and an insulating phase, in so-called ``hybridization gap semiconductors'' or ``Kondo insulators'', with a small energy gap of only a few meV. During the last several years, a new low temperature non-Fermi-liquid (NFL) state has been observed in a new class of strongly correlated f-electron materials which currently consists of certain Ce and U intermetallics into which a nonmagnetic element has been substituted.(M. B. Maple et al./) , J. Low Temp. Phys. 99 , 223 (1995). The Ce and U ions have partially-filled f-electron shells and carry magnetic dipole or electric quadrupole moments which interact with the spins and charges of the conduction electrons and can participate in magnetic or quadrupolar ordering at low temperatures. The physical properties of these materials exhibit weak power law or logarithmic divergences in temperature and suggest the existence of a critical point at T=0 K. Possible origins of the 0 K critical point include an unconventional moment compensation process, such as a multichannel Kondo effect, and fluctuations of the order parameter in the vicinity of a 0 K second order phase transition. In some systems, such as Y_1-xU_xPd 3 and U_1-xTh_xPd _2Al 3 , the NFL characteristics appear to be single ion effects since they persist to low concentrations of f-moments, whereas in other systems, such as CeCu _5.9Au _0.1 , the NFL behavior seems to be associated with interactions between the f-moments. In this talk, we review recent experimental efforts to determine the characteristics, establish the systematics, and develop an understanding of NFL behavior in f-electron materials. \\vspace*3mm ^* Research supported by the U.S. National Science Foundation under Grant No. DMR-94-08835 and the U.S. Department of Energy under Grant No. DE-FG03-86ER45230.
Jespersen, Sofie; Pedersen, Karin Kæreby; Anesten, Birgitta; Zetterberg, Henrik; Fuchs, Dietmar; Gisslén, Magnus; Hagberg, Lars; Trøseid, Marius; Nielsen, Susanne Dam
2016-04-21
HIV-associated cognitive impairment has declined since the introduction of combination antiretroviral treatment (cART). However, milder forms of cognitive impairment persist. Inflammation in the cerebrospinal fluid (CSF) has been associated with cognitive impairment, and CSF neurofilament light chain protein (NFL) and CSF neopterin concentrations are increased in those patients. Microbial translocation in HIV infection has been suggested to contribute to chronic inflammation, and lipopolysaccharide (LPS) and soluble CD14 (sCD14) are markers of microbial translocation and the resulting monocyte activation, respectively. We hypothesised that microbial translocation contributes to inflammation and axonal damage in the central nervous system (CNS) in untreated HIV infection. We analyzed paired samples of plasma and CSF from 62 HIV-infected, untreated patients without cognitive symptoms from Sahlgrenska University Hospital, Gothenburg, Sweden. Measurements of neopterin and NFL in CSF were available from previous studies. Plasma and CSF sCD14 was measured using ELISA (R&D, Minneapolis, MN), and plasma and CSF LPS was measured using LAL colorimetric assay (Lonza, Walkersville, MD, USA). Univariate and multivariate regression analyses were performed. LPS in plasma was associated with plasma sCD14 (r = 0.31, P = 0.015), and plasma sCD14 was associated with CSF sCD14 (r = 0.32, P = 0.012). Furthermore, CSF sCD14 was associated with NFL (r = 0.32, P = 0.031) and neopterin (r = 0.32, P = 0.012) in CSF. LPS was not detectable in CSF. In a multivariate regression model CSF sCD14 remained associated with NFL and neopterin after adjusting for age, CD4+ cell count, and HIV RNA in CSF. In a group of untreated, HIV-infected patients LPS was associated with sCD14 in plasma, and plasma sCD14 was associated CSF sCD14. CSF sCD14 were associated with markers of CNS inflammation and axonal damage. This suggest that microbial translocation might be a driver of systemic and CNS inflammation. However, LPS was not detectable in the CSF, and since sCD14 is a marker of monocyte activation sCD14 may be increased due to other causes than microbial translocation. Further studies regarding cognitive impairment and biomarkers are warranted to fully understand causality.
Meredith, Dennis S; Jones, Kristofer J; Barnes, Ronnie; Rodeo, Scott A; Cammisa, Frank P; Warren, Russell F
2013-09-01
Limited evidence exists to guide clinical decision making regarding cervical disc herniations in professional athletes playing for the National Football League (NFL) in the United States. To describe the presentation and treatment outcomes of cervical disc herniations in NFL athletes with a focus on safety and return to sport. Case series; Level of evidence, 4. The records of a single NFL team and its consulting physicians were reviewed from 2000 to 2011. Only athletes with magnetic resonance imaging (MRI)-proven disc herniation concordant with the reported symptoms were included. A total of 16 athletes met inclusion criteria. Linemen, linebackers, and defensive backs were the most represented positions (13/16 athletes; 81%). The most common presentation was radiculopathy after a single traumatic event (9/16 athletes; 56%). Three players had transient paresis. Three players underwent one-level anterior cervical discectomy and fusion. These 3 players had failed nonoperative therapy and had evidence of spinal cord compression with signal change on MRI, but only 1 returned to sport. Three players received epidural steroid injections, which provided transient symptomatic relief. Five players were treated nonoperatively and did not return to sport. Two of these 5 athletes had cord compression with signal change and retired rather than undergo surgery. The other 3 were cleared but were released by the team. Eight players were treated nonoperatively and returned to sport. Three of these 8 athletes had evidence of disc material abutting the cord without cord signal change but had a normal examination finding and returned to sport after resolution of their symptoms and repeat MRI that demonstrated no cord compression. Five of the 8 players had evidence of root compression and were treated symptomatically. There were no subsequent traumatic spinal cord injuries at a minimum of 1-year follow-up. Data regarding the treatment of this unique population are limited but suggest that NFL athletes can safely return to sport after the treatment of cervical disc herniations. In the treatment algorithm for this study, cord compression with signal change in the cord on MRI was a consistent operative indication. Discs abutting the cord can be treated nonoperatively but do not allow for return to sport until symptoms have improved and repeat imaging demonstrates no cord compression. Isolated nerve root compression has a more favorable prognosis. It can be treated symptomatically and return to sport allowed when symptoms permit.
Spine and axial skeleton injuries in the National Football League.
Mall, Nathan A; Buchowski, Jacob; Zebala, Lukas; Brophy, Robert H; Wright, Rick W; Matava, Matthew J
2012-08-01
The majority of previous literature focusing on spinal injuries in American football players is centered around catastrophic injuries; however, this may underestimate the true number of these injuries in this athletic cohort. The goals of this study were to (1) report the incidence of spinal and axial skeleton injuries, both minor and severe, in the National Football League (NFL) over an 11-year period; (2) determine the incidence of spinal injury by injury type, anatomic location, player position, mechanism of injury, and type of exposure (practice vs game); and (3) determine the average number of practices and days missed because of injury for each injury type. Descriptive epidemiological study. All documented injuries to the cervical, thoracic, and lumbar spine; pelvis; ribs; and spinal cord were retrospectively analyzed using the NFL's injury surveillance database over a period of 11 seasons from 2000 through 2010. The data were analyzed by the number of injuries per athlete-exposure, the anatomic location and type of injury, player position, mechanism of injury, and number of days missed per injury. A total of 2208 injuries occurred to the spine or axial skeleton over an 11-season interval in the NFL, with a mean loss of 25.7 days per injury. This represented 7% of the total injuries during this time period. Of these 2208 injuries, 987 (44.7%) occurred in the cervical spine. Time missed from play was greatest for thoracic disc herniations (189 days/injury). Other injuries that had a mean time missed greater than 30 days included (in descending order) cervical fracture (120 days/injury), cervical disc degeneration/herniation (85 days/injury), spinal cord injury (77 days/injury), lumbar disc degeneration/herniation (52 days/injury), thoracic fracture (34 days/injury), and thoracic nerve injury (30 days/injury). Offensive linemen were the most likely to suffer a spinal injury, followed by defensive backs, defensive linemen, and linebackers. Blocking and tackling were the 2 most frequent injury mechanisms reported. Spinal and axial skeleton injuries occur frequently in the NFL and can result in significant time missed from practices and games. Tackling and blocking result in the greatest number of injuries, and players performing these activities are the most likely to sustain a spinal injury. The results of this study may be used as an impetus to formulate strategies to prevent spinal injuries in American football players.
Kerr, Zachary Y; Register-Mihalik, Johna K; Kay, Melissa C; DeFreese, J D; Marshall, Stephen W; Guskiewicz, Kevin M
2018-01-01
Despite a focus on the incidence and effects of concussion, nondisclosure of sports-related concussions among retired players from the National Football League (NFL) has yet to be examined. Examine the prevalence of and factors associated with nondisclosure of sports-related concussions in former NFL athletes. Cross-sectional study; Level of evidence, 3. A sample of 829 former NFL players completed a general health survey. This historical cohort included players who had played before World War II to 2001. Respondents retrospectively recalled sports-related concussions that they sustained during their professional careers and whether at least one of these sports-related concussions was not reported to medical staff. We computed the prevalence of nondisclosure among those recalling sport-related concussions during their professional careers. Multivariable binomial regression estimated adjusted prevalence ratios (PR) with 95% confidence intervals (CIs) controlling for race/ethnicity, number of years played, primary position played, professional career concussion history, and playing era. Playing era was categorized by whether the majority of a player's career was before or after a 1976 rule change to limit contact ("spearing"). Overall, 417 (50.3%) respondents reported they had sustained a concussion and did not inform medical staff at least once during their professional playing career. Nonwhite respondents had a higher prevalence of nondisclosure than white/non-Hispanic respondents (adjusted PR = 1.19; 95% CI, 1.02-1.38). An interaction between professional career concussion history and playing era was also found ( P = .08). Compared with those in the pre-spearing rule change group with 1 or 2 concussions, all other groups had larger prevalences of nondisclosure (increases ranging from 41% to 153% in multivariable models). Across concussion strata, nondisclosure prevalence was generally higher in the post-spearing rule change group than the pre-spearing rule change group, with the largest differences found among those with 1 or 2 concussions or those with 3 or 4 concussions. A large proportion of former NFL players in this historical cohort reported at least one instance of not disclosing sports-related concussions to medical staff. Future research on concussion nondisclosure needs to identify mechanisms to improve football players' intentions to disclose concussion-related symptoms to health care providers and to equip health care providers with more effective strategies for timely identification of concussion.
Minami, Akira; Sakurada, Naomi; Fuke, Sayuri; Kikuchi, Kazuya; Nagano, Tetsuo; Oku, Naoto; Takeda, Atsushi
2006-01-01
Zinc exists in high densities in the giant boutons of hippocampal mossy fibers. On the basis of the evidence that zinc decreases extracellular glutamate concentration in the hippocampus, the presynaptic action of zinc released from mossy fibers during high-frequency (tetanic) stimulation was examined using hippocampal slices. The increase in zinc-specific fluorescent signals was observed in both extracellular and intracellular compartments in the mossy fiber terminals during the delivery of tetanic stimuli (100 Hz, 1 sec) to the dentate granule cell layer, suggesting that zinc released from mossy fibers is immediately retaken up by mossy fibers. When mossy fiber terminals were preferentially double-stained with zinc and calcium indicators and tetanic stimuli (100 Hz, 1 sec) were delivered to the dentate granule cell layer, the increase in calcium orange signal during the stimulation was enhanced in mossy fiber terminals by addition of CaEDTA, a membrane-impermeable zinc chelator, and was suppressed by addition of zinc. The decrease in FM4-64 signal (vesicular exocytosis) during tetanic stimulation (10 Hz, 180 sec), which induced mossy fiber long-term potentiation, was also enhanced in mossy fiber terminals by addition of CaEDTA and was suppressed by addition of zinc. The present study demonstrates that zinc released from mossy fibers may be a negative-feedback factor against presynaptic activity during tetanic stimulation.
Martins Júnior, Walter; De Rossi, Andiara; Samih Georges Abi Rached, Ricardo; Rossi, Marcos Antonio
2011-01-01
In the present investigation, a scanning electron microscopy analysis was performed to evaluate the effects of the topical application of ethylenediaminetetraacetic acid (EDTA) gel associated with Cetavlon (EDTAC) in removing the smear layer and exposing collagen fibers following root surface instrumentation. Twenty-eight teeth from adult humans, single rooted and scheduled for extraction due to periodontal reasons, were selected. Each tooth was submitted to manual (scaling and root planing) instrumentation alone or combined with ultrasonic instruments, with or without etching using a 24% EDTAC gel. Following extraction, specimens were processed and examined under a scanning electron microscope. A comparative morphological semi-quantitative analysis was performed; the intensity of the smear layer and the decalcification of cementum and dentinal surfaces were graded in 12 sets using an arbitrary scale ranging from 1 (area covered by a smear layer) to 4 (no smear layer). Root debridement with hand instruments alone or combined with ultrasonic instruments resulted in a similar smear layer covering the root surfaces. The smear layer was successfully removed from the surfaces treated with EDTAC, which exhibited numerous exposed dentinal tubules and collagen fibers. This study supports the hypothesis that manual instrumentation alone or instrumentation combined with ultrasonic instrumentation is unable to remove the smear layer, whereas the subsequent topical application of EDTAC gel effectively removes the smear layer, uncovers dentinal openings and exposes collagen fibers.
Optical fiber LPG biosensor integrated microfluidic chip for ultrasensitive glucose detection
Yin, Ming-jie; Huang, Bobo; Gao, Shaorui; Zhang, A. Ping; Ye, Xuesong
2016-01-01
An optical fiber sensor integrated microfluidic chip is presented for ultrasensitive detection of glucose. A long-period grating (LPG) inscribed in a small-diameter single-mode fiber (SDSMF) is employed as an optical refractive-index (RI) sensor. With the layer-by-layer (LbL) self-assembly technique, poly (ethylenimine) (PEI) and poly (acrylic acid) (PAA) multilayer film is deposited on the SDSMF-LPG sensor for both supporting and signal enhancement, and then a glucose oxidase (GOD) layer is immobilized on the outer layer for glucose sensing. A microfluidic chip for glucose detection is fabricated after embedding the SDSMF-LPG biosensor into the microchannel of the chip. Experimental results reveal that the SDSMF-LPG biosensor based on such a hybrid sensing film can ultrasensitively detect glucose concentration as low as 1 nM. After integration into the microfluidic chip, the detection range of the sensor is extended from 2 µM to 10 µM, and the response time is remarkablely shortened from 6 minutes to 70 seconds. PMID:27231643
Improved ion exchange membrane
NASA Technical Reports Server (NTRS)
Rembaum, A.; Yen, S. P. S.; Klein, E.
1975-01-01
Membrane, made from commercially-available hollow fibers, is used in reverse osmosis, or dialysis. Fiber has skin layers which pass only small molecules. Macromolecules cannot penetrate skin. Fibers can also be used to remove other undesirable anions, such as phosphate, sulfate, carbonate, and uranium in form of uranium-sulfate complex.
Design and manufacture of a lightweight piezo-composite curved actuator
NASA Astrophysics Data System (ADS)
Yoon, K. Joon; Shin, Seokjun; Park, Hoon C.; Goo, Nam Seo
2002-02-01
In this paper we are concerned with the design, manufacture and performance test of a lightweight piezo-composite curved actuator (called LIPCA) using a top carbon fiber composite layer with near-zero coefficient of thermal expansion (CTE), a middle PZT ceramic wafer, and a bottom glass/epoxy layer with a high CTE. The main point of the design for LIPCA is to replace the heavy metal layers of THUNDERTM by lightweight fiber reinforced plastic layers without losing the capabilities for generating high force and large displacement. It is possible to save up to about 40% of the weight if we replace the metallic backing material by the light fiber composite layer. We can also have design flexibility by selecting the fiber direction and the size of prepreg layers. In addition to the lightweight advantage and design flexibility, the proposed device can be manufactured without adhesive layers when we use an epoxy resin prepreg system. Glass/epoxy prepregs, a ceramic wafer with electrode surfaces, and a carbon prepreg were simply stacked and cured at an elevated temperature (177 °C) after following an autoclave bagging process. We found that the manufactured composite laminate device had a sufficient curvature after being detached from a flat mould. An analysis method using the classical lamination theory is presented to predict the curvature of LIPCA after curing at an elevated temperature. The predicted curvatures are in quite good agreement with the experimental values. In order to investigate the merits of LIPCA, performance tests of both LIPCA and THUNDERTM have been conducted under the same boundary conditions. From the experimental actuation tests, it was observed that the developed actuator could generate larger actuation displacement than THUNDERTM.
Deformation behavior of FRP-metal composites locally reinforced with carbon fibers
NASA Astrophysics Data System (ADS)
Scholze, M.; Kolonko, A.; Lindner, T.; Lampke, T.; Helbig, F.
2016-03-01
This study investigates variations of hybrid laminates, consisting of one aluminum sheet and a unidirectional glass fiber (GF) reinforced polyamide 6 (PA6) basic structure with partial carbon fiber (CF) reinforcement. To create these heterogeneous FRP laminates, it is necessary to design and produce semi-finished textile-based products. Moreover, a warp knitting machine in conjunction with a warp thread offset unit was used to generate bionic inspired compounds. By the variation of stacking prior to the consolidation process of the hybrid laminate, an oriented CF reinforcement at the top and middle layer of the FRP is realized. In both cases the GFRP layer prevents contact between the aluminum and carbon fibers. In so doing, the high strength of carbon fibers can be transferred to the hybrid laminate in load directions with an active prevention of contact corrosion. The interface strength between thermoplastic and metal component was improved by a thermal spray coating on the aluminum sheet. Because of the high surface roughness and porosity, mechanical interlock was used to provide high interface strength without bonding agents between both components. The resulting mechanical properties of the hybrid laminates are evaluated by three point bending tests in different load directions. The effect of local fiber orientation and layer positioning on failure and deformation mechanism is additionally investigated by digital image correlation (DIC).
Shi, Zhigang; Zhang, Yueping; Meek, Johannes; Qiao, Jiantian; Han, Victor Z.
2018-01-01
The distal valvula cerebelli is the most prominent part of the mormyrid cerebellum. It is organized in ridges of ganglionic and molecular layers, oriented perpendicular to the granular layer. We have combined intracellular recording and labelling techniques to reveal the cellular morphology of the valvula ridges in slice preparations. We have also locally ejected tracer in slices and in intact animals to examine its input fibers. The palisade dendrites and fine axon arbors of Purkinje cells are oriented in the horizontal plane of the ridge. The dendrites of basal efferent cells and large central cells are confined to the molecular layer, but are not planer. Basal efferent cell axons are thick, and join the basal bundle leaving the cerebellum. Large central cell axons are also thick, and traverse long distances in the transverse plane, with local collaterals in the ganglionic layer. Vertical cells and small central cells also have thick axons with local collaterals. The dendrites of Golgi cells are confined to the molecular layer, but their axon arbors are either confined to the granular layer or proliferate in both the granular and ganglionic layers. Dendrites of deep stellate cells are distributed in the molecular layer, with fine axon arbors in the ganglionic layer. Granule cell axons enter the molecular layer as parallel fibers without bifurcating. Climbing fibers run in the horizontal plane and terminate exclusively in the ganglionic layer. Our results confirm and extend previous studies and suggest a new concept of the circuitry of the mormyrid valvula cerebelli. PMID:18537139
Foveomacular schisis in juvenile X-linked retinoschisis: an optical coherence tomography study.
Yu, Jia; Ni, Yingqin; Keane, Pearse A; Jiang, Chunhui; Wang, Wenji; Xu, Gezhi
2010-06-01
To explore the structural features of juvenile X-linked retinoschisis using spectral-domain optical coherence tomography (OCT). Retrospective, observational cross-sectional study. Eighteen male patients (34 eyes) who were diagnosed with juvenile X-linked retinoschisis at the Eye & ENT Hospital of Fudan University over an 18-month period were included. Their OCT images, which were obtained using spectral-domain OCT (Cirrus HD-OCT; Carl Zeiss Meditec), were analyzed. The anatomic location of the schisis cavity in juvenile X-linked retinoschisis was characterized by direct inspection of OCT images. On OCT, the schisis cavity was visible at the fovea in all 34 eyes, and it was associated with increased retinal thickness. Schisis was present at the retinal nerve fiber layer in 4 eyes, at the inner nuclear layer in 29 eyes, and at the outer nuclear layer/outer plexiform layer in 22 eyes. In most cases, widespread foveomacular schisis was detected using OCT; however, in 9 eyes (6 patients), the schisis was confined to the fovea. Schisis of the inner nuclear layer and outer nuclear layer/outer plexiform layer almost always involved the foveal center, but retinal nerve fiber layer schisis was seen only in the parafoveal area. Despite conventional wisdom, in patients with X-linked retinoschisis, the schisis cavity can occur in a number of different layers of the neurosensory retina (retinal nerve fiber layer, inner nuclear layer, and outer nuclear layer/outer plexiform layer). In addition, different forms of schisis may affect different locations in the macula (foveal vs parafoveal), and, in most eyes, the schisis involves the entire foveomacular region. Copyright 2010 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Shang, Ya-na; Ni, Qing-yan; Ding, Ding; Chen, Na; Wang, Ting-yun
2015-01-01
In this paper, a partial discharge detection system is proposed using an optical fiber Fabry-Perot (FP) interferometric sensor, which is fabricated by photolithography. SU-8 photoresist is employed due to its low Young's modulus and potentially high sensitivity for ultrasound detection. The FP cavity is formed by coating the fiber end face with two layers of SU-8 so that the cavity can be controlled by the thickness of the middle layer of SU-8. Static pressure measurement experiments are done to estimate the sensing performance. The results show that the SU-8 based sensor has a sensitivity of 154.8 nm/kPa, which is much higher than that of silica based sensor under the same condition. Moreover, the sensor is demonstrated successfully to detect ultrasound from electrode discharge.
Evaluation of Retinal Changes in Progressive Supranuclear Palsy and Parkinson Disease.
Gulmez Sevim, Duygu; Unlu, Metin; Gultekin, Murat; Karaca, Cagatay; Mirza, Meral; Mirza, Galip Ertugrul
2018-06-01
Differentiating Parkinson disease (PD) from progressive supranuclear palsy (PSP) can be challenging early in the clinical course. The aim of our study was to see if specific retinal changes could serve as a distinguishing feature. We used spectral domain optical coherence tomography (SD-OCT) with automatic segmentation to measure peripapillary nerve fiber layer thickness and the thickness and volume of retinal layers at the macula. Thicknesses of superior peripapillary retinal nerve fiber layer (pRNFL), macular ganglion cell layer, inner plexiform layer, inner nuclear layer, and macular volume were more affected in PSP compared with PD (P < 0.05). Thicker inferotemporal pRNFL and lower macular volume were detected in levodopa users compared with nonusers in patients with PD. PD and PSP are associated with distinct changes in retinal morphology, which can be assessed with SD-OCT.
Artery buckling analysis using a two-layered wall model with collagen dispersion.
Mottahedi, Mohammad; Han, Hai-Chao
2016-07-01
Artery buckling has been proposed as a possible cause for artery tortuosity associated with various vascular diseases. Since microstructure of arterial wall changes with aging and diseases, it is essential to establish the relationship between microscopic wall structure and artery buckling behavior. The objective of this study was to developed arterial buckling equations to incorporate the two-layered wall structure with dispersed collagen fiber distribution. Seven porcine carotid arteries were tested for buckling to determine their critical buckling pressures at different axial stretch ratios. The mechanical properties of these intact arteries and their intima-media layer were determined via pressurized inflation test. Collagen alignment was measured from histological sections and modeled by a modified von-Mises distribution. Buckling equations were developed accordingly using microstructure-motivated strain energy function. Our results demonstrated that collagen fibers disperse around two mean orientations symmetrically to the circumferential direction (39.02°±3.04°) in the adventitia layer; while aligning closely in the circumferential direction (2.06°±3.88°) in the media layer. The microstructure based two-layered model with collagen fiber dispersion described the buckling behavior of arteries well with the model predicted critical pressures match well with the experimental measurement. Parametric studies showed that with increasing fiber dispersion parameter, the predicted critical buckling pressure increases. These results validate the microstructure-based model equations for artery buckling and set a base for further studies to predict the stability of arteries due to microstructural changes associated with vascular diseases and aging. Copyright © 2016 Elsevier Ltd. All rights reserved.
Tabassum, Rana; Gupta, Banshi D
2015-02-10
We analyze surface plasmon resonance-based fiber-optic sensor for sensing of small concentrations of hydrogen gas in the visible region of the electromagnetic spectrum. One of the two probes considered has multilayers of zinc oxide (ZnO) and palladium (Pd) while the other has layer of their composite over a silver coated unclad core of the fiber. The analysis is carried out for different volume fractions of palladium nanoparticles dispersed in zinc oxide host material in the nanocomposite layer. For the analysis, a Maxwell-Garnett model is adopted for calculating the dielectric function of a ZnO:Pd nanocomposite having nanoparticles of dimensions smaller than the wavelength of radiation used. The effects of the volume fraction of the nanoparticles in the nanocomposite and the thickness of the nanocomposite layer on the figure of merit of the sensor have been studied. The film thickness of the layer and the volume fraction of nanoparticles in the ZnO:Pd nanocomposite layer have been optimized to achieve the maximum value of the figure of merit of the sensor. It has been found that the figure of merit of the sensing probe coated with ZnO:Pd nanocomposite is more than twofold of the sensing probe coated with multilayers of Pd and ZnO over a silver coated unclad core of the fiber; hence, the sensor with a nanocomposite layer works better than that with multilayers of zinc oxide and palladium. The sensor can be used for online monitoring and remote sensing of hydrogen gas.
Investigation on harsh environmental effects on polymer fiber optic link for aircraft systems
NASA Astrophysics Data System (ADS)
Cherian, Sandy; Spangenberg, Holger; Caspary, Reinhard
2014-09-01
To integrate polymer fiber based physical layer for avionic data network, it is necessary to understand the impact and cause of harsh environments on polymer fiber optic components and harnesses. Since temperature and vibration have a significant influence, we investigate the variation in optical transmittance and monitor the endurance of different types of connector and splices under extreme aircraft environments. Presently, there is no specific aerospace standard for the application of polymer fiber and components in the aircraft data network. Therefore, in the paper we examine and define the thermal cycling and vibration measurement set up and methods to evaluate the performance capability of the physical layer of the data network. Some of the interesting results observed during the measurements are also presented.
Optimal Sensor Fusion for Structural Health Monitoring of Aircraft Composite Components
2011-09-01
sensor networks combine or fuse different types of sensors. Fiber Bragg Grating ( FBG ) sensors can be inserted in layers of composite structures to...consideration. This paper describes an example of optimal sensor fusion, which combines FBG sensors and PZT sensors. Optimal sensor fusion tries to find...Fiber Bragg Grating ( FBG ) sensors can be inserted in layers of composite structures to provide local damage detection, while surface mounted
Farah, John; Sudarshanam, Venkatapuram S.
2003-05-13
Polymer substrates, in particular polyimide substrates, and polymer laminates for optical applications are described. Polyimide substrates are polished on one or both sides depending on their thickness, and single-layer or multi-layer waveguide structures are deposited on the polished polyimide substrates. Optical waveguide devices are machined by laser ablation using a combination of IR and UV lasers. A waveguide-fiber coupler with a laser-machined groove for retaining the fiber is also disclosed.