The development of polymer membranes and modules for air separation
NASA Astrophysics Data System (ADS)
Vinogradov, N. E.; Kagramanov, G. G.
2016-09-01
Technology of hollow fiber membrane and modules for air separation was developed. Hollow fibers from the polyphenylene oxide (PPO) having a diameter of 500 μm were obtained. The permeability of the fibers by oxygen was up to 250 Ba, while the separation factor by O2/N2 was 4.3. The membrane module has been made by using these fibers and tested for permeability of individual gases.
Wu, Qilong; Zhang, Zhenghua; Cao, Guodong; Zhang, Xihui
2017-10-15
Polymeric membrane has been widely used for the treatment of drinking water in China, and the total treating capacity has reached up to 3.8 million m 3 /d. However, the membrane breakage found in the membrane modules in many water treatment plants resulted in an increase in turbidity and bacterial amount in the membrane permeate. In this study, a membrane module running for 3 years in a full-scale application was examined in terms of the breaking positions and the numbers of the broken fibers. It was found that most of the breaking positions were mainly on the outlet side of the module and that the distance from these points to the outlet was about 1/10-2/10 length of the membrane module. The lab-scale tests showed that the increase of the numbers of the breaking fibers in the membrane module (the breaking fibers were from 1 to 4 of 75 fibers) resulted in the increase in turbidity, particle count and the amount of total bacteria and coliform bacteria. Meanwhile, the water quality after the filtration with broken membrane fibers was similar to the quality of the raw water, which indicated that once the membrane fiber breakage occurred in the membrane module, the quality of drinking water after membrane filtration was significantly affected. Furthermore, the breaking position closer to the outlet side of the membrane module exposed much higher microbiological risk than those in the middle or near the bottom side. A pilot scale test was conducted by using a membrane module with 6600 fibers, and the effect of the membrane breakage (1-4 broken fibers) on water quality was also investigated. The results indicated that periodical backwashing caused drastic fluctuation of turbidity, particle count and the bacterial amount in the permeate water, which might be due to the washing force and self-blocking action inside the hollow fibers. Moreover, there is a good quantitative relationship (R 2 = 0.945) between particle count and the bacterial amount, which indicated that an online detection of particle count can be used to evaluate the bacterial risk. It was also suggested that the online detection of particle count after backwashing within 100 s would be a quick and precise method to identify any fiber breakage in time. These results are very important for the safety issue in the application of polymeric membrane to water treatment plants.
Kuzmenko, Paul J.; Davis, Donald T.
1994-01-01
A miniature fiber optic hydrophone based on the principles of a Fabry-Perot interferometer. The hydrophone, in one embodiment, includes a body having a shaped flexible bladder at one end which defines a volume containing air or suitable gas, and including a membrane disposed adjacent a vent. An optic fiber extends into the body with one end terminating in spaced relation to the membrane. Acoustic waves in the water that impinge on the bladder cause the pressure of the volume therein to vary causing the membrane to deflect and modulate the reflectivity of the Fabry-Perot cavity formed by the membrane surface and the cleaved end of the optical fiber disposed adjacent to the membrane. When the light is transmitted down the optical fiber, the reflected signal is amplitude modulated by the incident acoustic wave. Another embodiment utilizes a fluid filled volume within which the fiber optic extends.
Pilot-scale demonstration of pervaporation-based removal of volatile organic compounds from a surfactant enhanced aquifer remediation (SEAR) fluid has been conducted at USEPA's Test & Evaluation Facility using hollow fiber membrane modules. The membranes consisted of microporous...
A novel reverse-osmosis wash water recycle system for manned space stations
NASA Technical Reports Server (NTRS)
Ray, R. J.; Babcock, W. C.; Barss, R. P.; Andrews, T. A.; Lachapelle, E. D.
1984-01-01
The preliminary development of a wash water recycle system utilizing an inside-skinned hollow-fiber membrane is described. This module configuration is based on tube-side feed and is highly resistant to fouling with a minimum of pretreatment. During an ongoing research program for NASA, these modules were operated on actual wash waters with no significant fouling for a period of 40 days. Due to the tube-side-feed flow in these hollow-fiber membranes, the fibers themselves become the pressure vessels, allowing the development of extremely lightweight membrane modules. During the NASA research program, a pre-prototype membrane module capable of processing 6 gallons per day of wash water at 97 percent recovery was developed that can be dry-stored and that weighs 120 g.
Kuzmenko, P.J.; Davis, D.T.
1994-05-10
A miniature fiber optic hydrophone based on the principles of a Fabry-Perot interferometer is disclosed. The hydrophone, in one embodiment, includes a body having a shaped flexible bladder at one end which defines a volume containing air or suitable gas, and including a membrane disposed adjacent a vent. An optical fiber extends into the body with one end terminating in spaced relation to the membrane. Acoustic waves in the water that impinge on the bladder cause the pressure of the volume therein to vary causing the membrane to deflect and modulate the reflectivity of the Fabry-Perot cavity formed by the membrane surface and the cleaved end of the optical fiber disposed adjacent to the membrane. When the light is transmitted down the optical fiber, the reflected signal is amplitude modulated by the incident acoustic wave. Another embodiment utilizes a fluid filled volume within which the fiber optic extends. 2 figures.
Ultrafiltration Membrane Module Virus Reduction at Different Fluxes, and with a Cut Fiber
NSF International evaluated The Dow Chemical Company SFD-2880 UF membrane module for MS2 reduction at four different fluxes, and also with and without a cut fiber, to compare MS2 log reduction under the different scenarios. All tests were conducted in accordance with the U.S. En...
NASA Technical Reports Server (NTRS)
Parodi, Jurek; Mangado, Jaione Romero; Stefanson, Ofir; Flynn, Michael; Shaw, Hali; Beeler, David
2016-01-01
FOST 2 is an integrated membrane system that incorporates a forward osmosis subsystem and a reverse osmosis subsystem working in series. It has been designed as a post treatment system to process the effluent from the Membrane Aerated Biological Reactor developed at NASA Johnson Space Center and Texas Tech University. Its function is to remove dissolved solids residual such as ammonia and suspended solids, as well as to provide a physical barrier to microbial and viral contamination. A tubular CTA membrane module from HTI and a flat-sheet lipid-base membrane module from Porifera were integrated and tested on FOST 2 in the past, using both a bioreactor's effluent and greywater as the feed solution. This paper documents the performance of FOST 2 after its upgrade with a hollow-fiber CTA membrane module from Toyobo, treating real black-water to generate the osmotic agent solution necessary to conduct growth studies of genetically engineered microorganism for the Synthetic Biological Membrane project.
Treatment of Simulated Shipboard Gray Water in a Lab-Scale Membrane Bioreactor
2005-12-01
bioreactors ( MBRs ). MBRs with submerged membrane modules are considered a promising wastewater technology for use aboard ships since significant treatment...system, which consisted of an equalization tank, an MBR with submerged hollow fiber membranes, and a UV disinfection system. The reactor was...1999) optimized removal of TN in an intermittently aerated MBR with submerged hollow fiber membranes. They achieved an average TN removal of 83
OPTIMIZATION OF MULTICOMPONENT PERVAPORATION FOR REMOVAL OF VOLATILE ORGANIC COMPOUNDS FROM WATER
Optimal operation of a hollow fiber membrane module for pervaporative removal of multicomponent volatile organic compounds (VOCs) from wastewater was studied. A shell-and-tube heat-exchange type of hollow fiber module was considered for treatment of a wastewater containing toluen...
The purpose of this verification was a cut fiber challenge study for the Dow Chemical Company SFD-2880 UF membrane module. MS2 coliphage virus was the surrogate challenge organism. The challenge tests followed the requirements of the Department of Health Victoria (Australia) Dr...
Han, Gang; Wang, Peng; Chung, Tai-Shung
2013-07-16
The practical application of pressure retarded osmosis (PRO) technology for renewable blue energy (i.e., osmotic power generation) from salinity gradient is being hindered by the absence of effective membranes. Compared to flat-sheet membranes, membranes with a hollow fiber configuration are of great interest due to their high packing density and spacer-free module fabrication. However, the development of PRO hollow fiber membranes is still in its infancy. This study aims to open up new perspectives and design strategies to molecularly construct highly robust thin film composite (TFC) PRO hollow fiber membranes with high power densities. The newly developed TFC PRO membranes consist of a selective polyamide skin formed on the lumen side of well-constructed Matrimid hollow fiber supports via interfacial polymerization. For the first time, laboratory PRO power generation tests demonstrate that the newly developed PRO hollow fiber membranes can withstand trans-membrane pressures up to 16 bar and exhibit a peak power density as high as 14 W/m(2) using seawater brine (1.0 M NaCl) as the draw solution and deionized water as the feed. We believe that the developed TFC PRO hollow fiber membranes have great potential for osmotic power harvesting.
Zhu, Ling; Chen, Jia-Qing; Zhang, Bao-Sheng; Wang, Jian-Hong
2011-12-01
Two kinds of membranes modules, vapor retained glassy membrane based on PEEK hollow fiber membrane modules and vapor permeated rubbery membrane system based on GMT plate-and-frame membrane modules, were used to control the oil vapor pollution during the course of receiving and transferring gasoline in oil station. The efficiencies of the membrane module and the membrane system of them were evaluated and compared respectively in the facilities which were developed by ourselves. It was found that both the two kinds of membranes modules had high efficiency for the separation of VOCs-air mixed gases, and the outlet vapor after treatment all can meet the national standard. When the vapor-enriched gas was returned to the oil tank to simulate the continuously cycle test, the concentration of VOCs in the outlet was also below 25 g x m(-3).
Study on surface adhesion of Plasma modified Polytetrafluoroethylene hollow fiber membrane
NASA Astrophysics Data System (ADS)
Chen, Jiangrong; Zhang, Huifeng; Liu, Guochang; Guo, Chungang; Lv, Jinglie; Zhangb, Yushan
2018-01-01
Polytetrafluoroethylene (PTFE) is popular membrane material because of its excellent thermal stability, chemical stability and mechanical stability. However, the low surface energy and non-sticky property of PTFE present challenges for modification. In the present study, plasma treatment was performed to improve the surface adhesion of PTFE hollow fiber membrane. The effect of discharge voltage, treatment time on the adhesion of PTFE hollow fiber membrane was symmetrically evaluated. Results showed that the plasma treatment method contributed to improve the surface activity and roughness of PTFE hollow fiber membrane, and the adhesion strength depend significantly on discharge voltage, which was beneficial to seepage pressure of PTFE hollow fiber membrane module. The adhesion strength of PTFE membrane by plasma treated at 220V for 3min reached as high as 86.2 N, far surpassing the adhesion strength 12.7 N of pristine membrane. Furthermore, improvement of content of free radical and composition analysis changes of the plasma modified PTFE membrane were investigated. The seepage pressure of PTFE membrane by plasma treated at 220V for 3min was 0.375 MPa, which means that the plasma treatment is an effective technique to improve the adhesion strength of membrane.
MEMBRANE BIOTREATMENT OF VOC-LADEN AIR
The paper discusses membrane biotreatment of air laden with volatile organic compounds (VOCs). Microporous flat-sheet and hollow-fiber membrane contactors were used to support air-liquid mass transfer interfaces. These modules were used in a two-step process to transfer VOCs fr...
Beer Clarification by Novel Ceramic Hollow-Fiber Membranes: Effect of Pore Size on Product Quality.
Cimini, Alessio; Moresi, Mauro
2016-10-01
In this work, the crossflow microfiltration performance of rough beer samples was assessed using ceramic hollow-fiber (HF) membrane modules with a nominal pore size ranging from 0.2 to 1.4 μm. Under constant operating conditions (that is, transmembrane pressure difference, TMP = 2.35 bar; feed superficial velocity, v S = 2.5 m/s; temperature, T = 10 °C), quite small steady-state permeation fluxes (J * ) of 32 or 37 L/m 2 /h were achieved using the 0.2- or 0.5-μm symmetric membrane modules. Both permeates exhibited turbidity <1 EBC unit, but a significant reduction in density, viscosity, color, extract, and foam half-life with respect to their corresponding retentates. The 0.8-μm asymmetric membrane module might be selected, its corresponding permeate having quite a good turbidity and medium reduction in the aforementioned beer quality parameters. Moreover, it exhibited J * values of the same order of magnitude of those claimed for the polyethersulfone HF membrane modules currently commercialized. The 1.4-μm asymmetric membrane module yielded quite a high steady-state permeation flux (196 ± 38 L/m 2 /h), and a minimum decline in permeate quality parameters, except for the high levels of turbidity at room temperature and chill haze. In the circumstances, such a membrane module might be regarded as a real valid alternative to conventional powder filters on condition that the resulting permeate were submitted to a final finishing step using 0.45- or 0.65-μm microbially rated membrane cartridges prior to aseptic bottling. A novel combined beer clarification process was thus outlined. © 2016 Institute of Food Technologists®.
Eum, Kiwon; Rownaghi, Ali; Choi, Dalsu; ...
2016-06-01
Recently, a methodology for fabricating polycrystalline metal-organic framework (MOF) membranes has been introduced – referred to as interfacial microfluidic membrane processing – which allows parallelizable fabrication of MOF membranes inside polymeric hollow fibers of microscopic diameter. Such hollow fiber membranes, when bundled together into modules, are an attractive way to scale molecular sieving membranes. The understanding and engineering of fluidic processing techniques for MOF membrane fabrication are in their infancy. Here in this work, a detailed mechanistic understanding of MOF (ZIF-8) membrane growth under microfluidic conditions in polyamide-imide hollow fibers is reported, without any intermediate steps (such as seeding ormore » surface modification) or post-synthesis treatments. A key finding is that interfacial membrane formation in the hollow fiber occurs via an initial formation of two distinct layers and the subsequent rearrangement into a single layer. This understanding is used to show how nonisothermal processing allows fabrication of thinner (5 μm) ZIF-8 films for higher throughput, and furthermore how engineering the polymeric hollow fiber support microstructure allows control of defects in the ZIF-8 membranes. Finally, the performance of these engineered ZIF-8 membranes is then characterized, which have H 2/C 3H 8 and C 3H 6/C 3H 8 mixture separation factors as high as 2018 and 65, respectively, and C 3H 6 permeances as high as 66 GPU.« less
Naim, R; Ismail, A F
2013-04-15
A series of polyetherimide (PEI) hollow fiber membranes with various polymer concentrations (13-16 wt.%) for CO2 stripping process in membrane contactor application was fabricated via wet phase inversion method. The PEI membranes were characterized in terms of liquid entry pressure, contact angle, gas permeation and morphology analysis. CO2 stripping performance was investigated via membrane contactor system in a stainless steel module with aqueous diethanolamine as liquid absorbent. The hollow fiber membranes showed decreasing patterns in gas permeation, contact angle, mean pore size and effective surface porosity with increasing polymer concentration. On the contrary, wetting pressure of PEI membranes has enhanced significantly with polymer concentration. Various polymer concentrations have different effects on the CO2 stripping flux in which membrane with 14 wt.% polymer concentration showed the highest stripping flux of 2.7 × 10(-2)mol/m(2)s. From the performance comparison with other commercial membrane, it is anticipated that the PEI membrane has a good prospect in CO2 stripping via membrane contactor. Copyright © 2013 Elsevier B.V. All rights reserved.
Development of a two-stage membrane-based wash-water reclamation subsystem
NASA Technical Reports Server (NTRS)
Mccray, S. B.
1988-01-01
A two-stage membrane-based subsystem was designed and constructed to enable the recycle of wash waters generated in space. The first stage is a fouling-resistant tube-side-feed hollow-fiber ultrafiltration module, and the second stage is a spiral-wound reverse-osmosis module. Throughout long-term tests, the subsystem consistently produced high-quality permeate, processing actual wash water to 95 percent recovery.
Modeling of membrane processes for air revitalization and water recovery
NASA Technical Reports Server (NTRS)
Lange, Kevin E.; Foerg, Sandra L.; Dall-Bauman, Liese A.
1992-01-01
Gas-separation and reverse-osmosis membrane models are being developed in conjunction with membrane testing at NASA JSC. The completed gas-separation membrane model extracts effective component permeabilities from multicomponent test data, and predicts the effects of flow configuration, operating conditions, and membrane dimensions on module performance. Variable feed- and permeate-side pressures are considered. The model has been applied to test data for hollow-fiber membrane modules with simulated cabin-air feeds. Results are presented for a membrane designed for air drying applications. Extracted permeabilities are used to predict the effect of operating conditions on water enrichment in the permeate. A first-order reverse-osmosis model has been applied to test data for spiral wound membrane modules with a simulated hygiene water feed. The model estimates an effective local component rejection coefficient under pseudosteady-state conditions. Results are used to define requirements for a detailed reverse-osmosis model.
NASA Astrophysics Data System (ADS)
Farges, Bérangère; Duchez, David; Dussap, Claude-Gilles; Cornet, Jean-François
2012-01-01
In microgravity, one of the major challenge encountered in biological life support systems (BLSS) is the gas-liquid transfer with, for instance, the necessity to provide CO2 (carbon source, pH control) and to recover the evolved O2 in photobioreactors used as atmosphere bioregenerative systems.This paper describes first the development of a system enabling the accurate characterization of the mass transfer limiting step for a PTFE membrane module used as a possible efficient solution to the microgravity gas-liquid transfer. This original technical apparatus, together with a technical assessment of membrane permeability to different gases, is associated with a balance model, determining thus completely the CO2 mass transfer problem between phases. First results are given and discussed for the CO2 mass transfer coefficient kLCO obtained in case of absorption experiments at pH 8 using the hollow fiber membrane module. The consistency of the proposed method, based on a gas and liquid phase balances verifying carbon conservation enables a very accurate determination of the kLCO value as a main limiting step of the whole process. Nevertheless, further experiments are still needed to demonstrate that the proposed method could serve in the future as reference method for mass transfer coefficient determination if using membrane modules for BLSS in reduced or microgravity conditions.
Development of Advanced Membranes Technology Platform for Hydrocarbon Separations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kalthod, Dr Dilip
2010-03-01
Virtually all natural gas is dehydrated during its production, transmission and storage, mostly by absorption processes. Membranes offer many potential advantages over absorption, including smaller footprints, lighter-weight packages, packaging flexibility, minimal electrical power duty, amenability to expansion due to system modularity, reduced maintenance costs, reduced emissions of heavy hydrocarbons, no liquid waste streams, and amenability to unmanned operation. The latter is particularly valuable because new natural gas sources are generally located in remote onshore and offshore sites. Most commercially-available membranes for natural gas upgrading involve high capital costs, high methane loss and performance degradation from operational upsets – all ofmore » which are barriers to their widespread adoption by the industry. The original focus of the project was to develop and demonstrate robust, high-performance membranes for natural gas dehydration. The first task completed was a user needs-and-wants study to 1) clarify the expectations of system fabricators and end users of the new separations equipment, and 2) establish the required technical and commercial targets for the membrane products. Following this, membrane system modeling and membrane development in the lab proceeded in parallel. Membrane module diameter and length, as well as and the fiber outer and inner fiber diameter, were optimized from a mathematical model that accounts for the relevant fluid dynamics and permeation phenomena. Module design was evaluated in the context of overall system design, capital costs and energy consumption, including the process scheme (particularly sweep generation), feed pretreatment, system layout, and process control. This study provided targets for membrane permeation coefficients and membrane geometry in a commercial offering that would be competitive with absorption systems. A commercially-available polymer with good tensile strength and chemical resistance was selected for membrane development. A novel dope composition and spinning process were developed, which provide a new approach to controlling membrane porosity and wall and skin morphology. A hollow-fiber membrane with an external dense “skin” was produced that has a high water vapor permeation coefficient and selectivity, durability when in operation at 1000 psig and 70°C, and the ability to withstand aromatic and aliphatic hydrocarbon vapors for an extended period. The fiber meets the technical requirements for a commercial product offering in gas dehydration. It can be readily manufactured with some changes in process equipment and process conditions, and is an excellent candidate for scale-up to full-size membrane modules.« less
Hollow fiber gas-liquid membrane contactors for acid gas capture: a review.
Mansourizadeh, A; Ismail, A F
2009-11-15
Membrane contactors using microporous membranes for acid gas removal have been extensively reviewed and discussed. The microporous membrane acts as a fixed interface between the gas and the liquid phase without dispersing one phase into another that offers a flexible modular and energy efficient device. The gas absorption process can offer a high selectivity and a high driving force for transport even at low concentrations. Using hollow fiber gas-liquid membrane contactors is a promising alternative to conventional gas absorption systems for acid gas capture from gas streams. Important aspects of membrane contactor as an efficient energy devise for acid gas removal including liquid absorbents, membrane characteristics, combination of membrane and absorbent, mass transfer, membrane modules, model development, advantages and disadvantages were critically discussed. In addition, current status and future potential in research and development of gas-liquid membrane contactors for acid gas removal were also briefly discussed.
MICROBIAL COMETABOLISM OF RECALCITRANT CHEMICALS IN CONTAMINATED AIR STREAMS
Chlorinated Solvents: The treatment system consists of a laboratory-scale hollow fiber membrane (HFM) module containing a center baffle and a radial cross-flow pattern on the shell side of the fibers. The shell and lumen fluids are contacting in a counter-current f...
The "stripmeation" process for removing volatile organic compounds (VOCs) from water has been introduced and studied. An aqueous solution of the VOC is passed through the bores of hydrophobic microporous polypropylene hollow fibers having a plasma polymerized silicone ...
NASA Technical Reports Server (NTRS)
Rich, T. R.; Mix, T. W.
1974-01-01
Recovery of potable water from urine on manned space missions of extended duration was the objective of work aimed at the improvement of membrane performance for the vapor diffusion process (VDR). Kynar, Teflon, PVC, and polysulfone candidate membranes were evaluated from chemical, thermal, mechanical, and fabricating standpoints to determine their suitability for operation in the VDR pervaporation module. Pervaporation rates and other performance characteristics were determined in a breadboard pervaporator test rig. Kynar and Teflon membranes were demonstrated to be chemically stable at pervaporation temperatures in urine pretreated with chromic acid bactericide. The separation of the pervaporator and condenser modules, the use of a recirculating sweep gas to conduct pervaporate to the condenser, and the selection of a hollow fiber membrane configuration for pervaporator module design is recommended as a result of the investigation.
Barrientos, G.; Sánchez-Aguilera, P.; Jaimovich, E.; Hidalgo, C.
2017-01-01
Membrane cholesterol is critical for signaling processes in a variety of tissues. We will address here current evidence supporting an emerging role of cholesterol on excitation-contraction coupling and glucose transport in skeletal muscle. We have centered our review on the transverse tubule system, a complex network of narrow plasma membrane invaginations that propagate membrane depolarization into the fiber interior and allow nutrient delivery into the fibers. We will discuss current evidence showing that transverse tubule membranes have remarkably high cholesterol levels and we will address how modifications of cholesterol content influence excitation-contraction coupling. In addition, we will discuss how membrane cholesterol levels affect glucose transport by modulating the insertion into the membrane of the main insulin-sensitive glucose transporter GLUT4. Finally, we will address how the increased membrane cholesterol levels displayed by obese animals, which also present insulin resistance, affect these two particular skeletal muscle functions. PMID:28367451
NASA Astrophysics Data System (ADS)
Lunn, Griffin; Wheeler, Raymond; Hummerick, Mary; Birmele, Michele; Richards, Jeffrey; Coutts, Janelle; Koss, Lawrence; Spencer, Lashelle.; Johnsey, Marissa; Ellis, Ronald
Bioreactor research, even today, is mostly limited to continuous stirred-tank reactors (CSTRs). These are not an option for microgravity applications due to the lack of a gravity gradient to drive aeration as described by the Archimedes principle. This has led to testing of Hollow Fiber Membrane Bioreactors (HFMBs) for microgravity applications, including possible use for wastewater treatment systems for the International Space Station (ISS). Bioreactors and filtration systems for treating wastewater could avoid the need for harsh pretreatment chemicals and improve overall water recovery. However, the construction of these reactors is difficult and commercial off-the-shelf (COTS) versions do not exist in small sizes. We have used 1-L modular HFMBs in the past, but the need to perform rapid testing has led us to consider even smaller systems. To address this, we designed and built 125-mL, rectangular reactors, which we have called the Fiber Attachment Module Experiment (FAME) system. A polycarbonate rack of four square modules was developed with each module containing removable hollow fibers. Each FAME reactor is self-contained and can be easily plumbed with peristaltic and syringe pumps for continuous recycling of fluids and feeding, as well as fitted with sensors for monitoring pH, dissolved oxygen, and gas measurements similar to their larger counterparts. The first application tested in the FAME racks allowed analysis of over a dozen fiber surface treatments and three inoculation sources to achieve rapid reactor startup and biofilm attachment (based on carbon oxidation and nitrification of wastewater). With these miniature FAME reactors, data for this multi-factorial test were collected in duplicate over a six-month period; this greatly compressed time period required for gathering data needed to study and improve bioreactor performance.
Studies on improved integrated membrane-based chromatographic process for bioseparation
NASA Astrophysics Data System (ADS)
Xu, Yanke
To improve protein separation and purification directly from a fermentation broth, a novel membrane filtration-cum-chromatography device configuration having a relatively impermeable coated zone near the hollow fiber module outlet has been developed. The integrated membrane filtration-cum-chromatography unit packed with chromatographic beads on the shell side of the hollow fiber unit enjoys the advantages of both membrane filtration and chromatography; it allows one to load the chromatographic media directly from the fermentation broth or lysate and separate the adsorbed proteins through the subsequent elution step in a cyclic process. Interfacial polymerization was carried out to coat the bottom section of the hollow fiber membrane while leaving the rest of the hollow fiber membrane unaffected. Myoglobin (Mb), bovine serum albumin (BSA) and a-lactalbumin (a-LA) were used as model proteins in binary mixtures. Separation behaviors of binary protein mixtures were studied in devices using either an ultrafiltration (UF) membrane or a microfiltration (MF) membrane. Experimental results show that the breakthrough time and the protein loading capacities were dramatically improved after coating in both UF and MF modules. For a synthetic yeast fermentation broth feed, the Mb and a-LA elution profiles for the four consecutive cyclic runs were almost superimposable. Due to the lower transmembrane flux in this device plus the periodical washing-elution during the chromatographic separation, fouling was not a problem as it is in conventional microfiltration. A mathematical model describing the hydrodynamic and protein loading behaviors of the integrated device using UF membrane with a coated zone was developed. The simulation results for the breakthrough agree well with the experimental breakthrough curves. The optimal length of the coated zone was obtained from the simulation. A theoretical analysis of the protein mass transfer was performed using a diffusion-convection model considering the feed-side concentration polarization and the permeate-side concentration gradient formed by the adsorption. The permeate-side adsorption can enhance the observed protein transmission through the membrane considerably at low permeate flux. But the enhancement effect can be neglected at higher permeate flux when convection dominates the total mass transfer process or the proteins are very highly rejected by the membrane.
Evaluation of 165 deg F reverse osmosis modules for washwater purification.
NASA Technical Reports Server (NTRS)
Hossain, S.; Goldsmith, R. L.; Tan, M.; Wydeven, T.; Leban, M. I.
1973-01-01
Three membrane systems have been evaluated for concentration at 165 F of wash-water contaminants. Membranes tested are polybenzimidazole (hollow fibers), cellulose acetate blend (spiral wound), and sulfonated polyphenylene oxide (plate-and-frame). Detailed membrane flux and rejection data are presented for 200-hr life tests with synthetic wash water, at two concentrations, and real wash water, at one concentration. Advantages and limitations of the membrane configurations, are discussed.
Hollow Fiber Membrane Dehumidification Device for Air Conditioning System.
Zhao, Baiwang; Peng, Na; Liang, Canzeng; Yong, Wai Fen; Chung, Tai-Shung
2015-11-16
In order to provide a comfortable living and working environment indoors in tropical countries, the outdoor air often needs to be cooled and dehumidified before it enters the rooms. Membrane separation is an emerging technology for air dehumidification and it is based on the solution diffusion mechanism. Water molecules are preferentially permeating through the membranes due to its smaller kinetic diameter and higher condensability than the other gases. Compared to other dehumidification technologies such as direct cooling or desiccation, there is no phase transition involved in membrane dehumidification, neither the contact between the fresh air stream and the desiccants. Hence, membrane dehumidification would not only require less energy consumption but also avoid cross-contamination problems. A pilot scale air dehumidification system is built in this study which comprises nine pieces of one-inch PAN/PDMS hollow fiber membrane modules. A 150 h long-term test shows that the membrane modules has good water vapor transport properties by using a low vacuum force of only 0.78 bar absolute pressure at the lumen side. The water vapor concentration of the feed humid air decreases dramatically from a range of 18-22 g/m³ to a range of 13.5-18.3 g/m³. Most importantly, the total energy saving is up to 26.2% compared with the conventional air conditioning process.
Hydrodynamic effects of air sparging on hollow fiber membranes in a bubble column reactor.
Xia, Lijun; Law, Adrian Wing-Keung; Fane, Anthony G
2013-07-01
Air sparging is now a standard approach to reduce concentration polarization and fouling of membrane modules in membrane bioreactors (MBRs). The hydrodynamic shear stresses, bubble-induced turbulence and cross flows scour the membrane surfaces and help reduce the deposit of foulants onto the membrane surface. However, the detailed quantitative knowledge on the effect of air sparging remains lacking in the literature due to the complex hydrodynamics generated by the gas-liquid flows. To date, there is no valid model that describes the relationship between the membrane fouling performance and the flow hydrodynamics. The present study aims to examine the impact of hydrodynamics induced by air sparging on the membrane fouling mitigation in a quantitative manner. A modelled hollow fiber module was placed in a cylindrical bubble column reactor at different axial heights with the trans-membrane pressure (TMP) monitored under constant flux conditions. The configuration of bubble column without the membrane module immersed was identical to that studied by Gan et al. (2011) using Phase Doppler Anemometry (PDA), to ensure a good quantitative understanding of turbulent flow conditions along the column height. The experimental results showed that the meandering flow regime which exhibits high flow instability at the 0.3 m is more beneficial to fouling alleviation compared with the steady flow circulation regime at the 0.6 m. The filtration tests also confirmed the existence of an optimal superficial air velocity beyond which a further increase is of no significant benefit on the membrane fouling reduction. In addition, the alternate aeration provided by two air stones mounted at the opposite end of the diameter of the bubble column was also studied to investigate the associated flow dynamics and its influence on the membrane filtration performance. It was found that with a proper switching interval and membrane module orientation, the membrane fouling can be effectively controlled with even smaller superficial air velocity than the optimal value provided by a single air stone. Finally, the testing results with both inorganic and organic feeds showed that the solid particle composition and particle size distribution all contribute to the cake formation in a membrane filtration system. Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Coutts, Janelle L.; Lunn, Griffin M.; Koss, Lawrence L.; Hummerick, Mary E.; Spencer, Lachelle E.; Johnsey, Marissa N.; Richards, Jeffrey T.; Ellis, Ronald; Birmele, Michele N.; Wheeler, Raymond M.
2014-01-01
Bioreactor research is mostly limited to continuous stirred-tank reactors (CSTRs) which are not an option for microgravity (g) applications due to the lack of a gravity gradient to drive aeration as described by the Archimedes principle. Bioreactors and filtration systems for treating wastewater in g could avoid the need for harsh pretreatment chemicals and improve overall water recovery. Solution: Membrane Aerated Bioreactors (MABRs) for g applications, including possible use for wastewater treatment systems for the International Space Station (ISS).
Wang, Zhengbao; Ge, Qinqin; Shao, Jia; Yan, Yushan
2009-05-27
We demonstrate for the first time that by one single hydrothermal synthesis a zeolite LTA membrane with a high flux of 9.0 kg/m(2) h and high water/ethanol separation factor of 10,000 could be formed on a ceramic hollow fiber that is known for its ability to form a compact module. The flux is the highest reported in the literatures. A novel seeding method, dipcoating-wiping, is key to obtaining zeolite membranes with high separation performance because it reproducibly produces a uniform and trace seed layer on the support. This new seeding method is expected to have serious implications for making defect-free zeolite films and membranes for many applications. The membranes reported here have the potential to solve the key problems that have prevented zeolite membranes from widespread use for biofuel production.
Qin, Lei; Fan, Zheng; Xu, Lusheng; Zhang, Guoliang; Wang, Guanghui; Wu, Dexin; Long, Xuwei; Meng, Qin
2015-05-01
In this study, a novel submerged membrane bioreactor (SMBR) with pendulum type oscillation (PTO) hollow fiber membrane modules was developed to treat oily wastewater and control the problem of membrane fouling. To assess the potential of PTO membrane modules, the effect of oscillation orientation and frequency on membrane permeability was investigated in detail. The forces exerted on sludge flocs in the oscillating SMBR were analyzed to evaluate the impact of membrane oscillating on the cake layer resistance reduction. Results showed that the optimized PTO SMBR system exhibited 11 times higher membrane permeability and better fouling controllability than the conventional MBR system. By hydrodynamic analysis, it was found that the cooperative effect of bubble-induced turbulence and membrane oscillation in PTO SMBR system generated strong shear stress at liquid-membrane interface in vertical and horizontal direction and effectively hindered the particles from depositing on membrane surface. Copyright © 2015 Elsevier Ltd. All rights reserved.
Gross, Rainer; Buehler, Katja; Schmid, Andreas
2013-02-01
This study evaluates the technical feasibility of biofilm-based biotransformations at an industrial scale by theoretically designing a process employing membrane fiber modules as being used in the chemical industry and compares the respective process parameters to classical stirred-tank studies. To our knowledge, catalytic biofilm processes for fine chemicals production have so far not been reported on a technical scale. As model reactions, we applied the previously studied asymmetric styrene epoxidation employing Pseudomonas sp. strain VLB120ΔC biofilms and the here-described selective alkane hydroxylation. Using the non-heme iron containing alkane hydroxylase system (AlkBGT) from P. putida Gpo1 in the recombinant P. putida PpS81 pBT10 biofilm, we were able to continuously produce 1-octanol from octane with a maximal productivity of 1.3 g L ⁻¹(aq) day⁻¹ in a single tube micro reactor. For a possible industrial application, a cylindrical membrane fiber module packed with 84,000 polypropylene fibers is proposed. Based on the here presented calculations, 59 membrane fiber modules (of 0.9 m diameter and 2 m length) would be feasible to realize a production process of 1,000 tons/year for styrene oxide. Moreover, the product yield on carbon can at least be doubled and over 400-fold less biomass waste would be generated compared to classical stirred-tank reactor processes. For the octanol process, instead, further intensification in biological activity and/or surface membrane enlargement is required to reach production scale. By taking into consideration challenges such as biomass growth control and maintaining a constant biological activity, this study shows that a biofilm process at an industrial scale for the production of fine chemicals is a sustainable alternative in terms of product yield and biomass waste production. Copyright © 2012 Wiley Periodicals, Inc.
Hollow Fiber Membrane Dehumidification Device for Air Conditioning System
Zhao, Baiwang; Peng, Na; Liang, Canzeng; Yong, Wai Fen; Chung, Tai-Shung
2015-01-01
In order to provide a comfortable living and working environment indoors in tropical countries, the outdoor air often needs to be cooled and dehumidified before it enters the rooms. Membrane separation is an emerging technology for air dehumidification and it is based on the solution diffusion mechanism. Water molecules are preferentially permeating through the membranes due to its smaller kinetic diameter and higher condensability than the other gases. Compared to other dehumidification technologies such as direct cooling or desiccation, there is no phase transition involved in membrane dehumidification, neither the contact between the fresh air stream and the desiccants. Hence, membrane dehumidification would not only require less energy consumption but also avoid cross-contamination problems. A pilot scale air dehumidification system is built in this study which comprises nine pieces of one-inch PAN/PDMS hollow fiber membrane modules. A 150 h long-term test shows that the membrane modules has good water vapor transport properties by using a low vacuum force of only 0.78 bar absolute pressure at the lumen side. The water vapor concentration of the feed humid air decreases dramatically from a range of 18–22 g/m3 to a range of 13.5–18.3 g/m3. Most importantly, the total energy saving is up to 26.2% compared with the conventional air conditioning process. PMID:26580660
Gollan, Arye Z.
1990-12-25
Feed gas is directed tangentially along the non-skin surface of gas separation membrane modules comprising a cylindrical bundle of parallel contiguous hollow fibers supported to allow feed gas to flow from an inlet at one end of a cylindrical housing through the bores of the bundled fibers to an outlet at the other end while a component of the feed gas permeates through the fibers, each having the skin side on the outside, through a permeate outlet in the cylindrical casing.
Gollan, A.
1988-03-29
Feed gas is directed tangentially along the non-skin surface of gas separation membrane modules comprising a cylindrical bundle of parallel contiguous hollow fibers supported to allow feed gas to flow from an inlet at one end of a cylindrical housing through the bores of the bundled fibers to an outlet at the other end while a component of the feed gas permeates through the fibers, each having the skin side on the outside, through a permeate outlet in the cylindrical casing. 3 figs.
Gollan, Arye
1988-01-01
Feed gas is directed tangentially along the non-skin surface of gas separation membrane modules comprising a cylindrical bundle of parallel contiguous hollow fibers supported to allow feed gas to flow from an inlet at one end of a cylindrical housing through the bores of the bundled fibers to an outlet at the other end while a component of the feed gas permeates through the fibers, each having the skin side on the outside, through a permeate outlet in the cylindrical casing.
Gollan, A.Z.
1990-12-25
Feed gas is directed tangentially along the non-skin surface of gas separation membrane modules comprising a cylindrical bundle of parallel contiguous hollow fibers supported to allow feed gas to flow from an inlet at one end of a cylindrical housing through the bores of the bundled fibers to an outlet at the other end while a component of the feed gas permeates through the fibers, each having the skin side on the outside, through a permeate outlet in the cylindrical casing. 3 figs.
A High Sensitivity and Wide Dynamic Range Fiber-Optic Sensor for Low-Concentration VOC Gas Detection
Khan, Md. Rajibur Rahaman; Kang, Shin-Won
2014-01-01
In this paper, we propose a volatile organic compound (VOC) gas sensing system with high sensitivity and a wide dynamic range that is based on the principle of the heterodyne frequency modulation method. According to this method, the time period of the sensing signal shift when Nile Red containing a VOC-sensitive membrane of a fiber-optic sensing element comes into contact with a VOC. This sensing membrane produces strong, fast and reversible signals when exposed to VOC gases. The response and recovery times of the proposed sensing system were less than 35 s, and good reproducibility and accuracy were obtained. PMID:25490592
EUREKA (European Research Coordination Agency) Program Update to March 1988
1988-07-12
fibers for polymer matrix composites. Environment Membranes for Ultra- Microfiltration Denmark, France 34.90/72 5/A UF/MF module/membrane systems for...Germany 7.00/120 140/A Restoration Sweden, Denmark, France, United Development of not now available industrial products and tech- Kingdom, Greece...Netherlands, nologies as well as craft skills for conservation and restoration Portugal, Turkey, CEC work. Establishment of technical standards and
Membrane distributed-reflector laser integrated with SiOx-based spot-size converter on Si substrate.
Nishi, Hidetaka; Fujii, Takuro; Takeda, Koji; Hasebe, Koichi; Kakitsuka, Takaaki; Tsuchizawa, Tai; Yamamoto, Tsuyoshi; Yamada, Koji; Matsuo, Shinji
2016-08-08
We demonstrate monolithic integration of a 50-μm-long-cavity membrane distributed-reflector laser with a spot-size converter, consisting of a tapered InP wire waveguide and an SiOx waveguide, on SiO2/Si substrate. The device exhibits 9.4-GHz/mA0.5 modulation efficiency with a 2.2-dB fiber coupling loss. We demonstrate 25.8-Gbit/s direct modulation with a bias current of 2.5 mA, resulting in a low energy cost of 132 fJ/bit.
Removal of humic acid by a new type of electrical hollow-fiber microfiltration (E-HFMF)
NASA Astrophysics Data System (ADS)
Shang, Ran; Deng, Hui-ping; Hu, Jing-yi
2010-11-01
Low pressure membrane filtration, such as microfiltration, was widely used in the field of drinking water purification in the past few decades. Traditional microfiltration membranes are not efficient enough in the removal of natural organic matters (NOM) from raw water. Moreover, they tend to be fouled by the NOM and the filtration age of the membranes is thus shrinked. To tackle these problems, a new type of electrical hollow-fiber microfiltration module (E-HFMF) was designed. In the E-HFMF module, the hollow-fiber microfiltration membranes were placed into the radialized electrical field which functioned from the centre to the exterior of the cylindrical cavity. The main goal of the present study was to evaluate the efficiency of E-HFMF to remove the humic acid (HA, one of the main components of NOM). According to the parallel tests compared with the traditional microfiltration, the removal rate of humic acid was raised to 70%˜85% in terms of UV-254 and to 60%˜75% in terms of DOC when filtrating with the E-HFMF, while the removal rates of humic acid were 10%˜20% and 1%˜10% respectively when filtrating with the traditional microfiltration. The negative charged humic acid moved to the anode because of the electrophoresis, so few humic acid could be able to permeate through the membrane. The electrophoresis mobility of the humic acid permeating through the traditional microfiltration decreased by 19%, while the same index from the E-HFMF decreased by 75%. This indicated that the electrophoresis played a significant role on removing the humic acid. According to the gel permeate chromatograph analysis, humic acid aggregated in an electric field and thus forms loose and permeable cake layer on the membrane surface, which also relieved membrane fouling. Meanwhile, the negative charged humic acid migrating to the anode at the center minimized the deposition onto the membrane surface, and eliminated the membrane fouling as a result. During the E-HFMF filtration, the humic acid was not oxidized observably in the electrical field, according to the FT-IR analysis.
Munasinghe, Pradeep Chaminda; Khanal, Samir Kumar
2012-10-01
In this study, the volumetric mass transfer coefficients (Ka) for CO were examined in a composite hollow fiber (CHF) membrane bioreactor. The mass transfer experiments were conducted at various inlet gas pressures (from 5 to 30 psig (34.5-206.8 kPa(g))) and recirculation flow rates (300, 600, 900, 1200 and 1500 mL/min) through CHF module. The highest Ka value of 946.6 1/h was observed at a recirculation rate of 1500 mL/min and at an inlet gas pressure of 30 psig(206.8 kPa(g)). The findings of this study confirm that the use of CHF membranes is effective and improves the efficiency CO mass transfer into the aqueous phase. Copyright © 2012 Elsevier Ltd. All rights reserved.
Fitch, Mark; Neeman, Jeffrey; England, Ellen
2003-03-01
A dense-phase latex rubber tube and a polyporous propylene hollow-fiber membrane module (HFMM) were investigated for control of benzene-contaminated gas streams. The abiotic mass flux observed through the latex tube was 3.9 13 mg/(min.m(2)) for 150 ppm of benzene at various gas and liquid flow rates, while a 100-fold lower mass flux was observed in the HFMM. After seeding with an aromatic-degrading culture enriched from activated sludge, the observed removal was 80% of 150 ppm, corresponding to a mass flux of 45 mg/(min.m(2)). The observed mass flux through the HFMM during biofiltration also rose, to 0.4 mg/(min.m(2)). Because the HFMM had a 50-fold higher surface area than the latex tube, the observed benzene removal was 99.8%. Compared to conventional biofilters, the two reactors had modest elimination capacities, 2.5 18 g/(m(3).h) in the latex tube membrane bioreactor and 4.8 58 g/(m(3).h) in the HFMM. Although the HFMM had a higher elimination capacity, the gas-phase pressure drop was much greater.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Klaehn, John; Peterson, Eric; Orme, Christopher
2013-01-01
Idaho National Laboratory (INL), GE Global Research (GEGR), and Western Research Institute (WRI) have successfully produced hydrogen-selective membranes for water-gas-shift (WGS) modules that enable high-pressure hydrogen product streams. Several high performance (HP) polymer membranes were investigated for their gas separation performance under simulated (mixed gas) and actual syngas conditions. To enable optimal module performance, membranes with high hydrogen (H 2) selectivity, permeance, and stability under WGS conditions are required. The team determined that the VTEC PI 80-051 and VTEC PI 1388 (polyimide from Richard Blaine International, Inc.) are prime candidates for the H 2 gas separations at operating temperatures (~200°C).more » VTEC PI 80-051 was thoroughly analyzed for its H 2 separations under syngas processing conditions using more-complex membrane configurations, such as tube modules and hollow fibers. These membrane formats have demonstrated that the selected VTEC membrane is capable of providing highly selective H 2/CO 2 separation (α = 7-9) and H 2/CO separation (α = 40-80) in humidified syngas streams. In addition, the VTEC polymer membranes are resilient within the syngas environment (WRI coal gasification) at 200°C for over 1000 hours. The information within this report conveys current developments of VTEC PI 80-051 as an effective H 2 gas separations membrane for high-temperature syngas streams.« less
Silicon Micromachining in RF and Photonic Applications
NASA Technical Reports Server (NTRS)
Lin, Tsen-Hwang; Congdon, Phil; Magel, Gregory; Pang, Lily; Goldsmith, Chuck; Randall, John; Ho, Nguyen
1995-01-01
Texas Instruments (TI) has developed membrane and micromirror devices since the late 1970s. An eggcrate space membrane was used as the spatial light modulator in the early years. Discrete micromirrors supported by cantilever beams created a new era for micromirror devices. Torsional micromirror and flexure-beam micromirror devices were promising for mass production because of their stable supports. TI's digital torsional micromirror device is an amplitude modulator (known as the digital micromirror device (DMD) and is in production development, discussed elsewhere. We also use a torsional device for a 4 x 4 fiber-optic crossbar switch in a 2 cm x 2 cm package. The flexure-beam micromirror device is an analog phase modulator and is considered more efficient than amplitude modulators for use in optical processing systems. TI also developed millimeter-sized membranes for integrated optical switches for telecommunication and network applications. Using a member in radio frequency (RF) switch applications is a rapidly growing area because of the micromechanical device performance in microsecond-switching characteristics. Our preliminary membrane RF switch test structure results indicate promising speed and RF switching performance. TI collaborated with MIT for modeling of metal-based micromachining.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shamsuddin Ilias
Fouling problems are perhaps the single most important reason for relatively slow acceptance of ultrafiltration in many areas of chemical and biological processing. To overcome the losses in permeate flux associated with concentration polarization and fouling in cross flow membrane filtration, we investigated the concept of flow reversal as a method to enhance membrane flux in ultrafiltration. Conceptually, flow reversal prevents the formation of stable hydrodynamic and concentration boundary layers at or near the membrane surface. Further more, periodic reversal of the flow direction of the feed stream at the membrane surface results in prevention and mitigation of membrane fouling.more » Consequently, these advantages are expected to enhance membrane flux significantly. A crossflow membrane filtration unit was designed and built to test the concept of periodic flow reversal for flux enhancement. The essential elements of the system include a crossflow hollow fiber membrane module integrated with a two-way valve to direct the feed flow directions. The two-way valve is controlled by a controller-timer for periodic reversal of flow of feed stream. Another important feature of the system is that with changing feed flow direction, the permeate flow direction is also changed to maintain countercurrent feed and permeate flows for enhanced mass transfer driving force (concentration difference). Three feed solutions (Bovine serum albumin (BSA), apple juice and citrus fruit pectin) were studied in crossflow membrane filtration. These solutes are well-known in membrane filtration for their fouling and concentration polarization potentials. Laboratory-scale tests on a hollow-fiber ultrafiltration membrane module using each of the feed solutes show that under flow reversal conditions, the permeate flux is significantly enhanced when compared with the conventional unidirectional flow. The flux enhancement is dramatic (by an order of magnitude) with increased feed concentration and operating transmembrane pressure. Thus, flow reversal technology seems an attractive alternative to mitigate fouling problem in crossflow membrane filtration.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shamsuddin Ilias
Fouling problems are perhaps the single most important reason for relatively slow acceptance of ultrafiltration in many areas of chemical and biological processing. To overcome the losses in permeate flux associated with concentration polarization and fouling in cross flow membrane filtration, we investigated the concept of flow reversal as a method to enhance membrane flux in ultrafiltration. Conceptually, flow reversal prevents the formation of stable hydrodynamic and concentration boundary layers at or near the membrane surface. Further more, periodic reversal of the flow direction of the feed stream at the membrane surface results in prevention and mitigation of membrane fouling.more » Consequently, these advantages are expected to enhance membrane flux significantly. A crossflow membrane filtration unit was designed and built to test the concept of periodic flow reversal for flux enhancement. The essential elements of the system include a crossflow hollow fiber membrane module integrated with a two-way valve to direct the feed flow directions. The two-way valve is controlled by a controller-timer for periodic reversal of flow of feed stream. Another important feature of the system is that with changing feed flow direction, the permeate flow direction is also changed to maintain countercurrent feed and permeate flows for enhanced mass transfer driving force (concentration difference). In our previous report, we reported our work on UF of BSA. In this report, we report our continuing application of Flow Reversal technique in clarification of apple juice containing pectin. The presence of pectin in apple juice makes the clarification process difficult and is believed to cause membrane fouling. Of all compounds found in apple juice, pectin is most often identified as the major hindrance to filtration performance. Laboratory-scale tests on a hollow-fiber ultrafiltration membrane module using pectin in apple juice as feed show that under flow reversal conditions, the permeate flux is significantly enhanced when compared with the conventional unidirectional flow.« less
Lauterböck, B; Ortner, M; Haider, R; Fuchs, W
2012-10-01
The aim of the current study was to investigate the feasibility of membrane contactors for continuous ammonia (NH₃-N) removal in an anaerobic digestion process and to counteract ammonia inhibition. Two laboratory anaerobic digesters were fed slaughterhouse wastes with ammonium (NH₄⁺) concentrations ranging from 6 to 7.4 g/L. One reactor was used as reference reactor without any ammonia removal. In the second reactor, a hollow fiber membrane contactor module was used for continuous ammonia removal. The hollow fiber membranes were directly submerged into the digestate of the anaerobic reactor. Sulfuric acid was circulated in the lumen as an adsorbent solution. Using this set up, the NH₄⁺-N concentration in the membrane reactor was significantly reduced. Moreover the extraction of ammonia lowered the pH by 0.2 units. In combination that led to a lowering of the free NH₃-N concentration by about 70%. Ammonia inhibition in the reference reactor was observed when the concentration exceeded 6 g/L NH₄⁺-N or 1-1.2 g/L NH₃-N. In contrast, in the membrane reactor the volatile fatty acid concentration, an indicator for process stability, was much lower and a higher gas yield and better degradation was observed. The chosen approach offers an appealing technology to remove ammonia directly from media having high concentrations of solids and it can help to improve process efficiency in anaerobic digestion of ammonia rich substrates. Copyright © 2012 Elsevier Ltd. All rights reserved.
Interrogation of a ring-resonator ultrasound sensor using a fiber Mach-Zehnder interferometer.
Peternella, Fellipe Grillo; Ouyang, Boling; Horsten, Roland; Haverdings, Michael; Kat, Pim; Caro, Jacob
2017-12-11
We experimentally demonstrate an interrogation procedure of a ring-resonator ultrasound sensor using a fiber Mach-Zehnder interferometer (MZI). The sensor comprises a silicon ring resonator (RR) located on a silicon-oxide membrane, designed to have its lowest vibrational mode in the MHz range, which is the range of intravascular ultrasound (IVUS) imaging. Ultrasound incident on the membrane excites its vibrational mode and as a result induces a modulation of the resonance wavelength of the RR, which is a measure of the amplitude of the ultrasound waves. The interrogation procedure developed is based on the mathematical description of the interrogator operation presented in Appendix A, where we identify the amplitude of the angular deflection Φ 0 on the circle arc periodically traced in the plane of the two orthogonal interrogator voltages, as the principal sensor signal. Interrogation is demonstrated for two sensors with membrane vibrational modes at 1.3 and 0.77 MHz, by applying continuous wave ultrasound in a wide pressure range. Ultrasound is detected at a pressure as low as 1.2 Pa. Two optical path differences (OPDs) of the MZI are used. Thus, different interference conditions of the optical signals are defined, leading to a higher apparent sensitivity for the larger OPD, which is accompanied by a weaker signal, however. Independent measurements using the modulation method yield a resonance modulation per unit of pressure of 21.4 fm/Pa (sensor #1) and 103.8 fm/Pa (sensor #2).
Khan, Md Rajibur Rahaman; Kang, Shin-Won
2016-07-09
In this paper, we propose a temperature/thermal sensor that contains a Rhodamine-B sensing membrane. We applied two different sensing methods, namely, fiber-optic pulse width modulation (PWM) and an interdigitated capacitor (IDC)-based temperature sensor to measure the temperature from 5 °C to 100 °C. To the best of our knowledge, the fiber-optic PWM-based temperature sensor is reported for the first time in this study. The proposed fiber-optic PWM temperature sensor has good sensing ability; its sensitivity is ~3.733 mV/°C. The designed temperature-sensing system offers stable sensing responses over a wide dynamic range, good reproducibility properties with a relative standard deviation (RSD) of ~0.021, and the capacity for a linear sensing response with a correlation coefficient of R² ≈ 0.992 over a wide sensing range. In our study, we also developed an IDC temperature sensor that is based on the capacitance variation principle as the IDC sensing element is heated. We compared the performance of the proposed temperature-sensing systems with different fiber-optic temperature sensors (which are based on the fiber-optic wavelength shift method, the long grating fiber-optic Sagnac loop, and probe type fiber-optics) in terms of sensitivity, dynamic range, and linearity. We observed that the proposed sensing systems have better sensing performance than the above-mentioned sensing system.
L.-H. Huang, Christopher; Fraser, James A.
2011-01-01
Skeletal muscle activation requires action potential (AP) initiation followed by its sarcolemmal propagation and tubular excitation to trigger Ca2+ release and contraction. Recent studies demonstrate that ion channels underlying the resting membrane conductance (GM) of fast-twitch mammalian muscle fibers are highly regulated during muscle activity. Thus, onset of activity reduces GM, whereas prolonged activity can markedly elevate GM. Although these observations implicate GM regulation in control of muscle excitability, classical theoretical studies in un-myelinated axons predict little influence of GM on membrane excitability. However, surface membrane morphologies differ markedly between un-myelinated axons and muscle fibers, predominantly because of the tubular (t)-system of muscle fibers. This study develops a linear circuit model of mammalian muscle fiber and uses this to assess the role of subthreshold electrical properties, including GM changes during muscle activity, for AP initiation, AP propagation, and t-system excitation. Experimental observations of frequency-dependent length constant and membrane-phase properties in fast-twitch rat fibers could only be replicated by models that included t-system luminal resistances. Having quantified these resistances, the resulting models showed enhanced conduction velocity of passive current flow also implicating elevated AP propagation velocity. Furthermore, the resistances filter passive currents such that higher frequency current components would determine sarcolemma AP conduction velocity, whereas lower frequency components excite t-system APs. Because GM modulation affects only the low-frequency membrane impedance, the GM changes in active muscle would predominantly affect neuromuscular transmission and low-frequency t-system excitation while exerting little influence on the high-frequency process of sarcolemmal AP propagation. This physiological role of GM regulation was increased by high Cl− permeability, as in muscle endplate regions, and by increased extracellular [K+], as observed in working muscle. Thus, reduced GM at the onset of exercise would enhance t-system excitation and neuromuscular transmission, whereas elevated GM after sustained activity would inhibit these processes and thereby accentuate muscle fatigue. PMID:21670208
Humbert, H; Machinal, C; Labaye, Ivan; Schrotter, J C
2011-01-01
The determination of the virus retention capabilities of UF units during operation is essential for the operators of drinking water treatment facilities in order to guarantee an efficient and stable removal of viruses through time. In previous studies, an effective method (MS2-phage challenge tests) was developed by the Water Research Center of Veolia Environnement for the measurement of the virus retention rates (Log Removal Rate, LRV) of commercially available hollow fiber membranes at lab scale. In the present work, the protocol for monitoring membrane performance was transferred from lab scale to pilot scale. Membrane performances were evaluated during pilot trial and compared to the results obtained at lab scale with fibers taken from the pilot plant modules. PFU culture method was compared to RT-PCR method for the calculation of LRV in both cases. Preliminary tests at lab scale showed that both methods can be used interchangeably. For tests conducted on virgin membrane, a good consistency was observed between lab and pilot scale results with the two analytical methods used. This work intends to show that a reliable determination of the membranes performances based on RT-PCR analytical method can be achieved during the operation of the UF units.
NASA Technical Reports Server (NTRS)
Shaw, Hali L.; Howard, Kevin; Flynn, Michael T.; Beeler, David; Kawashima, Brian; Andersen, Thomas A. E.; Kleinschmidt, Kim; Vogel, Jorg; Parodi, Jurek
2017-01-01
The Multifiltration Bed system in the International Space Station (ISS) Water Processor Assembly (WPA) needs to be improved by reducing or eliminating the usage rate of expendable media, removing dimethylsilanediol (DMSD), and reducing the overall system mass. The WPA contains two multifiltration beds, each with a mass of approximately 50 kg. Reducing the mass of the WPA is an important part of evolving the ISS system for future exploration missions. The Multifiltration Bed Replacement (MFBR) technology is based on biomimetic membranes, which derive their unique characteristics from aquaporins, or water channel proteins. Aquaporin membranes were commercialized by the company Aquaporin AS. Tests were conducted using the Aquaporin Inside Hollow Fiber Module to determine the maximum water recovery ratio and membrane life. Samples were analyzed for total organic carbon (TOC), DMSD, acetate, ions, and volatiles such as ethanol and acetone. The results indicate that at a 97.498.1 water recovery ratio, the membrane module can reject approximately 50 of the TOC and specific conductance using the simulated ISS MSFC humidity condensate ersatz. Additionally, the life of the membrane was determined to be a minimum of 7103 hours.
Treatment of Spacecraft Wastewater Using a Hollow Fiber Membrane Biofilm Redox Control Reactor
NASA Technical Reports Server (NTRS)
Smith, Daniel P.
2003-01-01
The purpose of this project was to develop and evaluate design concepts for biological treatment reactors for the purification of spacecraft wastewater prior to reverse osmosis treatment. The motivating factor is that wastewater recovery represents the greatest single potential reduction in the resupply requirements for crewed space missions. Spacecraft wastewater composition was estimated from the characteristics of the three major component streams: urine/flush water, hygiene water, and atmospheric condensate. The key characteristics of composite spacecraft wastewater are a theoretical oxygen demand of 4519 mg/L, of which 65% is nitrogenous oxygen demand, in a volume of 11.5 liter/crew-day. The organic carbon to nitrogen ratio of composite wastewater is 0.86. Urine represents 93% of nitrogen and 49% of the organic carbon in the composite wastestream. Various bioreaction scenarios were evaluated to project stoichiometric oxygen demands and the ability of wastewater carbon to support denitrification. Ammonia nitrification to the nitrite oxidation state reduced the oxygen requirement and enabled wastewater carbon to provide nearly complete denitrification. A conceptual bioreactor design was established using hollow fiber membranes for bubbleless oxygen transfer in a gravity-free environment, in close spatial juxtaposition to a second interspaced hollow fiber array for supplying molecular hydrogen. Highly versatile redox control and an enhanced ability to engineer syntrophic associations are stated advantages. A prototype reactor was constructed using a microporous hollow fiber membrane module for aeration. Maintaining inlet gas pressure within 0.25 psi of the external water pressure resulted in bubble free operation with no water ingress into hollow fiber lumens. Recommendations include the design and operational testing of hollow fiber bioreactors using: 1) Partial nitrification/nitrite predenitrification; 2) Limited aeration for simultaneous nitrification/denitrification or for nitrite reduction/ammonia oxidation; 3) Hydrogenotrophic denitrification.
A fiber-based implantable multi-optrode array with contiguous optical and electrical sites
NASA Astrophysics Data System (ADS)
Chen, Sanyuan; Pei, Weihua; Gui, Qiang; Chen, Yuanfang; Zhao, Shanshan; Wang, Huan; Chen, Hongda
2013-08-01
Objective. Although various kinds of optrodes are designed to deliver light and sense electrophysiological responses, few have a tightly closed optical delivering site or electrical recording site. The large space between them often blurs the stimulation location and light intensity threshold. Approach. Based on an optical fiber, we develop an optrode structure which has a coniform tip where the light exit point and gold-based electrode site are located. The optrode is fabricated by integrating a metal membrane electrode on the outside of a tapered fiber. Half of the cone-shape tip is covered by a layer of gold membrane to form the electrode. A commercial fiber connector, mechanical transfer (MT) module, is chosen to assemble the multi-optrode array (MOA). The MT connector acts as both the holder of the optrode array and an aligning part to connect the MOA with the light source. Main results. We fabricated a pluggable MOA weighing only 0.2 g. The scanning electron microscope images showed a tight cover of the metal layer on the optrode tip with an exposure area of 1500 µm2. The electrochemical impedance of the optrode at 1 kHz was 100 kΩ on average and the light emission intensity reached 13 mW. The optical modulating and electrophysiological recording ability of the MOA was validated by monitoring the response of cells in a ChR2-expressing mouse's cerebral cortex. Neurons that maintained high cluster quality (signal-to-noise ratio = 5:1) and coherence in response to trains of 20 Hz stimulation were monitored. Significance. The optrode array reduces the distance between the optical stimulating sites and electrophysiological sites dramatically and can supply multiple channels to guide different lights simultaneously. This optrode with its novel structure may lead to a different kind of optical neural control prosthetic device, opening up a new option for neural modulation in the brain.
Pu, Juan; Komvopoulos, Kyriakos
2014-06-01
Bilayer fibrous membranes of poly(l-lactic acid) (PLLA) were fabricated by electrospinning, using a parallel-disk mandrel configuration that resulted in the sequential deposition of a layer with fibers aligned across the two parallel disks and a layer with randomly oriented fibers, both layers deposited in a single process step. Membrane structure and fiber alignment were characterized by scanning electron microscopy and two-dimensional fast Fourier transform. Because of the intricacies of the generated electric field, bilayer membranes exhibited higher porosity than single-layer membranes consisting of randomly oriented fibers fabricated with a solid-drum collector. However, despite their higher porosity, bilayer membranes demonstrated generally higher elastic modulus, yield strength and toughness than single-layer membranes with random fibers. Bilayer membrane deformation at relatively high strain rates comprised multiple abrupt microfracture events characterized by discontinuous fiber breakage. Bilayer membrane elongation yielded excessive necking of the layer with random fibers and remarkable fiber stretching (on the order of 400%) in the layer with fibers aligned in the stress direction. In addition, fibers in both layers exhibited multiple localized necking, attributed to the nonuniform distribution of crystalline phases in the fibrillar structure. The high membrane porosity, good mechanical properties, and good biocompatibility and biodegradability of PLLA (demonstrated in previous studies) make the present bilayer membranes good scaffold candidates for a wide range of tissue engineering applications. Copyright © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Zuckerwar, Allan J. (Inventor); Cuomo, Frank W. (Inventor); Robbins, William E. (Inventor); Hopson, Purnell, Jr. (Inventor)
1992-01-01
A fiber optic microphone is provided for measuring fluctuating pressures. An optical fiber probe having at least one transmitting fiber for transmitting light to a pressure-sensing membrane and at least one receiving fiber for receiving light reflected from a stretched membrane is provided. The pressure-sensing membrane may be stretched for high frequency response. Further, a reflecting surface of the pressure-sensing membrane may have dimensions which substantially correspond to dimensions of a cross section of the optical fiber probe. Further, the fiber optic microphone can be made of materials for use in high temperature environments, for example greater than 1000 F. A fiber optic probe is also provided with a backplate for damping membrane motion. The backplate further provides a means for on-line calibration of the microphone.
NASA Technical Reports Server (NTRS)
Zuckerwar, Allan J. (Inventor); Cuomo, Frank W. (Inventor); Robbins, William E. (Inventor)
1993-01-01
A fiber optic microphone is provided for measuring fluctuating pressures. An optical fiber probe having at least one transmitting fiber for transmitting light to a pressure-sensing membrane and at least one receiving fiber for receiving light reflected from a stretched membrane is provided. The pressure-sensing membrane may be stretched for high frequency response. Further, a reflecting surface of the pressure-sensing membrane may have dimensions which substantially correspond to dimensions of a cross section of the optical fiber probe. Further, the fiber optic microphone can be made of materials for use in high temperature environments, for example greater than 1000 F. A fiber optic probe is also provided with a back plate for damping membrane motion. The back plate further provides a means for on-line calibration of the microphone.
Bacakova, Marketa; Lopot, Frantisek; Hadraba, Daniel; Varga, Marian; Zaloudkova, Margit; Stranska, Denisa; Suchy, Tomas; Bacakova, Lucie
2015-01-01
It may be possible to regulate the cell colonization of biodegradable polymer nanofibrous membranes by plasma treatment and by the density of the fibers. To test this hypothesis, nanofibrous membranes of different fiber densities were treated by oxygen plasma with a range of plasma power and exposure times. Scanning electron microscopy and mechanical tests showed significant modification of nanofibers after plasma treatment. The intensity of the fiber modification increased with plasma power and exposure time. The exposure time seemed to have a stronger effect on modifying the fiber. The mechanical behavior of the membranes was influenced by the plasma treatment, the fiber density, and their dry or wet state. Plasma treatment increased the membrane stiffness; however, the membranes became more brittle. Wet membranes displayed significantly lower stiffness than dry membranes. X-ray photoelectron spectroscopy (XPS) analysis showed a slight increase in oxygen-containing groups on the membrane surface after plasma treatment. Plasma treatment enhanced the adhesion and growth of HaCaT keratinocytes on nanofibrous membranes. The cells adhered and grew preferentially on membranes of lower fiber densities, probably due to the larger area of void spaces between the fibers. © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.
Bench Scale Thin Film Composite Hollow Fiber Membranes for Post-Combustion Carbon Dioxide Capture
DOE Office of Scientific and Technical Information (OSTI.GOV)
Glaser, Paul; Bhandari, Dhaval; Narang, Kristi
2015-04-01
GE Global Research, Idaho National Laboratory (INL), Georgia Institute of Technology (Georgia Tech), and Western Research Institute (WRI) proposed to develop high performance thin film polymer composite hollow fiber membranes and advanced processes for economical post-combustion carbon dioxide (CO 2) capture from pulverized coal flue gas at temperatures typical of existing flue gas cleanup processes. The project sought to develop and then optimize new gas separations membrane systems at the bench scale, including tuning the properties of a novel polyphosphazene polymer in a coating solution and fabricating highly engineered porous hollow fiber supports. The project also sought to define themore » processes needed to coat the fiber support to manufacture composite hollow fiber membranes with high performance, ultra-thin separation layers. Physical, chemical, and mechanical stability of the materials (individual and composite) towards coal flue gas components was considered via exposure and performance tests. Preliminary design, technoeconomic, and economic feasibility analyses were conducted to evaluate the overall performance and impact of the process on the cost of electricity (COE) for a coal-fired plant including capture technologies. At the onset of the project, Membranes based on coupling a novel selective material polyphosphazene with an engineered hollow fiber support was found to have the potential to capture greater than 90% of the CO 2 in flue gas with less than 35% increase in COE, which would achieve the DOE-targeted performance criteria. While lab-scale results for the polyphosphazene materials were very promising, and the material was incorporated into hollow-fiber modules, difficulties were encountered relating to the performance of these membrane systems over time. Performance, as measured by both flux of and selectivity for CO 2 over other flue gas constituents was found to deteriorate over time, suggesting a system that was more dynamic than initially hypothesized. These phenomena are believed to be associated with the physical and mechanical properties of the separation material, rather than chemical degradation by flue gas or one of its constituents. Strategies to improve the composite systems via alternate chemistries and processing techniques were only partially successful in creating a more robust system, but the research provided critical insight into the barriers to engineering sophisticated composite systems for gas separation. Promising concepts, including a re-engineering of the separation material with interpenetrating polymer networks were identified which may prove useful to future efforts in this field.« less
Kim, Hyun-Woo; Cheng, Jing; Rittmann, Bruce E
2016-03-01
An advanced-material photobioreactor, the direct membrane-carbonation photobioreactor (DMCPBR), was tested to investigate the impact of directly submerging a membrane carbonation (MC) module of hollow-fiber membranes inside the photobioreactor. Results demonstrate that the DMCPBR utilized over 90% of the supplied CO2 by matching the CO2 flux to the C demand of photoautotrophic biomass growth. The surface area of the submerged MC module was the key to control CO2 delivery and biomass productivity. Tracking the fate of supplied CO2 explained how the DMCPBR reduced loss of gaseous CO2 while matching the inorganic carbon (IC) demand to its supply. Accurate fate analysis required that the biomass-associated C include soluble microbial products as a sink for captured CO2. With the CO2 supply matched to the photosynthetic demand, light attenuation limited the rate microalgal photosynthesis. The DMCPBR presents an opportunity to improve CO2-deliver efficiency and make microalgae a more effective strategy for C-neutral resource recovery. Copyright © 2015 Elsevier Ltd. All rights reserved.
Nowak, Roberta B.; Fischer, Robert S.; Zoltoski, Rebecca K.; Kuszak, Jerome R.
2009-01-01
Hexagonal packing geometry is a hallmark of close-packed epithelial cells in metazoans. Here, we used fiber cells of the vertebrate eye lens as a model system to determine how the membrane skeleton controls hexagonal packing of post-mitotic cells. The membrane skeleton consists of spectrin tetramers linked to actin filaments (F-actin), which are capped by tropomodulin1 (Tmod1) and stabilized by tropomyosin (TM). In mouse lenses lacking Tmod1, initial fiber cell morphogenesis is normal, but fiber cell hexagonal shapes and packing geometry are not maintained as fiber cells mature. Absence of Tmod1 leads to decreased γTM levels, loss of F-actin from membranes, and disrupted distribution of β2-spectrin along fiber cell membranes. Regular interlocking membrane protrusions on fiber cells are replaced by irregularly spaced and misshapen protrusions. We conclude that Tmod1 and γTM regulation of F-actin stability on fiber cell membranes is critical for the long-range connectivity of the spectrin–actin network, which functions to maintain regular fiber cell hexagonal morphology and packing geometry. PMID:19752024
Fiber-Optic Micrometeoroid/Orbital Debris Impact Detector System
NASA Technical Reports Server (NTRS)
Christiansen, Eric L.; Tennyson, R. C.; Morison, W. D.
2012-01-01
A document describes a reliable, lightweight micrometeoroid/orbital debris (MMOD) detection system that can be located at strategic positions of "high consequence" to provide real-time warning of a penetration, its location, and the extent of the damage to a spacecraft. The concept is to employ fiber-optic sensors to detect impact damage and penetration of spacecraft structures. The fibers are non-electrical, employ light waves, and are immune to electromagnetic interference. The fiber-optic sensor array can be made as a stand-alone product, being bonded to a flexible membrane material or a structure that is employed as a MMOD shield material. The optical sensors can also be woven into hybrid MMOD shielding fabrics. The glass fibers of the fiber-optic sensor provide a dual purpose in contributing to the breakup of MMOD projectiles. The grid arrays can be made in a modular configuration to provide coverage over any area desired. Each module can be connected to a central scanner instrument and be interrogated in a continuous or periodic mode.
NASA Astrophysics Data System (ADS)
Liang, Yinzheng; Ji, Liwen; Guo, Bingkun; Lin, Zhan; Yao, Yingfang; Li, Ying; Alcoutlabi, Mataz; Qiu, Yiping; Zhang, Xiangwu
Lithium lanthanum titanate oxide (LLTO)/polyacrylonitrile (PAN) submicron composite fiber-based membranes were prepared by electrospinning dispersions of LLTO ceramic particles in PAN solutions. These ionic-conducting LLTO/PAN composite fiber-based membranes can be directly used as lithium-ion battery separators due to their unique porous structure. Ionic conductivities were evaluated after soaking the electrospun LLTO/PAN composite fiber-based membranes in a liquid electrolyte, 1 M lithium hexafluorophosphate (LiPF 6) in ethylene carbonate (EC)/ethyl methyl carbonate (EMC) (1:1 vol). It was found that, among membranes with various LLTO contents, 15 wt.% LLTO/PAN composite fiber-based membranes provided the highest ionic conductivity, 1.95 × 10 -3 S cm -1. Compared with pure PAN fiber membranes, LLTO/PAN composite fiber-based membranes had greater liquid electrolyte uptake, higher electrochemical stability window, and lower interfacial resistance with lithium. In addition, lithium//1 M LiPF 6/EC/EMC//lithium iron phosphate cells containing LLTO/PAN composite fiber-based membranes as the separator exhibited high discharge specific capacity of 162 mAh g -1 and good cycling performance at 0.2 C rate at room temperature.
NASA Astrophysics Data System (ADS)
DeGostin, Matthew B.; Peracchio, Aldo A.; Myles, Timothy D.; Cassenti, Brice N.; Chiu, Wilson K. S.
2016-03-01
In this paper, a Fiber Network (FN) ion transport model is developed to simulate the three-dimensional fibrous microstructural morphology that results from the electrospinning membrane fabrication process. This model is able to approximate fiber layering within a membrane as well as membrane swelling due to water uptake. The discrete random fiber networks representing membranes are converted to resistor networks and solved for current flow and ionic conductivity. Model predictions are validated by comparison with experimental conductivity data from electrospun anion exchange membranes (AEM) and proton exchange membranes (PEM) for fuel cells as well as existing theories. The model is capable of predicting in-plane and thru-plane conductivity and takes into account detailed membrane characteristics, such as volume fraction, fiber diameter, fiber conductivity, and membrane layering, and as such may be used as a tool for advanced electrode design.
Composite membranes, methods of making same, and applications of same
Pintauro, Peter N.; Park, Andrew; Ballengee, Jason
2016-05-24
In one aspect of the present invention, a method of fabricating a composite membrane includes: forming a first polymer solution from a first polymer and a second polymer solution from a second polymer, respectively, where the first polymer includes a charged polymer and the second polymer includes an uncharged polymer; electrospinning, separately and simultaneously, the first and second polymer solutions to form a dual fiber mat with first polymer fibers and second polymer fibers; and processing the dual fiber mat by softening and flowing one of the first or second polymer fibers to fill in the void space between the other of the first and second polymer fibers so as to form the composite membrane. In some embodiments, the composite membrane may be a proton exchange membrane (PEM) or an anion exchange membrane (AEM).
Hilal-Alnaqbi, Ali; Mourad, Abdel-Hamid I; Yousef, Basem F
2014-01-01
A mathematical model is developed to predict oxygen transfer in the fiber-in-fiber (FIF) bioartificial liver device. The model parameters are taken from the constructed and tested FIF modules. We extended the Krogh cylinder model by including one more zone for oxygen transfer. Cellular oxygen uptake was based on Michaelis-Menten kinetics. The effect of varying a number of important model parameters is investigated, including (1) oxygen partial pressure at the inlet, (2) the hydraulic permeability of compartment B (cell region), (3) the hydraulic permeability of the inner membrane, and (4) the oxygen diffusivity of the outer membrane. The mathematical model is validated by comparing its output against the experimentally acquired values of an oxygen transfer rate and the hydrostatic pressure drop. Three governing simultaneous linear differential equations are derived to predict and validate the experimental measurements, e.g., the flow rate and the hydrostatic pressure drop. The model output simulated the experimental measurements to a high degree of accuracy. The model predictions show that the cells in the annulus can be oxygenated well even at high cell density or at a low level of gas phase PG if the value of the oxygen diffusion coefficient Dm is 16 × 10(-5) . The mathematical model also shows that the performance of the FIF improves by increasing the permeability of polypropylene membrane (inner fiber). Moreover, the model predicted that 60% of plasma has access to the cells in the annulus within the first 10% of the FIF bioreactor axial length for a specific polypropylene membrane permeability and can reach 95% within the first 30% of its axial length. © 2013 International Union of Biochemistry and Molecular Biology, Inc.
Ultra-Low Power Fiber-Coupled Gallium Arsenide Photonic Crystal Cavity Electro-Optical Modulator
2011-04-11
1185 (2009). 6. B. R. Bennett, R. A. Soref, and J. A. Del Alamo, “Carrier-induced change in refractive index of InP , GaAs, and InGaAsP,” IEEE J...Finally, a Au/Ge/Ni/Au n-type contact and a Au/ Zn /Au p-type contact were deposited and the membranes were released by wet etching the sacrificial
Díaz, I; Pérez, C; Alfaro, N; Fdz-Polanco, F
2015-06-01
In this study, the potential of a pilot hollow-fiber membrane bioreactor for the conversion of H2 and CO2 to CH4 was evaluated. The system transformed 95% of H2 and CO2 fed at a maximum loading rate of 40.2 [Formula: see text] and produced 0.22m(3) of CH4 per m(3) of H2 fed at thermophilic conditions. H2 mass transfer to the liquid phase was identified as the limiting step for the conversion, and kLa values of 430h(-1) were reached in the bioreactor by sparging gas through the membrane module. A simulation showed that the bioreactor could upgrade biogas at a rate of 25m(3)/mR(3)d, increasing the CH4 concentration from 60 to 95%v. This proof-of-concept study verified that gas sparging through a membrane module can efficiently transfer H2 from gas to liquid phase and that the conversion of H2 and CO2 to biomethane is feasible on a pilot scale at noteworthy load rates. Copyright © 2015 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rogers, J.D.
1994-08-04
This report is divided into two parts. The second part is divided into the following sections: experimental protocol; modeling the hollow fiber extractor using film theory; Graetz model of the hollow fiber membrane process; fundamental diffusive-kinetic model; and diffusive liquid membrane device-a rigorous model. The first part is divided into: membrane and membrane process-a concept; metal extraction; kinetics of metal extraction; modeling the membrane contactor; and interfacial phenomenon-boundary conditions-applied to membrane transport.
Membrane materials for storing biological samples intended for comparative nanotoxicological testing
NASA Astrophysics Data System (ADS)
Metelkin, A.; Kuznetsov, D.; Kolesnikov, E.; Chuprunov, K.; Kondakov, S.; Osipov, A.; Samsonova, J.
2015-11-01
The study is aimed at identifying the samples of most promising membrane materials for storing dry specimens of biological fluids (Dried Blood Spots, DBS technology). Existing sampling systems using cellulose fiber filter paper have a number of drawbacks such as uneven distribution of the sample spot, dependence of the spot spreading area on the individual biosample properties, incomplete washing-off of the sample due to partially inconvertible sorption of blood components on cellulose fibers, etc. Samples of membrane materials based on cellulose, polymers and glass fiber with applied biosamples were studied using methods of scanning electron microscopy, FT-IR spectroscopy and surface-wetting measurement. It was discovered that cellulose-based membrane materials sorb components of biological fluids inside their structure, while membranes based on glass fiber display almost no interaction with the samples and biological fluid components dry to films in the membrane pores between the structural fibers. This characteristic, together with the fact that membrane materials based on glass fiber possess sufficient strength, high wetting properties and good storage capacity, attests them as promising material for dry samples of biological fluids storage systems.
Guo, Fei; Servi, Amelia; Liu, Andong; Gleason, Karen K; Rutledge, Gregory C
2015-04-22
Fibrous membranes of poly(trimethyl hexamethylene terephthalamide) (PA6(3)T) were fabricated by electrospinning and rendered hydrophobic by applying a conformal coating of poly(1H,1H,2H,2H-perfluorodecyl acrylate) (PPFDA) using initiated chemical vapor deposition (iCVD). A set of iCVD-treated electrospun PA6(3)T fiber membranes with fiber diameters ranging from 0.25 to 1.8 μm were tested for desalination using the air gap membrane distillation configuration. Permeate fluxes of 2-11 kg/m2/h were observed for temperature differentials of 20-45 °C between the feed stream and condenser plate, with rejections in excess of 99.98%. The liquid entry pressure was observed to increase dramatically, from 15 to 373 kPa with reduction in fiber diameter. Contrary to expectation, for a given feed temperature the permeate flux was observed to increase for membranes of decreasing fiber diameter. The results for permeate flux and salt rejection show that it is possible to construct membranes for membrane distillation even from intrinsically hydrophilic materials after surface modification by iCVD and that the fiber diameter is shown to play an important role on the membrane distillation performance in terms of permeate flux, salt rejection, and liquid entry pressure.
Organization of Lipids in Fiber-Cell Plasma Membranes of the Eye Lens
Subczynski, Witold K.; Mainali, Laxman; Raguz, Marija; O’Brien, William J.
2016-01-01
The plasma membrane together with the cytoskeleton forms the only supramolecular structure of the matured fiber cell which accounts for mostly all fiber cell lipids. The purpose of this review is to inform researchers about the importance of the lipid bilayer portion of the lens fiber cell plasma membranes in the maintaining lens homeostasis, and thus protecting against cataract development. PMID:26988627
Barrientos, Genaro; Llanos, Paola; Hidalgo, Jorge; Bolaños, Pura; Caputo, Carlo; Riquelme, Alexander; Sánchez, Gina; Quest, Andrew F. G.; Hidalgo, Cecilia
2015-01-01
Cholesterol and caveolin are integral membrane components that modulate the function/location of many cellular proteins. Skeletal muscle fibers, which have unusually high cholesterol levels in transverse tubules, express the caveolin-3 isoform but its association with transverse tubules remains contentious. Cholesterol removal impairs excitation–contraction (E–C) coupling in amphibian and mammalian fetal skeletal muscle fibers. Here, we show that treating single muscle fibers from adult mice with the cholesterol removing agent methyl-β-cyclodextrin decreased fiber cholesterol by 26%, altered the location pattern of caveolin-3 and of the voltage dependent calcium channel Cav1.1, and suppressed or reduced electrically evoked Ca2+ transients without affecting membrane integrity or causing sarcoplasmic reticulum (SR) calcium depletion. We found that transverse tubules from adult muscle and triad fractions that contain ~10% attached transverse tubules, but not SR membranes, contained caveolin-3 and Cav1.1; both proteins partitioned into detergent-resistant membrane fractions highly enriched in cholesterol. Aging entails significant deterioration of skeletal muscle function. We found that triad fractions from aged rats had similar cholesterol and RyR1 protein levels compared to triads from young rats, but had lower caveolin-3 and glyceraldehyde 3-phosphate dehydrogenase and increased Na+/K+-ATPase protein levels. Both triad fractions had comparable NADPH oxidase (NOX) activity and protein content of NOX2 subunits (p47phox and gp91phox), implying that NOX activity does not increase during aging. These findings show that partial cholesterol removal impairs E–C coupling and alters caveolin-3 and Cav1.1 location pattern, and that aging reduces caveolin-3 protein content and modifies the expression of other triadic proteins. We discuss the possible implications of these findings for skeletal muscle function in young and aged animals. PMID:25914646
Zhu, Li; Ji, Jiayou; Wang, Shulin; Xu, Chenxi; Yang, Kun; Xu, Man
2018-09-01
Al 2 O 3 -NaA zeolite composite hollow fiber membranes were successfully fabricated via hydrothermal synthesis by using industrial solid waste coal fly ash and porous Al 2 O 3 hollow fiber supports. The as-synthesized Al 2 O 3 -NaA zeolite composite hollow fiber membranes were then characterized by scanning electron microscopy (SEM) and X-ray diffraction (XRD). The hollow fiber membranes were used to remove lead ions (Pb(II), 50 mg L -1 ) from synthetic wastewater with a removal efficiency of 99.9% at 0.1 MPa after 12 h of filtration. This study showed that the Al 2 O 3 -NaA zeolite composite hollow fiber membranes (the pore size of the membrane was about 0.41 nm in diameter) synthesized from coal fly ash could be efficiently used for treating low concentration Pb(II) wastewater. It recycled solid waste coal fly ash not only to solve its environment problems, but also can produce high-value Al 2 O 3 -NaA zeolite composite hollow fiber membranes for separation application in treating wastewater containing Pb(II). Copyright © 2018 Elsevier Ltd. All rights reserved.
Splechtna, Barbara; Petzelbauer, Inge; Kuhn, Bernhard; Kulbe, Klaus D; Nidetzky, Bernd
2002-01-01
Recombinant beta-glycosidase CelB from the hyperthermophilic archaeon Pyrococcusfuriosus was produced through expression of the plasmid-encoded gene in Escherichia coli. Bioreactor cultivations of E. coli in the presence of the inductor isopropyl-1-thio-beta-D-galactoside (0.1 mM) gave approx 100,000 U of enzyme activity/L of culture medium after 8 h of growth. A technical-grade enzyme for the hydrolysis of lactose was prepared by precipitating the mesophilic protein at 80 degrees C. A hollow-fiber membrane reactor was developed, and its performance during continuous processing of ultrahigh temperature-treated (UHT) skim milk at 70 degrees C was analyzed regarding long-term stability, productivity, and diffusional limitation thereof. CelB was covalently attached onto Eupergit C in yields of 80%, and a packed-bed immobilized enzyme reactor was used for the continuous hydrolysis of lactose in UHT skim milk at 70 degrees C. The packed-bed reactor was approximately 10-fold more stable and gave about the same productivity at 80% substrate conversion as the hollow-fiber reactor at 60% substrate conversion. The marked difference in the stability of free and immobilized CelB seems to reflect mainly binding of the soluble enzyme to the membrane surface of the hollow-fiber module. Under these bound conditions, CelB is essentially inactive. CelB is essentially inactive. Microbial contamination of the reactors did not occur during reaction times of up to 39 d, given that UHT skim milk and not pasteurized skim milk was used as the substrate.
Metabolic fuels: regulating fluxes to select mix.
Weber, Jean-Michel
2011-01-15
Animals must regulate the fluxes of multiple fuels to support changing metabolic rates that result from variation in physiological circumstances. The aim of fuel selection strategies is to exploit the advantages of individual substrates while minimizing the impact of disadvantages. All exercising mammals share a general pattern of fuel selection: at the same %V(O(2,max)) they oxidize the same ratio of lipids to carbohydrates. However, highly aerobic species rely more on intramuscular fuels because energy supply from the circulation is constrained by trans-sarcolemmal transfer. Fuel selection is performed by recruiting different muscles, different fibers within the same muscles or different pathways within the same fibers. Electromyographic analyses show that shivering humans can modulate carbohydrate oxidation either through the selective recruitment of type II fibers within the same muscles or by regulating pathway recruitment within type I fibers. The selection patterns of shivering and exercise are different: at the same %V(O(2,max)), a muscle producing only heat (shivering) or significant movement (exercise) strikes a different balance between lipid and carbohydrate oxidation. Long-distance migrants provide an excellent model to characterize how to increase maximal substrate fluxes. High lipid fluxes are achieved through the coordinated upregulation of mobilization, transport and oxidation by activating enzymes, lipid-solubilizing proteins and membrane transporters. These endurance athletes support record lipolytic rates in adipocytes, use lipoprotein shuttles to accelerate transport and show increased capacity for lipid oxidation in muscle mitochondria. Some migrant birds use dietary omega-3 fatty acids as performance-enhancing agents to boost their ability to process lipids. These dietary fatty acids become incorporated in membrane phospholipids and bind to peroxisome proliferator-activated receptors to activate membrane proteins and modify gene expression.
Shen, Chong; Meng, Qin; Zhang, Guoliang
2013-08-01
Tissue engineering devices as in vitro cell culture systems in scaffolds has encountered the bottleneck due to their much lower cell functions than real tissues/organs in vivo. Such situation has been improved in some extent by mimicking the cell microenvironments in vivo from either chemical or physical ways. However, microenvironmental curvature, commonly seen in real tissues/organs, has never been manipulated to regulate the cell performance in vitro. In this regard, this paper fabricated polysulfone membranes with or without polyethylene glycol modification to investigate the impact of curvature on two renal tubular cells. Regardless the varying membrane curvatures among hollow fiber membranes of different diameters and flat membrane of zero curvature, both renal cells could well attach at 4 h of seeding and form similar confluent layers at 6 days on each membrane. Nevertheless, the renal cells on hollow fibers, though showing confluent morphology as those on flat membranes, expressed higher renal functions and, moreover, the renal functions significantly increased with the membrane curvature among hollow fibers. Such upregulation on functions was unassociated with mass transport barrier of hollow fibers, because the cultures on lengthwise cut hollow fibers without mass transfer barrier showed same curvature effect on renal functions as whole hollow fibers. It could be proposed that the curvature of hollow fiber membrane approaching to the large curvature in kidney tubules increased the mechanical stress in the renal cells and thus might up-regulate the renal cell functions. In conclusion, the increase of substrate curvature could up-regulate the cell functions without altering the confluent cell morphology and this finding will facilitate the design of functional tissue engineering devices. Copyright © 2013 Wiley Periodicals, Inc.
Shipley, RJ; Waters, SL; Ellis, MJ
2010-01-01
The aim of this work is to provide operating data for biodegradable hollow fiber membrane bioreactors. The physicochemical cell culture environment can be controlled with the permeate flowrate, so this aim necessitates the provision of operating equations that enable end-users to set the pressures and feed flowrates to obtain their desired culture environment. In this paper, theoretical expressions for the pure water retentate and permeate flowrates, derived using lubrication theory, are compared against experimental data for a single fiber poly(vinyl alcohol)–poly(lactide-co-glycolide) crossflow module to give values for the membrane permeability and slip. Analysis of the width of the boundary layer region where slip effects are important, together with the sensitivity of the retentate and permeate equations to the slip parameter, show that slip is insignificant for these membranes, which have a mean pore diameter of 1.1 µm. The experimental data is used to determine a membrane permeability, of k = 1.86 × 10−16 m2, and to validate the model. It was concluded that the operating equation that relates the permeate to feed ratio, c, lumen inlet flowrate, Ql,in, lumen outlet pressure, P1, and ECS outlet pressure, P0, is1 where A and B are constants that depend on the membrane permeability and geometry (and are given explicitly). Finally, two worked examples are presented to demonstrate how a tissue engineer can use Equation 1 to specify operating conditions for their bioreactor. PMID:20641054
Shipley, R J; Waters, S L; Ellis, M J
2010-10-01
The aim of this work is to provide operating data for biodegradable hollow fiber membrane bioreactors. The physicochemical cell culture environment can be controlled with the permeate flowrate, so this aim necessitates the provision of operating equations that enable end-users to set the pressures and feed flowrates to obtain their desired culture environment. In this paper, theoretical expressions for the pure water retentate and permeate flowrates, derived using lubrication theory, are compared against experimental data for a single fiber poly(vinyl alcohol)-poly(lactide-co-glycolide) crossflow module to give values for the membrane permeability and slip. Analysis of the width of the boundary layer region where slip effects are important, together with the sensitivity of the retentate and permeate equations to the slip parameter, show that slip is insignificant for these membranes, which have a mean pore diameter of 1.1 microm. The experimental data is used to determine a membrane permeability, of k = 1.86 x 10(-16) m(2), and to validate the model. It was concluded that the operating equation that relates the permeate to feed ratio, c, lumen inlet flowrate, Q (l,in), lumen outlet pressure, P (1), and ECS outlet pressure, P (0), is P(1) - P(0) = Q(l),in (Ac + B) where A and B are constants that depend on the membrane permeability and geometry (and are given explicitly). Finally, two worked examples are presented to demonstrate how a tissue engineer can use Equation (1) to specify operating conditions for their bioreactor.
Luo, Nan; Xu, Rongle; Yang, Min; Yuan, Xing; Zhong, Hui; Fan, Yaobo
2015-12-01
A novel inorganic-organic composite membrane, namely poly(vinylidene fluoride) PVDF-glass fiber (PGF) composite membrane, was prepared and reinforced by interfacial ultraviolet (UV)-grafting copolymerization to improve the interfacial bonding strength between the membrane layer and the glass fiber. The interfacial polymerization between inorganic-organic interfaces is a chemical cross-linking reaction that depends on the functionalized glass fiber with silane coupling (KH570) as the initiator and the polymer solution with acrylamide monomer (AM) as the grafting block. The Fourier transform infrared spectrometer-attenuated total reflectance (FTIR-ATR) spectra and the energy dispersive X-ray (EDX) pictures of the interface between the glass fiber and polymer matrix confirmed that the AM was grafted to the surface of the glass fiber fabric and that the grafting polymer was successfully embedded in the membrane matrix. The formation mechanisms, permeation, and anti-fouling performance of the PGF composite membrane were measured with different amounts of AM in the doping solutions. The results showed that the grafting composite membrane improved the interfacial bonding strength and permeability, and the peeling strength was improved by 32.6% for PGF composite membranes with an AM concentration at 2wt.%. Copyright © 2015. Published by Elsevier B.V.
Block copolymer hollow fiber membranes with catalytic activity and pH-response.
Hilke, Roland; Pradeep, Neelakanda; Madhavan, Poornima; Vainio, Ulla; Behzad, Ali Reza; Sougrat, Rachid; Nunes, Suzana P; Peinemann, Klaus-Viktor
2013-08-14
We fabricated block copolymer hollow fiber membranes with self-assembled, shell-side, uniform pore structures. The fibers in these membranes combined pores able to respond to pH and acting as chemical gates that opened above pH 4, and catalytic activity, achieved by the incorporation of gold nanoparticles. We used a dry/wet spinning process to produce the asymmetric hollow fibers and determined the conditions under which the hollow fibers were optimized to create the desired pore morphology and the necessary mechanical stability. To induce ordered micelle assembly in the doped solution, we identified an ideal solvent mixture as confirmed by small-angle X-ray scattering. We then reduced p-nitrophenol with a gold-loaded fiber to confirm the catalytic performance of the membranes.
Zhang, Qi; Wang, Hua; Fan, Xinfei; Chen, Shuo; Yu, Hongtao; Quan, Xie
2016-01-01
In order to improve the permeate flux of photocatalytic membranes, we present an approach for coupling TiO2 with ceramic hollow fiber membranes. The ceramic hollow fiber membranes with high permeate flux were fabricated by a controlled wet-spinning process using polyethersulfone (PESf) and ceramic powder as precursors and 1-methyl-2-pyrrolidinone as solvent, and the subsequent TiO2 coating was performed by a dip-coating process using tetra-n-butyl titanate as precursor. It has been found that the PESf/ceramic powder ratio could influence the structure of the membranes. Here the as-prepared TiO2 hollow fiber membranes had a pure water flux of 4,450 L/(m(2)·h). The performance of the TiO2 hollow fiber membrane was evaluated using humic acid (HA) as a test substance. The results demonstrated that this membrane exhibited a higher permeate flux under UV irradiation than in the dark and the HA removal efficiency was enhanced. The approach described here provides an operable route to the development of high-permeable photocatalytic membranes for water treatment.
NASA Astrophysics Data System (ADS)
De Geeter, Nele; Dupré, Luc; Crevecoeur, Guillaume
2016-04-01
Objective. Transcranial magnetic stimulation (TMS) is a promising non-invasive tool for modulating the brain activity. Despite the widespread therapeutic and diagnostic use of TMS in neurology and psychiatry, its observed response remains hard to predict, limiting its further development and applications. Although the stimulation intensity is always maximum at the cortical surface near the coil, experiments reveal that TMS can affect deeper brain regions as well. Approach. The explanation of this spread might be found in the white matter fiber tracts, connecting cortical and subcortical structures. When applying an electric field on neurons, their membrane potential is altered. If this change is significant, more likely near the TMS coil, action potentials might be initiated and propagated along the fiber tracts towards deeper regions. In order to understand and apply TMS more effectively, it is important to capture and account for this interaction as accurately as possible. Therefore, we compute, next to the induced electric fields in the brain, the spatial distribution of the membrane potentials along the fiber tracts and its temporal dynamics. Main results. This paper introduces a computational TMS model in which electromagnetism and neurophysiology are combined. Realistic geometry and tissue anisotropy are included using magnetic resonance imaging and targeted white matter fiber tracts are traced using tractography based on diffusion tensor imaging. The position and orientation of the coil can directly be retrieved from the neuronavigation system. Incorporating these features warrants both patient- and case-specific results. Significance. The presented model gives insight in the activity propagation through the brain and can therefore explain the observed clinical responses to TMS and their inter- and/or intra-subject variability. We aspire to advance towards an accurate, flexible and personalized TMS model that helps to understand stimulation in the connected brain and to target more focused and deeper brain regions.
Organization of lipids in fiber-cell plasma membranes of the eye lens.
Subczynski, Witold K; Mainali, Laxman; Raguz, Marija; O'Brien, William J
2017-03-01
The plasma membrane together with the cytoskeleton forms the only supramolecular structure of the matured fiber cell which accounts for mostly all fiber cell lipids. The purpose of this review is to inform researchers about the importance of the lipid bilayer portion of the lens fiber cell plasma membranes in the maintaining lens homeostasis, and thus protecting against cataract development. Copyright © 2016 Elsevier Ltd. All rights reserved.
Matar, Gerald; Gonzalez-Gil, Graciela; Maab, Husnul; Nunes, Suzana; Le-Clech, Pierre; Vrouwenvelder, Johannes; Saikaly, Pascal E
2016-05-15
Membrane surface hydrophilic modification has always been considered to mitigating biofouling in membrane bioreactors (MBRs). Four hollow-fiber ultrafiltration membranes (pore sizes ∼0.1 μm) differing only in hydrophobic or hydrophilic surface characteristics were operated at a permeate flux of 10 L/m(2) h in the same lab-scale MBR fed with synthetic wastewater. In addition, identical membrane modules without permeate production (0 L/m(2) h) were operated in the same lab-scale MBR. Membrane modules were autopsied after 1, 10, 20 and 30 days of MBR operation, and total extracellular polymeric substances (EPS) accumulated on the membranes were extracted and characterized in detail using several analytical tools, including conventional colorimetric tests (Lowry and Dubois), liquid chromatography with organic carbon detection (LC-OCD), fluorescence excitation - emission matrices (FEEM), fourier transform infrared (FTIR) and confocal laser scanning microscope (CLSM). The transmembrane pressure (TMP) quickly stabilized with higher values for the hydrophobic membranes than hydrophilic ones. The sulfonated polysulfone (SPSU) membrane had the highest negatively charged membrane surface, accumulated the least amount of foulants and displayed the lowest TMP. The same type of organic foulants developed with time on the four membranes and the composition of biopolymers shifted from protein dominance at early stages of filtration (day 1) towards polysaccharides dominance during later stages of MBR filtration. Nonmetric multidimensional scaling of LC-OCD data showed that biofilm samples clustered according to the sampling event (time) regardless of the membrane surface chemistry (hydrophobic or hydrophilic) or operating mode (with or without permeate flux). These results suggest that EPS composition may not be the dominant parameter for evaluating membrane performance and possibly other parameters such as biofilm thickness, porosity, compactness and structure should be considered in future studies for evaluating the development and impact of biofouling on membrane performance. Copyright © 2016 Elsevier Ltd. All rights reserved.
AKAP localizes in a specific subset of TRPV1 and CaV1.2 positive nociceptive rat DRG neurons
Brandao, Katherine E.; Dell’Acqua, Mark L.; Levinson, Simon R.
2016-01-01
Modulation of phosphorylation states of ion channels is a critical step in the development of hyperalgesia during inflammation. Modulatory enhancement of channel activity may increase neuronal excitability and affect downstream targets such as gene transcription. The specificity required for such regulation of ion channels quickly occurs via targeting of protein kinases and phosphatases by the scaffolding A-kinase anchoring protein 79/150 (AKAP79/150). AKAP79/150 has been implicated in inflammatory pain by targeting PKA and PKC to the TRPV1 channel in peripheral sensory neurons, thus lowering threshold for activation by multiple inflammatory reagents. However, the expression pattern of AKAP79/150 in peripheral sensory neurons is unknown. In this study we use immunofluorescence microscopy to identify in DRG sections the peripheral neuron subtypes that express the rodent isoform AKAP150, as well as the subcellular distribution of AKAP150 and its potential target ion channels. We found that AKAP150 is predominantly expressed in a subset of small DRG sensory neurons where it is localized at the plasma membrane of the soma, axon initial segment and small fibers. The majority of these neurons is peripherin positive and produces c-fibers, though a small portion produces Aδ-fibers. Furthermore, we demonstrate that AKAP79/150 colocalizes with TRPV1 and CaV1.2 in the soma and axon initial segment. Thus AKAP150 is expressed in small, nociceptive DRG neurons where it is targeted to membrane regions and where it may play a role in the modulation of ion channel phosphorylation states required for hyperalgesia. PMID:21674494
Description of a flow optimized oxygenator with integrated pulsatile pump.
Borchardt, Ralf; Schlanstein, Peter; Arens, Jutta; Graefe, Roland; Schreiber, Fabian; Schmitz-Rode, Thomas; Steinseifer, Ulrich
2010-11-01
Extracorporeal membrane oxygenation (ECMO) is a well-established therapy for several lung and heart diseases in the field of neonatal and pediatric medicine (e.g., acute respiratory distress syndrome, congenital heart failure, cardiomyopathy). Current ECMO systems are typically composed of an oxygenator and a separate nonpulsatile blood pump. An oxygenator with an integrated pulsatile blood pump for small infant ECMO was developed, and this novel concept was tested regarding functionality and gas exchange rate. Pulsating silicone tubes (STs) were driven by air pressure and placed inside the cylindrical fiber bundle of an oxygenator to be used as a pump module. The findings of this study confirm that pumping blood with STs is a viable option for the future. The maximum gas exchange rate for oxygen is 48mL/min/L(blood) at a medium blood flow rate of about 300mL/min. Future design steps were identified to optimize the flow field through the fiber bundle to achieve a higher gas exchange rate. First, the packing density of the hollow-fiber bundle was lower than commercial oxygenators due to the manual manufacturing. By increasing this packing density, the gas exchange rate would increase accordingly. Second, distribution plates for a more uniform blood flow can be placed at the inlet and outlet of the oxygenator. Third, the hollow-fiber membranes can be individually placed to ensure equal distances between the surrounding hollow fibers. © 2010, Copyright the Authors. Artificial Organs © 2010, International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jung, Se-Hui; Park, Jin-Young; Joo, Jung-Hoon
2011-07-15
Membrane bridges are key cellular structures involved in intercellular communication; however, dynamics for their formation are not well understood. We demonstrated the formation and regulation of novel extracellular ultrathin fibers in NIH3T3 cells using confocal and atomic force microscopy. At adjacent regions of neighboring cells, phorbol 12-myristate 13-acetate (PMA) and glucose oxidase induced ultrathin fiber formation, which was prevented by Trolox, a reactive oxygen species (ROS) scavenger. The height of ROS-sensitive ultrathin fibers ranged from 2 to 4 nm. PMA-induced formation of ultrathin fibers was inhibited by cytochalasin D, but not by Taxol or colchicine, indicating that ultrathin fibers mainlymore » comprise microfilaments. PMA-induced ultrathin fibers underwent dynamic structural changes, resulting in formation of intercellular membrane bridges. Thus, these fibers are formed by a mechanism(s) involving ROS and involved in formation of intercellular membrane bridges. Furthermore, ultrastructural imaging of ultrathin fibers may contribute to understanding the diverse mechanisms of cell-to-cell communication and the intercellular transfer of biomolecules, including proteins and cell organelles.« less
NASA Astrophysics Data System (ADS)
Wang, Zhe; Pan, Zhijuan
2015-11-01
Hierarchical structured nano-sized/porous poly(lactic acid) (PLA-N/PLA-P) composite fibrous membranes with excellent air filtration performance were prepared via an electrospinning technique. Firstly, PLA-P fibers with different morphology were fabricated by varying the relative humidity, and the nanopores on fiber surface played a key role in improving the specific surface area and filtration performance of the resultant membranes. Secondly, hierarchical structure of PLA-N/PLA-P interlaced structured membranes and PLA-N/PLA-P double-layer structured membranes with different mass ratios for further enhanced air filtration performance were also successfully prepared by combining PLA-N fibers with PLA-P fibers. Filtration tests by measuring the penetration of sodium chloride (NaCl) aerosol particles with a 260 nm mass median diameter revealed that a moderate mass ratio of PLA-P fibers and PLA-N fibers contributed to improving the filtration performance of the hierarchical structured PLA-N/PLA-P composite membrane, and the double-layer structured PLA-N/PLA-P membrane possessed a higher filtration efficiency and quality factor than that of an interlaced structured PLA-N/PLA-P membrane with the same mass ratio. The as-prepared PLA-N/PLA-P double-layer structured membrane with a mass ratio of 1/5 showed a high filtration efficiency (99.999%) and a relatively low pressure drop (93.3 Pa) at the face velocity of 5.3 cm/s.
1980-01-01
Accessory fibers in most sperm surround the axoneme so that their function in propulsion is difficult to assess. In the sperm of the toad Bufo marinus, an accessory fiber is displaced from the axoneme, being connected to it by the thin undulating membrane in such a way that the movement of axoneme and accessory fiber can be viewed independently. The axoneme is highly convoluted in whole mounts, and the axial fiber is straight. Cinemicrographic analysis shows that it is the longer, flexuous fiber, the presumed axoneme, that move actively. The accessory fiber follows it passively with a lower amplitude of movement. The accessory fiber does not move independent of the axoneme, even after demembranation and reactivation of the sperm. On the basis of anatomical relations in the neck region, it appears that the accessory fibers of amphibians are analogous to the dense fibers of mammalian sperm. SDS polyacrylamide gel electrophoresis of demembranated toad sperm tails reveals two principal proteins in addition to the tubulins, the former probably arising from the accessory fibers and the matrix of the undulating membrane. The function of displacing an accessory fiber into an undulating membrane may be to provide stiffness for the tail without incurring an energy deficit large enough to require a long middle piece. A long middle piece is not present in toad sperm, in contrast to those sperm that have accessory fibers around the axoneme. However, the toad sperm suffers a reduction in speed of about one- third, compared with the speed expected for a sperm without an undulating membrane. PMID:6771299
Rapid Sample Processing for Detection of Food-Borne Pathogens via Cross-Flow Microfiltration
Li, Xuan; Ximenes, Eduardo; Amalaradjou, Mary Anne Roshni; Vibbert, Hunter B.; Foster, Kirk; Jones, Jim; Liu, Xingya; Bhunia, Arun K.
2013-01-01
This paper reports an approach to enable rapid concentration and recovery of bacterial cells from aqueous chicken homogenates as a preanalytical step of detection. This approach includes biochemical pretreatment and prefiltration of food samples and development of an automated cell concentration instrument based on cross-flow microfiltration. A polysulfone hollow-fiber membrane module having a nominal pore size of 0.2 μm constitutes the core of the cell concentration instrument. The aqueous chicken homogenate samples were circulated within the cross-flow system achieving 500- to 1,000-fold concentration of inoculated Salmonella enterica serovar Enteritidis and naturally occurring microbiota with 70% recovery of viable cells as determined by plate counting and quantitative PCR (qPCR) within 35 to 45 min. These steps enabled 10 CFU/ml microorganisms in chicken homogenates or 102 CFU/g chicken to be quantified. Cleaning and sterilizing the instrument and membrane module by stepwise hydraulic and chemical cleaning (sodium hydroxide and ethanol) enabled reuse of the membrane 15 times before replacement. This approach begins to address the critical need for the food industry for detecting food pathogens within 6 h or less. PMID:24014538
Legallais, C; Anspach, F B; Bueno, S M; Haupt, K; Vijayalakshmi, M A
1997-03-28
The depyrogenation of different IgG solutions using the histidine-linked hollow fiber membrane developed in our laboratory is presented here. Three strategies for endotoxin (ET) removal were investigated according to the immobilized histidine's ability to bind different immunoglobulins: (1) ET removal from 1 mg/ml non histidine-binding mouse monoclonal IgG1 (MabCD4) solution was achieved in the presence of acetate buffer (pH 5.0) without any protein loss. (2) For contaminated human IgG, combined adsorption of ET and IgG in the presence of MOPS of Tris buffer was tested, followed by differential elution using increasing salt concentrations. This attempt was not successful since ET were quantitatively found in the IgG elution fraction. (3) Alternatively, it was proposed to adsorb selectively ET in the presence of acetate buffer (pH 5.0) under non binding conditions for human IgG. Human IgG could then be purified if necessary with the same membrane in the presence of MOPS buffer (pH 6.5). With a 1 m2 histidine-PEVA module under these operating conditions, it is estimated that the depyrogenation of 3 l of 1 mg/ml IgG (human or murine) solution containing 80 EU/ml of ET should be possible.
Luo, Gang; Angelidaki, Irini
2013-04-01
Bubbleless gas transfer through a hollow fiber membrane (HFM) module was used to supply H2 to an anaerobic reactor for in situ biogas upgrading, and it creates a novel system that could achieve a CH4 content higher than 90 % in the biogas. The increase of CH4 content and pH, and the decrease of bicarbonate concentration were related with the increase of the H2 flow rate. The CH4 content increased from 78.4 % to 90.2 % with the increase of the H2 flow rate from 930 to 1,440 ml/(l day), while the pH in the reactor remained below 8.0. An even higher CH4 content (96.1 %) was achieved when the H2 flow rate was increased to 1,760 ml/(l day); however, the pH increased to around 8.3 due to bicarbonate consumption which hampered the anaerobic process. The biofilm formed on the HFM was found not to be beneficial for the process since it increased the resistance of H2 diffusion to the liquid. The study also demonstrated that the biofilm formed on the membrane only contributed 22-36 % to the H2 consumption, while most of the H2 was consumed by the microorganisms in the liquid phase.
Fiber optic sensor based on reflectivity configurations to detect heart rate
NASA Astrophysics Data System (ADS)
Yunianto, M.; Marzuki, A.; Riyatun, R.; Lestari, D.
2016-11-01
Research of optical fiber-based heart rate detection sensor has been conducted using the reflection configurationon the thorax motion modified. Optical fiber used in this research was Plastic Optical Fiber (POF) with a diameter of 0.5. Optical fiber system is made with two pieces of fiber, the first fiber is to serve as a transmitter transmitting light from the source to the reflector membrane, the second fiber serves as a receiver. One of the endsfrom the two fibersis pressed and positioned perpendicular of reflector membrane which is placed on the surface of the chest. The sensor works on the principle of intensity changes captured by the receiver fiber when the reflector membrane gets the vibe from the heart. The light source used is in the form of Light Emitting Diode (LED) and Light Dependent Resistor (LDR) as a light sensor. Variations are performed on the reflector membrane diameter. The light intensity received by the detector increases along with the increasing width of the reflector membrane diameter. The results show that this sensor can detect the harmonic peak at a frequency of 1.5 Hz; 7.5 Hz; 10.5 Hz; and 22.5 Hz in a healthy human heart with an average value of Beat Per Minute (BPM) by 78 times, a prototype sensor that is made can work and function properly.
Matsumoto, Hidetoshi; Tanioka, Akihiko
2011-01-01
Electrospinning is a versatile method for forming continuous thin fibers based on an electrohydrodynamic process. This method has the following advantages: (i) the ability to produce thin fibers with diameters in the micrometer and nanometer ranges; (ii) one-step forming of the two- or three-dimensional nanofiber network assemblies (nanofibrous membranes); and (iii) applicability for a broad spectrum of molecules, such as synthetic and biological polymers and polymerless sol-gel systems. Electrospun nanofibrous membranes have received significant attention in terms of their practical applications. The major advantages of nanofibers or nanofibrous membranes are the functionalities based on their nanoscaled-size, highly specific surface area, and highly molecular orientation. These functionalities of the nanofibrous membranes can be controlled by their fiber diameter, surface chemistry and topology, and internal structure of the nanofibers. This report focuses on our studies and describes fundamental aspects and applications of electrospun nanofibrous membranes. PMID:24957735
[Myelinated nerve fibers coexisted with epiretinal membrane in macula--case report].
Swiech-Zubilewicz, Anna; Bieliński, Paweł; Dolar-Szczasny, Joanna; Zarnowski, Tomasz
2012-01-01
We describe a case of peripapillary myelinated retinal nerve fibers complicated by epiretinal membrane in region of macula. 72 years old man was refered to our Clinic with suspicion of retinal detachment of right eye. Visual acuity of right eye was based to 0.05, in left eye was 0.5. IOP was normal in both eyes. In biomcroscopic evaluation the slight cortical cataract was observed in both eyes. Stereoscopic evaluation of right eye revealed the presence of massive peripapillary myelinated retinal nerve fibers and epiretinal membrane in the macula. In the left eye the less intense peripapillary myelinated retinal nerve fibers were noticed as well and the macular region was unchanged. With the use of OCT examination of the retina the presence of epiretinal membrane in the right eye was confirmed. OCT in the fellow eye presented an undisturbed foveal profile without any epiretinal abnormalities. Myelinated retinal nerve fibers can be complicated by epiretinal membrane. Probably the presence of macular pathologies depends on the extensions of nerve fibers. OCT examination is very helpful to give a proper diagnosis.
Orgill, James J; Atiyeh, Hasan K; Devarapalli, Mamatha; Phillips, John R; Lewis, Randy S; Huhnke, Raymond L
2013-04-01
Trickle-bed reactor (TBR), hollow fiber membrane reactor (HFR) and stirred tank reactor (STR) can be used in fermentation of sparingly soluble gasses such as CO and H2 to produce biofuels and bio-based chemicals. Gas fermenting reactors must provide high mass transfer capabilities that match the kinetic requirements of the microorganisms used. The present study compared the volumetric mass transfer coefficient (K(tot)A/V(L)) of three reactor types; the TBR with 3 mm and 6 mm beads, five different modules of HFRs, and the STR. The analysis was performed using O2 as the gaseous mass transfer agent. The non-porous polydimethylsiloxane (PDMS) HFR provided the highest K(tot)A/V(L) (1062 h(-1)), followed by the TBR with 6mm beads (421 h(-1)), and then the STR (114 h(-1)). The mass transfer characteristics in each reactor were affected by agitation speed, and gas and liquid flow rates. Furthermore, issues regarding the comparison of mass transfer coefficients are discussed. Copyright © 2013 Elsevier Ltd. All rights reserved.
Hollow fiber membranes and methods for forming same
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhandari, Dhaval Ajit; McCloskey, Patrick Joseph; Howson, Paul Edward
2016-03-22
The invention provides improved hollow fiber membranes having at least two layers, and methods for forming the same. The methods include co-extruding a first composition, a second composition, and a third composition to form a dual layer hollow fiber membrane. The first composition includes a glassy polymer; the second composition includes a polysiloxane; and the third composition includes a bore fluid. The dual layer hollow fiber membranes include a first layer and a second layer, the first layer being a porous layer which includes the glassy polymer of the first composition, and the second layer being a polysiloxane layer whichmore » includes the polysiloxane of the second composition.« less
Ultem((R))/ZIF-8 mixed matrix hollow fiber membranes for CO2/N-2 separations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dai, Y; Johnson, JR; Karvan, O
2012-05-15
Organic-inorganic hybrid (mixed matrix) membranes can potentially extend the separation performance of traditional polymeric materials while maintaining processing convenience. Although many dense films studies have been reported, there have been few reported cases of these materials being successfully extended to asymmetric hollow fibers. In this work we report the first successful production of mixed matrix asymmetric hollow fiber membranes containing metal-organic-framework (MOF) ZIF-8 fillers. Specifically, we have incorporated ZIF-8 into a polyetherimide (Ultem((R)) 1000) matrix and produced dual-layer asymmetric hollow fiber membranes via the dry jet-wet quench method. The outer separating layer of these composite fibers contains 13 wt% (17more » vol%) of ZIF-8 filler. These membranes have been tested over a range of temperatures and pressures for a variety of gas pairs. An increase in separation performance for the CO2/N-2 gas pairs was observed for both pure gas and mixed gas feeds. (C) 2012 Elsevier B.V. All rights reserved.« less
All-optical, thermo-optical path length modulation based on the vanadium-doped fibers.
Matjasec, Ziga; Campelj, Stanislav; Donlagic, Denis
2013-05-20
This paper presents an all-fiber, fully-optically controlled, optical-path length modulator based on highly absorbing optical fiber. The modulator utilizes a high-power 980 nm pump diode and a short section of vanadium-co-doped single mode fiber that is heated through absorption and a non-radiative relaxation process. The achievable path length modulation range primarily depends on the pump's power and the convective heat-transfer coefficient of the surrounding gas, while the time response primarily depends on the heated fiber's diameter. An absolute optical length change in excess of 500 µm and a time-constant as short as 11 ms, were demonstrated experimentally. The all-fiber design allows for an electrically-passive and remote operation of the modulator. The presented modulator could find use within various fiber-optics systems that require optical (remote) path length control or modulation.
Kim, Daejin; Powell, Lawrence E; Delmau, Lætitia H; Peterson, Eric S; Herchenroeder, Jim; Bhave, Ramesh R
2015-08-18
The rare earth elements (REEs) such as neodymium, praseodymium, and dysprosium were successfully recovered from commercial NdFeB magnets and industrial scrap magnets via membrane assisted solvent extraction (MSX). A hollow fiber membrane system was evaluated to extract REEs in a single step with the feed and strip solutions circulating continuously through the MSX system. The effects of several experimental variables on REE extraction such as flow rate, concentration of REEs in the feed solution, membrane configuration, and composition of acids were investigated with the MSX system. A multimembrane module configuration with REEs dissolved in aqueous nitric acid solutions showed high selectivity for REE extraction with no coextraction of non-REEs, whereas the use of aqueous hydrochloric acid solution resulted in coextraction of non-REEs due to the formation of chloroanions of non-REEs. The REE oxides were recovered from the strip solution through precipitation, drying, and annealing steps. The resulting REE oxides were characterized with XRD, SEM-EDX, and ICP-OES, demonstrating that the membrane assisted solvent extraction is capable of selectively recovering pure REEs from the industrial scrap magnets.
Formation and characterization of asymmetric polyimide hollow fiber membranes for gas separations
NASA Astrophysics Data System (ADS)
Clausi, Dominic Thomas
Ultra-thin and virtually defect-free polyimide hollow fiber membranes were formed using a "dry/wet" type spinning solution. Fibers were spun from the commercially available polyimide, Matrimidsp{°ler}, using a dry-jet, wet quench spinning apparatus. Spin dopes were comprised of volatile and non-volatile solvents, polymer, and non-solvent. The influence of dope composition, spinning parameters, and dehydration procedures on the membrane morphology and performance was investigated. Without post-treatment, the fibers exhibited skin thicknesses less than 1000 A and Osb2/Nsb2 selectivities within 90% of those determined for dense, solution-cast films. The 250 mum O.D./125 mum I.D. fibers were spun at take-up rates comparable to those used in commercial processes and had macrovoid-free morphologies. A new characterization technique has also been developed where a permeating gas is held at constant transmembrane pressure while the average pressure in the porous support of an asymmetric membrane is varied. This alters the mean free path of gas molecules permeating through the substructure while maintaining a constant driving force for permeation. This technique characterizes the magnitude of the substructure resistance and its pressure dependence, thereby providing a means to compare the morphologies of different membrane samples. Well defined composite-laminate membranes were constructed to validate this technique, which was subsequently used to characterize the substructures of the hollow fiber membranes formed in this work. Two additional rapid characterization techniques have been developed for use before fiber dehydration (i.e., wet fibers). These techniques probe the membrane skin layer with aqueous solutions of disperse dyes and poly(ethylene glycol), respectively. Fiber skin integrity can be characterized using these techniques prior to lengthy downstream processing (i.e., solvent exchange, drying, and post-treatment), providing quick elucidation of membrane skin morphology. Finally, a qualitative model describing the skin layer morphology of phase inversion membranes has been developed. This model arose from observed differences in the permeation characteristics of highly sorbing gases between bore and shell side feeds. It is proposed that the skin layer contains an asymmetric distribution of unrelaxed volume introduced during the formation process. This model has been successfully tested with COsb2/CHsb4 permeation measurements conducted at varying temperatures and feed configurations.
Preparation and characterization of glass hollow fiber membrane for water purification applications.
Makhtar, Siti Nurfatin Nadhirah Mohd; Rahman, Mukhlis A; Ismail, Ahmad Fauzi; Othman, Mohd Hafiz Dzarfan; Jaafar, Juhana
2017-07-01
This work discusses the preparation and characterizations of glass hollow fiber membranes prepared using zeolite-5A as a starting material. Zeolite was formed into a hollow fiber configuration using the phase inversion technique. It was later sintered at high temperatures to burn off organic materials and change the zeolite into glass membrane. A preliminary study, that used thermogravimetric analysis (TGA), X-ray diffraction (XRD), and Fourier transform infrared (FTIR), confirmed that zeolite used in this study changed to glass at temperatures above 1000 °C. The glass hollow fiber membranes prepared using the phase inversion technique has three different microstructures, namely (i) sandwich-like structure that originates from inner layer, (ii) sandwich-like that originates from outer layer, and (iii) symmetric sponge like. These variations were influenced by zeolite weight loading and the flow rate of water used to form the lumen. The separation performances of the glass hollow fiber membrane were studied using the pure water permeability and the rejection test of bovine serum albumin (BSA). The glass hollow fiber membrane prepared from using 48 wt% zeolite loading and bore fluid with 9 mL min -1 flow rate has the highest BSA rejection of 85% with the water permeability of 0.7 L m -2 h -1 bar -1 . The results showed that the separation performance of glass hollow fiber membranes was in the ultrafiltration range, enabled the retention of solutes with molecular sizes larger than 67 kDa such as milk proteins, endotoxin pyrogen, virus, and colloidal silica.
Free-standing membrane polymer laser on the end of an optical fiber
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhai, Tianrui, E-mail: trzhai@bjut.edu.cn, E-mail: zhangxinping@bjut.edu.cn; Li, Songtao; Hu, Yujie
2016-01-25
One- and two-dimensional distributed feedback cavities were constructed on free-standing polymer membranes using spin-coating and lift-off techniques. Low threshold lasing was generated through feedback amplification when the 290-nm membrane device was optically pumped, which was attributed to the strong confinement mechanism provided by the active waveguide layer without a substrate. The free-standing membrane polymer laser is flexible and can be transplanted. Single- and dual-wavelength fiber lasers were achieved by directly attaching the membrane polymer laser on the optical fiber end face. This technique provides potential to fabricate polymer lasers on surfaces with arbitrary shapes.
NASA Astrophysics Data System (ADS)
Sawitri, Asti; Miftahul Munir, Muhammad; Edikresnha, Dhewa; Sandi, Ahzab; Fauzi, Ahmad; Rajak, Abdul; Natalia, Dessy; Khairurrijal, Khairurrijal
2018-05-01
Nanofibrous membrane has a potential to use in filtration technology with electrospinning as one of the techniques used in synthesizing nanofibers. Polyacrylonitrile (PAN) nanofibrous membranes with various fibers diameters were electrospun by varying its precursor solution concentration. The average fibers diameters of the PAN nanofibrous membranes obtained from the precursor solution concentrations of 6, 9, 12, and 14 wt% were 341, 534, 1274, and 2107 nm, respectively. Filtration media for apple juice clarification were bilayer-structured membranes made of PAN nanofibrous membranes on commercial cellulose microfibrous membranes. It has been shown that the reduction of apple juice color or turbidity performed by the cellulose microfibrous membrane was well enhanced by the presence of the PAN nanofibrous membrane in the bilayer-structured membrane. In addition, the apple-juice color and turbidity reductions increased with decreasing the average fibers diameter of the PAN nanofibrous membrane. Furthermore, the PAN nanofibrous membrane also helped the cellulose microfibrous membrane in the bilayer-structured membrane enhance the reductions of total phenols, protein, and glucose of the apple juice.
Barmack, N H; Yakhnitsa, V
2015-10-01
Climbing and mossy fibers comprise two distinct afferent paths to the cerebellum. Climbing fibers directly evoke a large multispiked action potential in Purkinje cells termed a "complex spike" (CS). By logical exclusion, the other class of Purkinje cell action potential, termed "simple spike" (SS), has often been attributed to activity conveyed by mossy fibers and relayed to Purkinje cells through granule cells. Here, we investigate the relative importance of climbing and mossy fiber pathways in modulating neuronal activity by recording extracellularly from Purkinje cells, as well as from mossy fiber terminals and interneurons in folia 8-10. Sinusoidal roll-tilt vestibular stimulation vigorously modulates the discharge of climbing and mossy fiber afferents, Purkinje cells, and interneurons in folia 9-10 in anesthetized mice. Roll-tilt onto the side ipsilateral to the recording site increases the discharge of both climbing fibers (CSs) and mossy fibers. However, the discharges of SSs decrease during ipsilateral roll-tilt. Unilateral microlesions of the beta nucleus (β-nucleus) of the inferior olive blocks vestibular modulation of both CSs and SSs in contralateral Purkinje cells. The blockage of SSs occurs even though primary and secondary vestibular mossy fibers remain intact. When mossy fiber afferents are damaged by a unilateral labyrinthectomy (UL), vestibular modulation of SSs in Purkinje cells ipsilateral to the UL remains intact. Two inhibitory interneurons, Golgi and stellate cells, could potentially contribute to climbing fiber-induced modulation of SSs. However, during sinusoidal roll-tilt, only stellate cells discharge appropriately out of phase with the discharge of SSs. Golgi cells discharge in phase with SSs. When the vestibularly modulated discharge is blocked by a microlesion of the inferior olive, the modulated discharge of CSs and SSs is also blocked. When the vestibular mossy fiber pathway is destroyed, vestibular modulation of ipsilateral CSs and SSs persists. We conclude that climbing fibers are primarily responsible for the vestibularly modulated discharge of both CSs and SSs. Modulation of the discharge of SSs is likely caused by climbing fiber-evoked stellate cell inhibition.
Oh, Heung-Il; Ye, Sang-Ho; Johnson, Carl A.; Woolley, Joshua R.; Federspiel, William J.; Wagner, William R.
2011-01-01
Hollow fiber membrane (HFM)-based artificial lungs can require a large blood-contacting membrane surface area to provide adequate gas exchange. However, such a large surface area presents significant challenges to hemocompatibility. One method to improve carbon dioxide (CO2) transfer efficiency might be to immobilize carbonic anhydrase (CA) onto the surface of conventional HFMs. By catalyzing the dehydration of bicarbonate in blood, CA has been shown to facilitate diffusion of CO2 toward the fiber membranes. This study evaluated the impact of surface modifying a commercially available microporous HFM-based artificial lung on fiber blood biocompatibility. A commercial poly(propylene) Celgard HFM surface was coated with a siloxane, grafted with amine groups, and then attached with CA which has been shown to facilitate diffusion of CO2 toward the fiber membranes. Results following acute ovine blood contact indicated no significant reduction in platelet deposition or activation with the siloxane coating or the siloxane coating with grafted amines relative to base HFMs. However,HFMs with attached CA showed a significant reduction in both platelet deposition and activation compared with all other fiber types. These findings, along with the improved CO2 transfer observed in CA modified fibers, suggest that its incorporation into HFM design may potentiate the design of a smaller, more biocompatible HFM-based artificial lung. PMID:20633159
Cimini, Alessio; Moresi, Mauro
2018-01-01
In this work, the main constraint (that is, beer chilling and chill haze removing) of the current beer conditioning techniques using Kieselguhr filtration and Polyvinylpolypyrrolidone (PVPP) treatment was overcome by developing a novel higher-throughput conditioning process, operating at room temperatures with no use of filter aids. The effect of filtration temperature (T F ) in the range of 0 to 40 °C on the hydraulic permeability of ceramic hollow-fiber (HF) membranes with nominal pore size of 0.2 to 1.4 μm, as well as on their limiting permeation flux (J * ) when feeding precentrifuged rough beer, was preliminarily assessed. When using the 1.4-μm HF membrane operating at T F ≥ 20 °C, it was possible to enhance the average permeation flux at values (676 to 1844 L/m 2 /h), noticeably higher than those (250 to 500 L/m 2 /h) characteristics of conventional powder filtration. Despite its acceptable permanent haze, the resulting beer permeate still exhibited colloidal instability. By resorting to the commercial enzyme preparation Brewers Clarex® before beer clarification, it was possible to significantly improve its colloidal stability as measured using a number of European Brewing Convention forcing tests, especially with respect to that of precentrifuged rough beer by itself. By combining the above enzymatic treatment with membrane clarification at 30 °C across the ceramic 1.4-μm HF membrane module, it was possible to limit the haze development due to chilling, sensitive proteins, and alcohol addition to as low as 0.78, 4.1, and 4.0 EBC-U, respectively, the enzymatic treatment being by far more effective than that using PVPP. A novel Kieselguhr- and PVPP-free rough beer conditioning process at room temperatures was set up. By submitting precentrifuged rough beer to commercial preparation Brewers Clarex ® and then to membrane clarification at 30 °C across a ceramic 1.4-μm hollow-fiber membrane module, it was possible to obtain a clear and stable beer with a throughput (1306 ± 72 L/m 2 /h) by far higher than that (250 to 500 L/m 2 /h) characterizing the current powder filters. The haze development due to chilling, sensitive proteins, and alcohol adding was by far lower than that observed when microfiltering PVPP-pretreated rough beer. © 2017 Institute of Food Technologists®.
Two-Step Mechanism of Membrane Disruption by Aβ through Membrane Fragmentation and Pore Formation
Sciacca, Michele F.M.; Kotler, Samuel A.; Brender, Jeffrey R.; Chen, Jennifer; Lee, Dong-kuk; Ramamoorthy, Ayyalusamy
2012-01-01
Disruption of cell membranes by Aβ is believed to be one of the key components of Aβ toxicity. However, the mechanism by which this occurs is not fully understood. Here, we demonstrate that membrane disruption by Aβ occurs by a two-step process, with the initial formation of ion-selective pores followed by nonspecific fragmentation of the lipid membrane during amyloid fiber formation. Immediately after the addition of freshly dissolved Aβ1–40, defects form on the membrane that share many of the properties of Aβ channels originally reported from single-channel electrical recording, such as cation selectivity and the ability to be blockaded by zinc. By contrast, subsequent amyloid fiber formation on the surface of the membrane fragments the membrane in a way that is not cation selective and cannot be stopped by zinc ions. Moreover, we observed that the presence of ganglioside enhances both the initial pore formation and the fiber-dependent membrane fragmentation process. Whereas pore formation by freshly dissolved Aβ1–40 is weakly observed in the absence of gangliosides, fiber-dependent membrane fragmentation can only be observed in their presence. These results provide insights into the toxicity of Aβ and may aid in the design of specific compounds to alleviate the neurodegeneration of Alzheimer’s disease. PMID:22947931
Improved ion exchange membrane
NASA Technical Reports Server (NTRS)
Rembaum, A.; Yen, S. P. S.; Klein, E.
1975-01-01
Membrane, made from commercially-available hollow fibers, is used in reverse osmosis, or dialysis. Fiber has skin layers which pass only small molecules. Macromolecules cannot penetrate skin. Fibers can also be used to remove other undesirable anions, such as phosphate, sulfate, carbonate, and uranium in form of uranium-sulfate complex.
Retrospective Analysis Comparing Hollow Fiber and Silicone Membrane Oxygenators for Neonates on ECMO
Mejak, Brian; Giacomuzzi, Carmen; Heller, Eileen; You, Xiaomang; Ungerleider, Ross; Shen, Irving
2007-01-01
Abstract: There is little information showing the use of microporous polypropylene hollow fiber oxygenators during extracorporeal life support (ECLS). Recent surveys have shown increasing use of these hollow fibers amongst ECLS centers in the United States. We performed a retrospective analysis comparing the Terumo BabyRx hollow fiber oxygenator to the Medtronic 800 silicone membrane oxygenator on 14 neonatal patients on extracorporeal membrane oxygenation (ECMO). The aim of this study was to investigate the similarities and differences when comparing pressure drops, prime volumes, oxygenator endurance, and gas transfer capabilities between the two groups. PMID:17672186
Pre-Combustion Carbon Capture by a Nanoporous, Superhydrophobic Membrane Contactor Process
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meyer, Howard; Zhou, S James; Ding, Yong
2012-03-31
This report summarizes progress made during Phase I and Phase II of the project: "Pre-Combustion Carbon Capture by a Nanoporous, Superhydrophobic Membrane Contactor Process," under contract DE-FE-0000646. The objective of this project is to develop a practical and cost effective technology for CO{sub 2} separation and capture for pre-combustion coal-based gasification plants using a membrane contactor/solvent absorption process. The goals of this technology development project are to separate and capture at least 90% of the CO{sub 2} from Integrated Gasification Combined Cycle (IGCC) power plants with less than 10% increase in the cost of energy services. Unlike conventional gas separationmore » membranes, the membrane contactor is a novel gas separation process based on the gas/liquid membrane concept. The membrane contactor is an advanced mass transfer device that operates with liquid on one side of the membrane and gas on the other. The membrane contactor can operate with pressures that are almost the same on both sides of the membrane, whereas the gas separation membranes use the differential pressure across the membrane as driving force for separation. The driving force for separation for the membrane contactor process is the chemical potential difference of CO{sub 2} in the gas phase and in the absorption liquid. This process is thus easily tailored to suit the needs for pre-combustion separation and capture of CO{sub 2}. Gas Technology Institute (GTI) and PoroGen Corporation (PGC) have developed a novel hollow fiber membrane technology that is based on chemically and thermally resistant commercial engineered polymer poly(ether ether ketone) or PEEK. The PEEK membrane material used in the membrane contactor during this technology development program is a high temperature engineered plastic that is virtually non-destructible under the operating conditions encountered in typical gas absorption applications. It can withstand contact with most of the common treating solvents. GTI and PGC have developed a nanoporous and superhydrophobic PEEK-based hollow fiber membrane contactor tailored for the membrane contactor/solvent absorption application for syngas cleanup. The membrane contactor modules were scaled up to 8-inch diameter commercial size modules. We have performing extensive laboratory and bench testing using pure gases, simulated water-gas-shifted (WGS) syngas stream, and a slipstream from a gasification derived syngas from GTI's Flex-Fuel Test Facility (FFTF) gasification plant under commercially relevant conditions. The team have also carried out an engineering and economic analysis of the membrane contactor process to evaluate the economics of this technology and its commercial potential. Our test results have shown that 90% CO{sub 2} capture can be achieved with several physical solvents such as water and chilled methanol. The rate of CO{sub 2} removal by the membrane contactor is in the range of 1.5 to 2.0 kg/m{sup 2}/hr depending on the operating pressures and temperatures and depending on the solvents used. The final economic analysis has shown that the membrane contactor process will cause the cost of electricity to increase by 21% from the base plant without CO{sub 2} capture. The goal of 10% increase in levelized cost of electricity (LCOE) from base DOE Case 1(base plant without capture) is not achieved by using the membrane contactor. However, the 21% increase in LCOE is a substantial improvement as compared with the 31.6% increase in LCOE as in DOE Case 2(state of art capture technology using 2-stages of Selexol{TM}).« less
Bidirectional phase-modulated hybrid cable television/radio-over-fiber lightwave transport systems.
Chen, Chia-Yi; Wu, Po-Yi; Lu, Hai-Han; Lin, Ying-Pyng; Gao, Ming-Cian; Wen, Jian-Ying; Chen, Hwan-Wen
2013-02-15
A bidirectional phase-modulated hybrid cable television/radio-over-fiber lightwave transport system employing fiber Bragg grating tilt filter as a phase modulation-to-intensity modulation conversion scheme is proposed and demonstrated. Impressive performances of carrier-to-noise ratio, composite second-order, composite triple-beat, and bit-error rate are obtained in our proposed systems over a combination of 40 km single-mode fiber-and 1.43 km photonic crystal fiber transmission.
The separation and recovery of VOCs from surfactant-containing aqueous solutions by a composite hollow fiber membrane-based pervaporation process has been studied. The process employed hydrophobic microporous polypropylene hollow fibers having a thin plasma polymerized silicon...
Boo, Chanhee; Lee, Jongho; Elimelech, Menachem
2016-08-02
We investigated the factors that determine surface omniphobicity of microporous membranes and evaluated the potential application of these membranes in desalination of low surface tension wastewaters by membrane distillation (MD). Specifically, the effects of surface morphology and surface energy on membrane surface omniphobicity were systematically investigated by evaluating wetting resistance to low surface tension liquids. Single and multilevel re-entrant structures were achieved by using cylindrical glass fibers as a membrane substrate and grafting silica nanoparticles (SiNPs) on the fibers. Surface energy of the membrane was tuned by functionalizing the fiber substrate with fluoroalkylsilane (FAS) having two different lengths of fluoroalkyl chains. Results show that surface omniphobicity of the modified fibrous membrane increased with higher level of re-entrant structure and with lower surface energy. The secondary re-entrant structure achieved by SiNP coating on the cylindrical fibers was found to play a critical role in enhancing the surface omniphobicity. Membranes coated with SiNPs and chemically modified by the FAS with a longer fluoroalkyl chain (or lower surface energy) exhibited excellent surface omniphobicity and showed wetting resistance to low surface tension liquids such as ethanol (22.1 mN m(-1)). We further evaluated performance of the membranes in desalination of saline feed solutions with varying surface tensions by membrane distillation (MD). The engineered membranes exhibited stable MD performance with low surface tension feed waters, demonstrating the potential application omniphobic membranes in desalinating complex, high salinity industrial wastewaters.
Kimmel, J. D.; Arazawa, D. T.; Ye, S.-H.; Shankarraman, V.; Wagner, W. R.
2013-01-01
Extracorporeal CO2 removal from circulating blood is a promising therapeutic modality for the treatment of acute respiratory failure. The enzyme carbonic anhydrase accelerates CO2 removal within gas exchange devices by locally catalyzing HCO3− into gaseous CO2 within the blood. In this work, we covalently immobilized carbonic anhydrase on the surface of polypropylene hollow fiber membranes using glutaraldehyde activated chitosan tethering to amplify the density of reactive amine functional groups for enzyme immobilization. XPS and a colorimetric amine assay confirmed higher amine densities on the chitosan coated fiber compared to control fiber. Chitosan/CA coated fibers exhibited accelerated CO2 removal in scaled-down gas exchange devices in buffer and blood (115 % enhancement vs. control, 37 % enhancement vs. control, respectively). Carbonic anhydrase immobilized directly on hollow fiber membranes without chitosan tethering resulted in no enhancement in CO2 removal. Additionally, fibers coated with chitosan/carbonic anhydrase demonstrated reduced platelet adhesion when exposed to blood compared to control and heparin coated fibers. PMID:23888352
de Fraga, Rogerio; Dambros, Miriam; Miyaoka, Ricardo; Riccetto, Cássio Luís Zanettini; Palma, Paulo César Rodrigues
2007-10-01
The authors quantified the type IV collagen fibers volumetric density in the basement membrane of bladder wall of ovariectomized rats with and without estradiol replacement. This study was conducted on 40 Wistar rats (3 months old) randomly divided in 4 groups: group 1, remained intact (control); group 2, submitted to bilateral oophorectomy and daily replacement 4 weeks later of 17 beta-estradiol for 12 weeks; group 3, sham operated and daily replacement 4 weeks later of sesame oil for 12 weeks; and group 4, submitted to bilateral oophorectomy and killed after 12 weeks. It was used in immunohistochemistry evaluation using type IV collagen polyclonal antibody to stain the fibers on paraffin rat bladder sections. The M-42 stereological grid system was used to analyze the fibers. Ovariectomy had an increase effect on the volumetric density of the type IV collagen fibers in the basement membrane of rat bladder wall. Estradiol replacement in castrated animals demonstrated a significative difference in the stereological parameters when compared to the castrated group without hormonal replacement. Surgical castration performed on rats induced an increasing volumetric density of type IV collagen fibers in the basement membrane of rats bladder wall and the estradiol treatment had a significant effect in keeping a low volumetric density of type IV collagen fibers in the basement membrane of rats bladder wall.
Slow Cholinergic Modulation of Spike Probability in Ultra-Fast Time-Coding Sensory Neurons
Goyer, David; Kurth, Stefanie; Rübsamen, Rudolf
2016-01-01
Abstract Sensory processing in the lower auditory pathway is generally considered to be rigid and thus less subject to modulation than central processing. However, in addition to the powerful bottom-up excitation by auditory nerve fibers, the ventral cochlear nucleus also receives efferent cholinergic innervation from both auditory and nonauditory top–down sources. We thus tested the influence of cholinergic modulation on highly precise time-coding neurons in the cochlear nucleus of the Mongolian gerbil. By combining electrophysiological recordings with pharmacological application in vitro and in vivo, we found 55–72% of spherical bushy cells (SBCs) to be depolarized by carbachol on two time scales, ranging from hundreds of milliseconds to minutes. These effects were mediated by nicotinic and muscarinic acetylcholine receptors, respectively. Pharmacological block of muscarinic receptors hyperpolarized the resting membrane potential, suggesting a novel mechanism of setting the resting membrane potential for SBC. The cholinergic depolarization led to an increase of spike probability in SBCs without compromising the temporal precision of the SBC output in vitro. In vivo, iontophoretic application of carbachol resulted in an increase in spontaneous SBC activity. The inclusion of cholinergic modulation in an SBC model predicted an expansion of the dynamic range of sound responses and increased temporal acuity. Our results thus suggest of a top–down modulatory system mediated by acetylcholine which influences temporally precise information processing in the lower auditory pathway. PMID:27699207
Formation of anisotropic hollow-fiber membranes via thermally induced phase separation
NASA Astrophysics Data System (ADS)
Batarseh, Melanie Turkett
The goal of this research project was to study the formation of anisotropic hollow fiber membranes via thermally induced phase separation (TIPS). This objective included developing a fundamental knowledge of the factors that contribute to anisotropy and studying how anisotropy can be controlled via operational parameters in hollow fiber spinning. The objective was met by creating a model to simulate the mass and heat transfer in the fiber wall during spinning and by experimentally varying spinning parameters and observing the affect on the membrane microstructure. The TIPS membrane formation process consists of forming a homogeneous solution of polymer and diluent and extruding the solution through a spinneret to form a hollow fiber. The fiber is cooled in an air gap followed by a quench bath, which results in phase separation of the solution into a diluent-rich phase dispersed in a continuous polymer-rich liquid phase. The diluent-rich domains grow in size until the polymer-rich phase crystallizes. Then the diluent is removed, and the spaces left behind become the pores of the microporous membrane. Therefore, the size of the diluent-rich domains when the polymer solidifies is related to the size of the pores in the finished membrane. Increasing the polymer concentration of the homogeneous solution or increasing the cooling rate of the phase separated solution decreases the domain size, and thus decreases pore size. An anisotropic membrane, which has a gradation of pore size from small pores at the feed-side to large pores at the permeate-side, can be formed by creating a concentration gradient or a cooling rate gradient across the membrane. In hollow fiber spinning, a concentration gradient can be created by allowing diluent to evaporate from the outside wall of the fiber in the air gap, and a cooling rate gradient can be created by quenching the fiber in a liquid bath. The spinning model calculates concentration and temperature profiles across the hollow fiber wall over time. The model results indicate that spinning temperature, air velocity, and air gap length have a significant effect on the concentration profile in the wall, and spinning temperature and quench temperature have a significant effect on the cooling rate profile. Experimental results indicate that increasing the air gap length from 5 to 50 cm. or increasing the quench temperature from 298 to 323 K has a significant effect on the anisotropic structure of the hollow fiber.
NASA Astrophysics Data System (ADS)
Miura, Suguru; Kubota, Noboru; Kawakita, Hidetaka; Saito, Kyoichi; Sugita, Kazuyuki; Watanabe, Kohei; Sugo, Takanobu
2002-02-01
Two kinds of supporting porous membranes, ethanolamine (EA) and phenol (Ph) fibers, for immobilization of α-amylase were prepared by radiation-induced graft polymerization of an epoxy-group-containing monomer, glycidyl methacrylate, onto a porous hollow-fiber membrane, and subsequent ring-opening with EA and Ph, respectively. An α-amylase solution was forced to permeate radially outward through the pores of the EA and Ph fibers. α-Amylase was captured at a density of 0.15 and 6.6 g/L of the membrane by the graft chain containing 2-hydroxyethylamino and phenyl groups, respectively. A permeation pressure of 0.10 MPa provided a space velocity of 780 and 1500 h -1 for the α-amylase-immobilized EA and Ph fibers, respectively. Quantitative hydrolysis of starch during permeation of a 20 g/L starch solution in the buffer across the α-amylase-immobilized Ph fiber was attained up to a space velocity of about 2000 h -1; this was achieved because of negligible diffusional mass-transfer resistance of the starch to the α-amylase due to convective flow, whereas an enzyme reaction-controlled system was observed for the α-amylase-immobilized EA fiber.
In vitro performance testing of a pediatric oxygenator with an integrated pulsatile pump.
Borchardt, Ralf; Schlanstein, Peter; Mager, Ilona; Arens, Jutta; Schmitz-Rode, Thomas; Steinseifer, Ulrich
2012-01-01
For different lung and heart diseases (e.g., acute respiratory distress syndrome, congenital heart failure, and cardiomyopathy) extracorporeal membrane oxygenation is a well-established therapy, particularly in the field of neonatal and pediatric medicine. To reduce the priming volume of the extracorporeal circuit, different components can be combined. In this study, an oval-shaped oxygenator (called ExMeTrA) with integrated pulsatile pump was tested in vitro using porcine blood. A feasibility study regarding the performance of collapsing and expanding silicone tubes within an oxygenator fiber bundle as a pulsatile pump was previously completed with successful results. The findings of this study improve upon the previous feasibility results, particularly in terms of gas exchange and filling volume. Five modules were manufactured in sizes of 20 ± 2.2 ml (priming volume) with fiber surface areas of 0.24 ± 0.027 m(2) and an analytically calculated volume pumping capacity of 692 ± 75 ml/min. The modules were made of polymethylpentene fibers with dense outer layer to permit long-term applications. The gas exchange rates at a gas/blood flow ratio of 2:1 were between 64 and 72.7 ml(O)(2)/l(blood) and between 62.5 and 81.5 ml/l(blood), depending on the blood flow. The individual module's pumping capacity ranged from 200-500 ml/min thus providing room for further improvements. In order to enhance the pumping capacity while maintaining sufficient gas exchange rates future optimization, adjustments will be made to the inlet and outlet geometries.
Hollow fiber membrane systems for advanced life support systems
NASA Technical Reports Server (NTRS)
Roebelen, G. J., Jr.; Lysaght, M. J.
1976-01-01
The practicability of utilizing hollow fiber membranes in vehicular and portable life support system applications is described. A preliminary screening of potential advanced life support applications resulted in the selection of five applications for feasibility study and testing. As a result of the feasibility study and testing, three applications, heat rejection, deaeration, and bacteria filtration, were chosen for breadboard development testing; breadboard hardware was manufactured and tested, and the physical properties of the hollow fiber membrane assemblies are characterized.
Khairova, R A; Malomuzh, A I; Naumenko, N V; Urazaev, A Kh
2003-02-01
Denervation of rat phrenic muscle or block of NO-synthase in vivo increased the cross-section area of muscle fibers and decreased membrane resting potential. Oxotremorine prevented the development of denervation-induced or denervation-like (i.e. induced by NO-synthase blockade) membrane depolarization and increase of the cross-sectional area of muscle fibers. Pirenzepine abolished the effects of oxotremorine. It was concluded that non-quantal acetylcholine can be involved in the regulation of skeletal muscle fiber volume via activation of M1 muscarinic receptors followed by NO synthesis.
Proteomic Analysis of Lipid Raft-Like Detergent-Resistant Membranes of Lens Fiber Cells.
Wang, Zhen; Schey, Kevin L
2015-12-01
Plasma membranes of lens fiber cells have high levels of long-chain saturated fatty acids, cholesterol, and sphingolipids-key components of lipid rafts. Thus, lipid rafts are expected to constitute a significant portion of fiber cell membranes and play important roles in lens biology. The purpose of this study was to characterize the lens lipid raft proteome. Quantitative proteomics, both label-free and iTRAQ methods, were used to characterize lens fiber cell lipid raft proteins. Detergent-resistant, lipid raft membrane (DRM) fractions were isolated by sucrose gradient centrifugation. To confirm protein localization to lipid rafts, protein sensitivity to cholesterol removal by methyl-β-cyclodextrin was quantified by iTRAQ analysis. A total of 506 proteins were identified in raft-like detergent-resistant membranes. Proteins identified support important functions of raft domains in fiber cells, including trafficking, signal transduction, and cytoskeletal organization. In cholesterol-sensitivity studies, 200 proteins were quantified and 71 proteins were strongly affected by cholesterol removal. Lipid raft markers flotillin-1 and flotillin-2 and a significant fraction of AQP0, MP20, and AQP5 were found in the DRM fraction and were highly sensitive to cholesterol removal. Connexins 46 and 50 were more abundant in nonraft fractions, but a small fraction of each was found in the DRM fraction and was strongly affected by cholesterol removal. Quantification of modified AQP0 confirmed that fatty acylation targeted this protein to membrane raft domains. These data represent the first comprehensive profile of the lipid raft proteome of lens fiber cells and provide information on membrane protein organization in these cells.
Valente, T A M; Silva, D M; Gomes, P S; Fernandes, M H; Santos, J D; Sencadas, V
2016-02-10
Medically approved sterility methods should be a major concern when developing a polymeric scaffold, mainly when commercialization is envisaged. In the present work, poly(lactic acid) (PLA) fiber membranes were processed by electrospinning with random and aligned fiber alignment and sterilized under UV, ethylene oxide (EO), and γ-radiation, the most common ones for clinical applications. It was observed that UV light and γ-radiation do not influence fiber morphology or alignment, while electrospun samples treated with EO lead to fiber orientation loss and morphology changing from cylindrical fibers to ribbon-like structures, accompanied to an increase of polymer crystallinity up to 28%. UV light and γ-radiation sterilization methods showed to be less harmful to polymer morphology, without significant changes in polymer thermal and mechanical properties, but a slight increase of polymer wettability was detected, especially for the samples treated with UV radiation. In vitro results indicate that both UV and γ-radiation treatments of PLA membranes allow the adhesion and proliferation of MG 63 osteoblastic cells in a close interaction with the fiber meshes and with a growth pattern highly sensitive to the underlying random or aligned fiber orientation. These results are suggestive of the potential of both γ-radiation sterilized PLA membranes for clinical applications in regenerative medicine, especially those where customized membrane morphology and fiber alignment is an important issue.
Raguz, Marija; Mainali, Laxman; O’Brien, William J.; Subczynski, Witold K.
2015-01-01
The results reported here clearly document changes in the properties and the organization of fiber-cell membrane lipids that occur with age, based on electron paramagnetic resonance (EPR) analysis of lens membranes of clear lenses from donors of age groups from 0 to 20, 21 to 40, and 61 to 80 years. The physical properties, including profiles of the alkyl chain order, fluidity, hydrophobicity, and oxygen transport parameter, were investigated using EPR spin-labeling methods, which also provide an opportunity to discriminate coexisting lipid domains and to evaluate the relative amounts of lipids in these domains. Fiber-cell membranes were found to contain three distinct lipid environments: bulk lipid domain, which appears minimally affected by membrane proteins, and two domains that appear due to the presence of membrane proteins, namely boundary and trapped lipid domains. In nuclear membranes the amount of boundary and trapped phospholipids as well as the amount of cholesterol in trapped lipid domains increased with the donors’ age and was greater than that in cortical membranes. The difference between the amounts of lipids in domains uniquely formed due to the presence of membrane proteins in nuclear and cortical membranes increased with the donors’ age. It was also shown that cholesterol was to a large degree excluded from trapped lipid domains in cortical membranes. It is evident that the rigidity of nuclear membranes was greater than that of cortical membranes for all age groups. The amount of lipids in domains of low oxygen permeability, mainly in trapped lipid domains, were greater in nuclear than cortical membranes and increased with the age of donors. These results indicate that the nuclear fiber cell plasma membranes were less permeable to oxygen than cortical membranes and become less permeable to oxygen with age. In clear lenses, age-related changes in the lens lipid and protein composition and organization appear to occur in ways that increase fiber cell plasma membrane resistance to oxygen permeation. PMID:25617680
Raguz, Marija; Mainali, Laxman; O'Brien, William J; Subczynski, Witold K
2015-03-01
The results reported here clearly document changes in the properties and the organization of fiber-cell membrane lipids that occur with age, based on electron paramagnetic resonance (EPR) analysis of lens membranes of clear lenses from donors of age groups from 0 to 20, 21 to 40, and 61 to 80 years. The physical properties, including profiles of the alkyl chain order, fluidity, hydrophobicity, and oxygen transport parameter, were investigated using EPR spin-labeling methods, which also provide an opportunity to discriminate coexisting lipid domains and to evaluate the relative amounts of lipids in these domains. Fiber-cell membranes were found to contain three distinct lipid environments: bulk lipid domain, which appears minimally affected by membrane proteins, and two domains that appear due to the presence of membrane proteins, namely boundary and trapped lipid domains. In nuclear membranes the amount of boundary and trapped phospholipids as well as the amount of cholesterol in trapped lipid domains increased with the donors' age and was greater than that in cortical membranes. The difference between the amounts of lipids in domains uniquely formed due to the presence of membrane proteins in nuclear and cortical membranes increased with the donors' age. It was also shown that cholesterol was to a large degree excluded from trapped lipid domains in cortical membranes. It is evident that the rigidity of nuclear membranes was greater than that of cortical membranes for all age groups. The amount of lipids in domains of low oxygen permeability, mainly in trapped lipid domains, were greater in nuclear than cortical membranes and increased with the age of donors. These results indicate that the nuclear fiber cell plasma membranes were less permeable to oxygen than cortical membranes and become less permeable to oxygen with age. In clear lenses, age-related changes in the lens lipid and protein composition and organization appear to occur in ways that increase fiber cell plasma membrane resistance to oxygen permeation. Copyright © 2015 Elsevier Ltd. All rights reserved.
Air Separation Using Hollow Fiber Membranes
NASA Technical Reports Server (NTRS)
Huang, Stephen E.
2004-01-01
The NASA Glenn Research Center in partnership with the Ohio Aerospace Institute provides internship programs for high school and college students in the areas of science, engineering, professional administrative, and other technical areas. During the summer of 2004, I worked with Dr. Clarence T. Chang at NASA Glenn Research Center s combustion branch on air separation using hollow fiber membrane technology. . In light of the accident of Trans World Airline s flight 800, FAA has mandated that a suitable solution be created to prevent the ignition of fuel tanks in aircrafts. In order for any type of fuel to ignite, three important things are needed: fuel vapor, oxygen, and an energy source. Two different ways to make fuel tanks less likely to ignite are reformulating the fuel to obtain a lower vapor pressure for the fuel and or using an On Board Inert Gas Generating System (OBIGGS) to inert the Central Wing Tank. goal is to accomplish the mission, which means that the Air Separation Module (ASM) tends to be bulky and heavy. The primary goal for commercial aviation companies is to transport as much as they can with the least amount of cost and fuel per person, therefore the ASM must be compact and light as possible. The plan is to take bleed air from the aircraft s engines to pass air through a filter first to remove particulates and then pass the air through the ASM containing hollow fiber membranes. In the lab, there will be a heating element provided to simulate the temperature of the bleed air that will be entering the ASM and analysis of the separated air will be analyzed by a Gas Chromatograph/Mass Spectrometer (GC/MS). The GUMS will separate the different compounds in the exit streams of the ASM and provide information on the performance of hollow fiber membranes. Hopefully I can develop ways to improve efficiency of the ASM. different types of jet fuel were analyzed and data was well represented on SAE Paper 982485. Data consisted of the concentrations of over 300 different hydrocarbons commonly found in JP- 8, Jet A, and JP-5 fuels. I researched the major hydrocarbons that has a concentration of greater than 50 parts per million and found the vapor pressure data coefficients for a specific temperature range. The coefficients were applied to Antoine s Equation and Riedel's Equation to calculate the vapor pressures for that specific hydrocarbon in the specific temperature range. With the vapor pressure data scientists can formulate a fuel composition that has a lower vapor pressure profile, therefore making jet fuels less flammable. work, learn how to operate and examine the data from Gas Chromatograph and Mass Spectrometer, and develop new ways in applying hollow fiber membrane technology to other areas of environmental engineering. The United States military currently uses air separation technology and their primary The other side of making air travel safer is to reformulate the fuel. Analyses of three My goal this summer is to learn about hollow fiber membrane technologies and how they
Yakhnitsa, V.
2013-01-01
Cerebellar Purkinje cells are excited by two afferent pathways: climbing and mossy fibers. Climbing fibers evoke large “complex spikes” (CSs) that discharge at low frequencies. Mossy fibers synapse on granule cells whose parallel fibers excite Purkinje cells and may contribute to the genesis of “simple spikes” (SSs). Both afferent systems convey vestibular information to folia 9c–10. After making a unilateral labyrinthectomy (UL) in mice, we tested how the discharge of CSs and SSs was changed by the loss of primary vestibular afferent mossy fibers during sinusoidal roll tilt. We recorded from cells identified by juxtacellular neurobiotin labeling. The UL preferentially reduced vestibular modulation of CSs and SSs in folia 8–10 contralateral to the UL. The effects of a UL on Purkinje cell discharge were similar in folia 9c–10, to which vestibular primary afferents project, and in folia 8–9a, to which they do not project, suggesting that vestibular primary afferent mossy fibers were not responsible for the UL-induced alteration of SS discharge. UL also induced reduced vestibular modulation of stellate cell discharge contralateral to the UL. We attribute the decreased modulation to reduced vestibular modulation of climbing fibers. In summary, climbing fibers modulate CSs directly and SSs indirectly through activation of stellate cells. Whereas vestibular primary afferent mossy fibers cannot account for the modulated discharge of SSs or stellate cells, the nonspecific excitation of Purkinje cells by parallel fibers may set an operating point about which the discharges of SSs are sculpted by climbing fibers. PMID:23966673
Designing optical-fiber modulators by using magnetic fluids.
Horng, H E; Chieh, J J; Chao, Y H; Yang, S Y; Hong, Chin-Yih; Yang, H C
2005-03-01
To reduce interface loss between optical fibers and devices in telecommunication systems, the development of an optical-fiber-based device that can be fused directly with fibers is important. A novel optical modulator consisting of a bare fiber core surrounded by magnetic fluids instead of by a SiO2 cladding layer is proposed. Applying a magnetic field raises the refractive index of the magnetic fluid. Thus we can control the occurrence of total reflection at the interface between the fiber core and the magnetic fluid when light propagates along the fiber. As a result, the intensity of the outgoing light is modulated by variation in field strength. Details of the design, fabrication, and working properties of such a modulator are presented.
Zhang, Junwen; Yu, Jianjun; Chi, Nan; Li, Fan; Li, Xinying
2013-11-04
We propose and demonstrate a novel CAP-ROF system based on multi-level carrier-less amplitude and phase modulation (CAP) 64QAM with high spectrum efficiency for mm-wave fiber-wireless transmission. The performance of novel CAP modulation with high order QAM, for the first time, is investigated in the mm-wave fiber-wireless transmission system. One I/Q modulator is used for mm-wave generation and base-band signal modulation based on optical carrier suppression (OCS) and intensity modulation. Finally, we demonstrated a 24-Gb/s CAP-64QAM radio-over-fiber (ROF) system over 40-km stand single-mode-fiber (SMMF) and 1.5-m 38-GHz wireless transmission. The system operation factors are also experimentally investigated.
Kim, Daejin; Powell, Lawrence E.; Delmau, Lætitia H.; ...
2015-06-24
In this paper, the rare earth elements (REEs) such as neodymium, praseodymium, and dysprosium were successfully recovered from commercial NdFeB magnets and industrial scrap magnets via membrane assisted solvent extraction (MSX). A hollow fiber membrane system was evaluated to extract REEs in a single step with the feed and strip solutions circulating continuously through the MSX system. The effects of several experimental variables on REE extraction such as flow rate, concentration of REEs in the feed solution, membrane configuration, and composition of acids were investigated with the MSX system. A multimembrane module configuration with REEs dissolved in aqueous nitric acidmore » solutions showed high selectivity for REE extraction with no coextraction of non-REEs, whereas the use of aqueous hydrochloric acid solution resulted in coextraction of non-REEs due to the formation of chloroanions of non-REEs. The REE oxides were recovered from the strip solution through precipitation, drying, and annealing steps. Finally, the resulting REE oxides were characterized with XRD, SEM-EDX, and ICP-OES, demonstrating that the membrane assisted solvent extraction is capable of selectively recovering pure REEs from the industrial scrap magnets.« less
Li, Manqing; Feng, Yingnan; Wang, Kaiyu; Yong, Wai Fen; Yu, Liya; Chung, Tai-Shung
2017-09-05
Severe air pollution has become a global concern, and there is a pressing need to develop effective and efficient air filters for removing airborne particulate matters (PMs). In this work, a highly permeable poly(ether sulfone) (PES) based hollow fiber membrane was developed via a one-step dry-jet wet spinning. For the first time, a hollow fiber membrane was used in removing the ultrafine particles (PMs with aerodynamic equivalent diameters of less than 100 nm) in PM 2.5 . The novel air filter was designed to possess the synergistic advantages of porous filters and fibrous filters with a sievelike outer surface and a fibrouslike porous substrate. A filtration efficiency of higher than 99.995% could be easily achieved when the self-support hollow fiber was challenged with less than 300 nm particulates. Without losses of the structural advantages, we have demonstrated that the permeation properties of the hollow fiber membrane can be facilely tailored via manipulation of the dope and bore fluid formulations. Various cleaning strategies were explored to regenerate the membrane performance after fouling. Both water rinse and backwash showed effectiveness to restore the membrane permeance for repetitive usage.
Park, Jun Woo; Wycisk, Ryszard; Pintauro, Peter N; Yarlagadda, Venkata; Van Nguyen, Trung
2016-02-29
The regenerative H₂/Br₂-HBr fuel cell, utilizing an oxidant solution of Br₂ in aqueous HBr, shows a number of benefits for grid-scale electricity storage. The membrane-electrode assembly, a key component of a fuel cell, contains a proton-conducting membrane, typically based on the perfluorosulfonic acid (PFSA) ionomer. Unfortunately, the high cost of PFSA membranes and their relatively high bromine crossover are serious drawbacks. Nanofiber composite membranes can overcome these limitations. In this work, composite membranes were prepared from electrospun dual-fiber mats containing Nafion ® PFSA ionomer for facile proton transport and an uncharged polymer, polyphenylsulfone (PPSU), for mechanical reinforcement, and swelling control. After electrospinning, Nafion/PPSU mats were converted into composite membranes by softening the PPSU fibers, through exposure to chloroform vapor, thus filling the voids between ionomer nanofibers. It was demonstrated that the relative membrane selectivity, referenced to Nafion ® 115, increased with increasing PPSU content, e.g., a selectivity of 11 at 25 vol% of Nafion fibers. H₂-Br₂ fuel cell power output with a 65 μm thick membrane containing 55 vol% Nafion fibers was somewhat better than that of a 150 μm Nafion ® 115 reference, but its cost advantage due to a four-fold decrease in PFSA content and a lower bromine species crossover make it an attractive candidate for use in H₂/Br₂-HBr systems.
Zhou, Zhuang; Rajabzadeh, Saeid; Fang, Lifeng; Miyoshi, Taro; Kakihana, Yuriko; Matsuyama, Hideto
2017-08-01
Braid-reinforced hollow fiber membranes with high mechanical properties and considerable antifouling surface were prepared by blending poly(vinyl chloride) (PVC) with poly(vinyl chloride-co-poly(ethylene glycol) methyl ether methacrylate) (poly(VC-co-PEGMA)) copolymer via non-solvent induced phase separation (NIPS). The tensile strength of the braid-reinforced PVC hollow fiber membranes were significantly larger than those of previously reported various types of PVC hollow fiber membranes. The high interfacial bonding strength indicated the good compatibility between the coating materials and the surface of polyethylene terephthalate (PET)-braid. Owing to the surface segregation phenomena, the membrane surface PEGMA coverage increased upon increasing the poly(VC-co-PEGMA)/PVC blending ratio, resulting in higher hydrophilicities and bovine serum albumin (BSA) repulsion. To compare the fouling properties, membranes with similar PWPs were prepared by adjusting the dope solution composition to eliminate the effect of hydrodynamic conditions on the membrane fouling performance. The blend membranes surface exhibited considerable fouling resistance to the molecular adsorption from both BSA solution and activated sludge solution. In both cases, the flux recovered to almost 80% of the initial flux using only water backflush. Considering their great mechanical properties and antifouling resistance to activated sludge solution, these novel membranes show good potential for application in wastewater treatment. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Chen, Xiaogang; Hu, Xizhen; Huang, Dexiu
2014-09-01
The transmission performance of single sideband (SSB) radio over fiber (RoF) system is evaluated through tuning the modulation index of Mach-Zehnder modulator, two different data modulation schemes and the influence of fiber dispersion are considered. The quantitative simulation results validate that there exist an optimum modulation index, and the system performance could be improved if the data signal is modulated on only optical carrier or sidebands.
Kolambkar, Yash M.; Bajin, Mehmet; Wojtowicz, Abigail; Hutmacher, Dietmar W.; García, Andrés J.
2014-01-01
Electrospun nanofiber meshes have emerged as a new generation of scaffold membranes possessing a number of features suitable for tissue regeneration. One of these features is the flexibility to modify their structure and composition to orchestrate specific cellular responses. In this study, we investigated the effects of nanofiber orientation and surface functionalization on human mesenchymal stem cell (hMSC) migration and osteogenic differentiation. We used an in vitro model to examine hMSC migration into a cell-free zone on nanofiber meshes and mitomycin C treatment to assess the contribution of proliferation to the observed migration. Poly (ɛ-caprolactone) meshes with oriented topography were created by electrospinning aligned nanofibers on a rotating mandrel, while randomly oriented controls were collected on a stationary collector. Both aligned and random meshes were coated with a triple-helical, type I collagen-mimetic peptide, containing the glycine-phenylalanine-hydroxyproline-glycine-glutamate-arginine (GFOGER) motif. Our results indicate that nanofiber GFOGER peptide functionalization and orientation modulate cellular behavior, individually, and in combination. GFOGER significantly enhanced the migration, proliferation, and osteogenic differentiation of hMSCs on nanofiber meshes. Aligned nanofiber meshes displayed increased cell migration along the direction of fiber orientation compared to random meshes; however, fiber alignment did not influence osteogenic differentiation. Compared to each other, GFOGER coating resulted in a higher proliferation-driven cell migration, whereas fiber orientation appeared to generate a larger direct migratory effect. This study demonstrates that peptide surface modification and topographical cues associated with fiber alignment can be used to direct cellular behavior on nanofiber mesh scaffolds, which may be exploited for tissue regeneration. PMID:24020454
Proteomic Analysis of Lipid Raft-Like Detergent-Resistant Membranes of Lens Fiber Cells
Wang, Zhen; Schey, Kevin L.
2015-01-01
Purpose Plasma membranes of lens fiber cells have high levels of long-chain saturated fatty acids, cholesterol, and sphingolipids—key components of lipid rafts. Thus, lipid rafts are expected to constitute a significant portion of fiber cell membranes and play important roles in lens biology. The purpose of this study was to characterize the lens lipid raft proteome. Methods Quantitative proteomics, both label-free and iTRAQ methods, were used to characterize lens fiber cell lipid raft proteins. Detergent-resistant, lipid raft membrane (DRM) fractions were isolated by sucrose gradient centrifugation. To confirm protein localization to lipid rafts, protein sensitivity to cholesterol removal by methyl-β-cyclodextrin was quantified by iTRAQ analysis. Results A total of 506 proteins were identified in raft-like detergent-resistant membranes. Proteins identified support important functions of raft domains in fiber cells, including trafficking, signal transduction, and cytoskeletal organization. In cholesterol-sensitivity studies, 200 proteins were quantified and 71 proteins were strongly affected by cholesterol removal. Lipid raft markers flotillin-1 and flotillin-2 and a significant fraction of AQP0, MP20, and AQP5 were found in the DRM fraction and were highly sensitive to cholesterol removal. Connexins 46 and 50 were more abundant in nonraft fractions, but a small fraction of each was found in the DRM fraction and was strongly affected by cholesterol removal. Quantification of modified AQP0 confirmed that fatty acylation targeted this protein to membrane raft domains. Conclusions These data represent the first comprehensive profile of the lipid raft proteome of lens fiber cells and provide information on membrane protein organization in these cells. PMID:26747763
Developments in photonic and mm-wave component technology for fiber radio
NASA Astrophysics Data System (ADS)
Iezekiel, Stavros
2013-01-01
A review of photonic component technology for fiber radio applications at 60 GHz will be given. We will focus on two architectures: (i) baseband-over-fiber and (ii) RF-over-fiber. In the first approach, up-conversion to 60 GHz is performed at the picocell base stations, with data being transported over fiber, while in the second both the data and rum wave carrier are transported over fiber. For the baseband-over-fiber scheme, we examine techniques to improve the modulation efficiency of directly modulated fiber links. These are based on traveling-wave structures applied to series cascades of lasers. This approach combines the improvement in differential quantum efficiency with the ability to tailor impedance matching as required. In addition, we report on various base station transceiver architectures based on optically-controlled :tvfMIC self oscillating mixers, and their application to 60 GHz fiber radio. This approach allows low cost optoelectronic transceivers to be used for the baseband fiber link, whilst minimizing the impact of dispersion. For the RF-over-fiber scheme, we report on schemes for optical generation of 100 GHz. These use modulation of a Mach-Zehnder modulator at Vπ bias in cascade with a Mach-Zehnder driven by 1.25 Gb/s data. One of the issues in RF-over-fiber is dispersion, while reduced modulation efficiency due to the presence of the optical carrier is also problematic. We examine the use of silicon nitride micro-ring resonators for the production of optical single sideband modulation in order to combat dispersion, and for the reduction of optical carrier power in order to improve link modulation efficiency.
Next-generation fiber lasers enabled by high-performance components
NASA Astrophysics Data System (ADS)
Kliner, D. A. V.; Victor, B.; Rivera, C.; Fanning, G.; Balsley, D.; Farrow, R. L.; Kennedy, K.; Hampton, S.; Hawke, R.; Soukup, E.; Reynolds, M.; Hodges, A.; Emery, J.; Brown, A.; Almonte, K.; Nelson, M.; Foley, B.; Dawson, D.; Hemenway, D. M.; Urbanek, W.; DeVito, M.; Bao, L.; Koponen, J.; Gross, K.
2018-02-01
Next-generation industrial fiber lasers enable challenging applications that cannot be addressed with legacy fiber lasers. Key features of next-generation fiber lasers include robust back-reflection protection, high power stability, wide power tunability, high-speed modulation and waveform generation, and facile field serviceability. These capabilities are enabled by high-performance components, particularly pump diodes and optical fibers, and by advanced fiber laser designs. We summarize the performance and reliability of nLIGHT diodes, fibers, and next-generation industrial fiber lasers at power levels of 500 W - 8 kW. We show back-reflection studies with up to 1 kW of back-reflected power, power-stability measurements in cw and modulated operation exhibiting sub-1% stability over a 5 - 100% power range, and high-speed modulation (100 kHz) and waveform generation with a bandwidth 20x higher than standard fiber lasers. We show results from representative applications, including cutting and welding of highly reflective metals (Cu and Al) for production of Li-ion battery modules and processing of carbon fiber reinforced polymers.
Mixed matrix hollow fiber membranes for removal of protein-bound toxins from human plasma.
Tijink, Marlon S L; Wester, Maarten; Glorieux, Griet; Gerritsen, Karin G F; Sun, Junfen; Swart, Pieter C; Borneman, Zandrie; Wessling, Matthias; Vanholder, Raymond; Joles, Jaap A; Stamatialis, Dimitrios
2013-10-01
In end stage renal disease (ESRD) waste solutes accumulate in body fluid. Removal of protein bound solutes using conventional renal replacement therapies is currently very poor while their accumulation is associated with adverse outcomes in ESRD. Here we investigate the application of a hollow fiber mixed matrix membrane (MMM) for removal of these toxins. The MMM hollow fiber consists of porous macro-void free polymeric inner membrane layer well attached to the activated carbon containing outer MMM layer. The new membranes have permeation properties in the ultrafiltration range. Under static conditions, they adsorb 57% p-cresylsulfate, 82% indoxyl sulfate and 94% of hippuric acid from spiked human plasma in 4 h. Under dynamic conditions, they adsorb on average 2.27 mg PCS/g membrane and 3.58 mg IS/g membrane in 4 h in diffusion experiments and 2.68 mg/g membrane PCS and 12.85 mg/g membrane IS in convection experiments. Based on the dynamic experiments we estimate that our membranes would suffice to remove the daily production of these protein bound solutes. Copyright © 2013 Elsevier Ltd. All rights reserved.
Low-Cost Fiber Optic Pressure Sensor
Sheem, Sang K.
2004-05-18
The size and cost of fabricating fiber optic pressure sensors is reduced by fabricating the membrane of the sensor in a non-planar shape. The design of the sensors may be made in such a way that the non-planar membrane becomes a part of an air-tight cavity, so as to make the membrane resilient due to the air-cushion effect of the air-tight cavity. Such non-planar membranes are easier to make and attach.
Low-Cost Fiber Optic Pressure Sensor
Sheem, Sang K.
2003-07-22
The size and cost of fabricating fiber optic pressure sensors is reduced by fabricating the membrane of the sensor in a non-planar shape. The design of the sensors may be made in such a way that the non-planar membrane becomes a part of an air-tight cavity, so as to make the membrane resilient due to the air-cushion effect of the air-tight cavity. Such non-planar membranes are easier to make and attach.
NASA Astrophysics Data System (ADS)
Das, Chandan; Gebru, Kibrom Alebel
2017-12-01
Hybrid membranes from Cellulose Acetate (CA) and titanium oxide (TiO2) nanoparticles were fabricated using electrospinning technique. The electrospun hybrid membranes were characterized using field emission scanning electron microscopy, high energy electrons of the energy dispersive X-ray spectroscopy, X-ray diffraction patterns, atomic force microscopy, zeta potential (ζ), and thermo gravimetric analysis. The impact of TiO2 contents on the electrospun membranes matrix was studied in detail. All these characterization results indicated that TiO2 were uniformly distributed within the CA electrospun membrane's matrix. The addition of TiO2 caused formation of largely interconnected fiber networks which in turn have a positive effect on the enhancement of the membrane pore structures. As the amount of TiO2 addition was raised from 0 to 6.5 wt%, the entanglements of the fibers and the spider-net like network among fibers were increased.
Chakraborty, Arup Lal; Ruxton, Keith; Johnstone, Walter; Lengden, Michael; Duffin, Kevin
2009-06-08
A new fiber-optic technique to eliminate residual amplitude modulation in tunable diode laser wavelength modulation spectroscopy is presented. The modulated laser output is split to pass in parallel through the gas measurement cell and an optical fiber delay line, with the modulation frequency / delay chosen to introduce a relative phase shift of pi between them. The two signals are balanced using a variable attenuator and recombined through a fiber coupler. In the absence of gas, the direct laser intensity modulation cancels, thereby eliminating the high background. The presence of gas induces a concentration-dependent imbalance at the coupler's output from which the absolute absorption profile is directly recovered with high accuracy using 1f detection.
Aquaporin-0 Targets Interlocking Domains to Control the Integrity and Transparency of the Eye Lens
Lo, Woo-Kuen; Biswas, Sondip K.; Brako, Lawrence; Shiels, Alan; Gu, Sumin; Jiang, Jean X.
2014-01-01
Purpose. Lens fiber cell membranes contain aquaporin-0 (AQP0), which constitutes approximately 50% of the total fiber cell membrane proteins and has a dual function as a water channel protein and an adhesion molecule. Fiber cell membranes also develop an elaborate interlocking system that is required for maintaining structural order, stability, and lens transparency. Herein, we used an AQP0-deficient mouse model to investigate an unconventional adhesion role of AQP0 in maintaining a normal structure of lens interlocking protrusions. Methods. The loss of AQP0 in AQP0−/− lens fibers was verified by Western blot and immunofluorescence analyses. Changes in membrane surface structures of wild-type and AQP0−/− lenses at age 3 to 12 weeks were examined with scanning electron microscopy. Preferential distribution of AQP0 in wild-type fiber cell membranes was analyzed with immunofluorescence and immunogold labeling using freeze-fracturing transmission electron microscopy. Results. Interlocking protrusions in young differentiating fiber cells developed normally but showed minor abnormalities at approximately 50 μm deep in the absence of AQP0 in all ages studied. Strikingly, protrusions in maturing fiber cells specifically underwent uncontrolled elongation, deformation, and fragmentation, while cells still retained their overall shape. Later in the process, these changes eventually resulted in fiber cell separation, breakdown, and cataract formation in the lens core. Immunolabeling at the light microscopy and transmission electron microscopy levels demonstrated that AQP0 was particularly enriched in interlocking protrusions in wild-type lenses. Conclusions. This study suggests that AQP0 exerts its primary adhesion or suppression role specifically to maintain the normal structure of interlocking protrusions that is critical to the integrity and transparency of the lens. PMID:24458158
100-W 105-μm 0.15NA fiber coupled laser diode module
NASA Astrophysics Data System (ADS)
Karlsen, Scott R.; Price, R. Kirk; Reynolds, Mitch; Brown, Aaron; Mehl, Ron; Patterson, Steve; Martinsen, Robert J.
2009-02-01
We report on the development of a high brightness laser diode module capable of coupling over 100W of optical power into a 105 μm 0.15 NA fiber at 976 nm. This module, based on nLIGHT's Pearl product architecture, utilizes hard soldered single emitters packaged into a compact and passively-cooled package. In this system each diode is individually collimated in the fast and slow axes and free-space coupled into a single fiber. The high brightness module has an optical excitation under 0.13 NA, is virtually free of cladding modes, and has an electrical to optical efficiency greater than 40%. Additionally, this module is compatible with high power 7:1 fused fiber combiners, and initial experiments demonstrated 500W coupled into a 220 μm, 0.22 NA fiber. These modules address the need in the market for higher brightness diode lasers for pumping fiber lasers and direct material processing.
Pure keratin membrane and fibers from chicken feather.
Ma, Bomou; Qiao, Xue; Hou, Xiuliang; Yang, Yiqi
2016-08-01
In this research, keratin was extracted from the disposable chicken feather using l-cysteine as reducing agent. Then, it was re-dissolved in the sodium carbonate-sodium bicarbonate buffer, and the pure keratin membrane and fiber were fabricated by doctor-blade casting process and wet spinning method, respectively. Scanning electron microscopy (SEM), fourier transform infrared (FT-IR) spectroscopy, X-ray diffraction (XRD) and thermogravimetric analysis (TGA) were used to characterize the chemical and physical properties of resulting powder, membrane and fiber. Compared with the raw chicken feather, the regenerated keratin materials retain its chemical structure and thermal stability, their relative crystallinity is a little different depend on the shaping method, which leads to the difference in moisture regain. The mechanical results show that tensile strength of the keratin membrane researches 3.5MPa, have potential application in biomedical fields. However, the keratin fiber presents low tenacity, i.e. 0.5cN/dtex, this problem should be solved in order to apply the new fiber in textile and material science. Copyright © 2016 Elsevier B.V. All rights reserved.
Evaluation of toxic agent effects on lung cells by fiber evanescent wave spectroscopy.
Lucas, Pierre; Le Coq, David; Juncker, Christophe; Collier, Jayne; Boesewetter, Dianne E; Boussard-Plédel, Catherine; Bureau, Bruno; Riley, Mark R
2005-01-01
Biochemical changes in living cells are detected using a fiber probe system composed of a single chalcogenide fiber acting as both the sensor and transmission line for infrared optical signals. The signal is collected via evanescent wave absorption along the tapered sensing zone of the fiber. We spectroscopically monitored the effects of the surfactant Triton X-100, which serves as a toxic agent simulant on a transformed human lung carcinoma type II epithelial cell line (A549). We observe spectral changes between 2800-3000 cm(-1) in four absorptions bands, which are assigned to hydrocarbon vibrations of methylene and methyl groups in membrane lipids. Comparison of fiber and transmission spectra shows that the present technique allows one to locally probe the cell plasma membrane in the lipid spectral region. These optical responses are correlated with cellular metabolic activity measurements and LDH (lactate dehydrogenase) release assays that indicate a loss of cellular function and membrane integrity as would be expected in response to the membrane solubilizing Triton. The spectroscopic technique shows a significantly greater detection resolution in time and concentration.
Failure Mechanisms of Hollow Fiber Supported Ionic Liquid Membranes
Zeh, Matthew; Wickramanayake, Shan; Hopkinson, David
2016-01-01
Hollow fiber supported ionic liquid membranes (SILMs) were tested using the bubble point method to investigate potential failure modes, including the maximum transmembrane pressure before loss of the ionic liquid from the support. Porous hollow fiber supports were fabricated with different pore morphologies using Matrimid® and Torlon® as the polymeric material and 1-hexyl-3-methylimidalzolium bis(trifluoromethylsulfonyl)imide ([C6mim][Tf2N]) as the ionic liquid (IL) component. Hollow fiber SILMs were tested for their maximum pressure before failure, with pressure applied either from the bore side or shell side. It was found that the membranes exhibited one or more of three different modes of failure when pressurized: liquid loss (occurring at the bubble point), rupture, and collapse. PMID:27023620
Wang, Kui; Yiming, Wubulikasimu; Saththasivam, Jayaprakash; Liu, Zhaoyang
2017-07-06
Polymeric and ceramic asymmetric membranes have dominated commercial membranes for water treatment. However, polymeric membranes are prone to becoming fouled, while ceramic membranes are mechanically fragile. Here, we report a novel concept to develop asymmetric membranes based on ultra-long ceramic/polymeric fibers, with the combined merits of good mechanical stability, excellent fouling resistance and high oil/water selectivity, in order to meet the stringent requirements for practical oil/water separation. The ultra-long dimensions of ceramic nanofibers/polymeric microfibers endow this novel membrane with mechanical flexibility and robustness, due to the integrated and intertwined structure. This membrane is capable of separating oil/water emulsions with high oil-separation efficiency (99.9%), thanks to its nanoporous selective layer made of ceramic nanofibers. Further, this membrane also displays superior antifouling properties due to its underwater superoleophobicity and ultra-low oil adhesion of the ceramic-based selective layer. This membrane exhibits high water permeation flux (6.8 × 10 4 L m -2 h -1 bar -1 ) at low operation pressures, which is attributed to its 3-dimensional (3D) interconnected fiber-based structure throughout the membrane. In addition, the facile fabrication process and inexpensive materials required for this membrane suggest its significant potential for industrial applications.
Ho, Jaeho; Smith, Shaleena; Patamasank, Jaren; Tontcheva, Petia; Kim, Gyu Dong; Roh, Hyung Keun
2015-03-01
Membrane bioreactor (MBR) is becoming popular for advanced wastewater treatment and water reuse. Air scouring to "shake" the membrane fibers is most suitable and applicable to maintain filtration without severe and rapidfouling. However, membrane fouling mitigating technologies are energy intensive. The goal of this research is to develop an alternative energy-saving MBR system to reduce energy consumption; a revolutionary system that will directly compete with air scouring technologies currently in the membrane water reuse market. The innovative MBR system, called reciprocation MBR (rMBR), prevents membrane fouling without the use of air scouring blowers. The mechanism featured is a mechanical reciprocating membrane frame that uses inertia to prevent fouling. Direct strong agitation of the fiber is also beneficial for the constant removal of solids built up on the membrane surface. The rMBR pilot consumes less energy than conventional coarse air scouring MBR systems. Specific energy consumption for membrane reciprocation for the pilot rMBR system was 0.072 kWh/m3 permeate produced at 40 LMH, which is 75% less than the conventional air scouring in an MBR system (0.29 kWh/m3). Reciprocation of the hollow-fiber membrane can overcome the hydrodynamic limitations of air scouring or cross-flow membrane systems with less energy consumption and/or higher energy efficiency.
Bhave, Ramesh; Kuritz, Tanya; Powell, Lawrence; Adcock, Dale
2012-05-15
The objective of this paper is to describe the use of membranes for energy efficient biomass harvesting and dewatering. The dewatering of Nannochloropsis sp. was evaluated with polymeric hollow fiber and tubular inorganic membranes to demonstrate the capabilities of a membrane-based system to achieve microalgal biomass of >150 g/L (dry wt.) and ∼99% volume reduction through dewatering. The particle free filtrate containing the growth media is suitable for recycle and reuse. For cost-effective processing, hollow fiber membranes can be utilized to recover 90-95% media for recycle. Tubular membranes can provide additional media and water recovery to achieve target final concentrations. Based on the operating conditions used in this study and taking into scale-up considerations, an integrated hollow fiber-tubular membrane system can process microalgal biomass with at least 80% lower energy requirement compared to traditional processes. Backpulsing was found to be an effective flux maintenance strategy to minimize flux decline at high biomass concentration. An effective chemical cleaning protocol was developed for regeneration of fouled membranes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sawada, Y.; Fujii, R.; Igami, I.
The microporous polyethylene hollow-fiber membrane has a unique microfibrile structure throughout its depth and has been found to possess the functions of filtration and adsorption of endotoxin in water. The membrane has a maximum pore diameter of approximately 0.04 micron, a diameter which is within the range of microfiltration. Approximately 10 and 20% of the endotoxin in tap water and subterranean water, respectively, was smaller than 0.025 micron. Endotoxin in these water sources was efficiently removed by the microporous polyethylene hollow-fiber membrane. Escherichia coli O113 culture broth contained 26.4% of endotoxin smaller than 0.025 micron which was also removed. Endotoxinmore » was leaked into the filtrate only when endotoxin samples were successively passed through the membrane. These results indicate that endotoxin smaller than the pore size of the membrane was adsorbed and then leaked into the filtrate because of a reduction in binding sites. Dissociation of /sup 3/H-labeled endotoxin from the membrane was performed, resulting in the removal of endotoxin associated with the membrane by alcoholic alkali at 78% efficiency.« less
Park, Jun; Wycisk, Ryszard; Pintauro, Peter N.; ...
2016-02-29
Here, the regenerative H 2/Br 2-HBr fuel cell, utilizing an oxidant solution of Br 2 in aqueous HBr, shows a number of benefits for grid-scale electricity storage. The membrane-electrode assembly, a key component of a fuel cell, contains a proton-conducting membrane, typically based on the perfluorosulfonic acid (PFSA) ionomer. Unfortunately, the high cost of PFSA membranes and their relatively high bromine crossover are serious drawbacks. Nanofiber composite membranes can overcome these limitations. In this work, composite membranes were prepared from electrospun dual-fiber mats containing Nafion ® PFSA ionomer for facile proton transport and an uncharged polymer, polyphenylsulfone (PPSU), for mechanicalmore » reinforcement, and swelling control. After electrospinning, Nafion/PPSU mats were converted into composite membranes by softening the PPSU fibers, through exposure to chloroform vapor, thus filling the voids between ionomer nanofibers. It was demonstrated that the relative membrane selectivity, referenced to Nafion ® 115, increased with increasing PPSU content, e.g., a selectivity of 11 at 25 vol% of Nafion fibers. H 2-Br 2 fuel cell power output with a 65 m thick membrane containing 55 vol% Nafion fibers was somewhat better than that of a 150 m Nafion ® 115 reference, but its cost advantage due to a four-fold decrease in PFSA content and a lower bromine species crossover make it an attractive candidate for use in H 2/Br 2-HBr systems.« less
NASA Astrophysics Data System (ADS)
Wahiduzzaman; Khan, Mujibur R.; Harp, Spencer; Neumann, Jeffrey; Sultana, Quazi Nahida
2016-04-01
The objective of this experimental study is to produce a nanofibrous membrane functionalized with adsorbent particles called metal organic framework (MOF) in order to adsorb CO2 from a gas source. Therefore, Polyacrylonitrile (PAN) was chosen as the precursor for nanofibers and HKUST-1, a Cu-based MOF, was chosen as adsorbent. The experimental process consists of electrospinning PAN solution blended with HKUST-1 to produce a nanofibrous mat as working substrates. The fibers were collected in a cylindrical canister model. SEM image of this mat showed nanofibers with the presence of small adsorbent particles, impregnated into the as-spun fibers discretely. To increase the amount of MOF particles for effectual gas adsorption, a secondary solvothermal process of producing MOF particles on the fibers was required. This process consists of multiple growth cycles of HKUST-1 particles by using a sol-gel precursor. SEM images showed uniform distribution of porous MOF particles of 2-4 µm in size on the fiber surface. Energy dispersive spectroscopy report of the fiber confirmed the presence of MOF particles through the identification of characteristic Copper elemental peaks of HKUST-1. To determine the thermal stability of the fibrous membrane, Thermogravimetric analysis of HKUST-1 consisting of PAN fiber was performed where a total weight loss of 40% between 210 and 360 °C was observed, hence proving the high-temperature durability of the synthesized membrane. BET surface area of the fiber membrane was measured as 540.73 m2/g. The fiber membrane was then placed into an experimental test bench containing a mixed gas inflow of CO2 and N2. Using non-dispersive infrared CO2 sensors connected to the inlet and outlet port of the bench, significant reduction of CO2 in concentration was measured. Comparative IR spectroscopic analysis between the gas-treated and gas untreated fiber samples showed the presence of characteristic peak in the vicinity of 2300 and 2400 cm-1 which verifies the adsorption of CO2.
Liquid membrane purification of biogas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Majumdar, S.; Guha, A.K.; Lee, Y.T.
1991-03-01
Conventional gas purification technologies are highly energy intensive. They are not suitable for economic removal of CO{sub 2} from methane obtained in biogas due to the small scale of gas production. Membrane separation techniques on the other hand are ideally suited for low gas production rate applications due to their modular nature. Although liquid membranes possess a high species permeability and selectivity, they have not been used for industrial applications due to the problems of membrane stability, membrane flooding and poor operational flexibility, etc. A new hollow-fiber-contained liquid membrane (HFCLM) technique has been developed recently. This technique overcomes the shortcomingsmore » of the traditional immobilized liquid membrane technology. A new technique uses two sets of hydrophobic, microporous hollow fine fibers, packed tightly in a permeator shell. The inter-fiber space is filled with an aqueous liquid acting as the membrane. The feed gas mixture is separated by selective permeation of a species through the liquid from one fiber set to the other. The second fiber set carries a sweep stream, gas or liquid, or simply the permeated gas stream. The objectives (which were met) of the present investigation were as follows. To study the selective removal of CO{sub 2} from a model biogas mixture containing 40% CO{sub 2} (the rest being N{sub 2} or CH{sub 4}) using a HFCLM permeator under various operating modes that include sweep gas, sweep liquid, vacuum and conventional permeation; to develop a mathematical model for each mode of operation; to build a large-scale purification loop and large-scale permeators for model biogas separation and to show stable performance over a period of one month.« less
Jones, Cameron C; McDonough, James M; Capasso, Patrizio; Wang, Dongfang; Rosenstein, Kyle S; Zwischenberger, Joseph B
2013-10-01
Computational fluid dynamics (CFD) is a useful tool in characterizing artificial lung designs by providing predictions of device performance through analyses of pressure distribution, perfusion dynamics, and gas transport properties. Validation of numerical results in membrane oxygenators has been predominantly based on experimental pressure measurements with little emphasis placed on confirmation of the velocity fields due to opacity of the fiber membrane and limitations of optical velocimetric methods. Biplane X-ray digital subtraction angiography was used to visualize flow of a blood analogue through a commercial membrane oxygenator at 1-4.5 L/min. Permeability and inertial coefficients of the Ergun equation were experimentally determined to be 180 and 2.4, respectively. Numerical simulations treating the fiber bundle as a single momentum sink according to the Ergun equation accurately predicted pressure losses across the fiber membrane, but significantly underestimated velocity magnitudes in the fiber bundle. A scaling constant was incorporated into the numerical porosity and reduced the average difference between experimental and numerical values in the porous media regions from 44 ± 4% to 6 ± 5%.
NASA Technical Reports Server (NTRS)
Roebelen, G. J., Jr.; Lysaght, M. J.
1977-01-01
This paper describes an investigation of the practicability of utilizing hollow fiber membranes in vehicular and portable life support system applications. A preliminary screening of potential advanced life support applications resulted in the selection of five applications for feasibility study and testing. As a result of the feasibility study and testing, three applications, heat rejection, deaeration, and bacteria filtration, were chosen for breadboard development testing. Breadboard hardware has been manufactured and tested, and the physical properties of the three hollow fiber membrane assemblies applicable to use aboard future spacecraft have been characterized.
Development of a preprototype hyperfiltration wash water recovery subsystem
NASA Technical Reports Server (NTRS)
1981-01-01
The use of hyperfiltration as a mode of reclamation of waste water on board an extended mission spacecraft was investigated. Two basic approaches are considered with respect to hyperfiltration of wash water recovery. The initial approach involves the use of a hollow fiber permeator and a tubular module, operating at ambient temperature. In this system, relatively large doses of biocides are used to control microbial activity. Since biocides require a long contact time, and many have adverse dematological effects as well as many interact with membrane material, a second approach is considered which involves operating at pasturization temperature.
Mao, Yiyin; Li, Junwei; Cao, Wei; Ying, Yulong; Sun, Luwei; Peng, Xinsheng
2014-03-26
The scalable fabrication of continuous and defect-free metal-organic framework (MOF) films on the surface of polymeric hollow fibers, departing from ceramic supported or dense composite membranes, is a huge challenge. The critical way is to reduce the growth temperature of MOFs in aqueous or ethanol solvents. In the present work, a pressure-assisted room temperature growth strategy was carried out to fabricate continuous and well-intergrown HKUST-1 films on a polymer hollow fiber by using solid copper hydroxide nanostrands as the copper source within 40 min. These HKUST-1 films/polyvinylidenefluoride (PVDF) hollow fiber composite membranes exhibit good separation performance for binary gases with selectivity 116% higher than Knudsen values via both inside-out and outside-in modes. This provides a new way to enable for scale-up preparation of HKUST-1/polymer hollow fiber membranes, due to its superior economic and ecological advantages.
Beam combining and SBS suppression in white noise and pseudo-random modulated amplifiers
NASA Astrophysics Data System (ADS)
Anderson, Brian; Flores, Angel; Holten, Roger; Ehrenreich, Thomas; Dajani, Iyad
2015-03-01
White noise phase modulation (WNS) and pseudo-random binary sequence phase modulation (PRBS) are effective techniques for mitigation of nonlinear effects such as stimulated Brillouin scattering (SBS); thereby paving the way for higher power narrow linewidth fiber amplifiers. However, detailed studies comparing both coherent beam combination and the SBS suppression of these phase modulation schemes have not been reported. In this study an active fiber cutback experiment is performed comparing the enhancement factor of a PRBS and WNS broadened seed as a function of linewidth and fiber length. Furthermore, two WNS and PRBS modulated fiber lasers are coherently combined to measure and compare the fringe visibility and coherence length as a function of optical path length difference. Notably, the discrete frequency comb of PRBS modulation provides a beam combining re-coherence effect where the lasers periodically come back into phase. Significantly, this may reduce path length matching complexity in coherently combined fiber laser systems.
Wouters, Sam; Wouters, Bert; Jespers, Sander; Desmet, Gert; Eghbali, Hamed; Bruggink, Cees; Eeltink, Sebastiaan
2014-08-15
A microfluidic membrane suppressor has been constructed to suppress ions of alkaline mobile-phases via an acid-base reaction across a sulfonated poly(tetrafluoroethylene)-based membrane and was evaluated for anion-exchange separations using conductivity detection. The membrane was clamped between two chip substrates, accommodating rectangular microchannels for the eluent and regenerant flow, respectively. Additionally, a clamp-on chip holder has been constructed which allows the alignment and stacking of different chip modules. The response and efficacy of the microfluidic chip suppressor was assessed for a wide range of eluent (KOH) concentrations, using 127 and 183μm thick membranes, while optimizing the flow rate and concentration of the regenerant solution (H2SO4). The optimal operating eluent flow rate was determined at 5μL/min, corresponding to the optimal van-Deemter flow velocity of commercially-available column technology, i.e. a 0.4mm i.d.×250mm long column packed with 7.5μm anion-exchange particles. When equilibrated at 10mM KOH, a 99% decrease in conductivity signal could be obtained within 5min when applying 10mM H2SO4 regenerant at 75μL/min. A background signal as low as 1.2μS/cm was obtained, which equals the performance of a commercially-available electrolytic hollow-fiber suppressor. When increasing the temperature of the membrane suppressor from 15 to 20°C, ion suppression was significantly improved allowing the application of 75mM KOH. The applicability of the chip suppressor has been demonstrated with an isocratic baseline separation of a mixture of seven inorganic ions, yielding plate numbers between 5300 and 10,600 and with a gradient separation of a complex ion mixture. Copyright © 2014 Elsevier B.V. All rights reserved.
High brightness diode laser module development at nLIGHT Photonics
NASA Astrophysics Data System (ADS)
Price, Kirk; Karlsen, Scott; Brown, Aaron; Reynolds, Mitch; Mehl, Ron; Leisher, Paul; Patterson, Steve; Bell, Jake; Martinsen, Rob
2009-05-01
We report on the development of ultra-high brightness laser diode modules at nLIGHT Photonics. This paper demonstrates a laser diode module capable of coupling over 100W at 976 nm into a 105 μm, 0.15 NA fiber with fiber coupling efficiency greater than 85%. The high brightness module has an optical excitation under 0.13 NA, is virtually free of cladding modes, and has been wavelength stabilized with the use of volume holographic gratings for narrow-band operation. Utilizing nLIGHT's Pearl product architecture, these modules are based on hard soldered single emitters packaged into a compact and passively-cooled package. These modules are designed to be compatible with high power 7:1 fused fiber combiners, enabling over 500W power coupled into a 220 μm, 0.22 NA fiber. These modules address the need in the market for high brightness and wavelength stabilized diode lasers for pumping fiber lasers and solid-state laser systems.
Omniphobic Membrane for Robust Membrane Distillation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, SH; Nejati, S; Boo, C
2014-11-01
In this work, we fabricate an omniphobic microporous membrane for membrane distillation (MD) by modifying a hydrophilic glass fiber membrane with silica nanoparticles followed by surface fluorination and polymer coating. The modified glass fiber membrane exhibits an anti-wetting property not only against water but also against low surface tension organic solvents that easily wet a hydrophobic polytetrafluoroethylene (PTFE) membrane that is commonly used in MD applications. By comparing the performance of the PTFE and omniphobic membranes in direct contact MD experiments in the presence of a surfactant (sodium dodecyl sulfate, SDS), we show that SDS wets the hydrophobic PTFE membranemore » but not the omniphobic membrane. Our results suggest that omniphobic membranes are critical for MD applications with feed waters containing surface active species, such as oil and gas produced water, to prevent membrane pore wetting.« less
Cross-phase modulation bandwidth in ultrafast fiber wavelength converters
NASA Astrophysics Data System (ADS)
Luís, Ruben S.; Monteiro, Paulo; Teixeira, António
2006-12-01
We propose a novel analytical model for the characterization of fiber cross-phase modulation (XPM) in ultrafast all-optical fiber wavelength converters, operating at modulation frequencies higher than 1THz. The model is used to compare the XPM frequency limitations of a conventional and a highly nonlinear dispersion shifted fiber (HN-DSF) and a bismuth oxide-based fiber, introducing the XPM bandwidth as a design parameter. It is shown that the HN-DSF presents the highest XPM bandwidth, above 1THz, making it the most appropriate for ultrafast wavelength conversion.
Novel intercore-cladding lithium niobate thin film coated MOEMS fiber sensor/modulator
NASA Technical Reports Server (NTRS)
Jamlson, Tracee L.; Konreich, Phillip; Yu, Chung
2005-01-01
A MOEMS fiber modulator/sensor is fabricated by depositing a lithium niobate sol-gel thin film between the core and cladding of a fiber preform. The preform is then drawn into 125-micron fibers. Such a MOEMS modulator design is expected to enhance existing lithium niobate undersea acousto-optic sound wave detectors. In our proposed version, the lithium niobate thin film alters the ordinary silica core/cladding boundary conditions such that, when a stress or strain is applied to the fiber, the core light confinement factor changes, leading to modulation of fiber light transmission. Test results of the lithium niobate embedded fiber with a 1550-nm, 4-mW laser source revealed a reduction in light transmission with applied tension. As a comparison, using the same laser source, an ordinary silica core/cladding fiber did not exhibit any reduction in transmitted light when the same strain was applied. Further experimental work and theoretical analysis is ongoing.
Subczynski, Witold Karol; Widomska, Justyna; Mainali, Laxman
2017-01-01
Electron paramagnetic resonance (EPR) spin-label oximetry allows the oxygen permeability coefficient to be evaluated across homogeneous lipid bilayer membranes and, in some cases, across coexisting membrane domains without their physical separation. The most pronounced effect on oxygen permeability is observed for cholesterol, which additionally induces the formation of membrane domains. In intact biological membranes, integral proteins induce the formation of boundary and trapped lipid domains with a low oxygen permeability. The effective oxygen permeability coefficient across the intact biological membrane is affected not only by the oxygen permeability coefficients evaluated for each lipid domain but also by the surface area occupied by these domains in the membrane. All these factors observed in fiber cell plasma membranes of clear human eye lenses are reviewed here.
NASA Astrophysics Data System (ADS)
Patterson, Steven G.; Guiney, Tina; Stapleton, Dean; Braker, Joseph; Alegria, Kim; Irwin, David A.; Ebert, Christopher
2017-02-01
DILAS has leveraged its industry-leading work in manufacturing low SWaP fiber-coupled modules extending the wavelength range to 793nm for Tm fiber laser pumping. Ideal for medical, industrial and military applications, modules spanning from single emitter-based 9W to TBar-based 200W of 793nm pump power will be discussed. The highlight is a lightweight module capable of <200W of 793nm pump power out of a package weighing < 400 grams. In addition, other modules spanning from single emitter-based 9W to TBar-based 200W of 793nm pump power will be presented. In addition, advances in DPAL modules, emitting at the technologically important wavelengths near 766nm and 780nm, will be detailed. Highlights include a fully microprocessor controlled fiber-coupled module that produces greater than 400W from a 600 micron core fiber and a line width of only 56.3pm. The micro-processor permits the automated center wavelength and line width tuning of the output over a range of output powers while retaining excellent line center and line width stability over time.
Multifunctional nanocomposite hollow fiber membranes by solvent transfer induced phase separation.
Haase, Martin F; Jeon, Harim; Hough, Noah; Kim, Jong Hak; Stebe, Kathleen J; Lee, Daeyeon
2017-11-01
The decoration of porous membranes with a dense layer of nanoparticles imparts useful functionality and can enhance membrane separation and anti-fouling properties. However, manufacturing of nanoparticle-coated membranes requires multiple steps and tedious processing. Here, we introduce a facile single-step method in which bicontinuous interfacially jammed emulsions are used to form nanoparticle-functionalized hollow fiber membranes. The resulting nanocomposite membranes prepared via solvent transfer-induced phase separation and photopolymerization have exceptionally high nanoparticle loadings (up to 50 wt% silica nanoparticles) and feature densely packed nanoparticles uniformly distributed over the entire membrane surfaces. These structurally well-defined, asymmetric membranes facilitate control over membrane flux and selectivity, enable the formation of stimuli responsive hydrogel nanocomposite membranes, and can be easily modified to introduce antifouling features. This approach forms a foundation for the formation of advanced nanocomposite membranes comprising diverse building blocks with potential applications in water treatment, industrial separations and as catalytic membrane reactors.
Zhu, Li; Chen, Mingliang; Dong, Yingchao; Tang, Chuyang Y; Huang, Aisheng; Li, Lingling
2016-03-01
Oil-in-water (O/W) emulsion is considered to be difficult to treat. In this work, a low-cost multi-layer-structured mullite-titania composite ceramic hollow fiber microfiltration membrane was fabricated and utilized to efficiently remove fine oil droplets from (O/W) emulsion. In order to reduce membrane cost, coal fly ash was effectively recycled for the first time to fabricate mullite hollow fiber with finger-like and sponge-like structures, on which a much more hydrophilic TiO2 layer was further deposited. The morphology, crystalline phase, mechanical and surface properties were characterized in details. The filtration capability of the final composite membrane was assessed by the separation of a 200 mg·L(-1) synthetic (O/W) emulsion. Even with this microfiltration membrane, a TOC removal efficiency of 97% was achieved. Dilute NaOH solution backwashing was used to effectively accomplish membrane regeneration (∼96% flux recovery efficiency). This study is expected to guide an effective way to recycle waste coal fly ash not only to solve its environmental problems but also to produce a high-valued mullite hollow fiber membrane for highly efficient separation application of O/W emulsion with potential simultaneous functions of pure water production and oil resource recovery. Copyright © 2015 Elsevier Ltd. All rights reserved.
Electrospun fiber membranes enable proliferation of genetically modified cells
Borjigin, Mandula; Eskridge, Chris; Niamat, Rohina; Strouse, Bryan; Bialk, Pawel; Kmiec, Eric B
2013-01-01
Polycaprolactone (PCL) and its blended composites (chitosan, gelatin, and lecithin) are well-established biomaterials that can enrich cell growth and enable tissue engineering. However, their application in the recovery and proliferation of genetically modified cells has not been studied. In the study reported here, we fabricated PCL-biomaterial blended fiber membranes, characterized them using physicochemical techniques, and used them as templates for the growth of genetically modified HCT116-19 colon cancer cells. Our data show that the blended polymers are highly miscible and form homogenous electrospun fiber membranes of uniform texture. The aligned PCL nanofibers support robust cell growth, yielding a 2.5-fold higher proliferation rate than cells plated on standard plastic plate surfaces. PCL-lecithin fiber membranes yielded a 2.7-fold higher rate of proliferation, while PCL-chitosan supported a more modest growth rate (1.5-fold higher). Surprisingly, PCL-gelatin did not enhance cell proliferation when compared to the rate of cell growth on plastic surfaces. PMID:23467983
Kwon, Young-Nam; Kim, In-Chul
2013-11-01
Hydrothermal stability of a porous nickel-supported silica membrane was successfully improved by deposition of titania multilayers on colloidal silica particles embedded in the porous nickel fiber support. Porous nickel-supported silica membranes were prepared by means of a dipping-freezing-fast drying (DFF) method. The titania layers were deposited on colloidal silica particles by repeating hydrolysis and condensation reactions of titanium isopropoxide on the silica particle surfaces. The deposition of thin titania layers on the nickel-supported silica membrane was verified by various analytical tools. The water flux and the solute rejection of the porous Ni fiber-supported silica membranes did not change after titania layer deposition, indicating that thickness of titania layers deposited on silica surface is enough thin not to affect the membrane performance. Moreover, improvement of the hydrothermal stability in the titania-deposited silica membranes was confirmed by stability tests, indicating that thin titania layers deposited on silica surface played an important role as a diffusion barrier against 90 degrees C water into silica particles.
Nitroxyl radical incorporated electrospun biodegradable poly(ester Amide) nanofiber membranes.
Li, Lei; Chu, Chih-Chang
2009-01-01
Biodegradable amino-acid-based poly(ester amide) (PEA) ultra-fine fibers pre-loaded with a nitroxyl radical model compound, 4-amino-2.2.6.6-tetramethylpiperidine-1-oxy (4-amino-TEMPO), were prepared by electrospinning. The fiber size and morphology were shown to be greatly affected by the composition ratio of the solvent mixture (chloroform to DMF) prepared for electrospinning. Nano-size PEA fibers (approx. 640 nm) were obtained when PEA dope was electrospun from the chloroform/DMF solvent mixture at a volume ratio of 2 to 1 vs. 3.5 mum size PEA fibers obtained from chloroform-based electrospun dope. Due to the low glass transition temperature and completely amorphous structures, the PEA electrospun fibrous membranes gradually lost their fiber characteristic during 1 month incubation in PBS buffer at 37 degrees C. The glass transition temperature and heat of fusion of PEA electrospun fibers increased with an increasing incubation time and the most significant change occurred in the first day of incubation in PBS. A sustained release of 4-amino-TEMPO from the electrospun PEA nanofiber membranes was observed over the 1-month incubation period in PBS buffer at 37 degrees C and 38% of the incorporated 4-amino-TEMPO (initial loading level 10 mg/g PEA fibers) was released in one month. During this 1 month incubation in PBS buffer, there were only 1.2% weight loss and 11.7% molecular weight reduction for the electrospun PEA fibrous membranes. In an alpha-chymotrypsin medium (0.1 mg/ml PBS), however, the same electrospun PEA fibrous membranes showed more than 80% weight loss within 6 days and a complete release of encapsulated 4-amino-TEMPO within 5 days.
Hayao, Keishi; Tamaki, Hiroyuki; Nakagawa, Kouki; Tamakoshi, Keigo; Takahashi, Hideaki; Yotani, Kengo; Ogita, Futoshi; Yamamoto, Noriaki; Onishi, Hideaki
2018-06-01
The purpose of this study was to investigate the preventive effect of streptomycin (Str) administration on changes in membrane permeability and the histomorphological characteristics of damaged muscle fibers following eccentric contraction (ECC ). Eighteen 7-week-old male Fischer 344 rats were randomly assigned to three groups: control (Cont), ECC, and ECC with Str (ECC + Str). The tibialis anterior (TA) muscles in both ECC groups were stimulated electrically and exhibited ECC. Evans blue dye (EBD), a marker of muscle fiber damage associated with increased membrane permeability, was injected 24 hr before TA muscle sampling. The number of EBD-positive fibers, muscle fiber cross-sectional area (CSA), and roundness were determined via histomorphological analysis. The ECC intervention resulted in an increased fraction of EBD-positive fibers, a larger CSA, and decreased roundness. The fraction of EBD-positive fibers was 79% lower in the ECC + Str group than in the ECC group. However, there was no difference in the CSA and roundness of the EBD-positive fibers between the two ECC groups. These results suggest that Str administration can reduce the number of myofibers that increase membrane permeability following ECC, but does not ameliorate the extent of fiber swelling in extant EBD-positive fibers. Anat Rec, 301:1096-1102, 2018. © 2018 Wiley Periodicals, Inc. © 2018 Wiley Periodicals, Inc.
Salimi, Esmaeil; Ghaee, Azadeh; Ismail, Ahmad Fauzi; Karimi, Majid
2018-04-30
The main aim of this study was to evaluate the suitability of sulfonated alginate as a modifying agent to enhance the hemocompatibility of self-fabricated polyethersulfone (PES) hollow fiber membrane for blood detoxification. Sodium alginate was sulfonated with a degree of 0.6 and immobilized on the membrane via surface amination and using glutaraldehyde as cross-linking agent. Coating layer not only improved the membrane surface hydrophilicity, but also induced -39.2 mV negative charges on the surface. Water permeability of the modified membrane was enhanced from 67 to 95 L/m 2 ·h·bar and flux recovery ratio increased more than 2-fold. Furthermore, the modified membrane presented higher platelet adhesion resistance (reduced by more than 90%) and prolonged coagulation time (35 s for APTT and 14 s for PT) in comparison with the pristine PES hollow fiber membrane, which verified the improved anti-thrombogenicity of the modified membrane. On the other hand, obtained membrane after 3 h coating could remove up-to 60% of the uremic toxins. According to the obtained data, sulfonated alginate can be a promising modifying agent for the future blood-contacting membrane and specially blood purification issues. Copyright © 2018 Elsevier B.V. All rights reserved.
Nittami, Tadashi; Hitomi, Tetsuo; Matsumoto, Kanji; Nakamura, Kazuho; Ikeda, Takaharu; Setoguchi, Yoshihiro; Motoori, Manabu
2012-01-01
This study focused on phase separation of activated sludge mixed liquor by flat-sheet membranes of polytetrafluoroethylene (PTFE). A 20 liter working volume lab-scale MBR incorporating immersed PTFE flat-sheet membrane modules with different pore sizes (0.3, 0.5 and 1.0 μm) was operated for 19 days treating a synthetic wastewater. The experiment was interrupted twice at days 5 and 13 when the modules were removed and cleaned physically and chemically in sequence. The pure water permeate flux of each membrane module was measured before and after each cleaning step to calculate membrane resistances. Results showed that fouling of membrane modules with 0.3 μm pore size was more rapid than other membrane modules with different pore sizes (0.5 and 1.0 μm). On the other hand, it was not clear whether fouling of the 0.5 μm membrane module was more severe than that of the 1.0 μm membrane module. This was partly because of the membrane condition after chemical cleaning, which seemed to determine the fouling of those modules over the next period. When irreversible resistance (Ri) i.e., differences in membrane resistance before use and after chemical cleaning was high, the transmembrane pressure increased quickly during the next period irrespective of membrane pore size. PMID:24958174
NASA Astrophysics Data System (ADS)
Gusev, Alexander; Vasyukova, Inna; Zakharova, Olga; Altabaeva, Yuliya; Saushkin, Nikolai; Samsonova, Jeanne; Kondakov, Sergey; Osipov, Alexander; Snegin, Eduard
2017-11-01
The aim of proposed research is to study the applicability of fiberglass porous membrane materials in a new strip format for dried blood storage in food industry monitoring. A comparative analysis of cellulosic and fiberglass porous membrane materials was carried out to obtain dried samples of serum or blood and the possibility of further species-specific analysis. Blood samples of Sus scrofa were used to study the comparative effectiveness of cellulose and fiberglass porous membrane carriers for long-term biomaterial storage allowing for further DNA detection by real-time polymerase chain reaction (PCR) method. Scanning electron microscopy of various membranes - native and with blood samples - indicate a fundamental difference in the form of dried samples. Membranes based on cellulosic materials sorb the components of the biological fluid on the surface of the fibers of their structure, partially penetrating the cellulose fibers, while in the case of glass fiber membranes the components of the biological fluid dry out as films in the pores of the membrane between the structural filaments. This fundamental difference in the retention mechanisms affects the rate of dissolution of the components of dry samples and contributes to an increase in the efficiency of the desorption process of the sample before subsequent analysis. Detecting of pig DNA in every analyzed sample under the performed Real-time PCR as well as good state of the biomaterial preservation on the glass fiber membranes was clearly demonstrated. Good biomaterials preservation has been revealed on the test cards for 4 days as well as for 1 hour.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tande, Brian; Seames, Wayne; Benson, Steve
The objective of this project was to evaluate the use of composite polymer membranes and porous membrane contactors to regenerate physical and chemical solvents for capture of carbon dioxide (CO 2) from synthesis gas or flue gas, with the goal of improving the energy efficiency of carbon capture. Both a chemical solvent (typical for a post-combustion capture of CO 2 from flue gas) and a physical solvent (typical for pre- combustion capture of CO 2 from syngas) were evaluated using two bench-scale test systems constructed for this project. For chemical solvents, polytetrafluoroethylene and polypropylene membranes were found to be ablemore » to strip CO 2 from a monoethanolamine (MEA) solution with high selectivity without significant degradation of the material. As expected, the regeneration temperature was the most significant parameter affecting the CO 2 flux through the membrane. Pore size was also found to be important, as pores larger than 5 microns lead to excessive pore wetting. For physical solvents, polydimethyl-siloxane (PDMS)-based membranes were found to have a higher CO 2 permeability than polyvinylalcohol (PVOH) based membranes, while also minimizing solvent loss. Overall, however, the recovery of CO 2 in these systems is low – less than 2% for both chemical and physical solvents – primarily due to the small surface area of the membrane test apparatus. To obtain the higher regeneration rates needed for this application, a much larger surface area would be needed. Further experiments using, for example, a hollow fiber membrane module could determine if this process could be commercially viable.« less
NASA Astrophysics Data System (ADS)
Wood, Andrew
Fibrous materials received a great deal of interest in the fields of tissue engineering and regenerative medicine due to the beneficial cell-interactions and tunable properties for various biomedical applications. These materials are highly advantageous as they provide a large surface area for cellular attachment, proliferation, high porosity values for cellular in-growth, and the ability to modify the membrane to achieve desired responses to both mechanical loading as well as environmental stimuli. A prominent method currently used to fabricate such membranes is electrospinning which uses electrostatic forces to produce fibers on the range of nanometers giving them high morphological saliency to the native extra cellular matrix (ECM). These fibers are also advantageous mechanically with strength and flexibility due to their larger aspect ratio when compared to larger diameter micro/macro fibers. While this spinning technique has many advantages and has seen the most quantity of research in recent years, it does have its own set of drawbacks. Among them is the use cytotoxic solvents during processing which must be fully removed before implantation. In addition, since the fiber produced have smaller diameters, the resulting average pore-size of the scaffold is decreased which in turn hinders cellular penetration into the bulk scaffold. In this work, we have proposed and characterized a novel method called wet-lay process for the rapid fabrication of fibrous membranes for tissue scaffolds. Wet-laying is a method common to textiles and paper industry but unexplored for tissue scaffolds. Short fibers are first suspended in an aqueous bath and homogeneously dispersed using shear force. After draining away the aqueous solution, a nonwoven fibro-porous membrane is deposited onto the draining screen. The implementation of wet-laid membranes into weak hydrogel matrices has shown a reinforcement effect for the composite. Further analyses were carried out to determine the synergistic effect that fiber-length and fiber-concentration have on the dispersion of the fibers during fabrication and cellular response as well as the mechanical reinforcement within a hydrogel matrix. Finally, a method is proposed and validated to both strengthen the as-fabricated membrane as well as to introduce a complex pore-size gradient throughout the scaffold so that cellular response on the bi-layer scaffolds can be modified according to a particular application.
Kim, Daejin; Powell, Lawrence; Delmau, Lætitia H.; ...
2016-04-04
We present that the rare earth elements (REEs) play a vital role in the development of green energy and high-tech industries. In order to meet the fast-growing demand and to ensure sufficient supply of the REEs, it is essential to develop an efficient REE recovery process from post-consumer REE-containing products. In this research effort, we have developed a supported liquid membrane system utilizing polymeric hollow fiber modules to extract REEs from neodymium-based magnets with neutral extractants such as tetraoctyl digylcol amide (TODGA). The effect of process variables such as REE concentration, molar concentration of acid, and membrane area on REEmore » recovery was investigated. We have demonstrated the selective extraction and recovery of REEs such as Nd, Pr, and Dy without co-extraction of non-REEs from permanent NdFeB magnets through the supported liquid membrane system. The extracted REEs were then recovered by precipitation followed by the annealing step to obtain crystalline REE powders in nearly pure form. Finally, the recovered REE oxides were characterized by X-ray diffraction, scanning electron microscope coupled with energy-dispersive X-ray spectroscopy, and inductively coupled plasma–optical emission spectroscopy.« less
Allioux, Francois-Marie; Etxeberria Benavides, Miren
2017-01-01
The sintering of metal powders is an efficient and versatile technique to fabricate porous metal elements such as filters, diffusers, and membranes. Neck formation between particles is, however, critical to tune the porosity and optimize mass transfer in order to minimize the densification process. In this work, macro-porous stainless steel (SS) hollow-fibers (HFs) were fabricated by the extrusion and sintering of a dope comprised, for the first time, of a bimodal mixture of SS powders. The SS particles of different sizes and shapes were mixed to increase the neck formation between the particles and control the densification process of the structure during sintering. The sintered HFs from particles of two different sizes were shown to be more mechanically stable at lower sintering temperature due to the increased neck area of the small particles sintered to the large ones. In addition, the sintered HFs made from particles of 10 and 44 μm showed a smaller average pore size (<1 μm) as compared to the micron-size pores of sintered HFs made from particles of 10 μm only and those of 10 and 20 μm. The novel HFs could be used in a range of applications, from filtration modules to electrochemical membrane reactors. PMID:28777352
Effect of extrusion rate on morphology of Kaolin/PolyEtherSulfone (PESf) membrane precursor
NASA Astrophysics Data System (ADS)
Misaran, M. S.; Sarbatly, R.; Bono, A.; Rahman, M. M.
2016-11-01
This study aims to investigate the influence of apparent viscosity induced by spinneret geometry and extrusion rate on morphology of Kaolin/PESf hollow fiber membranes. Different extrusion rates at two different rheology properties were introduced on a straight and conical spinneret resulting in various shear rates. The hollow fiber membrane precursors were spun using the wet spinning method to decouple the effect of shear and elongation stress due to gravity stretched drawing. The morphology of the spun hollow fiber was observed under Scanning Electron Microscope (SEM) and the overall porosity were measured using mercury intrusion porosimeter. Shear rate and apparent viscosity at the tip of the spinneret annulus were simulated using a computational fluid dynamics package; solidworks floworks. Simulation data shows that extrusion rate increment increases the shear rate at the spinneret wall which in turn reduce the apparent viscosity; consistent with a non Newtonian shear thinning fluid behavior. Thus, the outer finger-like region grows as the shear rate increases. Also, overall porosity of hollow fiber membrane decreases with extrusion rate increment which is caused by better molecular orientation; resulting in denser hollow fiber membrane. Thin outer finger-like region is achieved at low shear experience of 109.55 s-1 via a straight spinneret. Increasing the extrusion rate; thus shear rate will cause outer finger-like region growth which is not desirable in a separation process.
NASA Astrophysics Data System (ADS)
Wang, Xin; Wang, Cuiluan; Wu, Xia; Zhu, Lingni; Jing, Hongqi; Ma, Xiaoyu; Liu, Suping
2017-02-01
Based on the high-speed development of the fiber laser in recent years, the development of researching 915 nm semiconductor laser as main pumping sources of the fiber laser is at a high speed. Because the beam quality of the laser diode is very poor, the 915 nm laser diode is generally based on optical fiber coupling module to output the laser. Using the beam-shaping and fiber-coupling technology to improve the quality of output beam light, we present a kind of high-power and high-brightness semiconductor laser module, which can output 13.22 W through the optical fiber. Based on 915 nm GaAs semiconductor laser diode which has output power of 13.91 W, we describe a thoroughly detailed procedure for reshaping the beam output from the semiconductor laser diode and coupling the beam into the optical fiber of which the core diameter is 105 μm and the numerical aperture is 0.18. We get 13.22 W from the output fiber of the module at 14.5 A, the coupling efficiency of the whole module is 95.03% and the brightness is 1.5 MW/cm2 -str. The output power of the single chip semiconductor laser module achieves the advanced level in the domestic use.
Shaddad, R Q; Mohammad, A B; Al-Gailani, S A; Al-Hetar, A M
2014-01-01
The optical fiber is well adapted to pass multiple wireless signals having different carrier frequencies by using radio-over-fiber (ROF) technique. However, multiple wireless signals which have the same carrier frequency cannot propagate over a single optical fiber, such as wireless multi-input multi-output (MIMO) signals feeding multiple antennas in the fiber wireless (FiWi) system. A novel optical frequency upconversion (OFU) technique is proposed to solve this problem. In this paper, the novel OFU approach is used to transmit three wireless MIMO signals over a 20 km standard single mode fiber (SMF). The OFU technique exploits one optical source to produce multiple wavelengths by delivering it to a LiNbO3 external optical modulator. The wireless MIMO signals are then modulated by LiNbO3 optical intensity modulators separately using the generated optical carriers from the OFU process. These modulators use the optical single-sideband with carrier (OSSB+C) modulation scheme to optimize the system performance against the fiber dispersion effect. Each wireless MIMO signal is with a 2.4 GHz or 5 GHz carrier frequency, 1 Gb/s data rate, and 16-quadrature amplitude modulation (QAM). The crosstalk between the wireless MIMO signals is highly suppressed, since each wireless MIMO signal is carried on a specific optical wavelength.
Development of a silicone hollow fiber membrane oxygenator for ECMO application.
Yamane, S; Ohashi, Y; Sueoka, A; Sato, K; Kuwana, J; Nosé, Y
1998-01-01
A new silicone hollow fiber membrane oxygenator for extracorporeal membrane oxygenation (ECMO) was developed using an ultrathin silicone hollow fiber, with a 300 microm outer diameter and a wall thickness of 50 microm. The hollow fibers were mechanically cross-wound on the flow distributor to achieve equal distribution of blood flow without changing the fiber shape. The housing, made of silicone coated acryl, was 236 mm long with an inner diameter of 60 mm. The surface area was 1.0 m2 for prototype 211, and 1.1 m2 for prototype 209. The silicone fiber length was 150 mm, and the silicone membrane packing density was 43% for prototype 211 and 36% for prototype 209. Prototype 211 has a priming volume of 208 ml, and prototype 209 has a priming volume of 228 ml. The prototype 211 oxygenator demonstrates a gas transfer rate of 120 +/- 5 ml/min (mean +/- SD) for O2 and 67 +/- 12 ml/min for CO2 under 2 L of blood flow and 4 L of O2 gas flow. Prototype 209 produced the same values. The blood side pressure drop was low compared with the silicone sheet oxygenator (Avecor, 1500ECMO). These results showed that this new oxygenator for ECMO had efficiency similar to the silicone sheet oxygenator that has a 50% larger surface area. These results suggest that the new generation oxygenator using an ultrathin silicone hollow fiber possesses sufficient gas transfer performance for long-term extracorporeal lung support.
NASA Astrophysics Data System (ADS)
Kartohardjono, Sutrasno; Alexander, Kevin; Larasati, Annisa; Sihombing, Ivander Christian
2018-03-01
Carbon dioxide is pollutant in natural gas that could reduce the heating value of the natural gas and cause problem in transportation due to corrosive to the pipeline. This study aims to evaluate the effects of feed gas flow rate on CO2 absorption through super hydrophobic hollow fiber contactor. Polyethyleneglycol-300 (PEG-300) solution was used as absorbent in this study, whilst the feed gas used in the experiment was a mixture of 30% CO2 and 70% CH4. There are three super hydrophobic hollow fiber contactors sized 6 cm and 25 cm in diameter and length used in this study, which consists of 1000, 3000 and 5000 fibers, respectively. The super hydrophobic fiber membrane used is polypropylene-based with outer and inner diameter of about 525 and 235 μm, respectively. In the experiments, the feed gas was sent through the shell side of the membrane contactor, whilst the absorbent solution was pumped through the lumen fibers. The experimental results showed that the mass transfer coefficient, flux, absorption efficiency for CO2-N2 system and CO2 loading increased with the feed gas flow rate, but the absorption efficiency for CO2-N2 system decreased. The mass transfer coefficient and the flux, at the same feed gas flow rate, decreased with the number of fibers in the membrane contactor, but the CO2 absorption efficiency and the CO2 loading increased.
Composite Polymeric Membranes with Directionally Embedded Fibers for Controlled Dual Actuation.
Liu, Li; Bakhshi, Hadi; Jiang, Shaohua; Schmalz, Holger; Agarwal, Seema
2018-04-20
In this paper, preparation method and actuation properties of an innovative composite membrane composed of thermo- and pH-responsive poly(N-isopropylacrylamide-co-acrylic acid) fibers (average diameter ≈ 905 nm) embedded within a passive thermoplastic polyurethane (TPU) matrix at different angles with degree of alignment as high as 98% are presented. The composite membrane has a gradient of TPU along the thickness. It has the capability of temperature- and pH-dependent direction-, and size-controlled actuation in few minutes. The stresses generated at the responsive fiber and nonresponsive matrix provide actuation, whereas the angle at which fibers are embedded in the matrix controls the actuation direction and size. The temperature has no effect on actuation and actuated forms at pH 7 and above, whereas the size of the actuated forms can be controlled by the temperature at lower pH. The membranes are strong enough to reversibly lift and release ≈426 times weight of their own mass (2.47 g metal ring is lifted by a 5.8 mg membrane). Soft actuators are of interest as smart scaffolds, robotics, catalysis, drug release, energy storage, electrodes, and metamaterials. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Lipid-protein interactions in plasma membranes of fiber cells isolated from the human eye lens.
Raguz, Marija; Mainali, Laxman; O'Brien, William J; Subczynski, Witold K
2014-03-01
The protein content in human lens membranes is extremely high, increases with age, and is higher in the nucleus as compared with the cortex, which should strongly affect the organization and properties of the lipid bilayer portion of intact membranes. To assess these effects, the intact cortical and nuclear fiber cell plasma membranes isolated from human lenses from 41- to 60-year-old donors were studied using electron paramagnetic resonance spin-labeling methods. Results were compared with those obtained for lens lipid membranes prepared from total lipid extracts from human eyes of the same age group [Mainali, L., Raguz, M., O'Brien, W. J., and Subczynski, W. K. (2013) Biochim. Biophys. Acta]. Differences were considered to be mainly due to the effect of membrane proteins. The lipid-bilayer portions of intact membranes were significantly less fluid than lipid bilayers of lens lipid membranes, prepared without proteins. The intact membranes were found to contain three distinct lipid environments termed the bulk lipid domain, boundary lipid domain, and trapped lipid domain. However, the cholesterol bilayer domain, which was detected in cortical and nuclear lens lipid membranes, was not detected in intact membranes. The relative amounts of bulk and trapped lipids were evaluated. The amount of lipids in domains uniquely formed due to the presence of membrane proteins was greater in nuclear membranes than in cortical membranes. Thus, it is evident that the rigidity of nuclear membranes is greater than that of cortical membranes. Also the permeability coefficients for oxygen measured in domains of nuclear membranes were significantly lower than appropriate coefficients measured in cortical membranes. Relationships between the organization of lipids into lipid domains in fiber cells plasma membranes and the organization of membrane proteins are discussed. Copyright © 2014 Elsevier Ltd. All rights reserved.
Lipid-Protein Interactions in Plasma Membranes of Fiber Cells Isolated from the Human Eye Lens
Raguz, Marija; Mainali, Laxman; O’Brien, William J.; Subczynski, Witold K.
2014-01-01
The protein content in human lens membranes is extremely high, increases with age, and is higher in the nucleus as compared with the cortex, which should strongly affect the organization and properties of the lipid bilayer portion of intact membranes. To assess these effects, the intact cortical and nuclear fiber cell plasma membranes isolated from human lenses from 41- to 60-year-old donors were studied using electron paramagnetic resonance spin-labeling methods. Results were compared with those obtained for lens lipid membranes prepared from total lipid extracts from human eyes of the same age group [Mainali,L., Raguz, M., O’Brien, W. J., and Subczynski, W. K. (2013) Biochim. Biophys. Acta]. Differences were considered to be mainly due to the effect of membrane proteins. The lipid-bilayer portions of intact membranes were significantly less fluid than lipid bilayers of lens lipid membranes, prepared without proteins. The intact membranes were found to contain three distinct lipid environments termed the bulk lipid domain, boundary lipid domain, and trapped lipid domain. However, the cholesterol bilayer domain, which was detected in cortical and nuclear lens lipid membranes, was not detected in intact membranes. The relative amounts of bulk and trapped lipids were evaluated. The amount of lipids in domains uniquely formed due to the presence of membrane proteins was greater in nuclear membranes than in cortical membranes. Thus, it is evident that the rigidity of nuclear membranes is greater than that of cortical membranes. Also the permeability coefficients for oxygen measured in domains of nuclear membranes were significantly lower than appropriate coefficients measured in cortical membranes. Relationships between the organization of lipids into lipid domains in fiber cells plasma membranes and the organization of membrane proteins are discussed. PMID:24486794
Shao, Jing; Sun, Junqiang
2012-08-15
We propose and experimentally demonstrate a simple and flexible photonic scheme for generation and modulation of ultrawideband (UWB) using a phase modulator and a fiber delay interferometer (DI)-based multichannel frequency discrimination. By introducing a Gaussian signal to the phase modulator, the UWB polarity-switchable doublet pulses can be achieved by combining the pair of UWB monocycle pulses with inverted polarities at the DI outputs under proper time delay. Furthermore, the pulse shape modulation, pulse position modulation, and on-off keying can be performed by coding the electrical data patterns and adjusting the time delay between the two monocycle pulses. Only a laser source introduced in the architecture guarantees the excellent dispersion tolerance over 75 km optical fiber link for UWB pulse sequence, which has potential application in future high-speed UWB impulse radio over optical fiber access networks.
Hollow fiber apparatus and use thereof for fluids separations and heat and mass transfers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bikson, Benjamin; Etter, Stephen; Ching, Nathaniel
A hollow fiber fluid separation device includes a hollow fiber cartridge, comprising a plurality of hollow fiber membranes arranged around a central tubular core, a first tubesheet and a second tubesheet encapsulating respective distal ends of the hollow fiber bundle. The tubesheets have boreholes in fluid communication with bores of the hollow fiber membrane. In at least one of the tubesheets, the boreholes are formed radially and are in communication with the central tubular core. The hollow fiber fluid separation device can be utilized in liquid separation applications such as ultrafiltration and in gas separation processes such as air separation.more » The design disclosed herein is light weight and compact and is particularly advantageous at high operating temperatures when the pressure of the feed fluid introduced into the bores of hollow fibers is higher than the pressure on the shell side of the device.« less
NASA Astrophysics Data System (ADS)
Bovyn, Matt; Chen, Wei; Lanes, Olivia; Mast, Jason
2013-03-01
Dr. Chen has developed a technique called synchronization modulation, which uses an oscillating electric field to increase the rate at which the sodium-potassium pumps in the cell membrane work. Because the sodium-potassium pump is integral in the recovery of skeletal muscle fibers after an action potential, we investigated the effects of applying synchronization modulation to muscles which had already undergone fatigue due to repeated action potentials during exercise. Fatigue was induced in human subjects' biceps brachii through isometric contraction. Surface electromyography measurements of fatigue index were used to quantify how the muscle recovered over the minutes following fatigue, both when synchronization modulation was applied and when it was absent. The preliminary results were inconclusive, but it is hoped that in later work it will be shown that applying synchronization modulation is effective in increasing the rate at which the muscle recovers to its initial state. This would demonstrate not only that synchronization modulation can be successfully applied to human muscle, but also that it has many potential applications in sports medicine and novel disease treatments. Work done as part of an REU program at the University of South Florida
Henry, Sarah; Vignaud, Hélène; Bobo, Claude; Decossas, Marion; Lambert, Oliver; Harte, Etienne; Alves, Isabel D; Cullin, Christophe; Lecomte, Sophie
2015-03-09
The toxicity of amyloids, as Aβ(1-42) involved in Alzheimer disease, is a subject under intense scrutiny. Many studies link their toxicity to the existence of various intermediate structures prior to fiber formation and/or their specific interaction with membranes. In this study we focused on the interaction between membrane models and Aβ(1-42) peptides and variants (L34T, mG37C) produced in E. coli and purified in monomeric form. We evaluated the interaction of a toxic stable oligomeric form (oG37C) with membranes as comparison. Using various biophysical techniques as fluorescence and plasmon waveguide resonance, we clearly established that the oG37C interacts strongly with membranes leading to its disruption. All the studied peptides destabilized liposomes and accumulated slowly on the membrane (rate constant 0.02 min(-1)). Only the oG37C exhibited a particular pattern of interaction, comprising two steps: the initial binding followed by membrane reorganization. Cryo-TEM was used to visualize the peptide effect on liposome morphologies. Both oG37C and mG37C lead to PG membrane fragmentation. The PG membrane promotes peptide oligomerization, implicated in membrane disruption. WT (Aβ(1-42)) also perturbs liposome organization with membrane deformation rather than disruption. For all the peptides studied, their interaction with the membranes changes their fibrillization process, with less fibers and more small aggregates being formed. These studies allowed to establish, a correlation between toxicity, fiber formation, and membrane disruption.
Organic colloids and their influence on low-pressure membrane filtration.
Laabs, C; Amy, G; Jekel, M
2004-01-01
Wastewater treatment by low-pressure membrane filtration (MF and UF) is affected to a large extent by macromolecules and colloids. In order to investigate the influence of organic colloids on the membrane filtration process, colloids were isolated from a wastewater treatment plant effluent using a rotary-evaporation pre-concentration step followed by dialysis. Stirred cell tests were carried out using redissolved colloids, with and without additional glass fiber filtration. After constant pressure membrane filtration of 190 L/m2, the initial flux had declined by 50% for colloids > 6-8 kD (glass fiber filtered) with a hydrophilic MF membrane and for colloids > 12-14 kD (glass fiber filtered) with a hydrophobic MF membrane. For the non-filtered colloidal solutions, the flux decline was even steeper with the flux being below 10% of the initial flux after 190 L/m2 were passed through the membranes. As with larger particles, colloids form a filtration cake layer on top of the membrane surface when used as isolates without prior filtration. This filtration cake is easily removed during backwashing. However, polysaccharides as a macromolecular component of the colloid isolate cause severe fouling by the formation of a gel layer on the membrane surface that is difficult to remove completely.
Optrode for sensing hydrocarbons
Miller, Holly; Milanovich, Fred P.; Hirschfeld, Tomas B.; Miller, Fred S.
1987-01-01
A two-phase system employing the Fujiwara reaction is provided for the fluorometric detection of halogenated hydrocarbons. A fiber optic is utilized to illuminate a column of pyridine trapped in a capillary tube coaxially attached at one end to the illuminating end of the fiber optic. A strongly alkaline condition necessary for the reaction is maintained by providing a reservoir of alkali in contact with the column of pyridine, the surface of contact being adjacent to the illuminating end of the fiber optic. A semipermeable membrane caps the other end of the capillary tube, the membrane being preferentially permeable to the halogenated hydrocarbon and but preferentially impermeable to water and pyridine. As the halogenated hydrocarbon diffuses through the membrane and into the column of pyridine, fluorescent reaction products are formed. Light propagated by the fiber optic from a light source, excites the fluorescent products. Light from the fluorescence emission is also collected by the same fiber optic and transmitted to a detector. The intensity of the fluorescence gives a measure of the concentration of the halogenated hydrocarbons.
Optrode for sensing hydrocarbons
Miller, H.; Milanovich, F.P.; Hirschfeld, T.B.; Miller, F.S.
1987-05-19
A two-phase system employing the Fujiwara reaction is provided for the fluorometric detection of halogenated hydrocarbons. A fiber optic is utilized to illuminate a column of pyridine trapped in a capillary tube coaxially attached at one end to the illuminating end of the fiber optic. A strongly alkaline condition necessary for the reaction is maintained by providing a reservoir of alkali in contact with the column of pyridine, the surface of contact being adjacent to the illuminating end of the fiber optic. A semipermeable membrane caps the other end of the capillary tube, the membrane being preferentially permeable to the halogenated hydrocarbon but preferentially impermeable to water and pyridine. As the halogenated hydrocarbon diffuses through the membrane and into the column of pyridine, fluorescent reaction products are formed. Light propagated by the fiber optic from a light source, excites the fluorescent products. Light from the fluorescence emission is also collected by the same fiber optic and transmitted to a detector. The intensity of the fluorescence gives a measure of the concentration of the halogenated hydrocarbons. 6 figs.
Optrode for sensing hydrocarbons
Miller, H.; Milanovich, F.P.; Hirschfeld, T.B.; Miller, F.S.
1988-09-13
A two-phase system employing the Fujiwara reaction is provided for the fluorometric detection of halogenated hydrocarbons. A fiber optic is utilized to illuminate a column of pyridine trapped in a capillary tube coaxially attached at one end to the illuminating end of the fiber optic. A strongly alkaline condition necessary for the reaction is maintained by providing a reservoir of alkali in contact with the column of pyridine, the surface of contact being adjacent to the illuminating end of the fiber optic. A semipermeable membrane caps the other end of the capillary tube, the membrane being preferentially permeable to the halogenated hydrocarbon and but preferentially impermeable to water and pyridine. As the halogenated hydrocarbon diffuses through the membrane and into the column of pyridine, fluorescent reaction products are formed. Light propagated by the fiber optic from a light source, excites the fluorescent products. Light from the fluorescence emission is also collected by the same fiber optic and transmitted to a detector. The intensity of the fluorescence gives a measure of the concentration of the halogenated hydrocarbons. 5 figs.
Optrode for sensing hydrocarbons
Miller, Holly; Milanovich, Fred P.; Hirschfeld, Tomas B.; Miller, Fred S.
1988-01-01
A two-phase system employing the Fujiwara reaction is provided for the fluorometric detection of halogenated hydrocarbons. A fiber optic is utilized to illuminate a column of pyridine trapped in a capillary tube coaxially attached at one end to the illuminating end of the fiber optic. A strongly alkaline condition necessary for the reaction is maintained by providing a reservoir of alkali in contact with the column of pyridine, the surface of contact being adjacent to the illuminating end of the fiber optic. A semipermeable membrane caps the other end of the capillary tube, the membrane being preferentially permeable to the halogenated hydrocarbon and but preferentially impermeable to water and pyridine. As the halogenated hydrocarbon diffuses through the membrane and into the column of pyridine, fluorescent reaction products are formed. Light propagated by the fiber optic from a light source, excites the fluorescent products. Light from the fluorescence emission is also collected by the same fiber optic and transmitted to a detector. The intensity of the fluorescence gives a measure of the concentration of the halogenated hydrocarbons.
Ion transport membrane module and vessel system
Stein, VanEric Edward; Carolan, Michael Francis; Chen, Christopher M.; Armstrong, Phillip Andrew; Wahle, Harold W.; Ohrn, Theodore R.; Kneidel, Kurt E.; Rackers, Keith Gerard; Blake, James Erik; Nataraj, Shankar; van Doorn, Rene Hendrik Elias; Wilson, Merrill Anderson
2007-02-20
An ion transport membrane system comprising (a) a pressure vessel having an interior, an exterior, an inlet, and an outlet; (b) a plurality of planar ion transport membrane modules disposed in the interior of the pressure vessel and arranged in series, each membrane module comprising mixed metal oxide ceramic material and having an interior region and an exterior region, wherein any inlet and any outlet of the pressure vessel are in flow communication with exterior regions of the membrane modules; and (c) one or more gas manifolds in flow communication with interior regions of the membrane modules and with the exterior of the pressure vessel. The ion transport membrane system may be utilized in a gas separation device to recover oxygen from an oxygen-containing gas or as an oxidation reactor to oxidize compounds in a feed gas stream by oxygen permeated through the mixed metal oxide ceramic material of the membrane modules.
Ion transport membrane module and vessel system
Stein, VanEric Edward [Allentown, PA; Carolan, Michael Francis [Allentown, PA; Chen, Christopher M [Allentown, PA; Armstrong, Phillip Andrew [Orefield, PA; Wahle, Harold W [North Canton, OH; Ohrn, Theodore R [Alliance, OH; Kneidel, Kurt E [Alliance, OH; Rackers, Keith Gerard [Louisville, OH; Blake, James Erik [Uniontown, OH; Nataraj, Shankar [Allentown, PA; Van Doorn, Rene Hendrik Elias; Wilson, Merrill Anderson [West Jordan, UT
2012-02-14
An ion transport membrane system comprising (a) a pressure vessel having an interior, an exterior, an inlet, and an outlet; (b) a plurality of planar ion transport membrane modules disposed in the interior of the pressure vessel and arranged in series, each membrane module comprising mixed metal oxide ceramic material and having an interior region and an exterior region, wherein any inlet and any outlet of the pressure vessel are in flow communication with exterior regions of the membrane modules; and (c) one or more gas manifolds in flow communication with interior regions of the membrane modules and with the exterior of the pressure vessel. The ion transport membrane system may be utilized in a gas separation device to recover oxygen from an oxygen-containing gas or as an oxidation reactor to oxidize compounds in a feed gas stream by oxygen permeated through the mixed metal oxide ceramic material of the membrane modules.
Ion transport membrane module and vessel system
Stein, VanEric Edward [Allentown, PA; Carolan, Michael Francis [Allentown, PA; Chen, Christopher M [Allentown, PA; Armstrong, Phillip Andrew [Orefield, PA; Wahle, Harold W [North Canton, OH; Ohrn, Theodore R [Alliance, OH; Kneidel, Kurt E [Alliance, OH; Rackers, Keith Gerard [Louisville, OH; Blake, James Erik [Uniontown, OH; Nataraj, Shankar [Allentown, PA; van Doorn, Rene Hendrik Elias; Wilson, Merrill Anderson [West Jordan, UT
2008-02-26
An ion transport membrane system comprising (a) a pressure vessel having an interior, an exterior, an inlet, and an outlet; (b) a plurality of planar ion transport membrane modules disposed in the interior of the pressure vessel and arranged in series, each membrane module comprising mixed metal oxide ceramic material and having an interior region and an exterior region, wherein any inlet and any outlet of the pressure vessel are in flow communication with exterior regions of the membrane modules; and (c) one or more gas manifolds in flow communication with interior regions of the membrane modules and with the exterior of the pressure vessel.The ion transport membrane system may be utilized in a gas separation device to recover oxygen from an oxygen-containing gas or as an oxidation reactor to oxidize compounds in a feed gas stream by oxygen permeated through the mixed metal oxide ceramic material of the membrane modules.
FIBER AND INTEGRATED OPTICS: Radio-frequency electrooptic modulation in optical fibers
NASA Astrophysics Data System (ADS)
Bulyuk, A. N.
1992-10-01
The electrooptic interaction in single-mode optical fibers with both linear and circular birefringe is analyzed. In most cases, a large interaction length imposes a limit on the modulation frequency. A circular birefringence in an optical fiber may lead to an effective coupling of polarization normal modes if a phase-matching condition is satisfied. Through an appropriate choice of polarization states of the light at the entrance and exit of the device, one can achieve a polarization modulation or a frequency shift of the light. There are possible applications in rf polarization modulators, devices for shifting the frequency of light, and detectors of electromagnetic fields.
3D packaging of a microfluidic system with sensory applications
NASA Astrophysics Data System (ADS)
Morrissey, Anthony; Kelly, Gerard; Alderman, John C.
1997-09-01
Among the main benefits of microsystem technology are its contributions to cost reductio, reliability and improved performance. however, the packaging of microsystems, and particularly microsensor, has proven to be one of the biggest limitations to their commercialization and the packaging of silicon sensor devices can be the most costly part of their fabrication. This paper describes the integration of 3D packaging of a microsystem. Central to the operation of the 3D demonstrator is a micromachined silicon membrane pump to supply fluids to a sensing chamber constructed about the active area of a sensor chip. This chip carries ISFET based chemical sensors, pressure sensors and thermal sensors. The electronics required for controlling and regulating the activity of the various sensors ar also available on this chip and as other chips in the 3D assembly. The demonstrator also contains a power supply module with optical fiber interconnections. All of these modules are integrated into a single plastic- encapsulated 3D vertical multichip module. The reliability of such a structure, initially proposed by Val was demonstrated by Barrett et al. An additional module available for inclusion in some of our assemblies is a test chip capable of measuring the packaging-induced stress experienced during and after assembly. The packaging process described produces a module with very high density and utilizes standard off-the-shelf components to minimize costs. As the sensor chip and micropump include micromachined silicon membranes and microvalves, the packaging of such structures has to allow consideration for the minimization of the packaging-induced stresses. With this in mind, low stress techniques, including the use of soft glob-top materials, were employed.
Ultrafine fibers of zein and anthocyanins as natural pH indicator.
Prietto, Luciana; Pinto, Vania Zanella; El Halal, Shanise Lisie Mello; de Morais, Michele Greque; Costa, Jorge Alberto Vieira; Lim, Loong-Tak; Dias, Alvaro Renato Guerra; Zavareze, Elessandra da Rosa
2018-05-01
pH-sensitive indicator membranes, which are useful for pharmaceutical, food, and packaging applications, can be formed by encapsulating halochromic compounds within various solid supports. Accordingly, electrospinning is a versatile technique for the development of these indicators, by entrapping pH dyes within ultrafine polymer fibers. The ultrafine zein fibers, containing 5% (w/v) anthocyanins, had an average diameter of 510 nm. The pH-sensitive membrane exhibited color changes from pink to green when exposed to acidic and alkaline buffers, respectively. The contact angle was negligible after 10 and 2 s for neat and 5% anthocyanin-loaded zein membranes, respectively. The pH membranes exhibited color changes in a board pH range, which can potentially be used in various active packaging applications. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCray, S.B.
1994-05-25
This is a final report from Bend Research, Inc., (BRI) to the U.S. Department of Energy (DOE) for work performed under Contract No. DE-AC22-92MT92005, titled {open_quotes}Development of a Membrane-Based Process for the Treatment of Oily Waste Waters.{close_quotes} This report covers the period from March 4, 1992, to March 5, 1994. The overall goal of this program was to develop an economical oily-water treatment system based on reverse osmosis (RO). The RO system would be used to (1) reduce oil production costs by reducing the volume of waste water that must be disposed of, (2) form the basis of a genericmore » waste-water treatment system that can easily be integrated into oil-field operations, especially at production facilities that are small or in remote locations; and (3) produce water clean enough to meet existing and anticipated environmental regulations. The specific focus of this program was the development of a hollow-fiber membrane module capable of treating oily waste waters.« less
Effect of transient sodium chloride shock loads on the performance of submerged membrane bioreactor.
Yogalakshmi, K N; Joseph, Kurian
2010-09-01
Membrane bioreactor (MBR) is a promising technological option to meet water reuse demands. Though MBR provides effluent quality of reusable standard, its versatility to shock loads remains unexplored. The present study investigates the robustness of MBR under sodium chloride shock load (5-60 g/L) conditions. A bench scale aerobic submerged MBR (6L working volume) with polyethylene hollow fiber membrane module (pore size 0.4 microm) was operated with synthetic wastewater at steady state OLR of 3.6g COD/L/d and HRT of 8h. This resulted in 99% TSS removal and 95% COD and TKN removal. The COD removal during the salt shock load was in the range of 84-64%. The TSS removal showed maximum disturbance (88%) with a corresponding decrease in biomass MLVSS by 8% at 60 g/L shock. TKN removal was reduced due to inhibition of nitrification with increasing shock loads. It took about 4-9 days for the MBR to regain its steady state performance. Copyright 2010 Elsevier Ltd. All rights reserved.
Cross mode modulation in multimode fibers.
Kroushkov, Dimitar I; Rademacher, Georg; Petermann, Klaus
2013-05-15
We show that Kerr nonlinearity induced intermodal power transfer in a particular mode group of a multimode fiber can be formulated by the same type of equation used to describe the effect of cross polarization modulation in single-mode fibers.
Schuldes, Matthew; Riley, Jeffrey B.; Francis, Stephen G.; Clingan, Sean
2016-01-01
Abstract: Gaseous microemboli (GME) are an abnormal physiological occurrence during cardiopulmonary bypass and extracorporeal membrane oxygenation (ECMO). Several studies have correlated negative sequelae with exposure to increased amounts of GME. Hypobaric oxygenation is effective at eliminating GME in hollow-fiber microporous membrane oxygenators. However, hollow-fiber diffusion membrane oxygenators, which are commonly used for ECMO, have yet to be validated. The purpose of this study was to determine if hypobaric oxygenation, compared against normobaric oxygenation, can reduce introduced GME when used on diffusion membrane oxygenators. Comparison of a sealed Quadrox-iD with hypobaric sweep gas (.67 atm) vs. an unmodified Quadrox-iD with normal atmospheric sweep gas (1 atm) in terms of GME transmission during continuous air introduction (50 mL/min) in a recirculating in vitro circuit, over a range of flow rates (3.5, 5 L/min) and crystalloid prime temperatures (37°C, 28°C, and 18°C). GME were measured using three EDAC Doppler probes positioned pre-oxygenator, post-oxygenator, and at the arterial cannula. Hypobaric oxygenation vs. normobaric oxygenation significantly reduced hollow-fiber diffusion membrane oxygenator GME transmission at all combination of pump flows and temperatures. There was further significant reduction in GME count between the oxygenator outlet and at the arterial cannula. Hypobaric oxygenation used on hollow-fiber diffusion membrane oxygenators can further reduce GME compared to normobaric oxygenation. This technique may be a safe approach to eliminate GME during ECMO. PMID:27729706
Development of potassium ion conducting hollow glass fibers. [potassium sulfur battery
NASA Technical Reports Server (NTRS)
Tsang, F. Y.
1974-01-01
Potassium ion conducting glasses, chemically resistant to potassium, potassium sulfide and sulfur, were made and their possible utility as the membrane material for a potassium/sulfur battery was evaluated. At least one satisfactory candidate was found. It possesses an electrical resistance which makes it usable as a membrane in the form of a fine hollow fiber. It's chemical and electrochemical resistances are excellent. The other aspects of the possible potassium sulfur battery utilizing such fine hollow fibers, including the header (or tube sheet) and a cathode current collector were studied. Several cathode materials were found to be satisfactory. None of the tube sheet materials studied possessed all the desired properties. Multi-fiber cells had very limited life-time due to physical failure of fibers at the fiber/tube sheet junctions.
Gordon, John Howard [Salt Lake City, UT; Taylor, Dale M [Murray, UT
2011-06-07
Solid-state membrane modules comprising at least one membrane unit, where the membrane unit has a dense mixed conducting oxide layer, and at least one conduit or manifold wherein the conduit or manifold comprises a dense layer and at least one of a porous layer and a slotted layer contiguous with the dense layer. The solid-state membrane modules may be used to carry out a variety of processes including the separating of any ionizable component from a feedstream wherein such ionizable component is capable of being transported through a dense mixed conducting oxide layer of the membrane units making up the membrane modules. For ease of construction, the membrane units may be planar.
Integrated optical modulator for signal up-conversion over radio-on-fiber link.
Kim, Woo-Kyung; Kwon, Soon-Woo; Jeong, Woo-Jin; Son, Geun-Sik; Lee, Kwang-Hyun; Choi, Woo-Young; Yang, Woo-Seok; Lee, Hyung-Man; Lee, Han-Young
2009-02-16
An integrated optical modulator, which consists of a dual-sideband suppressed carrier (DSB-SC) modulator cascaded with a single-sideband (SSB) modulator, is proposed for signal up-conversion over Radio-on-Fiber. Utilizing a single-drive domain inverted structure in both modulators, balanced modulations were obtained without complicated radio frequency (RF) driving circuits and delicate RF phase adjustments. Intermediate frequency (IF) band signal was up-conversed to 60GHz band by using the fabricated device and was transmitted over optical fiber. Experiment results show that the proposed device enables millimeter wave generation and signal transmission without any power penalty caused by chromatic dispersion.
Demonstration of pulse controlled all-optical switch/modulator.
Akin, Osman; Dinleyici, M S
2014-03-15
An all-optical pulse controlled switch/modulator based on evanescent coupling between a polymer slab waveguide and a single mode fiber is demonstrated. Very fast all-optical modulation/switching is achieved via Kerr effect of the nonlinear polymer placed in the evanescent region of the optical fiber. Local refractive index perturbation (Δn=-1.45612×10(-5)) on the thin film leads to 0.374 nW power modulation at the fiber output, which results in a switching efficiency of ≈1.5%.
TOF-SIMS imaging of protein adsorption on dialysis membrane
NASA Astrophysics Data System (ADS)
Aoyagi, Satoka; Hayama, Msayo; Hasegawa, Urara; Sakai, Kiyotaka; Hoshi, Takahiro; Kudo, Masahiro
2004-06-01
Time-of-flight secondary ion mass spectrometry (TOF-SIMS) is capable of chemical imaging of proteins on insulated samples such as hollow-fiber dialysis membranes. Albumin loss and a lowering of diffusive permeability caused by protein adsorption on dialysis membranes should be reduced in order to enhance dialysis adequacy of the patients. Bovine serum albumin (BSA)-adsorbed hollow-fiber dialysis membranes were tested in the present study. TOF-SIMS images and spectra of both native membranes and BSA-adsorbed membranes were compared in order to identify secondary ions related to BSA and membranes. Peaks of secondary ions related to BSA and each membrane were selected by means of information theory, and they are characterized by principal component analysis (PCA). Chemical images of BSA adsorption on both native and treated membranes were obtained to find that BSA permeability and interaction between the membranes and BSA definitely depend on the properties of a membrane. TOF-SIMS imaging obtained with information theory is a powerful tool to estimate protein adsorption on the dialysis membranes.
Cuevas-Rodríguez, G; Cervantes-Avilés, P; Torres-Chávez, I; Bernal-Martínez, A
2015-01-01
Four membrane bioreactors (MBRs) with the same dimensions were studied for 180 days: three hybrid growth membrane bioreactors with biofilm attached in different packing media and a conventional MBR (C-MBR). The four MBRs had an identical membrane module of hollow fiber with a nominal porous diameter of 0.4 μm. The MBRs were: (1) a C-MBR; (2) a moving bed membrane bioreactor (MB-MBR), which was packed with 2 L of carrier Kaldnes-K1, presenting an exposed surface area of 678.90 m²/m³; (3) a non-submerged organic fixed bed (OFB-MBR) packed with 6.5 L of organic packing media composed of a mixture of cylindrical pieces of wood, providing an exposed surface area of 178.05 m²/m³; and (4) an inorganic fixed bed non-submerged membrane bioreactor (IFB-MBR) packed with 6 L of spherical volcanic pumice stone with an exposed surface area of 526.80 m²/m³. The four MBRs were fed at low organic loading (0.51 ± 0.19 kgCOD/m³ d). The results were recorded according to the behavior of the total resistance, transmembrane pressure (TMP), permeability, and removal percentages of the nutrients during the experimental time. The results showed that the MB-MBR presented the better performance on membrane filtration, while the higher nutrient removals were detected in the OFB-MBR and IFB-MBR.
NASA Astrophysics Data System (ADS)
Raghavan, Prasanth; Manuel, James; Zhao, Xiaohui; Kim, Dul-Sun; Ahn, Jou-Hyeon; Nah, Changwoon
Electrospun membranes of polyacrylonitrile are prepared, and the electrospinning parameters are optimized to get fibrous membranes with uniform bead-free morphology. The polymer solution of 16 wt.% in N, N-dimethylformamide at an applied voltage of 20 kV results in the nanofibrous membrane with average fiber diameter of 350 nm and narrow fiber diameter distribution. Gel polymer electrolytes are prepared by activating the nonwoven membranes with different liquid electrolytes. The nanometer level fiber diameter and fully interconnected pore structure of the host polymer membranes facilitate easy penetration of the liquid electrolyte. The gel polymer electrolytes show high electrolyte uptake (>390%) and high ionic conductivity (>2 × 10 -3 S cm -1). The cell fabricated with the gel polymer electrolytes shows good interfacial stability and oxidation stability >4.7 V. Prototype coin cells with gel polymer electrolytes based on a membrane activated with 1 M LiPF 6 in ethylene carbonate/dimethyl carbonate or propylene carbonate are evaluated for discharge capacity and cycle property in Li/LiFePO 4 cells at room temperature. The cells show remarkably good cycle performance with high initial discharge properties and low capacity fade under continuous cycling.
Shaddad, R. Q.; Mohammad, A. B.; Al-Gailani, S. A.; Al-Hetar, A. M.
2014-01-01
The optical fiber is well adapted to pass multiple wireless signals having different carrier frequencies by using radio-over-fiber (ROF) technique. However, multiple wireless signals which have the same carrier frequency cannot propagate over a single optical fiber, such as wireless multi-input multi-output (MIMO) signals feeding multiple antennas in the fiber wireless (FiWi) system. A novel optical frequency upconversion (OFU) technique is proposed to solve this problem. In this paper, the novel OFU approach is used to transmit three wireless MIMO signals over a 20 km standard single mode fiber (SMF). The OFU technique exploits one optical source to produce multiple wavelengths by delivering it to a LiNbO3 external optical modulator. The wireless MIMO signals are then modulated by LiNbO3 optical intensity modulators separately using the generated optical carriers from the OFU process. These modulators use the optical single-sideband with carrier (OSSB+C) modulation scheme to optimize the system performance against the fiber dispersion effect. Each wireless MIMO signal is with a 2.4 GHz or 5 GHz carrier frequency, 1 Gb/s data rate, and 16-quadrature amplitude modulation (QAM). The crosstalk between the wireless MIMO signals is highly suppressed, since each wireless MIMO signal is carried on a specific optical wavelength. PMID:24772009
NASA Astrophysics Data System (ADS)
Zhang, Fangliu; He, Jing; Deng, Rui; Chen, Qinghui; Chen, Lin
2016-10-01
A modulation format, orthogonal pulse amplitude modulation and discrete multitone modulation (O-PAM-DMT), is experimentally demonstrated in a hybrid fiber-visible laser light communication (fiber-VLLC) system using a cost-effective directly modulated laser and blue laser diode. In addition, low overhead is achieved by utilizing only one training sequence to implement synchronization and channel estimation. Through adjusting the ratio of PAM and DMT signal, three types of O-PAM-DMT signals are investigated. After transmission over a 20-km standard single-mode fiber and 5-m free-space VLLC, the receiver sensitivity for 4.36-Gbit/s O-PAM-DMT signals can be improved by 0.4, 1.4, and 2.7 dB, respectively, at a bit error rate of 1×10-3, compared with a conventional DMT signal.
Biswas, Sondip K; Lee, Jai Eun; Brako, Lawrence; Jiang, Jean X; Lo, Woo-Kuen
2010-11-09
Ball-and-sockets and protrusions are specialized interlocking membrane domains between lens fibers of all species studied. Ball-and-sockets and protrusions are similar in their shape, size, and surface morphology, and are traditionally believed to play a key role in maintaining fiber-to-fiber stability. Here, we evaluate the hypothesis that ball-and-sockets and protrusions possess important structural and functional differences during fiber cell differentiation and maturation. Intact lenses of leghorn chickens (E7 days to P62 weeks old) and rhesus monkeys (1.5-20 years old) were studied with SEM, freeze-fracture TEM, freeze-fracture immunogold labeling (FRIL), and filipin cytochemistry for membrane cholesterol detection. SEM showed that ball-and-sockets were distributed along the long and short sides of hexagonal fiber cells, whereas protrusions were located along the cell corners, from superficial to deep cortical regions in both chicken and monkey lenses. Importantly, by freeze-fracture TEM, we discovered the selective association of gap junctions with all ball-and-sockets examined, but not with protrusions, in both species. In the embryonic chicken lens (E18), the abundant distribution of ball-and-socket gap junctions was regularly found in an approximate zone extending at least 300 μm deep from the equatorial surface of the superficial cortical fibers. Many ball-and-socket gap junctions often protruded deeply into neighboring cells. However, in the mature fibers of monkey lenses, several ball-and-sockets exhibited only partial occupancy of gap junctions with disorganized connexons, possibly due to degradation of gap junctions during fiber maturation and aging. FRIL analysis confirmed that both connexin46 (Cx46) and connexin50 (Cx50) antibodies specifically labeled ball-and-socket gap junctions, but not protrusions. Furthermore, filipin cytochemistry revealed that the ball-and-socket gap junctions contained different amounts of cholesterol (i.e., cholesterol-rich versus cholesterol-free) as seen with the filipin-cholesterol-complexes (FCC) in different cortical regions during maturation. In contrast, the protrusions contained consistently high cholesterol amounts (i.e., 402 FCCs/μm2 membrane) which were approximately two times greater than that of the cholesterol-rich gap junctions (i.e., 188 FCCs/μm2 membrane) found in ball-and-sockets. Gap junctions are regularly associated with all ball-and-sockets examined in metabolically active young cortical fibers, but not with protrusions, in both chicken and monkey lenses. Since these unique gap junctions often protrude deeply into neighboring cells to increase membrane surface areas, they may significantly facilitate cell-to-cell communication between young cortical fiber cells. In particular, the large number of ball-and-socket gap junctions found near the equatorial region may effectively facilitate the flow of outward current toward the equatorial surface for internal circulation of ions in the lens. In contrast, a consistent distribution of high concentrations of cholesterol in protrusions would make the protrusion membrane less deformable and would be more suitable for maintaining fiber-to-fiber stability during visual accommodation. Thus, the ball-and-sockets and protrusions are two structurally and functionally distinct membrane domains in the lens.
Biswas, Sondip K.; Lee, Jai Eun; Brako, Lawrence; Jiang, Jean X.
2010-01-01
Purpose Ball-and-sockets and protrusions are specialized interlocking membrane domains between lens fibers of all species studied. Ball-and-sockets and protrusions are similar in their shape, size, and surface morphology, and are traditionally believed to play a key role in maintaining fiber-to-fiber stability. Here, we evaluate the hypothesis that ball-and-sockets and protrusions possess important structural and functional differences during fiber cell differentiation and maturation. Methods Intact lenses of leghorn chickens (E7 days to P62 weeks old) and rhesus monkeys (1.5–20 years old) were studied with SEM, freeze-fracture TEM, freeze-fracture immunogold labeling (FRIL), and filipin cytochemistry for membrane cholesterol detection. Results SEM showed that ball-and-sockets were distributed along the long and short sides of hexagonal fiber cells, whereas protrusions were located along the cell corners, from superficial to deep cortical regions in both chicken and monkey lenses. Importantly, by freeze-fracture TEM, we discovered the selective association of gap junctions with all ball-and-sockets examined, but not with protrusions, in both species. In the embryonic chicken lens (E18), the abundant distribution of ball-and-socket gap junctions was regularly found in an approximate zone extending at least 300 μm deep from the equatorial surface of the superficial cortical fibers. Many ball-and-socket gap junctions often protruded deeply into neighboring cells. However, in the mature fibers of monkey lenses, several ball-and-sockets exhibited only partial occupancy of gap junctions with disorganized connexons, possibly due to degradation of gap junctions during fiber maturation and aging. FRIL analysis confirmed that both connexin46 (Cx46) and connexin50 (Cx50) antibodies specifically labeled ball-and-socket gap junctions, but not protrusions. Furthermore, filipin cytochemistry revealed that the ball-and-socket gap junctions contained different amounts of cholesterol (i.e., cholesterol-rich versus cholesterol-free) as seen with the filipin-cholesterol-complexes (FCC) in different cortical regions during maturation. In contrast, the protrusions contained consistently high cholesterol amounts (i.e., 402 FCCs/μm2 membrane) which were approximately two times greater than that of the cholesterol-rich gap junctions (i.e., 188 FCCs/μm2 membrane) found in ball-and-sockets. Conclusions Gap junctions are regularly associated with all ball-and-sockets examined in metabolically active young cortical fibers, but not with protrusions, in both chicken and monkey lenses. Since these unique gap junctions often protrude deeply into neighboring cells to increase membrane surface areas, they may significantly facilitate cell-to-cell communication between young cortical fiber cells. In particular, the large number of ball-and-socket gap junctions found near the equatorial region may effectively facilitate the flow of outward current toward the equatorial surface for internal circulation of ions in the lens. In contrast, a consistent distribution of high concentrations of cholesterol in protrusions would make the protrusion membrane less deformable and would be more suitable for maintaining fiber-to-fiber stability during visual accommodation. Thus, the ball-and-sockets and protrusions are two structurally and functionally distinct membrane domains in the lens. PMID:21139982
Cholesterol Bilayer Domains in the Eye Lens Health: A Review.
Widomska, Justyna; Subczynski, Witold K; Mainali, Laxman; Raguz, Marija
2017-12-01
The most unique biochemical characteristic of the eye lens fiber cell plasma membrane is its extremely high cholesterol content, the need for which is still unclear. It is evident, however, that the disturbance of Chol homeostasis may result in damages associated with cataracts. Electron paramagnetic resonance methods allow discrimination of two types of lipid domains in model membranes overloaded with Chol, namely, phospholipid-cholesterol domains and pure Chol bilayer domains. These domains are also detected in human lens lipid membranes prepared from the total lipids extracted from lens cortices and nuclei of donors from different age groups. Independent of the age-related changes in phospholipid composition, the physical properties of phospholipid-Chol domains remain the same for all age groups and are practically identical for cortical and nuclear membranes. The presence of Chol bilayer domains in these membranes provides a buffering capacity for cholesterol concentration in the surrounding phospholipid-Chol domains, keeping it at a constant saturating level and thus keeping the physical properties of the membrane consistent with and independent of changes in phospholipid composition. It seems that the presence of Chol bilayer domains plays an integral role in the regulation of cholesterol-dependent processes in fiber cell plasm membranes and in the maintenance of fiber cell membrane homeostasis.
A simple system for 160GHz optical terahertz wave generation and data modulation
NASA Astrophysics Data System (ADS)
Li, Yihan; He, Jingsuo; Sun, Xueming; Shi, Zexia; Wang, Ruike; Cui, Hailin; Su, Bo; Zhang, Cunlin
2018-01-01
A simple system based on two cascaded Mach-Zehnder modulators, which can generate 160GHz optical terahertz waves from 40GHz microwave sources, is simulated and tested in this paper. Fiber grating filter is used in the system to filter out optical carrier. By properly adjusting the modulator DC bias voltages and the signal voltages and phases, 4-tupling optical terahertz wave can be generated with fiber grating. This notch fiber grating filter is greatly suitable for terahertz over fiber (TOF) communication system. This scheme greatly reduces the cost of long-distance terahertz communication. Furthermore, 10Gbps digital signal is modulated in the 160GHz optical terahertz wave.
Bao, James J; Liu, Xiaojing; Zhang, Yong; Li, Youxin
2014-09-15
This paper describes the development of a novel high-throughput hollow fiber membrane solvent microextraction technique for the simultaneous measurement of the octanol/water distribution coefficient (logD) for organic compounds such as drugs. The method is based on a designed system, which consists of a 96-well plate modified with 96 hollow fiber membrane tubes and a matching lid with 96 center holes and 96 side holes distributing in 96 grids. Each center hole was glued with a sealed on one end hollow fiber membrane tube, which is used to separate the aqueous phase from the octanol phase. A needle, such as microsyringe or automatic sampler, can be directly inserted into the membrane tube to deposit octanol as the accepted phase or take out the mixture of the octanol and the drug. Each side hole is filled with aqueous phase and could freely take in/out solvent as the donor phase from the outside of the hollow fiber membranes. The logD can be calculated by measuring the drug concentration in each phase after extraction equilibrium. After a comprehensive comparison, the polytetrafluoroethylene hollow fiber with the thickness of 210 μm, an extraction time of 300 min, a temperature of 25 °C and atmospheric pressure without stirring are selected for the high throughput measurement. The correlation coefficient of the linear fit of the logD values of five drugs determined by our system to reference values is 0.9954, showed a nice accurate. The -8.9% intra-day and -4.4% inter-day precision of logD for metronidazole indicates a good precision. In addition, the logD values of eight drugs were simultaneously and successfully measured, which indicated that the 96 throughput measure method of logD value was accurate, precise, reliable and useful for high throughput screening. Copyright © 2014 Elsevier B.V. All rights reserved.
Barmack, N.H.; Yakhnitsa, V.
2011-01-01
Cerebellar Purkinje cells have two distinct action potentials: Complex spikes (CSs) are evoked by single climbing fibers that originate from the contralateral inferior olive. Simple spikes (SSs) are often ascribed to mossy fiber---granule cell---parallel fiber inputs to Purkinje cells. Although generally accepted, this view lacks experimental support. Vestibular stimulation independently activates primary afferent mossy fibers and tertiary afferent climbing fibers that project to theuvula-nodulus (folia 8-10). CSs and SSs normally discharge antiphasically during sinusoidal roll-tilt. When CSs increase, SSs decrease. We tested the relative independence of these pathways in mice by making electrolytic microlesions of the two inferior olivary nuclei from which vestibular climbing fibers originate; the β-nucleus and dorsomedial cell column (DMCC). This reduced vestibular climbing fiber signaling to the contralateral folia 8-10, while leaving intact vestibular primary and secondary afferent mossy fibers. We recorded from Purkinje cells and interneurons in folia 8-10, identified by juxtacellular labeling with neurobiotin. Microlesions of the inferior olive increased the spontaneous discharge of SSs in contralateral folia 8-10, but blocked their modulation during vestibular stimulation. The vestibularly-evoked discharge of excitatory cerebellar interneurons (granule cells and unipolar brush cells) was not modified by olivary microlesions. The modulated discharge of stellate cells, but not Golgi cells was reduced by olivary microlesions. We conclude that vestibular modulation of CSs and SSs depends on intact climbing fibers. The absence of vestibularly-modulated SSs following olivary microlesions reflects the loss of climbing fiber-evoked stellate cell discharge. PMID:21734274
A simple numerical model for membrane oxygenation of an artificial lung machine
NASA Astrophysics Data System (ADS)
Subraveti, Sai Nikhil; Sai, P. S. T.; Viswanathan Pillai, Vinod Kumar; Patnaik, B. S. V.
2015-11-01
Optimal design of membrane oxygenators will have far reaching ramification in the development of artificial heart-lung systems. In the present CFD study, we simulate the gas exchange between the venous blood and air that passes through the hollow fiber membranes on a benchmark device. The gas exchange between the tube side fluid and the shell side venous liquid is modeled by solving mass, momentum conservation equations. The fiber bundle was modelled as a porous block with a bundle porosity of 0.6. The resistance offered by the fiber bundle was estimated by the standard Ergun correlation. The present numerical simulations are validated against available benchmark data. The effect of bundle porosity, bundle size, Reynolds number, non-Newtonian constitutive relation, upstream velocity distribution etc. on the pressure drop, oxygen saturation levels etc. are investigated. To emulate the features of gas transfer past the alveoli, the effect of pulsatility on the membrane oxygenation is also investigated.
Coupling fiber optics to a permeation liquid membrane for heavy metal sensor development.
Ueberfeld, Jörn; Parthasarathy, Nalini; Zbinden, Hugo; Gisin, Nicolas; Buffle, Jacques
2002-02-01
We present the first sensing system for metal ions based on the combination of separation/preconcentration by a permeation liquid membrane (PLM) and fluorescence detection with an optical fiber. As a model, a system for the detection of Cu(II) ions was developed. The wall of a polypropylene hollow fiber serves as support for the permeable liquid membrane. The lumen of the fiber contains the strip solution in which Cu(II) is accumulated. Calcein, a fluorochromic dye, acts as stripping agent and at the same time as metal indicator. The quenching of the calcein fluorescence upon metal accumulation in the strip phase is detected with a multimode optical fiber, which is incorporated into the lumen. Fluorescence is excited with a blue LED and detected with a photon counter. Taking advantage of the high selectivity and sensitivity of PLM preconcentration, a detection limit for Cu(II) of approximately 50 nM was achieved. Among five tested heavy metal ions, Pb(II) was the only major interfering species. The incorporation of small silica optical fibers into the polypropylene capillary allows for real-time monitoring of the Cu(II) accumulation process.
High-Reliability Pump Module for Non-Planar Ring Oscillator Laser
NASA Technical Reports Server (NTRS)
Liu, Duncan T.; Qiu, Yueming; Wilson, Daniel W.; Dubovitsky, Serge; Forouhar, Siamak
2007-01-01
We propose and have demonstrated a prototype high-reliability pump module for pumping a Non-Planar Ring Oscillator (NPRO) laser suitable for space missions. The pump module consists of multiple fiber-coupled single-mode laser diodes and a fiber array micro-lens array based fiber combiner. The reported Single-Mode laser diode combiner laser pump module (LPM) provides a higher normalized brightness at the combined beam than multimode laser diode based LPMs. A higher brightness from the pump source is essential for efficient NPRO laser pumping and leads to higher reliability because higher efficiency requires a lower operating power for the laser diodes, which in turn increases the reliability and lifetime of the laser diodes. Single-mode laser diodes with Fiber Bragg Grating (FBG) stabilized wavelength permit the pump module to be operated without a thermal electric cooler (TEC) and this further improves the overall reliability of the pump module. The single-mode laser diode LPM is scalable in terms of the number of pump diodes and is capable of combining hundreds of fiber-coupled laser diodes. In the proof-of-concept demonstration, an e-beam written diffractive micro lens array, a custom fiber array, commercial 808nm single mode laser diodes, and a custom NPRO laser head are used. The reliability of the proposed LPM is discussed.
120W, NA_0.15 fiber coupled LD module with 125-μm clad/NA 0.22 fiber by spatial coupling method
NASA Astrophysics Data System (ADS)
Ishige, Yuta; Kaji, Eisaku; Katayama, Etsuji; Ohki, Yutaka; Gajdátsy, Gábor; Cserteg, András.
2018-02-01
We have fabricated a fiber coupled semiconductor laser diode module by means of spatial beam combining of single emitter broad area semiconductor laser diode chips in the 9xx nm band. In the spatial beam multiplexing method, the numerical aperture of the output light from the optical fiber increases by increasing the number of laser diodes coupled into the fiber. To reduce it, we have tried the approach to improving assembly process technology. As a result, we could fabricate laser diode modules having a light output power of 120W or more and 95% power within NA of 0.15 or less from a single optical fiber with 125-μm cladding diameter. Furthermore, we have obtained that the laser diode module maintaining high coupling efficiency can be realized even around the fill factor of 0.95. This has been achieved by improving the optical alignment method regarding the fast axis stack pitch of the laser diodes in the laser diode module. Therefore, without using techniques such as polarization combining and wavelength combining, high output power was realized while keeping small numerical aperture. This contributes to a reduction in unit price per light output power of the pumping laser diode module.
Ren, Xiaozhi; Han, Yiming; Wang, Jie; Jiang, Yuqi; Yi, Zhengfang; Xu, He; Ke, Qinfei
2018-04-01
A chronic wound in diabetic patients is usually characterized by poor angiogenesis and delayed wound closure. The exploration of efficient strategy to significantly improve angiogenesis in the diabetic wound bed and thereby accelerate wound healing is still a significant challenge. Herein, we reported a kind of aligned porous poly (l-lactic acid) (PlLA) electrospun fibrous membranes containing dimethyloxalylglycine (DMOG)-loaded mesoporous silica nanoparticles (DS) for diabetic wound healing. The PlLA electrospun fibers aligned in a single direction and there were ellipse-shaped nano-pores in situ generated onto the surface of fibers, while the DS were well distributed in the fibers and the DMOG as well as Si ion could be controlled released from the nanopores on the fibers. The in vitro results revealed that the aligned porous composite membranes (DS-PL) could stimulate the proliferation, migration and angiogenesis-related gene expression of human umbilical vein endothelial cells (HUVECs) compared with the pure PlLA membranes. The in vivo study further demonstrated that the prepared DS-PL membranes significantly improved neo-vascularization, re-epithelialization and collagen formation as well as inhibited inflammatory reaction in the diabetic wound bed, which eventually stimulated the healing of the diabetic wound. Collectively, these results suggest that the combination of hierarchical structures (nanopores on the aligned fibers) with the controllable released DMOG drugs as well as Si ions from the membranes, which could create a synergetic effect on the rapid stimulation of angiogenesis in the diabetic wound bed, is a potential novel therapeutic strategy for highly efficient diabetic wound healing. A chronic wound in diabetic patients is usually characterized by the poor angiogenesis and the delayed wound closure. The main innovation of this study is to design a new kind of skin tissue engineered scaffold, aligned porous poly (l-lactic acid) (PlLA) electrospun membranes containing dimethyloxalylglycine (DMOG)-loaded mesoporous silica nanoparticles (DS), which could significantly improve angiogenesis in the diabetic wound bed and thereby accelerate diabetic wound healing. The results revealed that the electrospun fibers with ellipse-shaped nano-pores on the surface were aligned in a single direction, while there were DS particles distributed in the fibers and the DMOG as well as Si ions could be controllably released from the nanopores on the fibers. The in vitro studies demonstrated that the hierarchical nanostructures (nanopores on the aligned fibers) and the controllable released chemical active agents (DMOG drugs and Si ions) from the DS-PL membranes could exert a synergistic effect on inducing the endothelial cell proliferation, migration and differentiation. Above all, the scaffolds distinctly induced the angiogenesis, collagen deposition and re-epithelialization as well as inhibited inflammation reaction in the wound sites, which eventually stimulated the healing of diabetic wounds in vivo. The significance of the current study is that the combination of the hierarchical aligned porous nanofibrous structure with DMOG-loaded MSNs incorporated in electrospun fibers may suggest a high-efficiency strategy for chronic wound healing. Copyright © 2018 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Hu, Leiqing; Cheng, Jun; Li, Yannan; Liu, Jianzhong; Zhou, Junhu; Cen, Kefa
2017-08-01
This study aimed to improve surface polarity of polydimethylsiloxane (PDMS) membranes and provide surface active sites which were easy to react with other chemicals. 3-Aminopropyltriethoxysilane (APTES) containing an amino group was introduced into a PDMS membrane by crosslinking to prepare polyacrylonitrile hollow fiber-supported PDMS membranes with an amino-functionalized surface. Fourier transform infrared and X-ray photoelectron spectroscopic analyses proved the existence of APTES and its amino group in the PDMS membrane. The concentration of N atoms on the PDMS membrane surface reached ∼6% when the mass ratio of APTES/PDMS oligomer in the PDMS coating solution was increased to 4/3. The water contact angle decreased from ∼114° to ∼87.5°, indicating the improved surface polarization of the PDMS membrane. The density and swelling degree of the PDMS membrane decreased and increased, respectively, with increasing APTES content in PDMS. This phenomenon increased CO2 permeability and decreased CO2/H2 selectivity, CO2/CH4 selectivity, and CO2/N2 selectivity. When the mass ratio of APTES/PDMS oligomer was increased from 0 to 4/3, the CO2 permeation rate of the hollow fiber-supported PDMS membranes initially decreased from ∼2370 GPU to ∼860 GPU and then increased to ∼2000 GPU due to the change in coating solution viscosity.
Direct sensorimotor corticospinal modulation of dorsal horn neuronal C-fiber responses in the rat.
Rojas-Piloni, Gerardo; Martínez-Lorenzana, Guadalupe; Condés-Lara, Miguel; Rodríguez-Jiménez, Javier
2010-09-10
Clinically, the stimulation of motor cortical areas has been used to alleviate certain pain conditions. However, the attempts to understand the mechanisms of cortical nociceptive modulation at the spinal cord level have yielded controversial results. The objectives of the present work were to: 1) determine the effects of activating and suppressing the activity of sensorimotor cortical neurons on the nociceptive electrophysiological responses of the segmental C-fibers, and 2) evaluate the contribution of direct and indirect corticospinal projections in segmental nociceptive modulation. By means of a bipolar matrix of stimulation electrodes we mapped the stimulation of cortical areas that modulate C-fiber evoked field potentials in the dorsal horn. In addition, suppressing the cortical activity by means of cortical spreading depression, we observed that the C-fiber evoked field potentials in the dorsal horn are facilitated when cortical activity is suppressed specifically in sensorimotor cortex. Moreover, the C-fiber evoked field potentials were inhibited during spontaneous activation of cortical projecting neurons. Furthermore, after a lesion of the pyramidal tract contralateral to the spinal cord recording sites, the cortical action was suppressed. Our results show that corticospinal tract fibers arising from the sensorimotor cortex modulate directly the nociceptive C-fiber evoked responses of the dorsal horn. 2010. Published by Elsevier B.V.
Design of a fiber-optic interrogator module for telecommunication satellites
NASA Astrophysics Data System (ADS)
Putzer, Philipp; Koch, Alexander W.; Plattner, Markus; Hurni, Andreas; Manhart, Markus
2017-11-01
In this paper we present the results of the radiation tests performed on the optical components of the fiber-optic interrogator module as a part of the Hybrid Sensor Bus (HSB) system. The HSB-system is developed in the frame of an ESAARTES program and will be verified as flight demonstrator onboard the German Heinrich Hertz satellite in 2016. The HSB system is based on a modular concept which includes sensor interrogation modules based on I2C electrical and fiber Bragg grating (FBG) fiber-optical sensor elements. Onboard fiber-optic sensing allows the implementation of novel control and monitoring methods. For read-out of multiple FBG sensors, a design based on a tunable laser diode as well as a design based on a spectrometer is considered. The expected and tested total ionizing dose (TID) applicable to the HSB system is in the range between 100 krad and 300 krad inside the satellite in the geostationary orbit over a life time of 15 years. We present radiation test results carried out on critical optical components to be used in the fiber-optic interrogation module. These components are a modulated grating Y-branch (MGY) tunable laser diode acting as light source for the tuning laser approach, the line detector of a spectrometer, photodetectors and the FBG sensors acting as sensor elements. A detailed literature inquiry of radiation effects on optical fibers and FBG sensors, is also included in the paper. The fiber-optic interrogator module implemented in the HSB system is based on the most suitable technology, which sustains the harsh environment in the geostationary orbit.
Chang, Yao-Tang; Yen, Chih-Ta; Wu, Yue-Shiun; Cheng, Hsu-Chih
2013-05-16
This study integrated a fiber loop manufactured by using commercial fiber (SMF-28, Corning) and a fiber Bragg grating (FBG) to form a fiber optic sensor that could simultaneously measure displacement and temperature. The fiber loop was placed in a thermoelectric cooling module with FBG affixed to the module, and, consequently, the center wavelength displacement of FBG was limited by only the effects of temperature change. Displacement and temperature were determined by measuring changes in the transmission of optical power and shifts in Bragg wavelength. This study provides a simple and economical method to measure displacement and temperature simultaneously.
Lu, Hai-Han; Li, Chung-Yi; Chen, Hwan-Wei; Ho, Chun-Ming; Cheng, Ming-Te; Huang, Sheng-Jhe; Yang, Zih-Yi; Lin, Xin-Yao
2016-07-25
A bidirectional fiber-wireless and fiber-invisible laser light communication (IVLLC) integrated system that employs polarization-orthogonal modulation scheme for hybrid cable television (CATV)/microwave (MW)/millimeter-wave (MMW)/baseband (BB) signal transmission is proposed and demonstrated. To our knowledge, it is the first one that adopts a polarization-orthogonal modulation scheme in a bidirectional fiber-wireless and fiber-IVLLC integrated system with hybrid CATV/MW/MMW/BB signal. For downlink transmission, carrier-to-noise ratio (CNR), composite second-order (CSO), composite triple-beat (CTB), and bit error rate (BER) perform well over 40-km single-mode fiber (SMF) and 10-m RF/50-m optical wireless transport scenarios. For uplink transmission, good BER performance is obtained over 40-km SMF and 50-m optical wireless transport scenario. Such a bidirectional fiber-wireless and fiber-IVLLC integrated system for hybrid CATV/MW/MMW/BB signal transmission will be an attractive alternative for providing broadband integrated services, including CATV, Internet, and telecommunication services. It is shown to be a prominent one to present the advancements for the convergence of fiber backbone and RF/optical wireless feeder.
Thick-to-Thin Filament Surface Distance Modulates Cross-Bridge Kinetics in Drosophila Flight Muscle
Tanner, Bertrand C.W.; Farman, Gerrie P.; Irving, Thomas C.; Maughan, David W.; Palmer, Bradley M.; Miller, Mark S.
2012-01-01
The demembranated (skinned) muscle fiber preparation is widely used to investigate muscle contraction because the intracellular ionic conditions can be precisely controlled. However, plasma membrane removal results in a loss of osmotic regulation, causing abnormal hydration of the myofilament lattice and its proteins. We investigated the structural and functional consequences of varied myofilament lattice spacing and protein hydration on cross-bridge rates of force development and detachment in Drosophila melanogaster indirect flight muscle, using x-ray diffraction to compare the lattice spacing of dissected, osmotically compressed skinned fibers to native muscle fibers in living flies. Osmolytes of different sizes and exclusion properties (Dextran T-500 and T-10) were used to differentially alter lattice spacing and protein hydration. At in vivo lattice spacing, cross-bridge attachment time (ton) increased with higher osmotic pressures, consistent with a reduced cross-bridge detachment rate as myofilament protein hydration decreased. In contrast, in the swollen lattice, ton decreased with higher osmotic pressures. These divergent responses were reconciled using a structural model that predicts ton varies inversely with thick-to-thin filament surface distance, suggesting that cross-bridge rates of force development and detachment are modulated more by myofilament lattice geometry than protein hydration. Generalizing these findings, our results suggest that cross-bridge cycling rates slow as thick-to-thin filament surface distance decreases with sarcomere lengthening, and likewise, cross-bridge cycling rates increase during sarcomere shortening. Together, these structural changes may provide a mechanism for altering cross-bridge performance throughout a contraction-relaxation cycle. PMID:22995500
Thick-to-Thin Filament Surface Distance Modulates Cross-Bridge Kinetics in Drosophila Flight Muscle
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tanner, Bertrand C.W.; Farman, Gerrie P.; Irving, Thomas C.
2012-09-19
The demembranated (skinned) muscle fiber preparation is widely used to investigate muscle contraction because the intracellular ionic conditions can be precisely controlled. However, plasma membrane removal results in a loss of osmotic regulation, causing abnormal hydration of the myofilament lattice and its proteins. We investigated the structural and functional consequences of varied myofilament lattice spacing and protein hydration on cross-bridge rates of force development and detachment in Drosophila melanogaster indirect flight muscle, using x-ray diffraction to compare the lattice spacing of dissected, osmotically compressed skinned fibers to native muscle fibers in living flies. Osmolytes of different sizes and exclusion propertiesmore » (Dextran T-500 and T-10) were used to differentially alter lattice spacing and protein hydration. At in vivo lattice spacing, cross-bridge attachment time (t{sub on}) increased with higher osmotic pressures, consistent with a reduced cross-bridge detachment rate as myofilament protein hydration decreased. In contrast, in the swollen lattice, t{sub on} decreased with higher osmotic pressures. These divergent responses were reconciled using a structural model that predicts t{sub on} varies inversely with thick-to-thin filament surface distance, suggesting that cross-bridge rates of force development and detachment are modulated more by myofilament lattice geometry than protein hydration. Generalizing these findings, our results suggest that cross-bridge cycling rates slow as thick-to-thin filament surface distance decreases with sarcomere lengthening, and likewise, cross-bridge cycling rates increase during sarcomere shortening. Together, these structural changes may provide a mechanism for altering cross-bridge performance throughout a contraction-relaxation cycle.« less
Some Observations on the Fine Structure of the Giant Nerve Fibers of the Earthworm, Eisenia foetida
Hama, Kiyoshi
1959-01-01
Sectioned dorsal giant fibers of the earthworm Eisenia foetida have been studied with the electron microscope. The giant axon is surrounded by a Schwannian sheath in which the lamellae are arranged spirally. They can be traced from the outer surface of the Schwann cell to the axon-Schwann membranes. Irregularities in the spiral arrangement are frequently observed. Desmosome-like attachment areas occur on the giant fiber nerve sheath. These structures appear to be arranged bilaterally in columns which are oriented slightly obliquely to the long axis of the giant fiber and aligned linearly from the axon to the periphery of the sheath. At these sites they bind together apposing portions of Schwann cell membrane comprising the sheath. Longitudinal or oblique sections of the nerve sheath attachment areas are reminiscent of the Schmidt-Lantermann clefts of vertebrate peripheral nerve. Septa of the giant fibers have been examined. They are symmetrical or non-polarized and consist of the two plasma membranes of adjacent nerve units. Characteristic vesicular and tubular structures are associated with both cytoplasmic surfaces of these septa. PMID:13673048
Spectrum-Modulating Fiber-Optic Sensors
NASA Technical Reports Server (NTRS)
Beheim, Glenn; Fritsch, Klaus
1989-01-01
Family of spectrum-modulating fiber-optic sensors undergoing development for use in aircraft-engine control systems. Fiber-optic sensors offer advantages of small size, high bandwidth, immunity to electromagnetic interference, and light weight. Furthermore, they reduce number of locations on aircraft to which electrical power has to be supplied.
Advanced optical fiber communication systems
NASA Astrophysics Data System (ADS)
Kazovsky, Leonid G.
1994-03-01
Our research is focused on three major aspects of advanced optical fiber communication systems: dynamic wavelength division multiplexing (WDM) networks, fiber nonlinearities, and high dynamic range coherent analog optical links. In the area of WDM networks, we have designed and implemented two high-speed interface boards and measured their throughput and latency. Furthermore, we designed and constructed an experimental PSK/ASK transceiver that simultaneously transmits packet-switched ASK data and circuit-switched PSK data on the same optical carrier. In the area of fiber nonlinearities, we investigated the theoretical impact of modulation frequency on cross-phase modulation (XPM) in dispersive fibers. In the area of high dynamic range coherent analog optical links, we developed theoretical expressions for the RF power transfer ratio (or RF power gain) and the noise figure (NF) of angle-modulated links. We then compared the RF power gains and noise figures of these links to that of an intensity modulated direct detection (DD) link.
Poly-m-aramid nanofiber mats: Production for application as structural modifiers in CFRP laminates
NASA Astrophysics Data System (ADS)
Mazzocchetti, Laura; D'Angelo, Emanuele; Benelli, Tiziana; Belcari, Juri; Brugo, Tommaso Maria; Zucchelli, Andrea; Giorgini, Loris
2016-05-01
Poly(m-phenylene isophtalamide) electrospun nanofibrous membranes were produced to be used as structural reinforcements for carbon fiber reinforced composites production. In order for the polymer to be electrospun, it needs however to be fully solubilized, so the addition of some salts is required to help disrupt the tight macromolecular packing based on intra- and inter-molecular hydrogen bonding. Such salts may also contribute to the electrospinnability of the overall solution, since the provide it with a higher conductivity, whatever the solvent might be. The salt haobwever stays in the final nanofibrous mat. The membranes containing the salt are also observed to be highly hygroscopic, with a water content up to 26%, in the presence of 20%wt LiCl in the nanofibrous mat. When those membranes were interleaved among prepregs to produce a laminates, the obtained composite displayed thermal properties comparable to those of a reference nanofiber-free composite, though the former showed also easier delamination. Hence the removal of the hygroscopic salt was performed, that lead to thinner membranes, whose water content matched that of the pristine polymer. The washing step induced a thinning of the layers and of the fibers diameters, though no fiber shrinking nor membrane macroscopic damages were observed. These preliminary encouraging results thus pave the way to a deeper study of the optimized condition for producing convenient poly(m-phenylene isophtalamide) electrospun nanofibrous membranes to be used for carbon fiber reinforced composites structural modification.
Hybrid Membrane/Absorption Process for Post-combustion CO2 Capture
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Shiguang; Shou, S.; Pyrzynski, Travis
2013-12-31
This report summarizes scientific/technical progress made for bench-scale membrane contactor technology for post-combustion CO2 capture from DOE Contract No. DE-FE-0004787. Budget Period 1 (BP1) membrane absorber, Budget Period 2 (BP2) membrane desorber and Budget Period 3 (BP3) integrated system and field testing studies have been completed successfully and met or exceeded the technical targets (≥ 90% CO2 removal and CO2 purity of 97% in one membrane stage). Significant breakthroughs are summarized below: BP1 research: The feasibility of utilizing the poly (ether ether ketone), PEEK, based hollow fiber contractor (HFC) in combination with chemical solvents to separate and capture at leastmore » 90% of the CO2 from simulated flue gases has been successfully established. Excellent progress has been made as we have achieved the BP1 goal: ≥ 1,000 membrane intrinsic CO2 permeance, ≥ 90% CO2 removal in one stage, ≤ 2 psi gas side pressure drop, and ≥ 1 (sec)-1 mass transfer coefficient. Initial test results also show that the CO2 capture performance, using activated Methyl Diethanol Amine (aMDEA) solvent, was not affected by flue gas contaminants O2 (~3%), NO2 (66 ppmv), and SO2 (145 ppmv). BP2 research: The feasibility of utilizing the PEEK HFC for CO2-loaded solvent regeneration has been successfully established High CO2 stripping flux, one order of magnitude higher than CO2 absorption flux, have been achieved. Refined economic evaluation based on BP1 membrane absorber and BP2 membrane desorber laboratory test data indicate that the CO2 capture costs are 36% lower than DOE’s benchmark amine absorption technology. BP3 research: A bench-scale system utilizing a membrane absorber and desorber was integrated into a continuous CO2 capture process using contactors containing 10 to 20 ft2 of membrane area. The integrated process operation was stable through a 100-hour laboratory test, utilizing a simulated flue gas stream. Greater than 90% CO2 capture combined with 97% CO2 product purity was achieved throughout the test. Membrane contactor modules have been scaled from bench scale 2-inch diameter by 12-inch long (20 ft2 membrane surface area) modules to 4-inch diameter by 60-inch long pilot scale modules (165 ft2 membrane surface area). Pilot scale modules were tested in an integrated absorption/regeneration system for CO2 capture field tests at a coal-fired power plant (Midwest Generation’s Will County Station located in Romeoville, IL). Absorption and regeneration contactors were constructed utilizing high performance super-hydrophobic, nano-porous PEEK membranes with CO2 gas permeance of 2,000 GPU and a 1,000 GPU, respectively. Field tests using aMDEA solvent achieved greater than 90% CO2 removal in a single stage. The absorption mass transfer coefficient was 1.2 (sec)-1, exceeding the initial target of 1.0 (sec)-1. This mass transfer coefficient is over one order of magnitude greater than that of conventional gas/liquid contacting equipment. The economic evaluation based on field tests data indicates that the CO2 capture cost associated with membrane contactor technology is $54.69 (Yr 2011$)/tonne of CO2 captured when using aMDEA as a solvent. It is projected that the DOE’s 2025 cost goal of $40 (Yr 2011$)/tonne of CO2 captured can be met by decreasing membrane module cost and by utilizing advanced CO2 capture solvents. In the second stage of the field test, an advanced solvent, Hitachi’s H3-1 was utilized. The use of H3-1 solvent increased mass transfer coefficient by 17% as compared to aMDEA solvent. The high mass transfer coefficient of H3-1 solvent combined with much more favorable solvent regeneration requirements, indicate that the projected savings achievable with membrane contactor process can be further improved. H3-1 solvent will be used in the next pilot-scale development phase. The integrated absorption/regeneration process design and high performance membrane contactors developed in the current bench-scale program will be used as the base technology for future pilot-scale development.« less
Efficient pump module coupling >1kW from a compact detachable fiber
NASA Astrophysics Data System (ADS)
Dogan, M.; Chin, R. H.; Fulghum, S.; Jacob, J. H.; Chin, A. K.
2018-02-01
In the most developed fiber amplifiers, optical pump power is introduced into the 400μm-diameter, 0.46NA first cladding of the double-clad, Yb-doped, gain fiber, using a (6+1):1 multi-mode fiber combiner. For this configuration, the core diameter and numerical aperture of the pump delivery fibers have maximum values of 225μm and 0.22, respectively. This paper presents the first fiber-coupled laser-diode pump module emitting more than 1kW of claddingmode- stripped power from a detachable 225μm, 0.22NA delivery fiber at 976nm. The electrical-to-optical power conversion efficiency at 1kW is 50%. The FWHM spectral width at 1kW output is 4nm and has an excellent overlap with the narrow absorption spectrum of ytterbium in glass. Six of these pump modules attached to a (6+1):1 multimode combiner enable a 5-6kW, single-mode, Yb-doped fiber amplifier.
Effects of heat/citric acid reprocessing on high-flux polysulfone dialyzers.
Cornelius, Rena M; McClung, W Glenn; Richardson, Robert M A; Estridge, Charles; Plaskos, Nicholas; Yip, Christopher M; Brash, John L
2002-01-01
The surface features, morphology, and tensile properties of fibers obtained from pristine, reprocessed, and reused Fresenius Polysulfone High-Flux (Hemoflow F80A) hemodialyzers have been studied. Scanning electron microscopy of the dialyzer fibers revealed a dense skin layer on the inner surface of the membrane and a relatively thick porous layer on the outer surface. Transmission electron microscopy and atomic force microscopy showed an alteration in membrane morphology due to reprocessing and reuse, or to a deposition of blood-borne material on the membrane that is not removed with reprocessing. Fluorescent microscopy images also showed that a fluorescent material not removed by heat/citric acid reprocessing builds up with continued use of the dialyzers. The tensile properties of the dialyzer fibers were not affected by the heat/citric acid reprocessing procedure. The protein layers formed on pristine and reused hemodialyzer membranes during clinical use were also studied using sodium dodecyl sulfate polyacrylamide gel electrophoresis and immunoblotting. A considerable amount of protein was found on the blood side of single and multiple use dialyzers. Proteins adsorbed on the dialysate side of the membrane were predominantly in the molecular weight region below 30 kDa. Little protein was detected on the membranes of reprocessed hemodialyzers.
Absorbing TiOx thin film enabling laser welding of polyurethane membranes and polyamide fibers
Amberg, Martin; Haag, Alexander; Storchenegger, Raphael; Rupper, Patrick; Lehmeier, Frederike; Rossi, René M; Hegemann, Dirk
2015-01-01
We report on the optical properties of thin titanium suboxide (TiOx) films for applications in laser transmission welding of polymers. Non-absorbing fibers were coated with TiOx coatings by reactive magnetron sputtering. Plasma process parameters influencing the chemical composition and morphology of the deposited thin films were investigated in order to optimize their absorption properties. Optical absorption spectroscopy showed that the oxygen content of the TiOx coatings is the main parameter influencing the optical absorbance. Overtreatment (high power plasma input) of the fiber surface leads to high surface roughness and loss of mechanical stability of the fiber. The study shows that thin substoichiometric TiOx films enable the welding of very thin polyurethane membranes and polyamide fibers with improved adhesion properties. PMID:27877837
Absorbing TiOx thin film enabling laser welding of polyurethane membranes and polyamide fibers
NASA Astrophysics Data System (ADS)
Amberg, Martin; Haag, Alexander; Storchenegger, Raphael; Rupper, Patrick; Lehmeier, Frederike; Rossi, René M.; Hegemann, Dirk
2015-10-01
We report on the optical properties of thin titanium suboxide (TiOx) films for applications in laser transmission welding of polymers. Non-absorbing fibers were coated with TiOx coatings by reactive magnetron sputtering. Plasma process parameters influencing the chemical composition and morphology of the deposited thin films were investigated in order to optimize their absorption properties. Optical absorption spectroscopy showed that the oxygen content of the TiOx coatings is the main parameter influencing the optical absorbance. Overtreatment (high power plasma input) of the fiber surface leads to high surface roughness and loss of mechanical stability of the fiber. The study shows that thin substoichiometric TiOx films enable the welding of very thin polyurethane membranes and polyamide fibers with improved adhesion properties.
Absorbing TiO x thin film enabling laser welding of polyurethane membranes and polyamide fibers.
Amberg, Martin; Haag, Alexander; Storchenegger, Raphael; Rupper, Patrick; Lehmeier, Frederike; Rossi, René M; Hegemann, Dirk
2015-10-01
We report on the optical properties of thin titanium suboxide (TiO x ) films for applications in laser transmission welding of polymers. Non-absorbing fibers were coated with TiO x coatings by reactive magnetron sputtering. Plasma process parameters influencing the chemical composition and morphology of the deposited thin films were investigated in order to optimize their absorption properties. Optical absorption spectroscopy showed that the oxygen content of the TiO x coatings is the main parameter influencing the optical absorbance. Overtreatment (high power plasma input) of the fiber surface leads to high surface roughness and loss of mechanical stability of the fiber. The study shows that thin substoichiometric TiO x films enable the welding of very thin polyurethane membranes and polyamide fibers with improved adhesion properties.
Spectral shaping of an all-fiber torsional acousto-optic tunable filter.
Ko, Jeakwon; Lee, Kwang Jo; Kim, Byoung Yoon
2014-12-20
Spectral shaping of an all-fiber torsional acousto-optic (AO) tunable filter is studied. The technique is based on the axial modulation of AO coupling strength along a highly birefringent optical fiber, which is achieved by tailoring the outer diameter of the fiber along its propagation axis. Two kinds of filter spectral shaping schemes-Gaussian apodization and matched filtering with triple resonance peaks-are proposed and numerically investigated under realistic experimental conditions: at the 50-cm-long AO interaction length of the fiber and at half of the original fiber diameter as the minimum thickness of the tailored fiber section. The results show that the highest peak of sidelobe spectra in filter transmission is suppressed from 11.64% to 0.54% via Gaussian modulation of the AO coupling coefficient (κ). Matched filtering with triple resonance peaks operating with a single radio frequency signal is also achieved by cosine modulation of κ, of which the modulation period determines the spectral distance between two satellite peaks located in both wings of the main resonance peak. The splitting of two satellite peaks in the filter spectra reaches 48.2 nm while the modulation period varies from 7.7 to 50 cm. The overall peak power of two satellite resonances is calculated to be 22% of the main resonance power. The results confirm the validity and practicality of our approach, and we predict robust and stable operation of the designed all-fiber torsional AO filters.
Optical generation of millimeter-wave pulses using a fiber Bragg grating in a fiber-optics system.
Ye, Qing; Qu, Ronghui; Fang, Zujie
2007-04-10
A scheme is proposed to transform an optical pulse into a millimeter-wave frequency modulation pulse by using a weak fiber Bragg grating (FBG) in a fiber-optics system. The Fourier transformation method is used to obtain the required spectrum response function of the FBG for the Gaussian pulse, soliton pulse, and Lorenz shape pulse. On the condition of the first-order Born approximation of the weak fiber grating, the relation of the refractive index distribution and the spectrum response function of the FBG satisfies the Fourier transformation, and the corresponding refractive index distribution forms are obtained for single-frequency modulation and linear-frequency modulation millimeter-wave pulse generation. The performances of the designed fiber gratings are also studied by a numerical simulation method for a supershort pulse transmission.
NASA Astrophysics Data System (ADS)
Kutuzov, N. P.; Brazhe, A. R.; Yusipovich, A. I.; Maksimov, G. V.; Dracheva, O. E.; Lyaskovskiy, V. L.; Bulygin, F. V.; Rubin, A. B.
2013-07-01
We demonstrate a successful application of Raman spectroscopy to the problem of lipid ordering with microscopic resolution in different regions of the myelinated nerve fiber. Simultaneous collection of Raman spectra of lipids and carotenoids has enabled us to characterize membrane fluidity and the degree of lipid ordering based on intensity ratios for the 1527/1160 and 2940/2885 cm-1 bands. We show that the intensity profiles of the major Raman bands vary significantly between the three major regions of myelinated nerve fiber: internode, paranode and the node of Ranvier. Mapping Raman peak intensities over these areas suggested that the carotenoid molecules are localized in the myelin membranes of nerve cells. Paranodal membranes were sensitive to extracellular ATP. ATP solutions (7 mM) influenced the 1527/1160 and 2940/2885 cm-1 intensity ratios. Changes in both carotenoid and lipid Raman spectra were in accord and indicated an increase in lipid ordering degree and decrease in membrane fluidity under ATP administration. The collected data provide evidence for the existence of a regulatory purinergic signaling pathway in the peripheral nervous system.
Fundamental concepts of integrated and fiber optic sensors
NASA Technical Reports Server (NTRS)
Tuma, Margaret L.
1995-01-01
This chapter discusses fiber optic and integrated optic sensor concepts. Unfortunately, there is no standard method to categorize these sensor concepts. Here, fiber optic and integrated optic sensor concepts will be categorized by the primary modulation technique. These modulation techniques have been classified as: intensity, phase, wavelength, polarization, and time/frequency modulation. All modulate the output light with respect to changes in the physical or chemical property to be measured. Each primary modulation technique is then divided into fiber optic and integrated optic sections which are treated independently. For each sensor concept, possible sensor applications are discussed. The sensors and references discussed are not exhaustive, but sufficient to give the reader an overview of sensor concepts developed to date. Sensor multiplexing techniques such as wavelength division, time division, and frequency division will not be discussed as they are beyond the scope of this report.
Theoretical and experimental study of a fiber optic microphone
NASA Technical Reports Server (NTRS)
Hu, Andong; Cuomo, Frank W.; Zuckerwar, Allan J.
1992-01-01
Modifications to condenser microphone theory yield new expressions for the membrane deflections at its center, which provide the basic theory for the fiber optic microphone. The theoretical analysis for the membrane amplitude and the phase response of the fiber optic microphone is given in detail in terms of its basic geometrical quantities. A relevant extension to the original concepts of the optical microphone includes the addition of a backplate with holes similar in design to present condenser microphone technology. This approach generates improved damping characteristics and extended frequency response that were not previously considered. The construction and testing of the improved optical fiber microphone provide experimental data that are in good agreement with the theoretical analysis.
Composite embedded fiber optic data links in Standard Electronic Modules
NASA Astrophysics Data System (ADS)
Ehlers, S. L.; Jones, K. J.; Morgan, R. E.; Hixson, Jay
1990-12-01
The goal of this project is to fabricate a chassis/circuit card demonstration entirely 'wired' with embedded and interconnected optical fibers. Graphite/epoxy Standard Electronic Module E (SEM-E) configured panels have been successfully fabricated. Fiber-embedded SEM-E configured panels have been subjected to simultaneous signal transmission and vibration testing. Packaging constraints will require tapping composite-embedded optical fibers at right angles to the direction of optical transmission.
NASA Technical Reports Server (NTRS)
Numata, Kenji; Camp, Jordan
2012-01-01
We have developed a linearly polarized Ytterbium-doped fiber ring laser with a single longitudinal mode output at 1064 run. A fiber-coupled intracavity phase modulator ensured mode-hop free operation and allowed fast frequency tuning. The fiber laser was locked with high stability to an iodine-stabilized laser, showing a frequency noise suppression of a factor approx 10 (exp 5) at 1 mHz
Oxazine-based sensor for contaminant detection, fabrication method therefor, and uses thereof
Nnanna, Agbai Agwu; Jalal, Ahmed Hasnian
2014-05-27
A sensor, a method for its fabrication, and a method for its use to detect contaminants, for example, ammonia, in stagnant and dynamic fluid media, especially liquid media. The sensor is an opto-chemical sensor that includes a polymer optical fiber, a sensing layer comprising oxazine 170 perchlorate on the polymer optical fiber, and a membrane layer on the sensing layer. The membrane layer is gas permeable and not permeable to the fluid in the fluid system, and moisture is entrapped by and between the sensing and membrane layers.
Hollow-Fiber Membrane Chamber as a Device for In Situ Environmental Cultivation▿
Aoi, Yoshiteru; Kinoshita, Tomoyuki; Hata, Toru; Ohta, Hiroaki; Obokata, Haruko; Tsuneda, Satoshi
2009-01-01
A hollow-fiber membrane chamber (HFMC) was developed as an in situ cultivation device for environmental microorganisms. The HFMC system consists of 48 to 96 pieces of porous hollow-fiber membrane connected with injectors. The system allows rapid exchange of chemical compounds, thereby simulating a natural environment. Comparative analysis through the cultivation of three types of environmental samples was performed using this newly designed device and a conventional agar-based petri dish. The results show that the ratios of novel phylotypes in isolates, species-level diversities, and cultivabilities in HFMC-based cultivation are higher than those in an agar-based petri dish for all three samples, suggesting that the new in situ cultivation device is effective for cultivation of various environmental microorganisms. PMID:19329655
Enzyme-based fiber optic sensors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kulp, T.J.; Camins, I.; Angel, S.M.
Fiber optic chemical sensors capable of detecting glucose and penicillin were developed. Each consists of a polymer membrane that is covalently attached to the tip of a glass optical fiber. The membrane contains the enzyme and a pH-sensitive fluorescent dye (fluorescein). A signal is produced when the enzyme catalyzes the conversion of the analyte (glucose or penicillin) into a product (gluconic or penicilloic acid, respectively) that lowers the microenvironmental pH of the membrane and consequently, lowers the fluorescence intensity of the dye. Each sensor is capable of responding to analyte concentrations in the range of approx.0.1 to 100 mM. Themore » penicillin optrode response time is 40 to 60 s while that for glucose is approx.5 to 12 min. 7 figs.« less
Hemodialysis-associated neutropenia and hypoxemia: the effect of dialyzer membrane materials.
Hakim, R M; Lowrie, E G
1982-01-01
The fall in white blood cells (WBC) and arterial oxygen pressure that occurs during hemodialysis was investigated as a function of different dialysis membranes and different sterilization methods. 8 chronic hemodialysis patients were studied and each was dialyzed with three different membranes: cellulosic hollow fiber, polyacrylonitrile flat sheet and polymethylmethacrylate hollow fiber. Each dialyzer was studied with a dry sterilization method and after formalin treatment. Arterialized blood gas, bicarbonate and WBC were drawn at various intervals throughout dialysis. The effect of the sterilization method was minimal. Cellulosic membranes were shown to cause significantly more neutropenia (p less than 0.001) and hypoxemia (p less than 0.01) than the other two membranes. No significant differences was seen in pH, PCO2 and bicarbonate. The results indicate differences in biocompatibility between different membranes. Clinical implications are discussed.
NASA Astrophysics Data System (ADS)
Sramek, Christopher; Leung, Loh-Shan; Leng, Theodore; Brown, Jefferson; Paulus, Yannis M.; Schuele, Georg; Palanker, Daniel
2011-02-01
Decreasing the pulse duration helps confine damage, shorten treatment time, and minimize pain during retinal photocoagulation. However, the safe therapeutic window (TW), the ratio of threshold powers for thermomechanical rupture of Bruch's membrane and mild coagulation, also decreases with shorter exposures. Two potential approaches toward increasing TW are investigated: (a) decreasing the central irradiance of the laser beam and (b) temporally modulating the pulse. An annular beam with adjustable central irradiance was created by coupling a 532-nm laser into a 200-μm core multimode optical fiber at a 4-7 deg angle to normal incidence. Pulse shapes were optimized using a computational model, and a waveform generator was used to drive a PASCAL photocoagulator (532 nm), producing modulated laser pulses. Acute thresholds for mild coagulation and rupture were measured in Dutch-Belted rabbit in vivo with an annular beam (154-163 μm retinal diameter) and modulated pulse (132 μm, uniform irradiance ``flat-top'' beam) with 2-50 ms pulse durations. Thresholds with conventional constant-power pulse and a flat-top beam were also determined. Both annular beam and modulated pulse provided a 28% increase in TW at 10-ms duration, affording the same TW as 20-ms pulses with conventional parameters.
NASA Astrophysics Data System (ADS)
Wang, Kaihui; Li, Xinying; Yu, Jianjun
2017-09-01
DFT-S-orthogonal frequency division multiplexing (OFDM) and single-carrier (SC) modulation are two typical modulation formats in radio-over-fiber (RoF) systems. They may have respective advantages and disadvantages in different scenarios. Therefore, bit error ratio comparison results of these two modulation formats will be useful for designing and optimizing the practical RoF system. We experimentally compare these two modulation formats in a long wireless distance RoF system at W-band. It can be concluded that DFT-S-OFDM and SC modulation have similar performances in a RoF system with transmission distance over 80-km fiber and 224-m wireless link.
Compensated vibrating optical fiber pressure measuring device
Fasching, George E.; Goff, David R.
1987-01-01
A microbending optical fiber is attached under tension to a diaphragm to se a differential pressure applied across the diaphragm which it causes it to deflect. The fiber is attached to the diaphragm so that one portion of the fiber, attached to a central portion of the diaphragm, undergoes a change in tension; proportional to the differential pressure applied to the diaphragm while a second portion attached at the periphery of the diaphragm remains at a reference tension. Both portions of the fiber are caused to vibrate at their natural frequencies. Light transmitted through the fiber is attenuated by both portions of the tensioned sections of the fiber by an amount which increases with the curvature of fiber bending so that the light signal is modulated by both portions of the fiber at separate frequencies. The modulated light signal is transduced into a electrical signal. The separate modulation signals are detected to generate separate signals having frequencies corresponding to the reference and measuring vibrating sections of the continuous fiber, respectively. A signal proportional to the difference between these signals is generated which is indicative of the measured pressure differential across the diaphragm. The reference portion of the fiber is used to compensate the pressure signal for zero and span changes resulting from ambient temperature and humidity effects upon the fiber and the transducer fixture.
AHNAK1 and AHNAK2 are costameric proteins: AHNAK1 affects transverse skeletal muscle fiber stiffness
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marg, Andreas, E-mail: andreas.marg@mdc-berlin.de; Haase, Hannelore; Neumann, Tanja
2010-10-08
Research highlights: {yields} AHNAK1 and AHNAK2 are costameric proteins. {yields} Intact membrane repair in AHNAK1-deficient mice. {yields} AHNAK1{sup -/-} single fibers have a higher transverse stiffness. -- Abstract: The AHNAK scaffold PDZ-protein family is implicated in various cellular processes including membrane repair; however, AHNAK function and subcellular localization in skeletal muscle are unclear. We used specific AHNAK1 and AHNAK2 antibodies to analyzed the detailed localization of both proteins in mouse skeletal muscle. Co-localization of AHNAK1 and AHNAK2 with vinculin clearly demonstrates that both proteins are components of the costameric network. In contrast, no AHNAK expression was detected in the T-tubulemore » system. A laser wounding assay with AHNAK1-deficient fibers suggests that AHNAK1 is not involved in membrane repair. Using atomic force microscopy (AFM), we observed a significantly higher transverse stiffness of AHNAK1{sup -/-} fibers. These findings suggest novel functions of AHNAK proteins in skeletal muscle.« less
Health Instruction Packages: Consumer--Basic Nutrition.
ERIC Educational Resources Information Center
Kidd, Audrey E.; And Others
These six learning modules present text, illustrations, and exercises designed to teach the general public and nutrition students about basic nutrition and diet. The first module, "High Fiber Diet--Live Longer and Better!" by Audrey E. Kidd, discusses the benefits of a high fiber diet and lists the foods that are high in fiber. The…
Dual line CW fiber laser module based on FBG combination
NASA Astrophysics Data System (ADS)
Dobashi, Kazuma; Hoshi, Masayuki; Hirohashi, Junji; Makio, Satoshi
2018-02-01
We developed the dual line fiber laser module based on FBG combination. The proposed configuration has several advantages such as compact, simple, and inexpensive. The laser was composed pump LD (40W), two HR FBGs for 1053 nm and 1058 nm, Yb-doped fiber, two OC FBGs for 1053 nm and 1058 nm, and delivery fiber. All single mode fibers were polarization maintained with approximately 6 micron core. All FBGs were mounted on holders with TECs and their temperatures were controlled independently. The center wavelengths of HR and OC FBGs were temperature dependent and their shifts are approximately 7 nm/degree-C for all integrated FBG. By adjusting the temperature, it is possible to realize the resonant condition for only 1053 nm or only for 1058 nm. Based on this configuration, we demonstrated dual line CW fiber laser module. This module was compact with the size of 200 mm X 150 mm X 23 mm. By adjusting the FBG temperatures, we obtained the output power of more than 10 W at 1053 nm and 1058 nm with linear polarization.
Optical back propagation for fiber optic networks with hybrid EDFA Raman amplification.
Liang, Xiaojun; Kumar, Shiva
2017-03-06
We have investigated an optical back propagation (OBP) method to compensate for propagation impairments in fiber optic networks with lumped Erbium doped fiber amplifier (EDFA) and/or distributed Raman amplification. An OBP module consists of an optical phase conjugator (OPC), optical amplifiers and dispersion varying fibers (DVFs). We derived a semi-analytical expression that calculates the dispersion profile of DVF. The OBP module acts as a nonlinear filter that fully compensates for the nonlinear distortions due to signal propagation in a transmission fiber, and is applicable for fiber optic networks with reconfigurable optical add-drop multiplexers (ROADMs). We studied a wavelength division multiplexing (WDM) network with 3000 km transmission distance and 64-quadrature amplitude modulation (QAM) modulation. OBP brings 5.8 dB, 5.9 dB and 6.1 dB Q-factor gains over linear compensation for systems with full EDFA amplification, hybrid EDFA/Raman amplification, and full Raman amplification, respectively. In contrast, digital back propagation (DBP) or OPC-only systems provide only 0.8 ~ 1.5 dB Q-factor gains.
Reciprocal Modulation of IK1–INa Extends Excitability in Cardiac Ventricular Cells
Varghese, Anthony
2016-01-01
The inwardly rectifying potassium current (IK1) and the fast inward sodium current (INa) are reciprocally modulated in mammalian ventricular myocytes. An increase in the expression of channels responsible for one of these two currents results in a corresponding increase in expression of the other. These currents are critical in the propagation of action potentials (AP) during the normal functioning of the heart. This study identifies a physiological role for IK1–INa reciprocal modulation in ventricular fiber activation thresholds and conduction. Simulations of action potentials in single cells and propagating APs in cardiac fibers were carried out using an existing model of electrical activity in cardiac ventricular myocytes. The conductances, GK1, of the inwardly rectifying potassium current, and GNa, of the fast inward sodium current were modified independently and in tandem to simulate reciprocal modulation. In single cells, independent modulation of GK1 alone resulted in changes in activation thresholds that were qualitatively similar to those for reciprocal GK1–GNa modulation and unlike those due to independent modulation of GNa alone, indicating that GK1 determines the cellular activation threshold. On the other hand, the variations in conduction velocity in cardiac cell fibers were similar for independent GNa modulation and for tandem changes in GK1–GNa, suggesting that GNa is primarily responsible for setting tissue AP conduction velocity. Conduction velocity dependence on GK1–GNa is significantly affected by the intercellular gap junction conductance. While the effects on the passive fiber space constant due to changes in both GK1 and the intercellular gap junction conductance, Ggj, were in line with linear cable theory predictions, both conductances had surprisingly large effects on fiber activation thresholds. Independent modulation of GK1 rendered cardiac fibers inexcitable at higher levels of GK1 whereas tandem GK1–GNa changes allowed fibers to remain excitable at high GK1 values. Reciprocal modulation of the inwardly rectifying potassium current and the fast inward sodium current may have a functional role in allowing cardiac tissue to remain excitable when IK1 is upregulated. PMID:27895596
Couderc, Vincent; Crunteanu, Aurelian; Fabert, Marc; Doutre, Florent; El Bassri, Farid; Pagnoux, Dominique; Jalocha, Alain
2012-02-27
We present a novel Q-switched laser source using a micro-optical-electromechanical mirror (MOEM) designed for short pulse emission. It is based on a hybrid configuration including a passively Q-switched microchip laser coupled to a fiber cavity closed by a cantilever type MOEM acting as an active modulator. This specially designed mirror with a single reflecting gold membrane is switched by low bias voltage ~50 V (peak to peak). This device emits pulses at tunable repetition rates up to 1.6 kHz, with ~564 ps duration and 3.4 kW peak power, which constitutes the shortest pulse duration ever reported with MOEMs based pulsed lasers.
Elamrani, Driss; Aumar, Aurélien; Wavreille, Guillaume; Fontaine, Christian
2014-05-01
Traumatic tears of the antebrachial interosseous membrane (AIOM) on its whole length are difficult to treat, particularly in the Essex-Lopresti syndrome. The number of ligamentoplasty techniques described in the literature witnesses the difficulty of its reconstruction and the absence of reliable and satisfying procedure. The aim of this study was to explore a new way of treatment, which consists in replacing the AIOM by the crural interosseous membrane (CIOM), harvested from the same patient. A morphometric study of the AIOM and CIOM has been conducted on both sides of 15 formalin preserved corpses (i.e. 30 AIOM and 30 CIOM). Studied data were: length of forearms and legs, length and width (at different locations) of the membranes, in situ and after harvesting, and orientation of their fibers. The thickness of membrane was also measured but only after harvesting. Concerning the AIOM, the mean length was 13.3 cm in situ and 12.8 cm after harvesting. Its width was maximal at the union of middle and distal thirds with an average value of 1.7 cm in situ and 1.45 cm after harvesting. Mean thickness was 1 mm. Anterior fibers were oblique distally and medially (20.5° ± 0.95°), and posterior fibers were oblique distally and laterally (40° ± 3.4°). Concerning the CIOM, the mean length was 24.75 cm in situ and 23.9 cm after harvesting. Its width was maximal at the union of proximal and middle thirds with an average value of 2.3 cm in situ and 1.85 cm after harvesting. Mean thickness was 0.5 mm. Obliquity of its fibers was reverse of that of the AIOM: the anterior fibers were quite oblique distally and laterally (13° ± 2.6°), and the posterior fibers oblique were oblique distally and medially (24.2° ± 2.48°). From these results, one may conclude that the largest length and width of the CIOM allow its use as substitute for the injured AIOM. The orientation of its fibers should necessitate either its reversal while using the same side or the use of the CIOM of the opposite side; its relative sharpness could signify that its biomechanical properties could be worse. A biomechanical study is necessary to evaluate how this new way of replacing the AIOM could resist to the strains imposed on the forearm.
Geomembrane barriers using integral fiber optics to monitor barrier integrity
Staller, G.E.; Wemple, R.P.
1996-10-22
This invention provides a geomembrane or geotextile with embedded optical sensors that are used to monitor the status of containment site barriers. Fiber optic strands are used to form the sensors that can detect and monitor conditions at the sites such as breaches, slope creep, subsidence, leachate levels, fires, and types of materials present or leaking from the site. The strands are integral to the membrane or textile materials. The geosynthetic membrane is deployed at the site in a fashion similar to carpet laying. Edges of the membrane or textile are joined to form a liner and the ends of the membrane or textile become the connection zones for obtaining signals from the sensors. A connection interface with a control system to generate Optical Time Delay Response or other light signals for transmission to the optic fiber strands or sensors and also to receive reflected signals from the sensors is included in the system. Software to interpret the sensor signals can be used in the geosynthetic monitoring system. 6 figs.
Geomembrane barriers using integral fiber optics to monitor barrier integrity
Staller, George E.; Wemple, Robert P.
1996-01-01
This invention provides a geomembrane or geotextile with embedded optical sensors that are used to monitor the status of containment site barriers. Fiber optic strands are used to form the sensors that can detect and monitor conditions at the sites such as breaches, slope creep, subsidence, leachate levels, fires, and types of materials present or leaking from the site. The strands are integral to the membrane or textile materials. The geosythetic membrane is deployed at the site in a fashion similar to carpet laying. Edges of the membrane or textile are joined to form a liner and the ends of the membrane or textile become the connection zones for obtaining signals from the sensors. A connection interface with a control system to generate Optical Time Delay Response or other light signals for transmission to the optic fiber strands or sensors and also to receive reflected signals from the sensors is included in the system. Software to interpret the sensor signals can be used in the geosythetic monitoring system.
Yan, Yuhui; Shen, Feng-Yi; Agresti, Michael; Zhang, Lin-Ling; Matloub, Hani S; LoGiudice, John A; Havlik, Robert; Li, Jifeng; Gu, Yu-Dong; Yan, Ji-Geng
2017-09-01
Peripheral nerve injury can have a devastating effect on daily life. Calcium concentrations in nerve fibers drastically increase after nerve injury, and this activates downstream processes leading to neuron death. Our previous studies showed that calcium-modulating agents decrease calcium accumulation, which aids in regeneration of injured peripheral nerves; however, the optimal therapeutic window for this application has not yet been identified. In this study, we show that calcium clearance after nerve injury is positively correlated with functional recovery in rats suffering from a crushed sciatic nerve injury. After the nerve injury, calcium accumulation increased. Peak volume is from 2 to 8 weeks post injury; calcium accumulation then gradually decreased over the following 24-week period. The compound muscle action potential (CMAP) measurement from the extensor digitorum longus muscle recovered to nearly normal levels in 24 weeks. Simultaneously, real-time polymerase chain reaction results showed that upregulation of calcium-ATPase (a membrane protein that transports calcium out of nerve fibers) mRNA peaked at 12 weeks. These results suggest that without intervention, the peak in calcium-ATPase mRNA expression in the injured nerve occurs after the peak in calcium accumulation, and CMAP recovery continues beyond 24 weeks. Immediately using calcium-modulating agents after crushed nerve injury improved functional recovery. These studies suggest that a crucial time frame in which to initiate effective clinical approaches to accelerate calcium clearance and nerve regeneration would be prior to 2 weeks post injury. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Redox signaling in acute oxygen sensing.
Gao, Lin; González-Rodríguez, Patricia; Ortega-Sáenz, Patricia; López-Barneo, José
2017-08-01
Acute oxygen (O 2 ) sensing is essential for individuals to survive under hypoxic conditions. The carotid body (CB) is the main peripheral chemoreceptor, which contains excitable and O 2 -sensitive glomus cells with O 2 -regulated ion channels. Upon exposure to acute hypoxia, inhibition of K + channels is the signal that triggers cell depolarization, transmitter release and activation of sensory fibers that stimulate the brainstem respiratory center to produce hyperventilation. The molecular mechanisms underlying O 2 sensing by glomus cells have, however, remained elusive. Here we discuss recent data demonstrating that ablation of mitochondrial Ndufs2 gene selectively abolishes sensitivity of glomus cells to hypoxia, maintaining responsiveness to hypercapnia or hypoglycemia. These data suggest that reactive oxygen species and NADH generated in mitochondrial complex I during hypoxia are signaling molecules that modulate membrane K + channels. We propose that the structural substrates for acute O 2 sensing in CB glomus cells are "O 2 -sensing microdomains" formed by mitochondria and neighboring K + channels in the plasma membrane. Copyright © 2017. Published by Elsevier B.V.
Wrinkles in reinforced membranes
NASA Astrophysics Data System (ADS)
Takei, Atsushi; Brau, Fabian; Roman, Benoît; Bico, José.
2012-02-01
We study, through model experiments, the buckling under tension of an elastic membrane reinforced with a more rigid strip or a fiber. In these systems, the compression of the rigid layer is induced through Poisson contraction as the membrane is stretched perpendicularly to the strip. Although strips always lead to out-of-plane wrinkles, we observe a transition from out-of-plane to in plane wrinkles beyond a critical strain in the case of fibers embedded into the elastic membranes. The same transition is also found when the membrane is reinforced with a wall of the same material depending on the aspect ratio of the wall. We describe through scaling laws the evolution of the morphology of the wrinkles and the different transitions as a function of material properties and stretching strain.
NASA Astrophysics Data System (ADS)
Sincore, Alex; Bodnar, Nathan; Bradford, Joshua; Abdulfattah, Ali; Shah, Lawrence; Richardson, Martin C.
2017-03-01
This work studies the accumulated nonlinearities when amplifying a narrow linewidth 2053 nm seed in a single mode Tm:fiber amplifier. A <2 MHz linewidth CW diode seed is externally modulated using a fiberized acousto-optic modulator. This enables independent control of repetition rate and pulse duration (>30 ns). The pulses are subsequently amplified and the repetition rate is further reduced using a second acousto-optic modulator. It is well known that spectral degradation occurs in such fibers for peak powers over 100's of watts due to self-phase modulation, four-wave mixing, and stimulated Raman scattering. In addition to enabling a thorough test bed to study such spectral broadening, this system will also enable the investigation of stimulated Brillouin scattering thresholds in the same system. This detailed study of the nonlinearities encountered in 2 μm fiber amplifiers is important in a range of applications from telecommunications to the amplification of ultrashort laser pulses.
FIBER OPTICS. ACOUSTOOPTICS: High-frequency magnetooptics of fiber waveguides
NASA Astrophysics Data System (ADS)
Antonov, S. N.; Bulyuk, A. N.; Vetoshko, P. M.; Shkerdin, G. N.
1990-07-01
An investigation is made of the hf distributed magnetooptic interaction in fiber waveguides associated with the Faraday effect observed under the conditions of both spatial and temporal phase matching between the normal modes of the waveguide and an external magentic field. Analytic expressions are obtained for the main relationships governing modulation of the state of polarization of light in a long fiber waveguide at high and ultrahigh frequencies. An analysis is made of several variants of hf magnetooptic modulators. It is shown that in the specific case when a 10-m long quartz fiber waveguide wound to form a cylindrical coil is placed inside the cavity of a coaxial microwave resonator and the microwave control power is 10 W, the efficiency of modulation of light should be 50%. The main theoretical predictions were supported by the reported experiments. These experiments showed that at a frequency of 80 MHz the modulation efficiency was 1% when the control power was 0.5 W.
Chloride currents from the transverse tubular system in adult mammalian skeletal muscle fibers
DiFranco, Marino; Herrera, Alvaro
2011-01-01
Chloride fluxes are the main contributors to the resting conductance of mammalian skeletal muscle fibers. ClC-1, the most abundant chloride channel isoform in this preparation, is believed to be responsible for this conductance. However, the actual distribution of ClC-1 channels between the surface and transverse tubular system (TTS) membranes has not been assessed in intact muscle fibers. To investigate this issue, we voltageclamped enzymatically dissociated short fibers using a two-microelectrode configuration and simultaneously recorded chloride currents (ICl) and di-8-ANEPPS fluorescence signals to assess membrane potential changes in the TTS. Experiments were conducted in conditions that blocked all but the chloride conductance. Fibers were equilibrated with 40 or 70 mM intracellular chloride to enhance the magnitude of inward ICl, and the specific ClC-1 blocker 9-ACA was used to eliminate these currents whenever necessary. Voltage-dependent di-8-ANEPPS signals and ICl acquired before (control) and after the addition of 9-ACA were comparatively assessed. Early after the onset of stimulus pulses, di-8-ANEPPS signals under control conditions were smaller than those recorded in the presence of 9-ACA. We defined as attenuation the normalized time-dependent difference between these signals. Attenuation was discovered to be ICl dependent since its magnitude varied in close correlation with the amplitude and time course of ICl. While the properties of ICl, and those of the attenuation seen in optical records, could be simultaneously predicted by model simulations when the chloride permeability (PCl) at the surface and TTS membranes were approximately equal, the model failed to explain the optical data if PCl was precluded from the TTS membranes. Since the ratio between the areas of TTS membranes and the sarcolemma is large in mammalian muscle fibers, our results demonstrate that a significant fraction of the experimentally recorded ICl arises from TTS contributions. PMID:21149546
NASA Astrophysics Data System (ADS)
Hsu, Yi-Cheng, Sr.; Tsai, Y. C.; Hung, Y. S.; Cheng, W. H.
2005-08-01
One of the greatest challenges in the packaging of laser modules using laser welding technique is to use a reliable and accurate joining process. However, during welding, due to the material property difference between welded components, the rapid solidification of the welded region and the associated material shrinkage often introduced a post-weld-shift (PWS) between welded components. For a typical single-mode fiber application, if the PWS induced fiber alignment shift by the laser welding joining process is even a few micrometers, up to 50 % or greater loss in the coupled power may occur. The fiber alignment shift of the PWS effect in the laser welding process has a significant impact on the laser module package yield. Therefore, a detailed understanding of the effects of PWS on the fiber alignment shifts in laser-welded laser module packages and then the compensation of the fiber alignment shifts due to PWS effects are the key research subjects in laser welding techniques for optoelectronic packaging applications. Previously, the power losses due to PWS in butterfly-type laser module packages have been qualitatively corrected by applying the laser hammering technique to the direction of the detected shift. Therefore, by applying an elastic deformation to the welded components and by observing the corresponding power variation, the direction and magnitude of the PWS may be predicted. Despite numerous studies on improving the fabrication yields of laser module packaging using the PWS correction in laser welding techniques by a qualitative estimate, limited information is available for the quantitative understanding of the PWS induced fiber alignment shift which can be useful in designing and fabricating high-yield and high-performance laser module packages. The purpose of this paper is to present a quantitative probing of the PWS induced fiber alignment shift in laser-welded butterfly-type laser module packaging by employing a novel technique of a high-magnification camera with image capture system (HMCICS). The benefit of using the HMCICS technique to determine the fiber alignment shift are quantitatively measure and compensate the PWS direction and magnitude during the laser-welded laser module packages. This study makes it possible to probe the nonlinear behavior of the PWS by using a novel HMCICS technique that results in a real time quantitative compensation of the PWS in butterfly-type laser module packages, when compared to the currently available qualitatively estimated techniques to correct the PWS2. Therefore, the reliable butterfly-type laser modules with high yield and high performance used in lightwave transmission systems may thus be developed and fabricated.
Partitioning behavior of aromatic components in jet fuel into diverse membrane-coated fibers.
Baynes, Ronald E; Xia, Xin-Rui; Barlow, Beth M; Riviere, Jim E
2007-11-01
Jet fuel components are known to partition into skin and produce occupational irritant contact dermatitis (OICD) and potentially adverse systemic effects. The purpose of this study was to determine how jet fuel components partition (1) from solvent mixtures into diverse membrane-coated fibers (MCFs) and (2) from biological media into MCFs to predict tissue distribution. Three diverse MCFs, polydimethylsiloxane (PDMS, lipophilic), polyacrylate (PA, polarizable), and carbowax (CAR, polar), were selected to simulate the physicochemical properties of skin in vivo. Following an appropriate equilibrium time between the MCF and dosing solutions, the MCF was injected directly into a gas chromatograph/mass spectrometer (GC-MS) to quantify the amount that partitioned into the membrane. Three vehicles (water, 50% ethanol-water, and albumin-containing media solution) were studied for selected jet fuel components. The more hydrophobic the component, the greater was the partitioning into the membranes across all MCF types, especially from water. The presence of ethanol as a surrogate solvent resulted in significantly reduced partitioning into the MCFs with discernible differences across the three fibers based on their chemistries. The presence of a plasma substitute (media) also reduced partitioning into the MCF, with the CAR MCF system being better correlated to the predicted partitioning of aromatic components into skin. This study demonstrated that a single or multiple set of MCF fibers may be used as a surrogate for octanol/water systems and skin to assess partitioning behavior of nine aromatic components frequently formulated with jet fuels. These diverse inert fibers were able to assess solute partitioning from a blood substitute such as media into a membrane possessing physicochemical properties similar to human skin. This information may be incorporated into physiologically based pharmacokinetic (PBPK) models to provide a more accurate assessment of tissue dosimetry of related toxicants.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sirkar, Kamalesh; Jie, Xingming; Chau, John
Using the ionic liquid (IL) 1-butyl-3-methylimidazolium dicyanamide ([bmim][DCA]) as the absorbent on the shell side of a membrane module containing either a porous hydrophobized ceramic tubule or porous hydrophobized polyether ether ketone (PEEK) hollow fiber membranes, studies for CO{sub 2} removal from hot simulated pre-combustion shifted syngas were carried out by a novel pressure swing membrane absorption (PSMAB) process. Helium was used as a surrogate for H{sub 2} in a simulated shifted syngas with CO{sub 2} around 40% (dry gas basis). In this cyclic separation process, the membrane module was used to achieve non-dispersive gas absorption from a high-pressure feedmore » gas (689-1724 kPag; 100-250 psig) at temperatures between 25-1000C into a stationary absorbent liquid on the module shell side during a certain part of the cycle followed by among other cycle steps controlled desorption of the absorbed gases from the liquid in the rest of the cycle. Two product streams were obtained, one He-rich and the other CO{sub 2}-rich. Addition of polyamidoamine (PAMAM) dendrimer of generation 0 to IL [bmim][DCA] improved the system performance at higher temperatures. The solubilities of CO{sub 2} and He were determined in the ionic liquid with or without the dendrimer in solution as well as in the presence or absence of moisture; polyethylene glycol (PEG) 400 was also studied as a replacement for the IL. The solubility selectivity of the ionic liquid containing the dendrimer for CO{sub 2} over helium was considerably larger than that for the pure ionic liquid. The solubility of CO{sub 2} and CO{sub 2}-He solubility selectivity of PEG 400 and a solution of the dendrimer in PEG 400 were higher than the corresponding ones in the IL, [bmim][DCA]. A mathematical model was developed to describe the PSMAB process; a numerical solution of the governing equations described successfully the observed performance of the PSMAB process for the pure ionic liquid-based system.« less
Kaschemekat, Jurgen
1994-01-01
A membrane module assembly adapted to provide a flow path for the incoming feed stream that forces it into prolonged heat-exchanging contact with a heating or cooling mechanism. Membrane separation processes employing the module assembly are also disclosed. The assembly is particularly useful for gas separation or pervaporation.
Coherent optical modulation for antenna remoting
NASA Technical Reports Server (NTRS)
Fitzmartin, D. J.; Gels, R. G.; Balboni, E. J.
1991-01-01
A coherent fiber optic link employing wideband frequency modulation (FM) of the optical carrier is used to transfer radio frequency (RF) or microwave signals. This system is used to link a remotely located antenna to a conveniently located electronics processing site. The advantages of coherent analog fiber optic systems over non-coherent intensity modulated fiber optic analog transmission systems are described. An optical FM link employing an indirect transmitter to frequency modulate the optical carrier and a microwave delay line discriminator receiver is described. Measured performance data for a video signal centered at 60 MHz is presented showing the use of wideband FM in the link.
Spectrum-modulating fiber-optic sensors for aircraft control systems
NASA Technical Reports Server (NTRS)
Beheim, Glenn; Fritsch, Klaus
1987-01-01
A family of fiber-optic sensors for aircraft engine control systems is described. Each of these sensors uses a spectrum-modulation method to obtain an output which is largely independent of the fiber link transmissivity. A position encoder is described which uses a code plate to digitally modulate the sensor output spectrum. Also described are pressure and temperature sensors, each of which uses a Fabry-Perot cavity to modulate the sensor output spectrum as a continuous function of the measurand. A technique is described whereby a collection of these sensors may be effectively combined to perform a number of the measurements which are required by an aircraft-engine control system.
Depolarization of the Internal Membrane System in the Activation of Frog Skeletal Muscle
Costantin, L. L.; Podolsky, R. J.
1967-01-01
"Skinned" muscle fibers, single fibers from the frog semitendinosus muscle in which the sarcolemma had been removed, could be reversibly activated by electrical stimulation. Electrical responsiveness was abolished when the skinned fiber was prepared from a muscle exposed to a cardiac glycoside, and the development of responsiveness was delayed when the muscle was bathed in high potassium solution. The findings were taken as evidence that active sodium-potassium exchange across the internal membranes restored electrical excitability, after the sarcolemma had been removed, by establishing a potential gradient across the internal membranes. In general, the contractions were graded with the strength of the applied current. On occasion, however, "all-or-none" type responses were seen, raising the possibility that the internal membranes were capable of an electrically regenerative response. Activation could also be produced by an elevation of the intracellular chloride ion concentration or a decrease in the intracellular potassium, ion concentration, suggesting that depolarization of some element of the internal membrane system, that is, a decrease in the potential of the lumen of the internal membrane system relative to the potential of the myofibrillar space, was responsible for activation in these experiments. The distribution of both the electrically induced contractions and those produced by changes in the intracellular ion concentrations indicated that the responsive element of the internal membrane system was electrically continuous over many sarcomeres. PMID:6033576
Hollow Fiber Spacesuit Water Membrane Evaporator Development and Testing for Advanced Spacesuits
NASA Technical Reports Server (NTRS)
Bue, Grant C.; Trevino, Luis; Tsioulos, Gus; Settles, Joseph; Colunga, Aaron; Vogel, Matthew; Vonau, Walt
2010-01-01
Grant Bue and Matthew Vogel presented the two types of Spacesuit Water Membrane Evaporators (SWME) that were developed based on hydrophobic microporous membranes. One type, the Sheet Membrane (SaM) SWME, is composed of six concentric Teflon sheet membranes fixed on cylindrical-supporting screens to form three concentric annular water channels. Those water channels are surrounded by vacuum passages to draw off the water vapor that passes through the membrane. The other type, the Hollow Fiber (HoFi) SWME, is composed of more than 14,000 tubes. Water flows through the tubes and water vapor passes through the tube wall to the shell side that vents to the vacuum of space. Both SWME types have undergone testing to baseline the performance at predicted operating temperatures and flow rates; the units also have been subjected to contamination testing and other conditions to test resiliency.
2014-02-26
through RF filtering . Subsequently, this modulated signal is used in a cutback experiment with a passive fiber . Studies describing enhancement factors...to filter out higher order modes [3]. However, in order to maintain single-mode (diffraction limited) operation, conventional step-index fiber core...Letters 36, 2686-2688 (2011). [3] J. P. Koplaw, D. Kliner, and L. Goldberg, “Single-mode operation of a coiled multimode fiber amplifier,” Optics Letters
NASA Astrophysics Data System (ADS)
Yanson, Dan; Levy, Moshe; Peleg, Ophir; Rappaport, Noam; Shamay, Moshe; Dahan, Nir; Klumel, Genady; Berk, Yuri; Baskin, Ilya
2015-02-01
Fiber laser manufacturers demand high-brightness laser diode pumps delivering optical pump energy in both a compact fiber core and narrow angular content. A pump delivery fiber of a 105 μm core and 0.22 numerical aperture (NA) is typically used, where the fiber NA is under-filled to ease the launch of laser diode emission into the fiber and make the fiber tolerant to bending. At SCD, we have developed multi-emitter fiber-coupled pump modules that deliver 50 W output from a 105 μm, 0.15 NA fiber at 915, 950 and 976 nm wavelengths enabling low-NA power delivery to a customer's fiber laser network. In this work, we address the challenges of coupling and propagating high optical powers from laser diode sources in weakly guiding step-index multimode fibers. We present simulations of light propagation inside the low-NA multimode fiber for different launch conditions and fiber bend diameters using a ray-racing tool and demonstrate how these affect the injection of light into cladding-bounded modes. The mode filling at launch and source NA directly limit the bend radius at which the fiber can be coiled. Experimentally, we measure the fiber bend loss using our 50 W fiber-coupled module and establish a critical bend diameter in agreement with our simulation results. We also employ thermal imaging to investigate fiber heating caused by macro-bends and angled cleaving. The low mode filling of the 0.15 NA fiber by our brightness-enhanced laser diodes allows it to be coiled with diameters down to 70 mm at full operating power despite the low NA and further eliminates the need for mode-stripping at fiber combiners and splices downstream from our pump modules.
Analysis of ammonia separation from purge gases in microporous hollow fiber membrane contactors.
Karami, M R; Keshavarz, P; Khorram, M; Mehdipour, M
2013-09-15
In this study, a mathematical model was developed to analyze the separation of ammonia from the purge gas of ammonia plants using microporous hollow fiber membrane contactors. A numerical procedure was proposed to solve the simultaneous linear and non linear partial differential equations in the liquid, membrane and gas phases for non-wetted or partially wetted conditions. An equation of state was applied in the model instead of Henry's law because of high solubility of ammonia in water. The experimental data of CO₂-water system in the literature was used to validate the model due to the lack of data for ammonia-water system. The model showed that the membrane contactor can separate ammonia very effectively and with recoveries higher than 99%. SEM images demonstrated that ammonia caused some micro-cracks on the surfaces of polypropylene fibers, which could be an indication of partial wetting of membrane in long term applications. However, the model results revealed that the membrane wetting did not have significant effect on the absorption of ammonia because of very high solubility of ammonia in water. It was also found that the effect of gas velocity on the absorption flux was much more than the effect of liquid velocity. Copyright © 2013 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Li, Xipeng; Zhao, Changwei; Yang, Mei; Yang, Bin; Hou, Deyin; Wang, Tao
2017-10-01
Reduced graphene oxide-NH2 (R-GO-NH2), a kind of amino graphene oxide, was embedded into the polyamide (PA) layer of nanofiltration (NF) composite hollow fiber membranes via interfacial polymerization to enhance the permeate flux and antifouling properties of NF membranes under low pressure conditions. In addition, it could mitigate the poor compatibility issue between graphene oxide materials and PA layer. To evaluate the influence of R-GO-NH2 on the performance of the NF composite hollow fiber membrane, SEM, AFM, FTIR, XPS and Zeta potentials were used to characterize the membranes. The results indicated that the compatibility and interactions between R-GO-NH2 and PA layer were enhanced, which was mainly due to the polymerization reaction between amino groups of R-GO-NH2 and acyl chloride groups of TMC. Therefore, salts rejection of the current membranes was improved significantly, and the modified membranes with 50 mg/L R-GO-NH2 demonstrated highest performance in terms of the rejections, which were 26.9%, 98.5%, 98.1%, and 96.1%, for NaCl, Na2SO4, MgSO4, and CaCl2 respectively. It was found that with the R-GO-NH2 contents rasing from 0 to 50 mg/L, pure water flux increased from 30.44 ± 1.71 to 38.57 ± 2.01 L/(m2.h) at 2 bar. What's more, the membrane demonstrated improved antifouling properties.
A 3D heterogeneous FeTiO3/TiO2@C fiber membrane as a self-standing anode for power Li-ion battery
NASA Astrophysics Data System (ADS)
Li, Jing-quan; Jing, Mao-xiang; Han, Chong; Yao, Shan-shan; Zhai, Hong-ai; Chen, Li-li; Shen, Xiang-qian; Xiao, Ke-song
2018-04-01
A three-dimensional (3D) networking FeTiO3/TiO2@C flexible fiber membrane was successfully fabricated by an electrospinning process and a controlled hot-press sintering method. This FeTiO3/TiO2@C fiber membrane displays a long-range continuous conductive networks, which can be directly used as self-standing anodes. The electrode sintered at 750 °C for 3 h possesses a reversible capacity of 205.4 mAh/g after 100 cycles at a current density of 300 mA/g. The superior cycle and rate performance can be attributed to the synergistic effect of little volume variation of TiO2 matrix, high capacity of FeTiO3 and good electrical conductivity of 3D networking.
Long-range distributed optical fiber hot-wire anemometer based on chirped-pulse ΦOTDR.
Garcia-Ruiz, Andres; Dominguez-Lopez, Alejandro; Pastor-Graells, Juan; Martins, Hugo F; Martin-Lopez, Sonia; Gonzalez-Herraez, Miguel
2018-01-08
We demonstrate a technique allowing to develop a fully distributed optical fiber hot-wire anemometer capable of reaching a wind speed uncertainty of ≈ ±0.15m/s (±0.54km/h) at only 60 mW/m of dissipated power in the sensing fiber, and within only four minutes of measurement time. This corresponds to similar uncertainty values than previous papers on distributed optical fiber anemometry but requires two orders of magnitude smaller dissipated power and covers at least one order of magnitude longer distance. This breakthrough is possible thanks to the extreme temperature sensitivity and single-shot performance of chirped-pulse phase-sensitive optical time domain reflectometry (ΦOTDR), together with the availability of metal-coated fibers. To achieve these results, a modulated current is fed through the metal coating of the fiber, causing a modulated temperature variation of the fiber core due to Joule effect. The amplitude of this temperature modulation is strongly dependent on the wind speed at which the fiber is subject. Continuous monitoring of the temperature modulation along the fiber allows to determine the wind speed with singular low power injection requirements. Moreover, this procedure makes the system immune to temperature drifts of the fiber, potentially allowing for a simple field deployment. Being a much less power-hungry scheme, this method also allows for monitoring over much longer distances, in the orders of 10s of km. We expect that this system can have application in dynamic line rating and lateral wind monitoring in railway catenary wires.
Tropomodulin 1 Constrains Fiber Cell Geometry during Elongation and Maturation in the Lens Cortex
Nowak, Roberta B.
2012-01-01
Lens fiber cells exhibit a high degree of hexagonal packing geometry, determined partly by tropomodulin 1 (Tmod1), which stabilizes the spectrin-actin network on lens fiber cell membranes. To ascertain whether Tmod1 is required during epithelial cell differentiation to fiber cells or during fiber cell elongation and maturation, the authors quantified the extent of fiber cell disorder in the Tmod1-null lens and determined locations of disorder by confocal microscopy and computational image analysis. First, nearest neighbor analysis of fiber cell geometry in Tmod1-null lenses showed that disorder is confined to focal patches. Second, differentiating epithelial cells at the equator aligned into ordered meridional rows in Tmod1-null lenses, with disordered patches first observed in elongating fiber cells. Third, as fiber cells were displaced inward in Tmod1-null lenses, total disordered area increased due to increased sizes (but not numbers) of individual disordered patches. The authors conclude that Tmod1 is required first to coordinate fiber cell shapes and interactions during tip migration and elongation and second to stabilize ordered fiber cell geometry during maturation in the lens cortex. An unstable spectrin-actin network without Tmod1 may result in imbalanced forces along membranes, leading to fiber cell rearrangements during elongation, followed by propagation of disorder as fiber cells mature. PMID:22473940
Guo, Xingfeng; Hou, Chunlin; Dou, Yuandong; Lin, Ye; Lei, Deqiao
2014-08-01
To study the long-term prevention effect of self-developed chitosan electrospun membrane on cerebrospinal fluid leakage. Twenty-five healthy adult New Zealand rabbits were selected to prepare the bilateral dural defect (0.8 cem x 0.8 cm in size) via midline incision of head. Defect of the right was repaired with chitosan electrospun membrane as the experimental group; defect of the left was not repaired as the control group. At 2-16 weeks after operation, one rabbit was sacrificed for the general observation of inflammatory response surrounding bone window and absorption of chitosan electrospun membrane; at 3 and 6 weeks after operation, 5 rabbits were sacrificed for sampling to observe histological change and collagen expression by_HE and Masson staining, and to measure the expressions of epidermal growth factor receptor (EGFR) and basic fibroblast growth factor (bFGF) by immunohistochemical staining. No inflammatory reaction of swelling, exudation, and sppuration appeared in the skin and subcutaneous tissue after operation in 2 groups. There was no adhesion around the chitosan electrospun membrane, and new fiber membrane formed under the chitosan electrospun membrane in the experimental group; no cerebrospinal fluid leakage happened; the chitosan electrospun membrane was gradually degraded with time, and was completely absorbed at 16 weeks. There was uneven scar around the dural detect in control group. Histological observation showed less inflammatory cell infiltration in the experimental group, showing significant difference in the number of inflammatory cells compared with control group at 3, 6 weeks (P < 0.05); capillary, granulation tissue and collagen fiber massively proliferated; collagen fiber arranged in line, and there was a clear borderline between chitosan electrospurn membrane and adjacent collagen fiber. The immunohistochemical staining showed that there were high expressions of bFGF and EGFR in the experimental group, and low expressions of bFGF and EGFR in the control group. Chitosan electrospun membrane for dural defect of rabbit can effectively reconstruct the dura, and it has exact long-term prevention effect on cerebrospinal fluid leakage.
Hollow-Fiber Spacesuit Water Membrane Evaporator
NASA Technical Reports Server (NTRS)
Bue, Grant; Trevino, Luis; Tsioulos, Gus; Mitchell, Keith; Settles, Joseph
2013-01-01
The hollow-fiber spacesuit water membrane evaporator (HoFi SWME) is being developed to perform the thermal control function for advanced spacesuits and spacecraft to take advantage of recent advances in micropore membrane technology in providing a robust, heat-rejection device that is less sensitive to contamination than is the sublimator. After recent contamination tests, a commercial-off-the-shelf (COTS) micro porous hollow-fiber membrane was selected for prototype development as the most suitable candidate among commercial hollow-fiber evaporator alternatives. An innovative design that grouped the fiber layers into stacks, which were separated by small spaces and packaged into a cylindrical shape, was developed into a full-scale prototype for the spacesuit application. Vacuum chamber testing has been performed to characterize heat rejection as a function of inlet water temperature and water vapor back-pressure, and to show contamination resistance to the constituents expected to be found in potable water produced by the wastewater reclamation distillation processes. Other tests showed tolerance to freezing and suitability to reject heat in a Mars pressure environment. In summary, HoFi SWME is a lightweight, compact evaporator for heat rejection in the spacesuit that is robust, contamination- insensitive, freeze-tolerant, and able to reject the required heat of spacewalks in microgravity, lunar, and Martian environments. The HoFi is packaged to reject 810 W of heat through 800 hours of use in a vacuum environment, and 370 W in a Mars environment. The device also eliminates free gas and dissolved gas from the coolant loop.
Highly potent silver-organoalkoxysilane antimicrobial porous nanomembrane
NASA Astrophysics Data System (ADS)
Umar, Sirajo; Liu, Yuanfeng; Wu, Yiguang; Li, Guangtao; Ding, Jiabo; Xiong, Runsong; Chen, Jinchun
2013-04-01
We used a simple electrospinning technique to fabricate a highly potent silver-organoalkoxysilane antimicrobial composite from AgNO3-polyvinylpyrrolidone (PVP)/3-aminopropyltrimethoxysilane (APTMS)/tetraethoxysilane (TEOS) solution. Spectroscopic and microscopic analyses of the composite showed that the fibers contain an organoalkoxysilane `skeleton,' 0.18 molecules/nm2 surface amino groups, and highly dispersed and uniformly distributed silver nanoparticles (5 nm in size). Incorporation of organoalkoxysilanes is highly beneficial to the antimicrobial mat as (1) amino groups of APTMS are adhesive and biocidal to microorganisms, (2) polycondensation of APTMS and TEOS increases the membrane's surface area by forming silicon bonds that stabilize fibers and form a composite mat with membranous structure and high porosity, and (3) the organoalkoxysilanes are also instrumental to the synthesis of the very small-sized and highly dispersed silver metal particles in the fiber mat. Antimicrobial property of the composite was evaluated by disk diffusion, minimum inhibition concentration (MIC), kinetic, and extended use assays on bacteria (Escherichia coli, Bacillus anthracis, Staphylococcus aureus, and Brucella suis), a fungus (Aspergillus niger), and the Newcastle disease virus. The membrane shows quick and sustained broad-spectrum antimicrobial activity. Only 0.3 mg of fibers is required to achieve MIC against all the test organisms. Bacteria are inhibited within 30 min of contact, and the fibers can be used repeatedly. The composite is silver efficient and environment friendly, and its membranous structure is suitable for many practical applications as in air filters, antimicrobial linen, coatings, bioadhesives, and biofilms.
Gel polymer electrolytes based on nanofibrous polyacrylonitrile–acrylate for lithium batteries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Dul-Sun; Woo, Jang Chang; Youk, Ji Ho, E-mail: youk@inha.ac.kr
2014-10-15
Graphical abstract: - Highlights: • Nanofibrous polyacrylonitrile–acrylate membranes were prepared by electrospinning. • Trimethylolpropane triacrylate was used as a crosslinking agent of fibers. • The GPE based on PAN–acrylate (1/0.5) showed good electrochemical properties. - Abstract: Nanofibrous membranes for gel polymer electrolytes (GPEs) were prepared by electrospinning a mixture of polyacrylonitrile (PAN) and trimethylolpropane triacrylate (TMPTA) at weight ratios of 1/0.5 and 1/1. TMPTA is used to achieve crosslinking of fibers thereby improving mechanical strength. The average fiber diameters increased with increasing TMPTA concentration and the mechanical strength was also improved due to the enhanced crosslinking of fibers. GPEs basedmore » on electrospun membranes were prepared by soaking them in a liquid electrolyte of 1 M LiPF{sub 6} in ethylene carbonate (EC)/dimethyl carbonate (DMC) (1:1, v/v). The electrolyte uptake and ionic conductivity of GPEs based on PAN and PAN–acrylate (weight ratio; 1/1 and 1/0.5) were investigated. Ionic conductivity of GPEs based on PAN–acrylate was the highest for PAN/acrylate (1/0.5) due to the proper swelling of fibers and good affinity with liquid electrolyte. Both GPEs based on PAN and PAN–acrylate membranes show good oxidation stability, >5.0 V vs. Li/Li{sup +}. Cells with GPEs based on PAN–acrylate (1/0.5) showed remarkable cycle performance with high initial discharge capacity and low capacity fading.« less
Chen, Li-Li; Shen, Xiang-Qian; Jing, Mao-Xiang; Zhu, Sheng-Wen; Pi, Zhi-Chao; Li, Jing-Quan; Zhai, Hong-Ai; Xiao, Ke-Song
2018-07-01
A LiFePO4/C composite fiber membrane was fabricated by the electrospinning method and subsequent thermal treatment. The thermal decomposition process was analyzed by TG/DSC, the morphology, microstructure and composition were studied using SEM, TEM, XRD, Raman, respectively. The results indicated that the prepared LiFePO4/C composite fibers were composed of nanosized LiFePO4 crystals and amorphous carbon coatings, which formed a three dimensional (3D) long-range networks, greatly enhanced the electronic conductivity of LiFePO4 electrode up to 3.59× 10-2 S · cm-2. The 3D LiFePO4/C fiber membrane could be directly used as a binder-free, self-standing cathode for lithium-ion battery, and exhibited an improved capacity and rate performance. The LiFePO4/C composite electrode delivered a discharge capacity of 116 mAh·g-1, 109 mAh·g-1, 103 mAh·g-1, 91 mAh·g-1, 80 mAh·g-1 at 0.1 C, 0.5 C, 1 C, 3 C, 5 C, respectively. And a stable cycling performance was also achieved that the specific capacity could retain 75 mA·g-1 after 500 cycles at 5 C. Therefore, this LiFePO4/C composite fiber membrane was promising to be used as a cathode for power lithium ion battery.
Interface module for transverse energy input to dye laser modules
English, R.E. Jr.; Johnson, S.A.
1994-10-11
An interface module for transverse energy input to dye laser modules is provided particularly for the purpose of delivering enhancing transverse energy beams in the form of illumination bar to the lasing zone of a dye laser device, in particular to a dye laser amplifier. The preferred interface module includes an optical fiber array having a plurality of optical fibers arrayed in a co-planar fashion with their distal ends receiving coherent laser energy from an enhancing laser source, and their proximal ends delivered into a relay structure. The proximal ends of the optical fibers are arrayed so as to be coplanar and to be aimed generally at a common point. The transverse energy beam array delivered from the optical fiber array is acted upon by an optical element array to produce an illumination bar which has a cross section in the form of a elongated rectangle at the position of the lasing window. The illumination bar is selected to have substantially uniform intensity throughout. 5 figs.
Kwon, Yeon Hye; Min, Byunghyun; Yang, Shaowei; ...
2018-01-29
Separation of radioisotope 85Kr from 136Xe is of importance in used nuclear fuel reprocessing. Membrane separation based on zeolite molecular sieves such as chabazite SAPO- 34 is an attractive alternative to energy-intensive cryogenic distillation. We report the synthesis of SAPO-34 membranes with considerably enhanced performance, via thickness reduction based upon control of a steam-assisted vapor-solid conversion technique followed by ion exchange with alkali metal cations. The reduction of membrane thickness leads to a large increase in Kr permeance from 7.5 gas permeation units (GPU) to 26.3 GPU with ideal Kr/Xe selectivities > 20 at 298 K. Cation-exchanged membranes show largemore » (>50%) increases in selectivity at ambient or slight sub-ambient conditions. The adsorption, diffusion, and permeation characteristics of ionexchanged SAPO-34 materials and membranes are investigated in detail, with potassium exchanged SAPO-34 membranes showing particularly attractive performance. Lastly, we then demonstrate the fabrication of selective SAPO-34 membranes on α-alumina hollow fibers.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kwon, Yeon Hye; Min, Byunghyun; Yang, Shaowei
Separation of radioisotope 85Kr from 136Xe is of importance in used nuclear fuel reprocessing. Membrane separation based on zeolite molecular sieves such as chabazite SAPO- 34 is an attractive alternative to energy-intensive cryogenic distillation. We report the synthesis of SAPO-34 membranes with considerably enhanced performance, via thickness reduction based upon control of a steam-assisted vapor-solid conversion technique followed by ion exchange with alkali metal cations. The reduction of membrane thickness leads to a large increase in Kr permeance from 7.5 gas permeation units (GPU) to 26.3 GPU with ideal Kr/Xe selectivities > 20 at 298 K. Cation-exchanged membranes show largemore » (>50%) increases in selectivity at ambient or slight sub-ambient conditions. The adsorption, diffusion, and permeation characteristics of ionexchanged SAPO-34 materials and membranes are investigated in detail, with potassium exchanged SAPO-34 membranes showing particularly attractive performance. Lastly, we then demonstrate the fabrication of selective SAPO-34 membranes on α-alumina hollow fibers.« less
Xue, Jiajia; Niu, Yuzhao; Gong, Min; Shi, Rui; Chen, Dafu; Zhang, Liqun; Lvov, Yuri
2015-02-24
Guided tissue regeneration/guided bone regeneration membranes with sustained drug delivery were developed by electrospinning drug-loaded halloysite clay nanotubes doped into poly(caprolactone)/gelatin microfibers. Use of 20 wt % nanotube content in fiber membranes allowed for 25 wt % metronidazole drug loading in the membrane. Nanotubes with a diameter of 50 nm and a length of 600 nm were aligned within the 400 nm diameter electrospun fibers, resulting in membranes with doubling of tensile strength along the collector rotating direction. The halloysite-doped membranes acted as barriers against cell ingrows and have good biocompatibility. The metronidazole-loaded halloysite nanotubes incorporated in the microfibers allowed for extended release of the drugs over 20 days, compared to 4 days when directly admixed into the microfibers. The sustained release of metronidazole from the membranes prevented the colonization of anaerobic Fusobacteria, while eukaryotic cells could still adhere to and proliferate on the drug-loaded composite membranes. This indicates the potential of halloysite clay nanotubes as drug containers that can be incorporated into electrospun membranes for clinical applications.
Phospholipid Nonwoven Electrospun Membranes
NASA Astrophysics Data System (ADS)
McKee, Matthew G.; Layman, John M.; Cashion, Matthew P.; Long, Timothy E.
2006-01-01
Nonwoven fibrous membranes were formed from electrospinning lecithin solutions in a single processing step. As the concentration of lecithin increased, the micellar morphology evolved from spherical to cylindrical, and at higher concentrations the cylindrical micelles overlapped and entangled in a fashion similar to polymers in semi-dilute or concentrated solutions. At concentrations above the onset of entanglements of the wormlike micelles, electrospun fibers were fabricated with diameters on the order of 1 to 5 micrometers. The electrospun phospholipid fibers offer the potential for direct fabrication of biologically based, high-surface-area membranes without the use of multiple synthetic steps, complicated electrospinning designs, or postprocessing surface treatments.
Department of Defense Enhanced Particulate Matter Surveillance Program (EPMSP)
2008-02-01
on Teflon® membrane, 23,807 on quartz fiber, and several million single particle analyses on Nuclepore® filters. Analytical results were...Nuclepore® filters, the sampling period was two hours, so as to provide lightly loaded filters with dispersed single particles, as required for CCSEM...membrane, 23,807 on quartz fiber, and several million single particle analyses on Nuclepore®. All results, together with summary tables and more than
2015-12-01
and chemical stability. Also in Year 3, membranes were prepared by simultaneously electrospinning brominated poly(phenylene oxide) ( PPO ) and... PPO fibers (preventing water solubility when charged groups were added to the PPO ), as shown in Scheme 3. Subsequent mat processing included...brominated PPO fibers), and reaction of the resulting films with either trimethylamine or 1,2-dimethylimidazole to create cationic groups at those
NASA Astrophysics Data System (ADS)
Delsy, E. V. Y.; Irmanto; Kazanah, F. N.
2017-02-01
Pineapple leaves are agricultural waste from the pineapple that the fibers can be utilized as raw material in cellulose acetate membranes. First, made pineapple leaf fibers into pulp and then converted into cellulose acetate by acetylation process in four stages consisting of activation, acetylation, hydrolysis and purification. Cellulose acetate then used as the raw material to manufacture composite membrane with addition of polystyrene and poly (ethylene glycol) as porogen. Composite membrane is made using phase inversion method with dichloromethane-acetone as a solvent. The result of FTIR analysis (Fourier transform infra-red) showed that the absorption of the carbonyl group (C=O) is at 1643.10 cm-1 and acetyl group (C-O ) at 1227.01 cm-1, with a molecular weight of 8.05 x 104 g/mol and the contents (rate) of acetyl is 37.31%. PS-PEG-CA composite membrane had also been characterized by measuring the water flux values and its application to decrease methyl orange content (level) in batik waste. The results showed that the water flux value is of 25.62 L/(m2.hour), and the decrease percentage of methyl orange content in batik waste is 71.53%.
Bamboo shoot fiber prevents obesity in mice by modulating the gut microbiota
Li, Xiufen; Guo, Juan; Ji, Kailong; Zhang, Ping
2016-01-01
Dietary fiber has been shown to prevent high-fat diet induced obesity through modulating the gut microbiota; however, quality difference in fiber type is largely unknown. We performed a 6 week study on C57BL/6J mice fed a macronutrient matched high-fat diet with different fiber types including cellulose (HFC), bamboo shoot fiber (HFBS) and several other commonly consumed fibers. Our results showed that the HFBS group exhibited the lowest weight gain among all diet groups and had improved lipid profiles and glycemic control compared with the HFC group. As revealed by 16S rRNA gene sequencing, loss of diversity in the gut microbiota induced by the HFC diet was largely prevented by the HFBS diet. Moreover, compared with the HFC diet, the HFBS diet resulted in markedly increased relative abundance of Bacteroidetes and strong inhibition of Verrucomicrobia, two divisions strongly correlated with body weight. In conclusion, the present study provides evidence of a quality difference among different types of dietary fibers and shows that bamboo shoot fiber is the most effective in suppressing high-fat diet induced obesity. Our findings indicate that bamboo shoot fiber is a potential prebiotic fiber which modulates the gut microbiota and improves host metabolism. PMID:27599699
Film/Adhesive Processing Module for Fiber-Placement Processing of Composites
NASA Technical Reports Server (NTRS)
Hulcher, A. Bruce
2007-01-01
An automated apparatus has been designed and constructed that enables the automated lay-up of composite structures incorporating films, foils, and adhesives during the automated fiber-placement process. This apparatus, denoted a film module, could be used to deposit materials in film or thin sheet form either simultaneously when laying down the fiber composite article or in an independent step.
USDA-ARS?s Scientific Manuscript database
Leaf content, seed moisture and module storage time of seed cotton influence cotton fiber quality and aflatoxin contamination of cottonseed in South Texas. Crop Science ... Cotton is the most important natural fiber used to produce apparel, home furnishing, and industrial products. The quality of th...
Kaschemekat, J.
1994-03-15
A membrane module assembly is described which is adapted to provide a flow path for the incoming feed stream that forces it into prolonged heat-exchanging contact with a heating or cooling mechanism. Membrane separation processes employing the module assembly are also disclosed. The assembly is particularly useful for gas separation or pervaporation. 2 figures.
Comparing multi-module connections in membrane chromatography scale-up.
Yu, Zhou; Karkaria, Tishtar; Espina, Marianela; Hunjun, Manjeet; Surendran, Abera; Luu, Tina; Telychko, Julia; Yang, Yan-Ping
2015-07-20
Membrane chromatography is increasingly used for protein purification in the biopharmaceutical industry. Membrane adsorbers are often pre-assembled by manufacturers as ready-to-use modules. In large-scale protein manufacturing settings, the use of multiple membrane modules for a single batch is often required due to the large quantity of feed material. The question as to how multiple modules can be connected to achieve optimum separation and productivity has been previously approached using model proteins and mass transport theories. In this study, we compare the performance of multiple membrane modules in series and in parallel in the production of a protein antigen. Series connection was shown to provide superior separation compared to parallel connection in the context of competitive adsorption. Copyright © 2015 Elsevier B.V. All rights reserved.
Modulated Fourier Transform Raman Fiber-Optic Spectroscopy
NASA Technical Reports Server (NTRS)
Jensen, Brian J. (Inventor); Cooper, John B. (Inventor); Wise, Kent L. (Inventor)
2000-01-01
A modification to a commercial Fourier Transform (FT) Raman spectrometer is presented for the elimination of thermal backgrounds in the FT Raman spectra. The modification involves the use of a mechanical optical chopper to modulate the continuous wave laser, remote collection of the signal via fiber optics, and connection of a dual-phase digital-signal-processor (DSP) lock-in amplifier between the detector and the spectrometer's collection electronics to demodulate and filter the optical signals. The resulting Modulated Fourier Transform Raman Fiber-Optic Spectrometer is capable of completely eliminating thermal backgrounds at temperatures exceeding 300 C.
Alternative energy efficient membrane bioreactor using reciprocating submerged membrane.
Ho, J; Smith, S; Roh, H K
2014-01-01
A novel membrane bioreactor (MBR) pilot system, using membrane reciprocation instead of air scouring, was operated at constant high flux and daily fluctuating flux to demonstrate its application under peak and diurnal flow conditions. Low and stable transmembrane pressure was achieved at 40 l/m(2)/h (LMH) by use of repetitive membrane reciprocation. The results reveal that the inertial forces acting on the membrane fibers effectively propel foulants from the membrane surface. Reciprocation of the hollow fiber membrane is beneficial for the constant removal of solids that may build up on the membrane surface and inside the membrane bundle. The membrane reciprocation in the reciprocating MBR pilot consumed less energy than coarse air scouring used in conventional MBR systems. Specific energy consumption for the membrane reciprocation was 0.072 kWh/m(3) permeate produced at 40 LMH flux, which is 75% less than for a conventional air scouring system as reported in literature without consideration of energy consumption for biological aeration (0.29 kWh/m(3)). The daily fluctuating flux test confirmed that the membrane reciprocation is effective to handle fluctuating flux up to 50 LMH. The pilot-scale reciprocating MBR system successfully demonstrated that fouling can be controlled via 0.43 Hz membrane reciprocation with 44 mm or higher amplitude.
Microring embedded hollow polymer fiber laser
DOE Office of Scientific and Technical Information (OSTI.GOV)
Linslal, C. L., E-mail: linslal@gmail.com; Sebastian, S.; Mathew, S.
2015-03-30
Strongly modulated laser emission has been observed from rhodamine B doped microring resonator embedded in a hollow polymer optical fiber by transverse optical pumping. The microring resonator is fabricated on the inner wall of a hollow polymer fiber. Highly sharp lasing lines, strong mode selection, and a collimated laser beam are observed from the fiber. Nearly single mode lasing with a side mode suppression ratio of up to 11.8 dB is obtained from the strongly modulated lasing spectrum. The microring embedded hollow polymer fiber laser has shown efficient lasing characteristics even at a propagation length of 1.5 m.
Reactive Capping Mat Development and Evaluation for Sequestering Contaminants in Sediments
2011-08-01
semi-permeable membrane devices (SPMDs) and solid phase micro-extraction (SPME) fibers . Peepers are expression samplers constructed of...in fish organs. The SPME fibers are coated with a liquid polymer that allows organic contaminants to establish equilibria between the fiber and the...between 10 and 20 cm of 300/200 µm polydimethylsiloxan (PMDS) fiber (Fiberguide) per replicate sample. Fibers were deployed at 10 cm lengths in a
Composite material hollow antiresonant fibers.
Belardi, Walter; De Lucia, Francesco; Poletti, Francesco; Sazio, Pier J
2017-07-01
We study novel designs of hollow-core antiresonant fibers comprising multiple materials in their core-boundary membrane. We show that these types of fibers still satisfy an antiresonance condition and compare their properties to those of an ideal single-material fiber with an equivalent thickness and refractive index. As a practical consequence of this concept, we discuss the first realization and characterization of a composite silicon/glass-based hollow antiresonant fiber.
Matin, Amir Abbas; Biparva, Pourya; Gheshlaghi, Mohammad
2014-12-29
A novel solid-phase microextraction fiber was prepared based on multiwalled carbon nanotubes (MWCNTs) loaded on hollow fiber membrane pores. Stainless steel wire was used as unbreakable support. The major advantages of the proposed fiber are its (a) high reproducibility due to the uniform structure of the hollow fiber membranes, (b) high extraction capacity related to the porous structure of the hollow fiber and outstanding adsorptive characteristics of MWCNTs. The proposed fiber was applied for the microextraction of five representative polycyclic aromatic hydrocarbons (PAHs) from aqueous media (river and hubble-bubble water) and smoked rice samples followed by gas chromatographic determination. Analytical merits of the method, including high correlation coefficients [(0.9963-0.9992) and (0.9982-0.9999)] and low detection limits [(9.0-13.0ngL(-1)) and (40.0-150.0ngkg(-1))] for water and rice samples, respectively, made the proposed method suitable for the ultra-trace determination of PAHs. Copyright © 2014 Elsevier B.V. All rights reserved.
Fiber Treatment Effects on Bioreactor Bulk Fluid Trends
NASA Technical Reports Server (NTRS)
Ellis, Ronald II
2013-01-01
In order to facilitate the exploration of worlds beyond the borders of our planet, it is necessary to maintain sustainable levels of clean water. The remediation of water via Membrane Aerated Bioreactors (MABRs) is one such method, and the focus of this study. MARRs rely on healthy biofilms grown on hollow fiber membranes to clean non-potable water. These biofilms can take weeks to months to establish. Therefore, various fiber treatments and two inoculums were evaluated for their effect on rapid biofilm formation. Fiber treatments are as follows: sanding of the fibers with 1500 and 8000 grit sandpaper, immersion of the fibers in a 1% hydrofluoric acid solution for 12 seconds and 15 minutes, and the immersion of the fibers in a Fluoroetch® solution for 18 seconds and 5 minutes. The two inoculums utilized were sourced from healthy, established MARRs; Texas Tech University (TTU) MABR "TRL5" and Kennedy Space Center (KSC) MABR "R3". Data attained from direct bacterial cell counts of the reactor bulk fluids via fluorescent microscopy, suggests that the fluoroetching treatment combined with the TTU inoculum show the greatest biofilm creation.
NASA Technical Reports Server (NTRS)
Winkler, H. E.; Roebelen, G. J., Jr.
1980-01-01
A three-man urine water recovery preprototype subsystem using a new concept to provide efficient potable water recovery from waste fluids on extended duration space flights has been designed, fabricated, and tested. Low power, compactness, and gravity insensitive operation are featured in this vacuum distillation subsystem that combines a hollow fiber polysulfone membrane evaporator with a thermoelectric heat pump. Application and integration of these key elements have solved problems inherent in previous reclamation subsystem designs. The hollow fiber elements provide positive liquid/gas phase control with no moving parts other than a waste liquid recirculation pump and a product water withdrawal pump. Tubular membranes provide structural integrity, improving on previous flat sheet membrane designs. A thermoelectric heat pump provides latent energy recovery.
Chiemchaisri, C; Yamamoto, K
2005-01-01
Biological nitrogen removal in a membrane separation bioreactor developed for on-site domestic wastewater treatment was investigated. The bioreactor employed hollow fiber membrane modules for solid-liquid separation so that the biomass could be completely retained within the system. Intermittent aeration was supplied with 90 minutes on and off cycle to achieve nitrification and denitrification reaction for nitrogen removal. High COD and nitrogen removal of more than 90% were achieved under a moderate temperature of 25 degrees C. As the temperature was stepwise decreased from 25 to 5 degrees C, COD removal in the system could be constantly maintained while nitrogen removal was deteriorated. Nevertheless, increasing aeration supply could enhance nitrification at low temperature with benefit from complete retention of nitrifying bacteria within the system by membrane separation. At low operating temperature range of 5 degrees C, nitrogen removal could be recovered to more than 85%. A mathematical model considering diffusion resistance of limiting substrate into the bio-particle is applied to describe nitrogen removal in a membrane separation bioreactor. The simulation suggested that limitation of the oxygen supply was the major cause of inhibition of nitrification during temperature decrease. Nevertheless, increasing aeration could promote oxygen diffusion into the bio-particle. Sufficient oxygen was supplied to the nitrifying bacteria and the nitrification could proceed. In the membrane separation bioreactor, biomass concentration under low temperature operation was allowed to increase by 2-3 times of that of moderate temperature to compensate for the loss of bacterial activities so that the temperature effect was masked.
Sakowicz-Burkiewicz, Monika; Kuczkowski, Jerzy; Przybyła, Tomasz; Grdeń, Marzena; Starzyńska, Anna; Pawełczyk, Tadeusz
2017-09-01
Tympanosclerosis is a pathological process involving the middle ear. The hallmark of this disease is the formation of calcium deposits. In the submucosal layer, as well as in the right layer of the tympanic membrane, the calcium deposits result in a significant increase in the activity of fibroblasts and deposition of collagen fibers. The aim of our study was to examine the expression level of genes encoding collagen type I, II, III and IV (COL1A1, COL2A1, COL3A1, COL4A1) and osteopontin (SPP1) in the tympanic membrane of patients with tympanosclerosis. The total RNA was isolated from middle ear tissues with tympanosclerosis, received from 25 patients and from 19 normal tympanic membranes. The gene expression level was determined by real-time RT-PCR. The gene expression levels were correlated with clinical Tos classification of tympanosclerosis. We observed that in the tympanic membrane of patients with tympanosclerosis, the expression of type I collagen is decreased, while the expression of type II and IV collagen and osteopontin is increased. Moreover, mRNA levels of the investigated genes strongly correlated with the clinical stages of tympanosclerosis. The strong correlations between the expression of type I, II, IV collagen and osteopontin and the clinical stage of tympanosclerosis indicate the involvement of these proteins in excessive fibrosis and pathological remodeling of the tympanic membrane. In the future, a treatment aiming to modulate these gene expressions and/or regulation of the degradation of their protein products could be used as a new medical approach for patients with tympanosclerosis.
Darcy Permeability of Hollow Fiber Bundles Used in Blood Oxygenation Devices
Pacella, Heather E.; Eash, Heidi J.; Federspiel, William J.
2011-01-01
Many industrial and biomedical devices (e.g. blood oxygenators and artificial lungs) use bundles of hollow fiber membranes for separation processes. Analyses of flow and mass transport within the shell-side of the fiber bundles most often model the bundle for simplicity as a packed bed or porous media, using a Darcy permeability coefficient estimated from the Blake-Kozeny equation to account for viscous drag from the fibers. In this study, we developed a simple method for measuring the Darcy permeability of hollow fiber membrane bundles and evaluated how well the Blake-Kozeny (BK) equation predicted the Darcy permeability for these bundles. Fiber bundles were fabricated from commercially available Celgard® ×30-240 fiber fabric (300 μm outer diameter fibers @ 35 and 54 fibers/inch) and from a fiber fabric with 193 μm fibers (61 fibers/inch). The fiber bundles were mounted to the bottom of an acrylic tube and Darcy permeability was determined by measuring the elapsed time for a column of glycerol solution to flow through a fiber bundle. The ratio of the measured Darcy permeability to that predicted from the BK equation varied from 1.09 to 0.56. A comprehensive literature review suggested a modified BK equation with the “constant” correlated to porosity. This modification improved the predictions of the BK equation, with the ratio of measured to predicted permeability varying from 1.13 to 0.84. PMID:22927706
Generalized cable equation model for myelinated nerve fiber.
Einziger, Pinchas D; Livshitz, Leonid M; Mizrahi, Joseph
2005-10-01
Herein, the well-known cable equation for nonmyelinated axon model is extended analytically for myelinated axon formulation. The myelinated membrane conductivity is represented via the Fourier series expansion. The classical cable equation is thereby modified into a linear second order ordinary differential equation with periodic coefficients, known as Hill's equation. The general internal source response, expressed via repeated convolutions, uniformly converges provided that the entire periodic membrane is passive. The solution can be interpreted as an extended source response in an equivalent nonmyelinated axon (i.e., the response is governed by the classical cable equation). The extended source consists of the original source and a novel activation function, replacing the periodic membrane in the myelinated axon model. Hill's equation is explicitly integrated for the specific choice of piecewise constant membrane conductivity profile, thereby resulting in an explicit closed form expression for the transmembrane potential in terms of trigonometric functions. The Floquet's modes are recognized as the nerve fiber activation modes, which are conventionally associated with the nonlinear Hodgkin-Huxley formulation. They can also be incorporated in our linear model, provided that the periodic membrane point-wise passivity constraint is properly modified. Indeed, the modified condition, enforcing the periodic membrane passivity constraint on the average conductivity only leads, for the first time, to the inclusion of the nerve fiber activation modes in our novel model. The validity of the generalized transmission-line and cable equation models for a myelinated nerve fiber, is verified herein through a rigorous Green's function formulation and numerical simulations for transmembrane potential induced in three-dimensional myelinated cylindrical cell. It is shown that the dominant pole contribution of the exact modal expansion is the transmembrane potential solution of our generalized model.
Želudevičius, J; Danilevičius, R; Viskontas, K; Rusteika, N; Regelskis, K
2013-03-11
Results of numerical and experimental investigations of the simple fiber CPA system seeded by nearly bandwidth-limited pulses from the picosecond oscillator are presented. We utilized self-phase modulation in a stretcher fiber to broaden the pulse spectrum and dispersion of the fiber to stretch pulses in time. During amplification in the ytterbium-doped CCC fiber, gain-shaping and self-phase modulation effects were observed, which improved pulse compression with a bulk diffraction grating compressor. After compression with spectral filtering, pulses with the duration of 400 fs and energy as high as 50 µJ were achieved, and the output beam quality was nearly diffraction-limited.
NASA Astrophysics Data System (ADS)
García-Díaz, Y.; Quiñones-Bolaños, E.; Bustos-Blanco, C.; Vives-Pérez, L.; Bustillo-Lecompte, C.; Saba, M.
2017-12-01
The energy potential of the osmotic pressure gradient of cyanide waters is evaluated using two membrane modules, horizontal and vertical, operated under dead-end flow. The membrane was characterized using Scanning Electron Microscopy (SEM) with Energy Dispersive X-ray Spectroscopy (EDS). The membrane is mainly composed of carbon, oxygen, and sulphur. The properties of the membrane were unchanged and had no pore clogging after exposure to the cyanide waters. Potentials of 1.78×10-4 and 6.36×10-5Wm-2 were found for the horizontal and vertical modules, respectively, using the Van’t Hoff equation. Likewise, the permeability coefficient of the membrane was higher in the vertical module. Although the energy potential is low under the studied conditions the vertical configuration has a greater potential due to the action of gravity and the homogenous contact of the fluid with the membrane.
Membrane assisted solvent extraction for rare earth element recovery
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhave, Ramesh R.; Kim, Daejin; Peterson, Eric S.
Systems and methods for the recovery of rare earth elements are provided. The systems and methods generally include membrane assisted solvent extraction using permeable hollow fibers having an immobilized organic phase within the pores of the hollow fibers. The permeable hollow fibers are generally in contact with an acidic aqueous feed on one side thereof and a strip solution on another side thereof. The systems and methods generally include the simultaneous extraction and stripping of rare earth elements as a continuous recovery process that is well suited for post-consumer products, end-of-life products, and other recovery sources of rare earth elements.
Modulating bacterial and gut mucosal interactions with engineered biofilm matrix proteins.
Duraj-Thatte, Anna M; Praveschotinunt, Pichet; Nash, Trevor R; Ward, Frederick R; Joshi, Neel S
2018-02-22
Extracellular appendages play a significant role in mediating communication between bacteria and their host. Curli fibers are a class of bacterial fimbria that is highly amenable to engineering. We demonstrate the use of engineered curli fibers to rationally program interactions between bacteria and components of the mucosal epithelium. Commensal E. coli strains were engineered to produce recombinant curli fibers fused to the trefoil family of human cytokines. Biofilms formed from these strains bound more mucins than those producing wild-type curli fibers, and modulated mucin rheology as well. When treated with bacteria producing the curli-trefoil fusions mammalian cells behaved identically in terms of their migration behavior as when they were treated with the corresponding soluble trefoil factors. Overall, this demonstrates the potential utility of curli fibers as a scaffold for the display of bioactive domains and an untapped approach to rationally modulating host-microbe interactions using bacterial matrix proteins.
Bautista-Flores, Ana Nelly; De San Miguel, Eduardo Rodríguez; Gyves, Josefina de; Jönsson, Jan Åke
2011-08-18
Nickel (II) preconcentration and speciation analysis using a hollow fiber supported liquid membrane (HFSLM) device was studied. A counterflow of protons coupled to complexation with formate provided the driving force of the process, while Kelex 100 was employed as carrier. The influence of variables related to module configuration (acceptor pH and carrier concentration) and to the sample properties (donor pH) on the preconcentration factor, E, was simultaneously studied and optimized using a 3 factor Doehlert matrix response surface methodology. The effect of metal concentration was studied as well. Preconcentration factors as high as 4240 were observed depending on the values of the different variables. The effects of the presence of inorganic anions (NO2-, SO42-, Cl-, NO3-, CO32-, CN-) and dissolved organic matter (DOM) in the form of humic acids were additionally considered in order to carry out a speciation analysis study. Nickel preconcentration was observed to be independent of both effects, except when cyanide was present in the donor phase. A characterization of the transport regime was performed through the analysis of the dependence of E on the temperature. E increases with the increase in temperature according to the equation E(K) = -8617.3 + 30.5T with an activation energy of 56.7 kJ mol-1 suggesting a kinetic-controlled regime. Sample depletion ranged from 12 to 1.2% depending on the volume of the donor phase (100 to 1000 mL, respectively).
Concas, A; Imperatore, R; Santoru, F; Locci, A; Porcu, P; Cristino, L; Pierobon, P
2016-11-01
γ-aminobutyric acid (GABA) receptors, responding to GABA positive allosteric modulators, are present in the freshwater polyp Hydra vulgaris (Cnidaria, Hydrozoa), one of the most primitive metazoans to develop a nervous system. We examined the occurrence and distribution of GABA A receptor subunits in Hydra tissues by western blot and immunohistochemistry. Antibodies against different GABA A receptor subunits were used in Hydra membrane preparations. Unique protein bands, inhibited by the specific peptide, appeared at 35, 60, ∼50 and ∼52 kDa in membranes incubated with α3, β1, γ3 or δ antibodies, respectively. Immunohistochemical screening of whole mount Hydra preparations revealed diffuse immunoreactivity to α3, β1 or γ3 antibodies in tentacles, hypostome, and upper part of the gastric region; immunoreactive fibers were also present in the lower peduncle. By contrast, δ antibodies revealed a strong labeling in the lower gastric region and peduncle, as well as in tentacles. Double labeling showed colocalization of α3/β1, α3/γ3 and α3/δ immunoreactivity in granules or cells in tentacles and gastric region. In the peduncle, colocalization of both α3/β1 and α3/γ3 immunoreactivity was found in fibers running horizontally above the foot. These data indicate that specific GABA A receptor subunits are present and differentially distributed in Hydra body regions. Subunit colocalization suggests that Hydra GABA receptors are heterologous multimers, possibly sub-serving different physiological activities.
Zhang, Ru; Han, Shufen; Zhang, Zheng; Zhang, Weiguo; Yang, Jing; Wan, Zhongxiao; Qin, Liqiang
2018-05-16
Cereal fiber is associated with decreasing the risk of cardiovascular diseases. However, whether cereal fiber modulates inflammatory response and improves atherosclerosis remains unclear. This study evaluated the anti-atherosclerotic effect of cereal fibers from oat or wheat bran and explored the potential anti-inflammatory mechanisms. Male ApoE -/- mice were given a high-fat/cholesterol (HFC) diet or a HFC diet supplemented with 0.8% oat fiber or wheat bran fiber. After 18 weeks of the feeding period, serum lipids and inflammatory cytokines were measured. The relative protein levels of the nod-like receptor family pyrin domain containing 3 (NLRP3) inflammasome pathway and nuclear factor κB (NF-κB) were determined by the western blot method in aorta tissues. Pathologically, oat fiber and wheat fiber significantly reduced atherosclerotic plaques by 43.3 and 27.1%, respectively. Biochemically, cereal fiber markedly decreased the protein levels of myeloid differentiation factor 88 (MyD88) and toll-like receptor 4 (TLR4) in aortic tissues. The expression of NF-κB was similarly inhibited by both cereal fibers. In comparison to wheat bran fiber, oat fiber had greater effects in reducing the plague size and inhibiting TLR4/MyD88/NF-κB pathways. Such differences might come from modulation of the NLRP3 inflammasome pathway because the expressions of the cleavage of caspase-1 and interleukin (IL)-1β were inhibited only by oat fiber. The present study demonstrates that cereal fibers can attenuate inflammatory response and atherosclerosis in ApoE -/- mice. Such effects are pronounced with oat fiber and likely mediated by specific inhibition of oat fiber on the NLRP3 inflammasome pathway.
Hollow Fiber Space Suit Water Membrane Evaporator Development for Lunar Missions
NASA Technical Reports Server (NTRS)
Bue, Grant C.; Trevino, Luis A.; Hanford, Anthony J.; Mitchell, Keith
2009-01-01
The Space Suit Water Membrane Evaporator (SWME) is the baseline heat rejection technology selected for development for the Constellation lunar suit. The Hollow Fiber (HoFi) SWME is being considered for service in the Constellation Space Suit Element (CSSE) Portable Life Support Subsystem (PLSS) to provide cooling to the thermal loop through water evaporation to the vacuum of space. Previous work described the test methodology and planning to compare the test performance of three commercially available hollow fiber materials as alternatives to the sheet membrane prototype for SWME: 1) porous hydrophobic polypropylene, 2) porous hydrophobic polysulfone, and 3) ion exchange through nonporous hydrophilic modified Nafion. Contamination tests were performed to probe for sensitivities of the candidate SWME elements to organics and non-volative inorganics expected to be found in the target feedwater source, i.e., potable water provided by the vehicle. The resulting presence of precipitate in the coolant water could plug pores and tube channels and affect the SWME performance. From this prior work, a commercial porous hydrophobic hollow fiber was selected to satisfy both the sensitivity question and the need to provide 800 W of heat rejection. This paper describes the trade studies, the design methodology, and the hollow fiber test data used to design a full
FIBER-OPTIC BIOSENSOR FOR DIRECT DETERMINATION OF ORGANOPHOSPHATE NERVE AGENTS. (R823663)
A fiber-optic enzyme biosensor for the direct measurement of organophosphate nerve
agents was developed. The basic element of this biosensor is organophosphorus hydrolase
immobilized on a nylon membrane and attached to the common end of a bifurcated optical fiber
bundle....
Macro-channel cooled high power fiber coupled diode lasers exceeding 1.2kW of output power
NASA Astrophysics Data System (ADS)
Koenning, Tobias; Alegria, Kim; Wang, Zuolan; Segref, Armin; Stapleton, Dean; Faßbender, Wilhelm; Flament, Marco; Rotter, Karsten; Noeske, Axel; Biesenbach, Jens
2011-03-01
We report on a new series of fiber coupled diode laser modules exceeding 1.2kW of single wavelength optical power from a 400um / 0.2NA fiber. The units are constructed from passively cooled laser bars as opposed to other comparably powered, commercially available modules that use micro-channel heat-sinks. Micro-channel heat sinks require cooling water to meet demanding specifications and are therefore prone to failures due to contamination and increase the overall cost to operate and maintain the laser. Dilas' new series of high power fiber coupled diode lasers are designed to eliminate micro channel coolers and their associated failure mechanisms. Low-smile soldering processes were developed to maximize the brightness available from each diode laser bar. The diode laser brightness is optimally conserved using Dilas' recently developed propriety laser bar stacking geometry and optics. A total of 24 bars are coupled into a single fiber core using a polarization multiplexing scheme. The modular design permits further power scaling through wavelength multiplexing. Other customer critical features such as industrial grade fibers, pilot beams, fiber interlocks and power monitoring are standard features on these modules. The optical design and the beam parameter calculations will be presented to explain the inherit design trade offs. Results for single and dual wavelengths modules will be presented.
Does chlorination of seawater reverse osmosis membranes control biofouling?
Khan, Muhammad Tariq; Hong, Pei-Ying; Nada, Nabil; Croue, Jean Philippe
2015-07-01
Biofouling is the major problem of reverse osmosis (RO) membranes used for desalting seawater (SW). The use of chlorine is a conventional and common practice to control/prevent biofouling. Unlike polyamide RO membranes, cellulose triacetate (CTA) RO membranes display a high chlorine tolerance. Due to this characteristic, CTA membranes are used in most of the RO plants located in the Middle East region where the elevated seawater temperature and water quality promote the risk of membrane biofouling. However, there is no detailed study on the investigation/characterization of CTA-RO membrane fouling. In this investigation, the fouling profile of a full-scale SWRO desalination plant operating with not only continuous chlorination of raw seawater but also intermittent chlorination of CTA-RO membranes was studied. Detailed water quality and membrane fouling analyses were conducted. Profiles of microbiological, inorganic, and organic constituents of analysed fouling layers were extensively discussed. Our results clearly identified biofilm development on these membranes. The incapability of chlorination on preventing biofilm formation on SWRO membranes could be assigned to its failure in effectively reaching throughout the different regions of the permeators. This failure could have occurred due to three main factors: plugging of membrane fibers, chlorine consumption by organics accumulated on the front side fibers, or chlorine adaptation of certain bacterial populations. Copyright © 2015 Elsevier Ltd. All rights reserved.
Quantal and Nonquantal Transmission in Calyx-Bearing Fibers of the Turtle Posterior Crista
Holt, Joseph C.; Chatlani, Shilpa; Lysakowski, Anna; Goldberg, Jay M.
2010-01-01
Intracellular recordings were made from nerve fibers in the posterior ampullary nerve near the neuroepithelium. Calyx-bearing afferents were identified by their distinctive efferent-mediated responses. Such fibers receive inputs from both type I and type II hair cells. Type II inputs are made by synapses on the outer face of the calyx ending and on the boutons of dimorphic fibers. Quantal activity, consisting of brief mEPSPs, is reduced by lowering the external concentration of Ca2+ and blocked by the AMPA-receptor antagonist CNQX. Poisson statistics govern the timing of mEPSPs, which occur at high rates (250–2,500/s) in the absence of mechanical stimulation. Excitation produced by canal-duct indentation can increase mEPSP rates to nearly 5,000/s. As the rate increases, mEPSPs can change from a monophasic depolarization to a biphasic depolarizing– hyperpolarizing sequence, both of whose components are blocked by CNQX. Blockers of voltage-gated currents affect mEPSP size, which is decreased by TTX and is increased by linopirdine. mEPSP size decreases several fold after impalement. The size decrease, although it may be triggered by the depolarization occurring during impalement, persists even at hyperpolarized membrane potentials. Nonquantal transmission is indicated by shot-noise calculations and by the presence of voltage modulations after quantal activity is abolished pharmacologically. An ultrastructural study shows that inner-face inputs from type I hair cells outnumber outer-face inputs from type II hair cells by an almost 6:1 ratio. PMID:17596419
Detrecting and Locating Partial Discharges in Transformers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shourbaji, A.; Richards, R.; Kisner, R. A.
A collaborative research between the Oak Ridge National Laboratory (ORNL), the American Electric Power (AEP), the Tennessee Valley Authority (TVA), and the State of Ohio Energy Office (OEO) has been formed to conduct a feasibility study to detect and locate partial discharges (PDs) inside large transformers. The success of early detection of the PDs is necessary to avoid costly catastrophic failures that can occur if the process of PD is ignored. The detection method under this research is based on an innovative technology developed by ORNL researchers using optical methods to sense the acoustical energy produced by the PDs. ORNLmore » researchers conducted experimental studies to detect PD using an optical fiber as an acoustic sensor capable of detecting acoustical disturbances at any point along its length. This technical approach also has the potential to locate the point at which the PD was sensed within the transformer. Several optical approaches were experimentally investigated, including interferometric detection of acoustical disturbances along the sensing fiber, light detection and ranging (LIDAR) techniques using frequency modulation continuous wave (FMCW), frequency modulated (FM) laser with a multimode fiber, FM laser with a single mode fiber, and amplitude modulated (AM) laser with a multimode fiber. The implementation of the optical fiber-based acoustic measurement technique would include installing a fiber inside a transformer allowing real-time detection of PDs and determining their locations. The fibers are nonconductive and very small (core plus cladding are diameters of 125 μm for single-mode fibers and 230 μm for multimode fibers). The research identified the capabilities and limitations of using optical technology to detect and locate sources of acoustical disturbances such as in PDs in large transformers. Amplitude modulation techniques showed the most promising results and deserve further research to better quantify the technique’s sensitivity and its ability to characterize a PD event. Other sensing techniques have been also identified, such as the wavelength shifting fiber optics and custom fabricated fibers with special coatings.« less
Chen, Dengyue; Sirkar, Kamalesh K; Jin, Chi; Singh, Dhananjay; Pfeffer, Robert
2017-01-01
Membrane technologies are of increasing importance in a variety of separation and purification applications involving liquid phases and gaseous mixtures. Although the most widely used applications at this time are in water treatment including desalination, there are many applications in chemical, food, healthcare, paper and petrochemical industries. This brief review is concerned with existing and emerging applications of various membrane technologies in the pharmaceutical and biopharmaceutical industry. The goal of this review article is to identify important membrane processes and techniques which are being used or proposed to be used in the pharmaceutical and biopharmaceutical operations. How novel membrane processes can be useful for delivery of crystalline/particulate drugs is also of interest. Membrane separation technologies are extensively used in downstream processes for bio-pharmaceutical separation and purification operations via microfiltration, ultrafiltration and diafiltration. Also the new technique of membrane chromatography allows efficient purification of monoclonal antibodies. Membrane filtration techniques of reverse osmosis and nanofiltration are being combined with bioreactors and advanced oxidation processes to treat wastewaters from pharmaceutical plants. Nanofiltration with organic solvent-stable membranes can implement solvent exchange and catalyst recovery during organic solvent-based drug synthesis of pharmaceutical compounds/intermediates. Membranes in the form of hollow fibers can be conveniently used to implement crystallization of pharmaceutical compounds. The novel crystallization methods of solid hollow fiber cooling crystallizer (SHFCC) and porous hollow fiber anti-solvent crystallization (PHFAC) are being developed to provide efficient methods for continuous production of polymer-coated drug crystals in the area of drug delivery. This brief review provides a general introduction to various applications of membrane technologies in the pharmaceutical/biopharmaceutical industry with special emphasis on novel membrane techniques for pharmaceutical applications. The method of coating a drug particle with a polymer using the SHFCC method is stable and ready for scale-up for operation over an extended period. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shamsuddin Ilias
Fouling problems are perhaps the single most important reason for relatively slow acceptance of ultrafiltration in many areas of chemical and biological processing. To overcome the losses in permeate flux associated with concentration polarization and fouling in cross flow membrane filtration, we investigated the concept of flow reversal as a method to enhance membrane flux in ultrafiltration. Conceptually, flow reversal prevents the formation of stable hydrodynamic and concentration boundary layers at or near the membrane surface. Further more, periodic reversal of the flow direction of the feed stream at the membrane surface results in prevention and mitigation of membrane fouling.more » Consequently, these advantages are expected to enhance membrane flux significantly. A crossflow membrane filtration unit was designed and built to test the concept of periodic flow reversal for flux enhancement. The essential elements of the system include a crossflow hollow fiber membrane module integrated with a two-way valve to direct the feed flow directions. The two-way valve is controlled by a controller-timer for periodic reversal of flow of feed stream. Another important feature of the system is that with changing feed flow direction, the permeate flow direction is also changed to maintain countercurrent feed and permeate flows for enhanced mass transfer driving force (concentration difference). In this report, we report our application of Flow Reversal technique in clarification of apple juice containing pectin. The presence of pectin in apple juice makes the clarification process difficult and is believed to cause membrane fouling. Of all compounds found in apple juice, pectin is most often identified as the major hindrance to filtration performance. Based on our ultrafiltration experiments with apple juice, we conclude that under flow reversal conditions, the permeate flux is significantly enhanced when compared with the conventional unidirectional flow. Thus, flow reversal technology seems an attractive alternative to mitigate fouling problem in crossflow membrane filtration.« less
Sun, Xinjie; Wei, Yingqin; Hou, Baojuan; Zhou, Guowei
2017-03-01
A new nanocomposite membrane was used to clean up impurities from complex samples and the obvious synergy was obtained in this paper. The nanocomposite membrane was prepared by dispersing TiO2 nanoparticles in chloroform and filled in the pores and lumen of polyether sulfone membrane fiber. The novel microextraction method showed the ideal selective extraction effect for alkaloids in the formulae composed of Rhizoma coptidis and the excellent clean-up efficiency compared with the single membrane method. The optimum extraction conditions were as follows: chloroform as accepted phase; the number of nanocomposite membrane fiber bars, 7; extraction time, 30 min; pH of the sample solution, 10.55; desorption solvent, methanol. The limit of detection for the described alkaloids was estimated at 0.122 μg mL-1. The recovery of the four alkaloids in complex samples ranged from 93.24% to 97.94% with relative standard deviation of <4.99 (n = 5). The validated method had been successfully applied to study the transfer rate of alkaloids in the producing process of Qihuang capsule and the ideal transfer rate of alkaloids was obtained in this paper. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Liners for ion transport membrane systems
Carolan, Michael Francis; Miller, Christopher Francis
2010-08-10
Ion transport membrane system comprising (a) a pressure vessel comprising an interior, an exterior, an inlet, an inlet conduit, an outlet, and an outlet conduit; (b) a plurality of planar ion transport membrane modules disposed in the interior of the pressure vessel and arranged in series, each membrane module comprising mixed metal oxide ceramic material and having an interior region and an exterior region, wherein the inlet and the outlet of the pressure vessel are in flow communication with exterior regions of the membrane modules; (c) a gas manifold having an interior surface wherein the gas manifold is in flow communication with the interior region of each of the planar ion transport membrane modules and with the exterior of the pressure vessel; and (d) a liner disposed within any of the inlet conduit, the outlet conduit, and the interior surface of the gas manifold.
Giannessi, Elisabetta; Coli, Alessandra; Stornelli, Maria Rita; Miragliotta, Vincenzo; Pirone, Andrea; Lenzi, Carla; Burchielli, Silvia; Vozzi, Giovanni; De Maria, Carmelo; Giorgetti, Margherita
2014-11-01
The aim of this study was to investigate the ability of suturable platelet-rich plasma (PRP) membrane to promote peripheral nerve regeneration after neurotmesis and neurorraphy. A total of 36 rats were used: 32 animals underwent surgery and were split in two groups. An interim sacrifice was performed at 6 weeks postsurgery and final sacrifice at 12 weeks; four animals did not sustain nerve injury and served as control. Clinical, electromyographic (EMG), gross, and histological changes were assessed. The EMG signal was evaluated for its amplitude and frequency spectrum. Number of regenerating fibers, their diameter, and myelin thickness were histologically analyzed. Both EMG parameters showed a significant (p < 0.05) effect of treatment at 6 and 12 weeks postsurgery. At 6 weeks, the fiber density was statistically different between treated and untreated animals with a higher observed density in treated nerves. No difference in fiber density was observed at 12 weeks postsurgery. The distribution of fiber diameters showed an effect at 12 weeks when only the sections of the nerves sutured with PRP showed fibers with diameters greater than 6 µm. Our data show that the application of a PRP fibrin membrane around the neurorraphy improves the nerve regeneration process in a rat sciatic nerve model. The use of PRP as a suturable membrane could perform an action not only as a source of bioactive proteins but also as a nerve guide to hold the scar reaction and thus improve axonal regeneration. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.
Moein, Mohammad Mahdi; Javanbakht, Mehran; Karimi, Mohammad; Akbari-Adergani, Behrouz; Abdel-Rehim, Mohamed
2015-07-15
In the present study, the modification of a polysulfone hollow fiber membrane with in situ molecularly imprinted sol-gel process (as a novel and one-step method) was prepared and investigated. 3-(propylmethacrylate)trimethoxysilane (3PMTMOS) as an inorganic precursor was used for preparation of molecularly imprinted sol-gel. The modified molecularly imprinted sol-gel hollow fiber membrane (MSHM) was used for the liquid-phase microextraction (LPME) of hippuric acid (HA) in human plasma and urine samples. MSHM as a selective, robust, and durable tool was used for at least 50 extractions without significant decrease in the extraction efficiency. The non-molecularly imprinted sol-gel hollow fiber membrane (NSHM) as blank hollow fiber membrane was prepared by the same process, only without HA. To achieve the best condition, influential parameters on the extraction efficiency were thoroughly investigated. The capability of this robust, green, and simple method for extraction of HA was successfully accomplished with LC/MS/MS. The limits of detection (LOD) and quantification (LOQ) in human plasma and urine samples were 0.3 and 1.0nmolL(-1), respectively. The standard calibration curves were obtained within the concentration range 1-2000nmolL(-1) for HA in human plasma and urine. The coefficients of determination (r(2)) were ≥0.998. The obtained data exhibited recoveries were higher than 89% for the extraction of HA in human plasma and urine samples. Copyright © 2015 Elsevier B.V. All rights reserved.
DFB laser - External modulator fiber optic delay line for radar applications
NASA Astrophysics Data System (ADS)
Newberg, I. L.; Gee, C. M.; Thurmond, G. D.; Yen, H. W.
1989-09-01
A new application of a long fiber-optic delay line as a radar repeater in a radar test set is described. The experimental 31.6-kilometer fiber-optic link includes an external modulator operating with a distributed-feedback laser and low-loss single-mode fiber matched to the laser wavelength to obtain low dispersion for achieving large bandwidth-length performance. The successful tests, in which pulse compression peak sidelobe measurements are used to confirm the link RF phase linearity and SNR performance, show that fiber-optic links can meet the stringent phase and noise requirements of modern radars at high microwave frequencies.
Han, Gang; de Wit, Jos S; Chung, Tai-Shung
2015-09-15
By using a novel hydrophilic cellulose acetate butyrate (CAB) as the membrane material for the hollow fiber substrate and modifying its outer surface by polydopamine (PDA) coating and inner surface by interfacial polymerization, we have demonstrated that the thin-film composite (TFC) membranes can be effectively used for sustainable water reclamation from emulsified oil/water streams via forward osmosis (FO) under the pressure retarded osmosis (PRO) mode. The newly developed TFC-FO hollow fiber membrane shows characteristics of high water flux, outstanding salt and oil rejection, and low fouling propensity. Under the PRO mode, the newly developed TFC-FO membrane exhibits a water flux of 37.1 L m(-2) h(-1) with an oil rejection of 99.9% using a 2000 ppm soybean oil/water emulsion as the feed and 1 M NaCl as the draw solution. Remarkable anti-fouling behaviors have also been observed. Under the PRO mode, the water flux decline is only 10% of the initial value even after a 12 h test for oil/water separation. The water flux of the fouled membrane can be effectively restored to 97% of the original value by water rinses on the fiber outer surface without using any chemicals. Furthermore, the flux declines are only 25% and 52% when the water recovery of a 2000 ppm soybean oil/water emulsion and a 2000 ppm petroleum oil/water emulsion containing 0.04 M NaCl reaches 82%, respectively. This study may not only provide insightful guidelines for the fabrication of effective TFC-FO membranes with high performance and low fouling behaviors for oily wastewater under the PRO mode but also add an alternative perspective to the design of new materials for water purification purposes. Copyright © 2015 Elsevier Ltd. All rights reserved.
Calcium accelerates SNARE-mediated lipid mixing through modulating α-synuclein membrane interaction.
Zhang, Zeting; Jiang, Xin; Xu, Danrui; Zheng, Wenwen; Liu, Maili; Li, Conggang
2018-04-04
α-Synuclein is involved in Parkinson's disease, and its interaction with cell membrane is vital to its pathological and physiological functions. We have shown that Ca 2+ can regulate α-synuclein membrane interaction, but the physiological role of Ca 2+ in modulating α-synuclein membrane interaction is still unexplored. Based on the previous findings that α-synuclein inhibits membrane fusion and its inhibitory effect is highly related to its membrane binding, here we employed solution state Nuclear Magnetic Resonance (NMR) spectroscopy and the ensemble fluorescence fusion assay to show that Ca 2+ can modulate the inhibitory effect of α-synuclein on SNARE-mediated membrane fusion through disrupting α-synuclein membrane interaction, resulting in acceleration of SNARE-mediated membrane fusion. These results suggest a modulatory effect of Ca 2+ on membrane mediated normal function of α-synuclein, which of importance for the study of the Parkinson's disease. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
2004-01-01
We have successfully fabricate optical fiber with a thin layer of LiNbO3 at the boundary of the glass core and dear glass cladding. The construction of this fiber is based on our successful Semiconductor Cylinder Fibers (SCF). A schematic representation of a LiNbO3 Cylinder Fiber is shown. These fibers can be used as light modulators, sonar detectors and in other applications. The core diameter of the fiber is sufficiently small compared to the light wavelength and the indices of refraction of the core and cladding glasses are sufficiently close in value so that there is sufficient light at the core cladding boundary to interact with the LiNbO3 layer. This fiber functions best when just a single light mode propagates through the fiber. The idea for a LiNbO3 Cylinder Fiber came from Dr. Tracee Jamison of NASA. The optical properties of LiNbO3 can be changed with strain or the application of an electric field. Thus these fibers can be used as acoustic sensors as for example in a sonar. They can also be used as electric field operated light modulators. However, for this application the fibers would be made with a cross section in the form of a 'D'. The core with its surrounding LiNbO, layer would be close to the flat portion of the 'D' shaped fiber. Two metal contacts would be deposited on the flat portion of the fiber on either side of the core. A voltage applied across these contacts will result in an electric field in the core region that can be used for modulating the optical properties of the LiNbO, layer. To our knowledge this is the first ever LiNbO, Cylinder Fiber made.
NASA Technical Reports Server (NTRS)
Kornreich, Philip
2004-01-01
We have successfully fabricate optical fiber with a thin layer of LiNbO3 at the boundary of the glass core and clear glass cladding. The construction of this fiber is based on our successful Semiconductor Cylinder Fibers (SCF). A schematic representation of a LiN bo, Cylinder Fiber. These fibers can be used as light modulators, sonar detectors and in other applications. The core diameter of the fiber is sufficiently small compared to the light wavelength and the indices of refraction of the core and cladding glasses are sufficiently close in value so that there is sufficient light at the core cladding boundary to interact with the LiNbO3 layer. This fiber functions best when just a single light mode propagates through the fiber. The idea for a LiNbO3 Cylinder Fiber came from Dr. Tracee Jamison of NASA. The optical properties of LiNbO3 can be changed with strain or the application of an electric field. Thus these fibers can be used as acoustic sensors as for example in a sonar. They can also be used as electric field operated light modulators. However, for this application the fibers would be made with a cross section in the form of a "D". The core with its surrounding LiNbO, layer would be close to the flat portion of the "D" shaped fiber. Two metal contacts would be deposited on the flat portion of the fiber on either side of the core. A voltage applied across these contacts will result in an electric field in the core region that can be used for modulating the optical properties of the LiNbO3 layer. To our knowledge this is the first ever LiNbO3 Cylinder Fiber made.
Interface module for transverse energy input to dye laser modules
English, Jr., Ronald E.; Johnson, Steve A.
1994-01-01
An interface module (10) for transverse energy input to dye laser modules is provided particularly for the purpose of delivering enhancing transverse energy beams (36) in the form of illumination bar (54) to the lasing zone (18) of a dye laser device, in particular to a dye laser amplifier (12). The preferred interface module (10) includes an optical fiber array (30) having a plurality of optical fibers (38) arrayed in a co-planar fashion with their distal ends (44) receiving coherent laser energy from an enhancing laser source (46), and their proximal ends (4) delivered into a relay structure (3). The proximal ends (42) of the optical fibers (38) are arrayed so as to be coplanar and to be aimed generally at a common point. The transverse energy beam array (36) delivered from the optical fiber array (30) is acted upon by an optical element array (34) to produce an illumination bar (54) which has a cross section in the form of a elongated rectangle at the position of the lasing window (18). The illumination bar (54) is selected to have substantially uniform intensity throughout.
Integrated Photonic Orbital Angular Momentum Multiplexing and Demultiplexing on Chip
2014-10-31
OAM free space coherent communication link testbed. ECL: external cavity laser . EDFA: erbium-doped fiber amplifier. PC: polarization controller. ATT...wave (cw) laser centered at 1540 nm, followed by an erbium-doped fiber amplifier (EDFA), an I/Q modulator, and another EDFA. The I/Q modulator was...communication link testbed. ECL: external cavity laser . EDFA: erbium-doped fiber amplifier. PC: polarization controller. ATT: attenuator. BPF: bandpass filter
Four-port gas separation membrane module assembly
Wynn, Nicholas P.; Fulton, Donald A.; Lokhandwala, Kaaeid A.; Kaschemekat, Jurgen
2010-07-20
A gas-separation membrane assembly, and a gas-separation process using the assembly. The assembly incorporates multiple gas-separation membranes in an array within a single vessel or housing, and is equipped with two permeate ports, enabling permeate gas to be withdrawn from both ends of the membrane module permeate pipes.
CFD simulation of copper(II) extraction with TFA in non-dispersive hollow fiber membrane contactors.
Muhammad, Amir; Younas, Mohammad; Rezakazemi, Mashallah
2018-04-01
This study presents computational fluid dynamics (CFD) simulation of dispersion-free liquid-liquid extraction of copper(II) with trifluoroacetylacetone (TFA) in hollow fiber membrane contactor (HFMC). Mass and momentum balance Navier-Stokes equations were coupled to address the transport of copper(II) solute across membrane contactor. Model equations were simulated using COMSOL Multiphysics™. The simulation was run to study the detailed concentration distribution of copper(II) and to investigate the effects of various parameters like membrane characteristics, partition coefficient, and flow configuration on extraction efficiency. Once-through extraction was found to be increased from 10 to 100% when partition coefficient was raised from 1 to 10. Similarly, the extraction efficiency was almost doubled when porosity to tortuosity ratio of membrane was increased from 0.05 to 0.81. Furthermore, the study revealed that CFD can be used as an effective optimization tool for the development of economical membrane-based dispersion-free extraction processes.
Energy-optimal electrical excitation of nerve fibers.
Jezernik, Saso; Morari, Manfred
2005-04-01
We derive, based on an analytical nerve membrane model and optimal control theory of dynamical systems, an energy-optimal stimulation current waveform for electrical excitation of nerve fibers. Optimal stimulation waveforms for nonleaky and leaky membranes are calculated. The case with a leaky membrane is a realistic case. Finally, we compare the waveforms and energies necessary for excitation of a leaky membrane in the case where the stimulation waveform is a square-wave current pulse, and in the case of energy-optimal stimulation. The optimal stimulation waveform is an exponentially rising waveform and necessitates considerably less energy to excite the nerve than a square-wave pulse (especially true for larger pulse durations). The described theoretical results can lead to drastically increased battery lifetime and/or decreased energy transmission requirements for implanted biomedical systems.
Zhang, Qinglei; Lu, Xiaolong; Liu, Juanjuan; Zhao, Lihua
2015-01-01
In this study, the separation properties of Polyvinylidene fluoride (PVDF) hollow fiber hemodialysis membranes were improved by optimizing membrane morphology and structure. The results showed that the PVDF membrane had better mechanical and separation properties than Fresenius Polysulfone High-Flux (F60S) membrane. The PVDF membrane tensile stress at break, tensile elongation and bursting pressure were 11.3 MPa, 395% and 0.625 MPa, respectively. Ultrafiltration (UF) flux of pure water reached 108.2 L∙h−1∙m−2 and rejection of Albumin from bovine serum was 82.3%. The PVDF dialyzers were prepared by centrifugal casting. The influences of membrane area and simulate fluid flow rate on dialysis performance were investigated. The results showed that the clearance rate of urea and Lysozyme (LZM) were improved with increasing membrane area and fluid flow rate while the rejection of albumin from bovine serum (BSA) had little influence. The high-flux PVDF dialyzer UF coefficient reached 62.6 mL/h/mmHg. The PVDF dialyzer with membrane area 0.69 m2 has the highest clearance rate to LZM and urea. The clearance rate of LZM was 66.8% and urea was 87.7%. PMID:25807890
Aoyagi, Satoka; Abe, Kiyoshi; Yamagishi, Takayuki; Iwai, Hideo; Yamaguchi, Satoru; Sunohara, Takashi
2017-11-01
Blood adsorption onto the inside surface of hollow fiber dialysis membranes was investigated by means of time-of-flight secondary ion mass spectrometry (TOF-SIMS) and near-field infrared microscopy (NFIR) in order to evaluate the biocompatibility and permeability of dialysis membranes. TOF-SIMS is useful for the imaging of particular molecules with a high spatial resolution of approximately 100 nm. In contrast, infrared spectra provide quantitative information and NFIR enables analysis with a high spatial resolution of less than 1 μm, which is close to the resolution of TOF-SIMS. A comparison was made of one of the most widely used dialysis membranes made of polysulfone (PSf), that has an asymmetric and inhomogeneous pore structure, and a newly developed asymmetric cellulose triacetate (ATA) membrane that also has an asymmetric pore structure, even though the conventional cellulose triacetate membrane has a symmetric and homogeneous pore structure. As a result, it was demonstrated that blood adsorption on the inside surface of the ATA membrane is more reduced than that on the PSf membrane. Graphical abstract Analysis of blood adsorption on inside surface of hollow fiber membrane.
Cations as Switches of Amyloid-Mediated Membrane Disruption Mechanisms: Calcium and IAPP
Sciacca, Michele F.M.; Milardi, Danilo; Messina, Grazia M.L.; Marletta, Giovanni; Brender, Jeffrey R.; Ramamoorthy, Ayyalusamy; La Rosa, Carmelo
2013-01-01
Disruption of the integrity of the plasma membrane by amyloidogenic proteins is linked to the pathogenesis of a number of common age-related diseases. Although accumulating evidence suggests that adverse environmental stressors such as unbalanced levels of metal ions may trigger amyloid-mediated membrane damage, many features of the molecular mechanisms underlying these events are unknown. Using human islet amyloid polypeptide (hIAPP, aka amylin), an amyloidogenic peptide associated with β-cell death in type 2 diabetes, we demonstrate that the presence of Ca2+ ions inhibits membrane damage occurring immediately after the interaction of freshly dissolved hIAPP with the membrane, but significantly enhances fiber-dependent membrane disruption. In particular, dye leakage, quartz crystal microbalance, atomic force microscopy, and NMR experiments show that Ca2+ ions promote a shallow membrane insertion of hIAPP, which leads to the removal of lipids from the bilayer through a detergent-like mechanism triggered by fiber growth. Because both types of membrane-damage mechanisms are common to amyloid toxicity by most amyloidogenic proteins, it is likely that unregulated ion homeostasis, amyloid aggregation, and membrane disruption are all parts of a self-perpetuating cycle that fuels amyloid cytotoxicity. PMID:23332070
Ultrastructure of Deoxyribonucleic Acid-Membrane Associations in Escherichia coli
Altenburg, B. C.; Suit, Joan C.; Brinkley, B. R.
1970-01-01
Areas of contact between deoxyribonucleic acid (DNA) and intracytoplasmic membrane are frequently seen in the “extra” membrane-forming strain Escherichia coli 0111a1. By examination of serial sections, it has been estimated that these DNA-membrane associations occur in at least 60% of the extra membrane-containing cells. Most of the DNA masses contained only one contact area. Several cells in which the DNA had been stretched revealed individual fibers connecting to the membrane, suggesting a firm attachment of DNA to membrane. The areas of membrane associated with DNA fibers were usually between 100 and 500 nm in diameter, although some smaller areas were seen. Electron microscopic autoradiography of cells in which the replication forks were labeled showed grains over 24% of the profiles containing a contact area, whereas there were grains over only 16% of the profiles without a contact area. Data from autoradiographs of cells in which the label was “chased” away from the replication fork showed the reverse labeling pattern. These data indicate that the areas of contact between DNA and intracytoplasmic membranes seen in electron micrographs contain the DNA replication forks. Images PMID:4919755
Pervaporation process and assembly
Wynn, Nicholas P.; Huang, Yu; Aldajani, Tiem; Fulton, Donald A.
2010-07-20
The invention is a pervaporation process and pervaporation equipment, using a series of membrane modules, and including inter-module reheating of the feed solution under treatment. The inter-module heating is achieved within the tube or vessel in which the modules are housed, thereby avoiding the need to repeatedly extract the feed solution from the membrane module train.
Wynn, Nicholas P [Redwood City, CA; Huang, Yu [Palo Alto, CA; Aldajani, Tiem [San Jose, CA; Fulton, Donald A [Fairfield, CA
2012-02-28
The invention is a pervaporation process and pervaporation equipment, using a series of membrane modules, and including inter-module reheating of the feed solution under treatment. The inter-module heating is achieved within the tube or vessel in which the modules are housed, thereby avoiding the need to repeatedly extract the feed solution from the membrane module train.
Fiber-ring laser-based intracavity photoacoustic spectroscopy for trace gas sensing.
Wang, Qiang; Wang, Zhen; Chang, Jun; Ren, Wei
2017-06-01
We demonstrated a novel trace gas sensing method based on fiber-ring laser intracavity photoacoustic spectroscopy. This spectroscopic technique is a merging of photoacoustic spectroscopy (PAS) with a fiber-ring cavity for sensitive and all-fiber gas detection. A transmission-type PAS gas cell (resonant frequency f0=2.68 kHz) was placed inside the fiber-ring laser to fully utilize the intracavity laser power. The PAS signal was excited by modulating the laser wavelength at f0/2 using a custom-made fiber Bragg grating-based modulator. We used this spectroscopic technique to detect acetylene (C2H2) at 1531.6 nm as a proof of principle. With a low Q-factor (4.9) of the PAS cell, our sensor achieved a good linear response (R2=0.996) to C2H2 concentration and a minimum detection limit of 390 ppbv at 2-s response time.
In-vitro perforation of the round window membrane via direct 3-D printed microneedles.
Aksit, Aykut; Arteaga, Daniel N; Arriaga, Miguel; Wang, Xun; Watanabe, Hirobumi; Kasza, Karen E; Lalwani, Anil K; Kysar, Jeffrey W
2018-06-08
The cochlea, or inner ear, is a space fully enclosed within the temporal bone of the skull, except for two membrane-covered portals connecting it to the middle ear space. One of these portals is the round window, which is covered by the Round Window Membrane (RWM). A longstanding clinical goal is to reliably and precisely deliver therapeutics into the cochlea to treat a plethora of auditory and vestibular disorders. Standard of care for several difficult-to-treat diseases calls for injection of a therapeutic substance through the tympanic membrane into the middle ear space, after which a portion of the substance diffuses across the RWM into the cochlea. The efficacy of this technique is limited by an inconsistent rate of molecular transport across the RWM. A solution to this problem involves the introduction of one or more microscopic perforations through the RWM to enhance the rate and reliability of diffusive transport. This paper reports the use of direct 3D printing via Two-Photon Polymerization (2PP) lithography to fabricate ultra-sharp polymer microneedles specifically designed to perforate the RWM. The microneedle has tip radius of 500 nm and shank radius of 50 μ m, and perforates the guinea pig RWM with a mean force of 1.19 mN. The resulting perforations performed in vitro are lens-shaped with major axis equal to the microneedle shank diameter and minor axis about 25% of the major axis, with mean area 1670 μ m 2 . The major axis is aligned with the direction of the connective fibers within the RWM. The fibers were separated along their axes without ripping or tearing of the RWM suggesting the main failure mechanism to be fiber-to-fiber decohesion. The small perforation area along with fiber-to-fiber decohesion are promising indicators that the perforations would heal readily following in vivo experiments. These results establish a foundation for the use of Two-Photon Polymerization lithography as a means to fabricate microneedles to perforate the RWM and other similar membranes.
Hollow Fiber Spacesuit Water Membrane Evaporator Development and Testing for Advanced Spacesuits
NASA Technical Reports Server (NTRS)
Bue, Grant C.; Trevino, Luis A.; Tsioulos, Gus; Settles, Joseph; Colunga, Aaron; Vogel, Matthew; Vonau, Walt
2010-01-01
The spacesuit water membrane evaporator (SWME) is being developed to perform the thermal control function for advanced spacesuits to take advantage of recent advances in micropore membrane technology in providing a robust heat-rejection device that is potentially less sensitive to contamination than is the sublimator. Principles of a sheet membrane SWME design were demonstrated using a prototypic test article that was tested in a vacuum chamber at JSC in July 1999. The Membrana Celgard X50-215 microporous hollow fiber (HoFi) membrane was selected after recent contamination tests as the most suitable candidate among commercial alternatives for HoFi SWME prototype development. A design that grouped the fiber layers into stacks, which were separated by small spaces and packaged into a cylindrical shape, was developed into a full-scale prototype consisting 14,300 tube bundled into 30 stacks, each of which are formed into a chevron shape and separated by spacers and organized into three sectors of ten nested stacks. Vacuum chamber testing has been performed characterize heat rejection as a function of inlet water temperature and water vapor backpressure and to show contamination resistance to the constituents expected to be found in potable water produced by the distillation processes. Other tests showed the tolerance to freezing and suitability to reject heat in a Mars pressure environment.
Müller, Mattea; Canfora, Emanuel E.; Blaak, Ellen E.
2018-01-01
Gastrointestinal transit time may be an important determinant of glucose homeostasis and metabolic health through effects on nutrient absorption and microbial composition, among other mechanisms. Modulation of gastrointestinal transit may be one of the mechanisms underlying the beneficial health effects of dietary fibers. These effects include improved glucose homeostasis and a reduced risk of developing metabolic diseases such as obesity and type 2 diabetes mellitus. In this review, we first discuss the regulation of gastric emptying rate, small intestinal transit and colonic transit as well as their relation to glucose homeostasis and metabolic health. Subsequently, we briefly address the reported health effects of different dietary fibers and discuss to what extent the fiber-induced health benefits may be mediated through modulation of gastrointestinal transit. PMID:29495569
Design of 150W, 105-μm, 0.22NA, fiber coupled laser diode module by ZEMAX
NASA Astrophysics Data System (ADS)
Qi, Yunfei; Zhao, Pengfei; Chen, Qing; Wu, Yulong; Chen, Yongqi; Zou, Yonggang; Lin, Xuechun
2016-10-01
We represent a design of a high brightness, fiber coupled diode laser module based on 16 single emitters at 915nm. The module can produce more than 150 Watts output power from a standard fiber with core diameter of 105μm and numerical aperture (NA) of 0.22. To achieve a high power and high brightness laser beam, the spatial beam combination and polarization beam combination are used to combine output of 16 single emitters into a single beam, and then an aspheric lens is used to couple the combined beam into an optical fiber. The simulation show that the total coupling efficiency is more than 95% and the highest brightness is estimated to be 11MW/ (cm2*sr).
Devlaminck, Dries J G; Rahman, Md Mahbubor; Dash, Mamoni; Samal, Sangram Keshari; Watté, Jan; Van Vlierberghe, Sandra; Dubruel, Peter
2018-06-15
The complete removal of remaining polymer debris after stripping of optical fiber cables is essential for high precision connection between two fibers. It can be anticipated that electrospun porous membranes as cleaning wipes are able to trap and retain polymer debris within their pores. Impregnation of an oil-in-water emulsion as cleaning agent lowers the interfacial tension between debris and the optical fiber thereby enabling the straightforward removal of polymer debris from the optical fiber. Electrospun membranes of poly(ethylene terephthalate) (PET) and cellulose acetate (CA) were obtained with fiber diameters of 0.430 μm and 2 μm respectively. The oil-in-water emulsion was formulated with 10 wt% medium chain triglyceride (MCT) and 10 wt% Tween 80 surfactant in an aqueous phosphate buffer solution. In a scoring range from 0 to 5 for which the score 0 indicated superior cleaning and the score 5 referred to the least efficient cleaning, the electrospun fiber mats (without emulsion) scored within the range of 2-4 while emulsion impregnated electrospun fiber mats revealed the best score of 0. A drastic improvement was thus clearly evident from the obtained results when the cleaning emulsion was applied. The materials developed herein thus represent a new class of soft cleaning agents for optical fibers. Copyright © 2018 Elsevier Inc. All rights reserved.
Apparatus and method for increasing the bandwidth of a laser beam
Wilcox, Russell B.
1992-01-01
A method and apparatus using sinusoidal cross-phase modulation, provides a laser pulse having a very broad bandwidth while substantially retaining the input laser's temporal shape. The modulator may be used in a master oscillator system for a laser having a master oscillator-power amplifier (MOPA) configration. The modulator utilizes a first laser providing an output wavelength .lambda. and a second laser providing an output wavelength shifted by a small amount to .lambda.+.DELTA..lambda.. Each beam has a single, linear polarization. Each beam is coupled into a length of polarization-preserving optical fiber. The first laser beam is coupled into the optical fiber with the beam's polarization aligned with the fiber's main axis, and the second beam is coupled into the fiber with its polarization rotated from the main axis by a predetermined angle. Within the fiber, the main axis' polarization defines an interference beam and the orthogonal axis' polarization defines a signal beam. In the interference beam, the first laser beam and the parallel polarized vector component of the other beam interfere to create areas of high and low intensity, which modulates the signal beam by cross phase modulation. Upon exit from the optical fiber, the beams are coupled out and the modulated signal beam is separated out by a polarization selector. The signal beam can be applied to coherence reducing systems to provide an output that is temporally and spatially incoherent. The U.S. Government has rights in this invention pursuant to Contract No. W7405-ENG-48 between the U.S. Department of Energy and the University of California for the operation of Lawrence Livermore National Laboratory.
Parizek, Martin; Douglas, Timothy EL; Novotna, Katarina; Kromka, Alexander; Brady, Mariea A; Renzing, Andrea; Voss, Eske; Jarosova, Marketa; Palatinus, Lukas; Tesarek, Pavel; Ryparova, Pavla; Lisa, Věra; dos Santos, Ana M; Bacakova, Lucie
2012-01-01
Background Nanofibrous scaffolds loaded with bioactive nanoparticles are promising materials for bone tissue engineering. Methods In this study, composite nanofibrous membranes containing a copolymer of L-lactide and glycolide (PLGA) and diamond nanoparticles were fabricated by an electrospinning technique. PLGA was dissolved in a mixture of methylene chloride and dimethyl formamide (2:3) at a concentration of 2.3 wt%, and nanodiamond (ND) powder was added at a concentration of 0.7 wt% (about 23 wt% in dry PLGA). Results In the composite scaffolds, the ND particles were either arranged like beads in the central part of the fibers or formed clusters protruding from the fibers. In the PLGA-ND membranes, the fibers were thicker (diameter 270 ± 9 nm) than in pure PLGA meshes (diameter 218 ± 4 nm), but the areas of pores among these fibers were smaller than in pure PLGA samples (0.46 ± 0.02 μm2 versus 1.28 ± 0.09 μm2 in pure PLGA samples). The PLGA-ND membranes showed higher mechanical resistance, as demonstrated by rupture tests of load and deflection of rupture probe at failure. Both types of membranes enabled the attachment, spreading, and subsequent proliferation of human osteoblast-like MG-63 cells to a similar extent, although these values were usually lower than on polystyrene dishes. Nevertheless, the cells on both types of membranes were polygonal or spindle-like in shape, and were distributed homogeneously on the samples. From days 1–7 after seeding, their number rose continuously, and at the end of the experiment, these cells were able to create a confluent layer. At the same time, the cell viability, evaluated by a LIVE/DEAD viability/cytotoxicity kit, ranged from 92% to 97% on both types of membranes. In addition, on PLGA-ND membranes, the cells formed well developed talin-containing focal adhesion plaques. As estimated by the determination of tumor necrosis factor-alpha levels in the culture medium and concentration of intercellular adhesion molecule-1, MG-63 cells, and RAW 264.7 macrophages on these membranes did not show considerable inflammatory activity. Conclusion This study shows that nanofibrous PLGA membranes loaded with diamond nanoparticles have interesting potential for use in bone tissue engineering. PMID:22619532
Parizek, Martin; Douglas, Timothy E L; Novotna, Katarina; Kromka, Alexander; Brady, Mariea A; Renzing, Andrea; Voss, Eske; Jarosova, Marketa; Palatinus, Lukas; Tesarek, Pavel; Ryparova, Pavla; Lisa, Věra; dos Santos, Ana M; Warnke, Patrick H; Bacakova, Lucie
2012-01-01
Nanofibrous scaffolds loaded with bioactive nanoparticles are promising materials for bone tissue engineering. In this study, composite nanofibrous membranes containing a copolymer of L-lactide and glycolide (PLGA) and diamond nanoparticles were fabricated by an electrospinning technique. PLGA was dissolved in a mixture of methylene chloride and dimethyl formamide (2:3) at a concentration of 2.3 wt%, and nanodiamond (ND) powder was added at a concentration of 0.7 wt% (about 23 wt% in dry PLGA). In the composite scaffolds, the ND particles were either arranged like beads in the central part of the fibers or formed clusters protruding from the fibers. In the PLGA-ND membranes, the fibers were thicker (diameter 270 ± 9 nm) than in pure PLGA meshes (diameter 218 ± 4 nm), but the areas of pores among these fibers were smaller than in pure PLGA samples (0.46 ± 0.02 μm(2) versus 1.28 ± 0.09 μm(2) in pure PLGA samples). The PLGA-ND membranes showed higher mechanical resistance, as demonstrated by rupture tests of load and deflection of rupture probe at failure. Both types of membranes enabled the attachment, spreading, and subsequent proliferation of human osteoblast-like MG-63 cells to a similar extent, although these values were usually lower than on polystyrene dishes. Nevertheless, the cells on both types of membranes were polygonal or spindle-like in shape, and were distributed homogeneously on the samples. From days 1-7 after seeding, their number rose continuously, and at the end of the experiment, these cells were able to create a confluent layer. At the same time, the cell viability, evaluated by a LIVE/DEAD viability/cytotoxicity kit, ranged from 92% to 97% on both types of membranes. In addition, on PLGA-ND membranes, the cells formed well developed talin-containing focal adhesion plaques. As estimated by the determination of tumor necrosis factor-alpha levels in the culture medium and concentration of intercellular adhesion molecule-1, MG-63 cells, and RAW 264.7 macrophages on these membranes did not show considerable inflammatory activity. This study shows that nanofibrous PLGA membranes loaded with diamond nanoparticles have interesting potential for use in bone tissue engineering.
Housley, G D; Norris, C H; Guth, P S
1990-01-01
Two cholinergically-induced modulations of membrane conductances have been identified in hair cells isolated from the crista ampullaris of the leopard frog (Rana pipiens), using the whole cell recording configuration of the patch clamp technique. Of 56 crista hair cells tested, 28 showed drug-induced changes in membrane current or membrane potential which were repeatable and could be reversed with washout of drug. The predominant effect (observed in 20 hair cells) of acetylcholine (Ach, 100 microM) to 1mM) or carbachol (1 microM to 50 microM) applied to these hair cells was the reduction of an outward current corresponding to a change in conductance of approximately -0.22 nS. This action by Ach on hair cells has been inferred from previous studies of afferent fiber discharge which reported an increase in firing rate with stimulation of efferent fibers or exogenous application of cholinomimetics (Bernard et al., 1985; Valli et al., 1986; Guth et al., 1986; Norris et al., 1988a). The Ach-induced reduction in outward current was associated with a depolarization of the zero-current membrane potential by approximately +2.5 mV. In a total of 8 hair cells, an Ach-induced reversible increase in outward current was recorded. Changes in conductance were approximately +0.13 nS and were associated with a hyperpolarization of the zero-current membrane potential by approximately -2.2 mV. This current increase is likely to be responsible for the inhibitory post-synaptic potentials (IPSPs) which have previously been recorded intracellularly from acoustico-lateralis hair cells during stimulation of the efferent innervation (Flock and Russell, 1976; Ashmore and Russell, 1982; Art et al., 1984, 1985). Of the remaining 28 hair cells, six cells failed to exhibit any change in membrane conductance or membrane potential in the presence of cholinomimetics while an additional 15 cells exhibited decreases, and 7 cells exhibited increases in outward conductance, during application of Ach or carbachol, which were neither reversible with washout nor repeatable. The Ach-induced decrease in outward current could be reversible blocked by removal of Ca2+ from the external solution. The antagonism of the Ach-induced decrease in outward current by atropine (10(-5) M) suggests that this current may correspond to a facilitatory, 'atropine-preferring' Ach receptor mediated response previously identified in the isolated semicircular canal (Norris et al., 1988a).(ABSTRACT TRUNCATED AT 400 WORDS)
Microelectromechanical system pressure sensor integrated onto optical fiber by anodic bonding.
Saran, Anish; Abeysinghe, Don C; Boyd, Joseph T
2006-03-10
Optical microelectromechanical system pressure sensors based on the principle of Fabry-Perot interferometry have been developed and fabricated using the technique of silicon-to-silicon anodic bonding. The pressure sensor is then integrated onto an optical fiber by a novel technique of anodic bonding without use of any adhesives. In this anodic bonding technique we use ultrathin silicon of thickness 10 microm to bond the optical fiber to the sensor head. The ultrathin silicon plays the role of a stress-reducing layer, which helps the bonding of an optical fiber to silicon having conventional wafer thickness. The pressure-sensing membrane is formed by 8 microm thick ultrathin silicon acting as a membrane, thus eliminating the need for bulk silicon etching. The pressure sensor integrated onto an optical fiber is tested for static response, and experimental results indicate degradation in the fringe visibility of the Fabry-Perot interferometer. This effect was mainly due to divergent light rays from the fiber degrading the fringe visibility. This effect is demonstrated in brief by an analytical model.
Zhou, Fanglei; Tien, Huynh Ngoc; Xu, Weiwei L; Chen, Jung-Tsai; Liu, Qiuli; Hicks, Ethan; Fathizadeh, Mahdi; Li, Shiguang; Yu, Miao
2017-12-13
Among the current CO 2 capture technologies, membrane gas separation has many inherent advantages over other conventional techniques. However, fabricating gas separation membranes with both high CO 2 permeance and high CO 2 /N 2 selectivity, especially under wet conditions, is a challenge. In this study, sub-20-nm thick, layered graphene oxide (GO)-based hollow fiber membranes with grafted, brush-like CO 2 -philic agent alternating between GO layers are prepared by a facile coating process for highly efficient CO 2 /N 2 separation under wet conditions. Piperazine, as an effective CO 2 -philic agent, is introduced as a carrier-brush into the GO nanochannels with chemical bonding. The membrane exhibits excellent separation performance under simulated flue gas conditions with CO 2 permeance of 1,020 GPU and CO 2 /N 2 selectivity as high as 680, demonstrating its potential for CO 2 capture from flue gas. We expect this GO-based membrane structure combined with the facile coating process to facilitate the development of ultrathin GO-based membranes for CO 2 capture.
A full-duplex CATV/wireless-over-fiber lightwave transmission system.
Li, Chung-Yi; Lu, Hai-Han; Ying, Cheng-Ling; Cheng, Chun-Jen; Lin, Che-Yu; Wan, Zhi-Wei; Chen, Jian-Hua
2015-04-06
A full-duplex CATV/wireless-over-fiber lightwave transmission system consisting of one broadband light source (BLS), two optical interleavers (ILs), one intensity modulator, and one phase modulator is proposed and experimentally demonstrated. The downstream light is optically promoted from 10Gbps/25GHz microwave (MW) data signal to 10Gbps/100GHz and 10Gbps/50GHz millimeter-wave (MMW) data signals in fiber-wireless convergence, and intensity-modulated with 50-550 MHz CATV signal. For up-link transmission, the downstream light is phase-remodulated with 10Gbps/25GHz MW data signal in fiber-wireless convergence. Over a 40-km single-mode fiber (SMF) and a 10-m radio frequency (RF) wireless transport, bit error rate (BER), carrier-to-noise ratio (CNR), composite second-order (CSO), and composite triple-beat (CTB) are observed to perform well in such full-duplex CATV/wireless-over-fiber lightwave transmission systems. This full-duplex 100-GHz/50-GHz/25-GHz/550-MHz lightwave transmission system is an attractive alternative. This transmission system not only presents its advancement in the integration of fiber backbone and CATV/wireless feeder networks, but also it provides the advantages of a communication channel for higher data rates and bandwidth.
Chevalier, Christophe; Al Bazzal, Ali; Vidic, Jasmina; Février, Vincent; Bourdieu, Christiane; Bouguyon, Edwige; Le Goffic, Ronan; Vautherot, Jean-François; Bernard, Julie; Moudjou, Mohammed; Noinville, Sylvie; Chich, Jean-François; Da Costa, Bruno; Rezaei, Human; Delmas, Bernard
2010-01-01
The influenza A virus PB1-F2 protein, encoded by an alternative reading frame in the PB1 polymerase gene, displays a high sequence polymorphism and is reported to contribute to viral pathogenesis in a sequence-specific manner. To gain insights into the functions of PB1-F2, the molecular structure of several PB1-F2 variants produced in Escherichia coli was investigated in different environments. Circular dichroism spectroscopy shows that all variants have a random coil secondary structure in aqueous solution. When incubated in trifluoroethanol polar solvent, all PB1-F2 variants adopt an α-helix-rich structure, whereas incubated in acetonitrile, a solvent of medium polarity mimicking the membrane environment, they display β-sheet secondary structures. Incubated with asolectin liposomes and SDS micelles, PB1-F2 variants also acquire a β-sheet structure. Dynamic light scattering revealed that the presence of β-sheets is correlated with an oligomerization/aggregation of PB1-F2. Electron microscopy showed that PB1-F2 forms amorphous aggregates in acetonitrile. In contrast, at low concentrations of SDS, PB1-F2 variants exhibited various abilities to form fibers that were evidenced as amyloid fibers in a thioflavin T assay. Using a recombinant virus and its PB1-F2 knock-out mutant, we show that PB1-F2 also forms amyloid structures in infected cells. Functional membrane permeabilization assays revealed that the PB1-F2 variants can perforate membranes at nanomolar concentrations but with activities found to be sequence-dependent and not obviously correlated with their differential ability to form amyloid fibers. All of these observations suggest that PB1-F2 could be involved in physiological processes through different pathways, permeabilization of cellular membranes, and amyloid fiber formation. PMID:20172856
Chevalier, Christophe; Al Bazzal, Ali; Vidic, Jasmina; Février, Vincent; Bourdieu, Christiane; Bouguyon, Edwige; Le Goffic, Ronan; Vautherot, Jean-François; Bernard, Julie; Moudjou, Mohammed; Noinville, Sylvie; Chich, Jean-François; Da Costa, Bruno; Rezaei, Human; Delmas, Bernard
2010-04-23
The influenza A virus PB1-F2 protein, encoded by an alternative reading frame in the PB1 polymerase gene, displays a high sequence polymorphism and is reported to contribute to viral pathogenesis in a sequence-specific manner. To gain insights into the functions of PB1-F2, the molecular structure of several PB1-F2 variants produced in Escherichia coli was investigated in different environments. Circular dichroism spectroscopy shows that all variants have a random coil secondary structure in aqueous solution. When incubated in trifluoroethanol polar solvent, all PB1-F2 variants adopt an alpha-helix-rich structure, whereas incubated in acetonitrile, a solvent of medium polarity mimicking the membrane environment, they display beta-sheet secondary structures. Incubated with asolectin liposomes and SDS micelles, PB1-F2 variants also acquire a beta-sheet structure. Dynamic light scattering revealed that the presence of beta-sheets is correlated with an oligomerization/aggregation of PB1-F2. Electron microscopy showed that PB1-F2 forms amorphous aggregates in acetonitrile. In contrast, at low concentrations of SDS, PB1-F2 variants exhibited various abilities to form fibers that were evidenced as amyloid fibers in a thioflavin T assay. Using a recombinant virus and its PB1-F2 knock-out mutant, we show that PB1-F2 also forms amyloid structures in infected cells. Functional membrane permeabilization assays revealed that the PB1-F2 variants can perforate membranes at nanomolar concentrations but with activities found to be sequence-dependent and not obviously correlated with their differential ability to form amyloid fibers. All of these observations suggest that PB1-F2 could be involved in physiological processes through different pathways, permeabilization of cellular membranes, and amyloid fiber formation.
A Novel Inter Core-Cladding Lithium Niobate Thin Film Coated Fiber Modulator/Sensor
NASA Technical Reports Server (NTRS)
Jamison, Tracee L.; Komriech, Phillip; Yu, Chung
2004-01-01
A fiber modulator/sensor has been fabricated by depositing a lithium niobate sol-gel thin film between the core and cladding of a fiber preform. The preform is then drawn into 125 micron fiber. The proposed design of lithium niobate cylinder fibers can enhance the existing methodology for detecting sound waves under water utilizing the acoustooptic properties of lithium niobate. Upon application of a stress or strain, light propagating inside the core, according to the principle of total internal reflection, escapes, into the cladding because of the photoelastic boundary layer of lithium niobate. Test results of the lithium niobate fiber reveal a reduction in the 1550 nm, 4mW source with applied tension. The source power from an ordinary quartz fiber under the same stress condition remained invariant to applied tension.
Processing and characterization of α-elastin electrospun membranes
NASA Astrophysics Data System (ADS)
Araujo, J.; Padrão, J.; Silva, J. P.; Dourado, F.; Correia, D. M.; Botelho, G.; Gomez Ribelles, J. L.; Lanceros-Méndez, S.; Sencadas, V.
2014-06-01
Elastin isolated from fresh bovine ligaments was dissolved in a mixture of 1,1,1,3,3,3-Hexafluoro-2-propanol and water were electrospun into fiber membranes under different processing conditions. Fiber mats of randomly and aligned fibers were obtained with fixed and rotating ground collectors and fibrils were composed by thin ribbons whose width depends on electrospinning conditions; fibrils with 721 nm up to 2.12 μm width were achieved. After cross-linking with glutaraldehyde, α-elastin can uptake as much as 1700 % of PBS solution and a slight increase on fiber thickness was observed. The glass transition temperature of electrospun fiber mats was found to occur at ˜80 °C. Moreover, α-Elastin showed to be a perfect elastomeric material, and no mechanical hysteresis was found in cycle mechanical measurements. The elastic modulus obtained for random and aligned fibers mats in a PBS solution was 330±10 kPa and 732±165 kPa, respectively. Finally, the electrospinning and cross-linking process does not inhibit MC-3T3-E1 cell adhesion. Cell culture results showed good cell adhesion and proliferation in the cross-linked elastin fiber mats.
NASA Astrophysics Data System (ADS)
Huang, Xu-Hong; Lu, Hai-Han; Li, Chung-Yi; Wang, Yun-Chieh; Chang, Jen-Chieh; Jheng, Yu-Bo; Tsai, Wen-Shing
2018-06-01
A bidirectional fiber-free-space optical (FSO)/wireless convergent system that uses dual-polarization and one optical sideband transmission schemes for hybrid vestigial sideband (VSB)–four-level pulse amplitude modulation (PAM4)/millimeter-wave signal transmission is proposed and demonstrated. Using a dual-polarization scheme, one optical sideband that is modulated by a 56 Gb s‑1 VSB–PAM4 signal (x-polarization) and another optical sideband that is modulated by a 10 Gbps data stream (y-polarization) are separated and polarized orthogonally. One optical sideband modulated by a 10 Gbps data stream (y-polarization) is delivered to efficaciously suppress the dispersion-induced limitation due to a span of 40 km single-mode fiber (SMF) and the distortion due to the beating among multiple sidebands. The proposed bidirectional fiber-FSO/wireless convergent system is a prominent one for providing broadband integrated services, such as the Internet, telecommunication, and 5G mobile networks.
Ozawa, I; Saito, K; Sugita, K; Sato, K; Akiba, M; Sugo, T
2000-08-04
A porous hollow-fiber membrane capable of recovery of germanium from a liquid stream was prepared by radiation-induced graft polymerization of an epoxy-group-containing vinyl monomer, glycidyl methacrylate, and subsequent functionalization with 2,2'-iminodiethanol, di-2-propanolamine, N-methylglucamine, and 3-amino-1,2-propanediol. The functional group density was as high as 1.4 mol per kg of the resultant hollow fiber. The polymer chains containing functional groups surrounding the pores enabled a high-speed recovery of germanium during permeation of a germanium oxide (GeO2) solution through the pores of the hollow fiber. Because of a negligible diffusional mass-transfer resistance, germanium concentration changes with the effluent volume, i.e., breakthrough curves, overlapped irrespective of the residence time of the solution, which ranged from 0.37 to 3.7 s across the hollow fiber. After repeated use of adsorption and elution, the adsorption capacity did not deteriorate.
Self-phase modulation of submicrojoule femtosecond pulses in a hollow-core photonic-crystal fiber
DOE Office of Scientific and Technical Information (OSTI.GOV)
Konorov, S.O.; Sidorov-Biryukov, D.A.; Zheltikov, A.M.
Hollow-core photonic-crystal fibers (PCFs) capable of transporting sub-100-fs pulses of Ti:sapphire laser radiation in one of their transmission peaks centered around 800 nm have been designed and demonstrated. These fibers are shown to enhance self-phase modulation of submicrojoule 100-fs Ti:sapphire laser pulses, allowing a spectral bandwidth of 35 nm to be achieved with an 8-cm PCF sample.
High-brightness 9xxnm fiber coupled diode lasers
NASA Astrophysics Data System (ADS)
Liu, Rui; Jiang, Xiaochen; Yang, Thomas; He, Xiaoguang; Gao, Yanyan; Zhu, Jing; Zhang, Tujia; Guo, Weirong; Wang, Baohua; Guo, Zhijie; Zhang, Luyan; Chen, Louisa
2015-03-01
We developed a high brightness fiber coupled diode laser module providing more than 140W output power from a 105μm NA 0.15 fiber at the wavelength of 915nm.The high brightness module has an electrical to optical efficiency better than 45% and power enclosure more than 90% within NA 0.13. It is based on multi-single emitters using optical and polarization beam combining and fiber coupling technique. With the similar technology, over 100W of optical power into a 105μm NA 0.15 fiber at 976nm is also achieved which can be compatible with the volume Bragg gratings to receive narrow and stabilized spectral linewidth. The light within NA 0.12 is approximately 92%. The reliability test data of single and multiple single emitter laser module under high optical load are also presented and analyzed using a reliability model with an emitting aperture optimized for coupling into 105μm core fiber. The total MTTF shows exceeding 100,000 hours within 60% confidence level. The packaging processes and optical design are ready for commercial volume production.
Cleaning a semipermeable membrane in a papermaking machine
Beck, David A.
2004-01-06
A method of cleaning a semipermeable membrane, the semipermeable membrane being configured for carrying a fiber web, includes the steps of providing a cleaning fluid and applying the cleaning fluid on the semipermeable membrane. Further, an air press configured for carrying the semipermeable membrane therethrough is provided, and the air press has pressurized air therein. The semipermeable membrane is conveyed through the air press and is subjected to the pressurized air within the air press. The pressurized air thereby flushes the cleaning fluid through the semipermeable membrane.
REDUCTION OF CONCENTRATION POLARIZATION IN PERVAPORATION USING VIBRATING MEMBRANE MODULE
A vibrating membrane module currently marketed for filtration applications was evaluated for the separation of volatile organic compounds (VOCs) from aqueous solutions by pervaporation. Preliminary screening experiments with three VOCs, four silicone membranes, and in the presenc...
Altoè, Alessandro; Pulkki, Ville; Verhulst, Sarah
2018-07-01
The basolateral membrane of the mammalian inner hair cell (IHC) expresses large voltage and Ca 2+ gated outward K + currents. To quantify how the voltage-dependent activation of the K + channels affects the functionality of the auditory nerve innervating the IHC, this study adopts a model of mechanical-to-neural transduction in which the basolateral K + conductances of the IHC can be made voltage-dependent or not. The model shows that the voltage-dependent activation of the K + channels (i) enhances the phase-locking properties of the auditory fiber (AF) responses; (ii) enables the auditory nerve to encode a large dynamic range of sound levels; (iii) enables the AF responses to synchronize precisely with the envelope of amplitude modulated stimuli; and (iv), is responsible for the steep offset responses of the AFs. These results suggest that the basolateral K + channels play a major role in determining the well-known response properties of the AFs and challenge the classical view that describes the IHC membrane as an electrical low-pass filter. In contrast to previous models of the IHC-AF complex, this study ascribes many of the AF response properties to fairly basic mechanisms in the IHC membrane rather than to complex mechanisms in the synapse. Copyright © 2018 Elsevier B.V. All rights reserved.
Locomotor activity modulates associative learning in mouse cerebellum.
Albergaria, Catarina; Silva, N Tatiana; Pritchett, Dominique L; Carey, Megan R
2018-05-01
Changes in behavioral state can profoundly influence brain function. Here we show that behavioral state modulates performance in delay eyeblink conditioning, a cerebellum-dependent form of associative learning. Increased locomotor speed in head-fixed mice drove earlier onset of learning and trial-by-trial enhancement of learned responses that were dissociable from changes in arousal and independent of sensory modality. Eyelid responses evoked by optogenetic stimulation of mossy fiber inputs to the cerebellum, but not at sites downstream, were positively modulated by ongoing locomotion. Substituting prolonged, low-intensity optogenetic mossy fiber stimulation for locomotion was sufficient to enhance conditioned responses. Our results suggest that locomotor activity modulates delay eyeblink conditioning through increased activation of the mossy fiber pathway within the cerebellum. Taken together, these results provide evidence for a novel role for behavioral state modulation in associative learning and suggest a potential mechanism through which engaging in movement can improve an individual's ability to learn.
NASA Astrophysics Data System (ADS)
Zhu, Zihang; Zhao, Shanghong; Yao, Zhoushi; Tan, Qinggui; Li, Yongjun; Chu, Xingchun; Shi, Lei; Zhang, Xi
2012-06-01
We propose a novel approach to generate quadrupling-frequency optical millimeter-wave using a dual-drive Mach-Zehnder modulator (MZM) in radio-over-fiber system. By properly adjusting the phase difference in the two modulation arms of MZM, the direct current (DC) bias, the modulation index and the gain of base-band signal, the quadrupling-frequency optical millimeter-wave with signal only carried by one second-order sideband is generated. As the signal is transmitted along the fiber, there is no time shift of the codes caused by chromatic dispersion. Theoretical analysis and simulation results show that the eye diagram keeps open and clear even when the quadrupling-frequency optical millimeter-wave are transmitted over 110 km and the power penalty is about 0.45 dB after fiber transmission distance of 60 km. Furthermore, due to another second-order sideband carrying no signals, a full duplex radio-over-fiber link based on wavelength reuse is also built to simplify the base station. The bidirectional 2.5 Gbit/s data is successfully transmitted over 40 km standard single mode fiber with less than 0.6 dB power penalty in the simulation.
In vitro tympanic membrane position identification with a co-axial fiber-optic otoscope
NASA Astrophysics Data System (ADS)
Sundberg, Mikael; Peebo, Markus; Strömberg, Tomas
2011-09-01
Otitis media diagnosis can be assisted by measuring the shape of the tympanic membrane. We have developed an ear speculum for an otoscope, including spatially distributed source and detector optical fibers, to generate source-detector intensity matrices (SDIMs), representing the curvature of surfaces. The surfaces measured were a model ear with a latex membrane and harvested temporal bones including intact tympanic membranes. The position of the tympanic membrane was shifted from retracted to bulging by air pressure and that of the latex membrane by water displacement. The SDIM was normalized utilizing both external (a sheared flat plastic cylinder) and internal references (neutral position of the membrane). Data was fitted to a two-dimensional Gaussian surface representing the shape by its amplitude and offset. Retracted and bulging surfaces were discriminated for the model ear by the sign of the Gaussian amplitude for both internal and external reference normalization. Tympanic membranes were separated after a two-step normalization: first to an external reference, adjusted for the distance between speculum and the surfaces, and second by comparison with an average normally positioned SDIM from tympanic membranes. In conclusion, we have shown that the modified otoscope can discriminate between bulging and retracted tympanic membranes in a single measurement, given a two-step normalization.
Microwave assisted reconstruction of optical interferograms for distributed fiber optic sensing.
Huang, Jie; Hua, Lei; Lan, Xinwei; Wei, Tao; Xiao, Hai
2013-07-29
This paper reports a distributed fiber optic sensing technique through microwave assisted separation and reconstruction of optical interferograms in spectrum domain. The approach involves sending a microwave-modulated optical signal through cascaded fiber optic interferometers. The microwave signal was used to resolve the position and reflectivity of each sensor along the optical fiber. By sweeping the optical wavelength and detecting the modulation signal, the optical spectrum of each sensor can be reconstructed. Three cascaded fiber optic extrinsic Fabry-Perot interferometric sensors were used to prove the concept. Their microwave-reconstructed interferogram matched well with those recorded individually using an optical spectrum analyzer. The application in distributed strain measurement has also been demonstrated.
Tang, W W; Shu, C
2005-02-21
We demonstrate a regeneratively mode-locked optical pulse source at about 10 GHz using an optoelectronic oscillator constructed with an electro-absorption modulator integrated distributed feedback laser diode. The 10 GHz RF component is derived from the interaction between the pump wave and the backscattered, frequency-downshifted Stokes wave resulted from stimulated Brillouin scattering in an optical fiber. The component serves as a modulation source for the 1556 nm laser diode without the need for any electrical or optical RF filter to perform the frequency extraction. Dispersion-compensated fiber, dispersion-shifted fiber, and standard single-mode fiber have been used respectively to generate optical pulses at variable repetition rates.
Chen, Haigui; Wang, Yunfan; Jiang, Houyang; Zhao, Guohua
2012-12-01
4-Methyloctanoic acid (MOA) and 4-methylnonanoic acid (MNA) are the main compounds responsible for "sweaty" odor of mutton. A novel method for their determination has been developed and validated. Hollow fiber supported liquid membrane (HF-SLM) was applied to selectively extract MOA and MNA prior to gas chromatography (GC) analysis. For HF-SLM, the donor outside the fiber was the acidified supernatant (pH 4) from aqueous mutton slurry. Liquid membrane was 5% tri-n-octylphoshphine oxide in di-n-hexyl ether and 0.3M NaOH aqueous solution filled in the lumen of the fiber was used as the acceptor. The extraction last for 4h. After acidification with HCl, the acceptor was directly analyzed by GC. Importantly, HF-SLM provided high enrichment factors for MOA (133) and MNA (116). The method developed had low detection limits of 0.0007-0.0015 mg/kg, good linearity (R²>0.9956), reasonable recovery (88.54-122.13%), satisfactory intra-assay (7.83-9.73%) and inter-assay (15.68-16.14%) precision. Copyright © 2012 Elsevier Ltd. All rights reserved.
Induction by agrin of ectopic and functional postsynaptic-like membrane in innervated muscle
Jones, G.; Meier, T.; Lichtsteiner, M.; Witzemann, V.; Sakmann, B.; Brenner, H. R.
1997-01-01
Two factors secreted from the nerve terminal, agrin and neuregulin, have been postulated to induce localization of the acetylcholine receptors (AChRs) to the subsynaptic membrane in skeletal muscle fibers. The principal function ascribed to neuregulin is induction of AChR subunit gene expression and to agrin is the aggregation of AChRs. Here we report that when myoblasts engineered to secrete an agrin fragment were placed into the nerve-free region of denervated rodent muscle, the host muscle fibers expressed AChR ɛ-subunit gene transcripts, characteristic of the neuromuscular synapse in adult muscle. Transcripts were colocalized with agrin deposits and AChR clusters that were resistant to electrical muscle activity. More directly, single innervated muscle fibers injected intracellularly with agrin expression plasmids in their extrasynaptic region developed a functional ectopic postsynaptic membrane with clusters of adult-type AChR channels and acetylcholinesterase and accumulation of myonuclei. The results demonstrate that agrin is the principal neural signal that induces the formation of the subsynaptic apparatus in the muscle fiber and controls locally, either indirectly or directly, the transcription of AChR subunit genes and the aggregation of AChRs. PMID:9122251
Air filtration media from electrospun waste high-impact polystyrene fiber membrane
NASA Astrophysics Data System (ADS)
Zulfi, Akmal; Miftahul Munir, Muhammad; Hapidin, Dian Ahmad; Rajak, Abdul; Edikresnha, Dhewa; Iskandar, Ferry; Khairurrijal, Khairurrijal
2018-03-01
Nanofiber membranes were synthesized from waste high-impact polystyrene (HIPS) using electrospinning method and then applied as air filtration media. The waste HIPS precursor solution with the concentration of 20 wt.% was prepared by dissolving waste HIPS into the mixture of d-limonene and DMF solvents. Beaded or fine nanofibers could be achieved by adjusting the ratio of solvents mixture (d-limonene and DMF). Using the ratios of solvents (d-limonene: DMF) of 3:1, 1:1, and 1:3, it was obtained beaded HIPS nanofibers with the average diameter of 272 nm, beaded HIPS nanofibers with the average diameter of 937, and fine HIPS nanofibers with the average diameter of 621 nm, respectively. From the FTIR spectral analysis, it was found that the FTIR peaks of the HIPS nanofiber membranes are the same as those of the cleaned waste HIPS and there are no FTIR peaks of DMF and d-limonene solvents. These findings implied that the electrospinning process allows the recycling of waste HIPS into HIPS nanofibers without any trapped solvent phases or apparent degradation of the original material. From the contact angle measurement, it was confirmed that the HIPS nanofiber membranes are hydrophobic and the presence of the beads in the HIPS nanofiber membranes varies their contact angles. From the air-filtration test, it was shown that the fiber morphology (beaded or fine nanofibers) considerably affects the filtration performance of the membranes. The presence of beads increased the distance between the fibers so that the pressure drop decreased. Moreover, the basis weight of the membrane greatly affected the filtration efficiency. The HIPS nanofiber membrane with the basis weight of 12.22 g m‑2 had the efficiency greater than 99.999%, which was equivalent to that of the HEPA filter.
Ultra-low power fiber-coupled gallium arsenide photonic crystal cavity electro-optic modulator.
Shambat, Gary; Ellis, Bryan; Mayer, Marie A; Majumdar, Arka; Haller, Eugene E; Vučković, Jelena
2011-04-11
We demonstrate a gallium arsenide photonic crystal cavity injection-based electro-optic modulator coupled to a fiber taper waveguide. The fiber taper serves as a convenient and tunable waveguide for cavity coupling with minimal loss. Localized electrical injection of carriers into the cavity region via a laterally doped p-i-n diode combined with the small mode volume of the cavity enable ultra-low energy modulation at sub-fJ/bit levels. Speeds of up to 1 GHz are demonstrated with photoluminescence lifetime measurements revealing that the ultimate limit goes well into the tens of GHz. © 2011 Optical Society of America
Optical-fiber-connected 300-GHz FM-CW radar system
NASA Astrophysics Data System (ADS)
Kanno, Atsushi; Sekine, Norihiko; Kasamatsu, Akifumi; Yamamoto, Naokatsu; Kawanishi, Tetsuya
2017-05-01
300-GHz frequency-modulated continuous-wave (FM-CW) radar system operated by radio over fiber technologies is configured and demonstrated. Centralized signal generator, which is based on an optical frequency comb generation, provides high-precise FM-CW radar signal. The optical signal is easy to be transported to radar heads through an optical fiber network. Optical-modulator-based optical frequency comb generator is utilized as an optical frequency multiplier from a microwave signal to a 300-GHz terahertz signal by an optical modulation technique. In the study, we discuss the configuration of the network, signal generator and remote radar head for terahertz-wave multi-static radar system.
NASA Astrophysics Data System (ADS)
Li, Dan; Yao, Jie; Sun, Hao; Liu, Bing; van Agtmaal, Sjack; Feng, Chunhui
2018-01-01
Zeolite (ZSM-5)/polydimethylsiloxane (PDMS)/polyvinylidene fluoride (PVDF) hollow fiber composite membrane was prepared by dynamic negative pressure. The influence of ZSM-5 silanization, coating time and concentration of ZSM-5 on the resulting pervaporation (PV) performance of composite membranes was investigated. The contact angle (CA) was used to measure surface hydrophobic property and it was found that the water contact angle of the membrane was increased significantly from 99° to 132° when the concentration of ZSM-5 increased from 0% to 50%. The morphology of the membrane was characterized by scanning electron microscope (SEM) and those SEM images illustrated that the thickness of the separating layer has obvious differences at varying coating times. Furthermore, the membranes were investigated in PV process to recycle phenol from aqueous solutions as feed mixtures. The impact of phenol concentration in feed, temperature and pressure of penetration side on the PV performance of membrane was studied systematically. When the ZSM-5 concentration was 40% and the coating time was 60 min, separation factor and phenol permeability were 4.56 and 5.78 g/(m2 h), respectively. ZSM-5/PDMS/PVDF membrane significantly improved the recovery efficiency of phenols.
High-speed optical transmission system using 1.55-μm directly modulated lasers
NASA Astrophysics Data System (ADS)
Kim, Hoon
2018-01-01
We present the small-signal frequency responses of single-mode fiber used in directly modulated laser/direct detection (DML/DD) and externally modulated transmitter/direct detection (EXT/DD) systems, and compare the dispersion tolerance of these two systems. We find out that DML/DD system could be more tolerant to fiber chromatic dispersion than EXT/DD system when an electrical equalizer is employed at the receiver. We also present the transmission of 56- Gb/s 4-level pulse amplitude modulation signals generated from a 1.55-μm DML over 20-km standard single-mode fiber with the aid of a linear electrical equalizer. The performance behavior of this system with respect to the transmission distance is explained by using the frequency response.
Permeable polyaniline articles for gas separation
Wang, Hsing-Lin [Los Alamos, NM; Mattes, Benjamin R [Santa Fe, NM
2009-07-21
Immersion precipitation of solutions having 15%-30% (w/w) and various molecular weights of the emeraldine base form of polyaniline in polar aprotic solvents are shown to form integrally skinned asymmetric membranes and fibers having skin layers <1 .mu.m thick which exhibit improved rates of gas transport while preserving good selectivity. These membranes can be further transformed by an acid doping process after fabrication to achieve excellent permeation rates and high selectivities for particular gas separations. Prior to the use of concentrated EB solutions, the formation of integrally skinned asymmetric membranes was not possible, since films and fibers made from <5% w/w polyaniline solutions were found to disintegrate during the IP process.
Permeable polyaniline articles for gas separation
Wang, Hsing-Lin; Mattes, Benjamin R.
2004-09-28
Immersion precipitation of solutions having 15%-30% (w/w) and various molecular weights of the emeraldine base form of polyaniline in polar aprotic solvents are shown to form integrally skinned asymmetric membranes and fibers having skin layers <1 .mu.m thick which exhibit improved rates of gas transport while preserving good selectivity. These membranes can be further transformed by an acid doping process after fabrication to achieve excellent permeation rates and high selectivities for particular gas separations. Prior to the use of concentrated EB solutions, the formation of integrally skinned asymmetric membranes was not possible, since films and fibers made from <5% w/w polyaniline solutions were found to disintegrate during the IP process.
Luo, Nan; Zhong, Hui; Yang, Min; Yuan, Xing; Fan, Yaobo
2016-01-01
Experimental design and response surface methodology (RSM) were used to optimize the modification of conditions for glass surface grafting with acrylamide (AM) monomer for preparation of a glass fiber reinforced poly(vinylidene fluoride) (PVDF) composite membrane (GFRP-CM). The factors considered for experimental design were the UV (ultraviolet)-irradiation time, the concentrations of the initiator and solvent, and the kinds and concentrations of the silane coupling agent. The optimum operating conditions determined were UV-irradiation time of 25 min, an initiator concentration of 0-0.25 wt.%, solvent of N-Dimethylacetamide (DMAC), and silane coupling agent KH570 with a concentration of 7 wt.%. The obtained optimal parameters were located in the valid region and the experimental confirmation tests conducted showed good accordance between predicted and experimental values. Under these optimal conditions, the water absorption of the grafted modified glass fiber was improved from 13.6% to 23%; the tensile strength was enhanced and the peeling strength of the glass fiber reinforced PVDF composite membrane was improved by 23.7% and 32.6% with an AM concentration at 1 wt.% and 2 wt.%. The surface composition and microstructure of AM grafted glass fiber were studied via several techniques including Field Emission Scanning Electron Microscopy (FESEM), Fourier transform infrared spectroscopy-attenuated total reflectance (FTIR-ATR) and energy dispersive X-ray spectroscopy (EDX). The analysis of the EDX and FTIR-ATR results confirmed that the AM was grafted to the glass fiber successfully by detecting and proving the existence of nitrogen atoms in the GFRP-CM. Copyright © 2015. Published by Elsevier B.V.
Possible Role of Non-Muscle Alpha-Actinins in Muscle Cell Mechanosensitivity
Ogneva, Irina V.; Biryukov, Nikolay S.; Leinsoo, Toomas A.; Larina, Irina M.
2014-01-01
The main hypothesis suggested that changes in the external mechanical load would lead to different deformations of the submembranous cytoskeleton and, as a result, dissociation of different proteins from its structure (induced by increased/decreased mechanical stress). The study subjects were fibers of the soleus muscle and cardiomyocytes of Wistar rats. Changes in external mechanical conditions were reconstructed by means of antiorthostatic suspension of the animals by their tails for 6, 12, 18, 24 and 72 hours. Transversal stiffness was measured by atomic force microscopy imaging; beta-, gamma-actin, alpha-actinin 1 and alpha-actinin 4 levels in membranous and cytoplasmic fractions were quantified by Western blot analysis; expression rates of the corresponding genes were studied using RT-PCR. Results: In 6 hours, alpha-actinin 1 and alpha-actinin 4 levels decreased in the membranous fraction of proteins of cardiomyocytes and soleus muscle fibers, respectively, but increased in the cytoplasmic fraction of the abovementioned cells. After 6–12 hours of suspension, the expression rates of beta-, gamma-actin, alpha-actinin 1 and alpha-actinin 4 were elevated in the soleus muscle fibers, but the alpha-actinin 1 expression rate returned to the reference level in 72 hours. After 18–24 hours, the expression rates of beta-actin and alpha-actinin 4 increased in cardiomyocytes, while the alpha-actinin 1 expression rate decreased in soleus muscle fibers. After 12 hours, the beta- and gamma-actin content dropped in the membranous fraction and increased in the cytoplasmic protein fractions from both cardiomyocytes and soleus muscle fibers. The stiffness of both cell types decreased after the same period of time. Further, during the unloading period the concentration of nonmuscle actin and different isoforms of alpha-actinins increased in the membranous fraction from cardiomyocytes. At the same time, the concentration of the abovementioned proteins decreased in the soleus muscle fibers. PMID:24780915
Electro- and Magneto-Modulated Ion Transport through Graphene Oxide Membranes
Sun, Pengzhan; Zheng, Feng; Wang, Kunlin; Zhong, Minlin; Wu, Dehai; Zhu, Hongwei
2014-01-01
The control of ion trans-membrane transport through graphene oxide (GO) membranes is achieved by electric and magnetic fields. Electric field can either increase or decrease the ion transport through GO membranes depending on its direction, and magnetic field can enhance the ion penetration monotonically. When electric field is applied across GO membrane, excellent control of ion fluidic flows can be done. With the magnetic field, the effective anchoring of ions is demonstrated but the modulation of the ion flowing directions does not occur. The mechanism of the electro- and magneto-modulated ion trans-membrane transport is investigated, indicating that the electric fields dominate the ion migration process while the magnetic fields tune the structure of nanocapillaries within GO membranes. Results also show that the ion selectivity of GO membranes can be tuned with the electric fields while the transport of ions can be enhanced synchronously with the magnetic fields. These excellent properties make GO membranes promising in areas such as field-induced mass transport control and membrane separation. PMID:25347969
Wavelength locking of single emitters and multi-emitter modules: simulation and experiments
NASA Astrophysics Data System (ADS)
Yanson, Dan; Rappaport, Noam; Peleg, Ophir; Berk, Yuri; Dahan, Nir; Klumel, Genady; Baskin, Ilya; Levy, Moshe
2016-03-01
Wavelength-stabilized high-brightness single emitters are commonly used in fiber-coupled laser diode modules for pumping Yb-doped lasers at 976 nm, and Nd-doped ones at 808 nm. We investigate the spectral behavior of single emitters under wavelength-selective feedback from a volume Bragg (or hologram) grating (VBG) in a multi-emitter module. By integrating a full VBG model as a multi-layer thin film structure with commercial raytracing software, we simulated wavelength locking conditions as a function of beam divergence and angular alignment tolerances. Good correlation between the simulated VBG feedback strength and experimentally measured locking ranges, in both VBG misalignment angle and laser temperature, is demonstrated. The challenges of assembling multi-emitter modules based on beam-stacked optical architectures are specifically addressed, where the wavelength locking conditions must be achieved simultaneously with high fiber coupling efficiency for each emitter in the module. It is shown that angular misorientation between fast and slow-axis collimating optics can have a dramatic effect on the spectral and power performance of the module. We report the development of our NEON-S wavelength-stabilized fiber laser pump module, which uses a VBG to provide wavelength-selective optical feedback in the collimated portion of the beam. Powered by our purpose-developed high-brightness single emitters, the module delivers 47 W output at 11 A from an 0.15 NA fiber and a 0.3 nm linewidth at 976 nm. Preliminary wavelength-locking results at 808 nm are also presented.
NASA Astrophysics Data System (ADS)
Zhou, J. Y.; Wang, B. F.; Nie, L. H.; Lu, J. X.; Hao, Y. J.; Xu, R. R.
2018-01-01
China’s oil dependence is getting higher and higher, 90% of oil import is transported by sea. Tankers will produce a lot of VOCs during loading and unloading, so the prevention of such pollution has become increasingly urgent. The hollow fiber membrane absorption method combined the characteristics of the absorption method for the treatment of high concentration and large flow of VOCs and the advantage of low energy consumption of membrane method. At present, the research on the recovery of oil and gas is relatively few. In this paper, the effect of membrane absorption on the recovery of oil and gas was investigated. The different absorbent affected the oil vapor recovery, the experimental results showed that the performance of absorbent of AbsFOV-97 was better than that of heat conductive oil.
A 3D scanning laser endoscope architecture utilizing a circular piezoelectric membrane
NASA Astrophysics Data System (ADS)
Khayatzadeh, Ramin; Çivitci, Fehmi; Ferhanoğlu, Onur
2017-12-01
A piezo-scanning fiber endoscopic device architecture is proposed for 3D imaging or ablation. The endoscopic device consists of a piezoelectric membrane that is placed perpendicular to the optical axis, a fiber optic cable that extends out from and actuated by the piezoelectric membrane, and one or multiple lenses for beam delivery and collection. Unlike its counterparts that utilize piezoelectric cylinders for fiber actuation, the proposed architecture offers quasi-static actuation in the axial direction along with resonant actuation in the lateral directions forming a 3D scanning pattern, allowing adjustment of the focus plane. The actuation of the four-quadrant piezoelectric membrane involves driving of two orthogonal electrodes with AC signals for lateral scanning, while simultaneously driving all electrodes for axial scanning and focus adjustment. We have characterized piezoelectric membranes (5 -15mm diameter) with varying sizes to monitor axial displacement behavior with respect to applied DC voltage. We also demonstrate simultaneous lateral and axial actuation on a resolution target, and observe the change of lateral resolution on a selected plane through performing 1D cross-sectional images, as an indicator of focal shift through axial actuation. Based on experimental results, we identify the optical and geometrical parameters for optimal 3D imaging of tissue samples. Our findings reveal that a simple piezoelectric membrane, having comparable dimensions and drive voltage requirement with off-the-shelf MEMS scanner chips, offers tissue epithelial imaging with sub-cellular resolution.
Microwave fiber optics delay line
NASA Astrophysics Data System (ADS)
Slayman, C.; Yen, H. W.
1980-01-01
A microwave delay line is one of the devices used in EW systems for preserving the frequency and phase contents of RF signals. For such applications, delay lines are required to have large dynamic range, wide bandwidth, low insertion loss, and a linear response. The basic components of a fiber-optics delay line are: an optical source, a wideband optical modulator, a spool of single-mode fiber with appropriate length to provide a given microwave signal delay, and a high-speed photodetector with an RF amplifier. This contract program is to study the feasibility of such a fiber-optic delay line in the frequency range of 4.0 to 6.5 GHz. The modulation scheme studied is the direct modulation of injection lasers. The most important issue identified is the frequency response of the injection laser and the photodetector.
Great circle solution to polarization-based quantum communication (QC) in optical fiber
Nordholt, Jane Elizabeth; Peterson, Charles Glen; Newell, Raymond Thorson; Hughes, Richard John
2016-03-15
Birefringence in optical fibers is compensated by applying polarization modulation at a receiver. Polarization modulation is applied so that a transmitted optical signal has states of polarization (SOPs) that are equally spaced on the Poincare sphere. Fiber birefringence encountered in propagation between a transmitter and a receiver rotates the great circle on the Poincare sphere that represents the polarization bases used for modulation. By adjusting received polarizations, polarization components of the received optical signal can be directed to corresponding detectors for decoding, regardless of the magnitude and orientation of the fiber birefringence. A transmitter can be configured to transmit in conjugate polarization bases whose SOPs can be represented as equidistant points on a great circle so that the received SOPs are mapped to equidistant points on a great circle and routed to corresponding detectors.
Pulse position modulation for compact all-fiber vehicle laser rangefinder development
NASA Astrophysics Data System (ADS)
Mao, Xuesong; Cheng, Yongzhi; Xiong, Ying; Inoue, Daisuke; Kagami, Manabu
2017-10-01
We propose a method for developing small all-fiber vehicle laser rangefinders that is based on pulse position modulation (PPM) and data integration and present a theoretical study on its performance. Compared with spatial coupling, which is employed by most of the current commercial vehicle laser rangefinders, fiber coupling has the advantage that it can guide laser echoes into the interior of a car, so the electronic components following the photodiode can operate in a moderate-temperature environment. However, optical fibers have numerical apertures (NAs), which means that a laser beam from a receiving lens cannot be coupled into an optical fiber if its incident angle exceeds the critical value. Therefore, the effective size of the receiving lens is typically small since it is limited by its focal length and the NA of the fiber, causing the power of the laser echoes gathered by the receiving lens to be insufficient for performing target identification. Instead of increasing the peak transmitting laser power unrestrictedly, PPM and data integration effectively compensate for the low signal-to-noise ratio that results from the effective receiving lens size reduction. We validated the proposed method by conducting numerical simulations and performance analysis. Finally, we compared the proposed method with pseudorandom noise (PN) code modulation and found that, although the two methods perform equally well in single-target measurement scenarios, PPM is more effective than PN code modulation for multitarget measurement. In addition, PPM enables the transmission of laser beams with higher peak powers and requires less computation than PN code modulation does.
NASA Astrophysics Data System (ADS)
Topol, Heiko; Demirkoparan, Hasan; Pence, Thomas J.; Wineman, Alan
2017-02-01
This work considers a previously developed constitutive theory for the time dependent mechanical response of fibrous soft tissue resulting from the time dependent remodeling of a collagen fiber network that is embedded in a ground substance matrix. The matrix is taken to be an incompressible nonlinear elastic solid. The remodeling process consists of the continual dissolution of existing fibers and the creation of new fibers. Motivated by experimental reports on the enzyme degradation of collagen fibers, the remodeling is governed by first order chemical kinetics such that the dissolution rate is dependent upon the fiber stretch. The resulting time dependent mechanical response is sensitive to the natural configuration of the fibers when they are created, and different assumptions on the nature of the fiber's stress free state are considered here. The response under biaxial loading, a type of loading that has particular significance for the characterization of biological materials, is studied. The inflation of a spherical membrane is then analyzed in terms of the equal biaxial stretch that occurs in the membrane approximation. Different assumptions on the natural configuration of the fibers, combined with their time dependent dissolution and reforming, are shown to emulate alternative forms of creep and relaxation response. This formal similarity to viscoelastic phenomena occurs even though the underlying mechanisms are fundamentally different from the mechanism of macromolecular reconfiguration that one typically associates with viscoelastic response.
NASA Astrophysics Data System (ADS)
Li, Jianqiang; Yin, Chunjing; Chen, Hao; Yin, Feifei; Dai, Yitang; Xu, Kun
2014-11-01
The envisioned C-RAN concept in wireless communication sector replies on distributed antenna systems (DAS) which consist of a central unit (CU), multiple remote antenna units (RAUs) and the fronthaul links between them. As the legacy and emerging wireless communication standards will coexist for a long time, the fronthaul links are preferred to carry multi-band multi-standard wireless signals. Directly-modulated radio-over-fiber (ROF) links can serve as a lowcost option to make fronthaul connections conveying multi-band wireless signals. However, directly-modulated radioover- fiber (ROF) systems often suffer from inherent nonlinearities from directly-modulated lasers. Unlike ROF systems working at the single-band mode, the modulation nonlinearities in multi-band ROF systems can result in both in-band and cross-band nonlinear distortions. In order to address this issue, we have recently investigated the multi-band nonlinear behavior of directly-modulated DFB lasers based on multi-dimensional memory polynomial model. Based on this model, an efficient multi-dimensional baseband digital predistortion technique was developed and experimentally demonstrated for linearization of multi-band directly-modulated ROF systems.
To measure airborne asbestos and other fibers, an air sample must represent the actual number and size of fibers. Typically, mixed cellulose ester (MCE, 0.45 or 0.8 µm pore size) and to a much lesser extent, capillary-pore polycarbonate (PC, 0.4 µm pore size) membrane filters are...
Takeda, Atsushi; Kanno, Shingo; Sakurada, Naomi; Ando, Masaki; Oku, Naoto
2008-10-01
The role of zinc in long-term potentiation (LTP) at hippocampal mossy fiber synapses is controversial because of the contrary results obtained when using zinc chelators. On the basis of the postulation that exogenous zinc enhances the action of zinc released from mossy fibers, mossy fiber LTP after tetanic stimulation (100 Hz, 1 sec) was checked in the presence of exogenous zinc at low micromolar concentrations. Mossy fiber LTP was significantly attenuated in the presence of 5-30 microM ZnCl(2), and the amplitude of field excitatory postsynaptic potentials 60 min after tetanic stimulation was decreased to almost the basal level. Mossy fiber LTP was also attenuated in the presence of 5 microM ZnCl(2) 5 min after tetanic stimulation. The present study is the first to demonstrate that low micromolar concentrations of zinc attenuate mossy fiber LTP. When mossy fiber LTP was induced in the presence of CaEDTA and ZnAF-2 DA, a membrane-impermeable and a membrane-permeable zinc chelator, respectively, extracellular and intracellular chelation of zinc enhanced a transient posttetanic potentiation (PTP) without altering LTP. It is likely that zinc released by tetanic stimulation is immediately taken up into the mossy fibers and attenuates mossy fiber PTP. These results suggest that attenuation of PTP rather than LTP at mossy fiber synapses is a more physiological role for endogenous zinc. Targeting molecules of zinc in mossy fiber LTP seem to be different between during and after LTP induction because of the differential synaptic activity between them. (c) 2008 Wiley-Liss, Inc.
Lou, Chaoyan; Guo, Dandan; Zhang, Kai; Wu, Can; Zhang, Peimin; Zhu, Yan
2018-05-12
Phthalate esters (PAEs) are a group of serious environmental pollutants, which lead to carcinogenicity or tumorigenicity in human body. In this study, a rapid, sensitive and green method by graphene oxide coated hollow fiber membrane extraction (GO-HFME) coupled with supercritical fluid chromatography (SFC) was proposed for the determination of 11 phthalate esters in bottled beverages. Graphene oxide (GO) was prepared and coated onto a porous hollow fiber membrane (HFM) to reinforce the efficiency of membrane extraction. The modified hollow fiber membrane was employed for the extraction of phthalate esters from bottled beverages prior to the determination by the supercritical fluid chromatography with UV detection. To achieve the maximum extraction efficiency, several parameters were investigated including GO concentration, extraction time, desorption solution and desorption time. SFC variables including stationary phase, modifier composition and percentage, column temperature, flow rate and backpressure were studied to improve the separation conditions. Under these optimized conditions, all the studied 11 phthalate esters were well separated and simultaneously determined in 7 min by SFC. The performance of the developed method was evaluated. Good linearity was observed (R ≥ 0.999) in the range of 0.02-10.0 μg/mL with limit of detection (LOD, S/N = 3) ranging from 1.5 to 3.0 ng/mL. Recoveries of all the PAEs for the spiked samples were between 92.1% and 99.3% with satisfactory relative standard deviations (RSD) less than 5.9%. The proposed method is time-saving, green, simple and robust, which will be an alternative way to the analysis of PAEs in real samples. Copyright © 2018 Elsevier B.V. All rights reserved.
Holzweber, Markus; Lippitz, Andreas; Krueger, Katharina; Jankowski, Joachim; Unger, Wolfgang E S
2015-03-24
The surfaces of polymeric dialyzer membranes consisting of polysulfone and polyvinylpyrrolidone were investigated regarding the lateral distribution and quantitative surface composition using time-of-flight secondary-ion-mass-spectrometry and x-ray photoelectron spectroscopy. Knowledge of the distribution and composition on the outer surface region is of utmost importance for understanding the biocompatibility of such dialyzer membranes. Both flat membranes and hollow fiber membranes were studied.
NASA Astrophysics Data System (ADS)
Kant, Ravi; Tabassum, Rana; Gupta, Banshi D.
2017-05-01
Caffeine is the most popular psychoactive drug consumed in the world for improving alertness and enhancing wakefulness. However, caffeine consumption beyond limits can result in lot of physiological complications in human beings. In this work, we report a novel detection scheme for caffeine integrating nanohybrid membranes of reduced graphene oxide (rGO) in chitosan modified silica sol gel (rGO: chitosan: silica sol gel) with fiber optic surface plasmon resonance. The chemically synthesized nanohybrid membrane forming the sensing route has been dip coated over silver coated unclad central portion of an optical fiber. The sensor works on the mechanism of modification of dielectric function of sensing layer on exposure to analyte solution which is manifested in terms of red shift in resonance wavelength. The concentration of rGO in polymer network of chitosan and silica sol gel and dipping time of the silver coated probe in the solution of nanohybrid membrane have been optimized to extricate the supreme performance of the sensor. The optimized sensing probe possesses a reasonably good sensitivity and follows an exponentially declining trend within the entire investigating range of caffeine concentration. The sensor boasts of an unparalleled limit of detection value of 1.994 nM and works well in concentration range of 0-500 nM with a response time of 16 s. The impeccable sensor methodology adopted in this work combining fiber optic SPR with nanotechnology furnishes a novel perspective for caffeine determination in commercial foodstuffs and biological fluids.
Cations as switches of amyloid-mediated membrane disruption mechanisms: calcium and IAPP.
Sciacca, Michele F M; Milardi, Danilo; Messina, Grazia M L; Marletta, Giovanni; Brender, Jeffrey R; Ramamoorthy, Ayyalusamy; La Rosa, Carmelo
2013-01-08
Disruption of the integrity of the plasma membrane by amyloidogenic proteins is linked to the pathogenesis of a number of common age-related diseases. Although accumulating evidence suggests that adverse environmental stressors such as unbalanced levels of metal ions may trigger amyloid-mediated membrane damage, many features of the molecular mechanisms underlying these events are unknown. Using human islet amyloid polypeptide (hIAPP, aka amylin), an amyloidogenic peptide associated with β-cell death in type 2 diabetes, we demonstrate that the presence of Ca(2+) ions inhibits membrane damage occurring immediately after the interaction of freshly dissolved hIAPP with the membrane, but significantly enhances fiber-dependent membrane disruption. In particular, dye leakage, quartz crystal microbalance, atomic force microscopy, and NMR experiments show that Ca(2+) ions promote a shallow membrane insertion of hIAPP, which leads to the removal of lipids from the bilayer through a detergent-like mechanism triggered by fiber growth. Because both types of membrane-damage mechanisms are common to amyloid toxicity by most amyloidogenic proteins, it is likely that unregulated ion homeostasis, amyloid aggregation, and membrane disruption are all parts of a self-perpetuating cycle that fuels amyloid cytotoxicity. Copyright © 2013 Biophysical Society. Published by Elsevier Inc. All rights reserved.
The Secretory Response of Rat Peritoneal Mast Cells on Exposure to Mineral Fibers.
Borelli, Violetta; Trevisan, Elisa; Francesca, Vita; Zabucchi, Giuliano
2018-01-10
Exposure to mineral fibers is of substantial relevance to human health. A key event in exposure is the interaction with inflammatory cells and the subsequent generation of pro-inflammatory factors. Mast cells (MCs) have been shown to interact with titanium oxide (TiO₂) and asbestos fibers. In this study, we compared the response of rat peritoneal MCs challenged with the asbestos crocidolite and nanowires of TiO₂ to that induced by wollastonite employed as a control fiber. Rat peritoneal MCs (RPMCs), isolated from peritoneal lavage, were incubated in the presence of mineral fibers. The quantities of secreted enzymes were evaluated together with the activity of fiber-associated enzymes. The ultrastructural morphology of fiber-interacting RPMCs was analyzed with electron microscopy. Asbestos and TiO₂ stimulate MC secretion. Secreted enzymes bind to fibers and exhibit higher activity. TiO₂ and wollastonite bind and improve enzyme activity, but to a lesser degree than crocidolite. (1) Mineral fibers are able to stimulate the mast cell secretory process by both active (during membrane interaction) and/or passive (during membrane penetration) interaction; (2) fibers can be found to be associated with secreted enzymes-this process appears to create long-lasting pro-inflammatory environments and may represent the active contribution of MCs in maintaining the inflammatory process; (3) MCs and their enzymes should be considered as a therapeutic target in the pathogenesis of asbestos-induced lung inflammation; and (4) MCs can contribute to the inflammatory effect associated with selected engineered nanomaterials, such as TiO₂ nanoparticles.
Calpain cleavage within dysferlin exon 40a releases a synaptotagmin-like module for membrane repair
Redpath, G. M. I.; Woolger, N.; Piper, A. K.; Lemckert, F. A.; Lek, A.; Greer, P. A.; North, K. N.; Cooper, S. T.
2014-01-01
Dysferlin and calpain are important mediators of the emergency response to repair plasma membrane injury. Our previous research revealed that membrane injury induces cleavage of dysferlin to release a synaptotagmin-like C-terminal module we termed mini-dysferlinC72. Here we show that injury-activated cleavage of dysferlin is mediated by the ubiquitous calpains via a cleavage motif encoded by alternately spliced exon 40a. An exon 40a–specific antibody recognizing cleaved mini-dysferlinC72 intensely labels the circumference of injury sites, supporting a key role for dysferlinExon40a isoforms in membrane repair and consistent with our evidence suggesting that the calpain-cleaved C-terminal module is the form specifically recruited to injury sites. Calpain cleavage of dysferlin is a ubiquitous response to membrane injury in multiple cell lineages and occurs independently of the membrane repair protein MG53. Our study links calpain and dysferlin in the calcium-activated vesicle fusion of membrane repair, placing calpains as upstream mediators of a membrane repair cascade that elicits cleaved dysferlin as an effector. Of importance, we reveal that myoferlin and otoferlin are also cleaved enzymatically to release similar C-terminal modules, bearing two C2 domains and a transmembrane domain. Evolutionary preservation of this feature highlights its functional importance and suggests that this highly conserved C-terminal region of ferlins represents a functionally specialized vesicle fusion module. PMID:25143396
Hairlike Percutaneous Photochemical Sensors
NASA Technical Reports Server (NTRS)
George, Thomas; Loeb, Gerald
2004-01-01
Instrumentation systems based on hairlike fiber-optic photochemical sensors have been proposed as minimally invasive means of detecting biochemicals associated with cancer and other diseases. The fiber-optic sensors could be mass-produced as inexpensive, disposable components. The sensory tip of a fiber-optic sensor would be injected through the patient's skin into subcutaneous tissue. A biosensing material on the sensory tip would bind or otherwise react with the biochemical(s) of interest [the analyte(s)] to produce a change in optical properties that would be measured by use of an external photonic analyzer. After use, a fiber-optic sensor could be simply removed by plucking it out with tweezers. A fiber-optic sensor according to the proposal would be of the approximate size and shape of a human hair, and its sensory tip would resemble a follicle. Once inserted into a patient's subcutaneous tissue, the sensor would even more closely resemble a hair growing from a follicle (see Figure 1). The biosensing material on the sensory tip could consist of a chemical and/or cells cultured and modified for the purpose. The biosensing material would be contained within a membrane that would cover the tip. If the membrane were not permeable by an analyte, then it would be necessary to create pores in the membrane that would be large enough to allow analyte molecules to diffuse to the biosensing material, but not so large as to allow cells (if present as part of the biosensing material) to diffuse out. The end of the fiber-optic sensor opposite the sensory tip would be inserted in a fiberoptic socket in the photonic analyzer.
Array of planar membrane modules for producing hydrogen
Vencill, Thomas R [Albuquerque, NM; Chellappa, Anand S [Albuquerque, NM; Rathod, Shailendra B [Hillsboro, OR
2012-05-08
A shared or common environment membrane reactor containing a plurality of planar membrane modules with top and bottom thin foil membranes supported by both an intermediary porous support plate and a central base which has both solid extended members and hollow regions or a hollow region whereby the two sides of the base are in fluid communication. The membrane reactor operates at elevate temperatures for generating hydrogen from hydrogen rich feed fuels.
NASA Astrophysics Data System (ADS)
Abu-Thabit, Nedal Y.; Basheer, Rafil A.
2014-09-01
Electrically conductive composite membranes (ECCMs) composed of cotton fibers, conductive polyaniline and silver nanostructures were prepared and utilized as electrifying filter membranes for water sterilization. Silver metal and polyaniline were formed in situ during the oxidative polymerization of aniline monomers in the presence of silver nitrate as weak oxidizing agent. The reaction was characterized by long induction period and the morphology of the obtained ECCMs contained silver nanoparticles and silver flakes of 500-1000 nm size giving a membrane electrical resistance in the range of 10-30 Ohm sq-1. However, when dimethylformamide (DMF) was employed as an auxiliary reducing agent to trigger and speed up the polymerization reaction, silver nanostructures such as wires, ribbons, plates were formed and were found to be embedded between polyaniline coating and cotton fibers. These ECCMs exhibited a slightly lower resistance in the range of 2-10 Ohm sq.-1 and, therefore, were utilized for the fabrication of a bacteria inactivation device. When water samples containing 107-108 CFU mL-1 E. coli bacteria were passed through the prepared ECCMs by gravity force, with a filtration rate of 0.8 L h-1 and at an electric potential of 20 V, the fabricated device showed 92% bacterial inactivation efficiency. When the treated solution was passed through the membrane for a second time under the same conditions, no E. coli bacteria was detected.
Food production and gas exchange system using blue-green alga (spirulina) for CELSS
NASA Technical Reports Server (NTRS)
Oguchi, Mitsuo; Otsubo, Koji; Nitta, Keiji; Hatayama, Shigeki
1987-01-01
In order to reduce the cultivation area required for the growth of higher plants in space adoption of algae, which have a higher photosynthetic ability, seems very suitable for obtaining oxygen and food as a useful source of high quality protein. The preliminary cultivation experiment for determining optimum cultivation conditions and for obtaining the critical design parameters of the cultivator itself was conducted. Spirulina was cultivated in the 6 liter medium containing a sodium hydrogen carbonate solution and a cultivation temperature controlled using a thermostat. Generated oxygen gas was separated using a polypropyrene porous hollow fiber membrane module. Through this experiment, oxygen gas (at a concentration of more than 46 percent) at a rate of 100 to approx. 150 ml per minute could be obtained.
Ahn, Tae-Jung; Jung, Yongmin; Oh, Kyunghwan; Kim, Dug Young
2005-12-12
We propose a new chromatic dispersion measurement method for the higher-order modes of an optical fiber using optical frequency modulated continuous-wave (FMCW) interferometry. An optical fiber which supports few excited modes was prepared for our experiments. Three different guiding modes of the fiber were identified by using far-field spatial beam profile measurements and confirmed with numerical mode analysis. By using the principle of a conventional FMWC interferometry with a tunable external cavity laser, we have demonstrated that the chromatic dispersion of a few-mode optical fiber can be obtained directly and quantitatively as well as qualitatively. We have also compared our measurement results with those of conventional modulation phase-shift method.
Deng, Xiao Long; Takami, Tomohide; Son, Jong Wan; Kang, Eun Ji; Kawai, Tomoji; Park, Bae Ho
2013-08-01
An alternating current (AC) voltage modulation was applied to ion-selective observations with plasticized poly(vinyl chloride) membranes in glass nanopipettes. The liquid confronting the membranes in the nanopipettes, the conditioning process, and AC voltage modulation play important roles in the ion-selective detection. In the AC detection system developed by us, where distilled water was used as the liquid within the nanopipettes, potassium ions were selectively detected in the sample solution of sodium and potassium ions because sodium ions were captured at the membrane containing bis(12-crown-4) ionophores, before the saturation of the ionophores. The membrane lost the selectivity after the saturation. On using sodium chloride as the liquid within the nanopipette, the membrane selectively detected potassium and sodium ions before and after the saturation of ionophores, respectively. The ion-selective detection of our system can be explained by the ion extraction-diffusion-dissolution mechanism through the bis(12-crown-4) ionophores with AC voltage modulation.
Fiber intake modulates the association of alcohol intake with breast cancer.
Romieu, Isabelle; Ferrari, Pietro; Chajès, Veronique; de Batlle, Jordi; Biessy, Carine; Scoccianti, Chiara; Dossus, Laure; Christine Boutron, Marie; Bastide, Nadia; Overvad, Kim; Olsen, Anja; Tjønneland, Anne; Kaaks, Rudolf; Boeing, Heiner; Trichopoulou, Antonia; Lagiou, Pagona; Trichopoulos, Dimitrios; Palli, Domenico; Sieri, Sabina; Tumino, Rosario; Vineis, Paolo; Panico, Salvatore; Bueno-de-Mesquita, H B As; Gils, Carla H; Peeters, Petra H; Lund, Eiliv; Skeie, Guri; Weiderpass, Elisabete; Ramón Quirós, J; Chirlaque, María-Dolores; Ardanaz, Eva; Sánchez, María-José; Duell, Eric J; Amiano Etxezarreta, Pilar; Borgquist, Signe; Hallmans, Göran; Johansson, Ingegerd; Maria Nilsson, Lena; Khaw, Kay-Tee; Wareham, Nick; Key, Timothy J; Travis, Ruth C; Murphy, Neil; Wark, Petra A; Riboli, Elio
2017-01-15
Alcohol intake has been related to an increased risk of breast cancer (BC) while dietary fiber intake has been inversely associated to BC risk. A beneficial effect of fibers on ethanol carcinogenesis through their impact on estrogen levels is still controversial. We investigated the role of dietary fiber as a modifying factor of the association of alcohol and BC using data from the European Prospective Investigation into Cancer and Nutrition (EPIC). This study included 334,850 women aged 35-70 years at baseline enrolled in the ten countries of the EPIC study and followed up for 11.0 years on average. Information on fiber and alcohol intake at baseline and average lifetime alcohol intake were calculated from country-specific dietary and lifestyle questionnaires. Hazard ratios (HR) of developing invasive BC according to different levels of alcohol and fiber intake were computed. During 3,670,439 person-years, 11,576 incident BC cases were diagnosed. For subjects with low intake of fiber (<18.5 g/day), the risk of BC per 10 g/day of alcohol intake was 1.06 (1.03-1.08) while among subjects with high intake of fiber (>24.2 g/day) the risk of BC was 1.02 (0.99-1.05) (test for interaction p = 0.011). This modulating effect was stronger for fiber from vegetables. Our results suggest that fiber intake may modulate the positive association of alcohol intake and BC. Alcohol is well known to increase the risk for BC, while a fiber-rich diet has the opposite effect. Here the authors find a significant interaction between both lifestyle factors indicating that high fiber intake can ease the adverse effects associated with alcohol consumption. Consequently, women with high alcohol intake and low fiber intake (<18.5 g/day) had the highest risk for BC. Specific benefits were associated with fibers from vegetable, warranting further investigations into specific fiber sources and their mechanistic interactions with alcohol-induced BC risk. © 2016 UICC.
Operational Experience with the Internal Thermal Control System Dual-Membrane Gas Trap
NASA Technical Reports Server (NTRS)
Leimkuehler, Thomas O.; Lukens, Clark; Reeves, Daniel R.; Holt, James M.
2003-01-01
A dual-membrane gas trap is currently used to remove non-condensed gases (NCG) from the Internal Thermal Control System (ITCS) coolant on board the International Space Station. The gas trap consists of concentric tube membrane pairs, comprised of outer hydrophilic tubes and inner hydrophobic fibers. Liquid coolant passes through the outer hydrophilic membrane, which traps the NCG. The inner hydrophobic fiber allows the trapped NCG to pass through and vent to the ambient atmosphere in the cabin. The purpose of the gas trap is to prevent gas bubbles from causing depriming, overspeed, and shutdown of the ITCS pump, and the current gas trap has performed flawlessly in this regard. However, because of actual operational conditions on-orbit, its gas removal performance and operational lifetime have been affected. This paper discusses experiences with several of these dual- membrane gas traps, including on-orbit gas venting rate, effects due to the presence of nickel in the ITCS coolant, and subsequent refurbishing to remove the nickel from the gas trap.
Research News: Emulsion Liquid Membrane Extraction in a Hollow-Fiber Contactor
NASA Technical Reports Server (NTRS)
Wiencek, John M.; Hu, Shih-Yao
2000-01-01
This article describes how ELMs (emulsion liquid membranes) can be used for extraction. The article addresses the disadvantages of ELM extraction in a stirred contactor, and the advantages of SELMs (supported emulsion liquid membranes). The introduction of the article provides background information on liquid-liquid solvent extraction and dispersion-free solvent extraction.
Bacteria/virus filter membrane
NASA Technical Reports Server (NTRS)
Lysaght, M. S.; Goodwin, F.; Roebelen, G.
1977-01-01
Hollow acrylate fiber membrane that filters bacterial and viral organisms can be used with closed-cycle life-support systems for underwater habitations or laboratories. Membrane also has applications in fields of medicine, gnotobiotics, pharmaceutical production, and industries and research facilities that require sterile water. Device eliminates need for strong chemicals or sterilizing agents, thereby reducing costs.
Lou, Chaoyan; Guo, Dandan; Wang, Nani; Wu, Shuchao; Zhang, Peimin; Zhu, Yan
2017-06-02
An online membrane-based distillation (MBD) coupled with ion chromatography (IC) method was proposed for automatic detection of trace fluoride (F - ) in serum and urine samples. The system consisted of a sample vessel, a lab-made membrane module and an ion chromatograph. Hydrophobic polytetrafluoroethylene (PTFE) hollow fiber membrane was used in MBD which was directly performed in serum and urine samples to eliminate the matrix interferences and enrich fluoride, while enabling automation. The determination of fluoride in biological samples was carried out by IC with suppressed conductometric detection. The proposed method feasibly determined trace fluoride in serum and urine matrices with the optimized parameters, such as acid concentration, distillation temperature, and distillation time, etc. Fluoride exhibited satisfactory linearity in the range of 0.01-5.0mg/L with a correlation coefficient of 0.9992. The limit of detection (LOD, S/N=3) and limit of quantification (LOQ, S/N=10) were 0.78μg/L and 2.61μg/L, respectively. The relative standard deviations of peak area and peak height were all less than 5.15%. The developed method was validated for the determination of fluoride in serum and urine with good spiked recoveries ranging between 97.1-101.9%. This method also can be proposed as a suitable alternative for the analysis of fluoride in other complex biological samples. Copyright © 2017. Published by Elsevier B.V.
Performance Evaluation of Membrane-Based Septic Tank and Its Reuse Potential for Irrigating Crops.
Khalid, Mehwish; Hashmi, Imran; Khan, Sher Jamal
2017-08-01
Membrane technology, being the most emerging wastewater treatment option, has gained substantial importance with the massive objective of the reuse potential of wastewater. Keeping this in view, the present study was conducted with the rationale to evaluate the performance efficiency of membrane-based septic tank (MBST), and its reuse perspective for irrigating crops. The septic tank was designed by submerging a woven fiber microfiltration membrane module to treat domestic wastewater. Three crops Triticum aestivum (wheat), Coriandrum sativum (coriander), and Mentha arvensis (mint) were selected to be irrigated with treated MBST effluent, untreated wastewater, and tap water (as a control) for comparative growth analysis. Two pathogenic strains, Escherichia coli and Salmonella sp. were selected as reference microbes and their translocation rate was observed in root, shoot, and leaves. Upon maturity, the roots, shoots, and leaves of the above-mentioned plants were aseptically removed for microbiological analysis. Strains were analyzed, using analytical profile index and PCR analysis. Maximum removal efficiencies for MBST in terms of chemical oxygen demand (COD), turbidity, nutrients deduction (phosphorus), and indicator bacteria (Escherichia coli) were found to be 73, 96, 48, and 88%, respectively. Significant bacterial load reduction (p < 0.001) in terms of E. coli (3.8 log CFU/100 mL) and helminths (2 eggs/L) was observed in treated water. High plant yield was observed when irrigated with treated water as compared to tap water, as minimal nutrient removal (48%) was recorded in treated water, with the germination percentage of 88.8%.
Gjelstad, Astrid; Rasmussen, Knut Einar; Pedersen-Bjergaard, Stig
2006-08-18
Twenty different basic drugs were electrokinetically extracted across a thin artificial organic liquid membrane with a 300 V d.c. electrical potential difference as the driving force. From a 300 microl aqueous sample (acidified corresponding to 10mM HCl), the drugs were extracted for 5 min through a 200 microm artificial liquid membrane of a water immiscible organic solvent immobilized in the pores of a polypropylene hollow fiber, and into a 30 microl aqueous acceptor solution of 10mM HCl inside the lumen of the hollow fiber. Hydrophobic basic drugs (logP>1.7) were effectively isolated utilizing 2-nitrophenyl octyl ether (NPOE) as the artificial liquid membrane, with recoveries up to 83%. For more hydrophilic basic drugs (logP<1.0), a mixture of NPOE and 25% (w/w) di-(2-ethylhexyl) phosphate (DEHP) was required to ensure efficient extraction, resulting in recoveries up to 75%. DEHP was expected to act as an ion-pair reagent ion-pairing the protonated hydrophilic drugs at the interface between the sample and the membrane, resulting in permeation of the interface.
Cross-phase-modulation-induced instability in photonic-crystal fibers.
Serebryannikov, E E; Konorov, S O; Ivanov, A A; Alfimov, M V; Scalora, M; Zheltikov, A M
2005-08-01
Cross-phase-modulation-induced instability is identified as a significant mechanism for efficient parametric four-wave-mixing frequency conversion in photonic-crystal fibers. Fundamental-wavelength femtosecond pulses of a Cr, forsterite laser are used in our experiments to transform the spectrum of copropagating second-harmonic pulses of the same laser in a photonic-crystal fiber. Efficient generation of sidebands shifted by more than 80 THz with respect to the central frequency of the second harmonic is observed in the output spectrum of the probe field.
Characterization of fiber diameter using image analysis
NASA Astrophysics Data System (ADS)
Baheti, S.; Tunak, M.
2017-10-01
Due to high surface area and porosity, the applications of nanofibers have increased in recent years. In the production process, determination of average fiber diameter and fiber orientation is crucial for quality assessment. The objective of present study was to compare the relative performance of different methods discussed in literature for estimation of fiber diameter. In this work, the existing automated fiber diameter analysis software packages available in literature were developed and validated based on simulated images of known fiber diameter. Finally, all methods were compared for their reliable and accurate estimation of fiber diameter in electro spun nanofiber membranes based on obtained mean and standard deviation.
Nanomechanical Optical Fiber with Embedded Electrodes Actuated by Joule Heating.
Lian, Zhenggang; Segura, Martha; Podoliak, Nina; Feng, Xian; White, Nicholas; Horak, Peter
2014-07-31
Nanomechanical optical fibers with metal electrodes embedded in the jacket were fabricated by a multi-material co-draw technique. At the center of the fibers, two glass cores suspended by thin membranes and surrounded by air form a directional coupler that is highly temperature-dependent. We demonstrate optical switching between the two fiber cores by Joule heating of the electrodes with as little as 0.4 W electrical power, thereby demonstrating an electrically actuated all-fiber microelectromechanical system (MEMS). Simulations show that the main mechanism for optical switching is the transverse thermal expansion of the fiber structure.
Deciphering the BAR code of membrane modulators.
Salzer, Ulrich; Kostan, Julius; Djinović-Carugo, Kristina
2017-07-01
The BAR domain is the eponymous domain of the "BAR-domain protein superfamily", a large and diverse set of mostly multi-domain proteins that play eminent roles at the membrane cytoskeleton interface. BAR domain homodimers are the functional units that peripherally associate with lipid membranes and are involved in membrane sculpting activities. Differences in their intrinsic curvatures and lipid-binding properties account for a large variety in membrane modulating properties. Membrane activities of BAR domains are further modified and regulated by intramolecular or inter-subunit domains, by intermolecular protein interactions, and by posttranslational modifications. Rather than providing detailed cell biological information on single members of this superfamily, this review focuses on biochemical, biophysical, and structural aspects and on recent findings that paradigmatically promote our understanding of processes driven and modulated by BAR domains.
ESTIMATION OF SHEAR STRESS WORKING ON SUBMERGED HOLLOW FIBRE MEMBRANE BY CFD METHOD IN MBRs
NASA Astrophysics Data System (ADS)
Zaw, Hlwan Moe; Li, Tairi; Nagaoka, Hiroshi
This study was conducted to evaluate shear stress working on submerged hollow fibre membrane by CFD (Computation Fluid Dynamics) method in MBRs. Shear stress on hollow fibre membrane caused by aeration was measured directly using a two-direction load sensor. The measurement of water-phase flow velocity was done also by using laser doppler velocimeter. It was confirmed that the shear stress was possible to be evaluated from the water-phase flow velocityby the result of comparison of time average shear stress actually measured with one hollow fibre membrane and the one calculated by the water-phase flow velocity. In the estimation of the water-phase flow velocity using the CFD method, time average water-phase flow velocity estimated by consideration of the fluid resistance of the membrane module nearly coincided with the measured values, and it was shown that it was possible to be estimated also within the membrane module. Moreover, the measured shear stress and drag force well coincided with the values calculated from the estimated water-phase flow velocity outside of membrane module and in the center of membrane module, and it was suggested that the shear stress on the hollow fibre membrane could be estimated by the CFD method in MBRs.
Bautista-Flores, Ana Nelly; de San Miguel, Eduardo Rodríguez; de Gyves, Josefina; Jönsson, Jan Åke
2011-01-01
Nickel (II) preconcentration and speciation analysis using a hollow fiber supported liquid membrane (HFSLM) device was studied. A counterflow of protons coupled to complexation with formate provided the driving force of the process, while Kelex 100 was employed as carrier. The influence of variables related to module configuration (acceptor pH and carrier concentration) and to the sample properties (donor pH) on the preconcentration factor, E, was simultaneously studied and optimized using a 3 factor Doehlert matrix response surface methodology. The effect of metal concentration was studied as well. Preconcentration factors as high as 4240 were observed depending on the values of the different variables. The effects of the presence of inorganic anions (NO2−, SO42−, Cl−, NO3−, CO32−, CN−) and dissolved organic matter (DOM) in the form of humic acids were additionally considered in order to carry out a speciation analysis study. Nickel preconcentration was observed to be independent of both effects, except when cyanide was present in the donor phase. A characterization of the transport regime was performed through the analysis of the dependence of E on the temperature. E increases with the increase in temperature according to the equation E(K) = −8617.3 + 30.5T with an activation energy of 56.7 kJ mol−1 suggesting a kinetic-controlled regime. Sample depletion ranged from 12 to 1.2% depending on the volume of the donor phase (100 to 1000 mL, respectively). PMID:24957733
Zhang, Qinduan; Chang, Jun; Wang, Zongliang; Wang, Fupeng; Qin, Zengguang
2017-01-01
We proposed a new method for gas detection in photoacoustic spectroscopy based on acousto-optic Q-switched fiber laser by merging a transmission PAS cell (resonant frequency f0 = 5.3 kHz) inside the fiber laser cavity. The Q-switching was achieved by an acousto-optic modulator, achieving a peak pulse power of ~679 mW in the case of the acousto-optic modulation signal with an optimized duty ratio of 10%. We used a custom-made fiber Bragg grating with a central wavelength of 1530.37 nm (the absorption peak of C2H2) to select the laser wavelength. The system achieved a linear response (R2 = 0.9941) in a concentration range from 400 to 7000 ppmv, and the minimum detection limit compared to that of a conventional intensity modulation system was enhanced by 94.2 times. PMID:29295599
3D silicon neural probe with integrated optical fibers for optogenetic modulation.
Kim, Eric G R; Tu, Hongen; Luo, Hao; Liu, Bin; Bao, Shaowen; Zhang, Jinsheng; Xu, Yong
2015-07-21
Optogenetics is a powerful modality for neural modulation that can be useful for a wide array of biomedical studies. Penetrating microelectrode arrays provide a means of recording neural signals with high spatial resolution. It is highly desirable to integrate optics with neural probes to allow for functional study of neural tissue by optogenetics. In this paper, we report the development of a novel 3D neural probe coupled simply and robustly to optical fibers using a hollow parylene tube structure. The device shanks are hollow tubes with rigid silicon tips, allowing the insertion and encasement of optical fibers within the shanks. The position of the fiber tip can be precisely controlled relative to the electrodes on the shank by inherent design features. Preliminary in vivo rat studies indicate that these devices are capable of optogenetic modulation simultaneously with 3D neural signal recording.
Zhang, Qinduan; Chang, Jun; Wang, Qiang; Wang, Zongliang; Wang, Fupeng; Qin, Zengguang
2017-12-25
We proposed a new method for gas detection in photoacoustic spectroscopy based on acousto-optic Q-switched fiber laser by merging a transmission PAS cell (resonant frequency f ₀ = 5.3 kHz) inside the fiber laser cavity. The Q-switching was achieved by an acousto-optic modulator, achieving a peak pulse power of ~679 mW in the case of the acousto-optic modulation signal with an optimized duty ratio of 10%. We used a custom-made fiber Bragg grating with a central wavelength of 1530.37 nm (the absorption peak of C₂H₂) to select the laser wavelength. The system achieved a linear response (R² = 0.9941) in a concentration range from 400 to 7000 ppmv, and the minimum detection limit compared to that of a conventional intensity modulation system was enhanced by 94.2 times.
NASA Astrophysics Data System (ADS)
Gillooly, A.; Webb, A. S.; Favero, F. C.; Bouchan, T.; Cooper, L. J.; Read, D.; Hill, M.
2017-02-01
An ytterbium (Yb) doped polarizing fiber is demonstrated. The fiber offers the opportunity to build all-fiber lasers with single polarization output and without the need for free-space polarizing components. Traditional single polarization fiber lasers utilize polarization-maintaining (PM) gain fiber with a single polarization stimulation signal. Whilst this results in an approximation to a single polarization laser, the spontaneous emission from the unstimulated polarization state limits the polarization extinction ratio (PER). The PER is further limited as the stimulated signal is prone to crosstalk. Furthermore, controlling amplitude modulation of the stimulated signal is critical for maximizing the peak power of an optical pulse, particularly for high energy lasers. If light is allowed to leak in to the unstimulated axis it will travel at a different velocity to the stimulated axis and can cross-couple back into the signal axis, creating an interference effect which leads to amplitude modulation on the signal pulse. Single-polarization Yb-doped fiber ensures that light on the fast axis is constantly attenuated; ensuring that light on the unstimulated axis cannot propagate and thus cannot degrade the PER or create amplitude modulation. In this paper we report on, to the best of our knowledge, the first demonstration of a single polarization Yb-doped bowtie optical fiber manufactured using a combination of Modified Chemical Vapor Deposition (MCVD) and rare-earth solution doping technology. The fiber has a single-polarization window of 80nm at the operating wavelength of 1060nm and a PER of >18dB. The fabrication and characterization of the fiber is reported.
Constant envelope OFDM scheme for 6PolSK-QPSK
NASA Astrophysics Data System (ADS)
Li, Yupeng; Ding, Ding
2018-03-01
A constant envelope OFDM scheme with phase modulator (PM-CE-OFDM) for 6PolSK-QPSK modulation was demonstrated. Performance under large fiber launch power is measured to check its advantages in counteracting fiber nonlinear impairments. In our simulation, PM-CE-OFDM, RF-assisted constant envelope OFDM (RF-CE-OFDM) and conventional OFDM (Con-OFDM) are transmitted through 80 km standard single mode fiber (SSMF) single channel and WDM system. Simulation results confirm that PM-CE-OFDM has best performance in resisting fiber nonlinearity. In addition, benefiting from the simple system structure, the complexity and cost of PM-CE-OFDM system could be reduced effectively.
Modal noise impact in radio over fiber multimode fiber links.
Gasulla, I; Capmany, J
2008-01-07
A novel analysis is given on the statistics of modal noise for a graded-index multimode fiber (MMF) link excited by an analog intensity modulated laser diode. We present the speckle contrast as a function of the power spectrum of the modulated source and the transfer function of the MMF which behaves as an imperfect transversal microwave photonic filter. The theoretical results confirm that the modal noise is directly connected with the coherence properties of the optical source and show that the performance of high-frequency Radio Over Fiber (ROF) transmission through MMF links for short and middle reach distances is not substantially degraded by modal noise.
High power, high efficiency, continuous-wave supercontinuum generation using standard telecom fibers
NASA Astrophysics Data System (ADS)
Arun, S.; Choudhury, Vishal; Balaswamy, V.; Prakash, Roopa; Supradeepa, V. R.
2018-04-01
We demonstrate a simple module for octave spanning continuous-wave supercontinuum generation using standard telecom fiber. This module can accept any high power Ytterbium-doped fiber laser as input. The input light is transferred into the anomalous dispersion region of the telecom fiber through a cascade of Raman shifts. A recently proposed Raman laser architecture with distributed feedback efficiently performs these Raman conversions. A spectrum spanning over 1000nm(>1 octave) from 880-1900nm is demonstrated. The average power from the supercontinuum is ~34W with a high conversion efficiency of 44%. Input wavelength agility is demonstrated with similar supercontinua over a wide input wavelength range.
ADENOVIRUS INTERACTION WITH ITS CELLULAR RECEPTOR CAR.
DOE Office of Scientific and Technical Information (OSTI.GOV)
HOWITT,J.; ANDERSON,C.W.; FREIMUTH,P.
The mechanism of adenovirus attachment to the host cell plasma membrane has been revealed in detail by research over the past 10 years. It has long been known that receptor binding activity is associated with the viral fibers, trimeric spike proteins that protrude radially from the vertices of the icosahedral capsid (Philipson et al. 1968). In some adenovirus serotypes, fiber and other virus structural proteins are synthesized in excess and accumulate in the cell nucleus during late stages of infection. Fiber protein can be readily purified from lysates of cells infected with subgroup C viruses, for example Ad2 and Ad5more » (Boulanger and Puvion 1973). Addition of purified fiber protein to virus suspensions during adsorption strongly inhibits infection, indicating that fiber and intact virus particles compete for binding sites on host cells (Philipson et al. 1968; Hautala et al. 1998). Cell binding studies using purified radiolabeled fiber demonstrated that fiber binds specifically and with high affinity to the cell plasma membrane, and that cell lines typically used for laboratory propagation of adenovirus have approximately 10{sup 4} high-affinity receptor sites per cell (Persson et al. 1985; Freimuth 1996). Similar numbers of high-affinity binding sites for radiolabeled intact virus particles also were observed (Seth et al. 1994).« less
Carmona, G; Guerrero, M; Cussó, R; Padullés, J M; Moras, G; Lloret, M; Bedini, J L; Cadefau, J A
2015-12-01
Muscle damage induced by inertial exercise performed on a flywheel device was assessed through the serum evolution of muscle enzymes, interleukin 6, and fiber type-specific sarcomere proteins such as fast myosin (FM) and slow myosin (SM). We hypothesized that a model of muscle damage could be constructed by measuring the evolution of serum concentration of muscle proteins following inertial exercise, according to their molecular weight and the fiber compartment in which they are located. Moreover, by measuring FM and SM, the type of fibers that are affected could be assessed. Serum profiles were registered before and 24, 48, and 144 h after exercise in 10 healthy and recreationally active young men. Creatine kinase (CK) and CK-myocardial band isoenzyme increased in serum early (24 h) and returned to baseline values after 48 h. FM increased in serum late (48 h) and remained elevated 144 h post-exercise. The increase in serum muscle enzymes suggests increased membrane permeability of both fast and slow fibers, and the increase in FM reveals sarcomere disruption as well as increased membrane permeability of fast fibers. Consequently, FM could be adopted as a fiber type-specific biomarker of muscle damage. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Madhani, Shalv P; D'Aloiso, Brandon D; Frankowski, Brian; Federspiel, William J
2016-01-01
Hollow fiber membranes (HFMs) are used in blood oxygenators for cardiopulmonary bypass or in next generation artificial lungs. Flow analyses of these devices is typically done using computational fluid dynamics (CFD) modeling HFM bundles as porous media, using a Darcy permeability coefficient estimated from the Blake-Kozeny (BK) equation to account for viscous drag from fibers. We recently published how well this approach can predict Darcy permeability for fiber bundles made from polypropylene HFMs, showing the prediction can be significantly improved using an experimentally derived correlation between the BK constant (A) and bundle porosity (ε). In this study, we assessed how well our correlation for A worked for predicting the Darcy permeability of fiber bundles made from Membrana polymethylpentene (PMP) HFMs, which are increasingly being used clinically. Swatches in the porosity range of 0.4 to 0.8 were assessed in which sheets of fiber were stacked in parallel, perpendicular, and angled configurations. Our previously published correlation predicted Darcy within ±8%. A new correlation based on current and past measured permeability was determined: A = 497ε - 103; using this correlation measured Darcy permeability was within ±6%. This correlation varied from 8% to -3.5% of our prior correlation over the tested porosity range.
Madhani, Shalv. P.; D’Aloiso, Brandon. D.; Frankowski, Brian.; Federspiel, William. J.
2016-01-01
Hollow fiber membranes (HFMs) are used in blood oxygenators for cardiopulmonary bypass or in next generation artificial lungs. Flow analyses of these devices is typically done using computational fluid dynamics (CFD) modeling HFM bundles as porous media, using a Darcy permeability coefficient estimated from the Blake – Kozeny (BK) equation to account for viscous drag from fibers. We recently published how well this approach can predict Darcy permeability for fiber bundles made from polypropylene HFMs, showing the prediction can be significantly improved using an experimentally derived correlation between the BK constant (A) and bundle porosity (ε). In this study, we assessed how well our correlation for A worked for predicting the Darcy permeability of fiber bundles made from Membrana® polymethylpentene (PMP) HFMs, which are increasingly being used clinically. Swatches in the porosity range of 0.4 to 0.8 were assessed in which sheets of fiber were stacked in parallel, perpendicular and angled configurations. Our previously published correlation predicted Darcy within ±8%. A new correlation based on current and past measured permeability was determined: A=497ε-103; using this correlation measured Darcy permeability was within ±6%. This correlation varied from 8% to −3.5% of our prior correlation over the tested porosity range. PMID:26809086
Larsson, Niklas; Utterback, Karl; Toräng, Lars; Risberg, Johan; Gustafsson, Per; Mayer, Philipp; Jönsson, Jan Ke
2009-08-01
Hollow fibre (HF) membrane modules were applied in continuous mode for equilibrium sampling through membranes (ESTM) of polar organic pollutants. Phenolic compounds (chlorophenols, cresols and phenol) served as model substances and ESTM was tuned towards the measurement of freely dissolved concentrations (C(free)). HF membrane modules were constructed using thin-walled membrane, 1-m module length and low packing density in order to optimise the uptake kinetics of the analytes into the acceptor solution. Such custom made devices were tested and compared to commercially available modules. The former modules performed best for continuous ESTM. The custom made modules provided steady-state equilibrium within 20-40 min and enrichment that was in general agreement with calculated distribution ratios between acceptor and sample. In experiments during which sample concentration was changed, acceptor response time to decreased sample concentration was around 30 min for custom built modules. In the presence of commercial humic acids, analytes showed lower steady-state enrichment, which is due to a decrease in C(free). Continuous ESTM may be automated and is suggested for use in online determination of C(free) of pollutants and studies on sorption of pollutants. Future studies should include optimisation of the membrane liquid and factors regarding the residence time of the acceptor solution in the fibre lumen. Qualitative aspects of DOM should also be included, as natural DOM can be fractionated. C(free) could be correlated to DOM properties that have previously been shown to influence sorption, such as aromaticity, carboxylic acid content and molecular size.
Friedrich, Benjamin M.; Buxboim, Amnon; Discher, Dennis E.; Safran, Samuel A.
2011-01-01
The remarkable striation of muscle has fascinated many for centuries. In developing muscle cells, as well as in many adherent, nonmuscle cell types, striated, stress fiberlike structures with sarcomere-periodicity tend to register: Based on several studies, neighboring, parallel fibers at the basal membrane of cultured cells establish registry of their respective periodic sarcomeric architecture, but, to our knowledge, the mechanism has not yet been identified. Here, we propose for cells plated on an elastic substrate or adhered to a neighboring cell, that acto-myosin contractility in striated fibers close to the basal membrane induces substrate strain that gives rise to an elastic interaction between neighboring striated fibers, which in turn favors interfiber registry. Our physical theory predicts a dependence of interfiber registry on externally controllable elastic properties of the substrate. In developing muscle cells, registry of striated fibers (premyofibrils and nascent myofibrils) has been suggested as one major pathway of myofibrillogenesis, where it precedes the fusion of neighboring fibers. This suggests a mechanical basis for the optimal myofibrillogenesis on muscle-mimetic elastic substrates that was recently observed by several groups in cultures of mouse-, human-, and chick-derived muscle cells. PMID:21641316
Diffusive Silicon Nanopore Membranes for Hemodialysis Applications
Kim, Steven; Feinberg, Benjamin; Kant, Rishi; Chui, Benjamin; Goldman, Ken; Park, Jaehyun; Moses, Willieford; Blaha, Charles; Iqbal, Zohora; Chow, Clarence; Wright, Nathan; Fissell, William H.; Zydney, Andrew; Roy, Shuvo
2016-01-01
Hemodialysis using hollow-fiber membranes provides life-sustaining treatment for nearly 2 million patients worldwide with end stage renal disease (ESRD). However, patients on hemodialysis have worse long-term outcomes compared to kidney transplant or other chronic illnesses. Additionally, the underlying membrane technology of polymer hollow-fiber membranes has not fundamentally changed in over four decades. Therefore, we have proposed a fundamentally different approach using microelectromechanical systems (MEMS) fabrication techniques to create thin-flat sheets of silicon-based membranes for implantable or portable hemodialysis applications. The silicon nanopore membranes (SNM) have biomimetic slit-pore geometry and uniform pores size distribution that allow for exceptional permeability and selectivity. A quantitative diffusion model identified structural limits to diffusive solute transport and motivated a new microfabrication technique to create SNM with enhanced diffusive transport. We performed in vitro testing and extracorporeal testing in pigs on prototype membranes with an effective surface area of 2.52 cm2 and 2.02 cm2, respectively. The diffusive clearance was a two-fold improvement in with the new microfabrication technique and was consistent with our mathematical model. These results establish the feasibility of using SNM for hemodialysis applications with additional scale-up. PMID:27438878
Kilowatt high-efficiency narrow-linewidth monolithic fiber amplifier operating at 1034 nm
NASA Astrophysics Data System (ADS)
Naderi, Nader A.; Flores, Angel; Anderson, Brian M.; Rowland, Ken; Dajani, Iyad
2016-03-01
Power scaling investigation of a narrow-linewidth, Ytterbium-doped all-fiber amplifier operating at 1034 nm is presented. Nonlinear stimulated Brillouin scattering (SBS) effects were suppressed through the utilization of an external phase modulation technique. Here, the power amplifier was seeded with a spectrally broadened master oscillator and the results were compared using both pseudo-random bit sequence (PRBS) and white noise source (WNS) phase modulation formats. By utilizing an optical band pass filter as well as optimizing the length of fiber used in the pre-amplifier stages, we were able to appreciably suppress unwanted amplified spontaneous emission (ASE). Notably, through PRBS phase modulation, greater than two-fold enhancement in threshold power was achieved when compared to the WNS modulated case. Consequently, by further optimizing both the power amplifier length and PRBS pattern at a clock rate of 3.5 GHz, we demonstrated 1 kilowatt of power with a slope efficiency of 81% and an overall ASE content of less than 1%. Beam quality measurements at 1 kilowatt provided near diffraction-limited operation (M2 < 1.2) with no sign of modal instability. To the best of our knowledge, the power scaling results achieved in this work represent the highest power reported for a spectrally narrow all-fiber amplifier operating at < 1040 nm in Yb-doped silica-based fiber.
Ibrahim, G P Syed; Isloor, Arun M; Inamuddin; Asiri, Abdullah M; Ismail, Norafiqah; Ismail, Ahmed Fauzi; Ashraf, Ghulam Md
2017-11-21
In this work, poly(MBAAm-co-SBMA) zwitterionic polymer nanoparticles were synthesized in one-step via distillation-precipitation polymerization (DPP) and were characterized. [2-(methacryloyloxy)ethyl]dimethyl-(3-sulfopropyl)ammonium hydroxide (SBMA) as monomer and N, N'-methylene bis(acrylamide) (MBAAm) as cross-linker are used for the synthesis of nanoparticles. As far as our knowledge, this is the first such report on the synthesis of poly(MBAAm-co-SBMA) nanoparticles via DPP. The newly synthesized nanoparticles were further employed for the surface modification of polysulfone (PSF) hollow fiber membranes for dye removal. The modified hollow fiber membrane exhibited the improved permeability (56 L/ m 2 h bar) and dye removal (>98% of Reactive Black 5 and >80.7% of Reactive orange 16) with the high permeation of salts. Therefore, the as-prepared membrane can have potential application in textile and industrial wastewater treatment.
Recent Operational Experience with the Internal Thermal Control System Dual-Membrane Gas Trap
NASA Technical Reports Server (NTRS)
Leimkuehler, Thomas O.; Lukens, Clark; Reeves, Daniel R.; Holt, James M.
2004-01-01
A dual-membrane gas trap is currently used to remove gas bubbles from the Internal Thermal Control System (ITCS) coolant on board the International Space Station. The gas trap consists of concentric tube membrane pairs, comprised of outer hydrophilic tubes and inner hydrophobic fibers. Liquid coolant passes through the outer hydrophilic membrane, which traps the gas bubbles. The inner hydrophobic fiber allows the trapped gas bubbles to pass through and vent to the ambient atmosphere in the cabin. The gas removal performance and operational lifetime of the gas trap have been affected by contamination in the ITCS coolant. However, the gas trap has performed flawlessly with regard to its purpose of preventing gas bubbles from causing depriming, overspeed, and shutdown of the ITCS pump. This paper discusses on-orbit events over the course of the last year related to the performance and functioning of the gas trap.
Shen, Ying-Jie; Wu, Guang-Xia; Fan, Yao-Bo; Zhong, Hui; Wu, Lin-Lin; Zhang, Shao-Lai; Zhao, Xian-Hong; Zhang, Wei-Jun
2007-01-01
Using the surface of poly (sulfone) hollow fiber membrane segments as grafted layer, the hydrophilic acrylamide chain was grafted on by UV-photoinduced grafting polymerization. The gained improvement of surface wettability for the modified membrane was tested by measuring the contact-angle as well as FTIR spectra. Then correlation between the hydrophilic ability of support material and the biofilm adherence ability was demonstrated by comparing the pollutant removal rates from urban wastewater via two identical lab-scale up-flow biological aerated filters, one employed the surface wettability modified poly (sulfone) hollow fiber membrane segment as biofilm carrier and the other employed unmodified membrane segment as biofilm carrier. The experimental results showed that under the conditions of influent flux 5 L/h, hydraulic retention time 9 h and gas to liquid ratio (G/L) 10:1, the removal rates of chemical oxygen demand (COD) and ammonium nitrogen (NH4(+)-N) for the modified packing filter and the unmodified packing filter was averaged at 83.64% and 96.25%, respectively, with the former filter being 5%-20% more than the latter. The effluent concentration of COD, NH4(+)-N and turbidity for the modified packing filter was 25.25 mg/L, 2 mg/L and 8 NTU, respectively. Moreover, the ammonium nitrogen removal performance of the filter packing the modified PSF was compared with the other bioreactor packing of an efficient floating medium. The biomass test indicated that the modified membrane matrixes provided better specific adhesion (3310-5653 mg TSS/L support), which gave a mean of 1000 mg TSS/L more than the unmodified membrane did. In addition, the phenomenon of simultaneous denitrification on the inner surface of the support and nitrification on the outer surface was found in this work.
NASA Astrophysics Data System (ADS)
Leung, Cheuk Yui Curtis
Charged amphiphilic molecules can self-assemble into a large variety of objects including membranes, vesicles and fibers. These micro to nano-scale structures have been drawing increasing attention due to their broad applications, especially in biotechnology and biomedicine. In this dissertation, three self-assembled systems were investigated: +3/-1 self-assembled catanionic membranes, +2/-1 self-assembled catanionic membranes and +1 self-assembled nanofibers. Transmission electron microscopy (TEM) combined with synchrotron small and wide angle x-ray scattering (SAXS and WAXS) were used to characterize the coassembled structures from the mesoscopic to nanometer scale. We designed a system of +3 and -1 ionic amphiphiles that coassemble into crystalline ionic bilayer vesicles with large variety of geometries that resemble polyhedral cellular crystalline shells and archaea wall envelopes. The degree of ionization of the amphiphiles and their intermolecular electrostatic interactions can be controlled by varying pH. The molecular packing of these membranes showed a hexagonal to rectangular-C to hexagonal phase transition with increasing pH, resulting in significant changes to the membrane morphology. A similar mixture of +2 and -1 ionic amphiphiles was also investigated. In addition to varying pH, which controls the headgroup attractions, we also adjust the tail length of the amphiphiles to control the van der Waals interactions between the tails. A 2D phase diagram was developed to show how pH and tail length can be used to control the intermolecular packing within the membranes. Another system of self-assembled nanofiber network formed by positively charged amphiphiles was also studied. These highly charged fibers repel each other and are packed in hexagonal lattice with lattice constant at least eight times of the fiber diameter. The d-spacing and the crystal structure can be controlled by varying the solution concentration and temperature.
Holzweber, Markus; Lippitz, Andreas; Krueger, Katharina; Jankowski, Joachim; Unger, Wolfgang E. S.
2015-01-01
The surfaces of polymeric dialyzer membranes consisting of polysulfone and poly-vinylpyrrolidone were investigated regarding the lateral distribution and quantitative surface composition using time-of-flight secondary-ion-mass-spectrometry and x-ray photoelectron spectroscopy. Knowledge of the distribution and composition on the outer surface region is of utmost importance for understanding the biocompatibility of such dialyzer membranes. Both flat membranes and hollow fiber membranes were studied. PMID:25711334
Thermoelectric integrated membrane evaporation water recovery technology
NASA Technical Reports Server (NTRS)
Roebelen, G. J., Jr.; Winkler, H. E.; Dehner, G. F.
1982-01-01
The recently developed Thermoelectric Integrated Membrane Evaporation Subsystem (TIMES) offers a highly competitive approach to water recovery from waste fluids for future on-orbit stations such as the Space Operations Center. Low power, compactness and gravity insensitive operation are featured in this vacuum distillation subsystem that combines a hollow fiber membrane evaporator with a thermoelectric heat pump. The hollow fiber elements provide positive liquid/gas phase control with no moving parts other than pumps and an accumulator, thus solving problems inherent in other reclamation subsystem designs. In an extensive test program, over 850 hours of operation were accumulated during which time high quality product water was recovered from both urine and wash water at an average steady state production rate of 2.2 pounds per hour.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jayaweera, Indira; Krishnan, Gopala N.; Sanjurjo, Angel
2016-04-26
The invention provides methods for preparing an asymmetric hollow fiber, the asymmetric hollow fibers prepared by such methods, and uses of the asymmetric hollow fibers. One method involves passing a polymeric solution through an outer annular orifice of a tube-in-orifice spinneret, passing a bore fluid though an inner tube of the spinneret, dropping the polymeric solution and bore fluid through an atmosphere over a dropping distance, and quenching the polymeric solution and bore fluid in a bath to form an asymmetric hollow fiber.
Laser beam coupling into nerve fiber myelin allows one to assess its structural membrane properties
NASA Astrophysics Data System (ADS)
Kutuzov, Nikolay P.; Brazhe, Alexey R.; Lyaskovskiy, Vladimir L.; Maksimov, Georgy V.
2015-05-01
We show that myelin, the insulation wrap of nerve fibers, can couple laser light, thus behaving as a single-cell optical device. The effect was employed to map distinct myelin regions based on the coupling efficiency. Raman spectra acquisition allowed us to simultaneously understand the underlying microscopic differences in the membrane lipid ordering degree. The described method potentially provides new capabilities in myelin-associated disease studies and can be used as a handy tool for myelin structure investigation in combination with other methods.
Mechanics of Fluctuating Elastic Plates and Fiber Networks
NASA Astrophysics Data System (ADS)
Liang, Xiaojun
Lipid membranes and fiber networks in biological systems perform important mechanical functions at the cellular and tissue levels. In this thesis I delve into two detailed problems--thermal fluctuation of membranes and non-linear compression response of fiber networks. Typically, membrane fluctuations are analysed by decomposing into normal modes or by molecular simulations. In the first part of my thesis, I propose a new semi-analytic method to calculate the partition function of a membrane. The membrane is viewed as a fluctuating von Karman plate and discretized into triangular elements. Its energy is expressed as a function of nodal displacements, and then the partition function and co-variance matrix are computed using Gaussian integrals. I recover well-known results for the dependence of the projected area of a lipid bilayer membrane on the applied tension, and recent simulation results on the ependence of membrane free energy on geometry, spontaneous curvature and tension. As new applications I use this technique to study a membrane with heterogeneity and different boundary conditions. I also use this technique to study solid membranes by taking account of the non-linear coupling of in-plane strains with out-of-plane deflections using a penalty energy, and apply it to graphene, an ultra-thin two-dimensional solid. The scaling of graphene fluctuations with membrane size is recovered. I am able to capture the dependence of the thermal expansion coefficient of graphene on temperature. Next, I study curvature mediated interactions between inclusions in membranes. I assume the inclusions to be rigid, and show that the elastic and entropic forces between them can compete to yield a local maximum in the free energy if the membrane bending modulus is small. If the spacing between the inclusions is less than this local maximum then the attractive entropic forces dominate and the separation between the inclusions will be determined by short range interactions; if the spacing is more than the local maximum then the elastic repulsive forces dominate and the inclusions will move further apart. This technique can be extended to account for entropic effects in other methods which rely on quadratic energies to study the interactions of inclusions in membranes. In the second part of this thesis I study the compression response of two fiber network materials--blood clots and carbon nanotube forests. The stress-strain curve of both materials reveals four characteristic regions, for compression-decompression: 1) linear elastic region; 2) upper plateau or softening region; 3) non-linear elastic region or re-stretching of the network; 4) lower plateau in which dissociation of some newly made connections occurs. This response is described by a phase transition based continuum model. The model is inspired by the observation of one or more moving interfaces across which densified and rarefied phases of fibers co-exist. I use a quasi-static version of the Abeyaratne-Knowles theory of phase transitions for continua with a stick-slip type kinetic law and a nucleation criterion based on the critical stress for buckling to describe the formation and motion of these interfaces in uniaxial compression experiments. Our models could aid the design of biomaterials and carbon nanotube forests to have desired mechanical properties and guide further understanding of their behavior under large deformations.
Pérez, Ramón José; Álvarez, Ignacio; Enguita, José María
2016-01-01
This article presents, by means of computational simulation tools, a full analysis and design of an Interferometric Fiber-Optic Gyroscope (IFOG) prototype based on a closed-loop configuration with sinusoidal bias phase- modulation. The complete design of the different blocks, optical and electronic, is presented, including some novelties as the sinusoidal bias phase-modulation and the use of an integrator to generate the serrodyne phase-modulation signal. The paper includes detailed calculation of most parameter values, and the plots of the resulting signals obtained from simulation tools. The design is focused in the use of a standard single-mode optical fiber, allowing a cost competitive implementation compared to commercial IFOG, at the expense of reduced sensitivity. The design contains an IFOG model that accomplishes tactical and industrial grade applications (sensitivity ≤ 0.055 °/h). This design presents two important properties: (1) an optical subsystem with advanced conception: depolarization of the optical wave by means of Lyot depolarizers, which allows to use a sensing coil made by standard optical fiber, instead by polarization maintaining fiber, which supposes consequent cost savings and (2) a novel and simple electronic design that incorporates a linear analog integrator with reset in feedback chain, this integrator generating a serrodyne voltage-wave to apply to Phase-Modulator (PM), so that it will be obtained the interferometric phase cancellation. This particular feedback design with sawtooth-wave generated signal for a closed-loop configuration with sinusoidal bias phase modulation has not been reported till now in the scientific literature and supposes a considerable simplification with regard to previous designs based on similar configurations. The sensing coil consists of an 8 cm average diameter spool that contains 300 m of standard single-mode optical-fiber (SMF-28 type) realized by quadrupolar winding. The working wavelength will be 1310 nm. The theoretical calculated values of threshold sensitivity and dynamic range for this prototype are 0.052 °/h and 101.38 dB (from ±1.164 × 10−5 °/s up to ±78.19 °/s), respectively. The Scale-Factor (SF) non-linearity for this model is 5.404% relative to full scale, this value being obtained from data simulation results. PMID:27128924
Pérez, Ramón José; Álvarez, Ignacio; Enguita, José María
2016-04-27
This article presents, by means of computational simulation tools, a full analysis and design of an Interferometric Fiber-Optic Gyroscope (IFOG) prototype based on a closed-loop configuration with sinusoidal bias phase- modulation. The complete design of the different blocks, optical and electronic, is presented, including some novelties as the sinusoidal bias phase-modulation and the use of an integrator to generate the serrodyne phase-modulation signal. The paper includes detailed calculation of most parameter values, and the plots of the resulting signals obtained from simulation tools. The design is focused in the use of a standard single-mode optical fiber, allowing a cost competitive implementation compared to commercial IFOG, at the expense of reduced sensitivity. The design contains an IFOG model that accomplishes tactical and industrial grade applications (sensitivity ≤ 0.055 °/h). This design presents two important properties: (1) an optical subsystem with advanced conception: depolarization of the optical wave by means of Lyot depolarizers, which allows to use a sensing coil made by standard optical fiber, instead by polarization maintaining fiber, which supposes consequent cost savings and (2) a novel and simple electronic design that incorporates a linear analog integrator with reset in feedback chain, this integrator generating a serrodyne voltage-wave to apply to Phase-Modulator (PM), so that it will be obtained the interferometric phase cancellation. This particular feedback design with sawtooth-wave generated signal for a closed-loop configuration with sinusoidal bias phase modulation has not been reported till now in the scientific literature and supposes a considerable simplification with regard to previous designs based on similar configurations. The sensing coil consists of an 8 cm average diameter spool that contains 300 m of standard single-mode optical-fiber (SMF-28 type) realized by quadrupolar winding. The working wavelength will be 1310 nm. The theoretical calculated values of threshold sensitivity and dynamic range for this prototype are 0.052 °/h and 101.38 dB (from ±1.164 × 10(-5) °/s up to ±78.19 °/s), respectively. The Scale-Factor (SF) non-linearity for this model is 5.404% relative to full scale, this value being obtained from data simulation results.
Removal of nickel from aqueous solution using supported zeolite-Y hollow fiber membranes.
Muhamad, Norfazilah; Abdullah, Norfazliana; Rahman, Mukhlis A; Abas, Khairul Hamimah; Aziz, Azian Abd; Othman, Mohd Hafiz Dzarfan; Jaafar, Juhana; Ismail, Ahmad Fauzi
2018-05-02
This work describes the development of supported zeolite-Y membranes, prepared using the hydrothermal method, for the removal of nickel from an aqueous solution. Alumina hollow fibers prepared using the phase inversion and sintering technique were used as an inert support. The supported zeolite-Y membranes were characterized using the field emission scanning electron microscope (FESEM), X-ray diffraction (XRD), and the water permeation and rejection test. The performance of the supported zeolite-Y membranes for heavy metal removal using batch adsorption and filtration test was studied using the atomic absorption spectroscopy (AAS). The adsorption study shows that the removal of nickel was pH-dependent but affected by the presence of α-alumina. The seeded zeolite-Y membrane gave the highest adsorption capacity which was 126.2 mg g -1 . This enabled the membrane to remove 63% of nickel ions from the aqueous solution within 180 min of contact time. The adsorption mechanism of nickel onto the zeolite-Y membrane was best fitted to the Freundlich isotherm. The kinetic study concluded that the adsorption was best fitted to pseudo-second-order model with higher correlation coefficient (R 2 = 0.9996). The filtration study proved that the zeolite-Y membrane enabled to reduce the concentration of heavy metal at parts per billion level.
Facile fabrication of aloe vera containing PCL nanofibers for barrier membrane application.
Carter, Princeton; Rahman, Shekh M; Bhattarai, Narayan
2016-01-01
Guided tissue regeneration (GTR) is a widely used method in dental surgical procedures that utilizes a barrier membrane to exclude migration of epithelium and ensure repopulation of periodontal ligament cells at the sites having insufficient gingiva. Commercial GTR membranes are typically composed of synthetic polymers that have had mild clinical success mostly because of their lack of proper bioactivity and appropriate degradation profile. In this study, a natural polymer, aloe vera was blended with polycaprolactone (PCL) to create nanofibrous GTR membranes by electrospinning. Aloe vera has proven anti-inflammatory properties and enhances the regeneration of periodontium tissues. PCL, a synthetic polymer, is well known to produce miscible polyblends nanofibers with natural polymers. Nanofibrous membranes with varying composition of PCL to aloe vera were fabricated, and several physicochemical and biological properties, such as fiber morphology, wettability, chemical structure, mechanical strength, and cellular compatibility of the membranes were analyzed. PCL/aloe vera membranes with ratios from 100/00 to 70/30 showed good uniformity in fiber morphology and suitable mechanical properties, and retained the integrity of their fibrous structure in aqueous solutions. Experimental results, using cell viability assay and cell attachment observation, showed that the nanofibrous membranes support 3T3 cell viability and could be a potential candidate for GTR therapy.
Coherently coupled high-power fiber arrays
NASA Astrophysics Data System (ADS)
Anderegg, Jesse; Brosnan, Stephen; Cheung, Eric; Epp, Paul; Hammons, Dennis; Komine, Hiroshi; Weber, Mark; Wickham, Michael
2006-02-01
A four-element fiber array has demonstrated 470 watts of coherently phased, linearly polarized light energy in a single far-field spot. Each element consists of a single-mode fiber-amplifier chain. Phase control of each element is achieved with a Lithium-Niobate phase modulator. A master laser provides a linearly polarized, narrow linewidth signal that is split into five channels. Four channels are individually amplified using polarization maintaining fiber power amplifiers. The fifth channel is used as a reference arm. It is frequency shifted and then combined interferometrically with a portion of each channel's signal. Detectors sense the heterodyne modulation signal, and an electronics circuit measures the relative phase for each channel. Compensating adjustments are then made to each channel's phase modulator. This effort represents the results of a multi-year effort to achieve high power from a single element fiber amplifier and to understand the important issues involved in coherently combining many individual elements to obtain sufficient optical power for directed energy weapons. Northrop Grumman Corporation and the High Energy Laser Joint Technology Office jointly sponsored this work.
2015-11-30
Membrane Liner FEA Model ........................................................15 Rectangular PCQS with Embedded Air Beams FEA Model...2 2 Component Air Volumes of the Rectangular PCQS Concept with Inner Membrane Liner ...GCR Galactic cosmic rays or radiation HPF High-performance fibers IML Inner membrane liner K Degree Kelvin LaRC Langley Research Center m Mass
EFFECTS OF OZONATION ON THE PERMEATE FLUX OF NANOCRYSTALLINE CERAMIC MEMBRANES. (R830908)
Titania membranes, with a molecular weight cut-off of 15 kD were used in an ozonation/membrane system that was fed with water from Lake Lansing, which had been pre-filtered through a 0.45 �m glass fiber filter. The application of ozone gas prior to filtration resulted in signi...
Ventura, R C; Zollner, R L; Legallais, C; Vijayalakshmi, M; Bueno, S M
2001-01-01
Histidine was immobilized onto PEVA membrane to obtain an affinity support for human IgG removal from serum with a view to clinical apheresis for the treatment of autoimmune diseases. These membranes were able to remove in vitro several autoantibodies from the serum of SLE patients.
Liao, Meisong; Yan, Xin; Gao, Weiqing; Duan, Zhongchao; Qin, Guanshi; Suzuki, Takenobu; Ohishi, Yasutake
2011-08-01
We try to obtain stable supercontinuum (SC) generation with broad bandwidth under relative simple pump conditions. We use a 1.3-m-long highly nonlinear tellurite microstructured fiber and pump it by a 15 ps 1064 nm fiber laser. One segment of the fiber is tapered from a core diameter of 3.4 μm to 1.3 μm. For the first time five-order stimulated Raman scatterings (SRSs) are observed for soft glass fibers. SC covering 730-1700 nm is demonstrated with the pump-pulse-energy of several nJ. The mechanisms of SC broadening are mainly SRS, self-phase modulation (SPM) and cross phase modulation (XPM). The tapered segment has two advantages. Firstly it increases the nonlinearity of fiber by several times. Secondly, it acts as a compensation for the dispersion of the untapered segment, and mitigates the walk-off between pump pulse and SRS peaks.
Fiber Amplifier Report for NEPP 2008
NASA Technical Reports Server (NTRS)
Thomes, Joe; Ott, Melanie; LaRocca, Frank; Chuska, Rick; Switzer, Rob
2008-01-01
Ongoing qualification activities of LiNbO3 modulators. Passive (unpumped) radiation testing of Er-, Yb-, and Er/Yb-doped fibers: a) Yb-doped fibers exhibit higher radiation resistance than Er-doped fibers; b) Er/Yb co-doped fibers exhibit largest radiation resistance. Active (pumped) radiation testing of Yb-doped fibers conducted at NASA GSFC: a) Typical decay behavior observed; b) No comparison could be made to other fibers due to problems with test setup. Development of new high power fiber terminations.
NASA Astrophysics Data System (ADS)
Li, Shenping; Chan, K. T.
1999-05-01
A wavelength-tunable actively mode-locked erbium fiber ring laser was demonstrated using a Fabry-Perot semiconductor modulator. The modulator played the simultaneous roles of an intensity mode locker and a tunable optical filter. Stable single- or dual-wavelength nearly transform-limited picosecond pulses at gigabit repetition rates were generated. Continuous wavelength tuning was achieved by simply controlling the temperature of the modulator. Pulse train with a repetition rate up to 19.93 GHz (eight times the driving frequency) was obtained by using rational harmonic mode-locking technique.
Khairova, P A; Malomuzh, A I; Naumenko, N V; Urazaev, A Kh
2002-11-01
Cross-sectional area (CSA) of muscle fibers incubated in culture medium 199 for 3 hours dramatically increases, whereas resting membrane potential (RMP) decreases compared to "freshly-isolated" muscles. Both glutamate and sodium nitroprusside prevent these changes. MK-801, a specific inhibitor of NMDA-receptors, eliminates protective effects of glutamate on both CSA and RMP. NO-synthase inhibition in vivo promotes an increase of initial CSA and decrease of mean RMP. Under these conditions, effects of glutamate and sodium nitroprusside on CSA and RMP of denervated muscles are less obvious. It has been concluded that synaptic glutamate is able to participate in regulation of RMP and cell volume in muscle fibers through the activation of postsynaptic NMDA-receptors and muscle NO-synthase.
NASA Astrophysics Data System (ADS)
Stephens, Jean S.
Electrospinning is a fiber formation technique that uses electrostatic forces to create continuous, nanometer diameter fibers. The work presented here focuses on the continuing efforts to build a stronger fundamental understanding of electrospinning by exploring structure/property/process relationships by investigating the effects of process protocols on fiber surface morphology and polymer chain conformation. By varying the processing parameters it has been possible to produce fibers with unique surface features, microtextured/nanoporous fibers and nanowebs. In the microtextured/nanoporous fiber studies, changing the solution concentration, solvent volatility, and relative humidity was found to alter the size, shape, and distribution of pores on the fiber surface. The mechanisms that can explain the pore formation and texturing on the surface of the fibers are phase separation (aggregation into polymer rich and polymer lean regions) and breath figures (evaporative cooling and vapor condensation). Through a judicious choice of the electrospinning processing parameters we have also been able to create "web" like structures of nanofibers (5--25 nm) from collagen, dragline silk analog, nylon, and denatured collagen. Electrostatic repulsion and thin film dewetting are thought to be responsible for the formation of the nanowebs. These unique structures were characterized using FESEM, TEM, OM, and AFM. Raman spectroscopy, initially developed as a "real time" characterization technique to study electrospun fiber formation, has also been used to investigate the effect of electrospinning on the chain conformation of bioinspired polymers. Comparing the spectrum of the bulk material to that of the electrospun material identified conformational changes in nylon 6 and dragline silk analog. The conformational change in nylon 6 (alpha-form to gamma-form) results from the stresses induced on the electrospinning jet during fiber formation, whereas the conformational change in the silk analog (beta-sheet to alpha-helical) result from electric field assembling of the charged a-helical segments of the protein polymer in solution. The investigations described here have allowed us to build a virtual database of the processing conditions needed to create materials for tissue engineering constructs. Electrospun collagen membranes have been used in preliminary cell attachment studies. From the trials it was observed that the cells migrated into the membranes indicating that the membranes are suitable for tissue engineering scaffolds.
NASA Astrophysics Data System (ADS)
Lin, Yuqing; Xu, Yilin; Loh, Chun Heng; Wang, Rong
2018-04-01
Gas-liquid membrane contactor (GLMC) is a promising method to attain high efficiency for CO2 capture from flue gas, biogas and natural gas. However, membranes used in GLMC are prone to pore wetting due to insufficient hydrophobicity and low chemical resistance, resulting in significant increase in mass transfer resistance. To mitigate this issue, inorganic-organic fluorinated titania/polyvinylidene fluoride (fTiO2/PVDF) composite hollow fiber (HF) membranes was prepared via facile in-situ vapor induced hydrolyzation method, followed by hydrophobic modification. The proposed composite membranes were expected to couple the superb chemical stability of inorganic and high permeability/low cost of organic materials. The continuous fTiO2 layer deposited on top of PVDF substrate was found to possess a tighter microstructure and better hydrophobicity, which effectively prevented the membrane from wetting and lead to a high CO2 absorption flux (12.7 × 10-3 mol m-2 s-1). In a stability test with 21-day operation of GLMC using 1M monoethanolamine (MEA) as the absorbent, the fTiO2/PVDF membrane remained to be intact with a CO2 absorption flux decline of ∼16%, while the pristine PVDF membrane suffered from a flux decline of ∼80% due to membrane damage. Overall, this work provides an insight into the preparation of high-quality inorganic/organic composite HF membranes for CO2 capture in GLMC application.
Ku, Yuen-Ching; Chan, Chun-Kit; Chen, Lian-Kuan
2007-06-15
We propose and experimentally demonstrate a novel in-band optical signal-to-noise ratio (OSNR) monitoring technique using a phase-modulator-embedded fiber loop mirror. This technique measures the in-band OSNR accurately by observing the output power of a fiber loop mirror filter, where the transmittance is adjusted by an embedded phase modulator driven by a low-frequency periodic signal. The measurement errors are less than 0.5 dB for an OSNR between 0 and 40 dB in a 10 Gbit/s non-return-to-zero system. This technique was also shown experimentally to have high robustness against various system impairments and high feasibility to be deployed in practical implementation.
Constitutive relationships of prestressed steel fiber concrete membrane elements
NASA Astrophysics Data System (ADS)
Hoffman, Norman S.
Steel Fiber Concrete (SFC) displays certain tensile and shear characteristics which are beneficial for concrete that is loaded in a state of shear stress. For example, prestressed bridge beams carry shear load in their web by utilizing shear stirrups. If the properties of SFC can be better understood, then it may be possible to replace the shear stirrups with SFC. The first step in understanding this behavior is to develop a constitutive model for prestressed SFC. Two groups of full-scale prestressed steel fiber concrete (SFC) panels, with a nominal strength of 6 ksi, were tested in the Universal Element Testing machine at Thomas TC Hsu Structural Testing Laboratory to establish the effect of fiber and the level of prestress on the constitutive laws of fiber concrete and prestressing tendon. The specimens contained from 5 to 20 fully tensioned, low-relaxation grade 270 tendons. Fiber content ranged from 0.5% to 1.5% using high performance hooked end fibers. The first group of five panels, designated Group TEF, was used to determine the basic constitutive properties of prestressed SEC for use in the Softened Membrane Model (SMM). The constitutive model consists of smeared tensile and compressive stress strain relationships. An equation for softening with respect of both fiber content and tensile strain is presented. Also presented is a new equation for prestressed SFC in tension. It is notable that the behavior of prestressed SFC in tension displayed significant post-cracking tensile strength for fiber contents ranging from 0.5% to 1.5% by volume. Prior research on SFC using unreinforced dog-bone specimens, or prismatic specimens reinforced with only a single isolated tendon, are not capable of capturing SFC behavior afforded by the stress state, multiple load paths, and confinement situation available in full-scale panel assemblies. The second set of 5 test panels, designated Group TAF, was used to examine the properties of prestressed SFC under the conditions of pure shear. The constitutive model was incorporated into the softened membrane model framework and an analytic model was developed that was used to accurately predict the behavior of the specimens loaded in pure shear.
Polarized millijoule fiber laser system with high beam quality and pulse shaping ability
NASA Astrophysics Data System (ADS)
Zhang, Rui; Tian, Xiaocheng; Xu, Dangpeng; Zhou, Dandan; Zong, Zhaoyu; Li, Hongxun; Fan, Mengqiu; Huang, Zhihua; Zhu, Na; Su, Jingqin; Zhu, Qihua; Jing, Feng
2017-05-01
The coherent amplification network (CAN) aims at developing a laser system based on the coherent combination of multiple laser beams, which are produced through a network of high beam quality optical fiber amplifiers. The scalability of the CAN laser facilitates the development of many novel applications, such as fiber-based acceleration, orbital debris removal and inertial confinement fusion energy. According to the requirements of CAN and the front end of high-power laser facilities, a millijoule polarized fiber laser system was studied in this paper. Using polarization maintaining Ytterbium-fiber laser system as the seed, and 10-μm core Yb-doped fiber amplifier as the first power amplifier and 40-μm core polarizing (PZ) photonic crystal fiber (PCF) as the second power amplifier, the all-fiber laser system outputs 1.06-mJ energy at 10 ns and diffraction limited mode quality. Using 85-μm rod-type PCF as the third power amplifiers, 2.5-mJ energy at 10-ns pulse width was obtained with better than 500:1 peak-to-foot pulse shaping ability and fundamental mode beam quality. The energy fluctuation of the system is 1.3% rms with 1-mJ output in one hour. When using phase-modulated pulse as the seed, the frequency modulation to amplitude modulation (FM-to-AM) conversion ratio of the system is better than 5%. This fiber laser system has the advantages of high beam quality, high beam shaping ability, good stability, small volume and free of maintenance, which can be used in many applications.
CO 2 Capture by Cold Membrane Operation with Actual Power Plant Flue Gas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chaubey, Trapti; Kulkarni, Sudhir; Hasse, David
The main objective of the project was to develop a post-combustion CO 2 capture process based on the hybrid cold temperature membrane operation. The CO 2 in the flue gas from coal fired power plant is pre-concentrated to >60% CO 2 in the first stage membrane operation followed by further liquefaction of permeate stream to achieve >99% CO 2 purity. The aim of the project was based on DOE program goal of 90% CO 2 capture with >95% CO 2 purity from Pulverized Coal (PC) fired power plants with $40/tonne of carbon capture cost by 2025. The project moves themore » technology from TRL 4 to TRL 5. The project involved optimization of Air Liquide commercial 12” PI-1 bundle to improve the bundle productivity by >30% compared to the previous baseline (DE-FE0004278) using computational fluid dynamics (CFD) modeling and bundle testing with synthetic flue gas at 0.1 MWe bench scale skid located at Delaware Research and Technology Center (DRTC). In parallel, the next generation polyimide based novel PI-2 membrane was developed with 10 times CO 2 permeance compared to the commercial PI-1 membrane. The novel PI-2 membrane was scaled from mini-permeator to 1” permeator and 1” bundle for testing. Bundle development was conducted with a Development Spin Unit (DSU) installed at MEDAL. Air Liquide’s cold membrane technology was demonstrated with real coal fired flue gas at the National Carbon Capture Center (NCCC) with a 0.3 MWe field-test unit (FTU). The FTU was designed to incorporate testing of two PI-1 commercial membrane bundles (12” or 6” diameter) in parallel or series. A slip stream was sent to the next generation PI-2 membrane for testing with real flue gas. The system exceeded performance targets with stable PI-1 membrane operation for over 500 hours of single bundle, steady state testing. The 12” PI-1 bundle exceeded the productivity target by achieving ~600 Nm3/hr, where the target was set at ~455 Nm3/hr at 90% capture rate. The cost of 90% CO 2 capture from a 550 MWe net coal power plant was estimated between 40 and $45/tonne. A 6” PI-1 bundle exhibited superior bundle performance compared to the 12” PI-1 bundle. However, the carbon capture cost was not lower with the 6” PI-1 bundle due to the higher bundle installed cost. A 1” PI-1 bundle was tested to compare bundles with different length / diameter ratios. This bundle exhibited the lowest performance due to the different fiber winding pattern and increased bundle non-ideality. Several long-term and parametric tests were conducted with 3,200 hours of total run-time at NCCC. Finally, the new PI-2 membrane fiber was tested at a small scale (1” modules) in real flue gas and exhibited up to 10 times the CO 2 permeance and slightly lower CO 2/N 2 selectivity as the commercial PI-1 fiber. This corresponded to a projected 4 - 5 times increase in the productivity per bundle and a potential cost reduction of $3/tonne for CO2 capture, as compared with PI-1. An analytical campaign was conducted to trace different impurities such as NOx, mercury, Arsenic, Selenium in gas and liquid samples through the carbon capture system. An Environmental, Health and Safety (EH&S) analysis was completed to estimate emissions from a 550 MWe net power plant with carbon capture using cold membrane. A preliminary design and cost analysis was completed for 550 tpd (~25 MWe) plant to assess the capital investment and carbon capture cost for PI-1 and PI-2 membrane solutions from coal fired flue gas. A comparison was made with an amine based solution with significant cost advantage for the membrane at this scale. Additional preliminary design and cost analysis was completed between coal, natural gas and SMR flue gas for carbon capture at 550 tpd (~25 MWe) plant.« less
[From Descartes to fMRI. Pain theories and pain concepts].
Handwerker, H O
2007-08-01
In the seventeenth century the philosopher Rene Descartes was the forerunner by establishing a scientific hypothesis on the origin of pain. Much later, in the nineteenth century, pain hypotheses emerged which explained the pain sensation either on the basis of intense stimulation of any kind of nerve fibers (intensity hypothesis) or on the basis of specific nociceptors (specificity hypothesis). The "gate control theory" established by Melzack and Wall (1964) offered an explanation of modulations of pain sensation by the interaction between nociceptive and non-nociceptive nerve fibers and by descending control in the central nervous system. Though this hypothesis is outdated in its original form, it had - in a more common formulation - a great influence on our understanding of pain. For building a bridge to our present knowledge, the molecular structure of the nociceptor membrane is of particular importance. On this basis also new pain therapies have been developed. On the other hand, the methods of functional imaging allow the identification of brain regions related to pain processing at a macroscopic level. This new technology opened up new ways of understanding chronic pain processes and new possibilities for the control of therapeutic effects.
Horn, Mary P.; Knecht, Sharmon M.; Rushing, Frances L.; Birdsong, Julie; Siddall, C. Parker; Johnson, Charron M.; Abraham, Terri N.; Brown, Amy; Volk, Catherine B.; Gammon, Kelly; Bishop, Derron L.; McKillip, John L.; McDowell, Susan A.
2015-01-01
Patients on a statin regimen are at a decreased risk of death due to bacterial sepsis. We have found that protection by simvastatin includes the inhibition of host cell invasion by Staphylococcus aureus, the most common etiologic agent of sepsis. Inhibition was due in part to depletion of isoprenoid intermediates within the cholesterol biosynthesis pathway and led to the cytosolic accumulation of the small-guanosine triphosphatases (GTPases) CDC42, Rac, and RhoB. Actin stress fiber disassembly required for host invasion was attenuated by simvastatin and by the inhibition of phosphoinositide 3-kinase (PI3K) activity. PI3K relies on coupling to prenylated proteins, such as this subset of small-GTPases, for access to membrane-bound phosphoinositide to mediate stress fiber disassembly. Therefore, we examined whether simvastatin restricts PI3K cellular localization. In response to simvastatin, the PI3K isoform p85, coupled to these small-GTPases, was sequestered within the cytosol. From these findings, we propose a mechanism whereby simvastatin restricts p85 localization, inhibiting actin dynamics required for bacterial endocytosis. This may provide the basis for protection at the level of the host in invasive infections by S. aureus. PMID:18388257
Cortical presynaptic control of dorsal horn C-afferents in the rat.
Moreno-López, Yunuen; Pérez-Sánchez, Jimena; Martínez-Lorenzana, Guadalupe; Condés-Lara, Miguel; Rojas-Piloni, Gerardo
2013-01-01
Lamina 5 sensorimotor cortex pyramidal neurons project to the spinal cord, participating in the modulation of several modalities of information transmission. A well-studied mechanism by which the corticospinal projection modulates sensory information is primary afferent depolarization, which has been characterized in fast muscular and cutaneous, but not in slow-conducting nociceptive skin afferents. Here we investigated whether the inhibition of nociceptive sensory information, produced by activation of the sensorimotor cortex, involves a direct presynaptic modulation of C primary afferents. In anaesthetized male Wistar rats, we analyzed the effects of sensorimotor cortex activation on post tetanic potentiation (PTP) and the paired pulse ratio (PPR) of dorsal horn field potentials evoked by C-fiber stimulation in the sural (SU) and sciatic (SC) nerves. We also explored the time course of the excitability changes in nociceptive afferents produced by cortical stimulation. We observed that the development of PTP was completely blocked when C-fiber tetanic stimulation was paired with cortex stimulation. In addition, sensorimotor cortex activation by topical administration of bicuculline (BIC) produced a reduction in the amplitude of C-fiber responses, as well as an increase in the PPR. Furthermore, increases in the intraspinal excitability of slow-conducting fiber terminals, produced by sensorimotor cortex stimulation, were indicative of primary afferent depolarization. Topical administration of BIC in the spinal cord blocked the inhibition of C-fiber neuronal responses produced by cortical stimulation. Dorsal horn neurons responding to sensorimotor cortex stimulation also exhibited a peripheral receptive field and responded to stimulation of fast cutaneous myelinated fibers. Our results suggest that corticospinal inhibition of nociceptive responses is due in part to a modulation of the excitability of primary C-fibers by means of GABAergic inhibitory interneurons.
Cortical Presynaptic Control of Dorsal Horn C–Afferents in the Rat
Martínez-Lorenzana, Guadalupe; Condés-Lara, Miguel; Rojas-Piloni, Gerardo
2013-01-01
Lamina 5 sensorimotor cortex pyramidal neurons project to the spinal cord, participating in the modulation of several modalities of information transmission. A well-studied mechanism by which the corticospinal projection modulates sensory information is primary afferent depolarization, which has been characterized in fast muscular and cutaneous, but not in slow-conducting nociceptive skin afferents. Here we investigated whether the inhibition of nociceptive sensory information, produced by activation of the sensorimotor cortex, involves a direct presynaptic modulation of C primary afferents. In anaesthetized male Wistar rats, we analyzed the effects of sensorimotor cortex activation on post tetanic potentiation (PTP) and the paired pulse ratio (PPR) of dorsal horn field potentials evoked by C–fiber stimulation in the sural (SU) and sciatic (SC) nerves. We also explored the time course of the excitability changes in nociceptive afferents produced by cortical stimulation. We observed that the development of PTP was completely blocked when C-fiber tetanic stimulation was paired with cortex stimulation. In addition, sensorimotor cortex activation by topical administration of bicuculline (BIC) produced a reduction in the amplitude of C–fiber responses, as well as an increase in the PPR. Furthermore, increases in the intraspinal excitability of slow-conducting fiber terminals, produced by sensorimotor cortex stimulation, were indicative of primary afferent depolarization. Topical administration of BIC in the spinal cord blocked the inhibition of C–fiber neuronal responses produced by cortical stimulation. Dorsal horn neurons responding to sensorimotor cortex stimulation also exhibited a peripheral receptive field and responded to stimulation of fast cutaneous myelinated fibers. Our results suggest that corticospinal inhibition of nociceptive responses is due in part to a modulation of the excitability of primary C–fibers by means of GABAergic inhibitory interneurons. PMID:23935924
NASA Astrophysics Data System (ADS)
Hwang, Ui-Jung; Shin, Dongho; Lee, Se Byeong; Lim, Young Kyung; Jeong, Jong Hwi; Kim, Hak Soo; Kim, Ki Hwan
2018-05-01
To apply a scintillating fiber dosimetry system to measure the range of a proton therapy beam, a new method was proposed to correct for the quenching effect on measuring an spread out Bragg peak (SOBP) proton beam whose range is modulated by a range modulator wheel. The scintillating fiber dosimetry system was composed of a plastic scintillating fiber (BCF-12), optical fiber (SH 2001), photo multiplier tube (H7546), and data acquisition system (PXI6221 and SCC68). The proton beam was generated by a cyclotron (Proteus-235) in the National Cancer Center in Korea. It operated in the double-scattering mode and the spread out of the Bragg peak was achieved by a spinning range modulation wheel. Bragg peak beams and SOBP beams of various ranges were measured, corrected, and compared to the ion chamber data. For the Bragg peak beam, quenching equation was used to correct the quenching effect. On the proposed process of correcting SOBP beams, the measured data using a scintillating fiber were separated by the Bragg peaks that the SOBP beam contained, and then recomposed again to reconstruct an SOBP after correcting for each Bragg peak. The measured depth-dose curve for the single Bragg peak beam was well corrected by using a simple quenching equation. Correction for SOBP beam was conducted with a newly proposed method. The corrected SOBP signal was in accordance with the results measured with an ion chamber. We propose a new method to correct for the SOBP beam from the quenching effect in a scintillating fiber dosimetry system. This method can be applied to other scintillator dosimetry for radiation beams in which the quenching effect is shown in the scintillator.
Park, Chul-Hwi; Park, Jun-Won; Han, Gee-Bong
2016-10-14
The membrane fouling control via the addition of nanoporous zeolite membrane fouling reducer (Z-MFR) to the submerged membrane bioreactor (MBR) was investigated. Using scanning electron microscopy/energy-dispersive X-ray (SEM/EDX) analysis techniques, the characteristics of fouling on a hollow fiber membrane surface were also analyzed. The addition of Z-MFR to the MBR led to the adsorption of foulants and the flocculation of mixed liquor suspended solids (MLSSs), which resulted in substantially enhancing the membrane filterability. The critical flux values obtained from the sewage mixed liquors of 3400 mg L(-1) at the effective dosage rate of 0.03 mg Z-MFR mg(-1) MLSS was 85 L m(-2) h(-1) (LMH), which was enhanced by 42%. The transmembrane pressure (TMP) variation under the operating conditions of 30 LMH with 3500 mg MLSS L(-1) showed that the addition of Z-MFR extended the time required to reach the critical flux of 0.32 bar by 2.6-fold longer than the control. Thus, due to the hybrid functions of adsorbing foulants and precipitating colloidal substances with the addition of Z-MFR, a decrease in the foulant amount and an improvement of sludge flocculation have been attained simultaneously. As a result, the membrane fouling control was achieved effectively with the addition of the Z-MFR.
NASA Technical Reports Server (NTRS)
2007-01-01
Topics covered include: Miniature Intelligent Sensor Module; "Smart" Sensor Module; Portable Apparatus for Electrochemical Sensing of Ethylene; Increasing Linear Dynamic Range of a CMOS Image Sensor; Flight Qualified Micro Sun Sensor; Norbornene-Based Polymer Electrolytes for Lithium Cells; Making Single-Source Precursors of Ternary Semiconductors; Water-Free Proton-Conducting Membranes for Fuel Cells; Mo/Ti Diffusion Bonding for Making Thermoelectric Devices; Photodetectors on Coronagraph Mask for Pointing Control; High-Energy-Density, Low-Temperature Li/CFx Primary Cells; G4-FETs as Universal and Programmable Logic Gates; Fabrication of Buried Nanochannels From Nanowire Patterns; Diamond Smoothing Tools; Infrared Imaging System for Studying Brain Function; Rarefying Spectra of Whispering-Gallery-Mode Resonators; Large-Area Permanent-Magnet ECR Plasma Source; Slot-Antenna/Permanent-Magnet Device for Generating Plasma; Fiber-Optic Strain Gauge With High Resolution And Update Rate; Broadband Achromatic Telecentric Lens; Temperature-Corrected Model of Turbulence in Hot Jet Flows; Enhanced Elliptic Grid Generation; Automated Knowledge Discovery From Simulators; Electro-Optical Modulator Bias Control Using Bipolar Pulses; Generative Representations for Automated Design of Robots; Mars-Approach Navigation Using In Situ Orbiters; Efficient Optimization of Low-Thrust Spacecraft Trajectories; Cylindrical Asymmetrical Capacitors for Use in Outer Space; Protecting Against Faults in JPL Spacecraft; Algorithm Optimally Allocates Actuation of a Spacecraft; and Radar Interferometer for Topographic Mapping of Glaciers and Ice Sheets.
Large-Aperture Membrane Active Phased-Array Antennas
NASA Technical Reports Server (NTRS)
Karasik, Boris; McGrath, William; Leduc, Henry
2009-01-01
Large-aperture phased-array microwave antennas supported by membranes are being developed for use in spaceborne interferometric synthetic aperture radar systems. There may also be terrestrial uses for such antennas supported on stationary membranes, large balloons, and blimps. These antennas are expected to have areal mass densities of about 2 kg/sq m, satisfying a need for lightweight alternatives to conventional rigid phased-array antennas, which have typical areal mass densities between 8 and 15 kg/sq m. The differences in areal mass densities translate to substantial differences in total mass in contemplated applications involving aperture areas as large as 400 sq m. A membrane phased-array antenna includes patch antenna elements in a repeating pattern. All previously reported membrane antennas were passive antennas; this is the first active membrane antenna that includes transmitting/receiving (T/R) electronic circuits as integral parts. Other integral parts of the antenna include a network of radio-frequency (RF) feed lines (more specifically, a corporate feed network) and of bias and control lines, all in the form of flexible copper strip conductors on flexible polymeric membranes. Each unit cell of a prototype antenna (see Figure 1) contains a patch antenna element and a compact T/R module that is compatible with flexible membrane circuitry. There are two membrane layers separated by a 12.7-mm air gap. Each membrane layer is made from a commercially available flexible circuit material that, as supplied, comprises a 127-micron-thick polyimide dielectric layer clad on both sides with 17.5-micron-thick copper layers. The copper layers are patterned into RF, bias, and control conductors. The T/R module is located on the back side of the ground plane and is RF-coupled to the patch element via a slot. The T/R module is a hybrid multilayer module assembled and packaged independently and attached to the membrane array. At the time of reporting the information for this article, an 8 16 passive array (not including T/R modules) and a 2 4 active array (including T/R modules) had been demonstrated, and it was planned to fabricate and test larger arrays.
Novel polymer membrane process for pre-combustion CO{sub 2} capture from coal-fired syngas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Merkel, Tim
2011-09-14
This final report describes work conducted for the Department of Energy (DOE NETL) on development of a novel polymer membrane process for pre-combustion CO{sub 2} capture from coalfired syngas (award number DE-FE0001124). The work was conducted by Membrane Technology and Research, Inc. (MTR) from September 15, 2009, through December 14, 2011. Tetramer Technologies, LLC (Tetramer) was our subcontract partner on this project. The National Carbon Capture Center (NCCC) at Wilsonville, AL, provided access to syngas gasifier test facilities. The main objective of this project was to develop a cost-effective membrane process that could be used in the relatively near-term tomore » capture CO{sub 2} from shifted syngas generated by a coal-fired Integrated Gasification Combined Cycle (IGCC) power plant. In this project, novel polymeric membranes (designated as Proteus™ membranes) with separation properties superior to conventional polymeric membranes were developed. Hydrogen permeance of up to 800 gpu and H{sub 2}/CO{sub 2} selectivity of >12 was achieved using a simulated syngas mixture at 150°C and 50 psig, which exceeds the original project targets of 200 gpu for hydrogen permeance and 10 for H{sub 2}/CO{sub 2} selectivity. Lab-scale Proteus membrane modules (with a membrane area of 0.13 m{sup 2}) were also developed using scaled-up Proteus membranes and high temperature stable module components identified during this project. A mixed-gas hydrogen permeance of about 160 gpu and H{sub 2}/CO{sub 2} selectivity of >12 was achieved using a simulated syngas mixture at 150°C and 100 psig. We believe that a significant improvement in the membrane and module performance is likely with additional development work. Both Proteus membranes and lab-scale Proteus membrane modules were further evaluated using coal-derived syngas streams at the National Carbon Capture Center (NCCC). The results indicate that all module components, including the Proteus membrane, were stable under the field conditions (feed pressures: 150-175 psig and feed temperatures: 120-135°C) for over 600 hours. The field performance of both Proteus membrane stamps and Proteus membrane modules is consistent with the results obtained in the lab, suggesting that the presence of sulfur-containing compounds (up to 780 ppm hydrogen sulfide), saturated water vapor, carbon monoxide and heavy hydrocarbons in the syngas feed stream has no adverse effect on the Proteus membrane or module performance. We also performed an economic analysis for a number of membrane process designs developed in this project (using hydrogen-selective membranes, alone or in the combination with CO{sub 2}- selective membranes). The current field performance for Proteus membranes was used in the design analysis. The study showed the current best design has the potential to reduce the increase in Levelized Cost of Electricity (LCOE) caused by 90% CO{sub 2} capture to about 15% if co-sequestration of H{sub 2}S is viable. This value is still higher than the DOE target for increase in LCOE (10%); however, compared to the base-case Selexol process that gives a 30% increase in LCOE at 90% CO2 capture, the membrane-based process appears promising. We believe future improvements in membrane performance have the potential to reach the DOE target.« less
Fiber-optic temperature sensor using a spectrum-modulating semiconductor etalon
NASA Technical Reports Server (NTRS)
Beheim, Glenn; Anthan, Donald J.; Beheim, Glenn; Anthan, Donald J.
1987-01-01
Described is a fiber-optic temperature sensor that uses a spectrum modulating SiC etalon. The spectral output of this type of sensor may be analyzed to obtain a temperature measurement which is largely independent of the transmission properties of the sensor's fiber-optic link. A highly precise laboratory spectrometer is described in detail, and this instrument is used to study the properties of this type of sensor. Also described are a number of different spectrum analyzers that are more suitable for use in a practical thermometer.
Konorov, S O; Akimov, D A; Zheltikov, A M; Ivanov, A A; Alfimov, M V; Scalora, M
2005-06-15
Femtosecond pulses of fundamental Cr:forsterite laser radiation are used as a pump field to tune the frequency of copropagating second-harmonic pulses of the same laser through cross-phase modulation in a photonic crystal fiber. Sub-100-kW femtosecond pump pulses coupled into a photonic crystal fiber with an appropriate dispersion profile can shift the central frequency of the probe field by more than 100 nm, suggesting a convenient way to control propagation and spectral transformations of ultrashort laser pulses.
Self-pulsing in a 2 km single-mode fiber with the seed source broadened via WNS phase modulation
NASA Astrophysics Data System (ADS)
Zha, Congwen; Sun, Yinhong; Wang, Yanshan; Li, Tenglong; Peng, Wanjing; Ma, Yi; Zhang, Kai
2018-03-01
The seed source with spectral linewidth broadening via phase modulation is potential to achieve the higher output power with effective SBS suppression. However, self-pulsing from the amplifier output is harmful. In this work, we study the self-pulsing characteristics in a long single-mode fiber with lower self-pulsing threshold instead of the high power amplifier. We provide a powerful experimental support for the self-pulsing mechanism in high-power narrow-linewidth fiber lasers, which is important for further output power scaling.
Straub, Adam; Durst, Michael E.; Xu, Chris
2011-01-01
Simultaneous spatial and temporal focusing is used to acquire high speed (200Hz), chemically specific axial scans of mouse skin through a single-mode fiber. The temporal focus is remotely scanned by modulating the group delay dispersion (GDD) at the proximal end of the fiber. No moving parts or electronics are required at the distal end. A novel GDD modulation technique is implemented using a piezo bimorph mirror in a folded grating pair to achieve a large GDD tuning range at high speed. PMID:21326638
Compact multiwavelength transmitter module for multimode fiber optic ribbon cable
Deri, Robert J.; Pocha, Michael D.; Larson, Michael C.; Garrett, Henry E.
2002-01-01
A compact multiwavelength transmitter module for multimode fiber optic ribbon cable, which couples light from an M.times.N array of emitters onto N fibers, where the M wavelength may be distributed across two or more vertical-cavity surface-emitting laser (VCSEL) chips, and combining emitters and multiplexer into a compact package that is compatible with placement on a printed circuit board. A key feature is bringing together two emitter arrays fabricated on different substrates--each array designed for a different wavelength--into close physical proximity. Another key feature is to compactly and efficiently combine the light from two or more clusters of optical emitters, each in a different wavelength band, into a fiber ribbon.
Arun, S; Choudhury, Vishal; Balaswamy, V; Prakash, Roopa; Supradeepa, V R
2018-04-02
We demonstrate a simple module for octave spanning continuous-wave supercontinuum generation using standard telecom fiber. This module can accept any high power ytterbium-doped fiber laser as input. The input light is transferred into the anomalous dispersion region of the telecom fiber through a cascade of Raman shifts. A recently proposed Raman laser architecture with distributed feedback efficiently performs these Raman conversions. A spectrum spanning over 1000nm (>1 octave) from 880 to 1900nm is demonstrated. The average power from the supercontinuum is ~34W with a high conversion efficiency of 44%. Input wavelength agility is demonstrated with similar supercontinua over a wide input wavelength range.
NASA Technical Reports Server (NTRS)
Chen, B. M.; Grinnell, A. D.
1997-01-01
Neurotransmitter release from frog motor nerve terminals is strongly modulated by change in muscle length. Over the physiological range, there is an approximately 10% increase in spontaneous and evoked release per 1% muscle stretch. Because many muscle fibers do not receive suprathreshold synaptic inputs at rest length, this stretch-induced enhancement of release constitutes a strong peripheral amplifier of the spinal stretch reflex. The stretch modulation of release is inhibited by peptides that block integrin binding of natural ligands. The modulation varies linearly with length, with a delay of no more than approximately 1-2 msec and is maintained constant at the new length. Moreover, the stretch modulation persists in a zero Ca2+ Ringer and, hence, is not dependent on Ca2+ influx through stretch activated channels. Eliminating transmembrane Ca2+ gradients and buffering intraterminal Ca2+ to approximately normal resting levels does not eliminate the modulation, suggesting that it is not the result of release of Ca2+ from internal stores. Finally, changes in temperature have no detectable effect on the kinetics of stretch-induced changes in endplate potential (EPP) amplitude or miniature EPP (mEPP) frequency. We conclude, therefore, that stretch does not act via second messenger pathways or a chemical modification of molecules involved in the release pathway. Instead, there is direct mechanical modulation of release. We postulate that tension on integrins in the presynaptic membrane is transduced mechanically into changes in the position or conformation of one or more molecules involved in neurotransmitter release, altering sensitivity to Ca2+ or the equilibrium for a critical reaction leading to vesicle fusion.
Membrane humidity control investigation
NASA Technical Reports Server (NTRS)
Elam, J.; Ruder, J.; Strumpf, H.
1974-01-01
The basic performance data on a hollow fiber membrane unit that removes water from a breathing gas loop by diffusion is presented. Using available permeability data for cellulose acetate, a preliminary design was made of a dehumidifier unit that would meet the problem statement.
A fiber-coupled 9xx module with tap water cooling
NASA Astrophysics Data System (ADS)
Schleuning, D.; Anthon, D.; Chryssis, A.; Ryu, G.; Liu, G.; Winhold, H.; Fan, L.; Xu, Z.; Tanbun-Ek, T.; Lehkonen, S.; Acklin, B.
2016-03-01
A novel, 9XX nm fiber-coupled module using arrays of highly reliable laser diode bars has been developed. The module is capable of multi-kW output power in a beam parameter product of 80 mm-mrad. The module incorporates a hard-soldered, isolated stack package compatible with tap-water cooling. Using extensive, accelerated multi-cell life-testing, with more than ten million device hours of test, we have demonstrated a MTTF for emitters of >500,000 hrs. In addition we have qualified the module in hard-pulse on-off cycling and stringent environmental tests. Finally we have demonstrated promising results for a next generation 9xx nm chip design currently in applications and qualification testing
Studies of lipid vesicle mechanics using an optical fiber dual-beam trap
NASA Astrophysics Data System (ADS)
Pinon, Tessa M.; Hirst, Linda S.; Sharping, Jay E.
2011-03-01
Fiber-based optical traps can be used for manipulating micron-sized dielectric particles such as microspheres and biological cells. Here we study the mechanics of giant unilamellar vesicles (GUVs) which are held and stretched by light forces in a fiber-based dual-beam optical trap. Our GUVs are suspended in a buffer solution and encapsulate various concentrations and molecular weights of poly(ethylene glycol) (PEG) polymer yielding a range of refractive index contrasts and trapping conditions. We find that we can trap GUVs in solution with index contrasts of less than 0.01. We explore the mechanical response of the GUV membrane to a range of forces which are proportional to laser power and refractive index contrast. Our trapping system is a compact and inexpensive platform and trapping is viewed in real time under a microscope. We hypothesize that forces within the high-tension regime will induce a linear response in vesicle surface area. This project sets the stage for membrane mechanics and lipid phase change studies. Grant: NSF award #DMR 0852791, ``CAREER: Self-Assembly of Polyunsaturated Lipids and Cholesterol in the Cell Membrane.''
Kim, Yu Chang; Kim, Young; Oh, Dongwook; Lee, Kong Hoon
2013-03-19
Pressure-retarded osmosis (PRO) uses a semipermeable membrane to produce renewable energy from salinity-gradient energy. A spiral-wound (SW) design is one module configuration of the PRO membrane. The SW PRO membrane module has two different flow paths, axial and spiral, and two different spacers, net and tricot, for draw- and feed-solution streams, respectively. This study used an experimental approach to investigate the relationship between two interacting flow streams in a prototype SW PRO membrane module, and the adverse impact of a tricot fabric spacer (as a feed spacer) on the PRO performance, including water flux and power density. The presence of the tricot spacer inside the membrane envelope caused a pressure drop due to flow resistance and reduced osmotic water permeation due to the shadow effect. The dilution of the draw solution by water permeation resulted in the reduction of the osmotic pressure difference along a pressure vessel. For a 0.6 M NaCl solution and tap water, the water flux and corresponding maximum power density were 3.7 L m(-2)h(-1) and 1.0 W/m(2) respectively at a hydraulic pressure difference of 9.8 bar. The thickness and porosity of the tricot spacer should be optimized to achieve high SW PRO module performance.
Mannarino, Matthew M; Liu, David S; Hammond, Paula T; Rutledge, Gregory C
2013-08-28
Composite membranes composed of highly conductive and selective layer-by-layer (LbL) films and electrospun fiber mats were fabricated and characterized for mechanical strength and electrochemical selectivity. The LbL component consists of a proton-conducting, methanol-blocking poly(diallyl dimethyl ammonium chloride)/sulfonated poly(2,6-dimethyl-1,4-phenylene oxide) (PDAC/sPPO) thin film. The electrospun fiber component consists of poly(trimethyl hexamethylene terephthalamide) (PA 6(3)T) fibers in a nonwoven mat of 60-90% porosity. The bare mats were annealed to improve their mechanical properties, which improvements are shown to be retained in the composite membranes. Spray LbL assembly was used as a means for the rapid formation of proton-conducting films that fill the void space throughout the porous electrospun matrix and create a fuel-blocking layer. Coated mats as thin as 15 μm were fabricated, and viable composite membranes with methanol permeabilities 20 times lower than Nafion and through-plane proton selectivity five and a half times greater than Nafion are demonstrated. The mechanical properties of the spray coated electrospun mats are shown to be superior to the LbL-only system and possess intrinsically greater dimensional stability and lower mechanical hysteresis than Nafion under hydrated conditions. The composite proton exchange membranes fabricated here were tested in an operational direct methanol fuel cell. The results show the potential for higher open circuit voltages (OCV) and comparable cell resistances when compared to fuel cells based on Nafion.
Luiz Oenning, Anderson; Lopes, Daniela; Neves Dias, Adriana; Merib, Josias; Carasek, Eduardo
2017-11-01
In this study, the viability of two membrane-based microextraction techniques for the determination of endocrine disruptors by high-performance liquid chromatography with diode array detection was evaluated: hollow fiber microporous membrane liquid-liquid extraction and hollow-fiber-supported dispersive liquid-liquid microextraction. The extraction efficiencies obtained for methylparaben, ethylparaben, bisphenol A, benzophenone, and 2-ethylhexyl-4-methoxycinnamate from aqueous matrices obtained using both approaches were compared and showed that hollow fiber microporous membrane liquid-liquid extraction exhibited higher extraction efficiency for most of the compounds studied. Therefore, a detailed optimization of the extraction procedure was carried out with this technique. The optimization of the extraction conditions and liquid desorption were performed by univariate analysis. The optimal conditions for the method were supported liquid membrane with 1-octanol for 10 s, sample pH 7, addition of 15% w/v of NaCl, extraction time of 30 min, and liquid desorption in 150 μL of acetonitrile/methanol (50:50 v/v) for 5 min. The linear correlation coefficients were higher than 0.9936. The limits of detection were 0.5-4.6 μg/L and the limits of quantification were 2-16 μg/L. The analyte relative recoveries were 67-116%, and the relative standard deviations were less than 15.5%. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.