Science.gov

Sample records for fiber muscle types

  1. Muscle Fiber Types and Training.

    ERIC Educational Resources Information Center

    Karp, Jason R.

    2001-01-01

    The specific types of fibers that make up individual muscles greatly influence how people will adapt to their training programs. This paper explains the complexities of skeletal muscles, focusing on types of muscle fibers (slow-twitch and fast-twitch), recruitment of muscle fibers to perform a motor task, and determining fiber type. Implications…

  2. Composition of Muscle Fiber Types in Rat Rotator Cuff Muscles.

    PubMed

    Rui, Yongjun; Pan, Feng; Mi, Jingyi

    2016-10-01

    The rat is a suitable model to study human rotator cuff pathology owing to the similarities in morphological anatomy structure. However, few studies have reported the composition muscle fiber types of rotator cuff muscles in the rat. In this study, the myosin heavy chain (MyHC) isoforms were stained by immunofluorescence to show the muscle fiber types composition and distribution in rotator cuff muscles of the rat. It was found that rotator cuff muscles in the rat were of mixed fiber type composition. The majority of rotator cuff fibers labeled positively for MyHCII. Moreover, the rat rotator cuff muscles contained hybrid fibers. So, compared with human rotator cuff muscles composed partly of slow-twitch fibers, the majority of fast-twitch fibers in rat rotator cuff muscles should be considered when the rat model study focus on the pathological process of rotator cuff muscles after injury. Gaining greater insight into muscle fiber types in rotator cuff muscles of the rat may contribute to elucidate the mechanism of pathological change in rotator cuff muscles-related diseases. Anat Rec, 299:1397-1401, 2016. © 2016 Wiley Periodicals, Inc.

  3. Muscle fiber types composition and type identified endplate morphology of forepaw intrinsic muscles in the rat.

    PubMed

    Pan, Feng; Mi, Jing-Yi; Zhang, Yan; Pan, Xiao-Yun; Rui, Yong-Jun

    2016-06-01

    The failure to accept reinnervation is considered to be one of the reasons for the poor motor functional recovery of intrinsic hand muscles (IHMs) after nerve injury. Rat could be a suitable model to be used in simulating motor function recovery of the IHMs after nerve injury as to the similarities in function and anatomy of the muscles between human and rat. However, few studies have reported the muscle fiber types composition and endplate morphologic characteristics of intrinsic forepaw muscles (IFMs) in the rat. In this study, the myosin heavy chain isoforms and acetylcholine receptors were stained by immunofluorescence to show the muscle fiber types composition and endplates on type-identified fibers of the lumbrical muscles (LMs), interosseus muscles (IMs), abductor digiti minimi (AM) and flexor pollicis brevis (FM) in rat forepaw. The majority of IFMs fibers were labeled positively for fast-switch fiber. However, the IMs were composed of only slow-switch fiber. With the exception of the IMs, the other IFMs had a part of hybrid fibers. Two-dimensional morphological characteristics of endplates on I and IIa muscle fiber had no significant differences among the IFMs. The LMs is the most suitable IFMs of rat to stimulate reinnervation of the IHMs after nerve injury. Gaining greater insight into the muscle fiber types composition and endplate morphology in the IFMs of rat may help understand the pathological and functional changes of IFMs in rat model stimulating reinnervation of IHMs after peripheral nerve injury.

  4. Skeletal muscle fiber type: using insights from muscle developmental biology to dissect targets for susceptibility and resistance to muscle disease.

    PubMed

    Talbot, Jared; Maves, Lisa

    2016-07-01

    Skeletal muscle fibers are classified into fiber types, in particular, slow twitch versus fast twitch. Muscle fiber types are generally defined by the particular myosin heavy chain isoforms that they express, but many other components contribute to a fiber's physiological characteristics. Skeletal muscle fiber type can have a profound impact on muscle diseases, including certain muscular dystrophies and sarcopenia, the aging-induced loss of muscle mass and strength. These findings suggest that some muscle diseases may be treated by shifting fiber type characteristics either from slow to fast, or fast to slow phenotypes, depending on the disease. Recent studies have begun to address which components of muscle fiber types mediate their susceptibility or resistance to muscle disease. However, for many diseases it remains largely unclear why certain fiber types are affected. A substantial body of work has revealed molecular pathways that regulate muscle fiber type plasticity and early developmental muscle fiber identity. For instance, recent studies have revealed many factors that regulate muscle fiber type through modulating the activity of the muscle regulatory transcription factor MYOD1. Future studies of muscle fiber type development in animal models will continue to enhance our understanding of factors and pathways that may provide therapeutic targets to treat muscle diseases. WIREs Dev Biol 2016, 5:518-534. doi: 10.1002/wdev.230 For further resources related to this article, please visit the WIREs website. PMID:27199166

  5. Improving human skeletal muscle myosin heavy chain fiber typing efficiency.

    PubMed

    Murach, Kevin A; Bagley, James R; McLeland, Kathryn A; Arevalo, Jose A; Ciccone, Anthony B; Malyszek, Kylie K; Wen, Yuan; Galpin, Andrew J

    2016-04-01

    Single muscle fiber sodium dodecyl sulfate polyacrylamide gel-electrophoresis (SDS-PAGE) is a sensitive technique for determining skeletal muscle myosin heavy chain (MHC) composition of human biopsy samples. However, the number of fibers suitable to represent fiber type distribution via this method is undefined. Muscle biopsies were obtained from the vastus lateralis (VL) of nine resistance-trained males (25 ± 1 year, height = 179 ± 5 cm, mass = 82 ± 8 kg). Single fiber MHC composition was determined via SDS-PAGE. VL fiber type distribution [percent MHC I, I/IIa, IIa, IIa/IIx, and total "hybrids" (i.e. I/IIa + IIa/IIx)] was evaluated according to number of fibers analyzed per person (25 vs. 125). VL fiber type distribution did not differ according to number of fibers analyzed (P > 0.05). VL biopsy fiber type distribution of nine subjects is represented by analyzing 25 fibers per person. These data may help minimize cost, personnel-time, and materials associated with this technique, thereby improving fiber typing efficiency in humans. PMID:26842420

  6. Niacin supplementation induces type II to type I muscle fiber transition in skeletal muscle of sheep

    PubMed Central

    2013-01-01

    Background It was recently shown that niacin supplementation counteracts the obesity-induced muscle fiber transition from oxidative type I to glycolytic type II and increases the number of type I fibers in skeletal muscle of obese Zucker rats. These effects were likely mediated by the induction of key regulators of fiber transition, PPARδ (encoded by PPARD), PGC-1α (encoded by PPARGC1A) and PGC-1β (encoded by PPARGC1B), leading to type II to type I fiber transition and upregulation of genes involved in oxidative metabolism. The aim of the present study was to investigate whether niacin administration also influences fiber distribution and the metabolic phenotype of different muscles [M. longissimus dorsi (LD), M. semimembranosus (SM), M. semitendinosus (ST)] in sheep as a model for ruminants. For this purpose, 16 male, 11 wk old Rhoen sheep were randomly allocated to two groups of 8 sheep each administered either no (control group) or 1 g niacin per day (niacin group) for 4 wk. Results After 4 wk, the percentage number of type I fibers in LD, SM and ST muscles was greater in the niacin group, whereas the percentage number of type II fibers was less in niacin group than in the control group (P < 0.05). The mRNA levels of PPARGC1A, PPARGC1B, and PPARD and the relative mRNA levels of genes involved in mitochondrial fatty acid uptake (CPT1B, SLC25A20), tricarboxylic acid cycle (SDHA), mitochondrial respiratory chain (COX5A, COX6A1), and angiogenesis (VEGFA) in LD, SM and ST muscles were greater (P < 0.05) or tended to be greater (P < 0.15) in the niacin group than in the control group. Conclusions The study shows that niacin supplementation induces muscle fiber transition from type II to type I, and thereby an oxidative metabolic phenotype of skeletal muscle in sheep as a model for ruminants. The enhanced capacity of skeletal muscle to utilize fatty acids in ruminants might be particularly useful during metabolic states in which fatty acids are

  7. Mechanical properties and fiber type composition of chronically inactive muscles

    NASA Technical Reports Server (NTRS)

    Roy, R. R.; Zhong, H.; Monti, R. J.; Vallance, K. A.; Kim, J. A.; Edgerton, V. R.

    2000-01-01

    A role for neuromuscular activity in the maintenance of skeletal muscle properties has been well established. However, the role of activity-independent factors is more difficult to evaluate. We have used the spinal cord isolation model to study the effects of chronic inactivity on the mechanical properties of the hindlimb musculature in cats and rats. This model maintains the connectivity between the motoneurons and the muscle fibers they innervate, but the muscle unit is electrically "silent". Consequently, the measured muscle properties are activity-independent and thus the advantage of using this model is that it provides a baseline level (zero activity) from which regulatory factors that affect muscle cell homeostasis can be defined. In the present paper, we will present a brief review of our findings using the spinal cord isolation model related to muscle mechanical and fiber type properties.

  8. CYTOLOGICAL STUDIES OF FIBER TYPES IN SKELETAL MUSCLE

    PubMed Central

    Gauthier, Geraldine F.; Padykula, Helen A.

    1966-01-01

    A comparative investigation of the mammalian diaphragm has revealed a correlation between certain cytological aspects of red and white muscle fibers and functional activity. This skeletal muscle presents the advantage of a similar and constant function among the mammals, but its functional activity varies in a quantitative manner. Both the rate of breathing (and hence the rate of contraction of the diaphragm) and metabolic activity are known to be inversely related to body size; and this study has demonstrated a relationship between cytological characteristics of the diaphragm and body size of the animal. Small fibers rich in mitochondria (red fibers) are characteristic of small mammals, which have high metabolic activity and fast breathing rates; and large fibers with relatively low mitochondrial content predominate in large mammals, which have lower metabolic activity and slower breathing rates. In mammals with body size intermediate between these two groups (including the laboratory rat), the diaphragm consists of varying mixtures of fiber types. In general, the mitochondrial content of diaphragm fibers is inversely related to body size. It appears, then, that the red fiber reflects a high degree of metabolic activity or a relatively high rate of contraction within the range exhibited by this muscle. PMID:5950272

  9. Human Masseter Muscle Fiber Type Properties, Skeletal Malocclusions, and Muscle Growth Factor Expression

    PubMed Central

    Sciote, James Joseph; Horton, Michael J.; Rowlerson, Anthea M.; Ferri, Joel; Close, John M.; Raoul, Gwenael

    2013-01-01

    Purpose We identified masseter muscle fiber type property differences in subjects with dentofacial deformities. Patients and Methods Samples of masseter muscle were collected from 139 young adults during mandibular osteotomy procedures to assess mean fiber areas and percent tissue occupancies for the 4 fiber types that comprise the muscle. Subjects were classified into 1 of 6 malocclusion groups based on the presence of a skeletal Class II or III sagittal dimension malocclusion and either a skeletal open, deep, or normal bite vertical dimension malocclusion. In a subpopulation, relative quantities of the muscle growth factors IGF-I and GDF-8 gene expression were quantified by real-time polymerase chain reaction. Results Fiber properties were not different in the sagittal malocclusion groups, but were very different in the vertical malocclusion groups (P ≤ .0004). There were significant mean fiber area differences for type II (P ≤ .0004) and type neonatal—atrial (P = .001) fiber types and for fiber percent occupancy differences for both type I–II hybrid fibers and type II fibers (P ≤ .0004). Growth factor expression differed by gender for IGF-I (P = .02) and GDF-8 (P < .01). The ratio of IGF-I:GDF-8 expression associates with type I and II mean fiber areas. Conclusion Fiber type properties are very closely associated with variations in vertical growth of the face, with statistical significance for overall comparisons at P ≤ .0004. An increase in masseter muscle type II fiber mean fiber areas and percent tissue occupancies is inversely related to increases in vertical facial dimension. PMID:21821327

  10. Spindle representation relative to distribution of muscle fiber types in the cat capsularis muscle.

    PubMed

    Eldred, E; Yung, L; Roy, R R

    1997-01-01

    The spatial representation of muscle spindles (Sps) in the small (approximately 0.2 g), simply structured capsularis muscle that crosses anterior to the cat's hip joint was compared with the distribution of the slow oxidative (SO) and few (< 10%) fast oxidative-glycolytic (FOG) fibers of which it is composed to see if their distributions were consistent with a hypothesis that sensory input from Sps influences the incidence of extrafusal fiber types. In frozen sections from 4 muscles, FOG fibers were enumerated along 1-mm strips across the muscle's maximum width, and between the 'superficial' surface and the 'deep' one that contacts the joint. The locations of Sps in complete serial sections of 2 paraffin-embedded muscles, one perfused with the hip joint flexed and the other with it extended, were plotted on an outline of each muscle at its midlength, and their numbers and density in horizontal and sagittal 'strata' determined. In general, the incidence of Sps increased down the superficial-to-deep axis, while FOG fibers became fewer, as is consistent with support of SO status by Sp input. Along the craniocaudal axis, i.e. width, the numbers of FOG fibers rose toward the hip joint, but this was not associated with a monomodal gradient of Sps. In the extended muscle, however, the lengths of the axial bundle and capsular space of Sps in the half of the muscle next to the joint exceeded those in the longer, cranial half, implying that under stretch the input from Sps became higher toward the joint. In the non-extended muscle these lengths did not differ, although the lengths of extrafusal fibers isolated from 2 macerated muscles and normalized according to sarcomere length decreased linearily by approximately 50% along craniocaudal axis. It is explained that if elastic resistance of a Sp's sensory region exceeded that of an equivalent length of septal tissue in-series, the progressive shift in the ratio of compliances across this trapezoidally-shaped muscle should

  11. Muscle fiber type specific induction of slow myosin heavy chain 2 gene expression by electrical stimulation

    SciTech Connect

    Crew, Jennifer R.; Falzari, Kanakeshwari; DiMario, Joseph X.

    2010-04-01

    Vertebrate skeletal muscle fiber types are defined by a broad array of differentially expressed contractile and metabolic protein genes. The mechanisms that establish and maintain these different fiber types vary throughout development and with changing functional demand. Chicken skeletal muscle fibers can be generally categorized as fast and fast/slow based on expression of the slow myosin heavy chain 2 (MyHC2) gene in fast/slow muscle fibers. To investigate the cellular and molecular mechanisms that control fiber type formation in secondary or fetal muscle fibers, myoblasts from the fast pectoralis major (PM) and fast/slow medial adductor (MA) muscles were isolated, allowed to differentiate in vitro, and electrically stimulated. MA muscle fibers were induced to express the slow MyHC2 gene by electrical stimulation, whereas PM muscle fibers did not express the slow MyHC2 gene under identical stimulation conditions. However, PM muscle fibers did express the slow MyHC2 gene when electrical stimulation was combined with inhibition of inositol triphosphate receptor (IP3R) activity. Electrical stimulation was sufficient to increase nuclear localization of expressed nuclear-factor-of-activated-T-cells (NFAT), NFAT-mediated transcription, and slow MyHC2 promoter activity in MA muscle fibers. In contrast, both electrical stimulation and inhibitors of IP3R activity were required for these effects in PM muscle fibers. Electrical stimulation also increased levels of peroxisome-proliferator-activated receptor-{gamma} co-activator-1 (PGC-1{alpha}) protein in PM and MA muscle fibers. These results indicate that MA muscle fibers can be induced by electrical stimulation to express the slow MyHC2 gene and that fast PM muscle fibers are refractory to stimulation-induced slow MyHC2 gene expression due to fast PM muscle fiber specific cellular mechanisms involving IP3R activity.

  12. Fiber types in the longissimus muscle from water buffalo and selected domestic beef breeds.

    PubMed

    Solomon, M B; West, R L; Carpenter, J W

    1985-01-01

    The distribution and area of longissimus muscle fiber types from two intact male water buffaloes, one Angus bull and one Charolais bull were evaluated. Only fibers of aerobic-oxidative capacity were present in the muscles of the water buffalo examined. The absence of αW fibers may imply some significant and distinct differences in muscle metabolic and functional characteristics. All three fibers types were present in the muscles from the Angus and Charolais bulls. These findings may implicate distinct and unique differences in meat characteristics from water buffalo, such as in organoleptic and/or processing traits.

  13. Protein diffusion in living skeletal muscle fibers: dependence on protein size, fiber type, and contraction.

    PubMed Central

    Papadopoulos, S; Jürgens, K D; Gros, G

    2000-01-01

    Sarcoplasmic protein diffusion was studied under different conditions, using microinjection in combination with microspectrophotometry. Six globular proteins with molecular masses between 12 and 3700 kDa, with diameters from 3 to 30 nm, were used for the experiments. Proteins were injected into single, intact skeletal muscle fibers taken from either soleus or extensor digitorum longus (edl) muscle of adult rats. No correlation was found between sarcomere spacing and the sarcoplasmic diffusion coefficient (D) for all proteins studied. D of the smaller proteins cytochrome c (diameter 3.1 nm), myoglobin (diameter 3.5 nm), and hemoglobin (diameter 5.5 nm) amounted to only approximately 1/10 of their value in water and was not increased by auxotonic fiber contractions. D for cytochrome c and myoglobin was significantly higher in fibers from edl (mainly type II fibers) compared to fibers from soleus (mainly type I fibers). Measurements of D for myoglobin at 37 degrees C in addition to 22 degrees C led to a Q(10) of 1.46 for this temperature range. For the larger proteins catalase (diameter 10.5 nm) and ferritin (diameter 12.2 nm), a decrease in D to approximately 1/20 and approximately 1/50 of that in water was observed, whereas no diffusive flux at all of earthworm hemoglobin (diameter 30 nm) along the fiber axis could be detected. We conclude that 1) sarcoplasmic protein diffusion is strongly impaired by the presence of the myofilamental lattice, which also gives rise to differences in diffusivity between different fiber types; 2) contractions do not cause significant convection in sarcoplasm and do not lead to increased diffusional transport; and 3) in addition to the steric hindrance that slows down the diffusion of smaller proteins, diffusion of large proteins is further hindered when their dimensions approach the interfilament distances. This molecular sieve property progressively reduces intracellular diffusion of proteins when the molecular diameter increases to

  14. Changes in skeletal muscle biochemistry and histology relative to fiber type in rats with heart failure

    NASA Technical Reports Server (NTRS)

    Delp, M. D.; Duan, C.; Mattson, J. P.; Musch, T. I.

    1997-01-01

    One of the primary consequences of left ventricular dysfunction (LVD) after myocardial infarction is a decrement in exercise capacity. Several factors have been hypothesized to account for this decrement, including alterations in skeletal muscle metabolism and aerobic capacity. The purpose of this study was to determine whether LVD-induced alterations in skeletal muscle enzyme activities, fiber composition, and fiber size are 1) generalized in muscles or specific to muscles composed primarily of a given fiber type and 2) related to the severity of the LVD. Female Wistar rats were divided into three groups: sham-operated controls (n = 13) and rats with moderate (n = 10) and severe (n = 7) LVD. LVD was surgically induced by ligating the left main coronary artery and resulted in elevations (P < 0.05) in left ventricular end-diastolic pressure (sham, 5 +/- 1 mmHg; moderate LVD, 11 +/- 1 mmHg; severe LVD, 25 +/- 1 mmHg). Moderate LVD decreased the activities of phosphofructokinase (PFK) and citrate synthase in one muscle composed of type IIB fibers but did not modify fiber composition or size of any muscle studied. However, severe LVD diminished the activity of enzymes involved in terminal and beta-oxidation in muscles composed primarily of type I fibers, type IIA fibers, and type IIB fibers. In addition, severe LVD induced a reduction in the activity of PFK in type IIB muscle, a 10% reduction in the percentage of type IID/X fibers, and a corresponding increase in the portion of type IIB fibers. Atrophy of type I fibers, type IIA fibers, and/or type IIB fibers occurred in soleus and plantaris muscles of rats with severe LVD. These data indicate that rats with severe LVD after myocardial infarction exhibit 1) decrements in mitochondrial enzyme activities independent of muscle fiber composition, 2) a reduction in PFK activity in type IIB muscle, 3) transformation of type IID/X to type IIB fibers, and 4) atrophy of type I, IIA, and IIB fibers.

  15. Muscle fiber type characterization and myosin heavy chain (MyHC) isoform expression in Mediterranean buffaloes.

    PubMed

    Francisco, C L; Jorge, A M; Dal-Pai-Silva, M; Carani, F R; Cabeço, L C; Silva, S R

    2011-07-01

    This study aimed to evaluate myosin heavy chain (MyHC) isoform expression and muscle fiber types of Longissimus dorsi (LD) and Semitendinosus (ST) in Mediterranean buffaloes and possible fibers muscles modulation according to different slaughter weights. The presence of MyHC IIb isoforms was not found. Only three isoforms of MyHC (IIa, IIx/d and I) were observed and their percentages did not vary significantly among slaughter weights. The confirmation of the presence of hybrid muscles fibers (IIA/X) in LD and ST muscles necessitated classifying the fiber types into fast and slow according to their contractile activity, by m-ATPase assay. For both muscles, the muscle fiber frequency was higher for fast than for slow fibers in all weight groups. There was a difference (P<0.05) in the frequency of LD and ST muscle fiber types according to slaughter weights, which demonstrate that the slaughter weight influences the profile of muscle fibers from buffaloes. PMID:21371827

  16. Fiber type effects on contraction-stimulated glucose uptake and GLUT4 abundance in single fibers from rat skeletal muscle

    PubMed Central

    Castorena, Carlos M.; Arias, Edward B.; Sharma, Naveen; Bogan, Jonathan S.

    2014-01-01

    To fully understand skeletal muscle at the cellular level, it is essential to evaluate single muscle fibers. Accordingly, the major goals of this study were to determine if there are fiber type-related differences in single fibers from rat skeletal muscle for: 1) contraction-stimulated glucose uptake and/or 2) the abundance of GLUT4 and other metabolically relevant proteins. Paired epitrochlearis muscles isolated from Wistar rats were either electrically stimulated to contract (E-Stim) or remained resting (No E-Stim). Single fibers isolated from muscles incubated with 2-deoxy-d-[3H]glucose (2-DG) were used to determine fiber type [myosin heavy chain (MHC) isoform protein expression], 2-DG uptake, and abundance of metabolically relevant proteins, including the GLUT4 glucose transporter. E-Stim, relative to No E-Stim, fibers had greater (P < 0.05) 2-DG uptake for each of the isolated fiber types (MHC-IIa, MHC-IIax, MHC-IIx, MHC-IIxb, and MHC-IIb). However, 2-DG uptake for E-Stim fibers was not significantly different among these five fiber types. GLUT4, tethering protein containing a UBX domain for GLUT4 (TUG), cytochrome c oxidase IV (COX IV), and filamin C protein levels were significantly greater (P < 0.05) in MHC-IIa vs. MHC-IIx, MHC-IIxb, or MHC-IIb fibers. TUG and COX IV in either MHC-IIax or MHC-IIx fibers exceeded values for MHC-IIxb or MHC-IIb fibers. GLUT4 levels for MHC-IIax fibers exceeded MHC-IIxb fibers. GLUT4, COX IV, filamin C, and TUG abundance in single fibers was significantly (P < 0.05) correlated with each other. Differences in GLUT4 abundance among the fiber types were not accompanied by significant differences in contraction-stimulated glucose uptake. PMID:25491725

  17. Structure of motor endplates in the different fiber types of vertebrate skeletal muscles.

    PubMed

    Ogata, T

    1988-12-01

    The number and localization of vertebrate motor endplates on the muscle fiber, and their structure, vary according to phylum and species, and among the different fiber types in a given species. Vertebrate skeletal muscle fibers are classified into two major groups: the twitch (fast) and the slow (tonic) fibers. The twitch fiber has straight Z-lines and a well developed T-SR system, and is singly innervated with en plaque (plate-like) type motor endplate. The twitch fibers are further subdivided into three types: the red (mitochondria-rich), intermediate (mitochondria-moderate) and white (mitochondria-poor) fibers. The motor endplate of the white fiber is large and has a complicated structure, that of the red fiber is small and less complicated, and that of the intermediate fiber possesses intermediate characteristics. The slow fiber has zigzag Z-lines and poorly developed sarcoplasmic reticulum (SR), and is multiply innervated with en grappe (grape-like) type motor endplates. The morphological features of the motor endplate in each of these fiber types of the mammalian, avian, reptilian, amphibian, and fish skeletal muscles are reviewed. Special emphasis has been placed on the three-dimensional structure of the motor endplates of the different fiber types as observed by high-resolution scanning electron microscopy. PMID:3066303

  18. Contractile properties of rat, rhesus monkey, and human type I muscle fibers

    NASA Technical Reports Server (NTRS)

    Widrick, J. J.; Romatowski, J. G.; Karhanek, M.; Fitts, R. H.

    1997-01-01

    It is well known that skeletal muscle intrinsic maximal shortening velocity is inversely related to species body mass. However, there is uncertainty regarding the relationship between the contractile properties of muscle fibers obtained from commonly studied laboratory animals and those obtained from humans. In this study we determined the contractile properties of single chemically skinned fibers prepared from rat, rhesus monkey, and human soleus and gastrocnemius muscle samples under identical experimental conditions. All fibers used for analysis expressed type I myosin heavy chain as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Allometric coefficients for type I fibers from each muscle indicated that there was little change in peak tension (force/fiber cross-sectional area) across species. In contrast, both soleus and gastrocnemius type I fiber maximal unloaded shortening velocity (Vo), the y-intercept of the force-velocity relationship (Vmax), peak power per unit fiber length, and peak power normalized for fiber length and cross-sectional area were all inversely related to species body mass. The present allometric coefficients for soleus fiber Vo (-0.18) and Vmax (-0.11) are in good agreement with published values for soleus fibers obtained from common laboratory and domesticated mammals. Taken together, these observations suggest that the Vo of slow fibers from quadrupeds and humans scale similarly and can be described by the same quantitative relationships. These findings have implications in the design and interpretation of experiments, especially those that use small laboratory mammals as a model of human muscle function.

  19. Skeletal muscle fiber types in the ghost crab, Ocypode quadrata: implications for running performance.

    PubMed

    Perry, Michael J; Tait, Jennifer; Hu, John; White, Scott C; Medler, Scott

    2009-03-01

    Ghost crabs possess rapid running capabilities, which make them good candidates for comparing invertebrate exercise physiology with that of more extensively studied vertebrates. While a number of studies have examined various aspects of running physiology and biomechanics in terrestrial crabs, none to date have defined the basic skeletal muscle fiber types that power locomotion. In the current study, we investigated skeletal muscle fiber types comprising the extensor and flexor carpopodite muscles in relation to running performance in the ghost crab. We used kinematic analyses to determine stride frequency and muscle shortening velocity and found that both parameters are similar to those of comparably sized mammals but slower than those observed in running lizards. Using several complementary methods, we found that the muscles are divided into two primary fiber types: those of the proximal and distal regions possess long sarcomeres (6.2+/-2.3 microm) observed in crustacean slow fibers and have characteristics of aerobic fibers whereas those of the muscle mid-region have short sarcomeres (3.5+/-0.4 microm) characteristic of fast fibers and appear to be glycolytic. Each fiber type is characterized by several different myofibrillar protein isoforms including multiple isoforms of myosin heavy chain (MHC), troponin I (TnI), troponin T (TnT) and a crustacean fast muscle protein, P75. Three different isoforms of MHC are differentially expressed in the muscles, with fibers of the mid-region always co-expressing two isoforms at a 1:1 ratio within single fibers. Based on our analyses, we propose that these muscles are functionally divided into a two-geared system, with the aerobic fibers used for slow sustained activities and the glycolytic mid-region fibers being reserved for explosive sprints. Finally, we identified subtle differences in myofibrillar isoform expression correlated with crab body size, which changes by several orders of magnitude during an animal's lifetime.

  20. Ontogenetic changes in skeletal muscle fiber type, fiber diameter and myoglobin concentration in the Northern elephant seal (Mirounga angustirostris).

    PubMed

    Moore, Colby D; Crocker, Daniel E; Fahlman, Andreas; Moore, Michael J; Willoughby, Darryn S; Robbins, Kathleen A; Kanatous, Shane B; Trumble, Stephen J

    2014-01-01

    Northern elephant seals (Mirounga angustirostris) (NES) are known to be deep, long-duration divers and to sustain long-repeated patterns of breath-hold, or apnea. Some phocid dives remain within the bounds of aerobic metabolism, accompanied by physiological responses inducing lung compression, bradycardia, and peripheral vasoconstriction. Current data suggest an absence of type IIb fibers in pinniped locomotory musculature. To date, no fiber type data exist for NES, a consummate deep diver. In this study, NES were biopsied in the wild. Ontogenetic changes in skeletal muscle were revealed through succinate dehydrogenase (SDH) based fiber typing. Results indicated a predominance of uniformly shaped, large type I fibers and elevated myoglobin (Mb) concentrations in the longissimus dorsi (LD) muscle of adults. No type II muscle fibers were detected in any adult sampled. This was in contrast to the juvenile animals that demonstrated type II myosin in Western Blot analysis, indicative of an ontogenetic change in skeletal muscle with maturation. These data support previous hypotheses that the absence of type II fibers indicates reliance on aerobic metabolism during dives, as well as a depressed metabolic rate and low energy locomotion. We also suggest that the lack of type IIb fibers (adults) may provide a protection against ischemia reperfusion (IR) injury in vasoconstricted peripheral skeletal muscle.

  1. Ontogenetic changes in skeletal muscle fiber type, fiber diameter and myoglobin concentration in the Northern elephant seal (Mirounga angustirostris)

    PubMed Central

    Moore, Colby D.; Crocker, Daniel E.; Fahlman, Andreas; Moore, Michael J.; Willoughby, Darryn S.; Robbins, Kathleen A.; Kanatous, Shane B.; Trumble, Stephen J.

    2014-01-01

    Northern elephant seals (Mirounga angustirostris) (NES) are known to be deep, long-duration divers and to sustain long-repeated patterns of breath-hold, or apnea. Some phocid dives remain within the bounds of aerobic metabolism, accompanied by physiological responses inducing lung compression, bradycardia, and peripheral vasoconstriction. Current data suggest an absence of type IIb fibers in pinniped locomotory musculature. To date, no fiber type data exist for NES, a consummate deep diver. In this study, NES were biopsied in the wild. Ontogenetic changes in skeletal muscle were revealed through succinate dehydrogenase (SDH) based fiber typing. Results indicated a predominance of uniformly shaped, large type I fibers and elevated myoglobin (Mb) concentrations in the longissimus dorsi (LD) muscle of adults. No type II muscle fibers were detected in any adult sampled. This was in contrast to the juvenile animals that demonstrated type II myosin in Western Blot analysis, indicative of an ontogenetic change in skeletal muscle with maturation. These data support previous hypotheses that the absence of type II fibers indicates reliance on aerobic metabolism during dives, as well as a depressed metabolic rate and low energy locomotion. We also suggest that the lack of type IIb fibers (adults) may provide a protection against ischemia reperfusion (IR) injury in vasoconstricted peripheral skeletal muscle. PMID:24959151

  2. Ontogenetic changes in skeletal muscle fiber type, fiber diameter and myoglobin concentration in the Northern elephant seal (Mirounga angustirostris).

    PubMed

    Moore, Colby D; Crocker, Daniel E; Fahlman, Andreas; Moore, Michael J; Willoughby, Darryn S; Robbins, Kathleen A; Kanatous, Shane B; Trumble, Stephen J

    2014-01-01

    Northern elephant seals (Mirounga angustirostris) (NES) are known to be deep, long-duration divers and to sustain long-repeated patterns of breath-hold, or apnea. Some phocid dives remain within the bounds of aerobic metabolism, accompanied by physiological responses inducing lung compression, bradycardia, and peripheral vasoconstriction. Current data suggest an absence of type IIb fibers in pinniped locomotory musculature. To date, no fiber type data exist for NES, a consummate deep diver. In this study, NES were biopsied in the wild. Ontogenetic changes in skeletal muscle were revealed through succinate dehydrogenase (SDH) based fiber typing. Results indicated a predominance of uniformly shaped, large type I fibers and elevated myoglobin (Mb) concentrations in the longissimus dorsi (LD) muscle of adults. No type II muscle fibers were detected in any adult sampled. This was in contrast to the juvenile animals that demonstrated type II myosin in Western Blot analysis, indicative of an ontogenetic change in skeletal muscle with maturation. These data support previous hypotheses that the absence of type II fibers indicates reliance on aerobic metabolism during dives, as well as a depressed metabolic rate and low energy locomotion. We also suggest that the lack of type IIb fibers (adults) may provide a protection against ischemia reperfusion (IR) injury in vasoconstricted peripheral skeletal muscle. PMID:24959151

  3. Distribution of tropomyosin isoforms in different types of single fibers isolated from bovine skeletal muscles.

    PubMed

    Oe, M; Ojima, K; Nakajima, I; Chikuni, K; Shibata, M; Muroya, S

    2016-08-01

    To clarify the relationship between myosin heavy chain (MyHC) isoforms and tropomyosin (TPM) isoforms in single fibers, 64 single fibers were isolated from each of bovine three muscles (masseter, semispinalis and semitendinosus). mRNA expressions of MyHC and TPM isoforms were analyzed by real-time PCR. All single fibers from the masseter expressed MyHC-slow. The fibers from the semispinalis expressed both MyHC-slow and 2a. The fibers from the semitendinosus expressed MyHC-slow, 2a and 2x. TPM-1 and TPM-2 were co-expressed in 2a and 2x type fibers, and TPM-2 and TPM-3 were co-expressed in slow type fibers. The expression pattern of TPM isoforms in each fiber type was similar between fibers isolated from different muscles. These results suggest that TPM-1 and TPM-3 isoforms correspond to the function of 2a or 2x type fibers and slow type fibers, respectively, with TPM-2 in common. Furthermore, the patterns of MyHC and TPM isoform combinations did not vary among single fibers isolated from the individual muscles examined.

  4. Distribution of tropomyosin isoforms in different types of single fibers isolated from bovine skeletal muscles.

    PubMed

    Oe, M; Ojima, K; Nakajima, I; Chikuni, K; Shibata, M; Muroya, S

    2016-08-01

    To clarify the relationship between myosin heavy chain (MyHC) isoforms and tropomyosin (TPM) isoforms in single fibers, 64 single fibers were isolated from each of bovine three muscles (masseter, semispinalis and semitendinosus). mRNA expressions of MyHC and TPM isoforms were analyzed by real-time PCR. All single fibers from the masseter expressed MyHC-slow. The fibers from the semispinalis expressed both MyHC-slow and 2a. The fibers from the semitendinosus expressed MyHC-slow, 2a and 2x. TPM-1 and TPM-2 were co-expressed in 2a and 2x type fibers, and TPM-2 and TPM-3 were co-expressed in slow type fibers. The expression pattern of TPM isoforms in each fiber type was similar between fibers isolated from different muscles. These results suggest that TPM-1 and TPM-3 isoforms correspond to the function of 2a or 2x type fibers and slow type fibers, respectively, with TPM-2 in common. Furthermore, the patterns of MyHC and TPM isoform combinations did not vary among single fibers isolated from the individual muscles examined. PMID:27105153

  5. Automated fiber-type-specific cross-sectional area assessment and myonuclei counting in skeletal muscle

    PubMed Central

    Liu, Fujun; Fry, Christopher S.; Mula, Jyothi; Jackson, Janna R.; Lee, Jonah D.; Peterson, Charlotte A.

    2013-01-01

    Skeletal muscle is an exceptionally adaptive tissue that compromises 40% of mammalian body mass. Skeletal muscle functions in locomotion, but also plays important roles in thermogenesis and metabolic homeostasis. Thus characterizing the structural and functional properties of skeletal muscle is important in many facets of biomedical research, ranging from myopathies to rehabilitation sciences to exercise interventions aimed at improving quality of life in the face of chronic disease and aging. In this paper, we focus on automated quantification of three important morphological features of muscle: 1) muscle fiber-type composition; 2) muscle fiber-type-specific cross-sectional area, and 3) myonuclear content and location. We experimentally prove that the proposed automated image analysis approaches for fiber-type-specific assessments and automated myonuclei counting are fast, accurate, and reliable. PMID:24092696

  6. Muscle fiber type characteristics of M. deltoideus in wheelchair athletes. Comparison with other trained athletes.

    PubMed

    Tesch, P A; Karlsson, J

    1983-10-01

    Muscle biopsies were obtained from the midportion of m. deltoideus of seven male wheelchair basketball athletes. High caliber kayak paddlers (n = 8) and wrestlers (n = 8) as well as mountain ranger soldiers (n = 8) served as controls. Histochemical methods were applied to identify fast twitch (FT) and slow twitch (ST) fibers and furthermore assess muscle fiber type distribution and muscle fiber cross-sectional area. The relative percentage of FT fibers averaged (+/-SD) 47 +/- 12% and 52 +/- 9% in wheelchair athletes and soldiers. The value obtained in kayakers was significantly lower (30 +/- 11). Both FT area (p less than 0.01) and mean fiber area (p less than 0.05) were significantly larger in wheelchair athletes as compared with soldiers and kayakers. It is suggested that the involvement in specific physical training was the main cause for hypertrophy of individual muscle fibers observed in m. deltoideus of wheelchair athletes.

  7. Muscle fiber type distribution in climbing Hawaiian gobioid fishes: ontogeny and correlations with locomotor performance.

    PubMed

    Cediel, Roberto A; Blob, Richard W; Schrank, Gordon D; Plourde, Robert C; Schoenfuss, Heiko L

    2008-01-01

    Three species of Hawaiian amphidromous gobioid fishes are remarkable in their ability to climb waterfalls up to several hundred meters tall. Juvenile Lentipes concolor and Awaous guamensis climb using rapid bursts of axial undulation, whereas juvenile Sicyopterus stimpsoni climb using much slower movements, alternately attaching oral and pelvic sucking disks to the substrate during prolonged bouts of several cycles. Based on these differing climbing styles, we hypothesized that propulsive musculature in juvenile L. concolor and A. guamensis would be dominated by white muscle fibers, whereas S. stimpsoni would exhibit a greater proportion of red muscle fibers than other climbing species. We further predicted that, because adults of these species shift from climbing to burst swimming as their main locomotor behavior, muscle from adult fish of all three species would be dominated by white fibers. To test these hypotheses, we used ATPase assays to evaluate muscle fiber type distribution in Hawaiian climbing gobies for three anatomical regions (midbody, anal, and tail). Axial musculature was dominated by white muscle fibers in juveniles of all three species, but juvenile S. stimpsoni had a significantly greater proportion of red fibers than the other two species. Fiber type proportions of adult fishes did not differ significantly from those of juveniles. Thus, muscle fiber type proportions in juveniles appear to help accommodate differences in locomotor demands among these species, indicating that they overcome the common challenge of waterfall climbing through both diverse behaviors and physiological specializations. PMID:18222661

  8. Muscle fiber type distribution in climbing Hawaiian gobioid fishes: ontogeny and correlations with locomotor performance.

    PubMed

    Cediel, Roberto A; Blob, Richard W; Schrank, Gordon D; Plourde, Robert C; Schoenfuss, Heiko L

    2008-01-01

    Three species of Hawaiian amphidromous gobioid fishes are remarkable in their ability to climb waterfalls up to several hundred meters tall. Juvenile Lentipes concolor and Awaous guamensis climb using rapid bursts of axial undulation, whereas juvenile Sicyopterus stimpsoni climb using much slower movements, alternately attaching oral and pelvic sucking disks to the substrate during prolonged bouts of several cycles. Based on these differing climbing styles, we hypothesized that propulsive musculature in juvenile L. concolor and A. guamensis would be dominated by white muscle fibers, whereas S. stimpsoni would exhibit a greater proportion of red muscle fibers than other climbing species. We further predicted that, because adults of these species shift from climbing to burst swimming as their main locomotor behavior, muscle from adult fish of all three species would be dominated by white fibers. To test these hypotheses, we used ATPase assays to evaluate muscle fiber type distribution in Hawaiian climbing gobies for three anatomical regions (midbody, anal, and tail). Axial musculature was dominated by white muscle fibers in juveniles of all three species, but juvenile S. stimpsoni had a significantly greater proportion of red fibers than the other two species. Fiber type proportions of adult fishes did not differ significantly from those of juveniles. Thus, muscle fiber type proportions in juveniles appear to help accommodate differences in locomotor demands among these species, indicating that they overcome the common challenge of waterfall climbing through both diverse behaviors and physiological specializations.

  9. Fnip1 regulates skeletal muscle fiber type specification, fatigue resistance, and susceptibility to muscular dystrophy

    PubMed Central

    Reyes, Nicholas L.; Banks, Glen B.; Tsang, Mark; Margineantu, Daciana; Gu, Haiwei; Djukovic, Danijel; Chan, Jacky; Torres, Michelle; Liggitt, H. Denny; Hirenallur-S, Dinesh K.; Hockenbery, David M.; Raftery, Daniel; Iritani, Brian M.

    2015-01-01

    Mammalian skeletal muscle is broadly characterized by the presence of two distinct categories of muscle fibers called type I “red” slow twitch and type II “white” fast twitch, which display marked differences in contraction strength, metabolic strategies, and susceptibility to fatigue. The relative representation of each fiber type can have major influences on susceptibility to obesity, diabetes, and muscular dystrophies. However, the molecular factors controlling fiber type specification remain incompletely defined. In this study, we describe the control of fiber type specification and susceptibility to metabolic disease by folliculin interacting protein-1 (Fnip1). Using Fnip1 null mice, we found that loss of Fnip1 increased the representation of type I fibers characterized by increased myoglobin, slow twitch markers [myosin heavy chain 7 (MyH7), succinate dehydrogenase, troponin I 1, troponin C1, troponin T1], capillary density, and mitochondria number. Cultured Fnip1-null muscle fibers had higher oxidative capacity, and isolated Fnip1-null skeletal muscles were more resistant to postcontraction fatigue relative to WT skeletal muscles. Biochemical analyses revealed increased activation of the metabolic sensor AMP kinase (AMPK), and increased expression of the AMPK-target and transcriptional coactivator PGC1α in Fnip1 null skeletal muscle. Genetic disruption of PGC1α rescued normal levels of type I fiber markers MyH7 and myoglobin in Fnip1-null mice. Remarkably, loss of Fnip1 profoundly mitigated muscle damage in a murine model of Duchenne muscular dystrophy. These results indicate that Fnip1 controls skeletal muscle fiber type specification and warrant further study to determine whether inhibition of Fnip1 has therapeutic potential in muscular dystrophy diseases. PMID:25548157

  10. Fnip1 regulates skeletal muscle fiber type specification, fatigue resistance, and susceptibility to muscular dystrophy.

    PubMed

    Reyes, Nicholas L; Banks, Glen B; Tsang, Mark; Margineantu, Daciana; Gu, Haiwei; Djukovic, Danijel; Chan, Jacky; Torres, Michelle; Liggitt, H Denny; Hirenallur-S, Dinesh K; Hockenbery, David M; Raftery, Daniel; Iritani, Brian M

    2015-01-13

    Mammalian skeletal muscle is broadly characterized by the presence of two distinct categories of muscle fibers called type I "red" slow twitch and type II "white" fast twitch, which display marked differences in contraction strength, metabolic strategies, and susceptibility to fatigue. The relative representation of each fiber type can have major influences on susceptibility to obesity, diabetes, and muscular dystrophies. However, the molecular factors controlling fiber type specification remain incompletely defined. In this study, we describe the control of fiber type specification and susceptibility to metabolic disease by folliculin interacting protein-1 (Fnip1). Using Fnip1 null mice, we found that loss of Fnip1 increased the representation of type I fibers characterized by increased myoglobin, slow twitch markers [myosin heavy chain 7 (MyH7), succinate dehydrogenase, troponin I 1, troponin C1, troponin T1], capillary density, and mitochondria number. Cultured Fnip1-null muscle fibers had higher oxidative capacity, and isolated Fnip1-null skeletal muscles were more resistant to postcontraction fatigue relative to WT skeletal muscles. Biochemical analyses revealed increased activation of the metabolic sensor AMP kinase (AMPK), and increased expression of the AMPK-target and transcriptional coactivator PGC1α in Fnip1 null skeletal muscle. Genetic disruption of PGC1α rescued normal levels of type I fiber markers MyH7 and myoglobin in Fnip1-null mice. Remarkably, loss of Fnip1 profoundly mitigated muscle damage in a murine model of Duchenne muscular dystrophy. These results indicate that Fnip1 controls skeletal muscle fiber type specification and warrant further study to determine whether inhibition of Fnip1 has therapeutic potential in muscular dystrophy diseases.

  11. A New Method for Non-Invasive Estimation of Human Muscle Fiber Type Composition

    PubMed Central

    Baguet, Audrey; Everaert, Inge; Hespel, Peter; Petrovic, Mirko; Achten, Eric; Derave, Wim

    2011-01-01

    Background It has been established that excellence in sports with short and long exercise duration requires a high proportion of fast-twitch (FT) or type-II fibers and slow-twitch (ST) or type-I fibers, respectively. Until today, the muscle biopsy method is still accepted as gold standard to measure muscle fiber type composition. Because of its invasive nature and high sampling variance, it would be useful to develop a non-invasive alternative. Methodology Eighty-three control subjects, 15 talented young track-and-field athletes, 51 elite athletes and 14 ex-athletes volunteered to participate in the current study. The carnosine content of all 163 subjects was measured in the gastrocnemius muscle by proton magnetic resonance spectroscopy (1H-MRS). Muscle biopsies for fiber typing were taken from 12 untrained males. Principal Findings A significant positive correlation was found between muscle carnosine, measured by 1H-MRS, and percentage area occupied by type II fibers. Explosive athletes had ∼30% higher carnosine levels compared to a reference population, whereas it was ∼20% lower than normal in typical endurance athletes. Similar results were found in young talents and ex-athletes. When active elite runners were ranked according to their best running distance, a negative sigmoidal curve was found between logarithm of running distance and muscle carnosine. Conclusions Muscle carnosine content shows a good reflection of the disciplines of elite track-and-field athletes and is able to distinguish between individual track running distances. The differences between endurance and sprint muscle types is also observed in young talents and former athletes, suggesting this characteristic is genetically determined and can be applied in early talent identification. This quick method provides a valid alternative for the muscle biopsy method. In addition, this technique may also contribute to the diagnosis and monitoring of many conditions and diseases that are

  12. Catalase-positive microperoxisomes in rat soleus and extensor digitorum longus muscle fiber types

    NASA Technical Reports Server (NTRS)

    Riley, Danny A.; Bain, James L. W.; Ellis, Stanley

    1988-01-01

    The size, distribution, and content of catalase-reactive microperoxisomes were investigated cytochemically in three types of muscle fibers from the soleus and the extensor digitorum longus (EDL) of male rats. Muscle fibers were classified on the basis of the mitochondrial content and distribution, the Z-band widths, and the size and shape of myofibrils as the slow-twitch oxidative (SO), the fast-twitch oxidative glycolytic (FOG), and the fast-twitch glycolytic (FG) fibers. It was found that both the EDL and soleus SO fibers possessed the largest microperoxisomes. A comparison of microperoxisome number per muscle fiber area or the microperoxisome area per fiber area revealed following ranking, starting from the largest number and the area-ratio values: soleus SO, EDL SO, EDL FOG, and EDL FG.

  13. Distinct muscle apoptotic pathways are activated in muscles with different fiber types in a rat model of critical illness myopathy.

    PubMed

    Barnes, Benjamin T; Confides, Amy L; Rich, Mark M; Dupont-Versteegden, Esther E

    2015-06-01

    Critical illness myopathy (CIM) is associated with severe muscle atrophy and fatigue in affected patients. Apoptotic signaling is involved in atrophy and is elevated in muscles from patients with CIM. In this study we investigated underlying mechanisms of apoptosis-related pathways in muscles with different fiber type composition in a rat model of CIM using denervation and glucocorticoid administration (denervation and steroid-induced myopathy, DSIM). Soleus and tibialis anterior (TA) muscles showed severe muscle atrophy (40-60% of control muscle weight) and significant apoptosis in interstitial as well as myofiber nuclei that was similar between the two muscles with DSIM. Caspase-3 and -8 activities, but not caspase-9 and -12, were elevated in TA and not in soleus muscle, while the caspase-independent proteins endonuclease G (EndoG) and apoptosis inducing factor (AIF) were not changed in abundance nor differentially localized in either muscle. Anti-apoptotic proteins HSP70, -27, and apoptosis repressor with a caspase recruitment domain (ARC) were elevated in soleus compared to TA muscle and ARC was significantly decreased with induction of DSIM in soleus. Results indicate that apoptosis is a significant process associated with DSIM in both soleus and TA muscles, and that apoptosis-associated processes are differentially regulated in muscles of different function and fiber type undergoing atrophy due to DSIM. We conclude that interventions combating apoptosis with CIM may need to be directed towards inhibiting caspase-dependent as well as -independent mechanisms to be able to affect muscles of all fiber types.

  14. Early changes of type 2B fibers after denervation of rat EDL skeletal muscle.

    PubMed

    Germinario, Elena; Esposito, Alessandra; Megighian, Aram; Midrio, Menotti; Biral, Donatella; Betto, Romeo; Danieli-Betto, Daniela

    2002-05-01

    Skeletal muscle type 2B fibers normally receive a moderate level of motoneuron discharge. As a consequence, we hypothesize that type 2B fiber properties should be less sensitive to the absence of the nerve. Therefore, we have investigated the response of sarcoplasmic reticulum and myofibrillar proteins of type 2B fibers isolated from rat extensor digitorum longus muscle after denervation (2 and 7 days). Single fibers were identified by SDS-PAGE of myosin heavy chain isoforms. Electrophysiological and isometric contractile properties of the whole muscle were also analyzed. The pCa-tension relationship of type 2B single fibers was shifted to the left at 2 days and to right at 7 days after denervation, with significant differences in the Hill coefficients and pCa threshold values in 2- vs. 7-day-denervated fibers. The sarcoplasmic reticulum Ca2+ uptake capacity and rate significantly decreased after 2 days of denervation, whereas both increased at 7 days. Caffeine sensitivity of sarcoplasmic reticulum Ca2+ release was transitory and markedly increased in 2-day-denervated fibers. Our results indicate that type 2B fiber functional properties are highly sensitive to the interruption of nerve supply. Moreover, most of 2-day-denervated changes were reverted at 7 days. PMID:11960956

  15. Nuclear receptor/microRNA circuitry links muscle fiber type to energy metabolism.

    PubMed

    Gan, Zhenji; Rumsey, John; Hazen, Bethany C; Lai, Ling; Leone, Teresa C; Vega, Rick B; Xie, Hui; Conley, Kevin E; Auwerx, Johan; Smith, Steven R; Olson, Eric N; Kralli, Anastasia; Kelly, Daniel P

    2013-06-01

    The mechanisms involved in the coordinate regulation of the metabolic and structural programs controlling muscle fitness and endurance are unknown. Recently, the nuclear receptor PPARβ/δ was shown to activate muscle endurance programs in transgenic mice. In contrast, muscle-specific transgenic overexpression of the related nuclear receptor, PPARα, results in reduced capacity for endurance exercise. We took advantage of the divergent actions of PPARβ/δ and PPARα to explore the downstream regulatory circuitry that orchestrates the programs linking muscle fiber type with energy metabolism. Our results indicate that, in addition to the well-established role in transcriptional control of muscle metabolic genes, PPARβ/δ and PPARα participate in programs that exert opposing actions upon the type I fiber program through a distinct muscle microRNA (miRNA) network, dependent on the actions of another nuclear receptor, estrogen-related receptor γ (ERRγ). Gain-of-function and loss-of-function strategies in mice, together with assessment of muscle biopsies from humans, demonstrated that type I muscle fiber proportion is increased via the stimulatory actions of ERRγ on the expression of miR-499 and miR-208b. This nuclear receptor/miRNA regulatory circuit shows promise for the identification of therapeutic targets aimed at maintaining muscle fitness in a variety of chronic disease states, such as obesity, skeletal myopathies, and heart failure.

  16. RNA sequencing reveals a slow to fast muscle fiber type transition after olanzapine infusion in rats.

    PubMed

    Lynch, Christopher J; Xu, Yuping; Hajnal, Andras; Salzberg, Anna C; Kawasawa, Yuka Imamura

    2015-01-01

    Second generation antipsychotics (SGAs), like olanzapine, exhibit acute metabolic side effects leading to metabolic inflexibility, hyperglycemia, adiposity and diabetes. Understanding how SGAs affect the skeletal muscle transcriptome could elucidate approaches for mitigating these side effects. Male Sprague-Dawley rats were infused intravenously with vehicle or olanzapine for 24h using a dose leading to a mild hyperglycemia. RNA-Seq was performed on gastrocnemius muscle, followed by alignment of the data with the Rat Genome Assembly 5.0. Olanzapine altered expression of 1347 out of 26407 genes. Genes encoding skeletal muscle fiber-type specific sarcomeric, ion channel, glycolytic, O2- and Ca2+-handling, TCA cycle, vascularization and lipid oxidation proteins and pathways, along with NADH shuttles and LDH isoforms were affected. Bioinformatics analyses indicate that olanzapine decreased the expression of slower and more oxidative fiber type genes (e.g., type 1), while up regulating those for the most glycolytic and least metabolically flexible, fast twitch fiber type, IIb. Protein turnover genes, necessary to bring about transition, were also up regulated. Potential upstream regulators were also identified. Olanzapine appears to be rapidly affecting the muscle transcriptome to bring about a change to a fast-glycolytic fiber type. Such fiber types are more susceptible than slow muscle to atrophy, and such transitions are observed in chronic metabolic diseases. Thus these effects could contribute to the altered body composition and metabolic disease olanzapine causes. A potential interventional strategy is implicated because aerobic exercise, in contrast to resistance exercise, can oppose such slow to fast fiber transitions. PMID:25893406

  17. Quantitative PCR Analysis of Laryngeal Muscle Fiber Types

    ERIC Educational Resources Information Center

    Van Daele, Douglas J.

    2010-01-01

    Voice and swallowing dysfunction as a result of recurrent laryngeal nerve paralysis can be improved with vocal fold injections or laryngeal framework surgery. However, denervation atrophy can cause late-term clinical failure. A major determinant of skeletal muscle physiology is myosin heavy chain (MyHC) expression, and previous protein analyses…

  18. Thin filament diversity and physiological properties of fast and slow fiber types in astronaut leg muscles

    NASA Technical Reports Server (NTRS)

    Riley, Danny A.; Bain, James L W.; Thompson, Joyce L.; Fitts, Robert H.; Widrick, Jeffrey J.; Trappe, Scott W.; Trappe, Todd A.; Costill, David L.

    2002-01-01

    Slow type I fibers in soleus and fast white (IIa/IIx, IIx), fast red (IIa), and slow red (I) fibers in gastrocnemius were examined electron microscopically and physiologically from pre- and postflight biopsies of four astronauts from the 17-day, Life and Microgravity Sciences Spacelab Shuttle Transport System-78 mission. At 2.5-microm sarcomere length, thick filament density is approximately 1,012 filaments/microm(2) in all fiber types and unchanged by spaceflight. In preflight aldehyde-fixed biopsies, gastrocnemius fibers possess higher percentages (approximately 23%) of short thin filaments than soleus (9%). In type I fibers, spaceflight increases short, thin filament content from 9 to 24% in soleus and from 26 to 31% in gastrocnemius. Thick and thin filament spacing is wider at short sarcomere lengths. The Z-band lattice is also expanded, except for soleus type I fibers with presumably stiffer Z bands. Thin filament packing density correlates directly with specific tension for gastrocnemius fibers but not soleus. Thin filament density is inversely related to shortening velocity in all fibers. Thin filament structural variation contributes to the functional diversity of normal and spaceflight-unloaded muscles.

  19. Metabolic response in type I and type II muscle fibers during a 30-s cycle sprint in men and women.

    PubMed

    Esbjörnsson-Liljedahl, M; Sundberg, C J; Norman, B; Jansson, E

    1999-10-01

    The acute metabolic response to sprint exercise was studied in 20 male and 19 female students. We hypothesized that the reduction of muscle glycogen content during sprint exercise would be smaller in women than in men and that a possible gender difference in glycogen reduction would be higher in type II than in type I fibers. The exercise-induced increase in blood lactate concentration was 22% smaller in women than in men. A considerable reduction of ATP (50%), phosphocreatine (83%), and glycogen (35%) was found in type II muscle fibers, and it did not differ between the genders. A smaller reduction of ATP (17%) and phosphocreatine (78%) was found in type I fibers, and it did not differ between the genders. However, the exercise-induced reduction in glycogen content in type I fibers was 50% smaller in women than in men. The hypothesis was indeed partly confirmed: the exercise-induced glycogen reduction was attenuated in women compared with men, but the gender difference was in type I rather than in type II fibers. Fiber-type-specific and gender-related differences in the metabolic response to sprint exercise might have implications for the design of training programs for men and women.

  20. Relation between cycling exercise capacity, fiber-type composition, and lower extremity muscle strength and muscle endurance.

    PubMed

    Segerström, Asa B; Holmbäck, Anna M; Hansson, Ola; Elgzyri, Targ; Eriksson, Karl-Fredrik; Ringsberg, Karin; Groop, Leif; Wollmer, Per; Thorsson, Ola

    2011-01-01

    The aim of the study was to determine the relation between peak oxygen uptake V(O2)peak), peak work rate (WRpeak), fiber-type composition, and lower extremity strength and endurance during a maximal incremental cycle test. Thirty-nine healthy sedentary men, aged 30-46, participated in the study. Subjects performed a maximal incremental cycle test and isokinetic knee extension (KE) and flexion (KF) strength and endurance tests at velocities of 60 and 180° · s(-1). Muscle biopsies were taken from m. vastus lateralis and analyzed for fiber-type composition. A significant correlation existed between KE strength and V(O2)peak and WRpeak. Also, KF endurance correlated significantly to V(O2)peak and WRpeak. The KE endurance correlated significantly to WRpeak (rp = 0.32, p < 0.05) and almost significantly to V(O2)peak (rp = 0.28, p = 0.06). Stepwise multiple regression analyses showed that KE strength, KF endurance, and the percentage of type I fibers could explain up to 40% of the variation in V(O2) and WRpeak. The performance of sedentary subjects in a maximal incremental cycle test is highly affected by knee muscle strength and endurance. Fiber-type composition also contributes but to a smaller extent.

  1. Fiber type and metabolic characteristics of lion (Panthera leo), caracal (Caracal caracal) and human skeletal muscle.

    PubMed

    Kohn, Tertius Abraham; Burroughs, Richard; Hartman, Marthinus Jacobus; Noakes, Timothy David

    2011-06-01

    Lion (Panthera leo) and caracal (Caracal caracal) skeletal muscle samples from Vastus lateralis, Longissimus dorsi and Gluteus medius were analyzed for fiber type and citrate synthase (CS; EC 2.3.3.1), 3-hydroxyacyl Co A dehydrogenase (3HAD; EC 1.1.1.35), phosphofructokinase-1 (PFK; EC 2.7.1.11), creatine kinase (CK; EC 2.7.3.2), phosphorylase (PHOS; EC 2.4.1.1) and lactate dehydrogenase (LDH; EC 1.1.1.27) activities and compared to human runners, the latter also serving as validation of methodology. Both felids had predominantly type IIx fibers (range 50-80%), whereas human muscle had more types I and IIa. Oxidative capacity of both felids (CS: 5-9 μmol/min/g ww and 3HAD: 1.4-2.6 μmol/min/g ww) was lower than humans, whereas the glycolytic capacity was elevated. LDH activity of caracal (346 ± 81) was higher than lion (227 ± 62 μmol/min/g ww), with human being the lowest (55 ± 17). CK and PHOS activities were also higher in caracal and lion compared to human, but PFK was lower in both felid species. The current data and past research are illustrated graphically showing a strong relationship between type II fibers and sprinting ability in various species. These data on caracal and lion muscles confirm their sprinting behavior.

  2. Nitrate Intake Promotes Shift in Muscle Fiber Type Composition during Sprint Interval Training in Hypoxia

    PubMed Central

    De Smet, Stefan; Van Thienen, Ruud; Deldicque, Louise; James, Ruth; Sale, Craig; Bishop, David J.; Hespel, Peter

    2016-01-01

    Purpose: We investigated the effect of sprint interval training (SIT) in normoxia, vs. SIT in hypoxia alone or in conjunction with oral nitrate intake, on buffering capacity of homogenized muscle (βhm) and fiber type distribution, as well as on sprint and endurance performance. Methods: Twenty-seven moderately-trained participants were allocated to one of three experimental groups: SIT in normoxia (20.9% FiO2) + placebo (N), SIT in hypoxia (15% FiO2) + placebo (H), or SIT in hypoxia + nitrate supplementation (HN). All participated in 5 weeks of SIT on a cycle ergometer (30-s sprints interspersed by 4.5 min recovery-intervals, 3 weekly sessions, 4–6 sprints per session). Nitrate (6.45 mmol NaNO3) or placebo capsules were administered 3 h before each session. Before and after SIT participants performed an incremental VO2max-test, a 30-min simulated cycling time-trial, as well as a 30-s cycling sprint test. Muscle biopsies were taken from m. vastus lateralis. Results: SIT decreased the proportion of type IIx muscle fibers in all groups (P < 0.05). The relative number of type IIa fibers increased (P < 0.05) in HN (P < 0.05 vs. H), but not in the other groups. SIT had no significant effect on βhm. Compared with H, SIT tended to enhance 30-s sprint performance more in HN than in H (P = 0.085). VO2max and 30-min time-trial performance increased in all groups to a similar extent. Conclusion: SIT in hypoxia combined with nitrate supplementation increases the proportion of type IIa fibers in muscle, which may be associated with enhanced performance in short maximal exercise. Compared with normoxic training, hypoxic SIT does not alter βhm or endurance and sprinting exercise performance. PMID:27378942

  3. The miRNA Transcriptome Directly Reflects the Physiological and Biochemical Differences between Red, White, and Intermediate Muscle Fiber Types

    PubMed Central

    Ma, Jideng; Wang, Hongmei; Liu, Rui; Jin, Long; Tang, Qianzi; Wang, Xun; Jiang, Anan; Hu, Yaodong; Li, Zongwen; Zhu, Li; Li, Ruiqiang; Li, Mingzhou; Li, Xuewei

    2015-01-01

    MicroRNAs (miRNAs) are small non-coding RNAs that can regulate their target genes at the post-transcriptional level. Skeletal muscle comprises different fiber types that can be broadly classified as red, intermediate, and white. Recently, a set of miRNAs was found expressed in a fiber type-specific manner in red and white fiber types. However, an in-depth analysis of the miRNA transcriptome differences between all three fiber types has not been undertaken. Herein, we collected 15 porcine skeletal muscles from different anatomical locations, which were then clearly divided into red, white, and intermediate fiber type based on the ratios of myosin heavy chain isoforms. We further illustrated that three muscles, which typically represented each muscle fiber type (i.e., red: peroneal longus (PL), intermediate: psoas major muscle (PMM), white: longissimus dorsi muscle (LDM)), have distinct metabolic patterns of mitochondrial and glycolytic enzyme levels. Furthermore, we constructed small RNA libraries for PL, PMM, and LDM using a deep sequencing approach. Results showed that the differentially expressed miRNAs were mainly enriched in PL and played a vital role in myogenesis and energy metabolism. Overall, this comprehensive analysis will contribute to a better understanding of the miRNA regulatory mechanism that achieves the phenotypic diversity of skeletal muscles. PMID:25938964

  4. Abnormal Skeletal Muscle Regeneration plus Mild Alterations in Mature Fiber Type Specification in Fktn-Deficient Dystroglycanopathy Muscular Dystrophy Mice

    PubMed Central

    Foltz, Steven J.; Modi, Jill N.; Melick, Garrett A.; Abousaud, Marin I.; Luan, Junna; Fortunato, Marisa J.; Beedle, Aaron M.

    2016-01-01

    Glycosylated α-dystroglycan provides an essential link between extracellular matrix proteins, like laminin, and the cellular cytoskeleton via the dystrophin-glycoprotein complex. In secondary dystroglycanopathy muscular dystrophy, glycosylation abnormalities disrupt a complex O-mannose glycan necessary for muscle structural integrity and signaling. Fktn-deficient dystroglycanopathy mice develop moderate to severe muscular dystrophy with skeletal muscle developmental and/or regeneration defects. To gain insight into the role of glycosylated α-dystroglycan in these processes, we performed muscle fiber typing in young (2, 4 and 8 week old) and regenerated muscle. In mice with Fktn disruption during skeletal muscle specification (Myf5/Fktn KO), newly regenerated fibers (embryonic myosin heavy chain positive) peaked at 4 weeks old, while total regenerated fibers (centrally nucleated) were highest at 8 weeks old in tibialis anterior (TA) and iliopsoas, indicating peak degeneration/regeneration activity around 4 weeks of age. In contrast, mature fiber type specification at 2, 4 and 8 weeks old was relatively unchanged. Fourteen days after necrotic toxin-induced injury, there was a divergence in muscle fiber types between Myf5/Fktn KO (skeletal-muscle specific) and whole animal knockout induced with tamoxifen post-development (Tam/Fktn KO) despite equivalent time after gene deletion. Notably, Tam/Fktn KO retained higher levels of embryonic myosin heavy chain expression after injury, suggesting a delay or abnormality in differentiation programs. In mature fiber type specification post-injury, there were significant interactions between genotype and toxin parameters for type 1, 2a, and 2x fibers, and a difference between Myf5/Fktn and Tam/Fktn study groups in type 2b fibers. These data suggest that functionally glycosylated α-dystroglycan has a unique role in muscle regeneration and may influence fiber type specification post-injury. PMID:26751696

  5. Reduction of type IIb myosin and IIB fibers in tibialis anterior muscle of mini-muscle mice from high-activity lines.

    PubMed

    Bilodeau, Geneviève M; Guderley, Helga; Joanisse, Denis R; Garland, Theodore

    2009-03-01

    Selective breeding of laboratory house mice (Mus domesticus) for high voluntary wheel running has generated four replicate lines that show an almost threefold increase in daily wheel-running distances as compared with four nonselected control lines. An unusual hindlimb "mini-muscle" phenotype (small muscles, increased mitochondrial enzyme levels, disorganized fiber distribution) has increased in frequency in two of the four replicate selected lines. The gene of major effect that accounts for this phenotype is an autosomal recessive that has been mapped to a 2.6335 Mb interval on MMU11, but not yet identified. This study examined the tibialis anterior muscle to determine whether changes in muscle fiber types could explain such modifications in muscle size and properties. Although selected and control lines did not exhibit systematic differences in the fiber types present in the tibialis anterior muscle, as assessed by electrophoresis of myosin heavy chains (MHC) and by histochemistry, mini-muscle mice lacked type IIB fibers and the corresponding MHCs. Mini-muscle tibialis show increased activities of hexokinase and citrate synthase compared with the normally sized muscles, likely the result of the modified fiber types in the muscle. The mini-muscle phenotype is the major means through which selective breeding for high wheel running has modified the functional capacities of the hindlimb muscles, as normally sized tibialis anterior muscles from control and selected lines did not show general differences in their enzymatic capacities, MHC profiles or fiber type composition, with the exception of an elevated hexokinase activity and a reduced GPa activity in the selected lines. PMID:19177556

  6. Fiber size, type, and myosin heavy chain content in rhesus hindlimb muscles after 2 weeks at 2 G

    NASA Technical Reports Server (NTRS)

    Tavakol, Morteza; Roy, Roland R.; Kim, Jung A.; Zhong, Hui; Hodgson, John A.; Hoban-Higgins, Tana M.; Fuller, Charles A.; Edgerton, V. Reggie

    2002-01-01

    BACKGROUND: Fiber atrophy and an increase in the percentage of fast fibers have been observed in Rhesus leg muscles after spaceflight. Hypothesis: Hypergravity will result in muscle fiber hypertrophy and an increase in the percentage of slow fibers. METHODS: Open muscle biopsies were obtained from Rhesus soleus, medial gastrocnemius (MG), and tibialis anterior (TA) muscles before and after 14 d of centrifugation (2 G) and in time-matched controls. Cage activity levels were measured by telemetry. RESULTS: Based on monoclonal antibody binding for myosin heavy chains (MHC), the fastest region of soleus contained a higher proportion of type I+II (27 vs. 13%) and had a tendency for a lower proportion of type I (38 vs. 61%, p = 0.10) fibers after than before centrifugation. There was a higher proportion of type I+II fibers in post- vs. pre-2 G (10 vs. 0.6%) MG biopsies. Fiber type distribution and MHC composition were unaffected in the TA. Overall, mean fiber sizes were unaffected by centrifugation. Average cage activity levels were 36% lower during than before 2 G. CONCLUSIONS: Our hypothesis was rejected. The changes in the proportion of fibers expressing type I MHC are the reverse of that expected with chronic loading of extensors and, paradoxically, are similar to changes observed with chronic unloading, such as occurs during spaceflight, in this primate model. The data are consistent with the observed decrease in total daily activity levels.

  7. Mitochondrial Bioenergetics and Fiber Type Assessments in Microbiopsy vs. Bergstrom Percutaneous Sampling of Human Skeletal Muscle

    PubMed Central

    Hughes, Meghan C.; Ramos, Sofhia V.; Turnbull, Patrick C.; Nejatbakhsh, Ali; Baechler, Brittany L.; Tahmasebi, Houman; Laham, Robert; Gurd, Brendon J.; Quadrilatero, Joe; Kane, Daniel A.; Perry, Christopher G. R.

    2015-01-01

    Microbiopsies of human skeletal muscle are increasingly adopted by physiologists for a variety of experimental assays given the reduced invasiveness of this procedure compared to the classic Bergstrom percutaneous biopsy technique. However, a recent report demonstrated lower mitochondrial respiration in saponin-permeabilized muscle fiber bundles (PmFB) prepared from microbiopsies vs. Bergstrom biopsies. We hypothesized that ADP-induced contraction (rigor) of smaller length microbiopsy PmFB causes a greater reduction in maximal respiration vs. Bergstrom, such that respiration could be increased by a myosin II ATPase-inhibitor (Blebbistatin; BLEB). Eleven males and females each received a 2 mm diameter percutaneous microbiopsy and a 5 mm diameter Bergstrom percutaneous biopsy in opposite legs. Glutamate/malate (5/0.5 mM)—supported respiration in microbiopsy PmFB was lower than Bergstrom at submaximal concentrations of ADP. 5 μM BLEB reduced this impairment such that there were no differences relative to Bergstrom ± BLEB. Surprisingly, pyruvate (5 mM)-supported respiration was not different between either biopsy technique ±BLEB, whereas BLEB increased succinate-supported respiration in Bergstrom only. H2O2 emission was lower in microbiopsy PmFB compared to Bergstrom PmFB in the presence of BLEB. Microbiopsies contained fewer type I fibers (37 vs. 47%) and more type IIX fibers (20 vs. 8%) compared to Bergstrom possibly due to sampling site depth and/or longitudinal location. These findings suggest that smaller diameter percutaneous biopsies yield lower glutamate-supported mitochondrial respiratory kinetics which is increased by preventing ADP-induced rigor with myosin inhibition. Microbiopsies of human skeletal muscle can be utilized for assessing mitochondrial respiratory kinetics in PmFB when assay conditions are supplemented with BLEB, but fiber type differences with this method should be considered. PMID:26733870

  8. Adrenalectomy eliminates both fiber-type differences and starvation effects on denervated muscle.

    PubMed

    Almon, R R; Dubois, D C

    1988-12-01

    This report describes changes in muscle mass of innervated and denervated pairs of muscles taken from intact and adrenalectomized 250-g male Sprague-Dawley rats provided with different diets. Diets ranged from a nutritionally complete liquid diet to starvation (water only). In the intact animals, muscles with a more tonic character (soleus) are less sensitive to starvation than are muscles with a more phasic character (extensor digitorum longus), whereas the opposite is true of denervation. In the intact animals, starvation greatly increased the amount of atrophy following denervation. In the adrenalectomized animals, starvation had no effect on the amounts of atrophy following denervation. Furthermore, adrenalectomy virtually eliminated the fiber-type differences in the amount of atrophy following denervation. In addition, a comparison between denervated muscles from intact animals and adrenalectomized animals subjected to starvation demonstrates that all denervated muscles from the adrenalectomized animals atrophy less. Finally, it was observed that although an adrenalectomized animal can tolerate 6 days of starvation, an adrenalectomized-castrated animal cannot tolerate even short periods of starvation. The difference appears to be due to low amounts of corticosterone of testicular origin.

  9. Types of muscle tissue (image)

    MedlinePlus

    The 3 types of muscle tissue are cardiac, smooth, and skeletal. Cardiac muscle cells are located in ... heart, appear striated, and are under involuntary control. Smooth muscle fibers are located in walls of hollow ...

  10. Influence of genetic type, slaughter weight and sex on ovine muscle fiber and fat-cell development.

    PubMed

    Hawkins, R R; Moody, W G; Kemp, J D

    1985-11-01

    Histological properties from the longissimus (LD) and semimembranosus (SM) muscles of 51 wether and ewe lambs from Hampshire rams and two ewe genetic types (SR, 1/2 Suffolk and 1/2 Rambouillet, and FS, 1/2 Finnish Landrace and 1/2 Southdown) and three slaughter live weights (32, 41 and 50 kg) were compared. Fibers in both muscles were classified as beta R (red), alpha R (intermediate) or alpha W (white). All LD muscle fiber types from FS ewe lambs increased in diameter from 32 to 41 kg, but decreased in diameter from 41 to 50 kg. Also, this quadratic effect with slaughter weight was found in alpha R and alpha W fibers from the SM muscle of FS wether and ewe lambs. However, diameters of alpha R and alpha W fibers from SR wether and ewe lambs and beta R fibers from SR ewe lambs increased linearly in the SM muscle with increasing slaughter weight. As slaughter weight increased, the proportion of alpha R fibers decreased in both the LD and SM muscles for SR wether and FS wether and ewe lambs. Concurrent with the increase in slaughter weight and decrease in alpha R fiber percentage, the proportion of alpha W fibers increased in the LD muscle of SR wether lambs, the SM muscle of SR ewe lambs and both muscles of FS wether and ewe lambs. Genetic type and sex groups, except SR ewe lambs, support the theory of transformation of alpha R to alpha W fibers with increasing slaughter weights. Fat-cell diameters increased in both muscles of SR wether and FS ewe lambs with increasing slaughter weights. Increases in fat traits of lamb carcasses were related to increases in red-fiber size. Alpha red fiber numbers were inversely related (P less than .05) to alpha W fiber numbers in both the LD and SM muscles (r = -.83 and -.79). The proportion of alpha R to alpha W fibers might be used as an indicator of physiological maturity for lambs.

  11. Muscle enzyme and fiber type-specific sarcomere protein increases in serum after inertial concentric-eccentric exercise.

    PubMed

    Carmona, G; Guerrero, M; Cussó, R; Padullés, J M; Moras, G; Lloret, M; Bedini, J L; Cadefau, J A

    2015-12-01

    Muscle damage induced by inertial exercise performed on a flywheel device was assessed through the serum evolution of muscle enzymes, interleukin 6, and fiber type-specific sarcomere proteins such as fast myosin (FM) and slow myosin (SM). We hypothesized that a model of muscle damage could be constructed by measuring the evolution of serum concentration of muscle proteins following inertial exercise, according to their molecular weight and the fiber compartment in which they are located. Moreover, by measuring FM and SM, the type of fibers that are affected could be assessed. Serum profiles were registered before and 24, 48, and 144 h after exercise in 10 healthy and recreationally active young men. Creatine kinase (CK) and CK-myocardial band isoenzyme increased in serum early (24 h) and returned to baseline values after 48 h. FM increased in serum late (48 h) and remained elevated 144 h post-exercise. The increase in serum muscle enzymes suggests increased membrane permeability of both fast and slow fibers, and the increase in FM reveals sarcomere disruption as well as increased membrane permeability of fast fibers. Consequently, FM could be adopted as a fiber type-specific biomarker of muscle damage. PMID:25441613

  12. Contractile properties, fiber types, and myosin isoforms in fast and slow muscles of hyperactive Japanese waltzing mice.

    PubMed

    Asmussen, Gerhard; Schmalbruch, Ina; Soukup, Tomás; Pette, Dirk

    2003-12-01

    This study focuses on the effects of neuromuscular hyperactivity on the contractile properties, fiber type composition, and myosin heavy chain (MHC) isoform expression of fast-twitch extensor digitorum longus (EDL) and slow-twitch soleus (SOL) muscles in Japanese waltzing mice (JWM) of the C57BL/6J-v2J strain. The same properties were studied in the homologous muscle of control CBA/J mice (CM). In comparison to CM, the JWM exhibited (i) longer activity periods, prolonged bouts of running and a higher food intake, (ii) slower twitch and tetanic contractions of both EDL and SOL muscles, decreased cold and post-tetanic potentiation of the EDL, as well as increased cold and post-tetanic depressions of the SOL. Electrophoretic analyses of MHC isoform revealed a shift toward slower isoforms in both EDL and SOL muscles of JWM as compared to the homologous muscles of CM, namely, a shift from the fastest MHCIIb to the MHCIId/x isoform in the EDL muscle and a shift from MHCIIa to MHCI in the SOL muscle. The latter also contained a higher percentage of type I fibers and displayed a higher capillary density than the SOL muscle of CM. These findings show that the inherently enhanced motor activity of the JWM leads to fiber type transitions in the direction of slower phenotypes. JWM thus represent a suitable model for studying fast-to-slow fiber transitions under the influence of spontaneous motor hyperactivity.

  13. Effects of muscle fiber type on glycolytic potential and meat quality traits in different Tibetan pig muscles and their association with glycolysis-related gene expression.

    PubMed

    Shen, L Y; Luo, J; Lei, H G; Jiang, Y Z; Bai, L; Li, M Z; Tang, G Q; Li, X W; Zhang, S H; Zhu, L

    2015-11-13

    The myosin heavy chain (MyHC) composition, glycolytic potential, mitochondrial content, and gene expression related to energy metabolism were analyzed in eight muscles from Tibetan pigs, to study how meat quality develops in different muscle tissues. The muscles were classified into three clusters, based on MyHC composition: masseter, trapezius, and latissimus dorsi as 'slow-oxidative-type'; psoas major and semimembranosus as 'intermediate-type'; and longissimus dorsi, obliquus externus abdominis, and semitendinosus as 'fast-glycolytic-type'. The 'slow-oxidative-type' muscles had the highest MyHC I and MyHC IIA content (P < 0.01); 'intermediate-type' muscles, the highest MyHC IIx content (P < 0.01); and 'fast-glycolytic-type' muscles, the highest MyHC IIb content (P < 0.01). The pH values measured in 'slow-oxidative-type' muscles were higher than those in the other clusters were; however, the color of 'fast-glycolytic-type' muscles was palest (P < 0.01). Mitochondrial content increased in the order: fast-glycolytic-type < intermediate-type < slow-oxidative-type. In the 'slow-oxidative-type' muscles, the expression levels of genes related to ATP synthesis were higher, but were lower for those related to glycogen synthesis and glycolysis. Mitochondrial content was significantly positively correlated with MyHC I content, but negatively correlated with MyHC IIb content. MyHC I and mitochondrial content were both negatively correlated with glycolytic potential. Overall, muscles used frequently in exercise had a higher proportion of type I fibers. 'Slow-oxidative-type' muscles, rich in type I fibers with higher mitochondrial and lower glycogen and glucose contents, had a higher ATP synthesis efficiency and lower glycolytic capacity, which contributed to their superior meat quality.

  14. Unexpected dependence of RyR1 splice variant expression in human lower limb muscles on fiber-type composition.

    PubMed

    Willemse, Hermia; Theodoratos, Angelo; Smith, Paul N; Dulhunty, Angela F

    2016-02-01

    The skeletal muscle ryanodine receptor Ca(2+) release channel (RyR1), essential for excitation-contraction (EC) coupling, demonstrates a known developmentally regulated alternative splicing in the ASI region. We now find unexpectedly that the expression of the splice variants is closely related to fiber type in adult human lower limb muscles. We examined the distribution of myosin heavy chain isoforms and ASI splice variants in gluteus minimus, gluteus medius and vastus medialis from patients aged 45 to 85 years. There was a strong positive correlation between ASI(+)RyR1 and the percentage of type 2 fibers in the muscles (r = 0.725), and a correspondingly strong negative correlation between the percentages of ASI(+)RyR1 and percentage of type 1 fibers. When the type 2 fiber data were separated into type 2X and type 2A, the correlation with ASI(+)RyR1 was stronger in type 2X fibers (r = 0.781) than in type 2A fibers (r = 0.461). There was no significant correlation between age and either fiber-type composition or ASI(+)RyR1/ASI(-)RyR1 ratio. The results suggest that the reduced expression of ASI(-)RyR1 during development may reflect a reduction in type 1 fibers during development. Preferential expression of ASI(-) RyR1, having a higher gain of in Ca(2+) release during EC coupling than ASI(+)RyR1, may compensate for the reduced terminal cisternae volume, fewer junctional contacts and reduced charge movement in type 1 fibers.

  15. Sex-Based Differences in Skeletal Muscle Kinetics and Fiber-Type Composition

    PubMed Central

    Haizlip, K. M.; Harrison, B. C.

    2015-01-01

    Previous studies have identified over 3,000 genes that are differentially expressed in male and female skeletal muscle. Here, we review the sex-based differences in skeletal muscle fiber composition, myosin heavy chain expression, contractile function, and the regulation of these physiological differences by thyroid hormone, estrogen, and testosterone. The findings presented lay the basis for the continued work needed to fully understand the skeletal muscle differences between males and females. PMID:25559153

  16. Multiple isoforms of myofibrillar proteins in crustacean muscle: evidence for two slow fiber types

    SciTech Connect

    Mykles, D.L.

    1986-01-01

    Four distinct patterns of myofibrillar proteins, extracted from fast and slow muscles of the lobster, Homarus americanus, are distinguished by different assemblages of regulatory and contractile protein variants. Multiple isoforms of troponin-T, -I, and -C, paramyosin, and myosin light chains occur in six muscles of the claws and abdomen. Analysis of glycerinated fibers from the claws of lobster and land crab, Gecarcinus lateralis, show that more than one isoform is expressed in a single fiber, forming unique assemblages by which subgroups can be discriminated within the broader categories of fast and slow fibers. 9 refs., 3 figs.

  17. Skeletal muscle myostatin mRNA expression is fiber-type specific and increases during hindlimb unloading

    NASA Technical Reports Server (NTRS)

    Carlson, C. J.; Booth, F. W.; Gordon, S. E.

    1999-01-01

    Transgenic mice lacking a functional myostatin (MSTN) gene demonstrate greater skeletal muscle mass resulting from muscle fiber hypertrophy and hyperplasia (McPherron, A. C., A. M. Lawler, and S. -J. Lee. Nature 387: 83-90, 1997). Therefore, we hypothesized that, in normal mice, MSTN may act as a negative regulator of muscle mass. Specifically, we hypothesized that the predominately slow (type I) soleus muscle, which demonstrates greater atrophy than the fast (type II) gastrocnemius-plantaris complex (Gast/PLT), would show more elevation in MSTN mRNA abundance during hindlimb unloading (HU). Surprisingly, MSTN mRNA was not detectable in weight-bearing or HU soleus muscle, which atrophied 42% by the 7th day of HU in female ICR mice. In contrast, MSTN mRNA was present in weight-bearing Gast/PLT muscle and was significantly elevated (67%) at 1 day but not at 3 or 7 days of HU. However, the Gast/PLT muscle had only atrophied 17% by the 7th day of HU. Because the soleus is composed only of type I and IIa fibers, whereas the Gast/PLT expresses type IId/x and IIb in addition to type I and IIa, it was necessary to perform a more careful analysis of the relationship between MSTN mRNA levels and myosin heavy-chain (MHC) isoform expression (as a marker of fiber type). A significant correlation (r = 0.725, P < 0. 0005) was noted between the percentage of MHC isoform IIb expression and MSTN mRNA abundance in several muscles of the mouse hindlimb. These results indicate that MSTN expression is not strongly associated with muscle atrophy induced by HU; however, it is strongly associated with MHC isoform IIb expression in normal muscle.

  18. Transgenic mice expressing mutant Pinin exhibit muscular dystrophy, nebulin deficiency and elevated expression of slow-type muscle fiber genes

    SciTech Connect

    Wu, Hsu-Pin; Hsu, Shu-Yuan; Wu, Wen-Ai; Hu, Ji-Wei; Ouyang, Pin

    2014-01-03

    Highlights: •Pnn CCD domain functions as a dominant negative mutant regulating Pnn expression and function. •Pnn CCD mutant Tg mice have a muscle wasting phenotype during development and show dystrophic histological features. •Pnn mutant muscles are susceptible to slow fiber type gene transition and NEB reduction. •The Tg mouse generated by overexpression of the Pnn CCD domain displays many characteristics resembling NEB{sup +/−} mice. -- Abstract: Pinin (Pnn) is a nuclear speckle-associated SR-like protein. The N-terminal region of the Pnn protein sequence is highly conserved from mammals to insects, but the C-terminal RS domain-containing region is absent in lower species. The N-terminal coiled-coil domain (CCD) is, therefore, of interest not only from a functional point of view, but also from an evolutionarily standpoint. To explore the biological role of the Pnn CCD in a physiological context, we generated transgenic mice overexpressing Pnn mutant in skeletal muscle. We found that overexpression of the CCD reduces endogenous Pnn expression in cultured cell lines as well as in transgenic skeletal muscle fibers. Pnn mutant mice exhibited reduced body mass and impaired muscle function during development. Mutant skeletal muscles show dystrophic histological features with muscle fibers heavily loaded with centrally located myonuclei. Expression profiling and pathway analysis identified over-representation of genes in gene categories associated with muscle contraction, specifically those related to slow type fiber. In addition nebulin (NEB) expression level is repressed in Pnn mutant skeletal muscle. We conclude that Pnn downregulation in skeletal muscle causes a muscular dystrophic phenotype associated with NEB deficiency and the CCD domain is incapable of replacing full length Pnn in terms of functional capacity.

  19. Human Muscle Fiber

    NASA Technical Reports Server (NTRS)

    2003-01-01

    The stimulus of gravity affects RNA production, which helps maintain the strength of human muscles on Earth (top), as seen in this section of muscle fiber taken from an astronaut before spaceflight. Astronauts in orbit and patients on Earth fighting muscle-wasting diseases need countermeasures to prevent muscle atrophy, indicated here with white lipid droplets (bottom) in the muscle sample taken from the same astronaut after spaceflight. Kerneth Baldwin of the University of California, Irvine, is conducting research on how reducing the stimulus of gravity affects production of the RNA that the body uses as a blueprint for making muscle proteins. Muscle proteins are what give muscles their strength, so when the RNA blueprints aren't available for producing new proteins to replace old ones -- a situation that occurs in microgravity -- the muscles atrophy. When the skeletal muscle system is exposed to microgravity during spaceflight, the muscles undergo a reduced mass that translates to a reduction in strength. When this happens, muscle endurance decreases and the muscles are more prone to injury, so individuals could have problems in performing extravehicular activity [space walks] or emergency egress because their bodies are functionally compromised.

  20. Coordinated expression of myosin heavy chains, metabolic enzymes, and morphological features of porcine skeletal muscle fiber types.

    PubMed

    Quiroz-Rothe, Eugenio; Rivero, José-Luis L

    2004-09-01

    Combined methodologies of electrophoresis, immunoblots, immunohistochemistry, histochemistry, and photometric image analysis were applied to characterize porcine skeletal muscle fibers according to their myosin heavy chain (MyHC) composition, and to determine on a fiber-to-fiber basis the correlation between contractile [MyHC (s), myofibrillar ATPase (mATPase), and sarco(endo)plasmic reticulum Ca(2+)-ATPase (SERCA) isoforms], metabolic [succinate dehydrogenase (SDH), and glycerol-3-phosphate dehydrogenase (GPDH) activities, glycogen, and phospholamban (PLB) contents], and morphological [cross-sectional area (CSA), capillary, and nuclear densities] features of individual myofibers. An accurate delineation of MyHC-based fiber types was obtained with the immunohistochemical method developed. This protocol showed a high sensitivity and objectivity to delineate hybrid fibers with overwhelming dominance of one MyHC isoform. The phenotypic differences in contractile, metabolic, and morphological properties seen between fiber types were related with MyHC content. Slow fibers had the lowest mATPase activity (related to shortening velocity), the highest SDH activity (oxidative capacity), the lowest GPDH activity (glycolytic metabolism), and glycogen content, the smallest CSA, the greatest capillary, and nuclear densities, and expressed slow SERCA isoform and PLB, but not the fast SERCA isoform. The reverse pattern was true for pure IIB fibers, whereas type IIA and IIX fibers had intermediate properties. Hybrid fibers had mean values intermediate in-between their respective pure phenotypes. Discrimination of myofibers according to their MyHC content was possible on the basis of their contractile and non-contractile profiles. These intrafiber interrelationships suggest that myofibers of control pigs exhibit a high degree of co-ordination in their physiological, biochemical, and anatomical features. This study may well be a useful baseline for future work on the pig meat

  1. Reduced Appendicular Lean Body Mass, Muscle Strength, and Size of Type II Muscle Fibers in Patients with Spondyloarthritis versus Healthy Controls: A Cross-Sectional Study

    PubMed Central

    2016-01-01

    Introduction. The purpose of this study was to investigate body composition, muscle function, and muscle morphology in patients with spondyloarthritis (SpA). Methods. Ten male SpA patients (mean ± SD age 39 ± 4.1 years) were compared with ten healthy controls matched for sex, age, body mass index, and self-reported level of physical exercise. Body composition was measured by dual energy X-ray absorptiometry. Musculus quadriceps femoris (QF) strength was assessed by maximal isometric contractions prior to test of muscular endurance. Magnetic resonance imaging of QF was used to measure muscle size and calculate specific muscle strength. Percutaneous needle biopsy samples were taken from m. vastus lateralis. Results. SpA patients presented with significantly lower appendicular lean body mass (LBM) (p = 0.02), but there was no difference in bone mineral density, fat mass, or total LBM. Absolute QF strength was significantly lower in SpA patients (p = 0.03) with a parallel trend for specific strength (p = 0.08). Biopsy samples from the SpA patients revealed significantly smaller cross-sectional area (CSA) of type II muscle fibers (p = 0.04), but no difference in CSA type I fibers. Conclusions. Results indicate that the presence of SpA disease is associated with reduced appendicular LBM, muscle strength, and type II fiber CSA.

  2. Reduced Appendicular Lean Body Mass, Muscle Strength, and Size of Type II Muscle Fibers in Patients with Spondyloarthritis versus Healthy Controls: A Cross-Sectional Study

    PubMed Central

    2016-01-01

    Introduction. The purpose of this study was to investigate body composition, muscle function, and muscle morphology in patients with spondyloarthritis (SpA). Methods. Ten male SpA patients (mean ± SD age 39 ± 4.1 years) were compared with ten healthy controls matched for sex, age, body mass index, and self-reported level of physical exercise. Body composition was measured by dual energy X-ray absorptiometry. Musculus quadriceps femoris (QF) strength was assessed by maximal isometric contractions prior to test of muscular endurance. Magnetic resonance imaging of QF was used to measure muscle size and calculate specific muscle strength. Percutaneous needle biopsy samples were taken from m. vastus lateralis. Results. SpA patients presented with significantly lower appendicular lean body mass (LBM) (p = 0.02), but there was no difference in bone mineral density, fat mass, or total LBM. Absolute QF strength was significantly lower in SpA patients (p = 0.03) with a parallel trend for specific strength (p = 0.08). Biopsy samples from the SpA patients revealed significantly smaller cross-sectional area (CSA) of type II muscle fibers (p = 0.04), but no difference in CSA type I fibers. Conclusions. Results indicate that the presence of SpA disease is associated with reduced appendicular LBM, muscle strength, and type II fiber CSA. PMID:27672678

  3. Overexpression of the Mitochondrial T3 Receptor p43 Induces a Shift in Skeletal Muscle Fiber Types

    PubMed Central

    Casas, François; Pessemesse, Laurence; Grandemange, Stéphanie; Seyer, Pascal; Gueguen, Naïg; Baris, Olivier; Lepourry, Laurence; Cabello, Gérard; Wrutniak-Cabello, Chantal

    2008-01-01

    In previous studies, we have characterized a new hormonal pathway involving a mitochondrial T3 receptor (p43) acting as a mitochondrial transcription factor and consequently stimulating mitochondrial activity and mitochondrial biogenesis. We have established the involvement of this T3 pathway in the regulation of in vitro myoblast differentiation.We have generated mice overexpressing p43 under control of the human α-skeletal actin promoter. In agreement with the previous characterization of this promoter, northern-blot and western-blot experiments confirmed that after birth p43 was specifically overexpressed in skeletal muscle. As expected from in vitro studies, in 2-month old mice, p43 overexpression increased mitochondrial genes expression and mitochondrial biogenesis as attested by the increase of mitochondrial mass and mt-DNA copy number. In addition, transgenic mice had a body temperature 0.8°C higher than control ones and displayed lower plasma triiodothyronine levels. Skeletal muscles of transgenic mice were redder than wild-type animals suggesting an increased oxidative metabolism. In line with this observation, in gastrocnemius, we recorded a strong increase in cytochrome oxidase activity and in mitochondrial respiration. Moreover, we observed that p43 drives the formation of oxidative fibers: in soleus muscle, where MyHC IIa fibers were partly replaced by type I fibers; in gastrocnemius muscle, we found an increase in MyHC IIa and IIx expression associated with a reduction in the number of glycolytic fibers type IIb. In addition, we found that PGC-1α and PPARδ, two major regulators of muscle phenotype were up regulated in p43 transgenic mice suggesting that these proteins could be downstream targets of mitochondrial activity. These data indicate that the direct mitochondrial T3 pathway is deeply involved in the acquisition of contractile and metabolic features of muscle fibers in particular by regulating PGC-1α and PPARδ. PMID:18575627

  4. Physiologic, metabolic, and muscle fiber type characteristics of musculus uvulae in sleep apnea hypopnea syndrome and in snorers.

    PubMed Central

    Sériès, F; Côté, C; Simoneau, J A; Gélinas, Y; St Pierre, S; Leclerc, J; Ferland, R; Marc, I

    1995-01-01

    Upper airway dilator muscles play an important role in the pathophysiology of sleep apnea hypopnea syndrome (SAHS). The mechanical and structural characteristics of these muscles remain unknown. The aim of this study was to compare the physiologic, metabolic, and fiber type characteristics of one upper airway dilator muscle (musculus uvulae, MU) in 11 SAHS and in seven nonapneic snorers. The different analyses were done on MU obtained during uvulo-palato-pharyngoplasty. Snorers and SAHS differed only in their apnea + hypopnea indices (11.5 +/- 5.9 and 34.2 +/- 14.6/h, respectively, mean +/- SD). Absolute twitch and tetanic tension production of MU was significantly greater in SAHS than in snorers while the fatigability index was similar in the two groups. Protein content and anaerobic enzyme activities of MU were significantly greater in SAHS than in snorers; no difference was observed for aerobic enzyme activities. The total muscle fiber cross-sectional area of MU was significantly higher in SAHS (2.2 +/- 0.9 mm2) than in snorers (1.1 +/- 0.7 mm2). The surface occupied by type IIA muscle fibers of MU was larger in SAHS (2.00 +/- 0.96) than in snorers (0.84 +/- 0.63 mm2). We conclude that the capacity for tension production and the anaerobic metabolic activity of MU are greater in SAHS than in snorers. PMID:7814616

  5. Fiber-type-specific alphaB-crystallin distribution and its shifts with T(3) and PTU treatments in rat hindlimb muscles.

    PubMed

    Atomi, Y; Toro, K; Masuda, T; Hatta, H

    2000-04-01

    Changes in alphaB-crystallin content in adult rat soleus and extensor digitorum longus (EDL) were examined after 8 wk of 3,5, 3'-triiodothyronine (T(3)) and propylthiouracil (PTU) treatments. Cellular distributions of alphaB-crystallin expression related to fiber type, and distribution shifts with these treatments were also examined in detail from the gray level of reactivity to specific anti-alphaB-crystallin antibody. alphaB-crystallin content in both soleus and EDL muscles was significantly decreased after T(3), and that in EDL was significantly increased over twofold after PTU treatment. In both control soleus and EDL muscles, the gray level of type I fibers was higher than that of type II fibers. alphaB-crystallin expression among type II subtypes was muscle specific; the order was type I > IIa > IIx > IIb in control EDL muscle and type IIx > or = IIa in soleus muscle. The relation was basically unchanged in both muscles after T(3) treatment and was, in particular, well maintained in EDL muscle. Under hypothyroidism conditions with PTU, the mean alphaB-crystallin levels of type IIa and IIx fibers were significantly lower than levels under control conditions. Thus the relation between fiber type and the expression manner of stress protein alphaB-crystallin is muscle specific and also is well regulated under thyroid hormone, especially in fast EDL muscle.

  6. QTL Analysis of Type I and Type IIA Fibers in Soleus Muscle in a Cross between LG/J and SM/J Mouse Strains

    PubMed Central

    Carroll, Andrew M.; Palmer, Abraham A.; Lionikas, Arimantas

    2011-01-01

    Properties of muscle fibers, i.e., their type, number and size, are important determinants of functional characteristics of skeletal muscle, and of the quality of meat in livestock. Genetic factors play an important role in determining variation in fiber properties, however, specific genes remain largely elusive. We examined histological properties of soleus muscle fibers in two strains of mice exhibiting a twofold difference in muscle mass, LG/J and SM/J, and their F2 intercross. The total number of muscle fibers (555 ± 106; mean ± SD) did not differ between the strains or between males and females. A higher percentage of type I fibers was observed in the LG/J compared to the SM/J strain (P < 0.001) in both males (45 ± 3 vs. 37 ± 4%) and females (58 ± 4 vs. 41 ± 3%). Across strains, females had a higher percentage of type I fibers than males (P < 0.001), and the sex effect was greater in the LG/J strain (strain-by-sex interaction, P < 0.001). The cross-sectional area (CSA) did not differ between type I and type IIA fibers, but was greater in the LG/J than the SM/J strain (1365 ± 268 vs. 825 ± 229 μm2, P < 0.001). Three significant quantitative trait locus (QTL) affecting CSA for type I and type IIA fibers mapped to chromosomes (Chr) 1, 6, and 11 and three suggestive QTL for percentage of type I fibers mapped to Chr 2, 3, and 4. Within each significant QTL, regions of conserved synteny were also implicated in variation of similar traits in an analogous study in pigs. Our results provide the evidence that the intercross between the SM/J and LG/J strains is a promising model to search for genes affecting muscle fiber properties. PMID:22303393

  7. QTL Analysis of Type I and Type IIA Fibers in Soleus Muscle in a Cross between LG/J and SM/J Mouse Strains.

    PubMed

    Carroll, Andrew M; Palmer, Abraham A; Lionikas, Arimantas

    2011-01-01

    Properties of muscle fibers, i.e., their type, number and size, are important determinants of functional characteristics of skeletal muscle, and of the quality of meat in livestock. Genetic factors play an important role in determining variation in fiber properties, however, specific genes remain largely elusive. We examined histological properties of soleus muscle fibers in two strains of mice exhibiting a twofold difference in muscle mass, LG/J and SM/J, and their F2 intercross. The total number of muscle fibers (555 ± 106; mean ± SD) did not differ between the strains or between males and females. A higher percentage of type I fibers was observed in the LG/J compared to the SM/J strain (P < 0.001) in both males (45 ± 3 vs. 37 ± 4%) and females (58 ± 4 vs. 41 ± 3%). Across strains, females had a higher percentage of type I fibers than males (P < 0.001), and the sex effect was greater in the LG/J strain (strain-by-sex interaction, P < 0.001). The cross-sectional area (CSA) did not differ between type I and type IIA fibers, but was greater in the LG/J than the SM/J strain (1365 ± 268 vs. 825 ± 229 μm(2), P < 0.001). Three significant quantitative trait locus (QTL) affecting CSA for type I and type IIA fibers mapped to chromosomes (Chr) 1, 6, and 11 and three suggestive QTL for percentage of type I fibers mapped to Chr 2, 3, and 4. Within each significant QTL, regions of conserved synteny were also implicated in variation of similar traits in an analogous study in pigs. Our results provide the evidence that the intercross between the SM/J and LG/J strains is a promising model to search for genes affecting muscle fiber properties.

  8. Eight weeks of ballistic exercise improves power independently of changes in strength and muscle fiber type expression.

    PubMed

    Winchester, Jason B; McBride, Jeffrey M; Maher, Margaret A; Mikat, Richard P; Allen, Brian K; Kline, Dennis E; McGuigan, Michael R

    2008-11-01

    This study investigated the effects of ballistic resistance training and strength training on muscle fiber composition, peak force (PF), maximal strength, and peak power (PP). Fourteen males (age = 21.3 +/- 2.9, body mass = 77.8 +/- 10.1 kg) with 3 months of resistance training experience completed the study. Subjects were tested pre and post for their squat one-repetition maximum (1RM) and PP in the jump squat (JS). Peak force and rate of force development (RFD) were tested during an isometric midthigh pull. Muscle biopsies were obtained from the vastus lateralis for analysis of muscle fiber type expression. Subjects were matched for strength and then randomly selected into either training (T) or control (C) groups. Group T performed 8 weeks of JS training using a periodized program with loading between 26 and 48% of 1RM, 3 days per week. Group T showed significant improvement in PP from 4088.9 +/- 520.6 to 5737.6 +/- 651.8 W. Rate of force development improved significantly in group T from 12687.5 +/- 4644.0 to 25343.8 +/- 12614.4 N x s(-1). PV improved significantly from 1.59 +/- 0.41 to 2.11 +/- 0.75 m x s(-1). No changes occurred in PF, 1RM, or muscle fiber type expression for group T. No changes occurred in any variables in group C. The results of this study indicate that using ballistic resistance exercise is an effective method for increasing PP and RFD independently of changes in maximum strength (1RM, PF), and those increases are a result of factors other than changes in muscle fiber type expression.

  9. The Relationship between Muscle Fiber Type-Specific PGC-1α Content and Mitochondrial Content Varies between Rodent Models and Humans

    PubMed Central

    Gouspillou, Gilles; Sgarioto, Nicolas; Norris, Brandon; Barbat-Artigas, Sébastien; Aubertin-Leheudre, Mylène; Morais, Jose A.; Burelle, Yan; Taivassalo, Tanja; Hepple, Russell T.

    2014-01-01

    PGC-1α regulates critical processes in muscle physiology, including mitochondrial biogenesis, lipid metabolism and angiogenesis. Furthermore, PGC-1α was suggested as an important regulator of fiber type determination. However, whether a muscle fiber type-specific PGC-1α content exists, whether PGC-1α content relates to basal levels of mitochondrial content, and whether such relationships are preserved between humans and classically used rodent models are all questions that have been either poorly addressed or never investigated. To address these issues, we investigated the fiber type-specific content of PGC-1α and its relationship to basal mitochondrial content in mouse, rat and human muscles using in situ immunolabeling and histochemical methods on muscle serial cross-sections. Whereas type IIa fibers exhibited the highest PGC-1α in all three species, other fiber types displayed a hierarchy of type IIx>I>IIb in mouse, type I = IIx> IIb in rat, and type IIx>I in human. In terms of mitochondrial content, we observed a hierarchy of IIa>IIx>I>IIb in mouse, IIa >I>IIx> IIb in rat, and I>IIa> IIx in human skeletal muscle. We also found in rat skeletal muscle that type I fibers displayed the highest capillarization followed by type IIa >IIx>IIb. Finally, we found in human skeletal muscle that type I fibers display the highest lipid content, followed by type IIa>IIx. Altogether, our results reveal that (i) the fiber type-specific PGC-1α and mitochondrial contents were only matched in mouse, (ii) the patterns of PGC-1α and mitochondrial contents observed in mice and rats do not correspond to that seen in humans in several respects, and (iii) the classical phenotypes thought to be regulated by PGC-1α do not vary exclusively as a function of PGC-1α content in rat and human muscles. PMID:25121500

  10. Effects of Mechanical Overloading on the Properties of Soleus Muscle Fibers, with or without Damage in MDX and Wild Type Mice

    NASA Astrophysics Data System (ADS)

    Terada, Masahiro; Kawano, Fuminori; Ohira, Takashi; Oke, Yoshihiko; Nakai, Naoya; Ohira, Yoshinobu

    2008-06-01

    Effects of mechanical overloading on the characteristics of regenerating or not-regenerating soleus muscle fibers were studied. The muscle fibers of mdx mice were characterized by the localization of myonuclei. Muscle damage was also induced in wild type (WT) mice by injection of cardiotoxin (CTX) into soleus muscle. Overloading was applied for 14 days to the left soleus muscle in mdx and intact and CTX-injected WT mice by removing the distal tendons of plantaris and gastrocnemius muscles. The contralateral muscle served as the normal control. These animals were then allowed ambulation recovery in the cage. Central myonuclei were noted in many fibers of mdx and CTX-injected mice with or without overloading. In general, the fibers with central nuclei were considered as regenerating fibers. The fibers with more central nuclei were increased in mdx mice, but the fibers with more peripheral nuclei were increased in CTX-injected WT mice by overloading. The muscle satellite cells, neuromuscular junctions (NMJ), and myonuclei were stained. Most of the properties, such as number of myonuclei and satellite cells, size of NMJ, and fiber length, were not influenced by mechanical overloading in all mice. Approximately 0.6% branched fibers were seen in the intact soleus of mdx mice, although these fibers were not detected in WT mice. However, the percentage of these fibers was increased by overloading especially in mdx mice (~50% vs. ~2.5% in WT). In CTX-injected WT mice, these fibers were ~15% with or without overloading. The fiber cross sectional area in normal WT, but not in mdx and CTX-injected WT mice, was increased by overloading (p<0.05). These results suggested that the functional overload induced muscle damage in mdx mice, but promoted the regeneration in CTX-injected WT mice.

  11. Improvement of Endurance Based on Muscle Fiber-Type Composition by Treatment with Dietary Apple Polyphenols in Rats

    PubMed Central

    Okamoto, Shinpei; Akahoshi, Mariko; Suzuki, Takahiro; Do, Mai-Khoi Q.; Ohtsubo, Hideaki; Komiya, Yusuke; Lan, Mu; Waga, Toshiaki; Iwata, Akira; Nakazato, Koichi; Ikeuchi, Yoshihide; Anderson, Judy E.; Tatsumi, Ryuichi

    2015-01-01

    A recent study demonstrated a positive effect of apple polyphenol (APP) intake on muscle endurance of young-adult animals. While an enhancement of lipid metabolism may be responsible, in part, for the improvement, the contributing mechanisms still need clarification. Here we show that an 8-week intake of 5% (w/w) APP in the diet, up-regulates two features related to fiber type: the ratio of myosin heavy chain (MyHC) type IIx/IIb and myoglobin protein expression in plantaris muscle of 9-week-old male Fischer F344 rats compared to pair-fed controls (P < 0.05). Results were demonstrated by our SDS-PAGE system specialized for MyHC isoform separation and western blotting of whole muscles. Animal-growth profiles (food intake, body-weight gain, and internal-organ weights) did not differ between the control and 5% APP-fed animals (n = 9/group). Findings may account for the increase in fatigue resistance of lower hind limb muscles, as evidenced by a slower decline in the maximum isometric planter-flexion torque generated by a 100-s train of electrical stimulation of the tibial nerve. Additionally, the fatigue resistance was lower after 8 weeks of a 0.5% APP diet than after 5% APP, supporting an APP-dose dependency of the shift in fiber-type composition. Therefore, the present study highlights a promising contribution of dietary APP intake to increasing endurance based on fiber-type composition in rat muscle. Results may help in developing a novel strategy for application in animal sciences, and human sports and age-related health sciences. PMID:26222548

  12. In vivo Ca2+ buffering capacity and microvascular oxygen pressures following muscle contractions in diabetic rat skeletal muscles: fiber-type specific effects.

    PubMed

    Eshima, Hiroaki; Poole, David C; Kano, Yutaka

    2015-07-15

    In Type 1 diabetes, skeletal muscle resting intracellular Ca(2+) concentration ([Ca(2+)]i) homeostasis is impaired following muscle contractions. It is unclear to what degree this behavior is contingent upon fiber type and muscle oxygenation conditions. We tested the hypotheses that: 1) the rise in resting [Ca(2+)]i evident in diabetic rat slow-twitch (type I) muscle would be exacerbated in fast-twitch (type II) muscle following contraction; and 2) these elevated [Ca(2+)]i levels would relate to derangement of microvascular partial pressure of oxygen (PmvO2 ) rather than sarcoplasmic reticulum dysfunction per se. Adult male Wistar rats were divided randomly into diabetic (DIA: streptozotocin ip) and healthy (CONT) groups. Four weeks later extensor digitorum longus (EDL, predominately type II fibers) and soleus (SOL, predominately type I fibers) muscle contractions were elicited by continuous electrical stimulation (120 s, 100 Hz). Ca(2+) imaging was achieved using fura 2-AM in vivo (i.e., circulation intact). DIA increased fatigability in EDL (P < 0.05) but not SOL. In recovery, SOL [Ca(2+)]i either returned to its resting baseline within 150 s (CONT 1.00 ± 0.02 at 600 s) or was not elevated in recovery at all (DIA 1.03 ± 0.02 at 600 s, P > 0.05). In recovery, EDL CONT [Ca(2+)]i also decreased to values not different from baseline (1.06 ± 0.01, P > 0.05) at 600 s. In marked contrast, EDL DIA [Ca(2+)]i remained elevated for the entire recovery period (i.e., 1.23 ± 0.03 at 600 s, P < 0.05). The inability of [Ca(2+)]i to return to baseline in EDL DIA was not associated with any reduction of SR Ca(2+)-ATPase (SERCA) 1 or SERCA2 protein levels (both increased 30-40%, P < 0.05). However, Pmv(O2) recovery kinetics were markedly slowed in EDL such that mean Pmv(O2) was substantially depressed (CONT 27.9 ± 2.0 vs. DIA 18.4 ± 2.0 Torr, P < 0.05), and this behavior was associated with the elevated [Ca(2+)]i. In contrast, this was not the case for SOL (P > 0.05) in that

  13. Eccentric contraction-induced injury to type I, IIa, and IIa/IIx muscle fibers of elderly adults

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Muscles of old laboratory rodents experience exaggerated force losses after eccentric contractile activity. We extended this line of inquiry to humans and investigated the influence of fiber myosin heavy chain (MHC) isoform content on the injury process. Skinned muscle fiber segments, prepared from ...

  14. Age-related changes in rat intrinsic laryngeal muscles: analysis of muscle fibers, muscle fiber proteins, and subneural apparatuses.

    PubMed

    Nishida, Naoya; Taguchi, Aki; Motoyoshi, Kazumi; Hyodo, Masamitsu; Gyo, Kiyofumi; Desaki, Junzo

    2013-03-01

    We compared age-related changes in the intrinsic laryngeal muscles of aged and young adult rats by determining the number and diameter of muscle fibers, contractile muscle protein (myosin heavy chain isoforms, MHC) composition, and the morphology of the subneural apparatuses. In aged rats, both the numbers and the diameters of muscle fibers decreased in the cricothyroid (CT) muscle. The number of fibers, but not diameter, decreased in the thyroarytenoid (TA) muscle. In the posterior cricoarytenoid (PCA) muscle, neither the number nor the diameter of fibers changed significantly. Aging was associated with a decrease in type IIB and an increase in type IIA MHC isoform levels in CT muscle, but no such changes were observed in the TA or PCA muscles. Morphological examination of primary synaptic clefts of the subneural apparatus revealed that aging resulted in decreased labyrinthine and increased depression types in only the CT muscle. In the aged group, morphologically immature subneural apparatuses were found infrequently in the CT muscle, indicating continued tissue remodeling. We suggest, therefore, that age-related changes in the intrinsic laryngeal muscles primarily involve the CT muscle, whereas the structures of the TA and PCA muscles may better resist aging processes and therefore are less vulnerable to functional impairment. This may reflect differences in their roles; the CT muscle controls the tone of the vocal folds, while the TA and PCA muscles play an essential role in vital activities such as respiration and swallowing.

  15. Intramyocellular lipid dependence on skeletal muscle fiber type and orientation characterized by diffusion tensor imaging and 1H-MRS

    NASA Astrophysics Data System (ADS)

    Valaparla, Sunil K.; Gao, Feng; Abdul-Ghani, Muhammad; Clarke, Geoffrey D.

    2014-03-01

    When muscle fibers are aligned with the B0 field, intramyocellular lipids (IMCL), important for providing energy during physical activity, can be resolved in proton magnetic resonance spectra (1H-MRS). Various muscles of the leg differ significantly in their proportion of fibers and angular distribution. This study determined the influence of muscle fiber type and orientation on IMCL using 1H-MRS and diffusion tensor imaging (DTI). Muscle fiber orientation relative to B0 was estimated by pennation angle (PA) measurements from DTI, providing orientation-specific extramyocellular lipid (EMCL) chemical shift data that were used for subject-specific IMCL quantification. Vastus lateralis (VL), tibialis anterior (TA) and soleus (SO) muscles of 6 healthy subjects (21-40 yrs) were studied on a Siemens 3T MRI system with a flex 4-channel coil. 1H-MRS were acquired using stimulated echo acquisition mode (STEAM, TR=3s, TE=270ms). DTI was performed using single shot EPI (b=600s/mm2, 30 directions, TR=4.5s, TE=82ms, and ten×5mm slices) with center slice indexed to the MRS voxel. The average PA's measured from ROI analysis of primary eigenvectors were PA=19.46+/-5.43 for unipennate VL, 15.65+/-3.73 for multipennate SO, and 7.04+/-3.34 for bipennate TA. Chemical shift (CS) was calculated using [3cos2θ-1] dependence: 0.17+/-0.02 for VL, 0.18+/-0.01 for SO and 0.19+/-0.004 ppm for TA. IMCL-CH2 concentrations from spectral analysis were 12.77+/-6.3 for VL, 3.07+/-1.63 for SO and 0.27+/-0.08 mmol/kg ww for TA. Small PA's were measured in TA and large CS with clear separation between EMCL and IMCL peaks were observed. Larger variations in PA were measured VL and SO resulting in an increased overlap of the EMCL on IMCL peaks.

  16. An ultrastructural and histochemical study of the flexor tibialis muscle fiber types in male and female stick insects (Eurycantha calcarata, L).

    PubMed

    Pilehvarian, Ali Asghar

    2015-10-01

    In this study the ultrastructural and histochemical characteristics of the flexor tibialis muscle fibers of the specialized metathoracic legs in the male and those of homologous and unspecialized ones in the female stick insects, Eurycantha calcarata, L, were examined. For the ultrastructural analysis, the muscle was divided longitudinally and vertically to produce a total of 12 sample parts e.g., anterior-dorsal-distal (ADD), posterior-ventral-medial (PVM) and so on. Light and electron microscopes were used to observe the muscle tissue. The methods for myosin adenosine triphosphatase (mATPase) and nicotine adenine dinucleotide- tetrazolium (NADH-TR) staining were modified from the methods of (Stokes et al., '79; Anttila et al., 2009; Anttila and Manttari, 2009). Sections with thickness of 22 μm, were cut from the anterior and the posterior surfaces of the muscle, using a cryostat. The histochemical and ultrastructural results showed that the muscles of both the male and the female were mixtures of physiological fiber types, with predominantly fast fibers. The muscles were composed of fibers with different staining properties for both mATPase and NADH-TR activities. The population of fibers within the muscles was heterogeneous. The differences between the population of the male and that of the female were significant. The means of most criteria e.g., mitochondrial amount and sarcoplasmic reticulum area predicted that the muscle of the male contained more fast fibers than the female. The histochemical examination also showed that the muscle of the male contained more fibers stained darkly for mATPase and lightly for NADH-TR. PMID:26173440

  17. An ultrastructural and histochemical study of the flexor tibialis muscle fiber types in male and female stick insects (Eurycantha calcarata, L).

    PubMed

    Pilehvarian, Ali Asghar

    2015-10-01

    In this study the ultrastructural and histochemical characteristics of the flexor tibialis muscle fibers of the specialized metathoracic legs in the male and those of homologous and unspecialized ones in the female stick insects, Eurycantha calcarata, L, were examined. For the ultrastructural analysis, the muscle was divided longitudinally and vertically to produce a total of 12 sample parts e.g., anterior-dorsal-distal (ADD), posterior-ventral-medial (PVM) and so on. Light and electron microscopes were used to observe the muscle tissue. The methods for myosin adenosine triphosphatase (mATPase) and nicotine adenine dinucleotide- tetrazolium (NADH-TR) staining were modified from the methods of (Stokes et al., '79; Anttila et al., 2009; Anttila and Manttari, 2009). Sections with thickness of 22 μm, were cut from the anterior and the posterior surfaces of the muscle, using a cryostat. The histochemical and ultrastructural results showed that the muscles of both the male and the female were mixtures of physiological fiber types, with predominantly fast fibers. The muscles were composed of fibers with different staining properties for both mATPase and NADH-TR activities. The population of fibers within the muscles was heterogeneous. The differences between the population of the male and that of the female were significant. The means of most criteria e.g., mitochondrial amount and sarcoplasmic reticulum area predicted that the muscle of the male contained more fast fibers than the female. The histochemical examination also showed that the muscle of the male contained more fibers stained darkly for mATPase and lightly for NADH-TR.

  18. Downhill Running Excessive Training Inhibits Hypertrophy in Mice Skeletal Muscles with Different Fiber Type Composition.

    PubMed

    da Rocha, Alisson L; Pereira, Bruno C; Pauli, José R; de Souza, Claudio T; Teixeira, Giovana R; Lira, Fábio S; Cintra, Dennys E; Ropelle, Eduardo R; Júnior, Carlos R B; da Silva, Adelino S R

    2016-05-01

    The aim of this study was to verify the effects of running overtraining protocols performed in downhill, uphill, and without inclination on the proteins related to hypertrophy signaling pathway in extensor digitorum longus (EDL) and soleus of C57BL/6 mice. We also performed histological and stereological analyses. Rodents were divided into control (CT; sedentary mice), overtrained by downhill running (OTR/down), overtrained by uphill running (OTR/up), and overtrained by running without inclination (OTR). The incremental load, exhaustive, and grip force tests were used as performance evaluation parameters. 36 h after the grip force test, EDL and soleus were removed and immediately used for immunoblotting analysis or stored at -80°C for histological and stereological analyses. For EDL, OTR/down decreased the protein kinase B (Akt) and tuberous sclerosis protein 2 (TSC2) phosphorylation (p), and increased myostatin, receptor-activated Smads (pSMAD2-3), and insulin receptor substrate-1 (pIRS-1; Ser307/636). OTR/down also presented low and high relative proportions of cytoplasm and connective tissue, respectively. OTR/up increased the mammalian target of rapamycin (pmTOR), 70-kDa ribosomal protein S6 kinase 1 (pS6K1) and pSMAD2-3, and decreased pTSC2. OTR decreased pTSC2 and increased pIRS-1 (Ser636). For soleus, OTR/down increased S6 ribosomal protein (pS6RP) and pSMAD2-3, and decreased pIRS-1 (Ser639). OTR/up decreased pS6K1, pS6RP and pIRS-1 (Ser639), and increased pTSC2 (Ser939), and pSMAD2-3. OTR increased pS6RP, 4E-binding protein-1 (p4E-BP1), pTSC2 (Ser939), and pSMAD2-3, and decreased pIRS-1 (Ser639). In summary, OTR/down inhibited the skeletal muscle hypertrophy with concomitant signs of atrophy in EDL. The effects of OTR/up and OTR depended on the analyzed skeletal muscle type.

  19. PGC-1alpha plays a functional role in exercise-induced mitochondrial biogenesis and angiogenesis but not fiber-type transformation in mouse skeletal muscle.

    PubMed

    Geng, Tuoyu; Li, Ping; Okutsu, Mitsuharu; Yin, Xinhe; Kwek, Jyeyi; Zhang, Mei; Yan, Zhen

    2010-03-01

    Endurance exercise stimulates peroxisome proliferator-activated receptor gamma coactivator-1alpha (PGC-1alpha) expression in skeletal muscle, and forced expression of PGC-1alpha changes muscle metabolism and exercise capacity in mice. However, it is unclear if PGC-1alpha is indispensible for endurance exercise-induced metabolic and contractile adaptations in skeletal muscle. In this study, we showed that endurance exercise-induced expression of mitochondrial enzymes (cytochrome oxidase IV and cytochrome c) and increases of platelet endothelial cell adhesion molecule-1 (PECAM-1, CD31)-positive endothelial cells in skeletal muscle, but not IIb-to-IIa fiber-type transformation, were significantly attenuated in muscle-specific Pgc-1alpha knockout mice. Interestingly, voluntary running effectively restored the compromised mitochondrial integrity and superoxide dismutase 2 (SOD2) protein expression in skeletal muscle in Pgc-1alpha knockout mice. Thus, PGC-1alpha plays a functional role in endurance exercise-induced mitochondrial biogenesis and angiogenesis, but not IIb-to-IIa fiber-type transformation in mouse skeletal muscle, and the improvement of mitochondrial morphology and antioxidant defense in response to endurance exercise may occur independently of PGC-1alpha function. We conclude that PGC-1alpha is required for complete skeletal muscle adaptations induced by endurance exercise in mice. PMID:20032509

  20. Activity of creatine kinase in a contracting mammalian muscle of uniform fiber type.

    PubMed Central

    McFarland, E W; Kushmerick, M J; Moerland, T S

    1994-01-01

    We investigated whether the creatine kinase-catalyzed phosphate exchange between PCr and gamma ATP in vivo equilibrated with cellular substrates and products as predicted by in vitro kinetic properties of the enzyme, or was a function of ATPase activity as predicted by obligatory "creatine phosphate shuttle" concepts. A transient NMR spin-transfer method was developed, tested, and applied to resting and stimulated ex vivo muscle, the soleus, which is a cellularly homogeneous slow-twitch mammalian muscle, to measure creatine kinase kinetics. The forward and reverse unidirectional CK fluxes were equal, being 1.6 mM.s-1 in unstimulated muscle at 22 degrees C, and 2.7 mM.s-1 at 30 degrees C. The CK fluxes did not differ during steady-state stimulation conditions giving a 10-fold range of ATPase rates in which the ATP/PCr ratio increased from approximately 0.3 to 1.6. The observed kinetic behavior of CK activity in the muscle was that expected from the enzyme in vitro in a homogeneous solution only if account was taken of inhibition by an anion-stabilized quaternary dead-end enzyme complex: E.Cr.MgADP.anion. The CK fluxes in soleus were not a function of ATPase activity as predicted by obligatory phosphocreatine shuttle models for cellular energetics. PMID:7858128

  1. Experiment K-6-21. Effect of microgravity on 1) metabolic enzymes of type 1 and type 2 muscle fibers and on 2) metabolic enzymes, neutransmitter amino acids, and neurotransmitter associated enzymes in motor and somatosensory cerebral cortex. Part 1: Metabolic enzymes of individual muscle fibers; part 2: metabolic enzymes of hippocampus and spinal cord

    NASA Technical Reports Server (NTRS)

    Lowry, O.; Mcdougal, D., Jr.; Nemeth, Patti M.; Maggie, M.-Y. Chi; Pusateri, M.; Carter, J.; Manchester, J.; Norris, Beverly; Krasnov, I.

    1990-01-01

    The individual fibers of any individual muscle vary greatly in enzyme composition, a fact which is obscured when enzyme levels of a whole muscle are measured. The purpose of this study was therefore to assess the changes due to weightless on the enzyme patterns composed by the individual fibers within the flight muscles. In spite of the limitation in numbers of muscles examined, it is apparent that: (1) that the size of individual fibers (i.e., their dry weight) was reduced about a third, (2) that this loss in dry mass was accompanied by changes in the eight enzymes studied, and (3) that these changes were different for the two muscles, and different for the two enzyme groups. In the soleus muscle the absolute amounts of the three enzymes of oxidative metabolism decreased about in proportion to the dry weight loss, so that their concentration in the atrophic fibers was almost unchanged. In contrast, there was little loss among the four enzymes of glycogenolysis - glycolysis so that their concentrations were substantially increased in the atrophic fibers. In the TA muscle, these seven enzymes were affected in just the opposite direction. There appeared to be no absolute loss among the oxidative enzymes, whereas the glycogenolytic enzymes were reduced by nearly half, so that the concentrations of the first metabolic group were increased within the atrophic fibers and the concentrations of the second group were only marginally decreased. The behavior of hexokinase was exceptional in that it did not decrease in absolute terms in either type of muscle and probably increased as much as 50 percent in soleus. Thus, their was a large increase in concentration of this enzyme in the atrophied fibers of both muscles. Another clear-cut finding was the large increase in the range of activities of the glycolytic enzymes among individual fibers of TA muscles. This was due to the emergence of TA fibers with activities for enzymes of this group extending down to levels as low as

  2. Effect of acute and chronic eccentric exercise on FOXO1 mRNA expression as fiber type transition factor in rat skeletal muscles.

    PubMed

    Azad, Milad; Khaledi, Neda; Hedayati, Mehdi

    2016-06-15

    Skeletal muscle is a highly elastic tissue which can respond to various functional demands by altering fiber-type composition. Exercise affects muscle fiber phenotype. One of the transcription factors that induce fiber-type transition is forkhead box O1 (FOXO1). Since eccentric contraction considered an essential part of exercise, so we are interested to see the effects of eccentric exercise (acute/chronic) on FOXO1 as an important factor of fiber-type transition in rat skeletal muscles. Twenty-four Sprague-Dawley rats (190-235g) were divided to 3 groups of 8 rats: 1) chronic eccentric exercise (CEE), 2) acute eccentric exercise (AEE), and 3) control (C). The exercise groups underwent downhill running protocol. CEE was running on treadmill in 3 days of week for 9 weeks, that slope and duration gradually managed from -4° to -16° and 15 to 90 min, respectively. AEE group was running with 16 m/min on -16° slope for 3 consecutive days that included 18 sets of 5 min with rest interval of 2 min in between. Soleus and super vastus lateralis (SVL) muscles mRNA were analyzed by real-time RT-PCR. SVL FOXO1 mRNA levels increased by 3.92-fold in the AEE and decreased 0.56-fold in the CEE group and were not significant in soleus muscle. In soleus muscle, myosin heavy chain (MHC) IIa, IIx, and IIb decreased in the AEE group and MHC IIa and IIx decreased in the CEE group. In SVL muscle, MHC I, IIa, and IIx increased in the AEE group and MHC IIa and IIX increased in the CEE group. In summary, both acute and chronic eccentric exercise could lead to change in FOXO1 mRNA only in fast SVL muscle of rat and so could induce fiber-type transition in both muscles regardless of changes in expression of FOXO1. So, oxidative stress can play important role in change of FOXO1.

  3. Glycolytic-to-oxidative fiber-type switch and mTOR signaling activation are early-onset features of SBMA muscle modified by high-fat diet.

    PubMed

    Rocchi, Anna; Milioto, Carmelo; Parodi, Sara; Armirotti, Andrea; Borgia, Doriana; Pellegrini, Matteo; Urciuolo, Anna; Molon, Sibilla; Morbidoni, Valeria; Marabita, Manuela; Romanello, Vanina; Gatto, Pamela; Blaauw, Bert; Bonaldo, Paolo; Sambataro, Fabio; Robins, Diane M; Lieberman, Andrew P; Sorarù, Gianni; Vergani, Lodovica; Sandri, Marco; Pennuto, Maria

    2016-07-01

    Spinal and bulbar muscular atrophy (SBMA) is a neuromuscular disease caused by the expansion of a polyglutamine tract in the androgen receptor (AR). The mechanism by which expansion of polyglutamine in AR causes muscle atrophy is unknown. Here, we investigated pathological pathways underlying muscle atrophy in SBMA knock-in mice and patients. We show that glycolytic muscles were more severely affected than oxidative muscles in SBMA knock-in mice. Muscle atrophy was associated with early-onset, progressive glycolytic-to-oxidative fiber-type switch. Whole genome microarray and untargeted lipidomic analyses revealed enhanced lipid metabolism and impaired glycolysis selectively in muscle. These metabolic changes occurred before denervation and were associated with a concurrent enhancement of mechanistic target of rapamycin (mTOR) signaling, which induced peroxisome proliferator-activated receptor γ coactivator 1 alpha (PGC1α) expression. At later stages of disease, we detected mitochondrial membrane depolarization, enhanced transcription factor EB (TFEB) expression and autophagy, and mTOR-induced protein synthesis. Several of these abnormalities were detected in the muscle of SBMA patients. Feeding knock-in mice a high-fat diet (HFD) restored mTOR activation, decreased the expression of PGC1α, TFEB, and genes involved in oxidative metabolism, reduced mitochondrial abnormalities, ameliorated muscle pathology, and extended survival. These findings show early-onset and intrinsic metabolic alterations in SBMA muscle and link lipid/glucose metabolism to pathogenesis. Moreover, our results highlight an HFD regime as a promising approach to support SBMA patients. PMID:26971100

  4. Long-Term Effects of Botulinum Toxin Complex Type A Injection on Mechano- and Metabo-Sensitive Afferent Fibers Originating from Gastrocnemius Muscle

    PubMed Central

    Caron, Guillaume; Marqueste, Tanguy; Decherchi, Patrick

    2015-01-01

    The aim of the present study was to investigate long term effects of motor denervation by botulinum toxin complex type A (BoNT/A) from Clostridium Botulinum, on the afferent fibers originating from the gastrocnemius muscle of rats. Animals were divided in 2 experimental groups: 1) untreated animals acting as control and 2) treated animals in which the toxin was injected in the left muscle, the latter being itself divided into 3 subgroups according to their locomotor recovery with the help of a test based on footprint measurements of walking rats: i) no recovery (B0), ii) 50% recovery (B50) and iii) full recovery (B100). Then, muscle properties, metabosensitive afferent fiber responses to potassium chloride (KCl) and lactic acid injections and Electrically-Induced Fatigue (EIF), and mechanosensitive responses to tendon vibrations were measured. At the end of the experiment, rats were killed and the toxin injected muscles were weighted. After toxin injection, we observed a complete paralysis associated to a loss of force to muscle stimulation and a significant muscle atrophy, and a return to baseline when the animals recover. The response to fatigue was only decreased in the B0 group. The responses to KCl injections were only altered in the B100 groups while responses to lactic acid were altered in the 3 injected groups. Finally, our results indicated that neurotoxin altered the biphasic pattern of response of the mechanosensitive fiber to tendon vibrations in the B0 and B50 groups. These results indicated that neurotoxin injection induces muscle afferent activity alterations that persist and even worsen when the muscle has recovered his motor activity. PMID:26485650

  5. Role of estrogen on skeletal muscle mitochondrial function in ovariectomized rats: a time course study in different fiber types.

    PubMed

    Cavalcanti-de-Albuquerque, J P A; Salvador, I C; Martins, Eduarda Lopes; Jardim-Messeder, D; Werneck-de-Castro, J P S; Galina, A; Carvalho, D P

    2014-04-01

    Postmenopausal women are prone to develop obesity and insulin resistance, which might be related to skeletal muscle mitochondrial dysfunction. In a rat model of ovariectomy (OVX), skeletal muscle mitochondrial function was examined at short- and long-term periods after castration. Mitochondrial parameters in the soleus and white gastrocnemius muscle fibers were analyzed. Three weeks after surgery, there were no differences in coupled mitochondrial respiration (ATP synthesis) with pyruvate, malate, and succinate; proton leak respiration; or mitochondrial reactive oxygen species production. However, after 3 wk of OVX, the soleus and white gastrocnemius muscles of the OVX animals showed a lower use of palmitoyl-carnitine and glycerol-phosphate substrates, respectively, and decreased peroxisome proliferator-activated receptor-γ coactivator-1α expression. Estrogen replacement reverted all of these phenotypes. Eight weeks after OVX, ATP synthesis was lower in the soleus and white gastrocnemius muscles of the OVX animals than in the sham-operated and estrogen-treated animals; however, when normalized by citrate synthase activity, these differences disappeared, indicating a lower muscle mitochondria content. No differences were observed in the proton leak parameter. Mitochondrial alterations did not impair the treadmill exercise capacity of the OVX animals. However, blood lactate levels in the OVX animals were higher after the physical test, indicating a compensatory extramitochondrial ATP synthesis system, but this phenotype was reverted by estrogen replacement. These results suggest early mitochondrial dysfunction related to lipid substrate use, which could be associated with the development of the overweight phenotype of ovariectomized animals.

  6. Effects of Two Different Weight Training Programs on Swimming Performance and Muscle Enzyme Activities and Fiber Type.

    PubMed

    Belfry, Glen R; Noble, Earl G; Taylor, Albert W

    2016-02-01

    The effects of 2 different weight training programs incorporating bench press (BP) and pullover (PO) exercises on swimming performance, power, enzyme activity, and fiber type distribution were studied on 16 men (age = 23 ± 4 years). A 30-second group (n = 6) performed up to 20 repetitions of BP and PO in 30 seconds. The 2-minute group (n = 6) performed a maximum of 80 repetitions of BP and PO in 2 minutes. As participants reached the prescribed 20 or 80 repetitions, the weight was increased 4.5 kg. A third group (n = 4) served as nontraining controls. Exercise groups trained 3 times per week for 6 weeks. Maximal effort swims of 50 and 200 yd were performed before and after training. Training resulted in increases in work on both exercises in both groups pre- to post-training (BP 30 seconds, 722 ± 236-895 ± 250 kg; PO 30 seconds, 586 ± 252-1,090 ± 677 kg; and BP 2 minutes, 1,530 ± 414-1,940 ± 296; PO 2 minutes, 1,212 ± 406-2,348 ± 194, p ≤ 0.05). Swim performances of the 30-second group improved for both the 50-yd (32.0 ± 6.9 seconds, 30.0 ± 5.9 seconds, p ≤ 0.05) and 200-yd swims 200.0 ± 54 seconds, 182 ± 45.1 seconds (p ≤ 0.05), whereas 2-minute training improved only the 200-yd swim (198.3 ± 32.3 seconds, 186.2 ± 32.2 seconds). No changes in swim performance were observed for the control group. Triceps muscle succinate dehydrogenase activities increased (pre 3.48 ± 1.1 μmol · g(-1) wet weight per minute, post 6.25 ± 1.5 μmoles · g(-1) wet weight per minute, p ≤ 0.05) in only the 30-second training group, whereas phosphofructokinase activities and fiber type distribution did not change in either training group. This study has demonstrated that a 30-second 20-repetition weight training program, specific to the swimming musculature without concurrent swim training, improves swimming performances at both 50- and 200-yd distances. PMID:26815172

  7. Effects of Two Different Weight Training Programs on Swimming Performance and Muscle Enzyme Activities and Fiber Type.

    PubMed

    Belfry, Glen R; Noble, Earl G; Taylor, Albert W

    2016-02-01

    The effects of 2 different weight training programs incorporating bench press (BP) and pullover (PO) exercises on swimming performance, power, enzyme activity, and fiber type distribution were studied on 16 men (age = 23 ± 4 years). A 30-second group (n = 6) performed up to 20 repetitions of BP and PO in 30 seconds. The 2-minute group (n = 6) performed a maximum of 80 repetitions of BP and PO in 2 minutes. As participants reached the prescribed 20 or 80 repetitions, the weight was increased 4.5 kg. A third group (n = 4) served as nontraining controls. Exercise groups trained 3 times per week for 6 weeks. Maximal effort swims of 50 and 200 yd were performed before and after training. Training resulted in increases in work on both exercises in both groups pre- to post-training (BP 30 seconds, 722 ± 236-895 ± 250 kg; PO 30 seconds, 586 ± 252-1,090 ± 677 kg; and BP 2 minutes, 1,530 ± 414-1,940 ± 296; PO 2 minutes, 1,212 ± 406-2,348 ± 194, p ≤ 0.05). Swim performances of the 30-second group improved for both the 50-yd (32.0 ± 6.9 seconds, 30.0 ± 5.9 seconds, p ≤ 0.05) and 200-yd swims 200.0 ± 54 seconds, 182 ± 45.1 seconds (p ≤ 0.05), whereas 2-minute training improved only the 200-yd swim (198.3 ± 32.3 seconds, 186.2 ± 32.2 seconds). No changes in swim performance were observed for the control group. Triceps muscle succinate dehydrogenase activities increased (pre 3.48 ± 1.1 μmol · g(-1) wet weight per minute, post 6.25 ± 1.5 μmoles · g(-1) wet weight per minute, p ≤ 0.05) in only the 30-second training group, whereas phosphofructokinase activities and fiber type distribution did not change in either training group. This study has demonstrated that a 30-second 20-repetition weight training program, specific to the swimming musculature without concurrent swim training, improves swimming performances at both 50- and 200-yd distances.

  8. Aged Muscle Demonstrates Fiber-Type Adaptations in Response to Mechanical Overload, in the Absence of Myofiber Hypertrophy, Independent of Satellite Cell Abundance.

    PubMed

    Lee, Jonah D; Fry, Christopher S; Mula, Jyothi; Kirby, Tyler J; Jackson, Janna R; Liu, Fujun; Yang, Lin; Dupont-Versteegden, Esther E; McCarthy, John J; Peterson, Charlotte A

    2016-04-01

    Although sarcopenia, age-associated loss of muscle mass and strength, is neither accelerated nor exacerbated by depletion of muscle stem cells, satellite cells, we hypothesized that adaptation in sarcopenic muscle would be compromised. To test this hypothesis, we depleted satellite cells with tamoxifen treatment of Pax7(CreER)-DTA mice at 4 months of age, and 20 months later subjected the plantaris muscle to 2 weeks of mechanical overload. We found myofiber hypertrophy was impaired in aged mice regardless of satellite cell content. Even in the absence of growth, vehicle-treated mice mounted a regenerative response, not apparent in tamoxifen-treated mice. Further, myonuclear accretion occurred in the absence of growth, which was prevented by satellite cell depletion, demonstrating that myonuclear addition is insufficient to drive myofiber hypertrophy. Satellite cell depletion increased extracellular matrix content of aged muscle that was exacerbated by overload, potentially limiting myofiber growth. These results support the idea that satellite cells regulate the muscle environment, and that their loss during aging may contribute to fibrosis, particularly during periods of remodeling. Overload induced a fiber-type composition improvement, independent of satellite cells, suggesting that aged muscle is very responsive to exercise-induced enhancement in oxidative capacity, even with an impaired hypertrophic response.

  9. Aged Muscle Demonstrates Fiber-Type Adaptations in Response to Mechanical Overload, in the Absence of Myofiber Hypertrophy, Independent of Satellite Cell Abundance.

    PubMed

    Lee, Jonah D; Fry, Christopher S; Mula, Jyothi; Kirby, Tyler J; Jackson, Janna R; Liu, Fujun; Yang, Lin; Dupont-Versteegden, Esther E; McCarthy, John J; Peterson, Charlotte A

    2016-04-01

    Although sarcopenia, age-associated loss of muscle mass and strength, is neither accelerated nor exacerbated by depletion of muscle stem cells, satellite cells, we hypothesized that adaptation in sarcopenic muscle would be compromised. To test this hypothesis, we depleted satellite cells with tamoxifen treatment of Pax7(CreER)-DTA mice at 4 months of age, and 20 months later subjected the plantaris muscle to 2 weeks of mechanical overload. We found myofiber hypertrophy was impaired in aged mice regardless of satellite cell content. Even in the absence of growth, vehicle-treated mice mounted a regenerative response, not apparent in tamoxifen-treated mice. Further, myonuclear accretion occurred in the absence of growth, which was prevented by satellite cell depletion, demonstrating that myonuclear addition is insufficient to drive myofiber hypertrophy. Satellite cell depletion increased extracellular matrix content of aged muscle that was exacerbated by overload, potentially limiting myofiber growth. These results support the idea that satellite cells regulate the muscle environment, and that their loss during aging may contribute to fibrosis, particularly during periods of remodeling. Overload induced a fiber-type composition improvement, independent of satellite cells, suggesting that aged muscle is very responsive to exercise-induced enhancement in oxidative capacity, even with an impaired hypertrophic response. PMID:25878030

  10. Colchicine myopathy: a vacuolar myopathy with selective type I muscle fiber involvement. An immunohistochemical and electron microscopic study of two cases.

    PubMed

    Fernandez, C; Figarella-Branger, D; Alla, P; Harlé, J-R; Pellissier, J-F

    2002-02-01

    Colchicine, a microtubule polymerization inhibitor, can very occasionally induce myopathy. We report two cases of colchicine myopathy. Both patients presented with myalgia and proximal muscle weakness. The first patient, an 80-year-old woman, had chronic renal failure related to renal amyloidosis. She had been treated by colchicine for 4 months. The second, a 75-year-old man with normal renal function, suffering from gout, was treated by colchicine for 3 weeks. Muscle biopsies displayed the same alterations, but the degree of severity was different. Conventional histology revealed vacuolar changes characterized by acid phosphatase-positive vacuoles and myofibrillar disarray foci. The lesions were selective for type I fibers. Ultrastructural study demonstrated autophagic vacuoles. Most of the vacuoles expressed dystrophin but not merosin. Several fibers reacted with anti-MHC class I antibody and granular deposits of membrane attack complex were observed on the surface of numerous myofibers. Anti-alphaB-crystallin antibody strongly reacted with vacuolar content. Physiopathologically, microtubules are primordial for vesicle movements and colchicine induces autophagic vacuole accumulation by preventing their fusion with lysosomes. The selective type I involvement is probably due to the higher tubulin amount in type I fibers. AlphaB-crystallin overexpression is related to its microtubule protection properties. Moreover, we suggest that vacuoles randomly floating in sarcoplasm might occasionally meet the plasma membrane and open in the extracellular space, leading to complement activation. Accurate diagnosis of colchicine myopathy is relevant because the treatment is based on colchicine interruption.

  11. Single muscle fiber proteomics reveals unexpected mitochondrial specialization

    PubMed Central

    Murgia, Marta; Nagaraj, Nagarjuna; Deshmukh, Atul S; Zeiler, Marlis; Cancellara, Pasqua; Moretti, Irene; Reggiani, Carlo; Schiaffino, Stefano; Mann, Matthias

    2015-01-01

    Mammalian skeletal muscles are composed of multinucleated cells termed slow or fast fibers according to their contractile and metabolic properties. Here, we developed a high-sensitivity workflow to characterize the proteome of single fibers. Analysis of segments of the same fiber by traditional and unbiased proteomics methods yielded the same subtype assignment. We discovered novel subtype-specific features, most prominently mitochondrial specialization of fiber types in substrate utilization. The fiber type-resolved proteomes can be applied to a variety of physiological and pathological conditions and illustrate the utility of single cell type analysis for dissecting proteomic heterogeneity. PMID:25643707

  12. Liver fibrosis in elderly cadavers: localization of collagen types I, III, and IV, α-smooth muscle actin, and elastic fibers.

    PubMed

    Mak, Ki M; Chu, Edward; Lau, K H Vincent; Kwong, Allison J

    2012-07-01

    We have shown a high prevalence of liver fibrosis in elderly cadavers with diverse causes of death by Sirius red stain; however, the various collagen types in these samples have yet to be evaluated. To further characterize the histopathology of the fibrotic lesions in the livers of these elderly cadavers, this study used immunohistochemistry and histochemistry to identify the principal collagens produced in liver fibrosis, fibrogenic cells and elastic fibers. Collagen I and III immunoreactions were found to colocalize in collagen fibers of fibrotic central veins, perisinusoidal fibrotic foci, portal tract stroma, and fibrous septa. α-Smooth muscle actin-expressing perisinusoidal hepatic stellate cells (HSCs), as well as perivenular, portal, and septal myofibroblasts, were closely associated with collagen fibers, reflecting their fibrogenic functions. HSCs and myofibroblasts were also noted to express collagen IV, which may contribute to production of basal lamina-like structures. In fibrotic livers, the sinusoidal lining showed variable immunostaining for collagen IV. Collagen IV immunostaining revealed vascular proliferation and atypical ductular reaction at the portal-septal parenchymal borders, as well as capillary-like vessels in the lobular parenchyma. While elastic fibers were absent in the space of Disse, they were found to codistribute with collagens in portal tracts, fibrous septa and central veins. Our combined assessment of collagen types, HSCs, myofibroblasts, and elastic fibers is significant in understanding the histopathology of fibrosis in the aging liver.

  13. Experiment K-7-21: Effect of Microgravity on 1: Metabolic Enzymes of Type 1 and Type 2 Muscle Fibers, and on 2: Metabolic Enzymes, Neurotransmitter Amino Acids, and Neurotransmitter Associated Enzymes in Selected Regions of the Central Nervous System. Part 1; Metabolic Enzymes of Individual Muscle Fibers

    NASA Technical Reports Server (NTRS)

    Lowry, O. H.; Ilyina-Kakueva, E. I.; Krasnov, I. B.; Carter, J. G.; Chi, M. M.-Y.; Choksi, R.; Manchester, J. K.; McDougal, D. B.; Nemeth, P. M.; Pusateri, M. E.

    1994-01-01

    Individual fibers of any given muscle vary widely in enzyme composition, a fact obscured when enzyme levels of whole muscle are measured. Therefore, the purpose of this part of the study was to assess the effects of microgravity and hind limb suspension on the enzyme patterns within a slow twitch muscle (soleus) and a fast twitch muscle (tibialis anterior).

  14. An evaluation of the reliability of muscle fiber cross-sectional area and fiber number measurements in rat skeletal muscle

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background: The reliability of estimating muscle fiber cross-sectional area (measure of muscle fiber size) and fiber number from only a subset of fibers in rat hindlimb muscle cross-sections has not been systematically evaluated. This study examined the variability in mean estimates of fiber cross-s...

  15. Molecular Mechanisms Regulating Muscle Fiber Composition Under Microgravity

    NASA Technical Reports Server (NTRS)

    Rosenthal, Nadia A.

    1999-01-01

    The overall goal of this project is to reveal the molecular mechanisms underlying the selective and debilitating atrophy of specific skeletal muscle fiber types that accompanies sustained conditions of microgravity. Since little is currently known about the regulation of fiber-specific gene expression programs in mammalian muscle, elucidation of the basic mechanisms of fiber diversification is a necessary prerequisite to the generation of therapeutic strategies for attenuation of muscle atrophy on earth or in space. Vertebrate skeletal muscle development involves the fusion of undifferentiated mononucleated myoblasts to form multinucleated myofibers, with a concomitant activation of muscle-specific genes encoding proteins that form the force-generating contractile apparatus. The regulatory circuitry controlling skeletal muscle gene expression has been well studied in a number of vertebrate animal systems. The goal of this project has been to achieve a similar level of understanding of the mechanisms underlying the further specification of muscles into different fiber types, and the role played by innervation and physical activity in the maintenance and adaptation of different fiber phenotypes into adulthood. Our recent research on the genetic basis of fiber specificity has focused on the emergence of mature fiber types and have implicated a group of transcriptional regulatory proteins, known as E proteins, in the control of fiber specificity. The restriction of E proteins to selected muscle fiber types is an attractive hypothetical mechanism for the generation of muscle fiber-specific patterns of gene expression. To date our results support a model wherein different E proteins are selectively expressed in muscle cells to determine fiber-restricted gene expression. These studies are a first step to define the molecular mechanisms responsible for the shifts in fiber type under conditions of microgravity, and to determine the potential importance of E proteins as

  16. [Morphological study of muscle fibers stained red by modified Gomori trichrome staining with special reference to smooth red fibers].

    PubMed

    Yoshida, K

    1997-03-01

    The modified Gomori trichrome stain of muscles can demonstrate ragged red fibers which are irregular in outline and display a thick and irregular red subsarcolemmal layer and intermyofibrillar red deposits. Typical ragged red fibers are often encountered in mitochondrial myopathy. On the other hand, we have noticed fibers outlined by a thin red subsarcolemmal layer. These fibers are smooth in outline. The sarcoplasm shows normal intermyofibrillar network. We defined these fibers as "smooth red fibers". To investigate the pathological significance of the smooth red fibers, we studied morphological differences between the smooth red fibers and ragged red fibers by light and electron microscopy and evaluated the occurrence and characteristics of the both abnormal muscle fibers in several neuromuscular diseases. Muscle specimens from 738 patients who were seen or consulted at the Department of Neurology, Hokkaido University, from January 1980 to October 1994 were examined. The smooth red fibers were classified into two types, type I and type II. Type I smooth red fibers were hypertrophied and showed a thin smooth red margin. Electron microscopy of the type I smooth red fibers showed no mitochondrial abnormality, being different from ragged red fibers which have abnormal mitochondria. Type I smooth red fibers were observed in chronic denervation process; they were specially frequent in Kugelberg-Welander syndrome. Hypertrophy of type I smooth red fibers were considered to be a compensative reaction in chronic denervation. Type II smooth red fibers were observed with or without ragged red fibers in mitochondrial myopathy. Type II smooth red fibers showed a thin smooth red margin, spreading red deposits from the margin into sarcoplasm. The fibers showed mitochondrial abnormality in electron microscopy. It could be posturated that type II smooth red fibers were transformed into ragged red fibers. The findings suggest 1) type I and type II smooth red fibers are different in

  17. Constant Fiber Number During Skeletal Muscle Atrophy and Modified Arachidonate Metabolism During Hypertrophy

    NASA Technical Reports Server (NTRS)

    Templeton, G.

    1985-01-01

    A previously documented shift from Type I to IIA predominance of the soleus muscle during rat suspension was further investigated to determine if this shift was by selective reduction of a single fiber type, simultaneous reduction and formation of fibers with different fiber types, or a transformation of fiber type by individual fibers. By partial acid digestion and dissection, average total soleus fiber number was found to be 3022 + or - 80 (SE) and 3008 + or - 64 before and after four-week suspension (n=12). Another area of current research was based on previous studies which indicate that prostaglandins are biosynthesized by skeletal muscle and evoke protein synthesis and degradation.

  18. A study of the effect of pregnancy on muscle fibers of the rectus abdominis muscle of the rat.

    PubMed

    Martin, W D

    1979-11-01

    Samples of the rectus abdominis muscle were taken from Sprague-Dawley rats at 0, 3, 6, 6, 12, 15, 18, and 21 days of pregnancy, and at 1, 3, 6, 9, 12, and 15 days of postpartum. Sections were incubated for actomyosin adenosine triphosphatase activity following preincubation at a basic pH. Muscle fibers within a unit area of each sample were identified as to fiber type according to their enzyme activity, and the population of each type counted. The proportion of each fiber type was calculated and the diameter of 24 fibers of each type measured. No changes were noted in the muscle fiber proportions through the course of the experiment. Differential changes in muscle fiber diameters were noted in each of the three muscle fiber types. Slow oxidative fibers underwent an increase in diameter through the last half of pregnancy. The diameter was further increased as stretch of the muscle was released after birth, and did not decrease in the postpartum period. Fast glycolytic fibers decreased in diameter during the last half of pregnancy, but returned to the prepregnancy diameter in the first postpartum day. The diameter of the fast oxidative glycolytic fibers remained unchanged through the course of pregnacy and in the postpartum period.

  19. Evidence for ACTN3 as a Speed Gene in Isolated Human Muscle Fibers

    PubMed Central

    Broos, Siacia; Malisoux, Laurent; Theisen, Daniel; van Thienen, Ruud; Ramaekers, Monique; Jamart, Cécile; Deldicque, Louise; Thomis, Martine A.; Francaux, Marc

    2016-01-01

    Purpose To examine the effect of α-actinin-3 deficiency due to homozygosity for the ACTN3 577X-allele on contractile and morphological properties of fast muscle fibers in non-athletic young men. Methods A biopsy was taken from the vastus lateralis of 4 RR and 4 XX individuals to test for differences in morphologic and contractile properties of single muscle fibers. The cross-sectional area of the fiber and muscle fiber composition was determined using standard immunohistochemistry analyses. Skinned single muscle fibers were subjected to active tests to determine peak normalized force (P0), maximal unloading velocity (V0) and peak power. A passive stretch test was performed to calculate Young’s Modulus and hysteresis to assess fiber visco-elasticity. Results No differences were found in muscle fiber composition. The cross-sectional area of type IIa and IIx fibers was larger in RR compared to XX individuals (P<0.001). P0 was similar in both groups over all fiber types. A higher V0 was observed in type IIa fibers of RR genotypes (P<0.001) but not in type I fibers. The visco-elasticity as determined by Young’s Modulus and hysteresis was unaffected by fiber type or genotype. Conclusion The greater V0 and the larger fast fiber CSA in RR compared to XX genotypes likely contribute to enhanced whole muscle performance during high velocity contractions. PMID:26930663

  20. Unilateral muscle overuse causes bilateral changes in muscle fiber composition and vascular supply.

    PubMed

    Song, Yafeng; Forsgren, Sture; Liu, Jing-Xia; Yu, Ji-Guo; Stål, Per

    2014-01-01

    Unilateral strength training can cause cross-transfer strength effects to the homologous contralateral muscles. However, the impact of the cross-over effects on the muscle tissue is unclear. To test the hypothesis that unilateral muscle overuse causes bilateral alterations in muscle fiber composition and vascular supply, we have used an experimental rabbit model with unilateral unloaded overstrain exercise via electrical muscle stimulation (E/EMS). The soleus (SOL) and gastrocnemius (GA) muscles of both exercised (E) and contralateral non-exercised (NE) legs (n = 24) were morphologically analyzed after 1 w, 3 w and 6 w of EMS. Non-exercised rabbits served as controls (n = 6). After unilateral intervention the muscles of both E and NE legs showed myositis and structural and molecular tissue changes that to various degrees mirrored each other. The fiber area was bilaterally smaller than in controls after 3 w of E/EMS in both SOL (E 4420 and NE 4333 µm2 vs. 5183 µm2, p<0.05) and GA (E 3572 and NE 2983 µm2 vs. 4697 µm2, p<0.02) muscles. After 6 w of E/EMS, the percentage of slow MyHCI fibers was lower than in controls in the NE legs of SOL (88.1% vs. 98.1%, p<0.009), while the percentage of fast MyHCIIa fibers was higher in the NE legs of GA (25.7% vs. 15.8%, p = 0.02). The number of capillaries around fibers in the E and NE legs was lower (SOL 13% and 15%, respectively, GA 25% and 23%, respectively, p<0.05) than in controls. The overall alterations were more marked in the fast GA muscle than in the slow SOL muscle, which on the other hand showed more histopathological muscle changes. We conclude that unilateral repetitive unloaded overuse exercise via EMS causes myositis and muscle changes in fiber type proportions, fiber area and fiber capillarization not only in the exercised leg, but also in the homologous muscles in the non-exercised leg. PMID:25545800

  1. Effect of swim exercise training on human muscle fiber function

    NASA Technical Reports Server (NTRS)

    Fitts, R. H.; Costill, D. L.; Gardetto, P. R.

    1989-01-01

    The effect of swim exercise training on the human muscle fiber function was investigated in swimmers trained in a typical collegiate swim-training program followed by an intensified 10-day training period. The measured parameters included the peak tension (P0), negative log molar Ca(2+) concentration (pCa)-force, and maximal shortening speed (Vmax) of the slow-twitch type I and fast-twitch type II fibers obtained by biopsy from the deltoid muscle. The P0 values were found to be not altered after either the training or the 10-day intensive program. The type I fibers from the trained swimmers showed pCa-force curves shifted to the right, such that higher free Ca(2+) levels were required to elicit a given percent of P0. The training program significantly increased the Vmax in the type I fibers and decreased that of the type II fibers, and the 10-day intensive training produced a further significant decrease of the type II fibers.

  2. Contractile properties of single permeabilized muscle fibers from congenital cleft palates and normal palates of Spanish goats

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A goat model in which cleft palate is induced by the plant alkaloid, anabasine was used to determine muscle fiber integrity of the levator veli palatine muscle. It was determined that the muscle fibers of the cleft palate-induced goats were primarily of the type 2 (fast fibers) which fatigue easil...

  3. Influence of exercise contraction mode and protein supplementation on human skeletal muscle satellite cell content and muscle fiber growth

    PubMed Central

    Farup, Jean; Rahbek, Stine Klejs; Riis, Simon; Vendelbo, Mikkel Holm; de Paoli, Frank

    2014-01-01

    Skeletal muscle satellite cells (SCs) are involved in remodeling and hypertrophy processes of skeletal muscle. However, little knowledge exists on extrinsic factors that influence the content of SCs in skeletal muscle. In a comparative human study, we investigated the muscle fiber type-specific association between emergence of satellite cells (SCs), muscle growth, and remodeling in response to 12 wk unilateral resistance training performed as eccentric (Ecc) or concentric (Conc) resistance training ± whey protein (Whey, 19.5 g protein + 19.5 g glucose) or placebo (Placebo, 39 g glucose) supplementation. Muscle biopsies (vastus lateralis) were analyzed for fiber type-specific SCs, myonuclei, and fiber cross-sectional area (CSA). Following training, SCs increased with Conc in both type I and type II fibers (P < 0.01) and exhibited a group difference from Ecc (P < 0.05), which did not increase. Myonuclei content in type I fibers increased in all groups (P < 0.01), while a specific accretion of myonuclei in type II fibers was observed in the Whey-Conc (P < 0.01) and Placebo-Ecc (P < 0.01) groups. Similarly, whereas type I fiber CSA increased independently of intervention (P < 0.001), type II fiber CSA increased exclusively with Whey-Conc (P < 0.01) and type II fiber hypertrophy correlated with whole muscle hypertrophy exclusively following Conc training (P < 0.01). In conclusion, isolated concentric knee extensor resistance training appears to constitute a stronger driver of SC content than eccentric resistance training while type II fiber hypertrophy was accentuated when combining concentric resistance training with whey protein supplementation. PMID:25103976

  4. Skeletal muscle fiber analysis by atmospheric pressure scanning microprobe matrix-assisted laser desorption/ionization mass spectrometric imaging at high mass and high spatial resolution.

    PubMed

    Tsai, Yu-Hsuan; Bhandari, Dhaka Ram; Garrett, Timothy J; Carter, Christy S; Spengler, Bernhard; Yost, Richard A

    2016-06-01

    Skeletal muscles are composed of heterogeneous muscle fibers with various fiber types. These fibers can be classified into different classes based on their different characteristics. MALDI mass spectrometric imaging (MSI) has been applied to study and visualize different metabolomics profiles of different fiber types. Here, skeletal muscles were analyzed by atmospheric pressure scanning microprobe MALDI-MSI at high spatial and high mass resolution.

  5. Hyperspectral deep ultraviolet autofluorescence of muscle fibers is affected by postmortem changes.

    PubMed

    Chagnot, Caroline; Vénien, Annie; Jamme, Frédéric; Réfrégiers, Matthieu; Desvaux, Mickaël; Astruc, Thierry

    2015-05-20

    After slaughter, muscle cells undergo biochemical and physicochemical changes that may affect their autofluorescence characteristics. The autofluorescent response of different rat extensor digitorum longus (EDL) and soleus muscle fiber types was investigated by deep ultraviolet (UV) synchrotron microspectroscopy immediately after animal sacrifice and after 24 h of storage in a moist chamber at 20 °C. The glycogen content decreased from 23 to 18 μmol/g of fresh muscle in 24 h postmortem. Following a 275 nm excitation wavelength, the spectral muscle fiber autofluorescence response showed discrimination depending upon postmortem time (t0 versus t24 h) on both muscles at 346 and 302 nm and, to a lesser extent, at 408 and 325 nm. Taken individually, all fiber types were discriminated but with variable accuracy, with type IIA showing better separation of t0/t24 h than other fiber types. These results suggest the usefulness of the autofluorescent response of muscle cells for rapid meat-aging characterization.

  6. Gene transcripts encoding hypoxia-inducible factor (HIF) exhibit tissue- and muscle fiber type-dependent responses to hypoxia and hypercapnic hypoxia in the Atlantic blue crab, Callinectes sapidus.

    PubMed

    Hardy, Kristin M; Follett, Chandler R; Burnett, Louis E; Lema, Sean C

    2012-09-01

    Hypoxia inducible factor (HIF) is a transcription factor that under low environmental oxygen regulates the expression of suites of genes involved in metabolism, angiogenesis, erythropoiesis, immune function, and growth. Here, we isolated and sequenced partial cDNAs encoding hif-α and arnt/hif-β from the Atlantic blue crab, Callinectes sapidus, an estuarine species that frequently encounters concurrent hypoxia (low O(2)) and hypercapnia (elevated CO(2)). We then examined the effects of acute exposure (1h) to hypoxia (H) and hypercapnic hypoxia (HH) on relative transcript abundance for hif-α and arnt/hif-β in different tissues (glycolytic muscle, oxidative muscle, hepatopancreas, gill, and gonads) using quantitative real-time RT-PCR. Our results indicate that hif-α and arnt/hif-β mRNAs were constitutively present under well-aerated normoxia (N) conditions in all tissues examined. Further, H and HH exposure resulted in both tissue-specific and muscle fiber type-specific effects on relative hif-α transcript abundance. In the gill and glycolytic muscle, relative hif-α mRNA levels were significantly lower under H and HH, compared to N, while no change (or a slight increase) was detected in oxidative muscle, hepatopancreas and gonadal tissues. H and HH did not affect relative transcript abundance for arnt/hif-β in any tissue or muscle fiber type. Thus, in crustaceans the HIF response to H and HH appears to involve changes in hif transcript abundance, with variation in hif-α and arnt/hif-β transcriptional dynamics occurring in both a tissue- and muscle fiber type-dependent manner.

  7. Myoglobin plasma level related to muscle mass and fiber composition: a clinical marker of muscle wasting?

    PubMed

    Weber, Marc-André; Kinscherf, Ralf; Krakowski-Roosen, Holger; Aulmann, Michael; Renk, Hanna; Künkele, Annette; Edler, Lutz; Kauczor, Hans-Ulrich; Hildebrandt, Wulf

    2007-08-01

    Progressive muscle wasting is a central feature of cancer-related cachexia and has been recognized as a determinant of poor prognosis and quality of life. However, until now, no easily assessable clinical marker exists that allows to predict or to track muscle wasting. The present study evaluated the potential of myoglobin (MG) plasma levels to indicate wasting of large locomotor muscles and, moreover, to reflect the loss of MG-rich fiber types, which are most relevant for daily performance. In 17 cancer-cachectic patients (weight loss 22%) and 27 age- and gender-matched healthy controls, we determined plasma levels of MG and creatine kinase (CK), maximal quadriceps muscle cross-sectional area (CSA) by magnetic resonance imaging, muscle morphology and fiber composition in biopsies from the vastus lateralis muscle, body cell mass (BCM) by impedance technique as well as maximal oxygen uptake (VO(2)max). In cachectic patients, plasma MG, muscle CSA, BCM, and VO(2)max were 30-35% below control levels. MG showed a significant positive correlation to total muscle CSA (r = 0.65, p < 0.001) and to the CSA fraction formed by type 1 and 2a fibers (r = 0.80, p < 0.001). However, when adjusted for body height and age by multiple regression, MG yielded a largely improved prediction of total CSA (multiple r = 0.83, p < 0.001) and of fiber type 1 and 2a CSA (multiple r = 0.89, p < 0.001). The correlations between CK and these muscle parameters were weaker, and elevated CK values were observed in 20% of control subjects despite a prior abstinence from exercise for 5 days. In conclusion, plasma MG, when adjusted for anthropometric parameters unaffected by weight, may be considered as a novel marker of muscle mass (CSA) indicating best the mass of MG-rich type 1 and 2a fibers as well as VO(2)max as an important functional readout. CK plasma levels appear to be less reliable because prolonged increases are observed in even subclinical myopathies or after exercise. Notably, cancer

  8. Single muscle fiber gene expression with run taper.

    PubMed

    Murach, Kevin; Raue, Ulrika; Wilkerson, Brittany; Minchev, Kiril; Jemiolo, Bozena; Bagley, James; Luden, Nicholas; Trappe, Scott

    2014-01-01

    This study evaluated gene expression changes in gastrocnemius slow-twitch myosin heavy chain I (MHC I) and fast-twitch (MHC IIa) muscle fibers of collegiate cross-country runners (n = 6, 20±1 y, VO₂max = 70±1 ml•kg-1•min-1) during two distinct training phases. In a controlled environment, runners performed identical 8 kilometer runs (30:18±0:30 min:s, 89±1% HRmax) while in heavy training (∼72 km/wk) and following a 3 wk taper. Training volume during the taper leading into peak competition was reduced ∼50% which resulted in improved race times and greater cross-section and improved function of MHC IIa fibers. Single muscle fibers were isolated from pre and 4 hour post run biopsies in heavily trained and tapered states to examine the dynamic acute exercise response of the growth-related genes Fibroblast growth factor-inducible 14 (FN14), Myostatin (MSTN), Heat shock protein 72 (HSP72), Muscle ring-finger protein-1 (MURF1), Myogenic factor 6 (MRF4), and Insulin-like growth factor 1 (IGF1) via qPCR. FN14 increased 4.3-fold in MHC IIa fibers with exercise in the tapered state (P<0.05). MSTN was suppressed with exercise in both fiber types and training states (P<0.05) while MURF1 and HSP72 responded to running in MHC IIa and I fibers, respectively, regardless of training state (P<0.05). Robust induction of FN14 (previously shown to strongly correlate with hypertrophy) and greater overall transcriptional flexibility with exercise in the tapered state provides an initial molecular basis for fast-twitch muscle fiber performance gains previously observed after taper in competitive endurance athletes. PMID:25268477

  9. Myosin Isoforms and Contractile Properties of Single Fibers of Human Latissimus Dorsi Muscle

    PubMed Central

    Pacelli, Quirico F.; Cancellara, Pasqua; Toniolo, Luana; Moro, Tatiana; Canato, Marta; Miotti, Danilo; Reggiani, Carlo

    2013-01-01

    The aim of our study was to investigate fiber type distribution and contractile characteristics of Latissimus Dorsi muscle (LDM). Samples were collected from 18 young healthy subjects (9 males and 9 females) through percutaneous fine needle muscle biopsy. The results showed a predominance of fast myosin heavy chain isoforms (MyHC) with 42% of MyHC 2A and 25% of MyHC 2X, while MyHC 1 represented only 33%. The unbalance toward fast isoforms was even greater in males (71%) than in females (64%). Fiber type distribution partially reflected MyHC isoform distribution with 28% type 1/slow fibers and 5% hybrid 1/2A fibers, while fast fibers were divided into 30% type 2A, 31% type A/X, 4% type X, and 2% type 1/2X. Type 1/slow fibers were not only less abundant but also smaller in cross-sectional area than fast fibers. During maximal isometric contraction, type 1/slow fibers developed force and tension significantly lower than the two major groups of fast fibers. In conclusion, the predominance of fast fibers and their greater size and strength compared to slow fibers reveal that LDM is a muscle specialized mainly in phasic and powerful activity. Importantly, such specialization is more pronounced in males than in females. PMID:23971027

  10. Slow-Twitch Fiber Proportion in Skeletal Muscle Correlates With Insulin Responsiveness

    PubMed Central

    McCurry, Melanie P.; Marino, Anna; South, Mark A.; Howell, Mary E. A.; Layne, Andrew S.; Ramsey, Michael W.; Stone, Michael H.

    2013-01-01

    Context: The metabolic syndrome, characterized by central obesity with dyslipidemia, hypertension, and hyperglycemia, identifies people at high risk for type 2 diabetes. Objective: Our objective was to determine how the insulin resistance of the metabolic syndrome is related to muscle fiber composition. Design: Thirty-nine sedentary men and women (including 22 with the metabolic syndrome) had insulin responsiveness quantified using euglycemic clamps and underwent biopsies of the vastus lateralis muscle. Expression of insulin receptors, insulin receptor substrate-1, glucose transporter 4, and ATP synthase were quantified with immunoblots and immunohistochemistry. Participants and Setting: Participants were nondiabetic, metabolic syndrome volunteers and sedentary control subjects studied at an outpatient clinic. Main Outcome Measures: Insulin responsiveness during an insulin clamp and the fiber composition of a muscle biopsy specimen were evaluated. Results: There were fewer type I fibers and more mixed (type IIa) fibers in metabolic syndrome subjects. Insulin responsiveness and maximal oxygen uptake correlated with the proportion of type I fibers. Insulin receptor, insulin receptor substrate-1, and glucose transporter 4 expression were not different in whole muscle but all were significantly less in the type I fibers of metabolic syndrome subjects when adjusted for fiber proportion and fiber size. Fat oxidation and muscle mitochondrial expression were not different in the metabolic syndrome subjects. Conclusion: Lower proportion of type I fibers in metabolic syndrome muscle correlated with the severity of insulin resistance. Even though whole muscle content was normal, key elements of insulin action were consistently less in type I muscle fibers, suggesting their distribution was important in mediating insulin effects. PMID:23515448

  11. Regional heterogeneity in muscle fiber strain: the role of fiber architecture

    PubMed Central

    Azizi, E.; Deslauriers, Amber R.

    2014-01-01

    The force, mechanical work and power produced by muscle fibers are profoundly affected by the length changes they undergo during a contraction. These length changes are in turn affected by the spatial orientation of muscle fibers within a muscle (fiber architecture). Therefore any heterogeneity in fiber architecture within a single muscle has the potential to cause spatial variation in fiber strain. Here we examine how the architectural variation within a pennate muscle and within a fusiform muscle can result in regional fiber strain heterogeneity. We combine simple geometric models with empirical measures of fiber strain to better understand the effect of architecture on fiber strain heterogeneity. We show that variation in pennation angle throughout a muscle can result in differences in fiber strain with higher strains being observed at lower angles of pennation. We also show that in fusiform muscles, the outer/superficial fibers of the muscle experience lower strains than central fibers. These results show that regional variation in mechanical output of muscle fibers can arise solely from architectural features of the muscle without the presence of any spatial variation in motor recruitment. PMID:25161626

  12. Contraction-induced injury to single permeabilized muscle fibers from normal and congenitally-clefted goat palates

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A goat model in which cleft palate is induced by the plant alkaloid, anabasine was used to determine muscle fiber integrity of the levator veli palatine (LVP) muscle. It was determined that muscle fiber type, size, and sensitivity to contraction-induced injury was different between cleft palate ind...

  13. Glucose transporter expression in human skeletal muscle fibers.

    PubMed

    Gaster, M; Handberg, A; Beck-Nielsen, H; Schroder, H D

    2000-09-01

    The present study was initiated to investigate GLUT-1 through -5 expression in developing and mature human skeletal muscle. To bypass the problems inherent in techniques using tissue homogenates, we applied an immunocytochemical approach, employing the sensitive enhanced tyramide signal amplification (TSA) technique to detect the localization of glucose transporter expression in human skeletal muscle. We found expression of GLUT-1, GLUT-3, and GLUT-4 in developing human muscle fibers showing a distinct expression pattern. 1) GLUT-1 is expressed in human skeletal muscle cells during gestation, but its expression is markedly reduced around birth and is further reduced to undetectable levels within the first year of life; 2) GLUT-3 protein expression appears at 18 wk of gestation and disappears after birth; and 3) GLUT-4 protein is diffusely expressed in muscle cells throughout gestation, whereas after birth, the characteristic subcellular localization is as seen in adult muscle fibers. Our results show that GLUT-1, GLUT-3, and GLUT-4 seem to be of importance during muscle fiber growth and development. GLUT-5 protein was undetectable in fetal and adult skeletal muscle fibers. In adult muscle fibers, only GLUT-4 was expressed at significant levels. GLUT-1 immunoreactivity was below the detection limit in muscle fibers, indicating that this glucose transporter is of minor importance for muscle glucose supply. Thus we hypothesize that GLUT-4 also mediates basal glucose transport in muscle fibers, possibly through constant exposure to tonal contraction and basal insulin levels. PMID:10950819

  14. Diffusion-Tensor MRI Based Skeletal Muscle Fiber Tracking

    PubMed Central

    Damon, Bruce M.; Buck, Amanda K. W.; Ding, Zhaohua

    2014-01-01

    A skeletal muscle's function is strongly influenced by the internal organization and geometric properties of its fibers, a property known as muscle architecture. Diffusion-tensor magnetic resonance imaging-based fiber tracking provides a powerful tool for non-invasive muscle architecture studies, has three-dimensional sensitivity, and uses a fixed frame of reference. Significant advances have been made in muscle fiber tracking technology, including defining seed points for fiber tracking, quantitatively characterizing muscle architecture, implementing denoising procedures, and testing validity and repeatability. Some examples exist of how these data can be integrated with those from other advanced MRI and computational methods to provide novel insights into muscle function. Perspectives are offered regarding future directions in muscle diffusion-tensor imaging, including needs to develop an improved understanding for the microstructural basis for reduced and anisotropic diffusion, establish the best practices for data acquisition and analysis, and integrate fiber tracking with other physiological data. PMID:25429308

  15. Skeletal muscle fiber, nerve, and blood vessel breakdown in space-flown rats

    NASA Technical Reports Server (NTRS)

    Riley, D. A.; Ilyina-Kakueva, E. I.; Ellis, S.; Bain, J. L.; Slocum, G. R.; Sedlak, F. R.

    1990-01-01

    Histochemical and ultrastructural analyses were performed postflight on hind limb skeletal muscles of rats orbited for 12.5 days aboard the unmanned Cosmos 1887 biosatellite and returned to Earth 2 days before sacrifice. The antigravity adductor longus (AL), soleus, and plantaris muscles atrophied more than the non-weight-bearing extensor digitorum longus, and slow muscle fibers were more atrophic than fast fibers. Muscle fiber segmental necrosis occurred selectively in the AL and soleus muscles; primarily, macrophages and neutrophils infiltrated and phagocytosed cellular debris. Granule-rich mast cells were diminished in flight AL muscles compared with controls, indicating the mast cell secretion contributed to interstitial tissue edema. Increased ubiquitination of disrupted myofibrils implicated ubiquitin in myofilament degradation. Mitochondrial content and succinic dehydrogenase activity were normal, except for subsarcolemmal decreases. Myofibrillar ATPase activity of flight AL muscle fibers shifted toward the fast type. Absence of capillaries and extravasation of red blood cells indicated failed microcirculation. Muscle fiber regeneration from activated satellite cells was detected. About 17% of the flight AL end plates exhibited total or partial denervation. Thus, skeletal muscle weakness associated with spaceflight can result from muscle fiber atrophy and segmental necrosis, partial motor denervation, and disruption of the microcirculation.

  16. Effect of altering starting length and activation timing of muscle on fiber strain and muscle damage.

    PubMed

    Butterfield, Timothy A; Herzog, Walter

    2006-05-01

    Muscle strain injuries are some of the most frequent injuries in sports and command a great deal of attention in an effort to understand their etiology. These injuries may be the culmination of a series of subcellular events accumulated through repetitive lengthening (eccentric) contractions during exercise, and they may be influenced by a variety of variables including fiber strain magnitude, peak joint torque, and starting muscle length. To assess the influence of these variables on muscle injury magnitude in vivo, we measured fiber dynamics and joint torque production during repeated stretch-shortening cycles in the rabbit tibialis anterior muscle, at short and long muscle lengths, while varying the timing of activation before muscle stretch. We found that a muscle subjected to repeated stretch-shortening cycles of constant muscle-tendon unit excursion exhibits significantly different joint torque and fiber strains when the timing of activation or starting muscle length is changed. In particular, measures of fiber strain and muscle injury were significantly increased by altering activation timing and increasing the starting length of the muscle. However, we observed differential effects on peak joint torque during the cyclic stretch-shortening exercise, as increasing the starting length of the muscle did not increase torque production. We conclude that altering activation timing and muscle length before stretch may influence muscle injury by significantly increasing fiber strain magnitude and that fiber dynamics is a more important variable than muscle-tendon unit dynamics and torque production in influencing the magnitude of muscle injury.

  17. The skeletal muscle vascular supply closely correlates with the muscle fiber surface area in the rat.

    PubMed

    Ichinose, Emiko; Kurose, Tomoyuki; Daitoku, Daisuke; Kawamata, Seiichi

    2008-05-01

    The skeletal muscle capillary supply (capillarity) dynamically changes in response to muscle conditions such as growth, atrophy, and hypertrophy. The capillary number-to-fiber ratio is reported to correlate closely with the muscle fiber cross sectional area. However, little information is available regarding the capillarity of neonatal and very young skeletal muscles. In this study, the vascular endothelium was reliably stained with an anti-PECAM-1 antibody, and relationships between the capillarity and muscle fiber parameters were analyzed. For assessment of the capillarity, we used the capillary length-to-fiber ratio, due to the presence of transversely running vessels. In young and adult rats, the capillary length-to-fiber ratio was proportional to both the muscle fiber cross sectional area and muscle fiber radius. However, when these data were analyzed together with data from neonatal and very young rats, the capillary length-to-fiber ratio correlated more closely with the muscle fiber radius than the muscle fiber cross sectional area in the tibialis anterior muscle. The capillary number-to-fiber ratio demonstrated results very similar to the capillary length-to-fiber ratio. During muscle atrophy after denervation, the number of capillaries was decreased in a non-apoptotic manner as revealed by electron microscopy, maintaining the close relationship between the parameters described above. In conclusion, capillarity was closely correlated with the muscle fiber radius (which represents the perimeter) during growth and atrophy. This indicates that the capillarity is linked to the muscle fiber surface area (which is determined by perimeter and section thickness), in agreement with the essential role of the cell membrane in the transport of materials by simple diffusion or active transport.

  18. Kinematic modeling of single muscle fiber during diaphragm shortening.

    PubMed

    Kyckelhahn, Brian A; Nason, Patricia B; Tidball, James G; Boriek, Aladin M

    2003-03-01

    Understanding the kinematics of the diaphragm muscle at the single fiber level is important in understanding the mechanics of its membrane. Nevertheless, the geometric parameters of single muscle fiber contraction remain poorly understood. We modeled the kinematics of a single muscle fiber of the diaphragm to determine the relationships among fiber shape, perimeter of the fiber cross-section, and apparent surface area of the fiber during muscle shortening. We used the models to identify which constraints on the geometric parameters are most consistent with physiological data on diaphragmatic muscle shortening. Our kinematic models use isovolumic fibers with elliptical cross-sections, and these models have the following properties: (1) constant cross-sectional shape, (2) inextensible cross-sectional perimeter, (3) constant cross-sectional transverse dimension, or (4) constant apparent surface area. These models were investigated during muscle shortening of the diaphragm from functional residual capacity to total lung capacity. The model that matches physiologic data best has zero transverse strain and has a relationship between fiber shape and muscle shortening consistent with published data on single muscle fiber mechanics. PMID:12594994

  19. Giant fiber activation of flight muscles in Drosophila: asynchrony in latency of wing depressor fibers.

    PubMed

    Hummon, M R; Costello, W J

    1989-09-01

    In Drosophila, brain stimulation of the giant fiber pathway brings about highly stereotyped electrical responses in target muscles involved in the escape response. Both the order of muscle response and the latency of that response are predictable in wild-type flies. The neuronal circuit to the targets is well defined and has been used in the analysis of a number of mutant phenotypes, including induced anomalies in temperature-sensitive (ts) mutations such as shibire (shi). It has been assumed that the stereotyped response includes simultaneous activation of all six fibers of the wing depressor muscle, DLM, resulting in equal latencies for all fibers. We report here a small, but distinct, inherent difference in latency between two sets of DLM fibers in a proportion of two wild-type strains as well as in a strain carrying the ts mutation shi. This difference may occur on one or both sides of an individual, is stable over time, and persists when the motor axon is stimulated peripherally. These results, due to the circuit leading to the target, suggest that the difference in latency arises peripherally. In flies reared at the shi permissive temperature (22 degrees C), the difference is more common in shi than in wild-type flies; however, in shi flies reared at 18 degrees C, the prevalence resembles that of wild-type flies. This indicates a subtle expression of the shi defect even at the presumed permissive temperature of 22 degrees C. The difference in latency is similar to that induced in shi flies whose development is affected by pupal heat pulse. Thus, correct interpretation of differences in latency, e.g., in shi/wild-type mosaic flies or in flies with mutations affecting the GF pathway, requires recognition of the inherent asynchrony that can occur between DLM fibers.

  20. Calcium Efflux from Barnacle Muscle Fibers

    PubMed Central

    Russell, J. M.; Blaustein, M. P.

    1974-01-01

    Calcium-45 was injected into single giant barnacle muscle fibers, and the rate of efflux was measured under a variety of conditions. The rate constant (k) for 45Ca efflux into standard seawater averaged 17 x 10–4 min–1 which corresponds to an efflux of about 1–2 pmol/cm2·s. Removal of external Ca (Cao) reduced the efflux by 50%. In most fibers about 40% of the 45Ca efflux into Ca-free seawater was dependent on external Na (Nao); treatment with 3.5 mM caffeine increased the magnitude of the Nao-dependent efflux. In a few fibers removal of Nao, in the absence of Cao, either had no effect or increased k; caffeine (2–3.5 mM) unmasked an Nao-dependent efflux in these fibers. The Nao-dependent Ca efflux had a Q10 of about 3.7. The data are consistent with the idea that a large fraction of the Ca efflux may be carrier-mediated, and may involve both Ca-Ca and Na-Ca counterflow. The relation between the Nao-dependent Ca efflux and the external Na concentration is sigmoid, and suggests that two, or more likely three, external Na+ ions may activate the efflux of one Ca+2. With a three-for-one Na-Ca exchange, the Na electrochemical gradient may be able to supply sufficient energy to maintain the Ca gradient in these fibers. Other, more complex models are not excluded, however, and may be required to explain some puzzling features of the Ca efflux such as the variable Nao-dependence. PMID:4812633

  1. Polyglucosan bodies in intramuscular nerves: Association with muscle fiber denervation atrophy.

    PubMed

    Lu, Jian-Qiang; Phan, Cecile; Zochodne, Douglas; Yan, Chuanzhu

    2016-01-15

    Polyglucosan bodies (PB) in the intramuscular nerves have been rarely studied, and their presence particularly in subjects without neurologic disorders has been thought to be age-related. We examined, by using light and electron microscopy, 204 consecutive muscle biopsies. PB was found in 5 quadriceps intramuscular nerves (2.45% of all biopsies). All 5 quadriceps containing PB exhibited varying degrees of muscle fiber denervation atrophy with or without fiber type grouping. These quadriceps with PB, compared with the other 119 quadriceps without PB, showed a significantly greater association with muscle fiber denervation atrophy (5/5 versus 55/119; p=0.02, by two-tailed Fisher's exact test), for which aging is not confounding. Electron microscopy identified PB in intramuscular nerve myelinated fibers along with ongoing degenerative changes. Our observation suggests that PB in intramuscular nerves may be pathologic and associated with muscle fiber denervation atrophy.

  2. Is fast fiber innervation responsible for increased acetylcholinesterase activity in reinnervating soleus muscles?

    NASA Technical Reports Server (NTRS)

    Misulis, K. E.; Dettbarn, W. D.

    1985-01-01

    An investigation was conducted as to whether the predominantly slow SOL, which is low in AChE activity, is initially reinnervated by axons that originally innervated fast muscle fibers with high AChE activity, such as those of the EDL. Local denervation of the SOL in the guinea pig was performed because this muscle is composed solely of slow (type I) fibers; thereby virtually eliminating the possibility of homologous muscle fast fiber innervation. The overshoot in this preparation was qualitatively similar to that seen with distal denervation in the guinea pig and local and distal denervation in the rat. Thus, initial fast fiber innvervation is not responsible for the patterns of change in AChE activity seen with reinnervation in the SOL. It is concluded that the neural control of AChe is different in these two muscles and may reflect specific differences in the characteristics of AChE regulation in fast and slow muscle.

  3. Muscle organizers in Drosophila: the role of persistent larval fibers in adult flight muscle development

    NASA Technical Reports Server (NTRS)

    Farrell, E. R.; Fernandes, J.; Keshishian, H.

    1996-01-01

    In many organisms muscle formation depends on specialized cells that prefigure the pattern of the musculature and serve as templates for myoblast organization and fusion. These include muscle pioneers in insects and muscle organizing cells in leech. In Drosophila, muscle founder cells have been proposed to play a similar role in organizing larval muscle development during embryogenesis. During metamorphosis in Drosophila, following histolysis of most of the larval musculature, there is a second round of myogenesis that gives rise to the adult muscles. It is not known whether muscle founder cells organize the development of these muscles. However, in the thorax specific larval muscle fibers do not histolyze at the onset of metamorphosis, but instead serve as templates for the formation of a subset of adult muscles, the dorsal longitudinal flight muscles (DLMs). Because these persistent larval muscle fibers appear to be functioning in many respects like muscle founder cells, we investigated whether they were necessary for DLM development by using a microbeam laser to ablate them singly and in combination. We found that, in the absence of the larval muscle fibers, DLMs nonetheless develop. Our results show that the persistent larval muscle fibers are not required to initiate myoblast fusion, to determine DLM identity, to locate the DLMs in the thorax, or to specify the total DLM fiber volume. However, they are required to regulate the number of DLM fibers generated. Thus, while the persistent larval muscle fibers are not obligatory for DLM fiber formation and differentiation, they are necessary to ensure the development of the correct number of fibers.

  4. Effects of Caffeine on Crayfish Muscle Fibers

    PubMed Central

    Chiarandini, Dante J.; Reuben, John P.; Girardier, Lucien; Katz, George M.; Grundfest, Harry

    1970-01-01

    When caffeine evokes a contraction, and only then, crayfish muscle fibers become refractory to a second challenge with caffeine for up to 20 min in the standard saline (5 mM Ko). However, the fibers still respond with contraction to an increase in Ko, though with diminished tension. Addition of Mn slows recovery, but the latter is greatly accelerated during exposure of the fiber to high Ko, or after a brief challenge with high Ko. Neither the depolarization induced by the K, nor the repolarization after its removal accounts for the acceleration, which occurs only if the challenge with K had itself activated the contractile system; acceleration is blocked when contractile responses to K are blocked by reducing the Ca in the bath or by adding Mn. Recovery is accelerated by redistribution of intracellular Cl and by trains of intracellularly applied depolarizing pulses, but not by hyperpolarization. The findings indicate that two sources of Ca can be mobilized to activate the contractile system. Caffeine mobilizes principally the Ca store of the SR. Depolarizations that are induced by high Ko, by transient efflux of Cl, or by intracellularly applied currents mobilize another source of Ca which is strongly dependent upon the entry of Ca from the bathing medium. The sequestering mechanism of the SR apparently can utilize this second source of Ca to replenish its own store so as to accelerate recovery of responsiveness to a new challenge with caffeine. PMID:5443469

  5. Mechanisms of nascent fiber formation during avian skeletal muscle hypertrophy

    NASA Technical Reports Server (NTRS)

    McCormick, K. M.; Schultz, E.

    1992-01-01

    This study examined two putative mechanisms of new fiber formation in postnatal skeletal muscle, namely longitudinal fragmentation of existing fibers and de novo formation. The relative contributions of these two mechanisms to fiber formation in hypertrophying anterior latissimus dorsi (ALD) muscle were assessed by quantitative analysis of their nuclear populations. Muscle hypertrophy was induced by wing-weighting for 1 week. All nuclei formed during the weighting period were labeled by continuous infusion of 5-bromo-2'-deoxyuridine (BrdU), a thymidine analog, and embryonic-like fibers were identified using an antibody to ventricular-like embryonic (V-EMB) myosin. The number of BrdU-labeled and unlabeled nuclei in V-EMB-positive fibers were counted. Wing-weighting resulted in significant muscle enlargement and the appearance of many V-EMB+ fibers. The majority of V-EMB+ fibers were completely independent of mature fibers and had a nuclear density characteristics of developing fibers. Furthermore, nearly 100% of the nuclei in independent V-EMB+ fibers were labeled. These findings strongly suggest that most V-EMB+ fibers were nascent fibers formed de novo during the weighting period by satellite cell activation and fusion. Nascent fibers were found primarily in the space between fascicles where they formed a complex anastomosing network of fibers running at angles to one another. Although wing-weighting induced an increase in the number of branched fibers, there was no evidence that V-EMB+ fibers were formed by longitudinal fragmentation. The location of newly formed fibers in wing-weighted and regenerating ALD muscle was compared to determine whether satellite cells in the ALD muscle were unusual in that, if stimulated to divide, they would form fibers in the inter- and intrafascicular space. In contrast to wing-weighted muscle, nascent fibers were always found closely associated with necrotic fibers. These results suggest that wing-weighting is not simply another

  6. Slow to fast alterations in skeletal muscle fibers caused by clenbuterol, a beta(2)-receptor agonist

    NASA Technical Reports Server (NTRS)

    Zeman, Richard J.; Ludemann, Robert; Easton, Thomas G.; Etlinger, Joseph D.

    1988-01-01

    The effects of a beta(2)-receptor agonist, clenbuterol, and a beta(2) antagonist, butoxamine, on the skeletal muscle fibers of rats were investigated. It was found that chronic treatment of rats with clenbuterol caused hypertrophy of histochemically identified fast-twitch, but not slow-twitch, fibers within the soleus, while in the extensor digitorum longus the mean areas of both fiber types were increased; in both muscles, the ratio of the number of fast-twitch to slow-twitch fibers was increased. In contrast, a treatment with butoxamine caused a reduction of the fast-twitch fiber size in both muscles, and the ratio of the fast-twitch to slow-twitch fibers was decreased.

  7. Anisotropic Smoothing Improves DT-MRI-Based Muscle Fiber Tractography

    PubMed Central

    Buck, Amanda K. W.; Ding, Zhaohua; Elder, Christopher P.; Towse, Theodore F.; Damon, Bruce M.

    2015-01-01

    Purpose To assess the effect of anisotropic smoothing on fiber tracking measures, including pennation angle, fiber tract length, and fiber tract number in the medial gastrocnemius (MG) muscle in healthy subjects using diffusion-weighted magnetic resonance imaging (DW-MRI). Materials and Methods 3T DW-MRI data were used for muscle fiber tractography in the MG of healthy subjects. Anisotropic smoothing was applied at three levels (5%, 10%, 15%), and pennation angle, tract length, fiber tract number, fractional anisotropy, and principal eigenvector orientation were quantified for each smoothing level. Results Fiber tract length increased with pre-fiber tracking smoothing, and local heterogeneities in fiber direction were reduced. However, pennation angle was not affected by smoothing. Conclusion Modest anisotropic smoothing (10%) improved fiber-tracking results, while preserving structural features. PMID:26010830

  8. Velocity, force, power, and Ca2+ sensitivity of fast and slow monkey skeletal muscle fibers

    NASA Technical Reports Server (NTRS)

    Fitts, R. H.; Bodine, S. C.; Romatowski, J. G.; Widrick, J. J.

    1998-01-01

    In this study, we determined the contractile properties of single chemically skinned fibers prepared from the medial gastrocnemius (MG) and soleus (Sol) muscles of adult male rhesus monkeys and assessed the effects of the spaceflight living facility known as the experiment support primate facility (ESOP). Muscle biopsies were obtained 4 wk before and immediately after an 18-day ESOP sit, and fiber type was determined by immunohistochemical techniques. The MG slow type I fiber was significantly smaller than the MG type II, Sol type I, and Sol type II fibers. The ESOP sit caused a significant reduction in the diameter of type I and type I/II (hybrid) fibers of Sol and MG type II and hybrid fibers but no shift in fiber type distribution. Single-fiber peak force (mN and kN/m2) was similar between fiber types and was not significantly different from values previously reported for other species. The ESOP sit significantly reduced the force (mN) of Sol type I and MG type II fibers. This decline was entirely explained by the atrophy of these fiber types because the force per cross-sectional area (kN/m2) was not altered. Peak power of Sol and MG fast type II fiber was 5 and 8.5 times that of slow type I fiber, respectively. The ESOP sit reduced peak power by 25 and 18% in Sol type I and MG type II fibers, respectively, and, for the former fiber type, shifted the force-pCa relationship to the right, increasing the Ca2+ activation threshold and the free Ca2+ concentration, eliciting half-maximal activation. The ESOP sit had no effect on the maximal shortening velocity (Vo) of any fiber type. Vo of the hybrid fibers was only slightly higher than that of slow type I fibers. This result supports the hypothesis that in hybrid fibers the slow myosin heavy chain would be expected to have a disproportionately greater influence on Vo.

  9. Masticatory biomechanics and masseter fiber-type plasticity.

    PubMed

    Ravosa, M J; Ning, J; Costley, D B; Daniel, A N; Stock, S R; Stack, M S

    2010-03-01

    Compared to force-resisting elements of the mammalian feeding apparatus, data on jaw-muscle plasticity are less common. This hinders our understanding of the role of force-producing structures in craniofacial development and integration. Thus, we investigated fiber-type abundance and cross-sectional area in the masseter muscle of growing rabbits subjected to diet-induced variation in masticatory stresses. Three loading cohorts were obtained as weanlings and raised until adult on different diets. Immediately following euthanasia, left-sided masseters were dissected away, weighed, and then divided into anterior, intermediate and posterior sections for fiber-type immunohistochemistry. These data were compared to mandibular proportions and biomineralization from the same subjects. Results indicate that growing mammals fed a tougher, fracture-resistant diet develop: absolutely and relatively lower numbers of Type I jaw-muscle fibers; absolutely larger fiber cross-sectional areas; and relative increases in the amount of Type II fibers. These analyses indicate that an early postweaning dietary shift can induce significant variation in muscle fiber types. Such norms of reaction are comparable to those observed in bony elements. Functionally, the processing of fracture-resistant foods results in jaw adductors potentially characterized by faster contraction times and higher force production capabilities, which may influence the frequency and amplitude of forces experienced by oral tissues.

  10. Muscle fiber and motor unit behavior in the longest human skeletal muscle.

    PubMed

    Harris, A John; Duxson, Marilyn J; Butler, Jane E; Hodges, Paul W; Taylor, Janet L; Gandevia, Simon C

    2005-09-14

    The sartorius muscle is the longest muscle in the human body. It is strap-like, up to 600 mm in length, and contains five to seven neurovascular compartments, each with a neuromuscular endplate zone. Some of its fibers terminate intrafascicularly, whereas others may run the full length of the muscle. To assess the location and timing of activation within motor units of this long muscle, we recorded electromyographic potentials from multiple intramuscular electrodes along sartorius muscle during steady voluntary contraction and analyzed their activity with spike-triggered averaging from a needle electrode inserted near the proximal end of the muscle. Approximately 30% of sartorius motor units included muscle fibers that ran the full length of the muscle, conducting action potentials at 3.9 +/- 0.1 m/s. Most motor units were innervated within a single muscle endplate zone that was not necessarily near the midpoint of the fiber. As a consequence, action potentials reached the distal end of a unit as late as 100 ms after initiation at an endplate zone. Thus, contractile activity is not synchronized along the length of single sartorius fibers. We postulate that lateral transmission of force from fiber to endomysium and a wide distribution of motor unit endplates along the muscle are critical for the efficient transmission of force from sarcomere to tendon and for the prevention of muscle injury caused by overextension of inactive regions of muscle fibers.

  11. Metabolic and morphologic properties of single muscle fibers in the rat after spaceflight, Cosmos 1887

    NASA Technical Reports Server (NTRS)

    Miu, B.; Martin, T. P.; Roy, R. R.; Oganov, V.; Ilyina-Kakueva, E.; Marini, J. F.; Leger, J. J.; Bodine-Fowler, S. C.; Edgerton, V. R.

    1990-01-01

    The adaptation of a slow (soleus, Sol) and a fast (medial gastrocnemius, MG) skeletal muscle to spaceflight was studied in five young male rats. The flight period was 12.5 days and the rats were killed approximately 48 h after returning to 1 g. Five other rats that were housed in cages similar to those used by the flight rats were maintained at 1 g for the same period of time to serve as ground-based controls. Fibers were classified as dark or light staining for myosin adenosine triphosphatase (ATPase). On the average, the fibers in the Sol of the flight rats atrophied twice as much as those in the MG. Further, the fibers located in the deep (close to the bone and having the highest percentage of light ATPase and high oxidative fibers in the muscle cross section) region of the MG atrophied more than the fibers located in the superficial (away from the bone and having the lowest percentage of light ATPase and high oxidative fibers in the muscle cross-section) region of the muscle. Based on quantitative histochemical assays of single muscle fibers, succinate dehydrogenase (SDH) activity per unit volume was unchanged in fibers of the Sol and MG. However, in the Sol, but not the MG, the total amount of SDH activity in a 10-microns-thick section of a fiber decreased significantly in response to spaceflight. Based on population distributions, it appears that the alpha-glycerophosphate dehydrogenase (GPD) activities were elevated in the dark ATPase fibers in the Sol, whereas the light fibers in the Sol and both fiber types in the MG did not appear to change. The ratio of GPD to SDH activities increased in the dark (but not light) fibers of the Sol and was unaffected in the MG. Immunohistochemical analyses indicate that approximately 40% of the fibers in the Sol of flight rats expressed a fast myosin heavy chain compared with 22% in control rats. Further, 31% of the fibers in the Sol of flight rats expressed both fast and slow myosin heavy chains compared with 8% in

  12. Myosin isoform fiber type and fiber size in the tail of the Virginia opossum (Didelphis virginiana).

    PubMed

    Hazimihalis, P J; Gorvet, M A; Butcher, M T

    2013-01-01

    Muscle fiber type is a well studied property in limb muscles, however, much less is understood about myosin heavy chain (MHC) isoform expression in caudal muscles of mammalian tails. Didelphid marsupials are an interesting lineage in this context as all species have prehensile tails, but show a range of tail-function depending on either their arboreal or terrestrial locomotor habits. Differences in prehensility suggest that MHC isoform fiber types may also be different, in that terrestrial opossums may have a large distribution of oxidative fibers for object carrying tasks instead of faster, glycolytic fiber types expected in mammals with long tails. To test this hypothesis, MHC isoform fiber type and their regional distribution (proximal/transitional/distal) were determined in the tail of the Virginia opossum (Didelphis virginiana). Fiber types were determined by a combination of myosin-ATPase histochemistry, immunohistochemistry, and SDS-PAGE. Results indicate a predominance of the fast MHC-2A and -2X isoforms in each region of the tail. The presence of two fast isoforms, in addition to the slow MHC-1 isoform, was confirmed by SDS-PAGE analysis. The overall MHC isoform fiber type distribution for the tail was: 25% MHC-1, 71% MHC-2A/X hybrid, and 4% MHC-1/2A hybrid. Oxidative MHC-2A/X isoform fibers were found to be relatively large in cross-section compared to slow, oxidative MHC-1 and MHC-1/2A hybrid fibers. A large percentage of fast MHC-2A/X hybrids fibers may be suggestive of an evolutionary transition in MHC isoform distribution (fast-to-slow fiber type) in the tail musculature of an opossum with primarily a terrestrial locomotor habit and adaptive tail-function.

  13. Spaceflight effects on single skeletal muscle fiber function in the rhesus monkey

    NASA Technical Reports Server (NTRS)

    Fitts, R. H.; Desplanches, D.; Romatowski, J. G.; Widrick, J. J.

    2000-01-01

    The purpose of this investigation was to understand how 14 days of weightlessness alters the cellular properties of individual slow- and fast-twitch muscle fibers in the rhesus monkey. The diameter of the soleus (Sol) type I, medial gastrocnemius (MG) type I, and MG type II fibers from the vivarium controls averaged 60 +/- 1, 46 +/- 2, and 59 +/- 2 microm, respectively. Both a control 1-G capsule sit (CS) and spaceflight (SF) significantly reduced the Sol type I fiber diameter (20 and 13%, respectively) and peak force, with the latter declining from 0.48 +/- 0.01 to 0.31 +/- 0.02 (CS group) and 0.32 +/- 0.01 mN (SF group). When the peak force was expressed as kiloNewtons per square meter (kN/m(2)), only the SF group showed a significant decline. This group also showed a significant 15% drop in peak fiber stiffness that suggests that fewer cross bridges were contracting in parallel. In the MG, SF but not CS depressed the type I fiber diameter and force. Additionally, SF significantly depressed absolute (mN) and relative (kN/m(2)) force in the fast-twitch MG fibers by 30% and 28%, respectively. The Ca(2+) sensitivity of the type I fiber (Sol and MG) was significantly reduced by growth but unaltered by SF. Flight had no significant effect on the mean maximal fiber shortening velocity in any fiber type or muscle. The post-SF Sol type I fibers showed a reduced peak power and, at peak power, an elevated velocity and decreased force. In conclusion, CS and SF caused atrophy and a reduced force and power in the Sol type I fiber. However, only SF elicited atrophy and reduced force (mN) in the MG type I fiber and a decline in relative force (kN/m(2)) in the Sol type I and MG type II fibers.

  14. Size and myonuclear domains in Rhesus soleus muscle fibers: short-term spaceflight

    NASA Technical Reports Server (NTRS)

    Roy, R. R.; Zhong, H.; Talmadge, R. J.; Bodine, S. C.; Fanton, J. W.; Koslovskaya, I.; Edgerton, V. R.

    2001-01-01

    The cross-sectional area (CSA), myonuclear number per mm of fiber length, and myonuclear domain (cytoplasmic volume/myonucleus) of mechanically isolated single fibers from biopsies of the soleus muscle of 5 vivarium control, 3 flight simulation and 2 flight (BION 11) Rhesus monkeys (Macaca [correction of Macacca] mulatta) were determined using confocal microscopy before and after a 14-day experimental period. Simulation monkeys were confined in chairs placed in capsules identical to those used during the flight. Fibers were classified as type I, type II or hybrid (containing both types I and II) based on myosin heavy chain (MHC) gel electrophoresis. A majority of the fibers sampled contained only type I MHC, i.e. 89, 62 and 68% for the control, simulation and flight groups, respectively. Most of the remaining fibers were hybrids, i.e. 8, 36 and 32% for the same groups. There were no significant pre-post differences in the fiber type composition for any of the experimental groups. There also were no significant pre-post differences in fiber CSA, myonuclear number or myonuclear domain. There was, however, a tendency for the fibers in the post-flight biopsies to have a smaller mean CSA and myonuclear domain (approximately 10%, p=0.07) than the fibers in the pre-flight biopsy. The combined mean cytoplasmic volume/myonucleus for all muscle fiber phenotypes in the Rhesus soleus muscle was approximately 25,000 micrometers3 and there were no differences in pre-post samples for the control and simulated groups. The cytoplasmic domains tended to be lower (p=0.08) after than before flight. No phenotype differences in cytoplasmic domains were observed. These data suggest that after a relatively short period of actual spaceflight, modest fiber atrophy occurs in the soleus muscle fibers without a concomitant change in myonuclear number.

  15. Skeletal muscle fiber analysis by atmospheric pressure scanning microprobe matrix-assisted laser desorption/ionization mass spectrometric imaging at high mass and high spatial resolution.

    PubMed

    Tsai, Yu-Hsuan; Bhandari, Dhaka Ram; Garrett, Timothy J; Carter, Christy S; Spengler, Bernhard; Yost, Richard A

    2016-06-01

    Skeletal muscles are composed of heterogeneous muscle fibers with various fiber types. These fibers can be classified into different classes based on their different characteristics. MALDI mass spectrometric imaging (MSI) has been applied to study and visualize different metabolomics profiles of different fiber types. Here, skeletal muscles were analyzed by atmospheric pressure scanning microprobe MALDI-MSI at high spatial and high mass resolution. PMID:27198224

  16. Conduction velocity along muscle fibers in situ in healthy infants.

    PubMed

    Cruz Martínez, A; López Terradas, J M

    1990-11-01

    The muscle fibers of the biceps brachii were stimulated distally with low voltages by means of two monopolar needles in twenty-two infants aged 2 to 14 years. The electrical activity was recorded proximally by means of a SFEMG electrode. Conduction velocity of the muscle fibers (MFCV) in situ calculated with this method had a bimodal distribution in the youngest individuals of less than 4 years, and a Gaussian distribution in children aged 5 to 14 years. Propagation velocity along muscle fibers increases with children's age and is significantly slower than in adults, in good correlation with the shorter limb perimeter and with the significantly smaller fiber diameter found in muscle biopsies in infancy. The latency of the evoked potentials was linearly related with the distance between stimulating and recording points, and muscle activity and propagation velocities were the same before and after curarization, that is consistent with the reliability of the method in infancy.

  17. Gravitational unloading effects on muscle fiber size, phenotype and myonuclear number

    NASA Astrophysics Data System (ADS)

    Ohira, Y.; Yoshinaga, T.; Nomura, T.; Kawano, F.; Ishihara, A.; Nonaka, I.; Roy, R. R.; Edgerton, V. R.

    The effects of gravitational unloading with or without intact neural activity and/or tension development on myosin heavy chain (MHC) composition, cross-sectional area (CSA), number of myonuclei, and myonuclear domain (cytoplasmic volume per myonucleus ratio) in single fibers of both slow and fast muscles of rat hindlimbs are reviewed briefly. The atrophic response to unloading is generally graded as follows: slow extensors > fast extensors > fast flexors. Reduction of CSA is usually greater in the most predominant fiber type of that muscle. The percentage of fibers expressing fast MHC isoforms increases in unloaded slow but not fast muscles. Myonuclear number per mm of fiber length and myonuclear domain is decreased in the fibers of the unloaded predominantly slow soleus muscle, but not in the predominantly fast plantaris. Decreases in myonuclear number and domain, however, are observed in plantaris fibers when tenotomy, denervation, or both are combined with hindlimb unloading. All of these results are consistent with the view that a major factor for fiber atrophy is an inhibition or reduction of loading of the hindlimbs. These data also indicate that predominantly slow muscles are more responsive to unloading than predominantly fast muscles.

  18. Mitochondrial specialization revealed by single muscle fiber proteomics: focus on the Krebs cycle.

    PubMed

    Schiaffino, S; Reggiani, C; Kostrominova, T Y; Mann, M; Murgia, M

    2015-12-01

    We have developed a highly sensitive mass spectrometry-based proteomic workflow to examine the proteome of single muscle fibers. This study revealed significant differences in the mitochondrial proteome of the four major fiber types present in mouse skeletal muscle. Here, we focus on Krebs cycle enzymes and in particular on the differential distribution of the two mitochondrial isocitrate dehydrogenases, IDH2 and IDH3. Type 1/slow fibers contain high levels of IDH2 and relatively low levels of IDH3, whereas fast 2X and 2B fibers show an opposite expression pattern. The findings suggest that in skeletal muscle, IDH2 functions in the forward direction of the Krebs cycle and that substrate flux along the cycle occurs predominantly via IDH2 in type 1 fibers and via IDH3 in 2X and 2B fibers. IDH2-mediated conversion of isocitrate to α-ketoglutarate leads to the generation of NADPH, which is critical to buffering the H2O2 produced by the respiratory chain. Nicotinamide nucleotide transhydrogenase (NNT), the other major mitochondrial enzyme involved in NADPH generation, is also more abundant in type 1 fibers. We suggest that the continuously active type 1 fibers are endowed with a more efficient H2O2 scavenging capacity to cope with the higher levels of reactive oxygen species production.

  19. Individual sarcomere lengths in whole muscle fibers and optimal fiber length computation.

    PubMed

    Infantolino, Benjamin W; Ellis, Michael J; Challis, John H

    2010-11-01

    Estimation of muscle fiber optimum length is typically accomplished using either laser diffraction or by counting the number of sarcomeres in a portion of the muscle fiber, measuring the distance that encompasses those sarcomeres and dividing by the number of sarcomeres to obtain an average sarcomere length. If the sarcomeres are not uniformly distributed, either of these techniques could produce errors when estimating optimum lengths. The purposes of this study were: to describe new software that automatically analyzes digital images of skeletal muscle fibers to measure individual sarcomere lengths; and to use this software to measure individual sarcomere lengths along complete muscle fibers to examine the influence of computing whole muscle fiber properties from portions of the fiber. Six complete muscle fibers were imaged using a digital camera attached to a microscope. The images were then processed to achieve the best resolution possible, individual sarcomeres along the image were detected, and each individual sarcomere length was measured. The software accuracy was compared with that of manual measurement and was found to be as accurate. In addition, the time to measure individual sarcomere lengths was greatly reduced using the software compared with manual measurement. The arrangement of individual sarcomere lengths demonstrated long-range correlations, which indicates problems in assuming only a portion of a fiber can be used to determine whole fiber properties. This study has provided evidence on the number of sarcomeres which must be analyzed to infer the properties of whole muscles.

  20. Estrogen/ERR-α signaling axis is associated with fiber-type conversion of upper airway muscles in patients with obstructive sleep apnea hypopnea syndrome

    PubMed Central

    Chen, H. H.; Lu, J.; Guan, Y. F.; Li, S. J.; Hu, T. T.; Xie, Z. S.; Wang, F.; Peng, X. H.; Liu, X.; Xu, X.; Zhao, F. P.; Yu, B. L.; Li, X. P.

    2016-01-01

    Estrogen is related with the low morbidity associated with obstructive sleep apnea hypopnea syndrome (OSAS) in women, but the underlying mechanisms remain largely unknown. In this study, we examined the relationship between OSAS and estrogen related receptor-α (ERR-α). We found that the expression levels of ERR-α and Myh7 were both downregulated in palatopharyngeal tissues from OSAS patients. In addition, we report that ERR-α is dynamically expressed during differentiation of C2C12 myoblasts. Knockdown of ERR-α via instant siRNA resulted in reduced expression of Myh7, but not Myh4. Furthermore, differentiation of C2C12 cells under 3% chronic intermittent hypoxia, a model resembling human OSAS, was impaired and accompanied by a obvious reduction in Myh7 expression levels. Moreover, activation of ERR-α with 17β-estradiol (E2) increased the expression of Myh7, whereas pretreatment with the ERR-α antagonist XCT790 reversed the E2-induced slow fiber-type switch. A rat ovariectomy model also demonstrated the switch to fast fiber type. Collectively, our findings suggest that ERR-α is involved in estrogen-mediated OSAS by regulating Myhc-slow expression. The present study illustrates an important role of the estrogen/ERR-α axis in the pathogenesis of OSAS, and may represent an attractive therapeutic target, especially in postmenopausal women. PMID:27250523

  1. Calculation of the polarized fluorescence from a labeled muscle fiber.

    PubMed Central

    Morales, M F

    1984-01-01

    Equations are derived that explicitly relate fluorescence polarization observables on a labeled muscle fiber to attitude of the cross-bridges and to attitude of the labels within the cross-bridges. Images PMID:6582471

  2. Ultrastructural alterations in skeletal muscle fibers of rats after exercise

    NASA Technical Reports Server (NTRS)

    Akuzawa, M.; Hataya, M.

    1982-01-01

    Ultrastructural alterations in skeletal muscle fibers were electron microscopically studied in rats forced to run on the treadmill until all-out. When they were mild and limited to relatively small areas, the reconstruction of filaments ensued within 10 days without infiltration of cells. When they were severe and extensive, phagocytes infiltrated in the lesions and removed degenerative sacroplasmic debris from muscle fibers. A little later, myoblasts appeared and regeneration was accomplished in 30 days in much the same manner as in myogenesis.

  3. Contractile properties of muscle fibers from the deep and superficial digital flexors of horses.

    PubMed

    Butcher, M T; Chase, P B; Hermanson, J W; Clark, A N; Brunet, N M; Bertram, J E A

    2010-10-01

    Equine digital flexor muscles have independent tendons but a nearly identical mechanical relationship to the main joint they act upon. Yet these muscles have remarkable diversity in architecture, ranging from long, unipennate fibers ("short" compartment of DDF) to very short, multipennate fibers (SDF). To investigate the functional relevance of the form of the digital flexor muscles, fiber contractile properties were analyzed in the context of architecture differences and in vivo function during locomotion. Myosin heavy chain (MHC) isoform fiber type was studied, and in vitro motility assays were used to measure actin filament sliding velocity (V(f)). Skinned fiber contractile properties [isometric tension (P(0)/CSA), velocity of unloaded shortening (V(US)), and force-Ca(2+) relationships] at both 10 and 30°C were characterized. Contractile properties were correlated with MHC isoform and their respective V(f). The DDF contained a higher percentage of MHC-2A fibers with myosin (heavy meromyosin) and V(f) that was twofold faster than SDF. At 30°C, P(0)/CSA was higher for DDF (103.5 ± 8.75 mN/mm(2)) than SDF fibers (81.8 ± 7.71 mN/mm(2)). Similarly, V(US) (pCa 5, 30°C) was faster for DDF (2.43 ± 0.53 FL/s) than SDF fibers (1.20 ± 0.22 FL/s). Active isometric tension increased with increasing Ca(2+) concentration, with maximal Ca(2+) activation at pCa 5 at each temperature in fibers from each muscle. In general, the collective properties of DDF and SDF were consistent with fiber MHC isoform composition, muscle architecture, and the respective functional roles of the two muscles in locomotion.

  4. Effects of Caffeine on Crayfish Muscle Fibers

    PubMed Central

    Chiarandini, Dante J.; Reuben, John P.; Brandt, Philip W.; Grundfest, Harry

    1970-01-01

    Contractions are evoked in single muscle fibers of crayfish by intracellular as well as extracellular applications of caffeine. Responses to external applications in concentrations above 2 mM could be induced indefinitely. With concentrations above 5 mM the caffeine-induced responses were highly repeatable. Tensions were transient even when the caffeine remained in the bath. There was no change in resting potential, but during the contraction the effective resistance decreased about 10%. A number of factors (change in pH, Ca, K, and Cl) modified the responses. The time course of the tension was greatly prolonged when the transverse tubular system (TTS) was s swollen and was again shortened when the TTS was caused to shrink. An increased permeability to Ca induced by caffeine was evidenced by the transformation of the normally graded electrical responses to Ca spikes, which are insensitive to tetrodotoxin. The overshoot is a function of both external Ca and caffeine. A 10-fold change in Ca changed the overshoot by 19 mv in the presence of 10 mM caffeine and by 29 mv in 80 mM caffeine. The role of the increased permeability to Ca for caffeine-induced contractions will be analyzed in the accompanying paper. PMID:5443468

  5. Assessment of the Contractile Properties of Permeabilized Skeletal Muscle Fibers.

    PubMed

    Claflin, Dennis R; Roche, Stuart M; Gumucio, Jonathan P; Mendias, Christopher L; Brooks, Susan V

    2016-01-01

    Permeabilized individual skeletal muscle fibers offer the opportunity to evaluate contractile behavior in a system that is greatly simplified, yet physiologically relevant. Here we describe the steps required to prepare, permeabilize and preserve small samples of skeletal muscle. We then detail the procedures used to isolate individual fiber segments and attach them to an experimental apparatus for the purpose of controlling activation and measuring force generation. We also describe our technique for estimating the cross-sectional area of fiber segments. The area measurement is necessary for normalizing the absolute force to obtain specific force, a measure of the intrinsic force-generating capability of the contractile system. PMID:27492182

  6. Selective expression of the type 3 isoform of ryanodine receptor Ca{sup 2+} release channel (RyR3) in a subset of slow fibers in diaphragm and cephalic muscles of adult rabbits

    SciTech Connect

    Conti, Antonio; Reggiani, Carlo; Sorrentino, Vincenzo . E-mail: v.sorrentino@unisi.it

    2005-11-11

    The expression pattern of the RyR3 isoform of Ca{sup 2+} release channels was analysed by Western blot in neonatal and adult rabbit skeletal muscles. The results obtained show that the expression of the RyR3 isoform is developmentally regulated. In fact, RyR3 expression was detected in all muscles analysed at 2 and 15 days after birth while, in adult animals, it was restricted to a subset of muscles that includes diaphragm, masseter, pterygoideus, digastricus, and tongue. Interestingly, all of these muscles share a common embryonic origin being derived from the somitomeres or from the cephalic region of the embryo. Immunofluorescence analysis of rabbit skeletal muscle cross-sections showed that RyR3 staining was detected in all fibers of neonatal muscles. In contrast, in those adult muscles expressing RyR3 only a fraction of fibers was labelled. Staining of these muscles with antibodies against fast and slow myosins revealed a close correlation between expression of RyR3 and fibers expressing slow myosin isoform.

  7. Altered distribution of mitochondria in rat soleus muscle fibers after spaceflight

    NASA Technical Reports Server (NTRS)

    Bell, Gordon J.; Martin, Thomas P.; Il'ina-Kakueva, E. I.; Oganov, V. S.; Edgerton, V. R.

    1992-01-01

    The effect of an exposure to microgravity on the distribution of the succinate dehydrogenase (SDH) activity throughout the soleus muscle fibers was investigated by measuring SDH activity throughout the cross section of 20-30 fibers each of the slow-twitch oxidative and fast-twitch oxidative-glycolytic types of fibers in rats exposed to 12.5 days in space aboard Cosmos 1887. It was found that, after the spaceflight, the entire regional distribution of SDH activity was significantly altered (as compared to ground controls) in the slow-twitch oxidative fibers, whereas the fast-twitch oxidative-glycolytic fibers from muscles of flown rats exhibited a significantly lower SDH activity only in their subsarcolemmal region.

  8. IP(3)-dependent, post-tetanic calcium transients induced by electrostimulation of adult skeletal muscle fibers.

    PubMed

    Casas, Mariana; Figueroa, Reinaldo; Jorquera, Gonzalo; Escobar, Matías; Molgó, Jordi; Jaimovich, Enrique

    2010-10-01

    Tetanic electrical stimulation induces two separate calcium signals in rat skeletal myotubes, a fast one, dependent on Cav 1.1 or dihydropyridine receptors (DHPRs) and ryanodine receptors and related to contraction, and a slow signal, dependent on DHPR and inositol trisphosphate receptors (IP(3)Rs) and related to transcriptional events. We searched for slow calcium signals in adult muscle fibers using isolated adult flexor digitorum brevis fibers from 5-7-wk-old mice, loaded with fluo-3. When stimulated with trains of 0.3-ms pulses at various frequencies, cells responded with a fast calcium signal associated with muscle contraction, followed by a slower signal similar to one previously described in cultured myotubes. Nifedipine inhibited the slow signal more effectively than the fast one, suggesting a role for DHPR in its onset. The IP(3)R inhibitors Xestospongin B or C (5 µM) also inhibited it. The amplitude of post-tetanic calcium transients depends on both tetanus frequency and duration, having a maximum at 10-20 Hz. At this stimulation frequency, an increase of the slow isoform of troponin I mRNA was detected, while the fast isoform of this gene was inhibited. All three IP(3)R isoforms were present in adult muscle. IP(3)R-1 was differentially expressed in different types of muscle fibers, being higher in a subset of fast-type fibers. Interestingly, isolated fibers from the slow soleus muscle did not reveal the slow calcium signal induced by electrical stimulus. These results support the idea that IP(3)R-dependent slow calcium signals may be characteristic of distinct types of muscle fibers and may participate in the activation of specific transcriptional programs of slow and fast phenotype. PMID:20837675

  9. IP3-dependent, post-tetanic calcium transients induced by electrostimulation of adult skeletal muscle fibers

    PubMed Central

    Casas, Mariana; Figueroa, Reinaldo; Jorquera, Gonzalo; Escobar, Matías; Molgó, Jordi

    2010-01-01

    Tetanic electrical stimulation induces two separate calcium signals in rat skeletal myotubes, a fast one, dependent on Cav 1.1 or dihydropyridine receptors (DHPRs) and ryanodine receptors and related to contraction, and a slow signal, dependent on DHPR and inositol trisphosphate receptors (IP3Rs) and related to transcriptional events. We searched for slow calcium signals in adult muscle fibers using isolated adult flexor digitorum brevis fibers from 5–7-wk-old mice, loaded with fluo-3. When stimulated with trains of 0.3-ms pulses at various frequencies, cells responded with a fast calcium signal associated with muscle contraction, followed by a slower signal similar to one previously described in cultured myotubes. Nifedipine inhibited the slow signal more effectively than the fast one, suggesting a role for DHPR in its onset. The IP3R inhibitors Xestospongin B or C (5 µM) also inhibited it. The amplitude of post-tetanic calcium transients depends on both tetanus frequency and duration, having a maximum at 10–20 Hz. At this stimulation frequency, an increase of the slow isoform of troponin I mRNA was detected, while the fast isoform of this gene was inhibited. All three IP3R isoforms were present in adult muscle. IP3R-1 was differentially expressed in different types of muscle fibers, being higher in a subset of fast-type fibers. Interestingly, isolated fibers from the slow soleus muscle did not reveal the slow calcium signal induced by electrical stimulus. These results support the idea that IP3R-dependent slow calcium signals may be characteristic of distinct types of muscle fibers and may participate in the activation of specific transcriptional programs of slow and fast phenotype. PMID:20837675

  10. Comparison of Muscle Fiber and Meat Quality Characteristics in Different Japanese Quail Lines

    PubMed Central

    Choi, Y. M.; Hwang, S.; Lee, K.

    2016-01-01

    The aim of this study was to compare the growth performance, fiber characteristics of the pectoralis major muscle, and meat quality characteristics in the heavy weight (HW) and random bred control (RBC) quail lines and genders. The HW male exhibited more than two times greater body (245.7 vs 96.1 g, p<0.05) and pectoralis major muscle (PMW; 37.1 vs 11.1 g, p<0.05) weights compared to the RBC female. This growth performance in the HW line was associated with a greater muscle fiber area (1,502 vs 663.0 μm2, p<0.001) compared to the RBC line. Greater muscle mass of the HW male was accompanied by a higher percentage of type IIB fiber compared to the HW female (64.0% vs 51.0%, p<0.05). However, muscle fiber hyperplasia (increase in fiber number) has had a somewhat limited effect on PMW between the two lines. On the other hand, the HW line harboring a higher proportion of type IIB fiber showed rapid pH decline at the early postmortem period (6.23 vs 6.41, p<0.05) and lighter meat surface (53.5 vs 47.3, p<0.05) compared to the RBC line harboring a lower proportion of type IIB fiber. There were no significant differences observed in the measurement of water-holding capacity including drip loss (2.74% vs 3.07%, p>0.05) and cooking loss (21.9% vs 20.4%, p>0.05) between the HW and RBC lines. Therefore, the HW quail line developed by selection from the RBC quail, was slightly different in the meat quality characteristics compared to the RBC line, and a marked difference was found in growth performance between the two quail lines. PMID:27383804

  11. Bion 11 Spaceflight Project: Effect of Weightlessness on Single Muscle Fiber Function in Rhesus Monkeys

    NASA Technical Reports Server (NTRS)

    Fitts, Robert H.; Romatowski, Janell G.; Widrick, Jeffrey J.; DeLaCruz, Lourdes

    1999-01-01

    Although it is well known that microgravity induces considerable limb muscle atrophy, little is known about how weightlessness alters cell function. In this study, we investigated how weightlessness altered the functional properties of single fast and slow striated muscle fibers. Physiological studies were carried out to test the hypothesis that microgravity causes fiber atrophy, a decreased peak force (Newtons), tension (Newtons/cross-sectional area) and power, an elevated peak rate of tension development (dp/dt), and an increased maximal shortening velocity (V(sub o)) in the slow type I fiber, while changes in the fast-twitch fiber are restricted to atrophy and a reduced peak force. For each fiber, we determined the peak force (P(sub o)), V(sub o), dp/dt, the force-velocity relationship, peak power, the power-force relationship, the force-pCa relationship, and fiber stiffness. Biochemical studies were carried out to assess the effects of weightlessness on the enzyme and substrate profile of the fast- and slow-twitch fibers. We predicted that microgravity would increase resting muscle glycogen and glycolytic metabolism in the slow fiber type, while the fast-twitch fiber enzyme profile would be unaltered. The increased muscle glycogen would in part result from an elevated hexokinase and glycogen synthase. The enzymes selected for study represent markers for mitochondrial function (citrate synthase and 0-hydroxyacyl-CoA dehydrogenase), glycolysis (Phosphofructokinase and lactate dehydrogenase), and fatty acid transport (Carnitine acetyl transferase). The substrates analyzed will include glycogen, lactate, adenosine triphosphate, and phosphocreatine.

  12. Fiber type composition of the plantarflexors of giraffes (Giraffa camelopardalis) at different postnatal stages of development.

    PubMed

    Roy, R R; Graham, S; Peterson, J A

    1988-01-01

    1. A sample of fibers from deep (close to the bone) and superficial (away from the bone) regions of the plantaris (PLT) and medial (MG) and lateral (LG) gastrocnemius muscles of a neonatal, a 17-day-old and an adult giraffe were typed qualitatively as dark or light based on alkaline preincubation myosin ATPase staining properties and then sized. 2. Each muscle at all ages showed a higher percentage and a larger cross-sectional area (CSA) or light ATPase fibers in the deep than the superficial region. This relationship was qualitatively, although not quantitatively, similar to that reported in hindlimb muscles of other mammals. 3. At all ages, the PLT, the deepest muscle in the synergistic group, had the highest relative total CSA of light ATPase fibers among the muscles sampled. 4. At birth, the PLT had an unusually high percentage of light ATPase fibers in comparison to that found in the same muscle of other mammals. With age, the total CSA of light ATPase fibers increased dramatically in the PLT and decreased slightly in the MG and LG. 5. These data suggest that the PLT, especially the deep portion, may functionally replace the soleus muscle which is absent in the giraffe. In addition, the fiber type results demonstrate that the changes in the fiber type composition of individual muscles observed at different postnatal ages in the giraffe are relatively similar to that reported in smaller mammals, suggesting the existence of similar regulatory mechanisms.

  13. Reserve capacity for ATP consumption during isometric contraction in human skeletal muscle fibers.

    PubMed

    Han, Y S; Proctor, D N; Geiger, P C; Sieck, G C

    2001-02-01

    Maximum velocity of the actomyosin ATPase reaction (V(max) ATPase) and ATP consumption rate during maximum isometric activation (ATP(iso)) were determined in human vastus lateralis (VL) muscle fibers expressing different myosin heavy chain (MHC) isoforms. We hypothesized that the reserve capacity for ATP consumption [1 -- (ratio of ATP(iso) to V(max) ATPase)] varies across VL muscle fibers expressing different MHC isoforms. Biopsies were obtained from 12 subjects (10 men and 2 women; age 21--66 yr). A quantitative histochemical procedure was used to measure V(max) ATPase. In permeabilized fibers, ATP(iso) was measured using an NADH-linked fluorometric procedure. The reserve capacity for ATP consumption was lower for fibers coexpressing MHC(2X) and MHC(2A) compared with fibers singularly expressing MHC(2A) and MHC(slow) (39 vs. 52 and 56%, respectively). Tension cost (ratio of ATP(iso) to generated force) also varied with fiber type, being highest in fibers coexpressing MHC(2X) and MHC(2A). We conclude that fiber-type differences in the reserve capacity for ATP consumption and tension cost reflect functional differences such as susceptibility to fatigue.

  14. Satellite cell depletion prevents fiber hypertrophy in skeletal muscle.

    PubMed

    Egner, Ingrid M; Bruusgaard, Jo C; Gundersen, Kristian

    2016-08-15

    The largest mammalian cells are the muscle fibers, and they have multiple nuclei to support their large cytoplasmic volumes. During hypertrophic growth, new myonuclei are recruited from satellite stem cells into the fiber syncytia, but it was recently suggested that such recruitment is not obligatory: overload hypertrophy after synergist ablation of the plantaris muscle appeared normal in transgenic mice in which most of the satellite cells were abolished. When we essentially repeated these experiments analyzing the muscles by immunohistochemistry and in vivo and ex vivo imaging, we found that overload hypertrophy was prevented in the satellite cell-deficient mice, in both the plantaris and the extensor digitorum longus muscles. We attribute the previous findings to a reliance on muscle mass as a proxy for fiber hypertrophy, and to the inclusion of a significant number of regenerating fibers in the analysis. We discuss that there is currently no model in which functional, sustainable hypertrophy has been unequivocally demonstrated in the absence of satellite cells; an exception is re-growth, which can occur using previously recruited myonuclei without addition of new myonuclei. PMID:27531949

  15. Functional properties of slow and fast gastrocnemius muscle fibers after a 17-day spaceflight

    NASA Technical Reports Server (NTRS)

    Widrick, J. J.; Romatowski, J. G.; Norenberg, K. M.; Knuth, S. T.; Bain, J. L.; Riley, D. A.; Trappe, S. W.; Trappe, T. A.; Costill, D. L.; Fitts, R. H.

    2001-01-01

    The purpose of this investigation was to study the effects of a 17-day spaceflight on the contractile properties of individual fast- and slow-twitch fibers isolated from biopsies of the fast-twitch gastrocnemius muscle of four male astronauts. Single chemically skinned fibers were studied during maximal Ca2+-activated contractions with fiber myosin heavy chain (MHC) isoform expression subsequently determined by SDS gel electrophoresis. Spaceflight had no significant effect on the mean diameter or specific force of single fibers expressing type I, IIa, or IIa/IIx MHC, although a small reduction in average absolute force (P(o)) was observed for the type I fibers (0.68 +/- 0.02 vs. 0.64 +/- 0.02 mN, P < 0.05). Subject-by-flight interactions indicated significant intersubject variation in response to the flight, as postflight fiber diameter and P(o) where significantly reduced for the type I and IIa fibers obtained from one astronaut and for the type IIa fibers from another astronaut. Average unloaded shortening velocity [V(o), in fiber lengths (FL)/s] was greater after the flight for both type I (0.60 +/- 0.03 vs. 0.76 +/- 0.02 FL/s) and IIa fibers (2.33 +/- 0.25 vs. 3.10 +/- 0.16 FL/s). Postflight peak power of the type I and IIa fibers was significantly reduced only for the astronaut experiencing the greatest fiber atrophy and loss of P(o). These results demonstrate that 1) slow and fast gastrocnemius fibers show little atrophy and loss of P(o) but increased V(o) after a typical 17-day spaceflight, 2) there is, however, considerable intersubject variation in these responses, possibly due to intersubject differences in in-flight physical activity, and 3) in these four astronauts, fiber atrophy and reductions in P(o) were less for slow and fast fibers obtained from the phasic fast-twitch gastrocnemius muscle compared with slow and fast fibers obtained from the slow antigravity soleus [J. J. Widrick, S. K. Knuth, K. M. Norenberg, J. G. Romatowski, J. L. W. Bain, D. A

  16. Fiber-type dosimeter with improved illuminator

    DOEpatents

    Fox, R.J.

    1985-12-23

    A single-piece, molded plastic, Cassigrainian-type condenser arrangement is incorporated in a tubular-shaped personal pocket dosimeter of the type which combines an ionization chamber with an optically-read fiber electrometer to provide improved illumination of the electrometer fiber. The condenser routes incoming light from one end of the dosimeter tubular housing around a central axis charging pin assembly and focuses the light at low angles to the axis so that it falls within the acceptance angle of the electrometer fiber objective lens viewed through an eyepiece lens disposed in the opposite end of the dosimeter. This results in improved fiber illumination and fiber image contrast.

  17. Fiber-type dosimeter with improved illuminator

    DOEpatents

    Fox, Richard J.

    1987-01-01

    A single-piece, molded plastic, Cassigrainian-type condenser arrangement is incorporated in a tubular-shaped personal pocket dosimeter of the type which combines an ionization chamber with an optically-read fiber electrometer to provide improved illumination of the electrometer fiber. The condenser routes incoming light from one end of the dosimeter tubular housing around a central axis charging pin assembly and focuses the light at low angles to the axis so that it falls within the acceptance angle of the electrometer fiber objective lens viewed through an eyepiece lens disposed in the opposite end of the dosimeter. This results in improved fiber illumination and fiber image contrast.

  18. Morphometric analysis of somatotropic cells of the adenohypophysis and muscle fibers of the psoas muscle in the process of aging in humans.

    PubMed

    Antić, Vladimir M; Stefanović, Natalija; Jovanović, Ivan; Antić, Milorad; Milić, Miroslav; Krstić, Miljan; Kundalić, Braca; Milošević, Verica

    2015-07-01

    The aim of this research was to quantify changes of the adenohypophyseal somatotropes and types 1 and 2 muscle fibers with aging, as well as to establish mutual interactions and correlations with age. Material was samples of hypophysis and psoas major muscle of 27 cadavers of both genders, aged from 30 to 90 years. Adenohypophyseal and psoas major tissue sections were immunohistochemically processed and stained by anti-human growth hormone and anti-fast myosin antibodies, respectively. Morphometric analysis was performed by ImageJ. Results of morphometric analysis showed a significant increase in the somatotrope area, and significant decrease in somatotrope volume density and nucleocytoplasmic ratio with age. Cross-sectional areas of types 1 and 2, and volume density of type 2 muscle fibers decreased significantly with age. One Way ANOVA showed that the latter cited changes in the somatotropes and types 1 and 2 muscle fibers mostly become significant after the age of 70. Significant positive correlation was observed between the area of the somatotropes and volume density of type 2 muscle fibers. A significant negative correlation was detected between the nucleocytoplasmic ratio of the somatotropes and cross-sectional areas of types 1 and 2 muscle fibers. So, it can be concluded that after the age of 70, there is significant loss of the anterior pituitary's somatotropes associated with hypertrophy and possible functional decline of the remained cells. Age-related changes in the somatotropes are correlated with the simultaneous atrophy of type 1, as well as with the atrophy and loss of type 2 muscle fibers. PMID:25769135

  19. Severely Atrophic Human Muscle Fibers With Nuclear Misplacement Survive Many Years of Permanent Denervation.

    PubMed

    Carraro, Ugo; Kern, Helmut

    2016-06-13

    Likewise in rodents, after complete spinal cord injury (SCI) the lower motor neuron (LMN) denervated human muscle fibers lose completely the myofibrillar apparatus and the coil distribution of myonuclei that are relocated in groups (nuclear clumps) in the center of severely atrophic muscle fibers. Up to two years of LMN denervation the muscle fibers with nuclear clumps are very seldom, but in this cohort of patients the severely atrophic muscle fibers are frequent in muscle biopsies harvested three to six years after SCI. Indeed, the percentage increased to 27 ± 9% (p< 0.001), and then abruptly decreased from the 6th year onward, when fibrosis takes over to neurogenic muscle atrophy. Immunohistochemical analyses shown that nuclear misplacements occurred in both fast and slow muscle fibers. In conclusion, human muscle fibers survive permanent denervation much longer than generally accepted and relocation of nuclei is a general behavior in long term denervated muscle fibers. PMID:27478559

  20. Severely Atrophic Human Muscle Fibers With Nuclear Misplacement Survive Many Years of Permanent Denervation

    PubMed Central

    Carraro, Ugo; Kern, Helmut

    2016-01-01

    Likewise in rodents, after complete spinal cord injury (SCI) the lower motor neuron (LMN) denervated human muscle fibers lose completely the myofibrillar apparatus and the coil distribution of myonuclei that are relocated in groups (nuclear clumps) in the center of severely atrophic muscle fibers. Up to two years of LMN denervation the muscle fibers with nuclear clumps are very seldom, but in this cohort of patients the severely atrophic muscle fibers are frequent in muscle biopsies harvested three to six years after SCI. Indeed, the percentage increased to 27 ± 9% (p< 0.001), and then abruptly decreased from the 6th year onward, when fibrosis takes over to neurogenic muscle atrophy. Immunohistochemical analyses shown that nuclear misplacements occurred in both fast and slow muscle fibers. In conclusion, human muscle fibers survive permanent denervation much longer than generally accepted and relocation of nuclei is a general behavior in long term denervated muscle fibers. PMID:27478559

  1. Supplementing obese Zucker rats with niacin induces the transition of glycolytic to oxidative skeletal muscle fibers.

    PubMed

    Ringseis, Robert; Rosenbaum, Susann; Gessner, Denise K; Herges, Lea; Kubens, Johanna F; Mooren, Frank-Christoph; Krüger, Karsten; Eder, Klaus

    2013-02-01

    In the present study, we tested the hypothesis that niacin increases the oxidative capacity of muscle by increasing the oxidative type I muscle fiber content. Twenty-four obese Zucker rats were assigned to 2 groups of 12 rats that were fed either a control diet (O group) or a diet supplemented with 750 mg/kg diet niacin (O+N group) for 4 wk. In addition, one group of lean rats (L group) was included in the experiment and fed the control diet for 4 wk. Plasma and liver concentrations of TG were markedly greater in obese groups than in the L group but markedly lower in the O+N group than in the O group (P < 0.05). Rats of the O+N group had a higher percentage of oxidative type I fibers and higher mRNA levels of genes encoding regulators of muscle fiber composition (Ppard, Ppargc1a, Ppargc1b), angiogenic factors (Vegfa, Vegfb), and genes involved in fatty acid utilization (Cpt1b, Slc25a20, Slc22a4, Slc22a5, Slc27a1) and oxidative phosphorylation (Cox4i1, Cox6a2) and a higher activity of the mitochondrial oxidative enzyme succinate dehydrogenase in muscle than rats of the O and L groups (P < 0.05). These niacin-induced changes in muscle metabolic phenotype are indicative of an increased capacity of muscle for oxidative utilization of fatty acids and are likely mediated by the upregulation of Ppard, Ppargc1a, and Ppargc1b, which are key regulators of muscle fiber composition, mitochondrial biogenesis, angiogenesis, and genes involved in fatty acid catabolism and oxidative phosphorylation. The increased utilization of fatty acids by muscle might contribute to the strong TG-lowering effect of niacin treatment.

  2. Biochemical adaptations of antigravity muscle fibers to disuse atrophy

    NASA Technical Reports Server (NTRS)

    Booth, F. W.

    1978-01-01

    Studies are presented in four parts of this report. The four parts include; (1) studies to gain information on the molecular basis of atrophy by antigravity muscle; (2) studies on the work capacity of antigravity muscles during atrophy and during recovery from atrophy; (3) studies on recovery of degenerated antigravity fibers after removal of hind-limb casts; and (4) studies on the atrophy and recovery of bone. The philosophy of these studies was to identify the time sequence of events in the soleus muscle of the rat following immobilization of the hind limbs, so that the length of the soleus muscle within the fixed limb is less than its resting length. In two separate studies, no decline in the weight of the soleus muscle could be detected during the first 72 hours of limb immobilization.

  3. The muscle fiber type–fiber size paradox: hypertrophy or oxidative metabolism?

    PubMed Central

    van Wessel, T.; de Haan, A.; van der Laarse, W. J.

    2010-01-01

    An inverse relationship exists between striated muscle fiber size and its oxidative capacity. This relationship implies that muscle fibers, which are triggered to simultaneously increase their mass/strength (hypertrophy) and fatigue resistance (oxidative capacity), increase these properties (strength or fatigue resistance) to a lesser extent compared to fibers increasing either of these alone. Muscle fiber size and oxidative capacity are determined by the balance between myofibrillar protein synthesis, mitochondrial biosynthesis and degradation. New experimental data and an inventory of critical stimuli and state of activation of the signaling pathways involved in regulating contractile and metabolic protein turnover reveal: (1) higher capacity for protein synthesis in high compared to low oxidative fibers; (2) competition between signaling pathways for synthesis of myofibrillar proteins and proteins associated with oxidative metabolism; i.e., increased mitochondrial biogenesis via AMP-activated protein kinase attenuates the rate of protein synthesis; (3) relatively higher expression levels of E3-ligases and proteasome-mediated protein degradation in high oxidative fibers. These observations could explain the fiber type–fiber size paradox that despite the high capacity for protein synthesis in high oxidative fibers, these fibers remain relatively small. However, it remains challenging to understand the mechanisms by which contractile activity, mechanical loading, cellular energy status and cellular oxygen tension affect regulation of fiber size. Therefore, one needs to know the relative contribution of the signaling pathways to protein turnover in high and low oxidative fibers. The outcome and ideas presented are relevant to optimizing treatment and training in the fields of sports, cardiology, oncology, pulmonology and rehabilitation medicine. Electronic supplementary material The online version of this article (doi:10.1007/s00421-010-1545-0) contains

  4. The Relationships Among Isokinetic Endurance, Initial Strength Level, and Fiber Type.

    ERIC Educational Resources Information Center

    Clarkson, Priscilla M.; And Others

    1982-01-01

    Knee extension isokinetic peak torque was assessed at four angular velocities, and isokinetic endurance was assessed in eight college age men. Muscle fiber type was determined and related to isokinetic strength and fatigability. Results indicate that factors other than fiber type and initial strength level must influence the rate of isokinetic…

  5. Morphology of the lumbar transversospinal muscles examined in a mouse bearing a muscle fiber-specific nuclear marker.

    PubMed

    Cornwall, Jon; Deries, Marianne; Duxson, Marilyn

    2010-12-01

    Although the morphology of human lumbar transversospinal (TSP) muscles has been studied, little is known about the structure of these muscles in the mouse (Mus musculus). Such information is relevant given mice are often used as a "normal" phenotype for studies modeling human development. This study describes the gross morphology, muscle fiber arrangement, and innervation pattern of the mouse lumbar TSP muscles. A unique feature of the study is the use of a transgenic mouse line bearing a muscle-specific nuclear marker that allows clear delineation of muscle fiber and connective tissue boundaries. The lumbar TSP muscles of five mice were examined bilaterally; at each spinal level muscles attached to the caudal edge of the spinous process and passed caudally as a single complex unit. Fibers progressively terminated over the four vertebral segments caudad, with multiple points of muscle fiber attachment on each vertebra. Motor endplates, defined with acetylcholinesterase histochemistry, were consistently located half way along each muscle fiber, regardless of length, with all muscle fibers arranged in-parallel rather than in-series. These results provide information relevant to interpretation of developmental and functional studies involving this muscle group in the mouse and show mouse lumbar TSP muscles are different in form to descriptions of equivalent muscles in humans and horses.

  6. Fiber optic biofluorometer for physiological research on muscle slices

    NASA Astrophysics Data System (ADS)

    Belz, Mathias; Dendorfer, Andreas; Werner, Jan; Lambertz, Daniel; Klein, Karl-Friedrich

    2016-03-01

    A focus of research in cell physiology is the detection of Ca2+, NADH, FAD, ATPase activity or membrane potential, only to name a few, in muscle tissues. In this work, we report on a biofluorometer using ultraviolet light emitting diodes (UV-LEDs), optical fibers and two photomultipliers (PMTs) using synchronized fluorescence detection with integrated background correction to detect free calcium, Ca2+, in cardiac muscle tissue placed in a horizontal tissue bath and a microscope setup. Fiber optic probes with imaging optics have been designed to transport excitation light from the biofluorometer's light output to a horizontal tissue bath and to collect emission light from a tissue sample of interest to two PMTs allowing either single excitation / single emission or ratiometric, dual excitation / single emission or single excitation / dual emission fluorescence detection of indicator dyes or natural fluorophores. The efficient transport of light from the excitation LEDs to the tissue sample, bleaching effects of the excitation light in both, polymer and fused silica-based fibers will be discussed. Furthermore, a new approach to maximize light collection of the emission light using high NA fibers and high NA coupling optics will be shown. Finally, first results on Ca2+ measurements in cardiac muscle slices in a traditional microscope setup and a horizontal tissue bath using fiber optic probes will be introduced and discussed.

  7. Experiment K-6-07. Metabolic and morphologic properties of muscle fibers after spaceflight

    NASA Technical Reports Server (NTRS)

    Edgerton, R.; Miu, B.; Martin, Thomas P.; Roy, R.; Marini, J.; Leger, J. J.; Oganov, V.; Ilyina-Kakueva, E.

    1990-01-01

    The present study demonstrates that the general capability of skeletal muscle to maintain its proteins decreases rapidly in response to space flight. The present findings suggest further that the magnitude of enzymatic and cell volumes changes in response to space flight depend on several factors including the muscle and its fiber type composition. It appears that in order to associate physiological relevance to the observed enzymatic changes, cell volume should be considered also. Although it remains unclear as to the stimulus, or lack of stimulus, that triggers the rapid changes in muscle proteins in response to space flight, ground-based models of muscle atrophy suggest that the reduction in mechanical loading of muscle may be more important than the total amount of activation over a 24-hr period.

  8. Effects of resistance training on endurance capacity and muscle fiber composition in young top-level cyclists.

    PubMed

    Aagaard, P; Andersen, J L; Bennekou, M; Larsson, B; Olesen, J L; Crameri, R; Magnusson, S P; Kjaer, M

    2011-12-01

    Equivocal findings exist on the effect of concurrent strength (S) and endurance (E) training on endurance performance and muscle morphology. Further, the influence of concurrent SE training on muscle fiber-type composition, vascularization and endurance capacity remains unknown in top-level endurance athletes. The present study examined the effect of 16 weeks of concurrent SE training on maximal muscle strength (MVC), contractile rate of force development (RFD), muscle fiber morphology and composition, capillarization, aerobic power (VO2max), cycling economy (CE) and long/short-term endurance capacity in young elite competitive cyclists (n=14). MVC and RFD increased 12-20% with SE (P<0.01) but not E. VO2max remained unchanged. CE improved in E to reach values seen in SE. Short-term (5-min) endurance performance increased (3-4%) after SE and E (P<0.05), whereas 45-min endurance capacity increased (8%) with SE only (P<0.05). Type IIA fiber proportions increased and type IIX proportions decreased after SE training (P<0.05) with no change in E. Muscle fiber area and capillarization remained unchanged. In conclusion, concurrent strength/endurance training in young elite competitive cyclists led to an improved 45-min time-trial endurance capacity that was accompanied by an increased proportion of type IIA muscle fibers and gains in MVC and RFD, while capillarization remained unaffected.

  9. [Familial spastic paraplegia with syndrome of continuous muscle fiber activity (Isaacs)].

    PubMed

    Yokota, T; Matsunaga, T; Furukawa, T; Tsukagoshi, H

    1989-06-01

    A woman aged fifty-three developed paraparesis at the age of 4, which progressed slowly and required crutches by the age of 30. At the age of 51, muscle stiffness involved bilateral hands and arms gradually. At the age of 53, she suffered from painful spasms in right deltoid muscle. Her two brothers had spastic paraplegia without other neurological deficits. Her paternal grandfather and maternal grandmother were cousins. Slight dementia was noted (WAIS: IQ, 79). Her posture was stiff and muscles of upper limbs were in a persistent contraction; Subcutaneous tissue was thin, and muscles were well-defined and firm. There was moderate muscle weakness of legs and hands. Continuous fasciculations and myokymias were recognized in muscles of the arms and the limb girdles. Muscle tone was considerably increased especially in the bilateral arms. The deep tendon reflexes were exaggerated with extensor plantar responses. Profuse sweating affected palms, soles and backs. No sensory disturbance was appreciated. There was no myotonic responses to percussion of muscles. Following laboratory data were normal; thyroid functions, CSF studies, anti HTLV-I antibody and long chain fatty acid in red blood cells, myelography and brain CT except for increased basal metabolic rate (53%). Electromyographic study in the arms and hands revealed spontaneous motor unit activities including doublets at rest and increased proportion of polyphasic potentials and high amplitude potentials in voluntary contraction. Biopsy of right quadriceps femoris muscle showed hypertrophy of type I fibers and angulated atrophy of type II fibers. Continuous muscle activities in upper limbs did not change at sleep or with intravenous administration of 7 mg diazepam.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:2803825

  10. The effect of temperature on proliferation and differentiation of chicken skeletal muscle satellite cells isolated from different muscle types.

    PubMed

    Harding, Rachel L; Halevy, Orna; Yahav, Shlomo; Velleman, Sandra G

    2016-04-01

    Skeletal muscle satellite cells are a muscle stem cell population that mediate posthatch muscle growth and repair. Satellite cells respond differentially to environmental stimuli based upon their fiber-type of origin. The objective of this study was to determine how temperatures below and above the in vitro control of 38°C affected the proliferation and differentiation of satellite cells isolated from the chicken anaerobic pectoralis major (p. major) or mixed fiber biceps femoris (b.femoris) muscles. The satellite cells isolated from the p. major muscle were more sensitive to both cold and hot temperatures compared to the b.femoris satellite cells during both proliferation and differentiation. The expressions of myogenic regulatory transcription factors were also different between satellite cells from different fiber types. MyoD expression, which partially regulates proliferation, was generally expressed at higher levels in p. major satellite cells compared to the b.femoris satellite cells from 33 to 43°C during proliferation and differentiation. Similarly, myogenin expression, which is required for differentiation, was also expressed at higher levels in p. major satellite cells in response to both cold and hot temperatures during proliferation and differentiation than b. femoris satellite cells. These data demonstrate that satellite cells from the anaerobic p. major muscle are more sensitive than satellite cells from the aerobic b. femoris muscle to both hot and cold thermal stress during myogenic proliferation and differentiation.

  11. Sarcomere length dispersion in single skeletal muscle fibers and fiber bundles.

    PubMed

    Paolini, P J; Sabbadini, R; Roos, K P; Baskin, R J

    1976-08-01

    Light diffraction patterns produced by single skeletal muscle fibers and small fiber bundles of Rana pipiens semitendinosus have been examined at rest and during tetanic contraction. The muscle diffraction patterns were recorded with a vidicon camera interfaced to a minicomputer. Digitized video output was analyzed on-line to determine mean sarcomere length, line intensity, and the distribution of sarcomere lengths. The occurrence of first-order line intensity and peak amplitude maxima at approximately 3.0 mum is interpreted in terms of simple scattering theory. Measurements made along the length of a singel fiber reveal small variations in calculated mean sarcomere length (SD about 1.2%) and its percent dispersion (2.1% +/- 0.8%). Dispersion in small multifiber preparations increases approximately linearly with fiber number (about 0.2% per fiber) to a maximum of 8-10% in large bundles. Dispersion measurements based upon diffraction line analysis are comparable to SDs calculated from length distribution histograms obtained by light micrography of the fiber. First-order line intensity decreases by about 40% during tetanus; larger multifibered bundles exhibit substantial increases in sarcomere dispersion during contraction, but single fibers show no appreciable dispersion change. These results suggest the occurrence of asynchronous static or dynamic axial disordering of thick filaments, with a persistence in long range order of sarcomere spacing during contraction in single fibers. PMID:1084766

  12. Effects of pH on contraction of rabbit fast and slow skeletal muscle fibers.

    PubMed Central

    Chase, P B; Kushmerick, M J

    1988-01-01

    We have investigated (a) effects of varying proton concentration on force and shortening velocity of glycerinated muscle fibers, (b) differences between these effects on fibers from psoas (fast) and soleus (slow) muscles, possibly due to differences in the actomyosin ATPase kinetic cycles, and (c) whether changes in intracellular pH explain altered contractility typically associated with prolonged excitation of fast, glycolytic muscle. The pH range was chosen to cover the physiological pH range (6.0-7.5) as well as pH 8.0, which has often been used for in vitro measurements of myosin ATPase activity. Steady-state isometric force increased monotonically (by about threefold) as pH was increased from pH 6.0; force in soleus (slow) fibers was less affected by pH than in psoas (fast) fibers. For both fiber types, the velocity of unloaded shortening was maximum near resting intracellular pH in vivo and was decreased at acid pH (by about one-half). At pH 6.0, force increased when the pH buffer concentration was decreased from 100 mM, as predicted by inadequate pH buffering and pH heterogeneity in the fiber. This heterogeneity was modeled by net proton consumption within the fiber, due to production by the actomyosin ATPase coupled to consumption by the creatine kinase reaction, with replenishment by diffusion of protons in equilibrium with a mobile buffer. Lactate anion had little mechanical effect. Inorganic phosphate (15 mM total) had an additive effect of depressing force that was similar at pH 7.1 and 6.0. By directly affecting the actomyosin interaction, decreased pH is at least partly responsible for the observed decreases in force and velocity in stimulated muscle with sufficient glycolytic capacity to decrease pH. Images FIGURE 1 PMID:2969265

  13. Estimation of average muscle fiber conduction velocity from simulated surface EMG in pinnate muscles.

    PubMed

    Mesin, Luca; Damiano, Luisa; Farina, Dario

    2007-03-15

    The aim of this simulation study was to assess the bias in estimating muscle fiber conduction velocity (CV) from surface electromyographic (EMG) signals in muscles with one and two pinnation angles. The volume conductor was a layered medium simulating anisotropic muscle tissue and isotropic homogeneous subcutaneous tissue. The muscle tissue was homogeneous for one pinnation angle and inhomogeneous for bipinnate muscles (two fiber directions). Interference EMG signals were obtained by simulating recruitment thresholds and discharge patterns of a set of 100 and 200 motor units for the pinnate and bipinnate muscle, respectively (15 degrees pinnation angel in both cases). Without subcutaneous layer and muscle fibers with CV 4m/s, average CV estimates from the pinnate (bipinnate) muscle were 4.81+/-0.18 m/s (4.80+/-0.18 m/s) for bipolar, 4.71+/-0.19 m/s (4.71+/-0.12 m/s) for double differential, and 4.78+/-0.16 m/s (4.79+/-0.15m/s) for Laplacian recordings. When subcutaneous layer was added (thickness 1mm) in the same conditions, estimated CV values were 4.93+/-0.25 m/s (5.16+/-0.41 m/s), 4.70+/-0.21 m/s (4.83+/-0.33 m/s), and 4.89+/-0.21 m/s (4.99+/-0.39 m/s), for the three recording systems, respectively. The main factor biasing CV estimates was the propagation of action potentials in the two directions which influenced the recording due to the scatter of the projection of end-plate and tendon locations along the fiber direction, as a consequence of pinnation. The same problem arises in muscles with the line of innervation zone locations not perpendicular to fiber direction. These results indicate an important limitation in reliability of CV estimates from the interference EMG when the innervation zone and tendon locations are not distributed perpendicular to fiber direction.

  14. Effect of endurance and/or strength training on muscle fiber size, oxidative capacity, and capillarity in hemodialysis patients.

    PubMed

    Lewis, Michael I; Fournier, Mario; Wang, Huiyuan; Storer, Thomas W; Casaburi, Richard; Kopple, Joel D

    2015-10-15

    We previously reported reduced limb muscle fiber succinate dehydrogenase (SDH) activity and capillarity density and increased cross-sectional areas (CSAs) of all fiber types in maintenance hemodialysis (MHD) patients compared with matched controls that may contribute to their effort intolerance and muscle weakness. This study evaluated whether endurance training (ET), strength training (ST), or their combination (EST) alters these metabolic and morphometric aberrations as a mechanism for functional improvement. Five groups were evaluated: 1) controls; 2) MHD/no training; 3) MHD/ET; 4) MHD/ST; and 5) MHD/EST. Training duration was 21.5 ± 0.7 wk. Vastus lateralis muscle biopsies were obtained after HD at baseline and at study end. Muscle fibers were classified immunohistochemically, and fiber CSAs were computed. Individual fiber SDH activity was determined by a microdensitometric assay. Capillaries were identified using antibodies against endothelial cells. Type I and IIA fiber CSAs decreased significantly (10%) with EST. In the ET group, SDH activity increased 16.3% in type IIA and 19.6% in type IIX fibers. Capillary density increased significantly by 28% in the EST group and 14.3% with ET. The number of capillaries surrounding individual fiber type increased significantly in EST and ET groups. Capillary-to-fiber ratio increased significantly by 11 and 9.6% in EST and ET groups, respectively. We conclude that increments in capillarity and possibly SDH activity in part underlie improvements in endurance of MHD patients posttraining. We speculate that improved specific force and/or neural adaptations to exercise underlie improvements in limb muscle strength of MHD patients.

  15. Effect of one stretch a week applied to the immobilized soleus muscle on rat muscle fiber morphology.

    PubMed

    Gomes, A R S; Coutinho, E L; França, C N; Polonio, J; Salvini, T F

    2004-10-01

    We determined the effect of stretching applied once a week to the soleus muscle immobilized in the shortened position on muscle fiber morphology. Twenty-six male Wistar rats weighing 269 +/- 26 g were divided into three groups. Group I, the left soleus was immobilized in the shortened position for 3 weeks; group II, the soleus was immobilized in the shortened position and stretched once a week for 3 weeks; group III, the soleus was submitted only to stretching once a week for 3 weeks. The medial part of the soleus muscle was frozen for histology and muscle fiber area evaluation and the lateral part was used for the determination of number and length of serial sarcomeres. Soleus muscle submitted only to immobilization showed a reduction in weight (44 +/- 6%, P = 0.002), in serial sarcomere number (23 +/- 15%) and in cross-sectional area of the fibers (37 +/- 31%, P < 0.001) compared to the contralateral muscles. The muscle that was immobilized and stretched showed less muscle fiber atrophy than the muscles only immobilized (P < 0.05). Surprisingly, in the muscles submitted only to stretching, fiber area was decreased compared to the contralateral muscle (2548 +/- 659 vs 2961 +/- 806 microm(2), respectively, P < 0.05). In conclusion, stretching applied once a week for 40 min to the soleus muscle immobilized in the shortened position was not sufficient to prevent the reduction of muscle weight and of serial sarcomere number, but provided significant protection against muscle fiber atrophy. In contrast, stretching normal muscles once a week caused a reduction in muscle fiber area.

  16. Single-fiber expression and fiber-specific adaptability to short-term intense exercise training of Na+-K+-ATPase α- and β-isoforms in human skeletal muscle.

    PubMed

    Wyckelsma, V L; McKenna, M J; Serpiello, F R; Lamboley, C R; Aughey, R J; Stepto, N K; Bishop, D J; Murphy, R M

    2015-03-15

    The Na(+)-K(+)-ATPase (NKA) plays a key role in muscle excitability, but little is known in human skeletal muscle about fiber-type-specific differences in NKA isoform expression or adaptability. A vastus lateralis muscle biopsy was taken in 17 healthy young adults to contrast NKA isoform protein relative abundance between type I and IIa fibers. We further investigated muscle fiber-type-specific NKA adaptability in eight of these adults following 4-wk repeated-sprint exercise (RSE) training, comprising three sets of 5 × 4-s sprints, 3 days/wk. Single fibers were separated, and myosin heavy chain (I and IIa) and NKA (α1-3 and β1-3) isoform abundance were determined via Western blotting. All six NKA isoforms were expressed in both type I and IIa fibers. No differences between fiber types were found for α1-, α2-, α3-, β1-, or β3-isoform abundances. The NKA β2-isoform was 27% more abundant in type IIa than type I fibers (P < 0.05), with no other fiber-type-specific trends evident. RSE training increased β1 in type IIa fibers (pretraining 0.70 ± 0.25, posttraining 0.84 ± 0.24 arbitrary units, 42%, P < 0.05). No training effects were found for other NKA isoforms. Thus human skeletal muscle expresses all six NKA isoforms and not in a fiber-type-specific manner; this points to their different functional roles in skeletal muscle cells. Detection of elevated NKA β1 after RSE training demonstrates the sensitivity of the single-fiber Western blotting technique for fiber-type-specific intervention effects.

  17. Egr3-Dependent Muscle Spindle Stretch Receptor Intrafusal Muscle Fiber Differentiation and Fusimotor Innervation Homeostasis

    PubMed Central

    Oliveira Fernandes, Michelle

    2015-01-01

    Muscle stretch proprioceptors (muscle spindles) are required for stretch reflexes and locomotor control. Proprioception abnormalities are observed in many human neuropathies, but the mechanisms involved in establishing and maintaining muscle spindle innervation and function are still poorly understood. During skeletal muscle development, sensory (Ia-afferent) innervation induces contacted myotubes to transform into intrafusal muscle fibers that form the stretch receptor core. The transcriptional regulator Egr3 is induced in Ia-afferent contacted myotubes by Neuregulin1 (Nrg1)/ErbB receptor signaling and it has an essential role in spindle morphogenesis and function. Because Egr3 is widely expressed during development and has a pleiotropic function, whether Egr3 functions primarily in skeletal muscle, Ia-afferent neurons, or in Schwann cells that myelinate Ia-afferent axons remains unresolved. In the present studies, cell-specific ablation of Egr3 in mice showed that it has a skeletal muscle autonomous function in stretch receptor development. Moreover, using genetic tracing, we found that Ia-afferent contacted Egr3-deficient myotubes were induced in normal numbers, but their development was blocked to generate one to two shortened fibers that failed to express some characteristic myosin heavy chain (MyHC) proteins. These “spindle remnants” persisted into adulthood, remained innervated by Ia-afferents, and expressed neurotrophin3 (NT3), which is required for Ia-afferent neuron survival. However, they were not innervated by fusimotor axons and they did not express glial derived neurotrophic factor (GDNF), which is essential for fusimotor neuron survival. These results demonstrate that Egr3 has an essential role in regulating gene expression that promotes normal intrafusal muscle fiber differentiation and fusimotor innervation homeostasis. PMID:25855173

  18. An Overview of Laryngeal Muscle Single Fiber Electromyography.

    PubMed

    Bertorini, Tulio E; Sharaf, Aboubakar G

    2015-08-01

    Needle electromyography is an important tool in the diagnosis of neuromuscular diseases and has also been applied successfully in the evaluation of the vocal cord paralysis. Laryngeal electromyography, initially described by Weddell, is used to determine the cause of vocal cord paralysis and to differentiate organic from nonorganic causes of speech disorders. This test allows the diagnosis of lower motor neuron and nerve paralysis as well as myopathies. Laryngeal electromyography also helps to determine the prognosis of paralysis caused by traumatic injury of the laryngeal nerves and is used for guidance during botulinum toxin injection in spasmodic dysphonias. Single fiber electromyography is used to diagnose abnormalities of neuromuscular transmission and is applied in the study the architecture of the motor unit in muscles. This article reviews the techniques of laryngeal muscles single fiber electromyography, provides limited informative data, and discusses its potential value in the evaluation of patients with dysphonia.

  19. Memristive Model of the Barnacle Giant Muscle Fibers

    NASA Astrophysics Data System (ADS)

    Sah, Maheshwar Pd.; Kim, Hyongsuk; Eroglu, Abdullah; Chua, Leon

    The generation of action potentials (oscillations) in biological systems is a complex, yet poorly understood nonlinear dynamical phenomenon involving ions. This paper reveals that the time-varying calcium ion and the time-varying potassium ion, which are essential for generating action potentials in Barnacle giant muscle fibers are in fact generic memristors in the perspective of electrical circuit theory. We will show that these two ions exhibit all the fingerprints of memristors from the equations of the Morris-Lecar model of the Barnacle giant muscle fibers. This paper also gives a textbook reference to understand the difference between memristor and nonlinear resistor via analysis of the potassium ion-channel memristor and calcium ion-channel nonlinear resistor. We will also present a comprehensive in-depth analysis of the generation of action potentials (oscillations) in memristive Morris-Lecar model using small-signal circuit model and the Hopf bifurcation theorem.

  20. Skeletal muscle fibre types in the dog.

    PubMed Central

    Latorre, R; Gil, F; Vázquez, J M; Moreno, F; Mascarello, F; Ramirez, G

    1993-01-01

    Using a variety of histochemical methods we have investigated the mATPase reaction of skeletal muscle fibres in the dog. Types I, IIA, IIDog (peculiar to the dog) and IIC fibres were identified. The results reveal that the interpretation of the fibre type composition depends on the methods used. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 PMID:8226288

  1. Supplemental vitamin D3 and zilpaterol hydrochloride. II. Effect on calcium concentration, muscle fiber type, and calpain gene expression of feedlot steers.

    PubMed

    Korn, K T; Lemenager, R P; Claeys, M C; Waddell, J N; Engstrom, M; Schoonmaker, J P

    2013-07-01

    Two hundred and ten Angus × Simmental steers (initial BW 314 ± 11 kg) were separated into heavy and light BW blocks and allotted evenly by BW to 6 treatments (3 heavy and 2 light pens per treatment) to determine the effect of supplemental vitamin D3: 0 IU (no D), 250,000 IU for 165 d (long-term D), or 5 × 10(6) IU for 10 d (short-term D) on plasma and muscle calcium concentrations and gene expression in steers fed either 0 (NZ) or 8.38 mg/kg (ZH) zilpaterol hydrochloride (ZH) daily for 21 d. Placebo or ZH was added to the diet 24 d, and short-term D was added 13 d before slaughter. Treatments were removed from all diets 3 d before slaughter. Plasma total calcium (Ca(2+)) was determined at study initiation, start of ZH and short-term D feedings, and at vitamin D3 and ZH withdrawal. Both plasma total and ionic Ca(2+) were determined when animals were sent to harvest. Longissimus muscle total and ionic Ca(2+) were determined in meat aged 7 and 4 d postmortem, respectively. When ZH was fed, long-term D decreased plasma total Ca(2+) at slaughter (P < 0.04). Short-term D increased (P < 0.01) plasma total and ionic Ca(2+) at slaughter regardless of ZH inclusion in the diet. Long- and short-term D, with or without ZH, did not affect (P > 0.28) LM total Ca(2+); however, both long- and short-term D increased LM ionic Ca(2+) when ZH was not fed (P < 0.01). Long-term D reduced LM ionic Ca(2+) when ZH was fed (P < 0.02). Neither long- nor short-term D affected PPARα or δ gene expression (P = 0.19) whether or not ZH was fed. Expression of MYH1 and 2A (P < 0.05) but not 2X (P = 0.21) was decreased in steers fed ZH. Long-term D had no effect on MYH2A expression (P = 0.21). Short-term D increased MYH2A expression when ZH was not fed (P < 0.03). Calpain mRNA tended to be lower in steers fed ZH (P = 0.09), but was not affected by long- or short-term D regardless of whether or not ZH was fed (P = 0.39). Expression of calpastatin did not differ with vitamin D supplementation (P

  2. Cytoplasm-to-myonucleus ratios and succinate dehydrogenase activities in adult rat slow and fast muscle fibers

    NASA Technical Reports Server (NTRS)

    Tseng, B. S.; Kasper, C. E.; Edgerton, V. R.

    1994-01-01

    The relationship between myonuclear number, cellular size, succinate dehydrogenase activity, and myosin type was examined in single fiber segments (n = 54; 9 +/- 3 mm long) mechanically dissected from soleus and plantaris muscles of adult rats. One end of each fiber segment was stained for DNA before quantitative photometric analysis of succinate dehydrogenase activity; the other end was double immunolabeled with fast and slow myosin heavy chain monoclonal antibodies. Mean +/- S.D. cytoplasmic volume/myonucleus ratio was higher in fast and slow plantaris fibers (112 +/- 69 vs. 34 +/- 21 x 10(3) microns3) than fast and slow soleus fibers (40 +/- 20 vs. 30 +/- 14 x 10(3) microns3), respectively. Slow fibers always had small volumes/myonucleus, regardless of fiber diameter, succinate dehydrogenase activity, or muscle of origin. In contrast, smaller diameter (< 70 microns) fast soleus and plantaris fibers with high succinate dehydrogenase activity appeared to have low volumes/myonucleus while larger diameter (> 70 microns) fast fibers with low succinate dehydrogenase activity always had large volume/myonucleus. Slow soleus fibers had significantly greater numbers of myonuclei/mm than did either fast soleus or fast plantaris fibers (116 +/- 51 vs. 55 +/- 22 and 44 +/- 23), respectively. These data suggest that the myonuclear domain is more limited in slow than fast fibers and in the fibers with a high, compared to a low, oxidative metabolic capability.

  3. Identification of motoneurons supplying multiply- or singly-innervated extraocular muscle fibers in the rat.

    PubMed

    Eberhorn, A C; Büttner-Ennever, J A; Horn, A K E

    2006-02-01

    In mammals, the extraocular muscle fibers can be categorized in singly-innervated and multiply-innervated muscle fibers. In the monkey oculomotor, trochlear and abducens nucleus the motoneurons of multiply-innervated muscle fibers lie separated from those innervating singly-innervated muscle fibers and show different histochemical properties. In order to discover, if this organization is a general feature of the oculomotor system, we investigated the location of singly-innervated muscle fiber and multiply-innervated muscle fiber motoneurons in the rat using combined tract-tracing and immunohistochemical techniques. The singly-innervated muscle fiber and multiply-innervated muscle fiber motoneurons of the medial and lateral rectus muscle were identified by retrograde tracer injections into the muscle belly or the distal myotendinous junction. The belly injections labeled the medial rectus muscle subgroup of the oculomotor nucleus or the greatest part of abducens nucleus, including some cells outside the medial border of abducens nucleus. In contrast, the distal injections labeled only a subset of the medial rectus muscle motoneurons and exclusively cells outside the medial border of abducens nucleus. The tracer detection was combined with immunolabeling using antibodies for perineuronal nets (chondroitin sulfate proteoglycan) and non-phosphorylated neurofilaments. In monkeys both antibodies permit a distinction between singly-innervated muscle fiber and multiply-innervated muscle fiber motoneurons. The experiments revealed that neurons labeled from a distal injection lack both markers and are assumed to represent multiply-innervated muscle fiber motoneurons, whereas those labeled from a belly injection are chondroitin sulfate proteoglycan- and non-phosphorylated neurofilament-immunopositive and assumed to represent singly-innervated muscle fiber motoneurons. The overall identification of multiply-innervated muscle fiber and singly-innervated muscle fiber motoneurons

  4. Functional pools of oxidative and glycolytic fibers in human muscle observed by /sup 31/P magnetic resonance spectroscopy during exercise

    SciTech Connect

    Park, J.H.; Brown, R.L.; Park, C.R.; McCully, K.; Cohn, M.; Haselgrove, J.; Chance, B.

    1987-12-01

    Quantitative probing of heterogeneous regions in muscle is feasible with phosphorus-31 magnetic resonance spectroscopy because of the differentiation of metabolic patterns of glycolytic and oxidative fibers. A differential recruitment of oxidative and glycolytic fibers during exercise was demonstrated in 4 of 10 untrained young men by following changes in phosphate metabolites. Concentrations of inorganic phosphate (P/sub i/), phosphocreatine, and ATP were estimated in the wrist flexor muscles of the forearm at rest, during two cycles of three grades of exercise, and in recovery. At high work levels (40% of maximum strength), two distinct P/sub i/ peaks were observed and identified with P/sub i/ pools at pH 6.9 and pH 5.9-6.4, respectively. These could be accounted for as follows. At the lowest level of work (using 20% of maximum strength), early recruitment primarily of oxidative (type I) and possibly some intermediate (type IIA) muscle fibers occurs with relatively little net lactate production and consequently little decrease in pH. At higher work loads, however, primarily glycolytic (type IIB) muscle fibers are recruited, which have relatively high net lactate production and therefore generate a second pool of P/sub i/ at low pH. These observations indicated exhaustion of glycolytic type IIB fibers, removal of lactate by high local blood flow, and sustained contractions largely by oxidative type I and IIA fibers. A functional differentiation of fiber types could also be demonstrated during recovery if exercise was stopped while two pools of P/sub i/ were still apparent. The potential of magnetic resonance spectroscopy to characterize oxidative and glycolytic fibers, predict capacity for aerobic performance, and signal the presence of muscle pathology is discussed.

  5. Raman spectroscopy of cytoplasmic muscle fiber proteins. Orientational order.

    PubMed Central

    Pézolet, M; Pigeon, M; Ménard, D; Caillé, J P

    1988-01-01

    The polarized Raman spectra of glycerinated and intact single muscle fibers of the giant barnacle were obtained. These spectra show that the conformation-sensitive amide I, amide III, and C-C stretching vibrations give Raman bands that are stronger when the electric field of both the incident and scattered radiation is parallel to the fiber axis (Izz). The detailed analysis of the amide I band by curve fitting shows that approximately 50% of the alpha-helical segments of the contractile proteins are oriented along the fiber axis, which is in good agreement with the conformation and composition of muscle fiber proteins. Difference Raman spectroscopy was also used to highlight the Raman bands attributed to the oriented segments of the alpha-helical proteins. The difference spectrum, which is very similar to the spectrum of tropomyosin, displays amide I and amide III bands at 1,645 and 1,310 cm-1, respectively, the bandwidth of the amide I line being characteristic of a highly alpha-helical biopolymer with a small dispersion of dihedral angles. A small dichroic effect was also observed for the band due to the CH2 bending mode at 1,450 cm-1 and on the 1,340 cm-1 band. In the C-C stretching mode region, two bands were detected at 902 and 938 cm-1 and are both assigned to the alpha-helical conformation. Images FIGURE 2 PMID:3349128

  6. Fluctuations in tension during contraction of single muscle fibers.

    PubMed Central

    Borejdo, J; Morales, M F

    1977-01-01

    We have searched for fluctuations in the steady-state tension developed by stimulated single muscle fibers. Such tension "noise" is expected to be present as a result of the statistical fluctuations in the number and/or state of myosin cross-bridges interacting with thin filament sites at any time. A sensitive electro-optical tension transducer capable of resolving the expected fluctuations in magnitude and frequency was constructed to search for the fluctuations. The noise was analyzed by computing the power spectra and amplitude of stochastic fluctuations in the photomultiplier counting rate, which was made proportional to muscle force. The optical system and electronic instrumentation together with the minicomputer software are described. Tensions were measured in single skinned glycerinated rabbit psoas muscle fibers in rigor and during contraction and relaxation. The results indicate the presence of fluctuations in contracting muscles and a complete absence of tension noise in eith rigor or relaxation. Also, a numerical method was developed to simulate the power spectra and amplitude of fluctuations, given the rate constants for association and dissociation of the cross-bridges and actin. The simulated power spectra and the frequency distributions observed experimentally are similar. PMID:922123

  7. Intermittent inspiratory muscle training induces fiber hypertrophy in rat diaphragm.

    PubMed

    Bisschop, A; Gayan-Ramirez, G; Rollier, H; Gosselink, R; Dom, R; de Bock, V; Decramer, M

    1997-05-01

    The effects of 8 wk of moderate load intermittent inspiratory resistive loading on diaphragm contractility, and histochemistry of the diaphragm, scalenes, and gastrocnemius were studied in rats. A resistance was placed in the inspiratory port of a Hans-Rudolph valve, through which each animal breathed during 30 min/d, 5 times/wk (loaded group, n = 10). These rats were compared with animals breathing through the same device without inspiratory resistance (control group, n = 10). During loading, animals generated mean inspiratory pressures of -3.2 +/- 1.7 cm H2O with a TI/Ttot of 0.69 +/- 0.06, resulting in a tension-time index of 0.050. At the end of training, the diaphragm mass increased in loaded animals (0.17 +/- 0.01% body mass) compared with control animals (0.15 +/- 0.01%, p < 0.01), while scalene and gastrocnemius mass remained unchanged. Diaphragmatic force as well as fatigue resistance were similar in both groups, whereas time to peak tension was significantly (p < 0.01) shorter in loaded rats (18.8 +/- 1.7 ms) compared with control rats (21.2 +/- 1.8 ms), half-relaxation time remaining unchanged. Finally, hypertrophy of diaphragmatic type IIa (+19%, p < 0.01) and IIx/b (+12%, p < 0.05) was present in the loaded group. Histochemistry of the scalenes remained unchanged, whereas type IIx/b hypertrophy (+12%, p < 0.001) was observed in the gastrocnemius internus. We speculate that the latter was due to multiple escape maneuvers. We conclude that intermittent inspiratory muscle training: (1) caused fast twitch fiber hypertrophy in the diaphragm; (2) did not produce any effect in the scalenes. PMID:9154861

  8. Reduced force of diaphragm muscle fibers in patients with chronic thromboembolic pulmonary hypertension.

    PubMed

    Manders, Emmy; Bonta, Peter I; Kloek, Jaap J; Symersky, Petr; Bogaard, Harm-Jan; Hooijman, Pleuni E; Jasper, Jeff R; Malik, Fady I; Stienen, Ger J M; Vonk-Noordegraaf, Anton; de Man, Frances S; Ottenheijm, Coen A C

    2016-07-01

    Patients with pulmonary hypertension (PH) suffer from inspiratory muscle weakness. However, the pathophysiology of inspiratory muscle dysfunction in PH is unknown. We hypothesized that weakness of the diaphragm, the main inspiratory muscle, is an important contributor to inspiratory muscle dysfunction in PH patients. Our objective was to combine ex vivo diaphragm muscle fiber contractility measurements with measures of in vivo inspiratory muscle function in chronic thromboembolic pulmonary hypertension (CTEPH) patients. To assess diaphragm muscle contractility, function was studied in vivo by maximum inspiratory pressure (MIP) and ex vivo in diaphragm biopsies of the same CTEPH patients (N = 13) obtained during pulmonary endarterectomy. Patients undergoing elective lung surgery served as controls (N = 15). Muscle fiber cross-sectional area (CSA) was determined in cryosections and contractility in permeabilized muscle fibers. Diaphragm muscle fiber CSA was not significantly different between control and CTEPH patients in both slow-twitch and fast-twitch fibers. Maximal force-generating capacity was significantly lower in slow-twitch muscle fibers of CTEPH patients, whereas no difference was observed in fast-twitch muscle fibers. The maximal force of diaphragm muscle fibers correlated significantly with MIP. The calcium sensitivity of force generation was significantly reduced in fast-twitch muscle fibers of CTEPH patients, resulting in a ∼40% reduction of submaximal force generation. The fast skeletal troponin activator CK-2066260 (5 μM) restored submaximal force generation to levels exceeding those observed in control subjects. In conclusion, diaphragm muscle fiber contractility is hampered in CTEPH patients and contributes to the reduced function of the inspiratory muscles in CTEPH patients. PMID:27190061

  9. Skeletal muscle capillary density and microvascular function are compromised with aging and type 2 diabetes.

    PubMed

    Groen, Bart B L; Hamer, Henrike M; Snijders, Tim; van Kranenburg, Janneau; Frijns, Dionne; Vink, Hans; van Loon, Luc J C

    2014-04-15

    Adequate muscle perfusion is required for the maintenance of skeletal muscle mass. Impairments in microvascular structure and/or function with aging and type 2 diabetes have been associated with the progressive loss of skeletal muscle mass. Our objective was to compare muscle fiber type specific capillary density and endothelial function between healthy young men, healthy older men, and age-matched type 2 diabetes patients. Fifteen healthy young men (24 ± 1 yr), 15 healthy older men (70 ± 2 yr), and 15 age-matched type 2 diabetes patients (70 ± 1 yr) were selected to participate in the present study. Whole body insulin sensitivity, muscle fiber type specific capillary density, sublingual microvascular density, and dimension of the erythrocyte-perfused boundary region were assessed to evaluate the impact of aging and/or type 2 diabetes on microvascular structure and function. Whole body insulin sensitivity was significantly lower at a more advanced age, with lowest values reported in the type 2 diabetic patients. In line, skeletal muscle capillary contacts were much lower in the older and older type 2 diabetic patients when compared with the young. Sidestream darkfield imaging showed a significantly greater thickness of the erythrocyte perfused boundary region in the type 2 diabetic patients compared with the young. Skeletal muscle capillary density is reduced with aging and type 2 diabetes and accompanied by impairments in endothelial glycocalyx function, which is indicative of compromised vascular function. PMID:24577061

  10. Muscle fiber characteristics, satellite cells and soccer performance in young athletes.

    PubMed

    Metaxas, Thomas I; Mandroukas, Athanasios; Vamvakoudis, Efstratios; Kotoglou, Kostas; Ekblom, Björn; Mandroukas, Konstantinos

    2014-09-01

    This study is aimed to examine the muscle fiber type, composition and satellite cells in young male soccer players and to correlate them to cardiorespiratory indices and muscle strength. The participants formed three Groups: Group A (n = 13), 11.2 ± 0.4yrs, Group B (n=10), 13.1 ± 0.5yrs and Group C (n = 9), 15.2 ± 0.6yrs. Muscle biopsies were obtained from the vastus lateralis. Peak torque values of the quadriceps and hamstrings were recorded and VO2max was measured on the treadmill. Group C had lower type I percentage distribution compared to A by 21.3% (p < 0.01), while the type IIA relative percentage was higher by 18.1% and 18.4% than in Groups A and B (p < 0.05). Groups B and C had higher cross-sectional area (CSA) values in all fiber types than in Group A (0.05 < p < 0.001). The number of satellite cells did not differ between the groups. Groups B and C had higher peak torque at all angular velocities and absolute VO2max in terms of ml·min(-1) than Group A (0.05 < p < 0.001). It is concluded that the increased percentage of type IIA muscle fibers noticed in Group C in comparison to the Groups A and B should be mainly attributed to the different workload exercise and training programs. The alteration of myosin heavy chain (MHC) isoforms composition even in children is an important mechanism for skeletal muscle characteristics. Finally, CSA, isokinetic muscle strength and VO2max values seems to be expressed according to age. Key PointsFifteen years old soccer players have higher IIA percentage distribution than the younger players by approximately 18%.The age and the training status play a crucial role in muscle fibers co-expression.Specific training in young athletes seems to alter significantly the muscular metabolic profile. PMID:25177173

  11. Muscle Fiber Characteristics, Satellite Cells and Soccer Performance in Young Athletes

    PubMed Central

    Metaxas, Thomas I.; Mandroukas, Athanasios; Vamvakoudis, Efstratios; Kotoglou, Kostas; Ekblom, Björn; Mandroukas, Konstantinos

    2014-01-01

    This study is aimed to examine the muscle fiber type, composition and satellite cells in young male soccer players and to correlate them to cardiorespiratory indices and muscle strength. The participants formed three Groups: Group A (n = 13), 11.2 ± 0.4yrs, Group B (n=10), 13.1 ± 0.5yrs and Group C (n = 9), 15.2 ± 0.6yrs. Muscle biopsies were obtained from the vastus lateralis. Peak torque values of the quadriceps and hamstrings were recorded and VO2max was measured on the treadmill. Group C had lower type I percentage distribution compared to A by 21.3% (p < 0.01), while the type IIA relative percentage was higher by 18.1% and 18.4% than in Groups A and B (p < 0.05). Groups B and C had higher cross-sectional area (CSA) values in all fiber types than in Group A (0.05 < p < 0.001). The number of satellite cells did not differ between the groups. Groups B and C had higher peak torque at all angular velocities and absolute VO2max in terms of ml·min-1 than Group A (0.05 < p < 0.001). It is concluded that the increased percentage of type IIA muscle fibers noticed in Group C in comparison to the Groups A and B should be mainly attributed to the different workload exercise and training programs. The alteration of myosin heavy chain (MHC) isoforms composition even in children is an important mechanism for skeletal muscle characteristics. Finally, CSA, isokinetic muscle strength and VO2max values seems to be expressed according to age. Key Points Fifteen years old soccer players have higher IIA percentage distribution than the younger players by approximately 18%. The age and the training status play a crucial role in muscle fibers co-expression. Specific training in young athletes seems to alter significantly the muscular metabolic profile. PMID:25177173

  12. Automated image analysis of skeletal muscle fiber cross-sectional area

    PubMed Central

    Mula, Jyothi; Lee, Jonah D.; Liu, Fujun; Yang, Lin

    2013-01-01

    Morphological characteristics of muscle fibers, such as fiber size, are critical factors that determine the health and function of the muscle. However, at this time, quantification of muscle fiber cross-sectional area is still a manual or, at best, a semiautomated process. This process is labor intensive, time consuming, and prone to errors, leading to high interobserver variability. We have developed and validated an automatic image segmentation algorithm and compared it directly with commercially available semiautomatic software currently considered state of the art. The proposed automatic segmentation algorithm was evaluated against a semiautomatic method with manual annotation using 35 randomly selected cross-sectional muscle histochemical images. The proposed algorithm begins with ridge detection to enhance the muscle fiber boundaries, followed by robust seed detection based on concave area identification to find initial seeds for muscle fibers. The final muscle fiber boundaries are automatically delineated using a gradient vector flow deformable model. Our automatic approach is accurate and represents a significant advancement in efficiency; quantification of fiber area in muscle cross sections was reduced from 25–40 min/image to 15 s/image, while accommodating common quantification obstacles including morphological variation (e.g., heterogeneity in fiber size and fibrosis) and technical artifacts (e.g., processing defects and poor staining quality). Automatic quantification of muscle fiber cross-sectional area using the proposed method is a powerful tool that will increase sensitivity, objectivity, and efficiency in measuring muscle adaptation. PMID:23139362

  13. Reptilian skeletal muscle: contractile properties of identified, single fast-twitch and slow fibers from the lizard Dipsosaurus dorsalis.

    PubMed

    Gleeson, T T; Johnston, I A

    1987-06-01

    Contractile properties and innervation patterns were determined in identified single fibers from the iliofibularis muscle of the desert iguana, Dipsosaurus dorsalis. Single fibers from both the red and white regions of the iliofibularis muscle were dissected along their length under oil and a portion was mounted on transducers for determination of maximum isometric tension (Po) and unloaded shortening velocity (Vmax) using the slack test method. Fibers were chemically skinned and activated by high Ca++. The remaining portion of the muscle fiber was mounted on a glass slide and histochemically treated to demonstrate myosin ATPase activity. Fibers studied functionally could therefore be classified as fast or slow according to their myosin ATPase activity, and they could also be classified metabolically according to the region of the muscle from which they were dissected. Fast-twitch glycolytic (FG) fibers from the white region and fast-twitch oxidative, glycolytic (FOG) and slow fibers from the red region had shortening velocities at 25 degrees C of 7.5, 4.4, and 1.5 l X s-1, respectively. Po did not differ in the three fiber types, averaging 279 kN X m-2. In a second experiment, 10 microns sections were examined every 30 microns through the proximal-most 7.5 mm of the iliofibularis muscle for motor endplates. Sections were stained to demonstrate regions of acetylcholinesterase activity. Fibers with visible endplates were classified in serial sections by histochemical treatment for myosin ATPase and succinic dehydrogenase. All slow fibers examined (n = 22) exhibited multiple endplates, averaging one every 725 microns.(ABSTRACT TRUNCATED AT 250 WORDS)

  14. Calcium transients in asymmetrically activated skeletal muscle fibers.

    PubMed Central

    Trube, G; Lopez, J R; Taylor, S R

    1981-01-01

    Skeletal muscle fibers of the frog Rana temporaria were held just taut and stimulated transversely by unidirectional electrical fields. We observed the reversible effects of stimulus duration (0.1-100 ms) and strength on action potentials, intracellular Ca2+ transients (monitored by aequorin), and contractile force during fixed-end contractions. Long duration stimuli (e.g., 10 ms) induced a maintained depolarization on the cathodal side of a cell and a maintained hyperpolarization on its anodal side. The hyperpolarization of the side facing the anode prevented the action potential from reaching mechanical threshold during strong stimuli. Variation of the duration or strength of a stimulus changed the luminescent response from a fiber injected with aequorin. Thus, the intracellular Ca2+ released during excitation-contraction coupling could be changed by the stimulus parameters. Prolongation of a stimulus at field strengths above 1.1 x rheobase decreased the amplitude of aequorin signals and the force of contractions. The decreases in aequorin and force signals from a given fiber paralleled one another and depended on the stimulus strength, but not on the stimulus polarity. These changes were completely reversible for stimulus strengths up to at least 4.2 x rheobase. The graded decreases in membrane depolarization, aequorin signals, and contractile force were correlated with the previously described folding of myofibrils in fibers allowed to shorten in response to the application of a long duration stimulus. The changes in aequorin signals and force suggest an absence of myofilament activation by Ca2+ in the section of the fiber closest to the anode. The results imply that injected aequorin distributes circumferentially in frog muscle with a coefficient of at least 10(-7) cm2/s, which is not remarkably different from the previously measured coefficient of 5 x 10(-8) cm2/s for its diffusion lengthwise. PMID:6976801

  15. Mitochondrial DNA deletion mutations are concomitant with ragged red regions of individual, aged muscle fibers: analysis by laser-capture microdissection

    PubMed Central

    Cao, Zhengjin; Wanagat, Jonathan; McKiernan, Susan H.; Aiken, Judd M.

    2001-01-01

    Laser-capture microdissection was coupled with PCR to define the mitochondrial genotype of aged muscle fibers exhibiting mitochondrial enzymatic abnormalities. These electron transport system (ETS) abnormalities accumulate with age, are localized segmentally along muscle fibers, are associated with fiber atrophy and may contribute to age-related fiber loss. DNA extracted from single, 10 µm thick, ETS abnormal muscle fibers, as well as sections from normal fibers, served as templates for PCR-based deletion analysis. Large mitochondrial (mt) DNA deletion mutations (4.4–9.7 kb) were detected in all 29 ETS abnormal fibers analyzed. Deleted mtDNA genomes were detected only in the regions of the fibers with ETS abnormalities; adjacent phenotypically normal portions of the same fiber contained wild-type mtDNA. In addition, identical mtDNA deletion mutations were found within different sections of the same abnormal region. These findings demonstrate that large deletion mutations are associated with ETS abnormalities in aged rat muscle and that, within a fiber, deletion mutations are clonal. The displacement of wild-type mtDNAs with mutant mtDNAs results in concomitant mitochondrial enzymatic abnormalities, fiber atrophy and fiber breakage. PMID:11691938

  16. How muscle fiber lengths and velocities affect muscle force generation as humans walk and run at different speeds.

    PubMed

    Arnold, Edith M; Hamner, Samuel R; Seth, Ajay; Millard, Matthew; Delp, Scott L

    2013-06-01

    The lengths and velocities of muscle fibers have a dramatic effect on muscle force generation. It is unknown, however, whether the lengths and velocities of lower limb muscle fibers substantially affect the ability of muscles to generate force during walking and running. We examined this issue by developing simulations of muscle-tendon dynamics to calculate the lengths and velocities of muscle fibers from electromyographic recordings of 11 lower limb muscles and kinematic measurements of the hip, knee and ankle made as five subjects walked at speeds of 1.0-1.75 m s(-1) and ran at speeds of 2.0-5.0 m s(-1). We analyzed the simulated fiber lengths, fiber velocities and forces to evaluate the influence of force-length and force-velocity properties on force generation at different walking and running speeds. The simulations revealed that force generation ability (i.e. the force generated per unit of activation) of eight of the 11 muscles was significantly affected by walking or running speed. Soleus force generation ability decreased with increasing walking speed, but the transition from walking to running increased the force generation ability by reducing fiber velocities. Our results demonstrate the influence of soleus muscle architecture on the walk-to-run transition and the effects of muscle-tendon compliance on the plantarflexors' ability to generate ankle moment and power. The study presents data that permit lower limb muscles to be studied in unprecedented detail by relating muscle fiber dynamics and force generation to the mechanical demands of walking and running.

  17. Effect of protons on the mechanical response of rat muscle nociceptive fibers and neurons in vitro.

    PubMed

    Hotta, Norio; Kubo, Asako; Mizumura, Kazue

    2015-03-01

    Strong exercise makes muscle acidic, and painful. The stimulus that activates muscle nociceptors in such instance may be protons. Reportedly, however, not many afferents are excited by protons alone. We, therefore, posited that protons sensitize muscular nociceptors to mechanical stimuli. We examined effects of protons on mechanical sensitivity of muscle nociceptors by single-fiber recording from rat muscle-nerve preparations in vitro and by whole cell patch-clamp recording of mechanically activated (MA) currents from cultured rat dorsal root ganglion neurons. We recorded 38 Aδ- and C-fibers. Their response magnitude was increased by both pH 6.2 and pH 6.8; in addition the mechanical threshold was lowered by pH 6.2. Decrease in the threshold by pH6.2 was also observed in MA currents. Presently observed sensitization by protons could be involved in several types of ischemic muscle pain, and may also be involved in cardiovascular and respiratory controls during exercise.

  18. Effects of concurrent strength and endurance training on genes related to myostatin signaling pathway and muscle fiber responses.

    PubMed

    de Souza, Eduardo O; Tricoli, Valmor; Aoki, Marcelo S; Roschel, Hamilton; Brum, Patrícia C; Bacurau, Aline V N; Silva-Batista, Carla; Wilson, Jacob M; Neves, Manoel; Soares, Antonio G; Ugrinowitsch, Carlos

    2014-11-01

    Concurrent training (CT) seems to impair training-induced muscle hypertrophy. This study compared the effects of CT, strength training (ST) and interval training (IT) on the muscle fiber cross-sectional area (CSA) response, and on the expression of selected genes involved in the myostatin (MSTN) signaling mRNA levels. Thirty-seven physically active men were randomly divided into 4 groups: CT (n = 11), ST (n = 11), IT (n = 8), and control group (C) (n = 7) and underwent an 8-week training period. Vastus lateralis biopsy muscle samples were obtained at baseline and 48 hours after the last training session. Muscle fiber CSA, selected genes expression, and maximum dynamic ST (1 repetition maximum) were evaluated before and after training. Type IIa and type I muscle fiber CSA increased from pre- to posttest only in the ST group (17.08 and 17.9%, respectively). The SMAD-7 gene expression significantly increased at the posttest in the ST (53.9%) and CT groups (39.3%). The MSTN and its regulatory genes ActIIb, FLST-3, FOXO-3a, and GASP-1 mRNA levels remained unchanged across time and groups. One repetition maximum increased from pre- to posttest in both the ST and CT groups (ST = 18.5%; CT = 17.6%). Our findings are suggestive that MSTN and their regulatory genes at transcript level cannot differentiate muscle fiber CSA responses between CT and ST regimens in humans. PMID:24832980

  19. Effects of concurrent strength and endurance training on genes related to myostatin signaling pathway and muscle fiber responses.

    PubMed

    de Souza, Eduardo O; Tricoli, Valmor; Aoki, Marcelo S; Roschel, Hamilton; Brum, Patrícia C; Bacurau, Aline V N; Silva-Batista, Carla; Wilson, Jacob M; Neves, Manoel; Soares, Antonio G; Ugrinowitsch, Carlos

    2014-11-01

    Concurrent training (CT) seems to impair training-induced muscle hypertrophy. This study compared the effects of CT, strength training (ST) and interval training (IT) on the muscle fiber cross-sectional area (CSA) response, and on the expression of selected genes involved in the myostatin (MSTN) signaling mRNA levels. Thirty-seven physically active men were randomly divided into 4 groups: CT (n = 11), ST (n = 11), IT (n = 8), and control group (C) (n = 7) and underwent an 8-week training period. Vastus lateralis biopsy muscle samples were obtained at baseline and 48 hours after the last training session. Muscle fiber CSA, selected genes expression, and maximum dynamic ST (1 repetition maximum) were evaluated before and after training. Type IIa and type I muscle fiber CSA increased from pre- to posttest only in the ST group (17.08 and 17.9%, respectively). The SMAD-7 gene expression significantly increased at the posttest in the ST (53.9%) and CT groups (39.3%). The MSTN and its regulatory genes ActIIb, FLST-3, FOXO-3a, and GASP-1 mRNA levels remained unchanged across time and groups. One repetition maximum increased from pre- to posttest in both the ST and CT groups (ST = 18.5%; CT = 17.6%). Our findings are suggestive that MSTN and their regulatory genes at transcript level cannot differentiate muscle fiber CSA responses between CT and ST regimens in humans.

  20. Conduction velocity of quiescent muscle fibers decreases during sustained contraction.

    PubMed

    Gazzoni, Marco; Camelia, Federico; Farina, Dario

    2005-07-01

    We tested the hypothesis that conduction velocity of quiescent muscle fibers decreases during sustained contraction due to the activity of the active motor units in the muscle. Ten subjects trained for the identification of a target motor unit in the abductor pollicis brevis with feedback on surface EMG signals detected with a two-dimensional array of 61 electrodes. The subjects activated the target motor unit in two 10-s long contractions, before (contraction C1) and after (C3) a 3-min contraction (C2), all in ischemic condition. The target motor unit was not activated during C2. Eight of the 10 subjects (control group) performed a second experimental session identical to the first but with a resting period of 3 min instead of the contraction C2. Exerted force and target motor unit discharge rate were not different between the two subject groups and between C1 and C3 (mean +/- SD, over C1 and C3; C2 group: 15.8 +/- 10.4% maximal voluntary contractions and 13.1 +/- 1.9 pps; control group: 15.6 +/- 22.1% maximal voluntary contractions and 14.5 +/- 1.9 pps, respectively). Muscle fiber conduction velocity of the target motor unit decreased in C3 with respect to C1 in the C2 group (3.59 +/- 0.57 and 3.34 +/- 0.47 m/s for C1 and C3, respectively; P < 0.05) but not in the control group (3.47 +/- 0.68 and 3.46 +/- 0.73 m/s). In the C2 group, the percent decrease in conduction velocity of the target motor unit between C1 and C3 (6.4 +/- 7.1%) was not significantly different from the percent decrease in the average conduction velocity of the motor units active during C2 (9.6 +/- 5.4%). In conclusion, the contraction-induced modifications in electrophysiological membrane properties of muscle fibers are partly independent on fiber activation.

  1. Quantification of muscle fiber strain during in vivo repetitive stretch-shortening cycles.

    PubMed

    Butterfield, Timothy A; Herzog, Walter

    2005-08-01

    Muscles subjected to lengthening contractions exhibit evidence of subcellular disruption, arguably a result of fiber strain magnitude. Due to the difficulty associated with measuring fiber strains during lengthening contractions, fiber length estimates have been used to formulate relationships between the magnitude of injury and mechanical measures such as fiber strain. In such protocols, the series compliance is typically minimized by removing the distal tendon and/or preactivating the muscle. These in vitro and in situ experiments do not represent physiological contractions well where fiber strain and muscle strain may be disassociated; thus the mechanisms of in vivo muscle injury remain elusive. The purpose of this paper was to quantify fiber strains during lengthening contractions in vivo and assess the potential role of fiber strain in muscle injury following repetitive stretch-shortening cycles. Using intact New Zealand White rabbit dorsiflexors, fiber strain and joint torque were measured during 50 stretch-shortening cycles. We were able to show that fiber length changes are disassociated from muscle tendon unit length changes and that complex fiber dynamics during these cycles prevent easy estimates of fiber strains. In addition, fiber strains vary, depending on how they are defined, and vary from repetition to repetition, thereby further complicating the potential relationship between muscle injury and fiber strain. We conclude from this study that, during in vivo stretch-shortening cycles, the relationship between fiber strain and muscle injury is complex. This is due, in part, to temporal effects of repeated loading on fiber strain magnitude that may be explained by an increasing compliance of the contractile element as exercise progresses.

  2. In vivo simultaneous evaluations of sarcomere imaging and muscle fiber tension.

    PubMed

    Wu, Yi-Ning; Ren, Yupeng; Tsai, Liang-Ching; Gao, Fan; Zhang, Li-Qun

    2016-03-21

    Muscle fiber tension and sarcomere length play critical roles in regulating muscle functions and adaptations under pathological conditions. However, methods are lacking to quantify these two variables simultaneously in vivo. A novel force microscope was developed with the unique capabilities of estimating muscle fiber tension and acquiring sarcomere images simultaneously in vivo. The force microscope consisting of a custom microscopic imaging system and a force sensor was used to quantify in vivo sarcomere length, muscle fiber tension and stress of the tibialis cranialis muscle at plantar-flexed and dorsi-flexed positions from 11 rat hind limbs. Results showed that sarcomere images and fiber tension could be measured together in vivo with significantly higher muscle fiber tension and stress and longer sarcomere length at the plantar-flexed position when compared to their counterparts at the dorsi-flexed position. The fiber tension estimated using the force microscope had close agreement with the direct measurements of the fiber tension. The present force microscope with simultaneous characterizations of fiber tension and sarcomere imaging provides us a useful in vivo tool to investigate the roles of muscle tension in regulating sarcomere and muscle fiber functions under physiological and pathological conditions.

  3. How muscle fiber lengths and velocities affect muscle force generation as humans walk and run at different speeds

    PubMed Central

    Arnold, Edith M.; Hamner, Samuel R.; Seth, Ajay; Millard, Matthew; Delp, Scott L.

    2013-01-01

    SUMMARY The lengths and velocities of muscle fibers have a dramatic effect on muscle force generation. It is unknown, however, whether the lengths and velocities of lower limb muscle fibers substantially affect the ability of muscles to generate force during walking and running. We examined this issue by developing simulations of muscle–tendon dynamics to calculate the lengths and velocities of muscle fibers from electromyographic recordings of 11 lower limb muscles and kinematic measurements of the hip, knee and ankle made as five subjects walked at speeds of 1.0–1.75 m s−1 and ran at speeds of 2.0–5.0 m s−1. We analyzed the simulated fiber lengths, fiber velocities and forces to evaluate the influence of force–length and force–velocity properties on force generation at different walking and running speeds. The simulations revealed that force generation ability (i.e. the force generated per unit of activation) of eight of the 11 muscles was significantly affected by walking or running speed. Soleus force generation ability decreased with increasing walking speed, but the transition from walking to running increased the force generation ability by reducing fiber velocities. Our results demonstrate the influence of soleus muscle architecture on the walk-to-run transition and the effects of muscle–tendon compliance on the plantarflexors' ability to generate ankle moment and power. The study presents data that permit lower limb muscles to be studied in unprecedented detail by relating muscle fiber dynamics and force generation to the mechanical demands of walking and running. PMID:23470656

  4. Physical activity-induced remodeling of vasculature in skeletal muscle: role in treatment of type 2 diabetes.

    PubMed

    Laughlin, M Harold

    2016-01-01

    This manuscript summarizes and discusses adaptations of skeletal muscle vasculature induced by physical activity and applies this understanding to benefits of exercise in prevention and treatment of type 2 diabetes (T2D). Arteriolar trees of skeletal muscle are heterogeneous. Exercise training increases capillary exchange and blood flow capacities. The distribution of vascular adaptation to different types of exercise training are influenced by muscle fiber type composition and fiber recruitment patterns that produce different modes of exercise. Thus training-induced adaptations in vascular structure and vascular control in skeletal muscle are not homogeneously distributed throughout skeletal muscle or along the arteriolar tree within a muscle. Results summarized indicate that similar principles apply to vascular adaptation in skeletal muscle in T2D. It is concluded that exercise training-induced changes in vascular gene expression differ along the arteriolar tree and by skeletal muscle fiber type composition. Results suggest that it is unlikely that hemodynamic forces are the only exercise-induced signals mediating the regulation of vascular gene expression. In patients with T2D, exercise training is perhaps the most effective treatment of the many related symptoms. Training-induced changes in the vasculature and in insulin signaling in the muscle fibers and vasculature augment glucose and insulin delivery as well as glucose uptake. If these adaptations occur in a sufficient amount of muscle mass, exposure to hyperglycemia and hyperinsulinemia will decrease along with the risk of microvascular complications throughout the body. It is postulated that exercise sessions in programs of sufficient duration, that engage as much skeletal muscle mass as possible, and that recruit as many muscle fibers within each muscle as possible will produce the greatest benefit. The added benefit of combined resistance and aerobic training programs and of high-intensity exercise

  5. Chloride Fluxes in Isolated Dialyzed Barnacle Muscle Fibers

    PubMed Central

    DiPolo, R.

    1972-01-01

    Chloride outflux and influx has been studied in single isolated muscle fibers from the giant barnacle under constant internal composition by means of a dialysis perfusion technique. Membrane potential was continually recorded. The chloride outfluxes and influxes were 143 and 144 pmoles/cm2-sec (mean resting potential: 58 mv, temperature: 22°–24°C) with internal and external chloride concentrations of 30 and 541 mM, respectively. The chloride conductance calculated from tracer measurements using constant field assumptions is about fourfold greater than that calculated from published electrical data. Replacing 97% of the external chloride ions by propionate reduces the chloride efflux by 51%. Nitrate ions applied either to the internal or external surface of the membrane slows the chloride efflux. The external pH dependence of the chloride efflux follows the external pH dependence of the membrane conductance, in the range pH 3.9–4.7, increasing with decreasing pH. In the range pH 5–9, the chloride efflux increased with increasing pH, in a manner similar to that observed in frog muscle fibers. The titration curve for internal pH changes in the range 4.0–7.0 was quantitatively much different from that for external pH change, indicating significant asymmetry in the internal and external pH dependence of the chloride efflux. PMID:5074810

  6. Mapping of intramuscular tenderness and muscle fiber orientation of muscles in the beef round.

    PubMed

    Senaratne, L S; Calkins, C R; de Mello, A S; Pokharel, S; Hinkle, J B

    2010-09-01

    Intramuscular tenderness variation and muscle fiber orientation of beef M. adductor femoris (AF), M. biceps femoris (BF), M. gracilis (GL), M. pectineus (PT), M. sartorius (SR), M. semimembranosus (SM), M. semitendinosus (SO), M. vastus intermedius (VI), M. vastus medialis (VM), and M. vastus lateralis (VL) were investigated. The USDA Choice boxed beef subprimals were purchased and aged for 14 d from boxed date. The AF, BF, GL, PT, SR, SM, SO, VI, VM, and VL (n = 10 each) were fabricated from subprimals. Crust-frozen AF, BF, SO, SM, and VL were cut into 2.54-cm steaks perpendicular to the long axis and grilled (71 degrees C). The PT, SR, VI, and VM were grilled (71 degrees C) as whole muscles, whereas the GL was grilled after cutting into anterior and posterior regions. Grilled muscles were cut into equal size sections perpendicular to long axis of muscles. Location-specific cores were prepared from each steak/section, and Warner-Bratzler shear force (WBSF) was measured. The muscle fiber orientations of BF, PT, and VI were bipennate, SR and SO were fusiform, and AD, SM, VL, GL, and VM were unipennate. The overall mean WBSF values for BF, SO, AF, SM, PT, SR, GL, VI, VM, and VL were 5.62, 4.86, 4.18, 4.90, 3.76, 4.44, 4.75, 4.78, 4.24, and 6.53 kg, respectively. Based on WBSF values, PT was tender, BF and VL were tough, and VM, VI, SM, GL SR, AF, and SO were intermediate. The first 2 proximal steaks of long head BF were more tender than the rest (P < 0.05). In the SO, the tenderness decreased from the middle of the muscle to both ends (P < 0.05). The anterior sides of the long head BF and SO were tougher than their posterior sides (P < 0.05).The first 4 steaks of the SM were more tender than the rest of the muscle (P < 0.05). There was a significant tenderness increment from the middle of the AF and SR to both ends of each muscle (P < 0.05). The medial side of the VI was more tender than its lateral side (P < 0.05). The VM had its smallest shear force value at the

  7. Distinctive genes determine different intramuscular fat and muscle fiber ratios of the longissimus dorsi muscles in Jinhua and landrace pigs.

    PubMed

    Wu, Ting; Zhang, Zhenhai; Yuan, Zhangqin; Lo, Li Jan; Chen, Jun; Wang, Yizhen; Peng, Jinrong

    2013-01-01

    Meat quality is determined by properties such as carcass color, tenderness and drip loss. These properties are closely associated with meat composition, which includes the types of muscle fiber and content of intramuscular fat (IMF). Muscle fibers are the main contributors to meat mass, while IMF not only contributes to the sensory properties but also to the plethora of physical, chemical and technological properties of meat. However, little is known about the molecular mechanisms that determine meat composition in different pig breeds. In this report we show that Jinhua pigs, a Chinese breed, contains much higher levels of IMF than do Landrace pigs, a Danish breed. We analyzed global gene expression profiles in the longissimus dorsi muscles in Jinhua and Landrace breeds at the ages of 30, 90 and 150 days. Cross-comparison analysis revealed that genes that regulate fatty acid biosynthesis (e.g., fatty acid synthase and stearoyl-CoA desaturase) are expressed at higher levels in Jinhua pigs whereas those that regulate myogenesis (e.g., myogenic factor 6 and forkhead box O1) are expressed at higher levels in Landrace pigs. Among those genes which are highly expressed in Jinhua pigs at 90 days (d90), we identified a novel gene porcine FLJ36031 (pFLJ), which functions as a positive regulator of fat deposition in cultured intramuscular adipocytes. In summary, our data showed that the up-regulation of fatty acid biosynthesis regulatory genes such as pFLJ and myogenesis inhibitory genes such as myostatin in the longissimus dorsi muscles of Jinhua pigs could explain why this local breed produces meat with high levels of IMF.

  8. Distinctive Genes Determine Different Intramuscular Fat and Muscle Fiber Ratios of the longissimus dorsi Muscles in Jinhua and Landrace Pigs

    PubMed Central

    Yuan, Zhangqin; Lo, Li Jan; Chen, Jun; Wang, Yizhen; Peng, Jinrong

    2013-01-01

    Meat quality is determined by properties such as carcass color, tenderness and drip loss. These properties are closely associated with meat composition, which includes the types of muscle fiber and content of intramuscular fat (IMF). Muscle fibers are the main contributors to meat mass, while IMF not only contributes to the sensory properties but also to the plethora of physical, chemical and technological properties of meat. However, little is known about the molecular mechanisms that determine meat composition in different pig breeds. In this report we show that Jinhua pigs, a Chinese breed, contains much higher levels of IMF than do Landrace pigs, a Danish breed. We analyzed global gene expression profiles in the longissimus dorsi muscles in Jinhua and Landrace breeds at the ages of 30, 90 and 150 days. Cross-comparison analysis revealed that genes that regulate fatty acid biosynthesis (e.g., fatty acid synthase and stearoyl-CoA desaturase) are expressed at higher levels in Jinhua pigs whereas those that regulate myogenesis (e.g., myogenic factor 6 and forkhead box O1) are expressed at higher levels in Landrace pigs. Among those genes which are highly expressed in Jinhua pigs at 90 days (d90), we identified a novel gene porcine FLJ36031 (pFLJ), which functions as a positive regulator of fat deposition in cultured intramuscular adipocytes. In summary, our data showed that the up-regulation of fatty acid biosynthesis regulatory genes such as pFLJ and myogenesis inhibitory genes such as myostatin in the longissimus dorsi muscles of Jinhua pigs could explain why this local breed produces meat with high levels of IMF. PMID:23301040

  9. Localized nuclear and perinuclear Ca2+ signals in intact mouse skeletal muscle fibers

    PubMed Central

    Georgiev, Tihomir; Svirin, Mikhail; Jaimovich, Enrique; Fink, Rainer H. A.

    2015-01-01

    Nuclear Ca2+ is important for the regulation of several nuclear processes such as gene expression. Localized Ca2+ signals (LCSs) in skeletal muscle fibers of mice have been mainly studied as Ca2+ release events from the sarcoplasmic reticulum. Their location with regard to cell nuclei has not been investigated. Our study is based on the hypothesis that LCSs associated with nuclei are present in skeletal muscle fibers of adult mice. Therefore, we carried out experiments addressing this question and we found novel Ca2+ signals associated with nuclei of skeletal muscle fibers (with possibly attached satellite cells). We measured localized nuclear and perinuclear Ca2+ signals (NLCSs and PLCSs) alongside cytosolic localized Ca2+ signals (CLCSs) during a hypertonic treatment. We also observed NLCSs under isotonic conditions. The NLCSs and PLCSs are Ca2+ signals in the range of micrometer [FWHM (full width at half maximum): 2.75 ± 0.27 μm (NLCSs) and 2.55 ± 0.17 μm (PLCSs), S.E.M.]. Additionally, global nuclear Ca2+ signals (NGCSs) were observed. To investigate which type of Ca2+ channels contribute to the Ca2+ signals associated with nuclei in skeletal muscle fibers, we performed measurements with the RyR blocker dantrolene, the DHPR blocker nifedipine or the IP3R blocker Xestospongin C. We observed Ca2+ signals associated with nuclei in the presence of each blocker. Nifedipine and dantrolene had an inhibitory effect on the fraction of fibers with PLCSs. The situation for the fraction of fibers with NLCSs is more complex indicating that RyR is less important for the generation of NLCSs compared to the generation of PLCSs. The fraction of fibers with NLCSs and PLCSs is not reduced in the presence of Xestospongin C. The localized perinuclear and intranuclear Ca2+ signals may be a powerful tool for the cell to regulate adaptive processes as gene expression. The intranuclear Ca2+ signals may be particularly interesting in this respect. PMID:26483696

  10. Effect of spaceflight on the isotonic contractile properties of single skeletal muscle fibers in the rhesus monkey

    NASA Technical Reports Server (NTRS)

    Fitts, R. H.; Romatowski, J. G.; Blaser, C.; De La Cruz, L.; Gettelman, G. J.; Widrick, J. J.

    2000-01-01

    Experiments from both Cosmos and Space Shuttle missions have shown weightlessness to result in a rapid decline in the mass and force of rat hindlimb extensor muscles. Additionally, despite an increased maximal shortening velocity, peak power was reduced in rat soleus muscle post-flight. In humans, declines in voluntary peak isometric ankle extensor torque ranging from 15-40% have been reported following long- and short-term spaceflight and prolonged bed rest. Complete understanding of the cellular events responsible for the fiber atrophy and the decline in force, as well as the development of effective countermeasures, will require detailed knowledge of how the physiological and biochemical processes of muscle function are altered by spaceflight. The specific purpose of this investigation was to determine the extent to which the isotonic contractile properties of the slow- and fast-twitch fiber types of the soleus and gastrocnemius muscles of rhesus monkeys (Macaca mulatta) were altered by a 14-day spaceflight.

  11. Impaired Organization and Function of Myofilaments in Single Muscle Fibers from a Mouse Model of Pompe Disease

    SciTech Connect

    Xu, S.; Galperin, M; Melvin, G; Horowits, R; Raben, N; Plotz, P; Yu, L

    2010-01-01

    Pompe disease, a deficiency of lysosomal acid {alpha}-glucosidase, is a disorder of glycogen metabolism that can affect infants, children, or adults. In all forms of the disease, there is progressive muscle pathology leading to premature death. The pathology is characterized by accumulation of glycogen in lysosomes, autophagic buildup, and muscle atrophy. The purpose of the present investigation was to determine if myofibrillar dysfunction in Pompe disease contributes to muscle weakness beyond that attributed to atrophy. The study was performed on isolated myofibers dissected from severely affected fast glycolytic muscle in the {alpha}-glucosidase knockout mouse model. Psoas muscle fibers were first permeabilized, so that the contractile proteins could be directly relaxed or activated by control of the composition of the bathing solution. When normalized by cross-sectional area, single fibers from knockout mice produced 6.3 N/cm{sup 2} of maximum Ca{sup 2+}-activated tension compared with 12.0 N/cm{sup 2} produced by wild-type fibers. The total protein concentration was slightly higher in the knockout mice, but concentrations of the contractile proteins myosin and actin remained unchanged. Structurally, X-ray diffraction showed that the actin and myosin filaments, normally arranged in hexagonal arrays, were disordered in the knockout muscle, and a lower fraction of myosin cross bridges was near the actin filaments in the relaxed muscle. The results are consistent with a disruption of actin and myosin interactions in the knockout muscles, demonstrating that impaired myofibrillar function contributes to weakness in the diseased muscle fibers.

  12. Immunohistochemical myofiber typing and high-resolution myofibrillar lesion detection in LR white embedded muscle

    NASA Technical Reports Server (NTRS)

    Thompson, J. L.; Vijayan, K.; Riley, D. A.

    2000-01-01

    We have developed a method of fixing, embedding, sectioning, and staining that allows high-resolution detection of myofibrillar structure and myosin immunocytochemical muscle fiber typing in serial semithin sections of LR White plastic embedded muscle at the light microscopic level. Traditional approaches, such as cryostat sections, permit fiber typing, but small myofibrillar lesions (1-3 sarcomeres) are difficult to detect because of section thickness. Semithin sections of hydrophobic resins do not stain well either histochemically or immunocytochemically. Electron microscopy can resolve lesions and discriminate fiber types based on morphology, but the sampling area is small. Our goal was to develop a rapid method for defining both fiber type and high-resolution primary myofibrillar lesion damage. Mild fixation (1-4% paraformaldehyde, 0. 05-0.1% glutaraldehyde) and embedment in a hydrophilic resin (LR White) were used. Myofibrillar structure was extremely well preserved at the light microscopic (LM) level, and lesions could be readily resolved in Toluidine blue stained 500-nm sections. Fiber type was defined by LM immunomyosin staining of serial plastic semithin sections, which demonstrated reciprocal staining patterns for "fast (Sigma M4276) and "total" (skeletal muscle) myosins (Sigma M7523). Copyright 2000 Wiley-Liss, Inc.

  13. Aging alters contractile properties and fiber morphology in pigeon skeletal muscle.

    PubMed

    Pistilli, Emidio E; Alway, Stephen E; Hollander, John M; Wimsatt, Jeffrey H

    2014-12-01

    In this study, we tested the hypothesis that skeletal muscle from pigeons would display age-related alterations in isometric force and contractile parameters as well as a shift of the single muscle fiber cross-sectional area (CSA) distribution toward smaller fiber sizes. Maximal force output, twitch contraction durations and the force-frequency relationship were determined in tensor propatagialis pars biceps muscle from young 3-year-old pigeons, middle-aged 18-year-old pigeons, and aged 30-year-old pigeons. The fiber CSA distribution was determined by planimetry from muscle sections stained with hematoxylin and eosin. Maximal force output of twitch and tetanic contractions was greatest in muscles from young pigeons, while the time to peak force of twitch contractions was longest in muscles from aged pigeons. There were no changes in the force-frequency relationship between the age groups. Interestingly, the fiber CSA distribution in aged muscles revealed a greater number of larger sized muscle fibers, which was verified visually in histological images. Middle-aged and aged muscles also displayed a greater amount of slow myosin containing muscle fibers. These data demonstrate that muscles from middle-aged and aged pigeons are susceptible to alterations in contractile properties that are consistent with aging, including lower force production and longer contraction durations. These functional changes were supported by the appearance of slow myosin containing muscle fibers in muscles from middle-aged and aged pigeons. Therefore, the pigeon may represent an appropriate animal model for the study of aging-related alterations in skeletal muscle function and structure.

  14. Functional pools of oxidative and glycolytic fibers in human muscle observed by 31P magnetic resonance spectroscopy during exercise.

    PubMed

    Park, J H; Brown, R L; Park, C R; McCully, K; Cohn, M; Haselgrove, J; Chance, B

    1987-12-01

    Quantitative probing of heterogeneous regions in muscle is feasible with phosphorus-31 magnetic resonance spectroscopy because of the differentiation of metabolic patterns of glycolytic and oxidative fibers. A differential recruitment of oxidative and glycolytic fibers during exercise was demonstrated in 4 of 10 untrained young men by following changes in phosphate metabolites. Concentrations of inorganic phosphate (Pi), phosphocreatine, and ATP were estimated in the wrist flexor muscles of the forearm at rest, during two cycles of three grades of exercise, and in recovery. At high work levels (40% of maximum strength), two distinct Pi peaks were observed and identified with Pi pools at pH 6.9 and pH 5.9-6.4, respectively. These could be accounted for as follows. At the lowest level of work (using 20% of maximum strength), early recruitment primarily of oxidative (type I) and possibly some intermediate (type IIA) muscle fibers occurs with relatively little net lactate production and consequently little decrease in pH. At higher work loads, however, primarily glycolytic (type IIB) muscle fibers are recruited, which have relatively high net lactate production and therefore generate a second pool of Pi at low pH. ATP depletion (35-54%) and Pi losses accompanied the reduction in ability to perform during the first exercise cycle. When the cycle of graded exercise was repeated immediately, the total Pi remained high but gave rise to only one peak at pH 6.8-7.0. These observations indicated exhaustion of glycolytic type IIB fibers, removal of lactate by high local blood flow, and sustained contractions largely by oxidative type I and IIA fibers. A functional differentiation of fiber types could also be demonstrated during recovery if exercise was stopped while two pools of Pi were still apparent. In the first 3 min of recovery, the Pi peak at pH 6.8-6.9 disappeared almost entirely, whereas the Pi peak at pH 6.0 remained unaltered, reflecting the faster recovery of

  15. Mitochondrial ROS regulate oxidative damage and mitophagy but not age-related muscle fiber atrophy

    PubMed Central

    Sakellariou, Giorgos K.; Pearson, Timothy; Lightfoot, Adam P.; Nye, Gareth A.; Wells, Nicola; Giakoumaki, Ifigeneia I.; Vasilaki, Aphrodite; Griffiths, Richard D.; Jackson, Malcolm J.; McArdle, Anne

    2016-01-01

    Age-related loss of skeletal muscle mass and function is a major contributor to morbidity and has a profound effect on the quality of life of older people. The potential role of age-dependent mitochondrial dysfunction and cumulative oxidative stress as the underlying cause of muscle aging remains a controversial topic. Here we show that the pharmacological attenuation of age-related mitochondrial redox changes in muscle with SS31 is associated with some improvements in oxidative damage and mitophagy in muscles of old mice. However, this treatment failed to rescue the age-related muscle fiber atrophy associated with muscle atrophy and weakness. Collectively, these data imply that the muscle mitochondrial redox environment is not a key regulator of muscle fiber atrophy during sarcopenia but may play a key role in the decline of mitochondrial organelle integrity that occurs with muscle aging. PMID:27681159

  16. Unilateral lower limb suspension does not mimic bed rest or spaceflight effects on human muscle fiber function

    NASA Technical Reports Server (NTRS)

    Widrick, J. J.; Trappe, S. W.; Romatowski, J. G.; Riley, D. A.; Costill, D. L.; Fitts, R. H.

    2002-01-01

    We used Ca2+-activated skinned muscle fibers to test the hypothesis that unilateral lower leg suspension (ULLS) alters cross-bridge mechanisms of muscle contraction. Soleus and gastrocnemius biopsies were obtained from eight subjects before ULLS, immediately after 12 days of ULLS (post-0 h), and after 6 h of reambulation (post-6 h). Post-0 h soleus fibers expressing type I myosin heavy chain (MHC) showed significant reductions in diameter, absolute and specific peak Ca2+-activated force, unloaded shortening velocity, and absolute and normalized peak power. Fibers obtained from the gastrocnemius were less affected by ULLS, particularly fibers expressing fast MHC isoforms. Post-6 h soleus fibers produced less absolute and specific peak force than did post-0 h fibers, suggesting that reambulation after ULLS induced cell damage. Like bed rest and spaceflight, ULLS primarily affects soleus over gastrocnemius fibers. However, in contrast to these other models, slow soleus fibers obtained after ULLS showed a decrease in unloaded shortening velocity and a greater reduction in specific force.

  17. Persistent Muscle Fiber Regeneration in Long Term Denervation. Past, Present, Future.

    PubMed

    Carraro, Ugo; Boncompagni, Simona; Gobbo, Valerio; Rossini, Katia; Zampieri, Sandra; Mosole, Simone; Ravara, Barbara; Nori, Alessandra; Stramare, Roberto; Ambrosio, Francesco; Piccione, Francesco; Masiero, Stefano; Vindigni, Vincenzo; Gargiulo, Paolo; Protasi, Feliciano; Kern, Helmut; Pond, Amber; Marcante, Andrea

    2015-03-11

    Despite the ravages of long term denervation there is structural and ultrastructural evidence for survival of muscle fibers in mammals, with some fibers surviving at least ten months in rodents and 3-6 years in humans. Further, in rodents there is evidence that muscle fibers may regenerate even after repeated damage in the absence of the nerve, and that this potential is maintained for several months after denervation. While in animal models permanently denervated muscle sooner or later loses the ability to contract, the muscles may maintain their size and ability to function if electrically stimulated soon after denervation. Whether in mammals, humans included, this is a result of persistent de novo formation of muscle fibers is an open issue we would like to explore in this review. During the past decade, we have studied muscle biopsies from the quadriceps muscle of Spinal Cord Injury (SCI) patients suffering with Conus and Cauda Equina syndrome, a condition that fully and irreversibly disconnects skeletal muscle fibers from their damaged innervating motor neurons. We have demonstrated that human denervated muscle fibers survive years of denervation and can be rescued from severe atrophy by home-based Functional Electrical Stimulation (h-bFES). Using immunohistochemistry with both non-stimulated and the h-bFES stimulated human muscle biopsies, we have observed the persistent presence of muscle fibers which are positive to labeling by an antibody which specifically recognizes the embryonic myosin heavy chain (MHCemb). Relative to the total number of fibers present, only a small percentage of these MHCemb positive fibers are detected, suggesting that they are regenerating muscle fibers and not pre-existing myofibers re-expressing embryonic isoforms. Although embryonic isoforms of acetylcholine receptors are known to be re-expressed and to spread from the end-plate to the sarcolemma of muscle fibers in early phases of muscle denervation, we suggest that the MHCemb

  18. Persistent Muscle Fiber Regeneration in Long Term Denervation. Past, Present, Future.

    PubMed

    Carraro, Ugo; Boncompagni, Simona; Gobbo, Valerio; Rossini, Katia; Zampieri, Sandra; Mosole, Simone; Ravara, Barbara; Nori, Alessandra; Stramare, Roberto; Ambrosio, Francesco; Piccione, Francesco; Masiero, Stefano; Vindigni, Vincenzo; Gargiulo, Paolo; Protasi, Feliciano; Kern, Helmut; Pond, Amber; Marcante, Andrea

    2015-03-11

    Despite the ravages of long term denervation there is structural and ultrastructural evidence for survival of muscle fibers in mammals, with some fibers surviving at least ten months in rodents and 3-6 years in humans. Further, in rodents there is evidence that muscle fibers may regenerate even after repeated damage in the absence of the nerve, and that this potential is maintained for several months after denervation. While in animal models permanently denervated muscle sooner or later loses the ability to contract, the muscles may maintain their size and ability to function if electrically stimulated soon after denervation. Whether in mammals, humans included, this is a result of persistent de novo formation of muscle fibers is an open issue we would like to explore in this review. During the past decade, we have studied muscle biopsies from the quadriceps muscle of Spinal Cord Injury (SCI) patients suffering with Conus and Cauda Equina syndrome, a condition that fully and irreversibly disconnects skeletal muscle fibers from their damaged innervating motor neurons. We have demonstrated that human denervated muscle fibers survive years of denervation and can be rescued from severe atrophy by home-based Functional Electrical Stimulation (h-bFES). Using immunohistochemistry with both non-stimulated and the h-bFES stimulated human muscle biopsies, we have observed the persistent presence of muscle fibers which are positive to labeling by an antibody which specifically recognizes the embryonic myosin heavy chain (MHCemb). Relative to the total number of fibers present, only a small percentage of these MHCemb positive fibers are detected, suggesting that they are regenerating muscle fibers and not pre-existing myofibers re-expressing embryonic isoforms. Although embryonic isoforms of acetylcholine receptors are known to be re-expressed and to spread from the end-plate to the sarcolemma of muscle fibers in early phases of muscle denervation, we suggest that the MHCemb

  19. Effect of cleft palate repair on the susceptibility to contraction-induced injury of single permeabilized muscle fibers from congenitally-clefted goat palates.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Despite cleft palate repair, velopharyngeal competence is not achieved in ~ 15% of patients, often necessitating secondary surgical correction. Velopharyngeal competence postrepair may require the conversion of levator veli palatini muscle fibers from injury-susceptible type 2 fibers to injury-resi...

  20. Equations for estimating muscle fiber stress in the left ventricular wall.

    PubMed

    Rabben, S I; Irgens, F; Angelsen, B

    1999-01-01

    Left ventricular muscle fiber stress is an important parameter in cardiac energetics. Hence, we developed equations for estimating regional fiber stresses in rotationally symmetric chambers, and equatorial and apical fiber stresses in prolate spheroidal chambers. The myocardium was modeled as a soft incompressible material embedding muscle fibers that support forces only in their longitudinal direction. A thin layer of muscle fibers then contributes with a pressure increment determined by the fiber stress and curvature. The fiber curvature depends on the orientation of the fibers, which varies continuously across the wall. However, by assuming rotational symmetry about the long axis of the ventricle and including a longitudinal force balance, we obtained equations where fiber stress is completely determined by the principal curvatures of the middle wall surface, wall thickness, and cavity pressure. The equations were validated against idealized prolate spheroidal chambers, whose wall thicknesses are such that the fiber stress is uniform from the equator to the apex. Because the apex is free to rotate, the resultant moment about the long axis of the LV must be zero. By using this constraint together with our fiber-stress equations, we were able to estimate a muscle fiber orientation distribution across the wall that was in qualitative agreement with published measurements.

  1. Muscle Fiber Size and Function in Elderly Humans: A Longitudinal Study

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cross-sectional studies are likely to underestimate age-related changes in skeletal muscle strength and mass. The purpose of this longitudinal study was to assess whole muscle and single muscle fiber alterations in the same cohort of 12 older (mean age: start of study=71.1+/-5.4 yrs and end of study...

  2. Hierarchical Self-Assembly of Supramolecular Muscle-Like Fibers.

    PubMed

    Goujon, Antoine; Du, Guangyan; Moulin, Emilie; Fuks, Gad; Maaloum, Mounir; Buhler, Eric; Giuseppone, Nicolas

    2016-01-11

    An acid-base switchable [c2]daisy chain rotaxane terminated with two 2,6-diacetylamino pyridine units has been self-assembled with a bis(uracil) linker. The complementary hydrogen-bond recognition patterns, together with lateral van der Waals aggregations, result in the hierarchical formation of unidimensional supramolecular polymers associated in bundles of muscle-like fibers. Microscopic and scattering techniques reveal that the mesoscopic structure of these bundles depends on the extended or contracted states that the rotaxanes show within individual polymer chains. The observed local dynamics span over several length scales because of a combination of supramolecular and mechanical bonds. This work illustrates the possibility to modify the hierarchical mesoscopic structuring of large polymeric systems by the integrated actuation of individual molecular machines. PMID:26582752

  3. Epaxial muscle fiber architecture favors enhanced excursion and power in the leaper Galago senegalensis.

    PubMed

    Huq, Emranul; Wall, Christine E; Taylor, Andrea B

    2015-10-01

    Galago senegalensis is a habitual arboreal leaper that engages in rapid spinal extension during push-off. Large muscle excursions and high contraction velocities are important components of leaping, and experimental studies indicate that during leaping by G. senegalensis, peak power is facilitated by elastic storage of energy. To date, however, little is known about the functional relationship between epaxial muscle fiber architecture and locomotion in leaping primates. Here, fiber architecture of select epaxial muscles is compared between G. senegalensis (n = 4) and the slow arboreal quadruped, Nycticebus coucang (n = 4). The hypothesis is tested that G. senegalensis exhibits architectural features of the epaxial muscles that facilitate rapid and powerful spinal extension during the take-off phase of leaping. As predicted, G. senegalensis epaxial muscles have relatively longer, less pinnate fibers and higher ratios of tendon length-to-fiber length, indicating the capacity for generating relatively larger muscle excursions, higher whole-muscle contraction velocities, and a greater capacity for elastic energy storage. Thus, the relatively longer fibers and higher tendon length-to-fiber length ratios can be functionally linked to leaping performance in G. senegalensis. It is further predicted that G. senegalensis epaxial muscles have relatively smaller physiological cross-sectional areas (PCSAs) as a consequence of an architectural trade-off between fiber length (excursion) and PCSA (force). Contrary to this prediction, there are no species differences in relative PCSAs, but the smaller-bodied G. senegalensis trends towards relatively larger epaxial muscle mass. These findings suggest that relative increase in muscle mass in G. senegalensis is largely attributable to longer fibers. The relative increase in erector spinae muscle mass may facilitate sagittal flexibility during leaping. The similarity between species in relative PCSAs provides empirical support for

  4. Nebulin deficiency in adult muscle causes sarcomere defects and muscle-type-dependent changes in trophicity: novel insights in nemaline myopathy.

    PubMed

    Li, Frank; Buck, Danielle; De Winter, Josine; Kolb, Justin; Meng, Hui; Birch, Camille; Slater, Rebecca; Escobar, Yael Natelie; Smith, John E; Yang, Lin; Konhilas, John; Lawlor, Michael W; Ottenheijm, Coen; Granzier, Henk L

    2015-09-15

    Nebulin is a giant filamentous protein that is coextensive with the actin filaments of the skeletal muscle sarcomere. Nebulin mutations are the main cause of nemaline myopathy (NEM), with typical adult patients having low expression of nebulin, yet the roles of nebulin in adult muscle remain poorly understood. To establish nebulin's functional roles in adult muscle, we studied a novel conditional nebulin KO (Neb cKO) mouse model in which nebulin deletion was driven by the muscle creatine kinase (MCK) promotor. Neb cKO mice are born with high nebulin levels in their skeletal muscles, but within weeks after birth nebulin expression rapidly falls to barely detectable levels Surprisingly, a large fraction of the mice survive to adulthood with low nebulin levels (<5% of control), contain nemaline rods and undergo fiber-type switching toward oxidative types. Nebulin deficiency causes a large deficit in specific force, and mechanistic studies provide evidence that a reduced fraction of force-generating cross-bridges and shortened thin filaments contribute to the force deficit. Muscles rich in glycolytic fibers upregulate proteolysis pathways (MuRF-1, Fbxo30/MUSA1, Gadd45a) and undergo hypotrophy with smaller cross-sectional areas (CSAs), worsening their force deficit. Muscles rich in oxidative fibers do not have smaller weights and can even have hypertrophy, offsetting their specific-force deficit. These studies reveal nebulin as critically important for force development and trophicity in adult muscle. The Neb cKO phenocopies important aspects of NEM (muscle weakness, oxidative fiber-type predominance, variable trophicity effects, nemaline rods) and will be highly useful to test therapeutic approaches to ameliorate muscle weakness. PMID:26123491

  5. Nebulin deficiency in adult muscle causes sarcomere defects and muscle-type-dependent changes in trophicity: novel insights in nemaline myopathy

    PubMed Central

    Li, Frank; Buck, Danielle; De Winter, Josine; Kolb, Justin; Meng, Hui; Birch, Camille; Slater, Rebecca; Escobar, Yael Natelie; Smith, John E.; Yang, Lin; Konhilas, John; Lawlor, Michael W.; Ottenheijm, Coen; Granzier, Henk L.

    2015-01-01

    Nebulin is a giant filamentous protein that is coextensive with the actin filaments of the skeletal muscle sarcomere. Nebulin mutations are the main cause of nemaline myopathy (NEM), with typical adult patients having low expression of nebulin, yet the roles of nebulin in adult muscle remain poorly understood. To establish nebulin's functional roles in adult muscle, we studied a novel conditional nebulin KO (Neb cKO) mouse model in which nebulin deletion was driven by the muscle creatine kinase (MCK) promotor. Neb cKO mice are born with high nebulin levels in their skeletal muscles, but within weeks after birth nebulin expression rapidly falls to barely detectable levels Surprisingly, a large fraction of the mice survive to adulthood with low nebulin levels (<5% of control), contain nemaline rods and undergo fiber-type switching toward oxidative types. Nebulin deficiency causes a large deficit in specific force, and mechanistic studies provide evidence that a reduced fraction of force-generating cross-bridges and shortened thin filaments contribute to the force deficit. Muscles rich in glycolytic fibers upregulate proteolysis pathways (MuRF-1, Fbxo30/MUSA1, Gadd45a) and undergo hypotrophy with smaller cross-sectional areas (CSAs), worsening their force deficit. Muscles rich in oxidative fibers do not have smaller weights and can even have hypertrophy, offsetting their specific-force deficit. These studies reveal nebulin as critically important for force development and trophicity in adult muscle. The Neb cKO phenocopies important aspects of NEM (muscle weakness, oxidative fiber-type predominance, variable trophicity effects, nemaline rods) and will be highly useful to test therapeutic approaches to ameliorate muscle weakness. PMID:26123491

  6. Sodium and Potassium Fluxes in Isolated Barnacle Muscle Fibers

    PubMed Central

    Brinley, F. J.

    1968-01-01

    Sodium and potassium influxes and outfluxes have been studied in single isolated muscle fibers from the giant barnacle both by microinjection and by external loading. The sodium influxes and outfluxes were 49 and 39 pmoles /cm2-sec (temperature = 15–16°C) respectively. The potassium influxes and outfluxes were 28 and 60 pmoles/cm2-sec (temperature = 13–16°C) respectively. Replacement of external sodium by lithium reduced sodium outflux by 67% but had no effect on potassium outflux. Removal of external potassum reduced the sodium outflux by 51% but had no effect on potassium outflux. External strophanthidin (10–30 µM) reduced sodium outflux by 80–90% and increased potassium outflux by 40% in normal fibers. The time constant for sodium exchange increased linearly with internal sodium concentration, as did the fraction of sodium outflux insensitive to a maximally inhibitory concentration of external strophanthidin in the range of 10 tO 80 mM internal sodium. The strophanthidin-sensitive component of sodium outflux could be related to the internal sodium concentration by the following empirical formula: See PDF for Equation PMID:5651768

  7. Effect of passive stretching on the immobilized soleus muscle fiber morphology.

    PubMed

    Coutinho, E L; Gomes, A R S; França, C N; Oishi, J; Salvini, T F

    2004-12-01

    The aim of the present study was to determine the effect of stretching applied every 3 days to the soleus muscle immobilized in the shortened position on muscle fiber morphology. Eighteen 16-week-old Wistar rats were used and divided into three groups of 6 animals each: a) the left soleus muscle was immobilized in the shortened position for 3 weeks; b) during immobilization, the soleus was stretched for 40 min every 3 days; c) the non-immobilized soleus was only stretched. Left and right soleus muscles were examined. One portion of the soleus was frozen for histology and muscle fiber area evaluation, while the other portion was used to identify the number and length of serial sarcomeres. Immobilized muscles (group A) showed a significant decrease in weight (44 +/- 6%), length (19 +/- 7%), serial sarcomere number (23 +/- 15%), and fiber area (37 +/- 31%) compared to the contralateral muscles (P < 0.05, paired Student t-test). The immobilized and stretched soleus (group B) showed a similar reduction but milder muscle fiber atrophy compared to the only immobilized group (22 +/- 40 vs 37 +/- 31%, respectively; P < 0.001, ANOVA test). Muscles submitted only to stretching (group C) significantly increased the length (5 +/- 2%), serial sarcomere number (4 +/- 4%), and fiber area (16 +/- 44%) compared to the contralateral muscles (P < 0.05, paired Student t-test). In conclusion, stretching applied every 3 days to immobilized muscles did not prevent the muscle shortening, but reduced muscle atrophy. Stretching sessions induced hypertrophic effects in the control muscles. These results support the use of muscle stretching in sports and rehabilitation.

  8. Impaired electro-genesis in skeletal muscle fibers of transgenic Alzheimer mice.

    PubMed

    Mukhamedyarov, Marat Alexandrovich; Volkov, Evgeniy Mikhailovich; Khaliullina, Dilyara Fanisovna; Grigoryev, Pavel Nikolaevich; Zefirov, Andrey Lvovich; Palotás, András

    2014-01-01

    Alzheimer's disease (AD) is characterized by memory decline, but is often associated with non-cognitive symptoms, including muscular dysfunction. In the majority of cases these motor disturbances are seen when other neuro-degenerative disorders such as Parkinson's disease overlap dementia, however these can also be directly related to AD itself. Although the patho-mechanism remains largely unclear, β-amyloid peptide (βAP) is thought to be a key role-player in both the brain and periphery. Here we studied the electro-genesis of skeletal muscle fibers in a mouse transgenic AD model. Membrane potential was recorded by standard electro-physiological techniques. Compared to wild-type rodents, AD mice show severe disturbances in skeletal muscle electro-genesis manifested by significant depolarization of myo-fibers. These changes are not affected by short-term βAP treatment, the mark of a chronic degenerative process in the periphery directly related to AD whereby ion pumps on muscle membranes exhibit reduced activity. This phenomenon may explain ionic imbalance and cellular dysfunction both in the neuro-muscular system and in the brain. The observed motor disturbances might play a key role in impaired activities of daily living, and addressing the muscular patho-physiology could improve quality of life in AD.

  9. Quantitative determination of type I myosin heavy chain in bovine muscle with anti myosin monoclonal antibodies.

    PubMed

    Picard, B; Leger, J; Robelin, J

    1994-01-01

    Bovine type I muscle fibers were characterized by enzyme-linked immunosorbent assay (ELISA) with a monoclonal antibody specific for slow myosin heavy chains (MHC 1). Two bovine muscles, the Masseter and Cutaneus trunci, were analyzed by different complementary techniques: electrophoresis, immunoblotting and immunohistiology. The results showed that the two muscles have extreme characteristics. The Masseter contains only slow MHC and the Cutaneus trunci is composed solely of rapid MHC (MHC 2a and 2b). A standard for this ELISA was obtained by mixing the two muscles and was used as a reference in the determination of the percentage of MHC 1 in a given muscle. In this study, the Longissimus thoracis of 27 Charolais cattle were examined. The different conditions under which assays were carried out were described and the accuracy of the measurement was calculated. In view of the results, ELISA was chosen for the analysis of muscle fiber types in large numbers of animal specimens. This technique could be used in several research projects to study the muscle characteristics that determine beef quality. PMID:22061628

  10. Muscle fatigue examined at different temperatures in experiments on intact mammalian (rat) muscle fibers

    PubMed Central

    Roots, H.; Ball, G.; Talbot-Ponsonby, J.; King, M.; McBeath, K.; Ranatunga, K. W.

    2009-01-01

    In experiments on small bundles of intact fibers from a rat fast muscle, in vitro, we examined the decline in force in repeated tetanic contractions; the aim was to characterize the effect of shortening and of temperature on the initial phase of muscle fatigue. Short tetanic contractions were elicited at a control repetition rate of 1/60 s, and fatigue was induced by raising the rate to 1/5 s for 2–3 min, both in isometric mode (no shortening) and in shortening mode, in which each tetanic contraction included a ramp shortening at a standard velocity. In experiments at 20°C (n = 12), the force decline during a fatigue run was 25% in the isometric mode but was significantly higher (35%) in the shortening mode. In experiments at different temperatures (10–30°C, n = 11), the tetanic frequency and duration were adjusted as appropriate, and for shortening mode, the velocity was adjusted for maximum power output. In isometric mode, fatigue of force was significantly less at 30°C (∼20%) than at 10°C (∼30%); the power output (force × velocity) was >10× higher at 30°C than at 10°C, and power decline during a fatigue run was less at 30°C (∼20–30%) than at 10°C (∼50%). The finding that the extent of fatigue is increased with shortening contractions and is lower at higher temperatures is consistent with the view that force depression by inorganic phosphate, which accumulates within fibers during activity, may be a primary cause of initial muscle fatigue. PMID:19057001

  11. Mild Hyperbaric Oxygen Improves Decreased Oxidative Capacity of Spinal Motoneurons Innervating the Soleus Muscle of Rats with Type 2 Diabetes.

    PubMed

    Takemura, Ai; Ishihara, Akihiko

    2016-09-01

    Rats with type 2 diabetes exhibit decreased oxidative capacity, such as reduced oxidative enzyme activity, low-intensity staining for oxidative enzymes in fibers, and no high-oxidative type IIA fibers, in the skeletal muscle, especially in the soleus muscle. In contrast, there are no data available concerning the oxidative capacity of spinal motoneurons innervating skeletal muscle of rats with type 2 diabetes. This study examined the oxidative capacity of motoneurons innervating the soleus muscle of non-obese rats with type 2 diabetes. In addition, this study examined the effects of mild hyperbaric oxygen at 1.25 atmospheres absolute with 36 % oxygen for 10 weeks on the oxidative capacity of motoneurons innervating the soleus muscle because mild hyperbaric oxygen improves the decreased oxidative capacity of the soleus muscle in non-obese rats with type 2 diabetes. Spinal motoneurons innervating the soleus muscle were identified using nuclear yellow, a retrograde fluorescent neuronal tracer. Thereafter, the cell body sizes and succinate dehydrogenase activity of identified motoneurons were analyzed. Decreased succinate dehydrogenase activity of small-sized alpha motoneurons innervating the soleus muscle was observed in rats with type 2 diabetes. The decreased succinate dehydrogenase activity of these motoneurons was improved by mild hyperbaric oxygen. Therefore, we concluded that rats with type 2 diabetes have decreased oxidative capacity in motoneurons innervating the soleus muscle and this decreased oxidative capacity is improved by mild hyperbaric oxygen.

  12. Effect of spaceflight on the maximal shortening velocity, morphology, and enzyme profile of fast- and slow-twitch skeletal muscle fibers in rhesus monkeys

    NASA Technical Reports Server (NTRS)

    Fitts, R. H.; Romatowski, J. G.; De La Cruz, L.; Widrick, J. J.; Desplanches, D.

    2000-01-01

    Weightlessness has been shown to cause limb muscle wasting and a reduced peak force and power in the antigravity soleus muscle. Despite a reduced peak power, Caiozzo et al. observed an increased maximal shortening velocity in the rat soleus muscle following a 14-day space flight. The major purpose of the present investigation was to determine if weightlessness induced an elevated velocity in the antigravity slow type I fibers of the rhesus monkey (Macaca mulatta), as well as to establish a cellular mechanism for the effect. Spaceflight or models of weightlessness have been shown to increase glucose uptake, elevate muscle glycogen content, and increase fatigability of the soleus muscle. The latter appears to be in part caused by a reduced ability of the slow oxidative fibers to oxidize fats. A second goal of this study was to establish the extent to which weightlessness altered the substrate profile and glycolytic and oxidative enzyme capacity of individual slow- and fast-twitch fibers.

  13. Sarcomere Length and Tension Changes in Tetanized Frog Muscle Fibers after Quick Stretches and Releases

    NASA Astrophysics Data System (ADS)

    Sugi, Haruo; Kobayashi, Takakazu

    1983-10-01

    The sarcomere length changes in tetanized frog muscle fibers in response to quick fiber length changes were examined along the fiber length with a high-sensitivity laser diffraction technique. The experiments were only performed with muscle fibers in which the uniform orientation and sarcomere length of the component myofibrils were well preserved during a tetanus. When the sarcomere length changes were recorded near the fixed fiber end, the delay of the onset of sarcomere length change in response to the applied fiber length change tended to be longer than that of the onset of tension changes recorded at the fixed fiber end. The magnitude of sarcomere length changes was larger near the moving fiber end than near the fixed fiber end. In the case of quick releases, the resulting sarcomere shortening tended to outlast the fiber shortening, so that the quick tension recovery started during the sarcomere shortening. These results indicate (i) that the tension changes in response to quick fiber length changes may not give direct information about the cross-bridge properties and (ii) that the viscoelastic multisegmental nature of muscle fibers should be taken into consideration in interpreting the tension responses to quick length changes.

  14. Effect of growth-promoting technologies on Longissimus lumborum muscle fiber morphometrics, collagen solubility, and cooked meat tenderness.

    PubMed

    Ebarb, S M; Drouillard, J S; Maddock-Carlin, K R; Phelps, K J; Vaughn, M A; Burnett, D D; Van Bibber-Krueger, C L; Paulk, C B; Grieger, D M; Gonzalez, J M

    2016-02-01

    The objective of the study was to examine the effect of growth-promoting technologies (GP) on Longissimus lumborum steak tenderness, muscle fiber cross-sectional area (CSA), and collagen solubility. Crossbred feedlot heifers ( = 33; initial BW 464 ± 6 kg) were blocked by BW and assigned to 1 of 3 treatments: no GP (CON; = 11); implant, no zilpaterol hydrochloride (IMP; = 11); implant and zilpaterol hydrochloride (COMBO; = 11). Heifers assigned to receive an implant were administered Component TE-200 on d 0 of the study, and the COMBO group received 8.3 mg/kg DM of zilpaterol hydrochloride for the final 21 d of feeding with a 3 d withdrawal period. Following harvest, strip loins were collected and fabricated into 4 roasts and aged for 3, 14, 21, or 35 d postmortem. Fiber type was determined by immunohistochemistry. After aging, objective tenderness and collagen solubility were measured. There was a treatment × day of aging (DOA) interaction for Warner-Bratzler shear force (WBSF; < 0.01). At d 3 of aging, IMP and COMBO steaks had greater WBSF than CON steaks ( < 0.01). By d 14 of aging, the WBSF of IMP steaks was not different ( = 0.21) than CON steaks, but COMBO steaks had greater shear values than steaks of other treatments ( < 0.02). The COMBO steaks only remained tougher ( = 0.04) than the CON steaks following 35 DOA. Compared to CON muscles, IMP and COMBO type I and IIX muscle fibers were larger ( < 0.03). Treatment, DOA, or the two-way interactions did not impact measures of total and insoluble collagen ( > 0.31). Soluble collagen amount tended to be affected ( 0.06) by a treatment × DOA interaction which was due to COMBO muscle having more soluble collagen than the other 2 treatments on d 21 of aging ( < 0.02). Correlation analysis indicated that type I, IIA, and IIX fiber CSA are positively correlated with WBSF at d 3 and 14 of aging ( < 0.01), but only type IIX fibers are correlated at d 21 and 35 of aging ( < 0.03). At these time periods, total and

  15. Differences in muscle fiber size and associated energetic costs in phylogenetically paired tropical and temperate birds.

    PubMed

    Jimenez, Ana Gabriela; Williams, Joseph B

    2014-01-01

    Tropical and temperate birds provide a unique system to examine mechanistic consequences of life-history trade-offs at opposing ends of the pace-of-life spectrum; tropical birds tend to have a slow pace of life whereas temperate birds the opposite. Birds in the tropics have a lower whole-animal basal metabolic rate and peak metabolic rate, lower rates of reproduction, and longer survival than birds in temperate regions. Although skeletal muscle has a relatively low tissue-specific metabolism at rest, it makes up the largest fraction of body mass and therefore contributes more to basal metabolism than any other tissue. A principal property of muscle cells that influences their rate of metabolism is fiber size. The optimal fiber size hypothesis attempts to link whole-animal basal metabolic rate to the cost of maintaining muscle mass by stating that larger fibers may be metabolically cheaper to maintain since the surface area∶volume ratio (SA∶V) is reduced compared with smaller fibers and thus the amount of area to transport ions is also reduced. Because tropical birds have a reduced whole-organism metabolism, we hypothesized that they would have larger muscle fibers than temperate birds, given that larger muscle fibers have reduced energy demand from membrane Na(+)-K(+) pumps. Alternatively, smaller muscle fibers could result in a lower capacity for shivering and exercise. To test this idea, we examined muscle fiber size and Na(+)-K(+)-ATPase activity in 16 phylogenetically paired species of tropical and temperate birds. We found that 3 of the 16 paired comparisons indicated that tropical birds had significantly larger fibers, contrary to our hypothesis. Our data show that SA∶V is proportional to Na(+)-K(+)-ATPase activity in muscles of birds.

  16. Histotopographical study of human periocular elastic fibers using aldehyde-fuchsin staining with special reference to the sleeve and pulley system for extraocular rectus muscles.

    PubMed

    Osanai, Hajime; Murakami, Gen; Ohtsuka, Aiji; Suzuki, Daisuke; Nakagawa, Takashi; Tatsumi, Haruyuki

    2009-09-01

    The aim of this study was to investigate the detailed configuration of periocular elastic fibers. Semiserial paraffin sections were made using 40 whole orbital contents from 27 elderly cadavers and stained by the aldehyde-fuchsin method. Periocular tissues were classified into three types according to directions of the elastic fibers, i.e., tissues containing anteroposteriorly running elastic fibers, those with mediolateral fibers, and those with meshwork of fibers. Anteroposterior elastic fiber-dominant tissue was seen in the upper eyelid and newly defined pulley plate for the medial and lateral recti (MR, LR). Mediolateral fibers were predominant in the central part of the inferior rectus pulley. In the pulley plates for the MR and LR, anteroposteriorly running fibers encased the striated muscle. Tenon's capsule and the epimysium of the recti were mediolateral fiber-dominant. However, at the entrance of the muscle terminal where Tenon's capsule reflects and continues to the epimysium, composite elastic fibers provided a meshwork-like skeleton. The elastic mesh was also seen around the lacrimal canaliculi. The pulley for the recti seemed to be composed of two parts--a connective tissue plate encasing the recti and specialized Tenon's capsule at an entrance or porta of the muscle. For both parts, elastic fibers were major functional components. The anteroposterior elastic fibers in the MR and LR pulley plates, especially, seemed to receive anteroposteriorly directed stress and tension from these striated muscles. The elastic interfaces seemed to prevent any concentration of stress that would interfere with periocular striated muscle functions, including hypothetical active pulleys.

  17. Ephrin-A3 promotes and maintains slow muscle fiber identity during postnatal development and reinnervation

    PubMed Central

    Stark, Danny A.; Coffey, Nathan J.; Pancoast, Hannah R.; Arnold, Laura L.; Walker, J. Peyton D.; Vallée, Joanne; Robitaille, Richard; Garcia, Michael L.

    2015-01-01

    Each adult mammalian skeletal muscle has a unique complement of fast and slow myofibers, reflecting patterns established during development and reinforced via their innervation by fast and slow motor neurons. Existing data support a model of postnatal "matching" whereby predetermined myofiber type identity promotes pruning of inappropriate motor axons, but no molecular mechanism has yet been identified. We present evidence that fiber type–specific repulsive interactions inhibit innervation of slow myofibers by fast motor axons during both postnatal maturation of the neuromuscular junction and myofiber reinnervation after injury. The repulsive guidance ligand ephrin-A3 is expressed only on slow myofibers, whereas its candidate receptor, EphA8, localizes exclusively to fast motor endplates. Adult mice lacking ephrin-A3 have dramatically fewer slow myofibers in fast and mixed muscles, and misexpression of ephrin-A3 on fast myofibers followed by denervation/reinnervation promotes their respecification to a slow phenotype. We therefore conclude that Eph/ephrin interactions guide the fiber type specificity of neuromuscular interactions during development and adult life. PMID:26644518

  18. Caloric restriction induces energy-sparing alterations in skeletal muscle contraction, fiber composition and local thyroid hormone metabolism that persist during catch-up fat upon refeeding

    PubMed Central

    De Andrade, Paula B. M.; Neff, Laurence A.; Strosova, Miriam K.; Arsenijevic, Denis; Patthey-Vuadens, Ophélie; Scapozza, Leonardo; Montani, Jean-Pierre; Ruegg, Urs T.; Dulloo, Abdul G.; Dorchies, Olivier M.

    2015-01-01

    Weight regain after caloric restriction results in accelerated fat storage in adipose tissue. This catch-up fat phenomenon is postulated to result partly from suppressed skeletal muscle thermogenesis, but the underlying mechanisms are elusive. We investigated whether the reduced rate of skeletal muscle contraction-relaxation cycle that occurs after caloric restriction persists during weight recovery and could contribute to catch-up fat. Using a rat model of semistarvation-refeeding, in which fat recovery is driven by suppressed thermogenesis, we show that contraction and relaxation of leg muscles are slower after both semistarvation and refeeding. These effects are associated with (i) higher expression of muscle deiodinase type 3 (DIO3), which inactivates tri-iodothyronine (T3), and lower expression of T3-activating enzyme, deiodinase type 2 (DIO2), (ii) slower net formation of T3 from its T4 precursor in muscles, and (iii) accumulation of slow fibers at the expense of fast fibers. These semistarvation-induced changes persisted during recovery and correlated with impaired expression of transcription factors involved in slow-twitch muscle development. We conclude that diminished muscle thermogenesis following caloric restriction results from reduced muscle T3 levels, alteration in muscle-specific transcription factors, and fast-to-slow fiber shift causing slower contractility. These energy-sparing effects persist during weight recovery and contribute to catch-up fat. PMID:26441673

  19. Determining all parameters necessary to build Hill-type muscle models from experiments on single muscles.

    PubMed

    Blümel, Marcus; Hooper, Scott L; Guschlbauerc, Christoph; White, William E; Büschges, Ansgar

    2012-11-01

    Characterizing muscle requires measuring such properties as force-length, force-activation, and force-velocity curves. These characterizations require large numbers of data points because both what type of function (e.g., linear, exponential, hyperbolic) best represents each property, and the values of the parameters in the relevant equations, need to be determined. Only a few properties are therefore generally measured in experiments on any one muscle, and complete characterizations are obtained by averaging data across a large number of muscles. Such averaging approaches can work well for muscles that are similar across individuals. However, considerable evidence indicates that large inter-individual variation exists, at least for some muscles. This variation poses difficulties for across-animal averaging approaches. Methods to fully describe all muscle's characteristics in experiments on individual muscles would therefore be useful. Prior work in stick insect extensor muscle has identified what functions describe each of this muscle's properties and shown that these equations apply across animals. Characterizing these muscles on an individual-by-individual basis therefore requires determining only the values of the parameters in these equations, not equation form. We present here techniques that allow determining all these parameter values in experiments on single muscles. This technique will allow us to compare parameter variation across individuals and to model muscles individually. Similar experiments can likely be performed on single muscles in other systems. This approach may thus provide a widely applicable method for characterizing and modeling muscles from single experiments.

  20. Influences of temperature, oxidative stress, and phosphorylation on binding of heat shock proteins in skeletal muscle fibers.

    PubMed

    Larkins, Noni T; Murphy, Robyn M; Lamb, Graham D

    2012-09-15

    Heat shock proteins (HSPs) help maintain cellular function in stressful situations, but the processes controlling their interactions with target proteins are not well defined. This study examined the binding of HSP72, HSP25, and αB-crystallin in skeletal muscle fibers following various stresses. Rat soleus (SOL) and extensor digitorum longus (EDL) muscles were subjected in vitro to heat stress or strongly fatiguing stimulation. Superficial fibers were "skinned" by microdissection and HSP diffusibility assessed from the extent of washout following 10- to 30 min exposure to a physiological intracellular solution. In fibers from nonstressed (control) SOL muscle, >80% of each HSP is readily diffusible. However, after heating a muscle to 40°C for 30 min ∼95% of HSP25 and αB-crystallin becomes tightly bound at nonmembranous myofibrillar sites, whereas HSP72 bound at membranous sites only after heat treatment to ≥44°C. The ratio of reduced to oxidized cytoplasmic glutathione (GSH:GSSG) decreased approximately two- and fourfold after heating muscles to 40° and 45°C, respectively. The reducing agent dithiothreitol reversed HSP72 binding in heated muscles but had no effect on the other HSPs. Intense in vitro stimulation of SOL muscles, sufficient to elicit substantial oxidation-related loss of maximum force and approximately fourfold decrease in the GSH:GSSG ratio, had no effect on diffusibility of any of the HSPs. When skinned fibers from heat-treated muscles were bathed with additional exogenous HSP72, total binding increased approximately two- and 10-fold, respectively, in SOL and EDL fibers, possibly reflective of the relative sarco(endo)plasmic reticulum Ca(2+)-ATPase pump densities in the two fiber types. Phosphorylation at Ser59 on αB-crystallin and Ser85 on HSP25 increased with heat treatment but did not appear to determine HSP binding. The findings highlight major differences in the processes controlling binding of HSP72 and the two small HSPs. Binding

  1. Dystrophic skeletal muscle fibers display alterations at the level of calcium microdomains

    PubMed Central

    DiFranco, Marino; Woods, Christopher E.; Capote, Joana; Vergara, Julio L.

    2008-01-01

    The spatiotemporal properties of the Ca2+-release process in skeletal muscle fibers from normal and mdx fibers were determined using the confocal-spot detection technique. The Ca2+ indicator OGB-5N was used to record action potential-evoked fluorescence signals at consecutive locations separated by 200 nm along multiple sarcomeres of FDB fibers loaded with 10- and 30-mM EGTA. Three-dimensional reconstructions of fluorescence transients demonstrated the existence of microdomains of increased fluorescence around the Ca2+-release sites in both mouse strains. The Ca2+ microdomains in mdx fibers were regularly spaced along the fiber axis, displaying a distribution similar to that seen in normal fibers. Nevertheless, both preparations differed in that in 10-mM EGTA Ca2+ microdomains had smaller amplitudes and were wider in mdx fibers than in controls. In addition, Ca2+-dependent fluorescence transients recorded at selected locations within the sarcomere of mdx muscle fibers were not only smaller, but also slower than their counterparts in normal fibers. Notably, differences in the spatial features of the Ca2+ microdomains recorded in mdx and normal fibers, but not in the amplitude and kinetics of the Ca2+ transients, were eliminated in 30-mM EGTA. Our results consistently demonstrate that Ca2+-release flux calculated from release sites in mdx fibers is uniformly impaired with respect to those normal fibers. The Ca2+-release reduction is consistent with that previously measured using global detection techniques. PMID:18787128

  2. ATP decreases mechanical sensitivity of muscle thin-fiber afferents in rats.

    PubMed

    Matsuda, Teru; Kubo, Asako; Taguchi, Toru; Mizumura, Kazue

    2015-08-01

    ATP is an energy rich substance contained in cells in the order of mM. It is released when cells are damaged and when muscle is compressed or contracted. Subcutaneous injection of ATP induces pain-related behavior and hyperalgesia to mechanical and heat stimulation in rats. However, the effects of ATP in muscle have not been fully studied. In the present study we examined the effects of ATP on muscle C-fiber afferent activities using single fiber recordings, and on nociceptive behavior. Muscle C-fiber activities were recorded in vitro using extensor digitorum longus muscle-common peroneal nerve preparations excised from rats deeply anesthetized with pentobarbital. ATP (100 μM and 1 mM, but not 1 μM) superfused for 5 min before the mechanical stimulation suppressed the mechanical responses of muscle thin fibers irrespective of whether they excited the fiber. This suppressive effect was reversed by P2X receptor antagonists PPADS (100 μM) and suramin (300 μM). We also found that subcutaneous injection of ATP (10 mM) induced nociceptive behavior, whereas intramuscular injection had no effect. These findings showed that effects of ATP on muscle afferents differ from those on cutaneous afferents.

  3. Imaging mass spectrometry reveals fiber-specific distribution of acetylcarnitine and contraction-induced carnitine dynamics in rat skeletal muscles.

    PubMed

    Furuichi, Yasuro; Goto-Inoue, Naoko; Manabe, Yasuko; Setou, Mitsutoshi; Masuda, Kazumi; Fujii, Nobuharu L

    2014-10-01

    Carnitine is well recognized as a key regulator of long-chain fatty acyl group translocation into the mitochondria. In addition, carnitine, as acetylcarnitine, acts as an acceptor of excess acetyl-CoA, a potent inhibitor of pyruvate dehydrogenase. Here, we provide a new methodology for accurate quantification of acetylcarnitine content and determination of its localization in skeletal muscles. We used matrix-assisted laser desorption/ionization imaging mass spectrometry (MALDI-IMS) to visualize acetylcarnitine distribution in rat skeletal muscles. MALDI-IMS and immunohistochemistry of serial cross-sections showed that acetylcarnitine was enriched in the slow-type muscle fibers. The concentration of ATP was lower in muscle regions with abundant acetylcarnitine, suggesting a relationship between acetylcarnitine and metabolic activity. Using our novel method, we detected an increase in acetylcarnitine content after muscle contraction. Importantly, this increase was not detected using traditional biochemical assays of homogenized muscles. We also demonstrated that acetylation of carnitine during muscle contraction was concomitant with glycogen depletion. Our methodology would be useful for the quantification of acetylcarnitine and its contraction-induced kinetics in skeletal muscles.

  4. Laser ablation of Drosophila embryonic motoneurons causes ectopic innervation of target muscle fibers

    NASA Technical Reports Server (NTRS)

    Chang, T. N.; Keshishian, H.

    1996-01-01

    We have tested the effects of neuromuscular denervation in Drosophila by laser-ablating the RP motoneurons in intact embryos before synaptogenesis. We examined the consequences of this ablation on local synaptic connectivity in both 1st and 3rd instar larvae. We find that the partial or complete loss of native innervation correlates with the appearance of alternate inputs from neighboring motor endings and axons. These collateral inputs are found at ectopic sites on the denervated target muscle fibers. The foreign motor endings are electrophysiologically functional and are observed on the denervated muscle fibers by the 1st instar larval stage. Our data are consistent with the existence of a local signal from the target environment, which is regulated by innervation and influences synaptic connectivity. Our results show that, despite the stereotypy of Drosophila neuromuscular connections, denervation can induce local changes in connectivity in wild-type Drosophila, suggesting that mechanisms of synaptic plasticity may also be involved in normal Drosophila neuromuscular development.

  5. Protein turnover and cellular stress in mildly and severely affected muscles from patients with limb girdle muscular dystrophy type 2I.

    PubMed

    Hauerslev, Simon; Sveen, Marie L; Vissing, John; Krag, Thomas O

    2013-01-01

    Patients with Limb girdle muscular dystrophy type 2I (LGMD2I) are characterized by progressive muscle weakness and wasting primarily in the proximal muscles, while distal muscles often are spared. Our aim was to investigate if wasting could be caused by impaired regeneration in the proximal compared to distal muscles. Biopsies were simultaneously obtained from proximal and distal muscles of the same patients with LGMD2I (n = 4) and healthy subjects (n = 4). The level of past muscle regeneration was evaluated by counting internally nucleated fibers and determining actively regenerating fibers by using the developmental markers embryonic myosin heavy chain (eMHC) and neural cell adhesion molecule (NCAM) and also assessing satellite cell activation status by myogenin positivity. Severe muscle histopathology was occasionally observed in the proximal muscles of patients with LGMD2I whereas distal muscles were always relatively spared. No difference was found in the regeneration markers internally nucleated fibers, actively regenerating fibers or activation status of satellite cells between proximal and distal muscles. Protein turnover, both synthesis and breakdown, as well as cellular stress were highly increased in severely affected muscles compared to mildly affected muscles. Our results indicate that alterations in the protein turnover and myostatin levels could progressively impair the muscle mass maintenance and/or regeneration resulting in gradual muscular atrophy.

  6. [A case of Isaac's syndrome--continuous muscle fiber activity syndrome].

    PubMed

    Kuwasaki, N; Shoji, H; Tominaga, H; Kaji, M; Nonaka, K

    1986-06-01

    A 34-year-old woman noted difficulty of gait initiation, then dilated finger opening and hyperhidrosis appeared. Her stature was a muscular habitus, and muscle stiffness and myokymia were found in all muscles of the extremities. Her stiffness persisted during sleep. Her calf muscles were large and a contracture was noticed in ankle joints. There was no evidence of wasting and weakness. A remarkable delay in voluntary relaxation of the contracted muscles without percussion myotonia was recognized. Tendon reflexes of lower extremities were absent. Laboratory examination revealed elevation of CPK, LDH, myoglobulin, aldolase and basal metabolic rate (BMR). An extraband of CPK isoenzyme between MB and MM fraction was observed. The thin layer gel filtration technique and immunofixation technique showed that this extraband was complexes of CPK and IgA, and light chain of the CPK linked IgA was lambda type. All other laboratory tests were normal for the following: urinalysis, ESR, a blood count, liver function, kidney function, glucose, rheumatoid factor, CRP, thyroid function, parathyroid function, serum electrolytes, ECG, EEG, cranial CT, without slight elevation of IgA, and CSF protein. In needle EMG and surface EMG spontaneous discharges were recorded at rest. These discharges consist of normal motor unit potentials, doublets, and triplets in needle EMG. The discharges were markedly reduced after the median nerve block with xylocaine. In needle EMG, myotonic discharge was not observed. Nerve conduction velocities were within normal ranges. According to these data, she was diagnosed as having Issacs' syndrome (continuous muscle fiber activity syndrome). Carbamazepine, 200 mg daily was administrated and showed a dramatic reversal of the symptoms.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:3730194

  7. Muscle fibers in the central nervous system of nemerteans: spatial organization and functional role.

    PubMed

    Petrov, A A; Zaitseva, O V

    2012-08-01

    The system of muscle fibers associated with the brain and lateral nerve cords is present in all major groups of enoplan nemerteans. Unfortunately, very little is known about the functional role and spatial arrangement of these muscles of the central nervous system. This article examines the architecture of the musculature of the central nervous system in two species of monostiliferous nemerteans (Emplectonema gracile and Tetrastemma cf. candidum) using phalloidin staining and confocal microscopy. The article also briefly discusses the body-wall musculature and the muscles of the cephalic region. In both species, the lateral nerve cords possess two pairs of cardinal muscles that run the length of the nerve cords and pass through the ventral cerebral ganglia. A system of peripheral muscles forms a meshwork around the lateral nerve cords in E. gracile. The actin-rich processes that ramify within the nerve cords in E. gracile (transverse fibers) might represent a separate population of glia-like cells or sarcoplasmic projections of the peripheral muscles of the central nervous system. The lateral nerve cords in T. cf. candidum lack peripheral muscles but have muscles similar in their position and orientation to the transverse fibers. The musculature of the central nervous system is hypothesized to function as a support system for the lateral nerve cords and brain, preventing rupturing and herniation of the nervous tissue during locomotion. The occurrence of muscles of the central nervous system in nemerteans and other groups and their possible relevance in taxonomy are discussed.

  8. Electrophysiological characteristics of motor units and muscle fibers in trained and untrained young male subjects.

    PubMed

    Duez, Lene; Qerama, Erisela; Fuglsang-Frederiksen, Anders; Bangsbo, Jens; Jensen, Troels S

    2010-08-01

    We hypothesized that the amplitudes of compound muscle action potentials (CMAPs) and interference pattern analysis (IPA) would be larger in trained subjects compared with untrained subjects, possibly due to hypertrophy of muscle fibers and/or increased central drive. Moreover, we hypothesized that the untrained muscle is less excitable compared with the trained muscle. An electromyographic (EMG) needle electrode was used to record the IPA at maximal voluntary effort. The CMAP was obtained by stimulating the musculocutaneous nerve and recording the brachial biceps muscle using surface electrodes. CMAPs were obtained by direct muscle stimulation (DMS) with two stainless-steel subdermal electrodes placed subcutaneously in the distal third of the muscle. Amplitudes of CMAP and IPA were significantly larger in trained subjects compared with untrained subjects. We found no differences between trained and untrained subjects in IPA power spectrum and turns per second or amplitude of the CMAPs obtained by DMS. Muscle fiber hypertrophy and/or altered central drive may account for our results, but there was no indication of changes in muscle fiber excitability. PMID:20544918

  9. Cold exposure increases slow-type myosin heavy chain 1 (MyHC1) composition of soleus muscle in rats.

    PubMed

    Mizunoya, Wataru; Iwamoto, Yohei; Sato, Yusuke; Tatsumi, Ryuichi; Ikeuchi, Yoshihide

    2014-03-01

    The aim of this study was to examine the effects of cold exposure on rat skeletal muscle fiber type, according to myosin heavy chain (MyHC) isoform and metabolism-related factors. Male Wistar rats (7 weeks old) were housed individually at 4 ± 2°C as a cold-exposed group or at room temperature (22 ± 2°C) as a control group for 4 weeks. We found that cold exposure significantly increased the slow-type MyHC1 content in the soleus muscle (a typical slow-type fiber), while the intermediate-type MyHC2A content was significantly decreased. In contrast to soleus, MyHC composition of extensor digitorum longus (EDL, a typical fast-type fiber) and gastrocnemius (a mix of slow-type and fast-type fibers) muscle did not change from cold exposure. Cold exposure increased mRNA expression of mitochondrial uncoupling protein 3 (UCP3) in both the soleus and EDL. Cold exposure also increased mRNA expression of myoglobin, peroxisome proliferator-activated receptor gamma coactivator 1α (PGC1α) and forkhead box O1 (FOXO1) in the soleus. Upregulation of UCP3 and PGC1α proteins were observed with Western blotting in the gastrocnemius. Thus, cold exposure increased metabolism-related factors in all muscle types that were tested, but MyHC isoforms changed only in the soleus.

  10. Muscle activation of paraspinal muscles in different types of high heels during standing.

    PubMed

    Han, Dongwook

    2015-01-01

    [Purpose] This study researched the effects of different types of high heels on the muscles surrounding the cervical spine, the thoracic spine, and the lumbar spine by analyzing muscle activation of the paraspinal muscles during standing while wearing high heels. The high heels were all of the same height: 8 cm. [Subjects and Methods] The 28 subjects in this experiment were females in their 20s with a foot size of 225-230 mm and a normal gait pattern. To measure the muscle activation of the paraspinal muscles, EMG electrodes were attached on the paraspinal muscles around C6, T7, and L5. The muscle activation during standing while wearing 8-cm-high wedge heels, setback heels, and French heels was then measured. The measurements were performed 3 times each, and the mean value was used for analysis. [Results] The levels of muscle activation of the paraspinal muscles induced by standing on wedge heels, setback heels, and French heels in the cervical and lumbar areas were significantly higher than those induced by standing on bare feet. But there was no significant difference according to the heel types. [Conclusion] The height of the heels presented a greater variable than the width of the heels on the muscle activation of paraspinal muscles. Therefore, wearing high heels is not recommended for those who have pain or functional problems in the cervical and/or lumbar spine.

  11. Muscle activation of paraspinal muscles in different types of high heels during standing

    PubMed Central

    Han, Dongwook

    2015-01-01

    [Purpose] This study researched the effects of different types of high heels on the muscles surrounding the cervical spine, the thoracic spine, and the lumbar spine by analyzing muscle activation of the paraspinal muscles during standing while wearing high heels. The high heels were all of the same height: 8 cm. [Subjects and Methods] The 28 subjects in this experiment were females in their 20s with a foot size of 225–230 mm and a normal gait pattern. To measure the muscle activation of the paraspinal muscles, EMG electrodes were attached on the paraspinal muscles around C6, T7, and L5. The muscle activation during standing while wearing 8-cm-high wedge heels, setback heels, and French heels was then measured. The measurements were performed 3 times each, and the mean value was used for analysis. [Results] The levels of muscle activation of the paraspinal muscles induced by standing on wedge heels, setback heels, and French heels in the cervical and lumbar areas were significantly higher than those induced by standing on bare feet. But there was no significant difference according to the heel types. [Conclusion] The height of the heels presented a greater variable than the width of the heels on the muscle activation of paraspinal muscles. Therefore, wearing high heels is not recommended for those who have pain or functional problems in the cervical and/or lumbar spine. PMID:25642040

  12. Role of cell type in net lactate removal by skeletal muscle

    SciTech Connect

    Pagliassotti, M.J.; Donovan, C.M. )

    1990-04-01

    Net lactate uptake and subsequent pathways for removal were studied in three rabbit skeletal muscle preparations of distinct fiber type composition, i.e., glycolytic (99.1 +/- 0.2% type IIb fibers), oxidative (97.5 +/- 0.6% type I fibers), and mixed (type I, IIa, and IIb fibers). Single-pass perfusions were carried out for 3 h in the presence of glucose, lactate, and (U-14C)lactate. Lactate levels, initially set at either 1 mM (n = 4/prep) or 2 mM (n = 4/prep), were elevated twice during the perfusion at 60 and 120 min. Net lactate uptake (mumol.100 g-1.min-1) was first observed in the oxidative preparation, 1.4 +/- 0.2, at an arterial lactate concentration of approximately 2.5 mM, whereas net lactate uptake in the glycolytic, 0.7 +/- 0.2, and mixed preparations, 7.0 +/- 0.5, was first observed at 4 mM. Net lactate balance, (14C)lactate removal, and 14CO2 release demonstrated strong linear correlations (r = 0.94-0.98) with arterial lactate concentration. To quantify the fate of (14C)lactate, preparations were perfused at a single elevated lactate concentration (approximately 8 mM) for 2 h. Oxidation was the primary means of disposal in the oxidative and mixed preparations, whereas glyconeogenesis dominated removal in the glycolytic preparation. The arterial lactate concentration at which a given muscle switches from net production to net removal, the rate of removal, and subsequent pathway(s) for disposal are a function of that muscle's fiber type composition.

  13. Spaceflight and growth effects on muscle fibers in the rhesus monkey

    NASA Technical Reports Server (NTRS)

    Bodine-Fowler, Sue C.; Roy, Roland R.; Rudolph, William; Haque, Naz; Kozlovskaia, Inessa B.; Edgerton, V. R.

    1992-01-01

    The effect of a 14-day spaceflight onboard Cosmos 2044 on selected morphological and metabolic properties of single muscle fibers was investigated in a nonhuman primate, Macaca mulatta. It is concluded that the 14-day spaceflight had little impact on fiber size in the soleus (S) and medial gastrocnemius (MG) muscles, whereas it appeared to be a slight decrease in sized in the tibialis anterior (TA). The mean fiber size in the postflight biopsies increased relative to preflight values. The mean fiber succinate dehydrogenase activity was found to decrease in the MG, whereas there was no apparent effect of spaceflight on the s and ta muscles. The differences in response of the S, MG, and TA to spaceflight in monkeys vs rats may be related to a species responsiveness to spaceflight, the manner in which the animals were restrained, and/or the possibility that the ankle musculature was able to function against a load while in space.

  14. The role of nitric oxide in muscle fibers with oxidative phosphorylation defects

    SciTech Connect

    Tengan, Celia H. . E-mail: chtengan@neuro.epm.br; Kiyomoto, Beatriz H.; Godinho, Rosely O.; Gamba, Juliana; Neves, Afonso C.; Schmidt, Beny; Oliveira, Acary S.B.; Gabbai, Alberto A.

    2007-08-03

    NO has been pointed as an important player in the control of mitochondrial respiration, especially because of its inhibitory effect on cytochrome c oxidase (COX). However, all the events involved in this control are still not completely elucidated. We demonstrate compartmentalized abnormalities on nitric oxide synthase (NOS) activity on muscle biopsies of patients with mitochondrial diseases. NOS activity was reduced in the sarcoplasmic compartment in COX deficient fibers, whereas increased activity was found in the sarcolemma of fibers with mitochondrial proliferation. We observed increased expression of neuronal NOS (nNOS) in patients and a correlation between nNOS expression and mitochondrial content. Treatment of skeletal muscle culture with an NO donor induced an increase in mitochondrial content. Our results indicate specific roles of NO in compensatory mechanisms of muscle fibers with mitochondrial deficiency and suggest the participation of nNOS in the signaling process of mitochondrial proliferation in human skeletal muscle.

  15. [The effect of caldesmon and tropomyosin from smooth muscles on the motility of myosin head in ghost muscle fibers].

    PubMed

    Borovikov, Iu S; Novak, E; Dabrowska, R

    1990-08-01

    The effects of caldesmon and smooth muscle tropomyosin on the motility of myosin subfragment I (SI) modified by N-(iodoacetyl)-N'-(1-naphtyl-5-sulfo)-ethylenediamine (1.5-IAEDANS) was studied in myosin-, troponin- and tropomyosin-free rabbit ghost muscle fibers using the polarized microphotometry technique. It was found that the fluorescence anisotropy initiated by the 1.5-IAEDANS-SI arrangement in the fibers is higher in the presence of tropomyosin than in its absence. Caldesmon diminishes the fluorescence anisotropy of the fibers. Data from a kinetic analysis suggest that the motility of fluorophores in the presence of tropomyosin in thin filaments is markedly decreased. Caldesmon weakens the effect of tropomyosin on the fluorescent label motility. It was supposed that caldesmon and tropomyosin initiate conformational changes in myosin heads which are accompanied by loosening or strengthening of their bonds with F-actin, respectively. Caldesmon inhibits the effect induced by tropomyosin.

  16. Subcellular distribution of phospholipids in different types of skeletal muscle.

    PubMed

    Domonkos, J; Heiner, L; Vargha, M

    1975-01-01

    Subcellular distribution of choline and non-choline phosphatides has been studied in tetanic (fast-twitch) and tonic (slow-twitch) muscles of rabbits. The choline phosphatide content of the subcellular fraction including the sarcolemma was greater in the tetanic than in the tonic muscle. On the other hand, the choline phosphatide content of the mitochondria-free sarcoplasmic fraction was greater in the tonic than in the tetanic muscle. A greater amount of non-choline phosphatide was found in each subcellular fraction of the tonic muscle as compared with those of the tetanic one. There was more fatty aldehyde in the non-choline phosphatides of each subcellular fraction of the tetanic muscle, than in those of the tonic one, of this type being much smaller in the tetanic muscle. There is not such an expressed difference in the fatty aldehyde contents of choline phosphatides of the subcellular fractions between the two kinds of muscle.

  17. [Fiber morphometry of the external intercostal muscle. Comparison of dominant and nondominant sides in patients with severe COPD].

    PubMed

    Jiménez-Fuentes, M A; Gea, J; Pallás, O; Gallego, F; Félez, M A; Broquetas, J M

    1998-04-01

    The general morphometric characteristics of the external intercostal muscle (EIM) of patients with chronic respiratory disease have been well described. Because this muscle is highly accessible, it can provide an ideal model for longitudinal studies using consecutive biopsies of both sides. Whether or not the EIM fiber phenotype is homogeneous on dominant (D) and non dominant (ND) sides is unknown, however. To evaluate possible structural differences in right and left EIM in patients with COPD, eight patients (63 +/- 7 years of age) were enrolled. Lung function, respiratory muscle power, general muscle power and nutritional state were evaluated. Biopsies of the fifth EIM were taken from both sides. Specimens were processed in parallel manner to determine conventional morphometry (hematoxylin-eosin staining), including minimum diameter (Dm) and fiber area (Ar) in cross sections. Fibers were typed by ATPase (at pH 4.2, 4.6 and 9.4) and NADH-TR staining. Nutrition was normal in all patients. All patients had severe COPD (FEV1 27 +/- 7% of reference, limits 13 to 38% of reference) with air entrapment (RV 163 +/- 36% of reference, limits 181 to 276% of reference). None of the patients showed respiratory insufficiency at rest (PaO2 72 +/- 7 mmHg). Peripheral musculoskeletal power measured by manual dynamometer showed no significant right-left differences: D 29 +/- 2 and ND 28 +/- 3 dynes. Morphometric study of 16 muscle specimens showed no significant differences between fiber size on D and ND sides. DmD was 47 +/- 10 microns and ArD, was 2,595 +/- 1,249 microns2. DmD was 49 +/- 9 microns and ArD was 2,636 +/- 953 microns2. Likewise, no significant differences were found between D and ND fiber types: type ID 51 +/- 4% and type IID 49 +/- 5% versus type IND 52 +/- 4% and type IIND 48 +/- 4%. EIM on N and ND sides is homogeneous at the fifth intercostal space. This finding, along with the scarcely invasive nature of the technique for collecting specimens leads us to

  18. Artificial muscles of dielectric elastomers attached to artificial tendons of functionalized carbon fibers

    NASA Astrophysics Data System (ADS)

    Ye, Zhihang; Faisal, Md. Shahnewaz Sabit; Asmatulu, Ramazan; Chen, Zheng

    2014-03-01

    Dielectric elastomers are soft actuation materials with promising applications in robotics and biomedical de- vices. In this paper, a bio-inspired artificial muscle actuator with artificial tendons is developed for robotic arm applications. The actuator uses dielectric elastomer as artificial muscle and functionalized carbon fibers as artificial tendons. A VHB 4910 tape is used as the dielectric elastomer and PDMS is used as the bonding material to mechanically connect the carbon fibers to the elastomer. Carbon fibers are highly popular for their high electrical conductivities, mechanical strengths, and bio-compatibilities. After the acid treatments for the functionalization of carbon fibers (500 nm - 10 μm), one end of carbon fibers is spread into the PDMS material, which provides enough bonding strength with other dielectric elastomers, while the other end is connected to a DC power supply. To characterize the actuation capability of the dielectric elastomer and electrical conductivity of carbon fibers, a diaphragm actuator is fabricated, where the carbon fibers are connected to the actuator. To test the mechanical bonding between PDMS and carbon fibers, specimens of PDMS bonded with carbon fibers are fabricated. Experiments have been conducted to verify the actuation capability of the dielectric elastomer and mechanical bonding of PDMS with carbon fibers. The energy efficiency of the dielectric elastomer increases as the load increases, which can reach above 50%. The mechanical bonding is strong enough for robotic arm applications.

  19. Matrix metalloproteinase-2 ablation in dystrophin-deficient mdx muscles reduces angiogenesis resulting in impaired growth of regenerated muscle fibers.

    PubMed

    Miyazaki, Daigo; Nakamura, Akinori; Fukushima, Kazuhiro; Yoshida, Kunihiro; Takeda, Shin'ichi; Ikeda, Shu-ichi

    2011-05-01

    Matrix metalloproteases (MMPs) are a family of endopeptidases classified into subgroups based on substrate preference in normal physiological processes such as embryonic development and tissue remodeling, as well as in various disease processes via degradation of extracellular matrix components. Among the MMPs, MMP-9 and MMP-2 have been reported to be up-regulated in skeletal muscles in the lethal X-linked muscle disorder Duchenne muscular dystrophy (DMD), which is caused by loss of dystrophin. A recent study showed that deletion of the MMP9 gene in mdx, a mouse model for DMD, improved skeletal muscle pathology and function; however, the role of MMP-2 in the dystrophin-deficient muscle is not well known. In this study, we aimed at verifying the role of MMP-2 in the dystrophin-deficient muscle by using mdx mice with genetic ablation of MMP-2 (mdx/MMP-2(-/-)). We found impairment of regenerated muscle fiber growth with reduction of angiogenesis in mdx/MMP-2(-/-) mice at 3 months of age. Expression of vascular endothelial growth factor-A (VEGF-A), an important angiogenesis-related factor, decreased in mdx/MMP-2(-/-) mice at 3 months of age. MMP-2 had not a critical role in the degradation of dystrophin-glycoprotein complex (DGC) components such as β-dystroglycan and β-sarcoglycan in the regeneration process of the dystrophic muscle. Accordingly, MMP-2 may be essential for growth of regenerated muscle fibers through VEGF-associated angiogenesis in the dystrophin-deficient skeletal muscle.

  20. PGC-1α is important for maintaining the balance of muscle mass and myofiber types in unloaded muscle atrophy

    NASA Astrophysics Data System (ADS)

    Chen, Xiaoping; He, Jian; Wang, Fei; Zhang, Peng; Liu, Hongju; Li, Wenjiong

    2016-07-01

    maintaining the balance of muscle mass and myofiber type MHCs in unloaded muscle atrophy via suppressing Smad3 activation. This report may prompt a hopeful therapeutic strategy for maintaining muscle mass and fiber type composition in disused muscle atrophies such as space weightlessness- or immobilization-induced muscle atrophy. Acknowledgments This work was supported by the Natural Sciences Foundation of China (31171144, 81272177 and 31171148), the State Key Laboratory Grant of Space Medicine Fundamentals and Application (SMFA13A01), and the National Key Laboratory Grant of Human Factors Engineering (SYFD140051801).

  1. Muscle cell membranes from early degeneration muscle cell fibers in Solenopsis are leaky to lanthanum: electron microscopy and X-ray analysis

    SciTech Connect

    Jones, R.G.; Davis, W.L.

    1985-06-01

    Lanthanum infusion techniques, transmission electron microscopy, and X-ray microanalysis were utilized to compare the permeability of muscle cell membranes from normal and degenerating muscle fibers of Solenopsis spp. In normal fibers, the electron-dense tracer was limited to components of the sarcotubular system. However, the insemination-induced degeneration of muscle fibers was characterized by the presence of an electron-dense precipitate within the myofibrils and mitochondria as well as in the extramyofibrillar spaces. The electron-dense material was subsequently identified by elemental analysis to be lanthanum. Such data indicate that one of the earliest stages of muscle degeneration involves an alteration in cell membrane permeability.

  2. The effects of short-term exercise training on peak-torque are time- and fiber-type dependent.

    PubMed

    Ureczky, Dóra; Vácz, Gabriella; Costa, Andreas; Kopper, Bence; Lacza, Zsombor; Hortobágyi, Tibor; Tihanyi, József

    2014-08-01

    We examined the susceptibility of fast and slow twitch muscle fibers in the quadriceps muscle to eccentric exercise-induced muscle damage. Nine healthy men (age: 22.5 ± 1.6 years) performed maximal eccentric quadriceps contractions at 120°·s-1 over a 120° of knee joint range of motion for 6 consecutive days. Biopsies were taken from the vastus lateralis muscle before repeated bouts of eccentric exercise on the third and seventh day. Immunohistochemical procedures were used to determine fiber composition and fibronectin activity. Creatine kinase (CK) and lactate dehydrogenase (LDH) were determined in serum. Average torque was calculated in each day for each subject. Relative to baseline, average torque decreased 37.4% till day 3 and increased 43.0% from the day 3 to day 6 (p < 0.001). Creatine kinase and LDH were 70.6 and 1.5 times higher on day 3 and 75.5 and 1.4 times higher on day 6. Fibronectin was found in fast fibers in subjects with high CK level on day 3 and 7 after exercise, but on day 7, fibronectin seemed in both slow and fast fibers except in muscles of 2 subjects with high fast fiber percentage. Peak torque and muscle fiber-type composition measured at baseline showed a strong positive association on day 3 (r = 0.76, p < 0.02) and strong negative association during recovery between day 3 and day 6 (r = -0.76, p < 0.02), and day 1 and day 6 (r = 0.84, p < 0.001). We conclude that the damage of fast fibers preceded the damage of slow fibers, and muscles with slow fiber dominance were more susceptible to repeated bouts of eccentric exercise than fast fiber dominance muscles. The data suggest that the responses to repeated bouts of eccentric exercise are fiber-type-dependent in the quadriceps muscle, which can be the basis for the design of individualized strength training protocols.

  3. Effects of exogenous porcine somatotropin administration between 30 and 60 kilograms on longissimus muscle fiber morphology and meat tenderness of pigs grown to 90 kilograms.

    PubMed

    Solomon, M B; Campbell, R G; Steele, N C; Caperna, T J

    1991-02-01

    Twenty-four barrows were used to investigate the effects of exogenous porcine somatotropin (pST) administration (0 and 100 micrograms.kg-1.d-1) between 30 and 60 kg on longissimus muscle morphology and meat tenderness of pigs grown to 90 kg. Administration of pST was by daily i.m. injection. Pigs were fed a fortified diet in restricted amounts between 30 and 60 kg and had ad libitum access to this diet from 60 to 90 kg. Excipient pigs had fewer alpha R fibers and more alpha W fibers than pST-treated pigs (P less than .05). Administration of pST increased (P less than .05) muscle fiber area for all three fiber types at both the 60 kg (34%) and 90 kg (29%) slaughter weights. Furthermore, pST administration increased shear-force (30% at 60 kg; 19% at 90 kg) of the longissimus muscle, indicating that pST administration reduced meat tenderness. All the pST-treated pigs exhibited the "giant fiber syndrome" and a high proportion (62%) of pST-treated pigs exhibited pale, soft, exudative muscle. Whether the giant fiber anomaly resulted from increased muscle protein accretion rate or fiber degeneration is unknown. Results indicated that the stimulatory effects of pST on muscle growth are sustained following cessation of hormone treatment. However, the incidence of pale, soft, exudative muscle in 62% of the pST-treated pigs indicates that pST potentially has undesirable side effects.

  4. A novel optical imaging system for investigating sarcomere dynamics in single skeletal muscle fibers

    NASA Astrophysics Data System (ADS)

    Panchangam, Appaji; Witte, Russell S.; Claflin, Dennis R.; O'Donnell, Matthew; Faulkner, John A.

    2006-02-01

    The protein substructure of skeletal muscle fibers forms a diffraction grating with repeating units, termed 'sarcomeres'. A laser scanning system is described that maps the lengths of sarcomeres (SL) and the widths of the first-order diffraction lines (DLW) of permeabilized single fibers in real-time. The apparatus translates a laser beam (λ = 670 nm and w 0 = ~75 μm) along the length of a fiber segment through 20 contiguous regions per sweep at 500 sweeps/s. The fiber segments (~1 mm long) were obtained from vastus lateralis muscles of humans by needle biopsy. During both passive stretches and maximum fixed-end activations, the mappings of SL and DLW of the fibers were extracted from the diffraction spectra. Heterogeneity of SLs was evaluated by computing the standard deviation ( σ SL) of the 20 SLs measured during a single sweep. Compared with the σ SL before a passive stretch, the increase of 5+/-0.5% in σ SL after the passive stretch, indicated differences in passive length-tension relationships along the fiber. In contrast, no change, ~0.5+/-0.1%, was observed in DLW. Within 10s after the fiber was returned to its initial length, the shape of the SL profile returned close to pre-stretch conditions ( σ SL = 1+/- 0.2%). Following maximum Ca 2+ - activation of the fiber, the heterogeneity of the steady state SLs increased greatly (DLW up by ~300% and σ SL up by ~100%). The scanning system provided high resolution tracking of sarcomere behavior single muscle fibers. Potential applications are for studies of the mechanisms of muscle fiber injury and injury propagation.

  5. Validation of Hill-Type Muscle Models in Relation to Neuromuscular Recruitment and Force–Velocity Properties: Predicting Patterns of In Vivo Muscle Force

    PubMed Central

    Biewener, Andrew A.; Wakeling, James M.; Lee, Sabrina S.; Arnold, Allison S.

    2014-01-01

    We review here the use and reliability of Hill-type muscle models to predict muscle performance under varying conditions, ranging from in situ production of isometric force to in vivo dynamics of muscle length change and force in response to activation. Muscle models are frequently used in musculoskeletal simulations of movement, particularly when applied to studies of human motor performance in which surgically implanted transducers have limited use. Musculoskeletal simulations of different animal species also are being developed to evaluate comparative and evolutionary aspects of locomotor performance. However, such models are rarely validated against direct measures of fascicle strain or recordings of muscle–tendon force. Historically, Hill-type models simplify properties of whole muscle by scaling salient properties of single fibers to whole muscles, typically accounting for a muscle’s architecture and series elasticity. Activation of the model’s single contractile element (assigned the properties of homogenous fibers) is also simplified and is often based on temporal features of myoelectric (EMG) activation recorded from the muscle. Comparison of standard one-element models with a novel two-element model and with in situ and in vivo measures of EMG, fascicle strain, and force recorded from the gastrocnemius muscles of goats shows that a two-element Hill-type model, which allows independent recruitment of slow and fast units, better predicts temporal patterns of in situ and in vivo force. Recruitment patterns of slow/fast units based on wavelet decomposition of EMG activity in frequency–time space are generally correlated with the intensity spectra of the EMG signals, the strain rates of the fascicles, and the muscle–tendon forces measured in vivo, with faster units linked to greater strain rates and to more rapid forces. Using direct measures of muscle performance to further test Hill-type models, whether traditional or more complex, remains critical

  6. Life-Long Wheel Running Attenuates Age-Related Fiber Loss in the Plantaris Muscle of Mice: a Pilot Study.

    PubMed

    Suwa, M; Ishioka, T; Kato, J; Komaita, J; Imoto, T; Kida, A; Yokochi, T

    2016-06-01

    The purpose of this study was to investigate whether long-term wheel running would attenuate age-related loss of muscle fiber. Male ICR mice were divided into young (Y, n=12, aged 3 months), old-sedentary (OS, n=5, aged 24 months), and old-exercise (OE, n=6, aged 24 months) groups. The OE group started spontaneous wheel running at 3 months and continued until 24 months of age. Soleus and plantaris muscles were fixed in 4% paraformaldehyde buffer. The fixed muscle was digested in a 50% NaOH solution to isolate single fiber and then fiber number was quantified. The masses of the soleus and plantaris muscles were significantly lower at 24 months than at 3 months of age, and this age-related difference was attenuated by wheel running (P<0.05). Soleus muscle fiber number did not differ among the groups. In the plantaris muscle, the fiber number in the OS group (1 288±92 fibers) was significantly lower than in the Y group (1 874±93 fibers), and this decrease was attenuated in the OE group (1 591±80 fibers) (P<0.05). These results suggest that age-related fiber loss occurs only in the fast-twitch fiber-rich muscle of mice, and that life-long wheel running exercise can prevent this fiber loss.

  7. Different types of extrafusal muscle fibres in snake costocutaneous muscles

    PubMed Central

    Ridge, R. M. A. P.

    1971-01-01

    1. Tonic and twitch muscle fibres were identified physiologically in m. costocutanei superiores and inferiores of garter snakes and grass snakes. 2. Tonic fibres were multiterminally innervated and showed s.j.p.s in response to nerve stimulation. They did not show propagated A.P.s. They were innervated by motor axons with lower conduction velocities than those to twitch fibres, and often gave a contraction and developed tension in response to a single shock to the nerve. Intracellular square pulse analysis showed that Cm = 1 μF/cm2 and Rm = 40,000 Ω cm2. 3. Twitch fibres showed a conducted action potential in response to nerve stimulation, and focal, as opposed to diffuse, innervation. They showed a variety of isometric twitch contraction times (times-to-peak of about 30-65 msec). Groups of similar motor units contained fibres of approximately similar contraction times. Slow twitch (and tonic) fibres often appeared silvery under dark field illumination, while faster twitch fibres appeared clear. No difference in Cm, Rm or λ was found between faster and slow twitch fibres. Values were approximately 3-4 μF/cm2, 3000-4000 Ω cm2 and 2 mm respectively. ImagesFig. 6 PMID:5097606

  8. Effect of tongue exercise on protrusive force and muscle fiber area in aging rats

    PubMed Central

    Connor, Nadine P.; Russell, John A.; Wang, Hao; Jackson, Michelle A.; Mann, Laura; Kluender, Keith R.

    2008-01-01

    Purpose Age-related changes in tongue function may contribute to dysphagia in elderly people. Our purpose was to investigate whether aged rats that have undergone tongue exercise would manifest increased protrusive tongue forces and increased genioglossus (GG) muscle fiber cross sectional areas. Method Forty-eight young adult, middle-aged and old Fischer 344/Brown Norway rats received 8 weeks of tongue exercise. Protrusive tongue forces were measured before and after exercise. GG muscle fiber cross sectional area was measured in exercised rats and compared with cross sectional areas in a no-exercise control group. Results A significant increase in maximum tongue force was found following exercise in all age groups. In addition, a trend for increased GG muscle fiber cross sectional area, and a significant increase in variability of GG muscle fiber cross sectional area were identified post-exercise. Conclusion The findings of this study have implications for treatment of elderly persons with dysphagia using tongue exercise programs. Specifically, increases in tongue force that occur following 8 weeks of progressive resistance tongue exercise may be accompanied by alterations in tongue muscle fiber morphology. These changes may provide greater strength and endurance for goal-oriented actions associated with the oropharyngeal swallow and should be investigated in future research. PMID:18723593

  9. Quantitative Diffusion Tensor MRI-Based Fiber Tracking of Human Skeletal Muscle

    PubMed Central

    Lansdown, Drew A.; Ding, Zhaohua; Wadington, Megan; Hornberger, Jennifer L.; Damon, Bruce M.

    2015-01-01

    Diffusion-tensor MRI (DT-MRI) offers great potential for understanding structure-function relationships in human skeletal muscles. The purposes of this study were to demonstrate the feasibility of using in vivo human DT-MRI fiber tracking data for making pennation angle measurements and to test the hypothesis that heterogeneity in the orientation of the tibialis anterior (TA) muscle’s aponeurosis would lead to heterogeneity in pennation angle. Eight healthy subjects (5 male) were studied. T1-weighted anatomical MRI and DT-MRI data were acquired of the TA muscle. Fibers were tracked from the TA’s aponeurosis by following the principal eigenvector. The orientations of the aponeurosis and muscle fiber tracts in the laboratory frame of reference and the orientation of the fiber tracts with respect to the aponeurosis (i.e., the pennation angle, θ) were determined. The muscle fiber orientations, when expressed relative to the laboratory frame of reference, did not change as functions of superior-to-inferior position. The sagittal and coronal orientations of the aponeurosis did not change in practically significant manners either, but the aponeurosis’ axial orientation changed by ~40°. As a result, the mean value for θ decreased from 16.3 (SD 6.9) to 11.4 (SD 5.0)° along the muscle’s superior-to-inferior direction. The mean value of θ was greater in the deep than in the superficial compartment. We conclude that pennation angle measurements of human muscle made using DT-MRI muscle fiber tracking are feasible and reveal that in the foot-head direction, there is heterogeneity in the pennation properties of the human TA muscle. PMID:17446411

  10. Magnetic field of a single muscle fiber. First measurements and a core conductor model.

    PubMed Central

    van Egeraat, J M; Friedman, R N; Wikswo, J P

    1990-01-01

    We present the first measurements of the magnetic field from a single muscle fiber of the frog gastrocnemius, obtained by using a toroidal pickup coil coupled to a room-temperature, low-noise amplifier. The axial currents associated with the magnetic fields of single fibers were biphasic and had peak-to-peak amplitudes ranging between 50 and 100 nA, depending primarily on the fiber radius. With an intracellular microelectrode, we measured the action potential of the same fiber, which allowed us to determine that the intracellular conductivity of the muscle fiber in the core conductor approximation was 0.20 +/- 0.09 S/m. Similarly, we found that the effective membrane capacitance was 0.030 +/- 0.011 F/m2. These results were not significantly affected by the anisotropic conductivity of the muscle bundle. We demonstrate how our magnetic technique can be used to determine the transmembrane action potential without penetrating the membrane with a microelectrode, thereby offering a reliable, stable, and atraumatic method for studying contracting muscle fibers. PMID:2306511

  11. In Inclusion-Body Myositis Muscle Fibers Parkinson-Associated DJ-1 is Increased and Oxidized

    PubMed Central

    Terracciano, Chiara; Nogalska, Anna; Engel, W. King; Wojcik, Slawomir; Askanas, Valerie

    2008-01-01

    Sporadic inclusion-body myositis (s-IBM) is the most common muscle disease of older persons. The muscle-fiber molecular phenotype exhibits similarities to both Alzheimer-disease (AD) and Parkinson-disease (PD) brains, including accumulations of amyloid-β, phosphorylated tau, α-synuclein and parkin, as well as evidence of oxidative stress and mitochondrial abnormalities. Early-onset autosomal-recessive PD can be caused by mutations in the DJ-1 gene, leading to its inactivation. DJ-1 has anti-oxidative and mitochondrial-protective properties. In AD and PD brains, DJ-1 is increased and oxidized. We studied DJ-1 in 17 s-IBM and 18 disease-control and normal muscle biopsies by: 1) immunoblots of muscle homogenates and mitochondrial fractions; 2) real-time PCR; 3) oxyblots evaluating DJ-1 oxidation; 4) light- and electron-microscopic immunocytochemistry. Compared to controls, in s-IBM muscle fibers DJ-1 was: a) increased in the soluble fraction, monomer 2-fold (p=0.01), and dimer 2.8-fold (p=0.004); b) increased in the mitochondrial fraction; c) highly oxidized; and d) aggregated in about 15% of the abnormal muscle fibers. DJ-1 mRNA was increased 3.5-fold (p=0.034). Accordingly, DJ-1 might play a role in human muscle disease, and thus not be limited to human CNS degenerations. In s-IBM muscle fibers, DJ-1 could be protecting these fibers against oxidative stress, including protection of mitochondria. PMID:18601999

  12. High Intensity Training May Reverse the Fiber Type Specific Decline in Myogenic Stem Cells in Multiple Sclerosis Patients

    PubMed Central

    Farup, Jean; Dalgas, Ulrik; Keytsman, Charly; Eijnde, Bert O.; Wens, Inez

    2016-01-01

    Multiple sclerosis (MS) is associated with loss of skeletal muscle mass and function. The myogenic stem cells (satellite cells—SCs) are instrumental to accretion of myonuclei, but remain to be investigated in MS. The present study aimed to compare the SC and myonuclei content between MS patients (n = 23) and age matched healthy controls (HC, n = 18). Furthermore, the effects of 12 weeks of high intensity training on SC and myonuclei content were explored in MS. Muscle biopsies were obtained from m. Vastus Lateralis at baseline (MS and HC) and following 12 weeks of training (MS only). Frozen biopsies were sectioned followed by immunohistochemical analysis for fiber type specific SCs (Pax7+), myonuclei (MN) and central nuclei content and fiber cross-sectional area (fCSA) was quantified using ATPase histochemistry. At baseline the SCs per fiber was lower in type II compared to type I fibers in both MS (119%, p < 0.01) and HC (69%, p < 0.05), whereas the SCs per fCSA was lower in type II fibers compared to type I only in MS (72%, p < 0.05). No differences were observed in MN or central nuclei between MS and HC. Following training the type II fiber SCs per fiber and per fCSA in MS patients increased by 165% (p < 0.05) and 135% (p < 0.05), respectively. Furthermore, the type II fiber MN content tended (p = 0.06) to be increased by 35% following training. In conclusion, the SC content is lower in type II compared to type I fibers in both MS and HC. Furthermore, high intensity training was observed to selectively increase the SC and myonuclei content in type II fibers in MS patients. PMID:27303309

  13. Differential control of muscle mass in type 1 and type 2 diabetes mellitus.

    PubMed

    Sala, David; Zorzano, Antonio

    2015-10-01

    Diabetes mellitus--whether driven by insulin deficiency or insulin resistance--causes major alterations in muscle metabolism. These alterations have an impact on nutrient handling, including the metabolism of glucose, lipids, and amino acids, and also on muscle mass and strength. However, the ways in which the distinct forms of diabetes affect muscle mass differ greatly. The most common forms of diabetes mellitus are type 1 and type 2. Thus, whereas type 1 diabetic subjects without insulin treatment display a dramatic loss of muscle, most type 2 diabetic subjects show no changes or even an increase in muscle mass. However, the most commonly used rodent models of type 2 diabetes are characterized by muscle atrophy and do not mimic the features of the disease in humans in terms of muscle mass. In this review, we analyze the processes that are differentially regulated under these forms of diabetes and propose regulatory mechanisms to explain them.

  14. Comparison of Twice Refocused Spin Echo versus Stimulated Echo Diffusion Tensor Imaging for Tracking Muscle Fibers

    PubMed Central

    Noehren, Brian; Andersen, Anders; Feiweier, Thorsten; Damon, Bruce; Hardy, Peter

    2014-01-01

    Purpose To compare the precision of measuring the pennation angle and fiber length in the Vastus Lateralis (VL) using two distinctly different diffusion tensor imaging sequences. Materials and Methods We imaged the thigh of ten normal subjects on a 3T MR imager with twice refocused spin echo (TRSE) and stimulated echo (STEAM) DTI-MRI techniques. Both techniques took the same total acquisition time, employed the same diffusion weighting and gradient directions. Using the diffusion tensor images produced by each sequence muscle fiber bundles were tracked from the aponeurosis by following the first eigenvector of the diffusion tensor. From these tracks we calculated the pennation angle and fiber length. Results The STEAM acquisition resulted in significantly higher SNR, lower ADC, higher FA values and longer fibers than the TRSE. Although no difference in the pennation angle between the two acquisitions was found, the TRSE sequence had a significantly greater within subject dispersion in the pennation angle of tracked fibers which may indicate a reduction in the coherence of fiber bundles. Conclusion Diffusion tensor imaging of muscle using a STEAM acquisition resulted in significant improvements in the SNR and FA, resulting in tracking a larger number of muscle fiber bundles over longer distances and with less within subject dispersion. PMID:24554376

  15. Contraction and AICAR Stimulate IL-6 Vesicle Depletion From Skeletal Muscle Fibers In Vivo

    PubMed Central

    Lauritzen, Hans P.M.M.; Brandauer, Josef; Schjerling, Peter; Koh, Ho-Jin; Treebak, Jonas T.; Hirshman, Michael F.; Galbo, Henrik; Goodyear, Laurie J.

    2013-01-01

    Recent studies suggest that interleukin 6 (IL-6) is released from contracting skeletal muscles; however, the cellular origin, secretion kinetics, and signaling mechanisms regulating IL-6 secretion are unknown. To address these questions, we developed imaging methodology to study IL-6 in fixed mouse muscle fibers and in live animals in vivo. Using confocal imaging to visualize endogenous IL-6 protein in fixed muscle fibers, we found IL-6 in small vesicle structures distributed throughout the fibers under basal (resting) conditions. To determine the kinetics of IL-6 secretion, intact quadriceps muscles were transfected with enhanced green fluorescent protein (EGFP)-tagged IL-6 (IL-6-EGFP), and 5 days later anesthetized mice were imaged before and after muscle contractions in situ. Contractions decreased IL-6-EGFP–containing vesicles and protein by 62% (P < 0.05), occurring rapidly and progressively over 25 min of contraction. However, contraction-mediated IL-6-EGFP reduction was normal in muscle-specific AMP-activated protein kinase (AMPK) α2-inactive transgenic mice. In contrast, the AMPK activator AICAR decreased IL-6-EGFP vesicles, an effect that was inhibited in the transgenic mice. In conclusion, resting skeletal muscles contain IL-6–positive vesicles that are expressed throughout myofibers. Contractions stimulate the rapid reduction of IL-6 in myofibers, occurring through an AMPKα2-independent mechanism. This novel imaging methodology clearly establishes IL-6 as a contraction-stimulated myokine and can be used to characterize the secretion kinetics of other putative myokines. PMID:23761105

  16. AHNAK1 and AHNAK2 are costameric proteins: AHNAK1 affects transverse skeletal muscle fiber stiffness

    SciTech Connect

    Marg, Andreas; Haase, Hannelore; Neumann, Tanja; Kouno, Michiyoshi; Morano, Ingo

    2010-10-08

    Research highlights: {yields} AHNAK1 and AHNAK2 are costameric proteins. {yields} Intact membrane repair in AHNAK1-deficient mice. {yields} AHNAK1{sup -/-} single fibers have a higher transverse stiffness. -- Abstract: The AHNAK scaffold PDZ-protein family is implicated in various cellular processes including membrane repair; however, AHNAK function and subcellular localization in skeletal muscle are unclear. We used specific AHNAK1 and AHNAK2 antibodies to analyzed the detailed localization of both proteins in mouse skeletal muscle. Co-localization of AHNAK1 and AHNAK2 with vinculin clearly demonstrates that both proteins are components of the costameric network. In contrast, no AHNAK expression was detected in the T-tubule system. A laser wounding assay with AHNAK1-deficient fibers suggests that AHNAK1 is not involved in membrane repair. Using atomic force microscopy (AFM), we observed a significantly higher transverse stiffness of AHNAK1{sup -/-} fibers. These findings suggest novel functions of AHNAK proteins in skeletal muscle.

  17. Structural and functional properties of ryanodine receptor type 3 in zebrafish tail muscle.

    PubMed

    Perni, Stefano; Marsden, Kurt C; Escobar, Matias; Hollingworth, Stephen; Baylor, Stephen M; Franzini-Armstrong, Clara

    2015-03-01

    The ryanodine receptor (RyR)1 isoform of the sarcoplasmic reticulum (SR) Ca(2+) release channel is an essential component of all skeletal muscle fibers. RyR1s are detectable as "junctional feet" (JF) in the gap between the SR and the plasmalemma or T-tubules, and they are required for excitation-contraction (EC) coupling and differentiation. A second isoform, RyR3, does not sustain EC coupling and differentiation in the absence of RyR1 and is expressed at highly variable levels. Anatomically, RyR3 expression correlates with the presence of parajunctional feet (PJF), which are located on the sides of the SR junctional cisternae in an arrangement found only in fibers expressing RyR3. In frog muscle fibers, the presence of RyR3 and PJF correlates with the occurrence of Ca(2+) sparks, which are elementary SR Ca(2+) release events of the EC coupling machinery. Here, we explored the structural and functional roles of RyR3 by injecting zebrafish (Danio rerio) one-cell stage embryos with a morpholino designed to specifically silence RyR3 expression. In zebrafish larvae at 72 h postfertilization, fast-twitch fibers from wild-type (WT) tail muscles had abundant PJF. Silencing resulted in a drop of the PJF/JF ratio, from 0.79 in WT fibers to 0.03 in the morphants. The frequency with which Ca(2+) sparks were detected dropped correspondingly, from 0.083 to 0.001 sarcomere(-1) s(-1). The few Ca(2+) sparks detected in morphant fibers were smaller in amplitude, duration, and spatial extent compared with those in WT fibers. Despite the almost complete disappearance of PJF and Ca(2+) sparks in morphant fibers, these fibers looked structurally normal and the swimming behavior of the larvae was not affected. This paper provides important evidence that RyR3 is the main constituent of the PJF and is the main contributor to the SR Ca(2+) flux underlying Ca(2+) sparks detected in fully differentiated frog and fish fibers. PMID:25667412

  18. Type 2 diabetes mellitus and skeletal muscle metabolic function.

    PubMed

    Phielix, Esther; Mensink, Marco

    2008-05-23

    Type 2 diabetic patients are characterized by a decreased fat oxidative capacity and high levels of circulating free fatty acids (FFAs). The latter is known to cause insulin resistance, in particularly in skeletal muscle, by reducing insulin stimulated glucose uptake, most likely via accumulation of lipid inside the muscle cell. A reduced skeletal muscle oxidative capacity can exaggerate this. Furthermore, type 2 diabetes is associated with impaired metabolic flexibility, i.e. an impaired switching from fatty acid to glucose oxidation in response to insulin. Thus, a reduced fat oxidative capacity and metabolic inflexibility are important components of skeletal muscle insulin resistance. The cause of these derangements in skeletal muscle of type 2 diabetic patients remains to be elucidated. An impaired mitochondrial function is a likely candidate. Evidence from both in vivo and ex vivo studies supports the idea that an impaired skeletal muscle mitochondrial function is related to the development of insulin resistance and type 2 diabetes mellitus. A decreased mitochondrial oxidative capacity in skeletal muscle was revealed in diabetic patients, using in vivo 31-Phosphorus Magnetic Resonance Spectroscopy (31P-MRS). However, quantification of mitochondrial function using ex vivo high-resolution respirometry revealed opposite results. Future (human) studies should challenge this concept of impaired mitochondrial function underlying metabolic defects and prove if mitochondria are truly functional impaired in insulin resistance, or low in number, and whether it represents the primary starting point of pathogenesis of insulin resistance, or is just an other feature of the insulin resistant state. PMID:18342897

  19. STRETCHY ELECTRONICS. Hierarchically buckled sheath-core fibers for superelastic electronics, sensors, and muscles.

    PubMed

    Liu, Z F; Fang, S; Moura, F A; Ding, J N; Jiang, N; Di, J; Zhang, M; Lepró, X; Galvão, D S; Haines, C S; Yuan, N Y; Yin, S G; Lee, D W; Wang, R; Wang, H Y; Lv, W; Dong, C; Zhang, R C; Chen, M J; Yin, Q; Chong, Y T; Zhang, R; Wang, X; Lima, M D; Ovalle-Robles, R; Qian, D; Lu, H; Baughman, R H

    2015-07-24

    Superelastic conducting fibers with improved properties and functionalities are needed for diverse applications. Here we report the fabrication of highly stretchable (up to 1320%) sheath-core conducting fibers created by wrapping carbon nanotube sheets oriented in the fiber direction on stretched rubber fiber cores. The resulting structure exhibited distinct short- and long-period sheath buckling that occurred reversibly out of phase in the axial and belt directions, enabling a resistance change of less than 5% for a 1000% stretch. By including other rubber and carbon nanotube sheath layers, we demonstrated strain sensors generating an 860% capacitance change and electrically powered torsional muscles operating reversibly by a coupled tension-to-torsion actuation mechanism. Using theory, we quantitatively explain the complementary effects of an increase in muscle length and a large positive Poisson's ratio on torsional actuation and electronic properties. PMID:26206929

  20. STRETCHY ELECTRONICS. Hierarchically buckled sheath-core fibers for superelastic electronics, sensors, and muscles.

    PubMed

    Liu, Z F; Fang, S; Moura, F A; Ding, J N; Jiang, N; Di, J; Zhang, M; Lepró, X; Galvão, D S; Haines, C S; Yuan, N Y; Yin, S G; Lee, D W; Wang, R; Wang, H Y; Lv, W; Dong, C; Zhang, R C; Chen, M J; Yin, Q; Chong, Y T; Zhang, R; Wang, X; Lima, M D; Ovalle-Robles, R; Qian, D; Lu, H; Baughman, R H

    2015-07-24

    Superelastic conducting fibers with improved properties and functionalities are needed for diverse applications. Here we report the fabrication of highly stretchable (up to 1320%) sheath-core conducting fibers created by wrapping carbon nanotube sheets oriented in the fiber direction on stretched rubber fiber cores. The resulting structure exhibited distinct short- and long-period sheath buckling that occurred reversibly out of phase in the axial and belt directions, enabling a resistance change of less than 5% for a 1000% stretch. By including other rubber and carbon nanotube sheath layers, we demonstrated strain sensors generating an 860% capacitance change and electrically powered torsional muscles operating reversibly by a coupled tension-to-torsion actuation mechanism. Using theory, we quantitatively explain the complementary effects of an increase in muscle length and a large positive Poisson's ratio on torsional actuation and electronic properties.

  1. Hierarchically buckled sheath-core fibers for superelastic electronics, sensors, and muscles

    NASA Astrophysics Data System (ADS)

    Liu, Z. F.; Fang, S.; Moura, F. A.; Ding, J. N.; Jiang, N.; Di, J.; Zhang, M.; Lepró, X.; Galvão, D. S.; Haines, C. S.; Yuan, N. Y.; Yin, S. G.; Lee, D. W.; Wang, R.; Wang, H. Y.; Lv, W.; Dong, C.; Zhang, R. C.; Chen, M. J.; Yin, Q.; Chong, Y. T.; Zhang, R.; Wang, X.; Lima, M. D.; Ovalle-Robles, R.; Qian, D.; Lu, H.; Baughman, R. H.

    2015-07-01

    Superelastic conducting fibers with improved properties and functionalities are needed for diverse applications. Here we report the fabrication of highly stretchable (up to 1320%) sheath-core conducting fibers created by wrapping carbon nanotube sheets oriented in the fiber direction on stretched rubber fiber cores. The resulting structure exhibited distinct short- and long-period sheath buckling that occurred reversibly out of phase in the axial and belt directions, enabling a resistance change of less than 5% for a 1000% stretch. By including other rubber and carbon nanotube sheath layers, we demonstrated strain sensors generating an 860% capacitance change and electrically powered torsional muscles operating reversibly by a coupled tension-to-torsion actuation mechanism. Using theory, we quantitatively explain the complementary effects of an increase in muscle length and a large positive Poisson’s ratio on torsional actuation and electronic properties.

  2. Tropomodulin 1 directly controls thin filament length in both wild-type and tropomodulin 4-deficient skeletal muscle

    PubMed Central

    Gokhin, David S.; Ochala, Julien; Domenighetti, Andrea A.; Fowler, Velia M.

    2015-01-01

    The sarcomeric tropomodulin (Tmod) isoforms Tmod1 and Tmod4 cap thin filament pointed ends and functionally interact with the leiomodin (Lmod) isoforms Lmod2 and Lmod3 to control myofibril organization, thin filament lengths, and actomyosin crossbridge formation in skeletal muscle fibers. Here, we show that Tmod4 is more abundant than Tmod1 at both the transcript and protein level in a variety of muscle types, but the relative abundances of sarcomeric Tmods are muscle specific. We then generate Tmod4−/− mice, which exhibit normal thin filament lengths, myofibril organization, and skeletal muscle contractile function owing to compensatory upregulation of Tmod1, together with an Lmod isoform switch wherein Lmod3 is downregulated and Lmod2 is upregulated. However, RNAi depletion of Tmod1 from either wild-type or Tmod4−/− muscle fibers leads to thin filament elongation by ∼15%. Thus, Tmod1 per se, rather than total sarcomeric Tmod levels, controls thin filament lengths in mouse skeletal muscle, whereas Tmod4 appears to be dispensable for thin filament length regulation. These findings identify Tmod1 as the key direct regulator of thin filament length in skeletal muscle, in both adult muscle homeostasis and in developmentally compensated contexts. PMID:26586224

  3. In situ cross-linked electrospun fiber scaffold of collagen for fabricating cell-dense muscle tissue.

    PubMed

    Takeda, Naoya; Tamura, Kenichi; Mineguchi, Ryo; Ishikawa, Yumiko; Haraguchi, Yuji; Shimizu, Tatsuya; Hara, Yusuke

    2016-06-01

    Engineered muscle tissues used as transplant tissues in regenerative medicine should have a three-dimensional and cell-dense structure like native tissue. For fabricating a 3D cell-dense muscle tissue from myoblasts, we proposed the electrospun type I collagen microfiber scaffold of the string-shape like a harp. The microfibers were oriented in the same direction to allow the myoblasts to align, and were strung at low density with micrometer intervals to create space for the cells to occupy. To realize this shape of the scaffold, we employed in situ cross-linking during electrospinning process for the first time to collagen fibers. The collagen microfibers in situ cross-linked with glutaraldehyde stably existed in the aqueous media and completely retained the original shape to save the spaces between the fibers for over 14 days. On the contrary, the conventional cross-linking method by exposure to a glutaraldehyde aqueous solution vapor partially dissolved and damaged the fiber to lose a low-density shape of the scaffold. Myoblasts could penetrate into the interior of the in situ cross-linked string-shaped scaffold and form the cell-dense muscle tissues. Histochemical analysis showed the total area occupied by the cells in the cross section of the tissue was approximately 73 %. Furthermore, the resulting muscle tissue fabricated from primary myoblasts showed typical sarcomeric cross-striations and the entire tissue continuously pulsated by autonomous contraction. Together with the in situ cross-linking, the string-shaped scaffold provides an efficient methodology to fabricate a cell-dense 3D muscle tissue, which could be applied in regenerative medicine in future. PMID:26472433

  4. Sexual dimorphism in the histologic organization of the muscle fibers in human tongue.

    PubMed

    de Campos, Deivis; Jotz, Geraldo Pereira; Heck, Layana; Xavier, Léder Leal

    2014-07-01

    Tongue movements are critical for speech, swallowing, and respiration; and tongue dysfunction could lead to dysarthria, dysphagia, and obstructive sleep apnea, respectively. Our current understanding of the contributions of specific tongue muscles (TOs) to precise movement patterns is limited. Likewise, there is still little information regarding the orientation of histologic muscle fibers of the tongue in humans, especially between men and women. Thus, the aim of this study was to compare the histologic organization in the tongue of men and women. Ten tongues were studied in human specimens obtained from necropsies (five men and five women). The muscles were analyzed using histology, and the morphometric parameters were measured using Image Pro-Plus Software (Image Pro-Plus 6.0; Media Cybernetics, Silver Spring, MD). Slices were obtained from the anterior, median, and posterior parts of the tongue. We classified and estimated the percentages of transverse (T), oblique (O), and longitudinal (L) fibers in the tongue. To quantify the percentage of fibers in each category in the tongue, the shape coefficient (Shape Z) was estimated. Statistical differences were found between the orientation of the muscle fibers of men and women only for the middle region of the tongue. The middle region of the tongue in women compared with men has a smaller difference in the variation of the percentage of fibers T (P=0.0004), O (P=0.0006), and L (P=0.0013). These morphologic findings are probably related to physiological differences.

  5. Tmem2 regulates cell-matrix interactions that are essential for muscle fiber attachment.

    PubMed

    Ryckebüsch, Lucile; Hernandez, Lydia; Wang, Carole; Phan, Jenny; Yelon, Deborah

    2016-08-15

    Skeletal muscle morphogenesis depends upon interactions between developing muscle fibers and the extracellular matrix (ECM) that anchors fibers to the myotendinous junction (MTJ). The pathways that organize the ECM and regulate its engagement by cell-matrix adhesion complexes (CMACs) are therefore essential for muscle integrity. Here, we demonstrate the impact of transmembrane protein 2 (tmem2) on cell-matrix interactions during muscle morphogenesis in zebrafish. Maternal-zygotic tmem2 mutants (MZtmem2) exhibit muscle fiber detachment, in association with impaired laminin organization and ineffective fibronectin degradation at the MTJ. Similarly, disorganized laminin and fibronectin surround MZtmem2 cardiomyocytes, which could account for their hindered movement during cardiac morphogenesis. In addition to ECM defects, MZtmem2 mutants display hypoglycosylation of α-dystroglycan within the CMAC, which could contribute to the observed fiber detachment. Expression of the Tmem2 ectodomain can rescue aspects of the MZtmem2 phenotype, consistent with a possible extracellular function of Tmem2. Together, our results suggest that Tmem2 regulates cell-matrix interactions by affecting both ECM organization and CMAC activity. These findings evoke possible connections between the functions of Tmem2 and the etiologies of congenital muscular dystrophies, particularly dystroglycanopathies. PMID:27471259

  6. Simulation of surface EMG signals generated by muscle tissues with inhomogeneity due to fiber pinnation.

    PubMed

    Mesin, Luca; Farina, Dario

    2004-09-01

    Surface electromyographic (EMG) signal modeling has important applications in the interpretation of experimental EMG data. Most models of surface EMG generation considered volume conductors homogeneous in the direction of propagation of the action potentials. However, this may not be the case in practice due to local tissue inhomogeneities or to the fact that there may be groups of muscle fibers with different orientations. This study addresses the issue of analytically describing surface EMG signals generated by bi-pinnate muscles, i.e., muscles which have two groups of fibers with two orientations. The approach will also be adapted to the case of a muscle with fibers inclined in the depth direction. Such muscle anatomies are inhomogeneous in the direction of propagation of the action potentials with the consequence that the system can not be described as space invariant in the direction of source propagation. In these conditions, the potentials detected at the skin surface do not travel without shape changes. This determines numerical issues in the implementation of the model which are addressed in this work. The study provides the solution of the nonhomogenous, anisotropic problem, proposes an implementation of the results in complete surface EMG generation models (including finite-length fibers), and shows representative results of the application of the models proposed.

  7. X-linked recessive congenital muscle fiber hypotrophy with central nuclei: abnormalities of growth and adenylate cyclase in muscle tissue cultures.

    PubMed

    Askanas, V; Engel, W K; Reddy, N B; Barth, P G; Bethlem, J; Krauss, D R; Hibberd, M E; Lawrence, J V; Carter, L S

    1979-10-01

    Muscle cells in cultures established from biopsy specimens of two children with an infantile-fatal form of X-linked recessive muscle fiber smallness with central nuclei showed an unusual ability to proliferate through numerous passages. Ultrastructurally, the cultured muscle fibers appeared very immature even after several weeks. The nuclei were large, the number of ribosomes was greatly increased, the myofibrils remained unstriated, and glycogen was accumulated in large lakes. The plasmalemma bound concanavalin A, alpha-bungarotoxin, and ruthenium red normally, but with tannic acid it did not show the dark binding of mature fibers. Biochemically, in the cultured muscle fibers, beta-adrenergic receptors were quantitatively normal. The level of adenylate cyclase in membranes was less than in cultured normal muscle; this defect could be responsible for impaired control mechanisms resulting in the other abnormalities observed.

  8. Highly Conductive Graphene/Ag Hybrid Fibers for Flexible Fiber-Type Transistors.

    PubMed

    Yoon, Sang Su; Lee, Kang Eun; Cha, Hwa-Jin; Seong, Dong Gi; Um, Moon-Kwang; Byun, Joon-Hyung; Oh, Youngseok; Oh, Joon Hak; Lee, Wonoh; Lee, Jea Uk

    2015-01-01

    Mechanically robust, flexible, and electrically conductive textiles are highly suitable for use in wearable electronic applications. In this study, highly conductive and flexible graphene/Ag hybrid fibers were prepared and used as electrodes for planar and fiber-type transistors. The graphene/Ag hybrid fibers were fabricated by the wet-spinning/drawing of giant graphene oxide and subsequent functionalization with Ag nanoparticles. The graphene/Ag hybrid fibers exhibited record-high electrical conductivity of up to 15,800 S cm(-1). As the graphene/Ag hybrid fibers can be easily cut and placed onto flexible substrates by simply gluing or stitching, ion gel-gated planar transistors were fabricated by using the hybrid fibers as source, drain, and gate electrodes. Finally, fiber-type transistors were constructed by embedding the graphene/Ag hybrid fiber electrodes onto conventional polyurethane monofilaments, which exhibited excellent flexibility (highly bendable and rollable properties), high electrical performance (μh = 15.6 cm(2) V(-1) s(-1), Ion/Ioff > 10(4)), and outstanding device performance stability (stable after 1,000 cycles of bending tests and being exposed for 30 days to ambient conditions). We believe that our simple methods for the fabrication of graphene/Ag hybrid fiber electrodes for use in fiber-type transistors can potentially be applied to the development all-organic wearable devices. PMID:26549711

  9. Highly Conductive Graphene/Ag Hybrid Fibers for Flexible Fiber-Type Transistors

    PubMed Central

    Yoon, Sang Su; Lee, Kang Eun; Cha, Hwa-Jin; Seong, Dong Gi; Um, Moon-Kwang; Byun, Joon-Hyung; Oh, Youngseok; Oh, Joon Hak; Lee, Wonoh; Lee, Jea Uk

    2015-01-01

    Mechanically robust, flexible, and electrically conductive textiles are highly suitable for use in wearable electronic applications. In this study, highly conductive and flexible graphene/Ag hybrid fibers were prepared and used as electrodes for planar and fiber-type transistors. The graphene/Ag hybrid fibers were fabricated by the wet-spinning/drawing of giant graphene oxide and subsequent functionalization with Ag nanoparticles. The graphene/Ag hybrid fibers exhibited record-high electrical conductivity of up to 15,800 S cm−1. As the graphene/Ag hybrid fibers can be easily cut and placed onto flexible substrates by simply gluing or stitching, ion gel-gated planar transistors were fabricated by using the hybrid fibers as source, drain, and gate electrodes. Finally, fiber-type transistors were constructed by embedding the graphene/Ag hybrid fiber electrodes onto conventional polyurethane monofilaments, which exhibited excellent flexibility (highly bendable and rollable properties), high electrical performance (μh = 15.6 cm2 V−1 s−1, Ion/Ioff > 104), and outstanding device performance stability (stable after 1,000 cycles of bending tests and being exposed for 30 days to ambient conditions). We believe that our simple methods for the fabrication of graphene/Ag hybrid fiber electrodes for use in fiber-type transistors can potentially be applied to the development all-organic wearable devices. PMID:26549711

  10. Comparison of muscle fiber directions between different levator ani muscle subdivisions: in vivo MRI measurements in women

    PubMed Central

    Kim, Jinyong; Miller, Janis M.; Ashton-Miller, James A.; DeLancey, John O. L.

    2014-01-01

    Introduction and hypothesis This study describes a technique to quantify muscle fascicle directions in the levator ani (LA) and tests the null hypothesis that the in vivo fascicle directions for each LA subdivision subtend the same parasagittal angle relative to a horizontal reference axis. Methods Visible muscle fascicle direction in the each of the three LA muscle subdivisions, the pubovisceral (PVM; synonymous with pubococcygeal), puborectal (PRM), and iliococcygeal (ICM) muscles, as well as the external anal sphincter (EAS), were measured on 3-T sagittal MRI images in a convenience sample of 14 healthy women in whom muscle fascicles were visible. Mean ± standard deviation (SD) angle values relative to the horizontal were calculated for each muscle subdivision. Repeated measures ANOVA and post-hoc paired t tests were used to compare muscle groups. Results Pubovisceral muscle fiber inclination was 41±8.0°, PRM was −19±10.1°, ICM was 33±8.8°, and EAS was −43±6.4°. These fascicle directions were statistically different (p<0.001). Pairwise comparisons among levator subdivisions showed angle differences of 60° between PVM and PRM, and 52° between ICM and PRM. An 84° difference existed between PVM and EAS. The smallest angle difference between levator divisions was between PVM and ICM 8°. The difference between PRM and EAS was 24°. All pairwise comparisons were significant (p<0.001). Conclusions The null hypothesis that muscle fascicle inclinations are similar in the three subdivisions of the levator ani and the external anal sphincter was rejected. The largest difference in levator subdivision inclination, 60°, was found between the PVM and PRM. PMID:24832855

  11. Muscle fibre types of the lumbrical, interossei, flexor, and extensor muscles moving the index finger.

    PubMed

    Hwang, Kun; Huan, Fan; Kim, Dae Joong

    2013-09-01

    The aim of this study was to determine the fibre types of the muscles moving the index fingers in humans. Fifteen forearms of eight adult cadavers were used. The sampled muscles were the first lumbrical (LM), first volar interosseous (VI), first dorsal interosseus (DI), second flexor digitorum profundus (FDP), second flexor digitorum superficialis (FDS), and extensor digitorum (ED). Six micrometer thick sections were stained for fast muscle fibres. The procedure was performed by applying mouse monoclonal anti-skeletal myosin antibody (fast) and avidin-biotin peroxidase complex staining. Rectangular areas (0.38 mm × 0.38 mm) were photographed and the boundaries of the muscle areas were marked on the translucent film. The numbers and sizes of the muscle fibres in each part were evaluated by the image analyser program and calculated per unit area (1 mm(2)). The proportion of the fast fibres was significantly (p = 0.012) greater in the intrinsic muscles (55.7 ± 17.1%) than in the extrinsic muscles (45.9 ± 17.1%). Among the six muscles, the VI had a significantly higher portion (59.3%) of fast fibres than the FDS (40.6%) (p = 0.005) or the FDP (45.1%) (p = 0.023). The density of the non-fast fibres was significantly (p = 0.015) greater in the extrinsic muscles (539.2 ± 336.8/mm(2)) than in the intrinsic muscles (383.4 ± 230.4/mm2). Since the non-fast fibres represent less fatigable fibres, it is thought that the extrinsic muscles have higher durability against fatigue, and the intrinsic muscles, including the LM, should move faster than the FDS or FDP because the MP joint should be flexed before the IP joint to grip an object.

  12. Muscle fibre types of the lumbrical, interossei, flexor, and extensor muscles moving the index finger.

    PubMed

    Hwang, Kun; Huan, Fan; Kim, Dae Joong

    2013-09-01

    The aim of this study was to determine the fibre types of the muscles moving the index fingers in humans. Fifteen forearms of eight adult cadavers were used. The sampled muscles were the first lumbrical (LM), first volar interosseous (VI), first dorsal interosseus (DI), second flexor digitorum profundus (FDP), second flexor digitorum superficialis (FDS), and extensor digitorum (ED). Six micrometer thick sections were stained for fast muscle fibres. The procedure was performed by applying mouse monoclonal anti-skeletal myosin antibody (fast) and avidin-biotin peroxidase complex staining. Rectangular areas (0.38 mm × 0.38 mm) were photographed and the boundaries of the muscle areas were marked on the translucent film. The numbers and sizes of the muscle fibres in each part were evaluated by the image analyser program and calculated per unit area (1 mm(2)). The proportion of the fast fibres was significantly (p = 0.012) greater in the intrinsic muscles (55.7 ± 17.1%) than in the extrinsic muscles (45.9 ± 17.1%). Among the six muscles, the VI had a significantly higher portion (59.3%) of fast fibres than the FDS (40.6%) (p = 0.005) or the FDP (45.1%) (p = 0.023). The density of the non-fast fibres was significantly (p = 0.015) greater in the extrinsic muscles (539.2 ± 336.8/mm(2)) than in the intrinsic muscles (383.4 ± 230.4/mm2). Since the non-fast fibres represent less fatigable fibres, it is thought that the extrinsic muscles have higher durability against fatigue, and the intrinsic muscles, including the LM, should move faster than the FDS or FDP because the MP joint should be flexed before the IP joint to grip an object. PMID:23692210

  13. Differential sensitivity of myosin-heavy-chain-typed fibers to distinct aggregates of nerve-mediated activation.

    PubMed

    Dunn, S E; Michel, R N

    1999-02-01

    We studied the regulatory effects of nerve-mediated activity on the early expression of embryonic and adult myosin heavy chains (MHC) within inactive though still innervated rat plantaris and soleus muscle fibers. To this end, we stimulated motor nerves that were quiescent following treatment with tetrodotoxin (TTX) with paradigms designed to partition the influence of neural activation frequency and assessed the selective expression and accumulation of MHCs within muscle fibers using an array of specific antibodies. We show rapid de novo expression of IIx MHC within select soleus fibers in response to high-frequency activation for more than 0.01% of daily time. High-frequency aggregates were also the most effective in preventing the TTX-induced reexpression of embryonic MHCs within specific fibers. Only configurations that included high-frequency trains for more than 0.01% of daily time or combined with 10 Hz stimulation preserved the size of select fibers, used as a measure of the net cellular content of MHC. The effectiveness of this preservation varied according to the muscle type and MHC expressed, and, in a subset of fibers, was influenced by contractile loading status. Our results demonstrate that distinct subsets of MHC-typed fibers are differentially sensitive to the neural activation cues mediating the cellular expression of these proteins.

  14. Smooth muscle-like tissue constructs with circumferentially oriented cells formed by the cell fiber technology.

    PubMed

    Hsiao, Amy Y; Okitsu, Teru; Onoe, Hiroaki; Kiyosawa, Mahiro; Teramae, Hiroki; Iwanaga, Shintaroh; Kazama, Tomohiko; Matsumoto, Taro; Takeuchi, Shoji

    2015-01-01

    The proper functioning of many organs and tissues containing smooth muscles greatly depends on the intricate organization of the smooth muscle cells oriented in appropriate directions. Consequently controlling the cellular orientation in three-dimensional (3D) cellular constructs is an important issue in engineering tissues of smooth muscles. However, the ability to precisely control the cellular orientation at the microscale cannot be achieved by various commonly used 3D tissue engineering building blocks such as spheroids. This paper presents the formation of coiled spring-shaped 3D cellular constructs containing circumferentially oriented smooth muscle-like cells differentiated from dedifferentiated fat (DFAT) cells. By using the cell fiber technology, DFAT cells suspended in a mixture of extracellular proteins possessing an optimized stiffness were encapsulated in the core region of alginate shell microfibers and uniformly aligned to the longitudinal direction. Upon differentiation induction to the smooth muscle lineage, DFAT cell fibers self-assembled to coiled spring structures where the cells became circumferentially oriented. By changing the initial core-shell microfiber diameter, we demonstrated that the spring pitch and diameter could be controlled. 21 days after differentiation induction, the cell fibers contained high percentages of ASMA-positive and calponin-positive cells. Our technology to create these smooth muscle-like spring constructs enabled precise control of cellular alignment and orientation in 3D. These constructs can further serve as tissue engineering building blocks for larger organs and cellular implants used in clinical treatments. PMID:25734774

  15. Smooth muscle-like tissue constructs with circumferentially oriented cells formed by the cell fiber technology.

    PubMed

    Hsiao, Amy Y; Okitsu, Teru; Onoe, Hiroaki; Kiyosawa, Mahiro; Teramae, Hiroki; Iwanaga, Shintaroh; Kazama, Tomohiko; Matsumoto, Taro; Takeuchi, Shoji

    2015-01-01

    The proper functioning of many organs and tissues containing smooth muscles greatly depends on the intricate organization of the smooth muscle cells oriented in appropriate directions. Consequently controlling the cellular orientation in three-dimensional (3D) cellular constructs is an important issue in engineering tissues of smooth muscles. However, the ability to precisely control the cellular orientation at the microscale cannot be achieved by various commonly used 3D tissue engineering building blocks such as spheroids. This paper presents the formation of coiled spring-shaped 3D cellular constructs containing circumferentially oriented smooth muscle-like cells differentiated from dedifferentiated fat (DFAT) cells. By using the cell fiber technology, DFAT cells suspended in a mixture of extracellular proteins possessing an optimized stiffness were encapsulated in the core region of alginate shell microfibers and uniformly aligned to the longitudinal direction. Upon differentiation induction to the smooth muscle lineage, DFAT cell fibers self-assembled to coiled spring structures where the cells became circumferentially oriented. By changing the initial core-shell microfiber diameter, we demonstrated that the spring pitch and diameter could be controlled. 21 days after differentiation induction, the cell fibers contained high percentages of ASMA-positive and calponin-positive cells. Our technology to create these smooth muscle-like spring constructs enabled precise control of cellular alignment and orientation in 3D. These constructs can further serve as tissue engineering building blocks for larger organs and cellular implants used in clinical treatments.

  16. Smooth Muscle-Like Tissue Constructs with Circumferentially Oriented Cells Formed by the Cell Fiber Technology

    PubMed Central

    Hsiao, Amy Y.; Okitsu, Teru; Onoe, Hiroaki; Kiyosawa, Mahiro; Teramae, Hiroki; Iwanaga, Shintaroh; Kazama, Tomohiko; Matsumoto, Taro; Takeuchi, Shoji

    2015-01-01

    The proper functioning of many organs and tissues containing smooth muscles greatly depends on the intricate organization of the smooth muscle cells oriented in appropriate directions. Consequently controlling the cellular orientation in three-dimensional (3D) cellular constructs is an important issue in engineering tissues of smooth muscles. However, the ability to precisely control the cellular orientation at the microscale cannot be achieved by various commonly used 3D tissue engineering building blocks such as spheroids. This paper presents the formation of coiled spring-shaped 3D cellular constructs containing circumferentially oriented smooth muscle-like cells differentiated from dedifferentiated fat (DFAT) cells. By using the cell fiber technology, DFAT cells suspended in a mixture of extracellular proteins possessing an optimized stiffness were encapsulated in the core region of alginate shell microfibers and uniformly aligned to the longitudinal direction. Upon differentiation induction to the smooth muscle lineage, DFAT cell fibers self-assembled to coiled spring structures where the cells became circumferentially oriented. By changing the initial core-shell microfiber diameter, we demonstrated that the spring pitch and diameter could be controlled. 21 days after differentiation induction, the cell fibers contained high percentages of ASMA-positive and calponin-positive cells. Our technology to create these smooth muscle-like spring constructs enabled precise control of cellular alignment and orientation in 3D. These constructs can further serve as tissue engineering building blocks for larger organs and cellular implants used in clinical treatments. PMID:25734774

  17. Micromechanical behavior of single-fiber type and hybrid microcomposites

    SciTech Connect

    Qiu Yiping.

    1992-01-01

    Single-fiber type and hybrid microcomposites were fabricated using Kevlar {reg sign} 149 as the low elongation (LE) fiber and S-glass fibers as the high elongation fiber using a DER 331/DER 732 epoxy mixture (70/30, w/w). In tensile tests, it was found that Kevlar{reg sign} 149 fiber was significantly stronger in the microcomposite than as a single filament. For the hybrid microcomposite, Kevlar{reg sign} 149 fibers usually broke one by one. A positive hybrid effect for the failure strain but a negative hybrid effect for the strength of the hybrid were observed. The tensile modulus of the hybrid microcomposite followed the rule of mixtures well. The fiber/matrix interface properties were investigated using the single-fiber pull-out from a microcomposite (SFPOM) test and the microbond test. SFPOM test reflected the feeling of the fibers in a real composite, showing the decrease of interfacial shear strength (IFSS) with fiber volume fraction increase. To predict the stress-rupture lifetime of a hybrid composite, a stochastic model was proposed assuming that the failure of LE fibers in a hybrid follows a continuous time Markov chain.

  18. Changes in muscle fibre type, muscle mass and IGF-I gene expression in rabbit skeletal muscle subjected to stretch

    PubMed Central

    YANG, SHIYU; ALNAQEEB, MAJED; SIMPSON, HAMISH; GOLDSPINK, GEOFFREY

    1997-01-01

    The relationship between IGF-I and changes in muscle fibre phenotype in response to 6 d of stretch or disuse of the lower limb muscles of the rabbit was studied by combining in situ hybridisation and immunohistochemistry procedures. Passive stretch by plaster cast immobilisation of the muscle in its lengthened position not only induced an increase in IGF-I mRNA expression within the individual muscle fibres but also an increase in the percentage of fibres expressing neonatal and slow myosin. This change in phenotype was also found to be accompanied by a rapid and marked increase of muscle mass, total RNA content as well as IGF-I gene expression. In contrast, IGF-I appears not to be involved in muscle atrophy induced by immobilisation in the shortened position and the inactivity which results from this procedure. The level of increase in expression of IGF-I mRNA varied from fibre to fibre. By using adjacent serial sections, the fibres which expressed IGF-I mRNA at the highest levels were identified as expressing neonatal and the slow type 1 myosin. These data suggest that the expression of IGF-I within individual muscle fibres is correlated not only with hypertrophy but also with the muscle phenotypic adaptation that results from stretch and overload. PMID:9183683

  19. Protein Supplementation Does Not Further Increase Latissimus Dorsi Muscle Fiber Hypertrophy after Eight Weeks of Resistance Training in Novice Subjects, but Partially Counteracts the Fast-to-Slow Muscle Fiber Transition.

    PubMed

    Paoli, Antonio; Pacelli, Quirico F; Cancellara, Pasqua; Toniolo, Luana; Moro, Tatiana; Canato, Marta; Miotti, Danilo; Neri, Marco; Morra, Aldo; Quadrelli, Marco; Reggiani, Carlo

    2016-01-01

    The response to resistance training and protein supplementation in the latissimus dorsi muscle (LDM) has never been investigated. We investigated the effects of resistance training (RT) and protein supplementation on muscle mass, strength, and fiber characteristics of the LDM. Eighteen healthy young subjects were randomly assigned to a progressive eight-week RT program with a normal protein diet (NP) or high protein diet (HP) (NP 0.85 vs. HP 1.8 g of protein·kg(-1)·day(-1)). One repetition maximum tests, magnetic resonance imaging for cross-sectional muscle area (CSA), body composition, and single muscle fibers mechanical and phenotype characteristics were measured. RT induced a significant gain in strength (+17%, p < 0.0001), whole muscle CSA (p = 0.024), and single muscle fibers CSA (p < 0.05) of LDM in all subjects. Fiber isometric force increased in proportion to CSA (+22%, p < 0.005) and thus no change in specific tension occurred. A significant transition from 2X to 2A myosin expression was induced by training. The protein supplementation showed no significant effects on all measured outcomes except for a smaller reduction of 2X myosin expression. Our results suggest that in LDM protein supplementation does not further enhance RT-induced muscle fiber hypertrophy nor influence mechanic muscle fiber characteristics but partially counteracts the fast-to-slow fiber shift. PMID:27258300

  20. Protein Supplementation Does Not Further Increase Latissimus Dorsi Muscle Fiber Hypertrophy after Eight Weeks of Resistance Training in Novice Subjects, but Partially Counteracts the Fast-to-Slow Muscle Fiber Transition

    PubMed Central

    Paoli, Antonio; Pacelli, Quirico F.; Cancellara, Pasqua; Toniolo, Luana; Moro, Tatiana; Canato, Marta; Miotti, Danilo; Neri, Marco; Morra, Aldo; Quadrelli, Marco; Reggiani, Carlo

    2016-01-01

    The response to resistance training and protein supplementation in the latissimus dorsi muscle (LDM) has never been investigated. We investigated the effects of resistance training (RT) and protein supplementation on muscle mass, strength, and fiber characteristics of the LDM. Eighteen healthy young subjects were randomly assigned to a progressive eight-week RT program with a normal protein diet (NP) or high protein diet (HP) (NP 0.85 vs. HP 1.8 g of protein·kg−1·day−1). One repetition maximum tests, magnetic resonance imaging for cross-sectional muscle area (CSA), body composition, and single muscle fibers mechanical and phenotype characteristics were measured. RT induced a significant gain in strength (+17%, p < 0.0001), whole muscle CSA (p = 0.024), and single muscle fibers CSA (p < 0.05) of LDM in all subjects. Fiber isometric force increased in proportion to CSA (+22%, p < 0.005) and thus no change in specific tension occurred. A significant transition from 2X to 2A myosin expression was induced by training. The protein supplementation showed no significant effects on all measured outcomes except for a smaller reduction of 2X myosin expression. Our results suggest that in LDM protein supplementation does not further enhance RT-induced muscle fiber hypertrophy nor influence mechanic muscle fiber characteristics but partially counteracts the fast-to-slow fiber shift. PMID:27258300

  1. Orthogonally oriented scaffolds with aligned fibers for engineering intestinal smooth muscle

    PubMed Central

    Kobayashi, Masae; Lei, Nan Ye; Wang, Qianqian; Wu, Benjamin M.; Dunn, James C.Y.

    2015-01-01

    Controlling cellular alignment is critical in engineering intestines with desired structure and function. Although previous studies have examined the directional alignment of cells on the surface (x-y plane) of parallel fibers, quantitative analysis of the cellular alignment inside implanted scaffolds with oriented fibers has not been reported. This study examined the cellular alignment in the x-z and y-z planes of scaffolds made with two layers of orthogonally oriented fibers. The cellular orientation inside implanted scaffolds was evaluated with immunofluorescence. Quantitative analysis of coherency between cell orientation and fiber direction confirmed that cells aligned along the fibers not only on the surface (x-y plane) but also inside the scaffolds (x-z & y-z planes). Our study demonstrated that two layers of orthogonally aligned scaffolds can generate the histological organization of cells similar to that of intestinal circular and longitudinal smooth muscle. PMID:26001072

  2. Role of aerobic and anaerobic circular mantle muscle fibers in swimming squid: electromyography.

    PubMed

    Bartol, I K

    2001-02-01

    Circular mantle muscle of squids and cuttlefishes consists of distinct zones of aerobic and anaerobic muscle fibers that are thought to have functional roles analogous to red and white muscle in fishes. To test predictions of the functional role of the circular muscle zones during swimming, electromyograms (EMGs) in conjunction with video footage were recorded from brief squid Lolliguncula brevis (5.0-6.8 cm dorsal mantle length, 10.9-18.3 g) swimming in a flume at speeds of 3-27 cm s(-1). In one set of experiments, in which EMGs were recorded from electrodes intersecting both the central anaerobic and peripheral aerobic circular mantle muscles, electrical activity was detected during each mantle contraction at all swimming speeds, and the amplitude and frequency of responses increased with speed. In another set of experiments, in which EMGs were recorded from electrodes placed in the central anaerobic circular muscle fibers alone, electrical activity was not detected during mantle contraction until speeds of about 15 cm s(-1), when EMG activity was sporadic. At speeds greater than 15 cm s(-1), the frequency of central circular muscle activity subsequently increased with swimming speed until maximum speeds of 21-27 cm s(-1), when muscular activity coincided with the majority of mantle contractions. These results indicate that peripheral aerobic circular muscle is used for low, intermediate, and probably high speeds, whereas central anaerobic circular muscle is recruited at intermediate speeds and used progressively more with speed for powerful, unsteady jetting. This is significant because it suggests that there is specialization and efficient use of locomotive muscle in squids.

  3. Effect of Tongue Exercise on Protrusive Force and Muscle Fiber Area in Aging Rats

    ERIC Educational Resources Information Center

    Connor, Nadine P.; Russell, John A.; Wang, Hao; Jackson, Michelle A.; Mann, Laura; Kluender, Keith

    2009-01-01

    Purpose: Age-related changes in tongue function may contribute to dysphagia in elderly people. The authors' purpose was to investigate whether aged rats that have undergone tongue exercise would manifest increased protrusive tongue forces and increased genioglossus (GG) muscle fiber cross-sectional areas. Method: Forty-eight young adult,…

  4. A computational approach to detect and segment cytoplasm in muscle fiber images.

    PubMed

    Guo, Yanen; Xu, Xiaoyin; Wang, Yuanyuan; Yang, Zhong; Wang, Yaming; Xia, Shunren

    2015-06-01

    We developed a computational approach to detect and segment cytoplasm in microscopic images of skeletal muscle fibers. The computational approach provides computer-aided analysis of cytoplasm objects in muscle fiber images to facilitate biomedical research. Cytoplasm in muscle fibers plays an important role in maintaining the functioning and health of muscular tissues. Therefore, cytoplasm is often used as a marker in broad applications of musculoskeletal research, including our search on treatment of muscular disorders such as Duchenne muscular dystrophy, a disease that has no available treatment. However, it is often challenging to analyze cytoplasm and quantify it given the large number of images typically generated in experiments and the large number of muscle fibers contained in each image. Manual analysis is not only time consuming but also prone to human errors. In this work we developed a computational approach to detect and segment the longitudinal sections of cytoplasm based on a modified graph cuts technique and iterative splitting method to extract cytoplasm objects from the background. First, cytoplasm objects are extracted from the background using the modified graph cuts technique which is designed to optimize an energy function. Second, an iterative splitting method is designed to separate the touching or adjacent cytoplasm objects from the results of graph cuts. We tested the computational approach on real data from in vitro experiments and found that it can achieve satisfactory performance in terms of precision and recall rates.

  5. An image processing pipeline to detect and segment nuclei in muscle fiber microscopic images.

    PubMed

    Guo, Yanen; Xu, Xiaoyin; Wang, Yuanyuan; Wang, Yaming; Xia, Shunren; Yang, Zhong

    2014-08-01

    Muscle fiber images play an important role in the medical diagnosis and treatment of many muscular diseases. The number of nuclei in skeletal muscle fiber images is a key bio-marker of the diagnosis of muscular dystrophy. In nuclei segmentation one primary challenge is to correctly separate the clustered nuclei. In this article, we developed an image processing pipeline to automatically detect, segment, and analyze nuclei in microscopic image of muscle fibers. The pipeline consists of image pre-processing, identification of isolated nuclei, identification and segmentation of clustered nuclei, and quantitative analysis. Nuclei are initially extracted from background by using local Otsu's threshold. Based on analysis of morphological features of the isolated nuclei, including their areas, compactness, and major axis lengths, a Bayesian network is trained and applied to identify isolated nuclei from clustered nuclei and artifacts in all the images. Then a two-step refined watershed algorithm is applied to segment clustered nuclei. After segmentation, the nuclei can be quantified for statistical analysis. Comparing the segmented results with those of manual analysis and an existing technique, we find that our proposed image processing pipeline achieves good performance with high accuracy and precision. The presented image processing pipeline can therefore help biologists increase their throughput and objectivity in analyzing large numbers of nuclei in muscle fiber images.

  6. The combined influence of stretch, mobility and electrical stimulation in the prevention of muscle fiber atrophy caused hypokinesia and hypodynamia

    NASA Technical Reports Server (NTRS)

    Goldspink, G.; Goldspink, D.; Loughna, P.

    1984-01-01

    The morphological and biochemical changes which occur in the hind limb muscles of the rat in response to hypokinesia and hypodynamia were investigated. Hind limb cast fixation and suspension techniques were employed to study the musclar atrophy after five days of hypokinesia and hypodynamia induced by suspension, appreciable muscular atrophy was apparent, particularly in the anti-gravity muscles. The effect of passive stretching and electrical stimulation on muscle atrophy was studied. Changes in muscle protein mass were assessed with spectrophotometric and radioactive techniques. Passive stretch is shown to counteract muscle disuse atrophy. The change in the numbers of specific muscle fibers in atrophied muscles is discussed.

  7. Immobility reduces muscle fiber necrosis in dystrophin deficient muscular dystrophy.

    PubMed

    Kimura, S; Ikezawa, M; Nomura, K; Ito, K; Ozasa, S; Ueno, H; Yoshioka, K; Yano, S; Yamashita, T; Matuskura, M; Miike, T

    2006-08-01

    Duchenne/Becker muscular dystrophy is a progressive muscle disease, which is caused by the abnormality of dystrophin. Spina bifida is characterized by paralysis of the feet, with most of the upper extremities not being affected. We report here on the first case of Becker muscular dystrophy coinciding with spina bifida. The muscle biopsy specimens of the patient showed dystrophic changes in upper extremities, but clearly less in lower extremities. The results show that the restriction of excessive exercise is important for dystrophin deficiency disease. PMID:16516424

  8. Simulation of the interaction between muscle fiber conduction velocity and instantaneous firing rate.

    PubMed

    Fortune, Emma; Lowery, Madeleine M

    2011-01-01

    In this study, the relationships between the early and late afterpotentials and velocity and amplitude recovery functions (VRF and ARF) in skeletal muscle were examined using model simulation. A mathematical model of the muscle fiber action potential, that incorporated a tubular slow potassium conductance, was developed and used to simulate muscle fiber action potentials at a range of interpulse intervals. The slow potassium conductance produced an afterhyperpolarization which resulted in supernormal action potential conduction velocity and amplitude for interpulse intervals>7 ms. Increasing the number of conditioning stimuli caused a further increase in conduction velocity and amplitude, and an additional phase of supernormality, with a peak at approximately 100 ms. Positive correlations between instantaneous firing rate and both conduction velocity and amplitude were also observed during simulation of repetitive stimulation of the muscle fiber. The relationships were eliminated when the slow potassium conductance channel was removed from the model. The results suggest that an afterhyperpolarization, possibly due to a slow tubular potassium conductance, could cause the VRF and ARF observed in muscle. They additionally suggest that the positive correlations between instantaneous firing rate, conduction velocity, and amplitude are directly related to the VRF and ARF. PMID:20848314

  9. Differentiation of the intracellular structure of slow- versus fast-twitch muscle fibers through evaluation of the dielectric properties of tissue.

    PubMed

    Sanchez, B; Li, J; Bragos, R; Rutkove, S B

    2014-05-21

    Slow-twitch (type 1) skeletal muscle fibers have markedly greater mitochondrial content than fast-twitch (type 2) fibers. Accordingly, we sought to determine whether the dielectric properties of these two fiber types differed, consistent with their distinct intracellular morphologies. The longitudinal and transverse dielectric spectrum of the ex vivo rat soleus (a predominantly type 1 muscle) and the superficial layers of rat gastrocnemius (predominantly type 2) (n = 15) were measured in the 1 kHz-10 MHz frequency range and modeled to a resistivity Cole-Cole function. Major differences were especially apparent in the dielectric spectrum in the 1 to 10 MHz range. Specifically, the gastrocnemius demonstrated a well-defined, higher center frequency than the soleus muscle, whereas the soleus muscle showed a greater difference in the modeled zero and infinite resistivities than the gastrocnemius. These findings are consistent with the fact that soleus tissue has larger and more numerous mitochondria than gastrocnemius. Evaluation of tissue at high frequency could provide a novel approach for assessing intracellular structure in health and disease.

  10. Differentiation of the intracellular structure of slow- versus fast-twitch muscle fibers through evaluation of the dielectric properties of tissue

    PubMed Central

    Sanchez, B; Li, J; Bragos, R; Rutkove, S B

    2014-01-01

    Slow-twitch (type 1) skeletal muscle fibers have markedly greater mitochondrial content than fast-twitch (type 2) fibers. Accordingly, we sought to determine whether the dielectric properties of these two fiber types differed, consistent with their distinct intracellular morphologies. The longitudinal and transverse dielectric spectrum of the ex vivo rat soleus (a predominantly type 1 muscle) and the superficial layers of rat gastrocnemius (predominantly type 2) (n = 15) were measured in the 1 kHz–10 MHz frequency range and modeled to a resistivity Cole–Cole function. Major differences were especially apparent in the dielectric spectrum in the 1 to 10 MHz range. Specifically, the gastrocnemius demonstrated a well-defined, higher center frequency than the soleus muscle, whereas the soleus muscle showed a greater difference in the modeled zero and infinite resistivities than the gastrocnemius. These findings are consistent with the fact that soleus tissue has larger and more numerous mitochondria than gastrocnemius. Evaluation of tissue at high frequency could provide a novel approach for assessing intracellular structure in health and disease. PMID:24743385

  11. Differentiation of the intracellular structure of slow- versus fast-twitch muscle fibers through evaluation of the dielectric properties of tissue

    NASA Astrophysics Data System (ADS)

    Sanchez, B.; Li, J.; Bragos, R.; Rutkove, S. B.

    2014-05-01

    Slow-twitch (type 1) skeletal muscle fibers have markedly greater mitochondrial content than fast-twitch (type 2) fibers. Accordingly, we sought to determine whether the dielectric properties of these two fiber types differed, consistent with their distinct intracellular morphologies. The longitudinal and transverse dielectric spectrum of the ex vivo rat soleus (a predominantly type 1 muscle) and the superficial layers of rat gastrocnemius (predominantly type 2) (n = 15) were measured in the 1 kHz-10 MHz frequency range and modeled to a resistivity Cole-Cole function. Major differences were especially apparent in the dielectric spectrum in the 1 to 10 MHz range. Specifically, the gastrocnemius demonstrated a well-defined, higher center frequency than the soleus muscle, whereas the soleus muscle showed a greater difference in the modeled zero and infinite resistivities than the gastrocnemius. These findings are consistent with the fact that soleus tissue has larger and more numerous mitochondria than gastrocnemius. Evaluation of tissue at high frequency could provide a novel approach for assessing intracellular structure in health and disease.

  12. Force-velocity and power characteristics of rat soleus muscle fibers after hindlimb suspension

    NASA Technical Reports Server (NTRS)

    Mcdonald, K. S.; Blaser, C. A.; Fitts, R. H.

    1994-01-01

    The effects of 1, 2, and 3 wk of hindlimb suspension (HS) on force-velocity and power characteristics of single rat soleus fibers were determined. After 1, 2, or 3 wk of HA, small fiber bundles were isolated, placed in skinning solution, and stored at -20 C until studied. Single fibers were isolated and placed between a motor arm and force transducer, functional properties were studied, and fiber protein content was subsequently analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). Additional fibers were isolated from soleus of control after 1 and 3 wk of HS, and fiber type distribution and myosin light chain stoichiometry were determined from SDS-PAGE analysis. After 1 wk of HS, percent type I fibers declined from 82 to 74%, whereas hybrid fibers increased from 10 to 18%. Percent fast type II fibers increased from 8% in control and 1 wk of HS to 26% by 3 wk of HS. Most fibers showed an increased unloaded maximal shortening velocity (V sub O)), but myosin heavy chain remained entirely slow type I. The mechanism for increased V(sub O) is unknown. There was a progressive decrease in fiber diameter and peak force after 1, 2, and 3 wk of HS, respectively. One week of HS resulted in a shift of the force-velocity curve, and between 2 and 3 wk of HS the curve shifted further such that V(sub O) was higher than control at all relative loads less than 45% peak isometric force. Peak absolute power output of soleus fibers progressively decreased through 2 wk of HS but showed no further change at 3 wk. The results suggest that between 2 and 3 wk the HS-induced alterations in the force-velocity relationship act to maintain the power output of single soleus fibers despite a continued reduction in fiber force.

  13. Force-Velocity and Power Characteristics of Rat Soleus Muscle Fibers after Hindlimb Suspension

    NASA Technical Reports Server (NTRS)

    McDonald, K. S.; Blaser, C. A.; Fitts, R. H.

    1994-01-01

    The effects of 1, 2, and 3 wk of Hindlimb Suspension (HS) on force-velocity and power characteristics of single rat soleus fibers were determined. After 1, 2, or 3 wk of HS, small fiber bundles were isolated, placed in skinning solution, and stored at -20 C until studied. Single fibers were isolated and placed between a motor arm and force transducer, functional properties were studied, and fiber protein content was subsequently analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). Additional fibers were isolated from soleus of control and after 1 and 3 wk of HS, and fiber type distribution and myosin light chain stoichiometry were determined from SDS-PAGE analysis. After 1 wk of HS, percent type I fibers declined from 82 to 74%, whereas hybrid fibers increased from 10 to 18%. Percent fast type 11 fibers increased from 8% in control and 1 wk of HS to 26% by 3 wk of HS. Most fibers showed an increased unloaded maximal shortening velocity (V(sub 0)), but myosin heavy chain remained entirely slow type I. The mechanism for increased V(sub 0) is unknown. There was a progressive decrease in fiber diameter (14, 30, and 38%) and peak force (38, 56, and 63%) after 1, 2, and 3 wk of HS, respectively. One week of HS resulted in a shift of the force-velocity curve, and between 2 and 3 wk of HS the curve shifted further such that V(sub 0) was higher than control at all relative loads less than 45% peak isometric force. Peak absolute power output of soleus fibers progressively decreased through 2 wk of HS but showed no further change at 3 wk. The results suggest that between 2 and 3 wk the HS-induced alterations in the force-velocity relationship act to maintain the power output of single soleus fibers despite a continued reduction in fiber force.

  14. Differentiation of pluripotent stem cells to muscle fiber to model Duchenne muscular dystrophy.

    PubMed

    Chal, Jérome; Oginuma, Masayuki; Al Tanoury, Ziad; Gobert, Bénédicte; Sumara, Olga; Hick, Aurore; Bousson, Fanny; Zidouni, Yasmine; Mursch, Caroline; Moncuquet, Philippe; Tassy, Olivier; Vincent, Stéphane; Miyanari, Ayako; Bera, Agata; Garnier, Jean-Marie; Guevara, Getzabel; Hestin, Marie; Kennedy, Leif; Hayashi, Shinichiro; Drayton, Bernadette; Cherrier, Thomas; Gayraud-Morel, Barbara; Gussoni, Emanuela; Relaix, Frédéric; Tajbakhsh, Shahragim; Pourquié, Olivier

    2015-09-01

    During embryonic development, skeletal muscles arise from somites, which derive from the presomitic mesoderm (PSM). Using PSM development as a guide, we establish conditions for the differentiation of monolayer cultures of mouse embryonic stem (ES) cells into PSM-like cells without the introduction of transgenes or cell sorting. We show that primary and secondary skeletal myogenesis can be recapitulated in vitro from the PSM-like cells, providing an efficient, serum-free protocol for the generation of striated, contractile fibers from mouse and human pluripotent cells. The mouse ES cells also differentiate into Pax7(+) cells with satellite cell characteristics, including the ability to form dystrophin(+) fibers when grafted into muscles of dystrophin-deficient mdx mice, a model of Duchenne muscular dystrophy (DMD). Fibers derived from ES cells of mdx mice exhibit an abnormal branched phenotype resembling that described in vivo, thus providing an attractive model to study the origin of the pathological defects associated with DMD. PMID:26237517

  15. Characteristics of Ca2+- and Mg2+-induced tension development in chemically skinned smooth muscle fibers

    PubMed Central

    1978-01-01

    Chemically skinned fibers from guinea pig taenia caecum were prepared by saponin treatment to study the smooth muscle contractile system in a state as close to the living state as posible. The skinned fibers showed tension development with an increase of Ca2+ in the solution, the threshold tension occurring as 5 X 10(-7) M Ca2+. The maximal tension induced with 10(-4) M Ca2+ was as large and rapid as the potassium-induced contracture in the intact fibers. The slope of the pCa tension curve was less steep than that of skeletal muscle fibers and shifted in the direction of lower pCa with an increase of MgATP. The presence of greater than 1 mM Mg2+ was required for Ca2+-induced contraction in the skinned fibers as well as for the activation of ATPase and superprecipitation in smooth muscle myosin B. Mg2+ above 2 mM caused a slow tension development by itself in the absence of Ca2+. Such a Mg2+-induced tension showed a linear relation to concentrations up to 8 mM in the presence of MgATP. Increase of MgATP concentration revealed a monophasic response without inhibition of Ca2+-induced tension development, unlike the biphasic response in striated muscle. When MgATP was removed from the relaxing solution, the tension developed slowly and slightly, even though the Mg2+ concentrations was fixed at 2 mM. These results suggest a substantial difference in the mode of actin-myosin interaction between smooth and skeletal muscle. PMID:151731

  16. Calcium influx through L-type channels attenuates skeletal muscle contraction via inhibition of adenylyl cyclases.

    PubMed

    Menezes-Rodrigues, Francisco Sandro; Pires-Oliveira, Marcelo; Duarte, Thiago; Paredes-Gamero, Edgar Julian; Chiavegatti, Tiago; Godinho, Rosely Oliveira

    2013-11-15

    Skeletal muscle contraction is triggered by acetylcholine induced release of Ca(2+) from sarcoplasmic reticulum. Although this signaling pathway is independent of extracellular Ca(2+), L-type voltage-gated calcium channel (Cav) blockers have inotropic effects on frog skeletal muscles which occur by an unknown mechanism. Taking into account that skeletal muscle fiber expresses Ca(+2)-sensitive adenylyl cyclase (AC) isoforms and that cAMP is able to increase skeletal muscle contraction force, we investigated the role of Ca(2+) influx on mouse skeletal muscle contraction and the putative crosstalk between extracellular Ca(2+) and intracellular cAMP signaling pathways. The effects of Cav blockers (verapamil and nifedipine) and extracellular Ca(2+) chelator EGTA were evaluated on isometric contractility of mouse diaphragm muscle under direct electrical stimulus (supramaximal voltage, 2 ms, 0.1 Hz). Production of cAMP was evaluated by radiometric assay while Ca(2+) transients were assessed by confocal microscopy using L6 cells loaded with fluo-4/AM. Ca(2+) channel blockers verapamil and nifedipine had positive inotropic effect, which was mimicked by removal of extracellular Ca(+2) with EGTA or Ca(2+)-free Tyrode. While phosphodiesterase inhibitor IBMX potentiates verapamil positive inotropic effect, it was abolished by AC inhibitors SQ22536 and NYK80. Finally, the inotropic effect of verapamil was associated with increased intracellular cAMP content and mobilization of intracellular Ca(2+), indicating that positive inotropic effects of Ca(2+) blockers depend on cAMP formation. Together, our results show that extracellular Ca(2+) modulates skeletal muscle contraction, through inhibition of Ca(2+)-sensitive AC. The cross-talk between extracellular calcium and cAMP-dependent signaling pathways appears to regulate the extent of skeletal muscle contraction responses.

  17. One-dimensional chain of quantum molecule motors as a mathematical physics model for muscle fibers

    NASA Astrophysics Data System (ADS)

    Si, Tie-Yan

    2015-12-01

    A quantum chain model of multiple molecule motors is proposed as a mathematical physics theory for the microscopic modeling of classical force-velocity relation and tension transients in muscle fibers. The proposed model was a quantum many-particle Hamiltonian to predict the force-velocity relation for the slow release of muscle fibers, which has not yet been empirically defined and was much more complicated than the hyperbolic relationships. Using the same Hamiltonian model, a mathematical force-velocity relationship was proposed to explain the tension observed when the muscle was stimulated with an alternative electric current. The discrepancy between input electric frequency and the muscle oscillation frequency could be explained physically by the Doppler effect in this quantum chain model. Further more, quantum physics phenomena were applied to explore the tension time course of cardiac muscle and insect flight muscle. Most of the experimental tension transient curves were found to correspond to the theoretical output of quantum two- and three-level models. Mathematical modeling electric stimulus as photons exciting a quantum three-level particle reproduced most of the tension transient curves of water bug Lethocerus maximus. Project supported by the Fundamental Research Foundation for the Central Universities of China.

  18. Muscle-fiber conduction velocity during concentric and eccentric actions on a flywheel exercise device.

    PubMed

    Pozzo, Marco; Alkner, Björn; Norrbrand, Lena; Farina, Dario; Tesch, Per A

    2006-08-01

    A gravity-independent flywheel exercise device (FWED) has been proven effective as a countermeasure to loss of strength and muscle atrophy induced by simulated microgravity. This study assessed muscle-fiber conduction velocity (CV) and surface EMG instantaneous mean power spectral frequency (iMNF) during brief bouts of fatiguing concentric (CON) and eccentric (ECC) exercise on a FWED in order to identify electromyographic (EMG) variables that can be used to provide objective indications of muscle status when exercising with a FWED. Multichannel surface EMG signals were recorded from vastus lateralis and medialis muscles of nine men during: (1) isometric, 60-s action at 50% of maximum voluntary action (MVC); (2) two isometric, linearly increasing force ramps (0-100% MVC); and (3) dynamic CON/ECC coupled actions on the FWED. Muscle-fiber CV and iMNF were computed over time during the three tasks. During ramps, CV, but not iMNF, increased with force (P < 0.001). Conduction velocity and iMNF decreased with the same normalized rate of change in constant-force actions. During CON/ECC actions, the normalized rate of change over time was larger for CV than iMNF (P < 0.05). These results suggest that, during fatiguing, dynamic, variable-force tasks, changes in CV cannot be indirectly inferred by EMG spectral analysis. This underlines the importance of measuring both CV and spectral variables for muscle assessment in dynamic tasks. PMID:16688721

  19. Type 2 iodothyronine deiodinase is upregulated in rat slow- and fast-twitch skeletal muscle during cold exposure.

    PubMed

    Louzada, Ruy A; Santos, Maria C S; Cavalcanti-de-Albuquerque, João Paulo A; Rangel, Igor F; Ferreira, Andrea C F; Galina, Antonio; Werneck-de-Castro, Joao Pedro S; Carvalho, Denise P

    2014-12-01

    During cold acclimation, shivering is progressively replaced by nonshivering thermogenesis. Brown adipose tissue (BAT) and skeletal muscle are relevant for nonshivering thermogenesis, which depends largely on thyroid hormone. Since the skeletal muscle fibers progressively adapt to cold exposure through poorly defined mechanisms, our intent was to determine whether skeletal muscle type 2 deiodinase (D2) induction could be implicated in the long-term skeletal muscle cold acclimation. We demonstrate that in the red oxidative soleus muscle, D2 activity increased 2.3-fold after 3 days at 4°C together with the brown adipose tissue D2 activity, which increased 10-fold. Soleus muscle and BAT D2 activities returned to the control levels after 10 days of cold exposure, when an increase of 2.8-fold in D2 activity was detected in white glycolytic gastrocnemius but not in red oxidative gastrocnemius fibers. Propranolol did not prevent muscle D2 induction, but it impaired the decrease of D2 in BAT and soleus after 10 days at 4°C. Cold exposure is accompanied by increased oxygen consumption, UCP3, and PGC-1α genes expression in skeletal muscles, which were partialy prevented by propranolol in soleus and gastrocnemius. Serum total and free T3 is increased during cold exposure in rats, even after 10 days, when BAT D2 is already normalized, suggesting that skeletal muscle D2 activity contributes significantly to circulating T3 under this adaptive condition. In conclusion, cold exposure is accompanied by concerted changes in the metabolism of BAT and oxidative and glycolytic skeletal muscles that are paralleled by type 2 deiodinase activation.

  20. Type 2 iodothyronine deiodinase is upregulated in rat slow- and fast-twitch skeletal muscle during cold exposure.

    PubMed

    Louzada, Ruy A; Santos, Maria C S; Cavalcanti-de-Albuquerque, João Paulo A; Rangel, Igor F; Ferreira, Andrea C F; Galina, Antonio; Werneck-de-Castro, Joao Pedro S; Carvalho, Denise P

    2014-12-01

    During cold acclimation, shivering is progressively replaced by nonshivering thermogenesis. Brown adipose tissue (BAT) and skeletal muscle are relevant for nonshivering thermogenesis, which depends largely on thyroid hormone. Since the skeletal muscle fibers progressively adapt to cold exposure through poorly defined mechanisms, our intent was to determine whether skeletal muscle type 2 deiodinase (D2) induction could be implicated in the long-term skeletal muscle cold acclimation. We demonstrate that in the red oxidative soleus muscle, D2 activity increased 2.3-fold after 3 days at 4°C together with the brown adipose tissue D2 activity, which increased 10-fold. Soleus muscle and BAT D2 activities returned to the control levels after 10 days of cold exposure, when an increase of 2.8-fold in D2 activity was detected in white glycolytic gastrocnemius but not in red oxidative gastrocnemius fibers. Propranolol did not prevent muscle D2 induction, but it impaired the decrease of D2 in BAT and soleus after 10 days at 4°C. Cold exposure is accompanied by increased oxygen consumption, UCP3, and PGC-1α genes expression in skeletal muscles, which were partialy prevented by propranolol in soleus and gastrocnemius. Serum total and free T3 is increased during cold exposure in rats, even after 10 days, when BAT D2 is already normalized, suggesting that skeletal muscle D2 activity contributes significantly to circulating T3 under this adaptive condition. In conclusion, cold exposure is accompanied by concerted changes in the metabolism of BAT and oxidative and glycolytic skeletal muscles that are paralleled by type 2 deiodinase activation. PMID:25294216

  1. Fourteen days of bed rest induces a decline in satellite cell content and robust atrophy of skeletal muscle fibers in middle-aged adults.

    PubMed

    Arentson-Lantz, Emily J; English, Kirk L; Paddon-Jones, Douglas; Fry, Christopher S

    2016-04-15

    Bed rest, a ground-based spaceflight analog, induces robust atrophy of skeletal muscle, an effect that is exacerbated with increasing age. We examined the effect of 14 days of bed rest on skeletal muscle satellite cell content and fiber type atrophy in middle-aged adults, an understudied age demographic with few overt signs of muscle aging that is representative of astronauts who perform long-duration spaceflight. Muscle biopsies were obtained from the vastus lateralis of healthy middle-aged adults [n= 7 (4 male, 3 female); age: 51 ± 1 yr] before (Pre-BR) and after (Post-BR) 14 days of bed rest. Immunohistochemical analyses were used to quantify myosin heavy chain (MyHC) isoform expression, cross-sectional area (CSA), satellite cell and myonuclear content, and capillary density. Peak oxygen consumption, knee extensor strength, and body composition were also measured Pre-BR and Post-BR. Post-BR MyHC type 2a fiber percentage was reduced, and mean CSA decreased in all fiber types (-24 ± 5%;P< 0.05). Satellite cell content was also reduced Post-BR (-39 ± 9%;P< 0.05), and the change in satellite cell content was significantly correlated with the change in mean fiber CSA (r(2)= 0.60;P< 0.05). A decline in capillary density was observed Post-BR (-23 ± 6%;P< 0.05), and Post-BR capillary content was significantly associated with Post-BR peak aerobic capacity (r(2)= 0.59;P< 0.05). A subtle decline in myonuclear content occurred during bed rest (-5 ± 1%;P< 0.05). The rapid maladaptation of skeletal muscle to 14 days of mechanical unloading in middle-aged adults emphasizes the need for robust countermeasures to preserve muscle function in astronauts. PMID:26796754

  2. Zebrafish embryos exposed to alcohol undergo abnormal development of motor neurons and muscle fibers.

    PubMed

    Sylvain, Nicole J; Brewster, Daniel L; Ali, Declan W

    2010-01-01

    Children exposed to alcohol in utero have significantly delayed gross and fine motor skills, as well as deficiencies in reflex development. The reasons that underlie the motor deficits caused by ethanol (EtOH) exposure remain to be fully elucidated. The present study was undertaken to investigate the effects of embryonic alcohol exposure (1.5%, 2% and 2.5% EtOH) on motor neuron and muscle fiber morphology in 3 days post fertilization (dpf) larval zebrafish. EtOH treated fish exhibited morphological deformities and fewer bouts of swimming in response to touch, compared with untreated fish. Immunolabelling with anti-acetylated tubulin indicated that fish exposed to 2.5% EtOH had significantly higher rates of motor neuron axon defects. Immunolabelling of primary and secondary motor neurons, using znp-1 and zn-8, revealed that fish exposed to 2% and 2.5% EtOH exhibited significantly higher rates of primary and secondary motor neuron axon defects compared to controls. Examination of red and white muscle fibers revealed that fish exposed to EtOH had significantly smaller fibers compared with controls. These findings indicate that motor neuron and muscle fiber morphology is affected by early alcohol exposure in zebrafish embryos, and that this may be related to deficits in locomotion. PMID:20211721

  3. Aging Enhances Indirect Flight Muscle Fiber Performance yet Decreases Flight Ability in Drosophila

    SciTech Connect

    Miller, Mark S.; Lekkas, Panagiotis; Braddock, Joan M.; Farman, Gerrie P.; Ballif, Bryan A.; Irving, Thomas C.; Maughan, David W.; Vigoreaux, Jim O.

    2008-10-02

    We investigated the effects of aging on Drosophila melanogaster indirect flight muscle from the whole organism to the actomyosin cross-bridge. Median-aged (49-day-old) flies were flight impaired, had normal myofilament number and packing, barely longer sarcomeres, and slight mitochondrial deterioration compared with young (3-day-old) flies. Old (56-day-old) flies were unable to beat their wings, had deteriorated ultrastructure with severe mitochondrial damage, and their skinned fibers failed to activate with calcium. Small-amplitude sinusoidal length perturbation analysis showed median-aged indirect flight muscle fibers developed greater than twice the isometric force and power output of young fibers, yet cross-bridge kinetics were similar. Large increases in elastic and viscous moduli amplitude under active, passive, and rigor conditions suggest that median-aged fibers become stiffer longitudinally. Small-angle x-ray diffraction indicates that myosin heads move increasingly toward the thin filament with age, accounting for the increased transverse stiffness via cross-bridge formation. We propose that the observed protein composition changes in the connecting filaments, which anchor the thick filaments to the Z-disk, produce compensatory increases in longitudinal stiffness, isometric tension, power and actomyosin interaction in aging indirect flight muscle. We also speculate that a lack of MgATP due to damaged mitochondria accounts for the decreased flight performance.

  4. History dependence of human muscle-fiber conduction velocity during voluntary isometric contractions

    PubMed Central

    Lateva, Zoia C.

    2011-01-01

    The conduction velocity (CV) of a muscle fiber is affected by the fiber's discharge history going back ∼1 s. We investigated this dependence by measuring CV fluctuations during voluntary isometric contractions of the human brachioradialis muscle. We recorded electromyogram (EMG) signals simultaneously from multiple intramuscular electrodes, identified potentials belonging to the same motor unit using EMG decomposition, and estimated the CV of each discharge from the interpotential interval. In 12 of 14 subjects, CV increased by ∼10% during the first second after recruitment and then fluctuated by about ±2% in a way that mirrored the fluctuations in the instantaneous firing rate. The CV profile could be precisely described in terms of the discharge history by a simple mathematical model. In the other two subjects, and one subject retested after cooling the arm, the CV fluctuations were inversely correlated with instantaneous firing rate. In all subjects, CV was additionally affected by very short interdischarge intervals (<25 ms): it was increased in doublets at recruitment, but decreased in doublets during continuous firing and after short interdischarge intervals in doubly innervated fibers. CV also exhibited a slow trend of about −0.05%/s that did not depend on the immediate discharge history. We suggest that measurements of CV fluctuations during voluntary contractions, or during stimulation protocols that involve longer and more complex stimulation patterns than are currently being used, may provide a sensitive approach for estimating the dynamic characteristics of ion channels in the human muscle-fiber membrane. PMID:21565985

  5. Fluorescence signals from the Mg2+/Ca2+ indicator furaptra in frog skeletal muscle fibers.

    PubMed Central

    Konishi, M; Suda, N; Kurihara, S

    1993-01-01

    The fluorescent Mg2+/Ca2+ indicator, furaptra, was injected into single frog skeletal muscle fibers, and the indicator's fluorescence signals were measured and analyzed with particular interest in the free Mg2+ concentration ([Mg2+]) in resting muscle. Based on the fluorescence excitation spectrum of furaptra, the calibrated myoplasmic [Mg2+] level averaged 0.54 mM, if the value of dissociation constant (KD) for Mg2+ obtained in vitro (5.5 mM) was used. However, if the indicator reacts with Mg2+ with a two-fold larger KD in myoplasm, as previously suggested for the furaptra-Ca2+ reaction (M. Konishi, S. Hollingworth, A.B. Harkins, S.M. Baylor. 1991. J. Gen. Physiol. 97:271-301), the calculated [Mg2+] would average 1.1 mM. Thus, the value 1.1 mM probably represents the best estimate from furaptra of [Mg2+] in resting muscle fibers. Extracellular perfusion of muscle fibers with high Mg2+ concentration solution or low Na+ concentration solution did not cause any detectable changes in the [Mg2+]-related furaptra fluorescence within 4 min. The results suggest that the myoplasmic [Mg2+] is highly regulated near the resting level of 1 mM, and that changes only occur with a very slow time course. PMID:8431543

  6. Diaphragm Muscle Fiber Weakness and Ubiquitin–Proteasome Activation in Critically Ill Patients

    PubMed Central

    Hooijman, Pleuni E.; Beishuizen, Albertus; Witt, Christian C.; de Waard, Monique C.; Girbes, Armand R. J.; Spoelstra-de Man, Angelique M. E.; Niessen, Hans W. M.; Manders, Emmy; van Hees, Hieronymus W. H.; van den Brom, Charissa E.; Silderhuis, Vera; Lawlor, Michael W.; Labeit, Siegfried; Stienen, Ger J. M.; Hartemink, Koen J.; Paul, Marinus A.; Heunks, Leo M. A.

    2015-01-01

    Rationale: The clinical significance of diaphragm weakness in critically ill patients is evident: it prolongs ventilator dependency, and increases morbidity and duration of hospital stay. To date, the nature of diaphragm weakness and its underlying pathophysiologic mechanisms are poorly understood. Objectives: We hypothesized that diaphragm muscle fibers of mechanically ventilated critically ill patients display atrophy and contractile weakness, and that the ubiquitin–proteasome pathway is activated in the diaphragm. Methods: We obtained diaphragm muscle biopsies from 22 critically ill patients who received mechanical ventilation before surgery and compared these with biopsies obtained from patients during thoracic surgery for resection of a suspected early lung malignancy (control subjects). In a proof-of-concept study in a muscle-specific ring finger protein-1 (MuRF-1) knockout mouse model, we evaluated the role of the ubiquitin–proteasome pathway in the development of contractile weakness during mechanical ventilation. Measurements and Main Results: Both slow- and fast-twitch diaphragm muscle fibers of critically ill patients had approximately 25% smaller cross-sectional area, and had contractile force reduced by half or more. Markers of the ubiquitin–proteasome pathway were significantly up-regulated in the diaphragm of critically ill patients. Finally, MuRF-1 knockout mice were protected against the development of diaphragm contractile weakness during mechanical ventilation. Conclusions: These findings show that diaphragm muscle fibers of critically ill patients display atrophy and severe contractile weakness, and in the diaphragm of critically ill patients the ubiquitin–proteasome pathway is activated. This study provides rationale for the development of treatment strategies that target the contractility of diaphragm fibers to facilitate weaning. PMID:25760684

  7. Prevention of muscle fibers atrophy during gravitational unloading: The effect of L-arginine administration

    NASA Astrophysics Data System (ADS)

    Kartashkina, N.; Lomonosova, Y.; Shevchenko, T. F.; Bugrova, A. E.; Turtikova, O. V.; Kalamkarov, G. R.; Nemirovskaya, T. L.

    2011-05-01

    Gravitational unloading results in pronounced atrophy of m.soleus. Probably, the output of NO is controlled by the muscle activity. We hypothesized that NO may be involved in the protein metabolism and increase of its concentration in muscle can prevent atrophic changes induced by gravitational unloading. In order to test the hypothesis we applied NO donor L-arginine during gravitational unloading. 2.5-month-old male Wistar rats weighing 220-230g were divided into sedentary control group (CTR, n=7), 14-day hindlimb suspension (HS, n=7), 14 days of hindlimb suspension+ L-arginine (HSL, n=7) (with a daily supplementation of 500 mg/kg wt L-arginine) and 14 days of hindlimb suspension+ L-NAME (HSN, n=7) (90 mg/kg wt during 14 days). Cross sectional area (CSA) of slow twitch (ST) and fast twitch (FT) soleus muscle fibers decreased by 45% and 28% in the HS group ( p<0.05) and 40% and 25% in the HSN group, as compared to the CTR group ( p<0.05), respectively. CSA of ST and FT muscle fibers were 25% and 16% larger in the HSL group in comparison with the HS group ( p<0.05), respectively. The atrophy of FT muscle fibers in the HSL group was completely prevented since FT fiber CSA had no significant differences from the CTR group. In HS group, the percentage of fibers revealing either gaps/disruption of the dystrophin layer of the myofiber surface membrane increased by 27% and 17%, respectively, as compared to the controls (CTR group, p<0.05). The destructions in dystrophin layer integrity and reductions of desmin content were significantly prevented in HSL group. NO concentration decreased by 60% in the HS group (as well as HSN group) and at the same time no changes were detectable in the HSL group. This fact indicates the compensation of NO content in the unloaded muscle under L-arginine administration. The levels of atrogin-1 mRNA were considerably altered in suspended animals (HS group: plus 27%, HSL group: minus 13%) as compared to the control level. Conclusion: L

  8. Therapeutic angiogenesis in ischemic muscles after local injection of fragmented fibers with loaded traditional Chinese medicine

    NASA Astrophysics Data System (ADS)

    Li, Huiyan; Wan, Huiying; Xia, Tian; Chen, Maohua; Zhang, Yun; Luo, Xiaoming; Li, Xiaohong

    2015-07-01

    Therapeutic angiogenesis remains the most effective method to re-establish a proper blood flow in ischemic tissues. There is a great clinical need to identify an injectable format to achieve a well accumulation following local administration and a sustained delivery of biological factors at the ischemic sites. In the current study, fragmented nanofibers with loaded traditional Chinese medicines, astragaloside IV (AT), the main active ingredient of astragalus, and ferulic acid (FA), the main ingredient of angelica, were proposed to promote the microvessel formation after intramuscular injection into ischemic hindlimbs. Fragmented fibers with average lengths of 5 (FF-5), 20 (FF-20) and 80 μm (FF-80) were constructed by the cryocutting of aligned electrospun fibers. Their dispersion in sodium alginate solution (0.2%) indicated good injectability. After injection into the quadriceps muscles of the hindlimbs, FF-20 and FF-80 fiber fragments showed higher tissue retentions than FF-5, and around 90% of the injected doses were determined after 7 days. On a hindlimb ischemia model established by ligating the femoral arteries, intramuscular injection of the mixtures of FA-loaded and AT-loaded FF-20 fiber fragments substantially reduced the muscle degeneration with minimal fibrosis formation, significantly enhanced the neovessel formation and hindlimb perfusion in the ischemic tissues, and efficiently promoted the limb salvage with few limb losses. Along with the easy manipulation and lower invasiveness for in vivo administration, fragmented fibers should become potential drug carriers for disease treatment, wound recovery and tissue repair after local injection.

  9. A spin label that binds to myosin heads in muscle fibers with its principal axis parallel to the fiber axis.

    PubMed Central

    Roopnarine, O; Thomas, D D

    1994-01-01

    We have used an indane-dione spin label (2-[-oxyl-2,2,5,5-tetramethyl-3-pyrrolin-3-yl)methenyl]in dane-1,3-dione), designated InVSL, to study the orientation of myosin heads in bundles of chemically skinned rabbit psoas muscle fibers, with electron paramagnetic resonance (EPR) spectroscopy. After reversible preblocking with 5,5'-dithiobis(2-nitro-benzoic acid) (DTNB), we were able to attach most of the spin label covalently and rigidly to either Cys 707 (SH1) or Cys 697 (SH2) on myosin heads. EPR spectra of labeled fibers contained substantial contributions from both oriented and disordered populations of spin labels. Similar spectra were obtained from fibers decorated with InVSL-labeled myosin heads (subfragment 1), indicating that virtually all the spin labels in labeled fibers are on the myosin head. We specifically labeled SH2 with InVSL after reversible preblocking of the SH1 sites with 1-fluoro-2,4-dinitrobenzene (FDNB), resulting in a spectrum that indicated only disordered spin labels. Therefore, the oriented and disordered populations correspond to labels on SH1 and SH2, respectively. The spectrum of SH2-bound labels was subtracted to produce a spectrum corresponding to SH1-bound labels, which was used for further analysis. For this corrected spectrum, the angle between the fiber axis and the principal axis of the spin label was fitted well by a Gaussian distribution centered at theta o = 11 +/- 1 degree, with a full width at half-maximum of delta theta = 15 +/- 2 degrees. The unique orientation of InVSL, with its principal axis almost parallel to the fiber axis, makes it complementary to spin labels previously studied in this system. This label can provide unambiguous information about axial rotations of myosin heads, since any axial rotation of the head must be reflected in the same axial rotation of the principal axis of the probe, thus changing the hyperfine splitting. Therefore, InVSL-labeled fibers have ideal properties needed for further exploration

  10. Human skeletal muscle fibre types and force: velocity properties.

    PubMed

    MacIntosh, B R; Herzog, W; Suter, E; Wiley, J P; Sokolosky, J

    1993-01-01

    It has been reported that there is a relationship between power output and fibre type distribution in mixed muscle. The strength of this relationship is greater in the range of 3-8 rad.s-1 during knee extension compared to slower or faster angular knee extensor speeds. A mathematical model of the force: velocity properties of muscle with various combinations of fast- and slow-twitch fibres may provide insight into why specific velocities may give better predictions of fibre type distribution. In this paper, a mathematical model of the force:velocity relationship for mixed muscle is presented. This model demonstrates that peak power and optimal velocity should be predictive of fibre distribution and that the greatest fibre type discrimination in human knee extensor muscles should occur with measurement of power output at an angular velocity just greater than 7 rad.s-1. Measurements of torque:angular velocity relationships for knee extension on an isokinetic dynamometer and fibre type distribution in biopsies of vastus lateralis muscles were made on 31 subjects. Peak power and optimal velocity were determined in three ways: (1) direct measurement, (2) linear regression, and (3) fitting to the Hill equation. Estimation of peak power and optimal velocity using the Hill equation gave the best correlation with fibre type distribution (r < 0.5 for peak power or optimal velocity and percentage of fast-twitch fibres). The results of this study confirm that prediction of fibre type distribution is facilitated by measurement of peak power at optimal velocity and that fitting of the data to the Hill equation is a suitable method for evaluation of these parameters.

  11. Agonist mediated fetal muscle-type nicotinic acetylcholine receptor desensitization

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The exposure of a developing embryo or fetus to teratogenic alkaloids from plants has the potential to cause developmental defects in livestock due to the inhibition of fetal movement by alkaloids. The mechanism behind the inhibition of fetal movement is the desensitization of fetal muscle-type nico...

  12. Mitochondrial function in skeletal muscle in type 2 diabetes.

    PubMed

    Rabøl, Rasmus

    2011-04-01

    Reduced skeletal muscle mitochondrial function has been proposed to lead to insulin resistance and type 2 diabetes. It has been known for several years that oxidative capacity of skeletal muscle is reduced in patients with type 2 diabetes compared to weight matched controls. The reduction in oxidative capacity supposedly leads to the accumulation of intramyocellular lipid which inhibits insulin signalling and causes insulin resistance. It is not known whether this reduction in mitochondrial capacity is the cause or the effect of type 2 diabetes. This PhD-thesis describes the effect of different pharmacological interventions on mitochondrial function in type 2 diabetes and describe whether mitochondrial function is uniformly distributed to both upper and lower extremities. Furthermore, a hypothesis on the molecular mechanism for weight gain observed with anthyperglycaemic treatment will be presented.

  13. Botulinum toxin paralysis of the orbicularis oculi muscle. Types and time course of alterations in muscle structure, physiology and lid kinematics.

    PubMed

    Horn, A K; Porter, J D; Evinger, C

    1993-01-01

    In chronically prepared guinea pigs, we investigated the time course of botulinum toxin A's (Bot A) effect on the blink reflex by monitoring lid movements and EMG activity prior to and after Bot A injection into the orbicularis oculi muscle (OOemg), or after nerve crush of the zygomatic nerve. We correlated these alterations with the morphological changes of the orbicularis oculi (lid-closing) muscles of the same animals. After Bot A treatment there was a profound reduction of OOemg activity and blink amplitudes as well as a slowing of maximum blink down-phase velocity. Blink up-phases, however, remained unchanged. Gradual recovery of OOemg magnitude and blink amplitude started around day 6; a functioning blink reflex appeared on day 21, and full recovery of blink amplitude occurred by day 42. Crushing the zygomatic branch of the facial nerve produced similar changes in blink parameters, but recovery was much more rapid (15 days) than for Bot A-treated guinea pigs. The morphological analysis demonstrated that Bot A produced a denervation-like atrophy in the orbicularis oculi. No fiber type-specific alterations were noted, and all muscle fiber types ultimately recovered, with no longstanding consequences of the transient denervation. Our findings support the notion that functional recovery was the result of preterminal and terminal axonal sprouting that subsequently re-established functional innervation. Moreover, differences between the present findings and those seen after injection of Bot A into the extraocular muscles strongly support the hypothesis that the composition in terms of muscle fiber type and the properties of the motor control system of a given muscle greatly influence both how the particular muscle responds to toxin injection, and how effective the toxin is in resolution of neuromuscular disorders that affect a particular muscle. The present findings were consistent with clinical observations that Bot A produces only temporary relief in patients

  14. Cells that emerge from embryonic explants produce fibers of type IV collagen.

    PubMed

    Chen, J M; Little, C D

    1985-10-01

    Double immunofluorescence staining experiments designed to examine the synthesis and deposition of collagen types I and IV in cultured explants of embryonic mouse lung revealed the presence of connective tissue-like fibers that were immunoreactive with anti-type IV collagen antibodies. This observation is contrary to the widely accepted belief that type IV collagen is found only in sheet-like arrangements beneath epithelia or as a sheath-like layer enveloping bundles of nerve or muscle cells. The extracellular matrix produced by cells that migrate from embryonic mouse lung rudiments in vitro was examined by double indirect immunofluorescence microscopy. Affinity-purified monospecific polyclonal antibodies were used to examine cells after growth on glass or native collagen substrata. The data show that embryonic mesenchymal cells can produce organized fibers of type IV collagen that are not contained within a basement membrane, and that embryonic epithelial cells deposit fibers and strands of type IV collagen beneath their basal surface when grown on glass; however, when grown on a rat tail collagen substratum the epithelial cells produce a fine meshwork. To our knowledge this work represents the first report that type IV collagen can be organized by cells into a fibrous extracellular matrix that is not a basement membrane.

  15. An improved double vaseline gap voltage clamp to study electroporated skeletal muscle fibers.

    PubMed Central

    Chen, W; Lee, R C

    1994-01-01

    An improved voltage clamp with a double vaseline gap chamber was designed to study electroporated skeletal muscle fibers. The new clamp eliminated spike overshock of membrane potential when applying step stimulation occurring in the traditional configuration. It allowed greater consistency in membrane potential distribution. After the intracellular resistances of the fiber segment at the vaseline gap area were compensated, it was possible to change membrane potential more quickly. Using this technique, strong electrical pulses used to mimic the situation of electrical shock can be delivered to the cell membrane by voltage clamp. Transmembrane currents of skeletal muscle cell were simultaneously measured during a high pulsed shock and resolved into different components. Distinct transient changes of the transmembrane current, involving the time courses of the formation of electroporation and their recovery time constants, can be recorded. Because of more even membrane potential distribution and faster response to pulsed membrane potential change, this technique is also suitable for membrane study under physiological conditions. PMID:8011901

  16. Microtubule-associated protein tau epitopes are present in fiber lesions in diverse muscle disorders.

    PubMed Central

    Lübke, U.; Six, J.; Villanova, M.; Boons, J.; Vandermeeren, M.; Ceuterick, C.; Cras, P.; Martin, J. J.

    1994-01-01

    The microtubule-associated protein tau is a major cytoskeletal protein involved in the neurofibrillary tangles of Alzheimer's disease. Although tau is predominantly a neuronal protein, it has been demonstrated in glia and other nonneuronal cells. We describe the presence of microtubule-associated protein tau epitopes in various muscle fiber lesions in oculopharyngeal and Becker muscular dystrophy, dermatomyositis, central core disease, neurogenic atrophy, and in the recovery phase of an attack of malignant hyperthermia. Western blot demonstrated a 100- to 110-kd tau-immunoreactive protein probably corresponding to 'big tau' as described in peripheral nerves. Tau immunoreactivity in muscle fiber lesions usually co-localized with tubulin, although electron microscopy failed to show an increase in microtubules. Tau and tubulin reactivity also correlated with the presence of desmin and vimentin epitopes. Possible explanations for the presence of tau are briefly discussed. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 Figure 8 PMID:7518193

  17. Assessment of muscle mass and strength in mice

    PubMed Central

    Bonetto, Andrea; Andersson, Daniel C; Waning, David L

    2015-01-01

    Muscle weakness is an important phenotype of many diseases that is linked to impaired locomotion and increased mortality. The force that a muscle can generate is determined predominantly by muscle size, fiber type and the excitation–contraction coupling process. Here we describe methods for the histological assessment of whole muscle to determine fiber cross-sectional area and fiber type, determination of changes in myocyte size using C2C12 cells, in vivo functional tests and measurement of contractility in dissected whole muscles. The extensor digitorum longus and soleus muscles are ideally suited for whole-muscle contractility, and dissection of these muscles is described. PMID:26331011

  18. Mild heat stress enhances differentiation and proliferation of Japanese quail myoblasts and enhances slow muscle fiber characteristics.

    PubMed

    Choi, Y M; Chen, P R; Shin, S; Zhang, J; Hwang, S; Lee, K

    2016-08-01

    The objective of this study was to investigate the effect of mild heat stress on muscle fiber hyperplastic and hypertrophic growth in quail primary myogenic cells to better understand the mechanisms leading to increased skeletal muscle development in avian embryos incubated at a higher temperature. Compared to control cultures maintained at 37°C, incubation at 39°C enhanced myotube length (P < 0.01) and diameter (P < 0.001) at 3 days after differentiation (D3). This enlargement of the myotubes incubated at 39°C can be explained by differences in the fusion index (56.7 vs. 46.2%, P < 0.05) and nuclei number per myotube (18.1 vs. 10.8, P < 0.001) compared to the control cells at D3. Additionally, a higher density of myotubes at D3 in cultures exposed to a higher temperature were related to higher levels of Pax-7 (P < 0.05) compared to the control cells incubated continuously at 37°C. These results indicated a higher proliferative capacity in cells exposed to mild heat stress compared to the control cells. On the other hand, mild heat stress enhanced protein levels of slow myosin heavy chain isoform (P < 0.01) and cytochrome c oxidase subunit IV (P < 0.01) compared to the control cells at D3. These discrepancies in protein expression indicated maintenance of slow muscle fiber type characteristics in myotubes incubated at 39°C. Our results suggest that mild heat stress plays a significant role in myogenic mechanisms related to muscle mass and development.

  19. Longitudinal enhancement of the hyperechoic regions in ultrasonography of muscles using a Gabor filter bank approach: a preparation for semi-automatic muscle fiber orientation estimation.

    PubMed

    Zhou, Yongjin; Zheng, Yong-Ping

    2011-04-01

    In this study, to complement our previously proposed method for estimating muscle fiber orientation, the Gabor filter bank (GF) technique was applied to sonograms of the biceps and forearm muscles to longitudinally enhance the coherently oriented and hyperechoic perimysiums regions. The method involved three steps: orientation field estimation, frequency map computation and Gabor filtering. The method was evaluated using a simulated image distorted with multiplicative speckle noises where the "muscles" were arranged in a bipennate fashion with an "aponeurosis" located in the middle. After enhancement using the GF approach, most of the original hyperechoic bands in the simulated image could be recovered. The proposed method was also tested using a group of biceps and forearm muscle sonograms collected from healthy adult subjects. Compared with the sonograms without enhancement, the enhanced images led to the detection of more linear patterns including muscle fascicles and smaller angle differences compared with the mean of manual results from two operators, therefore, were better prepared for the automatic estimation of muscle fiber orientation. The proposed method has the potential of assisting in the visualization of strongly oriented patterns in skeletal muscle sonograms as well as in the semi-automatic estimation of muscle fiber orientations.

  20. Effect of early gestation feeding, birth weight, and gender of progeny on muscle fiber characteristics of pigs at slaughter.

    PubMed

    Bee, G

    2004-03-01

    gilts than barrows. The ST of progeny from LE sows had fewer (P < 0.10) FG fibers, which was compensated by either more (P < 0.05) FOG in the light portion of the ST, or more (P < 0.10) SO fibers in the dark portion, and these differences were more pronounced in Lt pigs than in Hvy pigs. Overall, maternal feeding regimen affected muscle fiber type distribution, whereas birth weight and gender affected muscle fiber area.

  1. Direct observation of failing fibers in muscles of dystrophic mice provides mechanistic insight into muscular dystrophy.

    PubMed

    Claflin, Dennis R; Brooks, Susan V

    2008-02-01

    Duchenne muscular dystrophy is caused by the absence of the protein dystrophin. Dystrophin's function is not known, but its cellular location and associations with both the force-generating contractile core and membrane-spanning entities suggest a role in mechanically coupling force from its intracellular origins to the fiber membrane and beyond. We report here the presence of destructive contractile activity in lumbrical muscles from dystrophin-deficient (mdx) mice during nominally quiescent periods following exposure to mechanical stress. The ectopic activity, which was observable microscopically, resulted in longitudinal separation and clotting of fiber myoplasm and was absent when calcium (Ca(2+)) was removed from the bathing medium. Separation and clotting of myoplasm were also produced in dystrophin-deficient muscles by local application of a Ca(2+) ionophore to create membrane breaches in the absence of mechanical stress, whereas muscles from control mice tolerated ionophore-induced entry of Ca(2+) without damage. These observations suggest a failure cascade in dystrophin-deficient fibers that 1) is initiated by a stress-induced influx of extracellular Ca(2+), causing localized activation to continue after cessation of stimulation, and 2) proceeds as the persistent local activation, combined with reduced lateral mechanical coupling between the contractile core and the extracellular matrix, results in longitudinal separation of myoplasm in nonactivated regions of the fiber. This mechanism invokes both the membrane stabilization and the mechanical coupling functions frequently proposed for dystrophin and suggests that, whereas the absence of either function alone is not sufficient to cause fiber failure, their combined absence is catastrophic.

  2. An image processing approach to analyze morphological features of microscopic images of muscle fibers

    PubMed Central

    Comin, Cesar Henrique; Xu, Xiaoyin; Wang, Yaming; da Fontoura Costa, Luciano; Yang, Zhong

    2016-01-01

    We present an image processing approach to automatically analyze duo-channel microscopic images of muscular fiber nuclei and cytoplasm. Nuclei and cytoplasm play a critical role in determining the health and functioning of muscular fibers as changes of nuclei and cytoplasm manifest in many diseases such as muscular dystrophy and hypertrophy. Quantitative evaluation of muscle fiber nuclei and cytoplasm thus is of great importance to researchers in musculoskeletal studies. The proposed computational approach consists of steps of image processing to segment and delineate cytoplasm and identify nuclei in two-channel images. Morphological operations like skeletonization is applied to extract the length of cytoplasm for quantification. We tested the approach on real images and found that it can achieve high accuracy, objectivity, and robustness. PMID:25124286

  3. An image processing approach to analyze morphological features of microscopic images of muscle fibers.

    PubMed

    Comin, Cesar Henrique; Xu, Xiaoyin; Wang, Yaming; Costa, Luciano da Fontoura; Yang, Zhong

    2014-12-01

    We present an image processing approach to automatically analyze duo-channel microscopic images of muscular fiber nuclei and cytoplasm. Nuclei and cytoplasm play a critical role in determining the health and functioning of muscular fibers as changes of nuclei and cytoplasm manifest in many diseases such as muscular dystrophy and hypertrophy. Quantitative evaluation of muscle fiber nuclei and cytoplasm thus is of great importance to researchers in musculoskeletal studies. The proposed computational approach consists of steps of image processing to segment and delineate cytoplasm and identify nuclei in two-channel images. Morphological operations like skeletonization is applied to extract the length of cytoplasm for quantification. We tested the approach on real images and found that it can achieve high accuracy, objectivity, and robustness.

  4. Structure of cortical cytoskeleton in fibers of mouse muscle cells after being exposed to a 30-day space flight on board the BION-M1 biosatellite.

    PubMed

    Ogneva, I V; Maximova, M V; Larina, I M

    2014-05-15

    The aim of the work was to analyze changes in the organization of the cortical cytoskeleton in fibers of the mouse soleus muscle, tibialis anterior muscle and left ventricular cardiomyocytes after completion of a 30-day space flight on board the BION-M1 biosatellite (Russia, 2013). The transversal stiffness of the cortical cytoskeleton of the cardiomyocytes and fibers of the skeletal muscles did not differ significantly within the study groups compared with the vivarium control group. The content of beta- and gamma-actin in the membranous fraction of proteins in the left ventricular cardiomyocytes did not differ significantly within all study groups and correlated with the transversal stiffness. A similar situation was revealed in fibers of the soleus muscle and tibialis anterior muscle. At the same time, the content of beta-actin in the cytoplasmic fraction of proteins was found to be decreased in all types of studied tissues compared with the control levels in the postflight group, with lowered beta-actin gene expression rates in the postflight group. After completion of the space flight, the content of alpha-actinin-4 was found to be reduced in the membranous fraction of proteins from the mouse cardiomyocytes, while its content in the cytoplasmic fraction of proteins did not change significantly. Furthermore, gene expression rates of this protein were decreased at the time of dissection (it was started after 13 h after landing). At the same time, the content of alpha-actinin-1 decreased in the membranous fraction and increased in the cytoplasmic fraction of proteins from the soleus muscle fibers.

  5. Monovalent Cationic Channel Activity in the Inner Membrane of Nuclei from Skeletal Muscle Fibers

    PubMed Central

    Yarotskyy, Viktor; Dirksen, Robert T.

    2014-01-01

    Nuclear ion channels remain among the least studied and biophysically characterized channels. Although considerable progress has been made in characterizing calcium release channels in the nuclear membrane, very little is known regarding the properties of nuclear monovalent cationic channels. Here, we describe a method to isolate nuclei from adult skeletal muscle fibers that are suitable for electrophysiological experiments. Using this approach, we show for the first time, to our knowledge, that a nuclear monovalent cationic channel (NMCC) is prominently expressed in the inner membrane of nuclei isolated from flexor digitorum brevis skeletal muscle fibers of adult mice. In isotonic 140 mM KCl, the skeletal muscle NMCC exhibits a unitary conductance of ∼160 pS and high, voltage-independent open probability. Based on single-channel reversal potential measurements, NMCCs are slightly more permeable to potassium ions over sodium (PK/PNa = 2.68 ± 0.21) and cesium (PK/PCs = 1.39 ± 0.03) ions. In addition, NMCCs do not permeate divalent cations, are inhibited by calcium ions, and demonstrate weak rectification in asymmetric Ca2+-containing solutions. Together, these studies characterize a voltage-independent NMCC in skeletal muscle, the properties of which are ideally suited to serve as a countercurrent mechanism during calcium release from the nuclear envelope. PMID:25418088

  6. Fish muscle structure: fibre types in flatfish and mullet fin muscles using histochemistry and antimyosin antibody labelling.

    PubMed

    Chayen, N E; Rowlerson, A M; Squire, J M

    1993-10-01

    In studies of the myosin crossbridge interaction with actin in vertebrate muscles, the muscles of bony fish have the unique advantage for ultrastructural work that the A-band has a simple 'crystalline' lattice of myosin filaments. However, the anatomy and physiology of these fish muscles is relatively poorly understood compared with the rabbit, chicken or frog muscles conventionally used for crossbridge studies. Here the fibre types in fish fin muscles have been characterized to allow sensible selection of single fish fibres for ultrastructural studies. The fibre type compositions of the fin muscles of mullet, plaice, sole and turbot were examined by histochemistry and immunohistochemistry using polyclonal antibodies raised against various myosin isoforms: fish slow, fish fast, mammalian fast (type IIA) and chicken tonic myosins. In the mullet, fin muscles were composed of variable proportions of fast and slow fibres. In the three flatfish, the fin muscle showed a zonal arrangement with slow fibres, binding anti-slow myosin antibody, next to the skin (alpha region). The bulk of the muscle, distal to the skin, was a typical fast muscle both histochemically and in its reaction with antibodies (delta region). Between these two regions there may be one (sole) or two (turbot, plaice) intermediate zones (beta and gamma regions) comparable to the pink/intermediate layer of myotomal muscle. In the plaice fin muscle, two kinds of slow fibre could be distinguished immunohistochemically. PMID:8300849

  7. Titin-based stiffening of muscle fibers in Ehlers-Danlos Syndrome

    PubMed Central

    Voermans, Nicol C.; Hudson, Bryan D.; Irving, Thomas; Stienen, Ger J. M.; van Engelen, Baziel G.; Granzier, Henk

    2012-01-01

    Objective: tenascin-X (TNX) is an extracellular matrix glycoprotein whose absence leads to Ehlers-Danlos Syndrome (EDS). TNX-deficient EDS patients present with joint hypermobility and muscle weakness attributable to increased compliance of the extracellular matrix. We hypothesized that in response to the increased compliance of the extracellular matrix in TNX-deficient EDS patients, intracellular adaptations take place in the elastic properties of the giant muscle protein titin. Methods: we performed extensive single muscle fiber mechanical studies to determine active and passive properties in TNX-deficient EDS patients. Gel-electrophoresis, Western blotting, and microarray studies were used to evaluate titin expression and phosphorylation. X-ray diffraction was used to measure myofilament lattice spacing. Results: passive tension of muscle fibers from TNX-deficient EDS patients was markedly increased. Myofilament extraction experiments indicated that the increased passive tension is attributable to changes in the properties of the sarcomeric protein titin. Transcript and protein data indicated no changes in titin isoform expression. Instead, differences in posttranslational modifications within titin's elastic region were found. In patients, active tension was not different at maximal activation level, but at submaximal activation level it was augmented attributable to increased calcium sensitivity. This increased calcium sensitivity might be attributable to stiffer titin molecules. Conclusion: in response to the increased compliance of the extracellular matrix in muscle of TNX-deficient EDS patients, a marked intracellular stiffening occurs of the giant protein titin. The stiffening of titin partly compensates for the muscle weakness in these patients by augmenting submaximal active tension generation. PMID:22223454

  8. Titin-based stiffening of muscle fibers in Ehlers-Danlos Syndrome

    SciTech Connect

    Ottenheijm, Coen A.C.; Voermans, Nicol C.; Hudson, Bryan D.; Irving, Thomas; Stienen, Ger J.M.; van Engelen, Baziel G.; Granzier, Henk

    2012-05-09

    Tenascin-X (TNX) is an extracellular matrix glycoprotein whose absence leads to Ehlers-Danlos Syndrome (EDS). TNX-deficient EDS patients present with joint hypermobility and muscle weakness attributable to increased compliance of the extracellular matrix. We hypothesized that in response to the increased compliance of the extracellular matrix in TNX-deficient EDS patients, intracellular adaptations take place in the elastic properties of the giant muscle protein titin. We performed extensive single muscle fiber mechanical studies to determine active and passive properties in TNX-deficient EDS patients. Gel-electrophoresis, Western blotting, and microarray studies were used to evaluate titin expression and phosphorylation. X-ray diffraction was used to measure myofilament lattice spacing. Passive tension of muscle fibers from TNX-deficient EDS patients was markedly increased. Myofilament extraction experiments indicated that the increased passive tension is attributable to changes in the properties of the sarcomeric protein titin. Transcript and protein data indicated no changes in titin isoform expression. Instead, differences in posttranslational modifications within titin's elastic region were found. In patients, active tension was not different at maximal activation level, but at submaximal activation level it was augmented attributable to increased calcium sensitivity. This increased calcium sensitivity might be attributable to stiffer titin molecules. In response to the increased compliance of the extracellular matrix in muscle of TNX-deficient EDS patients, a marked intracellular stiffening occurs of the giant protein titin. The stiffening of titin partly compensates for the muscle weakness in these patients by augmenting submaximal active tension generation.

  9. Reference values for vastus lateralis fiber size and type in healthy subjects over 40 years old: a systematic review and metaanalysis.

    PubMed

    Gouzi, Fares; Maury, Jonathan; Molinari, Nicolas; Pomiès, Pascal; Mercier, Jacques; Préfaut, Christian; Hayot, Maurice

    2013-08-01

    Skeletal muscle atrophy is a major systemic impairment in chronic diseases. Yet its determinants have been hard to identify because a clear research definition has not been agreed upon. The reduction in muscle fiber cross-sectional area (CSA) is a widely acknowledged marker of muscle atrophy, but no reference values for the muscle fiber CSA at the age of the onset of chronic disease have ever been published. Thus, we aimed to systematically review the studies providing data on fiber CSA and fiber type proportion in the vastus lateralis of the quadriceps of healthy subjects (age >40 yr) and then to pool and analyze the data from the selected studies to determine reference values for fiber CSA. We followed the guidelines of the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) and identified 19 studies, including 423 subjects that matched the inclusion criteria. On the basis of fiber type and gender, the mean fiber CSA and the lower limits of normal (LLNs) were (%type I*60) + 1,743 μm(2) and (%type I*60) - 718 μm(2), respectively, for men; and (%type I*70) + 139 μm(2) and (%type I*70) - 1,485 μm(2), respectively, for women. There was no significant heterogeneity among subgroups of fiber type and gender. The pooled type I fiber proportion was 50.3% (LLN = 32.9%). In multivariate analysis, fiber CSA was significantly correlated with Vo2 peak (r = 190.92; P = 0.03), and type I fiber proportion was correlated with age (r = -0.024; P = 0.005), body mass index (r = 0.096; P = 0.005), and Vo2 peak (r = -0.053; P = 0.005). Our metaanalysis of a homogeneous set of studies is the first to provide valuable LLNs for fiber CSA according to fiber type and gender. This analysis will be improved by prospective assessment in well-characterized healthy subjects.

  10. Differences in typing forces, muscle activity, comfort, and typing performance among virtual, notebook, and desktop keyboards.

    PubMed

    Kim, Jeong Ho; Aulck, Lovenoor; Bartha, Michael C; Harper, Christy A; Johnson, Peter W

    2014-11-01

    The present study investigated whether there were physical exposure and typing productivity differences between a virtual keyboard with no tactile feedback and two conventional keyboards where key travel and tactile feedback are provided by mechanical switches under the keys. The key size and layout were same across all the keyboards. Typing forces; finger and shoulder muscle activity; self-reported comfort; and typing productivity were measured from 19 subjects while typing on a virtual (0 mm key travel), notebook (1.8 mm key travel), and desktop keyboard (4 mm key travel). When typing on the virtual keyboard, subjects typed with less force (p's < 0.0001) and had lower finger flexor/extensor muscle activity (p's < 0.05). However, the lower typing forces and finger muscle activity came at the expense of a 60% reduction in typing productivity (p < 0.0001), decreased self-reported comfort (p's < 0.0001), and a trend indicating an increase in shoulder muscle activity (p's < 0.10). Therefore, for long typing sessions or when typing productivity is at a premium, conventional keyboards with tactile feedback may be more suitable interface.

  11. Distinct underlying mechanisms of limb and respiratory muscle fiber weaknesses in nemaline myopathy.

    PubMed

    Lindqvist, Johan; Cheng, Arthur J; Renaud, Guillaume; Hardeman, Edna C; Ochala, Julien

    2013-06-01

    Nemaline myopathy is the most common congenital myopathy and is caused by mutations in various genes such as ACTA1 (encoding skeletal α-actin). It is associated with limb and respiratory muscle weakness. Despite increasing clinical and scientific interest, the molecular and cellular events leading to such weakness remain unknown, which prevents the development of specific therapeutic interventions. To unravel the potential mechanisms involved, we dissected lower limb and diaphragm muscles from a knock-in mouse model of severe nemaline myopathy expressing the ACTA1 His40Tyr actin mutation found in human patients. We then studied a broad range of structural and functional characteristics assessing single-myofiber contraction, protein expression, and electron microscopy. One of the major findings in the diaphragm was the presence of numerous noncontractile areas (including disrupted sarcomeric structures and nemaline bodies). This greatly reduced the number of functional sarcomeres, decreased the force generation capacity at the muscle fiber level, and likely would contribute to respiratory weakness. In limb muscle, by contrast, there were fewer noncontractile areas and they did not seem to have a major role in the pathogenesis of weakness. These divergent muscle-specific results provide new important insights into the pathophysiology of severe nemaline myopathy and crucial information for future development of therapeutic strategies. PMID:23656990

  12. Water in barnacle muscle. III. NMR studies of fresh fibers and membrane-damaged fibers equilibrated with selected solutes.

    PubMed Central

    Burnell, E E; Clark, M E; Hinke, J A; Chapman, N R

    1981-01-01

    Water in barnacle muscle has been studied using NMR techniques. Fresh fibers are compared with membrane-damaged fibers treated with solutes that greatly alter fixed charge and total water content. Both water (97%) and solute (3%) protons are visible in continuous wave spectra of oriented fresh fibers. No local field inhomogeneities were detected, nor are cell solutes significantly bound. In pulse experiments, all cell water is visible and exhibits a single exponential decay. In fresh fibers, T2 approximately or equal to 40 ms; faster decaying signals are assigned to immobile and mobile protons on macromolecules. T1 and T1p are frequency dependent. Using equations derived for a two-compartment model with fast exchange, we calculate the following: tau b, the correlation time for anisotropic rotational motion of bound water; Sb, its order parameter; tau ex, the correlation time for exchange between bound and free fractions; f, the fraction of water bound; and Hr, the grams of water bound per gram of macromolecule. Whereas f varies inversely with total water content, the other parameters are virtually constant, with values: tau b approximately or equal to 1.3 X 10(-8) S; tau ex approximately or equal to 8 X 10(-6) s; Sb approximately or equal to 0.06; and Hr approximately or equal to 0.1g H2O/g macromolecule. Thus, the NMR relaxation detectable properties of water bound to macromolecules are unaffected by solutes that greatly alter the macromolecular surface charge. PMID:7272435

  13. Epigallocatechin Gallate Reduces Slow-Twitch Muscle Fiber Formation and Mitochondrial Biosynthesis in C2C12 Cells by Repressing AMPK Activity and PGC-1α Expression.

    PubMed

    Wang, Lina; Wang, Zhen; Yang, Kelin; Shu, Gang; Wang, Songbo; Gao, Ping; Zhu, Xiaotong; Xi, Qianyun; Zhang, Yongliang; Jiang, Qingyan

    2016-08-31

    Epigallocatechin gallate (EGCG) is a major active compound in green tea polyphenols. EGCG acts as an antioxidant to prevent the cell damage caused by free radicals and their derivatives. In skeletal muscle, exercise causes the accumulation of intracellular reactive oxygen species (ROS) and promotes the formation of slow-type muscle fiber. To determine whether EGCG, as a ROS scavenger, has any effect on skeletal muscle fiber type, we applied different concentrations (0, 5, 25, and 50 μM) of EGCG in the culture medium of differentiated C2C12 cells for 2 days. The fiber-type composition, mitochondrial biogenesis-related gene expression, antioxidant and glucose metabolism enzyme activity, and ROS levels in C2C12 cells were then detected. According to our results, 5 μM EGCG significantly decreased the cellular activity of SDH, 25 μM EGCG significantly downregulated the MyHC I, PGC-1α, NRF-1, and p-AMPK levels and SDH activity while enhancing the CAT and GSH-Px activity and decreasing the intracellular ROS levels, and 50 μM EGCG significantly downregulated MyHC I, PGC-1α, and NRF-1 expression and HK and SDH activity while increasing LDH activity. Furthermore, 300 μM H2O2 and 0.5 mM AMPK agonist (AICAR) improved the expression of MyHC I, PGC-1α, and p-AMPK, which were all reversed by 25 μM EGCG. In conclusion, the effect of EGCG on C2C12 cells may occur through the reduction of the ROS level, thereby decreasing both AMPK activity and PGC-1α expression and eventually reducing slow-twitch muscle fiber formation and mitochondrial biosynthesis. PMID:27420899

  14. Polynomial fitting of DT-MRI fiber tracts allows accurate estimation of muscle architectural parameters.

    PubMed

    Damon, Bruce M; Heemskerk, Anneriet M; Ding, Zhaohua

    2012-06-01

    Fiber curvature is a functionally significant muscle structural property, but its estimation from diffusion-tensor magnetic resonance imaging fiber tracking data may be confounded by noise. The purpose of this study was to investigate the use of polynomial fitting of fiber tracts for improving the accuracy and precision of fiber curvature (κ) measurements. Simulated image data sets were created in order to provide data with known values for κ and pennation angle (θ). Simulations were designed to test the effects of increasing inherent fiber curvature (3.8, 7.9, 11.8 and 15.3 m(-1)), signal-to-noise ratio (50, 75, 100 and 150) and voxel geometry (13.8- and 27.0-mm(3) voxel volume with isotropic resolution; 13.5-mm(3) volume with an aspect ratio of 4.0) on κ and θ measurements. In the originally reconstructed tracts, θ was estimated accurately under most curvature and all imaging conditions studied; however, the estimates of κ were imprecise and inaccurate. Fitting the tracts to second-order polynomial functions provided accurate and precise estimates of κ for all conditions except very high curvature (κ=15.3 m(-1)), while preserving the accuracy of the θ estimates. Similarly, polynomial fitting of in vivo fiber tracking data reduced the κ values of fitted tracts from those of unfitted tracts and did not change the θ values. Polynomial fitting of fiber tracts allows accurate estimation of physiologically reasonable values of κ, while preserving the accuracy of θ estimation.

  15. Frequency dependence of power and its implications for contractile function of muscle fibers from the digital flexors of horses

    PubMed Central

    Butcher, Michael T.; Bertram, John E.A.; Syme, Douglas A.; Hermanson, John W.; Chase, P. Bryant

    2014-01-01

    Abstract The digital flexors of horses must produce high force to support the body weight during running, and a need for these muscles to generate power is likely limited during locomotion over level ground. Measurements of power output from horse muscle fibers close to physiological temperatures, and when cyclic strain is imposed, will help to better understand the in vivo performance of the muscles as power absorbers and generators. Skinned fibers from the deep (DDF) and superficial (SDF) digital flexors, and the soleus (SOL) underwent sinusoidal oscillations in length over a range of frequencies (0.5–16 Hz) and strain amplitudes (0.01–0.06) under maximum activation (pCa 5) at 30°C. Results were analyzed using both workloop and Nyquist plot analyses to determine the ability of the fibers to absorb or generate power and the frequency dependence of those abilities. Power absorption was dominant at most cycling frequencies and strain amplitudes in fibers from all three muscles. However, small amounts of power were generated (0.002–0.05 Wkg−1) at 0.01 strain by all three muscles at relatively slow cycling frequencies: DDF (4–7 Hz), SDF (4–5 Hz) and SOL (0.5–1 Hz). Nyquist analysis, reflecting the influence of cross‐bridge kinetics on power generation, corroborated these results. The similar capacity for power generation by DDF and SDF versus lower for SOL, and the faster frequency at which this power was realized in DDF and SDF fibers, are largely explained by the fast myosin heavy chain isoform content in each muscle. Contractile function of DDF and SDF as power absorbers and generators, respectively, during locomotion may therefore be more dependent on their fiber architectural arrangement than on the physiological properties of their muscle fibers. PMID:25293602

  16. Muscle development and obesity

    PubMed Central

    2008-01-01

    The formation of skeletal muscle from the epithelial somites involves a series of events triggered by temporally and spatially discrete signals resulting in the generation of muscle fibers which vary in their contractile and metabolic nature. The fiber type composition of muscles varies between individuals and it has now been found that there are differences in fiber type proportions between lean and obese animals and humans. Amongst the possible causes of obesity, it has been suggested that inappropriate prenatal environments may ‘program’ the fetus and may lead to increased risks for disease in adult life. The characteristics of muscle are both heritable and plastic, giving the tissue some ability to adapt to signals and stimuli both pre and postnatally. Given that muscle is a site of fatty acid oxidation and carbohydrate metabolism and that its development can be changed by prenatal events, it is interesting to examine the possible relationship between muscle development and the risk of obesity. PMID:19279728

  17. The effect of temperature on apoptosis and adipogenesis on skeletal muscle satellite cells derived from different muscle types.

    PubMed

    Harding, Rachel L; Clark, Daniel L; Halevy, Orna; Coy, Cynthia S; Yahav, Shlomo; Velleman, Sandra G

    2015-09-01

    Satellite cells are multipotential stem cells that mediate postnatal muscle growth and respond differently to temperature based upon aerobic versus anaerobic fiber-type origin. The objective of this study was to determine how temperatures below and above the control, 38°C, affect the fate of satellite cells isolated from the anaerobic pectoralis major (p. major) or mixed fiber biceps femoris (b. femoris). At all sampling times, p. major and b. femoris cells accumulated less lipid when incubated at low temperatures and more lipid at elevated temperatures compared to the control. Satellite cells isolated from the p. major were more sensitive to temperature as they accumulated more lipid at elevated temperatures compared to b. femoris cells. Expression of adipogenic genes, CCAAT/enhancer-binding protein β (C/EBPβ) and proliferator-activated receptor gamma (PPARγ) were different within satellite cells isolated from the p. major or b. femoris. At 72 h of proliferation, C/EBPβ expression increased with increasing temperature in both cell types, while PPARγ expression decreased with increasing temperature in p. major satellite cells. At 48 h of differentiation, both C/EBPβ and PPARγ expression increased in the p. major and decreased in the b. femoris, with increasing temperature. Flow cytometry measured apoptotic markers for early apoptosis (Annexin-V-PE) or late apoptosis (7-AAD), showing less than 1% of apoptotic satellite cells throughout all experimental conditions, therefore, apoptosis was considered biologically not significant. The results support that anaerobic p. major satellite cells are more predisposed to adipogenic conversion than aerobic b. femoris cells when thermally challenged.

  18. The effect of temperature on apoptosis and adipogenesis on skeletal muscle satellite cells derived from different muscle types

    PubMed Central

    Harding, Rachel L; Clark, Daniel L; Halevy, Orna; Coy, Cynthia S; Yahav, Shlomo; Velleman, Sandra G

    2015-01-01

    Satellite cells are multipotential stem cells that mediate postnatal muscle growth and respond differently to temperature based upon aerobic versus anaerobic fiber-type origin. The objective of this study was to determine how temperatures below and above the control, 38°C, affect the fate of satellite cells isolated from the anaerobic pectoralis major (p. major) or mixed fiber biceps femoris (b. femoris). At all sampling times, p. major and b. femoris cells accumulated less lipid when incubated at low temperatures and more lipid at elevated temperatures compared to the control. Satellite cells isolated from the p. major were more sensitive to temperature as they accumulated more lipid at elevated temperatures compared to b. femoris cells. Expression of adipogenic genes, CCAAT/enhancer-binding protein β (C/EBPβ) and proliferator-activated receptor gamma (PPARγ) were different within satellite cells isolated from the p. major or b. femoris. At 72 h of proliferation, C/EBPβ expression increased with increasing temperature in both cell types, while PPARγ expression decreased with increasing temperature in p. major satellite cells. At 48 h of differentiation, both C/EBPβ and PPARγ expression increased in the p. major and decreased in the b. femoris, with increasing temperature. Flow cytometry measured apoptotic markers for early apoptosis (Annexin-V-PE) or late apoptosis (7-AAD), showing less than 1% of apoptotic satellite cells throughout all experimental conditions, therefore, apoptosis was considered biologically not significant. The results support that anaerobic p. major satellite cells are more predisposed to adipogenic conversion than aerobic b. femoris cells when thermally challenged. PMID:26341996

  19. Muscle-fiber conduction velocity estimated from surface EMG signals during explosive dynamic contractions.

    PubMed

    Pozzo, M; Merlo, E; Farina, D; Antonutto, G; Merletti, R; Di Prampero, P E

    2004-06-01

    Muscle-fiber conduction velocity (CV) was estimated from surface electromyographic (EMG) signals during isometric contractions and during short (150-200 ms), explosive, dynamic exercises. Surface EMG signals were recorded with four linear adhesive arrays from the vastus lateralis and medialis muscles of 12 healthy subjects. Isometric contractions were at linearly increasing force from 0% to 100% of the maximum. The dynamic contractions consisted of explosive efforts of the lower limb on a sledge ergometer. For the explosive contractions, muscle-fiber CV was estimated in seven time-windows located along the ascending time interval of the force. There was a significant correlation between CV values during the isometric ramp and explosive contractions (R = 0.75). Moreover, CV estimates increased significantly from (mean +/- SD) 4.32 +/- 0.46 m/s to 4.97 +/- 0.45 m/s during the increasing-force explosive task. It was concluded that CV can be estimated reliably during dynamic tasks involving fast limb movements and that, in these contractions, it may provide important information on motor-unit control properties.

  20. Strength, power, fiber types, and mRNA expression in trained men and women with different ACTN3 R577X genotypes.

    PubMed

    Norman, Barbara; Esbjörnsson, Mona; Rundqvist, Håkan; Osterlund, Ted; von Walden, Ferdinand; Tesch, Per A

    2009-03-01

    Alpha-actinins are structural proteins of the Z-line. Human skeletal muscle expresses two alpha-actinin isoforms, alpha-actinin-2 and alpha-actinin-3, encoded by their respective genes ACTN2 and ACTN3. ACTN2 is expressed in all muscle fiber types, while only type II fibers, and particularly the type IIb fibers, express ACTN3. ACTN3 (R577X) polymorphism results in loss of alpha-actinin-3 and has been suggested to influence skeletal muscle function. The X allele is less common in elite sprint and power athletes than in the general population and has been suggested to be detrimental for performance requiring high power. The present study investigated the association of ACTN3 genotype with muscle power during 30-s Wingate cycling in 120 moderately to well-trained men and women and with knee extensor strength and fatigability in a subset of 21 men performing isokinetic exercise. Muscle biopsies were obtained from the vastus lateralis muscle to determine fiber-type composition and ACTN2 and ACTN3 mRNA levels. Peak and mean power and the torque-velocity relationship and fatigability output showed no difference across ACTN3 genotypes. Thus this study suggests that R577X polymorphism in ACTN3 is not associated with differences in power output, fatigability, or force-velocity characteristics in moderately trained individuals. However, repeated exercise bouts prompted an increase in peak torque in RR but not in XX genotypes, suggesting that ACTN3 genotype may modulate responsiveness to training. Our data further suggest that alpha-actinins do not play a significant role in determining muscle fiber-type composition. Finally, we show that ACTN2 expression is affected by the content of alpha-actinin-3, which implies that alpha-actinin-2 may compensate for the lack of alpha-actinin-3 and hence counteract the phenotypic consequences of the deficiency.

  1. Relationships between muscle growth potential, intramuscular fat content and different indicators of muscle fibre types in young Charolais bulls.

    PubMed

    Hocquette, Jean-François; Cassar-Malek, Isabelle; Jurie, Catherine; Bauchart, Dominique; Picard, Brigitte; Renand, Gilles

    2012-11-01

    Genetic selection in favor of muscle growth at the expense of fat should affect characteristics of muscles, and therefore beef quality. This study was conducted with two extreme groups of six animals selected among 64 Charolais young bulls ranked according to their genetic potential for muscle growth. Muscle characteristics were assessed in Rectus abdominis (RA, slow oxidative) and Semitendinosus (ST, fast glycolytic) muscles. Intramuscular fat content and proportions of myosin heavy chains I (slow) and IIA (fast oxido-glycolytic) and certain indicators of oxidative metabolism (activities of citrate synthase (CS), isocitrate dehydrogenase and cytochrome-c oxidase (COX); expression of H-fatty acid binding protein (FABP)) were higher in RA than in ST muscle. Genetic selection for muscle growth reduced intramuscular fat content and the activities of some oxidative metabolism indicators (namely CS, COX only). The positive correlation between muscle triacylglycerol content and A-FABP messenger RNA level (a marker of adipocyte differentiation) (r = 0.53, P < 0.05) suggests that A-FABP may be a good marker of the ability of bovines to deposit intramuscular fat. In conclusion, the metabolic muscle characteristics which respond to the selection process in favor of muscle growth clearly differ from the muscle characteristics which allow muscle types to be differentiated.

  2. Patterns of Intersecting Fiber Arrays Revealed in Whole Muscle with Generalized Q-Space Imaging

    PubMed Central

    Taylor, Erik N.; Hoffman, Matthew P.; Aninwene, George E.; Gilbert, Richard J.

    2015-01-01

    The multiscale attributes of mammalian muscle confer significant challenges for structural imaging in vivo. To achieve this, we employed a magnetic resonance method, termed “generalized Q-space imaging”, that considers the effect of spatially distributed diffusion-weighted magnetic field gradients and diffusion sensitivities on the morphology of Q-space. This approach results in a subvoxel scaled probability distribution function whose shape correlates with local fiber orientation. The principal fiber populations identified within these probability distribution functions can then be associated by streamline methods to create multivoxel tractlike constructs that depict the macroscale orientation of myofiber arrays. We performed a simulation of Q-space input parameters, including magnetic field gradient strength and direction, diffusion sensitivity, and diffusional sampling to determine the optimal achievable fiber angle separation in the minimum scan time. We applied this approach to resolve intravoxel crossing myofiber arrays in the setting of the human tongue, an organ with anatomic complexity based on the presence of hierarchical arrays of intersecting myocytes. Using parameters defined by simulation, we imaged at 3T the fanlike configuration of the human genioglossus and the laterally positioned merging fibers of the styloglossus, inferior longitudinalis, chondroglossus, and verticalis. Comparative scans of the excised mouse tongue at 7T demonstrated similar midline and lateral crossing fiber patterns, whereas histological analysis confirmed the presence and distribution of these myofiber arrays at the microscopic scale. Our results demonstrate a magnetic resonance method for acquiring and displaying diffusional data that defines highly ordered myofiber patterns in architecturally complex tissue. Such patterns suggest inherent multiscale fiber organization and provide a basis for structure-function analyses in vivo and in model tissues. PMID:26039175

  3. Proliferation of Multiple Cell Types in the Skeletal Muscle Tissue Elicited by Acute p21 Suppression.

    PubMed

    Biferi, Maria Grazia; Nicoletti, Carmine; Falcone, Germana; Puggioni, Eleonora M R; Passaro, Nunzia; Mazzola, Alessia; Pajalunga, Deborah; Zaccagnini, Germana; Rizzuto, Emanuele; Auricchio, Alberto; Zentilin, Lorena; De Luca, Gabriele; Giacca, Mauro; Martelli, Fabio; Musio, Antonio; Musarò, Antonio; Crescenzi, Marco

    2015-05-01

    Although in the last decades the molecular underpinnings of the cell cycle have been unraveled, the acquired knowledge has been rarely translated into practical applications. Here, we investigate the feasibility and safety of triggering proliferation in vivo by temporary suppression of the cyclin-dependent kinase inhibitor, p21. Adeno-associated virus (AAV)-mediated, acute knockdown of p21 in intact skeletal muscles elicited proliferation of multiple, otherwise quiescent cell types, notably including satellite cells. Compared with controls, p21-suppressed muscles exhibited a striking two- to threefold expansion in cellularity and increased fiber numbers by 10 days post-transduction, with no detectable inflammation. These changes partially persisted for at least 60 days, indicating that the muscles had undergone lasting modifications. Furthermore, morphological hyperplasia was accompanied by 20% increases in maximum strength and resistance to fatigue. To assess the safety of transiently suppressing p21, cells subjected to p21 knockdown in vitro were analyzed for γ-H2AX accumulation, DNA fragmentation, cytogenetic abnormalities, ploidy, and mutations. Moreover, the differentiation competence of p21-suppressed myoblasts was investigated. These assays confirmed that transient suppression of p21 causes no genetic damage and does not impair differentiation. Our results establish the basis for further exploring the manipulation of the cell cycle as a strategy in regenerative medicine. PMID:25669433

  4. An analysis of the electrical properties of a skeletal muscle fiber containing a helicoidal T system.

    PubMed Central

    Mathias, R T

    1978-01-01

    The linear electrical properties of skeletal muscle fibers have been analyzed using lumped circuit analogues of helicoidal T system. The geometry of a helicoid is assumed to produce two electrical effects, modeled separately. One model is motivated by the pitch or tilt of the T system, which forces the current flowing in the lumen of the tubules to have a longitudinal projection. The second model is motivated by the longitudinal continuity of a helicoid, which forms a structure similar to a cable within the fiber. The pitch or tilting of the T system plane modified the longitudinal resistance of the fiber, making it slightly frequency dependent; however, the magnitude of the change was less than 0.1%. The longitudinal connections between T system networks had a more complicated effect; the magnitude of the correction was again less than 0.1%. The conclusion from this analysis is that a helicoidal T system, whose pitch is constrained by the sarcomere spacing, will not affect electrical signals recorded intracellularly in intact fibers. PMID:687765

  5. Muscle fiber conduction velocity in different gait phases of early and late-stage diabetic neuropathy.

    PubMed

    Suda, Eneida Yuri; Gomes, Aline A; Butugan, Marco Kenji; Sacco, Isabel C N

    2016-10-01

    We investigated the muscle fiber conduction velocity (MFCV) during gait phases of the lower limb muscles in individuals with various degrees of diabetic peripheral neuropathy (DPN). Forty-five patients were classified into severity degrees of DPN by a fuzzy model. The stages were absent (n=11), mild (n=14), moderate (n=11) and severe (n=9), with 10 matched healthy controls. While walking, all subjects had their sEMG (4 linear electrode arrays) recorded for tibialis anterior (TA), gastrocnemius medialis (GM), vastus lateralis (VL) and biceps femoris (BF). MFCV was calculated using a maximum likelihood algorithm with 30ms standard deviation Gaussian windows. In general, individuals in the earlier stages of DPN showed lower MFCV of TA, GM and BF, whilst individuals with severe DPN presented higher MFCV of the same muscles. We observed that mild patients already showed lower MFCV of TA at early stance and swing, and lower MFCV of BF at swing. All diabetic groups showed a markedly reduction in MFCV of VL, irrespective of DPN. Severe patients presented higher MFCV mainly in distal muscles, TA at early and swing phases and GM at propulsion and midstance. The absent group already showed MFCV of VL and GM reductions at the propulsion phase and of VL at early stance. Although MFCV changes were not as progressive as the DPN was, we clearly distinguished diabetic patients from controls, and severe patients from all others.

  6. Stimulated single-fiber EMG of the frontalis and orbicularis oculi muscles in ocular myasthenia gravis.

    PubMed

    Valls-Canals, J; Povedano, M; Montero, J; Pradas, J

    2003-10-01

    We performed single-fiber electromyography by axonal stimulation (stimulated SFEMG) of the frontalis and orbicularis oculi muscles of 20 patients with ocular myasthenia gravis (OM) and 46 controls. In controls, mean consecutive differences (MCD) ranged from 5 to 55 micros (average, 14.7 +/- 2.8 micros) in the frontalis and from 4 to 56 micros (average, 12.56 +/- 2.19 micros) in orbicularis oculi. The mean MCD of individual muscle potentials (MPs) was 14.6 +/- 6.8 micros in frontalis and 12.68 +/- 6.10 micros in orbicularis oculi. In the OM patients, the mean MCD was 43.85 +/- 25.18 micros in the frontalis and 69.85 +/- 29.55 micros in orbicularis oculi (P < 0.0001), and the number of MPs with altered MCD was 7.15 +/- 4.66 (range, 1-18) and 12.65 +/- 4.90 (range, 6-21), respectively (P < 0.0001). We conclude that stimulated SFEMG of the orbicularis oculi muscle is more sensitive for the diagnosis of OM than of the frontalis muscle.

  7. Muscle fiber conduction velocity in different gait phases of early and late-stage diabetic neuropathy.

    PubMed

    Suda, Eneida Yuri; Gomes, Aline A; Butugan, Marco Kenji; Sacco, Isabel C N

    2016-10-01

    We investigated the muscle fiber conduction velocity (MFCV) during gait phases of the lower limb muscles in individuals with various degrees of diabetic peripheral neuropathy (DPN). Forty-five patients were classified into severity degrees of DPN by a fuzzy model. The stages were absent (n=11), mild (n=14), moderate (n=11) and severe (n=9), with 10 matched healthy controls. While walking, all subjects had their sEMG (4 linear electrode arrays) recorded for tibialis anterior (TA), gastrocnemius medialis (GM), vastus lateralis (VL) and biceps femoris (BF). MFCV was calculated using a maximum likelihood algorithm with 30ms standard deviation Gaussian windows. In general, individuals in the earlier stages of DPN showed lower MFCV of TA, GM and BF, whilst individuals with severe DPN presented higher MFCV of the same muscles. We observed that mild patients already showed lower MFCV of TA at early stance and swing, and lower MFCV of BF at swing. All diabetic groups showed a markedly reduction in MFCV of VL, irrespective of DPN. Severe patients presented higher MFCV mainly in distal muscles, TA at early and swing phases and GM at propulsion and midstance. The absent group already showed MFCV of VL and GM reductions at the propulsion phase and of VL at early stance. Although MFCV changes were not as progressive as the DPN was, we clearly distinguished diabetic patients from controls, and severe patients from all others. PMID:27567140

  8. Action Potential-Evoked Calcium Release Is Impaired in Single Skeletal Muscle Fibers from Heart Failure Patients

    PubMed Central

    DiFranco, Marino; Quiñonez, Marbella; Shieh, Perry; Fonarow, Gregg C.; Cruz, Daniel; Deng, Mario C.; Vergara, Julio L.; Middlekauff, Holly R.

    2014-01-01

    Background Exercise intolerance in chronic heart failure (HF) has been attributed to abnormalities of the skeletal muscles. Muscle function depends on intact excitation-contraction coupling (ECC), but ECC studies in HF models have been inconclusive, due to deficiencies in the animal models and tools used to measure calcium (Ca2+) release, mandating investigations in skeletal muscle from HF patients. The purpose of this study was to test the hypothesis that Ca2+ release is significantly impaired in the skeletal muscle of HF patients in whom exercise capacity is severely diminished compared to age-matched healthy volunteers. Methods and Findings Using state-of-the-art electrophysiological and optical techniques in single muscle fibers from biopsies of the locomotive vastus lateralis muscle, we measured the action potential (AP)-evoked Ca2+ release in 4 HF patients and 4 age-matched healthy controls. The mean peak Ca2+ release flux in fibers obtained from HF patients (10±1.2 µM/ms) was markedly (2.6-fold) and significantly (p<0.05) smaller than in fibers from healthy volunteers (28±3.3 µM/ms). This impairment in AP-evoked Ca2+ release was ubiquitous and was not explained by differences in the excitability mechanisms since single APs were indistinguishable between HF patients and healthy volunteers. Conclusions These findings prove the feasibility of performing electrophysiological experiments in single fibers from human skeletal muscle, and offer a new approach for investigations of myopathies due to HF and other diseases. Importantly, we have demonstrated that one step in the ECC process, AP-evoked Ca2+ release, is impaired in single muscle fibers in HF patients. PMID:25310188

  9. Endurance Exercise Enhances the Effect of Strength Training on Muscle Fiber Size and Protein Expression of Akt and mTOR

    PubMed Central

    Kazior, Zuzanna; Willis, Sarah J.; Moberg, Marcus; Apró, William; Calbet, José A. L.; Holmberg, Hans-Christer; Blomstrand, Eva

    2016-01-01

    Reports concerning the effect of endurance exercise on the anabolic response to strength training have been contradictory. This study re-investigated this issue, focusing on training effects on indicators of protein synthesis and degradation. Two groups of male subjects performed 7 weeks of resistance exercise alone (R; n = 7) or in combination with preceding endurance exercise, including both continuous and interval cycling (ER; n = 9). Muscle biopsies were taken before and after the training period. Similar increases in leg-press 1 repetition maximum (30%; P<0.05) were observed in both groups, whereas maximal oxygen uptake was elevated (8%; P<0.05) only in the ER group. The ER training enlarged the areas of both type I and type II fibers, whereas the R protocol increased only the type II fibers. The mean fiber area increased by 28% (P<0.05) in the ER group, whereas no significant increase was observed in the R group. Moreover, expression of Akt and mTOR protein was enhanced in the ER group, whereas only the level of mTOR was elevated following R training. Training-induced alterations in the levels of both Akt and mTOR protein were correlated to changes in type I fiber area (r = 0.55–0.61, P<0.05), as well as mean fiber area (r = 0.55–0.61, P<0.05), reflecting the important role played by these proteins in connection with muscle hypertrophy. Both training regimes reduced the level of MAFbx protein (P<0.05) and tended to elevate that of MuRF-1. The present findings indicate that the larger hypertrophy observed in the ER group is due more to pronounced stimulation of anabolic rather than inhibition of catabolic processes. PMID:26885978

  10. Endurance Exercise Enhances the Effect of Strength Training on Muscle Fiber Size and Protein Expression of Akt and mTOR.

    PubMed

    Kazior, Zuzanna; Willis, Sarah J; Moberg, Marcus; Apró, William; Calbet, José A L; Holmberg, Hans-Christer; Blomstrand, Eva

    2016-01-01

    Reports concerning the effect of endurance exercise on the anabolic response to strength training have been contradictory. This study re-investigated this issue, focusing on training effects on indicators of protein synthesis and degradation. Two groups of male subjects performed 7 weeks of resistance exercise alone (R; n = 7) or in combination with preceding endurance exercise, including both continuous and interval cycling (ER; n = 9). Muscle biopsies were taken before and after the training period. Similar increases in leg-press 1 repetition maximum (30%; P<0.05) were observed in both groups, whereas maximal oxygen uptake was elevated (8%; P<0.05) only in the ER group. The ER training enlarged the areas of both type I and type II fibers, whereas the R protocol increased only the type II fibers. The mean fiber area increased by 28% (P<0.05) in the ER group, whereas no significant increase was observed in the R group. Moreover, expression of Akt and mTOR protein was enhanced in the ER group, whereas only the level of mTOR was elevated following R training. Training-induced alterations in the levels of both Akt and mTOR protein were correlated to changes in type I fiber area (r = 0.55-0.61, P<0.05), as well as mean fiber area (r = 0.55-0.61, P<0.05), reflecting the important role played by these proteins in connection with muscle hypertrophy. Both training regimes reduced the level of MAFbx protein (P<0.05) and tended to elevate that of MuRF-1. The present findings indicate that the larger hypertrophy observed in the ER group is due more to pronounced stimulation of anabolic rather than inhibition of catabolic processes.

  11. Endurance Exercise Enhances the Effect of Strength Training on Muscle Fiber Size and Protein Expression of Akt and mTOR.

    PubMed

    Kazior, Zuzanna; Willis, Sarah J; Moberg, Marcus; Apró, William; Calbet, José A L; Holmberg, Hans-Christer; Blomstrand, Eva

    2016-01-01

    Reports concerning the effect of endurance exercise on the anabolic response to strength training have been contradictory. This study re-investigated this issue, focusing on training effects on indicators of protein synthesis and degradation. Two groups of male subjects performed 7 weeks of resistance exercise alone (R; n = 7) or in combination with preceding endurance exercise, including both continuous and interval cycling (ER; n = 9). Muscle biopsies were taken before and after the training period. Similar increases in leg-press 1 repetition maximum (30%; P<0.05) were observed in both groups, whereas maximal oxygen uptake was elevated (8%; P<0.05) only in the ER group. The ER training enlarged the areas of both type I and type II fibers, whereas the R protocol increased only the type II fibers. The mean fiber area increased by 28% (P<0.05) in the ER group, whereas no significant increase was observed in the R group. Moreover, expression of Akt and mTOR protein was enhanced in the ER group, whereas only the level of mTOR was elevated following R training. Training-induced alterations in the levels of both Akt and mTOR protein were correlated to changes in type I fiber area (r = 0.55-0.61, P<0.05), as well as mean fiber area (r = 0.55-0.61, P<0.05), reflecting the important role played by these proteins in connection with muscle hypertrophy. Both training regimes reduced the level of MAFbx protein (P<0.05) and tended to elevate that of MuRF-1. The present findings indicate that the larger hypertrophy observed in the ER group is due more to pronounced stimulation of anabolic rather than inhibition of catabolic processes. PMID:26885978

  12. [Desmin content and transversal stiffness of the left ventricle mouse cardiomyocytes and skeletal muscle fibers after a 30-day space flight on board "BION-M1" biosatellite].

    PubMed

    Ogneva, I V; Maximova, M V; Larina, I M

    2014-01-01

    The aim of this study was to determine the transversal stiffness of the cortical cytoskeleton and the cytoskeletal protein desmin content in the left ventricle cardiomyocytes, fibers of the mouse soleus and tibialis anterior muscle after a 30-day space flight on board the "BION-M1" biosatellite (Russia, 2013). The dissection was made after 13-16.5 h after landing. The transversal stiffness was measured in relaxed and calcium activated state by, atomic force microscopy. The desmin content was estimated by western blotting, and the expression level of desmin-coding gene was detected using real-time PCR. The results indicate that, the transversal stiffness of the left ventricle cardiomyocytes and fibers of the soleus muscle in relaxed and activated states did not differ from the control. The transversal stiffness of the tibialis muscle fibers in relaxed and activated state was increased in the mice group after space flight. At the same time, in all types of studied tissues the desmin content and the expression level of desmin-coding gene did not differ from the control level.

  13. Impaired Growth and Force Production in Skeletal Muscles of Young Partially Pancreatectomized Rats: A Model of Adolescent Type 1 Diabetic Myopathy?

    PubMed Central

    Gordon, Carly S.; Serino, Antonio S.; Krause, Matthew P.; Campbell, Jonathan E.; Cafarelli, Enzo; Adegoke, Olasunkanmi A. J.; Hawke, Thomas J.; Riddell, Michael C.

    2010-01-01

    This present study investigated the temporal effects of type 1 diabetes mellitus (T1DM) on adolescent skeletal muscle growth, morphology and contractile properties using a 90% partial pancreatecomy (Px) model of the disease. Four week-old male Sprague-Dawley rats were randomly assigned to Px (n = 25) or Sham (n = 24) surgery groups and euthanized at 4 or 8 weeks following an in situ assessment of muscle force production. Compared to Shams, Px were hyperglycemic (>15 mM) and displayed attenuated body mass gains by days 2 and 4, respectively (both P<0.05). Absolute maximal force production of the gastrocnemius plantaris soleus complex (GPS) was 30% and 50% lower in Px vs. Shams at 4 and 8 weeks, respectively (P<0.01). GP mass was 35% lower in Px vs Shams at 4 weeks (1.24±0.06 g vs. 1.93±0.03 g, P<0.05) and 45% lower at 8 weeks (1.57±0.12 vs. 2.80±0.06, P<0.05). GP fiber area was 15–20% lower in Px vs. Shams at 4 weeks in all fiber types. At 8 weeks, GP type I and II fiber areas were ∼25% and 40% less, respectively, in Px vs. Shams (group by fiber type interactions, P<0.05). Phosphorylation states of 4E-BP1 and S6K1 following leucine gavage increased 2.0- and 3.5-fold, respectively, in Shams but not in Px. Px rats also had impaired rates of muscle protein synthesis in the basal state and in response to gavage. Taken together, these data indicate that exposure of growing skeletal muscle to uncontrolled T1DM significantly impairs muscle growth and function largely as a result of impaired protein synthesis in type II fibers. PMID:21103335

  14. Automatic Myonuclear Detection in Isolated Single Muscle Fibers Using Robust Ellipse Fitting and Sparse Representation.

    PubMed

    Su, Hai; Xing, Fuyong; Lee, Jonah D; Peterson, Charlotte A; Yang, Lin

    2014-01-01

    Accurate and robust detection of myonuclei in isolated single muscle fibers is required to calculate myonuclear domain size. However, this task is challenging because: 1) shape and size variations of the nuclei, 2) overlapping nuclear clumps, and 3) multiple z-stack images with out-of-focus regions. In this paper, we have proposed a novel automatic detection algorithm to robustly quantify myonuclei in isolated single skeletal muscle fibers. The original z-stack images are first converted into one all-in-focus image using multi-focus image fusion. A sufficient number of ellipse fitting hypotheses are then generated from the myonuclei contour segments using heteroscedastic errors-in-variables (HEIV) regression. A set of representative training samples and a set of discriminative features are selected by a two-stage sparse model. The selected samples with representative features are utilized to train a classifier to select the best candidates. A modified inner geodesic distance based mean-shift clustering algorithm is used to produce the final nuclei detection results. The proposed method was extensively tested using 42 sets of z-stack images containing over 1,500 myonuclei. The method demonstrates excellent results that are better than current state-of-the-art approaches.

  15. Automatic Myonuclear Detection in Isolated Single Muscle Fibers Using Robust Ellipse Fitting and Sparse Representation

    PubMed Central

    Su, Hai; Xing, Fuyong; Lee, Jonah D.; Peterson, Charlotte A.; Yang, Lin

    2015-01-01

    Accurate and robust detection of myonuclei in isolated single muscle fibers is required to calculate myonuclear domain size. However, this task is challenging because: 1) shape and size variations of the nuclei, 2) overlapping nuclear clumps, and 3) multiple z-stack images with out-of-focus regions. In this paper, we have proposed a novel automatic detection algorithm to robustly quantify myonuclei in isolated single skeletal muscle fibers. The original z-stack images are first converted into one all-in-focus image using multi-focus image fusion. A sufficient number of ellipse fitting hypotheses are then generated from them yonuclei contour segments using heteroscedastic errors-invariables (HEIV) regression. A set of representative training samples and a set of discriminative features are selected by a two-stage sparse model. The selected samples with representative features are utilized to train a classifier to select the best candidates. A modified inner geodesic distance based mean-shift clustering algorithm is used to produce the final nuclei detection results. The proposed method was extensively tested using 42 sets of z-stack images containing over 1,500 myonuclei. The method demonstrates excellent results that are better than current state-of-the-art approaches. PMID:26356342

  16. Muscle fiber regeneration in human permanent lower motoneuron denervation: relevance to safety and effectiveness of FES-training, which induces muscle recovery in SCI subjects.

    PubMed

    Carraro, Ugo; Rossini, Katia; Mayr, Winfried; Kern, Helmut

    2005-03-01

    Morphologic characteristics of the long-term denervated muscle in animals suggest that some original fibers are lost and some of those seen are the result of repeated cycles of fiber regeneration. Muscle biopsies from lower motoneuron denervated patients enrolled in the EU Project RISE show the characteristics of long-term denervation. They present a few atrophic or severely atrophic myofibers dispersed among adipocytes and connective tissue (denervated degenerated muscle, DDM). Monoclonal antibody for embryonic myosin shows that regenerative events are present from 1- to 37-years postspinal cord injury (SCI). After 2- to 10-years FES-training the muscle cryosections present mainly large round myofibers. In the FES-trained muscles the regenerative events are present, but at a lower rate than long-term denervated muscles (myofiber per mm2 of cryosection area: 0.8 +/- 1.3 in FES vs. 2.3 +/- 2.3 in DDM, mean +/- SD, P = 0.011). In our opinion this is a sound additional evidence of effectiveness of the Kern's electrical stimulation protocol for FES of DDM. In any case, the overall results demonstrate that the FES-training is safe: at least it does not induce more myofiber damage/regeneration than denervation per se.

  17. Effects of proctolin on contractions, membrane resistance, and non-voltage-dependent sarcolemmal ion channels in crustacean muscle fibers.

    PubMed

    Erxleben, C F; deSantis, A; Rathmayer, W

    1995-06-01

    The neuropeptide proctolin in nanomolar concentrations enhances the contraction of crustacean muscle fibers manyfold. The cellular mechanisms underlying this potentiation were investigated in single, isolated, fast-contracting abdominal extensor muscle fibers of a small crustacean, the marine isopod Idotea baltica. Force measurements and current-clamp experiments revealed two actions of proctolin on the muscle fibers. In half of the preparations, proctolin (10(-9)-10(-6) M) increased the fiber's input resistance by up to 25%. In about one-fourth of the preparations, proctolin induced all-or-none action potentials in response to depolarizing current pulses in muscle fibers that showed graded electric responses under control conditions. In both cases, proctolin potentiated the peak force of muscle contractions (between 1.5- and 18-fold for 5 x 10(-9) M proctolin). Proctolin affected neither the membrane resting potential nor the threshold for excitation-contraction coupling. Using cell-attached patches on the sarcolemmal membrane, we identified non-voltage-dependent ion channels which contribute to the passive membrane properties of the muscle fibers. A 53 +/- 6 pS channel had its reversal potential near rest and carried outward current at depolarized potentials with physiological saline in the recording pipette. With isotonic K+ saline in the patch pipette, the reversal potential was +85 +/- 12 mV depolarized from the resting potential and single-channel conductances ranged from 36 to 166 pS. Proctolin modulated the activity of all these putative K+ channels by reducing the number of functionally active channels. The effects of proctolin on force of contraction, input resistance, and single-channel activity were mimicked by a membrane-permeating analog of cAMP. Conversely, a monothio analog of cAMP (Rp-cAMPS), a blocker of protein kinase A activity, substantially decreased the membrane input resistance of the muscle fibers. The results suggest that activation of the

  18. Gut microbiota can transfer fiber characteristics and lipid metabolic profiles of skeletal muscle from pigs to germ-free mice.

    PubMed

    Yan, Honglin; Diao, Hui; Xiao, Yi; Li, Wenxia; Yu, Bing; He, Jun; Yu, Jie; Zheng, Ping; Mao, Xiangbing; Luo, Yuheng; Zeng, Benhua; Wei, Hong; Chen, Daiwen

    2016-01-01

    Obesity causes changes in microbiota composition, and an altered gut microbiota can transfer obesity-associated phenotypes from donors to recipients. Obese Rongchang pigs (RP) exhibited distinct fiber characteristics and lipid metabolic profiles in their muscle compared with lean Yorkshire pigs (YP). However, whether RP have a different gut microbiota than YP and whether there is a relationship between the microbiota and muscle properties are poorly understood. The present study was conducted to test whether the muscle properties can be transferred from pigs to germ-free (GF) mice. High-throughput pyrosequencing confirms the presence of distinct core microbiota between pig breeds, with alterations in taxonomic distribution and modulations in β diversity. RP displayed a significant higher Firmicutes/Bacteroidetes ratio and apparent genera differences compared with YP. Transplanting the porcine microbiota into GF mice replicated the phenotypes of the donors. RP and their GF mouse recipients exhibited a higher body fat mass, a higher slow-contracting fiber proportion, a decreased fiber size and fast IIb fiber percentage, and enhanced lipogenesis in the gastrocnemius muscle. Furthermore, the gut microbiota composition of colonized mice shared high similarity with their donor pigs. Taken together, the gut microbiota of obese pigs intrinsically influences skeletal muscle development and the lipid metabolic profiles. PMID:27545196

  19. Gut microbiota can transfer fiber characteristics and lipid metabolic profiles of skeletal muscle from pigs to germ-free mice

    PubMed Central

    Yan, Honglin; Diao, Hui; Xiao, Yi; Li, Wenxia; Yu, Bing; He, Jun; Yu, Jie; Zheng, Ping; Mao, Xiangbing; Luo, Yuheng; Zeng, Benhua; Wei, Hong; Chen, Daiwen

    2016-01-01

    Obesity causes changes in microbiota composition, and an altered gut microbiota can transfer obesity-associated phenotypes from donors to recipients. Obese Rongchang pigs (RP) exhibited distinct fiber characteristics and lipid metabolic profiles in their muscle compared with lean Yorkshire pigs (YP). However, whether RP have a different gut microbiota than YP and whether there is a relationship between the microbiota and muscle properties are poorly understood. The present study was conducted to test whether the muscle properties can be transferred from pigs to germ-free (GF) mice. High-throughput pyrosequencing confirms the presence of distinct core microbiota between pig breeds, with alterations in taxonomic distribution and modulations in β diversity. RP displayed a significant higher Firmicutes/Bacteroidetes ratio and apparent genera differences compared with YP. Transplanting the porcine microbiota into GF mice replicated the phenotypes of the donors. RP and their GF mouse recipients exhibited a higher body fat mass, a higher slow-contracting fiber proportion, a decreased fiber size and fast IIb fiber percentage, and enhanced lipogenesis in the gastrocnemius muscle. Furthermore, the gut microbiota composition of colonized mice shared high similarity with their donor pigs. Taken together, the gut microbiota of obese pigs intrinsically influences skeletal muscle development and the lipid metabolic profiles. PMID:27545196

  20. Increasing temperature speeds intracellular PO2 kinetics during contractions in single Xenopus skeletal muscle fibers.

    PubMed

    Koga, S; Wüst, R C I; Walsh, B; Kindig, C A; Rossiter, H B; Hogan, M C

    2013-01-01

    Precise determination of the effect of muscle temperature (T(m)) on mitochondrial oxygen consumption kinetics has proven difficult in humans, in part due to the complexities in controlling for T(m)-related variations in blood flow, fiber recruitment, muscle metabolism, and contractile properties. To address this issue, intracellular Po(2) (P(i)(O(2))) was measured continuously by phosphorescence quenching following the onset of contractions in single Xenopus myofibers (n = 24) while controlling extracellular temperature. Fibers were subjected to two identical contraction bouts, in random order, at 15°C (cold, C) and 20°C (normal, N; n = 12), or at N and 25°C (hot, H; n = 12). Contractile properties were determined for every contraction. The time delay of the P(i)(O(2)) response was significantly greater in C (59 ± 35 s) compared with N (35 ± 26 s, P = 0.01) and H (27 ± 14 s, P = 0.01). The time constant for the decline in P(i)(O(2)) was significantly greater in C (89 ± 34 s) compared with N (52 ± 15 s; P < 0.01) and H (37 ± 10 s; P < 0.01). There was a linear relationship between the rate constant for P(i)(O(2)) kinetics and T(m) (r = 0.322, P = 0.03). Estimated ATP turnover was significantly greater in H than in C (P < 0.01), but this increased energy requirement alone with increased T(m) could not account for the differences observed in P(i)(O(2)) kinetics among conditions. These results demonstrate that P(i)(O(2)) kinetics in single contracting myofibers are dependent on T(m), likely caused by temperature-induced differences in metabolic demand and by temperature-dependent processes underlying mitochondrial activation at the start of muscle contractions.

  1. Measurement of Elastic Modulus of Collagen Type I Single Fiber.

    PubMed

    Dutov, Pavel; Antipova, Olga; Varma, Sameer; Orgel, Joseph P R O; Schieber, Jay D

    2016-01-01

    Collagen fibers are the main components of the extra cellular matrix and the primary contributors to the mechanical properties of tissues. Here we report a novel approach to measure the longitudinal component of the elastic moduli of biological fibers under conditions close to those found in vivo and apply it to type I collagen from rat tail tendon. This approach combines optical tweezers, atomic force microscopy, and exploits Euler-Bernoulli elasticity theory for data analysis. This approach also avoids drying for measurements or visualization, since samples are freshly extracted. Importantly, strains are kept below 0.5%, which appear consistent with the linear elastic regime. We find, surprisingly, that the longitudinal elastic modulus of type I collagen cannot be represented by a single quantity but rather is a distribution that is broader than the uncertainty of our experimental technique. The longitudinal component of the single-fiber elastic modulus is between 100 MPa and 360 MPa for samples extracted from different rats and/or different parts of a single tail. Variations are also observed in the fibril-bundle/fibril diameter with an average of 325±40 nm. Since bending forces depend on the diameter to the fourth power, this variation in diameter is important for estimating the range of elastic moduli. The remaining variations in the modulus may be due to differences in composition of the fibril-bundles, or the extent of the proteoglycans constituting fibril-bundles, or that some single fibrils may be of fibril-bundle size.

  2. Immunohistochemical analysis of laryngeal muscles in normal horses and horses with subclinical recurrent laryngeal neuropathy.

    PubMed

    Rhee, Hannah S; Steel, Catherine M; Derksen, Frederik J; Robinson, N Edward; Hoh, Joseph F Y

    2009-08-01

    We used immunohistochemistry to examine myosin heavy-chain (MyHC)-based fiber-type profiles of the right and left cricoarytenoideus dorsalis (CAD) and arytenoideus transversus (TrA) muscles of six horses without laryngoscopic evidence of recurrent laryngeal neuropathy (RLN). Results showed that CAD and TrA muscles have the same slow, 2a, and 2x fibers as equine limb muscles, but not the faster contracting fibers expressing extraocular and 2B MyHCs found in laryngeal muscles of small mammals. Muscles from three horses showed fiber-type grouping bilaterally in the TrA muscles, but only in the left CAD. Fiber-type grouping suggests that denervation and reinnervation of fibers had occurred, and that these horses had subclinical RLN. There was a virtual elimination of 2x fibers in these muscles, accompanied by a significant increase in the percentage of 2a and slow fibers, and hypertrophy of these fiber types. The results suggest that multiple pathophysiological mechanisms are at work in early RLN, including selective denervation and reinnervation of 2x muscle fibers, corruption of neural impulse traffic that regulates 2x and slow muscle fiber types, and compensatory hypertrophy of remaining fibers. We conclude that horses afflicted with mild RLN are able to remain subclinical by compensatory hypertrophy of surviving muscle fibers.

  3. Immunohistochemical Analysis of Laryngeal Muscles in Normal Horses and Horses With Subclinical Recurrent Laryngeal Neuropathy

    PubMed Central

    Rhee, Hannah S.; Steel, Catherine M.; Derksen, Frederik J.; Robinson, N. Edward; Hoh, Joseph F.Y.

    2009-01-01

    We used immunohistochemistry to examine myosin heavy-chain (MyHC)-based fiber-type profiles of the right and left cricoarytenoideus dorsalis (CAD) and arytenoideus transversus (TrA) muscles of six horses without laryngoscopic evidence of recurrent laryngeal neuropathy (RLN). Results showed that CAD and TrA muscles have the same slow, 2a, and 2x fibers as equine limb muscles, but not the faster contracting fibers expressing extraocular and 2B MyHCs found in laryngeal muscles of small mammals. Muscles from three horses showed fiber-type grouping bilaterally in the TrA muscles, but only in the left CAD. Fiber-type grouping suggests that denervation and reinnervation of fibers had occurred, and that these horses had subclinical RLN. There was a virtual elimination of 2x fibers in these muscles, accompanied by a significant increase in the percentage of 2a and slow fibers, and hypertrophy of these fiber types. The results suggest that multiple pathophysiological mechanisms are at work in early RLN, including selective denervation and reinnervation of 2x muscle fibers, corruption of neural impulse traffic that regulates 2x and slow muscle fiber types, and compensatory hypertrophy of remaining fibers. We conclude that horses afflicted with mild RLN are able to remain subclinical by compensatory hypertrophy of surviving muscle fibers. (J Histochem Cytochem 57:787–800, 2009) PMID:19398607

  4. Mode of action of prilocaine on sarcoplasmic reticulum in skinned skeletal muscle fibers.

    PubMed

    Saida, K; Suzuki, A

    1981-12-01

    Single fibers were isolated from the semitendinosus muscle of a frog and the skinned fibers were prepared by the removal of the sarcolemma. In the range of several millimolar concentrations, prilocaine caused a contracture of the single fibers in both polarized and depolarized states. It also induced Ca++ release from the sarcoplasmic reticulum and depressed Ca++ uptake by the sarcoplasmic reticulum. Prilocaine increased the release of Ca++ with increasing concentration, but, unlike caffeine, prilocaine could not enhance the Ca++-induced Ca++ release mechanism of the sarcoplasmic reticulum. Like a depolarization-induced Ca++ release, the prilocaine-induced Ca++ release was not inhibited by Mg++, whereas it was inhibited by sucrose. The Ca++ release induced with prilocaine occurred only immediately after the application; thereafter the Ca++ release mechanism seemed to be inactivated by the prolonged presence of the drug. A similar inactivation in the mechanism of prilocaine-induced Ca++ release also occurred when the extent of depolarization of the sarcoplasmic reticulum membrane increased. These results suggest that the mode of action of prilocaine on the sarcoplasmic reticulum could be a depolarization-like action.

  5. Revertant Fibers in the mdx Murine Model of Duchenne Muscular Dystrophy: An Age- and Muscle-Related Reappraisal

    PubMed Central

    Pigozzo, Sarah R.; Da Re, Lorena; Romualdi, Chiara; Mazzara, Pietro G.; Galletta, Eva; Fletcher, Sue; Wilton, Stephen D.; Vitiello, Libero

    2013-01-01

    Muscles in Duchenne dystrophy patients are characterized by the absence of dystrophin, yet transverse sections show a small percentage of fibers (termed “revertant fibers”) positive for dystrophin expression. This phenomenon, whose biological bases have not been fully elucidated, is present also in the murine and canine models of DMD and can confound the evaluation of therapeutic approaches. We analyzed 11 different muscles in a cohort of 40 mdx mice, the most commonly model used in pre-clinical studies, belonging to four age groups; such number of animals allowed us to perform solid ANOVA statistical analysis. We assessed the average number of dystrophin-positive fibers, both absolute and normalized for muscle size, and the correlation between their formation and the ageing process. Our results indicate that various muscles develop different numbers of revertant fibers, with different time trends; besides, they suggest that the biological mechanism(s) behind dystrophin re-expression might not be limited to the early development phases but could actually continue during adulthood. Importantly, such finding was seen also in cardiac muscle, a fact that does not fit into the current hypothesis of the clonal origin of “revertant” myonuclei from satellite cells. This work represents the largest, statistically significant analysis of revertant fibers in mdx mice so far, which can now be used as a reference point for improving the evaluation of therapeutic approaches for DMD. At the same time, it provides new clues about the formation of revertant fibers/cardiomyocytes in dystrophic skeletal and cardiac muscle. PMID:24015212

  6. pH buffering of single rat skeletal muscle fibers in the in vivo environment.

    PubMed

    Tanaka, Yoshinori; Inagaki, Tadakatsu; Poole, David C; Kano, Yutaka

    2016-05-15

    Homeostasis of intracellular pH (pHi) has a crucial role for the maintenance of cellular function. Several membrane transporters such as lactate/H(+) cotransporter (MCT), Na(+)/H(+) exchange transporter (NHE), and Na(+)/HCO3 (-) cotransporter (NBC) are thought to contribute to pHi regulation. However, the relative importance of each of these membrane transporters to the in vivo recovery from the low pHi condition is unknown. Using an in vivo bioimaging model, we pharmacologically inhibited each transporter separately and all transporters together and then evaluated the pHi recovery profiles following imposition of a discrete H(+) challenge loaded into single muscle fibers by microinjection. The intact spinotrapezius muscle of adult male Wistar rats (n = 72) was exteriorized and loaded with the fluorescent probe 2',7'-bis(2-carboxyethyl)-5(6)-carboxyfluorescein-acetoxymethyl ester (10 μM). A single muscle fiber was then loaded with low-pH solution [piperazine-N,N'-bis(2-ethanesulfonic acid) buffer, pH 6.5, ∼2.33 × 10(-3) μl] by microinjection over 3 s. The rats were divided into groups for the following treatments: 1) no inhibitor (CONT), 2) MCT inhibition (by α-Cyano-4-hydroxyciannamic acid; 4 mM), 3) NHE inhibition (by ethylisopropyl amiloride; 0.5 mM), 4) NBC inhibition (by DIDS; 1 mM), and 5) MCT, NHE, and NBC inhibition (All blockade). The fluorescence ratio (F500 nm/F445 nm) was determined from images captured during 1 min (60 images/min) and at 5, 10, 15, and 20 min after injection. The pHi at 1-2 s after injection significantly decreased from resting pHi (ΔpHi = -0.73 ± 0.03) in CONT. The recovery response profile was biphasic, with an initial rapid and close-to-exponential pHi increase (time constant, τ: 60.0 ± 7.9 s). This initial rapid profile was not affected by any pharmacological blockade but was significantly delayed by carbonic anhydrase inhibition. In contrast, the secondary, more gradual, return toward baseline that restored CONT pHi to

  7. Regenerating tail muscles in lizard contain Fast but not Slow Myosin indicating that most myofibers belong to the fast twitch type for rapid contraction.

    PubMed

    Alibardi, L

    2015-10-01

    During tail regeneration in lizards a large mass of muscle tissue is formed in form of segmental myomeres of similar size located under the dermis of the new tail. These muscles accumulate glycogen and a fast form of myosin typical for twitch myofibers as it is shown by light and ultrastructural immunocytochemistry using an antibody directed against a Fast Myosin Heavy Chain. High resolution immunogold labeling shows that an intense labeling for fast myosin is localized over the thick filaments of the numerous myofibrils in about 70% of the regenerated myofibers while the labeling becomes less intense in the remaining muscle fibers. The present observations indicate that at least two subtypes of Fast Myosin containing muscle fibers are regenerated, the prevalent type was of the fast twitch containing few mitochondria, sparse glycogen, numerous smooth endoplasmic reticulum vesicles. The second, and less frequent type was a Fast-Oxidative-Glycolitic twitch fiber containing more mitochondria, a denser cytoplasm and myofibrils. Since their initial differentiation, myoblasts, myotubes and especially the regenerated myofibers do not accumulate any immuno-detectable Slow Myosin Heavy Chain. The study indicates that most of the segmental muscles of the regenerated tail serve for the limited bending of the tail during locomotion and trashing after amputation of the regenerated tail, a phenomenon that facilitates predator escape.

  8. A new technique for MR elastography of the supraspinatus muscle: A gradient-echo type multi-echo sequence.

    PubMed

    Ito, Daiki; Numano, Tomokazu; Mizuhara, Kazuyuki; Takamoto, Koichi; Onishi, Takaaki; Nishijo, Hisao

    2016-10-01

    Magnetic resonance elastography (MRE) can measure tissue stiffness quantitatively and noninvasively. Supraspinatus muscle injury is a significant problem among throwing athletes. The purpose of this study was to develop an MRE technique for application to the supraspinatus muscle by using a conventional magnetic resonance imaging (MRI). MRE acquisitions were performed with a gradient-echo type multi-echo MR sequence at 100Hz pneumatic vibration. A custom-designed vibration pad was used as a pneumatic transducer in order to adapt to individual shoulder shapes. In a gradient-echo type multi-echo MR sequence, without motion encoding gradient (MEG) that synchronizes with vibrations, bipolar readout gradient lobes achieved a similar function to MEG (MEG-like effect). In other words, a dedicated MRE sequence (built-in MEG) is not always necessary for MRE. In this study, 7 healthy volunteers underwent MRE. We investigated the effects of direction of the MEG-like effect and selected imaging planes on the patterns of wave propagation (wave image). The results indicated that wave images showed clear wave propagation on a condition that the direction of the MEG-like effect was nearly perpendicular to the long axis of the supraspinatus muscle, and that the imaging plane was superior to the proximal supraspinatus muscle. This limited condition might be ascribed to specific features of fibers in the supraspinatus muscle and wave reflection from the boundaries of the supraspinous fossa. The mean stiffness of the supraspinatus muscle was 10.6±3.17kPa. Our results demonstrated that using MRE, our method can be applied to the supraspinatus muscle by using conventional MRI. PMID:27374984

  9. A new technique for MR elastography of the supraspinatus muscle: A gradient-echo type multi-echo sequence.

    PubMed

    Ito, Daiki; Numano, Tomokazu; Mizuhara, Kazuyuki; Takamoto, Koichi; Onishi, Takaaki; Nishijo, Hisao

    2016-10-01

    Magnetic resonance elastography (MRE) can measure tissue stiffness quantitatively and noninvasively. Supraspinatus muscle injury is a significant problem among throwing athletes. The purpose of this study was to develop an MRE technique for application to the supraspinatus muscle by using a conventional magnetic resonance imaging (MRI). MRE acquisitions were performed with a gradient-echo type multi-echo MR sequence at 100Hz pneumatic vibration. A custom-designed vibration pad was used as a pneumatic transducer in order to adapt to individual shoulder shapes. In a gradient-echo type multi-echo MR sequence, without motion encoding gradient (MEG) that synchronizes with vibrations, bipolar readout gradient lobes achieved a similar function to MEG (MEG-like effect). In other words, a dedicated MRE sequence (built-in MEG) is not always necessary for MRE. In this study, 7 healthy volunteers underwent MRE. We investigated the effects of direction of the MEG-like effect and selected imaging planes on the patterns of wave propagation (wave image). The results indicated that wave images showed clear wave propagation on a condition that the direction of the MEG-like effect was nearly perpendicular to the long axis of the supraspinatus muscle, and that the imaging plane was superior to the proximal supraspinatus muscle. This limited condition might be ascribed to specific features of fibers in the supraspinatus muscle and wave reflection from the boundaries of the supraspinous fossa. The mean stiffness of the supraspinatus muscle was 10.6±3.17kPa. Our results demonstrated that using MRE, our method can be applied to the supraspinatus muscle by using conventional MRI.

  10. Effects of low level laser in the morphology of the skeletal muscle fiber during compensatory hypertrophy in plantar muscle of rats

    NASA Astrophysics Data System (ADS)

    Terena, Stella Maris Lins; Fernandes, Kristianne Porta Santos; Kalil, Sandra; Alves, Agnelo Neves; Mesquita Ferrari, Raquel Agnelli

    2015-06-01

    The hypertrophy is known as an increase the cross-sectional area of the muscle as a result of a muscular work against an overload, and it is compensatory because the overload is induced by functional elimination of synergistic muscles. The importance of study the compensatory hypertrophy is understand how this process can be influenced by the irradiation with regard to the weight and muscle cross-sectional area, to assist in the rehabilitation process and the effectiveness functional return. The aim was evaluate the effects of low-level laser irradiation on morphological aspects of muscle tissue, comparing the weight and cross-sectional area in rat skeletal muscle. Wistar rats were divided into three groups: control, hypertrophy group without irradiation (right plantar muscle) and hypertrophy group and irradiation (left plantar muscle), both analyzed after 7 and 14 days. The irradiation was performed daily immediately after the surgery. The parameters were: λ = 780nm, beam spot of 0.04 cm2, output power of 40mW, power density of 1W/cm2, energy density of 10J / cm2 and 10s exposure time with a total energy of 3.2 J. The results revealed that low level laser irradiation an increase the weight of the plantaris muscle after 7 and 14 days with a difference of 7.06% and 11.51% respectively. In conclusion, low level laser irradiation has an effect on compensatory hypertrophy to produce increased muscle weight and promoted an increase in cross-sectional area of muscle fibers in the compensatory hypertrophy model after 14 days with parameters cited above.

  11. Effect of the architecture of the left ventricle on the speed of the excitation wave in muscle fibers

    NASA Astrophysics Data System (ADS)

    Nezlobinsky, T. V.; Pravdin, S. F.; Katsnelson, L. B.; Solovyova, O. E.

    2016-07-01

    It is known that preferential paths for the propagation of an electrical excitation wave in the human ventricular myocardium are associated with muscle fibers in tissue. The speed of the excitation wave along a fiber is several times higher than that across the direction of the fiber. To estimate the effect of the architecture and anisotropy of the myocardium of the left ventricle on the process of its electrical activation, we have studied the relation between the speed of the electrical excitation wave in a one-dimensional isolated myocardial fiber consisting of sequentially coupled cardiomyocytes and in an identical fiber located in the wall of a threedimensional anatomical model of the left ventricle. It has been shown that the speed of a wavefront along the fiber in the three-dimensional myocardial tissue is much higher than that in the one-dimensional fiber. The acceleration of the signal is due to the rotation of directions of fibers in the wall and to the position of the excitation wavefront with respect to the direction of this fiber. The observed phenomenon is caused by the approach of the excitable tissue with rotational anisotropy in its properties to a pseudoisotropic tissue.

  12. Energy composition of diet affects muscle fiber recruitment, body composition, and growth trajectory in rainbow trout (Oncorhnychus mykiss)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Energy composition of diet affects muscle fiber recruitment, body composition, and growth trajectory in rainbow trout (Oncorhnychus mykiss) The cost and scarcity of key ingredients for aquaculture feed formulation call for a wise use of resources, especially dietary proteins and energy. For years t...

  13. Altered fibre types in gastrocnemius muscle of high wheel-running selected mice with mini-muscle phenotypes.

    PubMed

    Guderley, Helga; Joanisse, Denis R; Mokas, Sophie; Bilodeau, Geneviève M; Garland, Theodore

    2008-03-01

    Selective breeding of mice for high voluntary wheel running has favoured characteristics that facilitate sustained, aerobically supported activity, including a "mini-muscle" phenotype with markedly reduced hind limb muscle mass, increased mass-specific activities of oxidative enzymes, decreased % myosin heavy chain IIb, and, in the medial gastrocnemius, reduced twitch speed, reduced mass-specific isotonic power, and increased fatigue resistance. To evaluate whether selection has altered fibre type expression in mice with either "mini" or normal muscle phenotypes, we examined fibre types of red and white gastrocnemius. In both the medial and lateral gastrocnemius, the mini-phenotype increased activities of oxidative enzymes and decreased activities of glycolytic enzymes. In red muscle samples, the mini-phenotype markedly changed fibre types, with the % type I and type IIA fibres and the surface area of type IIA fibres increasing; in addition, mice from selected lines in general had an increased % type IIA fibres and larger type I fibres as compared with mice from control lines. White muscle samples from mini-mice showed dramatic structural alterations, with an atypical distribution of extremely small, unidentifiable fibres surrounded by larger, more oxidative fibres than normally present in white muscle. The increased proportion of oxidative fibres and these atypical small fibres together may explain the reduced mass and increased mitochondrial enzyme activities in mini-muscles. These and previous results demonstrate that extension of selective breeding beyond the time when the response of the selected trait (i.e. distance run) has levelled off can still modify the mechanistic underpinnings of this behaviour. PMID:18226573

  14. Regenerating and denervated human muscle fibers and satellite cells express neural cell adhesion molecule recognized by monoclonal antibodies to natural killer cells.

    PubMed

    Illa, I; Leon-Monzon, M; Dalakas, M C

    1992-01-01

    The monoclonal antibodies anti-Leu-19 and anti-NKH-1 recognize the CD56 differentiation antigen expressed on natural killer (NK) cells and on a T-cell subset. Because CD56 is an isoform of neural cell adhesion molecule (N-CAM), we examined its expression on human muscle using antibodies to Leu-19, NKH-1, and purified N-CAM in an immunohistochemical, immunoblot, and immunoprecipitation study on 70 muscle biopsy specimens from various muscle diseases and on human muscle in tissue culture. Anti-Leu-19, anti-NKH-1, and anti-N-CAM had identical immunoreactive patterns. In tissue sections, they specifically recognized the satellite cells and the regenerating or newly denervated muscle fibers; in tissue cultures, they immunoreacted with myoblasts and myotubes; and in the homogenates of myopathic muscle and cultured myotubes, they immunoprecipitated the same glycoprotein of 145- to 220-kd. The study concludes that (1) the commercially available monoclonal antibodies to NK cells, Leu-19 and NKH-1, are immunocytochemical markers for the satellite cells and the regenerating or newly denervated muscle fibers complementing conventional techniques in the diagnosis of patients with neuromuscular disorders; and (2) the CD56 is a common antigen shared by NK cells and muscle fibers during certain stages of muscle maturation, regeneration, or denervation. When expressed in the muscle, CD56 may facilitate the adhesion of cytotoxic lymphocytes to the muscle and play a role in muscle fiber injury.

  15. Wnt/β-catenin signaling via Axin2 is required for myogenesis and, together with YAP/Taz and Tead1, active in IIa/IIx muscle fibers.

    PubMed

    Huraskin, Danyil; Eiber, Nane; Reichel, Martin; Zidek, Laura M; Kravic, Bojana; Bernkopf, Dominic; von Maltzahn, Julia; Behrens, Jürgen; Hashemolhosseini, Said

    2016-09-01

    Canonical Wnt/β-catenin signaling plays an important role in myogenic differentiation, but its physiological role in muscle fibers remains elusive. Here, we studied activation of Wnt/β-catenin signaling in adult muscle fibers and muscle stem cells in an Axin2 reporter mouse. Axin2 is a negative regulator and a target of Wnt/β-catenin signaling. In adult muscle fibers, Wnt/β-catenin signaling is only detectable in a subset of fast fibers that have a significantly smaller diameter than other fast fibers. In the same fibers, immunofluorescence staining for YAP/Taz and Tead1 was detected. Wnt/β-catenin signaling was absent in quiescent and activated satellite cells. Upon injury, Wnt/β-catenin signaling was detected in muscle fibers with centrally located nuclei. During differentiation of myoblasts expression of Axin2, but not of Axin1, increased together with Tead1 target gene expression. Furthermore, absence of Axin1 and Axin2 interfered with myoblast proliferation and myotube formation, respectively. Treatment with the canonical Wnt3a ligand also inhibited myotube formation. Wnt3a activated TOPflash and Tead1 reporter activity, whereas neither reporter was activated in the presence of Dkk1, an inhibitor of canonical Wnt signaling. We propose that Axin2-dependent Wnt/β-catenin signaling is involved in myotube formation and, together with YAP/Taz/Tead1, associated with reduced muscle fiber diameter of a subset of fast fibers. PMID:27578179

  16. Adaptations to exercise training within skeletal muscle in adults with type 2 diabetes or impaired glucose tolerance: a systematic review.

    PubMed

    Wang, Yi; Simar, David; Fiatarone Singh, Maria A

    2009-01-01

    The aim of this investigation was to review morphological and metabolic adaptations within skeletal muscle to exercise training in adults with type 2 diabetes mellitus (T2DM) or impaired glucose tolerance (IGT). A comprehensive, systematic database search for manuscripts was performed from 1966 to March 2008 using computerized databases, including Medline, Premedline, CINAHL, AMED, EMBASE and SportDiscus. Three reviewers independently assessed studies for potential inclusion (exposure to exercise training, T2DM or IGT, muscle biopsy performed). A total of 18 exercise training studies were reviewed. All morphological and metabolic outcomes from muscle biopsies were collected. The metabolic outcomes were divided into six domains: glycogen, glucose facilitated transporter 4 (GLUT4) and insulin signalling, enzymes, markers of inflammation, lipids metabolism and so on. Beneficial adaptations to exercise were seen primarily in muscle fiber area and capillary density, glycogen, glycogen synthase and GLUT4 protein expressions. Few randomized controlled trials including muscle biopsy data existed, with a small number of subjects involved. More trials, especially robustly designed exercise training studies, are needed in this field. Future research should focus on the insulin signalling pathway to better understand the mechanism of the improvements in insulin sensitivity and glucose homeostasis in response to various modalities and doses of exercise in this cohort.

  17. Fiber orientation measurements by diffusion tensor imaging improve hydrogen-1 magnetic resonance spectroscopy of intramyocellular lipids in human leg muscles

    PubMed Central

    Valaparla, Sunil K.; Gao, Feng; Daniele, Giuseppe; Abdul-Ghani, Muhammad; Clarke, Geoffrey D.

    2015-01-01

    Abstract. Twelve healthy subjects underwent hydrogen-1 magnetic resonance spectroscopy (H1-MRS) acquisition (15×15×15  mm3), diffusion tensor imaging (DTI) with a b-value of 600  s mm−2, and fat-water magnetic resonance imaging (MRI) using the Dixon method. Subject-specific muscle fiber orientation, derived from DTI, was used to estimate the lipid proton spectral chemical shift. Pennation angles were measured as 23.78 deg in vastus lateralis (VL), 17.06 deg in soleus (SO), and 8.49 deg in tibialis anterior (TA) resulting in a chemical shift between extramyocellular lipids (EMCL) and intramyocellular lipids (IMCL) of 0.15, 0.17, and 0.19 ppm, respectively. IMCL concentrations were 8.66±1.24  mmol kg−1, 6.12±0.77  mmol kg−1, and 2.33±0.19  mmol kg−1 in SO, VL, and TA, respectively. Significant differences were observed in IMCL and EMCL pairwise comparisons in SO, VL, and TA (p<0.05). Strong correlations were observed between total fat fractions from H1-MRS and Dixon MRI for VL (r=0.794), SO (r=0.655), and TA (r=0.897). Bland-Altman analysis between fat fractions (FFMRS and FFMRI) showed good agreement with small limits of agreement (LoA): bias=−0.21% (LoA: −1.12% to 0.69%) in VL, bias=0.025% (LoA: −1.28% to 1.33%) in SO, and bias=−0.13% (LoA: −0.74% to 0.47%) in TA. The results of this study demonstrate the variation in muscle fiber orientation and lipid concentrations in these three skeletal muscle types. PMID:26158115

  18. Velocity and attenuation of shear waves in the phantom of a muscle-soft tissue matrix with embedded stretched fibers

    NASA Astrophysics Data System (ADS)

    Rudenko, O. V.; Tsyuryupa, S. N.; Sarvazyan, A. P.

    2016-09-01

    We develop a theory of the elasticity moduli and dissipative properties of a composite material: a phantom simulating muscle tissue anisotropy. The model used in the experiments was made of a waterlike polymer with embedded elastic filaments imitating muscle fiber. In contrast to the earlier developed phenomenological theory of the anisotropic properties of muscle tissue, here we obtain the relationship of the moduli with characteristic sizes and moduli making up the composite. We introduce the effective elasticity moduli and viscosity tensor components, which depend on stretching of the fibers. We measure the propagation velocity of shear waves and the shear viscosity of the model for regulated tension. Waves were excited by pulsed radiation pressure generated by modulated focused ultrasound. We show that with increased stretching of fibers imitating muscle contraction, an increase in both elasticity and viscosity takes place, and this effect depends on the wave propagation direction. The results of theoretical and experimental studies support our hypothesis on the protective function of stretched skeletal muscle, which protects bones and joints from trauma.

  19. Communication channel modeling of human forearm with muscle fiber tissue characteristics.

    PubMed

    Zhang, Shuang; Pun, Sio Hang; Mak, Peng Un; Qin, Yu-Ping; Liu, Yi-He; Vai, Mang I

    2016-09-14

    Human-Body Communication (HBC) is a wireless communication method using the human body tissue as a transmission medium for signals. This paper on the basis of human muscle fiber tissues' characteristics, it is first proposed to establish the analytical model of galvanic coupling human-body communication channel. In this model, the parallel and the transverse electrical characteristics of muscular tissue are fully considered, and the model accurately presents the transmission mechanism of galvanic coupling human-body communication signals in the channel. At last, through compare with the experimental results and calculation results, the maximum error of the model is 22.4% and the average error is 14.2% within the frequency range.

  20. Effect of nucleotides on the orientation and mobility of myosin subfragment-1 in ghost muscle fiber.

    PubMed

    Pronina, O E; Wrzosek, A; Dabrowska, R; Borovikov, Yu S

    2005-10-01

    Using polarization fluorimetry, the orientation and mobility of 1,5-IAEDANS specifically bound to Cys707 of myosin subfragment-1 (S1) were studied in ghost muscle tropomyosin-containing fibers in the absence and in the presence of MgADP, MgAMP-PNP, MgATPgammaS, or MgATP. Modeling of various intermediate states was accompanied by discrete changes in actomyosin orientation and mobility of fluorescent dye dipoles. This suggests multistep changes in the structural state of the myosin head during the ATPase cycle. Maximal differences in the probe orientation by 4 degrees and its mobility by 30% were found between actomyosin states in the presence of MgADP and MgATP. It is suggested that interaction of S1 with F-actin induces nucleotide-dependent rotation of the whole motor domain of the myosin head or only the dye-binding site and also change in the head mobility.

  1. Supercharging accelerates T-tubule membrane potential changes in voltage clamped frog skeletal muscle fibers.

    PubMed Central

    Kim, A M; Vergara, J L

    1998-01-01

    In voltage-clamp studies of single frog skeletal muscle fibers stained with the potentiometric indicator 1-(3-sulfonatopropyl)-4-[beta[2-(di-n-octylamino)-6-naphthyl] vinyl]pyridinium betaine (di-8 ANEPPS), fluorescence transients were recorded in response to both supercharging and step command pulses. Several illumination paradigms were utilized to study global and localized regions of the transverse tubule system (T-system). The rising phases of transients obtained from global illumination regions showed distinct accelerations when supercharging pulses were applied (95% of steady-state fluorescence achieved in 1.5 ms with supercharging pulses versus 14.6 ms with step pulses). When local transients were recorded at the edge of the muscle fiber, their kinetics resembled those of the applied waveform, but a similar relationship was not observed in transients from regions near the edge chosen to minimize the surface membrane contribution. We developed a model of the T-system capable of simulating membrane potential changes as a function of time and distance along the T-system cable and the associated fluorescence changes in regions corresponding to the experimental illumination strategies. A critical parameter was the access resistance term, for which values of 110-150 Omega.cm2 were adequate to fit the data. The results suggest that the primary mechanism through which supercharging pulses boost the kinetics of T-system voltage changes most likely involves their compensating the voltage attenuation across the access resistance at the mouth of the T-tubule. PMID:9746552

  2. Actions of chiriquitoxin on frog skeletal muscle fibers and implications for the tetrodotoxin/saxitoxin receptor.

    PubMed

    Yang, L; Kao, C Y

    1992-10-01

    Chiriquitoxin (CqTX) from the Costa Rican frog Atelopus chiriquensis differs from tetrodoxin (TTX) only in that a glycine residue replaces a methylene hydrogen of the C-11 hydroxymethyl function. On the voltage-clamped frog skeletal muscle fiber, in addition to blocking the sodium channel and unrelated to such an action, CqTX also slows the activation of the fast potassium current in approximately 40% of the muscle fiber population. At pH 7.25, CqTX is as potent as TTX in blocking the sodium channel, with an ED50 of 3.8 nM. Its ED50's at pH 6.50 and 8.25 are 6.8 and 2.3 nM, contrasted with 3.8 and 4.3 nM for TTX. These differences are attributable to changes in the chemical states in the glycine residue. The equipotency of CqTX with TTX at pH 7.25 is explainable by an intramolecular salt bridge between the amino and carboxyl groups of the glycine function, all other surface groups in TTX and CqTX being the same. From available information on these groups and those in saxitoxin (STX), the TTX/STX binding site is deduced to be in a pocket 9.5 A wide, 6 A high, and 5 A deep. The glycine residue of CqTX probably projects out of the entrance to this pocket. Such a view of the binding site could also account for the actions of STX analogues, including the C-11 sulfated gonyautoxins and the 21-sulfocarbamoyl analogues. In the gonyautoxins the sulfate groups are equivalently placed as the glycine in CqTX, whereas in the sulfocarbamoyl toxins the sulfate groups extend the carbamoyl side-chain, leading to steric hinderance to productive binding. PMID:1334120

  3. Measurement of Elastic Modulus of Collagen Type I Single Fiber.

    PubMed

    Dutov, Pavel; Antipova, Olga; Varma, Sameer; Orgel, Joseph P R O; Schieber, Jay D

    2016-01-01

    Collagen fibers are the main components of the extra cellular matrix and the primary contributors to the mechanical properties of tissues. Here we report a novel approach to measure the longitudinal component of the elastic moduli of biological fibers under conditions close to those found in vivo and apply it to type I collagen from rat tail tendon. This approach combines optical tweezers, atomic force microscopy, and exploits Euler-Bernoulli elasticity theory for data analysis. This approach also avoids drying for measurements or visualization, since samples are freshly extracted. Importantly, strains are kept below 0.5%, which appear consistent with the linear elastic regime. We find, surprisingly, that the longitudinal elastic modulus of type I collagen cannot be represented by a single quantity but rather is a distribution that is broader than the uncertainty of our experimental technique. The longitudinal component of the single-fiber elastic modulus is between 100 MPa and 360 MPa for samples extracted from different rats and/or different parts of a single tail. Variations are also observed in the fibril-bundle/fibril diameter with an average of 325±40 nm. Since bending forces depend on the diameter to the fourth power, this variation in diameter is important for estimating the range of elastic moduli. The remaining variations in the modulus may be due to differences in composition of the fibril-bundles, or the extent of the proteoglycans constituting fibril-bundles, or that some single fibrils may be of fibril-bundle size. PMID:26800120

  4. Distribution and threshold expression of the tRNA[sup Lys] mutation in skeletal muscle of patients with myoclonic epilepsy and ragged-red fibers (MERRF)

    SciTech Connect

    Boulet, L.; Karpati, G. ); Shoubridge, E.A. McGill Univ., Montreal, Quebec )

    1992-12-01

    The authors investigated the distribution and expression of mutant mtDNAs carrying the A-to-G mutation at position 8344 in the tRNA[sup Lys] gene in the skeletal muscle of four patients with myoclonus epilepsy and ragged-red fibers (MERRF). The proportion of mutant genomes was greater than 80% of total mtDNAs in muscle samples of all patients and was associated with a decrease in the activity of cytochrome c oxidase (COX). The vast majority of myoblasts, cloned from the satellite-cell population in the same muscles, were homoplasmic for the mutation. The overall proportion of mutant mtDNAs in this population was similar to that in differentiated muscle, suggesting that the ratio of mutant to wild-type mtDNAs in skeletal muscle is determined either in the ovum or during early development and changes little with age. Translation of all mtDNA-encoded genes was severely depressed in homoplasmic mutant myoblast clones but not in heteroplasmic or wild-type clones. The threshold for biochemical expression of the mutation was determined in heteroplasmic myotubes formed by fusion of different proportions of mutant and wild-type myoblasts. The magnitude of the decrease in translation in myotubes containing mutant mtDNAs was protein specific. Complex I and IV subunits were more affected than complex V subunits, and there was a rough correlation with both protein size and number of lysine residues. Approximately 15% wild-type mtDNAs restored translation and COX activity to near normal levels. These results show that the A-to-G substitution in tRNA[sup Lys] is a functionally recessive mutation that can be rescued by intraorganellar complementation with a small proportion of wild-type mtDNAs and explain the steep threshold for expression of the MERRF clinical phenotype. 40 refs., 7 figs., 2 tabs.

  5. Expression of human IAP-like protein in skeletal muscle: a possible explanation for the rare incidence of muscle fiber apoptosis in T-cell mediated inflammatory myopathies.

    PubMed

    Li, M; Dalakas, M C

    2000-07-01

    In Polymyositis (PM) and sporadic Inclusion Body Myositis (s-IBM), the CD8(+) cytotoxic T cells invade the muscle membrane and release perforin and granzyme B to induce cell death. Although granzyme B is a direct activator of executioner caspases, there is no convincing evidence of apoptosis in the muscle fibers of these patients. To search for an explanation, we examined the muscle expression of the human IAP-Like Protein (hILP), an evolutionarily conserved cell death suppressor, that exerts major anti-apoptotic effects by inhibiting the executioner caspases. Muscle biopsy specimens from patients with inflammatory myopathies and controls were studied with: (a) immunocytochemistry using antibodies against hILP and caspase-3 in single and double-labeled confocal laser microscopy; (b) immunoblotting of muscle extracts immunoreacted with anti-hILP antibodies; and (c) subcellular fractionation of muscle lysates immunoreacted with antibodies against hILP. We found that hILP is expressed on the sarcolemmal region and co-localizes with dystrophin. Caspase-3 is undetectable. Subcellular fractionation of the muscle specimens confirmed that hILP is a membrane-associated protein. By immunoblotting, the 57 kD hILP was abundantly expressed in the normal as well as the diseased muscles. We conclude that in s-IBM and PM the expression of hILP, a major cell death suppressor, on the muscle membrane may prevent the induction of apoptosis by the autoinvasive cytotoxic T cells on the cell surface, by inhibiting the caspase activation.

  6. Impaired Autophagy in Sporadic Inclusion-Body Myositis and in Endoplasmic Reticulum Stress-Provoked Cultured Human Muscle Fibers

    PubMed Central

    Nogalska, Anna; D'Agostino, Carla; Terracciano, Chiara; Engel, W. King; Askanas, Valerie

    2010-01-01

    The hallmark pathologies of sporadic inclusion-body myositis (s-IBM) muscle fibers are autophagic vacuoles and accumulation of ubiquitin-positive multiprotein aggregates that contain amyloid-β or phosphorylated tau in a β-pleated sheet amyloid configuration. Endoplasmic reticulum stress (ERS) and 26S proteasome inhibition, also associated with s-IBM, putatively aggrandize the accumulation of misfolded proteins. However, autophagosomal-lysosomal pathway formation and function, indicated by autophagosome maturation, have not been previously analyzed in this system. Here we studied the autophagosomal-lysosomal pathway using 14 s-IBM and 30 disease control and normal control muscle biopsy samples and our cultured human muscle fibers in a microenvironment modified to resemble aspects of s-IBM pathology. We report for the first time that in s-IBM, lysosomal enzyme activities of cathepsin D and B were decreased 60% (P < 0.01) and 40% (P < 0.05), respectively. We also detected two indicators of increased autophagosome maturation, the presence of LC3-II and decreased mammalian target of rapamycin-mediated phosphorylation of p70S6 kinase. Moreover, in cultured human muscle fibers, ERS induction significantly decreased activities of cathepsins D and B, increased levels of LC3-II, decreased phosphorylation of p70S6 kinase, and decreased expression of VMA21, a chaperone for assembly of lysosomal V-ATPase. We conclude that in s-IBM muscle, decreased lysosomal proteolytic activity might enhance accumulation of misfolded proteins, despite increased maturation of autophagosomes, and that ERS is a possible cause of s-IBM-impaired lysosomal function. Thus, unblocking protein degradation in s-IBM muscle fibers may be a desirable therapeutic strategy. PMID:20616343

  7. Relationship of Skeletal Muscle Development and Growth to Breast Muscle Myopathies: A Review.

    PubMed

    Velleman, Sandra G

    2015-12-01

    Selection in meat-type birds has focused on growth rate, muscling, and feed conversion. These strategies have made substantial improvements but have affected muscle structure, repair mechanisms, and meat quality, especially in the breast muscle. The increase in muscle fiber diameters has reduced available connective tissue spacing, reduced blood supply, and altered muscle metabolism in the breast muscle. These changes have increased muscle fiber degeneration and necrosis but have limited muscle repair mechanisms mediated by the adult myoblast (satellite cell) population of cells, likely resulting in the onset of myopathies. This review focuses on muscle growth mechanisms and how changes in the cellular development of the breast muscle may be associated with breast muscle myopathies occurring in meat-type birds.

  8. Three distinct actin-attached structural states of myosin in muscle fibers.

    PubMed

    Mello, Ryan N; Thomas, David D

    2012-03-01

    We have used thiol cross-linking and electron paramagnetic resonance (EPR) to resolve structural transitions of myosin's light chain domain (LCD) and catalytic domain (CD) that are associated with force generation. Spin labels were incorporated into the LCD of muscle fibers by exchanging spin-labeled regulatory light chain for endogenous regulatory light chain, with full retention of function. To trap myosin in a structural state analogous to the elusive posthydrolysis ternary complex A.M'.D.P, we used pPDM to cross-link SH1 (Cys(707)) to SH2 (Cys(697)) on the CD. LCD orientation and dynamics were measured in three biochemical states: relaxation (A.M.T), SH1-SH2 cross-linked (A.M'.D.P analog), and rigor (A.M.D). EPR showed that the LCD of cross-linked fibers has an orientational distribution intermediate between relaxation and rigor, and saturation transfer EPR revealed slow rotational dynamics indistinguishable from that of rigor. Similar results were obtained for the CD using a bifunctional spin label to cross-link SH1-SH2, but the CD was more disordered than the LCD. We conclude that SH1-SH2 cross-linking traps a state in which both the CD and LCD are intermediate between relaxation (highly disordered and microsecond dynamics) and rigor (highly ordered and rigid), supporting the hypothesis that the cross-linked state is an A.M'D.P analog on the force generation pathway. PMID:22404931

  9. Cross-bridge attachment and stiffness during isotonic shortening of intact single muscle fibers.

    PubMed

    Griffiths, P J; Ashley, C C; Bagni, M A; Maéda, Y; Cecchi, G

    1993-04-01

    Equatorial x-ray diffraction pattern intensities (I10 and I11), fiber stiffness and sarcomere length were measured in single, intact muscle fibers under isometric conditions and during constant velocity (ramp) shortening. At the velocity of unloaded shortening (Vmax) the I10 change accompanying activation was reduced to 50.8% of its isometric value, I11 reduced to 60.7%. If the roughly linear relation between numbers of attached bridges and equatorial signals in the isometric state also applies during shortening, this would predict 51-61% attachment. Stiffness (measured using 4 kHz sinusoidal length oscillations), another putative measure of bridge attachment, was 30% of its isometric value at Vmax. When small step length changes were applied to the preparation (such as used for construction of T1 curves), no equatorial intensity changes could be detected with our present time resolution (5 ms). Therefore, unlike the isometric situation, stiffness and equatorial signals obtained during ramp shortening are not in agreement. This may be a result of a changed crossbridge spatial orientation during shortening, a different average stiffness per attached crossbridge, or a higher proportion of single headed crossbridges during shortening.

  10. Ryanodine interferes with charge movement repriming in amphibian skeletal muscle fibers.

    PubMed Central

    Gonzalez, A; Caputo, C

    1996-01-01

    Cut twitch muscle fibers mounted in a triple Vaseline-gap chamber were used to study the effects of ryanodine on intramembranous charge movement, and in particular on the repriming of charge 1. Charge 1 repriming was measured either under steady-state conditions or by using a pulse protocol designed to study the time course of repriming. This protocol consisted of repolarizing the fibers to -100 mV from a holding potential of 0 mV, and then measuring the reprimed charge moving in the potential range between -40 and +20 mV. Ryanodine at a high concentration (100 microM) did not affect the maximum amount of movable charge 1 and charge 2, or their voltage dependence. This indicates that the alkaloid does not interact with the voltage sensor molecules. However, ryanodine did reduce the amount of reprimed charge 1 by approximately 60% suggesting the possibility of a retrograde interaction between ryanodine receptors and voltage sensors. PMID:8770214

  11. Stimulated single fiber EMG of the frontalis muscle in the diagnosis of ocular myasthenia.

    PubMed

    Valls-Canals, J; Montero, J; Pradas, J

    2000-05-01

    We performed single fiber electromyography by axonal stimulation (SFEMG-AS) of the frontalis muscle of 16 patients with ocular myasthenia gravis (OM) and 33 controls. In the controls, values of mean consecutive differences (MCD) ranged from 5 to 55 micros (average, 14.7 +/- 2.8 micros) and mean MCD of individual MPs was 14. 6 +/- 6.8 micros. All the OM patients showed abnormal SFEMG-AS jitter before prostigmine was administered (mean MCD: 49.19 +/- 21. 82 micros, percentage of blocks: 20.97 +/- 18.53). Twenty or 30 min after prostigmine had been administered, we saw a significant improvement in jitter: mean MCD was 36.38 +/- 22.49 micros (P = 0. 005), and percentage of blocks was 10.16 +/- 18.87 (P = 0.008). The method was well tolerated. We conclude that SFEMG-AS of the frontalis muscle is a sensitive technique for the diagnosis of OM and is easy to carry out.

  12. The syndrome of continuous muscle fiber activity. Evidence to suggest proximal neurogenic causation.

    PubMed

    Irani, P F; Purohit, A V; Wadia, N H

    1977-04-01

    Four patients with the syndrome of continuous muscle fiber activity were seen in a period of 6 years. Young females predominated. Remarkable improvement followed phenytoin sodium and carbamazepine administration in three patients, one of whom was "cured" within 4 years. In the remaining patient the response was inconstant. Electromyography showed abnormal spontaneous activity with diphasic and triphasic potentials appearing as doublets and multiplets. Waxing and waning was observed. D-tubocurarine and succinylcholine abolished the spontaneous activity excluding the muscle and the myoneural junction as its source. Spinal anesthesia, thiopental sodium, sleep and baclofen had no effect on it, ruling out a central source. In three patients, nerve blocks at the knee and elbow or wrist abolished this activity pointing to a proximal site of origin in the nerve somewhere between the spinal cord and the nerve block. In the remaining patient such a block significantly reduced but did not abolished the activity suggesting a dual source above and below the block. Finally successive examinations in one of our patients led us to believe that this activity may arise from different sites at varying times. It appears that regardless of the site of origin of the activity in the motor axon the counter part clinical syndrome remains the same. PMID:857572

  13. Electrical properties of frog skeletal muscle fibers interpreted with a mesh model of the tubular system.

    PubMed Central

    Mathias, R T; Eisenberg, R S; Valdiosera, R

    1977-01-01

    This paper presents the construction, derivation, and test of a mesh model for the electrical properties of the transverse tubular system (T-system) in skeletal muscle. We model the irregular system of tubules as a random network of miniature transmission lines, using differential equations to describe the potential between the nodes and difference equations to describe the potential at the nodes. The solution to the equations can be accurately represented in several approximate forms with simple physical and graphical interpretations. All the parameters of the solution are specified by impedance and morphometric measurements. The effect of wide circumferential spacing between T-system openings is analyzed and the resulting restricted mesh model is shown to be approximated by a mesh with an access resistance. The continuous limit of the mesh model is shown to have the same form as the disk model of the T-system, but with a different expression for the tortuosity factor. The physical meaning of the tortuosity factor is examined, and a short derivation of the disk model is presented that gives results identical to the continuous limit of the mesh model. Both the mesh and restricted mesh models are compared with experimental data on the impedance of muscle fibers of the frog sartorius. The derived value for the resistivity of the lumen of the tubules is not too different from that of the bathing solution, the difference probably arising from the sensitivity of this value to errors in the morphometric measurements. Images FIGURE 4 PMID:831857

  14. Localization of the human 64kD autoantigen D1 to myofibrils in a subset of extraocular muscle fibers

    NASA Technical Reports Server (NTRS)

    Conley, C. A.; Fowler, V. M.

    1999-01-01

    PURPOSE. To evaluate the tissue-specific expression pattern of the 64kD human autoantigen D1, a tropomodulin-related protein that may be involved in thyroid-associated ophthalmopathy. METHODS. Recombinant 64kD human autoantigen D1 was generated in a bacterial expression system and used to immunize rabbits. Specific antibodies were affinity-purified and used for Western blots on normal and hyperthyroid rat and rabbit tissue, and immunofluorescence localization on cryosections of rat tissue. RESULTS. Anti-64kD human autoantigen D1 antibodies recognize specifically a approximately 70kD polypeptide in western blots of extraocular muscle, sternothyroid muscle, and smooth muscle. Immunofluorescence staining demonstrates that the 64kD human autoantigen D1 localizes to myofibrils in slow fibers from rat extraocular and sternothyroid muscle. The level of this protein is not altered in extraocular muscles from hyperthyroid rabbits. CONCLUSIONS. The 64kD human autoantigen D1 is expressed in slow fibers of extraocular and sternothyroid muscles as a component of myofibrils, and is not upregulated in conditions of hyperthyroidism.

  15. Determination of three-dimensional muscle architectures: validation of the DTI-based fiber tractography method by manual digitization

    PubMed Central

    Schenk, P; Siebert, T; Hiepe, P; Güllmar, D; Reichenbach, J R; Wick, C; Blickhan, R; Böl, M

    2013-01-01

    In the last decade, diffusion tensor imaging (DTI) has been used increasingly to investigate three-dimensional (3D) muscle architectures. So far there is no study that has proved the validity of this method to determine fascicle lengths and pennation angles within a whole muscle. To verify the DTI method, fascicle lengths of m. soleus as well as their pennation angles have been measured using two different methods. First, the 3D muscle architecture was analyzed in vivo applying the DTI method with subsequent deterministic fiber tractography. In a second step, the muscle architecture of the same muscle was analyzed using a standard manual digitization system (MicroScribe MLX). Comparing both methods, we found differences for the median pennation angles (P < 0.001) but not for the median fascicle lengths (P = 0.216). Despite the statistical results, we conclude that the DTI method is appropriate to determine the global fiber orientation. The difference in median pennation angles determined with both methods is only about 1.2° (median pennation angle of MicroScribe: 9.7°; DTI: 8.5°) and probably has no practical relevance for muscle simulation studies. Determining fascicle lengths requires additional restriction and further development of the DTI method. PMID:23678961

  16. Dietary fiber type reflects physiological functionality: comparison of grain fiber, inulin, and polydextrose.

    PubMed

    Raninen, Kaisa; Lappi, Jenni; Mykkänen, Hannu; Poutanen, Kaisa

    2011-01-01

    Dietary fiber is a nutritional concept based not on physiological functions but on defined chemical and physical properties. Recent definitions of dietary fiber differentiate inherent plant cell wall-associated fiber from isolated or synthetic fiber. For the latter to be defined as fiber, beneficial physiological effects should be demonstrated, such as laxative effects, fermentability, attenuation of blood cholesterol levels, or postprandial glucose response. Grain fibers are a major natural source of dietary fiber worldwide, while inulin, a soluble indigestible fructose polymer isolated from chicory, and polydextrose, a synthetic indigestible glucose polymer, have more simple structures. Inulin and polydextrose show many of the same functionalities of grain fiber in the large intestine, in that they are fermentable, bifidogenic, and laxative. The reported effects on postprandial blood glucose and fasting cholesterol levels have been modest, but grain fibers also show variable effects. New biomarkers are needed to link the physiological functions of specific fibers with long-term health benefits.

  17. Distribution of fibre types and fibre sizes in the tibialis cranialis muscle of beagle dogs.

    PubMed Central

    Newsholme, S J; Lexell, J; Downham, D Y

    1988-01-01

    The percentages of Type I muscle fibres were measured systematically in ATPase-stained, transverse cryostat sections of whole tibialis cranialis muscles from 8 young, adult beagles. The distance of the section from the origin of the muscle does not significantly affect the mean percentage. There are no identifiable differences in mean percentages between right and left muscles. Differences in mean percentages between individuals are significant when sexes are combined (P less than 0.01) and within sexes (males: P less than 0.01; females: P less than 0.05). Within sections, the percentage tends to be lowest at the superficial (craniolateral) border and to vary less from site to site deeper within the muscle. Fibre cross sectional areas were measured systematically in the same sections of the right muscle from 3 males and 3 females. Mean areas for each section were greater for Type II than for Type I fibres. Mean areas for each fibre-type varied moderately and non-systematically between the sample sites within sections. A needle biopsy taken from deep within this muscle should provide a more consistent and reliable estimate of fibre-type proportion in the whole muscle than a superficial specimen. Proportions are not affected by the distance of the sample site from the muscle origin, and left or right muscles are suitable for sequential samples. PMID:3253248

  18. Thermal stress and Ca-independent contractile activation in mammalian skeletal muscle fibers at high temperatures.

    PubMed Central

    Ranatunga, K W

    1994-01-01

    Temperature dependence of the isometric tension was examined in chemically skinned, glycerinated, rabbit Psoas, muscle fibers immersed in relaxing solution (pH approximately 7.1 at 20 degrees C, pCa approximately 8, ionic strength 200 mM); the average rate of heating/cooling was 0.5-1 degree C/s. The resting tension increased reversibly with temperature (5-42 degrees C); the tension increase was slight in warming to approximately 25 degrees C (a linear thermal contraction, -alpha, of approximately 0.1%/degree C) but became more pronounced above approximately 30 degrees C (similar behavior was seen in intact rat muscle fibers). The extra tension rise at the high temperatures was depressed in acidic pH an