Sample records for fiber optic interferometer

  1. In-Line Fiber Optic Interferometric Sensors in Single-Mode Fibers

    PubMed Central

    Zhu, Tao; Wu, Di; Liu, Min; Duan, De-Wen

    2012-01-01

    In-line fiber optic interferometers have attracted intensive attention for their potential sensing applications in refractive index, temperature, pressure and strain measurement, etc. Typical in-line fiber-optic interferometers are of two types: Fabry-Perot interferometers and core-cladding-mode interferometers. It's known that the in-line fiber optic interferometers based on single-mode fibers can exhibit compact structures, easy fabrication and low cost. In this paper, we review two kinds of typical in-line fiber optic interferometers formed in single-mode fibers fabricated with different post-processing techniques. Also, some recently reported specific technologies for fabricating such fiber optic interferometers are presented. PMID:23112608

  2. FIBER AND INTEGRATED OPTICS. OTHER TOPICS IN QUANTUM ELECTRONICS: Fiber-optic interferometers: control of spectral composition of the radiation and formation of high-intensity optical pulses

    NASA Astrophysics Data System (ADS)

    Bulushev, A. G.; Dianov, Evgenii M.; Kuznetsov, A. V.; Okhotnikov, O. G.; Paramonov, Vladimir M.; Tsarev, Vladimir A.

    1990-05-01

    A study was made of the use of single-mode fiber ring interferometers in narrowing the emission lines of semiconductor lasers and increasing the optical radiation power. Efficient coupling of radiation, emitted by a multifrequency injection laser with an external resonator, into a fiber ring interferometer was achieved both under cw and mode-locking conditions. Matching of the optical lengths of the external resonator and the fiber interferometer made it possible to determine the mode width for this laser. A method for generation of optical pulses in a fiber ring interferometer from cw frequency modulated radiation was developed.

  3. FIBER OPTICS: Polarization phase nonreciprocity in all-fiber ring interferometers

    NASA Astrophysics Data System (ADS)

    Andreev, A. Ts; Vasilev, V. D.; Kozlov, V. A.; Kuznetsov, A. V.; Senatorov, A. A.; Shubochkin, R. L.

    1993-08-01

    The polarization phase nonreciprocity in all-fiber ring interferometers based on single-mode optical fibers was studied experimentally. The results confirm existing theoretical models. Experimentally, it was possible to use fiber ring interferometers to measure the extinction coefficients of optical fiber polarizers. The largest extinction coefficients found for optical-fiber polarizers were 84 dB (for the wavelength 0.82 μm) and 86 dB (1.3 μm).

  4. Fiber optic sensors

    NASA Technical Reports Server (NTRS)

    Hesse, J.; Sohler, W.

    1984-01-01

    A survey of the developments in the field of fiber optics sensor technology is presented along with a discussion of the advantages of optical measuring instruments as compared with electronic sensors. The two primary types of fiber optics sensors, specifically those with multiwave fibers and those with monowave fibers, are described. Examples of each major sensor type are presented and discussed. Multiwave detectors include external and internal fiber optics sensors. Among the monowave detectors are Mach-Zender interferometers, Michelson interferometers, Sagnac interferometers (optical gyroscopes), waveguide resonators, and polarimeter sensors. Integrated optical sensors and their application in spectroscopy are briefly discussed.

  5. An interferometer having fused optical fibers, and apparatus and method using the interferometer

    NASA Technical Reports Server (NTRS)

    Hellbaum, Richard F. (Inventor); Claus, Richard O. (Inventor); Murphy, Kent A. (Inventor); Gunther, Michael F. (Inventor)

    1992-01-01

    An interferometer includes a first optical fiber coupled to a second optical fiber by fusing. At a fused portion, the first and second optical fibers are cut to expose respective cores. The cut or fused end of the first and second optical fibers is arranged to oppose a diaphragm or surface against which a physical phenomenon such as pressure or stress, is applied. In a first embodiment, a source light which is generally single-mode monochromatic, coherent light, is input to the first optical fiber and by evanescence, effectively crosses to the second optical fiber at the fused portion. Source light from the second optical fiber is reflected by the diaphragm or surface, and received at the second optical fiber to generate an output light which has an intensity which depends upon interference of reference light based on the source light, and the reflected light reflected from the diaphragm or surface. The intensity of the output light represents a positional relationship or displacement between the interferometer and the diaphragm or surface.

  6. Optical fiber voltage sensor based on Michelsion interferometer using Fabry-Perot demodulation interferometer

    NASA Astrophysics Data System (ADS)

    Chen, Xinwei; He, Shengnan; Li, Dandan; Wang, Kai; Fan, Yan'en; Wu, Shuai

    2014-11-01

    We present an optical fiber voltage sensor by Michelsion interferometer (MI) employing a Fabry-Perot (F-P) interferometer and the DC phase tracking (DCPT) signal processing method. By mounting a MI fabricated by an optical fiber coupler on a piezoelectric (PZT) transducer bar, a dynamic strain would be generated to change the optical path difference (OPD) of the interferometer when the measured voltage was applied on the PZT. Applying an F-P interferometer to demodulate the optical intensity variation output of the MI, the voltage can be obtained. The experiment results show that the relationship between the optical intensity variation and the voltage applied on the PZT is approximately linear. Furthermore, the phase generate carrier (PGC) algorithm was applied to demodulate the output of the sensor also.

  7. Optofluidic in-fiber interferometer based on hollow optical fiber with two cores.

    PubMed

    Yuan, Tingting; Yang, Xinghua; Liu, Zhihai; Yang, Jun; Li, Song; Kong, Depeng; Qi, Xiuxiu; Yu, Wenting; Long, Qunlong; Yuan, Libo

    2017-07-24

    We demonstrate a novel integrated optical fiber interferometer for in-fiber optofluidic detection. It is composed of a specially designed hollow optical fiber with a micro-channel and two cores. One core on the inner surface of the micro-channel is served as sensing arm and the other core in the annular cladding is served as reference arm. Fusion-and-tapering method is employed to couple light from a single mode fiber to the hollow optical fiber in this device. Sampling is realized by side opening a microhole on the surface of the hollow optical fiber. Under differential pressure between the end of the hollow fiber and the microhole, the liquids can form steady microflows in the micro-channel. Simultaneously, the interference spectrum of the interferometer device shifts with the variation of the concentration of the microfluid in the channel. The optofluidic in-fiber interferometer has a sensitivity of refractive index around 2508 nm/RIU for NaCl. For medicine concentration detection, its sensitivity is 0.076 nm/mmolL -1 for ascorbic acid. Significantly, this work presents a compact microfluidic in-fiber interferometer with a micro-channel which can be integrated with chip devices without spatial optical coupling and without complex manufacturing procedure of the waveguide on the chips.

  8. Mach-Zehnder atom interferometer inside an optical fiber

    NASA Astrophysics Data System (ADS)

    Xin, Mingjie; Leong, Wuiseng; Chen, Zilong; Lan, Shau-Yu

    2017-04-01

    Precision measurement with light-pulse grating atom interferometry in free space have been used in the study of fundamental physics and applications in inertial sensing. Recent development of photonic band-gap fibers allows light for traveling in hollow region while preserving its fundamental Gaussian mode. The fibers could provide a very promising platform to transfer cold atoms. Optically guided matter waves inside a hollow-core photonic band-gap fiber can mitigate diffraction limit problem and has the potential to bring research in the field of atomic sensing and precision measurement to the next level of compactness and accuracy. Here, we will show our experimental progress towards an atom interferometer in optical fibers. We designed an atom trapping scheme inside a hollow-core photonic band-gap fiber to create an optical guided matter waves system, and studied the coherence properties of Rubidium atoms in this optical guided system. We also demonstrate a Mach-Zehnder atom interferometer in the optical waveguide. This interferometer is promising for precision measurements and designs of mobile atomic sensors.

  9. Optical Fiber-Tip Sensors Based on In-Situ µ-Printed Polymer Suspended-Microbeams.

    PubMed

    Yao, Mian; Ouyang, Xia; Wu, Jushuai; Zhang, A Ping; Tam, Hwa-Yaw; Wai, P K A

    2018-06-05

    Miniature optical fiber-tip sensors based on directly µ-printed polymer suspended-microbeams are presented. With an in-house optical 3D μ-printing technology, SU-8 suspended-microbeams are fabricated in situ to form Fabry⁻Pérot (FP) micro-interferometers on the end face of standard single-mode optical fiber. Optical reflection spectra of the fabricated FP micro-interferometers are measured and fast Fourier transform is applied to analyze the cavity of micro-interferometers. The applications of the optical fiber-tip sensors for refractive index (RI) sensing and pressure sensing, which showed 917.3 nm/RIU to RI change and 4.29 nm/MPa to pressure change, respectively, are demonstrated in the experiments. The sensors and their optical µ-printing method unveil a new strategy to integrate complicated microcomponents on optical fibers toward 'lab-on-fiber' devices and applications.

  10. NONLINEAR OPTICAL EFFECTS AND FIBER OPTICS: Modulation of radiation in a fiber Sagnac interferometer induced by an external field

    NASA Astrophysics Data System (ADS)

    Zakhidov, É. A.; Kasymdzhanov, M. A.; Mirtadzhiev, F. M.; Tartakovskiĭ, G. Kh; Khabibullaev, P. K.

    1988-12-01

    A study was made of the influence of the Kerr nonlinearity of a fiber waveguide on fluctuations of the output signal from a fiber-optic interferometer. The intensity fluctuations were modeled using the radiation from a pulsed high-power laser with a controlled intensity and pulse profile. Interferograms of the output radiation were obtained for different interferometer configurations. A comparison of the experiment and theory made it possible to explain the observed changes in the signal and to estimate the phase noise due to the Kerr nonlinearity in the investigated fiber waveguide.

  11. Chronology of Fabry-Perot Interferometer Fiber-Optic Sensors and Their Applications: A Review

    PubMed Central

    Islam, Md. Rajibul; Ali, Muhammad Mahmood; Lai, Man-Hong; Lim, Kok-Sing; Ahmad, Harith

    2014-01-01

    Optical fibers have been involved in the area of sensing applications for more than four decades. Moreover, interferometric optical fiber sensors have attracted broad interest for their prospective applications in sensing temperature, refractive index, strain measurement, pressure, acoustic wave, vibration, magnetic field, and voltage. During this time, numerous types of interferometers have been developed such as Fabry-Perot, Michelson, Mach-Zehnder, Sagnac Fiber, and Common-path interferometers. Fabry-Perot interferometer (FPI) fiber-optic sensors have been extensively investigated for their exceedingly effective, simple fabrication as well as low cost aspects. In this study, a wide variety of FPI sensors are reviewed in terms of fabrication methods, principle of operation and their sensing applications. The chronology of the development of FPI sensors and their implementation in various applications are discussed. PMID:24763250

  12. Optical refractometer based on an asymmetrical twin-core fiber Michelson interferometer.

    PubMed

    Zhou, Ai; Zhang, Yanhui; Li, Guangping; Yang, Jun; Wang, Yuzhuo; Tian, Fengjun; Yuan, Libo

    2011-08-15

    We report and demonstrate an optical refractometer based on a compact fiber Michelson interferometer. The Michelson interferometer is composed of an asymmetrical twin-core fiber containing a central core and a side core. By chemically etching a segment of the twin-core fiber until the side core is exposed, the effective index of the side core in the etched region is sensitive to the environmental refractive index, which leads to a shift of the transmission spectrum of the Michelson interferometer. The experimental results show that such a device has a refractive index resolution of more than 800 nm/refractive index unit in the range of 1.34-1.37. © 2011 Optical Society of America

  13. New methods of multimode fiber interferometer signal processing

    NASA Astrophysics Data System (ADS)

    Vitrik, Oleg B.; Kulchin, Yuri N.; Maxaev, Oleg G.; Kirichenko, Oleg V.; Kamenev, Oleg T.; Petrov, Yuri S.

    1995-06-01

    New methods of multimode fiber interferometers signal processing are suggested. For scheme of single fiber multimode interferometers with two excited modes, the method based on using of special fiber unit is developed. This unit provides the modes interaction and further sum optical field filtering. As a result the amplitude of output signal is modulated by external influence on interferometer. The stabilization of interferometer sensitivity is achieved by using additional special modulation of output signal. For scheme of single fiber multimode interferometers with excitation of wide mode spectrum, the signal of intermode interference is registered by photodiode matrix and then special electronic unit performs correlation processing. For elimination of temperature destabilization, the registered signal is adopted to multimode interferometers optical signal temperature changes. The achieved parameters for double mode scheme: temporary stability--0.6% per hour, sensitivity to interferometer length deviations--3,2 nm; for multimode scheme: temperature stability--(0.5%)/(K), temporary nonstability--0.2% per hour, sensitivity to interferometer length deviations--20 nm, dynamic range--35 dB.

  14. Polarization Dependence Suppression of Optical Fiber Grating Sensor in a π-Shifted Sagnac Loop Interferometer

    PubMed Central

    Son, Jaebum; Lee, Min-Kyoung; Jeong, Myung Yung; Kim, Chang-Seok

    2010-01-01

    In the sensing applications of optical fiber grating, it is necessary to reduce the transmission-type polarization dependence to isolate the sensing parameter. It is experimentally shown that the polarization-dependent spectrum of acousto-optic long-period fiber grating sensors can be suppressed in the transmission port of a π-shifted Sagnac loop interferometer. General expressions for the transmittance and reflectance are derived for transmission-type, reflection-type, and partially reflecting/transmitting-type polarization-dependent optical devices. The compensation of polarization dependence through the counter propagation in the Sagnac loop interferometer is quantitatively measured for a commercial in-line polarizer and an acousto-optic long-period fiber grating sensor. PMID:22399884

  15. Reconfiguration of the multiwavelength operation of optical fiber ring lasers by the modifiable intra-cavity induced losses of an in-fiber tip probe modal Michelson interferometer

    NASA Astrophysics Data System (ADS)

    Salceda-Delgado, G.; Martinez-Rios, A.; Sierra-Hernandez, J. M.; Rodríguez-Carreón, V. C.; Toral-Acosta, D.; Selvas-Aguilar, R.; Álvarez-Tamayo, R. I.; Castillo-Guzman, A. A.; Rojas-Laguna, R.

    2018-03-01

    A straightforward and versatile method for switching from single to different multiwavelength laser emission in ring cavity fiber lasers is proposed and demonstrated experimentally. The method is based on using the changeable interference pattern from an optical fiber modal Michelson interferometer as a wavelength selective filter into the ring cavity laser. The interferometer is constructed using a bi-conical tapered fiber and a single-mode fiber segment, with these being spliced together to form an optical fiber tip probe. When the length of the single-mode fiber piece is modified, the phase difference between the interfering modes of the interferometer causes a change in the interferometer free spectral range. As a consequence, the laser intra-cavity losses lead to gain competition, which allows us to adjust the number of simultaneously generated laser lines. A multiwavelength reconfiguration of the laser from one up to a maximum of eight emission lines was obtained, with a maximum SNR of around 47 dBm.

  16. Frequency stabilization for space-based missions using optical fiber interferometry.

    PubMed

    McRae, Terry G; Ngo, Silvie; Shaddock, Daniel A; Hsu, Magnus T L; Gray, Malcolm B

    2013-02-01

    We present measurement results for a laser frequency reference, implemented with an all-optical fiber Michelson interferometer, down to frequencies as low as 1 mHz. Optical fiber is attractive for space-based operations as it is physically robust, small and lightweight. The small free spectral range of fiber interferometers also provides the possibility to prestabilize two lasers on two distant spacecraft and ensures that the beatnote remains within the detector bandwidth. We demonstrate that these fiber interferometers are viable candidates for future laser-based gravity recovery and climate experiment missions requiring a stability of 30 Hz/√Hz over a 10 mHz-1 Hz bandwidth.

  17. Optical fiber interferometer for the study of ultrasonic waves in composite materials

    NASA Technical Reports Server (NTRS)

    Claus, R. O.; Zewekh, P. S.; Turner, T. M.; Wade, J. C.; Rogers, R. T.; Garg, A. O.

    1981-01-01

    The possibility of acoustic emission detection in composites using embedded optical fibers as sensing elements was investigated. Optical fiber interferometry, fiber acoustic sensitivity, fiber interferometer calibration, and acoustic emission detection are reported. Adhesive bond layer dynamical properties using ultrasonic interface waves, the design and construction of an ultrasonic transducer with a two dimensional Gaussian pressure profile, and the development of an optical differential technique for the measurement of surface acoustic wave particle displacements and propagation direction are also examined.

  18. Detection, Evaluation, and Optimization of Optical Signals Generated by Fiber Optic Bragg Gratings Under Dynamic Excitations

    NASA Technical Reports Server (NTRS)

    Adamovsky, Grigory; Lekki, John; Lock, James A.

    2002-01-01

    The dynamic response of a fiber optic Bragg grating to mechanical vibrations is examined both theoretically and experimentally. The theoretical expressions describing the consequences of changes in the grating's reflection spectrum are derived for partially coherent beams in an interferometer. The analysis is given in terms of the dominant wavelength, optical bandwidth, and optical path difference of the interfering signals. Changes in the reflection spectrum caused by a periodic stretching and compression of the grating were experimentally measured using an unbalanced Michelson interferometer, a Michelson interferometer with a non-zero optical path difference. The interferometer's sensitivity to changes in dominant wavelength of the interfering beams was measured as a function of interferometer unbalance and was compared to theoretical predictions. The theoretical analysis enables the user to determine the optimum performance for an unbalanced interferometer.

  19. Spatially continuous distributed fiber optic sensing using optical carrier based microwave interferometry.

    PubMed

    Huang, Jie; Lan, Xinwei; Luo, Ming; Xiao, Hai

    2014-07-28

    This paper reports a spatially continuous distributed fiber optic sensing technique using optical carrier based microwave interferometry (OCMI), in which many optical interferometers with the same or different optical path differences are interrogated in the microwave domain and their locations can be unambiguously determined. The concept is demonstrated using cascaded weak optical reflectors along a single optical fiber, where any two arbitrary reflectors are paired to define a low-finesse Fabry-Perot interferometer. While spatially continuous (i.e., no dark zone), fully distributed strain measurement was used as an example to demonstrate the capability, the proposed concept may also be implemented on other types of waveguide or free-space interferometers and used for distributed measurement of various physical, chemical and biological quantities.

  20. The effect of delay line on the performance of a fiber optic interferometric sensor

    NASA Astrophysics Data System (ADS)

    Lin, Yung-Li; Lin, Ken-Huang; Lin, Wuu-Wen; Chen, Mao-Hsiung

    2007-09-01

    The optical fiber has the features of low loss and wide bandwidth; it has replaced the coaxial cable as the mainstream of the communication system in recent years. Because of its high sensitivity characteristic, the interferometer is usually applied to long distance, weak signal detection. In general, if the area to be monitored is located far away, the weak signal will make it uneasy to detect. An interferometer is used for phase detection. Thus, the hydrophone which is based on interferometric fiber optic sensor has extremely high sensitivity. Sagnac interferometric hydrophone has low noise of marine environment, which is more suitably used to detect underwater acoustic signal than that of a Mach-Zehnder interferometer. In this paper, we propose the configuration of dual Sagnac interferometer, and use the mathematical methods to drive and design optimal two delay fiber lengths, which can enlarge the dynamic range of underwater acoustic detection. In addition, we also use software simulation to design optimal two delay fiber lengths. The experimental configuration of dual Sagnac interferometer with two optical delay line is shown as Fig. 1. The maximum and minimum measurable phase signal value of dual Sagnac interferometer (L II=2 km, L 4=222.2 m), shown in Fig. 3. The fiber optic sensor head is of mandrel type. The acoustic window is made of silicon rubbers. It was shown that we can increase their sensitivities by increasing number of wrapping fiber coils. In our experiment, the result shows that among all the mandrel sensor heads, the highest dynamic range is up to 37.6 +/- 1.4 dB, and its sensitivity is -223.3 +/-1.7 dB re V / 1μ Pa. As for the configuration of the optical interferometers, the intensity of the dual Sagnac interferometer is 20 dB larger than its Sagnac counterpart. Its dynamic range is above 66 dB where the frequency ranges is between 50 ~ 400 Hz, which is 24 dB larger than that of the Sagnac interferometer with the sensitivity of -192.0 dB re V / l μPa. In addition, by using software simulation to design optimal lengths of delay fibers, we can increase the dynamic range of interferometer on underwater acoustic detection. This paper verifies that, by means of adjusting the length of these two delay fibers, we can actually increase the dynamic range of acoustic signal detection.

  1. Study of Optical Fiber Sensors for Cryogenic Temperature Measurements.

    PubMed

    De Miguel-Soto, Veronica; Leandro, Daniel; Lopez-Aldaba, Aitor; Beato-López, Juan Jesus; Pérez-Landazábal, José Ignacio; Auguste, Jean-Louis; Jamier, Raphael; Roy, Philippe; Lopez-Amo, Manuel

    2017-11-30

    In this work, the performance of five different fiber optic sensors at cryogenic temperatures has been analyzed. A photonic crystal fiber Fabry-Pérot interferometer, two Sagnac interferometers, a commercial fiber Bragg grating (FBG), and a π-phase shifted fiber Bragg grating interrogated in a random distributed feedback fiber laser have been studied. Their sensitivities and resolutions as sensors for cryogenic temperatures have been compared regarding their advantages and disadvantages. Additionally, the results have been compared with the given by a commercial optical backscatter reflectometer that allowed for distributed temperature measurements of a single mode fiber.

  2. Study of Optical Fiber Sensors for Cryogenic Temperature Measurements

    PubMed Central

    Leandro, Daniel; Lopez-Aldaba, Aitor; Beato-López, Juan Jesus; Pérez-Landazábal, José Ignacio; Auguste, Jean-Louis; Jamier, Raphael; Roy, Philippe; Lopez-Amo, Manuel

    2017-01-01

    In this work, the performance of five different fiber optic sensors at cryogenic temperatures has been analyzed. A photonic crystal fiber Fabry-Pérot interferometer, two Sagnac interferometers, a commercial fiber Bragg grating (FBG), and a π-phase shifted fiber Bragg grating interrogated in a random distributed feedback fiber laser have been studied. Their sensitivities and resolutions as sensors for cryogenic temperatures have been compared regarding their advantages and disadvantages. Additionally, the results have been compared with the given by a commercial optical backscatter reflectometer that allowed for distributed temperature measurements of a single mode fiber. PMID:29189755

  3. Fiber optic geophysical sensors

    DOEpatents

    Homuth, Emil F.

    1991-01-01

    A fiber optic geophysical sensor in which laser light is passed through a sensor interferometer in contact with a geophysical event, and a reference interferometer not in contact with the geophysical event but in the same general environment as the sensor interferometer. In one embodiment, a single tunable laser provides the laser light. In another embodiment, separate tunable lasers are used for the sensor and reference interferometers. The invention can find such uses as monitoring for earthquakes, and the weighing of objects.

  4. MAFL experiment: development of photonic devices for a space-based multiaperture fiber-linked interferometer.

    PubMed

    Olivier, Serge; Delage, Laurent; Reynaud, Francois; Collomb, Virginie; Trouillon, Michel; Grelin, Jerome; Schanen, Isabelle; Minier, Vincent; Broquin, Jean-Emmanuel; Ruilier, Cyril; Leone, Bruno

    2007-02-20

    We present a three-telescope space-based interferometer prototype dedicated to high-resolution imaging. This project, named multiaperture fiber-linked interferometer (MAFL), was founded by the European Space Agency. The aim of the MAFL project is to propose, design, and implement for the first time to the best of our knowledge all the optical functions required for the global instrument on the same integrated optics (IO) component for controlling a three-arm interferometer and to obtain reliable science data. The coherent transport from telescopes to the IO component is achieved by means of highly birefringent optical fiber. The laboratory bench is presented, and the results are reported allowing us to validate the optical potentiality of the IO component in this frame. The validation measurements consist of the throughput of this optical device, the performances of metrological servoloop, and the instrumental contrasts and phase closure of the science fringes.

  5. Fiber Optic Fabry-Perot Current Sensor Integrated with Magnetic Fluid Using a Fiber Bragg Grating Demodulation

    PubMed Central

    Xia, Ji; Wang, Qi; Liu, Xu; Luo, Hong

    2015-01-01

    An optical fiber current sensor based on Fabry-Perot interferometer using a fiber Bragg grating demodulation is proposed. Magnetic fluid is used as a sensitive medium in fiber optical Fabry-Perot (F-P) cavity for the optical characteristic of magnetic-controlled refractive index. A Fiber Bragg grating (FBG) is connected after the F-P interferometer which is used to reflect the optical power at the Bragg wavelength of the interference transmission spectrum. The corresponding reflective power of the FBG will change with different external current intensity, due to the shift on the interference spectrum of the F-P interferometer. The sensing probe has the advantages of convenient measurement for its demodulation, low cost and high current measurement accuracy on account of its sensing structure. Experimental results show that an optimal sensitivity of 0.8522 nw/A and measurement resolution of 0.001 A is obtained with a FBG at 1550 nm with 99% reflectivity. PMID:26184201

  6. Fiber Optic Fabry-Perot Current Sensor Integrated with Magnetic Fluid Using a Fiber Bragg Grating Demodulation.

    PubMed

    Xia, Ji; Wang, Qi; Liu, Xu; Luo, Hong

    2015-07-09

    An optical fiber current sensor based on Fabry-Perot interferometer using a fiber Bragg grating demodulation is proposed. Magnetic fluid is used as a sensitive medium in fiber optical Fabry-Perot (F-P) cavity for the optical characteristic of magnetic-controlled refractive index. A Fiber Bragg grating (FBG) is connected after the F-P interferometer which is used to reflect the optical power at the Bragg wavelength of the interference transmission spectrum. The corresponding reflective power of the FBG will change with different external current intensity, due to the shift on the interference spectrum of the F-P interferometer. The sensing probe has the advantages of convenient measurement for its demodulation, low cost and high current measurement accuracy on account of its sensing structure. Experimental results show that an optimal sensitivity of 0.8522 nw/A and measurement resolution of 0.001 A is obtained with a FBG at 1550 nm with 99% reflectivity.

  7. High-resolution differential mode delay measurement for a multimode optical fiber using a modified optical frequency domain reflectometer.

    PubMed

    Ahn, T-J; Kim, D

    2005-10-03

    A novel differential mode delay (DMD) measurement technique for a multimode optical fiber based on optical frequency domain reflectometry (OFDR) has been proposed. We have obtained a high-resolution DMD value of 0.054 ps/m for a commercial multimode optical fiber with length of 50 m by using a modified OFDR in a Mach-Zehnder interferometer structure with a tunable external cavity laser and a Mach-Zehnder interferometer instead of Michelson interferometer. We have also compared the OFDR measurement results with those obtained using a traditional time-domain measurement method. DMD resolution with our proposed OFDR technique is more than an order of magnitude better than a result obtainable with a conventional time-domain method.

  8. Fiber optic geophysical sensors

    DOEpatents

    Homuth, E.F.

    1991-03-19

    A fiber optic geophysical sensor is described in which laser light is passed through a sensor interferometer in contact with a geophysical event, and a reference interferometer not in contact with the geophysical event but in the same general environment as the sensor interferometer. In one embodiment, a single tunable laser provides the laser light. In another embodiment, separate tunable lasers are used for the sensor and reference interferometers. The invention can find such uses as monitoring for earthquakes, and the weighing of objects. 2 figures.

  9. Label-Free Detection of Cancer Biomarkers Using an In-Line Taper Fiber-Optic Interferometer and a Fiber Bragg Grating

    PubMed Central

    Sun, Dandan; Wang, Guanjun

    2017-01-01

    A compact and label-free optical fiber sensor based on a taper interferometer cascaded with a fiber Bragg grating (FBG) is proposed and experimentally demonstrated for detection of a breast cancer biomarker (HER2). The tapered fiber-optic interferometer is extremely sensitive to the ambient refractive index (RI). In addition, being insensitive to the RI variation, the FBG can be applied as a temperature thermometer due to its independent response to the temperature. Surface functionalization to the sensor is carried out to achieve specific targeting of the unlabeled biomarkers. The result shows that the proposed sensor presents a low limit-of-detection (LOD) of 2 ng/mL, enabling its potentials of application in early diagnosis on the breast cancer. PMID:29113127

  10. Modeling of low-finesse, extrinsic fiber optic Fabry-Perot white light interferometers

    NASA Astrophysics Data System (ADS)

    Ma, Cheng; Tian, Zhipeng; Wang, Anbo

    2012-06-01

    This article introduces an approach for modeling the fiber optic low-finesse extrinsic Fabry-Pérot Interferometers (EFPI), aiming to address signal processing problems in EFPI demodulation algorithms based on white light interferometry. The main goal is to seek physical interpretations to correlate the sensor spectrum with the interferometer geometry (most importantly, the optical path difference). Because the signal demodulation quality and reliability hinge heavily on the understanding of such relationships, the model sheds light on optimizing the sensor performance.

  11. Application of thin dielectric films in low coherence fiber-optic Fabry-Pérot sensing interferometers: comparative study

    NASA Astrophysics Data System (ADS)

    Hirsch, Marzena; Wierzba, Paweł; Jedrzejewska-Szczerska, Małgorzata

    2016-11-01

    We examine the application of selected thin dielectric films, deposited by atomic layer deposition (ALD), in a low coherence fiber-optic Fabry-Pérot interferometer designed for sensing applications. Such films can be deposited on the end-face of a single mode optical fiber (SMF-28) in order to modify the reflectivity of the Fabry-Pérot cavity, to provide protection of the fibers from aggressive environments or to create a multi-cavity interferometric sensor. Spectral reflectance of films made from zinc oxide (ZnO), titanium dioxide (TiO2), aluminum oxide (Al2O3) and boron nitride (BN) was calculated for various thickness of the films and compared. The results show that the most promising materials for use in fiber-optic Fabry-Pérot interferometer are TiO2 and ZnO, although Al2O3 is also suitable for this application.

  12. Compact all-fiber interferometer system for shock acceleration measurement

    NASA Astrophysics Data System (ADS)

    Zhao, Jiang; Pi, Shaohua; Hong, Guangwei; Zhao, Dong; Jia, Bo

    2013-08-01

    Acceleration measurement plays an important role in a variety of fields in science and engineering. In particular, the accurate, continuous and non-contact recording of the shock acceleration profiles of the free target surfaces is considered as a critical technique in shock physics. Various kinds of optical interferometers have been developed to monitor the motion of the surfaces of shocked targets since the 1960s, for instance, the velocity interferometer system for any reflector, the fiber optic accelerometer, the photonic Doppler velocimetry system and the displacement interferometer. However, most of such systems rely on the coherent quasi-monochromatic illumination and discrete optic elements, which are costly in setting-up and maintenance. In 1996, L. Levin et al reported an interferometric fiber-optic Doppler velocimeter with high-dynamic range, in which fiber-coupled components were used to replace the discrete optic elements. However, the fringe visibility of the Levin's system is low because of the coupled components, which greatly limits the reliability and accuracy in the shock measurement. In this paper, a compact all-fiber interferometer system for measuring the shock acceleration is developed and tested. The advantage of the system is that not only removes the non-interfering light and enhances the fringe visibility, but also reduces polarization induced signal fading and the polarization induced phase shift. Moreover, it also does not require a source of long coherence length. The system bases entirely on single-mode fiber optics and mainly consists of a polarization beam splitter, a faraday rotator, a depolarizer and a 3×3 single-mode fiber coupler which work at 1310 nm wavelength. The optical systems of the interferometer are described and the experimental results compared with a shock acceleration calibration system with a pneumatic exciter (PneuShockTM Model 9525C by The Modal Shop) are reported. In the shock acceleration test, the interferometer system measured shock acceleration with peak accelerations of ~100,000 m/s2 and the durations of ~0.2 ms which are conformed to the results of the shock acceleration calibration system. The measured relative error of the acceleration is within 3%.

  13. FIBER AND INTEGRATED OPTICS. FIBER WAVEGUIDE DEVICES: Fiber Michelson interferometer with a 50-km difference between its arms

    NASA Astrophysics Data System (ADS)

    Dianov, Evgenii M.; Kuznetsov, A. V.; Makarenko, A. Yu; Okhotnikov, O. G.; Prokhorov, A. M.; Shcherbakov, E. A.

    1990-12-01

    Single-mode fiber waveguides were used in constructing a Michelson interferometer with a 50-km difference between its arm lengths. An analysis was made of its resolving power as a function of the parameters of the optical part and of the characteristics of the electronic apparatus used in the system. The width of a spectral emission line of a semiconductor laser with a distributed Rayleigh fiber resonator was determined.

  14. φ-OTDR sensing system with bidirectional pumped fiber Raman amplifier and unbalanced MZ interferometer

    NASA Astrophysics Data System (ADS)

    Zhang, Liang; Tian, Ming; Dong, Lei

    2017-10-01

    In order to improve the detection distance and the sensitivity, we propose a novel distributed optical fiber sensing system. This system is composed of bidirectional pumping fiber Raman amplifier and unbalanced fiber Mach-Zehnder interferometer. Based on the interference mechanism of phase sensitive optical time domain reflectometer (φ-OTDR), the system can get the sensing information of the whole optical fiber by analyzing the backward scattered light. The interferometer is used as the demodulator of the sensing system, which consists of a 3×3 coupler and two faraday rotator mirrors. By means of the demodulator, the signal light is divided into three beams with fixed phase difference. To deal with these three signals, we can get the vibration information directly on the optical fiber. Through experimental study, this system has a high sensitivity. The maximum sensing length and the spatial resolution of the φ-OTDR system are 100 km and 10 m. The signal to noise ratio about 18 dB is achieved.

  15. A fiber-optic interferometer with subpicometer resolution for dc and low-frequency displacement measurement.

    PubMed

    Smith, D T; Pratt, J R; Howard, L P

    2009-03-01

    We have developed a fiber-optic interferometer optimized for best performance in the frequency range from dc to 1 kHz, with displacement linearity of 1% over a range of +/- 25 nm, and noise-limited resolution of 2 pm. The interferometer uses a tunable infrared laser source (nominal 1550 nm wavelength) with high amplitude and wavelength stability, low spontaneous self-emission noise, high sideband suppression, and a coherence control feature that broadens the laser linewidth and dramatically lowers the low-frequency noise in the system. The amplitude stability of the source, combined with the use of specially manufactured "bend-insensitive" fiber and all-spliced fiber construction, results in a robust homodyne interferometer system, which achieves resolution of 40 fm Hz(-1/2) above 20 Hz and approaches the shot-noise-limit of 20 fm Hz(-1/2) at 1 kHz for an optical power of 10 microW, without the need for differential detection. Here we describe the design and construction of the interferometer, as well as modes of operation, and demonstrate its performance.

  16. Noncontact photoacoustic imaging by using a modified optical-fiber Michelson interferometer

    NASA Astrophysics Data System (ADS)

    Lu, Jiao; Gao, Yingzhe; Ma, Zhenhe; Wang, Bo; Wang, Yi

    2016-03-01

    We demonstrate a noncontact photoacoustic imaging (PAI) system in which an optical interferometer is used for ultrasound detection. The system is based on a modified optical-fiber Michelson interferometer that measures the surface displacement caused by photoacoustic pressure. A synchronization method is utilized to keep its high sensitivity to reduce the influence of ambient vibrations. The system is experimentally verified by imaging of a phantom. The experimental results indicate that the proposed system can be used for noncontact PAI with high resolution and high bandwidth.

  17. Optical system and method for gas detection and monitoring

    NASA Technical Reports Server (NTRS)

    Polzin, Kurt A. (Inventor); Sinko, John Elihu (Inventor); Korman, Valentin (Inventor); Witherow, William K. (Inventor); Hendrickson, Adam Gail (Inventor)

    2011-01-01

    A free-space optical path of an optical interferometer is disposed in an environment of interest. A light beam is guided to the optical interferometer using a single-mode optical fiber. The light beam traverses the interferometer's optical path. The light beam guided to the optical path is combined with the light beam at the end of the optical path to define an output light. A temporal history of the output light is recorded.

  18. Fiber-Optic Temperature Sensor Using a Thin-Film Fabry-Perot Interferometer

    NASA Technical Reports Server (NTRS)

    Beheim, Glenn

    1997-01-01

    A fiber-optic temperature sensor was developed that is rugged, compact, stable, and can be inexpensively fabricated. This thin-film interferometric temperature sensor was shown to be capable of providing a +/- 2 C accuracy over the range of -55 to 275 C, throughout a 5000 hr operating life. A temperature-sensitive thin-film Fabry-Perot interferometer can be deposited directly onto the end of a multimode optical fiber. This batch-fabricatable sensor can be manufactured at a much lower cost than can a presently available sensor, which requires the mechanical attachment of a Fabry-Perot interferometer to a fiber. The principal disadvantage of the thin-film sensor is its inherent instability, due to the low processing temperatures that must be used to prevent degradation of the optical fiber's buffer coating. The design of the stable thin-film temperature sensor considered the potential sources of both short and long term drifts. The temperature- sensitive Fabry-Perot interferometer was a silicon film with a thickness of approx. 2 microns. A laser-annealing process was developed which crystallized the silicon film without damaging the optical fiber. The silicon film was encapsulated with a thin layer of Si3N4 over coated with aluminum. Crystallization of the silicon and its encapsulation with a highly stable, impermeable thin-film structure were essential steps in producing a sensor with the required long-term stability.

  19. Enhancement of fiber-optic low-coherence Fabry-Pérot interferometer with ZnO ALD films

    NASA Astrophysics Data System (ADS)

    Hirsch, Marzena; Listewnik, Paulina; Jedrzejewska-Szczerska, Małgorzata

    2018-04-01

    In this paper investigation of the enhanced fiber-optic low coherence Fabry-Pérot interferometer with zinc oxide (ZnO) film deposited by atomic layer deposition (ALD) was presented. Model of the interferometer, which was constructed of single-mode optical fiber with applied ZnO ALD films, was built. The interferometer was also examined by means of experiment. Measurements were performed for both reflective and transmission modes, using wavelengths of 1300 nm and 1500 nm. The measurements with the air cavity showed the best performance in terms of a visibility of the interference signal can be achieved for small cavity lengths ( 50μm) in both configurations. Combined with the enhancement of reflectance of the interferometer mirrors due to the ALD film, proposed construction could be successfully applied in refractive index (RI) sensor that can operate with improved visibility of the signal even in 1.3-1.5 RI range as well as with small volume samples, as shown by the modeling.

  20. Polarization-independent fiber filter with an all-polarization-maintaining fiber loop for tunable fiber lasers

    NASA Astrophysics Data System (ADS)

    Zhang, Jun; Wu, Weiran; Rao, Qi; Zhou, Kejiang

    2018-05-01

    Tunable fiber lasers are a promising light source in all-optical wavelength conversion, fiber grating sensing and optical add-drop multiplexing. In order to achieve a tunable wavelength in the output, optical filters are indispensable for the construction of tunable fiber lasers. Recently, much attention has been given to developing high-performance filters. This paper proposes an environment-insensitive filter based on a Sagnac interferometer which was designed by an all-polarization-maintaining fiber with linear birefringence. According to the Sagnac interferometer, we derived the transfer function of an environment-insensitive filter. Based on this principle, it is shown that the device is able to implement a precision filtering function that can be used in a fiber laser’s optical resonant cavity. The experiment results demonstrated the effectiveness of this structure.

  1. Study on the effect of carbon nanotube coating on the refractive index sensing sensitivity of fiber modal interferometer

    NASA Astrophysics Data System (ADS)

    Zhang, Ya-nan; Xie, Wen-ge; Wang, Jianzhang; Wang, Pengzhao

    2018-01-01

    Refractive index sensing of liquid is important in the domain of chemistry and biology. Fiber optical sensors provide an excellent way to measure the refractive index due to their feasible integration to other fiber optics components, high sensitivity, small size, and distributed sensing. However, conventional optical sensors have different shortages. To find a practical way to measure the refractive index of liquid, this paper intended to combine Carbon Nanotube (CNT) with non-core fiber (NCF) to prepare a kind of modal interferometer sensor and to explore the effect of CNT coating on refractive index sensing properties of the modal interferometer. Firstly, a structure of single mode non-core single mode (SNS) fiber with a CNT film coating was proposed and simulated. The simulation results showed that the CNT coating could improve the refractive index sensitivity of the interferometer sensor. Then in the experiment part, the CNT solution was fabricated and deposited onto the NCF, and a refractive index sensing system was built to examine the property of the CNT-coated SNS interferometer sensor. During the experiment, the influence factors of sensitivity were summarized by testing the sensing performance under different conditions, and it was demonstrated that the CNT coating could improve the contrast of the interference spectrum, and also had the possibility to increase the refractive index sensitivity of the interferometer sensor.

  2. Fiber-optic extrinsic Fabry-Perot vibration-isolated interferometer for use in absolute gravity meters.

    PubMed

    Canuteson, E L; Zumberge, M

    1996-07-01

    In an absolute gravity meter, a laser interferometer measures the position of a test mass that is falling ina vacuum. The calculated value of gravity is the average acceleration of the mass during a set ofdrops. Since systematic accelerations of the optical system will bias the measured value of gravity,various interferometer geometries have been implemented in the past to isolate the optical system fromground motion. We have developed and tested a low-finesse fiber-optic extrinsic Fabry-Perotinterferometer that is fixed to the mass of a critically damped seismometer in which the effects ofsystematic ground motion and acoustic vibrations are reduced.

  3. Simple interrogator for optical fiber-based white light Fabry-Perot interferometers.

    PubMed

    Yu, Zhihao; Tian, Zhipeng; Wang, Anbo

    2017-02-15

    In this Letter, we present the design of a simple signal interrogator for optical fiber-based white light Fabry-Perot (F-P) interferometers. With the hardware being composed of only a flat fused silica wafer and a CCD camera, this interrogator translates the spectral interference into a spatial interference pattern, and then demodulates the F-P cavity length with the use of a relatively simple demodulation algorithm. The concept is demonstrated experimentally in a fiber optic sensor with a sapphire wafer as the F-P cavity.

  4. Vibration sensing using a tapered bend-insensitive fiber based Mach-Zehnder interferometer.

    PubMed

    Xu, Yanping; Lu, Ping; Qin, Zengguang; Harris, Jeremie; Baset, Farhana; Lu, Ping; Bhardwaj, Vedula Ravi; Bao, Xiaoyi

    2013-02-11

    In this study, a novel fiber-optic sensor consisting of a tapered bend-insensitive fiber based Mach-Zehnder interferometer is presented to realize damped and continuous vibration measurement. The double cladding structure and the central coating region of the in-fiber interferometer ensure an enhanced mechanical strength, reduced external disturbance, and a more uniform spectrum. A damped vibration frequency range of 29-60 Hz as well as continuous vibration disturbances ranging from 1 Hz up to 500 kHz are successfully demonstrated.

  5. Optical Fiber Sensors Based on Fiber Ring Laser Demodulation Technology

    PubMed Central

    Xie, Wen-Ge; Wang, Peng-Zhao; Wang, Jian-Zhang

    2018-01-01

    A review for optical fiber sensors based on fiber ring laser (FRL) demodulation technology is presented. The review focuses on the principles, main structures, and the sensing performances of different kinds of optical fiber sensors based on FRLs. First of all, the theory background of the sensors has been discussed. Secondly, four different types of sensors are described and compared, which includes Mach–Zehnder interferometer (MZI) typed sensors, Fabry–Perot interferometer (FPI) typed sensors, Sagnac typed sensors, and fiber Bragg grating (FBG) typed sensors. Typical studies and main properties of each type of sensors are presented. Thirdly, a comparison of different types of sensors are made. Finally, the existing problems and future research directions are pointed out and analyzed. PMID:29419745

  6. Optical Fiber Sensors Based on Fiber Ring Laser Demodulation Technology.

    PubMed

    Xie, Wen-Ge; Zhang, Ya-Nan; Wang, Peng-Zhao; Wang, Jian-Zhang

    2018-02-08

    A review for optical fiber sensors based on fiber ring laser (FRL) demodulation technology is presented. The review focuses on the principles, main structures, and the sensing performances of different kinds of optical fiber sensors based on FRLs. First of all, the theory background of the sensors has been discussed. Secondly, four different types of sensors are described and compared, which includes Mach-Zehnder interferometer (MZI) typed sensors, Fabry-Perot interferometer (FPI) typed sensors, Sagnac typed sensors, and fiber Bragg grating (FBG) typed sensors. Typical studies and main properties of each type of sensors are presented. Thirdly, a comparison of different types of sensors are made. Finally, the existing problems and future research directions are pointed out and analyzed.

  7. Interferometric Fiber Optic Sensors

    PubMed Central

    Lee, Byeong Ha; Kim, Young Ho; Park, Kwan Seob; Eom, Joo Beom; Kim, Myoung Jin; Rho, Byung Sup; Choi, Hae Young

    2012-01-01

    Fiber optic interferometers to sense various physical parameters including temperature, strain, pressure, and refractive index have been widely investigated. They can be categorized into four types: Fabry-Perot, Mach-Zehnder, Michelson, and Sagnac. In this paper, each type of interferometric sensor is reviewed in terms of operating principles, fabrication methods, and application fields. Some specific examples of recently reported interferometeric sensor technologies are presented in detail to show their large potential in practical applications. Some of the simple to fabricate but exceedingly effective Fabry-Perot interferometers, implemented in both extrinsic and intrinsic structures, are discussed. Also, a wide variety of Mach-Zehnder and Michelson interferometric sensors based on photonic crystal fibers are introduced along with their remarkable sensing performances. Finally, the simultaneous multi-parameter sensing capability of a pair of long period fiber grating (LPG) is presented in two types of structures; one is the Mach-Zehnder interferometer formed in a double cladding fiber and the other is the highly sensitive Sagnac interferometer cascaded with an LPG pair. PMID:22736961

  8. Optically guided atom interferometer tuned to magic wavelength

    NASA Astrophysics Data System (ADS)

    Akatsuka, Tomoya; Takahashi, Tadahiro; Katori, Hidetoshi

    2017-11-01

    We demonstrate an atom interferometer operating on the 1S0-3P0 clock transition of 87Sr atoms in a “magic” optical guide, where the light shift perturbations of the guiding potential are canceled. As a proof-of-principle demonstration, a Mach-Zehnder interferometer is set horizontally to map the acceleration introduced by the focused optical guide. This magic guide interferometer on the clock transition is applicable to atomic elements where magic wavelengths can be found. Possible applications of the magic guide interferometer, including a hollow-core fiber interferometer and gradiometer, are discussed.

  9. Fiber-optic push-pull sensor systems

    NASA Technical Reports Server (NTRS)

    Gardner, David L.; Brown, David A.; Garrett, Steven L.

    1991-01-01

    Fiber-optic push-pull sensors are those which exploit the intrinsically differential nature of an interferometer with concommitant benefits in common-mode rejection of undesired effects. Several fiber-optic accelerometer and hydrophone designs are described. Additionally, the recent development at the Naval Postgraduate School of a passive low-cost interferometric signal demodulator permits the development of economical fiber-optic sensor systems.

  10. All-Optical Fiber Hanbury Brown & Twiss Interferometer to study 1300 nm single photon emission of a metamorphic InAs Quantum Dot

    PubMed Central

    Muñoz-Matutano, G.; Barrera, D.; Fernández-Pousa, C.R.; Chulia-Jordan, R.; Seravalli, L.; Trevisi, G.; Frigeri, P.; Sales, S.; Martínez-Pastor, J.

    2016-01-01

    New optical fiber based spectroscopic tools open the possibility to develop more robust and efficient characterization experiments. Spectral filtering and light reflection have been used to produce compact and versatile fiber based optical cavities and sensors. Moreover, these technologies would be also suitable to study N-photon correlations, where high collection efficiency and frequency tunability is desirable. We demonstrated single photon emission of a single quantum dot emitting at 1300 nm, using a Fiber Bragg Grating for wavelength filtering and InGaAs Avalanche Photodiodes operated in Geiger mode for single photon detection. As we do not observe any significant fine structure splitting for the neutral exciton transition within our spectral resolution (46 μeV), metamorphic QD single photon emission studied with our all-fiber Hanbury Brown & Twiss interferometer could lead to a more efficient analysis of entangled photon sources at telecom wavelength. This all-optical fiber scheme opens the door to new first and second order interferometers to study photon indistinguishability, entangled photon and photon cross correlation in the more interesting telecom wavelengths. PMID:27257122

  11. A new fiber-optic non-contact compact laser-ultrasound scanner for fast non-destructive testing and evaluation of aircraft composites

    PubMed Central

    Pelivanov, Ivan; Buma, Takashi; Xia, Jinjun; Wei, Chen-Wei; O'Donnell, Matthew

    2014-01-01

    Laser ultrasonic (LU) inspection represents an attractive, non-contact method to evaluate composite materials. Current non-contact systems, however, have relatively low sensitivity compared to contact piezoelectric detection. They are also difficult to adjust, very expensive, and strongly influenced by environmental noise. Here, we demonstrate that most of these drawbacks can be eliminated by combining a new generation of compact, inexpensive fiber lasers with new developments in fiber telecommunication optics and an optimally designed balanced probe scheme. In particular, a new type of a balanced fiber-optic Sagnac interferometer is presented as part of an all-optical LU pump-probe system for non-destructive testing and evaluation of aircraft composites. The performance of the LU system is demonstrated on a composite sample with known defects. Wide-band ultrasound probe signals are generated directly at the sample surface with a pulsed fiber laser delivering nanosecond laser pulses at a repetition rate up to 76 kHz rate with a pulse energy of 0.6 mJ. A balanced fiber-optic Sagnac interferometer is employed to detect pressure signals at the same point on the composite surface. A- and B-scans obtained with the Sagnac interferometer are compared to those made with a contact wide-band polyvinylidene fluoride transducer. PMID:24737921

  12. Fiber optic sensor based on Mach-Zehnder interferometer for securing entrance areas of buildings

    NASA Astrophysics Data System (ADS)

    Nedoma, Jan; Fajkus, Marcel; Martinek, Radek; Mec, Pavel; Novak, Martin; Bednarek, Lukas; Vasinek, Vladimir

    2017-10-01

    Authors of this article focused on the utilization of fiber optic sensors based on interferometric measurements for securing entrance areas of buildings such as windows and doors. We described the implementation of the fiber-optic interferometer (type Mach-Zehnder) into the window frame or door, sensor sensitivity, analysis of the background noise and methods of signal evaluation. The advantage of presented solution is the use of standard telecommunication fiber standard G.652.D, high sensitivity, immunity of sensor to electromagnetic interference (EMI) and passivity of the sensor regarding power supply. Authors implemented the Graphical User Interface (GUI) which offers the possibility of remote monitoring presented sensing solution.

  13. Fiber optic smart structures and skins V; Proceedings of the Meeting, Boston, MA, Sept. 8, 9, 1992

    NASA Technical Reports Server (NTRS)

    Claus, Richard O. (Editor); Rogowski, Robert S. (Editor)

    1993-01-01

    The present conference discusses the materials used in applications of fiber-optics (F-O) to smart structures, extrinsic Fabry-Perot interferometric F-O sensors, sapphire F-O sensors, two-mode F-O sensors with photoinduced refractive index, an F-O accelerometer using two-mode fibers, and embedded F-O acoustic sensors for flaw detection. Also discussed are an optoelectronic smart structure interface, F-O sensors for simultaneous detection of strain and temperature, an optical Mach-Zehnder interferometer for smart skins, a split-cavity cross-coupled extrinsic fiber interferometer, and an embedded Bragg grating F-O sensor for composite flexbeams, an Er-doped ring-laser strain sensor.

  14. Aligning Arrays of Lenses and Single-Mode Optical Fibers

    NASA Technical Reports Server (NTRS)

    Liu, Duncan

    2004-01-01

    A procedure now under development is intended to enable the precise alignment of sheet arrays of microscopic lenses with the end faces of a coherent bundle of as many as 1,000 single-mode optical fibers packed closely in a regular array (see Figure 1). In the original application that prompted this development, the precise assembly of lenses and optical fibers serves as a single-mode spatial filter for a visible-light nulling interferometer. The precision of alignment must be sufficient to limit any remaining wavefront error to a root-mean-square value of less than 1/10 of a wavelength of light. This wavefront-error limit translates to requirements to (1) ensure uniformity of both the lens and fiber arrays, (2) ensure that the lateral distance from the central axis of each lens and the corresponding optical fiber is no more than a fraction of a micron, (3) angularly align the lens-sheet planes and the fiber-bundle end faces to within a few arc seconds, and (4) axially align the lenses and the fiber-bundle end faces to within tens of microns of the focal distance. Figure 2 depicts the apparatus used in the alignment procedure. The beam of light from a Zygo (or equivalent) interferometer is first compressed by a ratio of 20:1 so that upon its return to the interferometer, the beam will be magnified enough to enable measurement of wavefront quality. The apparatus includes relay lenses that enable imaging of the arrays of microscopic lenses in a charge-coupled-device (CCD) camera that is part of the interferometer. One of the arrays of microscopic lenses is mounted on a 6-axis stage, in proximity to the front face of the bundle of optical fibers. The bundle is mounted on a separate stage. A mirror is attached to the back face of the bundle of optical fibers for retroreflection of light. When a microscopic lens and a fiber are aligned with each other, the affected portion of the light is reflected back by the mirror, recollimated by the microscopic lens, transmitted through the relay lenses and the beam compressor/expander, then split so that half goes to a detector and half to the interferometer. The output of the detector is used as a feedback control signal for the six-axis stage to effect alignment.

  15. Temperature sensor based on an isopropanol-sealed photonic crystal fiber in-line interferometer with enhanced refractive index sensitivity.

    PubMed

    Qiu, Sun-jie; Chen, Ye; Xu, Fei; Lu, Yan-qing

    2012-03-01

    We fabricate a simple, compact, and stable temperature sensor based on a liquid-sealed photonic crystal fiber (PCF) in-line nonpolarimetric modal interferometer. Different from other reported PCF devices, it does not need expensive polarimetric devices, and the liquid is sealed in one fiber. The device consists of a stub of isopropanol-filled PCF spliced between standard single-mode fibers. The temperature sensitivity (-166 pm/°C) increases over an order of magnitude compared with those of the previous sensors based on air-sealed PCF interferometers built via fusion splicing with the same mechanism. In addition, the refractive index sensitivity also increases. Higher temperature sensitivity can be realized by infiltrating some liquid having a higher thermo-optic coefficient into the microholes of the PCF. © 2012 Optical Society of America

  16. Interferometric fiber-optic temperature sensor with spiral polarization couplers

    NASA Astrophysics Data System (ADS)

    Cortés, R.; Khomenko, A. V.; Starodumov, A. N.; Arzate, N.; Zenteno, L. A.

    1998-09-01

    A fiber optic temperature sensor, for which the changes in modal birefringence of a short section of a long birefringent fiber are monitored remotely, is described. It employs a white light interferometer, which is formed by two concatenated spiral polarization mode couplers. A new method for white light interferometer output signal processing is described which provides a high accuracy absolute temperature measurement even in discontinuous operation of the sensor. Experimental results are presented for temperature measurements over a 100°C range with resolution of 3×10 -3 °C.

  17. Radio-frequency low-coherence interferometry.

    PubMed

    Fernández-Pousa, Carlos R; Mora, José; Maestre, Haroldo; Corral, Pablo

    2014-06-15

    A method for retrieving low-coherence interferograms, based on the use of a microwave photonics filter, is proposed and demonstrated. The method is equivalent to the double-interferometer technique, with the scanning interferometer replaced by an analog fiber-optics link and the visibility recorded as the amplitude of its radio-frequency (RF) response. As a low-coherence interferometry system, it shows a decrease of resolution induced by the fiber's third-order dispersion (β3). As a displacement sensor, it provides highly linear and slope-scalable readouts of the interferometer's optical path difference in terms of RF, even in the presence of third-order dispersion. In a proof-of-concept experiment, we demonstrate 20-μm displacement readouts using C-band EDFA sources and standard single-mode fiber.

  18. Improved vibration sensor based on a biconical tapered singlemode fiber, using in-fiber Mach-Zehnder interferometer

    NASA Astrophysics Data System (ADS)

    Wonko, R.; Moś, J. E.; Stasiewicz, K. A.; Jaroszewicz, L. R.

    2017-05-01

    Optical fiber vibration sensors are an appropriate alternative for piezoelectric devices, which are electromagnetic sensitive to the external conditions. Most of the vibration sensors demonstrated in previous publications resist to different interferometers or Bragg's gratings. Such sensors require a long time of stabilization of an optical signal, because they are vulnerable to undesirable disturbance. In majority, time response of an optical sensor should be instantaneous, therefore we have proposed an in- line vibration sensing passive element based on a tapered fiber. Micrometer sized optical fiber tapers are attractive for many optical areas due to changes process of boundary conditions. Such phenomena allow for a sensitive detection of the modulation phase. Our experiment shows that a singlemode, adiabatic tapered fiber enables detecting an acoustic vibration. In this study, we report on Mach- Zehnder (MZ) interferometer as a vibration sensor which was composed of two 50/50 couplers at 1550 nm. In the reference arm we used a 4 meter singlemode optical fiber (SMF28), while in the arm under test we placed tapered optical fibers attached to a metal plate, put directly on speaker. Researches carried out on different tapered fibers which diameter of a taper waist was in the range from 5 μm to 25 μm, and each taper was characterized by optical losses less than 0,5 dB. The measured phase changes were over a frequency from 100 Hz to 1 kHz and an amplitude in the range from 100 mVpp to 1 Vpp. Although on account of a limited space we have showed only the results for 100 Hz. Nevertheless, experimental results show that this sensing system has a wide frequency response range from a few hertz to one of kilohertz, however for some conditions, a standard optical fiber showed better result.

  19. Coherence-length-gated distributed optical fiber sensing based on microwave-photonic interferometry.

    PubMed

    Hua, Liwei; Song, Yang; Cheng, Baokai; Zhu, Wenge; Zhang, Qi; Xiao, Hai

    2017-12-11

    This paper presents a new optical fiber distributed sensing concept based on coherent microwave-photonics interferometry (CMPI), which uses a microwave modulated coherent light source to interrogate cascaded interferometers for distributed measurement. By scanning the microwave frequencies, the complex microwave spectrum is obtained and converted to time domain signals at known locations by complex Fourier transform. The amplitudes of these time domain pulses are a function of the optical path differences (OPDs) of the distributed interferometers. Cascaded fiber Fabry-Perot interferometers (FPIs) fabricated by femtosecond laser micromachining were used to demonstrate the concept. The experimental results indicated that the strain measurement resolution can be better than 0.6 µε using a FPI with a cavity length of 1.5 cm. Further improvement of the strain resolution to the nε level is achievable by increasing the cavity length of the FPI to over 1m. The tradeoff between the sensitivity and dynamic range was also analyzed in detail. To minimize the optical power instability (either from the light source or the fiber loss) induced errors, a single reflector was added in front of an individual FPI as an optical power reference for the purpose of compensation.

  20. Development of an optical fiber interferometer for detection of surface flaws in aluminum

    NASA Technical Reports Server (NTRS)

    Gilbert, John A.

    1991-01-01

    The main objective was to demonstrate the potential of using an optical fiber interferometer (OFI) to detect surface flaws in aluminum samples. Standard ultrasonic excitation was used to generate Rayleigh surface waves. After the waves interacted with a defect, the modified responses were detected using the OFI and the results were analyzed for time-of-flight and frequency content to predict the size and location of the flaws.

  1. The low coherence Fabry-Pérot interferometer with diamond and ZnO layers

    NASA Astrophysics Data System (ADS)

    Majchrowicz, D.; Den, W.; Hirsch, M.

    2016-09-01

    The authors present a fiber-optic Fabry-Pérot interferometer built with the application of diamond and zinc oxide (ZnO) thin layers. Thin ZnO films were deposited on the tip of a standard telecommunication single-mode optical fiber (SMF- 28) while the diamond layer was grown on the plate of silicon substrate. Investigated ZnO layers were fabricated by atomic layer deposition (ALD) and the diamond films were deposited using Microwave Plasma Enhanced Chemical Vapor Deposition (μPE CVD) system. Different thickness of layers was examined. The measurements were performed for the fiber-optic Fabry-Pérot interferometer working in the reflective mode. Spectra were registered for various thicknesses of ZnO layer and various length of the air cavity. As a light source, two superluminescent diodes (SLD) with central wavelength of 1300 nm and 1550 nm were used in measurement set-up.

  2. Speckle interferometry using fiber optic phase stepping

    NASA Technical Reports Server (NTRS)

    Mercer, Carolyn R.; Beheim, Glenn

    1989-01-01

    A system employing closed-loop phase-stepping is used to measure the out-of-plane deformation of a diffusely reflecting object. Optical fibers are used to provide reference and object beam illumination for a standard two-beam speckle interferometer, providing set-up flexibility and ease of alignment. Piezoelectric fiber-stretchers and a phase-measurement/servo system are used to provide highly accurate phase steps. Intensity data is captured with a charge-injection-device camera, and is converted into a phase map using a desktop computer. The closed-loop phase-stepping system provides 90 deg phase steps which are accurate to 0.02 deg, greatly improving this system relative to open-loop interferometers. The system is demonstrated on a speckle interferometer, measuring the rigid-body translation of a diffusely reflecting object with an accuracy + or - 10 deg, or roughly + or - 15 nanometers. This accuracy is achieved without the use of a pneumatically mounted optics table.

  3. Optical fiber Fabry-Perot interferometer with pH sensitive hydrogel film for hazardous gases sensing

    NASA Astrophysics Data System (ADS)

    Zheng, Yangzi; Chen, Li Han; Chan, Chi Chiu; Dong, Xinyong; Yang, Jingyi; Tou, Zhi Qiang; So, Ping Lam

    2015-09-01

    An optical fiber Fabry-Perot interferometer (FPI) coated with polyvinyl alcohol/poly-acrylic acid (PVA/PAA) hydrogel film for toxic gases measurement has been developed. Splicing a short section of hollow core fiber between two single mode fibers forms the FPI. Dip-coated pH-sensitive PVA/PAA hydrogel film on the fiber end performs as a receptor for binding of volatile acids or ammonia, which makes the sensing film swelling or shrinking and results in the dip wavelength shift of the FPI. By demodulating the evolution of reflection spectrum for various concentrations of volatile acids, a sensitivity of 20.8 nm/ppm is achieved with uniform linearity.

  4. Optical fiber sensors for high temperature harsh environment applications

    NASA Astrophysics Data System (ADS)

    Xiao, Hai; Wei, Tao; Lan, Xinwei; Zhang, Yinan; Duan, Hongbiao; Han, Yukun; Tsai, Hai-Lung

    2010-04-01

    This paper summarizes our recent research progresses in developing optical fiber harsh environment sensors for various high temperature harsh environment sensing applications such as monitoring of the operating conditions in a coal-fired power plant and in-situ detection of key gas components in coal-derived syngas. The sensors described in this paper include a miniaturized inline fiber Fabry-Perot interferometer (FPI) fabricated by one-step fs laser micromachining, a long period fiber grating (LPFG) and a fiber inline core-cladding mode interferometer (CMMI) fabricated by controlled CO2 laser irradiations. Their operating principles, fabrication methods, and applications for measurement of various physical and chemical parameters in a high temperature and high pressure coexisting harsh environment are presented.

  5. Investigation on a fiber optic accelerometer based on FBG-FP interferometer

    NASA Astrophysics Data System (ADS)

    Lin, Chongyu; Luo, Hong; Xiong, Shuidong; Li, Haitao

    2014-12-01

    A fiber optic accelerometer based on fiber Bragg grating Fabry-Perot (FBG-FP) interferometer is presented. The sensor is a FBG-FP cavity which is formed with two weak fiber Bragg gratings (FBGs) in a single-mode fiber. The reflectivity of the two FBGs is 9.42% and 7.74% respectively, and the fiber between them is 10 meters long. An optical demodulation system was set up to analyze the reflected light of FBG-FP cavity. Acceleration signals of different frequencies and intensities were demodulated correctly and stably by the system. Based on analyzing the optical spectrum of weak FBG based FBG-FP cavity, we got the equivalent length of FBG-FP cavity. We used a path-matching Michelson interferometer (MI) to demodulate the acceleration signal. The visibility of the interference fringe we got was 41%~42% while the theory limit was 50%. This indicated that the difference of interferometer's two arms and the equivalent length of FBG-FP cavity were matched well. Phase generated carrier (PGC) technology was used to eliminate phase fading caused by random phase shift and Faraday rotation mirrors (FRMs) were used to eliminate polarization-induced phase fading. The accelerometer used a compliant cylinder design and its' sensitivity and frequency response were analyzed and simulated based on elastic mechanics. Experiment result showed that the accelerometer had a flat frequency response over the frequency range of 31-630Hz. The sensitivity was about 31dB (0dB=1rad/g) with fluctuation less than 1.5dB.

  6. Design of liquid temperature sensor based on bending loss phenomenon of plastic optic fiber and electro-optic effect of Mach-Zehnder interferometer

    NASA Astrophysics Data System (ADS)

    Kumar, Santosh; Swaminathan, S.

    2016-04-01

    The efficient application of electro-optic effect in lithium niobate based Mach-Zehnder interferometer (MZI) to construct the temperature sensor is used. An experimental set up for liquid temperature sensor is proposed. Temperature dependence of the bending loss light energy in multimode micro-plastic optical fiber (m-POF) and electro-optic effect of MZI are used. The performance of sensor at different temperatures is measured. It is seen that the light output of MZI switches from one port to the other port as temperature of liquid changes from 0°C to 100°C.

  7. Portable, solid state, fiber optic coupled Doppler interferometer system for detonation and shock diagnostics

    NASA Technical Reports Server (NTRS)

    Fleming, K. J.; Crump, O. B.

    1994-01-01

    VISAR (Velocity Interferometer System for Any Reflector) is a specialized Doppler interferometer system that is gaining world-wide acceptance as the standard for shock phenomena analysis. The VISAR's large power and cooling requirements, and the sensitive and complex nature of the interferometer cavity have restricted the traditional system to the laboratory. This paper describes the new portable VISAR, its peripheral sensors, and the role it played in optically measuring ground shock of and underground nuclear detonation. The Solid State VISAR uses a prototype diode pumped Nd:YAG laser and solid state detectors that provide a suitcase-size system with low power requirements. A special window and sensors were developed for fiber optic coupling (1 kilometer long) to the VISAR. The system has proven itself as a reliable, easy to use instrument that is capable of field test use and rapid data reduction using only a notebook personal computer (PC).

  8. Partially reduced graphene oxide based FRET on fiber-optic interferometer for biochemical detection

    NASA Astrophysics Data System (ADS)

    Yao, B. C.; Wu, Y.; Yu, C. B.; He, J. R.; Rao, Y. J.; Gong, Y.; Fu, F.; Chen, Y. F.; Li, Y. R.

    2016-03-01

    Fluorescent resonance energy transfer (FRET) with naturally exceptional selectivity is a powerful technique and widely used in chemical and biomedical analysis. However, it is still challenging for conventional FRET to perform as a high sensitivity compact sensor. Here we propose a novel ‘FRET on Fiber’ concept, in which a partially reduced graphene oxide (prGO) film is deposited on a fiber-optic modal interferometer, acting as both the fluorescent quencher for the FRET and the sensitive cladding for optical phase measurement due to refractive index changes in biochemical detection. The target analytes induced fluorescence recovery with good selectivity and optical phase shift with high sensitivity are measured simultaneously. The functionalized prGO film coated on the fiber-optic interferometer shows high sensitivities for the detections of metal ion, dopamine and single-stranded DNA (ssDNA), with detection limits of 1.2 nM, 1.3 μM and 1 pM, respectively. Such a prGO based ‘FRET on fiber’ configuration, bridging the FRET and the fiber-optic sensing technology, may serve as a platform for the realization of series of integrated ‘FRET on Fiber’ sensors for on-line environmental, chemical, and biomedical detection, with excellent compactness, high sensitivity, good selectivity and fast response

  9. Partially reduced graphene oxide based FRET on fiber-optic interferometer for biochemical detection

    PubMed Central

    Yao, B. C.; Wu, Y.; Yu, C. B.; He, J. R.; Rao, Y. J.; Gong, Y.; Fu, F.; Chen, Y. F.; Li, Y. R.

    2016-01-01

    Fluorescent resonance energy transfer (FRET) with naturally exceptional selectivity is a powerful technique and widely used in chemical and biomedical analysis. However, it is still challenging for conventional FRET to perform as a high sensitivity compact sensor. Here we propose a novel ‘FRET on Fiber’ concept, in which a partially reduced graphene oxide (prGO) film is deposited on a fiber-optic modal interferometer, acting as both the fluorescent quencher for the FRET and the sensitive cladding for optical phase measurement due to refractive index changes in biochemical detection. The target analytes induced fluorescence recovery with good selectivity and optical phase shift with high sensitivity are measured simultaneously. The functionalized prGO film coated on the fiber-optic interferometer shows high sensitivities for the detections of metal ion, dopamine and single-stranded DNA (ssDNA), with detection limits of 1.2 nM, 1.3 μM and 1 pM, respectively. Such a prGO based ‘FRET on fiber’ configuration, bridging the FRET and the fiber-optic sensing technology, may serve as a platform for the realization of series of integrated ‘FRET on Fiber’ sensors for on-line environmental, chemical, and biomedical detection, with excellent compactness, high sensitivity, good selectivity and fast response PMID:27010752

  10. Effects of Langmuir-Blodgett-film gas sensors with integrated optical interferometers

    NASA Astrophysics Data System (ADS)

    Fushen, Chen; Yunqi, Liu; Yu, Xu; Qu, Liang

    1996-10-01

    Novel Langmuir-Blodgett-film toxic-gas sensors that have a Ti:LiNbO 3 integrated optical Mach-Zehnder interferometer structure are experimentally investigated. The gas-sensing properties of the sensors are obtained for NO 2, Cl2, NH3, and H2S by means of the detection of optical output changes. All the optical connections are made with optical fiber pigtails.

  11. Fiber Optic-Based Refractive Index Sensing at INESC Porto

    PubMed Central

    Jorge, Pedro A. S.; Silva, Susana O.; Gouveia, Carlos; Tafulo, Paula; Coelho, Luis; Caldas, Paulo; Viegas, Diana; Rego, Gaspar; Baptista, José M.; Santos, José L.; Frazão, Orlando

    2012-01-01

    A review of refractive index measurement based on different types of optical fiber sensor configurations and techniques is presented. It addresses the main developments in the area, with particular focus on results obtained at INESC Porto, Portugal. The optical fiber sensing structures studied include those based on Bragg and long period gratings, on micro-interferometers, on plasmonic effects in fibers and on multimode interference in a large spectrum of standard and microstructured optical fibers. PMID:22969405

  12. Highly Sensitive and Wide-Dynamic-Range Multichannel Optical-Fiber pH Sensor Based on PWM Technique.

    PubMed

    Khan, Md Rajibur Rahaman; Kang, Shin-Won

    2016-11-09

    In this study, we propose a highly sensitive multichannel pH sensor that is based on an optical-fiber pulse width modulation (PWM) technique. According to the optical-fiber PWM method, the received sensing signal's pulse width changes when the optical-fiber pH sensing-element of the array comes into contact with pH buffer solutions. The proposed optical-fiber PWM pH-sensing system offers a linear sensing response over a wide range of pH values from 2 to 12, with a high pH-sensing ability. The sensitivity of the proposed pH sensor is 0.46 µs/pH, and the correlation coefficient R² is approximately 0.997. Additional advantages of the proposed optical-fiber PWM pH sensor include a short/fast response-time of about 8 s, good reproducibility properties with a relative standard deviation (RSD) of about 0.019, easy fabrication, low cost, small size, reusability of the optical-fiber sensing-element, and the capability of remote sensing. Finally, the performance of the proposed PWM pH sensor was compared with that of potentiometric, optical-fiber modal interferometer, and optical-fiber Fabry-Perot interferometer pH sensors with respect to dynamic range width, linearity as well as response and recovery times. We observed that the proposed sensing systems have better sensing abilities than the above-mentioned pH sensors.

  13. Highly Sensitive and Wide-Dynamic-Range Multichannel Optical-Fiber pH Sensor Based on PWM Technique

    PubMed Central

    Khan, Md. Rajibur Rahaman; Kang, Shin-Won

    2016-01-01

    In this study, we propose a highly sensitive multichannel pH sensor that is based on an optical-fiber pulse width modulation (PWM) technique. According to the optical-fiber PWM method, the received sensing signal’s pulse width changes when the optical-fiber pH sensing-element of the array comes into contact with pH buffer solutions. The proposed optical-fiber PWM pH-sensing system offers a linear sensing response over a wide range of pH values from 2 to 12, with a high pH-sensing ability. The sensitivity of the proposed pH sensor is 0.46 µs/pH, and the correlation coefficient R2 is approximately 0.997. Additional advantages of the proposed optical-fiber PWM pH sensor include a short/fast response-time of about 8 s, good reproducibility properties with a relative standard deviation (RSD) of about 0.019, easy fabrication, low cost, small size, reusability of the optical-fiber sensing-element, and the capability of remote sensing. Finally, the performance of the proposed PWM pH sensor was compared with that of potentiometric, optical-fiber modal interferometer, and optical-fiber Fabry–Perot interferometer pH sensors with respect to dynamic range width, linearity as well as response and recovery times. We observed that the proposed sensing systems have better sensing abilities than the above-mentioned pH sensors. PMID:27834865

  14. Detection of Ultrasonic Stress Waves in Structures Using 3D Shaped Optic Fiber Based on a Mach-Zehnder Interferometer.

    PubMed

    Lan, Chengming; Zhou, Wensong; Xie, Yawen

    2018-04-16

    This work proposes a 3D shaped optic fiber sensor for ultrasonic stress waves detection based on the principle of a Mach–Zehnder interferometer. This sensor can be used to receive acoustic emission signals in the passive damage detection methods and other types of ultrasonic signals propagating in the active damage detection methods, such as guided wave-based methods. The sensitivity of an ultrasonic fiber sensor based on the Mach–Zehnder interferometer mainly depends on the length of the sensing optical fiber; therefore, the proposed sensor achieves the maximum possible sensitivity by wrapping an optical fiber on a hollow cylinder with a base. The deformation of the optical fiber is produced by the displacement field of guided waves in the hollow cylinder. The sensor was first analyzed using the finite element method, which demonstrated its basic sensing capacity, and the simulation signals have the same characteristics in the frequency domain as the excitation signal. Subsequently, the primary investigations were conducted via a series of experiments. The sensor was used to detect guided wave signals excited by a piezoelectric wafer in an aluminum plate, and subsequently it was tested on a reinforced concrete beam, which produced acoustic emission signals via impact loading and crack extension when it was loaded to failure. The signals obtained from a piezoelectric acoustic emission sensor were used for comparison, and the results indicated that the proposed 3D fiber optic sensor can detect ultrasonic signals in the specific frequency response range.

  15. Detection of Ultrasonic Stress Waves in Structures Using 3D Shaped Optic Fiber Based on a Mach–Zehnder Interferometer

    PubMed Central

    Xie, Yawen

    2018-01-01

    This work proposes a 3D shaped optic fiber sensor for ultrasonic stress waves detection based on the principle of a Mach–Zehnder interferometer. This sensor can be used to receive acoustic emission signals in the passive damage detection methods and other types of ultrasonic signals propagating in the active damage detection methods, such as guided wave-based methods. The sensitivity of an ultrasonic fiber sensor based on the Mach–Zehnder interferometer mainly depends on the length of the sensing optical fiber; therefore, the proposed sensor achieves the maximum possible sensitivity by wrapping an optical fiber on a hollow cylinder with a base. The deformation of the optical fiber is produced by the displacement field of guided waves in the hollow cylinder. The sensor was first analyzed using the finite element method, which demonstrated its basic sensing capacity, and the simulation signals have the same characteristics in the frequency domain as the excitation signal. Subsequently, the primary investigations were conducted via a series of experiments. The sensor was used to detect guided wave signals excited by a piezoelectric wafer in an aluminum plate, and subsequently it was tested on a reinforced concrete beam, which produced acoustic emission signals via impact loading and crack extension when it was loaded to failure. The signals obtained from a piezoelectric acoustic emission sensor were used for comparison, and the results indicated that the proposed 3D fiber optic sensor can detect ultrasonic signals in the specific frequency response range. PMID:29659540

  16. Dual-optical-response photonic crystal fibre interferometer for multi-parameter sensing

    NASA Astrophysics Data System (ADS)

    Villatoro, Joel; Minkovich, Vladimir P.; Zubia, Joseba

    2014-05-01

    An all-fiber mode interferometer consisting of a short segment of photonic crystal fiber (PCF) fusion spliced to standard single mode optical fiber and pressed on localized regions is proposed for multi-parameter sensing. In our configuration, the physical parameter being sensed changes the fringe contrast (or visibility) of the interference pattern and also causes a shift to the same. To achieve this dual effect the device is pressed on localized regions over a few millimeters. In this manner we introduce losses and effective refractive index changes to the interference modes, hence visibility and shift to the interference pattern. Our interferometer is suitable for monitoring diverse physical parameters such as weight, force, pressure, load, etc. The advantage is that no temperature or power fluctuations compensation is required.

  17. Compact portable diffraction moire interferometer

    DOEpatents

    Deason, Vance A.; Ward, Michael B.

    1989-01-01

    A compact and portable moire interferometer used to determine surface deformations of an object. The improved interferometer is comprised of a laser beam, optical and fiber optics devices coupling the beam to one or more evanescent wave splitters, and collimating lenses directing the split beam at one or more specimen gratings. Observation means including film and video cameras may be used to view and record the resultant fringe patterns.

  18. A Fiber Interferometer for the Magnetized Shock Experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoo, Christian

    2012-08-30

    The Magnetized Shock Experiment (MSX) at Los Alamos National Laboratory requires remote diagnostics of plasma density. Laser interferometry can be used to determine the line-integrated density of the plasma. A multi-chord heterodyne fiber optic Mach-Zehnder interferometer is being assembled and integrated into the experiment. The advantage of the fiber coupling is that many different view chords can be easily obtained by simply moving transmit and receive fiber couplers. Several such fiber sets will be implemented to provide a time history of line-averaged density for several chords at once. The multiple chord data can then be Abel inverted to provide radiallymore » resolved spatial profiles of density. We describe the design and execution of this multiple fiber interferometer.« less

  19. A Fiber Interferometer for the Magnetized Shock Experiment

    NASA Astrophysics Data System (ADS)

    Yoo, C. B.; Gao, K. W.; Weber, T. E.; Intrator, T. P.

    2012-10-01

    The Magnetized Shock Experiment (MSX) at Los Alamos National Laboratory requires remote diagnostics of plasma density. Laser interferometry can be used to determine the line-integrated density of the plasma. A multi-chord heterodyne fiber optic Mach-Zehnder interferometer is being assembled and integrated into the experiment. The advantage of the fiber coupling is that many different view chords can be easily obtained by simply moving transmit and receive fiber couplers. Several such fiber sets will be implemented to provide a time history of line-averaged density for several chords at once. The multiple chord data can then be Abel inverted to provide radially resolved spatial profiles of density. We describe the design and execution of this multiple fiber interferometer.

  20. A refractive index sensor based on taper Michelson interferometer in multimode fiber

    NASA Astrophysics Data System (ADS)

    Fu, Xinghu; Zhang, Jiangpeng; Wang, Siwen; Fu, Guangwei; Liu, Qiang; Jin, Wa; Bi, Weihong

    2016-11-01

    A refractive index sensor based on taper Michelson interferometer in multimode fiber is proposed. The Hydrofluoric acid corrosion processing is studied in the preparation of single cone multimode optical fiber sensor. The taper Michelson interferometer is fabricated by changing corrosion time. The relationship between fiber sensor feature and corrosion time is analyzed. The experimental results show that the interference spectrum shift in the direction of short wave with the increase of the refractive index. The refractive index sensitivity can reach 115.8008 nm/RIU. Thereby, it can be used in detecting the refractive index in different areas including the environmental protection, health care and food production.

  1. All-fiber hybrid photon-plasmon circuits: integrating nanowire plasmonics with fiber optics.

    PubMed

    Li, Xiyuan; Li, Wei; Guo, Xin; Lou, Jingyi; Tong, Limin

    2013-07-01

    We demonstrate all-fiber hybrid photon-plasmon circuits by integrating Ag nanowires with optical fibers. Relying on near-field coupling, we realize a photon-to-plasmon conversion efficiency up to 92% in a fiber-based nanowire plasmonic probe. Around optical communication band, we assemble an all-fiber resonator and a Mach-Zehnder interferometer (MZI) with Q-factor of 6 × 10(6) and extinction ratio up to 30 dB, respectively. Using the MZI, we demonstrate fiber-compatible plasmonic sensing with high sensitivity and low optical power.

  2. Highly sensitive force sensor based on balloon-like interferometer

    NASA Astrophysics Data System (ADS)

    Wu, Yue; Xiao, Shiying; Xu, Yao; Shen, Ya; Jiang, Youchao; Jin, Wenxing; Yang, Yuguang; Jian, Shuisheng

    2018-07-01

    An all-fiber highly sensitive force sensor based on modal interferometer has been presented and demonstrated. The single-mode fiber (SMF) with coating stripped is designed into a balloon-like shape to form a modal interferometer. Due to the bent SMF, the interference occurs between the core mode and cladding modes. With variation of the force applied to the balloon-like interferometer, the bending diameter changes, which caused the wavelength shift of the modal interference. Thus the measurement of the force variation can be achieved by monitoring the wavelength shift. The performances of the interferometer with different bending diameter are experimentally investigated, and the maximum force sensitivity of 24.9 pm/ μ N can be achieved with the bending diameter 14 mm ranging from 0 μ N to 1464.12 μ N. Furthermore, the proposed fiber sensor exhibits the advantages of easy fabrication and low cost, making it a suitable candidate in the optical fiber sensing field.

  3. [Optical-fiber Fourier transform spectrometer].

    PubMed

    Liu, Yong; Li, Bao-sheng; Liu, Yan; Zhai, Yu-feng; Wang, An

    2006-10-01

    A novel Fourier transform spectrum analyzer based on a single mode fiber Mach-Zehnder interferometer is reported. An optical fiber Fourier transform spectrometer, with bulk optics components replaced by fiber optical components and with the moving mirror replaced by a piezoelectric element fiber stretcher was constructed. The output spectrum of a LD below threshold was measured. Experiment result agrees with that by using grating spectrum analyzer, showing the feasibility of the optic fiber Fourier transform spectrometer for practical spectrum measurement. Spectrum resolution -7 cm(-1) was obtained in our experiment. The resolution can be further improved by increasing the maximum optical path difference.

  4. A Theoretical Study and Numerical Simulation of a Quasi-Distributed Sensor Based on the Low-Finesse Fabry-Perot Interferometer: Frequency-Division Multiplexing

    PubMed Central

    Guillen Bonilla, José Trinidad; Guillen Bonilla, Alex; Rodríguez Betancourtt, Verónica M.; Guillen Bonilla, Héctor; Casillas Zamora, Antonio

    2017-01-01

    The application of the sensor optical fibers in the areas of scientific instrumentation and industrial instrumentation is very attractive due to its numerous advantages. In the industry of civil engineering for example, quasi-distributed sensors made with optical fiber are used for reliable strain and temperature measurements. Here, a quasi-distributed sensor in the frequency domain is discussed. The sensor consists of a series of low-finesse Fabry-Perot interferometers where each Fabry-Perot interferometer acts as a local sensor. Fabry-Perot interferometers are formed by pairs of identical low reflective Bragg gratings imprinted in a single mode fiber. All interferometer sensors have different cavity length, provoking frequency-domain multiplexing. The optical signal represents the superposition of all interference patterns which can be decomposed using the Fourier transform. The frequency spectrum was analyzed and sensor’s properties were defined. Following that, a quasi-distributed sensor was numerically simulated. Our sensor simulation considers sensor properties, signal processing, noise system, and instrumentation. The numerical results show the behavior of resolution vs. signal-to-noise ratio. From our results, the Fabry-Perot sensor has high resolution and low resolution. Both resolutions are conceivable because the Fourier Domain Phase Analysis (FDPA) algorithm elaborates two evaluations of Bragg wavelength shift. PMID:28420083

  5. A Theoretical Study and Numerical Simulation of a Quasi-Distributed Sensor Based on the Low-Finesse Fabry-Perot Interferometer: Frequency-Division Multiplexing.

    PubMed

    Guillen Bonilla, José Trinidad; Guillen Bonilla, Alex; Rodríguez Betancourtt, Verónica M; Guillen Bonilla, Héctor; Casillas Zamora, Antonio

    2017-04-14

    The application of the sensor optical fibers in the areas of scientific instrumentation and industrial instrumentation is very attractive due to its numerous advantages. In the industry of civil engineering for example, quasi-distributed sensors made with optical fiber are used for reliable strain and temperature measurements. Here, a quasi-distributed sensor in the frequency domain is discussed. The sensor consists of a series of low-finesse Fabry-Perot interferometers where each Fabry-Perot interferometer acts as a local sensor. Fabry-Perot interferometers are formed by pairs of identical low reflective Bragg gratings imprinted in a single mode fiber. All interferometer sensors have different cavity length, provoking frequency-domain multiplexing. The optical signal represents the superposition of all interference patterns which can be decomposed using the Fourier transform. The frequency spectrum was analyzed and sensor's properties were defined. Following that, a quasi-distributed sensor was numerically simulated. Our sensor simulation considers sensor properties, signal processing, noise system, and instrumentation. The numerical results show the behavior of resolution vs. signal-to-noise ratio. From our results, the Fabry-Perot sensor has high resolution and low resolution. Both resolutions are conceivable because the Fourier Domain Phase Analysis (FDPA) algorithm elaborates two evaluations of Bragg wavelength shift.

  6. A Novel Mach-Zehnder Interferometer Using Eccentric-Core Fiber Design for Optical Coherence Tomography.

    PubMed

    Xiong, Qiao; Tong, Xinglin; Deng, Chengwei; Zhang, Cui; Wang, Pengfei; Zheng, Zhiyuan; Liu, Fang

    2018-05-13

    A novel Mach-Zehnder interferometer using eccentric-core fiber (ECF) design for optical coherence tomography (OCT) is proposed and demonstrated. Instead of the commercial single-mode fiber (SMF), the ECF is used as one interference arm of the implementation. Because of the offset location of the eccentric core, it is sensitive to directional bending and the optical path difference (OPD) of two interference arms can be adjusted with high precision. The birefringence of ECF is calculated and experimentally measured, which demonstrates the polarization sensitivity of the ECF proposed in the paper is similar to that of SMF. Such a structure can replace the reference optical delay line to form an all-fiber passive device. A mirror is used as a sample for analyzing the ECF bending responses of the system. Besides, four pieces of overlapping glass slides as sample are experimentally measured as well.

  7. Fiber optic system design for vehicle detection and analysis

    NASA Astrophysics Data System (ADS)

    Nedoma, Jan; Zboril, Ondrej; Fajkus, Marcel; Zavodny, Petr; Kepak, Stanislav; Bednarek, Lukas; Martinek, Radek; Vasinek, Vladimir

    2016-04-01

    Fiber optic interferometers belong to a group of highly sensitive and precise devices enabling to measure small changes in the deformation shapes, changes in pressure, temperature, vibration and so on. The basis of their activity is to evaluate the number of fringes over time, not changes in the intensity of the optical signal. The methodology described in the article is based on using the interferometer to monitor traffic density. The base of the solution is a Mach-Zehnder interferometer operating with single-mode G.652 optical fiber at the wavelength of 1550 nm excited by a DFB laser. The power distribution of the laser light into the individual arms of the interferometer is in the ratio 1:1. Realized measuring scheme was terminated by an optical receiver including InGaAs PIN photodiode. Registered signal from the photodetector was through 8 Hz high pass filter fed to the measuring card that captures the analog input voltage using an application written in LabView development environment. The interferometer was stored in a waterproof box and placed at the side of the road. Here panned individual transit of cars in his environs. Vertically across the road was placed in contact removable belt simulating a retarder, which was used when passing cars to create sufficient vibration response detecting interferometer. The results demonstrated that the individual vehicles passing around boxing showed characteristic amplitude spectra, which was unique for each object, and had sufficient value signal to noise ratio (SNR). The signal was processed by applications developed for the amplitude-frequency spectrum. Evaluated was the maximum amplitude of the signal and compared to the noise. The results were verified by repeated transit of the different types of cars.

  8. Fiber-Optic Sensor Would Monitor Growth of Polymer Film

    NASA Technical Reports Server (NTRS)

    Beamesderfer, Michael

    2005-01-01

    A proposed optoelectronic sensor system would measure the increase in thickness of a film of parylene (a thermoplastic polymer made from para-xylene) during growth of the film in a vapor deposition process. By enabling real-time monitoring of film thickness, the system would make it possible to identify process conditions favorable for growth and to tailor the final thickness of the film with greater precision than is now possible. The heart of the sensor would be a pair of fiber-optic Fabry-Perot interferometers, depicted schematically in the figure. (In principle, a single such interferometer would suffice. The proposal calls for the use of two interferometers for protective redundancy and increased accuracy.) Each interferometer would include a light source, a fiber-optic coupler, and photodetectors in a control box outside the deposition chamber. A single-mode optical fiber for each interferometer would run from inside the control box to a fused-silica faceplate in a sensor head. The sensory tips of the optical fibers would be polished flush with the free surface of the faceplate. In preparation for use, the sensor head would be mounted with a hermetic seal in a feed-through port in the deposition chamber, such that free face of the faceplate and the sensory tips of the optical fibers would be exposed to the deposition environment. During operation, light would travel along each optical fiber from the control box to the sensor head. A small portion of the light would be reflected toward the control box from the end face of each fiber. Once growth of the parylene film started, a small portion of the light would also be reflected toward the control box from the outer surface of the film. In the control box, the two reflected portions of the light beam would interfere in one of the photodetectors. The difference between the phases of the interfering reflected portions of the light beam would vary in proportion to the increasing thickness of the film and the known index of refraction of the film, causing the photodetector reading to vary in proportion to a known sinusoidal function of film thickness. Electronic means of monitoring this variation and the corresponding variation in phase and thickness are well established in the art of interferometry. Hence, by tracking the cumulative change in phase difference from the beginning of deposition, one could track the growing thickness of the film to within a small fraction of a wavelength of light.

  9. Compact portable diffraction moire interferometer

    DOEpatents

    Deason, V.A.; Ward, M.B.

    1988-05-23

    A compact and portable moire interferometer used to determine surface deformations of an object. The improved interferometer is comprised of a laser beam, optical and fiber optics devices coupling the beam to one or more evanescent wave splitters, and collimating lenses directing the split beam at one or more specimen gratings. Observations means including film and video cameras may be used to view and record the resultant fringe patterns. 7 figs.

  10. Single and double superimposing interferometer systems

    DOEpatents

    Erskine, David J.

    2000-01-01

    Interferometers which can imprint a coherent delay on a broadband uncollimated beam are described. The delay value can be independent of incident ray angle, allowing interferometry using uncollimated beams from common extended sources such as lamps and fiber bundles, and facilitating Fourier Transform spectroscopy of wide angle sources. Pairs of such interferometers matched in delay and dispersion can measure velocity and communicate using ordinary lamps, wide diameter optical fibers and arbitrary non-imaging paths, and not requiring a laser.

  11. Ultralow-frequency-noise stabilization of a laser by locking to an optical fiber-delay line.

    PubMed

    Kéfélian, Fabien; Jiang, Haifeng; Lemonde, Pierre; Santarelli, Giorgio

    2009-04-01

    We report the frequency stabilization of an erbium-doped fiber distributed-feedback laser using an all-fiber-based Michelson interferometer of large arm imbalance. The interferometer uses a 1 km SMF-28 optical fiber spool and an acousto-optic modulator allowing heterodyne detection. The frequency-noise power spectral density is reduced by more than 40 dB for Fourier frequencies ranging from 1 Hz to 10 kHz, corresponding to a level well below 1 Hz2/Hz over the entire range; it reaches 10(-2) Hz2/Hz at 1 kHz. Between 40 Hz and 30 kHz, the frequency noise is shown to be comparable to the one obtained by Pound-Drever-Hall locking to a high-finesse Fabry-Perot cavity. Locking to a fiber delay line could consequently represent a reliable, simple, and compact alternative to cavity stabilization for short-term linewidth reduction.

  12. Distributed dynamic large strain optical fiber sensor based on the detection of spontaneous Brillouin scattering.

    PubMed

    Masoudi, Ali; Belal, Mohammad; Newson, Trevor P

    2013-09-01

    A Brillouin-based distributed optical fiber dynamic strain sensor is described which converts strain-induced Brillouin frequency shift into optical intensity variations by using an imbalanced Mach-Zhender interferometer. A 3×3 coupler is used at the output of this interferometer to permit differentiate and cross multiply demodulation. The demonstrated sensor is capable of probing dynamic strain disturbances over 2 km of sensing length every 0.5 s up to a strain of 10 mε with an accuracy of ±50 με and spatial resolution of 1.3 m.

  13. High-Visibility Photonic Crystal Fiber Interferometer as Multifunctional Sensor

    PubMed Central

    Cárdenas-Sevilla, G.A.; Fávero, Fernando C.; Villatoro, Joel

    2013-01-01

    A photonic crystal fiber (PCF) interferometer that exhibits record fringe contrast (∼40 dB) is demonstrated along with its sensing applications. The device operates in reflection mode and consists of a centimeter-long segment of properly selected PCF fusion spliced to single mode optical fibers. Two identical collapsed zones in the PCF combined with its modal properties allow high-visibility interference patterns. The interferometer is suitable for refractometric and liquid level sensing. The measuring refractive index range goes from 1.33 to 1.43 and the maximum resolution is ∼1.6 × 10−5. PMID:23396192

  14. Processing of Signals from Fiber Bragg Gratings Using Unbalanced Interferometers

    NASA Technical Reports Server (NTRS)

    Adamovsky, Grigory; Juergens, Jeff; Floyd, Bertram

    2005-01-01

    Fiber Bragg gratings (FBG) have become preferred sensory structures in fiber optic sensing system. High sensitivity, embedability, and multiplexing capabilities make FBGs superior to other sensor configurations. The main feature of FBGs is that they respond in the wavelength domain with the wavelength of the returned signal as the indicator of the measured parameter. The wavelength is then converted to optical intensity by a photodetector to detect corresponding changes in intensity. This wavelength-to-intensity conversion is a crucial part in any FBG-based sensing system. Among the various types of wavelength-to-intensity converters, unbalanced interferometers are especially attractive because of their small weight and volume, lack of moving parts, easy integration, and good stability. In this paper we investigate the applicability of unbalanced interferometers to analyze signals reflected from Bragg gratings. Analytical and experimental data are presented.

  15. Development of a novel polymeric fiber-optic magnetostrictive metal detector.

    PubMed

    Hua, Wei-Shu; Hooks, Joshua Rosenberg; Wu, Wen-Jong; Wang, Wei-Chih

    2010-01-01

    The purpose this paper is the development a novel polymeric fiber-optic magnetostrictive metal detector, using a fiber-optic Mach-Zehnder interferometer and polymeric magnetostrictive material. Metal detection is based on the strain-induced optical path length change steming from the ferromagnetic material introduced in the magnetic field. Varied optical phase shifts resulted largely from different metal objects. In this paper, the preliminary results on the different metal material detection will be discussed.

  16. Partial Discharge Ultrasound Detection Using the Sagnac Interferometer System

    PubMed Central

    Li, Xiaomin; Gao, Yan; Zhang, Hongjuan; Wang, Dong; Jin, Baoquan

    2018-01-01

    Partial discharge detection is crucial for electrical cable safety evaluation. The ultrasonic signals frequently generated in the partial discharge process contains important characteristic information. However, traditional ultrasonic transducers are easily subject to strong electromagnetic interference in environments with high voltages and strong magnetic fields. In order to overcome this problem, an optical fiber Sagnac interferometer system is proposed for partial discharge ultrasound detection. Optical fiber sensing and time-frequency analysis of the ultrasonic signals excited by the piezoelectric ultrasonic transducer is realized for the first time. The effective frequency band of the Sagnac interferometer system was up to 175 kHz with the help of a designed 10 kV partial discharge simulator device. Using the cumulative histogram method, the characteristic ultrasonic frequency band of the partial discharges was between 28.9 kHz and 57.6 kHz for this optical fiber partial discharge detection system. This new ultrasound sensor can be used as an ideal ultrasonic source for the intrinsically safe detection of partial discharges in an explosive environment. PMID:29734682

  17. Fiber optic interferometer as a security element

    NASA Astrophysics Data System (ADS)

    Nedoma, Jan; Zboril, Ondrej; Fajkus, Marcel; Cubik, Jakub; Zavodny, Petr; Novak, Martin; Bednarek, Lukas; Martinek, Radek; Vasinek, Vladimir

    2016-04-01

    Interferometric sensors can be categorized as highly sensitive and precise devices with series inconsiderable benefits from the possibility of using standard telecommunication fibers. They can be measured even small changes in the deformation of shapes in time, changes in temperature, pressure, voltage, vibration, electric field, etc. The basic idea, which is described in this article is the usage of the interferometer as a security and monitoring component, which offers a solution for securing of closed spaces, especially before unwanted entries. Its primary task is to detect intrusions - disrupting the integrity of the transparent window area due to vibration response. The base of the solution is a Mach-Zehnder interferometer, which consists of two arms in the power distribution ratio of 1:1, consisting of the SM optical fiber excited by a DFB laser. The interferometer is working on the wavelength of 1550 nm. The resulting signal is registered as a result of interference of optical beams from the reference and sensor arm. Realized measuring scheme was terminated optical receiver comprising PbSe detector. Below described experimental measurements have shown that implemented interferometer has a sufficient value of the signal to noise ratio (SNR) and is able to detect very weak signals in a wide frequency range from tens of Hz to kHz units. The signal was processed by applications developed for the amplitude-frequency spectrum. Evaluated was the maximum amplitude of the signal and compared to the noise. The results were verified by retesting the assembled prototype.

  18. Cost-Effective Magnetoencephalography Based on Time Encoded Optical Fiber Interferometry for Epilepsy and Tinnitus

    DTIC Science & Technology

    2016-09-01

    Thanks to the elegant reciprocal geometry of the Sagnac interferometer, many sources of drift that would present in other polarimetry techniques were...interferometers. And is 2 orders of magnitude better than competing polarimetry -based Faraday techniques. Couple a Rb Vapor cell to the Sagnac interferometer

  19. Microwave assisted reconstruction of optical interferograms for distributed fiber optic sensing.

    PubMed

    Huang, Jie; Hua, Lei; Lan, Xinwei; Wei, Tao; Xiao, Hai

    2013-07-29

    This paper reports a distributed fiber optic sensing technique through microwave assisted separation and reconstruction of optical interferograms in spectrum domain. The approach involves sending a microwave-modulated optical signal through cascaded fiber optic interferometers. The microwave signal was used to resolve the position and reflectivity of each sensor along the optical fiber. By sweeping the optical wavelength and detecting the modulation signal, the optical spectrum of each sensor can be reconstructed. Three cascaded fiber optic extrinsic Fabry-Perot interferometric sensors were used to prove the concept. Their microwave-reconstructed interferogram matched well with those recorded individually using an optical spectrum analyzer. The application in distributed strain measurement has also been demonstrated.

  20. Based on optical fiber Michelson interferometer for acoustic emission detection experimental research

    NASA Astrophysics Data System (ADS)

    Liang, Yijun; Qu, Dandan; Deng, Hu

    2013-08-01

    A type of Michelson interferometer with two optical fiber loop reflectors acoustic emission sensor is proposed in the article to detect the vibrations produced by ultrasonic waves propagating in a solid body. Two optical fiber loop reflectors are equivalent to the sensing arm and the reference arm instead of traditional Michelson interferometer end reflecter Theoretical analyses indicate that the sensitivity of the system has been remarkably increased because of the decrease of the losses of light energy. The best operating point of optical fiber sensor is fixed by theoretical derivation and simulation of computer, and the signal frequency which is detected by the sensor is the frequency of input signal. PZT (Piezoelectric Ceramic) is powered by signal generator as known ultrasonic source, The Polarization controller is used to make the reflected light interference,The fiber length is changed by adjusting the DC voltage on the PZT with the fiber loop to make the sensor system response that ΔΦ is closed to π/2. the signal basis frequency detected by the sensor is the frequency of the input signal. Then impacts the surface of the marble slab with home-made mechanical acoustic emission source. And detect it. and then the frequency characteristic of acoustic emission signal is obtained by Fourier technique. The experimental results indicate that the system can identify the frequency characteristic of acoustic emission signal, and it can be also used to detect the surface feeble vibration which is generated by ultrasonic waves propagating in material structure.

  1. Frequency noise suppression of a single mode laser with an unbalanced fiber interferometer for subnanometer interferometry.

    PubMed

    Šmíd, Radek; Čížek, Martin; Mikel, Břetislav; Číp, Ondřej

    2015-01-12

    We present a method of noise suppression of laser diodes by an unbalanced Michelson fiber interferometer. The unstabilized laser source is represented by compact planar waveguide external cavity laser module, ORIONTM (Redfern Integrated Optics, Inc.), working at 1540.57 nm with a 1.5-kHz linewidth. We built up the unbalanced Michelson interferometer with a 2.09 km-long arm based on the standard telecommunication single-mode fiber (SMF-28) spool to suppress the frequency noise by the servo-loop control by 20 dB to 40 dB within the Fourier frequency range, remaining the tuning range of the laser frequency.

  2. Optical fiber Fabry-Perot interferometer cavity fabricated by femtosecond laser micromachining and fusion splicing for refractive index sensing.

    PubMed

    Liao, C R; Hu, T Y; Wang, D N

    2012-09-24

    We demonstrate a fiber in-line Fabry-Perot interferometer cavity sensor for refractive index measurement. The interferometer cavity is formed by drilling a micro-hole at the cleaved fiber end facet, followed by fusion splicing. A micro-channel is inscribed by femtosecond laser micromachining to vertically cross the cavity to allow liquid to flow in. The refractive index sensitivity obtained is ~994 nm/RIU (refractive index unit). Such a device is simple in configuration, easy for fabrication and reliable in operation due to extremely low temperature cross sensitivity of ~4.8 × 10(-6) RIU/°C.

  3. Tapered fiber Mach-Zehnder interferometers for vibration and elasticity sensing applications.

    PubMed

    Chen, Nan-Kuang; Hsieh, Yu-Hsin; Lee, Yi-Kun

    2013-05-06

    We demonstrate the optical measurements of heart-beat pulse rate and also elasticity of a polymeric tube, using a tapered fiber Mach-Zehnder interferometer. This device has two abrupt tapers in the Er/Yb codoped fiber and thus fractional amount of core mode is converted into cladding modes at the first abrupt taper. The core and cladding modes propagate through different optical paths and meet again at the second abrupt taper to produce interferences. The mechanical vibration signals generated by the blood vessels and by an inflated polymeric tube can perturb the optical paths of resonant modes to move around the resonant wavelengths. Thus, the cw laser signal is modulated to become pulses to reflect the heart-beat pulse rate and the elasticity of a polymeric tube, respectively.

  4. Optical fiber sensors for materials and structures characterization

    NASA Technical Reports Server (NTRS)

    Lindner, D. K.; Claus, R. O.

    1991-01-01

    The final technical report on Optical Fiber Sensors for Materials and Structures Characterization, covering the period August 1990 through August 1991 is presented. Research programs in the following technical areas are described; sapphire optical fiber sensors; vibration analysis using two-mode elliptical core fibers and sensors; extrinsic Fabry-Perot interferometer development; and coatings for fluorescent-based sensor. Research progress in each of these areas was substantial, as evidenced by the technical publications which are included as appendices.

  5. Thin-film-based optical fiber Fabry-Perot interferometer used for humidity sensing.

    PubMed

    Peng, Jiankun; Qu, Yapeng; Wang, Weijia; Sun, Tengpeng; Yang, Minghong

    2018-04-20

    A thin-film-based optical fiber Fabry-Perot interferometer that consists of ZrO 2 and SiO 2 porous thin films is designed and fabricated by electron beam physical vapor deposition. Since the SiO 2 porous thin film has the capability of water adsorption, the proposed Fabry-Perot interferometer is appropriate to detect humidity. Experimental results show that the prepared sensor has a humidity detection range from 0.06% RH to 70% RH. A cycling test shows that the humidity sensor has a responding or recover time of 4 s and good repeatability among different humidity environments. Especially, the proposed humidity sensor is insensitive to temperature variation and suitable for the detection of low relative humidity.

  6. Fabry-Perot interferometer fiber tip sensor based on a glass microsphere glued at the etched end of multimode fiber

    NASA Astrophysics Data System (ADS)

    Chen, Weiping P.; Wang, Dongning N.; Xu, Ben; Wang, Zhaokun K.; Zhao, Chun-Liu

    2017-05-01

    We demonstrate an optical Fabry-Perot interferometer fiber tip sensor based on a glass microsphere glued at the etched end of a multimode fiber. The fiber device is miniature and robust, with a convenient reflection mode of operation, a high temperature sensitivity of 202.6 pm/°C within the range from 5°C to 90°C, a good refractive index sensitivity of ˜119 nm/RIU within the range from 1.331 to 1.38, and a gas pressure sensitivity of 0.19 dB/MPa.

  7. New optical frequency domain differential mode delay measurement method for a multimode optical fiber.

    PubMed

    Ahn, T; Moon, S; Youk, Y; Jung, Y; Oh, K; Kim, D

    2005-05-30

    A novel mode analysis method and differential mode delay (DMD) measurement technique for a multimode optical fiber based on optical frequency domain reflectometry has been proposed for the first time. We have used a conventional OFDR with a tunable external cavity laser and a Michelson interferometer. A few-mode optical multimode fiber was prepared to test our proposed measurement technique. We have also compared the OFDR measurement results with those obtained using a traditional time-domain measurement method.

  8. Fiber-optic projected-fringe digital interferometry

    NASA Technical Reports Server (NTRS)

    Mercer, Carolyn R.; Beheim, Glenn

    1990-01-01

    A phase-stepped projected-fringe interferometer was developed which uses a closed-loop fiber-optic phase-control system to make very accurate surface profile measurements. The closed-loop phase-control system greatly reduces phase-stepping error, which is frequently the dominant source of error in digital interferometers. Two beams emitted from a fiber-optic coupler are combined to form an interference fringe pattern on a diffusely reflecting object. Reflections off of the fibers' output faces are used to create a phase-indicating signal for the closed-loop optical phase controller. The controller steps the phase difference between the two beams by pi/2 radians in order to determine the object's surface profile using a solid-state camera and a computer. The system combines the ease of alignment and automated data reduction of phase-stepping projected-fringe interferometry with the greatly improved phase-stepping accuracy of our closed-loop phase-controller. The system is demonstrated by measuring the profile of a plate containing several convex surfaces whose heights range from 15 to 25 micron high.

  9. Correlated tuning of the speckle pattern in an interferometer based on a multimode fiber-optic waveguide

    NASA Astrophysics Data System (ADS)

    Bykovskii, Iu. A.; Kul'Chin, Iu. N.; Obukh, V. F.; Smirnov, V. L.

    1990-08-01

    The correlated tuning of the speckle pattern in the radiation field of a single-fiber multimode interferometer is investigated experimentally and analytically in the presence of external action. It is found that correlated changes in the speckle pattern are observed in both the near and the far emission fields of the waveguide. An expression is obtained which provides a way to determine the maximum size of the speckle correlation region. The use of spatial filtering for isolating the effect of correlated speckle pattern tuning is suggested. It is shown that the use of a spatial filter makes it possible to increase the efficiency of fiber-optic transducers.

  10. High-Sensitivity Fiber-Optic Ultrasound Sensors for Medical Imaging Applications

    PubMed Central

    Wen, H.; Wiesler, D.G.; Tveten, A.; Danver, B.; Dandridge, A.

    2010-01-01

    This paper presents several designs of high-sensitivity, compact fiber-optic ultrasound sensors that may be used for medical imaging applications. These sensors translate ultrasonic pulses into strains in single-mode optical fibers, which are measured with fiber-based laser interferometers at high precision. The sensors are simpler and less expensive to make than piezoelectric sensors, and are not susceptible to electromagnetic interference. It is possible to make focal sensors with these designs, and several schemes are discussed. Because of the minimum bending radius of optical fibers, the designs are suitable for single element sensors rather than for arrays. PMID:9691368

  11. Single-mode fiber, velocity interferometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krauter, K. G.; Jacobson, G. F.; Patterson, J. R.

    2011-04-15

    In this paper, we describe a velocity interferometer system based entirely on single-mode fiber optics. This paper includes a description of principles used in developing the single-mode velocity interferometry system (SMV). The SMV design is based on polarization-insensitive components. Polarization adjusters are included to eliminate the effects of residual birefringence and polarization dependent losses in the interferometers. Characterization measurements and calibration methods needed for data analysis and a method of data analysis are described. Calibration is performed directly using tunable lasers. During development, we demonstrated its operation using exploding-foil bridge-wire fliers up to 200 m/s. In a final test, wemore » demonstrated the SMV in a gas gun experiment up to 1.2 km/sec. As a basis for comparison in the gas gun experiment, we used another velocimetry technique that is also based on single-mode fiber optics: photonic Doppler velocimetry (PDV). For the gas gun experiment, we split the light returned from a single target spot and performed a direct comparison of the homodyne (SMV) and heterodyne (PDV) techniques concurrently. The two techniques had a negligible mean difference and a 1.5% standard deviation in the one-dimensional shock zone. Within one interferometer delay time after a sudden Doppler shift, a SMV unencumbered by multimode-fiber dispersion exhibits two color beats. These beats have the same period as PDV beats--this interference occurs between the ''recently'' shifted and ''formerly unshifted'' paths within the interferometer. We believe that recognizing this identity between homodyne and heterodyne beats is novel in the shock-physics field. SMV includes the conveniences of optical fiber, while removing the time resolution limitations associated with the multimode delivery fiber.« less

  12. Single-mode fiber, velocity interferometry.

    PubMed

    Krauter, K G; Jacobson, G F; Patterson, J R; Nguyen, J H; Ambrose, W P

    2011-04-01

    In this paper, we describe a velocity interferometer system based entirely on single-mode fiber optics. This paper includes a description of principles used in developing the single-mode velocity interferometry system (SMV). The SMV design is based on polarization-insensitive components. Polarization adjusters are included to eliminate the effects of residual birefringence and polarization dependent losses in the interferometers. Characterization measurements and calibration methods needed for data analysis and a method of data analysis are described. Calibration is performed directly using tunable lasers. During development, we demonstrated its operation using exploding-foil bridge-wire fliers up to 200 m/s. In a final test, we demonstrated the SMV in a gas gun experiment up to 1.2 km/sec. As a basis for comparison in the gas gun experiment, we used another velocimetry technique that is also based on single-mode fiber optics: photonic Doppler velocimetry (PDV). For the gas gun experiment, we split the light returned from a single target spot and performed a direct comparison of the homodyne (SMV) and heterodyne (PDV) techniques concurrently. The two techniques had a negligible mean difference and a 1.5% standard deviation in the one-dimensional shock zone. Within one interferometer delay time after a sudden Doppler shift, a SMV unencumbered by multimode-fiber dispersion exhibits two color beats. These beats have the same period as PDV beats-this interference occurs between the "recently" shifted and "formerly unshifted" paths within the interferometer. We believe that recognizing this identity between homodyne and heterodyne beats is novel in the shock-physics field. SMV includes the conveniences of optical fiber, while removing the time resolution limitations associated with the multimode delivery fiber. © 2011 American Institute of Physics

  13. Time-division multiplexing of polarization-insensitive fiber-optic Michelson interferometric sensors

    NASA Astrophysics Data System (ADS)

    Huang, S. C.; Lin, W. W.; Chen, M. H.

    1995-06-01

    A system of time-division multiplexing of polarization-insensitive fiber-optic Michelson interferometric sensors that uses Faraday rotator mirror elements is demonstrated. This system is constructed with conventional low-birefringence single-mode fiber and is able to solve the polarization-fading problem by a combination of Faraday rotator mirrors with unbalanced Michelson interferometers. The system is lead-fiber insensitive and has potentials for practical field applications.

  14. Dual spherical single-mode-multimode-single-mode optical fiber temperature sensor based on a Mach–Zehnder interferometer

    NASA Astrophysics Data System (ADS)

    Tan, Jianchang; Feng, Guoying; Zhang, Shulin; Liang, Jingchuan; Li, Wei; Luo, Yun

    2018-07-01

    A dual spherical single-mode-multimode-single-mode (DSSMS) optical fiber temperature sensor based on a Mach–Zehnder interferometer (MZI) was designed and implemented in this paper. Theoretical and experimental results indicated that the LP01 mode in the core and the LP09 mode excited by the spherical structure were maintained and transmitted via multimode fiber and interfered at the second spherical structure, resulting in the interference spectrum. An increase or decrease in temperature can cause significant red-shift or blue-shift of the spectrum, respectively. The linearity of the spectral shift due to the temperature change is ~0.999, the sensitivity at 30 °C–540 °C is ~37.372 pm °C‑3, and at  ‑25 °C–25 °C is ~37.28 pm °C‑1. The reproducibility error of this all-fiber temperature sensor at 30 °C–540 °C is less than 0.15%. Compared with the optical fiber sensor with a tapered structure and fiber core offset structure, this MZI-based DSSMS optical fiber temperature sensor has higher mechanical strength. Moreover, benefiting from low-cost and environmentally friendly materials, it is expected to be a novel micro-nano all-fiber sensor.

  15. Frequency Noise Suppression of a Single Mode Laser with an Unbalanced Fiber Interferometer for Subnanometer Interferometry

    PubMed Central

    Šmíd, Radek; Čížek, Martin; Mikel, Břetislav; Číp, Ondřej

    2015-01-01

    We present a method of noise suppression of laser diodes by an unbalanced Michelson fiber interferometer. The unstabilized laser source is represented by compact planar waveguide external cavity laser module, ORIONTM (Redfern Integrated Optics, Inc.), working at 1540.57 nm with a 1.5-kHz linewidth. We built up the unbalanced Michelson interferometer with a 2.09 km-long arm based on the standard telecommunication single-mode fiber (SMF-28) spool to suppress the frequency noise by the servo-loop control by 20 dB to 40 dB within the Fourier frequency range, remaining the tuning range of the laser frequency. PMID:25587980

  16. Fiber-optic extrinsic Fabry-Perot interferometer sensors with three-wavelength digital phase demodulation.

    PubMed

    Schmidt, M; Fürstenau, N

    1999-05-01

    A three-wavelength-based passive quadrature digital phase-demodulation scheme has been developed for readout of fiber-optic extrinsic Fabry-Perot interferometer vibration, acoustic, and strain sensors. This scheme uses a superluminescent diode light source with interference filters in front of the photodiodes and real-time arctan calculation. Quasi-static strain and dynamic vibration sensing with up to an 80-kHz sampling rate is demonstrated. Periodic nonlinearities owing to dephasing with increasing fringe number are corrected for with a suitable algorithm, resulting in significant improvement of the linearity of the sensor characteristics.

  17. Distributed dual-parameter optical fiber sensor based on cascaded microfiber Fabry-Pérot interferometers

    NASA Astrophysics Data System (ADS)

    Xiang, Yang; Luo, Yiyang; Zhang, Wei; Liu, Deming; Sun, Qizhen

    2017-04-01

    We propose and demonstrate a distributed fiber sensor based on cascaded microfiber Fabry-Perot interferometers (MFPI) for simultaneous refractive index (SRI) and temperature measurement. By employing MFPI which is fabricated by taper-drawing the center of a uniform fiber Bragg grating (FBG) on standard fiber into a section of microfiber, dual parameters including SRI and temperature can be detected through demodulating the reflection spectrum of the MFPI. Further, wavelength-division-multiplexing (WDM) is applied to realize distributed dual-parameter fiber sensor by using cascaded MFPIs with different Bragg wavelengths. A prototype sensor system with 5 cascaded MFPIs is constructed to experimentally demonstrate the sensing performance.

  18. Photonic crystal fiber Fabry-Perot interferometers with high-reflectance internal mirrors

    NASA Astrophysics Data System (ADS)

    Fan, Rong; Hou, Yuanbin; Sun, Wei

    2015-06-01

    We demonstrated an in-line micro fiber-optic Fabry-Perot interferometer with an air cavity which was created by multi-step fusion splicing a muti-mode photonic crystal fiber (MPCF) to a standard single mode fiber (SMF). The fringe visibility of the interference pattern was up to 20 dB by reshaping the air cavity. Experimental results showed that such a device could be used as a highly sensitive strain sensor with the sensitivity of 4.5 pm/μɛ. Moreover, it offered some other outstanding advantages, such as the extremely compact structure, easy fabrication, low cost, and high accuracy.

  19. High sensitive space electric field sensing based on micro fiber interferometer with field force driven gold nanofilm.

    PubMed

    Zhu, Tao; Zhou, Liming; Liu, Min; Zhang, Jingdong; Shi, Leilei

    2015-10-28

    The traditional electrical field sensing can be realized by utilizing electro-optic materials or liquid crystals, and has limitations of easy breakdown, free assembly and difficult measurement of low-frequency. Here, we propose a new method to realize safe measurement of spatial dynamic electric field by using a micro fiber interferometer integrated with gold nanofilm. The energy of the electric charge received through antenna forms the intrinsic electric field with two micro electrodes, one of which is the 120 nm gold film vibration beam micromachined by femtosecond lasers and integrated with the micro fiber. The change of the intrinsic electric field force due to the spatial electric field will cause the vibration of the film beam. By demodulating the output signal of the micro fiber interferometer, the electric field can be measured. We demonstrate the detectable frequency ranges from tens of Hz to tens of KHz, and the minimum electric field intensity is ~200 V/m at 1 KHz. Our electric field measurement technology combining optical fiber interference with gold nanostructures shows the advantages of security, high sensitivity, compact size, and multiplexed multi-point and remote detection.

  20. High sensitive space electric field sensing based on micro fiber interferometer with field force driven gold nanofilm

    PubMed Central

    Zhu, Tao; Zhou, Liming; Liu, Min; Zhang, Jingdong; Shi, Leilei

    2015-01-01

    The traditional electrical field sensing can be realized by utilizing electro-optic materials or liquid crystals, and has limitations of easy breakdown, free assembly and difficult measurement of low-frequency. Here, we propose a new method to realize safe measurement of spatial dynamic electric field by using a micro fiber interferometer integrated with gold nanofilm. The energy of the electric charge received through antenna forms the intrinsic electric field with two micro electrodes, one of which is the 120 nm gold film vibration beam micromachined by femtosecond lasers and integrated with the micro fiber. The change of the intrinsic electric field force due to the spatial electric field will cause the vibration of the film beam. By demodulating the output signal of the micro fiber interferometer, the electric field can be measured. We demonstrate the detectable frequency ranges from tens of Hz to tens of KHz, and the minimum electric field intensity is ~200 V/m at 1 KHz. Our electric field measurement technology combining optical fiber interference with gold nanostructures shows the advantages of security, high sensitivity, compact size, and multiplexed multi-point and remote detection. PMID:26507680

  1. Recovering Signals from Optical Fiber Interferometric Sensors

    DTIC Science & Technology

    1991-06-01

    GROUP SUB* GROUp Demodulation-, optical fiber, fi ber optic, sensors, passive -homodyne demodulation, symmetric demodul -ation, asymmetric demodulation...interferomeler without feedback control or modulation ofl th laser itself and without requiring the use of electronics withi -n the interferometer. One of...the 3x3 coupler permits Passive Homodyne Demodulation -of the phase-modulated signals provided by the interferometcr without feedback control or

  2. Ultrasonic imaging of seismic physical models using a fringe visibility enhanced fiber-optic Fabry-Perot interferometric sensor.

    PubMed

    Zhang, Wenlu; Chen, Fengyi; Ma, Wenwen; Rong, Qiangzhou; Qiao, Xueguang; Wang, Ruohui

    2018-04-16

    A fringe visibility enhanced fiber-optic Fabry-Perot interferometer based ultrasonic sensor is proposed and experimentally demonstrated for seismic physical model imaging. The sensor consists of a graded index multimode fiber collimator and a PTFE (polytetrafluoroethylene) diaphragm to form a Fabry-Perot interferometer. Owing to the increase of the sensor's spectral sideband slope and the smaller Young's modulus of the PTFE diaphragm, a high response to both continuous and pulsed ultrasound with a high SNR of 42.92 dB in 300 kHz is achieved when the spectral sideband filter technique is used to interrogate the sensor. The ultrasonic reconstructed images can clearly differentiate the shape of models with a high resolution.

  3. Double-pass Mach-Zehnder fiber interferometer pH sensor.

    PubMed

    Tou, Zhi Qiang; Chan, Chi Chiu; Hong, Jesmond; Png, Shermaine; Eddie, Khay Ming Tan; Tan, Terence Aik Huang

    2014-04-01

    A biocompatible fiber-optic pH sensor based on a unique double-pass Mach-Zehnder interferometer is proposed. pH responsive poly(2-hydroxyethyl methacrylate-co-2-(dimethylamino)ethyl methacrylate) hydrogel coating on the fiber swells/deswells in response to local pH, leading to refractive index changes that manifest as shifting of interference dips in the optical spectrum. The pH sensor is tested in spiked phosphate buffer saline and demonstrates high sensitivity of 1.71  nm/pH, pH 0.004 limit of detection with good responsiveness, repeatability, and stability. The proposed sensor has been successfully applied in monitoring the media pH in cell culture experiments to investigate the relationship between pH and cancer cell growth.

  4. Composite material embedded fiber-optic Fabry-Perot strain rosette

    NASA Astrophysics Data System (ADS)

    Valis, Thomas; Hogg, Dayle; Measures, Raymond M.

    1990-12-01

    A fiber-optic strain rosette is embedded in Kevlar/epoxy. The individual arms of the rosette are fiber Fabry-Perot interferometers operated in reflection-mode with gauge (i.e., cavity) lengths of approximately 5 mm. Procedures for manufacturing the cavities, and bending the fibers, to form a strain rosette are described. Experimental results showing 2D interlaminar strain-tensor measurement are presented. The sensor is also tested as a surface adhered device.

  5. Multibeam Interferometer Using a Photonic Crystal Fiber with Two Asymmetric Cores for Torsion, Strain and Temperature Sensing

    PubMed Central

    Naeem, Khurram; Kwon, Il-Bum; Chung, Youngjoo

    2017-01-01

    We present a fiber-optic multibeam Mach-Zehnder interferometer (m-MZI) for simultaneous multi-parameter measurement. The m-MZI is comprised of a section of photonic crystal fiber integrated with two independent cores of distinct construction and birefringence properties characterized for torsion, strain and temperature sensing. Due to the presence of small core geometry and use of a short fiber length, the sensing device demonstrates inter-modal interference in the small core alongside the dominant inter-core interference between the cores for each of the orthogonal polarizations. The output spectrum of the device is characterized by the three-beam interference model and is polarization-dependent. The two types of interferometers present in the fiber m-MZI exhibit distinct sensitivities to torsion, strain and temperature for different polarizations, and matrix coefficients allowing simultaneous measurement of the three sensing parameters are proposed in experiment. PMID:28085046

  6. Construction of a Fiber Optic Gradient Hydrophone Using a Michelson Configuration.

    DTIC Science & Technology

    1986-03-27

    Michelson interferometers; * Fabry - Perot interferometers; • Intermode interferometers; • Sagnac interferometers. Of these, the first two categories show the...most promise for hydrophone applications. The Fabry - Perot design is an excellent tool for precision length measurements but is extremely sensitive to...Pa was measured. Using the demodulation technique in Mills, [Ref. 13: pp. 94-95], one can make a comparison to the USRD type G63 stan- dard pressure

  7. Dynamic Strain Measured by Mach-Zehnder Interferometric Optical Fiber Sensors

    PubMed Central

    Her, Shiuh-Chuan; Yang, Chih-Min

    2012-01-01

    Optical fibers possess many advantages such as small size, light weight and immunity to electro-magnetic interference that meet the sensing requirements to a large extent. In this investigation, a Mach-Zehnder interferometric optical fiber sensor is used to measure the dynamic strain of a vibrating cantilever beam. A 3 × 3 coupler is employed to demodulate the phase shift of the Mach-Zehnder interferometer. The dynamic strain of a cantilever beam subjected to base excitation is determined by the optical fiber sensor. The experimental results are validated with the strain gauge. PMID:22737010

  8. Sensitivity distribution of a vibration sensor based on Mach-Zehnder interferometer designed inside the window system

    NASA Astrophysics Data System (ADS)

    Zboril, Ondrej; Nedoma, Jan; Cubik, Jakub; Novak, Martin; Bednarek, Lukas; Fajkus, Marcel; Vasinek, Vladimir

    2016-04-01

    Interferometric sensors are very accurate and sensitive sensors that due to the extreme sensitivity allow sensing vibration and acoustic signals. This paper describes a new method of implementation of Mach-Zehnder interferometer for sensing of vibrations caused by touching on the window panes. Window panes are part of plastic windows, in which the reference arm of the interferometer is mounted and isolated inside the frame, a measuring arm of the interferometer is fixed to the window pane and it is mounted under the cover of the window frame. It prevents visibility of the optical fiber and this arrangement is the basis for the safety system. For the construction of the vibration sensor standard elements of communication networks are used - optical fiber according to G.652D and 1x2 splitters with dividing ratio 1:1. Interferometer operated at a wavelength of 1550 nm. The paper analyses the sensitivity of the window in a 12x12 measuring points matrix, there is specified sensitivity distribution of the window pane.

  9. Multi-Stress Monitoring System with Fiber-Optic Mandrels and Fiber Bragg Grating Sensors in a Sagnac Loop

    PubMed Central

    Kim, Hyunjin; Sampath, Umesh; Song, Minho

    2015-01-01

    Fiber Bragg grating sensors are placed in a fiber-optic Sagnac loop to combine the grating temperature sensors and the fiber-optic mandrel acoustic emission sensors in single optical circuit. A wavelength-scanning fiber-optic laser is used as a common light source for both sensors. A fiber-optic attenuator is placed at a specific position in the Sagnac loop in order to separate buried Bragg wavelengths from the Sagnac interferometer output. The Bragg wavelength shifts are measured with scanning band-pass filter demodulation and the mandrel output is analyzed by applying a fast Fourier transform to the interference signal. This hybrid-scheme could greatly reduce the size and the complexity of optical circuitry and signal processing unit, making it suitable for low cost multi-stress monitoring of large scale power systems. PMID:26230700

  10. In-fiber Fabry-Perot refractometer assisted by a long-period grating.

    PubMed

    Mosquera, L; Sáez-Rodriguez, D; Cruz, J L; Andrés, M V

    2010-02-15

    We present an optical fiber refractometer based on a Fabry-Perot interferometer defined by two fiber Bragg gratings and an intracavity long-period grating that makes the light confined in the resonator interact with the surrounding medium. The external refractive index is monitored by the resonant frequencies of the Fabry-Perot interferometer, which can be measured either in transmission or in reflection. In this first experiment, wavelength shifts measured with a resolution of 0.1 pm have allowed one to establish a refractive index detection limit of 2.1x10(-5).

  11. Research on corrosion detection for steel reinforced concrete structures using the fiber optical white light interferometer sensing technique

    NASA Astrophysics Data System (ADS)

    Zhao, Xuefeng; Cui, Yanjun; Wei, Heming; Kong, Xianglong; Zhang, Pinglei; Sun, Changsen

    2013-06-01

    In this paper, a novel kind of steel rebar corrosion monitoring technique for steel reinforced concrete structures is proposed, designed, and tested. The technique is based on the fiber optical white light interferometer (WLI) sensing technique. Firstly, a feasibility test was carried out using an equal-strength beam for comparison of strain sensing ability between the WLI and a fiber Bragg grating (FBG). The comparison results showed that the sensitivity of the WLI is sufficient for corrosion expansion strain monitoring. Then, two WLI corrosion sensors (WLI-CSs) were designed, fabricated, and embedded into concrete specimens to monitor expansion strain caused by steel rebar corrosion. Their performance was studied in an accelerated electrochemical corrosion test. Experimental results show that expansion strain along the fiber optical coil winding area can be detected and measured accurately by the proposed sensor. The advantages of the proposed monitoring technique allow for quantitative corrosion expansion monitoring to be executed in real time for reinforced concrete structures and with low cost.

  12. A fiber optic multi-stress monitoring system for power transformer

    NASA Astrophysics Data System (ADS)

    Kim, Dae-gil; Sampath, Umesh; Kim, Hyunjin; Song, Minho

    2017-04-01

    A fiber-optic multi-stress monitoring system which uses 4 FBG sensors and a fiber-optic mandrel acoustic emission sensor is proposed. FBG sensors and a mandrel sensor measure different types of stresses occurring in electrical power transformer, such as temperature and acoustic signals. The sensor system uses single broadband light source to address the outputs of both sensors using single fiber-optic circuitry. An athermal-packaged FBG is used to supply quasi-coherent light for the Sagnac interferometer demodulation which processes the mandrel sensor output. The proposed sensor system could simplify the optical circuit for the multi-stress measurements and enhance the cost-effectiveness of the sensor system.

  13. An in-line Mach-Zehnder Interferometer Using Thin-core Fiber for Ammonia Gas Sensing With High Sensitivity

    NASA Astrophysics Data System (ADS)

    Huang, Xinyue; Li, Xueming; Yang, Jianchun; Tao, Chuanyi; Guo, Xiaogang; Bao, Hebin; Yin, Yanjun; Chen, Huifei; Zhu, Yuhua

    2017-04-01

    Ammonia is an important indicator among environmental monitoring parameters. In this work, thin-core fiber Mach-Zehnder interferometer deposited with poly (acrylic acid) (PAA), poly (allyamine hydrochloride) (PAH) and single-walled carbon nanotubes (SWCNTs-COOH) sensing film for the detection of ammonia gas has been presented. The thin-core fiber modal interferometer was made by fusion splicing a small section of thin-core fiber (TCF) between two standard single mode fibers (SMF). A beam propagation method (BPM) is employed for the design of proposed interferometer and numerical simulation. Based on the simulation results, interferometer with a length of 2 cm of thin-core fiber is fabricated and experimentally studied. (PAH/PAA)2 + [PAH/(PAA + SWCNTs-COOH)]8 film is deposited on the outer surface of thin-core fiber via layer-by-layer (LbL) self-assembly technique. The gas sensor coated with (PAH/PAA)2 + [PAH/(PAA + SWCNTs-COOH)]8 film towards NH3 gas exposure at concentrations range from 1 to 960 ppm are analyzed and the sensing capability is demonstrated by optical spectrum analyzer (OSA). Experimental results show that the characteristic wavelength shift has an approximately linear relationship in the range 1-20 ppm, which is in accordance with the numerical simulation. Thus, this paper reveals the potential application of this sensor in monitoring low concentration NH3 gas.

  14. Design of an Fiber-Coupled Laser Heterodyne Interferometer for the FLARE

    NASA Astrophysics Data System (ADS)

    Frank, Samuel; Yoo, Jongsoo; Ji, Hantao; Jara-Almonte, Jon

    2016-10-01

    The FLARE (Facility for Laboratory Reconnection Experiments), which is currently under construction at PPPL, requires a complete set of laboratory plasma diagnostics. The Langmuir probes that will be used in the device to gather local density data require a reliable interferometer system to serve as baseline for density measurement calibration. A fully fiber-coupled infrared laser heterodyne interferometer has been designed in order to serve as the primary line-integrated electron density diagnostic. Thanks to advances in the communications industry many fiber optic devices and phase detection methods have advanced significantly becoming increasingly reliable and inexpensive. Fully fiber coupling a plasma interferometer greatly simplifies alignment procedures needed since the only free space laser path needing alignment is through the plasma itself. Fiber-coupling also provides significant resistance to vibrational noise, a common problem in plasma interferometry systems. This device also uses a greatly simplified phase detection scheme in which chips, originally developed for the communications industry, capable of directly detecting the phase shift of a signal with high time resolution. The design and initial performance of the system will be discussed.

  15. High-sensitivity pressure sensor based on fiber Mach-Zehnder interferometer

    NASA Astrophysics Data System (ADS)

    Wu, Yue; Xu, Yao; Yang, Yuguang; Jin, Wenxing; Jiang, Youchao; Shen, Ya; Jian, Shuisheng

    2017-10-01

    In this paper we propose and experimentally demonstrate an optical fiber structure sensor based on a Mach-Zehnder interferometer for pressure measurement. The fiber sensor is composed of a single-mode-no-core-single-mode structure, a section of capillary pure silica tube and refractive index matching fluid (RIMF). As the pressure decreases, the sealed air in the tube expands and the liquid level of the RIMF increases, which causes a wavelength shift of the interferometer. The measurement of the pressure variation can thus be achieved by monitoring the wavelength shift. The experimental results agree well with the numerical simulation, and a maximum pressure sensitivity of 266.6 nm Mpa-1 is achieved experimentally. Furthermore, the proposed fiber sensor has the potential to obtain higher sensitivity by enlarging the length of the air cavity.

  16. Fiber-optic Michelson interferometer fixed in a tilted tube for direction-dependent ultrasonic detection

    NASA Astrophysics Data System (ADS)

    Gang, Tingting; Hu, Manli; Qiao, Xueguang; Li, JiaCheng; Shao, Zhihua; Tong, Rongxin; Rong, Qiangzhou

    2017-01-01

    A fiber-optic interferometer is proposed and demonstrated experimentally for ultrasonic detection. The sensor consists of a compact Michelson interferometer (MI), which is fixed in a tilted-tube end-face (45°). Thin gold films are used for the reflective coatings of two arms and one of the interference arms is etched serving as the sensing arm. The spectral sideband filter technique is used to interrogate the continuous and pulse ultrasonic signals (with frequency of 300 KHz). Furthermore, because of the asymmetrical structure of the sensor, it presents strong direction-dependent ultrasonic sensitivity, such that the sensor can be considered a vector detector. The experimental results show that the sensor is highly sensitive to ultrasonic signals, and thus it can be a candidate for ultrasonic imaging of seismic physical models.

  17. Photonic sensors review recent progress of fiber sensing technologies in Tianjin University

    NASA Astrophysics Data System (ADS)

    Liu, Tiegen; Liu, Kun; Jiang, Junfeng; Li, Enbang; Zhang, Hongxia; Jia, Dagong; Zhang, Yimo

    2011-03-01

    The up to date progress of fiber sensing technologies in Tianjin University are proposed in this paper. Fiber-optic temperature sensor based on the interference of selective higher-order modes in circular optical fiber is developed. Parallel demodulation for extrinsic Fabry-Perot interferometer (EFPI) and fiber Bragg grating (FBG) sensors is realized based on white light interference. Gas concentration detection is realized based on intra-cavity fiber laser spectroscopy. Polarization maintaining fiber (PMF) is used for distributed position or displacement sensing. Based on the before work and results, we gained National Basic Research Program of China on optical fiber sensing technology and will develop further investigation in this area.

  18. Nanometer-scale displacement measurement with high resolution using dual cavity Fabry-Pérot interferometer for biomimetic robots.

    PubMed

    Lee, Jin-Hyuk; Kim, Dae-Hyun

    2014-10-01

    A sensor of a biomimetic robot has to measure very small environmental changes such as, nanometer scale strains or displacements. Fiber optic sensor can be also one of candidates for the biomimetic sensor because the sensor is like thread and the shape of the sensor is similar to muscle fiber. A fiber optic interferometer, which is an optical-based sensor, can measure displacement precisely, so such device has been widely studied for the measurement of displacement on a nanometer-scale. Especially, a Quadrature Phase-Shifted Fiber Fabry-Pérot interferometer (QPS-FFPI) uses phase-information for this measurement, allowing it to provide a precision result with high resolution. In theory, the QPS-FFPI generates two sinusoidal signals of which the phase difference should be 90 degrees for the exact measurement of the displacement. In order to guarantee the condition of the phase difference, the relative adjustment of the cavities of the optical fibers is required. However, with such precise adjustment it is very hard to fix the proper difference of the two cavities for quadrature-phase-shifting. In this paper, a dual-cavity FFPI is newly proposed to measure the displacement on a nanometer-scale with a specific type of signal processing. In the signal processing, a novel phase-compensation algorithm is applied to force the phase difference to be exactly 90 degrees without any physical adjustment. As a result, the paper shows that the phase-compensated dual-cavity FFPI can effectively measure nanometer-scale displacement with high resolution under dynamic conditions.

  19. Achievements and perspectives of fiber gyros

    NASA Astrophysics Data System (ADS)

    Boehm, Manfred

    1986-01-01

    After evaluating the development history and current status of fiber-optic gyros employing the Sagnac effect, attention is given to a novel class of inertial fiber-optic motion devices having their basis in the Kennedy-Thorndike (1932) interferometry experiments. These devices promise high performance strapdown inertial navigation systems that dispense with accelerometers. The prospective performance of such devices is discussed in light of an analysis of Sagnac, Michelson, and Kennedy-Thorndike interferometers.

  20. Robust interferometric frequency lock between cw lasers and optical frequency combs.

    PubMed

    Benkler, Erik; Rohde, Felix; Telle, Harald R

    2013-02-15

    A transfer interferometer is presented which establishes a versatile and robust optical frequency locking link between a tunable single frequency laser and an optical frequency comb. It enables agile and continuous tuning of the frequency difference between both lasers while fluctuations and drift effects of the transfer interferometer itself are widely eliminated via common mode rejection. Experimental results will be presented for a tunable extended-cavity 1.5 μm laser diode locked to an Er-fiber based frequency comb.

  1. Simultaneous measurement of temperature and pressure with cascaded extrinsic Fabry-Perot interferometer and intrinsic Fabry-Perot interferometer sensors

    NASA Astrophysics Data System (ADS)

    Zhang, Yinan; Huang, Jie; Lan, Xinwei; Yuan, Lei; Xiao, Hai

    2014-06-01

    This paper presents an approach for simultaneous measurement of temperature and pressure using miniaturized fiber inline sensors. The approach utilizes the cascaded optical fiber inline intrinsic Fabry-Perot interferometer and extrinsic Fabry-Perot interferometer as temperature and pressure sensing elements, respectively. A CO2 laser was used to create a loss between them to balance their reflection power levels. The multiplexed signals were demodulated using a Fast Fourier transform-based wavelength tracking method. Experimental results showed that the sensing system could measure temperature and pressure unambiguously in a pressure range of 0 to 6.895×105 Pa and a temperature range from 20°C to 700°C.

  2. UW Imaging of Seismic-Physical-Models in Air Using Fiber-Optic Fabry-Perot Interferometer.

    PubMed

    Rong, Qiangzhou; Hao, Yongxin; Zhou, Ruixiang; Yin, Xunli; Shao, Zhihua; Liang, Lei; Qiao, Xueguang

    2017-02-17

    A fiber-optic Fabry-Perot interferometer (FPI) has been proposed and demonstrated for the ultrasound wave (UW) imaging of seismic-physical models. The sensor probe comprises a single mode fiber (SMF) that is inserted into a ceramic tube terminated by an ultra-thin gold film. The probe performs with an excellent UW sensitivity thanks to the nanolayer gold film, and thus is capable of detecting a weak UW in air medium. Furthermore, the compact sensor is a symmetrical structure so that it presents a good directionality in the UW detection. The spectral band-side filter technique is used for UW interrogation. After scanning the models using the sensing probe in air, the two-dimensional (2D) images of four physical models are reconstructed.

  3. Temperature-independent refractometer based on fiber-optic Fabry-Perot interferometer

    NASA Astrophysics Data System (ADS)

    Li, Jiacheng; Qiao, Xueguang; Wang, Ruohui; Rong, Qiangzhou; Bao, Weijia; Shao, Zhihua; Yang, Tingting

    2016-04-01

    A miniature fiber-optic refractometer based on Fabry-Perot interferometer (FPI) has been proposed and experimentally demonstrated. The sensing head consists of a short section of photonics crystal fiber (PCF) spliced to a single mode fiber (SMF), in which the end-face of the PCF is etched to remove holey structure with hydrofluoric (HF) acid. A Fabry-Perot interference spectrum is achieved based on the reflections from the fusion splicing interface and the end-face of the core of PCF. The interference fringe is sensitive to the external refractive index (RI) with an intensity-referenced sensitivity of 358.27 dB/RIU ranging from 1.33 to 1.38. The sensor has also been implemented for the concentration measurement of λ-phage DNA solution. In addition, the dip intensity is insensitive to the ambient temperature variation, making it a good candidate for temperature-independent bio-sensing area.

  4. Fiber-optic extrinsic Fabry-Perot interferometer strain sensor with <50 pm displacement resolution using three-wavelength digital phase demodulation.

    PubMed

    Schmidt, M; Werther, B; Fuerstenau, N; Matthias, M; Melz, T

    2001-04-09

    A fiber-optic extrinsic Fabry-Perot interferometer strain sensor (EFPI-S) of ls = 2.5 cm sensor length using three-wavelength digital phase demodulation is demonstrated to exhibit <50 pm displacement resolution (<2nm/m strain resolution) when measuring the cross expansion of a PZT-ceramic plate. The sensing (single-mode downlead-) and reflecting fibers are fused into a 150/360 microm capillary fiber where the fusion points define the sensor length. Readout is performed using an improved version of the previously described three-wavelength digital phase demodulation method employing an arctan-phase stepping algorithm. In the resent experiments the strain sensitivity was varied via the mapping of the arctan - lookup table to the 16-Bit DA-converter range from 188.25 k /V (6 Volt range 1130 k ) to 11.7 k /Volt (range 70 k ).

  5. Photonic ultrawideband impulse radio generation and modulation over a fiber link using a phase modulator and a delay interferometer.

    PubMed

    Shao, Jing; Sun, Junqiang

    2012-08-15

    We propose and experimentally demonstrate a simple and flexible photonic scheme for generation and modulation of ultrawideband (UWB) using a phase modulator and a fiber delay interferometer (DI)-based multichannel frequency discrimination. By introducing a Gaussian signal to the phase modulator, the UWB polarity-switchable doublet pulses can be achieved by combining the pair of UWB monocycle pulses with inverted polarities at the DI outputs under proper time delay. Furthermore, the pulse shape modulation, pulse position modulation, and on-off keying can be performed by coding the electrical data patterns and adjusting the time delay between the two monocycle pulses. Only a laser source introduced in the architecture guarantees the excellent dispersion tolerance over 75 km optical fiber link for UWB pulse sequence, which has potential application in future high-speed UWB impulse radio over optical fiber access networks.

  6. Highly compact fiber Fabry-Perot interferometer: A new instrument design

    NASA Astrophysics Data System (ADS)

    Nowakowski, B. K.; Smith, D. T.; Smith, S. T.

    2016-11-01

    This paper presents the design, construction, and characterization of a new optical-fiber-based, low-finesse Fabry-Perot interferometer with a simple cavity formed by two reflecting surfaces (the end of a cleaved optical fiber and a plane, reflecting counter-surface), for the continuous measurement of displacements of several nanometers to several tens of millimeters. No beam collimation or focusing optics are required, resulting in a displacement sensor that is extremely compact (optical fiber diameter 125 μm), is surprisingly tolerant of misalignment (more than 5°), and can be used over a very wide range of temperatures and environmental conditions, including ultra-high-vacuum. The displacement measurement is derived from interferometric phase measurements using an infrared laser source whose wavelength is modulated sinusoidally at a frequency f. The phase signal is in turn derived from changes in the amplitudes of demodulated signals, at both the modulation frequency, f, and its harmonic at 2f, coming from a photodetector that is monitoring light intensity reflected back from the cavity as the cavity length changes. Simple quadrature detection results in phase errors corresponding to displacement errors of up to 25 nm, but by using compensation algorithms discussed in this paper, these inherent non-linearities can be reduced to below 3 nm. In addition, wavelength sweep capability enables measurement of the absolute surface separation. This experimental design creates a unique set of displacement measuring capabilities not previously combined in a single interferometer.

  7. Interferometer design and controls for pulse stacking in high power fiber lasers

    NASA Astrophysics Data System (ADS)

    Wilcox, Russell; Yang, Yawei; Dahlen, Dar; Xu, Yilun; Huang, Gang; Qiang, Du; Doolittle, Lawrence; Byrd, John; Leemans, Wim; Ruppe, John; Zhou, Tong; Sheikhsofla, Morteza; Nees, John; Galvanauskas, Almantas; Dawson, Jay; Chen, Diana; Pax, Paul

    2017-03-01

    In order to develop a design for a laser-plasma accelerator (LPA) driver, we demonstrate key technologies that enable fiber lasers to produce high energy, ultrafast pulses. These technologies must be scalable, and operate in the presence of thermal drift, acoustic noise, and other perturbations typical of an operating system. We show that coherent pulse stacking (CPS), which requires optical interferometers, can be made robust by image-relaying, multipass optical cavities, and by optical phase control schemes that sense pulse train amplitudes from each cavity. A four-stage pulse stacking system using image-relaying cavities is controlled for 14 hours using a pulse-pattern sensing algorithm. For coherent addition of simultaneous ultrafast pulses, we introduce a new scheme using diffractive optics, and show experimentally that four pulses can be added while a preserving pulse width of 128 fs.

  8. Direct Measurement of Large, Diffuse, Optical Structures

    NASA Technical Reports Server (NTRS)

    Saif, Babak N.; Keski-Kuha, Ritva; Feinberg, Lee; Wyant, J. C.; Atkinson, C.

    2004-01-01

    Digital Speckle Pattern Interferometry (DSPI) is a well-established method for the measurement of diffuse objects in experimental mechanics. DSPIs are phase shifting interferometers. Three or four bucket temporal phase shifting algorithms are commonly used to provide phase shifting. These algorithms are sensitive to vibrations and can not be used to measure large optical structures far away from the interferometer. In this research a simultaneous phase shifted interferometer, PhaseCam product of 4D Technology Corporation in Tucson Arizona, is modified to be a Simultaneous phase shifted Digital Speckle Pattern Interferometer (SDSPI). Repeatability, dynamic range, and accuracy of the SDSPI are characterized by measuring a 5 cm x 5 cm carbon fiber coupon.

  9. Fiber optic hydrophone

    DOEpatents

    Kuzmenko, Paul J.; Davis, Donald T.

    1994-01-01

    A miniature fiber optic hydrophone based on the principles of a Fabry-Perot interferometer. The hydrophone, in one embodiment, includes a body having a shaped flexible bladder at one end which defines a volume containing air or suitable gas, and including a membrane disposed adjacent a vent. An optic fiber extends into the body with one end terminating in spaced relation to the membrane. Acoustic waves in the water that impinge on the bladder cause the pressure of the volume therein to vary causing the membrane to deflect and modulate the reflectivity of the Fabry-Perot cavity formed by the membrane surface and the cleaved end of the optical fiber disposed adjacent to the membrane. When the light is transmitted down the optical fiber, the reflected signal is amplitude modulated by the incident acoustic wave. Another embodiment utilizes a fluid filled volume within which the fiber optic extends.

  10. Fiber-Optic Magnetic-Field-Strength Measurement System for Lightning Detection

    NASA Technical Reports Server (NTRS)

    Gurecki, Jay; Scully, Robert; Davis, Allen; Kirkendall, Clay; Bucholtz, Frank

    2011-01-01

    A fiber-optic sensor system is designed to measure magnetic fields associated with a lightning stroke. Field vector magnitudes are detected and processed for multiple locations. Since physical limitations prevent the sensor elements from being located in close proximity to highly conductive materials such as aluminum, the copper wire sensor elements (3) are located inside a 4-cubic-in. (.66-cubic-cm) plastic housing sensor head and connected to a fiber-optic conversion module by shielded cabling, which is limited to the shortest length feasible. The signal path between the conversion module and the avionics unit which processes the signals are fiber optic, providing enhanced immunity from electromagnetic radiation incident in the vicinity of the measurements. The sensors are passive, lightweight, and much smaller than commercial B-dot sensors in the configuration which measures a three-dimensional magnetic field. The system is expandable, and provides a standard-format output signal for downstream processing. Inside of the sensor head, three small search coils, each having a few turns on a circular form, are mounted orthogonally inside the non-metallic housing. The fiber-optic conversion module comprises three interferometers, one for each search coil. Each interferometer has a high bandwidth optical phase modulator that impresses the signal received from its search coil onto its output. The output of each interferometer travels by fiber optic cable to the avionics unit, and the search coil signal is recovered by an optical phase demodulator. The output of each demodulator is fed to an analog-to-digital converter, whose sampling rate is determined by the maximum expected rate of rise and peak signal magnitude. The output of the digital processor is a faithful reproduction of the coil response to the incident magnetic field. This information is provided in a standard output format on a 50-ohm port that can be connected to any number of data collection and processing instruments and/or systems. The measurement of magnetic fields using fiber-optic signal processing is novel because it eliminates limitations of a traditional B-dot system. These limitations include the distance from the sensor to the measurement device, the potential for the signal to degrade or be corrupted by EMI from lightning, and the size and weight of the sensor and associated plate.

  11. Asymmetrical dual tapered fiber Mach-Zehnder interferometer for fiber-optic directional tilt sensor.

    PubMed

    Lee, Cheng-Ling; Shih, Wen-Cheng; Hsu, Jui-Ming; Horng, Jing-Shyang

    2014-10-06

    This work proposes a novel, highly sensitive and directional fiber tilt sensor that is based on an asymmetrical dual tapered fiber Mach-Zehnder interferometer (ADTFMZI). The fiber-optic tilt sensor consists of two abrupt tapers with different tapered waists into which are incorporated a set of iron spheres to generate an asymmetrical strain in the ADTFMZI that is correlated with the tilt angle and the direction of inclination. Owing to the asymmetrical structure of the dual tapers, the proposed sensor can detect the non-horizontal/horizontal state of a structure and whether the test structure is tilted to clockwise or counterclockwise by measuring the spectral responses. Experimental results show that the spectral wavelengths are blue-shifted and red-shifted when the sensor tilts to clockwise (-θ) and counterclockwise ( + θ), respectively. Tilt angle sensitivities of about 335 pm/deg. and 125 pm/deg. are achieved in the -θ and + θ directions, respectively, when the proposed sensing scheme is utilized.

  12. Fiber optic sensors IV; Proceedings of the Third European Congress on Optics, The Hague, Netherlands, Mar. 13, 14, 1990

    NASA Technical Reports Server (NTRS)

    Kersten, Ralf T. (Editor)

    1990-01-01

    Recent advances in fiber-optic sensor (FOS) technology are examined in reviews and reports. Sections are devoted to components for FOSs, special fibers for FOSs, interferometry, FOS applications, and sensing principles and influence. Particular attention is given to solder glass sealing technology for FOS packaging, the design of optical-fiber current sensors, pressure and temperature effects on beat length in highly birefringent optical fibers, a pressure FOS based on vibrating-quartz-crystal technology, remote sensing of flammable gases using a fluoride-fiber evanescent probe, a displacement sensor with electronically scanned white-light interferometer, the use of multimode laser diodes in low-coherence coupled-cavity interferometry, electronic speckle interferometry compensated for environmentally induced phase noise, a dual-resolution noncontact vibration and displacement sensor based on a two-wavelength source, and fiber optics in composite materials.

  13. An in-line Mach-Zehnder Interferometer Using Thin-core Fiber for Ammonia Gas Sensing With High Sensitivity

    PubMed Central

    Huang, Xinyue; Li, Xueming; Yang, Jianchun; Tao, Chuanyi; Guo, Xiaogang; Bao, Hebin; Yin, Yanjun; Chen, Huifei; Zhu, Yuhua

    2017-01-01

    Ammonia is an important indicator among environmental monitoring parameters. In this work, thin-core fiber Mach-Zehnder interferometer deposited with poly (acrylic acid) (PAA), poly (allyamine hydrochloride) (PAH) and single-walled carbon nanotubes (SWCNTs-COOH) sensing film for the detection of ammonia gas has been presented. The thin-core fiber modal interferometer was made by fusion splicing a small section of thin-core fiber (TCF) between two standard single mode fibers (SMF). A beam propagation method (BPM) is employed for the design of proposed interferometer and numerical simulation. Based on the simulation results, interferometer with a length of 2 cm of thin-core fiber is fabricated and experimentally studied. (PAH/PAA)2 + [PAH/(PAA + SWCNTs-COOH)]8 film is deposited on the outer surface of thin-core fiber via layer-by-layer (LbL) self-assembly technique. The gas sensor coated with (PAH/PAA)2 + [PAH/(PAA + SWCNTs-COOH)]8 film towards NH3 gas exposure at concentrations range from 1 to 960 ppm are analyzed and the sensing capability is demonstrated by optical spectrum analyzer (OSA). Experimental results show that the characteristic wavelength shift has an approximately linear relationship in the range 1–20 ppm, which is in accordance with the numerical simulation. Thus, this paper reveals the potential application of this sensor in monitoring low concentration NH3 gas. PMID:28378783

  14. A fiber optic temperature sensor based on multi-core microstructured fiber with coupled cores for a high temperature environment

    NASA Astrophysics Data System (ADS)

    Makowska, A.; Markiewicz, K.; Szostkiewicz, L.; Kolakowska, A.; Fidelus, J.; Stanczyk, T.; Wysokinski, K.; Budnicki, D.; Ostrowski, L.; Szymanski, M.; Makara, M.; Poturaj, K.; Tenderenda, T.; Mergo, P.; Nasilowski, T.

    2018-02-01

    Sensors based on fiber optics are irreplaceable wherever immunity to strong electro-magnetic fields or safe operation in explosive atmospheres is needed. Furthermore, it is often essential to be able to monitor high temperatures of over 500°C in such environments (e.g. in cooling systems or equipment monitoring in power plants). In order to meet this demand, we have designed and manufactured a fiber optic sensor with which temperatures up to 900°C can be measured. The sensor utilizes multi-core fibers which are recognized as the dedicated medium for telecommunication or shape sensing, but as we show may be also deployed advantageously in new types of fiber optic temperature sensors. The sensor presented in this paper is based on a dual-core microstructured fiber Michelson interferometer. The fiber is characterized by strongly coupled cores, hence it acts as an all-fiber coupler, but with an outer diameter significantly wider than a standard fused biconical taper coupler, which significantly increases the coupling region's mechanical reliability. Owing to the proposed interferometer imbalance, effective operation and high-sensitivity can be achieved. The presented sensor is designed to be used at high temperatures as a result of the developed low temperature chemical process of metal (copper or gold) coating. The hermetic metal coating can be applied directly to the silica cladding of the fiber or the fiber component. This operation significantly reduces the degradation of sensors due to hydrolysis in uncontrolled atmospheres and high temperatures.

  15. Advanced Optical Fiber Communication Systems.

    DTIC Science & Technology

    1993-02-28

    feedback (DFB) laser and a fiber Fabry - Perot (FFP) interferometer for optical frequency discrimination. After the photodetector and amplification, a...filter, an envelope detector, and an integrator; these three components function in tandem as a phase demodulator . We have analyzed the nonlinearities...down-converter and FSK demodulator extract the desired video signals. The measured carrier-to-noise ratio (CNR) at the photodiode must be approximately

  16. An atom interferometer inside a hollow-core photonic crystal fiber

    PubMed Central

    Xin, Mingjie; Leong, Wui Seng; Chen, Zilong; Lan, Shau-Yu

    2018-01-01

    Coherent interactions between electromagnetic and matter waves lie at the heart of quantum science and technology. However, the diffraction nature of light has limited the scalability of many atom-light–based quantum systems. We use the optical fields in a hollow-core photonic crystal fiber to spatially split, reflect, and recombine a coherent superposition state of free-falling 85Rb atoms to realize an inertia-sensitive atom interferometer. The interferometer operates over a diffraction-free distance, and the contrasts and phase shifts at different distances agree within one standard error. The integration of phase coherent photonic and quantum systems here shows great promise to advance the capability of atom interferometers in the field of precision measurement and quantum sensing with miniature design of apparatus and high efficiency of laser power consumption. PMID:29372180

  17. Refractive index retrieving of polarization maintaining optical fibers

    NASA Astrophysics Data System (ADS)

    Ramadan, W. A.; Wahba, H. H.; Shams El-Din, M. A.; Abd El-Sadek, I. G.

    2018-01-01

    In this paper, the cross-section images, of two different types of polarization maintaining (PM) optical fibers, are employed to estimate the optical phase variation due to transverse optical rays passing through these optical fibers. An adaptive algorithm is proposed to recognize the different areas constituting the PM optical fibers cross-sections. These areas are scanned by a transverse beam to calculate the optical paths for given values of refractive indices. Consequently, the optical phases across the PM optical fibers could be recovered. PM optical fiber is immersed in a matching fluid and set in the object arm of Mach-Zehnder interferometer. The produced interferograms are analyzed to extract the optical phases caused by the PM optical fibers. The estimated optical phases could be optimized to be in good coincidence with experimentally extracted ones. This has been achieved through changing of the PM optical fibers refractive indices to retrieve the correct values. The correct refractive indices values are confirmed by getting the best fit between the estimated and the extracted optical phases. The presented approach is a promising one because it provides a quite direct and accurate information about refractive index, birefringence and beat length of PM optical fibers comparing with different techniques handle the same task.

  18. Digital phase demodulation for low-coherence interferometry-based fiber-optic sensors

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Strum, R.; Stiles, D.; Long, C.; Rakhman, A.; Blokland, W.; Winder, D.; Riemer, B.; Wendel, M.

    2018-03-01

    We describe a digital phase demodulation scheme for low-coherence interferometry-based fiber-optic sensors by employing a simple generation of phase-shifted signals at the interrogation interferometer. The scheme allows a real-time calibration process and offers capability of measuring large variations (up to the coherence of the light source) at the bandwidth that is only limited by the data acquisition system. The proposed phase demodulation method is analytically derived and its validity and performance are experimentally verified using fiber-optic Fabry-Perot sensors for measurement of strains and vibrations.

  19. DNA based thin solid films and its application to optical fiber temperature sensor

    NASA Astrophysics Data System (ADS)

    Hong, Seongjin; Jung, Woohyun; Kim, Taeoh; Oh, Kyunghwan

    2017-04-01

    Temperature dependent refractive index of DNA-cetyltrimethylammonium chloride (CTMA) thin-solid-film was measured 20 to 90° to obtain its thermo-optic coefficient of -3.6×10-4 (dn/dT). DNA- CTMA film has high thermosoptic coefficient than other polymers. The film was deposited on coreless silica fiber (CSF) to serve as a multimode interferometer optical fiber temperature sensor. It is immersed in a water that changed temperature from 40 to 90°. It has sensitivity of 0.25nm/℃.

  20. On a two-pass scheme without a faraday mirror for free-space relativistic quantum cryptography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kravtsov, K. S.; Radchenko, I. V.; Korol'kov, A. V.

    2013-05-15

    The stability of destructive interference independent of the input polarization and the state of a quantum communication channel in fiber optic systems used in quantum cryptography plays a principal role in providing the security of communicated keys. A novel optical scheme is proposed that can be used both in relativistic quantum cryptography for communicating keys in open space and for communicating them over fiber optic lines. The scheme ensures stability of destructive interference and admits simple automatic balancing of a fiber interferometer.

  1. A Core-Offset Mach Zehnder Interferometer Based on A Non-Zero Dispersion-Shifted Fiber and Its Torsion Sensing Application.

    PubMed

    Huerta-Mascotte, Eduardo; Sierra-Hernandez, Juan M; Mata-Chavez, Ruth I; Jauregui-Vazquez, Daniel; Castillo-Guzman, Arturo; Estudillo-Ayala, Julian M; Guzman-Chavez, Ana D; Rojas-Laguna, Roberto

    2016-06-10

    In this paper, an all-fiber Mach-Zehnder interferometer (MZI) based on a non-zero dispersion-shifted fiber (NZ-DSF) is presented. The MZI was implemented by core-offset fusion splicing one section of a NZ-DSF fiber between two pieces of single mode fibers (SMFs). Here, the NZ-DSF core and cladding were used as the arms of the MZI, while the core-offset sections acted as optical fiber couplers. Thus, a MZI interference spectrum with a fringe contrast (FC) of about 20 dB was observed. Moreover, its response spectrum was experimentally characterized to the torsion parameter and a sensitivity of 0.070 nm/° was achieved. Finally, these MZIs can be implemented in a compact size and low cost.

  2. A Core-Offset Mach Zehnder Interferometer Based on A Non-Zero Dispersion-Shifted Fiber and Its Torsion Sensing Application

    PubMed Central

    Huerta-Mascotte, Eduardo; Sierra-Hernandez, Juan M.; Mata-Chavez, Ruth I.; Jauregui-Vazquez, Daniel; Castillo-Guzman, Arturo; Estudillo-Ayala, Julian M.; Guzman-Chavez, Ana D.; Rojas-Laguna, Roberto

    2016-01-01

    In this paper, an all-fiber Mach-Zehnder interferometer (MZI) based on a non-zero dispersion-shifted fiber (NZ-DSF) is presented. The MZI was implemented by core-offset fusion splicing one section of a NZ-DSF fiber between two pieces of single mode fibers (SMFs). Here, the NZ-DSF core and cladding were used as the arms of the MZI, while the core-offset sections acted as optical fiber couplers. Thus, a MZI interference spectrum with a fringe contrast (FC) of about 20 dB was observed. Moreover, its response spectrum was experimentally characterized to the torsion parameter and a sensitivity of 0.070 nm/° was achieved. Finally, these MZIs can be implemented in a compact size and low cost. PMID:27294930

  3. Time-domain multiplexed high resolution fiber optics strain sensor system based on temporal response of fiber Fabry-Perot interferometers.

    PubMed

    Chen, Jiageng; Liu, Qingwen; He, Zuyuan

    2017-09-04

    We developed a multiplexed strain sensor system with high resolution using fiber Fabry-Perot interferometers (FFPI) as sensing elements. The temporal responses of the FFPIs excited by rectangular laser pulses are used to obtain the strain applied on each FFPI. The FFPIs are connected by cascaded couplers and delay fiber rolls for the time-domain multiplexing. A compact optoelectronic system performing closed-loop cyclic interrogation is employed to improve the sensing resolution and the frequency response. In the demonstration experiment, 3-channel strain sensing with resolutions better than 0.1 nε and frequency response higher than 100 Hz is realized.

  4. A Fiber Optic PD Sensor Using a Balanced Sagnac Interferometer and an EDFA-Based DOP Tunable Fiber Ring Laser

    PubMed Central

    Wang, Lutang; Fang, Nian; Wu, Chunxu; Qin, Haijuan; Huang, Zhaoming

    2014-01-01

    A novel fiber-optic acoustic sensor using an erbium-doped fiber amplifier (EDFA)-based fiber ring laser and a balanced Sagnac interferometer for acoustic sensing of the partial discharge (PD) in power transformers is proposed and demonstrated. As a technical background, an experimental investigation on how the variations of the fiber birefringence affect the sensor performances was carried out, and the results are discussed. The operation principles are described, and the relevant formulas are derived. The analytical results show that an EDFA-based fiber ring laser operating in chaotic mode can provide a degree of polarization (DOP) tunable light beam for effectively suppressing polarization fading noises. The balanced Sagnac interferometer can eliminate command intensity noises and enhance the signal-to-noise ratio (SNR). Furthermore, it inherently operates at the quadrature point of the response curve without any active stabilizations. Several experiments are conducted for evaluating the performances of the sensor system, as well as for investigating the ability of the detection of high-frequency acoustic emission signals. The experimental results demonstrate that the DOP of the laser beam can be continuously tuned from 0.2% to 100%, and the power fluctuation in the whole DOP tuning range is less than 0.05 dBm. A high-frequency response up to 300 kHz is reached, and the high sensing sensitivity for detections of weak corona discharges, as well as partial discharges also is verified. PMID:24824371

  5. The early history of the closed loop fiber optic gyro and derivative sensors at McDonnell Douglas, Blue Road Research and Columbia Gorge Research

    NASA Astrophysics Data System (ADS)

    Udd, Eric

    2016-05-01

    On September 29, 1977 the first written disclosure of a closed loop fiber optic gyro was witnessed and signed off by four people at McDonnell Douglas Astronautics Company in Huntington Beach, California. Over the next ten years a breadboard demonstration unit, and several prototypes were built. In 1987 the fundamental patent for closed loop operation began a McDonnell Douglas worldwide licensing process. Internal fiber optic efforts were redirected to derivative sensors and inventions. This included development of acoustic, strain and distributed sensors as well as a Sagnac interferometer based secure fiber optic communication system and the new field of fiber optic smart structures. This paper provides an overview of these activities and transitions.

  6. Optical heterodyne accelerometry: passively stabilized, fully balanced velocity interferometer system for any reflector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buttler, William T.; Lamoreaux, Steven K.

    2010-08-10

    We formalize the physics of an optical heterodyne accelerometer that allows measurement of low and high velocities from material surfaces under high strain. The proposed apparatus incorporates currently common optical velocimetry techniques used in shock physics, with interferometric techniques developed to self-stabilize and passively balance interferometers in quantum cryptography. The result is a robust telecom-fiber-based velocimetry system insensitive to modal and frequency dispersion that should work well in the presence of decoherent scattering processes, such as from ejecta clouds and shocked surfaces.

  7. Fiber optic hydrophone

    DOEpatents

    Kuzmenko, P.J.; Davis, D.T.

    1994-05-10

    A miniature fiber optic hydrophone based on the principles of a Fabry-Perot interferometer is disclosed. The hydrophone, in one embodiment, includes a body having a shaped flexible bladder at one end which defines a volume containing air or suitable gas, and including a membrane disposed adjacent a vent. An optical fiber extends into the body with one end terminating in spaced relation to the membrane. Acoustic waves in the water that impinge on the bladder cause the pressure of the volume therein to vary causing the membrane to deflect and modulate the reflectivity of the Fabry-Perot cavity formed by the membrane surface and the cleaved end of the optical fiber disposed adjacent to the membrane. When the light is transmitted down the optical fiber, the reflected signal is amplitude modulated by the incident acoustic wave. Another embodiment utilizes a fluid filled volume within which the fiber optic extends. 2 figures.

  8. Fiber optic sensor for monitoring a density of road traffic

    NASA Astrophysics Data System (ADS)

    Nedoma, Jan; Fajkus, Marcel; Martinek, Radek; Mec, Pavel; Novak, Martin; Jargus, Jan; Vasinek, Vladimir

    2017-10-01

    Authors of this article have focused on the use of fiber-optic technology in the car traffic. The article describes the use of fiber-optic interferometer for the purpose of the dynamic calculation of traffic density and inclusion the vehicle into the traffic lane. The objective is to increase safety and traffic flow. Presented solution is characterized by the non-destructive character to the road - sensor no need built into the roadway. The sensor works with standard telecommunications fibers of the G.652 standard. Other hallmarks are immunity to electromagnetic interference (EMI) and passivity of concerning the power supply. The massive expansion of optical cables within telecommunication needs along roads offers the possibility of connecting to the existing telecommunications fiber-optic network without a converter. Information can be transmitted at distances of several km up to tens km by this fiber-optic network. Set of experimental measurements in real traffic flow verified the functionality of presented solution.

  9. A fiber-optic interferometer based on non-adiabatic fiber taper and long-period fiber grating for simultaneous measurement of magnetic field and temperature

    NASA Astrophysics Data System (ADS)

    Kang, Shouxin; Zhang, Hao; Liu, Bo; Lin, Wei; Zhang, Ning; Miao, Yinping

    2016-01-01

    A dual-parameter sensor based on a fiber-optic interferometer consisting of a non-adiabatic fiber taper and a long-period fiber grating (LPFG) integrated with magnetic nanoparticle fluids has been proposed and experimentally demonstrated. Due to the Mach-Zehnder interference induced by the concatenation of the fiber taper and long-period grating, an interferometric spectrum could be acquired within the transmission resonance spectral envelope of the LPFG. Thanks to different magnetic field and temperature sensitivities of difference interference dips, simultaneous measurement of the magnetic field intensity and environmental temperature could be achieved. Moreover, due to the variation in coupling coefficients of the fiber taper and the LPFG in response to the change of the applied magnetic field intensity, some of the interference dips would exhibit opposite magnetic-field-intensity-dependent transmission loss variation behavior. Magnetic field intensity and temperature sensitivities of 0.017 31 dB Oe-1 and 0.0315 dB K-1, and -0.024 55 dB Oe-1 and -0.056 28 dB K-1 were experimentally acquired for the experimentally monitored interference dips.

  10. Fiber optic refractive index and magnetic field sensors based on microhole-induced inline Mach-Zehnder interferometers

    NASA Astrophysics Data System (ADS)

    Chen, Feifei; Jiang, Yi; Zhang, Liuchao; Jiang, Lan; Wang, Sumei

    2018-04-01

    A compact microhole-induced fiber optic inline Mach-Zehnder interferometer (MZI) is demonstrated for measurements of refractive index (RI) and magnetic field. Inline MZIs with different etched diameters, different interaction lengths and different sizes of microholes are fabricated and assessed. The optical transmission spectra of the inline MZIs immersed into a series of liquids are characterized and analysed. Experimental results show that liquid RI sensitivity as high as 539.8436 nm RIU-1 in the RI range of 1.3352-1.4113 RIU is achieved and also exhibits good linearity with a correlation coefficient  >93%. An inline MZI is also fabricated to be a magnetic field sensor by using magnetic fluid material. The experimental results show that this magnetic field sensor has a high sensitivity of  -275.6 pm Oe-1. The inline MZI-based fiber optic sensors possess many advantages, such as small size, simple fabrication, high sensitivity and good linearity, which has a wide application potential in chemical, biological and environmental sensing fields.

  11. High-temperature fiber-optic Fabry-Perot interferometric sensors.

    PubMed

    Ding, Wenhui; Jiang, Yi; Gao, Ran; Liu, Yuewu

    2015-05-01

    A photonic crystal fiber (PCF) based high-temperature fiber-optic sensor is proposed and experimentally demonstrated. The sensor head is a Fabry-Perot cavity manufactured with a short section of endless single-mode photonic crystal fiber (ESM PCF). The interferometric spectrum of the Fabry-Perot interferometer is collected by a charge coupled device linear array based micro spectrometer. A high-resolution demodulation algorithm is used to interrogate the peak wavelengths. Experimental results show that the temperature range of 1200 °C and the temperature resolution of 1 °C are achieved.

  12. High-temperature fiber-optic Fabry-Perot interferometric sensors

    NASA Astrophysics Data System (ADS)

    Ding, Wenhui; Jiang, Yi; Gao, Ran; Liu, Yuewu

    2015-05-01

    A photonic crystal fiber (PCF) based high-temperature fiber-optic sensor is proposed and experimentally demonstrated. The sensor head is a Fabry-Perot cavity manufactured with a short section of endless single-mode photonic crystal fiber (ESM PCF). The interferometric spectrum of the Fabry-Perot interferometer is collected by a charge coupled device linear array based micro spectrometer. A high-resolution demodulation algorithm is used to interrogate the peak wavelengths. Experimental results show that the temperature range of 1200 °C and the temperature resolution of 1 °C are achieved.

  13. Highly sensitive refractive index fiber inline Mach-Zehnder interferometer fabricated by femtosecond laser micromachining and chemical etching

    NASA Astrophysics Data System (ADS)

    Sun, Xiao-Yan; Chu, Dong-Kai; Dong, Xin-Ran; Zhou, Chu; Li, Hai-Tao; Luo-Zhi; Hu, You-Wang; Zhou, Jian-Ying; Cong-Wang; Duan, Ji-An

    2016-03-01

    A High sensitive refractive index (RI) sensor based on Mach-Zehnder interferometer (MZI) in a conventional single-mode optical fiber is proposed, which is fabricated by femtosecond laser transversal-scanning inscription method and chemical etching. A rectangular cavity structure is formed in part of fiber core and cladding interface. The MZI sensor shows excellent refractive index sensitivity and linearity, which exhibits an extremely high RI sensitivity of -17197 nm/RIU (refractive index unit) with the linearity of 0.9996 within the refractive index range of 1.3371-1.3407. The experimental results are consistent with theoretical analysis.

  14. Single mode tapered fiber-optic interferometer based refractive index sensor and its application to protein sensing.

    PubMed

    Yadav, T K; Narayanaswamy, R; Abu Bakar, M H; Kamil, Y Mustapha; Mahdi, M A

    2014-09-22

    We demonstrate refractive index sensors based on single mode tapered fiber and its application as a biosensor. We utilize this tapered fiber optic biosensor, operating at 1550 nm, for the detection of protein (gelatin) concentration in water. The sensor is based on the spectroscopy of mode coupling based on core modes-fiber cladding modes excited by the fundamental core mode of an optical fiber when it transitions into tapered regions from untapered regions. The changes are determined from the wavelength shift of the transmission spectrum. The proposed fiber sensor has sensitivity of refractive index around 1500 nm/RIU and for protein concentration detection, its highest sensitivity is 2.42141 nm/%W/V.

  15. Improving the accuracy of a dual-comb interferometer by suppressing the relative linewidth

    NASA Astrophysics Data System (ADS)

    Zhu, Zebin; Xu, Guangyao; Ni, Kai; Zhou, Qian; Wu, Guanhao

    2018-04-01

    We present a compact system of synchronization for two fiber-based optical frequency comb lasers. We use a free-running continuous wave laser as an intermediary to obtain the relative noise of two combs and employ an intra-cavity electro-optic modulator (EOM) to achieve active phase feedback for fast synchronization. The EOM bandwidth is 150 kHz and the relative linewidth is suppressed markedly from 300 kHz to sub-hertz values. The relative effective timing jitter of the two pulse trains is also decreased from 680 fs to 25 fs. The proposed method shows promise for developing a high-performance, low-cost, fiber-based dual-comb interferometer for ranging or spectroscopy.

  16. Distributed fiber sensing system with wide frequency response and accurate location

    NASA Astrophysics Data System (ADS)

    Shi, Yi; Feng, Hao; Zeng, Zhoumo

    2016-02-01

    A distributed fiber sensing system merging Mach-Zehnder interferometer and phase-sensitive optical time domain reflectometer (Φ-OTDR) is demonstrated for vibration measurement, which requires wide frequency response and accurate location. Two narrow line-width lasers with delicately different wavelengths are used to constitute the interferometer and reflectometer respectively. A narrow band Fiber Bragg Grating is responsible for separating the two wavelengths. In addition, heterodyne detection is applied to maintain the signal to noise rate of the locating signal. Experiment results show that the novel system has a wide frequency from 1 Hz to 50 MHz, limited by the sample frequency of data acquisition card, and a spatial resolution of 20 m, according to 200 ns pulse width, along 2.5 km fiber link.

  17. Research on the fiber Bragg grating sensor for the shock stress measurement

    PubMed Central

    Deng, Xiangyang; Chen, Guanghua; Peng, Qixian; Li, Zeren; Meng, Jianhua; Liu, Jun

    2011-01-01

    A fiber Bragg grating (FBG) sensor with an unbalanced Mach-Zehnder fiber interferometer for the shock stress measurement is proposed and demonstrated. An analysis relationship between the shock stress and the central reflection wavelength shift of the FBG is firstly derived. In this sensor, the optical path difference of the unbalanced Mach-Zehnder fiber interferometer is ∼3.1 mm and the length of the FBG is 2 mm. An arctangent function reduction method, which can avoid sine function's insensitive zone where the shock stress measurement has a reduced accuracy, is presented. A shock stress measurement of water driven by one stage gun (up to 1.4 GPa), with good theoretical accuracy (∼10%), is launched. PMID:22047282

  18. Digital phase demodulation for low-coherence interferometry-based fiber-optic sensors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Y.; Strum, R.; Stiles, D.

    In this paper, we describe a digital phase demodulation scheme for low-coherence interferometry-based fiber-optic sensors by employing a simple generation of phase-shifted signals at the interrogation interferometer. The scheme allows a real-time calibration process and offers capability of measuring large variations (up to the coherence of the light source) at the bandwidth that is only limited by the data acquisition system. Finally, the proposed phase demodulation method is analytically derived and its validity and performance are experimentally verified using fiber-optic Fabry–Perot sensors for measurement of strains and vibrations.

  19. Digital phase demodulation for low-coherence interferometry-based fiber-optic sensors

    DOE PAGES

    Liu, Y.; Strum, R.; Stiles, D.; ...

    2017-11-20

    In this paper, we describe a digital phase demodulation scheme for low-coherence interferometry-based fiber-optic sensors by employing a simple generation of phase-shifted signals at the interrogation interferometer. The scheme allows a real-time calibration process and offers capability of measuring large variations (up to the coherence of the light source) at the bandwidth that is only limited by the data acquisition system. Finally, the proposed phase demodulation method is analytically derived and its validity and performance are experimentally verified using fiber-optic Fabry–Perot sensors for measurement of strains and vibrations.

  20. Precise measurement of single-mode fiber lengths using a gain-switched distributed feedback laser with delayed optical feedback.

    PubMed

    Wada, Kenji; Matsukura, Satoru; Tanaka, Amaka; Matsuyama, Tetsuya; Horinaka, Hiromichi

    2015-09-07

    A simple method to measure single-mode optical fiber lengths is proposed and demonstrated using a gain-switched 1.55-μm distributed feedback laser without a fast photodetector or an optical interferometer. From the variation in the amplified spontaneous emission noise intensity with respect to the modulation frequency of the gain switching, the optical length of a 1-km single-mode fiber immersed in water is found to be 1471.043915 m ± 33 μm, corresponding to a relative standard deviation of 2.2 × 10(-8). This optical length is an average value over a measurement time of one minute under ordinary laboratory conditions.

  1. An Extrinsic Fabry-Perot Interferometric Sensor using Intermodal Phase Shifting and Demultiplexing of the Propagating Modes in a Few-Mode Fiber

    NASA Astrophysics Data System (ADS)

    Chatterjee, Julius

    This dissertation demonstrates a fiber-optic phase shifted Fabry-Perot interferometer (PS-FPI) as a sensor using modal demultiplexing. Single wavelength Fabry-Perot interferometers suffer from fringe ambiguity and loss of sensitivity at fringe extremes. These hindrances cause it to be a secondary choice when being selected for a measurement task at hand, and more often than not, white light based sensors are selected in favor of the single wavelength Fabry-Perot sensors. This work aims to introduce a technique involving the demultiplexing of the propagating linearly polarized (LP) modes in few mode fibers to obtain two fringe systems from the same sensing cavity. This results in a few-mode interferometer that effectively has two to three orders of magnitude higher perturbation sensitivity than a conventional few mode interferometer for the same sensing region. In this work, two different modal demultiplexing techniques (MD) are used to demodulate the propagating modes and to obtain two fringe sets. These output fringe sets are shifted in phase with respect to each other by a phase shift due to the propagation of the modes in the fiber-optic layout. A method of controlling this phase shift by straining a length of a two mode fiber located separate from the PS-FPI cavity is demonstrated and corresponding changes in phase shifts are shown. The results show a controllable phase shift for both the MD techniques, which is useful in sensing by permitting quadrature demodulation of interferometric fringes and also results in a novel few-mode sensing system having more than two orders of magnitude sensitivity than conventional few-mode devices.

  2. OHANA, the Optical Hawaiian Array for Nanoradian Astronomy. Towards kilometric infrared arrays

    NASA Astrophysics Data System (ADS)

    Perrin, G.

    Optical/Infrared Interferometry has become a mature technique with more and more astrophysical results in the past years. For historical and technical reasons, the traditional field of investigation of interferometers is stellar physics. With the advent of large telescopes and adaptive optics, more resolving and more sensitive interferometers are within reach with the promise to widen the target list. In particular, extragalactic sources will benefit from this revolution. A prototype instrument, 'OHANA, is described here. 'OHANA uses single-mode fibers to turn the large telescopes of the Mauna Kea summit into a large near-infrared kilometric array.

  3. A Fiber-Optic Sensor for Leak Detection in a Space Environment

    NASA Technical Reports Server (NTRS)

    Sinko, John E.; Korman, Valentin; Hendrickson, Adam; Polzin, Kurt A.

    2009-01-01

    A miniature fiber-optic, laser-based, interferometric leak detector is presented for application as a means to detect on-orbit gas leaks. The sensor employs a fiber-coupled modified Michelson interferometer to detect gas leaks by measuring an increase in gas density in the sensing region. Monitoring changes in the fringe pattern output by the interferometer allows for direct measurement of the gas density in the sensing region and, under the assumption of an equation of state, this can be used to obtain a pressure measurement. Measurements obtained over a pressure range from 20 mtorr to 760 torr using a prototypical interferometer on working gases of air, nitrogen, argon, and helium generally exhibit agreement with a theoretical prediction of the pressure increase required before an interference fringe completely moves over the detector. Additional measurements performed on various gases demonstrate the range of detectable species, measuring sub-torr pressure changes in the process. A high-fidelity measurement places the ultimate pressure resolution for this particular sensor configuration in the 10 mtorr range. Time-resolved data prove the capability of this sensor to detect fast gas flow phenomena associated with transients and pressure waves.

  4. All-optical phase shifter and switch near 1550nm using tungsten disulfide (WS2) deposited tapered fiber.

    PubMed

    Wu, Kan; Guo, Chaoshi; Wang, Hao; Zhang, Xiaoyan; Wang, Jun; Chen, Jianping

    2017-07-24

    All-optical phase shifters and switches play an important role for various all-optical applications including all-optical signal processing, sensing and communication. In this paper, we demonstrate a fiber all-optical phase shifter using few-layer 2D material tungsten disulfide (WS 2 ) deposited on a tapered fiber. WS 2 absorbs injected 980 nm pump (control light) and generates heat, which changes the refractive index of both WS 2 and tapered fiber due to thermo-optic effect and achieves a maximum phase shift of 6.1π near 1550 nm. The device has a loss of 3.7 dB. By constructing a Mach-Zehnder interferometer with WS 2 based phase shifter in one arm, an all-optical switch is also obtained with an extinction ratio of 15 dB and a rise time of 7.3 ms. This all fiber low-cost and compact optical phase shifter and switch demonstrates the potential of 2D transition metal dichalcogenides for all-optical signal processing devices.

  5. Development of a parallel demodulation system used for extrinsic Fabry-Perot interferometer and fiber Bragg grating sensors.

    PubMed

    Jiang, Junfeng; Liu, Tiegen; Zhang, Yimo; Liu, Lina; Zha, Ying; Zhang, Fan; Wang, Yunxin; Long, Pin

    2006-01-20

    A parallel demodulation system for extrinsic Fabry-Perot interferometer (EFPI) and fiber Bragg grating (FBG) sensors is presented, which is based on a Michelson interferometer and combines the methods of low-coherence interference and a Fourier-transform spectrum. The parallel demodulation theory is modeled with Fourier-transform spectrum technology, and a signal separation method with an EFPI and FBG is proposed. The design of an optical path difference scanning and sampling method without a reference light is described. Experiments show that the parallel demodulation system has good spectrum demodulation and low-coherence interference demodulation performance. It can realize simultaneous strain and temperature measurements while keeping the whole system configuration less complex.

  6. High-sensitivity fiber optic acoustic sensors

    NASA Astrophysics Data System (ADS)

    Lu, Ping; Liu, Deming; Liao, Hao

    2016-11-01

    Due to the overwhelming advantages compared with traditional electronicsensors, fiber-optic acoustic sensors have arisen enormous interest in multiple disciplines. In this paper we present the recent research achievements of our group on fiber-optic acoustic sensors. The main point of our research is high sensitivity interferometric acoustic sensors, including Michelson, Sagnac, and Fabry-Pérot interferometers. In addition, some advanced technologies have been proposed for acoustic or acoustic pressure sensing such as single-mode/multimode fiber coupler, dual FBGs and multi-longitudinal mode fiber laser based acoustic sensors. Moreover, our attention we have also been paid on signal demodulation schemes. The intensity-based quadrature point (Q-point) demodulation, two-wavelength quadrature demodulation and symmetric 3×3 coupler methodare discussed and compared in this paper.

  7. 3D refractive index measurements of special optical fibers

    NASA Astrophysics Data System (ADS)

    Yan, Cheng; Huang, Su-Juan; Miao, Zhuang; Chang, Zheng; Zeng, Jun-Zhang; Wang, Ting-Yun

    2016-09-01

    A digital holographic microscopic chromatography-based approach with considerably improved accuracy, simplified configuration and performance stability is proposed to measure three dimensional refractive index of special optical fibers. Based on the approach, a measurement system is established incorporating a modified Mach-Zehnder interferometer and lab-developed supporting software for data processing. In the system, a phase projection distribution of an optical fiber is utilized to obtain an optimal digital hologram recorded by a CCD, and then an angular spectrum theory-based algorithm is adopted to extract the phase distribution information of an object wave. The rotation of the optic fiber enables the experimental measurements of multi-angle phase information. Based on the filtered back projection algorithm, a 3D refraction index of the optical fiber is thus obtained at high accuracy. To evaluate the proposed approach, both PANDA fibers and special elliptical optical fiber are considered in the system. The results measured in PANDA fibers agree well with those measured using S14 Refractive Index Profiler, which is, however, not suitable for measuring the property of a special elliptical fiber.

  8. Polarization maintaining fiber magnetic sensor based on the digital phase generated carrier technology

    NASA Astrophysics Data System (ADS)

    Zhang, Xueliang; Meng, Zhou; Hu, Zhengliang; Yang, Huayong; Song, Zhangqi; Hu, Yongming

    2008-12-01

    A polarization maintaining fiber (PMF) magnetic field sensor based on a digital phase generated carrier (PGC) technology is presented. A magnetic sensor constructed with two magnetostrictive strips attached on the sensing fiber is joined in the sensing arm of a fiber Michelson interferometer. The fiber optic interferometric system is made of all PMF, which inhibits the polarization-induced signal fading. The light source is a fiber laser which can be modulated directly. The PGC metnod is used to demodulate magnetic field signal avoiding phase induced interferometric signal fading, and ensure the sensing partto be all fiber structure. A fiber optic magnetic field sensor with appreciate size for the fiber optic hydrophone towed array is obtained, which can be used to sense the enviromental magnetic field along the sensing direction.This sensor is a good choice for the directional angle measurement through sensing the Earth magnetic field in the array shape measurement of a fiber optic hydrophone towed array.

  9. Pressure sensor based on the fiber-optic extrinsic Fabry-Perot interferometer

    NASA Astrophysics Data System (ADS)

    Yu, Qingxu; Zhou, Xinlei

    2011-03-01

    Pressure sensors based on fiber-optic extrinsic Fabry-Perot interferometer (EFPI) have been extensively applied in various industrial and biomedical fields. In this paper, some key improvements of EFPI-based pressure sensors such as the controlled thermal bonding technique, diaphragm-based EFPI sensors, and white light interference technology have been reviewed. Recent progress on signal demodulation method and applications of EFPI-based pressure sensors has been introduced. Signal demodulation algorithms based on the cross correlation and mean square error (MSE) estimation have been proposed for retrieving the cavity length of EFPI. Absolute measurement with a resolution of 0.08 nm over large dynamic range has been carried out. For downhole monitoring, an EFPI and a fiber Bragg grating (FBG) cascade multiplexing fiber-optic sensor system has been developed, which can operate in temperature 300 °C with a good long-term stability and extremely low temperature cross-sensitivity. Diaphragm-based EFPI pressure sensors have been successfully used for low pressure and acoustic wave detection. Experimental results show that a sensitivity of 31 mV/Pa in the frequency range of 100 Hz to 12.7 kHz for aeroacoustic wave detection has been obtained.

  10. Optical network of silicon micromachined sensors

    NASA Astrophysics Data System (ADS)

    Wilson, Mark L.; Burns, David W.; Zook, J. David

    1996-03-01

    The Honeywell Technology Center, in collaboration with the University of Wisconsin and the Mobil Corporation, and under funding from this ARPA sponsored program, are developing a new type of `hybrid' micromachined silicon/fiber optic sensor that utilizes the best attributes of each technology. Fiber optics provide a noise free method to read out the sensor without electrical power required at the measurement point. Micromachined silicon sensor techniques provide a method to design many different types of sensors such as temperature, pressure, acceleration, or magnetic field strength and report the sensor data using FDM methods. Our polysilicon resonant microbeam structures have a built in Fabry-Perot interferometer that offers significant advantages over other configurations described in the literature. Because the interferometer is an integral part of the structure, the placement of the fiber becomes non- critical, and packaging issues become considerably simpler. The interferometer spacing are determined by the thin-film fabrication processes and therefore can be extremely well controlled. The main advantage, however, is the integral vacuum cavity that ensures high Q values. Testing results have demonstrated relaxed alignment tolerances in packaging these devices, with an excellent Signal to Noise Ratio. Networks of 16 or more sensors are currently being developed. STORM (Strain Transduction by Optomechanical Resonant Microbeams) sensors can also provide functionality and self calibration information which can be used to improve the overall system reliability. Details of the sensor and network design, as well as test results, are presented.

  11. Partially reduced graphene oxide based FRET on fiber optic interferometer for biochemical detection

    NASA Astrophysics Data System (ADS)

    Yao, B. C.; Wu, Y.; Yu, C. B.; He, J. R.; Rao, Y. J.; Gong, Y.; Chen, Y. F.; Li, Y. R.

    2017-04-01

    An all-fiber graphene oxide (GO) based 'FRET on Fiber' concept is proposed and applied in biochemical detections. This method is of both good selectivity and high sensitivity, with detection limits of 1.2 nM, 1.3 μM and 1 pM, for metal ion, dopamine and single-stranded DNA (ssDNA), respectively.

  12. Adaptable Optical Fiber Displacement-Curvature Sensor Based on a Modal Michelson Interferometer with a Tapered Single Mode Fiber

    PubMed Central

    Salceda-Delgado, G.; Martinez-Rios, A.; Selvas-Aguilar, R.; Álvarez-Tamayo, R. I.; Castillo-Guzman, A.; Ibarra-Escamilla, B.; Durán-Ramírez, V. M.; Enriquez-Gomez, L. F.

    2017-01-01

    A compact, highly sensitive optical fiber displacement and curvature radius sensor is presented. The device consists of an adiabatic bi-conical fused fiber taper spliced to a single-mode fiber (SMF) segment with a flat face end. The bi-conical taper structure acts as a modal coupling device between core and cladding modes for the SMF segment. When the bi-conical taper is bent by an axial displacement, the symmetrical bi-conical shape of the tapered structure is stressed, causing a change in the refractive index profile which becomes asymmetric. As a result, the taper adiabaticity is lost, and interference between modes appears. As the bending increases, a small change in the fringe visibility and a wavelength shift on the periodical reflection spectrum of the in-fiber interferometer is produced. The displacement sensitivity and the spectral periodicity of the device can be adjusted by the proper selection of the SMF length. Sensitivities from around 1.93 to 3.4 nm/mm were obtained for SMF length between 7.5 and 12.5 cm. Both sensor interrogations, wavelength shift and visibility contrast, can be used to measure displacement and curvature radius magnitudes. PMID:28574421

  13. Adaptable Optical Fiber Displacement-Curvature Sensor Based on a Modal Michelson Interferometer with a Tapered Single Mode Fiber.

    PubMed

    Salceda-Delgado, G; Martinez-Rios, A; Selvas-Aguilar, R; Álvarez-Tamayo, R I; Castillo-Guzman, A; Ibarra-Escamilla, B; Durán-Ramírez, V M; Enriquez-Gomez, L F

    2017-06-02

    A compact, highly sensitive optical fiber displacement and curvature radius sensor is presented. The device consists of an adiabatic bi-conical fused fiber taper spliced to a single-mode fiber (SMF) segment with a flat face end. The bi-conical taper structure acts as a modal coupling device between core and cladding modes for the SMF segment. When the bi-conical taper is bent by an axial displacement, the symmetrical bi-conical shape of the tapered structure is stressed, causing a change in the refractive index profile which becomes asymmetric. As a result, the taper adiabaticity is lost, and interference between modes appears. As the bending increases, a small change in the fringe visibility and a wavelength shift on the periodical reflection spectrum of the in-fiber interferometer is produced. The displacement sensitivity and the spectral periodicity of the device can be adjusted by the proper selection of the SMF length. Sensitivities from around 1.93 to 3.4 nm/mm were obtained for SMF length between 7.5 and 12.5 cm. Both sensor interrogations, wavelength shift and visibility contrast, can be used to measure displacement and curvature radius magnitudes.

  14. Efficient laser noise reduction method via actively stabilized optical delay line.

    PubMed

    Li, Dawei; Qian, Cheng; Li, Ye; Zhao, Jianye

    2017-04-17

    We report a fiber laser noise reduction method by locking it to an actively stabilized optical delay line, specifically a fiber-based Mach-Zehnder interferometer with a 10 km optical fiber spool. The fiber spool is used to achieve large arm imbalance. The heterodyne signal of the two arms converts the laser noise from the optical domain to several megahertz, and it is used in laser noise reduction by a phase-locked loop. An additional phase-locked loop is induced in the system to compensate the phase noise due to environmentally induced length fluctuations of the optical fiber spool. A major advantage of this structure is the efficient reduction of out-of-loop frequency noise, particularly at low Fourier frequency. The frequency noise reaches -30 dBc/Hz at 1 Hz, which is reduced by more than 90 dB compared with that of the laser in its free-running state.

  15. Recent Developments Of Optical Fiber Sensors For Automotive Use

    NASA Astrophysics Data System (ADS)

    Sasayama, Takao; Oho, Shigeru; Kuroiwa, Hiroshi; Suzuki, Seikoo

    1987-12-01

    Optical fiber sensing technologies are expected to apply for many future electronic control systems in automobiles, because of their original outstanding features, such as high noise immunity, high heat resistance, and flexible light propagation paths which can be applicable to measure the movements and directions of the mobiles. In this paper, two typical applications of fiber sensing technologies in automobiles have been described in detail. The combustion flame detector is one of the typical applications of a fiber spectroscopic technology which utilizes the feature of high noise and heat resistibility and remote sensibility. Measurements of engine combustion conditions, such as the detonation, the combustion initiation, and the air-fuel ratio, have been demonstrated in an experimental fiber sensing method. Fiber interferometers, such as a fiber gyroscope, have a lot of possibilities in future mobile applications because they are expandable to many kinds of measurements for movements and physical variables. An optical fiber gyroscope utilizing the single polarized optical fiber and optical devices has been developed. Quite an accurate measurement of vehicle position was displayed on a prototype navigation system which installed the fiber gyroscope as a rotational speed sensor.

  16. Measurement of morphing wing deflection by a cross-coherence fiber optic interferometric technique

    NASA Astrophysics Data System (ADS)

    Tomić, Miloš C.; Djinović, Zoran V.; Scheerer, Michael; Petricevic, Slobodan J.

    2018-01-01

    A fiber-optic interferometric technique aimed at measuring the deflection of aircrafts’ morphing wings is presented. The wing deflection induces a strain in the sensing fiber optic coils that are firmly fixed onto the wing. A change of the phase angle of the light propagating through the fiber is measured by an ‘all-in-fiber’ Michelson interferometer based on a 3 × 3 fiber-optic coupler. Two light sources of different coherence lengths and wavelengths are simultaneously used to ensure a wide measurement range and high accuracy. A new technique for determination of the zero deflection point using the cross-correlation of the two interferograms is proposed. The experiments performed on a specimen made of a carbon-fiber-reinforced plastic honeycomb structure demonstrated a relative uncertainty <1% and a precision of about 0.06° in the measuring range ±5° of the morphing wing deflection.

  17. Stroboscopic Imaging Interferometer for MEMS Performance Measurement

    DTIC Science & Technology

    2007-07-15

    Optical Iocusing L.aser Fiber Optics I) c 0 Mim er Collimator - C d Microcope lcam. indo Cold Objcclive Splitte FingerCCD "Mount irnro MEMS PicL zStack...Electronics and Photonics Laboratory: Microelectronics, VLSI reliability, failure analysis, solid-state device physics, compound semiconductors

  18. Fiber optic interferometry for industrial process monitoring and control applications

    NASA Astrophysics Data System (ADS)

    Marcus, Michael A.

    2002-02-01

    Over the past few years we have been developing applications for a high-resolution (sub-micron accuracy) fiber optic coupled dual Michelson interferometer-based instrument. It is being utilized in a variety of applications including monitoring liquid layer thickness uniformity on coating hoppers, film base thickness uniformity measurement, digital camera focus assessment, optical cell path length assessment and imager and wafer surface profile mapping. The instrument includes both coherent and non-coherent light sources, custom application dependent optical probes and sample interfaces, a Michelson interferometer, custom electronics, a Pentium-based PC with data acquisition cards and LabWindows CVI or LabView based application specific software. This paper describes the development evolution of this instrument platform and applications highlighting robust instrument design, hardware, software, and user interfaces development. The talk concludes with a discussion of a new high-speed instrument configuration, which can be utilized for high speed surface profiling and as an on-line web thickness gauge.

  19. A self-mixing based ring-type fiber-optic acoustic sensor

    NASA Astrophysics Data System (ADS)

    Wang, Lutang; Wu, Chunxu; Fang, Nian

    2014-07-01

    A novel, simple fiber-optic acoustic sensor consisting of a self-mixing effect based laser source and a ring-type interferometer is presented. With weak external optical feedbacks, the acoustic wave signals can be detected by measuring the changes of oscillating frequency of the laser diode, induced by the disturbances of sensing fiber, with the ring-type interferometer. The operation principles of the sensor system are explored in-depth and the experimental researches are carried out. The acoustic wave signals produced by various actions, such as by pencil broken, mental pin free falling and PZT are detected for evaluating the sensing performances of the experimental system. The investigation items include the sensitivity as well as frequency responses of the sensor system. An experiment for the detection of corona discharges is carried out, which occur in a high-voltage environment between two parallel copper electrodes, under different humidity levels. The satisfied experimental results are obtained. These experimental results well prove that our proposed sensing system has very high sensitivity and excellent high frequency responses characteristics in the detections of weak, high-frequency acoustic wave signals.

  20. Highly stable multi-wavelength erbium-doped fiber linear laser based on modal interference

    NASA Astrophysics Data System (ADS)

    Herrera-Piad, L. A.; Jauregui-Vazquez, D.; Lopez-Dieguez, Y.; Estudillo-Ayala, J. M.; Hernandez-Garcia, J. C.; Sierra-Hernandez, J. M.; Bianchetti, M.; Rojas-Laguna, R.

    2018-03-01

    We report a linear fiber laser cavity based on an all-fiber Fabry-Perot interferometer and bi-tapered optical fiber for multi-wavelength emission generation. Curvature and strain are used to operate the laser system and the number of lines as well, the emission regions are stronger related to the physical effect applied, due to the phase alteration between the multiple fiber optic modes involved. The original laser emissions present zero wavelength variations, minimal power fluctuations and small spacing mode (1 nm). Additionally, a nonlinear fiber was employed trying to improve the performance of the multiple lasing lines. This system offers a low implementation cost, compactness and good laser parameters.

  1. High resolution (<1nm) interferometric fiber-optic sensor of vibrations in high-power transformers.

    PubMed

    Garcia-Souto, Jose A; Lamela-Rivera, Horacio

    2006-10-16

    A novel fiber-optic interferometric sensor is presented for vibrations measurements and analysis. In this approach, it is shown applied to the vibrations of electrical structures within power transformers. A main feature of the sensor is that an unambiguous optical phase measurement is performed using the direct detection of the interferometer output, without external modulation, for a more compact and stable implementation. High resolution of the interferometric measurement is obtained with this technique (<1 nm). The optical-fiber transducer is also specifically designed for magnifying the localized vibrations in order to modulate deeply the interferometric signal. Other advantages of the implementation for measurements within transformers are also highlighted.

  2. Micromachined array tip for multifocus fiber-based optical coherence tomography.

    PubMed

    Yang, Victor X D; Munce, Nigel; Pekar, Julius; Gordon, Maggie L; Lo, Stewart; Marcon, Norman E; Wilson, Brian C; Vitkin, I Alex

    2004-08-01

    High-resolution optical coherence tomography demands a large detector bandwidth and a high numerical aperture for real-time imaging, which is difficult to achieve over a large imaging depth. To resolve these conflicting requirements we propose a novel multifocus fiber-based optical coherence tomography system with a micromachined array tip. We demonstrate the fabrication of a prototype four-channel tip that maintains a 9-14-microm spot diameter with more than 500 microm of imaging depth. Images of a resolution target and a human tooth were obtained with this tip by use of a four-channel cascaded Michelson fiber-optic interferometer, scanned simultaneously at 8 kHz with geometric power distribution across the four channels.

  3. Optical fiber extrinsic Fabry-Perot interferometer sensors for ultrasound detection

    NASA Astrophysics Data System (ADS)

    Sun, Qingguo; Chen, Na; Ding, Yuetong; Chen, Zhenyi; Wang, Tingyun

    2009-11-01

    In this paper, a new method is proposed to fabricate an optical fiber extrinsic Fabry-Perot interferometer (EFPI) as an ultrasonic sensor. An acoustic emission detecting system is constructed based on multiple EFPI sensors and demodulation circuit. Ultrasound detection experiments were done from both traditional piezoelectric transducer (PZT) and high voltage discharge. In the experiments, strong ultrasound signals were detected in both cases. The signal attenuation related to the distance and the angle between the acoustic emission source and the FP sensor are obtained. The results indicate that the receiving angle of the FP sensor is nearly 90° and the maximum detection distance in the air is more than 200cm. Furthermore, four sensors are used to locate the position of the ultrasound source produced by high voltage discharge.

  4. Arrayed waveguide Sagnac interferometer.

    PubMed

    Capmany, José; Muñoz, Pascual; Sales, Salvador; Pastor, Daniel; Ortega, Beatriz; Martinez, Alfonso

    2003-02-01

    We present a novel device, an arrayed waveguide Sagnac interferometer, that combines the flexibility of arrayed waveguides and the wide application range of fiber or integrated optics Sagnac loops. We form the device by closing an array of wavelength-selective light paths provided by two arrayed waveguides with a single 2 x 2 coupler in a Sagnac configuration. The equations that describe the device's operation in general conditions are derived. A preliminary experimental demonstration is provided of a fiber prototype in passive operation that shows good agreement with the expected theoretical performance. Potential applications of the device in nonlinear operation are outlined and discussed.

  5. Fiber Fabry-Perot interferometer sensor for measuring resonances of piezoelectric elements

    NASA Astrophysics Data System (ADS)

    da Silva, Ricardo E.; Oliveira, Roberson A.; Pohl, Alexandre A. P.

    2011-05-01

    The development of a fiber extrinsic Fabry-Perot interferometer for measuring vibration amplitude and resonances of piezoelectric elements is reported. The signal demodulation method based on the use of an optical spectrum analyzer allows the measurement of displacements and resonances with high resolution. The technique consists basically in monitoring changes in the intensity or the wavelength of a single interferometric fringe at a point of high sensitivity in the sensor response curve. For sensor calibration, three signal processing techniques were employed. Vibration amplitude measurement with 0.84 nm/V sensitivity and the characterization of the piezo resonance is demonstrated.

  6. Research of hydroelectric generating set low-frequency vibration monitoring system based on optical fiber sensing

    NASA Astrophysics Data System (ADS)

    Min, Li; Zhang, Xiaolei; Zhang, Faxiang; Sun, Zhihui; Li, ShuJuan; Wang, Meng; Wang, Chang

    2017-10-01

    In order to satisfy hydroelectric generating set low-frequency vibration monitoring, the design of Passive low-frequency vibration monitoring system based on Optical fiber sensing in this paper. The hardware of the system adopts the passive optical fiber grating sensor and unbalanced-Michelson interferometer. The software system is used to programming by Labview software and finishing the control of system. The experiment show that this system has good performance on the standard vibration testing-platform and it meets system requirements. The frequency of the monitoring system can be as low as 0.2Hz and the resolution is 0.01Hz.

  7. Interferometric measurement of refractive index modification in a single mode microfiber

    NASA Astrophysics Data System (ADS)

    Ahmed, Farid; Ahsani, Vahid; Jun, Martin B. G.

    2017-02-01

    Efficient and cost effective measurement of the refractive index profile in an optical fiber is a significant technical job to design and manufacture in-fiber photonic devices and communication systems. For instance, to design fiber gratings, it is required to estimate the refractive index modulation to be inscribed by the fabrication apparatus such as ultraviolet or infrared lasers. Mach-Zehnder interferometer (MZI) based quantification of refractive index change written in single mode microfiber by femtosecond laser radiation is presented in this study. The MZI is constructed by splicing a microfiber (core diameter: 3.75 μm, cladding diameter: 40 μm) between standard single mode fibers. To measure the RI inscribed by infrared femtosecond laser, 200 μm length of the core within the MZI was scanned with laser radiation. As the higher index was written within 200 μm length of the core, the transmission spectrum of the interferometer displayed a corresponding red shift. The observed spectral shift was used to calculate the amount of refractive index change inscribed by the femtosecond irradiation. For the MZI length of 3.25 mm, and spectral shift of 0.8 nm, the calculated refractive index was found to be 0.00022. The reported results display excellent agreement between theory and experimental findings. Demonstrated method provides simple yet very effective on-site measurement of index change in optical fibers. Since the MZI can be constructed in diverse fiber types, this technique offers flexibility to quantify index change in various optical fibers.

  8. Jones matrix analysis for a polarization-sensitive optical coherence tomography system using fiber-optic components.

    PubMed

    Park, B Hyle; Pierce, Mark C; Cense, Barry; de Boer, Johannes F

    2004-11-01

    We present an analysis for polarization-sensitive optical coherence tomography that facilitates the unrestricted use of fiber and fiber-optic components throughout an interferometer and yields sample birefringence, diattenuation, and relative optic axis orientation. We use a novel Jones matrix approach that compares the polarization states of light reflected from the sample surface with those reflected from within a biological sample for pairs of depth scans. The incident polarization alternated between two states that are perpendicular in a Poincaré sphere representation to ensure proper detection of tissue birefringence regardless of optical fiber contributions. The method was validated by comparing the calculated diattenuation of a polarizing sheet, chicken tendon, and muscle with that obtained by independent measurement. The relative importance of diattenuation versus birefringence to angular displacement of Stokes vectors on a Poincaré sphere was quantified.

  9. Optical Sensors Based on Single Arm Thin Film Waveguide Interferometer

    NASA Technical Reports Server (NTRS)

    Sarkisov, Sergey S.

    1997-01-01

    All the goals of the research effort for the first year were met by the accomplishments. Additional efforts were done to speed up the process of development and construction of the experimental gas chamber which will be completed by the end of 1997. This chamber incorporates vacuum sealed multimode optical fiber lines which connect the sensor to the remote light source and signal processing equipment. This optical fiber line is a prototype of actual optical communication links connecting real sensors to a control unit within an aircraft or spacecraft. An important problem which we are planning to focus on during the second year is coupling of optical fiber line to the sensor. Currently this problem is solved using focusing optics and prism couplers. More reliable solutions are planned to be investigated.

  10. Interferometric sensor based on the polarization-maintaining fibers

    NASA Astrophysics Data System (ADS)

    Cubik, Jakub; Kepak, Stanislav; Doricak, Jan; Vašinek, Vladimir; Liner, Andrej; Papes, Martin

    2012-01-01

    The interferometers composed of optical fibers are due to its high sensitivity capable of to measure various influences affecting the fiber. These influences may be bending or different sorts of fiber deformations, vibration, temperature, etc. In this case the vibration is the measured quantity, which is evaluated by analyzing the interference fringes representing changes in the fiber. Was used a Mach-Zehnder interferometer composed of the polarization maintaining elements. The polarization maintaining elements were used because of high sensitivity to polarization state inside the interferometer. The light was splitted into the two optical paths, where the first one is the reference fiber and it is separated from the actual phenomenon, and the second one is measuring fiber, which is directly exposed to vibration transmission from the underlying surface. The light source was narrowband DFB laser serating at a wavelength of 1550nm and as a detector an InGaAs PIN photodiode were used in this measurement. The electrical signal from the photodiode was amplified and fed into the measuring card. On the incoming signal the FFT was applied, which performs the transformation into the frequency domain and the results were further evaluated by software. We were evaluating the characteristic frequencies and their amplitude ratios. The frequency responses are unique for a given phenomenon, thus it is possible to identify recurring events by the characteristic frequencies and their amplitude ratios. The frequency range was limited by the properties of the used speaker, by the frequency characteristics of the filter in the amplifier and used resonant element. For the experiment evaluation the repeated impact of the various spherical objects on the surface board was performed and measured. The stability of amplitude and frequency and also the frequency range was verified in this measurement.

  11. Multichannel Dynamic Fourier-Transform IR Spectrometer

    NASA Astrophysics Data System (ADS)

    Balashov, A. A.; Vaguine, V. A.; Golyak, Il. S.; Morozov, A. N.; Khorokhorin, A. I.

    2017-09-01

    A design of a multichannel continuous scan Fourier-transform IR spectrometer for simultaneous recording and analysis of the spectral characteristics of several objects is proposed. For implementing the design, a multi-probe fiber is used, constructed from several optical fibers connected into a single optical connector and attached at the output of the interferometer. The Fourier-transform spectrometer is used as a signal modulator. Each fiber is individually mated with an investigated sample and a dedicated radiation detector. For the developed system, the radiation intensity of the spectrometer is calculated from the condition of the minimum spectral resolution and parameters of the optical fibers. Using the proposed design, emission spectra of a gas-discharge neon lamp have been recorded using a single fiber 1 mm in diameter with a numerical aperture NA = 0.22.

  12. Photoacoustic projection imaging using an all-optical detector array

    NASA Astrophysics Data System (ADS)

    Bauer-Marschallinger, J.; Felbermayer, K.; Berer, T.

    2018-02-01

    We present a prototype for all-optical photoacoustic projection imaging. By generating projection images, photoacoustic information of large volumes can be retrieved with less effort compared to common photoacoustic computed tomography where many detectors and/or multiple measurements are required. In our approach, an array of 60 integrating line detectors is used to acquire photoacoustic waves. The line detector array consists of fiber-optic MachZehnder interferometers, distributed on a cylindrical surface. From the measured variation of the optical path lengths of the interferometers, induced by photoacoustic waves, a photoacoustic projection image can be reconstructed. The resulting images represent the projection of the three-dimensional spatial light absorbance within the imaged object onto a two-dimensional plane, perpendicular to the line detector array. The fiber-optic detectors achieve a noise-equivalent pressure of 24 Pascal at a 10 MHz bandwidth. We present the operational principle, the structure of the array, and resulting images. The system can acquire high-resolution projection images of large volumes within a short period of time. Imaging large volumes at high frame rates facilitates monitoring of dynamic processes.

  13. Fiber sensor for non-contact estimation of vital bio-signs

    NASA Astrophysics Data System (ADS)

    Sirkis, Talia; Beiderman, Yevgeny; Agdarov, Sergey; Beiderman, Yafim; Zalevsky, Zeev

    2017-05-01

    Continuous noninvasive measurement of vital bio-signs, such as cardiopulmonary parameters, is an important tool in evaluation of the patient's physiological condition and health monitoring. On the demand of new enabling technologies, some works have been done in arterial pulse monitoring using optical fiber sensors. In this paper, we introduce a novel device based on single mode in-fibers Mach-Zehnder interferometer (MZI) to detect heartbeat, respiration and pulse wave velocity (PWV). The introduced interferometer is based on a new implanted scheme. It replaces the conventional MZI realized by inserting of discontinuities in the fiber to break the total internal reflection and scatter/collect light. The proposed fiber sensor was successfully incorporated into shirt to produce smart clothing. The measurements obtained from the smart clothing could be obtained in comfortable manner and there is no need to have an initial calibration or a direct contact between the sensor and the skin of the tested individual.

  14. Simultaneous measurement of refractive index, strain and temperature using a tapered structure based on SMF

    NASA Astrophysics Data System (ADS)

    Zhang, Na; Xu, Wei; You, Shanhong; Yu, Cheungchuen; Yu, Changyuan; Dong, Bo; Li, Kunpu

    2018-03-01

    A novel fiber-optic sensing structure based on miniaturized modal interferometer (MMI) for simultaneous refractive index (RI), strain and temperature measurement is proposed. It is mainly based on Mach-Zehnder interferometer (MZI) and formed by introducing a down taper between two adjacent up tapers in one single mode fiber (SMF). Experimental results demonstrate a RI sensitivity of 131.93 nm/RIU, a strain sensitivity of 0.0007 nm/ με and a temperature sensitivity of 0.0878 nm/°C respectively. The sensor is merely made of SMF which is cheap and available, and the whole fabrication process contains only cleaving and splicing and can be well controlled by a commercial fiber splicer.

  15. A compact fiber optics-based heterodyne combined normal and transverse displacement interferometer.

    PubMed

    Zuanetti, Bryan; Wang, Tianxue; Prakash, Vikas

    2017-03-01

    While Photonic Doppler Velocimetry (PDV) has become a common diagnostic tool for the measurement of normal component of particle motion in shock wave experiments, this technique has not yet been modified for the measurement of combined normal and transverse motion, as needed in oblique plate impact experiments. In this paper, we discuss the design and implementation of a compact fiber-optics-based heterodyne combined normal and transverse displacement interferometer. Like the standard PDV, this diagnostic tool is assembled using commercially available telecommunications hardware and uses a 1550 nm wavelength 2 W fiber-coupled laser, an optical focuser, and single mode fibers to transport light to and from the target. Two additional optical probes capture first-order beams diffracted from a reflective grating at the target free-surface and deliver the beams past circulators and a coupler where the signal is combined to form a beat frequency. The combined signal is then digitized and analyzed to determine the transverse component of the particle motion. The maximum normal velocity that can be measured by this system is limited by the equivalent transmission bandwidth (3.795 GHz) of the combined detector, amplifier, and digitizer and is estimated to be ∼2.9 km/s. Sample symmetric oblique plate-impact experiments are performed to demonstrate the capability of this diagnostic tool in the measurement of the combined normal and transverse displacement particle motion.

  16. Characterization of the dimensional stability of advanced metallic materials using an optical test bench structure

    NASA Technical Reports Server (NTRS)

    Hsieh, Cheng; O'Donnell, Timothy P.

    1991-01-01

    The dimensional stability of low-density high specific-strength metal-matrix composites (including 30 vol pct SiC(p)/SXA 24-T6 Al, 25 vol pct SiC(p)/6061-T6 Al, 40 vol pct graphite P100 fiber/6061 Al, 50 vol pct graphite P100 fiber/6061 Al, and 40 vol pct P100 graphite fiber/AZ91D Mg composites) and an Al-Li-Mg metal alloy was evaluated using a specially designed five-strut optical test bench structure. The structure had 30 thermocouple locations, one retroreflector, one linear interferometer multilayer insulation, and various strip heaters. It was placed in a 10 exp -7 torr capability vacuum chamber with a laser head positioned at a window port, and a laser interferometer system for collecting dimensional change data. It was found that composite materials have greater 40-C temporal dimensional stability than the AL-Li-Mg alloy. Aluminum-based composites demonstrated better 40-C temporal stability than Mg-based composites.

  17. Collinear interferometer with variable delay for carrier-envelope offset frequency measurement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pawlowska, Monika; Ozimek, Filip; Fita, Piotr

    2009-08-15

    We demonstrate a novel scheme for measuring the carrier-envelope offset frequency in a femtosecond optical frequency comb. Our method is based on a common-path interferometer with a calcite Babinet-Soleil compensator employed to control the delay between the two interfering beams of pulses. The large delay range (up to 8 ps) of our device is sufficient for systems that rely on spectral broadening in microstructured fibers. We show an experimental proof that the stability of a common-path arrangement is superior to that of the standard interferometers.

  18. Collinear interferometer with variable delay for carrier-envelope offset frequency measurement

    NASA Astrophysics Data System (ADS)

    Pawłowska, Monika; Ozimek, Filip; Fita, Piotr; Radzewicz, Czesław

    2009-08-01

    We demonstrate a novel scheme for measuring the carrier-envelope offset frequency in a femtosecond optical frequency comb. Our method is based on a common-path interferometer with a calcite Babinet-Soleil compensator employed to control the delay between the two interfering beams of pulses. The large delay range (up to 8 ps) of our device is sufficient for systems that rely on spectral broadening in microstructured fibers. We show an experimental proof that the stability of a common-path arrangement is superior to that of the standard interferometers.

  19. Microinterferometer transducer

    DOEpatents

    Corey, III, Harry S.

    1979-01-01

    An air-bearing microinterferometer transducer is provided for increased accuracy, range and linearity over conventional displacement transducers. A microinterferometer system is housed within a small compartment of an air-bearing displacement transducer housing. A movable cube corner reflector of the interferometer is mounted to move with the displacement gauging probe of the transducer. The probe is disposed for axial displacement by means of an air-bearing. Light from a single frequency laser is directed into an interferometer system within the transducer housing by means of a self-focusing fiber optic cable to maintain light coherency. Separate fringe patterns are monitored by a pair of fiber optic cables which transmit the patterns to a detecting system. The detecting system includes a bidirectional counter which counts the light pattern fringes according to the direction of movement of the probe during a displacement gauging operation.

  20. Measurement of the thickness of the lens with the use of all fiber low-coherence interferometer

    NASA Astrophysics Data System (ADS)

    Józwik, Michalina; Stepień, Karol; Lipiński, Stanisław; Budnicki, Dawid; Napierała, Marek; Nasiłowski, Tomasz

    2015-12-01

    In this paper we present experimental results of measurements of the lens thickness carried out using all fiber low coherence interferometer. A new interferometric device for measuring the thickness of the lens using optical fibers has been developed in response to market demand. It ensures fast, non-contact and accurate measurement. This work focuses above all on the conducting tests to determine the repeatability of the measurement and to verify the ability of using this method in industrial conditions. The system uses a Mach-Zehnder interferometer in which one of the arms is the reference part and the second arm containing the test element is the measurement part. The measurement rate and the easiness of placement of the test lens in the system give the possibility to automate the measurement process. We present the measurement results, which show that the use of low-coherence interferometry allows achieving high measurement accuracy and meeting other industrial needs.

  1. Advanced Interrogation of Fiber-Optic Bragg Grating and Fabry-Perot Sensors with KLT Analysis

    PubMed Central

    Tosi, Daniele

    2015-01-01

    The Karhunen-Loeve Transform (KLT) is applied to accurate detection of optical fiber sensors in the spectral domain. By processing an optical spectrum, although coarsely sampled, through the KLT, and subsequently processing the obtained eigenvalues, it is possible to decode a plurality of optical sensor results. The KLT returns higher accuracy than other demodulation techniques, despite coarse sampling, and exhibits higher resilience to noise. Three case studies of KLT-based processing are presented, representing most of the current challenges in optical fiber sensing: (1) demodulation of individual sensors, such as Fiber Bragg Gratings (FBGs) and Fabry-Perot Interferometers (FPIs); (2) demodulation of dual (FBG/FPI) sensors; (3) application of reverse KLT to isolate different sensors operating on the same spectrum. A simulative outline is provided to demonstrate the KLT operation and estimate performance; a brief experimental section is also provided to validate accurate FBG and FPI decoding. PMID:26528975

  2. Advanced Interrogation of Fiber-Optic Bragg Grating and Fabry-Perot Sensors with KLT Analysis.

    PubMed

    Tosi, Daniele

    2015-10-29

    The Karhunen-Loeve Transform (KLT) is applied to accurate detection of optical fiber sensors in the spectral domain. By processing an optical spectrum, although coarsely sampled, through the KLT, and subsequently processing the obtained eigenvalues, it is possible to decode a plurality of optical sensor results. The KLT returns higher accuracy than other demodulation techniques, despite coarse sampling, and exhibits higher resilience to noise. Three case studies of KLT-based processing are presented, representing most of the current challenges in optical fiber sensing: (1) demodulation of individual sensors, such as Fiber Bragg Gratings (FBGs) and Fabry-Perot Interferometers (FPIs); (2) demodulation of dual (FBG/FPI) sensors; (3) application of reverse KLT to isolate different sensors operating on the same spectrum. A simulative outline is provided to demonstrate the KLT operation and estimate performance; a brief experimental section is also provided to validate accurate FBG and FPI decoding.

  3. Multi-chord fiber-coupled interferometer with a long coherence length laser

    NASA Astrophysics Data System (ADS)

    Merritt, Elizabeth C.; Lynn, Alan G.; Gilmore, Mark A.; Hsu, Scott C.

    2012-03-01

    This paper describes a 561 nm laser heterodyne interferometer that provides time-resolved measurements of line-integrated plasma electron density within the range of 1015-1018 cm-2. Such plasmas are produced by railguns on the plasma liner experiment, which aims to produce μs-, cm-, and Mbar-scale plasmas through the merging of 30 plasma jets in a spherically convergent geometry. A long coherence length, 320 mW laser allows for a strong, sub-fringe phase-shift signal without the need for closely matched probe and reference path lengths. Thus, only one reference path is required for all eight probe paths, and an individual probe chord can be altered without altering the reference or other probe path lengths. Fiber-optic decoupling of the probe chord optics on the vacuum chamber from the rest of the system allows the probe paths to be easily altered to focus on different spatial regions of the plasma. We demonstrate that sub-fringe resolution capability allows the interferometer to operate down to line-integrated densities of the order of 5 × 1015 cm-2.

  4. Tilt performance of the ground settlement sensor configured in a fiber-optic low-coherent interferometer.

    PubMed

    Zhang, Pinglei; Wei, Heming; Guo, Jingjing; Sun, Changsen

    2016-10-01

    Ground settlement (GS) is one of the causes that destroy the durability of reinforced concrete structures. It could lead to a deterioration in the structural basement and increase the risk of collapse. The methods used for GS monitoring were mostly electronic-based sensors for reading the changes in resistance, resonant frequencies, etc. These sensors often bear low accuracy in the long term. Our published work demonstrated that a fiber-optic low-coherent interferometer configured in a Michelson interferometer was designed as a GS sensor, and a micro-meter resolution in the room environment was approached. However, the designed GS sensor, which in principle is based on a hydraulic connecting vessel, has to suffer from a tilt degeneration problem due to a strictly vertical requirement in practical installment. Here, we made a design for the GS sensor based on its robust tilt performance. The experimental tests show that the sensor can work well within a ±5° tilt. This could meet the requirements in most designed GS sensor installment applications.

  5. Rotation Sensing with Trapped Ions

    DTIC Science & Technology

    2016-09-01

    Sagnac effect can be used to measure the rotational velocity Ω of a reference frame by observing the phase shift of an interferometer in that frame whose...sensitivity of interferometric gyroscopes. For photons, optical fibers (or ring laser cavities) allow many effective round-trips through the Sagnac...interferometer, thereby increasing the effective area A by 2 times the number of round trips (M) without increasing the actual area of the apparatus. This

  6. Microelectromechanical system pressure sensor integrated onto optical fiber by anodic bonding.

    PubMed

    Saran, Anish; Abeysinghe, Don C; Boyd, Joseph T

    2006-03-10

    Optical microelectromechanical system pressure sensors based on the principle of Fabry-Perot interferometry have been developed and fabricated using the technique of silicon-to-silicon anodic bonding. The pressure sensor is then integrated onto an optical fiber by a novel technique of anodic bonding without use of any adhesives. In this anodic bonding technique we use ultrathin silicon of thickness 10 microm to bond the optical fiber to the sensor head. The ultrathin silicon plays the role of a stress-reducing layer, which helps the bonding of an optical fiber to silicon having conventional wafer thickness. The pressure-sensing membrane is formed by 8 microm thick ultrathin silicon acting as a membrane, thus eliminating the need for bulk silicon etching. The pressure sensor integrated onto an optical fiber is tested for static response, and experimental results indicate degradation in the fringe visibility of the Fabry-Perot interferometer. This effect was mainly due to divergent light rays from the fiber degrading the fringe visibility. This effect is demonstrated in brief by an analytical model.

  7. Fiber Fabry-Perot sensors for detection of partial discharges in power transformers.

    PubMed

    Yu, Bing; Kim, Dae Woong; Deng, Jiangdong; Xiao, Hai; Wang, Anbo

    2003-06-01

    A diaphragm-based interferometric fiberoptic sensor that uses a low-coherence light source was designed and tested for on-line detection of the acoustic waves generated by partial discharges inside high-voltage power transformers. The sensor uses a fused-silica diaphragm and a single-mode optical fiber encapsulated in a fused-silica glass tube to form an extrinsic Fabry-Perot interferometer, which is interrogated by low-coherence light. Test results indicate that these fiber optic acoustic sensors are capable of faithfully detecting acoustic signals propagating inside transformer oil with high sensitivity and wide bandwidth.

  8. Development and Ground-Test Validation of Fiber Optic Sensor Attachment Techniques for Hot Structures Applications

    NASA Technical Reports Server (NTRS)

    Piazza, Anthony; Hudson, Larry D.; Richards, W. Lance

    2005-01-01

    Fiber Optic Strain Measurements: a) Successfully attached silica fiber optic sensors to both metallics and composites; b) Accomplished valid EFPI strain measurements to 1850 F; c) Successfully attached EFPI sensors to large scale hot-structures; and d) Attached and thermally validated FBG bond and epsilon(sub app). Future Development a) Improve characterization of sensors on C-C and C-SiC substrates; b) Apply application to other composites such as SiC-SiC; c) Assist development of interferometer based Sapphire sensor currently being conducted under a Phase II SBIR; and d) Complete combined thermal/mechanical testing of FBG on composite substrates in controlled laboratory environment.

  9. Actively stabilized optical fiber interferometry technique for online/in-process surface measurement.

    PubMed

    Wang, Kaiwei; Martin, Haydn; Jiang, Xiangqian

    2008-02-01

    In this paper, we report the recent progress in optical-beam scanning fiber interferometry for potential online nanoscale surface measurement based on the previous research. It attempts to generate a robust and miniature measurement device for future development into a multiprobe array measurement system. In this research, both fiber-optic-interferometry and the wavelength-division-multiplexing techniques have been used, so that the optical probe and the optical interferometer are well spaced and fast surface scanning can be carried out, allowing flexibility for online measurement. In addition, this system provides a self-reference signal to stabilize the optical detection with high common-mode noise suppression by adopting an active phase tracking and stabilization technique. Low-frequency noise was significantly reduced compared with unstabilized result. The measurement of a sample surface shows an attained repeatability of 3.3 nm.

  10. Optical readout of displacements of nanowires along two mutually perpendicular directions

    NASA Astrophysics Data System (ADS)

    Fu, Chenghua

    2017-05-01

    Nanowires are good force transducers due to their low mass. The singleness of the direction of the motion detection in a certain system is an existing limitation, and to overcome the limitation is the key point in this article. Optical methods, such as polarized light interferometry and light scattering, are generally used for detecting the displacement of nanowires. Typically, either light interference or light scattering is considered when relating the displacement of a nanowire with the photodetector's measurements. In this work, we consider both the light interference along the optical axis and light scattering perpendicular to the optical axis of a micro-lens fiber optic interferometer. Identifying the displacement along the two directions and the corresponding vibration conversion efficiency coefficients for the nanowire is a significant part of our study. Our analysis shows that the optimal working point of the micro-lens fiber optic interferometer can realize the detection of displacement along the optical axis without the disturbance coming from the motion perpendicular to the optical axis, and vice versa. We use Mie scattering theory to calculate the scattering light for the reason that the size of the nanowire is comparable to the wavelength of light. Our results could provide a guide for optical readout experiments of the displacement of nanowires.

  11. Simultaneous measurement of temperature and strain based on composite long-period fiber grating

    NASA Astrophysics Data System (ADS)

    Tong, Chengguo; Hu, Qihao; He, Jiang; Chen, XuDong; Geng, Tao; Bao, Zhanjing; Li, Zixuan; Yang, Wenlei; Sun, Weimin

    2016-11-01

    Long period fiber grating is a kind of transmission type optical fiber grating. Due to the advantages such as low insertion loss, wide bandwidth, low-level reflection, high sensitivity, low cost and ease of compactness, LPFGs have been widely applied in optical fiber sensing and optical fiber communication. The Mode coupling of LPFG is the coupling between the fiber core mode and the cladding mode in the same transmission direction. If the ordinary LPFG is combined with bitaper or taper, we can effectively change the original LPFG's transmission spectrum to obtain the composite LPFG, which can stimulate new resonant peaks in the original wavelength-dependent transmission loss of the grating basis, thus applying to the dual-parameter simultaneously measuring field. We report a novel all-fiber narrow-bandwidth intermodal Mach- Zehnder interferometer (MZI) based on a long-period fiber grating (LPFG) combined with a fiber bitaper. The LPFG is written by high-frequency CO2 laser pulses, and the bitaper is connected in series with the LPFG, forming the Mach- Zehnder interferometer (MZI). Experimental results indicate that the MZI has good temperature sensitivity, The temperature sensitivity of the two loss peaks are 55.35pm/°C and 48.18pm/°C respectively. The strain sensitivity of the two loss peaks are 3.35pm/μɛ and -4.925pm/μɛ respectively. By using the different temperature and strain response characteristics of the loss peaks, the temperature and strain measurement can be realized simultaneously. the proposed device has good repeatability and stability, which would be a promising candidate for precise dual-parameter sensing application.

  12. Frequency-modulated laser ranging sensor with closed-loop control

    NASA Astrophysics Data System (ADS)

    Müller, Fabian M.; Böttger, Gunnar; Janeczka, Christian; Arndt-Staufenbiel, Norbert; Schröder, Henning; Schneider-Ramelow, Martin

    2018-02-01

    Advances in autonomous driving and robotics are creating high demand for inexpensive and mass-producible distance sensors. A laser ranging system (Lidar), based on the frequency-modulated continuous-wave (FMCW) method is built in this work. The benefits of an FMCW Lidar system are the low-cost components and the performance in comparison to conventional time-of-flight Lidar systems. The basic system consists of a DFB laser diode (λ= 1308 nm) and an asymmetric fiber-coupled Mach-Zehnder interferometer with a fixed delay line in one arm. Linear tuning of the laser optical frequency via injection current modulation creates a beat signal at the interferometer output. The frequency of the beat signal is proportional to the optical path difference in the interferometer. Since the laser frequency-to-current response is non-linear, a closed-loop feed-back system is designed to improve the tuning linearity, and consequently the measurement resolution. For fast active control, an embedded system with FPGA is used, resulting in a nearly linear frequency tuning, realizing a narrow peak in the Fourier spectrum of the beat signal. For free-space measurements, a setup with two distinct interferometers is built. The fully fiber-coupled Mach-Zehnder reference interferometer is part of the feed-back loop system, while the other - a Michelson interferometer - has a free-space arm with collimator lens and reflective target. A resolution of 2:0 mm for a 560 mm distance is achieved. The results for varying target distances show high consistency and a linear relation to the measured beat-frequency.

  13. An All-Fiber-Optic Combined System of Noncontact Photoacoustic Tomography and Optical Coherence Tomography

    PubMed Central

    Eom, Jonghyun; Shin, Jun Geun; Park, Soongho; Rim, Sunghwan; Lee, Byeong Ha

    2016-01-01

    We propose an all-fiber-based dual-modal imaging system that combines noncontact photoacoustic tomography (PAT) and optical coherence tomography (OCT). The PAT remotely measures photoacoustic (PA) signals with a 1550-nm laser on the surface of a sample by utilizing a fiber interferometer as an ultrasound detector. The fiber-based OCT, employing a swept-source laser centered at 1310 nm, shares the sample arm of the PAT system. The fiber-optic probe for the combined system was homemade with a lensed single-mode fiber (SMF) and a large-core multimode fiber (MMF). The compact and robust common probe is capable of obtaining both the PA and the OCT signals at the same position without any physical contact. Additionally, the MMF of the probe delivers the short pulses of a Nd:YAG laser to efficiently excite the PA signals. We experimentally demonstrate the feasibility of the proposed dual-modal system with a phantom made of a fishing line and a black polyethylene terephthalate fiber in a tissue mimicking solution. The all-fiber-optic system, capable of providing complementary information about absorption and scattering, has a promising potential in minimally invasive and endoscopic imaging. PMID:27213392

  14. An All-Fiber-Optic Combined System of Noncontact Photoacoustic Tomography and Optical Coherence Tomography.

    PubMed

    Eom, Jonghyun; Shin, Jun Geun; Park, Soongho; Rim, Sunghwan; Lee, Byeong Ha

    2016-05-20

    We propose an all-fiber-based dual-modal imaging system that combines noncontact photoacoustic tomography (PAT) and optical coherence tomography (OCT). The PAT remotely measures photoacoustic (PA) signals with a 1550-nm laser on the surface of a sample by utilizing a fiber interferometer as an ultrasound detector. The fiber-based OCT, employing a swept-source laser centered at 1310 nm, shares the sample arm of the PAT system. The fiber-optic probe for the combined system was homemade with a lensed single-mode fiber (SMF) and a large-core multimode fiber (MMF). The compact and robust common probe is capable of obtaining both the PA and the OCT signals at the same position without any physical contact. Additionally, the MMF of the probe delivers the short pulses of a Nd:YAG laser to efficiently excite the PA signals. We experimentally demonstrate the feasibility of the proposed dual-modal system with a phantom made of a fishing line and a black polyethylene terephthalate fiber in a tissue mimicking solution. The all-fiber-optic system, capable of providing complementary information about absorption and scattering, has a promising potential in minimally invasive and endoscopic imaging.

  15. Beam shuttering interferometer and method

    DOEpatents

    Deason, V.A.; Lassahn, G.D.

    1993-07-27

    A method and apparatus resulting in the simplification of phase shifting interferometry by eliminating the requirement to know the phase shift between interferograms or to keep the phase shift between interferograms constant. The present invention provides a simple, inexpensive means to shutter each independent beam of the interferometer in order to facilitate the data acquisition requirements for optical interferometry and phase shifting interferometry. By eliminating the requirement to know the phase shift between interferograms or to keep the phase shift constant, a simple, economical means and apparatus for performing the technique of phase shifting interferometry is provide which, by thermally expanding a fiber optical cable changes the optical path distance of one incident beam relative to another.

  16. Beam shuttering interferometer and method

    DOEpatents

    Deason, Vance A.; Lassahn, Gordon D.

    1993-01-01

    A method and apparatus resulting in the simplification of phase shifting interferometry by eliminating the requirement to know the phase shift between interferograms or to keep the phase shift between interferograms constant. The present invention provides a simple, inexpensive means to shutter each independent beam of the interferometer in order to facilitate the data acquisition requirements for optical interferometry and phase shifting interferometry. By eliminating the requirement to know the phase shift between interferograms or to keep the phase shift constant, a simple, economical means and apparatus for performing the technique of phase shifting interferometry is provide which, by thermally expanding a fiber optical cable changes the optical path distance of one incident beam relative to another.

  17. Tribute to Jean-Marie Mariotti

    NASA Astrophysics Data System (ADS)

    Lena, Pierre J.

    2003-02-01

    Jean-Marie Mariotti (1955 - 1998) prematurely passed away after too short a career of optician and astronomer. With his students, his contributions to the nascent field of high angular resolution at optical wavelengths, and especially to interferometry, both on the ground and in space, have been remarkable. Pioneering the use of single-mode optical fibers and integrated optics, he pushed the accuracy of visibility (amplitude) measurements to a fraction of a percent. His vision of a Mauna Kea kilometric interferometer using the existing giant telescopes is now becoming a reality with the 'OHANA project. His role in the emergence of the Very Large Telescope Interferometer (VLTI) and in the birth of the space mission DARWIN for exoplanets studies has been essential.

  18. Initial Performance Evaluation of Optical Fibers and Sensors Under High-Energy Electron Beam Irradiation

    NASA Astrophysics Data System (ADS)

    Palmer, Matthew E.; Slusher, David; Fielder, Robert S.

    2006-01-01

    In this paper, recent work on the performance of optical fiber, fiber optic sensors, and fiber optic connectors under the influence of a high-energy electron beam is presented. Electron beam irradiation is relevant for the Jupiter Icy Moons Orbiter (JIMO) mission due to the high electron radiation environment surrounding Jupiter. As an initial feasibility test, selected optical fiber components were exposed to dose levels relevant to the Jupiter environment. Three separate fiber types were used: one series consisted of pure silica core fiber, two other series consisted of different levels of Germania-doped fiber. Additionally, a series of fused silica Extrinsic Fabry-Perot Interferometer (EFPI)-based fiber optic sensors and two different types of fiber optic connectors were tested. Two types of fiber coatings were evaluated: acrylate and polyimide. All samples were exposed to three different dose levels: 2 MRad, 20 MRad, and 50 MRad. Optical loss measurements were made on the optical fiber spools as a function of wavelength between 750 and 1750nm at periodic intervals up to 75 hrs after exposure. Attenuation is minimal and wavelength-dependent. Fiber optic sensors were evaluated using a standard EFPI sensor readout and diagnostic system. Optical connectors and optical fiber coatings were visually inspected for degradation. Additionally, tensile testing and minimum bend radius testing was conducted on the fibers. Initial loss measurements indicate a low-level of induced optical attenuation in the fiber which recovers with time. The fiber optic sensors exhibited no observable degradation after exposure. The optical fiber connectors and coatings also showed no observable degradation. In addition to harsh environment survivability, fiber optic sensors offer a number of intrinsic advantages for space nuclear power applications including extremely low mass, immunity to electromagnetic interference, self diagnostics / prognostics, and smart sensor capability. Deploying fiber optic sensors on future space exploration missions would provide a substantial improvement in spacecraft instrumentation.

  19. Intensity-based fibre-optic sensing system using contrast modulation of subcarrier interference pattern

    NASA Technical Reports Server (NTRS)

    Adamovsky, G.; Sherer, T. N.; Maitland, D. J.

    1989-01-01

    A novel technique to compensate for unwanted intensity losses in a fiber-optic sensing system is described. The technique involves a continuous sinusoidal modulation of the light source intensity at radio frequencies and an intensity sensor placed in an unbalanced interferometer. The system shows high sensitivity and stability.

  20. An integrated optical sensor for measuring glucose concentration

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Hering, P.; Scully, M. O.

    1992-01-01

    We used an optical sensor combined with a Mach-Zehnder interferometric waveguide and optical fibers to measure slight changes of aqueous sugar concentrations. The merits of this sensor are simplicity, reliability, high sensitivity and continuous monitoring. The technique is based on the fact that the refractive index of sugar solution changes with the concentration of sugar. In the experiment, one arm of the interferometer is clad with glue and is thus isolated from the sugar solution. The other one is exposed to the sugar solution. A single mode fiber is directly glued onto the interferometric waveguide, to guide the light into the interferometer. If the concentration of sugar covering the waveguide changes, the phase of propagating light in the exposed arm will be changed, while the phase in the other arm is fixed. Hence the output intensity from the interferometer is directly related to the concentration of the sugar solution. The result of this experiment yields the relation between the sugar concentration and output signal. From 0% to 1% concentration of sugar solution, there is only a 1.4×10-3 refractive index difference. Two sets of experimental data have been obtained, showing a linear relation between the sugar concentration and the output signal from our sensor. This sensor could be used for continuous monitoring of blood sugar in the human body.

  1. A short baseline strainmeter using fiber-optic Bragg-Grating (FBG) sensor and a nano-optic interferometer

    NASA Astrophysics Data System (ADS)

    Coutant, O.; Demengin, M.; Le Coarer, E.; Gaffet, S.

    2013-12-01

    Strain recordings from tiltmeters or borehole volumetric strainmeters on volcanoes reveal extremely rich signal of deformation associated with eruptive processes. The ability to detect and record signals of the order of few tens of nanostrain is complementary to other monitoring techniques, and of great interest to monitor and model the volcanic processes. Strain recording remains however a challenge, for both the instrumental and the installation point of view. We present in this study the first results of strain recordings, using a new fiber-optic Bragg-Grating (FBG) sensor. FBG sensors are known for many years and used as strain gauges in civil engineering. They are however limited in this case to microstrain capability. We use here a newly developped interferometer named SWIFTS whose main characteristics are i) an extremely high optical wavelength precision and ii) a small design and low power requirements allowing an easy field deployment. Our FBG sensor uses a short baseline, 3cm long Bragg network. We show preliminary results obtained from a several months recordings in the low noise underground laboratory at Rustrel (LSBB), south of France.

  2. Dispersion control with a Fourier-domain optical delay line in a fiber-optic imaging interferometer.

    PubMed

    Lee, Kye-Sung; Akcay, A Ceyhun; Delemos, Tony; Clarkson, Eric; Rolland, Jannick P

    2005-07-01

    Recently, Fourier-domain (FD) optical delay lines (ODLs) were introduced for high-speed scanning and dispersion compensation in imaging interferometry. We investigate the effect of first- and second-order dispersion on the photocurrent signal associated with an optical coherence imaging system implemented with a single-mode fiber, a superluminescent diode centered at 950 nm +/- 35 nm, a FD ODL, a mirror, and a layered LiTAO3 that has suitable dispersion characteristics to model a skin specimen. We present a practical and useful method to minimize the effect of dispersion through the interferometer and the specimen combined, as well as to quantify the results using two general metrics for resolution. Theoretical and associated experimental results show that, under the optimum solution, the maximum broadening of the point-spread function through a 1-mm-deep specimen is limited to 57% of its original rms width value (i.e., 8.1 microm optimal, 12.7 microm at maximum broadening) compared with approximately 110% when compensation is performed without the specimen taken into account.

  3. Miniature fiber Fabry-Perot sensors based on fusion splicing

    NASA Astrophysics Data System (ADS)

    Zhu, Jia-li; Wang, Ming; Yang, Chun-di; Wang, Ting-ting

    2013-03-01

    Fiber-optic Fabry-Perot (F-P) sensors are widely investigated because they have several advantages over conventional sensors, such as immunity to electromagnetic interference, ability to operate under bad environments, high sensitivity and the potential for multiplexing. A new method to fabricate micro-cavity Fabry-Perot interferometer is introduced, which is fusion splicing a section of conventional single-mode fiber (SMF) and a section of hollow core or solid core photonic crystal fiber (PCF) together to form a micro-cavity at the splice joint. The technology of fusion splicing is discussed, and two miniature optical fiber sensors based on Fabry-Perot interference using fusion splicing are presented. The two sensors are completely made of fused silica, and have good high-temperature capability.

  4. Optical fiber sensors: Systems and applications. Volume 2

    NASA Astrophysics Data System (ADS)

    Culshaw, Brian; Dakin, John

    State-of-the-art fiber-optic (FO) sensors and their applications are described in chapters contributed by leading experts. Consideration is given to interferometers, FO gyros, intensity- and wavelength-based sensors and optical actuators, Si in FO sensors, point-sensor multiplexing principles, and distributed FO sensor systems. Also examined are chemical, biochemical, and medical sensors; physical and chemical sensors for process control; FO-sensor applications in the marine and aerospace industries; FO-sensor monitoring systems for security and safety, structural integrity, NDE, and the electric-power industry; and the market situation for FO-sensor technology. Diagrams, drawings, graphs, and photographs are provided.

  5. Nondestructive surface analysis for material research using fiber optic vibrational spectroscopy

    NASA Astrophysics Data System (ADS)

    Afanasyeva, Natalia I.

    2001-11-01

    The advanced methods of fiber optical vibrational spectroscopy (FOVS) has been developed in conjunction with interferometer and low-loss, flexible, and nontoxic optical fibers, sensors, and probes. The combination of optical fibers and sensors with Fourier Transform (FT) spectrometer has been used in the range from 2.5 to 12micrometers . This technique serves as an ideal diagnostic tool for surface analysis of numerous and various diverse materials such as complex structured materials, fluids, coatings, implants, living cells, plants, and tissue. Such surfaces as well as living tissue or plants are very difficult to investigate in vivo by traditional FT infrared or Raman spectroscopy methods. The FOVS technique is nondestructive, noninvasive, fast (15 sec) and capable of operating in remote sampling regime (up to a fiber length of 3m). Fourier transform infrared (FTIR) and Raman fiber optic spectroscopy operating with optical fibers has been suggested as a new powerful tool. These techniques are highly sensitive techniques for structural studies in material research and various applications during process analysis to determine molecular composition, chemical bonds, and molecular conformations. These techniques could be developed as a new tool for quality control of numerous materials as well as noninvasive biopsy.

  6. Demodulation of micro fiber-optic Fabry-Perot interferometer using subcarrier and dual-wavelength method

    NASA Astrophysics Data System (ADS)

    Lu, En; Ran, Zengling; Peng, Fei; Liu, Zhiwei; Xu, Fuguo

    2012-03-01

    Subcarrier technology and dual-wavelength demodulation method are combined for tracking the cavity length variation of a micro fiber-optic Fabry-Perot (F-P). Compared with conventional dual-wavelength demodulation method, two operation wavelengths for demodulation are modulated with two different carrier frequencies, respectively, and then injected into optical link connected with the F-P cavity. Light power reflected for the two wavelengths is obtained by interrogating the powers of Fast Fourier Transform (FFT) spectrum at their carrier frequencies. Because the light at the two wavelengths experiences the same optical and electrical routes, measurement deviation resulting from the drift of optical and electrical links can be entirely eliminated.

  7. Demodulation of micro fiber-optic Fabry-Perot interferometer using subcarrier and dual-wavelength method

    NASA Astrophysics Data System (ADS)

    Ran, Zengling; Rao, Yunjiang; Liu, Zhiwei; Xu, Fuguo

    2011-05-01

    Subcarrier technology and dual-wavelength demodulation method are combined for tracking the cavity length variation of a micro fiber-optic fabry-periot (F-P). Compared with conventional dual-wavelength demodulation method, two operation wavelengths for demodulation are modulated with two different carrier frequencies, respectively, and then injected into optical link connected with the F-P cavity. Light power reflected for the two wavelengths is obtained by interrogating the powers of Fast Fourier Transform (FFT) spectrum at their carrier frequencies. Because the light at the two wavelengths experiences the same optical and electrical routes, measurement deviation resulting from the drift of optical and electrical links can be entirely eliminated.

  8. Progress in holographic applications; Proceedings of the Meeting, Cannes, France, December 5, 6, 1985

    NASA Technical Reports Server (NTRS)

    Ebbeni, Jean (Editor)

    1986-01-01

    Papers are presented on a holographic recording material containing poly-n-vinylcarbozole, photoelectrochemical etching of holographic gratings in semiconductors, the analysis and construction of powered reflection holographic optical elements, achromatic display holograms in dichromated gelatin, and image blurring in display holograms and in holographic optical elements. Topics discussed include two-dimensional optical beam switching techniques using dynamnic holography, a new holographic interferometer with monomode fibers for integrated optics applications, computer controlled holography, and the copying of holograms using incoherent light. Consideration is given to holography of very far objects, rainbow holography with a multimode laser source, and the use of an endoscope for optical fiber holography.

  9. Optical cascaded Fabry-Perot interferometer hydrogen sensor based on vernier effect

    NASA Astrophysics Data System (ADS)

    Li, Yina; Zhao, Chunliu; Xu, Ben; Wang, Dongning; Yang, Minghong

    2018-05-01

    An optical cascaded Fabry-Perot interferometer hydrogen sensor based on vernier effect has been proposed and achieved. The proposed sensor, which total length is ∼594 μm, is composed of a segment of large mode area fiber (LMAF) and a segment of hollow-core fiber (HCF). The proposed sensor is coated with the Pt-loaded WO3/SiO2 powder which will result in the increase of local temperature of the sensor head when exposed to hydrogen atmosphere. Thus the hydrogen sensor can be achieved by monitoring the change of resonant envelope wavelength. The hydrogen sensitivity is -1.04 nm/% within the range of 0 % -2.4 % which is greatly improved because of the vernier effect. The response time is ∼80 s. Due to its compact configuration, the proposed sensor provides a feasible and miniature structure to achieve detection of hydrogen.

  10. Radio-frequency unbalanced M-Z interferometer for wavelength interrogation of fiber Bragg grating sensors.

    PubMed

    Zhou, Jiaao; Xia, Li; Cheng, Rui; Wen, Yongqiang; Rohollahnejad, Jalal

    2016-01-15

    The optical unbalanced Mach-Zehnder interferometer (UMZI) has attracted significant interests for interrogation of FBG sensors owing to its excellent advantages in sensitivity, resolution, and demodulation speed. But this method is still limited to dynamic measurements due to its poor stability and reliability when used for quasi-static detections. Here, we propose for the first time, to the best of our knowledge, a radio-frequency unbalanced M-Z interferometer (RF-UMZI) for interrogation of FBG sensors, which, owing to its operation in an incoherent rather than a coherent regime, provides an ideal solution for the existing stability problem of the conventional UMZI, with remarkable features of adjustable resolution and potentially extremely high sensitivity. A dispersion compensation fiber (DCF) and single-mode fiber (SMF) with a small length difference are served as the two unbalanced arms of the RF interferometer. The induced differential chromatic dispersion transfers the wavelength shift of the FBG to the change of the RF phase difference between the two interferometric carriers, which ultimately leads to the variation of the RF signal intensity. An interrogation of a strain-turned FBG was accomplished and a maximum sensitivity of 0.00835  a.u./με was obtained, which can easily be further improved by more than two orders of magnitude through various fiber dispersion components. Finally, the stability of the interrogation was tested.

  11. Investigation of Fiber Optics Based Phased Locked Diode Lasers

    NASA Technical Reports Server (NTRS)

    Burke, Paul D.; Gregory, Don A.

    1997-01-01

    Optical power beaming requires a high intensity source and a system to address beam phase and location. A synthetic aperture array of phased locked sources can provide the necessary power levels as well as a means to correct for phase errors. A fiber optic phase modulator with a master oscillator and power amplifier (MOPA) using an injection-locking semiconductor optical amplifier has proven to be effective in correcting phase errors as large as 4pi in an interferometer system. Phase corrections with the piezoelectric fiber stretcher were made from 0 - 10 kHz, with most application oriented corrections requiring only 1 kHz. The amplifier did not lose locked power output while the phase was changed, however its performance was below expectation. Results of this investigation indicate fiber stretchers and amplifiers can be incorporated into a MOPA system to achieve successful earth based power beaming.

  12. Planar location of the simulative acoustic source based on fiber optic sensor array

    NASA Astrophysics Data System (ADS)

    Liang, Yi-Jun; Liu, Jun-feng; Zhang, Qiao-ping; Mu, Lin-lin

    2010-06-01

    A fiber optic sensor array which is structured by four Sagnac fiber optic sensors is proposed to detect and locate a simulative source of acoustic emission (AE). The sensing loops of Sagnac interferometer (SI) are regarded as point sensors as their small size. Based on the derived output light intensity expression of SI, the optimum work condition of the Sagnac fiber optic sensor is discussed through the simulation of MATLAB. Four sensors are respectively placed on a steel plate to structure the sensor array and the location algorithms are expatiated. When an impact is generated by an artificial AE source at any position of the plate, the AE signal will be detected by four sensors at different times. With the help of a single chip microcomputer (SCM) which can calculate the position of the AE source and display it on LED, we have implemented an intelligent detection and location.

  13. Demodulation of an optical fiber MEMS pressure sensor based on single bandpass microwave photonic filter.

    PubMed

    Wang, Yiping; Ni, Xiaoqi; Wang, Ming; Cui, Yifeng; Shi, Qingyun

    2017-01-23

    In this paper, a demodulation method for optic fiber micro-electromechanical systems (MEMS) extrinsic Fabry-Perot interferometer (EFPI) pressure sensor exploiting microwave photonics filter technique is firstly proposed and experimentally demonstrated. A single bandpass microwave photonic filter (MPF) which mainly consists of a spectrum-sliced light source, a pressurized optical fiber MEMS EFPI, a phase modulator (PM) and a length of dispersion compensating fiber (DCF) is demonstrated. The frequency response of the filter with respect to the pressure is studied. By detecting the resonance frequency shifts of the MPF, the pressure can be determined. The theoretical and experimental results show that the proposed EFPI pressure demodulation method has a higher resolution and higher speed than traditional methods based on optical spectrum analysis. The sensitivity of the sensor is measured to be as high as 86 MHz/MPa in the range of 0-4Mpa. Moreover, the sensitivity can be easily adjusted.

  14. An optical fiber infrasound sensor: a new lower limit on atmospheric pressure noise between 1 and 10 Hz.

    PubMed

    Zumberge, Mark A; Berger, Jonathan; Hedlin, Michael A H; Husmann, Eric; Nooner, Scott; Hilt, Richard; Widmer-Schnidrig, Rudolf

    2003-05-01

    A new distributed sensor for detecting pressure variations caused by distant sources has been developed. The instrument reduces noise due to air turbulence in the infrasound band by averaging pressure along a line by means of monitoring strain in a long tubular diaphragm with an optical fiber interferometer. Above 1 Hz, the optical fiber infrasound sensor (OFIS) is less noisy than sensors relying on mechanical filters. Records collected from an 89-m-long OFS indicate a new low noise limit in the band from 1 to 10 Hz. Because the OFIS integrates pressure variations at light-speed rather than the speed of sound, phase delays of the acoustical signals caused by the sensor are negligible. Very long fiber-optic sensors are feasible and hold the promise of better wind-noise reduction than can be achieved with acoustical-mechanical systems.

  15. Imaging Stellar Surfaces with an Agile 12-Telescopes Visible Interferometer for the VLTI

    NASA Astrophysics Data System (ADS)

    Woillez, Julien

    2018-04-01

    Imaging stellar surfaces with an optical interferometer requires a large number of telescopes and the extensive use of the bootstrapping technique to reach the high spatial frequencies where the surface details are revealed. An idea would use all 6 dual-star delay lines of VLTI to deploy an agile 12-telescopes single-mode visible interferometer on the Paranal mountain. The concept relies on single-mode fiber technologies that have been demonstrated by the `OHANA and `OHANA IKI projects. We present the expected performance of this concept and explore its potential for the study of stellar surfaces.

  16. In-line open-cavity Fabry-Pérot interferometer formed by C-shaped fiber fortemperature-insensitive refractive index sensing.

    PubMed

    Wu, Chuang; Liu, Zhengyong; Zhang, A Ping; Guan, Bai-Ou; Tam, Hwa-Yaw

    2014-09-08

    We report an open-cavity optical fiber Fabry-Pérot interferometer (FPI) capable of measuring refractive index with very low temperature cross-sensitivity. The FPI was constructed by splicing a thin piece of C-shaped fiber between two standard single-mode fibers. The refractive index (RI) response of the FPI was characterized using water-ethanol mixtures with RI in the range of 1.33 to 1.36. The RI sensitivity was measured to be 1368 nm/RIU at the wavelength of 1600 nm with good linearity. Thanks to its all-glass structure, the FPI exhibits very low temperature cross-sensitivity of 3.04 × 10⁻⁷ RIU/°C. The effects of cavity length on the performance of the sensor were also studied. A shorter cavity gives rise to broader measurement range while offering larger detection limit, and vice versa. What's more, the effect of material dispersion of analyte on the sensitivity of open-cavity FPIs was identified for the first time. The sensor is compact in size and easy to fabricate. It is potentially useful for label-free optical sensing of chemical and biological samples.

  17. Electro-Optics and Millimeter-Wave Technology in Japan.

    DTIC Science & Technology

    1987-05-01

    and communication set is about the price of a car airconditioner . a The GPS could be used in an interferometer application for seismic studies to...COMMUNICATIONS SYSTEM.................. 2-16 10 BATTLE COMMUNICATIONS SYSTEMS ....................... 2-17 11 OPTICAL MODULE PARAMETERS .............. 2-18 12...Conduct follow-up visits to Japanese industries in high interest areas (e.g., displays, radar modules , detectors, and fiber optics), * Visit additional

  18. Method and Apparatus of Multiplexing and Acquiring Data from Multiple Optical Fibers Using a Single Data Channel of an Optical Frequency-Domain Reflectometry (OFDR) System

    NASA Technical Reports Server (NTRS)

    Parker, Jr., Allen R (Inventor); Chan, Hon Man (Inventor); Piazza, Anthony (Nino) (Inventor); Richards, William Lance (Inventor)

    2014-01-01

    A method and system for multiplexing a network of parallel fiber Bragg grating (FBG) sensor-fibers to a single acquisition channel of a closed Michelson interferometer system via a fiber splitter by distinguishing each branch of fiber sensors in the spatial domain. On each branch of the splitter, the fibers have a specific pre-determined length, effectively separating each branch of fiber sensors spatially. In the spatial domain the fiber branches are seen as part of one acquisition channel on the interrogation system. However, the FBG-reference arm beat frequency information for each fiber is retained. Since the beat frequency is generated between the reference arm, the effective fiber length of each successive branch includes the entire length of the preceding branch. The multiple branches are seen as one fiber having three segments where the segments can be resolved. This greatly simplifies optical, electronic and computational complexity, and is especially suited for use in multiplexed or branched OFS networks for SHM of large and/or distributed structures which need a lot of measurement points.

  19. The phase interrogation method for optical fiber sensor by analyzing the fork interference pattern

    NASA Astrophysics Data System (ADS)

    Lv, Riqing; Qiu, Liqiang; Hu, Haifeng; Meng, Lu; Zhang, Yong

    2018-02-01

    The phase interrogation method for optical fiber sensor is proposed based on the fork interference pattern between the orbital angular momentum beam and plane wave. The variation of interference pattern with phase difference between the two light beams is investigated to realize the phase interrogation. By employing principal component analysis method, the features of the interference pattern can be extracted. Moreover, the experimental system is designed to verify the theoretical analysis, as well as feasibility of phase interrogation. In this work, the Mach-Zehnder interferometer was employed to convert the strain applied on sensing fiber to the phase difference between the reference and measuring paths. This interrogation method is also applicable for the measurements of other physical parameters, which can produce the phase delay in optical fiber. The performance of the system can be further improved by employing highlysensitive materials and fiber structures.

  20. All fiber magnetic field sensor with Ferrofluid-filled tapered microstructured optical fiber interferometer.

    PubMed

    Deng, Ming; Huang, Can; Liu, Danhui; Jin, Wei; Zhu, Tao

    2015-08-10

    An ultra-compact optical fiber magnetic field sensor based on a microstructured optical fiber (MOF) modal interference and ferrofluid (FF) has been proposed and experimentally demonstrated. The magnetic field sensor was fabricated by splicing a tapered germanium-doped index guided MOF with six big holes injected with FF to two conventional single-mode fibers. The transmission spectra of the proposed sensor under different magnetic field intensities have been measured and theoretically analyzed. Due to an efficient interaction between the magnetic nanoparticles in FF and the excited cladding mode, the magnetic field sensitivity reaches up to117.9pm/mT with a linear range from 0mT to 30mT. Moreover, the fabrication process of the proposed sensor is simple, easy and cost-effective. Therefore, it will be a promising candidate for military, aviation industry, and biomedical applications, especially, for the applications where the space is limited.

  1. A FBG pulse wave demodulation method based on PCF modal interference filter

    NASA Astrophysics Data System (ADS)

    Zhang, Cheng; Xu, Shan; Shen, Ziqi; Zhao, Junfa; Miao, Changyun; Bai, Hua

    2016-10-01

    Fiber optic sensor embedded in textiles has been a new direction of researching smart wearable technology. Pulse signal which is generated by heart beat contains vast amounts of physio-pathological information about the cardiovascular system. Therefore, the research for textile-based fiber optic sensor which can detect pulse wave has far-reaching effects on early discovery and timely treatment of cardiovascular diseases. A novel wavelength demodulation method based on photonic crystal fiber (PCF) modal interference filter is proposed for the purpose of developing FBG pulse wave sensing system embedded in smart clothing. The mechanism of the PCF modal interference and the principle of wavelength demodulation based on In-line Mach-Zehnder interferometer (In-line MZI) are analyzed in theory. The fabricated PCF modal interferometer has the advantages of good repeatability and low temperature sensitivity of 3.5pm/°C from 25°C to 60°C. The designed demodulation system can achieve linear demodulation in the range of 2nm, with the wavelength resolution of 2.2pm and the wavelength sensitivity of 0.055nm-1. The actual experiments' result indicates that the pulse wave can be well detected by this demodulation method, which is in accordance with the commercial demodulation instrument (SM130) and more sensitive than the traditional piezoelectric pulse sensor. This demodulation method provides important references for the research of smart clothing based on fiber grating sensor embedded in textiles and accelerates the developments of wearable fiber optic sensors technology.

  2. Extrinsic optical-fiber ultrasound sensor using a thin polymer film as a low-finesse Fabry-Perot interferometer

    NASA Astrophysics Data System (ADS)

    Beard, P. C.; Mills, T. N.

    1996-02-01

    Theoretical and experimental aspects of an extrinsic optical-fiber ultrasound sensor are described. The sensor is based on a thin transparent polymer film acting as a low-finesse Fabry-Perot cavity that is mounted at the end of a multimode optical fiber. Performance was found to be comparable with that of a piezoelectric polyvinylidene difluoride-membrane (PVDF) hydrophone with a sensitivity of 61 mV/MPa, an acoustic noise floor of 2.3 KPa over a 25-MHz bandwidth, and a frequency response to 25 MHz. The wideband-sensitive response and design flexibility of the concept suggests that it may find application as an alternative to piezoelectric devices for the detection and measurement of ultrasound.

  3. Design of Broadband High Dynamic-Range Fiber Optic Links

    NASA Astrophysics Data System (ADS)

    Monsurrò, P.; Tommasino, P.; Trifiletti, A.; Vannucci, A.

    2018-04-01

    An analytic design-oriented model of microwave optical links has been developed. The core of the model is the non-linear and noise model of a Mach-Zehnder LiNbO3 interferometer. Both a 100 MHz-20 GHz link and a linearized microwave link, comprising an auxiliary modulator, have been designed and prototyped by using the model.

  4. NDT of fiber-reinforced composites with a new fiber-optic pump–probe laser-ultrasound system☆

    PubMed Central

    Pelivanov, Ivan; Buma, Takashi; Xia, Jinjun; Wei, Chen-Wei; O’Donnell, Matthew

    2014-01-01

    Laser-ultrasonics is an attractive and powerful tool for the non-destructive testing and evaluation (NDT&E) of composite materials. Current systems for non-contact detection of ultrasound have relatively low sensitivity compared to contact peizotransducers. They are also expensive, difficult to adjust, and strongly influenced by environmental noise. Moreover, laser-ultrasound (LU) systems typically launch only about 50 firings per second, much slower than the kHz level pulse repetition rate of conventional systems. As demonstrated here, most of these drawbacks can be eliminated by combining a new generation of compact, inexpensive, high repetition rate nanosecond fiber lasers with new developments in fiber telecommunication optics and an optimally designed balanced probe beam detector. In particular, a modified fiber-optic balanced Sagnac interferometer is presented as part of a LU pump–probe system for NDT&E of aircraft composites. The performance of the all-optical system is demonstrated for a number of composite samples with different types and locations of inclusions. PMID:25302156

  5. On-fiber plasmonic interferometer for multi-parameter sensing

    DOE PAGES

    Zhang, Zhijian; Chen, Yongyao; Liu, Haijun; ...

    2015-01-01

    We demonstrate a novel miniature multi-parameter sensing device based on a plasmonic interferometer fabricated on a fiber facet in the optical communication wavelength range. This device enables the coupling between surface plasmon resonance and plasmonic interference in the structure, which are the two essential mechanisms for multi-parameter sensing. We experimentally show that these two mechanisms have distinctive responses to temperature and refractive index, rendering the device the capability of simultaneous temperature and refractive index measurement on an ultra-miniature form factor. A high refractive index sensitivity of 220 nm per refractive index unit (RIU) and a high temperature sensitivity of –60more » pm/ °C is achieved with our device.« less

  6. Scalable boson sampling with time-bin encoding using a loop-based architecture.

    PubMed

    Motes, Keith R; Gilchrist, Alexei; Dowling, Jonathan P; Rohde, Peter P

    2014-09-19

    We present an architecture for arbitrarily scalable boson sampling using two nested fiber loops. The architecture has fixed experimental complexity, irrespective of the size of the desired interferometer, whose scale is limited only by fiber and switch loss rates. The architecture employs time-bin encoding, whereby the incident photons form a pulse train, which enters the loops. Dynamically controlled loop coupling ratios allow the construction of the arbitrary linear optics interferometers required for boson sampling. The architecture employs only a single point of interference and may thus be easier to stabilize than other approaches. The scheme has polynomial complexity and could be realized using demonstrated present-day technologies.

  7. Swept source optical coherence tomography using an all-fiber 1300-nm ring laser source.

    PubMed

    Choma, Michael A; Hsu, Kevin; Izatt, Joseph A

    2005-01-01

    The increased sensitivity of spectral domain optical coherence tomography (OCT) has driven the development of a new generation of technologies in OCT, including rapidly tunable, broad bandwidth swept laser sources and spectral domain OCT interferometer topologies. In this work, the operation of a turnkey 1300-nm swept laser source is demonstrated. This source has a fiber ring cavity with a semiconductor optical amplifier gain medium. Intracavity mode selection is achieved with an in-fiber tunable fiber Fabry-Perot filter. A novel optoelectronic technique that allows for even sampling of the swept source OCT signal in k space also is described. A differential swept source OCT system is presented, and images of in vivo human cornea and skin are presented. Lastly, the effects of analog-to-digital converter aliasing on image quality in swept source OCT are discussed.

  8. All-optical non-mechanical fiber-coupled sensor for liquid- and airborne sound detection.

    NASA Astrophysics Data System (ADS)

    Rohringer, Wolfgang; Preißer, Stefan; Fischer, Balthasar

    2017-04-01

    Most fiber-optic devices for pressure, strain or temperature measurements are based on measuring the mechanical deformation of the optical fiber by various techniques. While excellently suited for detecting strain, pressure or structure-borne sound, their sensitivity to liquid- and airborne sound is so far not comparable with conventional capacitive microphones or piezoelectric hydrophones. Here, we present an all-optical acoustic sensor which relies on the detection of pressure-induced changes of the optical refractive index inside a rigid, millimeter-sized, fiber-coupled Fabry-Pérot interferometer (FPI). No mechanically movable or deformable parts take part in the signal transduction chain. Therefore, due to the absence of mechanical resonances, this sensing principle allows for high sensitivity as well as a flat frequency response over an extraordinary measurement bandwidth. As a fiber-coupled device, it can be integrated easily into already available distributed fiber-optic networks for geophysical sensing. We present characterization measurements demonstrating the sensitivity, frequency response and directivity of the device for sound and ultrasound detection in air and water. We show that low-frequency temperature and pressure drifts can be recorded in addition to acoustic sensing. Finally, selected application tests of the laser-based hydrophone and microphone implementation are presented.

  9. Analysis of dynamic channel power equalization by using nonlinear amplifying Sagnac interferometer for ASK-WDM optical transmission

    NASA Astrophysics Data System (ADS)

    Qu, Feng; Liu, Xiaoming; Zhao, Jianhui

    2004-05-01

    A power equalization using an asymmetric nonlinear amplifying Sagnac interferometer (NASI) for ASK modulation is studied numerically. A nonreciprocal phase bias was proposed to be introduced into the structure. The nonreciprocal phase bias reduces not only the demanding for amplifier power or fiber non-linearity, but also increase the dynamic input power range. The power equalization is demonstrated for RZ modulation by nonlinear phase analysis and eye diagram simulation.

  10. Portable fiber optic coupled Doppler interferometer system for detonation and shock wave diagnostics

    NASA Technical Reports Server (NTRS)

    Fleming, Kevin J.

    1993-01-01

    Testing and analysis of shock wave characteristics such as detonators and ground shock propagation frequently require a method of measuring velocity and displacement of the surface of interest. One method of measurement is Doppler interferometry. The VISAR (Velocity Interferometer System for Any Reflector) uses Doppler interferometry and has gained wide acceptance as the preferred tool for shock measurement. An important asset of VISAR is that it measures velocity and displacement nonintrusively.

  11. AGARD Conference Proceedings on Guidance and Control of Precision Guided Weapons Held in Geilo, Norway from 3-6 May 1988

    DTIC Science & Technology

    1989-01-11

    EFFECT OF BANK-TO-TURN VERSUS SKID-TO-TURN STEERING ON THE MANOEUVRABILITY OF AUTONOMOUS PRECISION GUIDED MUUNITION AGAINST GROUND TARGETS by B.J.Damen...space. Basic Relationships of an Interferometer Gyro The Sagnac effect in the fiber optic gyro causes a phase shift in the sensor col during rotation with... a read-out coupler and an.avalanche photodiode for optical detection. The opto module is rigidly connected with the sensor module via a fiber link

  12. Fiber optic sensing system

    NASA Technical Reports Server (NTRS)

    Adamovsky, Grigory (Inventor)

    1991-01-01

    A fiber optic interferometer utilizes a low coherence light emitting diode (LED) laser as a light source which is filtered and driven at two RF frequencies, high and low, that are specific to the initial length of the resonator chamber. A displacement of a reflecting mirror changes the length traveled by the nonreferencing signal. The low frequency light undergoes destructive interference which reduces the average intensity of the wave while the high frequency light undergoes constructive interference which increases the average intensity of the wave. The ratio of these two intensity measurements is proportional to the displacement incurred.

  13. System and method for determination of the reflection wavelength of multiple low-reflectivity bragg gratings in a sensing optical fiber

    NASA Technical Reports Server (NTRS)

    Moore, Jason P. (Inventor)

    2009-01-01

    A system and method for determining a reflection wavelength of multiple Bragg gratings in a sensing optical fiber comprise: (1) a source laser; (2) an optical detector configured to detect a reflected signal from the sensing optical fiber; (3) a plurality of frequency generators configured to generate a signal having a frequency corresponding to an interferometer frequency of a different one of the plurality of Bragg gratings; (4) a plurality of demodulation elements, each demodulation element configured to combine the signal produced by a different one of the plurality of frequency generators with the detected signal from the sensing optical fiber; (5) a plurality of peak detectors, each peak detector configured to detect a peak of the combined signal from a different one of the demodulation elements; and (6) a laser wavenumber detection element configured to determine a wavenumber of the laser when any of the peak detectors detects a peak.

  14. Scanning fiber angle-resolved low coherence interferometry

    PubMed Central

    Zhu, Yizheng; Terry, Neil G.; Wax, Adam

    2010-01-01

    We present a fiber-optic probe for Fourier-domain angle-resolved low coherence interferometry for the determination of depth-resolved scatterer size. The probe employs a scanning single-mode fiber to collect the angular scattering distribution of the sample, which is analyzed using the Mie theory to obtain the average size of the scatterers. Depth sectioning is achieved with low coherence Mach–Zehnder interferometry. In the sample arm of the interferometer, a fixed fiber illuminates the sample through an imaging lens and a collection fiber samples the backscattered angular distribution by scanning across the Fourier plane image of the sample. We characterize the optical performance of the probe and demonstrate the ability to execute depth-resolved sizing with subwavelength accuracy by using a double-layer phantom containing two sizes of polystyrene microspheres. PMID:19838271

  15. Studies in optical parallel processing. [All optical and electro-optic approaches

    NASA Technical Reports Server (NTRS)

    Lee, S. H.

    1978-01-01

    Threshold and A/D devices for converting a gray scale image into a binary one were investigated for all-optical and opto-electronic approaches to parallel processing. Integrated optical logic circuits (IOC) and optical parallel logic devices (OPA) were studied as an approach to processing optical binary signals. In the IOC logic scheme, a single row of an optical image is coupled into the IOC substrate at a time through an array of optical fibers. Parallel processing is carried out out, on each image element of these rows, in the IOC substrate and the resulting output exits via a second array of optical fibers. The OPAL system for parallel processing which uses a Fabry-Perot interferometer for image thresholding and analog-to-digital conversion, achieves a higher degree of parallel processing than is possible with IOC.

  16. Ultra-stable long distance optical frequency distribution using the Internet fiber network.

    PubMed

    Lopez, Olivier; Haboucha, Adil; Chanteau, Bruno; Chardonnet, Christian; Amy-Klein, Anne; Santarelli, Giorgio

    2012-10-08

    We report an optical link of 540 km for ultrastable frequency distribution over the Internet fiber network. The stable frequency optical signal is processed enabling uninterrupted propagation on both directions. The robustness and the performance of the link are enhanced by a cost effective fully automated optoelectronic station. This device is able to coherently regenerate the return optical signal with a heterodyne optical phase locking of a low noise laser diode. Moreover the incoming signal polarization variation are tracked and processed in order to maintain beat note amplitudes within the operation range. Stable fibered optical interferometer enables optical detection of the link round trip phase signal. The phase-noise compensated link shows a fractional frequency instability in 10 Hz bandwidth of 5 × 10(-15) at one second measurement time and 2 × 10(-19) at 30,000 s. This work is a significant step towards a sustainable wide area ultrastable optical frequency distribution and comparison network.

  17. NONLINEAR AND FIBER OPTICS: Transverse traveling pulses in bistable interferometers with competing nonlinearities

    NASA Astrophysics Data System (ADS)

    Rzhanov, Yu A.; Grigor'yants, A. V.; Balkareĭ, Yu I.; Elinson, M. I.

    1990-04-01

    A detailed qualitative description is given of the formation and propagation of leading edges of transverse traveling pulses in a bistable semiconductor interferometer with competing concentration and thermal mechanisms of nonlinear refraction. It is shown that, depending on the laser pumping rate and the heat transfer conditions, two types of traveling pulses may exist with elevated and reduced transmission. Each of these may be initiated by a local change in the input intensity of any sign. When the interferometer is pumped by a spatially inhomogeneous, (for example, Gaussian) beam, periodic spontaneous initiation of both types of traveling pulses may take place at the periphery or in the center of a beam. Traveling pulses are modeled numerically under various interferometer pumping conditions.

  18. Trace hydrogen sulfide gas sensor based on tungsten sulfide membrane-coated thin-core fiber modal interferometer

    NASA Astrophysics Data System (ADS)

    Deng, Dashen; Feng, Wenlin; Wei, Jianwei; Qin, Xiang; Chen, Rong

    2017-11-01

    A novel fiber-optic hydrogen sulfide sensor based on a thin-core Mach-Zehnder fiber modal interferometer (TMZFI) is demonstrated and fabricated. This in-line interferometer is composed of a short section of thin-core fiber sandwiched between two standard single mode fibers, and the fast response to hydrogen sulfide is achieved via the construction of tungsten sulfide film on the outside surface of the TMZFI using the dip-coating and calcination technique. The fabricated sensing nanofilm is characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM), high resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS) spectrometer, Fourier transform infrared (FTIR) and spectroscopic analysis technology, etc. Experimental results showed that the WS2 sensing film has a hexagonal structure with a compact and porous morphology. The XPS and FTIR indicate that the existence of two elements (W and S) is demonstrated. With the increasing concentration of hydrogen sulfide, the interference spectra appear blue shift. In addition, a high sensitivity of 18.37 pm/ppm and a good linear relationship are obtained within a measurement range from 0 to 80 ppm. In addition, there is an excellent selectivity for H2S, which has also been proved by the surface adsorption energy results of tungsten sulfide with four gases (H2S, N2, O2 and CO2) by using the density functional theory calculations. This interferometer has the advantages of simple structure, high sensitivity and easy manufacture, and could be used in the safety monitoring field of hydrogen sulfide gas.

  19. Multipoint sensing with a low-coherence source using single-arm frequency-shifted interferometry

    DOE PAGES

    Zhang, Yiwei; Ye, Fei; Qi, Bing; ...

    2016-07-12

    We demonstrate that multiple-site sensing along an optical fiber can be done with incoherent continuous-wave light. Here, using a broadband low-coherence noise source, a slow detector, and an optical modulator, we construct a single-arm frequency-shifted interferometer (SA-FSI) capable of simultaneously sensing multiple weak-reflection sites distributed either in parallel or in series along fiber links. By scanning the driving frequency of an electro-optic amplitude modulator in the range of 2.7–3.2 GHz at steps of 41.7 KHz, we demonstrate a spatial resolution of 0.3 m and a measurement range of over 1 km.

  20. Rotational scanning and multiple-spot focusing through a multimode fiber based on digital optical phase conjugation

    NASA Astrophysics Data System (ADS)

    Ma, Chaojie; Di, Jianglei; Li, Ying; Xiao, Fajun; Zhang, Jiwei; Liu, Kaihui; Bai, Xuedong; Zhao, Jianlin

    2018-06-01

    We demonstrate, for the first time, the rotational memory effect of a multimode fiber (MMF) based on digital optical phase conjugation (DOPC) to achieve multiple-spot focusing. An implementation interferometer is used to address the challenging alignments in DOPC. By rotating the acquired phase conjugate pattern, rotational scanning through a MMF could be achieved by recording a single off-axis hologram. The generation of two focal spots through a MMF is also demonstrated by combining the rotational memory effect with the superposition principle. The results may be useful for ultrafast scanning imaging and optical manipulation of multiple objects through a MMF.

  1. Image Reconstruction from Data Collected with an Imaging Interferometer

    NASA Astrophysics Data System (ADS)

    DeSantis, Z. J.; Thurman, S. T.; Hix, T. T.; Ogden, C. E.

    The intensity distribution of an incoherent source and the spatial coherence function at some distance away are related by a Fourier transform, via the Van Cittert-Zernike theorem. Imaging interferometers measure the spatial coherence of light propagated from the incoherently illuminated object by combining light from spatially separated points to measure interference fringes. The contrast and phase of the fringe are the amplitude and phase of a Fourier component of the source’s intensity distribution. The Fiber-Coupled Interferometer (FCI) testbed is a visible light, lab-based imaging interferometer designed to test aspects of an envisioned ground-based interferometer for imaging geosynchronous satellites. The front half of the FCI testbed consists of the scene projection optics, which includes an incoherently backlit scene, located at the focus of a 1 m aperture f/100 telescope. The projected light was collected by the back half of the FCI testbed. The collection optics consisted of three 11 mm aperture fiber-coupled telescopes. Light in the fibers was combined pairwise and dispersed onto a sensor to measure the interference fringe as a function of wavelength, which produces a radial spoke of measurements in the Fourier domain. The visibility function was sampled throughout the Fourier domain by recording fringe data at many different scene rotations and collection telescope separations. Our image reconstruction algorithm successfully produced images for the three scenes we tested: asymmetric pair of pinholes, U.S. Air Force resolution bar target, and satellite scene. The bar target reconstruction shows detail and resolution near the predicted resolution limit. This research was developed with funding from the Defense Advanced Research Projects Agency (DARPA). The views, opinions and/or findings expressed are those of the author(s) and should not be interpreted as reflecting the official views or policies of the Department of Defense or the U.S. Government.

  2. Research on dual-parameter optical fiber sensor based on thin-core fiber and spherical structure

    NASA Astrophysics Data System (ADS)

    Tong, Zhengrong; Wang, Xue; Zhang, Weihua; Xue, Lifang

    2018-04-01

    A novel dual-parameter optical fiber sensor is proposed and experimentally demonstrated. The proposed sensor is based on a fiber in-line Mach-Zehnder interferometer, which is fabricated by sandwiching a section of thin-core fiber between two spherical structures made of single-mode fibers. The transmission spectrum exhibits the response of the interference between the core and the different cladding modes. Due to the different wavelength shifts of the two selected dips, the simultaneous measurement of temperature and the surrounding refractive index can be achieved. The measured temperature sensitivities are 0.067 nm/°C and 0.050 nm/°C, and the refractive index sensitivities are  -119.9 nm/RIU and  -69.71 nm/RIU, respectively. In addition, the compact size, simple fabrication and cost-effectiveness of the fiber sensor are also advantages.

  3. Quantum Noise Reduction with Pulsed Light in Optical Fibers.

    NASA Astrophysics Data System (ADS)

    Bergman, Keren

    Optical fibers offer considerable advantages over bulk nonlinear media for the generation of squeezed states. This thesis reports on experimental investigations of reducing quantum noise by means of squeezing in nonlinear fiber optic interferometers. Fibers have low insertion loss which allows for long interaction lengths. High field intensities are easily achieved in the small cores of single mode fibers. Additionally, the nonlinear process employed is self phase modulation or the Kerr effect, whose broad band nature requires no phase matching and can be exploited with ultra-short pulses of high peak intensity. All these advantageous features of fibers result in easily obtained large nonlinear phase shifts and subsequently large squeezing parameters. By the self phase modulation process a correlation is produced between the phase and amplitude fluctuations of the optical field. The attenuated or squeezed quadrature has a lower noise level than the initial level associated with the coherent state field before propagation. The resulting reduced quantum noise quadrature can be utilized to improve the sensitivity of a phase measuring instrument such as an interferometer. Because the Kerr nonlinearity is a degenerate self pumping process, the squeezed noise is at the same frequency as the pump field. Classical pump noise can therefore interfere with the desired measurement of the quantum noise reduction. The most severe noise process is the phase noise caused by thermally induced index modulation of the fiber. This noise termed Guided Acoustic Wave Brillouin Scattering, or GAWBS, by previous researchers is studied and analyzed. Experiments performed to overcome GAWBS successfully with several schemes are described. An experimental demonstration of an interferometric measurement with better sensitivity than the standard quantum limit is described. The results lead to new understandings into the limitations of quantum noise reduction that can be achieved in the laboratory. (Copies available exclusively from MIT Libraries, Rm. 14-0551, Cambridge, MA 02139-4307. Ph. 617-253-5668; Fax 617-253-1690.).

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ding, Wenhui; Jiang, Yi; Gao, Ran, E-mail: bitjy@bit.edu.cn

    A photonic crystal fiber (PCF) based high-temperature fiber-optic sensor is proposed and experimentally demonstrated. The sensor head is a Fabry-Perot cavity manufactured with a short section of endless single-mode photonic crystal fiber (ESM PCF). The interferometric spectrum of the Fabry-Perot interferometer is collected by a charge coupled device linear array based micro spectrometer. A high-resolution demodulation algorithm is used to interrogate the peak wavelengths. Experimental results show that the temperature range of 1200 °C and the temperature resolution of 1 °C are achieved.

  5. Electro-optic modulation of a laser at microwave frequencies for interferometric purposes

    NASA Astrophysics Data System (ADS)

    Specht, Paul E.; Jilek, Brook A.

    2017-02-01

    A multi-point microwave interferometer (MPMI) concept was previously proposed by the authors for spatially-resolved, non-invasive tracking of a shock, reaction, or detonation front in energetic media [P. Specht et al., AIP Conf. Proc. 1793, 160010 (2017).]. The advantage of the MPMI concept over current microwave interferometry techniques is its detection of Doppler shifted microwave signals through electro-optic (EO) modulation of a laser. Since EO modulation preserves spatial variations in the Doppler shift, collecting the EO modulated laser light into a fiber array for recording with an optical heterodyne interferometer yields spatially-resolved velocity information. This work demonstrates the underlying physical principle of the MPMI diagnostic: the monitoring of a microwave signal with nanosecond temporal resolution using an optical heterodyne interferometer. For this purpose, the MPMI concept was simplified to a single-point construction using two tunable 1550 nm lasers and a 35.2 GHz microwave source. A (110) ZnTe crystal imparted the microwave frequency onto a laser, which was combined with a reference laser for determination of the microwave frequency in an optical heterodyne interferometer. A single, characteristic frequency associated with the microwave source was identified in all experiments, providing a means to monitor a microwave signal on nanosecond time scales. Lastly, areas for improving the frequency resolution of this technique are discussed, focusing on increasing the phase-modulated signal strength.

  6. Electro-optic modulation of a laser at microwave frequencies for interferometric purposes.

    PubMed

    Specht, Paul E; Jilek, Brook A

    2017-02-01

    A multi-point microwave interferometer (MPMI) concept was previously proposed by the authors for spatially-resolved, non-invasive tracking of a shock, reaction, or detonation front in energetic media [P. Specht et al., AIP Conf. Proc. 1793, 160010 (2017).]. The advantage of the MPMI concept over current microwave interferometry techniques is its detection of Doppler shifted microwave signals through electro-optic (EO) modulation of a laser. Since EO modulation preserves spatial variations in the Doppler shift, collecting the EO modulated laser light into a fiber array for recording with an optical heterodyne interferometer yields spatially-resolved velocity information. This work demonstrates the underlying physical principle of the MPMI diagnostic: the monitoring of a microwave signal with nanosecond temporal resolution using an optical heterodyne interferometer. For this purpose, the MPMI concept was simplified to a single-point construction using two tunable 1550 nm lasers and a 35.2 GHz microwave source. A (110) ZnTe crystal imparted the microwave frequency onto a laser, which was combined with a reference laser for determination of the microwave frequency in an optical heterodyne interferometer. A single, characteristic frequency associated with the microwave source was identified in all experiments, providing a means to monitor a microwave signal on nanosecond time scales. Lastly, areas for improving the frequency resolution of this technique are discussed, focusing on increasing the phase-modulated signal strength.

  7. [Spectral characteristics of refractive index based on nanocoated optical fiber F-P sensor].

    PubMed

    Jiang, Ming-Shun; Li, Qiu-Shun; Sui, Qing-Mei; Jia, Lei; Peng, Peng

    2013-01-01

    An optical fiber Fabry-Perot (F-P) interferometer end surface was modified using layer-by-layer assembly and chemical covalent cross linking method, and the refractive index (RI) response characteristics of coated optical fiber F-P sensor were experimentally studied. Poly diallyldimethylammonium chloride (PDDA) and sodium polystyrene sulfonate (PSS) were chosen as nano-film materials. With the numbers of layers increasing, the reflection spectral contrast of optical fiber F-P sensor presents from high to low, then to high regularity. And the reflection spectral contrast has good temperature stability. The reflection spectra of the optical F-P sensor coated with 20 bilayers for a series of concentration of sucrose and inorganic solution were measured. Experimental results show that the inflection point extends from 1.457 to 1.462 3, and the reflection spectral contrast sensitivity to low RI material and high RI material is 24.53 and 3.60 dB x RI(-1), respectively, with good linearity. The results demonstrate that the functional coated optical F-P sensor provides a new method for biology and chemical material test.

  8. Propagator Theory Of Polarization And Coherence For Fiber Optics With Application To The Fiber Gyroscope

    NASA Astrophysics Data System (ADS)

    Wanser, Keith H.

    1988-06-01

    In order to understand the various phenomenon in fiber gyroscopes, we have developed a unified theory of polarization and vector coherence theory for fiber optics, using propagator techniques, which is valid for arbitrarily large relative polarization phase delays, arbitrary source polarization properties, in combination with birefringent phase modulation. The propagator representation makes clear the multi-path nature of the polarization effects, similar to the multiple scattering of waves, and an example illustrating this point is given. A "master" equation has been obtained for fiber gyroscopes which i s sufficiently general to permit modeling of the many parasitic effects and their interactions, as well as allow realistic assessment of methods for their reduction. As a result of the development of the propagator approach, several interesting results have been found. One important issue is the performance and characterization of the polarizer used in the fiber gyro. A theorem has been shown that "not all polarizers are created equal", even though they have equal extinction ratios. We have found that the fiber gyroscope probes properties of polarizers that cannot be probed without an interferometer that is equivalent to a ring interferometer. It has been found that there is a considerable difference in performance between two polarizers having the same extinction ratio, but one short, the other long, depending on the birefringence and mode coupling. This leads to an extended classification of polarizer properties beyond an ordinary Jones matrix. A new bound on polarizer performance using the propagator approach is given. Another important issue with fiber optic gyroscopes is drift as a function of temperature. Those familiar with testing of fiber gyroscopes are well aware of the often bizarre (highly non monotonic) drift behaviour as a function of temperature. It is shown how temperature drift can be related to the location of various types of birefringence in the gyro coil using a realistic coil model. The propagator for this coil model is also obtained.

  9. Fixing methods for the use of optical fibers in interferometric arrangements

    NASA Astrophysics Data System (ADS)

    Cubik, Jakub; Kepak, Stanislav; Fajkus, Marcel; Zboril, Ondrej; Nedoma, Jan; Davidson, Alan; Vasinek, Vladimir

    2016-12-01

    Today interferometric sensors are among the most accurate available thanks to their inherent high sensitivity. These highly versatile sensors may be used to measure phenomena such as temperature, strain, fluid level, flow, vibration, stress, etc. This article concentrates on the composition of fiber-optic interferometers, in particular the Mach-Zehnder type. The Mach-Zehnder type is composed of two arms, one for measurement and a second serving as a reference. When light enters the interferometer, ideally the phase of the light is shifted only in the measurement arm while the phase in the second arm remains unchanged. Interference occurs when the light recombining at the output and the resulting light intensity is proportional to the measurand. A major issue in the application of fiber based sensors is laying and fixing the fibers effectively in real life environments. Different approaches are necessary for both arms. The reference arm should as far as possible be isolated from the measurand. In this paper, various isolating materials are considered, however there are almost unlimited materials that may be used for isolation purposes. Conventional construction methods and materials were used such as aluminum tubing, flexible PVC tubing, double sided tape, steel clinches, superglue, PVC strips and PVC strips filled by silicon.

  10. Interrogation of miniature extrinsic Fabry-Pérot sensor using path matched differential interferometer and phase generated carrier scheme

    NASA Astrophysics Data System (ADS)

    Wang, Fuyin; Xie, Jiehui; Hu, Zhengliang; Xiong, Shuidong; Luo, Hong; Hu, Yongming

    2014-05-01

    Study of fiber optic extrinsic Fabry-Pérot sensors utilizing state-of-the-art MEMS technology mostly focus on sensor fabrication for various applications, while the signal interrogation is still insatiable to current application. In this paper, we propose a white light path matched differential interferometer dynamic sensing system utilizing phase generated carrier demodulation scheme. A step motor with a movable mirror and a fiber-wound piezoelectric transducer string are used to act path matching and phase modulation respectively. Experimental results show that the sensing signal could be correctly recovered with low distortion and the phase noise spectrum level is less than -100 dB re. rad/√Hz above 2.5 kHz.

  11. Wavelength-switchable and stable-ring-cavity, erbium-doped fiber laser based on Mach-Zehnder interferometer and tunable filter

    NASA Astrophysics Data System (ADS)

    He, Wei; Zhu, Lianqing; Dong, Mingli; Lou, Xiaoping; Luo, Fei

    2018-04-01

    This paper proposes and tests a ring cavity-based, erbium-doped fiber laser that incorporates a Mach-Zehnder interferometer and tunable filter. A four-m-long erbium-doped fiber was selected as the gain medium. The all-fiber Mach-Zehnder interferometer was composed of two 2  ×  2 optical couplers, and the tunable filter was used as wavelength reflector. A lasing threshold of 103 mW was used in the experiment, and the tunable laser with stable single and dual wavelengths was implemented by adjusting the tunable filter. The channel spacing was 0.6 nm within the range 1539.4-1561.6 nm, where the power difference between the lines was less than 0.4 dB. The side-mode suppression ratio was higher than 36 dB and the 3 dB linewidth was 0.02 nm. When a single-wavelength laser was implemented at 1557.4 nm, the power fluctuations were lower than 0.34 dB within 20 min of scan time. When lasers at wavelengths of 1558.6 nm and 1559.2 nm were simultaneously applied, the power shifts were lower than 0.29 dB and 0.43 dB, respectively, at room temperature.

  12. Demonstration of analyzers for multimode photonic time-bin qubits

    NASA Astrophysics Data System (ADS)

    Jin, Jeongwan; Agne, Sascha; Bourgoin, Jean-Philippe; Zhang, Yanbao; Lütkenhaus, Norbert; Jennewein, Thomas

    2018-04-01

    We demonstrate two approaches for unbalanced interferometers as time-bin qubit analyzers for quantum communication, robust against mode distortions and polarization effects as expected from free-space quantum communication systems including wavefront deformations, path fluctuations, pointing errors, and optical elements. Despite strong spatial and temporal distortions of the optical mode of a time-bin qubit, entangled with a separate polarization qubit, we verify entanglement using the Negative Partial Transpose, with the measured visibility of up to 0.85 ±0.01 . The robustness of the analyzers is further demonstrated for various angles of incidence up to 0 .2∘ . The output of the interferometers is coupled into multimode fiber yielding a high system throughput of 0.74. Therefore, these analyzers are suitable and efficient for quantum communication over multimode optical channels.

  13. High-temperature measurement by using a PCF-based Fabry-Perot interferometer

    NASA Astrophysics Data System (ADS)

    Xu, Lai-Cai; Deng, Ming; Duan, De-Wen; Wen, Wei-Ping; Han, Meng

    2012-10-01

    A new method for fabricating a fiber-optic Fabry-Perot interferometer (FPI) for high-temperature sensing is presented. The sensor is fabricated by fusion splicing a short section of endlessly single-mode photonic crystal fiber (ESM-PCF) to the cleaved end facet of a single-mode fiber (SMF) with an intentional complete collapse at the splice joint. This procedure not only provides easier, faster and cheaper technology for FPI sensors but also yields the FPI exhibiting an accurate and stable sinusoidal interference fringe with relatively high signal-to-noise ratio (SNR). The high-temperature response of the FPI sensors were experimentally studied and the results show that the sensor allows linear and stable measurement of temperatures up to 1100 °C with a sensitivity of ˜39.1 nm/°C for a cavity length of 1377 um, which makes it attractive for aeronautics and metallurgy areas.

  14. Novel method of detecting movement of the interference fringes using one-dimensional PSD.

    PubMed

    Wang, Qi; Xia, Ji; Liu, Xu; Zhao, Yong

    2015-06-02

    In this paper, a method of using a one-dimensional position-sensitive detector (PSD) by replacing charge-coupled device (CCD) to measure the movement of the interference fringes is presented first, and its feasibility is demonstrated through an experimental setup based on the principle of centroid detection. Firstly, the centroid position of the interference fringes in a fiber Mach-Zehnder (M-Z) interferometer is solved in theory, showing it has a higher resolution and sensitivity. According to the physical characteristics and principles of PSD, a simulation of the interference fringe's phase difference in fiber M-Z interferometers and PSD output is carried out. Comparing the simulation results with the relationship between phase differences and centroid positions in fiber M-Z interferometers, the conclusion that the output of interference fringes by PSD is still the centroid position is obtained. Based on massive measurements, the best resolution of the system is achieved with 5.15, 625 μm. Finally, the detection system is evaluated through setup error analysis and an ultra-narrow-band filter structure. The filter structure is configured with a one-dimensional photonic crystal containing positive and negative refraction material, which can eliminate background light in the PSD detection experiment. This detection system has a simple structure, good stability, high precision and easily performs remote measurements, which makes it potentially useful in material small deformation tests, refractivity measurements of optical media and optical wave front detection.

  15. Microfiber Optical Sensors: A Review

    PubMed Central

    Lou, Jingyi; Wang, Yipei; Tong, Limin

    2014-01-01

    With diameter close to or below the wavelength of guided light and high index contrast between the fiber core and the surrounding, an optical microfiber shows a variety of interesting waveguiding properties, including widely tailorable optical confinement, evanescent fields and waveguide dispersion. Among various microfiber applications, optical sensing has been attracting increasing research interest due to its possibilities of realizing miniaturized fiber optic sensors with small footprint, high sensitivity, fast response, high flexibility and low optical power consumption. Here we review recent progress in microfiber optical sensors regarding their fabrication, waveguide properties and sensing applications. Typical microfiber-based sensing structures, including biconical tapers, optical gratings, circular cavities, Mach-Zehnder interferometers and functionally coated/doped microfibers, are summarized. Categorized by sensing structures, microfiber optical sensors for refractive index, concentration, temperature, humidity, strain and current measurement in gas or liquid environments are reviewed. Finally, we conclude with an outlook for challenges and opportunities of microfiber optical sensors. PMID:24670720

  16. Absolute calibration of optical flats

    DOEpatents

    Sommargren, Gary E.

    2005-04-05

    The invention uses the phase shifting diffraction interferometer (PSDI) to provide a true point-by-point measurement of absolute flatness over the surface of optical flats. Beams exiting the fiber optics in a PSDI have perfect spherical wavefronts. The measurement beam is reflected from the optical flat and passed through an auxiliary optic to then be combined with the reference beam on a CCD. The combined beams include phase errors due to both the optic under test and the auxiliary optic. Standard phase extraction algorithms are used to calculate this combined phase error. The optical flat is then removed from the system and the measurement fiber is moved to recombine the two beams. The newly combined beams include only the phase errors due to the auxiliary optic. When the second phase measurement is subtracted from the first phase measurement, the absolute phase error of the optical flat is obtained.

  17. Passive demodulation of miniature fiber-optic-based interferometric sensors using a time-multiplexing technique.

    PubMed

    Santos, J L; Jackson, D A

    1991-08-01

    A passive demodulation technique suitable for interferometric interrogation of short optical cavities is described. It is based on time multiplexing of two low-finesse Fabry-Perot interferometers subject to the same measurand and with a differential optical phase of pi/2 (modulo 2pi). Independently of the cavity length, two optical outputs in quadrature are generated, which permits signal reading free of fading. The concept is demonstrated for the measurement of vibration using a simple processing scheme.

  18. A novel fiber optic geophone with high sensitivity for geo-acoustic detection

    NASA Astrophysics Data System (ADS)

    Zhang, Zhenhui; Yang, Huayong; Xiong, Shuidong; Luo, Hong; Cao, Chunyan; Ma, Shuqing

    2014-12-01

    A novel interferometric fiber optic geophone is introduced in this paper. This geophone is mainly used for geo-acoustic signal detection. The geophone use one of the three orthogonal components of mandrel type push-pull structure in mechanically and single-mode fiber optic Michelson interferometer structure with Faraday Rotation Mirror (FRM) elements in optically. The resonance frequency of the geophone is larger than 1000Hz. The acceleration sensitivity is as high as 56.6 dB (0dB re 1rad/g) with a slight sensitivity fluctuation of +/-0. 2dB within the frequency band from 20Hz to 200Hz. The geo-acoustic signals generated by underwater blasting are detected successfully. All the channels show good uniformity in the detected wave shape and the amplitudes exhibit very slight differences. The geo-acoustic signal excitated by the engine of surface vehicles was also detected successfully.

  19. Integrated Mach-Zehnder interferometer on the end facet of multicore fiber for refractive index sensing application

    NASA Astrophysics Data System (ADS)

    Qi, Yanwen; Zhang, Siyao; Feng, Shengfei; Wang, Xinke; Sun, Wenfeng; Ye, Jiasheng; Han, Peng; Zhang, Yan

    2018-01-01

    A sensitive, real-time seven core optical fiber based Mach-Zehnder interferometer (MZI) sensor for liquid refractive index detection is proposed, fabricated and characterized. A trapezoid body with an inverted wedge shape groove in the center is used to design the MZI. The two ends of the trapezoid body play the roles of micro-prisms, and the middle parts of the trapezoid body and the groove play the roles of reference and sensing arms. A series of performance tests were carried out by immersing the sensor in different kinds of solutions to verify the universal applicability of the sensor. The MZI sensor is as small as only 43 μm × 8 μm, and at the same time with sensitivity of 1616 nm/RIU. Nominally, we realized a completely integrated optical sensing system. And, this system actually could be the building block of more powerful integrated chemical sensing chip for health, security and industry application.

  20. Investigation of baseline measurement resolution of a Si plate-based extrinsic Fabry-Perot interferometer

    NASA Astrophysics Data System (ADS)

    Ushakov, Nikolai; Liokumovich, Leonid

    2014-05-01

    Measurement of a wafer thickness is of a great value for fabrication and interrogation of MEMS/MOEMS devices, as well as conventional optical fiber sensors. In the current paper we investigate the abilities of the wavelength-scanning interferometry techniques for registering the baseline of an extrinsic fiber Fabry-Perot interferometer (EFPI) with the cavity formed by the two sides of a silicon plate. In order to enhance the resolution, an improved signal processing algorithm was developed. Various experiments, including contact and non-contact measurement of a silicon wafer thickness were performed, with the achieved resolutions from 10 to 20 pm. This enables one to use the described approach for high-precision measurement of geometric parameters of micro electro (electro-optic) mechanical systems for their characterization, utilization in sensing tasks and fabrication control. An ability of a Si plate-based EFPI interrogated by the developed technique to capture temperature variations of about 4 mK was demonstrated.

  1. Low frequency noise fiber delay stabilized laser with reduced sensitivity to acceleration

    NASA Astrophysics Data System (ADS)

    Argence, B.; Clivati, C.; Dournaux, J.-L.; Holleville, D.; Faure, B.; Lemonde, P.; Santarelli, G.

    2017-11-01

    Lasers with sub-hertz line-width and fractional frequency instability around 1×10-15 for 0.1 s to 10 s averaging time are currently realized by locking onto an ultra-stable Fabry-Perot cavity using the Pound-Drever-Hall method. This powerful method requires tight alignment of free space optical components, precise polarization adjustment and spatial mode matching. To circumvent these issues, we use an all-fiber Michelson interferometer with a long fiber spool as a frequency reference and a heterodyne detection technique with a fibered acousto optical modulator (AOM)1. At low Fourier frequencies, the frequency noise of our system is mainly limited by mechanical vibrations, an issue that has already been explored in the field of optoelectronic oscillators.2,3,4

  2. Phase shifting interferometry based on a vibration sensor - feasibility study on elimination of the depth degeneracy

    NASA Astrophysics Data System (ADS)

    Lee, Seung Seok; Kim, Ju Ha; Choi, Eun Seo

    2017-04-01

    We proposed novel phase-shifting interferometry using a fiber-optic vibration sensor. The Doppler shift in the coiled fiber caused by vibrations can be used to detect the vibrations by using a fiber-optic interferometer. The principle can be applied to induce phase shifts. While applying vibrations to the coiled fiber at various vibration frequencies, we recorded the variations in the interference fringes. The interference fringe moved to longer wavelengths when a vibration frequency was increased from 38.00 to 38.40 kHz. Phase variations of 3.59 rad/kHz were obtained. The ability to accurately control the phase by using the vibrations in the coiled fiber was demonstrated by the elimination of the depth degeneracy using the complex signal generated by the phase-shifted interference fringes. Using vibrations to control phase shifting can be an acceptable alternative to conventional methods and can be applied to resolve the depth ambiguity in Fourier domain optical coherence tomography.

  3. Research on signal demodulation technology of Mach-Zehnder optical fiber sensor vibration system

    NASA Astrophysics Data System (ADS)

    Liu, Juncheng; Cheng, Pengshen; Hu, Tong

    2017-08-01

    Mach-Zehnder (M-Z) interferometer is frequently used in optical fiber vibration system. And signal demodulation technology plays an important role in the signal processing of M-Z optical fiber vibration system. In order to accurately get the phase information of the vibration signals, the signal demodulation technique based on M-Z interference principle is studied. In this paper, by analyzing the principles of 3 × 3 fiber coupler homodyne demodulation method and phase-generating carrier (PGC) technology, the advantages and disadvantages of the two demodulation methods for different vibration signal are presented. Then the method of judging signal strength is proposed. The correlation between the demodulation effects and strength of the perturbation signals is analyzed. Finally, the simulation experiments are carried out to compare the demodulation effects of the two demodulation methods, the results demonstrate that PGC demodulation technology has great advantages in weak signals, and the 3 × 3 fiber coupler is more suitable for strong signals.

  4. Integration of miniature Fabry-Perot fiber optic sensor with FBG for the measurement of temperature and strain

    NASA Astrophysics Data System (ADS)

    Li, L.; Tong, X. L.; Zhou, C. M.; Wen, H. Q.; Lv, D. J.; Ling, K.; Wen, C. S.

    2011-03-01

    A sensor has been fabricated by the integration of a fiber Bragg gating sensor (FBGs) with a fiber Fabry-Perot (F-P) sensor fabricated by etching method. In the integrated sensor, the FBG was used to measure temperature, while the fiber Fabry-Perot interferometer sensor (FFPIs) was used for strain measurement. Wavelength decoding for FBG and peak tracking for FFPI was employed for demodulation, respectively. The result showed that the temperature and strain sensitivity for the integrated sensor is ~ 2.7 pm/ μɛand ~ 9.3 pm/°C, respectively.

  5. Simple refractometer based on in-line fiber interferometers

    NASA Astrophysics Data System (ADS)

    Esteban, Ó.; Martínez Manuel, R.; Shlyagin, M. G.

    2015-09-01

    A very simple but accurate optical fiber refractometer based on the Fresnel reflection in the fiber tip and two in-line low-reflective mirrors for light intensity referencing is reported. Each mirror was generated by connecting together 2 fiber sections with FC/PC and FC/APC connectors using the standard FC/PC mating sleeve. For the sensor interrogation, a standard DFB diode laser pumped with a sawtooth-wave current was used. A resolution of 6 x 10-4 was experimentally demonstrated using different liquids. A simple sensor construction and the use of low cost components make the reported system interesting for many applications.

  6. Experimental measurement and numerical analysis of group velocity dispersion in cladding modes of an endlessly single-mode photonic crystal fiber

    NASA Astrophysics Data System (ADS)

    Baselt, Tobias; Taudt, Christopher; Nelsen, Bryan; Lasagni, Andrés. Fabián.; Hartmann, Peter

    2017-06-01

    The optical properties of the guided modes in the core of photonic crystal fibers (PCFs) can be easily manipulated by changing the air-hole structure in the cladding. Special properties can be achieved in this case such as endless singlemode operation. Endlessly single-mode fibers, which enable single-mode guidance over a wide spectral range, are indispensable in the field of fiber technology. A two-dimensional photonic crystal with a silica central core and a micrometer-spaced hexagonal array of air holes is an established method to achieve endless single-mode properties. In addition to the guidance of light in the core, different cladding modes occur. The coupling between the core and the cladding modes can affect the endlessly single-mode guides. There are two possible ways to determine the dispersion: measurement and calculation. We calculate the group velocity dispersion (GVD) of different cladding modes based on the measurement of the fiber structure parameters, the hole diameter and the pitch of a presumed homogeneous hexagonal array. Based on the scanning electron image, a calculation was made of the optical guiding properties of the microstructured cladding. We compare the calculation with a method to measure the wavelength-dependent time delay. We measure the time delay of defined cladding modes with a homemade supercontinuum light source in a white light interferometric setup. To measure the dispersion of cladding modes of optical fibers with high accuracy, a time-domain white-light interferometer based on a Mach-Zehnder interferometer is used. The experimental setup allows the determination of the wavelengthdependent differential group delay of light travelling through a thirty centimeter piece of test fiber in the wavelength range from VIS to NIR. The determination of the GVD using different methods enables the evaluation of the individual methods for characterizing the cladding modes of an endlessly single-mode fiber.

  7. 10-channel fiber array fabrication technique for parallel optical coherence tomography system

    NASA Astrophysics Data System (ADS)

    Arauz, Lina J.; Luo, Yuan; Castillo, Jose E.; Kostuk, Raymond K.; Barton, Jennifer

    2007-02-01

    Optical Coherence Tomography (OCT) shows great promise for low intrusive biomedical imaging applications. A parallel OCT system is a novel technique that replaces mechanical transverse scanning with electronic scanning. This will reduce the time required to acquire image data. In this system an array of small diameter fibers is required to obtain an image in the transverse direction. Each fiber in the array is configured in an interferometer and is used to image one pixel in the transverse direction. In this paper we describe a technique to package 15μm diameter fibers on a siliconsilica substrate to be used in a 2mm endoscopic probe tip. Single mode fibers are etched to reduce the cladding diameter from 125μm to 15μm. Etched fibers are placed into a 4mm by 150μm trench in a silicon-silica substrate and secured with UV glue. Active alignment was used to simplify the lay out of the fibers and minimize unwanted horizontal displacement of the fibers. A 10-channel fiber array was built, tested and later incorporated into a parallel optical coherence system. This paper describes the packaging, testing, and operation of the array in a parallel OCT system.

  8. High-visibility photonic crystal fiber interferometer for ultrasensitive refractometric sensing

    NASA Astrophysics Data System (ADS)

    Cárdenas-Sevilla, Guillermo A.; Fávero, Fernando C.; Finazzi, Vittoria; Villatoro, Joel; Pruneri, Valerio

    2011-09-01

    A simple and compact photonic crystal fiber (PCF) interferometer that operates in reflection mode is proposed for refractive index (RI) sensing. The device consists of a ~12mm-long stub of commercially available PCF (LMA-10) fusion spliced to standard optical fiber (SMF-28). The device reflection spectrum exhibits interference patterns with fringe contrast up to 40 dB. One of the excited modes in the PCF is sensitive to external RI therefore the device can be useful for refractrometry. The shift of the interference pattern can be monitored as a function of the external index. In the operating range, from 1.33 to 1.43, the maximum shift is less than the interferometer period, so there is no-ambiguity in the measurements. The maximum sensitivity and resolution achieved were 735 nm per RI units and 7×10-5, respectively. Another approach to measure the external RI consists of monitoring the reflection power located at the quadrature point of the inference pattern in a properly selected wavelength. Consequently the measuring range is narrower but the resolution is higher, up ~7×10-6, thanks to the high fringe contrast.

  9. Electro-optic correlator for large-format microwave interferometry: Up-conversion and correlation stages performance analysis

    NASA Astrophysics Data System (ADS)

    Ortiz, D.; Casas, Francisco J.; Ruiz-Lombera, R.; Mirapeix, J.

    2017-04-01

    In this paper, a microwave interferometer prototype with a near-infra-red optical correlator is proposed as a solution to get a large-format interferometer with hundreds of receivers for radio astronomy applications. A 10 Gbits/s Lithium Niobate modulator has been tested as part of an electro-optic correlator up-conversion stage that will be integrated in the interferometer prototype. Its internal circuitry consists of a single-drive modulator biased by a SubMiniature version A (SMA) connector allowing to up-convert microwave signals with bandwidths up to 12.5 GHz to the near infrared band. In order to characterize it, a 12 GHz tone and a bias voltage were applied to the SMA input using a polarization tee. Two different experimental techniques to stabilize the modulator operation point in its minimum optical carrier output power are described. The best achieved results showed a rather stable spectrum in amplitude and wavelength at the output of the modulator with an optical carrier level 23 dB lower than the signal of interest. On the other hand, preliminary measurements were made to analyze the correlation stage, using 4f and 6f optical configurations to characterize both the antenna/fiber array configuration and the corresponding point spread function.

  10. Fiberoptics technology and its application to propulsion control systems

    NASA Technical Reports Server (NTRS)

    Baumbick, R. J.

    1983-01-01

    Current work on optical sensors and optically controlled actuators for use in air-breathing engine control systems is reviewed with particular reference to the design and operation of several new fiber-optic devices. These include a tachometer, a rotary position encoder, a Fabry-Perot interferometer and a rare-earth sensor for measuring engine gas temperatures, a high-temperature photoswitch designed for the range -55 to 260 C, and optical cables and connectors. The advantages of optics over conventional wire systems used for sensing and actuator control are briefly discussed.

  11. A development optical course based on optical fiber white light interference

    NASA Astrophysics Data System (ADS)

    Jiang, Haili; Sun, Qiuhua; Zhao, Yancheng; Li, Qingbo

    2017-08-01

    The Michelson interferometer is a very important instrument in optical part for college physics teaching. But most students only know the instrument itself and don't know how to use it in practical engineering problems. A case about optical fiber white light interference based on engineering practice was introduced in the optical teaching of college physics and then designed a development course of university physical optics part. This system based on low-coherence white light interferometric technology can be used to measure distribution strain or temperature. It also could be used in the case of temperature compensation mode.This teaching design can use the knowledge transfer rule to enable students to apply the basic knowledge in the university physics to the new knowledge domain, which can promote the students' ability of using scientific methods to solve complex engineering problems.

  12. An optical fiber guided ultrasonic excitation and sensing system for online monitoring of nuclear power plants

    NASA Astrophysics Data System (ADS)

    Yang, J.; Lee, H.; Sohn, H.

    2012-05-01

    This study presents an embedded laser ultrasonic system for pipeline monitoring under high temperature environment. Recently, laser ultrasonics is becoming popular because of their advantageous characteristics such as (a) noncontact inspection, (b) immunity against electromagnetic interference (EMI), and (c) applicability under high temperature. However, the performance of conventional laser ultrasonic techniques for pipeline monitoring has been limited because many pipelines are covered by insulating materials and target surfaces are inaccessible. To overcome the problem, this study designs an embeddable optical fibers and fixing devices that deliver laser beams from laser sources to a target pipe using embedded optical fibers. For guided wave generation, an optical fiber is furnished with a beam collimator for irradiating a laser beam onto a target structure. The corresponding response is measured based on the principle of laser interferometry. Light from a monochromatic source is colliminated and delivered to a target surface by another optical with a focusing module, and reflected light is transmitted back to the interferometer through the same fiber. The feasibility of the proposed system for embedded ultrasonic measurement has been experimentally verified using a pipe specimen under high temperature.

  13. High stability wavefront reference source

    DOEpatents

    Feldman, M.; Mockler, D.J.

    1994-05-03

    A thermally and mechanically stable wavefront reference source which produces a collimated output laser beam is disclosed. The output beam comprises substantially planar reference wavefronts which are useful for aligning and testing optical interferometers. The invention receives coherent radiation from an input optical fiber, directs a diverging input beam of the coherent radiation to a beam folding mirror (to produce a reflected diverging beam), and collimates the reflected diverging beam using a collimating lens. In a class of preferred embodiments, the invention includes a thermally and mechanically stable frame comprising rod members connected between a front end plate and a back end plate. The beam folding mirror is mounted on the back end plate, and the collimating lens mounted to the rods between the end plates. The end plates and rods are preferably made of thermally stable metal alloy. Preferably, the input optical fiber is a single mode fiber coupled to an input end of a second single mode optical fiber that is wound around a mandrel fixedly attached to the frame of the apparatus. The output end of the second fiber is cleaved so as to be optically flat, so that the input beam emerging therefrom is a nearly perfect diverging spherical wave. 7 figures.

  14. High stability wavefront reference source

    DOEpatents

    Feldman, Mark; Mockler, Daniel J.

    1994-01-01

    A thermally and mechanically stable wavefront reference source which produces a collimated output laser beam. The output beam comprises substantially planar reference wavefronts which are useful for aligning and testing optical interferometers. The invention receives coherent radiation from an input optical fiber, directs a diverging input beam of the coherent radiation to a beam folding mirror (to produce a reflected diverging beam), and collimates the reflected diverging beam using a collimating lens. In a class of preferred embodiments, the invention includes a thermally and mechanically stable frame comprising rod members connected between a front end plate and a back end plate. The beam folding mirror is mounted on the back end plate, and the collimating lens mounted to the rods between the end plates. The end plates and rods are preferably made of thermally stable metal alloy. Preferably, the input optical fiber is a single mode fiber coupled to an input end of a second single mode optical fiber that is wound around a mandrel fixedly attached to the frame of the apparatus. The output end of the second fiber is cleaved so as to be optically flat, so that the input beam emerging therefrom is a nearly perfect diverging spherical wave.

  15. Distributed vibration fiber sensing system based on Polarization Diversity Receiver

    NASA Astrophysics Data System (ADS)

    Zhang, Junan; Jiang, Peng; Hu, Zhengliang; Hu, Yongming

    2016-10-01

    In this paper, we propose a distributed vibration fiber sensing system based on Polarization Diversity Receiver(PDR). We use Acoustic Optical Modulator(AOM) to generate pulse light and an unbalanced M-Z interferometer to generate two pulse light with a certain time delay in the same period. As the pulse lights propagating in fibers, the Backward Rayleigh scattering lights will interfere with each other. The vibration on the fiber will change the length and refractive index of fiber which results in the change of the phase of the interference signal. Hence, one arm of the M-Z interferometer is modulated by a sinusoidal phase-generated carrier(PGC) signal, and PGC demodulation algorithm has been used to acquire phase information from the Backward Rayleigh scattering lights. In order to overcome the influence of polarization-induced fading and enhance Signal Noise Ratio(SNR), we set a PDR before the photo detector. The Polarization Diversity Receiver segregates the interfere light into two lights with orthogonal states of polarization. Hence, there is always one channel has a better interfere light signal. The experiments are presented to verify the effectiveness of the distributed vibration fiber sensing system proposed.

  16. Nitrogen-Doped Diamond Film for Optical Investigation of Hemoglobin Concentration

    PubMed Central

    Majchrowicz, Daria; Kosowska, Monika; Struk, Przemysław; Sobaszek, Michał; Jędrzejewska-Szczerska, Małgorzata

    2018-01-01

    In this work we present the fabrication and characterization of a diamond film which can be utilized in the construction of optical sensors for the investigation of biological samples. We produced a nitrogen-doped diamond (NDD) film using a microwave plasma enhanced chemical vapor deposition (MWPECVD) system. The NDD film was investigated with the use of scanning electron microscopy (SEM), atomic force microscopy (AFM) and Raman spectroscopy. The NDD film was used in the construction of the fiber optic sensor. This sensor is based on the Fabry–Pérot interferometer working in a reflective mode and the NDD film is utilized as a reflective layer of this interferometer. Application of the NDD film allowed us to obtain the sensor of hemoglobin concentration with linear work characteristics with a correlation coefficient (R2) equal to 0.988. PMID:29324715

  17. The Fourier-Kelvin Stellar Interferometer a Low Complexity, Low Cost Space Mission for High-Resolution Astronomy and Direct Exoplanet Detection

    NASA Technical Reports Server (NTRS)

    Barry, R. K.; Danchi, W. C.; Deming, L. D.; Richardson, L. J.; Kuchner, M. J.; Seager, S.; Frey, B. J.; Martino, A. J.; Lee, K. A.; Zuray, M.; hide

    2006-01-01

    The Fourier-Kelvin Stellar Interferometer (FKSI) is a mission concept for a spacecraft-borne nulling interferometer for high-resolution astronomy and the direct detection of exoplanets and assay of their environments and atmospheres. FKSI is a high angular resolution system operating in the near to midinfrared spectral region and is a scientific and technological pathfinder to the Darwin and Terrestrial Planet Finder (TPF) missions. The instrument is configured with an optical system consisting, depending on configuration, of two 0.5 - 1.0 m telescopes on a 12.5 - 20 m boom feeding a symmetric, dual Mach- Zehnder beam combiner. We report on progress on our nulling testbed including the design of an optical pathlength null-tracking control system and development of a testing regime for hollow-core fiber waveguides proposed for use in wavefront cleanup. We also report results of integrated simulation studies of the planet detection performance of FKSI and results from an in-depth control system and residual optical pathlength jitter analysis.

  18. Analysis of the use of fiber optic technology for the monitoring heart rate of the pregnant and fetus

    NASA Astrophysics Data System (ADS)

    Nedoma, Jan; Fajkus, Marcel; Martinek, Radek; Jargus, Jan; Zboril, Ondrej; Vasinek, Vladimir

    2017-10-01

    This article describes an analysis of the use of fiber-optic technology in biomedical applications, specifically for the monitoring heart rate of the pregnant (mHR) and fetal (fHR). Authors focused on the use of Fiber Bragg Grating (FBG) and Fiber-Optic Interferometers (FOI). Thanks to the utilization of conventional method so-called cardiotocography (CTG), the mortality of newborn babies during delivery has decreased. Generally, among disadvantages of this method, there is a high sensitivity to noises caused by the movement of a mother, and it is connected with the frequent transfer of ultrasonic converters. This method is not suitable for a long-term continuous monitoring due to a possible influence of ultrasonic radiation on the fetus. Use of fiber-optic technology offers many advantages, for example, use measuring probes based FBG or FOI does not represent any additional radiation burden for the pregnant woman or fetus, fiber-optic measurement probes are resistant to technical artifacts such as electromagnetic interferences (EMI), thus they can be used in situations where it is impossible to use classic methods, e.g. examination by magnetic resonance (MR) or in case of delivery in water. The article describes the first experimental knowledge of based on real measurements.

  19. Optical device for measuring a surface characteristic of an object by multi-color interferometry

    NASA Technical Reports Server (NTRS)

    Meyer, William V. (Inventor); Smart, Anthony E. (Inventor)

    2001-01-01

    An interferometer having a light beam source that produces a plurality of separate and distinct wavelengths of light. Optic fibers are used to transport the wavelengths of light toward an object surface and to allow light reflected from the object to pass through a polarizer to improve the polarization ratio of the reflected light to determine a characteristic of the object surface.

  20. The Use of Computer-Aided Decision Support Systems for Complex Source Selection Decisions

    DTIC Science & Technology

    1989-09-01

    unique low noise interferometer developed at Fusetech Inc. by using divided Fabry - Perot fiber optic cells, common- mode rejection, matched path lengths and...potential techniques for a demodulation scheme. They proposed a detailed investigation of the approaches as part of the program. For mine applications

  1. Vision: A Six-telescope Fiber-fed Visible Light Beam Combiner for the Navy Precision Optical Interferometer

    DTIC Science & Technology

    2016-05-01

    Visible-light long baseline interferometry holds the promise of advancing a number of important applications in fundamental astronomy, including the...advance the field of visible-light interferometry requires development of instruments capable of combing light from 15 baselines (6 telescopes

  2. A novel lightweight Fizeau infrared interferometric imaging system

    NASA Astrophysics Data System (ADS)

    Hope, Douglas A.; Hart, Michael; Warner, Steve; Durney, Oli; Romeo, Robert

    2016-05-01

    Aperture synthesis imaging techniques using an interferometer provide a means to achieve imagery with spatial resolution equivalent to a conventional filled aperture telescope at a significantly reduced size, weight and cost, an important implication for air- and space-borne persistent observing platforms. These concepts have been realized in SIRII (Space-based IR-imaging interferometer), a new light-weight, compact SWIR and MWIR imaging interferometer designed for space-based surveillance. The sensor design is configured as a six-element Fizeau interferometer; it is scalable, light-weight, and uses structural components and main optics made of carbon fiber replicated polymer (CFRP) that are easy to fabricate and inexpensive. A three-element prototype of the SIRII imager has been constructed. The optics, detectors, and interferometric signal processing principles draw on experience developed in ground-based astronomical applications designed to yield the highest sensitivity and resolution with cost-effective optical solutions. SIRII is being designed for technical intelligence from geo-stationary orbit. It has an instantaneous 6 x 6 mrad FOV and the ability to rapidly scan a 6x6 deg FOV, with a minimal SNR. The interferometric design can be scaled to larger equivalent filled aperture, while minimizing weight and costs when compared to a filled aperture telescope with equivalent resolution. This scalability in SIRII allows it address a range of IR-imaging scenarios.

  3. High-Frequency Fiber-Optic Ultrasonic Sensor Using Air Micro-Bubble for Imaging of Seismic Physical Models.

    PubMed

    Gang, Tingting; Hu, Manli; Rong, Qiangzhou; Qiao, Xueguang; Liang, Lei; Liu, Nan; Tong, Rongxin; Liu, Xiaobo; Bian, Ce

    2016-12-14

    A micro-fiber-optic Fabry-Perot interferometer (FPI) is proposed and demonstrated experimentally for ultrasonic imaging of seismic physical models. The device consists of a micro-bubble followed by the end of a single-mode fiber (SMF). The micro-structure is formed by the discharging operation on a short segment of hollow-core fiber (HCF) that is spliced to the SMF. This micro FPI is sensitive to ultrasonic waves (UWs), especially to the high-frequency (up to 10 MHz) UW, thanks to its ultra-thin cavity wall and micro-diameter. A side-band filter technology is employed for the UW interrogation, and then the high signal-to-noise ratio (SNR) UW signal is achieved. Eventually the sensor is used for lateral imaging of the physical model by scanning UW detection and two-dimensional signal reconstruction.

  4. Fourier transform spectrometry for fiber-optic sensor systems

    NASA Technical Reports Server (NTRS)

    Beheim, Glenn; Tuma, Margaret L.; Sotomayor, Jorge L.; Flatico, Joseph M.

    1993-01-01

    An integrated-optic Mach-Zehnder interferometer is used as a Fourier transform spectrometer to analyze the input and output spectra of a temperature-sensing thin-film etalon. This type of spectrometer has an advantage over conventional grating spectrometers because it is better suited for use with time-division-multiplexed sensor networks. In addition, this spectrometer has the potential for low cost due to its use of a component that could be manufactured in large quantities for the optical communications industry.

  5. Blood pulse wave velocity and pressure sensing via fiber based and free space based optical sensors

    NASA Astrophysics Data System (ADS)

    Sirkis, Talia; Beiderman, Yevgeny; Agdarov, Sergey; Beiderman, Yafim; Zalevsky, Zeev

    2017-02-01

    Continuous noninvasive measurement of vital bio-signs, such as cardiopulmonary parameters, is an important tool in evaluation of the patient's physiological condition and health monitoring. On the demand of new enabling technologies, some works have been done in continuous monitoring of blood pressure and pulse wave velocity. In this paper, we introduce two techniques for non-contact sensing of vital bio signs. In the first approach the optical sensor is based on single mode in-fibers Mach-Zehnder interferometer (MZI) to detect heartbeat, respiration and pulse wave velocity (PWV). The introduced interferometer is based on a new implanted scheme. It replaces the conventional MZI realized by inserting of discontinuities in the fiber to break the total internal reflection and scatter/collect light. The proposed fiber sensor was successfully incorporated into shirt to produce smart clothing. The measurements obtained from the smart clothing could be obtained in comfortable manner and there is no need to have an initial calibration or a direct contact between the sensor and the skin of the tested individual. In the second concept we show a remote noncontact blood pulse wave velocity and pressure measurement based on tracking the temporal changes of reflected secondary speckle patterns produced in human skin when illuminated by a laser beams. In both concept experimental validation of the proposed schemes is shown and analyzed.

  6. Metrology Optical Power Budgeting in SIM Using Statistical Analysis Techniques

    NASA Technical Reports Server (NTRS)

    Kuan, Gary M

    2008-01-01

    The Space Interferometry Mission (SIM) is a space-based stellar interferometry instrument, consisting of up to three interferometers, which will be capable of micro-arc second resolution. Alignment knowledge of the three interferometer baselines requires a three-dimensional, 14-leg truss with each leg being monitored by an external metrology gauge. In addition, each of the three interferometers requires an internal metrology gauge to monitor the optical path length differences between the two sides. Both external and internal metrology gauges are interferometry based, operating at a wavelength of 1319 nanometers. Each gauge has fiber inputs delivering measurement and local oscillator (LO) power, split into probe-LO and reference-LO beam pairs. These beams experience power loss due to a variety of mechanisms including, but not restricted to, design efficiency, material attenuation, element misalignment, diffraction, and coupling efficiency. Since the attenuation due to these sources may degrade over time, an accounting of the range of expected attenuation is needed so an optical power margin can be book kept. A method of statistical optical power analysis and budgeting, based on a technique developed for deep space RF telecommunications, is described in this paper and provides a numerical confidence level for having sufficient optical power relative to mission metrology performance requirements.

  7. In-line optical fiber metallic mirror reflector for monolithic common path optical coherence tomography probes.

    PubMed

    Singh, Kanwarpal; Reddy, Rohith; Sharma, Gargi; Verma, Yogesh; Gardecki, Joseph A; Tearney, Guillermo

    2018-03-01

    Endoscopic optical coherence tomography probes suffer from various artifacts due to dispersion imbalance and polarization mismatch between reference and sample arm light. Such artifacts can be minimized using a common path approach. In this work, we demonstrate a miniaturized common path probe for optical coherence tomography using an inline fiber mirror. A common path optical fiber probe suitable for performing high-resolution endoscopic optical coherence tomography imaging was developed. To achieve common path functionality, an inline fiber mirror was fabricated using a thin gold layer. A commercially available swept source engine was used to test the designed probe in a cadaver human coronary artery ex vivo. We achieved a sensitivity of 104 dB for this probe using a swept source optical coherence tomography system. To test the probe, images of a cadaver human coronary artery were obtained, demonstrating the quality that is comparable to those obtained by OCT systems with separate reference arms. Additionally, we demonstrate recovery of ranging depth by use of a Michelson interferometer in the detection path. We developed a miniaturized monolithic inline fiber mirror-based common path probe for optical coherence tomography. Owing to its simplicity, our design will be helpful in endoscopic applications that require high-resolution probes in a compact form factor while reducing system complexity. Lasers Surg. Med. 50:230-235, 2018. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  8. Direct writing of fiber optic components in photonic crystal fibers and other specialty fibers

    NASA Astrophysics Data System (ADS)

    Fernandes, Luis Andre; Sezerman, Omur; Best, Garland; Ng, Mi Li; Kane, Saidou

    2016-04-01

    Femtosecond direct laser writing has recently shown great potential for the fabrication of complex integrated devices in the cladding of optical fibers. Such devices have the advantage of requiring no bulk optical components and no breaks in the fiber path, thus reducing the need for complicated alignment, eliminating contamination, and increasing stability. This technology has already found applications using combinations of Bragg gratings, interferometers, and couplers for the fabrication of optical filters, sensors, and power monitors. The femtosecond laser writing method produces a local modification of refractive index through non-linear absorption of the ultrafast laser pulses inside the dielectric material of both the core and cladding of the fiber. However, fiber geometries that incorporate air or hollow structures, such as photonic crystal fibers (PCFs), still present a challenge since the index modification regions created by the writing process cannot be generated in the hollow regions of the fiber. In this work, the femtosecond laser method is used together with a pre-modification method that consists of partially collapsing the hollow holes using an electrical arc discharge. The partial collapse of the photonic band gap structure provides a path for femtosecond laser written waveguides to couple light from the core to the edge of the fiber for in-line power monitoring. This novel approach is expected to have applications in other specialty fibers such as suspended core fibers and can open the way for the integration of complex devices and facilitate miniaturization of optical circuits to take advantage of the particular characteristics of the PCFs.

  9. Fiber optic humidity sensor based on the graphene oxide/PVA composite film

    NASA Astrophysics Data System (ADS)

    Wang, Youqing; Shen, Changyu; Lou, Weimin; Shentu, Fengying

    2016-08-01

    Fiber optic humidity sensor based on an in-fiber Mach-Zehnder interferometer (MZI) coated with graphene oxide (GO)/PVA composite film was investigated. The MZI is constructed of two waist-enlarged tapers. The length between two waist-enlarged tapers is 20 mm. By comparing the experiment results of MZI coated with different GO/PVA composite films, composite film formed by the ratio of 0.3 g PVA mixed with 10 ml GO dispersion shows a better performance of relative humidity sensing. By using the molecular structure model of the composited GO/PVA, the operation mechanism between GO/PVA composite film and water molecules was illustrated. The sensitivity of 0.193 dB/%RH with a linear correlation coefficient of 99.1% and good stability under the relative humidity range of 25-80% was obtained. Temperature effect on the proposed fiber optic humidity sensor was also considered and analyzed. According to the repetitive experimental results, the proposed humidity sensor shows a good repeatability.

  10. An Optical Interferometric Triaxial Displacement Sensor for Structural Health Monitoring: Characterization of Sliding and Debonding for a Delamination Process

    PubMed Central

    Chen, Yizheng; Zhuang, Yiyang; Du, Yang; Gerald, Rex E.; Tang, Yan

    2017-01-01

    This paper presents an extrinsic Fabry–Perot interferometer-based optical fiber sensor (EFPI) for measuring three-dimensional (3D) displacements, including interfacial sliding and debonding during delamination. The idea employs three spatially arranged EFPIs as the sensing elements. In our sensor, the three EFPIs are formed by three endfaces of three optical fibers and their corresponding inclined mirrors. Two coincident roof-like metallic structures are used to support the three fibers and the three mirrors, respectively. Our sensor was calibrated and then used to monitor interfacial sliding and debonding between a long square brick of mortar and its support structure (i.e., a steel base plate) during the drying/curing process. This robust and easy-to-manufacture triaxial EFPI-based 3D displacement sensor has great potential in structural health monitoring, the construction industry, oil well monitoring, and geotechnology. PMID:29165351

  11. An Optical Interferometric Triaxial Displacement Sensor for Structural Health Monitoring: Characterization of Sliding and Debonding for a Delamination Process.

    PubMed

    Zhu, Chen; Chen, Yizheng; Zhuang, Yiyang; Du, Yang; Gerald, Rex E; Tang, Yan; Huang, Jie

    2017-11-22

    This paper presents an extrinsic Fabry-Perot interferometer-based optical fiber sensor (EFPI) for measuring three-dimensional (3D) displacements, including interfacial sliding and debonding during delamination. The idea employs three spatially arranged EFPIs as the sensing elements. In our sensor, the three EFPIs are formed by three endfaces of three optical fibers and their corresponding inclined mirrors. Two coincident roof-like metallic structures are used to support the three fibers and the three mirrors, respectively. Our sensor was calibrated and then used to monitor interfacial sliding and debonding between a long square brick of mortar and its support structure (i.e., a steel base plate) during the drying/curing process. This robust and easy-to-manufacture triaxial EFPI-based 3D displacement sensor has great potential in structural health monitoring, the construction industry, oil well monitoring, and geotechnology.

  12. Fiber optic system for deflection and damage detection in morphing wing structures

    NASA Astrophysics Data System (ADS)

    Scheerer, M.; Djinovic, Z.; Schüller, M.

    2013-04-01

    Within the EC Clean Sky - Smart Fixed Wing Aircraft initiative concepts for actuating morphing wing structures are under development. In order for developing a complete integrated system including the actuation, the structure to be actuated and the closed loop control unit a hybrid deflection and damage monitoring system is required. The aim of the project "FOS3D" is to develop and validate a fiber optic sensing system based on low-coherence interferometry for simultaneous deflection and damage monitoring. The proposed system uses several distributed and multiplexed fiber optic Michelson interferometers to monitor the strain distribution over the actuated part. In addition the same sensor principle will be used to acquire and locate the acoustic emission signals originated from the onset and growth of defects like impact damages, cracks and delamination's. Within this paper the authors present the concept, analyses and first experimental results of the mentioned system.

  13. BPM analysis of all-optical fiber interferometric sensor based on a U-shape microcavity

    NASA Astrophysics Data System (ADS)

    Wu, Hongbin; Yuan, Lei; Wang, Sumei; Zhao, Longjiang; Cao, Zhitao

    2014-02-01

    Reflectivity spectrum of beam propagation method (BPM), for the first time to the best of our knowledge, is realized and utilized to model all-optical fiber interferometric sensor formed by a U-shape microcavity embedded in a single mode optical fiber and illustrate the principle of sensor structures varied by the length and the depth of U-shape microcavity. BPM analysis gives a constructive guideline to get a high interferometric fringe visibility which is most important for sensing application. The simulated results are completely in agreement with the interferometric sensor principle of Fabry-Perot interferometer (FPI) theory. With the conclusion of FPI sensor, refractive index (RI) sensitivity and temperature sensitivity are then simulated and obtained as 1049+/-5.2nm/RIU (refractive index unit) within RI range of solutions and 1.04+/-0.03pm/°C respectively.

  14. Electro-optic architecture (EOA) for sensors and actuators in aircraft propulsion systems

    NASA Technical Reports Server (NTRS)

    Glomb, W. L., Jr.

    1989-01-01

    Results of a study to design an optimal architecture for electro-optical sensing and control in advanced aircraft and space systems are described. The propulsion full authority digital Electronic Engine Control (EEC) was the focus for the study. The recommended architecture is an on-engine EEC which contains electro-optic interface circuits for fiber-optic sensors on the engine. Size and weight are reduced by multiplexing arrays of functionally similar sensors on a pair of optical fibers to common electro-optical interfaces. The architecture contains common, multiplex interfaces to seven sensor groups: (1) self luminous sensors; (2) high temperatures; (3) low temperatures; (4) speeds and flows; (5) vibration; (6) pressures; and (7) mechanical positions. Nine distinct fiber-optic sensor types were found to provide these sensing functions: (1) continuous wave (CW) intensity modulators; (2) time division multiplexing (TDM) digital optic codeplates; (3) time division multiplexing (TDM) analog self-referenced sensors; (4) wavelength division multiplexing (WDM) digital optic code plates; (5) wavelength division multiplexing (WDM) analog self-referenced intensity modulators; (6) analog optical spectral shifters; (7) self-luminous bodies; (8) coherent optical interferometers; and (9) remote electrical sensors. The report includes the results of a trade study including engine sensor requirements, environment, the basic sensor types, and relevant evaluation criteria. These figures of merit for the candidate interface types were calculated from the data supplied by leading manufacturers of fiber-optic sensors.

  15. Influence of fiber bending on wavelength demodulation of fiber-optic Fabry-Perot interferometric sensors.

    PubMed

    Liu, Guigen; Sheng, Qiwen; Hou, Weilin; Han, Ming

    2016-11-14

    In practical applications of fiber optic sensors based on Fabry-Perot interferometers (FPIs), the lead-in optical fiber often experiences dynamic or static bending due to environmental perturbations or limited installation space. Bending introduces wavelength-dependent losses to the sensors, which can cause erroneous readings for sensors based on wavelength demodulation interrogation. Here, we investigate the bending-induced wavelength shift (BIWS) to sensors based on FPIs. Partially explicit expressions of BIWSs for the reflection fringe peaks and valleys have been derived for sensors based on low-finesse FPI. The theoretical model predicts these findings: 1) provided that a fringe peak experiences the same modulation slope by bending losses with a fringe valley, BIWSs for the peak and valley have opposite signs and the BIWS for the valley has a smaller absolute value; 2) BIWS is a linear function of the length of the bending section; 3) a FPI with higher visibility and longer optical path length is more resistant to the influence of bending. Experiments have been carried out and the results agree well with the theoretical predictions.

  16. A Hot-Polymer Fiber Fabry–Perot Interferometer Anemometer for Sensing Airflow

    PubMed Central

    Lee, Cheng-Ling; Liu, Kai-Wen; Luo, Shi-Hong; Wu, Meng-Shan; Ma, Chao-Tsung

    2017-01-01

    This work proposes the first hot-polymer fiber Fabry–Perot interferometer (HPFFPI) anemometer for sensing airflow. The proposed HPFFPI is based on a single-mode fiber (SMF) endface that is attached to a UV-cured polymer to form an ultracompact fiber Fabry–Perot microcavity. The proposed polymer microcavity was heated using a low-cost chip resistor with a controllable dc driving power to achieve a desired polymer’s steady-state temperature (T) that exceeds the T of the surrounding environment. The polymer is highly sensitive to variations of T with high repeatability. When the hot polymer was cooled by the measured flowing air, the wavelength fringes of its optical spectra shifted. The HPFFPI anemometers have been experimentally evaluated for different cavity lengths and heating power values. Experimental results demonstrate that the proposed HPFFPI responses well in terms of airflow measurement. A high sensitivity of 1.139 nm/(m/s) and a good resolution of 0.0088 m/s over the 0~2.54 m/s range of airflow were achieved with a cavity length of 10 μm and a heating power of 0.402 W. PMID:28869510

  17. A 20fs synchronization system for lasers and cavities in accelerators and FELs

    NASA Astrophysics Data System (ADS)

    Wilcox, R. B.; Byrd, J. M.; Doolittle, L. R.; Huang, G.; Staples, J. W.

    2010-02-01

    A fiber-optic RF distribution system has been developed for synchronizing lasers and RF plants in short pulse FELs. Typical requirements are 50-100fs rms over time periods from 1ms to several hours. Our system amplitude modulates a CW laser signal, senses fiber length using an interferometer, and feed-forward corrects the RF phase digitally at the receiver. We demonstrate less than 15fs rms error over 12 hours, between two independent channels with a fiber path length difference of 200m and transmitting S-band RF. The system is constructed using standard telecommunications components, and uses regular telecom fiber.

  18. Multimode fiber tip Fabry-Perot cavity for highly sensitive pressure measurement.

    PubMed

    Chen, W P; Wang, D N; Xu, Ben; Zhao, C L; Chen, H F

    2017-03-23

    We demonstrate an optical Fabry-Perot interferometer fiber tip sensor based on an etched end of multimode fiber filled with ultraviolet adhesive. The fiber device is miniature (with diameter of less than 60 μm), robust and low cost, in a convenient reflection mode of operation, and has a very high gas pressure sensitivity of -40.94 nm/MPa, a large temperature sensitivity of 213 pm/°C within the range from 55 to 85 °C, and a relatively low temperature cross-sensitivity of 5.2 kPa/°C. This device has a high potential in monitoring environment of high pressure.

  19. Optimization of a Fabry-Perot Q-switch fiber optic laser

    NASA Astrophysics Data System (ADS)

    Armas Rivera, Ivan; Beltrán Pérez, Georgina; Kuzin, Evgene; Castillo Mixcóatl, Juan; Muñoz Aguirre, Severino

    2013-11-01

    Optical fiber Q-Switch lasers have been used in a variety of application areas in science as well as in industry owing to their multiple characteristics. A possible application is that owing to their high output power they can be used as pumping sources for supercontinuum generation. Such source can be employed in optical coherence tomography (OCT) focused to dermatology. Therefore it is important to develop sources with emission wavelength that are not injurious to human skin. In the present work erbium doped fiber (EDF) was used owing that its emission wavelength (1550 nm) is adequate for this purpose. The most efficient way of achieving high power in a Q-Switch laser is optimizing all the parameters involved in the pulses generation, such as pumping power, active medium length and modulation frequency. The results show that using a fiber length of 7 meters is possible to get 10 μJ of energy, a peak power of 140 W, an average power of 27.5mW with temporal widths of 500 ns. The laser uses an acousto-optic device to modulate the internal loses inside the cavity. As highly reflecting mirrors, a Sagnac Interferometer and a Fiber Bragg Grating was employed.

  20. Fiber-Optic Anemometer Based on Silicon Fabry-Perot Interferometer

    DTIC Science & Technology

    2015-11-05

    finding vast applications in all kinds of industrial processes, such as process control, food quality surveillance, wind turbines , environment...stronger flow ( wind ), which induces a decrease in the optical path of the silicon FPI, which lead to blueshifts the output spectrum. A higher wind ...Experimental results demonstrate that a wavelength shift -0.574 nm was observed for a wind speed of 4 m/s. Better sensitivity is to be expected when

  1. Coherent Fiber Optic Links

    DTIC Science & Technology

    1990-12-01

    since drift is common to both signal and local oscillator. However because of the Fabry - Perot cavity of the phase -6.9- Electrical delay 5.429077 ns___...Phase modulation gives intensity modulation of the guided light of .13dB max. This is due to formation of a Fabry - Perot cavity between the two fibre/chip...modulation sidebands using an optical spectrum analyser (scanning a Fabry - Perot interferometer), while monitoring the r.f. drive power incident on the

  2. Optical frequency transfer via a 660 km underground fiber link using a remote Brillouin amplifier.

    PubMed

    Raupach, S M F; Koczwara, A; Grosche, G

    2014-11-03

    In long-distance, optical continuous-wave frequency transfer via fiber, remote bidirectional Er³ ⁺ -doped fiber amplifiers are commonly used to mitigate signal attenuation. We demonstrate for the first time the ultrastable transfer of an optical frequency using a remote fiber Brillouin amplifier, placed in a server room along the link. Using it as the only means of remote amplification, on a 660 km loop of installed underground fiber we bridge distances of 250 km and 160 km between amplifications. Over several days of uninterrupted measurement, we find an instability of the frequency transfer (Allan deviation of Λ-weighted data with 1 s gate time) of around 1 × 10(-19) and less for averaging times longer than 3000 s. The modified Allan deviation reaches 3 × 10(-19) at an averaging time of 100 s. Beyond 100 s it follows the interferometer noise floor, and for averaging times longer than 1000 s the modified Allan deviation is in the 10(-20) range. A conservative value of the overall accuracy is 1 × 10(-19)

  3. Cascaded-cavity Fabry-Perot interferometer for simultaneous measurement of temperature and strain with cross-sensitivity compensation

    NASA Astrophysics Data System (ADS)

    Tian, Jiajun; Jiao, Yuzhu; Ji, Shaobo; Dong, Xiaolong; Yao, Yong

    2018-04-01

    We propose and demonstrate a fiber sensor for simultaneous temperature and strain measurements. The proposed sensor is implemented by a cascaded-cavity Fabry-Perot (FP) fiber interferometer. The two cascaded FP cavities comprise a micro-air-cavity in a hollow-core tube fiber and a micro-silica-cavity in a standard single-mode fiber. To separate the interference spectrum of each FP cavity, the total spectrum is filtered in the frequency domain through band-pass filters, whose central frequencies were predesigned based on the relationship between the spatial frequency and free spectral range of each FP cavity. The different cross-sectional areas and thermal-optic coefficients of the two FP cavities confer different sensitivities to temperature and strain. Both parameters were measured simultaneously by tracking the wavelength shifts in the filtered interference spectra of the FP cavities. Moreover, the temperature-strain cross-sensitivity was compensated by solving a sensitivity-coefficient matrix equation for the two cavities, using the calibrated temperatures and strains. Other advantages of the proposed sensor are simple fabrication and an all-fiber structure. Owing to these properties, the proposed sensor is potentially applicable to real sensing applications.

  4. Study of the second-order relativistic light deflection of the Sun using long-baseline fibre-linked interferometers: Laser-Interferometric Solar Relativity (LISOR) test

    NASA Technical Reports Server (NTRS)

    Ni, Wei-Tou; Shy, Jow-Tsong; Tseng, Shiao-Min; Shao, Michael

    1992-01-01

    A propasal to study the second order light deflection in the solar gravitational field is presented. It is proposed to use 1 to 2 W frequency stabilized lasers on two microspacecraft about 0.25 degree apart in the sky with apparent positions near the Sun, and observe the relative angle of two spacecraft using ground based fiber linked interferometers with 10 km baseline to determine the second order relativistic light deflection effects. The first two years of work would emphasize the establishment of a prototype stabilized laser system and fiber linked interferometer. The first year, a prototype fiber linked interferometer would be set up to study the phase noise produced by external perturbations to fiber links. The second year, a second interferometer would be set up. The cancellation of phase drift due to fiber links of both interferometers in the same environment would be investigated.

  5. Towards the LISA backlink: experiment design for comparing optical phase reference distribution systems

    NASA Astrophysics Data System (ADS)

    Isleif, Katharina-Sophie; Bischof, Lea; Ast, Stefan; Penkert, Daniel; Schwarze, Thomas S.; Fernández Barranco, Germán; Zwetz, Max; Veith, Sonja; Hennig, Jan-Simon; Tröbs, Michael; Reiche, Jens; Gerberding, Oliver; Danzmann, Karsten; Heinzel, Gerhard

    2018-04-01

    LISA is a proposed space-based laser interferometer detecting gravitational waves by measuring distances between free-floating test masses housed in three satellites in a triangular constellation with laser links in-between. Each satellite contains two optical benches that are articulated by moving optical subassemblies for compensating the breathing angle in the constellation. The phase reference distribution system, also known as backlink, forms an optical bi-directional path between the intra-satellite benches. In this work we discuss phase reference implementations with a target non-reciprocity of at most 2π μrad \\sqrtHz-1 , equivalent to 1 pm \\sqrtHz-1 for a wavelength of 1064 nm in the frequency band from 0.1 mHz to 1 Hz. One phase reference uses a steered free beam connection, the other one a fiber together with additional laser frequencies. The noise characteristics of these implementations will be compared in a single interferometric set-up with a previously successfully tested direct fiber connection. We show the design of this interferometer created by optical simulations including ghost beam analysis, component alignment and noise estimation. First experimental results of a free beam laser link between two optical set-ups that are co-rotating by  ±1° are presented. This experiment demonstrates sufficient thermal stability during rotation of less than 10‑4 K \\sqrtHz-1 at 1 mHz and operation of the free beam steering mirror control over more than 1 week.

  6. A Structural Health Monitoring Workshop Roadmap for Transitioning Critical Technology from Research to Practice

    DTIC Science & Technology

    2012-01-24

    Kersey et. al., 1997). There are other types of fiber optic sensors that can be multiplexed such as extrinsic Fabry -Perot interferometers (EFPI), but...census bureau, and outbreak monitoring by the US Centers for Disease Control (CDC). • One approach to data management is replacing conventional

  7. In-fiber modal interferometer based on multimode and double cladding fiber segments for tunable fiber laser applications

    NASA Astrophysics Data System (ADS)

    Prieto-Cortés, P.; Álvarez-Tamayo, R. I.; Durán-Sánchez, M.; Castillo-Guzmán, A.; Salceda-Delgado, G.; Ibarra-Escamilla, B.; Kuzin, E. A.; Barcelata-Pinzón, A.; Selvas-Aguilar, R.

    2018-02-01

    We report an in-fiber structure based on the use of a multimode fiber segment and a double cladding fiber segment, and its application as spectral filter in an erbium-doped fiber laser for selection and tuning of the laser line wavelength. The output transmission of the proposed device exhibit spectrum modulation of the input signal with free spectral range of 21 nm and maximum visibility enhanced to more than 20 dB. The output spectrum of the in-fiber filter is wavelength displaced by bending application which allows a wavelength tuning of the generated laser line in a range of 12 nm. The use of the proposed in-fiber structure is demonstrated as a reliable, simple, and low-cost wavelength filter for tunable fiber lasers design and optical instrumentation applications.

  8. Interferometric fiber optic displacement sensor

    DOEpatents

    Farah, J.

    1999-04-06

    A method is presented to produce a change in the optical path length in the gap between two single mode optical fibers proportional to the lateral displacement of either fiber end normal to its axis. This is done with the use of refraction or diffraction at the interface between a guiding and non-guiding media to change the direction of propagation of the light in the gap. A method is also presented for laying a waveguide on a cantilever so that the displacement of the tip of the cantilever produces a proportional path length change in the gap by distancing the waveguide from the neutral axis of the cantilever. The fiber is supported as a cantilever or a waveguide is deposited on a micromachined cantilever and incorporated in an interferometer which is made totally on a silicon substrate with the use of integrated-optic technology. A resonant element in the form of a micro-bridge is incorporated in the ridge waveguide and produces a frequency output which is readily digitizeable and immune to laser frequency noise. Finally, monolithic mechanical means for phase modulation are provided on the same sensor substrate. This is done by vibrating the cantilever or micro-bridge either electrically or optically. 23 figs.

  9. Interferometric fiber optic displacement sensor

    DOEpatents

    Farah, J.

    1995-05-30

    A method is presented to produce a change in the optical path length in the gap between two single mode optical fibers proportional to the lateral displacement of either fiber end normal to its axis. This is done with the use of refraction or diffraction at the interface between a guiding and non-guiding media to change the direction of propagation of the light in the gap. A method is also presented for laying a waveguide on a cantilever so that the displacement of the tip of the cantilever produces a proportional path length change in the gap by distancing the waveguide from the neutral axis of the cantilever. The fiber is supported as a cantilever or a waveguide is deposited on a micromachined cantilever and incorporated in an interferometer which is made totally on a silicon substrate with the use of integrated-optic technology. A resonant element in the form of a micro-bridge is incorporated in the ridge waveguide and produces a frequency output which is readily digitizeable and immune to laser frequency noise. Finally, monolithic mechanical means for phase modulation are provided on the same sensor substrate. This is done by vibrating the cantilever or micro-bridge either electrically or optically. 29 figs.

  10. Interferometric fiber optic displacement sensor

    DOEpatents

    Farah, John

    1995-01-01

    A method is presented to produce a change in the optical path length in the gap between two single mode optical fibers proportional to the lateral displacement of either fiber end normal to its axis. This is done with the use of refraction or diffraction at the interface between a guiding and non-guiding media to change the direction of propagation of the light in the gap. A method is also presented for laying a waveguide on a cantilever so that the displacement of the tip of the cantilever produces a proportional path length change in the gap by distancing the waveguide from the neutral axis of the cantilever. The fiber is supported as a cantilever or a waveguide is deposited on a micromachined cantilever and incorporated in an interferometer which is made totally on a silicon substrate with the use of integrated-optic technology. A resonant element in the form of a micro-bridge is incorporated in the ridge waveguide and produces a frequency output which is readily digitizeable and immune to laser frequency noise. Finally, monolithic mechanical means for phase modulation are provided on the same sensor substrate. This is done by vibrating the cantilever or micro-bridge either electrically or optically.

  11. Interferometric fiber optic displacement sensor

    DOEpatents

    Farah, John

    1999-01-01

    A method is presented to produce a change in the optical path length in the gap between two single mode optical fibers proportional to the lateral displacement of either fiber end normal to its axis. This is done with the use of refraction or diffraction at the interface between a guiding and non-guiding media to change the direction of propagation of the light in the gap. A method is also presented for laying a waveguide on a cantilever so that the displacement of the tip of the cantilever produces a proportional path length change in the gap by distancing the waveguide from the neutral axis of the cantilever. The fiber is supported as a cantilever or a waveguide is deposited on a micromachined cantilever and incorporated in an interferometer which is made totally on a silicon substrate with the use of integrated-optic technology. A resonant element in the form of a micro-bridge is incorporated in the ridge waveguide and produces a frequency output which is readily digitizeable and immune to laser frequency noise. Finally, monolithic mechanical means for phase modulation are provided on the same sensor substrate. This is done by vibrating the cantilever or micro-bridge either electrically or optically.

  12. U-shaped micro-groove fiber based on femtosecond laser processing for humidity sensing

    NASA Astrophysics Data System (ADS)

    Fu, Gui; Ma, Li-li; Su, Fu-fang; Shi, Meng

    2018-05-01

    A novel optical fiber sensor with a U-shaped micro-groove structure ablated by femtosecond laser on single-mode fiber for measuring air relative humidity (RH) is reported in this paper. In order to improve the accuracy of sensor, a graphene oxide (GO)/polyvinyl alcohol (PVA) composite film is coated on the surface of micro-groove structure. In the U-shaped micro-groove structure, the remaining core and micro-cavity in the micro-groove make up two major optical propagation paths, forming a Mach-Zehnder interferometer (MZI). The sensor has a good linear response within the RH range of 30%—85%, and the maximum sensitivity can reach 0.638 1 nm/%RH. The effect of temperature on the overall performance of the humidity sensor is also investigated. As a new type of all-fiber device, the sensor shows excellent sensitivity and stability.

  13. Fiber Fabry-Perot tip sensor based on multimode photonic crystal fiber

    NASA Astrophysics Data System (ADS)

    Wu, Di; Huang, Yu; Fu, Jian-Yu; Wang, Guo-Yin

    2015-03-01

    We propose a novel Fabry-Perot interferometer (FPI) sensor for simultaneous measurement of refractive index (RI) and temperature based on Fresnel reflection and the thermo-optic effect of silica. The sensor head consists of a short section of multimode photonic crystal fiber (MPCF) and a conventional single mode fiber (SMF), where two thin films are formed by collapsing the air holes of MPCF with a commercialized fusion splicer. Experimental results show that such a device has a linear RI sensitivity of ~21.52 dB/RIU (RI unit) and a linear optical path difference (OPD) temperature sensitivity of ~25 nm/°C. In addition, a high RI resolution of about ~1.7×10-5 is obtained by using the Fourier transformation to decompose the spectral response in different spatial frequencies. Low-cost, easy fabrication and high resolution make it appropriate for practical applications.

  14. Pocket-Size Interferometric Systems

    NASA Astrophysics Data System (ADS)

    Waters, James P.; Fernald, Mark R.

    1990-04-01

    Optical sensors have the intrinsic advantages over electronic sensors of complete safety in hazardous areas and absolute immunity from both transmitting or picking up electromagnetic radiation. However, adoption of optical sensors in real-world applications requires a sensor design which has a sensitivity, resolution, and dynamic range comparable to an equivalent electronic sensor and at the same time must fulfill the practical considerations of small size and low cost. While sensitivity, resolution and dynamic range can be easily achieved with optical heterodyne sensors, the practical considerations make their near-term adoption unlikely. Significant improvements to optical heterodyne vibration and velocity sensors (flexibility, reliability and environmental immunity) have been realized with the use of semiconductor lasers, optical fibers and fiber-optic components. In fact, all of the discrete optical components in a heterodyne interferometer have been replaced with much smaller and more rugged devices except for the optical frequency shifter, acousto-optic modulator (AOM). The AOM and associated power supply, however, account for a substantial portion of both the size and cost. Previous work has shown that an integrated-optic, serrodyne phase modulator with an inexpensive drive circuit can be used for single sideband heterodyne detection. This paper describes the next step, design and implementation of a heterodyne interferometer using integrated-Optic technology to provide the polarization maintaining couplers and phase modulator. The couplers were made using a proton exchange process which produced devices with an extinction ratio of better than 40 dB. The serrodyne phase modulator had the advantage over an AOM of being considerably smaller and having a drive power of less than a milliwatt. The results of this work show that this technology is an effective way of reducing the size of the system and the cost of multiple units without sacarifying performance.

  15. MONA, LISA and VINCI Soon Ready to Travel to Paranal

    NASA Astrophysics Data System (ADS)

    2000-11-01

    First Instruments for the VLT Interferometer Summary A few months from now, light from celestial objects will be directed for the first time towards ESO's Very Large Telescope Interferometer (VLTI) at the Paranal Observatory (Chile). During this "First Light" event and the subsequent test phase, the light will be recorded with a special test instrument, VINCI (VLT INterferometer Commissioning Instrument). The main components of this high-tech instrument are aptly named MONA (a system that combines the light beams from several telescopes by means of optical fibers) and LISA (the infrared camera). VINCI was designed and constructed within a fruitful collaboration between ESO and several research institutes and industrial companies in France and Germany . It is now being assembled at the ESO Headquarters in Garching (Germany) and will soon be ready for installation at the telescope on Paranal. With the VLTI and VINCI, Europe's astronomers are now entering the first, crucial phase of an exciting scientific and technology venture that will ultimately put the world's most powerful optical/IR interferometric facility in their hands . PR Photo 31/00 : VINCI during tests at the ESO Headquarters in Garching. The VLT Interferometer (VLTI) ESO Press Photo 31/00 ESO Press Photo 31/00 [Preview; JPEG: 400 x 301; 43k] [Normal; JPEG: 800 x 602;208xk] [Full-Res; JPEG: 1923 x 1448; 2.2Mb] PR Photo 31/00 shows the various components of the complex VINCI instrument for the VLT Interferometer , during the current tests at the Optical Laboratory at the ESO Headquarters in Garching (Germany). It will later be installed in "clean-room" conditions within the Interferometric Laboratory at the Paranal Observatory. This electronic photo was obtained for documentary purposes. VINCI (VLT INterferometer Commissioning Instrument) is the "First Light" instrument for the Very Large Telescope Interferometer (VLTI) at the Paranal Observatory (Chile). Early in 2001, it will be used for the first tests of this very complex system. Subsequently, it will serve to tune this key research facility to the highest possible performance. The VLTI is based on the combination of light (beams) from the telescopes at Paranal. Of these, the four 8.2-m Unit Telescopes are already in operation - they will soon be joined by three 1.8-m telescopes that can be relocated on rails, cf. PR Photo 43b/99. By means of a system of mirrors, the light from two or more of these telescopes will be guided to the central Interferometric Laboratory , at the center of the observing platform on Paranal. Information about the heart of this complex system, the Delay Lines that are located in the underground Interferometric Tunnel, is available with the recent ESO PR Photos 26a-e/00. The VLTI will later receive other front-line instruments, e.g. AMBER , MIDI and PRIMA. When fully ready some years from now, the VLTI will produce extremely sharp images. This will have a major impact on different types of exciting astronomical observations, e.g.: * the direct discovery and imaging of extra-solar planets comparable to Jupiter, * the discovery and imaging of low-mass stars such as brown dwarfs, * observations of star-forming regions and to better understand the physical processes that give birth to stars, * spectral analysis of the atmospheres of nearby stars, and * imaging the objects of the very core of our Galaxy and the detection of black holes in active nuclei of galaxies. The VINCI test instrument The new instrument, VINCI , will soon be delivered to Paranal by the Département de Recherche Spatiale (Department for Space Research), a joint unit of the Centre Nationale de la Recherche Scientifique (French National Centre for Scientific Research) and the Paris Observatory. VINCI is a functional copy of the FLUOR instrument - now at the IOTA (Infrared Optical Telescope Array) interferometer - that has been upgraded and adapted to the needs of the VLTI. FLUOR was developed by the Département de Recherche Spatiale (DESPA) of the Paris Observatory. It was used in 1991 at the Kitt Peak National Observatory (Arizona, USA), for the first (coherent) combination of the light beams from two independent telescopes by means of optical fibers of fluoride glass. It has since been in operation for five years as a focal instrument at the IOTA Interferometer (Mount Hopkins, Arizona, USA) within a collaboration with the Harvard Smithsonian Center for Astrophysics), producing a rich harvest of scientific data. The VINCI partners The VINCI instrument is constructed in a collaboration between ESO (that also finances it) and the following laboratories and institutes: * DESPA (Paris Observatory) provides the expertise, the general concept, the development and integration of the optomechanics (with the exception of the camera) and the electronics, * Observatoire Midi-Pyrénées that produces the control software * The LISA infrared camera is developed by the Max-Planck-Institut für Extraterrestrische Physik (Garching, Germany), and * ESO provides the IR camera electronics and the overall observational software and is also responsible for the final integration. DESPA delivered VINCI to ESO in Garching on September 27, 2000, and is now assembling the instrument in the ESO optical workshop. It will stay here during three months, until it has been fully integrated and thoroughly tested. It will then be shipped to Paranal at the beginning of next year. After set-up and further tests, the first observations on the sky are expected in late March 2001. Fluoride fibers guide the light The heart of VINCI - named MONA - is a fiber optics beam combine unit. It is the outcome of a fertile, 10-year research partnership between Science (DESPA) and Industry ("Le Verre Fluoré" [2]). Optical fibers will be used to combine the light from two telescopes inside VINCI . Since the instrument will be working in the near-infrared region of the spectrum (wavelength 2-2.5 µm), it is necessary to use optical fibers made of a special type of glass that is transparent at these wavelengths. By far the best best material for this is fluoride glass . It was invented by one of the co-founders of the company "Le Verre Fluoré", the only manufacturer of this kind of highly specialized material in the world. Optical fibers of fluoride glass from this company are therefore used in VINCI . They are of a special type ("monomode") with a very narrow core measuring only 6.5 µm (0.065 mm) across. Light that is collected by one of the telescopes in the VLTI array (e.g., by the 50 m 2 mirror of a VLT Unit Telescope) is guided through the VLTI system of optics and finally enters this core. The fibers guide the light and at the same time "clean" the light beam by eliminating the errors introduced by the atmospheric turbulence, hereby improving the accuracy of the measurements by a factor of 10. DESPA has shown that this is indeed possible by means of real astronomical observations with the FLUOR experiment. Following this positive demonstration, it has been decided to equip the instrumentation of all interferometers currently under construction with fibers or equivalent systems.

  16. An extrinsic fiber Fabry-Perot interferometer for dynamic displacement measurement

    NASA Astrophysics Data System (ADS)

    Pullteap, S.; Seat, H. C.

    2015-03-01

    A versatile fiber interferometer was proposed for high precision measurement. The sensor exploited a double-cavity within the unique sensing arm of an extrinsic-type fiber Fabry-Perot interferometer to produce the quadrature phase-shifted interference fringes. Interference signal processing was carried out using a modified zero-crossing (fringe) counting technique to demodulate two sets of fringes. The fiber interferometer has been successfully employed for dynamic displacement measurement under different displacement profiles over a range of 0.7 μm to 140 μm. A dedicated computer incorporating the demodulation algorithm was next used to interpret these detected data as well as plot the displacement information with a resolution of λ/64. A commercial displacement sensor was employed for comparison purposes with the experimental data obtained from the fiber interferometer as well as to gauge its performance, resulting in the maximum error of 2.8% over the entire displacement range studied.

  17. Electro-optic routing of photons from a single quantum dot in photonic integrated circuits

    NASA Astrophysics Data System (ADS)

    Midolo, Leonardo; Hansen, Sofie L.; Zhang, Weili; Papon, Camille; Schott, Rüdiger; Ludwig, Arne; Wieck, Andreas D.; Lodahl, Peter; Stobbe, Søren

    2017-12-01

    Recent breakthroughs in solid-state photonic quantum technologies enable generating and detecting single photons with near-unity efficiency as required for a range of photonic quantum technologies. The lack of methods to simultaneously generate and control photons within the same chip, however, has formed a main obstacle to achieving efficient multi-qubit gates and to harness the advantages of chip-scale quantum photonics. Here we propose and demonstrate an integrated voltage-controlled phase shifter based on the electro-optic effect in suspended photonic waveguides with embedded quantum emitters. The phase control allows building a compact Mach-Zehnder interferometer with two orthogonal arms, taking advantage of the anisotropic electro-optic response in gallium arsenide. Photons emitted by single self-assembled quantum dots can be actively routed into the two outputs of the interferometer. These results, together with the observed sub-microsecond response time, constitute a significant step towards chip-scale single-photon-source de-multiplexing, fiber-loop boson sampling, and linear optical quantum computing.

  18. Method and apparatus for white-light dispersed-fringe interferometric measurement of corneal topography

    NASA Technical Reports Server (NTRS)

    Hochberg, Eric B. (Inventor); Baroth, Edmund C. (Inventor)

    1994-01-01

    An novel interferometric apparatus and method for measuring the topography of aspheric surfaces, without requiring any form of scanning or phase shifting. The apparatus and method of the present invention utilize a white-light interferometer, such as a white-light Twyman-Green interferometer, combined with a means for dispersing a polychromatic interference pattern, using a fiber-optic bundle and a disperser such as a prism for determining the monochromatic spectral intensities of the polychromatic interference pattern which intensities uniquely define the optical path differences or OPD between the surface under test and a reference surface such as a reference sphere. Consequently, the present invention comprises a snapshot approach to measuring aspheric surface topographies such as the human cornea, thereby obviating vibration sensitive scanning which would otherwise reduce the accuracy of the measurement. The invention utilizes a polychromatic interference pattern in the pupil image plane, which is dispersed on a point-wise basis, by using a special area-to-line fiber-optic manifold, onto a CCD or other type detector comprising a plurality of columns of pixels. Each such column is dedicated to a single point of the fringe pattern for enabling determination of the spectral content of the pattern. The auto-correlation of the dispersed spectrum of the fringe pattern is uniquely characteristic of a particular optical path difference between the surface under test and a reference surface.

  19. Bubble-on-fiber (BoF): a built-in tunable broadband acousto-optic sensor for liquid-immersible in situ measurements.

    PubMed

    Xu, Hongsong; Wang, Guanyu; Ma, Jun; Jin, Long; Oh, Kyunghwan; Guan, Bai-Ou

    2018-04-30

    A new type of tunable broadband fiber-optic acousto-optic sensor was experimentally demonstrated by utilizing a bubble-on-fiber (BoF) interferometer. A single micro-bubble was generated by injecting a heating laser at λ = 980 nm on the metalized facet of an optical fiber. The BoF formed a spherical micro-cavity in water whose acoustic deformation was precisely detected by using a narrowband DFB laser at 1550 nm. The heating light and the interrogating light were fed into a single fiber probe by wavelength division multiplexing (WDM) realizing a small footprint all-fiber configuration. The diameter of the BoF was stabilized with a variation less than 0.5 nm by fast servo-control of the heating laser power. The stabilized BoF served as a Fabry-Pérot cavity that can be deformed by acoustic perturbation, and a minimum detectable pressure level of as low as ~1 mPa/Hz 1/2 was achieved in a frequency range of over 60 kHz in water at room temperature. Our proposed BoF technology can provide a tunable, flexible and all-fiber solution to detect minute acoustically driven perturbations combining high-precision interferometry. Due to the very small form-factor, the technique can find applications of liquid-immersible in situ measurements in bio-molecular/cell detection and biochemical phenomena study.

  20. Low drift and high resolution miniature optical fiber combined pressure- and temperature sensor for cardio-vascular and urodynamic applications

    NASA Astrophysics Data System (ADS)

    Poeggel, Sven; Tosi, Daniele; Duraibabu, Dineshbabu; Sannino, Simone; Lupoli, Laura; Ippolito, Juliet; Fusco, Fernando; Mirone, Vincenzo; Leen, Gabriel; Lewis, Elfed

    2014-05-01

    The all-glass optical fibre pressure and temperature sensor (OFPTS), present here is a combination of an extrinsic Fabry Perot Interferometer (EFPI) and an fiber Bragg gratings (FBG), which allows a simultaneously measurement of both pressure and temperature. Thermal effects experienced by the EFPI can be compensated by using the FBG. The sensor achieved a pressure measurement resolution of 0.1mmHg with a frame-rate of 100Hz and a low drift rate of < 1 mmHg/hour drift. The sensor has been evaluated using a cardiovascular simulator and additionally has been evaluated in-vivo in a urodynamics application under medical supervision.

  1. Miniaturized fiber-optic Michelson-type interferometric sensors

    NASA Technical Reports Server (NTRS)

    Murphy, Kent A.; Miller, William V., III; Tran, Tuan A.; Vengsarkar, Ashish M.; Claus, Richard O.

    1991-01-01

    A novel, miniaturized Michelson-type fiber-optic interferometric sensor that is relatively insensitive to temperature drifts is presented. A fused-biconical tapered coupler is cleaved immediately after the coupled length and polished down to the region of the fused cladding, but short of the interaction region. The end of one core is selectively coated with a reflective surface and is used as the reference arm; the other core serves as the sensing arm. The detection of surface acoustic waves, microdisplacements, and magnetic fields is reported. The sensor is shown to be highly stable in comparison to a classic homodyne, uncompensated Michelson interferometer, and signal-to-noise ratios of 65 dB have been obtained.

  2. Fiber Bragg grating interrogation using wavelength modulated tunable distributed feedback lasers and a fiber-optic Mach-Zehnder interferometer.

    PubMed

    Roy, Anirban; Chakraborty, Arup Lal; Jha, Chandan Kumar

    2017-04-20

    This paper demonstrates a technique of high-resolution interrogation of two fiber Bragg gratings (FBGs) with flat-topped reflection spectra centered on 1649.55 nm and 1530.182 nm with narrow line width tunable semiconductor lasers emitting at 1651.93 nm and 1531.52 nm, respectively. The spectral shift of the reflection spectrum in response to temperature and strain is accurately measured with a fiber-optic Mach-Zehnder interferometer that has a free spectral range of 0.0523 GHz and a broadband photodetector. Laser wavelength modulation and harmonic detection techniques are used to transform the gentle edges of the flat-topped FBG into prominent leading and trailing peaks that are up to five times narrower than the FBG spectrum. Either of these peaks can be used to accurately measure spectral shifts of the FBG reflection spectrum with a resolution down to a value of 0.47 pm. A digital signal processing board is used to measure the temperature-induced spectral shifts over the range of 30°C-80°C and strain-induced spectral shifts from 0  μϵ to 12,000  μϵ. The shift is linear in both cases with a temperature sensitivity of 12.8 pm/°C and strain sensitivity of 0.12  pm/μϵ. The distinctive feature of this technique is that it does not use an optical spectrum analyzer at any stage of its design or operation. It can be readily extended to all types of tunable diode lasers and is ideally suited for compact field instruments and for biomedical applications in stroke rehabilitation monitoring.

  3. Research on fiber-optic cantilever-enhanced photoacoustic spectroscopy for trace gas detection

    NASA Astrophysics Data System (ADS)

    Chen, Ke; Zhou, Xinlei; Gong, Zhenfeng; Yu, Shaochen; Qu, Chao; Guo, Min; Yu, Qingxu

    2018-01-01

    We demonstrate a new scheme of cantilever-enhanced photoacoustic spectroscopy, combining a sensitivity-improved fiber-optic cantilever acoustic sensor with a tunable high-power fiber laser, for trace gas detection. The Fabry-Perot interferometer based cantilever acoustic sensor has advantages such as high sensitivity, small size, easy to install and immune to electromagnetic. Tunable erbium-doped fiber ring laser with an erbium-doped fiber amplifier is used as the light source for acoustic excitation. In order to improve the sensitivity for photoacoustic signal detection, a first-order longitudinal resonant photoacoustic cell with the resonant frequency of 1624 Hz and a large size cantilever with the first resonant frequency of 1687 Hz are designed. The size of the cantilever is 2.1 mm×1 mm, and the thickness is 10 μm. With the wavelength modulation spectrum and second-harmonic detection methods, trace ammonia (NH3) has been measured. The gas detection limits (signal-to-noise ratio = 1) near the wavelength of 1522.5 nm is achieved to be 3 ppb.

  4. Cascaded optical fiber link using the internet network for remote clocks comparison.

    PubMed

    Chiodo, Nicola; Quintin, Nicolas; Stefani, Fabio; Wiotte, Fabrice; Camisard, Emilie; Chardonnet, Christian; Santarelli, Giorgio; Amy-Klein, Anne; Pottie, Paul-Eric; Lopez, Olivier

    2015-12-28

    We report a cascaded optical link of 1100 km for ultra-stable frequency distribution over an Internet fiber network. The link is composed of four spans for which the propagation noise is actively compensated. The robustness and the performance of the link are ensured by five fully automated optoelectronic stations, two of them at the link ends, and three deployed on the field and connecting the spans. This device coherently regenerates the optical signal with the heterodyne optical phase locking of a low-noise laser diode. Optical detection of the beat-note signals for the laser lock and the link noise compensation are obtained with stable and low-noise fibered optical interferometer. We show 3.5 days of continuous operation of the noise-compensated 4-span cascaded link leading to fractional frequency instability of 4x10(-16) at 1-s measurement time and 1x10(-19) at 2000 s. This cascaded link was extended to 1480-km with the same performance. This work is a significant step towards a sustainable wide area ultra-stable optical frequency distribution and comparison network at a very high level of performance.

  5. Noncontact acousto-ultrasonics using laser generation and laser interferometric detection

    NASA Technical Reports Server (NTRS)

    Green, Robert E., Jr.; Huber, Robert D.

    1991-01-01

    A compact, portable fiber-optic heterodyne interferometer designed to detect out-of-plane motion on surfaces is described. The interferometer provides a linear output for displacements over a broad frequency range and can be used for ultrasonic, acoustic emission, and acousto-ultrasonic (AU) testing. The interferometer in conjunction with a compact pulsed Nd:YAG laser represents a noncontact testing system. This system was tested to determine its usefulness for the AU technique. The results obtained show that replacement of conventional piezoelectric transducers (PZT) with a laser generation/detection system make it possible to carry out noncontact AU measurements. The waveforms recorded were 5 MHZ PZT-generated ultrasound propagating through an aluminum block, detection of the acoustic emission event, and laser AU waveforms from graphite-epoxy laminates and a filament-wound composite.

  6. Cryptographic robustness of a quantum cryptography system using phase-time coding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Molotkov, S. N.

    2008-01-15

    A cryptographic analysis is presented of a new quantum key distribution protocol using phase-time coding. An upper bound is obtained for the error rate that guarantees secure key distribution. It is shown that the maximum tolerable error rate for this protocol depends on the counting rate in the control time slot. When no counts are detected in the control time slot, the protocol guarantees secure key distribution if the bit error rate in the sifted key does not exceed 50%. This protocol partially discriminates between errors due to system defects (e.g., imbalance of a fiber-optic interferometer) and eavesdropping. In themore » absence of eavesdropping, the counts detected in the control time slot are not caused by interferometer imbalance, which reduces the requirements for interferometer stability.« less

  7. A Micro Bubble Structure Based Fabry–Perot Optical Fiber Strain Sensor with High Sensitivity and Low-Cost Characteristics

    PubMed Central

    Yan, Lu; Gui, Zhiguo; Wang, Guanjun; An, Yongquan; Gu, Jinyu; Zhang, Meiqin; Liu, Xinglin; Wang, Zhibin; Wang, Gao; Jia, Pinggang

    2017-01-01

    A high-sensitivity, low-cost, ultrathin, hollow fiber micro bubble structure was proposed; such a bubble can be used to develop a high-sensitivity strain sensor based on a Fabry–Perot interferometer (FPI). The micro bubble is fabricated at the fiber tip by splicing a glass tube to a single mode fiber (SMF) and then the glass tube is filled with gas in order to expand and form a micro bubble. The sensitivity of the strain sensor with a cavity length of about 155 μm and a bubble wall thickness of about 6 μm was measured to be up to 8.14 pm/με. PMID:28282960

  8. A Micro Bubble Structure Based Fabry-Perot Optical Fiber Strain Sensor with High Sensitivity and Low-Cost Characteristics.

    PubMed

    Yan, Lu; Gui, Zhiguo; Wang, Guanjun; An, Yongquan; Gu, Jinyu; Zhang, Meiqin; Liu, Xinglin; Wang, Zhibin; Wang, Gao; Jia, Pinggang

    2017-03-09

    A high-sensitivity, low-cost, ultrathin, hollow fiber micro bubble structure was proposed; such a bubble can be used to develop a high-sensitivity strain sensor based on a Fabry-Perot interferometer (FPI). The micro bubble is fabricated at the fiber tip by splicing a glass tube to a single mode fiber (SMF) and then the glass tube is filled with gas in order to expand and form a micro bubble. The sensitivity of the strain sensor with a cavity length of about 155 μm and a bubble wall thickness of about 6 μm was measured to be up to 8.14 pm/μϵ.

  9. Conformal Regge theory

    NASA Astrophysics Data System (ADS)

    Goncalves, Vasco David Fonseca

    The work described in this PhD Thesis focuses on the post-processing of optical fibers and their enhancement as sensing element. Since the majority of sensors presented are based in Fabry-Perot interferometers, an historical overview of this category of optical fiber sensors is firstly presented. This review considers the works published since the early years, in the beginning of the 1980s, until the middle of 2015. The incorporation of microcavities at the tip of a single mode fiber was extensively studied, particularly for the measurement of nitrogen and methane gas pressure. These cavities were fabricated using hollow core silica tubes and a hollow core photonic crystal fiber. Following a different approach, the microcavities were incorporated between two sections of single mode fiber. In this case, the low sensitivity to temperature makes these microcavities highly desirable for the measurement of strain at high temperatures. Competences in post-processing techniques such as the chemical etching and the writing of periodical structures in the fiber core by means of an excimer or a femtosecond laser were also acquired in the course of the PhD programme. One of the works consisted in the design and manufacturing of a double clad optical fiber. The refractive index of the inner cladding was higher than the one of the outer cladding and the core. Thus, light was guided in the inner cladding instead of propagating in the core. This situation was overcome by applying chemical etching, thus removing the inner cladding. The core, surrounded by air, was then able to guide light. Two different applications were found for this fiber, as a temperature sensor and as an optical refractometer. In the last, the optical phase changes with the liquid refractive index. Two different types of fiber Bragg gratings were characterized in strain and temperature. Sensing structures obtained through the phase mask technique at the tip of an optical fiber were subjected to chemical etching. In this case, an excimer laser was used. Extremely thin fiber tips were obtained, with an ultra-high sensitivity to strain. The other technique employed to fabricate the fiber Bragg gratings was the point-by-point femtosecond laser inscription. In this case, the sensing elements are very stable at high temperatures and can be used to measure strain in harsh conditions. The employment of optical fiber lasers as sensing elements was also considered in this Thesis. Two laser cavities were studied, one based on the ring configuration and the other based on a figure-of-eight configuration. From these works, the quality of the laser emission, namely the signal-to-noise ratio, the reduced full-width at half maximum and the stability should be highlighted. These characteristics allowed the measurement of different physical parameters, such as strain, temperature and torsion. Lastly, the possibility to use microspheres as sensing elements was considered. Using the electric arc of a fusion splicer, it is possible to create microspheres at the tip of an optical fiber. Furthermore, with this technique it is chains of microspheres can be obtained, constituting Mach-Zehnder-type interferometers which are sensitive to physical parameters like strain and temperature. The preliminary results obtained by introducing silica microspheres in a support structure are also presented. In this case, the sensors were subjected to temperature variations. All the experimental work was combined with the respective theoretical considerations. Many questions have been raised with the course of this PhD, and there are still some without a definite answer. Thus, new research paths can be followed, having their basis grounded in the configurations here presented.

  10. Analytical Applications of Fluorescent Carbon Dots

    NASA Astrophysics Data System (ADS)

    Goncalves, Helena Maria Rodrigues

    The work described in this PhD Thesis focuses on the post-processing of optical fibers and their enhancement as sensing element. Since the majority of sensors presented are based in Fabry-Perot interferometers, an historical overview of this category of optical fiber sensors is firstly presented. This review considers the works published since the early years, in the beginning of the 1980s, until the middle of 2015. The incorporation of microcavities at the tip of a single mode fiber was extensively studied, particularly for the measurement of nitrogen and methane gas pressure. These cavities were fabricated using hollow core silica tubes and a hollow core photonic crystal fiber. Following a different approach, the microcavities were incorporated between two sections of single mode fiber. In this case, the low sensitivity to temperature makes these microcavities highly desirable for the measurement of strain at high temperatures. Competences in post-processing techniques such as the chemical etching and the writing of periodical structures in the fiber core by means of an excimer or a femtosecond laser were also acquired in the course of the PhD programme. One of the works consisted in the design and manufacturing of a double clad optical fiber. The refractive index of the inner cladding was higher than the one of the outer cladding and the core. Thus, light was guided in the inner cladding instead of propagating in the core. This situation was overcome by applying chemical etching, thus removing the inner cladding. The core, surrounded by air, was then able to guide light. Two different applications were found for this fiber, as a temperature sensor and as an optical refractometer. In the last, the optical phase changes with the liquid refractive index. Two different types of fiber Bragg gratings were characterized in strain and temperature. Sensing structures obtained through the phase mask technique at the tip of an optical fiber were subjected to chemical etching. In this case, an excimer laser was used. Extremely thin fiber tips were obtained, with an ultra-high sensitivity to strain. The other technique employed to fabricate the fiber Bragg gratings was the point-by-point femtosecond laser inscription. In this case, the sensing elements are very stable at high temperatures and can be used to measure strain in harsh conditions. The employment of optical fiber lasers as sensing elements was also considered in this Thesis. Two laser cavities were studied, one based on the ring configuration and the other based on a figure-of-eight configuration. From these works, the quality of the laser emission, namely the signal-to-noise ratio, the reduced full-width at half maximum and the stability should be highlighted. These characteristics allowed the measurement of different physical parameters, such as strain, temperature and torsion. Lastly, the possibility to use microspheres as sensing elements was considered. Using the electric arc of a fusion splicer, it is possible to create microspheres at the tip of an optical fiber. Furthermore, with this technique it is chains of microspheres can be obtained, constituting Mach-Zehnder-type interferometers which are sensitive to physical parameters like strain and temperature. The preliminary results obtained by introducing silica microspheres in a support structure are also presented. In this case, the sensors were subjected to temperature variations. All the experimental work was combined with the respective theoretical considerations. Many questions have been raised with the course of this PhD, and there are still some without a definite answer. Thus, new research paths can be followed, having their basis grounded in the configurations here presented.

  11. Nanostructured Photoanodes for Solar Cells

    NASA Astrophysics Data System (ADS)

    Apolinario, Arlete Ondina Alves da Silva

    The work described in this PhD Thesis focuses on the post-processing of optical fibers and their enhancement as sensing element. Since the majority of sensors presented are based in Fabry-Perot interferometers, an historical overview of this category of optical fiber sensors is firstly presented. This review considers the works published since the early years, in the beginning of the 1980s, until the middle of 2015. The incorporation of microcavities at the tip of a single mode fiber was extensively studied, particularly for the measurement of nitrogen and methane gas pressure. These cavities were fabricated using hollow core silica tubes and a hollow core photonic crystal fiber. Following a different approach, the microcavities were incorporated between two sections of single mode fiber. In this case, the low sensitivity to temperature makes these microcavities highly desirable for the measurement of strain at high temperatures. Competences in post-processing techniques such as the chemical etching and the writing of periodical structures in the fiber core by means of an excimer or a femtosecond laser were also acquired in the course of the PhD programme. One of the works consisted in the design and manufacturing of a double clad optical fiber. The refractive index of the inner cladding was higher than the one of the outer cladding and the core. Thus, light was guided in the inner cladding instead of propagating in the core. This situation was overcome by applying chemical etching, thus removing the inner cladding. The core, surrounded by air, was then able to guide light. Two different applications were found for this fiber, as a temperature sensor and as an optical refractometer. In the last, the optical phase changes with the liquid refractive index. Two different types of fiber Bragg gratings were characterized in strain and temperature. Sensing structures obtained through the phase mask technique at the tip of an optical fiber were subjected to chemical etching. In this case, an excimer laser was used. Extremely thin fiber tips were obtained, with an ultra-high sensitivity to strain. The other technique employed to fabricate the fiber Bragg gratings was the point-by-point femtosecond laser inscription. In this case, the sensing elements are very stable at high temperatures and can be used to measure strain in harsh conditions. The employment of optical fiber lasers as sensing elements was also considered in this Thesis. Two laser cavities were studied, one based on the ring configuration and the other based on a figure-of-eight configuration. From these works, the quality of the laser emission, namely the signal-to-noise ratio, the reduced full-width at half maximum and the stability should be highlighted. These characteristics allowed the measurement of different physical parameters, such as strain, temperature and torsion. Lastly, the possibility to use microspheres as sensing elements was considered. Using the electric arc of a fusion splicer, it is possible to create microspheres at the tip of an optical fiber. Furthermore, with this technique it is chains of microspheres can be obtained, constituting Mach-Zehnder-type interferometers which are sensitive to physical parameters like strain and temperature. The preliminary results obtained by introducing silica microspheres in a support structure are also presented. In this case, the sensors were subjected to temperature variations. All the experimental work was combined with the respective theoretical considerations. Many questions have been raised with the course of this PhD, and there are still some without a definite answer. Thus, new research paths can be followed, having their basis grounded in the configurations here presented.

  12. Chemoselectivity of Immobilized Transition Metal Catalysts

    NASA Astrophysics Data System (ADS)

    Teixeira, Filipe

    The work described in this PhD Thesis focuses on the post-processing of optical fibers and their enhancement as sensing element. Since the majority of sensors presented are based in Fabry-Perot interferometers, an historical overview of this category of optical fiber sensors is firstly presented. This review considers the works published since the early years, in the beginning of the 1980s, until the middle of 2015. The incorporation of microcavities at the tip of a single mode fiber was extensively studied, particularly for the measurement of nitrogen and methane gas pressure. These cavities were fabricated using hollow core silica tubes and a hollow core photonic crystal fiber. Following a different approach, the microcavities were incorporated between two sections of single mode fiber. In this case, the low sensitivity to temperature makes these microcavities highly desirable for the measurement of strain at high temperatures. Competences in post-processing techniques such as the chemical etching and the writing of periodical structures in the fiber core by means of an excimer or a femtosecond laser were also acquired in the course of the PhD programme. One of the works consisted in the design and manufacturing of a double clad optical fiber. The refractive index of the inner cladding was higher than the one of the outer cladding and the core. Thus, light was guided in the inner cladding instead of propagating in the core. This situation was overcome by applying chemical etching, thus removing the inner cladding. The core, surrounded by air, was then able to guide light. Two different applications were found for this fiber, as a temperature sensor and as an optical refractometer. In the last, the optical phase changes with the liquid refractive index. Two different types of fiber Bragg gratings were characterized in strain and temperature. Sensing structures obtained through the phase mask technique at the tip of an optical fiber were subjected to chemical etching. In this case, an excimer laser was used. Extremely thin fiber tips were obtained, with an ultra-high sensitivity to strain. The other technique employed to fabricate the fiber Bragg gratings was the point-by-point femtosecond laser inscription. In this case, the sensing elements are very stable at high temperatures and can be used to measure strain in harsh conditions. The employment of optical fiber lasers as sensing elements was also considered in this Thesis. Two laser cavities were studied, one based on the ring configuration and the other based on a figure-of-eight configuration. From these works, the quality of the laser emission, namely the signal-to-noise ratio, the reduced full-width at half maximum and the stability should be highlighted. These characteristics allowed the measurement of different physical parameters, such as strain, temperature and torsion. Lastly, the possibility to use microspheres as sensing elements was considered. Using the electric arc of a fusion splicer, it is possible to create microspheres at the tip of an optical fiber. Furthermore, with this technique it is chains of microspheres can be obtained, constituting Mach-Zehnder-type interferometers which are sensitive to physical parameters like strain and temperature. The preliminary results obtained by introducing silica microspheres in a support structure are also presented. In this case, the sensors were subjected to temperature variations. All the experimental work was combined with the respective theoretical considerations. Many questions have been raised with the course of this PhD, and there are still some without a definite answer. Thus, new research paths can be followed, having their basis grounded in the configurations here presented.

  13. Sources and diagnostics for attosecond science

    NASA Astrophysics Data System (ADS)

    Miranda, Miguel Nicolau da Costa Ribeiro de

    The work described in this PhD Thesis focuses on the post-processing of optical fibers and their enhancement as sensing element. Since the majority of sensors presented are based in Fabry-Perot interferometers, an historical overview of this category of optical fiber sensors is firstly presented. This review considers the works published since the early years, in the beginning of the 1980s, until the middle of 2015. The incorporation of microcavities at the tip of a single mode fiber was extensively studied, particularly for the measurement of nitrogen and methane gas pressure. These cavities were fabricated using hollow core silica tubes and a hollow core photonic crystal fiber. Following a different approach, the microcavities were incorporated between two sections of single mode fiber. In this case, the low sensitivity to temperature makes these microcavities highly desirable for the measurement of strain at high temperatures. Competences in post-processing techniques such as the chemical etching and the writing of periodical structures in the fiber core by means of an excimer or a femtosecond laser were also acquired in the course of the PhD programme. One of the works consisted in the design and manufacturing of a double clad optical fiber. The refractive index of the inner cladding was higher than the one of the outer cladding and the core. Thus, light was guided in the inner cladding instead of propagating in the core. This situation was overcome by applying chemical etching, thus removing the inner cladding. The core, surrounded by air, was then able to guide light. Two different applications were found for this fiber, as a temperature sensor and as an optical refractometer. In the last, the optical phase changes with the liquid refractive index. Two different types of fiber Bragg gratings were characterized in strain and temperature. Sensing structures obtained through the phase mask technique at the tip of an optical fiber were subjected to chemical etching. In this case, an excimer laser was used. Extremely thin fiber tips were obtained, with an ultra-high sensitivity to strain. The other technique employed to fabricate the fiber Bragg gratings was the point-by-point femtosecond laser inscription. In this case, the sensing elements are very stable at high temperatures and can be used to measure strain in harsh conditions. The employment of optical fiber lasers as sensing elements was also considered in this Thesis. Two laser cavities were studied, one based on the ring configuration and the other based on a figure-of-eight configuration. From these works, the quality of the laser emission, namely the signal-to-noise ratio, the reduced full-width at half maximum and the stability should be highlighted. These characteristics allowed the measurement of different physical parameters, such as strain, temperature and torsion. Lastly, the possibility to use microspheres as sensing elements was considered. Using the electric arc of a fusion splicer, it is possible to create microspheres at the tip of an optical fiber. Furthermore, with this technique it is chains of microspheres can be obtained, constituting Mach-Zehnder-type interferometers which are sensitive to physical parameters like strain and temperature. The preliminary results obtained by introducing silica microspheres in a support structure are also presented. In this case, the sensors were subjected to temperature variations. All the experimental work was combined with the respective theoretical considerations. Many questions have been raised with the course of this PhD, and there are still some without a definite answer. Thus, new research paths can be followed, having their basis grounded in the configurations here presented.

  14. Measuring opto-thermal parameters of basalt fibers using digital holographic microscopy.

    PubMed

    Yassien, Khaled M; Agour, Mostafa

    2017-02-01

    A method for studying the effect of temperature on the optical properties of basalt fiber is presented. It is based on recording a set of phase-shifted digital holograms for the sample under the test. The holograms are obtained utilizing a system based on Mach-Zehnder interferometer, where the fiber sample inserted in an immersion liquid is placed within a temperature controlled chamber. From the recorded digital holograms the optical path differences which are used to calculate the refractive indices are determined. The accuracy in the measurement of refractive indices is in the range of 4 × 10 -4 . The influence of temperature on the dispersion parameters, polarizability per unit volume and dielectric susceptibility are also obtained. Moreover, the values of dispersion and oscillation energies and Cauchy's constants are provided at different temperatures. © 2016 Wiley Periodicals, Inc.

  15. Low-Cost Interrogation Technique for Dynamic Measurements with FBG-Based Devices.

    PubMed

    Díaz, Camilo A R; Leitão, Cátia; Marques, Carlos A; Domingues, M Fátima; Alberto, Nélia; Pontes, Maria José; Frizera, Anselmo; Ribeiro, Moisés R N; André, Paulo S B; Antunes, Paulo F C

    2017-10-23

    Fiber Bragg gratings are widely used optical fiber sensors for measuring temperature and/or mechanical strain. Nevertheless, the high cost of the interrogation systems is the most important drawback for their large commercial application. In this work, an in-line Fabry-Perot interferometer based edge filter is explored in the interrogation of fiber Bragg grating dynamic measurements up to 5 kHz. Two devices an accelerometer and an arterial pulse wave probe were interrogated with the developed approach and the results were compared with a commercial interrogation monitor. The data obtained with the edge filter are in agreement with the commercial device, with a maximum RMSE of 0.05 being able to meet the requirements of the measurements. Resolutions of 3.6 pm and 2.4 pm were obtained, using the optical accelerometer and the arterial pulse wave probe, respectively.

  16. Tunable thulium-doped fiber laser based on an abrupt-tapered in-fiber interferometer

    NASA Astrophysics Data System (ADS)

    Hernández-Arriaga, M. V.; Durán-Sánchez, M.; Ibarra-Escamilla, B.; Álvarez-Tamayo, R. I.; Santiago-Hernández, H.; Bello-Jiménez, M.; Kuzin, E. A.

    2017-11-01

    An experimental study of an all-fiber tunable thulium-doped fiber laser based on an abrupt-tapered in-fiber interferometer is presented. A microfiber filter with length of 6 mm and diameter of 20 μm is used to achieve single laser wavelength tuning in a range of 19.4 nm and dual-wavelength laser operation at 1761.8 and 1793.4 nm with a channel spacing of 31.6 nm. The abrupt-tapered structure allows multi-modal interference at the air-cladding interface. The proposed in-fiber interferometer exhibits characteristics of low cost and simple fabrication, making it suitable for practical applications in wavelength filtering and wavelength selection in all-fiber lasers.

  17. Refractive index sensor based on lateral-offset of coreless silica interferometer

    NASA Astrophysics Data System (ADS)

    Baharin, Nur Faizzah; Azmi, Asrul Izam; Abdullah, Ahmad Sharmi; Mohd Noor, Muhammad Yusof

    2018-02-01

    A compact, cost-effective and high sensitivity fiber interferometer refractive index (RI) sensor based on symmetrical offset coreless silica fiber (CSF) configuration is proposed, optimized and demonstrated. The sensor is formed by splicing a section of CSF between two CSF sections in an offset manner. Thus, two distinct optical paths are created with large index difference, the first path through the connecting CSF sections and the second path is outside the CSF through the surrounding media. RI sensing is established from direct interaction of light with surrounding media, hence high sensitivity can be achieved with a relatively compact sensor length. In the experimental work, a 1.5 mm sensor demonstrates RI sensitivity of 750 nm/RIU for RI range between 1.33 and 1.345. With the main attributes of high sensitivity and compact size, the proposed sensor can be further developed for related applications including blood diagnosis, water quality control and food industries.

  18. High sensitivity refractive index sensor based on adiabatic tapered optical fiber deposited with nanofilm by ALD.

    PubMed

    Zhu, Shan; Pang, Fufei; Huang, Sujuan; Zou, Fang; Dong, Yanhua; Wang, Tingyun

    2015-06-01

    Atomic layer deposition (ALD) technology is introduced to fabricate a high sensitivity refractive index sensor based on an adiabatic tapered optical fiber. Different thickness of Al2O3 nanofilm is coated around fiber taper precisely and uniformly under different deposition cycles. Attributed to the high refractive index of the Al2O3 nanofilm, an asymmetry Fabry-Perot like interferometer is constructed along the fiber taper. Based on the ray-optic analysis, total internal reflection happens on the nanofilm-surrounding interface. With the ambient refractive index changing, the phase delay induced by the Goos-Hänchen shift is changed. Correspondingly, the transmission resonant spectrum shifts, which can be utilized for realizing high sensitivity sensor. The high sensitivity sensor with 6008 nm/RIU is demonstrated by depositing 3000 layers Al2O3 nanofilm as the ambient refractive index is close to 1.33. This high sensitivity refractive index sensor is expected to have wide applications in biochemical sensors.

  19. Evaluation of thermal expansion coefficient of carbon fiber reinforced composites using electronic speckle interferometry.

    PubMed

    Dong, Chengzhi; Li, Kai; Jiang, Yuxi; Arola, Dwayne; Zhang, Dongsheng

    2018-01-08

    An optical system for measuring the coefficient of thermal expansion (CTE) of materials has been developed based on electronic speckle interferometry. In this system, the temperature can be varied from -60°C to 180°C with a Peltier device. A specific specimen geometry and an optical arrangement based on the Michelson interferometer are proposed to measure the deformation along two orthogonal axes due to temperature changes. The advantages of the system include its high sensitivity and stability over the whole range of measurement. The experimental setup and approach for estimating the CTE was validated using an Aluminum alloy. Following this validation, the system was applied for characterizing the CTE of carbon fiber reinforced composite (CFRP) laminates. For the unidirectional fiber reinforced composites, the CTE varied with fiber orientation and exhibits anisotropic behavior. By stacking the plies with specific angles and order, the CTE of a specific CFRP was constrained to a low level with minimum variation temperature. The optical system developed in this study can be applied to CTE measurement for engineering and natural materials with high accuracy.

  20. Self-gauged fiber-optic micro-heater with an operation temperature above 1000°C.

    PubMed

    Liu, Guigen; Sheng, Qiwen; Dam, Dustin; Hua, Jiong; Hou, Weilin; Han, Ming

    2017-04-01

    We report a fiber-optic micro-heater based on a miniature crystalline silicon Fabry-Perot interferometer (FPI) fusion spliced to the endface of a single-mode fiber. The silicon FPI, having a diameter of 100 μm and a length of 10 or 200 μm, is heated by a 980 nm laser diode guided through the lead-in fiber, leading to a localized hot spot with a temperature that can be conveniently tuned from the ambient temperature to >1000°C in air. In the meantime, using a white light system operating in the 1550 nm wavelength window where the silicon is transparent, the silicon FPI itself also serves as a thermometer with high resolution and high speed for convenient monitoring and precise control of the heater temperature. Due to its small size, high temperature capability, and easy operation, the micro-heater is attractive for applications in a variety of fields, such as biology, microfluidics system, mechanical engineering, and high-temperature optical sensing. As an example, the application of this micro-heater as a micro-boiler and micro-bubble generator has been demonstrated.

  1. All-optical single-sideband frequency upconversion utilizing the XPM effect in an SOA-MZI.

    PubMed

    Kim, Doo-Ho; Lee, Joo-Young; Choi, Hyung-June; Song, Jong-In

    2016-09-05

    An all-optical single sideband (OSSB) frequency upconverter based on the cross-phase modulation (XPM) effect is proposed and experimentally demonstrated to overcome the power fading problem caused by the chromatic dispersion of fiber in radio-over-fiber systems. The OSSB frequency upconverter consists of an arrayed waveguide grating (AWG) and a semiconductor optical amplifier Mach-Zehnder interferometer (SOA-MZI) and does not require an extra delay line used for phase noise compensation. The generated OSSB radio frequency (RF) signal transmitted over single-mode fibers up to 20 km shows a flat electrical RF power response as a function of the fiber length. The upconverted electrical RF signal at 48 GHz shows negligible degradation of the phase noise even without an extra delay line. The measured phase noise of the upconverted RF signal (48 GHz) is -74.72 dBc/Hz at an offset frequency of 10 kHz. The spurious free dynamic range (SFDR) measured by a two-tone test to estimate the linearity of the OSSB frequency upconverter is 72.5 dB·Hz2/3.

  2. All-fiber Mach-Zehnder type interferometers formed in photonic crystal fiber

    NASA Astrophysics Data System (ADS)

    Choi, Hae Young; Kim, Myoung Jin; Lee, Byeong Ha

    2007-04-01

    We propose simple and compact methods for implementing all-fiber interferometers. The interference between the core and the cladding modes of a photonic crystal fiber (PCF) is utilized. To excite the cladding modes from the fundamental core mode of a PCF, a coupling point or region is formed by using two methods. One is fusion splicing two pieces of a PCF with a small lateral offset, and the other is partially collapsing the air-holes in a single piece of PCF. By making another coupling point at a different location along the fiber, the proposed all-PCF interferometer is implemented. The spectral response of the interferometer is investigated mainly in terms of its wavelength spectrum. The spatial frequency of the spectrum was proportional to the physical length of the interferometer and the difference between the modal group indices of involved waveguide modes. For the splicing type interferometer, only a single spatial frequency component was dominantly observed, while the collapsing type was associated with several components at a time. By analyzing the spatial frequency spectrum of the wavelength spectrum, the modal group index differences of the PCF were obtained from to . As potential applications of the all-PCF interferometer, strain sensing is experimentally demonstrated and ultra-high temperature sensing is proposed.

  3. Photonic crystal fiber modal interferometer based on thin-core-fiber mode exciter.

    PubMed

    Miao, Yinping; Ma, Xixi; Wu, Jixuan; Song, Binbin; Zhang, Hao; Liu, Bo; Yao, Jianquan

    2015-11-10

    A thin-core-fiber excited photonic crystal fiber modal interferometer has been proposed and experimentally demonstrated. By employing a thin-core fiber as the mode exciter, both of the core and cladding modes propagate in the photonic crystal fiber and interfere with each other. The experimental results show that the transmission dips corresponding to different-order modes have various strain responses with opposite shift directions. The strain sensitivity could be improved to 58.57  pm/με for the applied strain from 0 to 491 με by utilizing the wavelength interval between the dips with opposite shift directions. Moreover, due to the pure silica property of the employed photonic crystal fiber, the proposed fiber modal interferometer exhibits a low-temperature sensitivity of about 0.56  pm/°C within a temperature range from 26.4°C (room temperature) to 70°C. Additionally, the proposed fiber modal interferometer has several advantages, such as good stability, compact structure, and simple fabrication. Therefore, it is more applicable for strain measurement with reducing temperature cross-sensitivity.

  4. A high-temperature fiber sensor using a low cost interrogation scheme.

    PubMed

    Barrera, David; Sales, Salvador

    2013-09-04

    Regenerated Fibre Bragg Gratings have the potential for high-temperature monitoring. In this paper, the inscription of Fibre Bragg Gratings (FBGs) and the later regeneration process to obtain Regenerated Fiber Bragg Gratings (RFBGs) in high-birefringence optical fiber is reported. The obtained RFBGs show two Bragg resonances corresponding to the slow and fast axis that are characterized in temperature terms. As the temperature increases the separation between the two Bragg resonances is reduced, which can be used for low cost interrogation. The proposed interrogation setup is based in the use of optical filters in order to convert the wavelength shift of each of the Bragg resonances into optical power changes. The design of the optical filters is also studied in this article. In first place, the ideal filter is calculated using a recursive method and defining the boundary conditions. This ideal filter linearizes the output of the interrogation setup but is limited by the large wavelength shift of the RFBG with temperature and the maximum attenuation. The response of modal interferometers as optical filters is also analyzed. They can be easily tuned shifting the optical spectrum. The output of the proposed interrogation scheme is simulated in these conditions improving the sensitivity.

  5. A High-Temperature Fiber Sensor Using a Low Cost Interrogation Scheme

    PubMed Central

    Barrera, David; Sales, Salvador

    2013-01-01

    Regenerated Fibre Bragg Gratings have the potential for high-temperature monitoring. In this paper, the inscription of Fibre Bragg Gratings (FBGs) and the later regeneration process to obtain Regenerated Fiber Bragg Gratings (RFBGs) in high-birefringence optical fiber is reported. The obtained RFBGs show two Bragg resonances corresponding to the slow and fast axis that are characterized in temperature terms. As the temperature increases the separation between the two Bragg resonances is reduced, which can be used for low cost interrogation. The proposed interrogation setup is based in the use of optical filters in order to convert the wavelength shift of each of the Bragg resonances into optical power changes. The design of the optical filters is also studied in this article. In first place, the ideal filter is calculated using a recursive method and defining the boundary conditions. This ideal filter linearizes the output of the interrogation setup but is limited by the large wavelength shift of the RFBG with temperature and the maximum attenuation. The response of modal interferometers as optical filters is also analyzed. They can be easily tuned shifting the optical spectrum. The output of the proposed interrogation scheme is simulated in these conditions improving the sensitivity. PMID:24008282

  6. Development of a fiber optic pavement subgrade strain measurement system

    NASA Astrophysics Data System (ADS)

    Miller, Craig Emerson

    2000-11-01

    This dissertation describes the development of a fiber optic sensing system to measure strains within the soil subgrade of highway pavements resulting from traffic loads. The motivation to develop such a device include improvements to: (1)all phases of pavement design, (2)theoretical models used to predict pavement performance, and (3)pavement rehabilitation. The design of the sensing system encompasses selecting an appropriate transducer design as well as the development of optimal optical and demodulation systems. The first is spring based, which attempts to match its spring stiffness to that of the soil-data indicate it is not an optimal transducer design. The second transducer implements anchoring plates attached to two telescoping tubes which allows the soil to be compacted to a desired density between the plates to dictate the transducer's behavior. Both transducers include an extrinsic Fabry- Perot cavity to impose the soil strains onto a phase change of the optical signal propagating through the cavity. The optical system includes a low coherence source and allows phase modulation via path length stretching by adding a second interferometer in series with the transducer, resulting in a path matched differential interferometer. A digitally implemented synthetic heterodyne demodulator based on a four step phase stepping algorithm is used to obtain unambiguous soil strain information from the displacement of the Fabry-Perot cavity. The demodulator is calibrated and characterized by illuminating the transducer with a second long coherence source of different wavelength. The transducer using anchoring plates is embedded within cylindrical soil specimens of varying soil types and soil moisture contents. Loads are applied to the specimen and resulting strains are measured using the embedded fiber optic gage and LVDTs attached to the surface of the specimen. This experimental verification is substantiated using a finite element analysis to predict any differences between interior and surface strains in the specimens. The experimental data indicate 2-inch diameter anchoring plates embedded in soil close to its optimum moisture content allow for very accurate soil strain measurements.

  7. Microstructured optical fiber interferometric breathing sensor.

    PubMed

    Favero, Fernando C; Villatoro, Joel; Pruneri, Valerio

    2012-03-01

    In this paper a simple photonic crystal fiber (PCF) interferometric breathing sensor is introduced. The interferometer consists of a section of PCF fusion spliced at the distal end of a standard telecommunications optical fiber. Two collapsed regions in the PCF caused by the splicing process allow the excitation and recombination of a core and a cladding PCF mode. As a result, the reflection spectrum of the device exhibits a sinusoidal interference pattern that instantly shifts when water molecules, present in exhaled air, are adsorbed on or desorbed from the PCF surface. The device can be used to monitor a person's breathing whatever the respiration rate. The device here proposed could be particularly important in applications where electronic sensors fail or are not recommended. It may also be useful in the evaluation of a person's health and even in the diagnosis and study of the progression of serious illnesses such as sleep apnea syndrome. © 2012 Society of Photo-Optical Instrumentation Engineers (SPIE).

  8. Light driven optofluidic switch developed in a ZnO-overlaid microstructured optical fiber.

    PubMed

    Konidakis, Ioannis; Konstantaki, Maria; Tsibidis, George D; Pissadakis, Stavros

    2015-11-30

    A great challenge of Optofluidics remains the control of the fluidic properties of a photonic circuit by solely utilizing light. In this study, the development of a ZnO nanolayered microstructured optical fiber (MOF) Fabry-Perot interferometer is demonstrated, along with its fully reversible optofluidic switching behaviour. The actuation and switching principle is entirely based on the employment of light sources, i.e. UV 248 nm and green 532 nm lasers, while using modest irradiation doses. The synthesized ZnO within the MOF capillaries acts as a light triggered wettability transducer, allowing the controlled water filling and draining of the MOF Fabry-Perot cavity. The progression of the optofluidic cycle is monitored in situ with optical microscopy, while Fabry-Perot reflection spectra are monitored in real time to probe temporal infiltration behaviour. Finally, a first insight on the light triggered switching mechanism, employing photoluminescence and spectrophotometric measurements is presented. Results appear highly promising towards the design of smart in-fiber optofluidic light switching devices, suitable for actuating and sensing applications.

  9. Multimode excitation-induced phase shifts in intrinsic Fabry-Perot interferometric fiber sensor spectra.

    PubMed

    Ma, Cheng; Wang, Anbo

    2010-09-01

    We report the modal analysis of optical fiber single-mode-multimode-single-mode intrinsic Fabry-Perot interferometer sensors. The multimode nature of the Fabry-Perot cavity gives rise to an additional phase term in the spectrogram due to intermodal dispersion-induced wavefront distortion, which could significantly affect the cavity length demodulation accuracy. By using an exact model to analyze the modal behavior, this phase term is explained by employing a rotating vector approach. Comparison of the theoretical analysis with experimental results is presented.

  10. Vertical Strain Measured in the Mississippi River Delta Using Borehole Optical Fiber Strainmeters

    NASA Astrophysics Data System (ADS)

    Hatfield, W.; Allison, M. A.; Bridgeman, J.; Dixon, T. H.; Elliott, D.; Steckler, M. S.; Tornqvist, T. E.; Williams, K.; Wyatt, F. K.; Zumberge, M. A.

    2017-12-01

    Three boreholes in the Mississippi River Delta, at a site 2 km from the river near Myrtle Grove, Louisiana, have been instrumented with optical fiber strainmeters. The boreholes extend to depths of 9 m, 24 m, and 37 m. Each contains an optical fiber strainmeter that records the displacement between a steel surface casing and a termination fixture cemented into the bottom of each borehole. The strainmeters consist of an optical fiber cable stretched to a length 0.2% longer than its unstressed condition. An optical interferometer is formed between each sensing fiber and a second optical fiber of equal length wrapped on a reference mandrel housed in a sonde in the wellhead casing. This arrangement relaxes stability requirements on the light source. A signal processing unit samples the interference fringe signals 50,000 times per second and calculates the optical phase shift, providing a displacement record precise to a few nm or strain sensitivity of better than 1 nanostrain. The sensors operate from solar power and transmit the data (decimated to 20 samples per second) to an archiving system via a cell phone modem. To mitigate against the effects of temperature variations, a second optical fiber sensor with a different temperature is operated in parallel with the first, sharing the same cable and processing sonde. Records from the two fibers allow the separation of optical length changes caused by temperature from the earth strain. The three individual systems provide an unprecedented measure of soil compaction. Over short periods we observe sub-micron signals such as teleseisms, and over the long term we have observed stability at the tenths of a mm level. The site has shown no compaction or subsidence greater than a few tenths of a mm over the last year, highlighting the value of strainmeters over other techniques that can not resolve such small signals. Two of the sensors began operating in July of 2016, the third began operation in May of 2017.

  11. Improving demodulation accuracy of low-coherence interferometer against spatial-frequency nonlinearity

    NASA Astrophysics Data System (ADS)

    Wang, Shuang; Liu, Tiegen; Jiang, Junfeng; Liu, Kun; Yin, Jinde; Wu, Fan; Zhao, Bofu; Xue, Lei; Mei, Yunqiao; Wu, Zhenhai

    2013-12-01

    We present an effective method to compensate the spatial-frequency nonlinearity for polarized low-coherence interferometer with location-dependent dispersion element. Through the use of location-dependent dispersive characteristics, the method establishes the exact relationship between wave number and discrete Fourier transform (DFT) serial number. The jump errors in traditional absolute phase algorithm are also avoided with nonlinearity compensation. We carried out experiments with an optical fiber Fabry-Perot (F-P) pressure sensing system to verify the effectiveness. The demodulated error is less than 0.139kPa in the range of 170kPa when using our nonlinearity compensation process in the demodulation.

  12. Investigation on the impact of irregular fringe patterns of a single-fiber Mach-Zehnder interferometer on its sensing capabilities

    NASA Astrophysics Data System (ADS)

    Kumar, Naveen; Kumar, Ashish

    2018-07-01

    A novel single-mode single-fiber (SMSF) MZI formed by cascading of two non-adiabatic fiber tapers, with stable and repeatable spectrum, has been found to be useful in sensing applications in recent times. A multimode interference based novel simulation approach is proposed to predict the sensing characteristics of SMSF-MZI and is validated with experimental observation. The proposed method includes solving of simultaneous non-homogenous equations for determining the amplitudes of the interfering modes excited in the tapered section of the interferometer. The simulated fringe pattern and the experimental spectral response converge to some important comprehension reported for the first time. A linear shift in output spectral response, of SMSF-MZI, due to change in optical path length induced by temperature/strain etc., is likely to be characterized by three modes interference occurring in the interference region of the interferometer. Whereas if the spectral shift starts saturating at moderately higher temperature/strain, then the formation of interference fringes are possibly governed by two modes interference. Further, it was also explained that a SMSF-MZI with variable fringe widths in its spectral pattern exhibits higher sensitivity than that of the SMSF-MZI having wavelength spectrum with uniform free spectral range. These findings are useful in selecting and predicting the sensitivity of a given SMSF-MZI, based on its spectrum, for sensing applications.

  13. A fiber-coupled displacement measuring interferometer for determination of the posture of a reflective surface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mao, Shuai; Hu, Peng-Cheng, E-mail: hupc@hit.edu.cn; Ding, Xue-Mei, E-mail: X.M.Ding@outlook.com

    A fiber-coupled displacement measuring interferometer capable of determining of the posture of a reflective surface of a measuring mirror is proposed. The newly constructed instrument combines fiber-coupled displacement and angular measurement technologies. The proposed interferometer has advantages of both the fiber-coupled and the spatially beam-separated interferometer. A portable dual-position sensitive detector (PSD)-based unit within this proposed interferometer measures the parallelism of the two source beams to guide the fiber-coupling adjustment. The portable dual PSD-based unit measures not only the pitch and yaw of the retro-reflector but also measures the posture of the reflective surface. The experimental results of displacement calibrationmore » show that the deviations between the proposed interferometer and a reference one, Agilent 5530, at two different common beam directions are both less than ±35 nm, thus verifying the effectiveness of the beam parallelism measurement. The experimental results of angular calibration show that deviations of pitch and yaw with the auto-collimator (as a reference) are less than ±2 arc sec, thus proving the proposed interferometer’s effectiveness for determination of the posture of a reflective surface.« less

  14. A Fiber-Optic Sensor for Acoustic Emission Detection in a High Voltage Cable System

    PubMed Central

    Zhang, Tongzhi; Pang, Fufei; Liu, Huanhuan; Cheng, Jiajing; Lv, Longbao; Zhang, Xiaobei; Chen, Na; Wang, Tingyun

    2016-01-01

    We have proposed and demonstrated a Michelson interferometer-based fiber sensor for detecting acoustic emission generated from the partial discharge (PD) of the accessories of a high-voltage cable system. The developed sensor head is integrated with a compact and relatively high sensitivity cylindrical elastomer. Such a sensor has a broadband frequency response and a relatively high sensitivity in a harsh environment under a high-voltage electric field. The design and fabrication of the sensor head integrated with the cylindrical elastomer is described, and a series of experiments was conducted to evaluate the sensing performance. The experimental results demonstrate that the sensitivity of our developed sensor for acoustic detection of partial discharges is 1.7 rad/(m⋅Pa). A high frequency response up to 150 kHz is achieved. Moreover, the relatively high sensitivity for the detection of PD is verified in both the laboratory environment and gas insulated switchgear. The obtained results show the great potential application of a Michelson interferometer-based fiber sensor integrated with a cylindrical elastomer for in-situ monitoring high-voltage cable accessories for safety work. PMID:27916900

  15. A IR-Femtosecond Laser Hybrid Sensor to Measure the Thermal Expansion and Thermo-Optical Coefficient of Silica-Based FBG at High Temperatures.

    PubMed

    Li, Litong; Lv, Dajuan; Yang, Minghong; Xiong, Liangming; Luo, Jie

    2018-01-26

    In this paper, a hybrid sensor was fabricated using a IR-femtosecond laser to measure the thermal expansion and thermo-optical coefficient of silica-based fiber Bragg gratings (FBGs). The hybrid sensor was composed of an inline fiber Fabry-Perot interferometer (FFPI) cavity and a type-II FBG. Experiment results showed that the type-II FBG had three high reflectivity resonances in the wavelength ranging from 1100 to 1600 nm, showing the peaks in 1.1, 1.3 and 1.5 μm, respectively. The thermal expansion and thermo-optical coefficient (1.3 μm, 1.5 μm) of silica-based FBG, under temperatures ranging from 30 to 1100 °C, had been simultaneously calculated by measuring the wavelength of the type-II FBG and FFPI cavity length.

  16. Analysis of the detection materials as resonant pads for attaching the measuring arm of the interferometer when sensing mechanical vibrations

    NASA Astrophysics Data System (ADS)

    Nedoma, Jan; Fajkus, Marcel; Martinek, Radek; Zboril, Ondrej; Bednarek, Lukas; Novak, Martin; Witas, Karel; Vasinek, Vladimir

    2017-05-01

    Fiber-optic sensors (FOS), today among the most widespread measuring sensors and during various types of measuring, are irreplaceable. Among the distinctive features include immunity to electromagnetic interference, passivity regarding power supply and high sensitivity. One of the representatives FOS is the interferometric sensors working on the principle of interference of light. Authors of this article focused on the analysis of the detection material as resonant pads for attaching the measuring arm of the interferometer when sensing mechanical vibrations (low frequencies). A typical example is the use of interferometer sensors in automobile traffic while sensing a vibration response from the roadway while passing the cars. For analysis was used sensor with Mach-Zehnder interferometer. Defined were different detection materials about different size and thickness. We analyzed the influence on the sensitivity (amplitude response) of the interferometer. Based on the results we have defined the best material for sensing mechanical vibrations. The signal was processed by applications created in LabView development environment. The results were verified by repeated testing in laboratory conditions.

  17. Ultra-sensitive wide dynamic range temperature sensor based on in-fiber Lyot interferometer

    NASA Astrophysics Data System (ADS)

    Nikbakht, Hamed; Poorghdiri Isfahani, Mohamad Hosein; Latifi, Hamid

    2017-04-01

    An in-fiber Lyot interferometer for temperature measurement is presented. The sensor utilizes high temperature-dependence of the birefringence in Panda polarization maintaining fibers to achieve high resolution in temperature measurements. Temperature variation modulates the phase difference between the polarization modes propagating in different modes of the Panda fiber. The Lyot interferometer produces a spectrum which varies with the phase difference. Therefore, by monitoring this spectrum a high resolution of 0.003°C was achieved. A fiber Bragg grating is added to the setup to expand its dynamic range. This sensor does not need complicated fabrication process and can be implemented in many applications.

  18. Multimodal transmission property in a liquid-filled photonic crystal fiber

    NASA Astrophysics Data System (ADS)

    Lin, Wei; Miao, Yinping; Song, Binbin; Zhang, Hao; Liu, Bo; Liu, Yange; Yan, Donglin

    2015-02-01

    The multimode interference (MMI) effect in a liquid-filled photonic crystal fiber (PCF) has been experimentally demonstrated by fully infiltrating the air-hole cladding of a solid-core PCF with the refractive index (RI) matching liquid whose RI is close to the silica background. Due to the weak mode confinement capability of the cladding region, several high-order modes are excited to establish the multimode interference effect. The multimode interferometer shows a good temperature tunability of 12.30 nm/K, which makes it a good candidate for a highly tunable optical filtering as well as temperature sensing applications. Furthermore, this MMI effect would have great promise in various applications such as highly sensitive multi-parameter sensing, tunable optically filtering, and surface-enhanced Raman scattering.

  19. Phase-demodulation error of a fiber-optic Fabry-Perot sensor with complex reflection coefficients.

    PubMed

    Kilpatrick, J M; MacPherson, W N; Barton, J S; Jones, J D

    2000-03-20

    The influence of reflector losses attracts little discussion in standard treatments of the Fabry-Perot interferometer yet may be an important factor contributing to errors in phase-stepped demodulation of fiber optic Fabry-Perot (FFP) sensors. We describe a general transfer function for FFP sensors with complex reflection coefficients and estimate systematic phase errors that arise when the asymmetry of the reflected fringe system is neglected, as is common in the literature. The measured asymmetric response of higher-finesse metal-dielectric FFP constructions corroborates a model that predicts systematic phase errors of 0.06 rad in three-step demodulation of a low-finesse FFP sensor (R = 0.05) with internal reflector losses of 25%.

  20. Simultaneous measurement of relative humidity and temperature with PCF-MZI cascaded by fiber Bragg grating

    NASA Astrophysics Data System (ADS)

    Zhang, Shuqin; Dong, Xinyong; Li, Tao; Chan, Chi Chiu; Shum, Perry P.

    2013-08-01

    Simultaneous measurement of relative humidity and temperature has been realized by using an optical fiber sensor formed by cascading a photonic crystal fiber (PCF)-based in-fiber Mach-Zehnder interferometer (MZI) and a fiber Bragg grating (FBG). The PCF-MZI was fabricated by using a short PCF fusion-spliced between two single-mode fibers with its air holes in the cladding area being collapsed in the splicing regions. It was then coated with a layer of polyvinyl alcohol (PVA), whose refractive index is sensitive to humidity. Because the PCF-MZI and FBG have different responses to humidity and temperature, simultaneous measurement has been achieved with resolutions of 0.13% RH and 1.0 °C for humidity and temperature, respectively. The relative humidity measurement range is up to 30%-95% RH.

  1. Quantitative phase imaging using grating-based quadrature phase interferometer

    NASA Astrophysics Data System (ADS)

    Wu, Jigang; Yaqoob, Zahid; Heng, Xin; Cui, Xiquan; Yang, Changhuei

    2007-02-01

    In this paper, we report the use of holographic gratings, which act as the free-space equivalent of the 3x3 fiber-optic coupler, to perform full field phase imaging. By recording two harmonically-related gratings in the same holographic plate, we are able to obtain nontrivial phase shift between different output ports of the gratings-based Mach-Zehnder interferometer. The phase difference can be adjusted by changing the relative phase of the recording beams when recording the hologram. We have built a Mach-Zehnder interferometer using harmonically-related holographic gratings with 600 and 1200 lines/mm spacing. Two CCD cameras at the output ports of the gratings-based Mach-Zehnder interferometer are used to record the full-field quadrature interferograms, which are subsequently processed to reconstruct the phase image. The imaging system has ~12X magnification with ~420μmx315μm field-of-view. To demonstrate the capability of our system, we have successfully performed phase imaging of a pure phase object and a paramecium caudatum.

  2. Digital signal processing for velocity measurements in dynamical material's behaviour studies.

    PubMed

    Devlaminck, Julien; Luc, Jérôme; Chanal, Pierre-Yves

    2014-03-01

    In this work, we describe different configurations of optical fiber interferometers (types Michelson and Mach-Zehnder) used to measure velocities during dynamical material's behaviour studies. We detail the algorithms of processing developed and optimized to improve the performance of these interferometers especially in terms of time and frequency resolutions. Three methods of analysis of interferometric signals were studied. For Michelson interferometers, the time-frequency analysis of signals by Short-Time Fourier Transform (STFT) is compared to a time-frequency analysis by Continuous Wavelet Transform (CWT). The results have shown that the CWT was more suitable than the STFT for signals with low signal-to-noise, and low velocity and high acceleration areas. For Mach-Zehnder interferometers, the measurement is carried out by analyzing the phase shift between three interferometric signals (Triature processing). These three methods of digital signal processing were evaluated, their measurement uncertainties estimated, and their restrictions or operational limitations specified from experimental results performed on a pulsed power machine.

  3. Pockels effect of silicate glass-ceramics: Observation of optical modulation in Mach–Zehnder system

    PubMed Central

    Yamaoka, Kazuki; Takahashi, Yoshihiro; Yamazaki, Yoshiki; Terakado, Nobuaki; Miyazaki, Takamichi; Fujiwara, Takumi

    2015-01-01

    Silicate glass has been used for long time because of its advantages from material’s viewpoint. In this paper, we report the observation of Pockels effect by Mach–Zehnder interferometer in polycrystalline ceramics made from a ternary silicate glass via crystallization due to heat-treatment, i.e., glass-ceramics. Since the silicate system is employed as the precursor, merits of glass material are fully utilized to fabricate the optical device component, in addition to that of functional crystalline material, leading us to provide an electro-optic device, which is introducible into glass-fiber network. PMID:26184722

  4. Strain monitoring of bismaleimide composites using embedded microcavity sensor

    NASA Astrophysics Data System (ADS)

    Kaur, Amardeep; Anandan, Sudharshan; Yuan, Lei; Watkins, Steve E.; Chandrashekhara, K.; Xiao, Hai; Phan, Nam

    2016-03-01

    A type of extrinsic Fabry-Perot interferometer (EFPI) fiber optic sensor, i.e., the microcavity strain sensor, is demonstrated for embedded, high-temperature applications. The sensor is fabricated using a femtosecond (fs) laser. The fs-laser-based fabrication makes the sensor thermally stable to sustain operating temperatures as high as 800°C. The sensor has low sensitivity toward the temperature as compared to its response toward the applied strain. The performance of the EFPI sensor is tested in an embedded application. The host material is carbon fiber/bismaleimide (BMI) composite laminate that offer thermally stable characteristics at high ambient temperatures. The sensor exhibits highly linear response toward the temperature and strain. Analytical work done with embedded optical-fiber sensors using the out-of-autoclave BMI laminate was limited until now. The work presented in this paper offers an insight into the strain and temperature interactions of the embedded sensors with the BMI composites.

  5. Interferometric fiber-optic sensor embedded in a spark plug for in-cylinder pressure measurement in engines.

    PubMed

    Bae, Taehan; Atkins, Robert A; Taylor, Henry F; Gibler, William N

    2003-02-20

    Pressure sensing in an internal combustion engine with an intrinsic fiber Fabry-Perot interferometer (FFPI) integrated with a spark plug is demonstrated for the first time. The spark plug was used for the ignition of the cylinder in which it was mounted. The FFPI element, protected with a copper/gold coating, was embedded in a groove in the spark-plug housing. Gas pressure inthe engine induced longitudinal strain in this housing, which was also experienced by the fiber-optic sensing element. The sensor was monitored with a signal conditioning unit containing a chirped distributed-feedback laser. Pressure sensitivities as high as 0.00339 radians round-trip phase shift per pounds per square inch of pressure were observed. Measured pressure versus time traces showed good agreement with those from a piezoelectric reference sensor mounted in the same engine cylinder.

  6. Interferometric Fiber-Optic Sensor Embedded in a Spark Plug for In-Cylinder Pressure Measurement in Engines

    NASA Astrophysics Data System (ADS)

    Bae, Taehan; Atkins, Robert A.; Taylor, Henry F.; Gibler, William N.

    2003-02-01

    Pressure sensing in an internal combustion engine with an intrinsic fiber Fabry-Perot interferometer (FFPI) integrated with a spark plug is demonstrated for the first time. The spark plug was used for the ignition of the cylinder in which it was mounted. The FFPI element, protected with a copper /gold coating, was embedded in a groove in the spark-plug housing. Gas pressure in the engine induced longitudinal strain in this housing, which was also experienced by the fiber-optic sensing element. The sensor was monitored with a signal conditioning unit containing a chirped distributed-feedback laser. Pressure sensitivities as high as 0.00339 radians round-trip phase shift per pounds per square inch of pressure were observed. Measured pressure versus time traces showed good agreement with those from a piezoelectric reference sensor mounted in the same engine cylinder.

  7. Low-Cost Interrogation Technique for Dynamic Measurements with FBG-Based Devices

    PubMed Central

    Domingues, M. Fátima; Alberto, Nélia; Pontes, Maria José; Ribeiro, Moisés R. N.; André, Paulo S. B.; Antunes, Paulo F. C.

    2017-01-01

    Fiber Bragg gratings are widely used optical fiber sensors for measuring temperature and/or mechanical strain. Nevertheless, the high cost of the interrogation systems is the most important drawback for their large commercial application. In this work, an in-line Fabry–Perot interferometer based edge filter is explored in the interrogation of fiber Bragg grating dynamic measurements up to 5 kHz. Two devices an accelerometer and an arterial pulse wave probe were interrogated with the developed approach and the results were compared with a commercial interrogation monitor. The data obtained with the edge filter are in agreement with the commercial device, with a maximum RMSE of 0.05 being able to meet the requirements of the measurements. Resolutions of 3.6 pm and 2.4 pm were obtained, using the optical accelerometer and the arterial pulse wave probe, respectively. PMID:29065518

  8. Microstructured optical fiber interferometric breathing sensor

    NASA Astrophysics Data System (ADS)

    Favero, Fernando C.; Villatoro, Joel; Pruneri, Valerio

    2012-03-01

    In this paper a simple photonic crystal fiber (PCF) interferometric breathing sensor is introduced. The interferometer consists of a section of PCF fusion spliced at the distal end of a standard telecommunications optical fiber. Two collapsed regions in the PCF caused by the splicing process allow the excitation and recombination of a core and a cladding PCF mode. As a result, the reflection spectrum of the device exhibits a sinusoidal interference pattern that instantly shifts when water molecules, present in exhaled air, are adsorbed on or desorbed from the PCF surface. The device can be used to monitor a person's breathing whatever the respiration rate. The device here proposed could be particularly important in applications where electronic sensors fail or are not recommended. It may also be useful in the evaluation of a person's health and even in the diagnosis and study of the progression of serious illnesses such as sleep apnea syndrome.

  9. Adaptive multiphoton endomicroscopy through a dynamically deformed multicore optical fiber using proximal detection.

    PubMed

    Warren, Sean C; Kim, Youngchan; Stone, James M; Mitchell, Claire; Knight, Jonathan C; Neil, Mark A A; Paterson, Carl; French, Paul M W; Dunsby, Chris

    2016-09-19

    This paper demonstrates multiphoton excited fluorescence imaging through a polarisation maintaining multicore fiber (PM-MCF) while the fiber is dynamically deformed using all-proximal detection. Single-shot proximal measurement of the relative optical path lengths of all the cores of the PM-MCF in double pass is achieved using a Mach-Zehnder interferometer read out by a scientific CMOS camera operating at 416 Hz. A non-linear least squares fitting procedure is then employed to determine the deformation-induced lateral shift of the excitation spot at the distal tip of the PM-MCF. An experimental validation of this approach is presented that compares the proximally measured deformation-induced lateral shift in focal spot position to an independent distally measured ground truth. The proximal measurement of deformation-induced shift in focal spot position is applied to correct for deformation-induced shifts in focal spot position during raster-scanning multiphoton excited fluorescence imaging.

  10. Towards a fully integrated optical gyroscope using whispering gallery modes resonators

    NASA Astrophysics Data System (ADS)

    Amrane, T.; Jager, J.-B.; Jager, T.; Calvo, V.; Léger, J.-M.

    2017-11-01

    Since the developments of lasers and the optical fibers in the 70s, the optical gyroscopes have been subject to an intensive research to improve both their resolution and stability performances. However the best optical gyroscopes currently on the market, the ring laser gyroscope and the interferometer fiber optic gyroscope are still macroscopic devices and cannot address specific applications where size and weight constraints are critical. One solution to overcome these limitations could be to use an integrated resonator as a sensitive part to build a fully Integrated Optical Resonant Gyroscope (IORG). To keep a high rotation sensitivity, which is usually degraded when downsizing this kind of optical sensors based on the Sagnac effect, the resonator has to exhibit a very high quality factor (Q): as detailed in equation (1) where the minimum rotation rate resolution for an IORG is given as a function of the resonator characteristics (Q and diameter D) and of the global system optical system characteristics (i.e. SNR and bandwidth B), the higher the Q×D product, the lower the resolution.

  11. Femtosecond laser inscription of optical circuits in the cladding of optical fibers

    NASA Astrophysics Data System (ADS)

    Grenier, Jason R.

    The aim of this dissertation was to address the question of whether the cladding of single-mode fibers (SMFs) could be modified to enable optical fibers to serve as a more integrated, highly functional platform for optical circuit devices that can efficiently interconnect with the pre-existing fiber core waveguide. The approach adopted in this dissertation was to employ femtosecond laser direct writing (FLDW), an inherently 3D fabrication technique that harnesses non-linear laser-material interactions to modify the fused silica fiber cladding. A fiber mounting and alignment technique was developed along with oil-immersion focusing to address the strong aberrations caused by the cylindrical fiber shape. The development of real-time device monitoring during the FLDW was instrumental to overcome the acute coupling sensitivity to laser alignment errors of +/-1 ?m positional uncertainty, and thereby opened a new practical direction for the precise fabrication of optical devices inside optical fibers. These powerful and flexible laser fabrication and characterization techniques were successfully employed to optimize optical waveguiding devices positioned within the core and cladding of optical fibers. X-, S-Bend, and directional couplers were developed to enable efficient coupling between the laser-formed cladding devices and the pre-existing core waveguide, enabling up to 62% power transfer over bandwidths up to 300 nm at telecommunication wavelengths. Precise alignment of femtosecond laser modification tracks were positioned inside or near the core waveguide of SMFs was further shown to enable a flexible reshaping of the optical properties to create multimode guiding sections arbitrarily along the fiber length. This core waveguide modification facilitated the precise formation of multimode interferometers along the core waveguide to precisely tailor the modal profiles, and control the spectral and polarization response. In-fiber multimode interference (MMI) splitters and couplers were fabricated with coupling ratios from 2% to 50% over a broad 350 nm bandwidth across the telecommunication band. Laser-induced birefringence was harnessed to generate polarization dependent MMI devices for strong polarization filtering (24 dB isolation), or polarization selective taps with up to 50% tapping efficiency over a 25 nm bandwidth. This dissertation is therefore the first demonstration of femtosecond laser direct writing as a flexible and monolithic means of embedding and integrating highly functional optical circuit devices within the cladding of optical fibers that can interconnect efficiently with the pre-existing fiber core waveguide. These developments represent a significant technological advancement for creating new 3D photonic integrated microsystems within the cladding of optical fibers and underpins a new technological platform of fiber cladding photonics.

  12. Micromachined fiber optic Fabry-Perot underwater acoustic probe

    NASA Astrophysics Data System (ADS)

    Wang, Fuyin; Shao, Zhengzheng; Hu, Zhengliang; Luo, Hong; Xie, Jiehui; Hu, Yongming

    2014-08-01

    One of the most important branches in the development trend of the traditional fiber optic physical sensor is the miniaturization of sensor structure. Miniature fiber optic sensor can realize point measurement, and then to develop sensor networks to achieve quasi-distributed or distributed sensing as well as line measurement to area monitoring, which will greatly extend the application area of fiber optic sensors. The development of MEMS technology brings a light path to address the problems brought by the procedure of sensor miniaturization. Sensors manufactured by MEMS technology possess the advantages of small volume, light weight, easy fabricated and low cost. In this paper, a fiber optic extrinsic Fabry-Perot interferometric underwater acoustic probe utilizing micromachined diaphragm collaborated with fiber optic technology and MEMS technology has been designed and implemented to actualize underwater acoustic sensing. Diaphragm with central embossment, where the embossment is used to anti-hydrostatic pressure which would largely deflect the diaphragm that induce interferometric fringe fading, has been made by double-sided etching of silicon on insulator. By bonding the acoustic-sensitive diaphragm as well as a cleaved fiber end in ferrule with an outer sleeve, an extrinsic Fabry-Perot interferometer has been constructed. The sensor has been interrogated by quadrature-point control method and tested in field-stable acoustic standing wave tube. Results have been shown that the recovered signal detected by the sensor coincided well with the corresponding transmitted signal and the sensitivity response was flat in frequency range from 10 Hz to 2kHz with the value about -154.6 dB re. 1/μPa. It has been manifest that the designed sensor could be used as an underwater acoustic probe.

  13. Response of a PCF-based modal interferometer to lateral stress: Resonant behavior and performance as sensor

    NASA Astrophysics Data System (ADS)

    Sanz-Felipe, Á.; Martín, J. C.

    2017-11-01

    The performance of a fiber-based modal interferometer as lateral stress sensor has been analyzed, both for static and periodic forces applied on it. The central fiber of the interferometer is a photonic crystal fiber. Forces are applied on it perpendicular to its axis, so that they squeeze it. In static situations, changes in the transmission spectrum of the interferometer are studied as a function of the charges applied. Measurements with several interferometers have been carried out in order to analyze the influence of its length and of its splices' transmission on the device operation, looking for optimization of its linearity and sensibility. The effect of periodic charges, as an emulation of vibrations, has also been studied. The analysis is centered on the frequency dependence of the response. In linear regime (small enough periodic charges), the results obtained are satisfactorily explained by treating the central fiber of the interferometer as a mechanical resonator whose vibration modes coincide with the ones of a cylinder with clamped ends. In nonlinear regime, period doubling and other anharmonic behaviors have been observed.

  14. A Fiber Optic Interferometric Sensor Platform for Determining Gas Diffusivity in Zeolite Films.

    PubMed

    Yang, Ruidong; Xu, Zhi; Zeng, Shixuan; Jing, Wenheng; Trontz, Adam; Dong, Junhang

    2018-04-04

    Fiber optic interferometer (FOI) sensors have been fabricated by directly growing pure-silica MFI-type zeolite (i.e., silicalite) films on straight-cut endfaces of single-mode communication optical fibers. The FOI sensor has been demonstrated for determining molecular diffusivity in the zeolite by monitoring the temporal response of light interference from the zeolite film during the dynamic process of gas adsorption. The optical thickness of the zeolite film depends on the amount of gas adsorption that causes the light interference to shift upon loading molecules into the zeolitic channels. Thus, the time-dependence of the optical signal reflected from the coated zeolite film can represent the adsorption uptake curve, which allows computation of the diffusivity using models derived from the Fick’s Law equations. In this study, the diffusivity of isobutane in silicalite has been determined by the new FOI sensing method, and the results are in good agreement with literature values obtained by various conventional macroscopic techniques. The FOI sensor platform, because of its robustness and small size, could be useful for studying molecular diffusion in zeolitic materials under conditions that are inaccessible to the existing techniques.

  15. Compact Mach-Zehnder interferometer based on photonic crystal fiber and its application in switchable multi-wavelength fiber laser

    NASA Astrophysics Data System (ADS)

    Chen, Weiguo; Lou, Shuqin; Wang, Liwen; Li, Honglei; Guo, Tieying; Jian, Shuisheng

    2009-08-01

    The compact Mach-Zehnder interferometer is proposed by splicing a section of photonic crystal fiber (PCF) and two pieces of single mode fiber (SMF) with the air-holes of PCF intentionally collapsed in the vicinity of the splices. The depedence of the fringe spacing on the length of PCF is investigated. Based on the Mach-Zehnder interferometer as wavelength-selective filter, a switchable dual-wavelength fiber ring laser is demonstrated with a homemade erbiumdoped fiber amplifier (EDFA) as the gain medium at room temperature. By adjusting the states of the polarization controller (PC) appropriately, the laser can be switched among the stable single-and dual -wavelength lasing operations by exploiting polarization hole burning (PHB) effect.

  16. Tunable dual-wavelength fiber laser based on an MMI filter in a cascaded Sagnac loop interferometer

    NASA Astrophysics Data System (ADS)

    Ma, Lin; Kang, Zexin; Qi, Yanhui; Jian, Shuisheng

    2014-04-01

    A widely tunable dual-wavelength erbium-doped fiber laser based on a cascaded Sagnac loop interferometer incorporating a multimode interference filter is proposed and experimentally demonstrated in this paper. The mode selection is implemented by using the cascaded Sagnac loop interferometer with two segments of polarization maintaining fibers, and the wavelength tuning was achieved by using the refractive index characteristic of multimode interference effects. The tunable dual-wavelength fiber laser has a wavelength tuning of about 40 nm with a signal-to-noise ratio of more than 50 dB.

  17. Optical fiber sensors technology for supervision, control and protection of high power systems

    NASA Astrophysics Data System (ADS)

    Nascimento, Ivo Maciel

    The work described in this PhD Thesis focuses on the post-processing of optical fibers and their enhancement as sensing element. Since the majority of sensors presented are based in Fabry-Perot interferometers, an historical overview of this category of optical fiber sensors is firstly presented. This review considers the works published since the early years, in the beginning of the 1980s, until the middle of 2015. The incorporation of microcavities at the tip of a single mode fiber was extensively studied, particularly for the measurement of nitrogen and methane gas pressure. These cavities were fabricated using hollow core silica tubes and a hollow core photonic crystal fiber. Following a different approach, the microcavities were incorporated between two sections of single mode fiber. In this case, the low sensitivity to temperature makes these microcavities highly desirable for the measurement of strain at high temperatures. Competences in post-processing techniques such as the chemical etching and the writing of periodical structures in the fiber core by means of an excimer or a femtosecond laser were also acquired in the course of the PhD programme. One of the works consisted in the design and manufacturing of a double clad optical fiber. The refractive index of the inner cladding was higher than the one of the outer cladding and the core. Thus, light was guided in the inner cladding instead of propagating in the core. This situation was overcome by applying chemical etching, thus removing the inner cladding. The core, surrounded by air, was then able to guide light. Two different applications were found for this fiber, as a temperature sensor and as an optical refractometer. In the last, the optical phase changes with the liquid refractive index. Two different types of fiber Bragg gratings were characterized in strain and temperature. Sensing structures obtained through the phase mask technique at the tip of an optical fiber were subjected to chemical etching. In this case, an excimer laser was used. Extremely thin fiber tips were obtained, with an ultra-high sensitivity to strain. The other technique employed to fabricate the fiber Bragg gratings was the point-by-point femtosecond laser inscription. In this case, the sensing elements are very stable at high temperatures and can be used to measure strain in harsh conditions. The employment of optical fiber lasers as sensing elements was also considered in this Thesis. Two laser cavities were studied, one based on the ring configuration and the other based on a figure-of-eight configuration. From these works, the quality of the laser emission, namely the signal-to-noise ratio, the reduced full-width at half maximum and the stability should be highlighted. These characteristics allowed the measurement of different physical parameters, such as strain, temperature and torsion. Lastly, the possibility to use microspheres as sensing elements was considered. Using the electric arc of a fusion splicer, it is possible to create microspheres at the tip of an optical fiber. Furthermore, with this technique it is chains of microspheres can be obtained, constituting Mach-Zehnder-type interferometers which are sensitive to physical parameters like strain and temperature. The preliminary results obtained by introducing silica microspheres in a support structure are also presented. In this case, the sensors were subjected to temperature variations. All the experimental work was combined with the respective theoretical considerations. Many questions have been raised with the course of this PhD, and there are still some without a definite answer. Thus, new research paths can be followed, having their basis grounded in the configurations here presented.

  18. Analysis of Plasmonics Based Fiber Optic Sensing Structures

    NASA Astrophysics Data System (ADS)

    Moayyed, Hamed

    The work described in this PhD Thesis focuses on the post-processing of optical fibers and their enhancement as sensing element. Since the majority of sensors presented are based in Fabry-Perot interferometers, an historical overview of this category of optical fiber sensors is firstly presented. This review considers the works published since the early years, in the beginning of the 1980s, until the middle of 2015. The incorporation of microcavities at the tip of a single mode fiber was extensively studied, particularly for the measurement of nitrogen and methane gas pressure. These cavities were fabricated using hollow core silica tubes and a hollow core photonic crystal fiber. Following a different approach, the microcavities were incorporated between two sections of single mode fiber. In this case, the low sensitivity to temperature makes these microcavities highly desirable for the measurement of strain at high temperatures. Competences in post-processing techniques such as the chemical etching and the writing of periodical structures in the fiber core by means of an excimer or a femtosecond laser were also acquired in the course of the PhD programme. One of the works consisted in the design and manufacturing of a double clad optical fiber. The refractive index of the inner cladding was higher than the one of the outer cladding and the core. Thus, light was guided in the inner cladding instead of propagating in the core. This situation was overcome by applying chemical etching, thus removing the inner cladding. The core, surrounded by air, was then able to guide light. Two different applications were found for this fiber, as a temperature sensor and as an optical refractometer. In the last, the optical phase changes with the liquid refractive index. Two different types of fiber Bragg gratings were characterized in strain and temperature. Sensing structures obtained through the phase mask technique at the tip of an optical fiber were subjected to chemical etching. In this case, an excimer laser was used. Extremely thin fiber tips were obtained, with an ultra-high sensitivity to strain. The other technique employed to fabricate the fiber Bragg gratings was the point-by-point femtosecond laser inscription. In this case, the sensing elements are very stable at high temperatures and can be used to measure strain in harsh conditions. The employment of optical fiber lasers as sensing elements was also considered in this Thesis. Two laser cavities were studied, one based on the ring configuration and the other based on a figure-of-eight configuration. From these works, the quality of the laser emission, namely the signal-to-noise ratio, the reduced full-width at half maximum and the stability should be highlighted. These characteristics allowed the measurement of different physical parameters, such as strain, temperature and torsion. Lastly, the possibility to use microspheres as sensing elements was considered. Using the electric arc of a fusion splicer, it is possible to create microspheres at the tip of an optical fiber. Furthermore, with this technique it is chains of microspheres can be obtained, constituting Mach-Zehnder-type interferometers which are sensitive to physical parameters like strain and temperature. The preliminary results obtained by introducing silica microspheres in a support structure are also presented. In this case, the sensors were subjected to temperature variations. All the experimental work was combined with the respective theoretical considerations. Many questions have been raised with the course of this PhD, and there are still some without a definite answer. Thus, new research paths can be followed, having their basis grounded in the configurations here presented.

  19. Optical Sensing: Fiber Structures and Interrogation Techniques

    NASA Astrophysics Data System (ADS)

    Carvalho, Joel Pedro

    The work described in this PhD Thesis focuses on the post-processing of optical fibers and their enhancement as sensing element. Since the majority of sensors presented are based in Fabry-Perot interferometers, an historical overview of this category of optical fiber sensors is firstly presented. This review considers the works published since the early years, in the beginning of the 1980s, until the middle of 2015. The incorporation of microcavities at the tip of a single mode fiber was extensively studied, particularly for the measurement of nitrogen and methane gas pressure. These cavities were fabricated using hollow core silica tubes and a hollow core photonic crystal fiber. Following a different approach, the microcavities were incorporated between two sections of single mode fiber. In this case, the low sensitivity to temperature makes these microcavities highly desirable for the measurement of strain at high temperatures. Competences in post-processing techniques such as the chemical etching and the writing of periodical structures in the fiber core by means of an excimer or a femtosecond laser were also acquired in the course of the PhD programme. One of the works consisted in the design and manufacturing of a double clad optical fiber. The refractive index of the inner cladding was higher than the one of the outer cladding and the core. Thus, light was guided in the inner cladding instead of propagating in the core. This situation was overcome by applying chemical etching, thus removing the inner cladding. The core, surrounded by air, was then able to guide light. Two different applications were found for this fiber, as a temperature sensor and as an optical refractometer. In the last, the optical phase changes with the liquid refractive index. Two different types of fiber Bragg gratings were characterized in strain and temperature. Sensing structures obtained through the phase mask technique at the tip of an optical fiber were subjected to chemical etching. In this case, an excimer laser was used. Extremely thin fiber tips were obtained, with an ultra-high sensitivity to strain. The other technique employed to fabricate the fiber Bragg gratings was the point-by-point femtosecond laser inscription. In this case, the sensing elements are very stable at high temperatures and can be used to measure strain in harsh conditions. The employment of optical fiber lasers as sensing elements was also considered in this Thesis. Two laser cavities were studied, one based on the ring configuration and the other based on a figure-of-eight configuration. From these works, the quality of the laser emission, namely the signal-to-noise ratio, the reduced full-width at half maximum and the stability should be highlighted. These characteristics allowed the measurement of different physical parameters, such as strain, temperature and torsion. Lastly, the possibility to use microspheres as sensing elements was considered. Using the electric arc of a fusion splicer, it is possible to create microspheres at the tip of an optical fiber. Furthermore, with this technique it is chains of microspheres can be obtained, constituting Mach-Zehnder-type interferometers which are sensitive to physical parameters like strain and temperature. The preliminary results obtained by introducing silica microspheres in a support structure are also presented. In this case, the sensors were subjected to temperature variations. All the experimental work was combined with the respective theoretical considerations. Many questions have been raised with the course of this PhD, and there are still some without a definite answer. Thus, new research paths can be followed, having their basis grounded in the configurations here presented.

  20. Fiber optic structures for refractive index and gas sensing

    NASA Astrophysics Data System (ADS)

    Silva, Susana Ferreira de Oliveira

    The work described in this PhD Thesis focuses on the post-processing of optical fibers and their enhancement as sensing element. Since the majority of sensors presented are based in Fabry-Perot interferometers, an historical overview of this category of optical fiber sensors is firstly presented. This review considers the works published since the early years, in the beginning of the 1980s, until the middle of 2015. The incorporation of microcavities at the tip of a single mode fiber was extensively studied, particularly for the measurement of nitrogen and methane gas pressure. These cavities were fabricated using hollow core silica tubes and a hollow core photonic crystal fiber. Following a different approach, the microcavities were incorporated between two sections of single mode fiber. In this case, the low sensitivity to temperature makes these microcavities highly desirable for the measurement of strain at high temperatures. Competences in post-processing techniques such as the chemical etching and the writing of periodical structures in the fiber core by means of an excimer or a femtosecond laser were also acquired in the course of the PhD programme. One of the works consisted in the design and manufacturing of a double clad optical fiber. The refractive index of the inner cladding was higher than the one of the outer cladding and the core. Thus, light was guided in the inner cladding instead of propagating in the core. This situation was overcome by applying chemical etching, thus removing the inner cladding. The core, surrounded by air, was then able to guide light. Two different applications were found for this fiber, as a temperature sensor and as an optical refractometer. In the last, the optical phase changes with the liquid refractive index. Two different types of fiber Bragg gratings were characterized in strain and temperature. Sensing structures obtained through the phase mask technique at the tip of an optical fiber were subjected to chemical etching. In this case, an excimer laser was used. Extremely thin fiber tips were obtained, with an ultra-high sensitivity to strain. The other technique employed to fabricate the fiber Bragg gratings was the point-by-point femtosecond laser inscription. In this case, the sensing elements are very stable at high temperatures and can be used to measure strain in harsh conditions. The employment of optical fiber lasers as sensing elements was also considered in this Thesis. Two laser cavities were studied, one based on the ring configuration and the other based on a figure-of-eight configuration. From these works, the quality of the laser emission, namely the signal-to-noise ratio, the reduced full-width at half maximum and the stability should be highlighted. These characteristics allowed the measurement of different physical parameters, such as strain, temperature and torsion. Lastly, the possibility to use microspheres as sensing elements was considered. Using the electric arc of a fusion splicer, it is possible to create microspheres at the tip of an optical fiber. Furthermore, with this technique it is chains of microspheres can be obtained, constituting Mach-Zehnder-type interferometers which are sensitive to physical parameters like strain and temperature. The preliminary results obtained by introducing silica microspheres in a support structure are also presented. In this case, the sensors were subjected to temperature variations. All the experimental work was combined with the respective theoretical considerations. Many questions have been raised with the course of this PhD, and there are still some without a definite answer. Thus, new research paths can be followed, having their basis grounded in the configurations here presented.

  1. Hybrid MEFPI/FBG sensor for simultaneous measurement of strain and magnetic field

    NASA Astrophysics Data System (ADS)

    Chen, Mao-qing; Zhao, Yong; Lv, Ri-qing; Xia, Feng

    2017-12-01

    A hybrid fiber-optic sensor consisting of a micro extrinsic Fabry-Perot Interferometer (MEFPI) and an etched fiber Bragg grating (FBG) is proposed, which can measure strain and magnetic field simultaneously. The etched FBG is sealed in a capillary with ferrofluids to detect the surrounding magnetic field. FBG with small diameter will be more sensitive to magnetic field is confirmed by simulation results. The MEFPI sensor that is prepared through welding a short section of hollow-core fiber (HCF) with single-mode fiber (SMF) is effective for strain detection. The experiment shows that strain and magnetic field can be successfully simultaneously detected based on hybrid MEFPI/FBG sensor. The sensitivities of the strain and magnetic field intensity are measured to be up to 1.41 pm/με and 5.11 pm/mT respectively. There is a negligible effect on each other, hence simultaneously measuring strain and magnetic field is feasible. It is anticipated that such easy preparation, compact and low-cost fiber-optic sensors for simultaneous measurement of strain and magnetic field could find important applications in practice.

  2. Optical fiber micro-displacement sensor using a refractive index modulation window-assisted reflection fiber taper

    NASA Astrophysics Data System (ADS)

    Bao, Weijia; Qiao, Xueguang; Yin, Xunli; Rong, Qiangzhou; Wang, Ruohui; Yang, Hangzhou

    2017-12-01

    We demonstrate a compact fiber-optic quasi-Michelson interferometer (QMI) for micro-displacement measurement. The sensor comprises a micro-structure of a reflection taper tip containing a refractive index modification (RIM) as a coupling window over the interface between core and cladding of the fiber. Femtosecond laser-based direct inscription technique is used to achieve this window inscription and to induce large refractive index change. The RIM acts as a window for the strong coupling and recoupling of core-to-cladding modes. As the core and cladding modes are reflected at the taper tip and coupled back to lead-in fiber, a well-defined interference spectrum is achieved. The spectral intensity exhibits a high micro-bending sensitivity of 4 . 94 dB / μm because of the sensitivity to bending of recoupled intensity of cladding modes. In contrast, the spectral wavelength is insensitive to bending but linearly responds to temperature. The simultaneous measurements, including power-referenced for displacement and wavelength-referenced for temperature, were achieved by selective interference dip monitoring.

  3. Intravital hybrid optical-optoacoustic microscopy based on fiber-Bragg interferometry

    NASA Astrophysics Data System (ADS)

    Shnaiderman, Rami; Wissmeyer, Georg; Seeger, Markus; Estrada, Hector; Ntziachristos, Vasilis

    2018-02-01

    Optoacoustic microscopy (OAM) has enabled high-resolution, label-free imaging of tissues at depths not achievable with purely optical microscopy. However, widespread implementation of OAM into existing epi-illumination microscopy setups is often constrained by the performance and size of the commonly used piezoelectric ultrasound detectors. In this work, we introduce a novel acoustic detector based on a π-phase-shifted fiber Bragg grating (π-FBG) interferometer embedded inside an ellipsoidal acoustic cavity. The cavity enables seamless integration of epi-illumination OAM into existing microscopy setups by decoupling the acoustic and optical paths between the microscope objective and the sample. The cavity also acts as an acoustic condenser, boosting the sensitivity of the π-FBG and enabling cost effective CW-laser interrogation technique. We characterize the sensor's sensitivity and bandwidth and demonstrate hybrid OAM and second-harmonic imaging of phantoms and mouse tissue in vivo.

  4. Toward athermal silicon-on-insulator (de)multiplexers in the O-band.

    PubMed

    Hassan, Karim; Sciancalepore, Corrado; Harduin, Julie; Ferrotti, Thomas; Menezo, Sylvie; Ben Bakir, Badhise

    2015-06-01

    We report on the design, fabrication, and characterization of a 1×4 silicon-on-insulator (SOI) demultiplexer exhibiting a significant reduction of its thermo-optical sensitivity in the O-band. The optical filtering is achieved by cascading several Mach-Zehnder interferometers (MZIs) fabricated on a 300-nm-thick SOI platform. Owing to an asymmetric design of the confinement for each MZIs, we found an athermal criterium that satisfies the spectral requirements. The thermal sensitivity of the structure is analyzed by a semi-analytical model in order to create an athermal multiplexer. Fiber-to-fiber thermo-optical testing reveals a thermal sensitivity of around 17  pm/°C reduced by 75% compared to the standard devices with promising performances for both the crosstalk (15 dB), the insertion losses (4 dB), and absolute lambda registration (<0.25  nm).

  5. Low-cost rapid miniature optical pressure sensors for blast wave measurements.

    PubMed

    Wu, Nan; Wang, Wenhui; Tian, Ye; Zou, Xiaotian; Maffeo, Michael; Niezrecki, Christopher; Chen, Julie; Wang, Xingwei

    2011-05-23

    This paper presents an optical pressure sensor based on a Fabry-Perot (FP) interferometer formed by a 45° angle polished single mode fiber and an external silicon nitride diaphragm. The sensor is comprised of two V-shape grooves with different widths on a silicon chip, a silicon nitride diaphragm released on the surface of the wider V-groove, and a 45° angle polished single mode fiber. The sensor is especially suitable for blast wave measurements: its compact structure ensures a high spatial resolution; its thin diaphragm based design and the optical demodulation scheme allow a fast response to the rapid changing signals experienced during blast events. The sensor shows linearity with the correlation coefficient of 0.9999 as well as a hysteresis of less than 0.3%. The shock tube test demonstrated that the sensor has a rise time of less than 2 µs from 0 kPa to 140 kPa.

  6. Real-time distributed fiber optic sensor for security systems: Performance, event classification and nuisance mitigation

    NASA Astrophysics Data System (ADS)

    Mahmoud, Seedahmed S.; Visagathilagar, Yuvaraja; Katsifolis, Jim

    2012-09-01

    The success of any perimeter intrusion detection system depends on three important performance parameters: the probability of detection (POD), the nuisance alarm rate (NAR), and the false alarm rate (FAR). The most fundamental parameter, POD, is normally related to a number of factors such as the event of interest, the sensitivity of the sensor, the installation quality of the system, and the reliability of the sensing equipment. The suppression of nuisance alarms without degrading sensitivity in fiber optic intrusion detection systems is key to maintaining acceptable performance. Signal processing algorithms that maintain the POD and eliminate nuisance alarms are crucial for achieving this. In this paper, a robust event classification system using supervised neural networks together with a level crossings (LCs) based feature extraction algorithm is presented for the detection and recognition of intrusion and non-intrusion events in a fence-based fiber-optic intrusion detection system. A level crossings algorithm is also used with a dynamic threshold to suppress torrential rain-induced nuisance alarms in a fence system. Results show that rain-induced nuisance alarms can be suppressed for rainfall rates in excess of 100 mm/hr with the simultaneous detection of intrusion events. The use of a level crossing based detection and novel classification algorithm is also presented for a buried pipeline fiber optic intrusion detection system for the suppression of nuisance events and discrimination of intrusion events. The sensor employed for both types of systems is a distributed bidirectional fiber-optic Mach-Zehnder (MZ) interferometer.

  7. Spectral-domain optical coherence tomography for endoscopic imaging

    NASA Astrophysics Data System (ADS)

    Chen, Xiaodong; Li, Qiao; Li, Wanhui; Wang, Yi; Yu, Daoyin

    2007-02-01

    Optical coherence tomography (OCT) is an emerging cross-sectional imaging technology. It uses broadband light sources to achieve axial image resolutions on the few micron scale. OCT is widely applied to medical imaging, it can get cross-sectional image of bio-tissue (transparent and turbid) with non-invasion and non-touch. In this paper, the principle of OCT is presented and the crucial parameters of the system are discussed in theory. With analysis of different methods and medical endoscopic system's feature, a design which combines the spectral domain OCT (SDOCT) technique and endoscopy is put forward. SDOCT provides direct access to the spectrum of the optical signal. It is shown to provide higher imaging speed when compared to time domain OCT. At the meantime, a novel OCT probe which uses advanced micromotor to drive reflecting prism is designed according to alimentary tract endoscopic feature. A simple optical coherence tomography system has been developed based on a fiber-based Michelson interferometer and spectrometer. An experiment which uses motor to drive prism to realize rotating imaging is done. Images obtained with this spectral interferometer are presented. The results verify the feasibility of endoscopic optical coherence tomography system with rotating scan.

  8. Optical air-coupled NDT system with ultra-broad frequency bandwidth (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Fischer, Balthasar; Rohringer, Wolfgang; Heine, Thomas

    2017-05-01

    We present a novel, optical ultrasound airborne acoustic testing setup exhibiting a frequency bandwidth of 1MHz in air. The sound waves are detected by a miniaturized Fabry-Pérot interferometer (2mm cavity) whilst the sender consists of a thermoacoustic emitter or a short laser pulse We discuss characterization measurements and C-scans of a selected set of samples, including Carbon fiber reinforced polymer (CFRP). The high detector sensitivity allows for an increased penetration depth. The high frequency and the small transducer dimensions lead to a compelling image resolution.

  9. Fiber ring laser based on SMF-TCF-SMF structure for strain and refractive index sensing

    NASA Astrophysics Data System (ADS)

    Yu, Fen; Xu, Ben; Zhang, Yixin; Wang, Dongning

    2017-12-01

    An erbium-doped fiber ring laser with embedded Mach-Zehnder interferometer (MZI) is constructed and experimentally demonstrated for strain and refractive index (RI) measurement. The MZI consists of a segment of thin-core fiber sandwiched between two single-mode fibers and acts as both the sensing component as well as a bandpass filter to select the lasing wavelength. The strain sensitivity of ˜-0.97 pm/μɛ and RI sensitivity of ˜44.88 nm/RIU are obtained in the range of 0 to 1750 μɛ and 1.3300 to 1.3537, respectively. The high-optical signal-to-noise ratio of >50 dB and narrow 3-dB bandwidth of <0.11 nm obtained indicate that the fiber ring laser sensor is promising for high-precision strain and RI measurement.

  10. A reflective hydrogen sensor based on fiber ring laser with PCF modal interferometer

    NASA Astrophysics Data System (ADS)

    Zhang, Ya-Nan; Zhang, Aozhuo; Han, Bo; E, Siyu

    2018-06-01

    A new hydrogen sensor based on a fiber ring laser with a photonic crystal fiber (PCF) modal interferometer is proposed. The reflective PCF modal interferometer, which is fabricated by forming two collapse regions on the two ends of PCF with a fusion discharge technique, is utilized as the sensing head and filter. Particularly, the Pd/WO3 hydrogen-sensitive thin film is coated on the PCF for hydrogen sensing. The combination of the fiber ring laser and PCF modal interferometer gives the sensor a high signal-to-noise ratio and an improved detection limit. Experimental results show that the sensing system can achieve a hydrogen sensitivity of 1.28 nm/%, a high signal-to-noise ratio (∼30 dB), a narrow full width at half maximum (∼0.05 nm), and low detection limit of 0.0133%.

  11. Humidity sensor based on intracavity sensing of fiber ring laser

    NASA Astrophysics Data System (ADS)

    Shi, Jia; Xu, Wei; Xu, Degang; Wang, Yuye; Zhang, Chao; Yan, Chao; Yan, Dexian; He, Yixin; Tang, Longhuang; Zhang, Weihong; Yao, Jianquan

    2017-10-01

    A humidity sensor based on the intracavity sensing of a fiber ring laser is proposed and experimentally demonstrated. In the fiber ring laser, a humidity-sensitive fiber-optic multimode interferometer (MMI), fabricated by the single-mode-no-core-single-mode (SNCS) fiber coated with Agarose, works as the wavelength-selective filter for intracavity wavelength-modulated humidity sensing. The experiment shows that the lasing wavelength of the fiber laser has a good linear response to ambient humidity from 35%RH to 95%RH. The humidity sensitivity of -68 pm/%RH is obtained with a narrow 3 dB bandwidth less than 0.09 nm and a high signal-to-noise ratio (SNR)  ˜60 dB. The time response of the sensor has been measured to be as fast as 93 ms. The proposed sensor possesses a good stability and low temperature cross-sensitivity.

  12. Fabrication et applications des reseaux de Bragg ultra-longs

    NASA Astrophysics Data System (ADS)

    Gagne, Mathieu

    This thesis presents the principal accomplishments realized during the PhD project. The thesis is presented by publication format and is a collection of four published articles having fiber Bragg gratings as a central theme. First achieved in 1978, UV writing of fiber Bragg gratings is nowadays a common and mature technology being present in both industry and academia. The property of reflecting light guided by optical fibers lead to diverse applications in telecommunication, lasers as well as several types of sensors. The conventional fabrication technique is generally based on the use of generally expensive phase masks which determine the obtained characteristics of the fiber Bragg grating. The fiber being photosensitive at those wavelengths, a periodic pattern can be written into it. The maximal length, the period, the chirp, the index contrast and the apodisation are all characteristics that depend on the phase mask. The first objective of the research project is to be able to go beyond this strong dependance on the phase mask without deteriorating grating quality. This is what really sets apart the technique presented in this thesis from other long fiber Bragg grating fabrication techniques available in the literature. The fundamental approach to obtain ultra long fiber Bragg gratings of arbitrary profile is to replace the scheme of scanning a UV beam across a phase mask to expose a fixed fiber by a scheme where the UV beam and phase mask are fixed and where the fiber is moving instead. To obtain a periodic index variation, the interference pattern itself must be synchronized with the moving fiber. Two variations of this scheme were implanted: the first one using electro-optical phase modulator placed in each arm of a Talbot interferometer and the second one using a phase mask mounted on a piezo electric actuator. A new scheme that imparts fine movements of the interferometer is also implemented for the first time and showed to be essential to achieve high quality ultra long fiber Bragg gratings. High quality theory matching ultra long fiber Bragg gratings up to 1 meter long are obtained for the first time. The possibility of fabricating high quality ultra long fiber Bragg grating of more than 10 cm (approximately the maximal phase mask length) opens a variety of new applications otherwise impossible with short fiber Bragg grating technology. Ultra long fiber Bragg gratings have unique characteristics such as high reflectivity, high dispersion and ultra narrow bandwidth. Those characteristics can be used to do advanced signal processing, non linear propagation experiments, distributed feedback fiber lasers and dispersion compensator for telecommunication or optical tomography. The second objective of this project is to use these ultra-long fiber Bragg gratings as an optical cavity for fiber lasers. Alot of research in the past years have been concentrated on those lasers, particularly on distributed feedback fiber lasers where the gratings spans all the gain media. A new random fiber laser configuration is presented. It is based on passive or active insertion of phase shifts along the Bragg grating to obtained a phenomenon called light localization which is the optical equivalent of Anderson localization. This complex wave phenomenon has the unique property to mimic the reflection of a uniform photonic crystal with the random diffusion of light among the elements of a random media. Being commonly obtained in fine powders which must respect a certain set of rules, the realization of 1D structures is vastly simplified in optical fibers. Two random fiber laser schemes based on light localization, one using erbium dopant and the other one Raman scattering, are demonstrated for the first time and compared to traditional distributed feedback fiber lasers.

  13. Comparative assessment of erbium fiber ring lasers and reflective SOA linear lasers for fiber Bragg grating dynamic strain sensing.

    PubMed

    Wei, Heming; Krishnaswamy, Sridhar

    2017-05-01

    Fiber Bragg grating (FBG) dynamic strain sensors using both an erbium-based fiber ring laser configuration and a reflective semiconductor optical amplifier (RSOA)-based linear laser configuration are investigated theoretically and experimentally. Fiber laser models are first presented to analyze the output characteristics of both fiber laser configurations when the FBG sensor is subjected to dynamic strains at high frequencies. Due to differences in the transition times of erbium and the semiconductor (InP/InGaAsP), erbium-doped fiber amplifier (EDFA)- and RSOA-based fiber lasers exhibit different responses and regimes of stability when the FBG is subjected to dynamic strains. The responses of both systems are experimentally verified using an adaptive photorefractive two-wave mixing (TWM) spectral demodulation technique. The experimental results show that the RSOA-FBG fiber linear cavity laser is stable and can stably respond to dynamic strains at high frequencies. An example application using a multiplexed TWM interferometer to demodulate multiple FBG sensors is also discussed.

  14. Polarization-independent rapidly tunable optical add-drop multiplexer utilizing non-polarizing beam splitters in Ti:LiNbO3

    NASA Astrophysics Data System (ADS)

    Shin, Yong-Wook; Sung, Won Ju; Eknoyan, O.; Madsen, C. K.; Taylor, H. F.

    2012-04-01

    A polarization-independent four-port wavelength-tunable optical add drop multiplexer (OADM) that utilizes non-polarizing relaxed beam splitters has been analyzed and demonstrated in Ti:LiNbO3 at the 1530 nm wavelength regime. The design utilizes an asymmetric interferometer configuration with strain induced index grating for polarization coupling along its arms that are shifted in position relative to each other. Experimental results of the filter response agree with theoretical predictions. Electrooptic tuning over a range of 15.7 nm at a rate of 0.08 nm/V has been measured. A temporal response < 46 ns to a 20 V step change in tuning voltage has been demonstrated. Fiber-to-fiber insertion loss is ~ 6.5 dB.

  15. Crescent shaped Fabry-Perot fiber cavity for ultra-sensitive strain measurement.

    PubMed

    Liu, Ye; Wang, D N; Chen, W P

    2016-12-02

    Optical Fabry-Perot interferometer sensors based on inner air-cavity is featured with compact size, good robustness and high strain sensitivity, especially when an ultra-thin air-cavity is adopted. The typical shape of Fabry-Perot inner air-cavity with reflection mode of operation is elliptic, with minor axis along with and major axis perpendicular to the fiber length. The first reflection surface is diverging whereas the second one is converging. To increase the visibility of the output interference pattern, the length of major axis should be large for a given cavity length. However, the largest value of the major axis is limited by the optical fiber diameter. If the major axis length reaches the fiber diameter, the robustness of the Fabry-Perot cavity device would be decreased. Here we demonstrate an ultra-thin crescent shaped Fabry-Perot cavity for strain sensing with ultra-high sensitivity and low temperature cross-sensitivity. The crescent-shape cavity consists of two converging reflection surfaces, which provide the advantages of enhanced strain sensitivity when compared with elliptic or D-shaped FP cavity. The device is fabricated by fusion splicing an etched multimode fiber with a single mode fiber, and hence is simple in structure and economic in cost.

  16. Crescent shaped Fabry-Perot fiber cavity for ultra-sensitive strain measurement

    NASA Astrophysics Data System (ADS)

    Liu, Ye; Wang, D. N.; Chen, W. P.

    2016-12-01

    Optical Fabry-Perot interferometer sensors based on inner air-cavity is featured with compact size, good robustness and high strain sensitivity, especially when an ultra-thin air-cavity is adopted. The typical shape of Fabry-Perot inner air-cavity with reflection mode of operation is elliptic, with minor axis along with and major axis perpendicular to the fiber length. The first reflection surface is diverging whereas the second one is converging. To increase the visibility of the output interference pattern, the length of major axis should be large for a given cavity length. However, the largest value of the major axis is limited by the optical fiber diameter. If the major axis length reaches the fiber diameter, the robustness of the Fabry-Perot cavity device would be decreased. Here we demonstrate an ultra-thin crescent shaped Fabry-Perot cavity for strain sensing with ultra-high sensitivity and low temperature cross-sensitivity. The crescent-shape cavity consists of two converging reflection surfaces, which provide the advantages of enhanced strain sensitivity when compared with elliptic or D-shaped FP cavity. The device is fabricated by fusion splicing an etched multimode fiber with a single mode fiber, and hence is simple in structure and economic in cost.

  17. A miniature fiber optic pressure sensor for intradiscal pressure measurements of rodents

    NASA Astrophysics Data System (ADS)

    Nesson, Silas; Yu, Miao; Hsieh, Adam H.

    2007-04-01

    Lower back pain continues to be a leading cause of disability in people of all ages, and has been associated with degenerative disc disease. It is well accepted that mechanical stress, among other factors, can play a role in the development of disc degeneration. Pressures generated in the intervertebral disc have been measured both in vivo and in vitro for humans and animals. However, thus far it has been difficult to measure pressure experimentally in rodent discs due to their small size. With the prevalent use of rodent tail disc models in mechanobiology, it is important to characterize the intradiscal pressures generated with externally applied stresses. In this paper, a miniature fiber optic Fabry-Perot interferometric pressure sensor with an outer diameter of 360 μm was developed to measure intradiscal pressures in rat caudal discs. A low coherence interferometer based optical system was used, which includes a broadband light source, a high-speed spectrometer, and a Fabry-Perot sensor. The sensor employs a capillary tube, a flexible, polymer diaphragm coated with titanium as a partial mirror, and a fiber tip as another mirror. The pressure induced deformation of the diaphragm results in a cavity length change of the Fabry-Perot interferometer which can be calculated from the wavelength shift of interference fringes. The sensor exhibited good linearity with small applied pressures. Our validation experiments show that owing to the small size, inserting the sensor does not disrupt the annulus fibrosus and will not alter intradiscal pressures generated. Measurements also demonstrate the feasibility of using this sensor to quantify external load intradiscal pressure relationships in small animal discs.

  18. Quasi-interferometric scheme improved by fiber Bragg grating written on macrostructure defect in silica multimode optical fiber operating in a few-mode regime

    NASA Astrophysics Data System (ADS)

    Evtushenko, Alexander S.; Faskhutdinov, Lenar M.; Kafarova, Anastasia M.; Kuznetzov, Artem A.; Minaeva, Alina Yu.; Sevruk, Nikita L.; Nureev, Ilnur I.; Vasilets, Alexander A.; Andreev, Vladimir A.; Morozov, Oleg G.; Burdin, Vladimir A.; Bourdine, Anton V.

    2017-04-01

    This work presents results of experimental approbation of earlier on proposed modified fiber optic stress sensor based on a few-mode effects occurring during laser-excited optical signal propagation over silica multimode optical fiber (MMF). Modification is concerned with a passage to quasi-interferometric scheme realized by two multimode Y-couplers with equalized arm lengths improved by fiber Bragg grating (FBG) written on preliminary formed precision macrostructure defects in silica multimode graded-index optical fibers and special offset launching conditions providing laser-based excitation of higher-order modes. The "arms" of quasi-interferometer are two equalized lengths of MMF Cat. OM2 with great central dip of refractive index profile and strong pulse splitting due to high differential mode delay (DMD). We tested FBGs with Bragg wavelength both 1310 nm and 1550 nm written over tapers or up-tapers preliminary formed in short pieces of MMF Cat. OM2+/OM3 and further jointed to the end of one of the arms before output Y-coupler. Researches were focused on comparison analysis of pulse responses under changing of selected excited mode mixing and power diffusion processes due to stress distributed action to sensor fiber depending. Here we considered FBGs not only as particular wavelength reflector during spectral response measurement but also as local periodic microstructure defect which strongly effects on few-mode signal components mixing process also improved by combination with macro-defect like taper or up-taper that should provide response variation. Some results pulse response measurements produced for different scheme configuration and their comparison analysis are represented.

  19. Erbium-doped fiber ring laser with SMS modal interferometer for hydrogen sensing

    NASA Astrophysics Data System (ADS)

    Zhang, Ya-nan; Zhang, Lebin; Han, Bo; Peng, Huijie; Zhou, Tianmin; Lv, Ri-qing

    2018-06-01

    A hydrogen sensor based on erbium-doped fiber ring laser with modal interferometer is proposed. A single mode-multimode-single mode (SMS) modal interferometer structure coated with Pd/WO3 film is used as the sensing head, due to that it is easy to be fabricated and low cost. The sensing structure is inserted into an erbium-doped fiber ring laser in order to solve the problem of spectral confusion and improve the detection limit of the hydrogen sensor based on the SMS modal interferometer. The SMS sensing structure is acted as a fiber band-pass filter. When hydrogen concentration around the sensor is changed, it will induce the refractive index and strain variations of the Pd/WO3 film, and then shift the resonant spectrum of the SMS modal interferometer as well as the laser wavelength of the fiber ring laser. Therefore, the hydrogen concentration can be measured by monitoring the wavelength shift of the laser, which has high intensity and narrow full width half maximum. Experimental results demonstrate that the sensor has high sensitivity of 1.23 nm/%, low detection limit of 0.017%, good stability and excellent repeatability.

  20. Fiber sensing based on new structures and post-processing enhancement

    NASA Astrophysics Data System (ADS)

    Ferreira, Marta Sofia dos Anjos

    The work described in this PhD Thesis focuses on the post-processing of optical fibers and their enhancement as sensing element. Since the majority of sensors presented are based in Fabry-Perot interferometers, an historical overview of this category of optical fiber sensors is firstly presented. This review considers the works published since the early years, in the beginning of the 1980s, until the middle of 2015. The incorporation of microcavities at the tip of a single mode fiber was extensively studied, particularly for the measurement of nitrogen and methane gas pressure. These cavities were fabricated using hollow core silica tubes and a hollow core photonic crystal fiber. Following a different approach, the microcavities were incorporated between two sections of single mode fiber. In this case, the low sensitivity to temperature makes these microcavities highly desirable for the measurement of strain at high temperatures. Competences in post-processing techniques such as the chemical etching and the writing of periodical structures in the fiber core by means of an excimer or a femtosecond laser were also acquired in the course of the PhD programme. One of the works consisted in the design and manufacturing of a double clad optical fiber. The refractive index of the inner cladding was higher than the one of the outer cladding and the core. Thus, light was guided in the inner cladding instead of propagating in the core. This situation was overcome by applying chemical etching, thus removing the inner cladding. The core, surrounded by air, was then able to guide light. Two different applications were found for this fiber, as a temperature sensor and as an optical refractometer. In the last, the optical phase changes with the liquid refractive index. Two different types of fiber Bragg gratings were characterized in strain and temperature. Sensing structures obtained through the phase mask technique at the tip of an optical fiber were subjected to chemical etching. In this case, an excimer laser was used. Extremely thin fiber tips were obtained, with an ultra-high sensitivity to strain. The other technique employed to fabricate the fiber Bragg gratings was the point-by-point femtosecond laser inscription. In this case, the sensing elements are very stable at high temperatures and can be used to measure strain in harsh conditions. The employment of optical fiber lasers as sensing elements was also considered in this Thesis. Two laser cavities were studied, one based on the ring configuration and the other based on a figure-of-eight configuration. From these works, the quality of the laser emission, namely the signal-to-noise ratio, the reduced full-width at half maximum and the stability should be highlighted. These characteristics allowed the measurement of different physical parameters, such as strain, temperature and torsion. Lastly, the possibility to use microspheres as sensing elements was considered. Using the electric arc of a fusion splicer, it is possible to create microspheres at the tip of an optical fiber. Furthermore, with this technique it is chains of microspheres can be obtained, constituting Mach-Zehnder-type interferometers which are sensitive to physical parameters like strain and temperature. The preliminary results obtained by introducing silica microspheres in a support structure are also presented. In this case, the sensors were subjected to temperature variations. All the experimental work was combined with the respective theoretical considerations. Many questions have been raised with the course of this PhD, and there are still some without a definite answer. Thus, new research paths can be followed, having their basis grounded in the configurations here presented.

  1. Stable C-band fiber laser with switchable multi-wavelength output using coupled microfiber Mach-Zehnder interferometer

    NASA Astrophysics Data System (ADS)

    Ahmad, H.; Jasim, A. A.

    2017-07-01

    A compact coupled microfiber Mach-Zehnder interferometer (CM-MZI) is proposed and experimentally demonstrated for C-band region multi-wavelength tuning and switching in a fiber laser. The CM-MZI is fabricated using a 9 μm single tapered silica optical microfiber fabricated by flame-drawing technique and exploits multi-mode interference to produce spatial mode beating and suppress mode competition of the homogeneous gain medium. The output wavelength spacing is immune to changes in the external environment, but can be changed from 1.5 nm to 1.4 nm by slightly modifying the path-length difference of the CM-MZI. The proposed laser is capable of generating single, dual, triple, quintuple, and sextuple stabilize wavelengths outputs over a range of more than 32 nm using polarization rotation (PR) and macro-bending. The lasers having a 3 dB line-width of less than ∼30 pm and peak-to-floor of about 55 dB at a pump power of 38 mW.

  2. Twin-Core Fiber-Based Mach Zehnder Interferometer for Simultaneous Measurement of Strain and Temperature

    PubMed Central

    Kowal, Dominik; Urbanczyk, Waclaw; Mergo, Pawel

    2018-01-01

    In this paper we present an all-fiber interferometric sensor for the simultaneous measurement of strain and temperature. It is composed of a specially fabricated twin-core fiber spliced between two pieces of a single-mode fiber. Due to the refractive index difference between the two cores in a twin-core fiber, a differential interference pattern is produced at the sensor output. The phase response of the interferometer to strain and temperature is measured in the 850–1250 nm spectral range, showing zero sensitivity to strain at 1000 nm. Due to the significant difference in sensitivities to both parameters, our interferometer is suitable for two-parameter sensing. The simultaneous response of the interferometer to strain and temperature was studied using the two-wavelength interrogation method and a novel approach based on the spectral fitting of the differential phase response. As the latter technique uses all the gathered spectral information, it is more reliable and yields the results with better accuracy. PMID:29558386

  3. Features extraction algorithm about typical railway perimeter intrusion event

    NASA Astrophysics Data System (ADS)

    Zhou, Jieyun; Wang, Chaodong; Liu, Lihai

    2017-10-01

    Research purposes: Optical fiber vibration sensing system has been widely used in the oil, gas, frontier defence, prison and power industries. But, there are few reports about the application in railway defence. That is because the surrounding environment is complicated and there are many challenges to be overcomed in the optical fiber vibration sensing system application. For example, how to eliminate the effects of vibration caused by train, the natural environments such as wind and rain and how to identify and classify the intrusion events. In order to solve these problems, the feature signals of these events should be extracted firstly. Research conclusions: (1) In optical fiber vibration sensing system based on Sagnac interferometer, the peak-to-peak value, peak-to-average ratio, standard deviation, zero-crossing rate, short-term energy and kurtosis may serve as feature signals. (2) The feature signals of resting state, climbing concrete fence, breaking barbed wire, knocking concrete fence and rainstorm have been extracted, which shows significant difference among each other. (3) The research conclusions can be used in the identification and classification of intrusion events.

  4. Electro-opto-mechanical radio-frequency oscillator driven by guided acoustic waves in standard single-mode fiber

    NASA Astrophysics Data System (ADS)

    London, Yosef; Diamandi, Hilel Hagai; Zadok, Avi

    2017-04-01

    An opto-electronic radio-frequency oscillator that is based on forward scattering by the guided acoustic modes of a standard single-mode optical fiber is proposed and demonstrated. An optical pump wave is used to stimulate narrowband, resonant guided acoustic modes, which introduce phase modulation to a co-propagating optical probe wave. The phase modulation is converted to an intensity signal at the output of a Sagnac interferometer loop. The intensity waveform is detected, amplified, and driven back to modulate the optical pump. Oscillations are achieved at a frequency of 319 MHz, which matches the resonance of the acoustic mode that provides the largest phase modulation of the probe wave. Oscillations at the frequencies of competing acoustic modes are suppressed by at least 40 dB. The linewidth of the acoustic resonance is sufficiently narrow to provide oscillations at a single longitudinal mode of the hybrid cavity. Competing longitudinal modes are suppressed by at least 38 dB as well. Unlike other opto-electronic oscillators, no radio-frequency filtering is required within the hybrid cavity. The frequency of oscillations is entirely determined by the fiber opto-mechanics.

  5. Optical fiber pressure sensors for adaptive wings

    NASA Astrophysics Data System (ADS)

    Duncan, Paul G.; Jones, Mark E.; Shinpaugh, Kevin A.; Poland, Stephen H.; Murphy, Kent A.; Claus, Richard O.

    1997-06-01

    Optical fiber pressure sensors have been developed for use on a structurally-adaptive `smart wing'; further details of the design, fabrication and testing of the smart wing concept are presented in companion papers. This paper describes the design, construction, and performance of the pressure sensor and a combined optical and electronic signal processing system implemented to permit the measurement of a large number of sensors distributed over the control surfaces of a wing. Optical fiber pressure sensors were implemented due to anticipated large electromagnetic interference signals within the operational environment. The sensors utilized the principle of the extrinsic Fabry-Perot interferometer (EFPI) already developed for the measurement of strain and temperature. Here, the cavity is created inside a micromachined hollow-core tube with a silicon diaphragm at one end. The operation of the sensor is similar to that of the EFPI strain gage also discussed in several papers at this conference. The limitations placed upon the performance of the digital signal processing system were determined by the required pressure range of the sensors and the cycle time of the control system used to adaptively modify the shape of the wing. Sensor calibration and the results of testing performed are detailed.

  6. Optical filtering in directly modulated/detected OOFDM systems.

    PubMed

    Sánchez, C; Ortega, B; Wei, J L; Capmany, J

    2013-12-16

    This work presents a theoretical investigation on the performance of directly modulated/detected (DM/DD) optical orthogonal frequency division multiplexed (OOFDM) systems subject to optical filtering. The impact of both linear and nonlinear distortion effects are taken into account to calculate the effective signal-to-noise ratio of each subcarrier. These results are then employed to optimize the design parameters of two simple optical filtering structures: a Mach Zehnder interferometer and a uniform fiber Bragg grating, leading to a significant optical power budget improvement given by 3.3 and 3dB, respectively. These can be further increased to 5.5 and 4.2dB respectively when balanced detection configurations are employed. We find as well that this improvement is highly dependent on the clipping ratio.

  7. Design of a space-based infrared imaging interferometer

    NASA Astrophysics Data System (ADS)

    Hart, Michael; Hope, Douglas; Romeo, Robert

    2017-07-01

    Present space-based optical imaging sensors are expensive. Launch costs are dictated by weight and size, and system design must take into account the low fault tolerance of a system that cannot be readily accessed once deployed. We describe the design and first prototype of the space-based infrared imaging interferometer (SIRII) that aims to mitigate several aspects of the cost challenge. SIRII is a six-element Fizeau interferometer intended to operate in the short-wave and midwave IR spectral regions over a 6×6 mrad field of view. The volume is smaller by a factor of three than a filled-aperture telescope with equivalent resolving power. The structure and primary optics are fabricated from light-weight space-qualified carbon fiber reinforced polymer; they are easy to replicate and inexpensive. The design is intended to permit one-time alignment during assembly, with no need for further adjustment once on orbit. A three-element prototype of the SIRII imager has been constructed with a unit telescope primary mirror diameter of 165 mm and edge-to-edge baseline of 540 mm. The optics, structure, and interferometric signal processing principles draw on experience developed in ground-based astronomical applications designed to yield the highest sensitivity and resolution with cost-effective optical solutions. The initial motivation for the development of SIRII was the long-term collection of technical intelligence from geosynchronous orbit, but the scalable nature of the design will likely make it suitable for a range of IR imaging scenarios.

  8. Investigations of soft and hard tissues in oral cavity by spectral domain optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Madjarova, Violeta Dimitrova; Yasuno, Yoshiaki; Makita, Shuichi; Hori, Yasuaki; Voeffray, Jean-Baptiste; Itoh, Masahide; Yatagai, Toyohiko; Tamura, Masami; Nanbu, Toshiyuki

    2006-02-01

    Fourier Domain Optical Coherence Tomography (SD-OCT) systems for dental measurements are demonstrated. Two systems have been developed. The first system is fiber based Michelson interferometer with super luminescent diodes at 1310 nm and 100 nm FWHM as a light source. The sensitivity of the system was 106 dB with depth measurement range in air of 2.5 mm. The second systems is a fiber based Mach-Zehnder interferometer with wavelength scanning laser as light source at center wavelength of 1310 nm, wavelength range of 110 nm and scanning rate of 20 KHz. The sensitivity of the system is 112 dB and depth measurement range in air is 6 mm. Both systems can acquire real-time three dimensional (3-D) images in the range of several second. The systems were applied for early caries detection in tooth, for diagnostics of tooth condition after operational tooth treatment, and for diagnostics of the alveolar bone structure. In-vivo measurements were performed on two volunteers. The systems were able to detect discontinuities in tooth and resin filling after tooth treatment. In addition early carries lesion was detected in one of the volunteers. The 3-D profile of the alveolar bone was acquired for first time with non-contact method.

  9. Structural Mechanics of Thin-Ply Laminated Composites

    NASA Astrophysics Data System (ADS)

    Arteiro, Albertino

    The work described in this PhD Thesis focuses on the post-processing of optical fibers and their enhancement as sensing element. Since the majority of sensors presented are based in Fabry-Perot interferometers, an historical overview of this category of optical fiber sensors is firstly presented. This review considers the works published since the early years, in the beginning of the 1980s, until the middle of 2015. The incorporation of microcavities at the tip of a single mode fiber was extensively studied, particularly for the measurement of nitrogen and methane gas pressure. These cavities were fabricated using hollow core silica tubes and a hollow core photonic crystal fiber. Following a different approach, the microcavities were incorporated between two sections of single mode fiber. In this case, the low sensitivity to temperature makes these microcavities highly desirable for the measurement of strain at high temperatures. Competences in post-processing techniques such as the chemical etching and the writing of periodical structures in the fiber core by means of an excimer or a femtosecond laser were also acquired in the course of the PhD programme. One of the works consisted in the design and manufacturing of a double clad optical fiber. The refractive index of the inner cladding was higher than the one of the outer cladding and the core. Thus, light was guided in the inner cladding instead of propagating in the core. This situation was overcome by applying chemical etching, thus removing the inner cladding. The core, surrounded by air, was then able to guide light. Two different applications were found for this fiber, as a temperature sensor and as an optical refractometer. In the last, the optical phase changes with the liquid refractive index. Two different types of fiber Bragg gratings were characterized in strain and temperature. Sensing structures obtained through the phase mask technique at the tip of an optical fiber were subjected to chemical etching. In this case, an excimer laser was used. Extremely thin fiber tips were obtained, with an ultra-high sensitivity to strain. The other technique employed to fabricate the fiber Bragg gratings was the point-by-point femtosecond laser inscription. In this case, the sensing elements are very stable at high temperatures and can be used to measure strain in harsh conditions. The employment of optical fiber lasers as sensing elements was also considered in this Thesis. Two laser cavities were studied, one based on the ring configuration and the other based on a figure-of-eight configuration. From these works, the quality of the laser emission, namely the signal-to-noise ratio, the reduced full-width at half maximum and the stability should be highlighted. These characteristics allowed the measurement of different physical parameters, such as strain, temperature and torsion. Lastly, the possibility to use microspheres as sensing elements was considered. Using the electric arc of a fusion splicer, it is possible to create microspheres at the tip of an optical fiber. Furthermore, with this technique it is chains of microspheres can be obtained, constituting Mach-Zehnder-type interferometers which are sensitive to physical parameters like strain and temperature. The preliminary results obtained by introducing silica microspheres in a support structure are also presented. In this case, the sensors were subjected to temperature variations. All the experimental work was combined with the respective theoretical considerations. Many questions have been raised with the course of this PhD, and there are still some without a definite answer. Thus, new research paths can be followed, having their basis grounded in the configurations here presented.

  10. Detection and Characterization of Defects in Composite Materials Using Thermography

    NASA Astrophysics Data System (ADS)

    Silva, Antonio Jose Ramos

    The work described in this PhD Thesis focuses on the post-processing of optical fibers and their enhancement as sensing element. Since the majority of sensors presented are based in Fabry-Perot interferometers, an historical overview of this category of optical fiber sensors is firstly presented. This review considers the works published since the early years, in the beginning of the 1980s, until the middle of 2015. The incorporation of microcavities at the tip of a single mode fiber was extensively studied, particularly for the measurement of nitrogen and methane gas pressure. These cavities were fabricated using hollow core silica tubes and a hollow core photonic crystal fiber. Following a different approach, the microcavities were incorporated between two sections of single mode fiber. In this case, the low sensitivity to temperature makes these microcavities highly desirable for the measurement of strain at high temperatures. Competences in post-processing techniques such as the chemical etching and the writing of periodical structures in the fiber core by means of an excimer or a femtosecond laser were also acquired in the course of the PhD programme. One of the works consisted in the design and manufacturing of a double clad optical fiber. The refractive index of the inner cladding was higher than the one of the outer cladding and the core. Thus, light was guided in the inner cladding instead of propagating in the core. This situation was overcome by applying chemical etching, thus removing the inner cladding. The core, surrounded by air, was then able to guide light. Two different applications were found for this fiber, as a temperature sensor and as an optical refractometer. In the last, the optical phase changes with the liquid refractive index. Two different types of fiber Bragg gratings were characterized in strain and temperature. Sensing structures obtained through the phase mask technique at the tip of an optical fiber were subjected to chemical etching. In this case, an excimer laser was used. Extremely thin fiber tips were obtained, with an ultra-high sensitivity to strain. The other technique employed to fabricate the fiber Bragg gratings was the point-by-point femtosecond laser inscription. In this case, the sensing elements are very stable at high temperatures and can be used to measure strain in harsh conditions. The employment of optical fiber lasers as sensing elements was also considered in this Thesis. Two laser cavities were studied, one based on the ring configuration and the other based on a figure-of-eight configuration. From these works, the quality of the laser emission, namely the signal-to-noise ratio, the reduced full-width at half maximum and the stability should be highlighted. These characteristics allowed the measurement of different physical parameters, such as strain, temperature and torsion. Lastly, the possibility to use microspheres as sensing elements was considered. Using the electric arc of a fusion splicer, it is possible to create microspheres at the tip of an optical fiber. Furthermore, with this technique it is chains of microspheres can be obtained, constituting Mach-Zehnder-type interferometers which are sensitive to physical parameters like strain and temperature. The preliminary results obtained by introducing silica microspheres in a support structure are also presented. In this case, the sensors were subjected to temperature variations. All the experimental work was combined with the respective theoretical considerations. Many questions have been raised with the course of this PhD, and there are still some without a definite answer. Thus, new research paths can be followed, having their basis grounded in the configurations here presented.

  11. PCM energy storage modelling: Case study for a solar-ejector cooling cycle

    NASA Astrophysics Data System (ADS)

    Allouche, Yosr

    The work described in this PhD Thesis focuses on the post-processing of optical fibers and their enhancement as sensing element. Since the majority of sensors presented are based in Fabry-Perot interferometers, an historical overview of this category of optical fiber sensors is firstly presented. This review considers the works published since the early years, in the beginning of the 1980s, until the middle of 2015. The incorporation of microcavities at the tip of a single mode fiber was extensively studied, particularly for the measurement of nitrogen and methane gas pressure. These cavities were fabricated using hollow core silica tubes and a hollow core photonic crystal fiber. Following a different approach, the microcavities were incorporated between two sections of single mode fiber. In this case, the low sensitivity to temperature makes these microcavities highly desirable for the measurement of strain at high temperatures. Competences in post-processing techniques such as the chemical etching and the writing of periodical structures in the fiber core by means of an excimer or a femtosecond laser were also acquired in the course of the PhD programme. One of the works consisted in the design and manufacturing of a double clad optical fiber. The refractive index of the inner cladding was higher than the one of the outer cladding and the core. Thus, light was guided in the inner cladding instead of propagating in the core. This situation was overcome by applying chemical etching, thus removing the inner cladding. The core, surrounded by air, was then able to guide light. Two different applications were found for this fiber, as a temperature sensor and as an optical refractometer. In the last, the optical phase changes with the liquid refractive index. Two different types of fiber Bragg gratings were characterized in strain and temperature. Sensing structures obtained through the phase mask technique at the tip of an optical fiber were subjected to chemical etching. In this case, an excimer laser was used. Extremely thin fiber tips were obtained, with an ultra-high sensitivity to strain. The other technique employed to fabricate the fiber Bragg gratings was the point-by-point femtosecond laser inscription. In this case, the sensing elements are very stable at high temperatures and can be used to measure strain in harsh conditions. The employment of optical fiber lasers as sensing elements was also considered in this Thesis. Two laser cavities were studied, one based on the ring configuration and the other based on a figure-of-eight configuration. From these works, the quality of the laser emission, namely the signal-to-noise ratio, the reduced full-width at half maximum and the stability should be highlighted. These characteristics allowed the measurement of different physical parameters, such as strain, temperature and torsion. Lastly, the possibility to use microspheres as sensing elements was considered. Using the electric arc of a fusion splicer, it is possible to create microspheres at the tip of an optical fiber. Furthermore, with this technique it is chains of microspheres can be obtained, constituting Mach-Zehnder-type interferometers which are sensitive to physical parameters like strain and temperature. The preliminary results obtained by introducing silica microspheres in a support structure are also presented. In this case, the sensors were subjected to temperature variations. All the experimental work was combined with the respective theoretical considerations. Many questions have been raised with the course of this PhD, and there are still some without a definite answer. Thus, new research paths can be followed, having their basis grounded in the configurations here presented.

  12. The relationship between heating energy use, indoor temperature and heating energy demand under reference conditions in residential buildings

    NASA Astrophysics Data System (ADS)

    Magalhaes, Sara Moreira Coelho de

    The work described in this PhD Thesis focuses on the post-processing of optical fibers and their enhancement as sensing element. Since the majority of sensors presented are based in Fabry-Perot interferometers, an historical overview of this category of optical fiber sensors is firstly presented. This review considers the works published since the early years, in the beginning of the 1980s, until the middle of 2015. The incorporation of microcavities at the tip of a single mode fiber was extensively studied, particularly for the measurement of nitrogen and methane gas pressure. These cavities were fabricated using hollow core silica tubes and a hollow core photonic crystal fiber. Following a different approach, the microcavities were incorporated between two sections of single mode fiber. In this case, the low sensitivity to temperature makes these microcavities highly desirable for the measurement of strain at high temperatures. Competences in post-processing techniques such as the chemical etching and the writing of periodical structures in the fiber core by means of an excimer or a femtosecond laser were also acquired in the course of the PhD programme. One of the works consisted in the design and manufacturing of a double clad optical fiber. The refractive index of the inner cladding was higher than the one of the outer cladding and the core. Thus, light was guided in the inner cladding instead of propagating in the core. This situation was overcome by applying chemical etching, thus removing the inner cladding. The core, surrounded by air, was then able to guide light. Two different applications were found for this fiber, as a temperature sensor and as an optical refractometer. In the last, the optical phase changes with the liquid refractive index. Two different types of fiber Bragg gratings were characterized in strain and temperature. Sensing structures obtained through the phase mask technique at the tip of an optical fiber were subjected to chemical etching. In this case, an excimer laser was used. Extremely thin fiber tips were obtained, with an ultra-high sensitivity to strain. The other technique employed to fabricate the fiber Bragg gratings was the point-by-point femtosecond laser inscription. In this case, the sensing elements are very stable at high temperatures and can be used to measure strain in harsh conditions. The employment of optical fiber lasers as sensing elements was also considered in this Thesis. Two laser cavities were studied, one based on the ring configuration and the other based on a figure-of-eight configuration. From these works, the quality of the laser emission, namely the signal-to-noise ratio, the reduced full-width at half maximum and the stability should be highlighted. These characteristics allowed the measurement of different physical parameters, such as strain, temperature and torsion. Lastly, the possibility to use microspheres as sensing elements was considered. Using the electric arc of a fusion splicer, it is possible to create microspheres at the tip of an optical fiber. Furthermore, with this technique it is chains of microspheres can be obtained, constituting Mach-Zehnder-type interferometers which are sensitive to physical parameters like strain and temperature. The preliminary results obtained by introducing silica microspheres in a support structure are also presented. In this case, the sensors were subjected to temperature variations. All the experimental work was combined with the respective theoretical considerations. Many questions have been raised with the course of this PhD, and there are still some without a definite answer. Thus, new research paths can be followed, having their basis grounded in the configurations here presented.

  13. Decision support methodology for national energy planning in developing countries: an implementation focused approach

    NASA Astrophysics Data System (ADS)

    Lee, Nathan Coenen

    The work described in this PhD Thesis focuses on the post-processing of optical fibers and their enhancement as sensing element. Since the majority of sensors presented are based in Fabry-Perot interferometers, an historical overview of this category of optical fiber sensors is firstly presented. This review considers the works published since the early years, in the beginning of the 1980s, until the middle of 2015. The incorporation of microcavities at the tip of a single mode fiber was extensively studied, particularly for the measurement of nitrogen and methane gas pressure. These cavities were fabricated using hollow core silica tubes and a hollow core photonic crystal fiber. Following a different approach, the microcavities were incorporated between two sections of single mode fiber. In this case, the low sensitivity to temperature makes these microcavities highly desirable for the measurement of strain at high temperatures. Competences in post-processing techniques such as the chemical etching and the writing of periodical structures in the fiber core by means of an excimer or a femtosecond laser were also acquired in the course of the PhD programme. One of the works consisted in the design and manufacturing of a double clad optical fiber. The refractive index of the inner cladding was higher than the one of the outer cladding and the core. Thus, light was guided in the inner cladding instead of propagating in the core. This situation was overcome by applying chemical etching, thus removing the inner cladding. The core, surrounded by air, was then able to guide light. Two different applications were found for this fiber, as a temperature sensor and as an optical refractometer. In the last, the optical phase changes with the liquid refractive index. Two different types of fiber Bragg gratings were characterized in strain and temperature. Sensing structures obtained through the phase mask technique at the tip of an optical fiber were subjected to chemical etching. In this case, an excimer laser was used. Extremely thin fiber tips were obtained, with an ultra-high sensitivity to strain. The other technique employed to fabricate the fiber Bragg gratings was the point-by-point femtosecond laser inscription. In this case, the sensing elements are very stable at high temperatures and can be used to measure strain in harsh conditions. The employment of optical fiber lasers as sensing elements was also considered in this Thesis. Two laser cavities were studied, one based on the ring configuration and the other based on a figure-of-eight configuration. From these works, the quality of the laser emission, namely the signal-to-noise ratio, the reduced full-width at half maximum and the stability should be highlighted. These characteristics allowed the measurement of different physical parameters, such as strain, temperature and torsion. Lastly, the possibility to use microspheres as sensing elements was considered. Using the electric arc of a fusion splicer, it is possible to create microspheres at the tip of an optical fiber. Furthermore, with this technique it is chains of microspheres can be obtained, constituting Mach-Zehnder-type interferometers which are sensitive to physical parameters like strain and temperature. The preliminary results obtained by introducing silica microspheres in a support structure are also presented. In this case, the sensors were subjected to temperature variations. All the experimental work was combined with the respective theoretical considerations. Many questions have been raised with the course of this PhD, and there are still some without a definite answer. Thus, new research paths can be followed, having their basis grounded in the configurations here presented.

  14. High Resolution Satellite Image Analysis and Rapid 3D Model Extraction for Urban Change Detection

    NASA Astrophysics Data System (ADS)

    Abduelmola, Abdunaser E.

    The work described in this PhD Thesis focuses on the post-processing of optical fibers and their enhancement as sensing element. Since the majority of sensors presented are based in Fabry-Perot interferometers, an historical overview of this category of optical fiber sensors is firstly presented. This review considers the works published since the early years, in the beginning of the 1980s, until the middle of 2015. The incorporation of microcavities at the tip of a single mode fiber was extensively studied, particularly for the measurement of nitrogen and methane gas pressure. These cavities were fabricated using hollow core silica tubes and a hollow core photonic crystal fiber. Following a different approach, the microcavities were incorporated between two sections of single mode fiber. In this case, the low sensitivity to temperature makes these microcavities highly desirable for the measurement of strain at high temperatures. Competences in post-processing techniques such as the chemical etching and the writing of periodical structures in the fiber core by means of an excimer or a femtosecond laser were also acquired in the course of the PhD programme. One of the works consisted in the design and manufacturing of a double clad optical fiber. The refractive index of the inner cladding was higher than the one of the outer cladding and the core. Thus, light was guided in the inner cladding instead of propagating in the core. This situation was overcome by applying chemical etching, thus removing the inner cladding. The core, surrounded by air, was then able to guide light. Two different applications were found for this fiber, as a temperature sensor and as an optical refractometer. In the last, the optical phase changes with the liquid refractive index. Two different types of fiber Bragg gratings were characterized in strain and temperature. Sensing structures obtained through the phase mask technique at the tip of an optical fiber were subjected to chemical etching. In this case, an excimer laser was used. Extremely thin fiber tips were obtained, with an ultra-high sensitivity to strain. The other technique employed to fabricate the fiber Bragg gratings was the point-by-point femtosecond laser inscription. In this case, the sensing elements are very stable at high temperatures and can be used to measure strain in harsh conditions. The employment of optical fiber lasers as sensing elements was also considered in this Thesis. Two laser cavities were studied, one based on the ring configuration and the other based on a figure-of-eight configuration. From these works, the quality of the laser emission, namely the signal-to-noise ratio, the reduced full-width at half maximum and the stability should be highlighted. These characteristics allowed the measurement of different physical parameters, such as strain, temperature and torsion. Lastly, the possibility to use microspheres as sensing elements was considered. Using the electric arc of a fusion splicer, it is possible to create microspheres at the tip of an optical fiber. Furthermore, with this technique it is chains of microspheres can be obtained, constituting Mach-Zehnder-type interferometers which are sensitive to physical parameters like strain and temperature. The preliminary results obtained by introducing silica microspheres in a support structure are also presented. In this case, the sensors were subjected to temperature variations. All the experimental work was combined with the respective theoretical considerations. Many questions have been raised with the course of this PhD, and there are still some without a definite answer. Thus, new research paths can be followed, having their basis grounded in the configurations here presented.

  15. Novel dual-colour architecture for ultrafast spin dynamics measurements in sub-8 fs regime

    NASA Astrophysics Data System (ADS)

    Goncalves, Cledson Santana Lopes

    The work described in this PhD Thesis focuses on the post-processing of optical fibers and their enhancement as sensing element. Since the majority of sensors presented are based in Fabry-Perot interferometers, an historical overview of this category of optical fiber sensors is firstly presented. This review considers the works published since the early years, in the beginning of the 1980s, until the middle of 2015. The incorporation of microcavities at the tip of a single mode fiber was extensively studied, particularly for the measurement of nitrogen and methane gas pressure. These cavities were fabricated using hollow core silica tubes and a hollow core photonic crystal fiber. Following a different approach, the microcavities were incorporated between two sections of single mode fiber. In this case, the low sensitivity to temperature makes these microcavities highly desirable for the measurement of strain at high temperatures. Competences in post-processing techniques such as the chemical etching and the writing of periodical structures in the fiber core by means of an excimer or a femtosecond laser were also acquired in the course of the PhD programme. One of the works consisted in the design and manufacturing of a double clad optical fiber. The refractive index of the inner cladding was higher than the one of the outer cladding and the core. Thus, light was guided in the inner cladding instead of propagating in the core. This situation was overcome by applying chemical etching, thus removing the inner cladding. The core, surrounded by air, was then able to guide light. Two different applications were found for this fiber, as a temperature sensor and as an optical refractometer. In the last, the optical phase changes with the liquid refractive index. Two different types of fiber Bragg gratings were characterized in strain and temperature. Sensing structures obtained through the phase mask technique at the tip of an optical fiber were subjected to chemical etching. In this case, an excimer laser was used. Extremely thin fiber tips were obtained, with an ultra-high sensitivity to strain. The other technique employed to fabricate the fiber Bragg gratings was the point-by-point femtosecond laser inscription. In this case, the sensing elements are very stable at high temperatures and can be used to measure strain in harsh conditions. The employment of optical fiber lasers as sensing elements was also considered in this Thesis. Two laser cavities were studied, one based on the ring configuration and the other based on a figure-of-eight configuration. From these works, the quality of the laser emission, namely the signal-to-noise ratio, the reduced full-width at half maximum and the stability should be highlighted. These characteristics allowed the measurement of different physical parameters, such as strain, temperature and torsion. Lastly, the possibility to use microspheres as sensing elements was considered. Using the electric arc of a fusion splicer, it is possible to create microspheres at the tip of an optical fiber. Furthermore, with this technique it is chains of microspheres can be obtained, constituting Mach-Zehnder-type interferometers which are sensitive to physical parameters like strain and temperature. The preliminary results obtained by introducing silica microspheres in a support structure are also presented. In this case, the sensors were subjected to temperature variations. All the experimental work was combined with the respective theoretical considerations. Many questions have been raised with the course of this PhD, and there are still some without a definite answer. Thus, new research paths can be followed, having their basis grounded in the configurations here presented.

  16. Predictors of Attitudes and Knowledge of Students in PISA 2006: A Comparison Between Different Cultural Contexts

    NASA Astrophysics Data System (ADS)

    Tinnaworn, Piyathip

    The work described in this PhD Thesis focuses on the post-processing of optical fibers and their enhancement as sensing element. Since the majority of sensors presented are based in Fabry-Perot interferometers, an historical overview of this category of optical fiber sensors is firstly presented. This review considers the works published since the early years, in the beginning of the 1980s, until the middle of 2015. The incorporation of microcavities at the tip of a single mode fiber was extensively studied, particularly for the measurement of nitrogen and methane gas pressure. These cavities were fabricated using hollow core silica tubes and a hollow core photonic crystal fiber. Following a different approach, the microcavities were incorporated between two sections of single mode fiber. In this case, the low sensitivity to temperature makes these microcavities highly desirable for the measurement of strain at high temperatures. Competences in post-processing techniques such as the chemical etching and the writing of periodical structures in the fiber core by means of an excimer or a femtosecond laser were also acquired in the course of the PhD programme. One of the works consisted in the design and manufacturing of a double clad optical fiber. The refractive index of the inner cladding was higher than the one of the outer cladding and the core. Thus, light was guided in the inner cladding instead of propagating in the core. This situation was overcome by applying chemical etching, thus removing the inner cladding. The core, surrounded by air, was then able to guide light. Two different applications were found for this fiber, as a temperature sensor and as an optical refractometer. In the last, the optical phase changes with the liquid refractive index. Two different types of fiber Bragg gratings were characterized in strain and temperature. Sensing structures obtained through the phase mask technique at the tip of an optical fiber were subjected to chemical etching. In this case, an excimer laser was used. Extremely thin fiber tips were obtained, with an ultra-high sensitivity to strain. The other technique employed to fabricate the fiber Bragg gratings was the point-by-point femtosecond laser inscription. In this case, the sensing elements are very stable at high temperatures and can be used to measure strain in harsh conditions. The employment of optical fiber lasers as sensing elements was also considered in this Thesis. Two laser cavities were studied, one based on the ring configuration and the other based on a figure-of-eight configuration. From these works, the quality of the laser emission, namely the signal-to-noise ratio, the reduced full-width at half maximum and the stability should be highlighted. These characteristics allowed the measurement of different physical parameters, such as strain, temperature and torsion. Lastly, the possibility to use microspheres as sensing elements was considered. Using the electric arc of a fusion splicer, it is possible to create microspheres at the tip of an optical fiber. Furthermore, with this technique it is chains of microspheres can be obtained, constituting Mach-Zehnder-type interferometers which are sensitive to physical parameters like strain and temperature. The preliminary results obtained by introducing silica microspheres in a support structure are also presented. In this case, the sensors were subjected to temperature variations. All the experimental work was combined with the respective theoretical considerations. Many questions have been raised with the course of this PhD, and there are still some without a definite answer. Thus, new research paths can be followed, having their basis grounded in the configurations here presented.

  17. Continuum Modelling and Numerical Simulation of Hexagonal Close-Packed Materials

    NASA Astrophysics Data System (ADS)

    Wu, Shenghua

    The work described in this PhD Thesis focuses on the post-processing of optical fibers and their enhancement as sensing element. Since the majority of sensors presented are based in Fabry-Perot interferometers, an historical overview of this category of optical fiber sensors is firstly presented. This review considers the works published since the early years, in the beginning of the 1980s, until the middle of 2015. The incorporation of microcavities at the tip of a single mode fiber was extensively studied, particularly for the measurement of nitrogen and methane gas pressure. These cavities were fabricated using hollow core silica tubes and a hollow core photonic crystal fiber. Following a different approach, the microcavities were incorporated between two sections of single mode fiber. In this case, the low sensitivity to temperature makes these microcavities highly desirable for the measurement of strain at high temperatures. Competences in post-processing techniques such as the chemical etching and the writing of periodical structures in the fiber core by means of an excimer or a femtosecond laser were also acquired in the course of the PhD programme. One of the works consisted in the design and manufacturing of a double clad optical fiber. The refractive index of the inner cladding was higher than the one of the outer cladding and the core. Thus, light was guided in the inner cladding instead of propagating in the core. This situation was overcome by applying chemical etching, thus removing the inner cladding. The core, surrounded by air, was then able to guide light. Two different applications were found for this fiber, as a temperature sensor and as an optical refractometer. In the last, the optical phase changes with the liquid refractive index. Two different types of fiber Bragg gratings were characterized in strain and temperature. Sensing structures obtained through the phase mask technique at the tip of an optical fiber were subjected to chemical etching. In this case, an excimer laser was used. Extremely thin fiber tips were obtained, with an ultra-high sensitivity to strain. The other technique employed to fabricate the fiber Bragg gratings was the point-by-point femtosecond laser inscription. In this case, the sensing elements are very stable at high temperatures and can be used to measure strain in harsh conditions. The employment of optical fiber lasers as sensing elements was also considered in this Thesis. Two laser cavities were studied, one based on the ring configuration and the other based on a figure-of-eight configuration. From these works, the quality of the laser emission, namely the signal-to-noise ratio, the reduced full-width at half maximum and the stability should be highlighted. These characteristics allowed the measurement of different physical parameters, such as strain, temperature and torsion. Lastly, the possibility to use microspheres as sensing elements was considered. Using the electric arc of a fusion splicer, it is possible to create microspheres at the tip of an optical fiber. Furthermore, with this technique it is chains of microspheres can be obtained, constituting Mach-Zehnder-type interferometers which are sensitive to physical parameters like strain and temperature. The preliminary results obtained by introducing silica microspheres in a support structure are also presented. In this case, the sensors were subjected to temperature variations. All the experimental work was combined with the respective theoretical considerations. Many questions have been raised with the course of this PhD, and there are still some without a definite answer. Thus, new research paths can be followed, having their basis grounded in the configurations here presented.

  18. Development of chemo-sensing schemes based on analyte-triggered modulation of CdTe quantum dots photoluminescence for analytical purposes

    NASA Astrophysics Data System (ADS)

    Rodrigues, Sandra Sofia Mota

    The work described in this PhD Thesis focuses on the post-processing of optical fibers and their enhancement as sensing element. Since the majority of sensors presented are based in Fabry-Perot interferometers, an historical overview of this category of optical fiber sensors is firstly presented. This review considers the works published since the early years, in the beginning of the 1980s, until the middle of 2015. The incorporation of microcavities at the tip of a single mode fiber was extensively studied, particularly for the measurement of nitrogen and methane gas pressure. These cavities were fabricated using hollow core silica tubes and a hollow core photonic crystal fiber. Following a different approach, the microcavities were incorporated between two sections of single mode fiber. In this case, the low sensitivity to temperature makes these microcavities highly desirable for the measurement of strain at high temperatures. Competences in post-processing techniques such as the chemical etching and the writing of periodical structures in the fiber core by means of an excimer or a femtosecond laser were also acquired in the course of the PhD programme. One of the works consisted in the design and manufacturing of a double clad optical fiber. The refractive index of the inner cladding was higher than the one of the outer cladding and the core. Thus, light was guided in the inner cladding instead of propagating in the core. This situation was overcome by applying chemical etching, thus removing the inner cladding. The core, surrounded by air, was then able to guide light. Two different applications were found for this fiber, as a temperature sensor and as an optical refractometer. In the last, the optical phase changes with the liquid refractive index. Two different types of fiber Bragg gratings were characterized in strain and temperature. Sensing structures obtained through the phase mask technique at the tip of an optical fiber were subjected to chemical etching. In this case, an excimer laser was used. Extremely thin fiber tips were obtained, with an ultra-high sensitivity to strain. The other technique employed to fabricate the fiber Bragg gratings was the point-by-point femtosecond laser inscription. In this case, the sensing elements are very stable at high temperatures and can be used to measure strain in harsh conditions. The employment of optical fiber lasers as sensing elements was also considered in this Thesis. Two laser cavities were studied, one based on the ring configuration and the other based on a figure-of-eight configuration. From these works, the quality of the laser emission, namely the signal-to-noise ratio, the reduced full-width at half maximum and the stability should be highlighted. These characteristics allowed the measurement of different physical parameters, such as strain, temperature and torsion. Lastly, the possibility to use microspheres as sensing elements was considered. Using the electric arc of a fusion splicer, it is possible to create microspheres at the tip of an optical fiber. Furthermore, with this technique it is chains of microspheres can be obtained, constituting Mach-Zehnder-type interferometers which are sensitive to physical parameters like strain and temperature. The preliminary results obtained by introducing silica microspheres in a support structure are also presented. In this case, the sensors were subjected to temperature variations. All the experimental work was combined with the respective theoretical considerations. Many questions have been raised with the course of this PhD, and there are still some without a definite answer. Thus, new research paths can be followed, having their basis grounded in the configurations here presented.

  19. General Relativity in the framework of exact gravito-electromagnetic analogies

    NASA Astrophysics Data System (ADS)

    Costa, Luis Filipe

    The work described in this PhD Thesis focuses on the post-processing of optical fibers and their enhancement as sensing element. Since the majority of sensors presented are based in Fabry-Perot interferometers, an historical overview of this category of optical fiber sensors is firstly presented. This review considers the works published since the early years, in the beginning of the 1980s, until the middle of 2015. The incorporation of microcavities at the tip of a single mode fiber was extensively studied, particularly for the measurement of nitrogen and methane gas pressure. These cavities were fabricated using hollow core silica tubes and a hollow core photonic crystal fiber. Following a different approach, the microcavities were incorporated between two sections of single mode fiber. In this case, the low sensitivity to temperature makes these microcavities highly desirable for the measurement of strain at high temperatures. Competences in post-processing techniques such as the chemical etching and the writing of periodical structures in the fiber core by means of an excimer or a femtosecond laser were also acquired in the course of the PhD programme. One of the works consisted in the design and manufacturing of a double clad optical fiber. The refractive index of the inner cladding was higher than the one of the outer cladding and the core. Thus, light was guided in the inner cladding instead of propagating in the core. This situation was overcome by applying chemical etching, thus removing the inner cladding. The core, surrounded by air, was then able to guide light. Two different applications were found for this fiber, as a temperature sensor and as an optical refractometer. In the last, the optical phase changes with the liquid refractive index. Two different types of fiber Bragg gratings were characterized in strain and temperature. Sensing structures obtained through the phase mask technique at the tip of an optical fiber were subjected to chemical etching. In this case, an excimer laser was used. Extremely thin fiber tips were obtained, with an ultra-high sensitivity to strain. The other technique employed to fabricate the fiber Bragg gratings was the point-by-point femtosecond laser inscription. In this case, the sensing elements are very stable at high temperatures and can be used to measure strain in harsh conditions. The employment of optical fiber lasers as sensing elements was also considered in this Thesis. Two laser cavities were studied, one based on the ring configuration and the other based on a figure-of-eight configuration. From these works, the quality of the laser emission, namely the signal-to-noise ratio, the reduced full-width at half maximum and the stability should be highlighted. These characteristics allowed the measurement of different physical parameters, such as strain, temperature and torsion. Lastly, the possibility to use microspheres as sensing elements was considered. Using the electric arc of a fusion splicer, it is possible to create microspheres at the tip of an optical fiber. Furthermore, with this technique it is chains of microspheres can be obtained, constituting Mach-Zehnder-type interferometers which are sensitive to physical parameters like strain and temperature. The preliminary results obtained by introducing silica microspheres in a support structure are also presented. In this case, the sensors were subjected to temperature variations. All the experimental work was combined with the respective theoretical considerations. Many questions have been raised with the course of this PhD, and there are still some without a definite answer. Thus, new research paths can be followed, having their basis grounded in the configurations here presented.

  20. Tirania-silica composite materials for self-cleaning applications on monumental stones

    NASA Astrophysics Data System (ADS)

    Pinho, Luis

    The work described in this PhD Thesis focuses on the post-processing of optical fibers and their enhancement as sensing element. Since the majority of sensors presented are based in Fabry-Perot interferometers, an historical overview of this category of optical fiber sensors is firstly presented. This review considers the works published since the early years, in the beginning of the 1980s, until the middle of 2015. The incorporation of microcavities at the tip of a single mode fiber was extensively studied, particularly for the measurement of nitrogen and methane gas pressure. These cavities were fabricated using hollow core silica tubes and a hollow core photonic crystal fiber. Following a different approach, the microcavities were incorporated between two sections of single mode fiber. In this case, the low sensitivity to temperature makes these microcavities highly desirable for the measurement of strain at high temperatures. Competences in post-processing techniques such as the chemical etching and the writing of periodical structures in the fiber core by means of an excimer or a femtosecond laser were also acquired in the course of the PhD programme. One of the works consisted in the design and manufacturing of a double clad optical fiber. The refractive index of the inner cladding was higher than the one of the outer cladding and the core. Thus, light was guided in the inner cladding instead of propagating in the core. This situation was overcome by applying chemical etching, thus removing the inner cladding. The core, surrounded by air, was then able to guide light. Two different applications were found for this fiber, as a temperature sensor and as an optical refractometer. In the last, the optical phase changes with the liquid refractive index. Two different types of fiber Bragg gratings were characterized in strain and temperature. Sensing structures obtained through the phase mask technique at the tip of an optical fiber were subjected to chemical etching. In this case, an excimer laser was used. Extremely thin fiber tips were obtained, with an ultra-high sensitivity to strain. The other technique employed to fabricate the fiber Bragg gratings was the point-by-point femtosecond laser inscription. In this case, the sensing elements are very stable at high temperatures and can be used to measure strain in harsh conditions. The employment of optical fiber lasers as sensing elements was also considered in this Thesis. Two laser cavities were studied, one based on the ring configuration and the other based on a figure-of-eight configuration. From these works, the quality of the laser emission, namely the signal-to-noise ratio, the reduced full-width at half maximum and the stability should be highlighted. These characteristics allowed the measurement of different physical parameters, such as strain, temperature and torsion. Lastly, the possibility to use microspheres as sensing elements was considered. Using the electric arc of a fusion splicer, it is possible to create microspheres at the tip of an optical fiber. Furthermore, with this technique it is chains of microspheres can be obtained, constituting Mach-Zehnder-type interferometers which are sensitive to physical parameters like strain and temperature. The preliminary results obtained by introducing silica microspheres in a support structure are also presented. In this case, the sensors were subjected to temperature variations. All the experimental work was combined with the respective theoretical considerations. Many questions have been raised with the course of this PhD, and there are still some without a definite answer. Thus, new research paths can be followed, having their basis grounded in the configurations here presented.

  1. Provision of advanced ancillary services through demand side integration

    NASA Astrophysics Data System (ADS)

    Heleno, Miguel Luis Delgado

    The work described in this PhD Thesis focuses on the post-processing of optical fibers and their enhancement as sensing element. Since the majority of sensors presented are based in Fabry-Perot interferometers, an historical overview of this category of optical fiber sensors is firstly presented. This review considers the works published since the early years, in the beginning of the 1980s, until the middle of 2015. The incorporation of microcavities at the tip of a single mode fiber was extensively studied, particularly for the measurement of nitrogen and methane gas pressure. These cavities were fabricated using hollow core silica tubes and a hollow core photonic crystal fiber. Following a different approach, the microcavities were incorporated between two sections of single mode fiber. In this case, the low sensitivity to temperature makes these microcavities highly desirable for the measurement of strain at high temperatures. Competences in post-processing techniques such as the chemical etching and the writing of periodical structures in the fiber core by means of an excimer or a femtosecond laser were also acquired in the course of the PhD programme. One of the works consisted in the design and manufacturing of a double clad optical fiber. The refractive index of the inner cladding was higher than the one of the outer cladding and the core. Thus, light was guided in the inner cladding instead of propagating in the core. This situation was overcome by applying chemical etching, thus removing the inner cladding. The core, surrounded by air, was then able to guide light. Two different applications were found for this fiber, as a temperature sensor and as an optical refractometer. In the last, the optical phase changes with the liquid refractive index. Two different types of fiber Bragg gratings were characterized in strain and temperature. Sensing structures obtained through the phase mask technique at the tip of an optical fiber were subjected to chemical etching. In this case, an excimer laser was used. Extremely thin fiber tips were obtained, with an ultra-high sensitivity to strain. The other technique employed to fabricate the fiber Bragg gratings was the point-by-point femtosecond laser inscription. In this case, the sensing elements are very stable at high temperatures and can be used to measure strain in harsh conditions. The employment of optical fiber lasers as sensing elements was also considered in this Thesis. Two laser cavities were studied, one based on the ring configuration and the other based on a figure-of-eight configuration. From these works, the quality of the laser emission, namely the signal-to-noise ratio, the reduced full-width at half maximum and the stability should be highlighted. These characteristics allowed the measurement of different physical parameters, such as strain, temperature and torsion. Lastly, the possibility to use microspheres as sensing elements was considered. Using the electric arc of a fusion splicer, it is possible to create microspheres at the tip of an optical fiber. Furthermore, with this technique it is chains of microspheres can be obtained, constituting Mach-Zehnder-type interferometers which are sensitive to physical parameters like strain and temperature. The preliminary results obtained by introducing silica microspheres in a support structure are also presented. In this case, the sensors were subjected to temperature variations. All the experimental work was combined with the respective theoretical considerations. Many questions have been raised with the course of this PhD, and there are still some without a definite answer. Thus, new research paths can be followed, having their basis grounded in the configurations here presented.

  2. Exoplanets: Gaia and the importance of spectroscopic follow-up

    NASA Astrophysics Data System (ADS)

    Benamati, Lisa

    The work described in this PhD Thesis focuses on the post-processing of optical fibers and their enhancement as sensing element. Since the majority of sensors presented are based in Fabry-Perot interferometers, an historical overview of this category of optical fiber sensors is firstly presented. This review considers the works published since the early years, in the beginning of the 1980s, until the middle of 2015. The incorporation of microcavities at the tip of a single mode fiber was extensively studied, particularly for the measurement of nitrogen and methane gas pressure. These cavities were fabricated using hollow core silica tubes and a hollow core photonic crystal fiber. Following a different approach, the microcavities were incorporated between two sections of single mode fiber. In this case, the low sensitivity to temperature makes these microcavities highly desirable for the measurement of strain at high temperatures. Competences in post-processing techniques such as the chemical etching and the writing of periodical structures in the fiber core by means of an excimer or a femtosecond laser were also acquired in the course of the PhD programme. One of the works consisted in the design and manufacturing of a double clad optical fiber. The refractive index of the inner cladding was higher than the one of the outer cladding and the core. Thus, light was guided in the inner cladding instead of propagating in the core. This situation was overcome by applying chemical etching, thus removing the inner cladding. The core, surrounded by air, was then able to guide light. Two different applications were found for this fiber, as a temperature sensor and as an optical refractometer. In the last, the optical phase changes with the liquid refractive index. Two different types of fiber Bragg gratings were characterized in strain and temperature. Sensing structures obtained through the phase mask technique at the tip of an optical fiber were subjected to chemical etching. In this case, an excimer laser was used. Extremely thin fiber tips were obtained, with an ultra-high sensitivity to strain. The other technique employed to fabricate the fiber Bragg gratings was the point-by-point femtosecond laser inscription. In this case, the sensing elements are very stable at high temperatures and can be used to measure strain in harsh conditions. The employment of optical fiber lasers as sensing elements was also considered in this Thesis. Two laser cavities were studied, one based on the ring configuration and the other based on a figure-of-eight configuration. From these works, the quality of the laser emission, namely the signal-to-noise ratio, the reduced full-width at half maximum and the stability should be highlighted. These characteristics allowed the measurement of different physical parameters, such as strain, temperature and torsion. Lastly, the possibility to use microspheres as sensing elements was considered. Using the electric arc of a fusion splicer, it is possible to create microspheres at the tip of an optical fiber. Furthermore, with this technique it is chains of microspheres can be obtained, constituting Mach-Zehnder-type interferometers which are sensitive to physical parameters like strain and temperature. The preliminary results obtained by introducing silica microspheres in a support structure are also presented. In this case, the sensors were subjected to temperature variations. All the experimental work was combined with the respective theoretical considerations. Many questions have been raised with the course of this PhD, and there are still some without a definite answer. Thus, new research paths can be followed, having their basis grounded in the configurations here presented.

  3. Delivery of biomolecules by functionalized inorganic/organic nanoparticles

    NASA Astrophysics Data System (ADS)

    Coelho, Silvia Maria de Castro

    The work described in this PhD Thesis focuses on the post-processing of optical fibers and their enhancement as sensing element. Since the majority of sensors presented are based in Fabry-Perot interferometers, an historical overview of this category of optical fiber sensors is firstly presented. This review considers the works published since the early years, in the beginning of the 1980s, until the middle of 2015. The incorporation of microcavities at the tip of a single mode fiber was extensively studied, particularly for the measurement of nitrogen and methane gas pressure. These cavities were fabricated using hollow core silica tubes and a hollow core photonic crystal fiber. Following a different approach, the microcavities were incorporated between two sections of single mode fiber. In this case, the low sensitivity to temperature makes these microcavities highly desirable for the measurement of strain at high temperatures. Competences in post-processing techniques such as the chemical etching and the writing of periodical structures in the fiber core by means of an excimer or a femtosecond laser were also acquired in the course of the PhD programme. One of the works consisted in the design and manufacturing of a double clad optical fiber. The refractive index of the inner cladding was higher than the one of the outer cladding and the core. Thus, light was guided in the inner cladding instead of propagating in the core. This situation was overcome by applying chemical etching, thus removing the inner cladding. The core, surrounded by air, was then able to guide light. Two different applications were found for this fiber, as a temperature sensor and as an optical refractometer. In the last, the optical phase changes with the liquid refractive index. Two different types of fiber Bragg gratings were characterized in strain and temperature. Sensing structures obtained through the phase mask technique at the tip of an optical fiber were subjected to chemical etching. In this case, an excimer laser was used. Extremely thin fiber tips were obtained, with an ultra-high sensitivity to strain. The other technique employed to fabricate the fiber Bragg gratings was the point-by-point femtosecond laser inscription. In this case, the sensing elements are very stable at high temperatures and can be used to measure strain in harsh conditions. The employment of optical fiber lasers as sensing elements was also considered in this Thesis. Two laser cavities were studied, one based on the ring configuration and the other based on a figure-of-eight configuration. From these works, the quality of the laser emission, namely the signal-to-noise ratio, the reduced full-width at half maximum and the stability should be highlighted. These characteristics allowed the measurement of different physical parameters, such as strain, temperature and torsion. Lastly, the possibility to use microspheres as sensing elements was considered. Using the electric arc of a fusion splicer, it is possible to create microspheres at the tip of an optical fiber. Furthermore, with this technique it is chains of microspheres can be obtained, constituting Mach-Zehnder-type interferometers which are sensitive to physical parameters like strain and temperature. The preliminary results obtained by introducing silica microspheres in a support structure are also presented. In this case, the sensors were subjected to temperature variations. All the experimental work was combined with the respective theoretical considerations. Many questions have been raised with the course of this PhD, and there are still some without a definite answer. Thus, new research paths can be followed, having their basis grounded in the configurations here presented.

  4. Development of fluorescent silica nanoparticles encapsulating organic and inorganic fluorophores; synthesis and characterization

    NASA Astrophysics Data System (ADS)

    Neves, Cristina Sofia dos Santos

    The work described in this PhD Thesis focuses on the post-processing of optical fibers and their enhancement as sensing element. Since the majority of sensors presented are based in Fabry-Perot interferometers, an historical overview of this category of optical fiber sensors is firstly presented. This review considers the works published since the early years, in the beginning of the 1980s, until the middle of 2015. The incorporation of microcavities at the tip of a single mode fiber was extensively studied, particularly for the measurement of nitrogen and methane gas pressure. These cavities were fabricated using hollow core silica tubes and a hollow core photonic crystal fiber. Following a different approach, the microcavities were incorporated between two sections of single mode fiber. In this case, the low sensitivity to temperature makes these microcavities highly desirable for the measurement of strain at high temperatures. Competences in post-processing techniques such as the chemical etching and the writing of periodical structures in the fiber core by means of an excimer or a femtosecond laser were also acquired in the course of the PhD programme. One of the works consisted in the design and manufacturing of a double clad optical fiber. The refractive index of the inner cladding was higher than the one of the outer cladding and the core. Thus, light was guided in the inner cladding instead of propagating in the core. This situation was overcome by applying chemical etching, thus removing the inner cladding. The core, surrounded by air, was then able to guide light. Two different applications were found for this fiber, as a temperature sensor and as an optical refractometer. In the last, the optical phase changes with the liquid refractive index. Two different types of fiber Bragg gratings were characterized in strain and temperature. Sensing structures obtained through the phase mask technique at the tip of an optical fiber were subjected to chemical etching. In this case, an excimer laser was used. Extremely thin fiber tips were obtained, with an ultra-high sensitivity to strain. The other technique employed to fabricate the fiber Bragg gratings was the point-by-point femtosecond laser inscription. In this case, the sensing elements are very stable at high temperatures and can be used to measure strain in harsh conditions. The employment of optical fiber lasers as sensing elements was also considered in this Thesis. Two laser cavities were studied, one based on the ring configuration and the other based on a figure-of-eight configuration. From these works, the quality of the laser emission, namely the signal-to-noise ratio, the reduced full-width at half maximum and the stability should be highlighted. These characteristics allowed the measurement of different physical parameters, such as strain, temperature and torsion. Lastly, the possibility to use microspheres as sensing elements was considered. Using the electric arc of a fusion splicer, it is possible to create microspheres at the tip of an optical fiber. Furthermore, with this technique it is chains of microspheres can be obtained, constituting Mach-Zehnder-type interferometers which are sensitive to physical parameters like strain and temperature. The preliminary results obtained by introducing silica microspheres in a support structure are also presented. In this case, the sensors were subjected to temperature variations. All the experimental work was combined with the respective theoretical considerations. Many questions have been raised with the course of this PhD, and there are still some without a definite answer. Thus, new research paths can be followed, having their basis grounded in the configurations here presented.

  5. Kinematic GNSS Precise Point Positioning: Application to Marine Platforms

    NASA Astrophysics Data System (ADS)

    Marreiros, Joao Paulo Ramalho

    The work described in this PhD Thesis focuses on the post-processing of optical fibers and their enhancement as sensing element. Since the majority of sensors presented are based in Fabry-Perot interferometers, an historical overview of this category of optical fiber sensors is firstly presented. This review considers the works published since the early years, in the beginning of the 1980s, until the middle of 2015. The incorporation of microcavities at the tip of a single mode fiber was extensively studied, particularly for the measurement of nitrogen and methane gas pressure. These cavities were fabricated using hollow core silica tubes and a hollow core photonic crystal fiber. Following a different approach, the microcavities were incorporated between two sections of single mode fiber. In this case, the low sensitivity to temperature makes these microcavities highly desirable for the measurement of strain at high temperatures. Competences in post-processing techniques such as the chemical etching and the writing of periodical structures in the fiber core by means of an excimer or a femtosecond laser were also acquired in the course of the PhD programme. One of the works consisted in the design and manufacturing of a double clad optical fiber. The refractive index of the inner cladding was higher than the one of the outer cladding and the core. Thus, light was guided in the inner cladding instead of propagating in the core. This situation was overcome by applying chemical etching, thus removing the inner cladding. The core, surrounded by air, was then able to guide light. Two different applications were found for this fiber, as a temperature sensor and as an optical refractometer. In the last, the optical phase changes with the liquid refractive index. Two different types of fiber Bragg gratings were characterized in strain and temperature. Sensing structures obtained through the phase mask technique at the tip of an optical fiber were subjected to chemical etching. In this case, an excimer laser was used. Extremely thin fiber tips were obtained, with an ultra-high sensitivity to strain. The other technique employed to fabricate the fiber Bragg gratings was the point-by-point femtosecond laser inscription. In this case, the sensing elements are very stable at high temperatures and can be used to measure strain in harsh conditions. The employment of optical fiber lasers as sensing elements was also considered in this Thesis. Two laser cavities were studied, one based on the ring configuration and the other based on a figure-of-eight configuration. From these works, the quality of the laser emission, namely the signal-to-noise ratio, the reduced full-width at half maximum and the stability should be highlighted. These characteristics allowed the measurement of different physical parameters, such as strain, temperature and torsion. Lastly, the possibility to use microspheres as sensing elements was considered. Using the electric arc of a fusion splicer, it is possible to create microspheres at the tip of an optical fiber. Furthermore, with this technique it is chains of microspheres can be obtained, constituting Mach-Zehnder-type interferometers which are sensitive to physical parameters like strain and temperature. The preliminary results obtained by introducing silica microspheres in a support structure are also presented. In this case, the sensors were subjected to temperature variations. All the experimental work was combined with the respective theoretical considerations. Many questions have been raised with the course of this PhD, and there are still some without a definite answer. Thus, new research paths can be followed, having their basis grounded in the configurations here presented.

  6. Biosensors for the detection and quantification of aquatic bacterial contamination in waters for human use

    NASA Astrophysics Data System (ADS)

    Queiros, Raquel Barbosa

    The work described in this PhD Thesis focuses on the post-processing of optical fibers and their enhancement as sensing element. Since the majority of sensors presented are based in Fabry-Perot interferometers, an historical overview of this category of optical fiber sensors is firstly presented. This review considers the works published since the early years, in the beginning of the 1980s, until the middle of 2015. The incorporation of microcavities at the tip of a single mode fiber was extensively studied, particularly for the measurement of nitrogen and methane gas pressure. These cavities were fabricated using hollow core silica tubes and a hollow core photonic crystal fiber. Following a different approach, the microcavities were incorporated between two sections of single mode fiber. In this case, the low sensitivity to temperature makes these microcavities highly desirable for the measurement of strain at high temperatures. Competences in post-processing techniques such as the chemical etching and the writing of periodical structures in the fiber core by means of an excimer or a femtosecond laser were also acquired in the course of the PhD programme. One of the works consisted in the design and manufacturing of a double clad optical fiber. The refractive index of the inner cladding was higher than the one of the outer cladding and the core. Thus, light was guided in the inner cladding instead of propagating in the core. This situation was overcome by applying chemical etching, thus removing the inner cladding. The core, surrounded by air, was then able to guide light. Two different applications were found for this fiber, as a temperature sensor and as an optical refractometer. In the last, the optical phase changes with the liquid refractive index. Two different types of fiber Bragg gratings were characterized in strain and temperature. Sensing structures obtained through the phase mask technique at the tip of an optical fiber were subjected to chemical etching. In this case, an excimer laser was used. Extremely thin fiber tips were obtained, with an ultra-high sensitivity to strain. The other technique employed to fabricate the fiber Bragg gratings was the point-by-point femtosecond laser inscription. In this case, the sensing elements are very stable at high temperatures and can be used to measure strain in harsh conditions. The employment of optical fiber lasers as sensing elements was also considered in this Thesis. Two laser cavities were studied, one based on the ring configuration and the other based on a figure-of-eight configuration. From these works, the quality of the laser emission, namely the signal-to-noise ratio, the reduced full-width at half maximum and the stability should be highlighted. These characteristics allowed the measurement of different physical parameters, such as strain, temperature and torsion. Lastly, the possibility to use microspheres as sensing elements was considered. Using the electric arc of a fusion splicer, it is possible to create microspheres at the tip of an optical fiber. Furthermore, with this technique it is chains of microspheres can be obtained, constituting Mach-Zehnder-type interferometers which are sensitive to physical parameters like strain and temperature. The preliminary results obtained by introducing silica microspheres in a support structure are also presented. In this case, the sensors were subjected to temperature variations. All the experimental work was combined with the respective theoretical considerations. Many questions have been raised with the course of this PhD, and there are still some without a definite answer. Thus, new research paths can be followed, having their basis grounded in the configurations here presented.

  7. Galaxy Assembly through Mergers: Uncovering Dry and Non-dry Mergers in the SDSS

    NASA Astrophysics Data System (ADS)

    Brochado, Paula

    2012-03-01

    The work described in this PhD Thesis focuses on the post-processing of optical fibers and their enhancement as sensing element. Since the majority of sensors presented are based in Fabry-Perot interferometers, an historical overview of this category of optical fiber sensors is firstly presented. This review considers the works published since the early years, in the beginning of the 1980s, until the middle of 2015. The incorporation of microcavities at the tip of a single mode fiber was extensively studied, particularly for the measurement of nitrogen and methane gas pressure. These cavities were fabricated using hollow core silica tubes and a hollow core photonic crystal fiber. Following a different approach, the microcavities were incorporated between two sections of single mode fiber. In this case, the low sensitivity to temperature makes these microcavities highly desirable for the measurement of strain at high temperatures. Competences in post-processing techniques such as the chemical etching and the writing of periodical structures in the fiber core by means of an excimer or a femtosecond laser were also acquired in the course of the PhD programme. One of the works consisted in the design and manufacturing of a double clad optical fiber. The refractive index of the inner cladding was higher than the one of the outer cladding and the core. Thus, light was guided in the inner cladding instead of propagating in the core. This situation was overcome by applying chemical etching, thus removing the inner cladding. The core, surrounded by air, was then able to guide light. Two different applications were found for this fiber, as a temperature sensor and as an optical refractometer. In the last, the optical phase changes with the liquid refractive index. Two different types of fiber Bragg gratings were characterized in strain and temperature. Sensing structures obtained through the phase mask technique at the tip of an optical fiber were subjected to chemical etching. In this case, an excimer laser was used. Extremely thin fiber tips were obtained, with an ultra-high sensitivity to strain. The other technique employed to fabricate the fiber Bragg gratings was the point-by-point femtosecond laser inscription. In this case, the sensing elements are very stable at high temperatures and can be used to measure strain in harsh conditions. The employment of optical fiber lasers as sensing elements was also considered in this Thesis. Two laser cavities were studied, one based on the ring configuration and the other based on a figure-of-eight configuration. From these works, the quality of the laser emission, namely the signal-to-noise ratio, the reduced full-width at half maximum and the stability should be highlighted. These characteristics allowed the measurement of different physical parameters, such as strain, temperature and torsion. Lastly, the possibility to use microspheres as sensing elements was considered. Using the electric arc of a fusion splicer, it is possible to create microspheres at the tip of an optical fiber. Furthermore, with this technique it is chains of microspheres can be obtained, constituting Mach-Zehnder-type interferometers which are sensitive to physical parameters like strain and temperature. The preliminary results obtained by introducing silica microspheres in a support structure are also presented. In this case, the sensors were subjected to temperature variations. All the experimental work was combined with the respective theoretical considerations. Many questions have been raised with the course of this PhD, and there are still some without a definite answer. Thus, new research paths can be followed, having their basis grounded in the configurations here presented.

  8. Computational Generation and Homogenization of Random Close Packed Materials

    NASA Astrophysics Data System (ADS)

    Miranda, H. David

    The work described in this PhD Thesis focuses on the post-processing of optical fibers and their enhancement as sensing element. Since the majority of sensors presented are based in Fabry-Perot interferometers, an historical overview of this category of optical fiber sensors is firstly presented. This review considers the works published since the early years, in the beginning of the 1980s, until the middle of 2015. The incorporation of microcavities at the tip of a single mode fiber was extensively studied, particularly for the measurement of nitrogen and methane gas pressure. These cavities were fabricated using hollow core silica tubes and a hollow core photonic crystal fiber. Following a different approach, the microcavities were incorporated between two sections of single mode fiber. In this case, the low sensitivity to temperature makes these microcavities highly desirable for the measurement of strain at high temperatures. Competences in post-processing techniques such as the chemical etching and the writing of periodical structures in the fiber core by means of an excimer or a femtosecond laser were also acquired in the course of the PhD programme. One of the works consisted in the design and manufacturing of a double clad optical fiber. The refractive index of the inner cladding was higher than the one of the outer cladding and the core. Thus, light was guided in the inner cladding instead of propagating in the core. This situation was overcome by applying chemical etching, thus removing the inner cladding. The core, surrounded by air, was then able to guide light. Two different applications were found for this fiber, as a temperature sensor and as an optical refractometer. In the last, the optical phase changes with the liquid refractive index. Two different types of fiber Bragg gratings were characterized in strain and temperature. Sensing structures obtained through the phase mask technique at the tip of an optical fiber were subjected to chemical etching. In this case, an excimer laser was used. Extremely thin fiber tips were obtained, with an ultra-high sensitivity to strain. The other technique employed to fabricate the fiber Bragg gratings was the point-by-point femtosecond laser inscription. In this case, the sensing elements are very stable at high temperatures and can be used to measure strain in harsh conditions. The employment of optical fiber lasers as sensing elements was also considered in this Thesis. Two laser cavities were studied, one based on the ring configuration and the other based on a figure-of-eight configuration. From these works, the quality of the laser emission, namely the signal-to-noise ratio, the reduced full-width at half maximum and the stability should be highlighted. These characteristics allowed the measurement of different physical parameters, such as strain, temperature and torsion. Lastly, the possibility to use microspheres as sensing elements was considered. Using the electric arc of a fusion splicer, it is possible to create microspheres at the tip of an optical fiber. Furthermore, with this technique it is chains of microspheres can be obtained, constituting Mach-Zehnder-type interferometers which are sensitive to physical parameters like strain and temperature. The preliminary results obtained by introducing silica microspheres in a support structure are also presented. In this case, the sensors were subjected to temperature variations. All the experimental work was combined with the respective theoretical considerations. Many questions have been raised with the course of this PhD, and there are still some without a definite answer. Thus, new research paths can be followed, having their basis grounded in the configurations here presented.

  9. Fiber-Optic Pressure Sensor With Dynamic Demodulation Developed

    NASA Technical Reports Server (NTRS)

    Lekki, John D.

    2002-01-01

    Researchers at the NASA Glenn Research Center developed in-house a method to detect pressure fluctuations using a fiber-optic sensor and dynamic signal processing. This work was in support of the Intelligent Systems Controls and Operations project under NASA's Information Technology Base Research Program. We constructed an optical pressure sensor by attaching a fiber-optic Bragg grating to a flexible membrane and then adhering the membrane to one end of a small cylinder. The other end of the cylinder was left open and exposed to pressure variations from a pulsed air jet. These pressure variations flexed the membrane, inducing a strain in the fiber-optic grating. This strain was read out optically with a dynamic spectrometer to record changes in the wavelength of light reflected from the grating. The dynamic spectrometer was built in-house to detect very small wavelength shifts induced by the pressure fluctuations. The spectrometer is an unbalanced interferometer specifically designed for maximum sensitivity to wavelength shifts. An optimum pathlength difference, which was determined empirically, resulted in a 14-percent sensitivity improvement over theoretically predicted path-length differences. This difference is suspected to be from uncertainty about the spectral power difference of the signal reflected from the Bragg grating. The figure shows the output of the dynamic spectrometer as the sensor was exposed to a nominally 2-kPa peak-to-peak square-wave pressure fluctuation. Good tracking, sensitivity, and signal-to-noise ratios are evident even though the sensor was constructed as a proof-of-concept and was not optimized in any way. Therefore the fiber-optic Bragg grating, which is normally considered a good candidate as a strain or temperature sensor, also has been shown to be a good candidate for a dynamic pressure sensor.

  10. Optical Frequency Comb Fourier Transform Spectroscopy with Resolution Exceeding the Limit Set by the Optical Path Difference

    NASA Astrophysics Data System (ADS)

    Foltynowicz, Aleksandra; Rutkowski, Lucile; Johanssson, Alexandra C.; Khodabakhsh, Amir; Maslowski, Piotr; Kowzan, Grzegorz; Lee, Kevin; Fermann, Martin

    2015-06-01

    Fourier transform spectrometers (FTS) based on optical frequency combs (OFC) allow detection of broadband molecular spectra with high signal-to-noise ratios within acquisition times orders of magnitude shorter than traditional FTIRs based on thermal sources. Due to the pulsed nature of OFCs the interferogram consists of a series of bursts rather than a single burst at zero optical path difference (OPD). The comb mode structure can be resolved by acquiring multiple bursts, in both mechanical FTS systems and dual-comb spectroscopy. However, in all existing demonstrations the resolution was ultimately limited either by the maximum available OPD between the interferometer arms or by the total acquisition time enabled by the storage memory. We present a method that provides spectral resolution exceeding the limit set by the maximum OPD using an interferogram containing only a single burst. The method allows measurements of absorption lines narrower than the OPD-limited resolution without any influence of the instrumental lineshape function. We demonstrate this by measuring undistorted CO2 and CO absorption lines with linewidth narrower than the OPD-limited resolution using OFC-based mechanical FTS in the near- and mid-infrared wavelength ranges. The near-infrared system is based on an Er:fiber femtosecond laser locked to a high finesse cavity, while the mid-infrared system is based on a Tm:fiber-laser-pumped optical parametric oscillator coupled to a multi-pass cell. We show that the method allows acquisition of high-resolution molecular spectra with interferometer length orders of magnitude shorter than traditional FTIR. Mandon, J., G. Guelachvili, and N. Picque, Nat. Phot., 2009. 3(2): p. 99-102. Zeitouny, M., et al., Ann. Phys., 2013. 525(6): p. 437-442. Zolot, A.M., et al., Opt. Lett., 2012. 37(4): p. 638-640.

  11. Polarization mode beating techniques for high-sensitivity intracavity sensing

    NASA Astrophysics Data System (ADS)

    Rosales-Garcia, Andrea

    Several industries, including semiconductor, space, defense, medical, chemical and homeland security, demand precise and accurate measurements in the nanometer and sub-nanometer scale. Optical interferometers have been widely investigated due to its dynamic-range, non-contact and high-precision features. Although commercially available interferometers can have sub-nanometer resolution, the practical accuracy exceeds the nanometer range. The fast development of nanotechnology requires more sensitive, reliable, compact and lower cost alternatives than those in existence. This work demonstrates a compact, versatile, accurate and cost-effective fiber laser sensor based on intracavity polarization mode beating (PMB) techniques for monitoring intracavity phase changes with very high sensitivity. Fiber resonators support two orthogonal polarization modes that can behave as two independent lasing channels within the cavity. The fiber laser incorporates an intracavity polarizing beamsplitter that allows for adjusting independently the polarization modes. The heterodyne detection of the laser output produces a beating (PMB) signal, whose frequency is a function of the phase difference between the polarization modes. The optical phase difference is transferred from the optical frequency to a much lower frequency and thus electronic methods can be used to obtain very precise measurements. Upon changing the pathlength of one mode, changes iu the PMB frequency can be effectively measured. Furthermore, since the polarization nodes share the same cavity, the PMB technique provides a simple means to achieve suppression of common mode noise and laser source instabilities. Frequency changes of the PMB signal are evaluated as a function of displacement, intracavity pressure and air density. Refractive index changes of 10 -9 and sub-nanometer displacement measurements are readily attained. Increased refractive index sensitivity and sub-picometer displacement can be reached owing to the high finesse and resolution of the system. Experimental changes in the refractive index of air as a function of pressure are in good agreement with theoretical predictions. An alternative fiber laser configuration, which incorporates non-reciprocal elements, allows measuring the optical activity of enantiomeric mixtures using PMB techniques. The sensitivity attained through PMB techniques demonstrates a potential method for ultra-sensitive biochemical sensing and explosive detection.

  12. Mid infrared MEMS FTIR spectrometer

    NASA Astrophysics Data System (ADS)

    Erfan, Mazen; Sabry, Yasser M.; Mortada, Bassem; Sharaf, Khaled; Khalil, Diaa

    2016-03-01

    In this work we report, for the first time to the best of our knowledge, a bulk-micromachined wideband MEMS-based spectrometer covering both the NIR and the MIR ranges and working from 1200 nm to 4800 nm. The core engine of the spectrometer is a scanning Michelson interferometer micro-fabricated using deep reactive ion etching (DRIE) technology. The spectrum is obtained using the Fourier Transform techniques that allows covering a very wide spectral range limited by the detector responsivity. The moving mirror of the interferometer is driven by a relatively large stroke electrostatic comb-drive actuator. Zirconium fluoride (ZrF4) multimode optical fibers are used to connect light between the white light source and the interferometer input, as well as the interferometer output to a PbSe photoconductive detector. The recorded signal-to-noise ratio is 25 dB at the wavelength of 3350 nm. The spectrometer is successfully used in measuring the absorption spectra of methylene chloride, quartz glass and polystyrene film. The presented solution provides a low cost method for producing miniaturized spectrometers in the near-/mid-infrared.

  13. Narrow-band generation in random distributed feedback fiber laser.

    PubMed

    Sugavanam, Srikanth; Tarasov, Nikita; Shu, Xuewen; Churkin, Dmitry V

    2013-07-15

    Narrow-band emission of spectral width down to ~0.05 nm line-width is achieved in the random distributed feedback fiber laser employing narrow-band fiber Bragg grating or fiber Fabry-Perot interferometer filters. The observed line-width is ~10 times less than line-width of other demonstrated up to date random distributed feedback fiber lasers. The random DFB laser with Fabry-Perot interferometer filter provides simultaneously multi-wavelength and narrow-band (within each line) generation with possibility of further wavelength tuning.

  14. Active cancellation of residual amplitude modulation in a frequency-modulation based Fabry-Perot interferometer.

    PubMed

    Yu, Yinan; Wang, Yicheng; Pratt, Jon R

    2016-03-01

    Residual amplitude modulation (RAM) is one of the most common noise sources known to degrade the sensitivity of frequency modulation spectroscopy. RAM can arise as a result of the temperature dependent birefringence of the modulator crystal, which causes the orientation of the crystal's optical axis to shift with respect to the polarization of the incident light with temperature. In the fiber-based optical interferometer used on the National Institute of Standards and Technology calculable capacitor, RAM degrades the measured laser frequency stability and correlates with the environmental temperature fluctuations. We have demonstrated a simple approach that cancels out excessive RAM due to polarization mismatch between the light and the optical axis of the crystal. The approach allows us to measure the frequency noise of a heterodyne beat between two lasers individually locked to different resonant modes of a cavity with an accuracy better than 0.5 ppm, which meets the requirement to further determine the longitudinal mode number of the cavity length. Also, this approach has substantially mitigated the temperature dependency of the measurements of the cavity length and consequently the capacitance.

  15. Hydrostatic Pressure Sensing with High Birefringence Photonic Crystal Fibers

    PubMed Central

    Fávero, Fernando C.; Quintero, Sully M. M.; Martelli, Cicero; Braga, Arthur M.B.; Silva, Vinícius V.; Carvalho, Isabel C. S.; Llerena, Roberth W. A.; Valente, Luiz C. G.

    2010-01-01

    The effect of hydrostatic pressure on the waveguiding properties of high birefringence photonic crystal fibers (HiBi PCF) is evaluated both numerically and experimentally. A fiber design presenting form birefringence induced by two enlarged holes in the innermost ring defining the fiber core is investigated. Numerical results show that modal sensitivity to the applied pressure depends on the diameters of the holes, and can be tailored by independently varying the sizes of the large or small holes. Numerical and experimental results are compared showing excellent agreement. A hydrostatic pressure sensor is proposed and demonstrated using an in-fiber modal interferometer where the two orthogonally polarized modes of a HiBi PCF generate fringes over the optical spectrum of a broad band source. From the analysis of experimental results, it is concluded that, in principle, an operating limit of 92 MPa in pressure could be achieved with 0.0003% of full scale resolution. PMID:22163435

  16. Refractive index and strain sensor based on twin-core fiber with a novel T-shaped taper

    NASA Astrophysics Data System (ADS)

    Zhang, Chuanbiao; Ning, Tigang; Li, Jing; Zheng, JingJing; Gao, Xuekai; Pei, Li

    2018-06-01

    A compact in-fiber Mach-Zehnder interferometer (MZI) based on twin-core fiber (TCF) with a novel T-shaped taper is proposed and demonstrated. The taper was firstly fabricated by a short section of TCF, and then spliced with a section of cleaved single mode fiber (SMF). When the light transmit into the TCF, multiple modes will be excited and will propagate within the TCF. In experiment, the proposed device had a maximum interferometric extinction ratio about 17 dB. And the refractive index (RI), strain, and temperature response properties of the sensor have been investigated, which show a relatively high RI, strain sensitivity and low temperature cross sensitivity. Hence, the sensor can be a suitable candidate in the biochemical and physical sensing applications. And due to its easy and controllable fabrication, the novel drawing technology can be applied to more multicore optical fibers.

  17. A Fiber Optic Doppler Sensor and Its Application in Debonding Detection for Composite Structures

    PubMed Central

    Li, Fucai; Murayama, Hideaki; Kageyama, Kazuro; Meng, Guang; Ohsawa, Isamu; Shirai, Takehiro

    2010-01-01

    Debonding is one of the most important damage forms in fiber-reinforced composite structures. This work was devoted to the debonding damage detection of lap splice joints in carbon fiber reinforced plastic (CFRP) structures, which is based on guided ultrasonic wave signals captured by using fiber optic Doppler (FOD) sensor with spiral shape. Interferometers based on two types of laser sources, namely the He-Ne laser and the infrared semiconductor laser, are proposed and compared in this study for the purpose of measuring Doppler frequency shift of the FOD sensor. Locations of the FOD sensors are optimized based on mechanical characteristics of lap splice joint. The FOD sensors are subsequently used to detect the guided ultrasonic waves propagating in the CFRP structures. By taking advantage of signal processing approaches, features of the guided wave signals can be revealed. The results demonstrate that debonding in the lap splice joint results in arrival time delay of the first package in the guided wave signals, which can be the characteristic for debonding damage inspection and damage extent estimation. PMID:22219698

  18. A fiber optic Doppler sensor and its application in debonding detection for composite structures.

    PubMed

    Li, Fucai; Murayama, Hideaki; Kageyama, Kazuro; Meng, Guang; Ohsawa, Isamu; Shirai, Takehiro

    2010-01-01

    Debonding is one of the most important damage forms in fiber-reinforced composite structures. This work was devoted to the debonding damage detection of lap splice joints in carbon fiber reinforced plastic (CFRP) structures, which is based on guided ultrasonic wave signals captured by using fiber optic Doppler (FOD) sensor with spiral shape. Interferometers based on two types of laser sources, namely the He-Ne laser and the infrared semiconductor laser, are proposed and compared in this study for the purpose of measuring Doppler frequency shift of the FOD sensor. Locations of the FOD sensors are optimized based on mechanical characteristics of lap splice joint. The FOD sensors are subsequently used to detect the guided ultrasonic waves propagating in the CFRP structures. By taking advantage of signal processing approaches, features of the guided wave signals can be revealed. The results demonstrate that debonding in the lap splice joint results in arrival time delay of the first package in the guided wave signals, which can be the characteristic for debonding damage inspection and damage extent estimation.

  19. Photodetector based on Vernier-Enhanced Fabry-Perot Interferometers with a Photo-Thermal Coating

    PubMed Central

    Chen, George Y.; Wu, Xuan; Liu, Xiaokong; Lancaster, David G.; Monro, Tanya M.; Xu, Haolan

    2017-01-01

    We present a new type of fiber-coupled photodetector with a thermal-based optical sensor head, which enables it to operate even in the presence of strong electro-magnetic interference and in electrically sensitive environments. The optical sensor head consists of three cascaded Fabry-Perot interferometers. The end-face surface is coated with copper-oxide micro-particles embedded in hydrogel, which is a new photo-thermal coating that can be readily coated on many different surfaces. Under irradiation, photons are absorbed by the photo-thermal coating, and are converted into heat, changing the optical path length of the probing light and induces a resonant wavelength shift. For white-light irradiation, the photodetector exhibits a power sensitivity of 760 pm/mW, a power detection limit of 16.4 μW (i.e. specific detectivity of 2.2 × 105 cm.√Hz/W), and an optical damage threshold of ~100 mW or ~800 mW/cm2. The response and recovery times are 3.0 s (~90% of change within 100 ms) and 16.0 s respectively. PMID:28139745

  20. Study of the OCDMA Transmission Characteristics in FSO-FTTH at Various Distances, Outdoor

    NASA Astrophysics Data System (ADS)

    Aldouri, Muthana Y.; Aljunid, S. A.; Fadhil, Hilal A.

    2013-06-01

    It is important to apply the field Programmable Gate Array (FPGA), and Optical Switch technology as an encoder and decoder for Spectral Amplitude Coding Optical Code Division Multiple Access (SAC-OCDMA) Free Space Optic Fiber to the Home (FSO-FTTH) transmitter and receiver system design. The encoder and decoder module will be using FPGA as a code generator, optical switch using as encode and decode of optical source. This module was tested by using the Modified Double Weight (MDW) code, which is selected as an excellent candidate because it had shown superior performance were by the total noise is reduced. It is also easy to construct and can reduce the number of filters required at a receiver by a newly proposed detection scheme known as AND Subtraction technique. MDW code is presented here to support Fiber-To-The-Home (FTTH) access network in Point-To-Multi-Point (P2MP) application. The conversion used a Mach-Zehnder interferometer (MZI) wavelength converter. The performances are characterized through BER and bit rate (BR), also, the received power at a variety of bit rates.

  1. Nano-displacement sensor based on photonic crystal fiber modal interferometer.

    PubMed

    Dash, Jitendra Narayan; Jha, Rajan; Villatoro, Joel; Dass, Sumit

    2015-02-15

    A stable nano-displacement sensor based on large mode area photonic crystal fiber (PCF) modal interferometer is presented. The compact setup requires simple splicing of a small piece of PCF with a single mode fiber (SMF). The excitation and recombination of modes is carried out in a single splice. The use of a reflecting target creates an extra cavity that discretizes the interference pattern of the mode interferometer, boosting the displacement resolution to nanometer level. The proposed modal interferometric based displacement sensor is highly stable and shows sensitivity of 32  pm/nm.

  2. Hybrid fiber links for accurate optical frequency comparison

    NASA Astrophysics Data System (ADS)

    Lee, Won-Kyu; Stefani, Fabio; Bercy, Anthony; Lopez, Olivier; Amy-Klein, Anne; Pottie, Paul-Eric

    2017-05-01

    We present the experimental demonstration of a local two-way optical frequency comparison over a 43-km-long urban fiber network without any requirement for measurement synchronization. We combined the local two-way scheme with a regular active noise compensation scheme that was implemented on another parallel fiber leading to a highly reliable and robust frequency transfer. This hybrid scheme allowed us to investigate the major limiting factors of the local two-way comparison. We analyzed the contributions of the interferometers at both local and remote locations to the phase noise of the local two-way signal. Using the ability of this setup to be injected by either a single laser or two independent lasers, we measured the contributions of the demodulated laser instabilities to the long-term instability. We show that a fractional frequency instability level of 10-20 at 10,000 s can be obtained using this simple setup after propagation over a distance of 43 km in an urban area.

  3. Phase-stepping fiber-optic projected fringe system for surface topography measurements

    NASA Technical Reports Server (NTRS)

    Mercer, Carolyn R. (Inventor); Beheim, Glenn (Inventor)

    1992-01-01

    A projected fringe interferometer for measuring the topography of an object is presented. The interferometer periodically steps the phase angle between a pair of light beams emanating from a common source. The steps are pi/2 radians (90 deg) apart, and at each step a video image of the fringes is recorded and stored. Photodetectors measure either the phase and theta of the beams or 2(theta). Either of the measures can be used to control one of the light beams so that the 90 deg theta is accurately maintained. A camera, a computer, a phase controller, and a phase modulator established closed-loop control of theta. Measuring the phase map of a flat surface establishes a calibration reference.

  4. Ultra-narrow-linewidth Brillouin/erbium fiber laser

    NASA Astrophysics Data System (ADS)

    Chen, Mo; Wang, Chenyu; Wang, Jianfei; Luo, Hong; Meng, Zhou

    2018-02-01

    Ultra-narrow-linewidth lasers are of great interest in many applications, such as precise spectroscopy, optical communications, and sensors. Stimulated Brillouin scattering (SBS), as one of the main nonlinear effects in fibers, is capable of generating narrow-linewidth light emission. We establish a compact Brillouin/erbium fiber laser (BEFL) utilizing 4-m erbium-doped fiber as both the Brillouin gain and linear media. A 360-kHz-linewidth laser diode is injected into the cavity as the Brillouin pump (BP) light and generates Brillouin Stokes lasing light. Both of the phase noise of the BP and BEFL output are measured by a high-accuracy unbalanced Michelson interferometer. It is demonstrated that 53- dB phase noise reduction is achieved after the BP is transferred into Brillouin Stokes emission. The linewidth of the BEFL is indicated at Hz-range by both calculation and experiment.

  5. Speckle reduction during all-fiber common-path optical coherence tomography of the cavernous nerves

    NASA Astrophysics Data System (ADS)

    Chitchian, Shahab; Fiddy, Michael; Fried, Nathaniel M.

    2009-02-01

    Improvements in identification, imaging, and visualization of the cavernous nerves during prostate cancer surgery, which are responsible for erectile function, may improve nerve preservation and postoperative sexual potency. In this study, we use a rat prostate, ex vivo, to evaluate the feasibility of optical coherence tomography (OCT) as a diagnostic tool for real-time imaging and identification of the cavernous nerves. A novel OCT system based on an all single-mode fiber common-path interferometer-based scanning system is used for this purpose. A wavelet shrinkage denoising technique using Stein's unbiased risk estimator (SURE) algorithm to calculate a data-adaptive threshold is implemented for speckle noise reduction in the OCT image. The signal-to-noise ratio (SNR) was improved by 9 dB and the image quality metrics of the cavernous nerves also improved significantly.

  6. Improved vertical optical fiber borehole strainmeter design for measuring Earth strain.

    PubMed

    DeWolf, Scott; Wyatt, Frank K; Zumberge, Mark A; Hatfield, William

    2015-11-01

    Fiber-based interferometers provide the means to sense very small displacements over long baselines, and have the advantage of being nearly completely passive in their operation, making them particularly well suited for geophysical applications. A new 250 m, interferometric vertical borehole strainmeter has been developed based completely on passive optical components. Details of the design and deployment at the Piñon Flat Observatory are presented. Power spectra show an intertidal noise level of -130 dB (re. 1 ϵ(2)/Hz), consistent within 1-3 dB between redundant components. Examination of its response to Earth tides and earthquakes relative to the areal strain recorded by an orthogonal pair of collocated, 730 m horizontal laser strainmeters yield a Poisson's ratio for local near surface material of 0.25 that is consistent with previous results.

  7. Polymerization shrinkage of a dental resin composite determined by a fiber optic Fizeau interferometer

    NASA Astrophysics Data System (ADS)

    Arenas, Gustavo; Noriega, Sergio; Vallo, Claudia; Duchowicz, Ricardo

    2007-03-01

    A fiber optic sensing method based on a Fizeau-type interferometric scheme was employed for monitoring linear polymerization shrinkage in dental restoratives. This technique offers several advantages over the conventional methods of measuring polymerization contraction. This simple, compact, non-invasive and self-calibrating system competes with both conventional and other high-resolution bulk interferometric techniques. In this work, an analysis of the quality of interference signal and fringes visibility was performed in order to characterize their resolution and application range. The measurements of percent linear contraction as a function of the sample thickness were carried out in this study on two dental composites: Filtek P60 (3M ESPE) Posterior Restorer and Filtek Z250 (3M ESPE) Universal Restorer. The results were discussed with respect to others obtained employing alternative techniques.

  8. An improved optical scheme for self-mixing low-coherence flowmeters

    NASA Astrophysics Data System (ADS)

    Di Cecilia, Luca; Rovati, Luigi; Cattini, Stefano

    2017-02-01

    In this paper we present a fiber-based low-coherence self-mixing interferometer exploiting a single-arm approach to measure the flow in a pipe. The main advantages of the proposed system are the flexibility offered by fiber-connected optical head, a greater ease of alignment, the rejection of "common-mode" vibrations, and greater stability. Thanks to the use of a low-coherence source, the proposed system investigates the velocity of the scattering particles owing only in a fixed and well defined region located close to the duct wall itself. The reported experimental results demonstrate that in laminar flow regime the developed system is able to determine the flow and it is quite robust to variation in the scatterers concentration. Increasing the scatterers concentration of about 24 times, the sensitivity S has reduced of less than 30%.

  9. Intrinsic polymer optical fiber sensors for high-strain applications

    NASA Astrophysics Data System (ADS)

    Kiesel, Sharon; Van Vickle, Patrick; Peters, Kara; Hassan, Tasnim; Kowalsky, Mervyn

    2006-03-01

    This paper presents intrinsic polymer fiber (POF) sensors for high-strain applications such as health monitoring of civil infrastructure systems subjected to earthquake loading or structures with large shape changes such as morphing aircraft. POFs provide a potential maximum strain range of 6-12%, are more flexible that silica optical fibers, and are more durable in harsh chemical or environmental conditions. Recent advances in the fabrication of singlemode POFs have made it possible to extend POFs to interferometric sensor capabilities. Furthermore, the interferometric nature of intrinsic sensors permits high accuracy for such measurements. However, several challenges, addressed in this paper, make the application of the POF interferometer more difficult than its silica counterpart. These include the finite deformation of the POF cross-section at high strain values, nonlinear strain optic effects in the polymer, and the attenuation with strain of the POF. In order to predict the response of the sensor a second-order (in strain) photoelastic effect is derived and combined with the second-order solution of the deformation of the optical fiber when loaded. It is determined that for the small deformation region four constants are required (two mechanical and two photoelastic properties) and for the large deformation region six additional constants are required (two mechanical and four photoelastic properties). This paper also presents initial measurements of the mechanical response of the sensor and comparison to previously reported POFs.

  10. Parallel Information Processing (Image Transmission Via Fiber Bundle and Multimode Fiber

    NASA Technical Reports Server (NTRS)

    Kukhtarev, Nicholai

    2003-01-01

    Growing demand for visual, user-friendly representation of information inspires search for the new methods of image transmission. Currently used in-series (sequential) methods of information processing are inherently slow and are designed mainly for transmission of one or two dimensional arrays of data. Conventional transmission of data by fibers requires many fibers with array of laser diodes and photodetectors. In practice, fiber bundles are also used for transmission of images. Image is formed on the fiber-optic bundle entrance surface and each fiber transmits the incident image to the exit surface. Since the fibers do not preserve phase, only 2D intensity distribution can be transmitted in this way. Each single mode fiber transmit only one pixel of an image. Multimode fibers may be also used, so that each mode represent different pixel element. Direct transmission of image through multimode fiber is hindered by the mode scrambling and phase randomization. To overcome these obstacles wavelength and time-division multiplexing have been used, with each pixel transmitted on a separate wavelength or time interval. Phase-conjugate techniques also was tested in, but only in the unpractical scheme when reconstructed image return back to the fiber input end. Another method of three-dimensional imaging over single mode fibers was demonstrated in, using laser light of reduced spatial coherence. Coherence encoding, needed for a transmission of images by this methods, was realized with grating interferometer or with the help of an acousto-optic deflector. We suggest simple practical holographic method of image transmission over single multimode fiber or over fiber bundle with coherent light using filtering by holographic optical elements. Originally this method was successfully tested for the single multimode fiber. In this research we have modified holographic method for transmission of laser illuminated images over commercially available fiber bundle (fiber endoscope, or fiberscope).

  11. The Mount Wilson optical interferometer: The first automated instrument and the prospects for lunar interferometry

    NASA Technical Reports Server (NTRS)

    Johnston, Ken J.; Mozurkewich, D.; Simon, R. S.; Shao, Michael; Colavita, M.

    1992-01-01

    Before contemplating an optical interferometer on the Moon one must first review the accomplishments achieved by this technology in scientific applications for astronomy. This will be done by presenting the technical status of optical interferometry as achieved by the Mount Wilson Optical Interferometer. The further developments needed for a future lunar-based interferometer are discussed.

  12. Temperature- and phase-independent lateral force sensor based on a core-offset multi-mode fiber interferometer.

    PubMed

    Dong, Bo; Zhou, Da-Peng; Wei, Li; Liu, Wing-Ki; Lit, John W Y

    2008-11-10

    A novel lateral force sensor based on a core-offset multi-mode fiber (MMF) interferometer is reported. High extinction ratio can be obtained by misaligning a fused cross section between the single-mode fiber (SMF) and MMF. With the variation of the lateral force applied to a short section of the MMF, the extinction ratio changes while the interference phase remains almost constant. The change of the extinction ratio is independent of temperature variations. The proposed force sensor has the advantages of temperature- and phase-independency, high extinction ratio sensitivity, good repeatability, low cost, and simple structure. Moreover, the core-offset MMF interferometer is expected to have applications in fiber filters and tunable phase-independent attenuators.

  13. Multiwavelength fiber laser

    NASA Astrophysics Data System (ADS)

    Das, Goutam

    This thesis studies experimentally and theoretically a few designs of multiwavelength fiber lasers. Four different configurations are proposed and demonstrated; all of which can operate at room temperatures. An elliptical core erbium-doped fiber is used as the gain medium, which is single mode along the minor axis and multimode along the major axis. The principle of operation is based on the anisotropic gain effect of an elliptical core erbium-doped fiber. Stable multiwavelength operation is achieved at room temperatures. A polarization controller is used to control and select the lasing wavelengths. The stability of the lasing lines, in the presence of anisotropic gain effects, has been examined. The maximum number of stable lasing lines that may be obtained depends on the number of modes supported by the erbium-doped fiber. The effects of the dimensions of the fiber are also studied. A ring resonator is formed using an elliptical core erbium-doped fiber. The basic theoretical expression for the threshold pump power for each lasing line is developed. The theoretical results are in excellent agreement with the values obtained experimentally. The dependence of the separations between the lasing wavelengths on the dimensions of the erbium-doped fiber is examined. A theoretical study of a Sagnac loop interferometer and its applications in a passive ring resonator is reported. A ring resonator is formed by using the Sagnac loop filter in the cavity. The experimental results show that the separations between the lasing wavelengths may be controlled by adjusting the birefringence of the Sagnac loop interferometer. These experimental results agree with the theoretical findings. Similarly, another resonator is formed using a Sagnac loop reflector and a broadband reflector in a Fabry-Perot configuration. An optical switch is made, where two wavelengths may be switched by using a polarization controller in the cavity. To study the stability of the lasing wavelengths, the outputs of the lasers are monitored for a few hours using an optical spectrum analyzer with a resolution bandwidth of 0.06 nm. The experimental results show that intensity fluctuations of the lasing lines of less than 0.2 dB are possible with no changes in wavelength. High concentrations of erbium in the fiber degrade the stability of the lasing wavelengths resulting in greater intensity fluctuations. The lasers may be made to lase in the C band or L band by adjusting the length of the erbium-doped fiber in the cavity.

  14. Search for extraterrestrial planets: the DARWIN mission

    NASA Astrophysics Data System (ADS)

    d'Arcio, Luigi; Karlsson, Anders; Bavdaz, Marcos; Jagemann, Thomas

    2017-11-01

    The ESA Darwin mission is primarily devoted to the detection of earth-like exoplanets and the spectroscopic characterization of their atmospheres for key tracers of life. Darwin is implemented as a free-flying stellar interferometer operating in the 6.5-20 micron wavelength range, and passively cooled to 40 K. The stellar flux is suppressed by destructive interference (nulling) over the full optical bandwidth. The planetary signal is extracted from the zodiacal background signature by modulating the optical response of the interferometer. The Darwin mission concept has evolved considerably in the past years. The original concept, based on six 1.5 m telescopes, has been replaced by more efficient designs using three to four three-meter class apertures. A novel 3D architecture is being evaluated, together with the conventional planar one, bearing the potential for significant volume and mass savings and enhanced straylight rejection. A number of technology development activities have been successfully completed, including optical metrology, optical delay lines, and single-mode infrared optical fibers. A second iteration of the Darwin System Assessment Study has been kicked off end 2005, aiming to consolidate the overall mission architecture and the preliminary design of the Darwin mission concept. This paper illustrates the current status of the Darwin mission, with special emphasis on the optical configuration and the technology development programme in the area of optics.

  15. Parallel demodulation system and signal-processing method for extrinsic Fabry-Perot interferometer and fiber Bragg grating sensors.

    PubMed

    Jiang, Junfeng; Liu, Tiegen; Zhang, Yimo; Liu, Lina; Zha, Ying; Zhang, Fan; Wang, Yunxin; Long, Pin

    2005-03-15

    A parallel demodulation system for extrinsic Fabry-Perot interferometer (EFPI) and fiber Bragg grating (FBG) sensors is presented that is based on a Michelson interferometer and combines the methods of low-coherence interference and Fourier transform spectrum. Signals from EFPI and FBG sensors are obtained simultaneously by scanning one arm of a Michelson interferometer, and an algorithm model is established to process the signals and retrieve both the wavelength of the FBG and the cavity length of the EFPI at the same time, which are then used to determine the strain and temperature.

  16. Simultaneous DPSK demodulation and chirp management using delay interferometer in symmetric 40-Gb/s capability TWDM-PON system.

    PubMed

    Bi, Meihua; Xiao, Shilin; He, Hao; Yi, Lilin; Li, Zhengxuan; Li, Jun; Yang, Xuelin; Hu, Weisheng

    2013-07-15

    We propose a symmetric 40-Gb/s aggregate rate time and wavelength division multiplexed passive optical network (TWDM-PON) system with the capability of simultaneous downstream differential phase shift keying (DPSK) signal demodulation and upstream signal chirp management based on delay interferometer (DI). With the bi-pass characteristic of DI, we experimentally demonstrate the bidirectional transmission of signals at 10-Gb/s per wavelength, and achieve negligible power penalties after 50-km single mode fiber (SMF). For the uplink transmission with DI, a ~11-dB optical power budget improvement at a bit error ratio of 1e-3 is obtained and the extinction ratio (ER) of signal is also improved from 3.4 dB to 13.75 dB. Owing to this high ER, the upstream burst-mode transmitting is successfully presented in term of time-division multiplexing. Moreover, in our experiment, a ~38-dB power budget is obtained to support 256 users with 50-km SMF transmission.

  17. A highly stable and switchable dual-wavelength laser using coupled microfiber Mach-Zehnder interferometer as an optical filter

    NASA Astrophysics Data System (ADS)

    Jasim, A. A.; Ahmad, H.

    2017-12-01

    The generation and switching of dual-wavelength laser based on compact coupled microfiber Mach-Zehnder interferometer (CM-MZI) is reported. The CM-MZI is constructed by overlapping two portions of a single tapered optical fiber which has a diameter of 9 μm as to create multi-mode interference and also to produce spatial mode beating as to suppress mode competition in the homogeneous gain medium. The system is able to generate a dual-wavelength laser output that can be switched with the aid of the polarization rotation technique. Four dual-wavelength oscillation pairs are obtained from the interference fringe peaks of the CM-MZI comb filter with a switched channel spacing of 1.5 nm, 3.0 nm, and 6.0 nm. The wavelength spacing is stable at different pump powers. The lasing wavelength has a 3-dB linewidth of about 30 pm and peak-to-floor ration of about 55 dB at a pump power of 38 mW.

  18. Application of the fibre-optic interferometer as a rotational seismograph type AFORS

    NASA Astrophysics Data System (ADS)

    Kurzych, Anna; Jaroszewicz, Leszek R.; Krajewski, Zbigniew; Teisseyre, Krzysztof P.; Kowalski, Jerzy K.

    2014-12-01

    In this article we show a fibre-optic device based on the Sagnac effect designed for measuring rotational motions which appear during seismic events. The experimental investigations of presented Autonomous Fiber-Optical Rotational Seismographs indicate that such devices keep the accuracy no less than 5.1·10-9 to 5.5·10-8 rad/s in the frequency band from 0.83 Hz to 106.15 Hz. Furthermore, their operations are controlled fully remotely via Internet. We present the comparison of results obtained by such system in the field test with a mechanical rotational seismometer which is mounted simultaneously in the seismological observatory in Książ, Poland.

  19. Design of a dual species atom interferometer for space

    NASA Astrophysics Data System (ADS)

    Schuldt, Thilo; Schubert, Christian; Krutzik, Markus; Bote, Lluis Gesa; Gaaloul, Naceur; Hartwig, Jonas; Ahlers, Holger; Herr, Waldemar; Posso-Trujillo, Katerine; Rudolph, Jan; Seidel, Stephan; Wendrich, Thijs; Ertmer, Wolfgang; Herrmann, Sven; Kubelka-Lange, André; Milke, Alexander; Rievers, Benny; Rocco, Emanuele; Hinton, Andrew; Bongs, Kai; Oswald, Markus; Franz, Matthias; Hauth, Matthias; Peters, Achim; Bawamia, Ahmad; Wicht, Andreas; Battelier, Baptiste; Bertoldi, Andrea; Bouyer, Philippe; Landragin, Arnaud; Massonnet, Didier; Lévèque, Thomas; Wenzlawski, Andre; Hellmig, Ortwin; Windpassinger, Patrick; Sengstock, Klaus; von Klitzing, Wolf; Chaloner, Chris; Summers, David; Ireland, Philip; Mateos, Ignacio; Sopuerta, Carlos F.; Sorrentino, Fiodor; Tino, Guglielmo M.; Williams, Michael; Trenkel, Christian; Gerardi, Domenico; Chwalla, Michael; Burkhardt, Johannes; Johann, Ulrich; Heske, Astrid; Wille, Eric; Gehler, Martin; Cacciapuoti, Luigi; Gürlebeck, Norman; Braxmaier, Claus; Rasel, Ernst

    2015-06-01

    Atom interferometers have a multitude of proposed applications in space including precise measurements of the Earth's gravitational field, in navigation & ranging, and in fundamental physics such as tests of the weak equivalence principle (WEP) and gravitational wave detection. While atom interferometers are realized routinely in ground-based laboratories, current efforts aim at the development of a space compatible design optimized with respect to dimensions, weight, power consumption, mechanical robustness and radiation hardness. In this paper, we present a design of a high-sensitivity differential dual species 85Rb/87Rb atom interferometer for space, including physics package, laser system, electronics and software. The physics package comprises the atom source consisting of dispensers and a 2D magneto-optical trap (MOT), the science chamber with a 3D-MOT, a magnetic trap based on an atom chip and an optical dipole trap (ODT) used for Bose-Einstein condensate (BEC) creation and interferometry, the detection unit, the vacuum system for 10-11 mbar ultra-high vacuum generation, and the high-suppression factor magnetic shielding as well as the thermal control system. The laser system is based on a hybrid approach using fiber-based telecom components and high-power laser diode technology and includes all laser sources for 2D-MOT, 3D-MOT, ODT, interferometry and detection. Manipulation and switching of the laser beams is carried out on an optical bench using Zerodur bonding technology. The instrument consists of 9 units with an overall mass of 221 kg, an average power consumption of 608 W (814 W peak), and a volume of 470 liters which would well fit on a satellite to be launched with a Soyuz rocket, as system studies have shown.

  20. In-line microfluidic refractometer based on C-shaped fiber assisted photonic crystal fiber Sagnac interferometer.

    PubMed

    Wu, Chuang; Tse, Ming-Leung Vincent; Liu, Zhengyong; Guan, Bai-Ou; Lu, Chao; Tam, Hwa-Yaw

    2013-09-01

    We propose and demonstrate a highly sensitive in-line photonic crystal fiber (PCF) microfluidic refractometer. Ultrathin C-shaped fibers are spliced in-between the PCF and standard single-mode fibers. The C-shaped fibers provide openings for liquid to flow in and out of the PCF. Based on a Sagnac interferometer, the refractive index (RI) response of the device is investigated theoretically and experimentally. A high sensitivity of 6621 nm/RIU for liquid RI from 1.330 to 1.333 is achieved in the experiment, which agrees well with the theoretical analysis.

Top