Sample records for fiber optic switch

  1. Alternative Controller for a Fiber-Optic Switch

    NASA Technical Reports Server (NTRS)

    Peters, Robert

    2007-01-01

    A simplified diagram of a relatively inexpensive controller for a DiCon VX (or equivalent) fiber-optic switch -- an electromechanically actuated switch for optically connecting one or two input optical fibers to any of a number of output optical fibers is shown. DiCon VX fiber-optic switches are used primarily in research and development in the telecommunication industry. This controller can control any such switch having up to 32 output channels.

  2. Latching micro optical switch

    DOEpatents

    Garcia, Ernest J; Polosky, Marc A

    2013-05-21

    An optical switch reliably maintains its on or off state even when subjected to environments where the switch is bumped or otherwise moved. In addition, the optical switch maintains its on or off state indefinitely without requiring external power. External power is used only to transition the switch from one state to the other. The optical switch is configured with a fixed optical fiber and a movable optical fiber. The movable optical fiber is guided by various actuators in conjunction with a latching mechanism that configure the switch in one position that corresponds to the on state and in another position that corresponds to the off state.

  3. All-optical switching application based on optical nonlinearity of Yb(3+) doped aluminosilicate glass fiber with a long-period fiber gratings pair.

    PubMed

    Kim, Yune; Kim, Nam; Chung, Youngjoo; Paek, Un-Chul; Han, Won-Taek

    2004-02-23

    We propose a new fiber-type all-optical switching device based on the optical nonlinearity of Yb(3+) doped fiber and a long-period fiber gratings(LPG) pair. The all-optical ON-OFF switching with the continuous wave laser signal at ~1556nm in the LPG pair including the 25.5cm long Yb(3+) doped fiber was demonstrated up to ~200Hz upon pumping with the modulated square wave pulses at 976nm, where a full optical switching with the ~18dB extinction ratio was obtained at the launched pump power of ~35mW.

  4. An electromagnetically actuated fiber optic switch using magnetized ferromagnetic materials

    NASA Astrophysics Data System (ADS)

    Pandojirao-S, Praveen; Dhaubanjar, Naresh; Phuyal, Pratibha C.; Chiao, Mu; Chiao, J.-C.

    2008-03-01

    This paper presents the design, fabrication and testing of a fiber optic switch actuated electromagnetically. The ferromagnetic gel coated optical fiber is actuated using external electromagnetic fields. The ferromagnetic gel consists of ferromagnetic powders dispersed in epoxy. The fabrication utilizes a simple cost-effective coating setup. A direct fiberto-fiber alignment eliminates the need for complementary optical parts and the displacement of fiber switches the laser coupling. The magnetic characteristics of magnetized ferromagnetic materials are performed using alternating gradient magnetometer and the magnetic hysteresis curves are measured for different ferromagnetic materials including iron, cobalt, and nickel. Optical fiber switches with various fiber lengths are actuated and their static and dynamic responses for the same volume of ferromagnetic gel are summarized. The highest displacement is 1.345 mm with an input current of 260mA. In this paper, the performance of fiber switches with various coating materials is presented.

  5. Methods and apparatus for optical switching using electrically movable optical fibers

    DOEpatents

    Peterson, Kenneth A [Albuquerque, NM

    2007-03-13

    Methods and apparatuses for electrically controlled optical switches are presented. An electrically controlled optical switch includes a fixture formed using a laminated dielectric material, a first optical fiber having a fixed segment supported by the fixture and a movable segment extending into a cavity, a second optical fiber having a fixed segment supported by the fixture and an extended segment where an optical interconnect may be established between the first optical fiber and the second optical fiber, and a first electrical actuator functionally coupled to the fixture and the first fiber which alters a position of the moveable segment, based upon a control signal, for changing a state of the optical interconnect between one of two states.

  6. Optical switch

    DOEpatents

    Reedy, R.P.

    1985-01-18

    An optical switching device is provided whereby light from a first glass fiber or a second glass fiber may be selectively transmitted into a third glass fiber. Each glass fiber is provided with a focusing and collimating lens system. In one mode of operation, light from the first glass fiber is reflected by a planar mirror into the third glass fiber. In another mode of operation, light from the second glass fiber passes directly into the third glass fiber. The planar mirror is attached to a rotatable table which is rotated to provide the optical switching.

  7. Optical switch

    DOEpatents

    Reedy, R.P.

    1987-11-10

    An optical switching device is provided whereby light from a first glass fiber or a second glass fiber may be selectively transmitted into a third glass fiber. Each glass fiber is provided with a focusing and collimating lens system. In one mode of operation, light from the first glass fiber is reflected by a planar mirror into the third glass fiber. In another mode of operation, light from the second glass fiber passes directly into the third glass fiber. The planar mirror is attached to a rotatable table which is rotated to provide the optical switching. 3 figs.

  8. Power inverter with optical isolation

    DOEpatents

    Duncan, Paul G.; Schroeder, John Alan

    2005-12-06

    An optically isolated power electronic power conversion circuit that includes an input electrical power source, a heat pipe, a power electronic switch or plurality of interconnected power electronic switches, a mechanism for connecting the switch to the input power source, a mechanism for connecting comprising an interconnecting cable and/or bus bar or plurality of interconnecting cables and/or input bus bars, an optically isolated drive circuit connected to the switch, a heat sink assembly upon which the power electronic switch or switches is mounted, an output load, a mechanism for connecting the switch to the output load, the mechanism for connecting including an interconnecting cable and/or bus bar or plurality of interconnecting cables and/or output bus bars, at least one a fiber optic temperature sensor mounted on the heat sink assembly, at least one fiber optic current sensor mounted on the load interconnection cable and/or output bus bar, at least one fiber optic voltage sensor mounted on the load interconnection cable and/or output bus bar, at least one fiber optic current sensor mounted on the input power interconnection cable and/or input bus bar, and at least one fiber optic voltage sensor mounted on the input power interconnection cable and/or input bus bar.

  9. Demonstration of pulse controlled all-optical switch/modulator.

    PubMed

    Akin, Osman; Dinleyici, M S

    2014-03-15

    An all-optical pulse controlled switch/modulator based on evanescent coupling between a polymer slab waveguide and a single mode fiber is demonstrated. Very fast all-optical modulation/switching is achieved via Kerr effect of the nonlinear polymer placed in the evanescent region of the optical fiber. Local refractive index perturbation (Δn=-1.45612×10(-5)) on the thin film leads to 0.374 nW power modulation at the fiber output, which results in a switching efficiency of ≈1.5%.

  10. Magneto-optic garnet and liquid crystal optical switches

    NASA Technical Reports Server (NTRS)

    Krawczak, J. A.; Torok, E. J.; Harvey, W. A.; Hewitt, F. G.; Nelson, G. L.

    1984-01-01

    Magnetic stripe domain and liquid crystal devices are being developed and evaluated as fiber optic switches that can be utilized for nonblocking type nxm optical matrix switches in networking and optical processing. Liquid crystal switches are characterized by very low insertion loss and crosstalk, while stripe domain switches commutate in less than one microsecond. Both switches operate on multimode, randomly polarized fiber light with potentially large values for (n,m). The applications of these magnetic stripe domain and liquid crystal devices are discussed.

  11. Micromachined mirrors for raster-scanning displays and optical fiber switches

    NASA Astrophysics Data System (ADS)

    Hagelin, Paul Merritt

    Micromachines and micro-optics have the potential to shrink the size and cost of free-space optical systems, enabling a new generation of high-performance, compact projection displays and telecommunications equipment. In raster-scanning displays and optical fiber switches, a free-space optical beam can interact with multiple tilt- up micromirrors fabricated on a single substrate. The size, rotation angle, and flatness of the mirror surfaces determine the number of pixels in a raster-display or ports in an optical switch. Single-chip and two-chip optical raster display systems demonstrate static mirror curvature correction, an integrated electronic driver board, and dynamic micromirror performance. Correction for curvature caused by a stress gradient in the micromirror leads to resolution of 102 by 119 pixels in the single-chip display. The optical design of the two-chip display features in-situ mirror curvature measurement and adjustable image magnification with a single output lens. An electronic driver board synchronizes modulation of the optical source with micromirror actuation for the display of images. Dynamic off-axis mirror motion is shown to have minimal influence on resolution. The confocal switch, a free-space optical fiber cross- connect, incorporates micromirrors having a design similar to the image-refresh scanner. Two micromirror arrays redirect optical beams from an input fiber array to the output fibers. The switch architecture supports simultaneous switching of multiple wavelength channels. A 2x2 switch configuration, using single-mode optical fiber at 1550 mn, is demonstrated with insertion loss of -4.2 dB and cross-talk of -50.5 dB. The micromirrors have sufficient size and angular range for scaling to a 32x32 cross-connect switch that has low insertion-loss and low cross-talk.

  12. All-optical phase shifter and switch near 1550nm using tungsten disulfide (WS2) deposited tapered fiber.

    PubMed

    Wu, Kan; Guo, Chaoshi; Wang, Hao; Zhang, Xiaoyan; Wang, Jun; Chen, Jianping

    2017-07-24

    All-optical phase shifters and switches play an important role for various all-optical applications including all-optical signal processing, sensing and communication. In this paper, we demonstrate a fiber all-optical phase shifter using few-layer 2D material tungsten disulfide (WS 2 ) deposited on a tapered fiber. WS 2 absorbs injected 980 nm pump (control light) and generates heat, which changes the refractive index of both WS 2 and tapered fiber due to thermo-optic effect and achieves a maximum phase shift of 6.1π near 1550 nm. The device has a loss of 3.7 dB. By constructing a Mach-Zehnder interferometer with WS 2 based phase shifter in one arm, an all-optical switch is also obtained with an extinction ratio of 15 dB and a rise time of 7.3 ms. This all fiber low-cost and compact optical phase shifter and switch demonstrates the potential of 2D transition metal dichalcogenides for all-optical signal processing devices.

  13. Fiber-Optic Pyrometer with Optically Powered Switch for Temperature Measurements

    PubMed Central

    Pérez-Prieto, Sandra; López-Cardona, Juan D.; Blanco, Enrique; Moreno-López, Jorge

    2018-01-01

    We report the experimental results on a new infrared fiber-optic pyrometer for very localized and high-speed temperature measurements ranging from 170 to 530 °C using low-noise photodetectors and high-gain transimpedance amplifiers with a single gain mode in the whole temperature range. We also report a shutter based on an optical fiber switch which is optically powered to provide a reference signal in an optical fiber pyrometer measuring from 200 to 550 °C. The tests show the potential of remotely powering via optical means a 300 mW power-hungry optical switch at a distance of 100 m, avoiding any electromagnetic interference close to the measuring point. PMID:29415477

  14. Fiber-Optic Pyrometer with Optically Powered Switch for Temperature Measurements.

    PubMed

    Vázquez, Carmen; Pérez-Prieto, Sandra; López-Cardona, Juan D; Tapetado, Alberto; Blanco, Enrique; Moreno-López, Jorge; Montero, David S; Lallana, Pedro C

    2018-02-06

    We report the experimental results on a new infrared fiber-optic pyrometer for very localized and high-speed temperature measurements ranging from 170 to 530 °C using low-noise photodetectors and high-gain transimpedance amplifiers with a single gain mode in the whole temperature range. We also report a shutter based on an optical fiber switch which is optically powered to provide a reference signal in an optical fiber pyrometer measuring from 200 to 550 °C. The tests show the potential of remotely powering via optical means a 300 mW power-hungry optical switch at a distance of 100 m, avoiding any electromagnetic interference close to the measuring point.

  15. Optical switch

    DOEpatents

    Reedy, Robert P.

    1987-01-01

    An optical switching device (10) is provided whereby light from a first glass fiber (16) or a second glass fiber (14) may be selectively transmitted into a third glass fiber (18). Each glass fiber is provided with a focusing and collimating lens system (26, 28, 30). In one mode of operation, light from the first glass fiber (16) is reflected by a planar mirror (36) into the third glass fiber (18). In another mode of operation, light from the second glass fiber (14) passes directly into the third glass fiber (18). The planar mirror (36) is attached to a rotatable table (32) which is rotated to provide the optical switching.

  16. Quantum Zeno Blockade for Next Generation Optical Switching in Fiber Systems

    DTIC Science & Technology

    2013-09-01

    and utilized a self - referential quantum process tomography method to observe the Zeno effect in optical fiber using the ultrafast all- optical switch...controllable and can be used as a knob to study the core physics behind the Zeno-based switching. For this experiment, we developed a self - referential ...efficient optical communications. The quantum Zeno effect can be used to induce or inhibit optical switching through a variety of processes , all of

  17. Fiber optic crossbar switch for automatically patching optical signals

    NASA Technical Reports Server (NTRS)

    Bell, C. H. (Inventor)

    1983-01-01

    A system for automatically optically switching fiber optic data signals between a plurality of input optical fibers and selective ones of a plurality of output fibers is described. The system includes optical detectors which are connected to each of the input fibers for converting the optic data signals appearing at the respective input fibers to an RF signal. A plurality of RF to optical signal converters are arranged in rows and columns. The output of each of the optical detectors are each applied to a respective row of optical signal converted for being converters back to an optical signal when the particular optical signal converter is selectively activated by a dc voltage.

  18. Fiber-optical switch controlled by a single atom.

    PubMed

    O'Shea, Danny; Junge, Christian; Volz, Jürgen; Rauschenbeutel, Arno

    2013-11-08

    We demonstrate highly efficient switching of optical signals between two optical fibers controlled by a single atom. The key element of our experiment is a whispering-gallery-mode bottle microresonator, which is coupled to a single atom and interfaced by two tapered fiber couplers. This system reaches the strong coupling regime of cavity quantum electrodynamics, leading to a vacuum Rabi splitting in the excitation spectrum. We systematically investigate the switching efficiency of our system, i.e., the probability that the fiber-optical switch redirects the light into the desired output. We obtain a large redirection efficiency reaching a raw fidelity of more than 60% without postselection. Moreover, by measuring the second-order correlation functions of the output fields, we show that our switch exhibits a photon-number-dependent routing capability.

  19. Fiber-optical switch using cam-micromotor driven by scratch drive actuators

    NASA Astrophysics Data System (ADS)

    Kanamori, Y.; Aoki, Y.; Sasaki, M.; Hosoya, H.; Wada, A.; Hane, K.

    2005-01-01

    We fabricated a 1 × 1 fiber-optic switch using a cam-micromotor driven by scratch drive actuators (SDAs). Using the cam-micromotor, mechanical translation and precise positioning of an optical fiber were performed. An optical fiber of diameter 50 µm was bent and pushed out with a cam-mechanism driven by the SDAs fabricated by surface micromachining. The maximum rotation speed of the cam-micromotor was 7.5 rpm at a driving frequency of 1.5 kHz. The transient time of the switch to attenuate coupling efficiency less than -40 dB was around 10 ms.

  20. A Mechanical Switch Using Spectral Microshifts

    NASA Astrophysics Data System (ADS)

    Mitchell, Gordon L.; Saaski, Elric W.; Hartl, James C.

    1989-02-01

    Among the simplest fiber optic sensors, are those which operate in a binary fashion; they were the first sensor types to be developed. Early experiments with fiber bundles and shutters produced demonstrations of, for example, displacement sensors. Typical applications range from position sensing for aircraft landing gear to counting objects on a production line. Because they frequently replace electrical snap action switches, binary sensors are generally called optical switches. Optical switch applications account for a much larger market than the more complex analog measurements discussed in the balance of this volume. This paper presents an optical switch concept that uses a single fiber and is tolerant of back reflections. The sensor element is a low finesse Fabry-Perot pressure sensor which replaces the electrical contact in a conventional snap action switch.

  1. Optical fiber switch

    DOEpatents

    Early, James W.; Lester, Charles S.

    2002-01-01

    Optical fiber switches operated by electrical activation of at least one laser light modulator through which laser light is directed into at least one polarizer are used for the sequential transport of laser light from a single laser into a plurality of optical fibers. In one embodiment of the invention, laser light from a single excitation laser is sequentially transported to a plurality of optical fibers which in turn transport the laser light to separate individual remotely located laser fuel ignitors. The invention can be operated electro-optically with no need for any mechanical or moving parts, or, alternatively, can be operated electro-mechanically. The invention can be used to switch either pulsed or continuous wave laser light.

  2. Micro-Ball-Lens Optical Switch Driven by SMA Actuator

    NASA Technical Reports Server (NTRS)

    Yang, Eui-Hyeok

    2003-01-01

    The figure is a simplified cross section of a microscopic optical switch that was partially developed at the time of reporting the information for this article. In a fully developed version, light would be coupled from an input optical fiber to one of two side-by-side output optical fibers. The optical connection between the input and the selected output fiber would be made via a microscopic ball lens. Switching of the optical connection from one output fiber to another would be effected by using a pair of thin-film shape-memory-alloy (SMA) actuators to toggle the lens between two resting switch positions. There are many optical switches some made of macroscopic parts by conventional fabrication techniques and some that are microfabricated and, hence, belong to the class of microelectromechanical systems (MEMS). Conventionally fabricated optical switches tend to be expensive. MEMS switches can be mass-produced at relatively low cost, but their attractiveness has been diminished by the fact that, heretofore, MEMS switches have usually been found to exhibit high insertion losses. The present switch is intended to serve as a prototype of low-loss MEMS switches. In addition, this is the first reported SMA-based optical switch. The optical fibers would be held in V grooves in a silicon frame. The lens would have a diameter of 1 m; it would be held by, and positioned between, the SMA actuators, which would be made of thin films of TiNi alloy. Although the SMA actuators are depicted here as having simple shapes for the sake of clarity of illustration, the real actuators would have complex, partly net-like shapes. With the exception of the lens and the optical fibers, the SMA actuators and other components of the switch would be made by microfabrication techniques. The components would be assembled into a sandwich structure to complete the fabrication of the switch. To effect switching, an electric current would be passed through one of the SMA actuators to heat it above its transition temperature, thereby causing it to deform to a different "remembered" shape. The two SMA actuators would be stiff enough that once switching had taken place and the electrical current was turned off, the lens would remain latched in the most recently selected position. In a test, the partially developed switch exhibited an insertion loss of only -1.9 dB and a switching contrast of 70 dB. One the basis of prior research on SMA actuators and assuming a lens displacement of 125 m between extreme positions, it has been estimated that the fully developed switch would be capable of operating at a frequency as high as 10 Hz.

  3. Nanomechanical Optical Fiber with Embedded Electrodes Actuated by Joule Heating.

    PubMed

    Lian, Zhenggang; Segura, Martha; Podoliak, Nina; Feng, Xian; White, Nicholas; Horak, Peter

    2014-07-31

    Nanomechanical optical fibers with metal electrodes embedded in the jacket were fabricated by a multi-material co-draw technique. At the center of the fibers, two glass cores suspended by thin membranes and surrounded by air form a directional coupler that is highly temperature-dependent. We demonstrate optical switching between the two fiber cores by Joule heating of the electrodes with as little as 0.4 W electrical power, thereby demonstrating an electrically actuated all-fiber microelectromechanical system (MEMS). Simulations show that the main mechanism for optical switching is the transverse thermal expansion of the fiber structure.

  4. Cost-effective optical switch matrix for microwave phased-array

    NASA Technical Reports Server (NTRS)

    Pan, J. J.; Chia, S. L.; Li, W. Z.; Grove, C. H.

    1991-01-01

    An all-fiber (6x6) optical shutter switch matrix with the control system for microwave phased array has been demonstrated. The device offers the advantages of integrated configuration, low cost, low power consumption, small size, and light weight. The maximum extinction ratio (among 36 individual pixel) of this switch matrix at 840 nm is 24.2 dB, and the switching time is less than 120 microsec. In addition to phased array application, this low cost switch matrix is extremely attractive for fiber optic switching networks.

  5. A novel micro/nano 1 × 4 mechanical optical switch

    NASA Astrophysics Data System (ADS)

    Lin, Wu-Lang; Fan, Kuang-Chao; Chiang, Li-Hung; Yang, Yao-Joe; Kuo, Wen-Cheng; Chung, Tien-Tung

    2006-07-01

    This paper presents the design, fabrication and testing of a novel 1 × 4 mechanical optical switch, whose components are fabricated by precision machining and MEMS technologies. The switch uses two relays as the two actuators whose switching direction is perpendicular to each other by an orthogonal arrangement. We adopt a direct fiber-to-fiber principle that aligns the input fiber directly to four output fibers. This configuration eliminates the use of traditional parts such as collimators, turning mirrors or prisms. In addition, due to the use of a fiber holder, the fiber position errors could be reduced to less than 0.27 µm using the two-stage geometry error reduction principle. We have successfully developed a simple and low-cost switch, which performs like most of the 1 × 4 mechanical optical switches that dominate the optics communications market. The advantages of our switch are a small size (20 × 20 × 25 mm3), low cost, high reliability, and the latching function does not need external force for maintaining the state. The experimental results showed that the insertion losses of the four channels are ch1: 0.68 dB, ch2: 1.49 dB, ch3: 0.71 dB and ch4: 0.97 dB. The switching time is 5 ms, the crosstalk <=80 dB. The reliability tests of the insertion loss after 10 000 cycles in four channels yield ch1: 1.67 dB, ch2: 1.63 dB, ch3: 0.75 dB and ch4: 0.98 dB. The size and the cost of our 1 × 4 mechanical optical switch are only about 1/5-1/10 and 1/10 of the series-connect-type and prism-type switches, respectively.

  6. The other fiber, the other fabric, the other way

    NASA Astrophysics Data System (ADS)

    Stephens, Gary R.

    1993-02-01

    Coaxial cable and distributed switches provide a way to configure high-speed Fiber Channel fabrics. This type of fabric provides a cost-effective alternative to a fabric of optical fibers and centralized cross-point switches. The fabric topology is a simple tree. Products using parallel busses require a significant change to migrate to a serial bus. Coaxial cables and distributed switches require a smaller technology shift for these device manufacturers. Each distributed switch permits both medium type and speed changes. The fabric can grow and bridge to optical fibers as the needs expand. A distributed fabric permits earlier entry into high-speed serial operations. For very low-cost fabrics, a distributed switch may permit a link configured as a loop. The loop eliminates half of the ports when compared to a switched point-to-point fabric. A fabric of distributed switches can interface to a cross-point switch fabric. The expected sequence of migration is: closed loops, small closed fabrics, and, finally, bridges, to connect optical cross-point switch fabrics. This paper presents the concept of distributed fabrics, including address assignment, frame routing, and general operation.

  7. Apparatus for weighing and identifying characteristics of a moving vehicle

    DOEpatents

    Muhs, Jeffrey D.; Jordan, John K.; Tobin, Jr., Kenneth W.; LaForge, John V.

    1993-01-01

    Apparatus for weighing a vehicle in motion is provided by employing a plurality of elongated fiber-optic sensors defined by an optical fiber embedded in an encasement of elastomeric material and disposed parallel to each other on the roadway in the path of moving vehicles. Each fiber-optic sensor is provided with contact grid means which can be selectively altered to provide the fiber-optic sensors with sensitivities to vehicular weight different from each other for weighing vehicles in an extended weight range. Switch means are used in conjunction with the fiber-optic sensors to provide signals indicative of the speed of the moving vehicle, the number of axles on the vehicle, weight distribution, tire position, and the wheelbase of the vehicle. The use of a generally N-shaped configuration of switch means also provides a determination of the number of tires on each axle and the tire footprint. When switch means in this configuration are formed of optical fibers, the extent of light transmission through the fibers during contact with the tires of the vehicle is indicative of the vehicle weight.

  8. Apparatus for weighing and identifying characteristics of a moving vehicle

    DOEpatents

    Muhs, J.D.; Jordan, J.K.; Tobin, K.W. Jr.; LaForge, J.V.

    1993-11-09

    Apparatus for weighing a vehicle in motion is provided by employing a plurality of elongated fiber-optic sensors defined by an optical fiber embedded in an encasement of elastomeric material and disposed parallel to each other on the roadway in the path of moving vehicles. Each fiber-optic sensor is provided with contact grid means which can be selectively altered to provide the fiber-optic sensors with sensitivities to vehicular weight different from each other for weighing vehicles in an extended weight range. Switch means are used in conjunction with the fiber-optic sensors to provide signals indicative of the speed of the moving vehicle, the number of axles on the vehicle, weight distribution, tire position, and the wheelbase of the vehicle. The use of a generally N-shaped configuration of switch means also provides a determination of the number of tires on each axle and the tire footprint. When switch means in this configuration are formed of optical fibers, the extent of light transmission through the fibers during contact with the tires of the vehicle is indicative of the vehicle weight. 15 figures.

  9. MEMS micromirrors for optical switching in multichannel spectrophotometers

    NASA Astrophysics Data System (ADS)

    Tuantranont, Adisorn; Lomas, Tanom; Bright, Victor M.

    2004-04-01

    This paper reports for the first time that a novel MEMS-based micromirror switch has successfully demonstrated for optical switching in a multi-channel fiber optics spectrophotometer system. The conventional optomechanical fiber optic switches for multi-channel spectrophotometers available in market are bulky, slow, low numbers of channels and expensive. Our foundry MEMS-based micromirror switch designed for integrating with commercially available spectrophotometers offers more compact devices, increased number of probing channels, higher performance and cheaper. Our MEMS-based micromirror switch is a surface micromachined mirror fabricated through MUMPs foundry. The 280 μm x 280 μm gold coated mirror is suspended by the double-gimbal structure for X and Y axis scanning. Self-assembly by solders is used to elevate the torsion mirror 30 μm over the substrate to achieve large scan angle. The solder self-assembly approach dramatically reduces the time to assembly the switch. The scan mirror is electrostatically controlled by applying voltages. The individual probing signal from each probing head is guided by fibers with collimated lenses and incidents on the center of the mirror. The operating scan angle is in the range of 3.5 degrees with driving voltage of 0-100 V. The fastest switching time of 4 millisecond (1 ms rise time and 3 ms fall time) is measured corresponding to the maximum speed of the mirror of 0.25 kHz when the mirror is scanning at +/- 1.5 degrees. The micromirror switch is packaged with a multi-mode fiber bundle using active alignment technique. A centered fiber is the output fiber that is connected to spectrophotometer. Maximum insertion loss of 5 dB has been obtained. The accuracy of measured spectral data is equivalent to the single channel spectrophotometer with a small degradation on probing signal due to fiber coupling.

  10. Precise measurement of single-mode fiber lengths using a gain-switched distributed feedback laser with delayed optical feedback.

    PubMed

    Wada, Kenji; Matsukura, Satoru; Tanaka, Amaka; Matsuyama, Tetsuya; Horinaka, Hiromichi

    2015-09-07

    A simple method to measure single-mode optical fiber lengths is proposed and demonstrated using a gain-switched 1.55-μm distributed feedback laser without a fast photodetector or an optical interferometer. From the variation in the amplified spontaneous emission noise intensity with respect to the modulation frequency of the gain switching, the optical length of a 1-km single-mode fiber immersed in water is found to be 1471.043915 m ± 33 μm, corresponding to a relative standard deviation of 2.2 × 10(-8). This optical length is an average value over a measurement time of one minute under ordinary laboratory conditions.

  11. Optical network scaling: roles of spectral and spatial aggregation.

    PubMed

    Arık, Sercan Ö; Ho, Keang-Po; Kahn, Joseph M

    2014-12-01

    As the bit rates of routed data streams exceed the throughput of single wavelength-division multiplexing channels, spectral and spatial traffic aggregation become essential for optical network scaling. These aggregation techniques reduce network routing complexity by increasing spectral efficiency to decrease the number of fibers, and by increasing switching granularity to decrease the number of switching components. Spectral aggregation yields a modest decrease in the number of fibers but a substantial decrease in the number of switching components. Spatial aggregation yields a substantial decrease in both the number of fibers and the number of switching components. To quantify routing complexity reduction, we analyze the number of multi-cast and wavelength-selective switches required in a colorless, directionless and contentionless reconfigurable optical add-drop multiplexer architecture. Traffic aggregation has two potential drawbacks: reduced routing power and increased switching component size.

  12. Fiber-optic beam control systems using microelectromechanical systems

    NASA Astrophysics Data System (ADS)

    Sumriddetchkajorn, Sarun

    This dissertation, for the first time, proposes, studies, and experimentally demonstrated novel fiber-optic beam control systems based on the use of microelectromechanical system (MEMS) technology in which the miniaturized versions of mechanical systems can be obtained. Beam control modules include optical add/drop filters, optical switches, variable photonic delay lines (VPDLs), and variable optical attenuators (VOAs). The optical add/drop filter functions as a multiwavelength optical switch that offers the ability to drop and add a certain number of desired wavelengths at an intermediate location where access to all the propagating optical channels is not required between transmission terminals. The VOA can also be used in networks where stocking and tracking of fixed attenuators is difficult. Other specific applications of the VOA are optical gain equalization and polarization dependent loss and gain compensation required in high data-rate wavelength division multiplexed (WDM) lightwave systems. A VPDL can be used to adjust timing amongst multiwavelength optical signals in order to reduce timing jitter and burst traffic in photonic packet switching and parallel signal processing systems. In this dissertation, a small tilt micromirror device is proposed for the implementation of all fiber-optic beam control modules. In particular, the macro-pixel approach where several micromirrors are used to manipulate the desired optical beam is introduced to realize high speed and fault tolerant beam control modules. To eliminate the need of careful optical alignment, an all fiber-connectorized multiwavelength optical switch structure is presented and experimentally demonstrated by using a fiber-loop mirror concept with polarization control. In addition, liquid crystal (LC) devices are studied and are used to implement a compact retro- reflective 2 x 2 fiber-optic switch. Compared to MEMS- based mirror technology, the LC technology is more sensitive to temperature, thereby inappropriate to deploy in a harsh environment. With the benefit provided by WDM systems, wavelength sensitive fiber-optic beam controllers are proposed, offering wavelength sensitive time delay and amplitude controls that can be applied in several applications ranging from optical communications to high speed parallel signal processing. (Abstract shortened by UMI.)

  13. Optical Power Transfer System for Powering a Remote Mobility System for Multiple Missions

    NASA Technical Reports Server (NTRS)

    Hogan, Bartholomew P. (Inventor); Stone, William C. (Inventor)

    2016-01-01

    An optical power transfer system for powering a remote mobility system for multiple missions comprising a high power source and a chilling station connected to a laser source. The laser source transmits a high optical energy to a beam switch assembly via an optical fiber. The beam switch assembly is optically connected to actively cooled fiber spoolers. Docking stations are adapted for securing the fiber spoolers until alternatively ready for use by a remote mobility system. The remote mobility system is optically connected to the fiber spoolers and has a receiving port adapted for securing the fiber spoolers thereon. The fiber spooler transmits the optical energy to a power conversion system which converts the optical energy received to another usable form of energy. More than one power source may be used where the remote mobility system transfers from one source to another while maintaining an operational radius to each source.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krasnov, Igor, E-mail: Igor.Krasnov@hzg.de; Müller, Martin, E-mail: Martin.Mueller@hzg.de; Institute of Materials Research, Helmholtz-Zentrum Geesthacht

    An optically active bio-material is created by blending natural silk fibers with photoisomerizable chromophore molecules—azobenzenebromide (AzBr). The material converts the energy of unpolarized light directly into mechanical work with a well-defined direction of action. The feasibility of the idea to produce optically driven microsized actuators on the basis of bio-material (silk) is proven. The switching behavior of the embedded AzBr molecules was studied in terms of UV/Vis spectroscopy. To test the opto-mechanical properties of the modified fibers and the structural changes they undergo upon optically induced switching, single fiber X-ray diffraction with a micron-sized synchrotron radiation beam was combined inmore » situ with optical switching as well as with mechanical testing and monitoring. The crystalline regions of silk are not modified by the presence of the guest molecules, hence occupy only the amorphous part of the fibers. It is shown that chromophore molecules embedded into fibers can be reversibly switched between the trans and cis conformation by illumination with light of defined wavelengths. The host fibers respond to this switching with a variation of the internal stress. The amplitude of the mechanical response is independent of the applied external stress and its characteristic time is shorter than the relaxation time of the usual mechanical response of silk.« less

  15. Innovative architecture of switching device for expanding the applications in fiber to the home (FTTH)

    NASA Astrophysics Data System (ADS)

    Mahmoud, Mohamed; Fayed, Heba A.; Aly, Moustafa H.; Aboul Seoud, A. K.

    2011-08-01

    A new device, optical cross add drop multiplexer (OXADM), is proposed and analyzed. It uses the combination concept of optical add drop multiplexer (OADM) and optical cross connect (OXC). It enables a wavelength switch while implementing add and drop functions simultaneously. So, it expands the applications in fiber to the home (FTTH) and optical core networks. A very high isolation crosstalk level (~ 60 dB) is achieved. Also, a bidirectional OXADM and N×N OXADM are proposed. Finally, a multistage OXADM is presented making some sort of wavelength buffering. To make these devices operate more efficient, tunable fiber Bragg gratings (TFBGs) switches are used to control the operation mechanism.

  16. An actively Q-switched fiber laser with cylindrical vector beam generation

    NASA Astrophysics Data System (ADS)

    Zhang, Jiaojiao; Zhang, Zuxing; Cai, Yu; Wan, Hongdan; Wang, Zhiqiang; Zhang, Lin

    2018-03-01

    We demonstrate an actively Q-switched fiber laser with cylindrical vector beam (CVB) emission using a few-mode fiber Bragg grating as the mode selection component and an acousto-optic modulator to achieve Q-switching. To the best of our knowledge, this is the first such demonstration. Using a linear cavity configuration, an actively Q-switched CVB with a pulse width of about 64 ns, a pulse energy of 4.25 µJ and a repetition rate of 20 kHz has been obtained. Moreover, by tuning the polarization controllers radially and azimuthally, polarized Q-switched beams can be excited separately with a polarization purity of  >94.5%. This compact Q-switched fiber laser with ns CVB pulse output could find potential applications in the field of material processing, nonlinear optics and so on.

  17. Fiber-optic interconnection networks for spacecraft

    NASA Technical Reports Server (NTRS)

    Powers, Robert S.

    1992-01-01

    The overall goal of this effort was to perform the detailed design, development, and construction of a prototype 8x8 all-optical fiber optic crossbar switch using low power liquid crystal shutters capable of operation in a network with suitable fiber optic transmitters and receivers at a data rate of 1 Gb/s. During the earlier Phase 1 feasibility study, it was determined that the all-optical crossbar system had significant advantages compared to electronic crossbars in terms of power consumption, weight, size, and reliability. The result is primarily due to the fact that no optical transmitters and receivers are required for electro-optic conversion within the crossbar switch itself.

  18. Acousto-Optic Q-Switched Fiber Laser-Based Intra-Cavity Photoacoustic Spectroscopy for Trace Gas Detection

    PubMed Central

    Zhang, Qinduan; Chang, Jun; Wang, Zongliang; Wang, Fupeng; Qin, Zengguang

    2017-01-01

    We proposed a new method for gas detection in photoacoustic spectroscopy based on acousto-optic Q-switched fiber laser by merging a transmission PAS cell (resonant frequency f0 = 5.3 kHz) inside the fiber laser cavity. The Q-switching was achieved by an acousto-optic modulator, achieving a peak pulse power of ~679 mW in the case of the acousto-optic modulation signal with an optimized duty ratio of 10%. We used a custom-made fiber Bragg grating with a central wavelength of 1530.37 nm (the absorption peak of C2H2) to select the laser wavelength. The system achieved a linear response (R2 = 0.9941) in a concentration range from 400 to 7000 ppmv, and the minimum detection limit compared to that of a conventional intensity modulation system was enhanced by 94.2 times. PMID:29295599

  19. Acousto-Optic Q-Switched Fiber Laser-Based Intra-Cavity Photoacoustic Spectroscopy for Trace Gas Detection.

    PubMed

    Zhang, Qinduan; Chang, Jun; Wang, Qiang; Wang, Zongliang; Wang, Fupeng; Qin, Zengguang

    2017-12-25

    We proposed a new method for gas detection in photoacoustic spectroscopy based on acousto-optic Q-switched fiber laser by merging a transmission PAS cell (resonant frequency f ₀ = 5.3 kHz) inside the fiber laser cavity. The Q-switching was achieved by an acousto-optic modulator, achieving a peak pulse power of ~679 mW in the case of the acousto-optic modulation signal with an optimized duty ratio of 10%. We used a custom-made fiber Bragg grating with a central wavelength of 1530.37 nm (the absorption peak of C₂H₂) to select the laser wavelength. The system achieved a linear response (R² = 0.9941) in a concentration range from 400 to 7000 ppmv, and the minimum detection limit compared to that of a conventional intensity modulation system was enhanced by 94.2 times.

  20. Monolithic, High-Speed Fiber-Optic Switching Array for Lidar

    NASA Technical Reports Server (NTRS)

    Suckow, Will; Roberts, Tony; Switzer, Gregg; Terwilliger, Chelle

    2011-01-01

    Current fiber switch technologies use mechanical means to redirect light beams, resulting in slow switch time, as well as poor reliability due to moving parts wearing out quickly at high speeds. A non-mechanical ability to switch laser output into one of multiple fibers within a fiber array can provide significant power, weight, and costs savings to an all-fiber system. This invention uses an array of crystals that act as miniature prisms to redirect light as an electric voltage changes the prism s properties. At the heart of the electro-optic fiber-optic switch is an electro- optic crystal patterned with tiny prisms that can deflect the beam from the input fiber into any one of the receiving fibers arranged in a linear array when a voltage is applied across the crystal. Prism boundaries are defined by a net dipole moment in the crystal lattice that has been poled opposite to the surrounding lattice fabricated using patterned, removable microelectrodes. When a voltage is applied across the crystal, the resulting electric field changes the index of refraction within the prism boundaries relative to the surrounding substrate, causing light to deflect slightly according to Snell s Law. There are several materials that can host the necessary monolithic poled pattern (including, but not limited to, SLT, KTP, LiNbO3, and Mg:LiNbO3). Be cause this is a solid-state system without moving parts, it is very fast, and does not wear down easily. This invention is applicable to all fiber networks, as well as industries that use such networks. The unit comes in a compact package, can handle both low and high voltages, and has a high reliability (100,000 hours without maintenance).

  1. Large optical 3D MEMS switches in access networks

    NASA Astrophysics Data System (ADS)

    Madamopoulos, Nicholas; Kaman, Volkan; Yuan, Shifu; Jerphagnon, Olivier; Helkey, Roger; Bowers, John E.

    2007-09-01

    Interest is high among residential customers and businesses for advanced, broadband services such as fast Internet access, electronic commerce, video-on-demand, digital broadcasting, teleconferencing and telemedicine. In order to satisfy such growing demand of end-customers, access technologies such as fiber-to-the-home/building (FTTH/B) are increasingly being deployed. Carriers can reduce maintenance costs, minimize technology obsolescence and introduce new services easily by reducing active elements in the fiber access network. However, having a passive optical network (PON) also introduces operational and maintenance challenges. Increased diagnostic monitoring capability of the network becomes a necessity as more and more fibers are provisioned to deliver services to the end-customers. This paper demonstrates the clear advantages that large 3D optical MEMS switches offer in solving these access network problems. The advantages in preventative maintenance, remote monitoring, test and diagnostic capability are highlighted. The low optical insertion loss for all switch optical connections of the switch enables the monitoring, grooming and serving of a large number of PON lines and customers. Furthermore, the 3D MEMS switch is transparent to optical wavelengths and data formats, thus making it easy to incorporate future upgrades, such higher bit rates or DWDM overlay to a PON.

  2. Novel optoelectronic devices; Proceedings of the Meeting, The Hague, Netherlands, Mar. 31-Apr. 2, 1987

    NASA Technical Reports Server (NTRS)

    Adams, Michael J. (Editor)

    1987-01-01

    The present conference on novel optoelectronics discusses topics in the state-of-the-art in this field in the Netherlands, quantum wells, integrated optics, nonlinear optical devices and fiber-optic-based devices, ultrafast optics, and nonlinear optics and optical bistability. Attention is given to the production of fiber-optics for telecommunications by means of PCVD, lifetime broadening in quantum wells, nonlinear multiple quantum well waveguide devices, tunable single-wavelength lasers, an Si integrated waveguiding polarimeter, and an electrooptic light modulator using long-range surface plasmons. Also discussed are backward-wave couplers and reflectors, a wavelength-selective all-fiber switching matrix, the impact of ultrafast optics in high-speed electronics, the physics of low energy optical switching, and all-optical logical elements for optical processing.

  3. Optical bandwidth in coupling: the multicore photonic switch.

    PubMed

    Attard, Alfred E

    2003-05-20

    In the present study, the bandwidth of a photonic switch described previously [Appl. Opt. 37,2296 (1998); 38, 3239 (1999)] is evaluated. First the optical bandwidth is evaluated for coupling between two fiber-core waveguides, in which the cores are embedded within the same cladding. Then the coupling bandwidth is determined for a fiber-core-to-slab-core waveguide, in which the cores are embedded within the same cladding. These bandwidths are then compared and contrasted with the bandwidths of the photonic switch, which consists of two fiber cores and a control waveguide. Two configurations of the photonic switch are considered: one in which the control waveguide is a fiber core and one in which the control waveguide is a slab core. For the photonic switch, the bandwidth characteristics are more complicated than for the coupled pairs, and these characteristics are discussed in detail.

  4. Hollow fiber optics with improved durability for high-peak-power pulses of Q-switched Nd:YAG lasers.

    PubMed

    Matsuura, Yuji; Tsuchiuchi, Akio; Noguchi, Hiroshi; Miyagi, Mitsunobu

    2007-03-10

    To improve the damage threshold of hollow optical waveguides for transmitting Q-switched Nd:YAG laser pulses, we optimize the metallization processes for the inner coating of fibers. For silver-coated hollow fiber as the base, second, and third Nd:YAG lasers, drying silver films at a moderate temperature and with inert gas flow is found to be effective. By using this drying process, the resistance to high-peak-power optical pulse radiation is drastically improved for fibers fabricated with and without the sensitizing process. The maximum peak power transmitted in the fiber is greater than 20 MW. To improve the energy threshold of aluminum-coated hollow fibers for the fourth and fifth harmonics of Nd:YAG lasers, a thin silver film is added between the aluminum film and the glass substrate to increase adhesion of the aluminum coating. By using this primer layer, the power threshold improves to 3 MW for the fourth harmonics of a Q-switched Nd:YAG laser light.

  5. Spatial-mode switchable ring fiber laser based on low mode-crosstalk all-fiber mode MUX/DEMUX

    NASA Astrophysics Data System (ADS)

    Ren, Fang; Yu, Jinyi; Wang, Jianping

    2018-05-01

    We report an all-fiber ring laser that emits linearly polarized (LP) modes based on the intracavity all-fiber mode multiplexer/demultiplexer (MUX/DEMUX). Multiple LP modes in ring fiber laser are generated by taking advantage of mode MUX/DEMUX. The all-fiber mode MUX/DEMUX are composed of cascaded mode-selective couplers (MSCs). The output lasing mode of the ring fiber laser can be switched among the three lowest-order LP modes by employing combination of a mode MUX and a simple N × 1 optical switch. The slope efficiencies, optical spectra and mode profiles are measured.

  6. NONLINEAR AND FIBER OPTICS: Propagation of femtosecond solitons in a fiber-optic loop

    NASA Astrophysics Data System (ADS)

    Zakhidov, É. A.; Mirtadzhiev, F. M.; Khaĭdarov, D. V.; Kuznetsov, A. V.; Okhotnikov, A. G.

    1991-03-01

    An investigation was made of the propagation of fundamental femtosecond soliton pulses in a fiber-optic loop, which is an element with promising applications in logic operations. It is shown that such a loop can filter off the nonsoliton component effectively. The conditions for high-contrast self-switching of fundamental solitons in a fiber-optic loop are identified.

  7. Design of a Multicast Optical Packet Switch Based on Fiber Bragg Grating Technology for Future Networks

    NASA Astrophysics Data System (ADS)

    Cheng, Yuh-Jiuh; Yeh, Tzuoh-Chyau; Cheng, Shyr-Yuan

    2011-09-01

    In this paper, a non-blocking multicast optical packet switch based on fiber Bragg grating technology with optical output buffers is proposed. Only the header of optical packets is converted to electronic signals to control the fiber Bragg grating array of input ports and the packet payloads should be transparently destined to their output ports so that the proposed switch can reduce electronic interfaces as well as the bit rate. The modulation and the format of packet payloads may be non-standard where packet payloads could also include different wavelengths for increasing the volume of traffic. The advantage is obvious: the proposed switch could transport various types of traffic. An easily implemented architecture which can provide multicast services is also presented. An optical output buffer is designed to queue the packets if more than one incoming packet should reach to the same destination output port or including any waiting packets in optical output buffer that will be sent to the output port at a time slot. For preserving service-packet sequencing and fairness of routing sequence, a priority scheme and a round-robin algorithm are adopted at the optical output buffer. The fiber Bragg grating arrays for both input ports and output ports are designed for routing incoming packets using optical code division multiple access technology.

  8. Advanced optical fiber communication systems

    NASA Astrophysics Data System (ADS)

    Kazovsky, Leonid G.

    1994-03-01

    Our research is focused on three major aspects of advanced optical fiber communication systems: dynamic wavelength division multiplexing (WDM) networks, fiber nonlinearities, and high dynamic range coherent analog optical links. In the area of WDM networks, we have designed and implemented two high-speed interface boards and measured their throughput and latency. Furthermore, we designed and constructed an experimental PSK/ASK transceiver that simultaneously transmits packet-switched ASK data and circuit-switched PSK data on the same optical carrier. In the area of fiber nonlinearities, we investigated the theoretical impact of modulation frequency on cross-phase modulation (XPM) in dispersive fibers. In the area of high dynamic range coherent analog optical links, we developed theoretical expressions for the RF power transfer ratio (or RF power gain) and the noise figure (NF) of angle-modulated links. We then compared the RF power gains and noise figures of these links to that of an intensity modulated direct detection (DD) link.

  9. Light driven optofluidic switch developed in a ZnO-overlaid microstructured optical fiber.

    PubMed

    Konidakis, Ioannis; Konstantaki, Maria; Tsibidis, George D; Pissadakis, Stavros

    2015-11-30

    A great challenge of Optofluidics remains the control of the fluidic properties of a photonic circuit by solely utilizing light. In this study, the development of a ZnO nanolayered microstructured optical fiber (MOF) Fabry-Perot interferometer is demonstrated, along with its fully reversible optofluidic switching behaviour. The actuation and switching principle is entirely based on the employment of light sources, i.e. UV 248 nm and green 532 nm lasers, while using modest irradiation doses. The synthesized ZnO within the MOF capillaries acts as a light triggered wettability transducer, allowing the controlled water filling and draining of the MOF Fabry-Perot cavity. The progression of the optofluidic cycle is monitored in situ with optical microscopy, while Fabry-Perot reflection spectra are monitored in real time to probe temporal infiltration behaviour. Finally, a first insight on the light triggered switching mechanism, employing photoluminescence and spectrophotometric measurements is presented. Results appear highly promising towards the design of smart in-fiber optofluidic light switching devices, suitable for actuating and sensing applications.

  10. Optical switches and switching methods

    DOEpatents

    Doty, Michael

    2008-03-04

    A device and method for collecting subject responses, particularly during magnetic imaging experiments and testing using a method such as functional MRI. The device comprises a non-metallic input device which is coupled via fiber optic cables to a computer or other data collection device. One or more optical switches transmit the subject's responses. The input device keeps the subject's fingers comfortably aligned with the switches by partially immobilizing the forearm, wrist, and/or hand of the subject. Also a robust nonmetallic switch, particularly for use with the input device and methods for optical switching.

  11. All-optical switching of magnetoresistive devices using telecom-band femtosecond laser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    He, Li; Chen, Jun-Yang; Wang, Jian-Ping, E-mail: jpwang@umn.edu, E-mail: moli@umn.edu

    Ultrafast all-optical switching of the magnetization of various magnetic systems is an intriguing phenomenon that can have tremendous impact on information storage and processing. Here, we demonstrate all-optical switching of GdFeCo alloy films using a telecom-band femtosecond fiber laser. We further fabricate Hall cross devices and electrically readout all-optical switching by measuring anomalous Hall voltage changes. The use of a telecom laser and the demonstrated all-optical switching of magnetoresistive devices represent the first step toward integration of opto-magnetic devices with mainstream photonic devices to enable novel optical and spintronic functionalities.

  12. A multi-ring optical packet and circuit integrated network with optical buffering.

    PubMed

    Furukawa, Hideaki; Shinada, Satoshi; Miyazawa, Takaya; Harai, Hiroaki; Kawasaki, Wataru; Saito, Tatsuhiko; Matsunaga, Koji; Toyozumi, Tatuya; Wada, Naoya

    2012-12-17

    We newly developed a 3 × 3 integrated optical packet and circuit switch-node. Optical buffers and burst-mode erbium-doped fiber amplifiers with the gain flatness are installed in the 3 × 3 switch-node. The optical buffer can prevent packet collisions and decrease packet loss. We constructed a multi-ring optical packet and circuit integrated network testbed connecting two single-ring networks and a client network by the 3 × 3 switch-node. For the first time, we demonstrated 244 km fiber transmission and 5-node hopping of multiplexed 14-wavelength 10 Gbps optical paths and 100 Gbps optical packets encapsulating 10 Gigabit Ethernet frames on the testbed. Error-free (frame error rate < 1 × 10(-4)) operation was achieved with optical packets of various packet lengths. In addition, successful avoidance of packet collisions by optical buffers was confirmed.

  13. [Intracranial pressure monitoring apparatus for clinical use balanced pressure sensors].

    PubMed

    Numoto, M

    1976-04-01

    Three types of pressure sensors, (1) electric pressure switch, (2) fiber optic pressure switch and (3) pressure indicating bag for intracranial pressure monitoring which were developed by the author are described. Advantages and disadvantages between them are also discussed. The electric pressure switch is relatively simple in construction but has a possibility of producing micro-shock hazard in case of accidental electric leakage. The fiber optic pressure switch is the safest for the micro shock but its structure is rather complicated and fragile. The pressure indicating bag is simple to make and durable to use. However, it has a hydrostatic effect.

  14. A liquid lens switching-based motionless variable fiber-optic delay line

    NASA Astrophysics Data System (ADS)

    Khwaja, Tariq Shamim; Reza, Syed Azer; Sheikh, Mumtaz

    2018-05-01

    We present a Variable Fiber-Optic Delay Line (VFODL) module capable of imparting long variable delays by switching an input optical/RF signal between Single Mode Fiber (SMF) patch cords of different lengths through a pair of Electronically Controlled Tunable Lenses (ECTLs) resulting in a polarization-independent operation. Depending on intended application, the lengths of the SMFs can be chosen accordingly to achieve the desired VFODL operation dynamic range. If so desired, the state of the input signal polarization can be preserved with the use of commercially available polarization-independent ECTLs along with polarization-maintaining SMFs (PM-SMFs), resulting in an output polarization that is identical to the input. An ECTL-based design also improves power consumption and repeatability. The delay switching mechanism is electronically-controlled, involves no bulk moving parts, and can be fully-automated. The VFODL module is compact due to the use of small optical components and SMFs that can be packaged compactly.

  15. Reconfigurable SDM Switching Using Novel Silicon Photonic Integrated Circuit.

    PubMed

    Ding, Yunhong; Kamchevska, Valerija; Dalgaard, Kjeld; Ye, Feihong; Asif, Rameez; Gross, Simon; Withford, Michael J; Galili, Michael; Morioka, Toshio; Oxenløwe, Leif Katsuo

    2016-12-21

    Space division multiplexing using multicore fibers is becoming a more and more promising technology. In space-division multiplexing fiber network, the reconfigurable switch is one of the most critical components in network nodes. In this paper we for the first time demonstrate reconfigurable space-division multiplexing switching using silicon photonic integrated circuit, which is fabricated on a novel silicon-on-insulator platform with buried Al mirror. The silicon photonic integrated circuit is composed of a 7 × 7 switch and low loss grating coupler array based multicore fiber couplers. Thanks to the Al mirror, grating couplers with ultra-low coupling loss with optical multicore fibers is achieved. The lowest total insertion loss of the silicon integrated circuit is as low as 4.5 dB, with low crosstalk lower than -30 dB. Excellent performances in terms of low insertion loss and low crosstalk are obtained for the whole C-band. 1 Tb/s/core transmission over a 2-km 7-core fiber and space-division multiplexing switching is demonstrated successfully. Bit error rate performance below 10 -9 is obtained for all spatial channels with low power penalty. The proposed design can be easily upgraded to reconfigurable optical add/drop multiplexer capable of switching several multicore fibers.

  16. Reconfigurable SDM Switching Using Novel Silicon Photonic Integrated Circuit

    NASA Astrophysics Data System (ADS)

    Ding, Yunhong; Kamchevska, Valerija; Dalgaard, Kjeld; Ye, Feihong; Asif, Rameez; Gross, Simon; Withford, Michael J.; Galili, Michael; Morioka, Toshio; Oxenløwe, Leif Katsuo

    2016-12-01

    Space division multiplexing using multicore fibers is becoming a more and more promising technology. In space-division multiplexing fiber network, the reconfigurable switch is one of the most critical components in network nodes. In this paper we for the first time demonstrate reconfigurable space-division multiplexing switching using silicon photonic integrated circuit, which is fabricated on a novel silicon-on-insulator platform with buried Al mirror. The silicon photonic integrated circuit is composed of a 7 × 7 switch and low loss grating coupler array based multicore fiber couplers. Thanks to the Al mirror, grating couplers with ultra-low coupling loss with optical multicore fibers is achieved. The lowest total insertion loss of the silicon integrated circuit is as low as 4.5 dB, with low crosstalk lower than -30 dB. Excellent performances in terms of low insertion loss and low crosstalk are obtained for the whole C-band. 1 Tb/s/core transmission over a 2-km 7-core fiber and space-division multiplexing switching is demonstrated successfully. Bit error rate performance below 10-9 is obtained for all spatial channels with low power penalty. The proposed design can be easily upgraded to reconfigurable optical add/drop multiplexer capable of switching several multicore fibers.

  17. Reconfigurable SDM Switching Using Novel Silicon Photonic Integrated Circuit

    PubMed Central

    Ding, Yunhong; Kamchevska, Valerija; Dalgaard, Kjeld; Ye, Feihong; Asif, Rameez; Gross, Simon; Withford, Michael J.; Galili, Michael; Morioka, Toshio; Oxenløwe, Leif Katsuo

    2016-01-01

    Space division multiplexing using multicore fibers is becoming a more and more promising technology. In space-division multiplexing fiber network, the reconfigurable switch is one of the most critical components in network nodes. In this paper we for the first time demonstrate reconfigurable space-division multiplexing switching using silicon photonic integrated circuit, which is fabricated on a novel silicon-on-insulator platform with buried Al mirror. The silicon photonic integrated circuit is composed of a 7 × 7 switch and low loss grating coupler array based multicore fiber couplers. Thanks to the Al mirror, grating couplers with ultra-low coupling loss with optical multicore fibers is achieved. The lowest total insertion loss of the silicon integrated circuit is as low as 4.5 dB, with low crosstalk lower than −30 dB. Excellent performances in terms of low insertion loss and low crosstalk are obtained for the whole C-band. 1 Tb/s/core transmission over a 2-km 7-core fiber and space-division multiplexing switching is demonstrated successfully. Bit error rate performance below 10−9 is obtained for all spatial channels with low power penalty. The proposed design can be easily upgraded to reconfigurable optical add/drop multiplexer capable of switching several multicore fibers. PMID:28000735

  18. Switching Matrix For Optical Signals

    NASA Technical Reports Server (NTRS)

    Grove, Charles H.

    1990-01-01

    Proposed matrix of electronically controlled shutters switches signals in optical fibers between multiple input and output channels. Size, weight, and power consumption reduced. Device serves as building block for small, low-power, broad-band television- and data-signal-switching systems providing high isolation between nominally disconnected channels.

  19. A novel fast optical switch based on two cascaded Terahertz Optical Asymmetric Demultiplexers (TOAD).

    PubMed

    Wang, Bing; Baby, Varghese; Tong, Wilson; Xu, Lei; Friedman, Michelle; Runser, Robert; Glesk, Ivan; Prucnal, Paul

    2002-01-14

    A novel optical switch based on cascading two terahertz optical asymmetric demultiplexers (TOAD) is presented. By utilizing the sharp edge of the asymmetric TOAD switching window profile, two TOAD switching windows are overlapped to produce a narrower aggregate switching window, not limited by the pulse propagation time in the SOA of the TOAD. Simulations of the cascaded TOAD switching window show relatively constant window amplitude for different window sizes. Experimental results on cascading two TOADs, each with a switching window of 8ps, but with the SOA on opposite sides of the fiber loop, show a minimum switching window of 2.7ps.

  20. Compact passively Q-switched single-frequency Er3+/Yb3+ codoped phosphate fiber laser

    NASA Astrophysics Data System (ADS)

    Zhang, Yuanfei; Wang, Simin; Lin, Wei; Mo, Shupei; Zhao, Qilai; Yang, Changsheng; Feng, Zhouming; Deng, Huaqiu; Peng, Mingying; Yang, Zhongmin; Xu, Shanhui

    2017-05-01

    We present a compact passively Q-switched single-frequency fiber laser based on a 12-mm-long laboratory-built highly Er3+/Yb3+ codoped phosphate fiber (EYDPF) and a semiconductor saturable absorber mirror (SESAM). An effective cavity length of less than 20 mm ensures the stable single-frequency operation of the Q-switched fiber laser. By employing a SESAM for Q-switching, a single-pulse energy of more than 34.4 nJ is realized with the narrowest pulse duration of 95 ns, and the repetition rate of the Q-switched fiber laser reaches over 600 kHz. In addition, the optical signal-to-noise ratio of the output laser is as high as 68.0 dB.

  1. Phase-sensitive fiber-based parametric all-optical switch.

    PubMed

    Parra-Cetina, Josué; Kumpera, Aleš; Karlsson, Magnus; Andrekson, Peter A

    2015-12-28

    We experimentally demonstrate, for the first time, an all-optical switch in a phase-sensitive fiber optic parametric amplifier operated in saturation. We study the effect of phase variation of the signal and idler waves on the pump power depletion. By changing the phase of a 0.9 mW signal/idler pair wave by π/2 rad, a pump power extinction ratio of 30.4 dB is achieved. Static and dynamic characterizations are also performed and time domain results presented.

  2. Proposal of optical mode switch

    NASA Astrophysics Data System (ADS)

    Takakura, Ryuta; Jizodo, Makoto; Fujino, Asuka; Tanaka, Tatsushi; Hamamoto, Kiichi

    2014-08-01

    Here, we propose a novel optical mode switch, which is a new concept of the optical switch. It can overcome the matrix size limitation issue, which has been a general issue for the waveguide optical space switch, because of its simple fiber coupling configuration. In addition, it contributes to the lossless mux/demux function such as wavelength multiplexing with powerless mode conversion unlike wavelength conversion. In this paper, we propose the principle of the optical mode switch. The simulation results showed less than -30 dB mode crosstalk, with less than only 0.1 dB excess loss for a two-mode optical switch. Moreover, the scalable configuration up to four modes is also proposed in this paper.

  3. Optimization of a Fabry-Perot Q-switch fiber optic laser

    NASA Astrophysics Data System (ADS)

    Armas Rivera, Ivan; Beltrán Pérez, Georgina; Kuzin, Evgene; Castillo Mixcóatl, Juan; Muñoz Aguirre, Severino

    2013-11-01

    Optical fiber Q-Switch lasers have been used in a variety of application areas in science as well as in industry owing to their multiple characteristics. A possible application is that owing to their high output power they can be used as pumping sources for supercontinuum generation. Such source can be employed in optical coherence tomography (OCT) focused to dermatology. Therefore it is important to develop sources with emission wavelength that are not injurious to human skin. In the present work erbium doped fiber (EDF) was used owing that its emission wavelength (1550 nm) is adequate for this purpose. The most efficient way of achieving high power in a Q-Switch laser is optimizing all the parameters involved in the pulses generation, such as pumping power, active medium length and modulation frequency. The results show that using a fiber length of 7 meters is possible to get 10 μJ of energy, a peak power of 140 W, an average power of 27.5mW with temporal widths of 500 ns. The laser uses an acousto-optic device to modulate the internal loses inside the cavity. As highly reflecting mirrors, a Sagnac Interferometer and a Fiber Bragg Grating was employed.

  4. Improved wavelength coded optical time domain reflectometry based on the optical switch.

    PubMed

    Zhu, Ninghua; Tong, Youwan; Chen, Wei; Wang, Sunlong; Sun, Wenhui; Liu, Jianguo

    2014-06-16

    This paper presents an improved wavelength coded time-domain reflectometry based on the 2 × 1 optical switch. In this scheme, in order to improve the signal-noise-ratio (SNR) of the beat signal, the improved system used an optical switch to obtain wavelength-stable, low-noise and narrow optical pulses for probe and reference. Experiments were set up to demonstrate a spatial resolution of 2.5m within a range of 70km and obtain the beat signal with line width narrower than 15 MHz within a range of 50 km in fiber break detection. A system for wavelength-division-multiplexing passive optical network (WDM-PON) monitoring was also constructed to detect the fiber break of different channels by tuning the current applied on the gating section of the distributed Bragg reflector (DBR) laser.

  5. Asynchronous transfer mode distribution network by use of an optoelectronic VLSI switching chip.

    PubMed

    Lentine, A L; Reiley, D J; Novotny, R A; Morrison, R L; Sasian, J M; Beckman, M G; Buchholz, D B; Hinterlong, S J; Cloonan, T J; Richards, G W; McCormick, F B

    1997-03-10

    We describe a new optoelectronic switching system demonstration that implements part of the distribution fabric for a large asynchronous transfer mode (ATM) switch. The system uses a single optoelectronic VLSI modulator-based switching chip with more than 4000 optical input-outputs. The optical system images the input fibers from a two-dimensional fiber bundle onto this chip. A new optomechanical design allows the system to be mounted in a standard electronic equipment frame. A large section of the switch was operated as a 208-Mbits/s time-multiplexed space switch, which can serve as part of an ATM switch by use of an appropriate out-of-band controller. A larger section with 896 input light beams and 256 output beams was operated at 160 Mbits/s as a slowly reconfigurable space switch.

  6. Experimental demonstration of tunable multiple optical orthogonal codes sequences-based optical label for optical packets switching

    NASA Astrophysics Data System (ADS)

    Zhang, Chongfu; Qiu, Kun; Zhou, Heng; Ling, Yun; Wang, Yawei; Xu, Bo

    2010-03-01

    In this paper, the tunable multiple optical orthogonal codes sequences (MOOCS)-based optical label for optical packet switching (OPS) (MOOCS-OPS) is experimentally demonstrated for the first time. The tunable MOOCS-based optical label is performed by using fiber Bragg grating (FBG)-based optical en/decoders group and optical switches configured by using Field Programmable Gate Array (FPGA), and the optical label is erased by using Semiconductor Optical Amplifier (SOA). Some waveforms of the MOOCS-based optical label, optical packet including the MOOCS-based optical label and the payloads are obtained, the switching control mechanism and the switching matrix are discussed, the bit error rate (BER) performance of this system is also studied. These experimental results show that the tunable MOOCS-OPS scheme is effective.

  7. Fiber optic interconnect and optoelectronic packaging challenges for future generation avionics

    NASA Astrophysics Data System (ADS)

    Beranek, Mark W.

    2007-02-01

    Forecasting avionics industry fiber optic interconnect and optoelectronic packaging challenges that lie ahead first requires an assumption that military avionics architectures will evolve from today's centralized/unified concept based on gigabit laser, optical-to-electrical-to-optical switching and optical backplane technology, to a future federated/distributed or centralized/unified concept based on gigabit tunable laser, electro-optical switch and add-drop wavelength division multiplexing (WDM) technology. The requirement to incorporate avionics optical built-in test (BIT) in military avionics fiber optic systems is also assumed to be correct. Taking these assumptions further indicates that future avionics systems engineering will use WDM technology combined with photonic circuit integration and advanced packaging to form the technical basis of the next generation military avionics onboard local area network (LAN). Following this theme, fiber optic cable plants will evolve from today's multimode interconnect solution to a single mode interconnect solution that is highly installable, maintainable, reliable and supportable. Ultimately optical BIT for fiber optic fault detection and isolation will be incorporated as an integral part of a total WDM-based avionics LAN solution. Cost-efficient single mode active and passive photonic component integration and packaging integration is needed to enable reliable operation in the harsh military avionics application environment. Rugged multimode fiber-based transmitters and receivers (transceivers) with in-package optical BIT capability are also needed to enable fully BIT capable single-wavelength fiber optic links on both legacy and future aerospace platforms.

  8. Impairments Computation for Routing Purposes in a Transparent-Access Optical Network Based on Optical CDMA and WDM

    NASA Astrophysics Data System (ADS)

    Musa, Ahmed

    2016-06-01

    Optical access networks are becoming more widespread and the use of multiple services might require a transparent optical network (TON). Multiplexing and privacy could benefit from the combination of wavelength division multiplexing (WDM) and optical coding (OC) and wavelength conversion in optical switches. The routing process needs to be cognizant of different resource types and characteristics such as fiber types, fiber linear impairments such as attenuation, dispersion, etc. as well as fiber nonlinear impairments such as four-wave mixing, cross-phase modulation, etc. Other types of impairments, generated by optical nodes or photonic switches, also affect the signal quality (Q) or the optical signal to noise ratio (OSNR), which is related to the bit error rate (BER). Therefore, both link and switch impairments must be addressed and somehow incorporated into the routing algorithm. However, it is not practical to fully integrate all photonic-specific attributes in the routing process. In this study, new routing parameters and constraints are defined that reflect the distinct characteristics of photonic networking. These constraints are applied to the design phase of TON and expressed as a cost or metric form that will be used in the network routing algorithm.

  9. Selenium semiconductor core optical fibers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tang, G. W.; Qian, Q., E-mail: qianqi@scut.edu.cn; Peng, K. L.

    2015-02-15

    Phosphate glass-clad optical fibers containing selenium (Se) semiconductor core were fabricated using a molten core method. The cores were found to be amorphous as evidenced by X-ray diffraction and corroborated by Micro-Raman spectrum. Elemental analysis across the core/clad interface suggests that there is some diffusion of about 3 wt % oxygen in the core region. Phosphate glass-clad crystalline selenium core optical fibers were obtained by a postdrawing annealing process. A two-cm-long crystalline selenium semiconductor core optical fibers, electrically contacted to external circuitry through the fiber end facets, exhibit a three times change in conductivity between dark and illuminated states. Suchmore » crystalline selenium semiconductor core optical fibers have promising utility in optical switch and photoconductivity of optical fiber array.« less

  10. Blue Flag Distributed Wargaming System

    DTIC Science & Technology

    1992-07-01

    combat simulation , and multi- site video teleconferencing (VTC). The Warrior Flag 90 feasibility demonstration was sponsored by the 4441st Tactical...provide RS-422 cross patching, loop -back and test points. At the hub six CSUs and two fiber optic modems were cabled in the normal-thru configuration...spare crypto or the fiber optic modem may be placed on-line via a patch. Loop plugs were provided for testing. Clock switches were provided to switch

  11. Bidirectional optical bistability in a dual-pumped erbium doped fiber ring laser.

    PubMed

    Lai, W J; Shum, P; Binh, L

    2004-11-15

    We investigate bidirectional optical wave propagations in a dual-pumped erbium doped fiber ring laser without isolator, and observe optical bistability behaviors. Consequently, we propose and construct a NOLM-NALM fiber ring laser to demonstrate and exploit this bidirectional optical bistability phenomenon in optical switching by introducing two tunable variable ratio couplers in the system. Numerical analyses based on the proposed laser structure have also been demonstrated corroborated with the experimental results.

  12. Actively Q-switched dual-wavelength pumped Er3+ :ZBLAN fiber laser at 3.47 µm.

    PubMed

    Bawden, Nathaniel; Matsukuma, Hiraku; Henderson-Sapir, Ori; Klantsataya, Elizaveta; Tokita, Shigeki; Ottaway, David J

    2018-06-01

    We demonstrate the first actively Q-switched fiber laser operating in the 3.5 μm regime. The dual-wavelength pumped system makes use of an Er 3+ doped ZBLAN fiber and a germanium acousto-optic modulator. Robust Q-switching saw a pulse energy of 7.8 μJ achieved at a repetition rate of 15 kHz, corresponding to a peak power of 14.5 W.

  13. A time-domain fluorescence diffusion optical tomography system for breast tumor diagnosis

    NASA Astrophysics Data System (ADS)

    Zhang, Wei; Gao, Feng; Wu, LinHui; Ma, Wenjuan; Yang, Fang; Zhou, Zhongxing; Zhang, Limin; Zhao, Huijuan

    2011-02-01

    A prototype time-domain fluorescence diffusion optical tomography (FDOT) system using near-infrared light is presented. The system employs two pulsed light sources, 32 source fibers and 32 detection channels, working separately for acquiring the temporal distribution of the photon flux on the tissue surface. The light sources are provided by low power picosecond pulsed diode lasers at wavelengths of 780 nm and 830 nm, and a 1×32-fiber-optic-switch sequentially directs light sources to the object surface through 32 source fibers. The light signals re-emitted from the object are collected by 32 detection fibers connected to four 8×1 fiber-optic-switch and then routed to four time-resolved measuring channels, each of which consists of a collimator, a filter wheel, a photomultiplier tube (PMT) photon-counting head and a time-correlated single photon counting (TCSPC) channel. The performance and efficacy of the designed multi-channel PMT-TCSPC system are assessed by reconstructing the fluorescent yield and lifetime images of a solid phantom.

  14. Multilocation Video Conference By Optical Fiber

    NASA Astrophysics Data System (ADS)

    Gray, Donald J.

    1982-10-01

    An experimental system that permits interconnection of many offices in a single video conference is described. Video images transmitted to conference participants are selected by the conference chairman and switched by a microprocessor-controlled video switch. Speakers can, at their choice, transmit their own images or images of graphics they wish to display. Users are connected to the Switching Center by optical fiber subscriber loops that carry analog video, digitized telephone, data and signaling. The same system also provides user-selectable distribution of video program and video library material. Experience in the operation of the conference system is discussed.

  15. Wavelength-tunable Q-switched Raman fiber laser

    NASA Astrophysics Data System (ADS)

    Ye, Jun; Xu, Jiangming; Zhang, Hanwei; Wu, Jian; Zhou, Pu

    2018-03-01

    In this presentation, a wavelength-tunable Q-switched Raman fiber laser is presented for the first time, which has a backward pumped configuration, including a section of 3 km passive fiber, a homemade tunable pump source and a highly reflective fiber loop mirror. The output wavelength of the Raman fiber laser can be tuned continuously with ~44 nm range via adjusting the pump wavelength. By inserting an acoustic-optical modulator, the Q-value of the cavity can be switched between high and low level. As a result, pulsed output with a repetition rate of 500 kHz and duration time of 60-80 ns is achieved.

  16. Pump-Induced, Dual-Frequency Switching in a Short-Cavity, Ytterbium-Doped Fiber Laser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guan, W.; Marciante, J.R.

    2008-07-23

    Using a short linear cavity composed of a section of highly ytterbium-doped fiber surrounded by two fiber Bragg gratings, dual frequency switching is achieved by tuning the pump power of the laser. The dual-frequency switching is generated by the thermal effects of the absorbed pump in the ytterbium-doped fiber. At each frequency, the laser shows single-longitudinal-mode behavior. In each single-mode regime, the optical signal-to-noise ratio of the laser is greater than 50 dB. The dual-frequency, switchable, fiber laser can be designed for various applications by the careful selection of the two gratings.

  17. Passively Q-switched wavelength-tunable 1-μm fiber lasers with tapered-fiber-based black phosphorus saturable absorbers

    NASA Astrophysics Data System (ADS)

    Song, Huaqing; Wang, Qi; Wang, Dongdong; Li, Li

    2018-03-01

    In this paper, we demonstrated passively Q-switched wavelength-tunable 1-μm fiber lasers utilizing few-layer black phosphorus saturable absorbers. The few-layer BP was deposited onto the tapered fibers by an optically driven process. The wavelength tunability was achieved with a fiber Sagnac loop comprised of a piece of polarization maintaining fiber and a polarization controller. Stable Q-switching laser operations were observed at wavelengths ranging from 1040.5 to 1044.6 nm at threshold pump power of 220 mW. Maximal pulse energy of 141.27 nJ at a repetition rate of 63 kHz was recorded under pump power of 445 mW.

  18. Optical computer switching network

    NASA Technical Reports Server (NTRS)

    Clymer, B.; Collins, S. A., Jr.

    1985-01-01

    The design for an optical switching system for minicomputers that uses an optical spatial light modulator such as a Hughes liquid crystal light valve is presented. The switching system is designed to connect 80 minicomputers coupled to the switching system by optical fibers. The system has two major parts: the connection system that connects the data lines by which the computers communicate via a two-dimensional optical matrix array and the control system that controls which computers are connected. The basic system, the matrix-based connecting system, and some of the optical components to be used are described. Finally, the details of the control system are given and illustrated with a discussion of timing.

  19. Switch configuration for migration to optical fiber network

    NASA Technical Reports Server (NTRS)

    Zobrist, George W.

    1993-01-01

    The purpose is to investigate the migration of an Ethernet LAN segment to fiber optics. At the present time it is proposed to support a Fiber Distributed Data Interface (FDDI) backbone and to upgrade the VAX cluster to fiber optic interface. Possibly some workstations will have an FDDI interface. The remaining stations on the Ethernet LAN will be segmented. The rationale for migrating from the present Ethernet configuration to a fiber optic backbone is due to the increase in the number of workstations and the movement of applications to a windowing environment, extensive document transfers, and compute intensive applications.

  20. Crossbar Switches For Optical Data-Communication Networks

    NASA Technical Reports Server (NTRS)

    Monacos, Steve P.

    1994-01-01

    Optoelectronic and electro-optical crossbar switches called "permutation engines" (PE's) developed to route packets of data through fiber-optic communication networks. Basic network concept described in "High-Speed Optical Wide-Area Data-Communication Network" (NPO-18983). Nonblocking operation achieved by decentralized switching and control scheme. Each packet routed up or down in each column of this 5-input/5-output permutation engine. Routing algorithm ensures each packet arrives at its designated output port without blocking any other packet that does not contend for same output port.

  1. Measuring optical fiber length by use of a short-pulse optical fiber ring laser in a self-injection seeding scheme.

    PubMed

    Wang, Yi-Ping; Wang, Dong Ning; Jin, Wei

    2006-09-01

    A method for measuring the length of an optical fiber by use of an optical fiber ring laser pulse source is proposed and demonstrated. The key element of the optical fiber ring laser is a gain-switched Fabry-Perot laser diode operated in a self-injection seeding scheme. This method is especially suitable for measuring a medium or long fiber, and a resolution of 0.1 m is experimentally achieved. The measurement is implemented by accurately determining the pulse frequency that can maximize the output power of the fiber ring laser. The measurement results depend only on the refractive index of the fiber corresponding to this single wavelength, instead of the group index of the fiber, which represents a great advantage over both optical time-domain reflectometry and optical low-coherence reflectometry methods.

  2. All-fiber passively Q-switched thulium-doped fiber laser by using a holmium-doped fiber as saturable absorber

    NASA Astrophysics Data System (ADS)

    Durán Sánchez, M.; Álvarez-Tamayo, R. I.; Posada-Ramírez, B.; Alaniz-Baylón, J.; Bravo-Huerta, E.; Santiago-Hernández, H.; Hernández-Arriaga, M. V.; Bello-Jiménez, Miguel; Ibarra-Escamilla, B.; Kuzin, E. A.

    2018-02-01

    We report a linear cavity all-fiber passive Q-switched thulium-doped fiber laser operating at the 2 μm wavelength range. The laser configuration is based on a thulium-doped fiber used as a gain medium and an unpumped segment of holmium-doped fiber which acts as a fiber saturable absorber. The cavity is formed by a fiber optical loop mirror and the flat end facet of the holmium-doped fiber. The fiber segments as saturable absorber is a 1-m long single mode doubleclad holmium-doped fiber. Q-switched pulses are obtained at the wavelength of 2024.5 nm with a pulse width of 1.1 μs. The pulse repetition rate increases as a linear function of the applied pump power. The maximum pulse repetition rate of 100 kHz was obtained with a pump power of 2.4 W.

  3. Design and analysis of photonic optical switches with improved wavelength selectivity

    NASA Astrophysics Data System (ADS)

    Wielichowski, Marcin; Patela, Sergiusz

    2005-09-01

    Efficient optical modulators and switches are the key elements of the future all-optical fiber networks. Aside from numerous advantages, the integrated optical devices suffer from excessive longitudinal dimensions. The dimensions may be significantly reduced with help of periodic structures, such as Bragg gratings, arrayed waveguides or multilayer structures. In this paper we describe methods of analysis and example of analytical results of a photonic switch with properties modified by the application of periodic change of effective refractive index. The switch is composed of a strip-waveguide directional coupler and a transversal Bragg grating.

  4. Self-healing ring-based WDM-PON

    NASA Astrophysics Data System (ADS)

    Zhou, Yang; Gan, Chaoqin; Zhu, Long

    2010-05-01

    In this paper, a survivable ring-based wavelength-division-multiplexing (WDM)-passive optical network (PON) for fiber protection is proposed. Protections for feeder fiber and distributed fiber are independent in the scheme. Optical line terminal (OLT) and optical network units (ONUs) can automatically switch to protection link when fiber failure occurs. Protection distributed fiber is not required in the scheme. Cost-effective components are used in ONUs to minimize costs of network. A simulation study is performed to demonstrate the scheme. Its result shows good performance of upstream and downstream signals.

  5. Application of the fractional Fourier transform to the design of LCOS based optical interconnects and fiber switches.

    PubMed

    Robertson, Brian; Zhang, Zichen; Yang, Haining; Redmond, Maura M; Collings, Neil; Liu, Jinsong; Lin, Ruisheng; Jeziorska-Chapman, Anna M; Moore, John R; Crossland, William A; Chu, D P

    2012-04-20

    It is shown that reflective liquid crystal on silicon (LCOS) spatial light modulator (SLM) based interconnects or fiber switches that use defocus to reduce crosstalk can be evaluated and optimized using a fractional Fourier transform if certain optical symmetry conditions are met. Theoretically the maximum allowable linear hologram phase error compared to a Fourier switch is increased by a factor of six before the target crosstalk for telecom applications of -40 dB is exceeded. A Gerchberg-Saxton algorithm incorporating a fractional Fourier transform modified for use with a reflective LCOS SLM is used to optimize multi-casting holograms in a prototype telecom switch. Experiments are in close agreement to predicted performance.

  6. Quantum optics. All-optical routing of single photons by a one-atom switch controlled by a single photon.

    PubMed

    Shomroni, Itay; Rosenblum, Serge; Lovsky, Yulia; Bechler, Orel; Guendelman, Gabriel; Dayan, Barak

    2014-08-22

    The prospect of quantum networks, in which quantum information is carried by single photons in photonic circuits, has long been the driving force behind the effort to achieve all-optical routing of single photons. We realized a single-photon-activated switch capable of routing a photon from any of its two inputs to any of its two outputs. Our device is based on a single atom coupled to a fiber-coupled, chip-based microresonator. A single reflected control photon toggles the switch from high reflection (R ~ 65%) to high transmission (T ~ 90%), with an average of ~1.5 control photons per switching event (~3, including linear losses). No additional control fields are required. The control and target photons are both in-fiber and practically identical, making this scheme compatible with scalable architectures for quantum information processing. Copyright © 2014, American Association for the Advancement of Science.

  7. Actively Q-switched, thulium-holmium-codoped fiber laser incorporating a silicon-based, variable-optical-attenuator-based Q switch.

    PubMed

    Jung, Minwan; Han Lee, Ju

    2013-04-20

    An actively Q-switched thulium-holmium-codoped fiber laser incorporating an Si-based variable optical attenuator (VOA) is experimentally demonstrated. It has been shown that an Si-based VOA with a response time of hundreds of nanoseconds can be used as a cost-effective 2 μm Q switch due to its extremely wide operating bandwidth from 1.5 to 2 μm, and low electrical power consumption. In our study, the laser's slope efficiency was measured to be ~17% at an operating wavelength of 1.89 μm. The repetition rate tuning range was from 20 to 80 kHz, which was limited by the optical damage threshold and the response time. The minimum temporal pulsewidth was measured to be ~184 ns at a modulation frequency of 20 kHz, and the corresponding maximum peak power was ~10 W.

  8. Reconfigurable radio-over-fiber system based on optical switch and tunable filter

    NASA Astrophysics Data System (ADS)

    Li, Xiao; Yin, Rui; Ji, Wei; Sun, Kai; Zhang, Shicheng

    2017-09-01

    As the best candidate for wireless-access networks, radio-over-fiber (RoF) technology can carry a variety of business. It is necessary to provide differentiated services for different users, so the network needs to produce signals with different modulation formats and different frequencies. A reconfigurable RoF system based on a switch and tunable optical filter that can realize modulation format conversion and multiple frequency signal switching functions is designed. It has a good performance in terms of bit error rate and an eye diagram. The design can help to use radio frequency resources efficiently and make dynamic bandwidth resources controllable.

  9. Comparative study of 2-DOF micromirrors for precision light manipulation

    NASA Astrophysics Data System (ADS)

    Young, Johanna I.; Shkel, Andrei M.

    2001-08-01

    Many industry experts predict that the future of fiber optic telecommunications depends on the development of all-optical components for switching of photonic signals from fiber to fiber throughout the networks. MEMS is a promising technology for providing all-optical switching at high speeds with significant cost reductions. This paper reports on the the analysis of two designs for 2-DOF electrostatically actuated MEMS micromirrors for precision controllable large optical switching arrays. The behavior of the micromirror designs is predicted by coupled-field electrostatic and modal analysis using a finite element analysis (FEA) multi-physics modeling software. The analysis indicates that the commonly used gimbal type mirror design experiences electrostatic interference and would therefore be difficult to precisely control for 2-DOF motion. We propose a new design approach which preserves 2-DOF actuation while minimizing electrostatic interference between the drive electrodes and the mirror. Instead of using two torsional axes, we use one actuator which combines torsional and flexural DOFs. A comparative analysis of the conventional gimbal design and the one proposed in this paper is performed.

  10. All-optical switching in GaAs microdisk resonators by a femtosecond pump-probe technique through tapered-fiber coupling.

    PubMed

    Lin, Yen-Chih; Mao, Ming-Hua; Lin, You-Ru; Lin, Hao-Hsiung; Lin, Che-An; Wang, Lon A

    2014-09-01

    We demonstrate ultrafast all-optical switching in GaAs microdisk resonators using a femtosecond pump-probe technique through tapered-fiber coupling. The temporal tuning of the resonant modes resulted from the refractive index change due to photoexcited carrier density variation inside the GaAs microdisk resonator. Transmission through the GaAs microdisk resonator can be modulated by more than 10 dB with a switching time window of 8 ps in the switch-off operation using pumping pulses with energies as low as 17.5 pJ. The carrier lifetime was fitted to be 42 ps, much shorter than that of the bulk GaAs, typically of the order of nanoseconds. The above observation indicates that the surface recombination plays an important role in increasing the switching speed.

  11. Optical backplane interconnect switch for data processors and computers

    NASA Technical Reports Server (NTRS)

    Hendricks, Herbert D.; Benz, Harry F.; Hammer, Jacob M.

    1989-01-01

    An optoelectronic integrated device design is reported which can be used to implement an all-optical backplane interconnect switch. The switch is sized to accommodate an array of processors and memories suitable for direct replacement into the basic avionic multiprocessor backplane. The optical backplane interconnect switch is also suitable for direct replacement of the PI bus traffic switch and at the same time, suitable for supporting pipelining of the processor and memory. The 32 bidirectional switchable interconnects are configured with broadcast capability for controls, reconfiguration, and messages. The approach described here can handle a serial interconnection of data processors or a line-to-link interconnection of data processors. An optical fiber demonstration of this approach is presented.

  12. Call for Papers: Photonics in Switching

    NASA Astrophysics Data System (ADS)

    Wosinska, Lena; Glick, Madeleine

    2006-04-01

    Call for Papers: Photonics in Switching

    Guest Editors:

    Lena Wosinska, Royal Institute of Technology (KTH) / ICT Sweden Madeleine Glick, Intel Research, Cambridge, UK

    Technologies based on DWDM systems allow data transmission with bit rates of Tbit/s on a single fiber. To facilitate this enormous transmission volume, high-capacity and high-speed network nodes become inevitable in the optical network. Wideband switching, WDM switching, optical burst switching (OBS), and optical packet switching (OPS) are promising technologies for harnessing the bandwidth of WDM optical fiber networks in a highly flexible and efficient manner. As a number of key optical component technologies approach maturity, photonics in switching is becoming an increasingly attractive and practical solution for the next-generation of optical networks. The scope of this special issue is focused on the technology and architecture of optical switching nodes, including the architectural and algorithmic aspects of high-speed optical networks.

    Scope of Submission

    The scope of the papers includes, but is not limited to, the following topics:
    • WDM node architectures
    • Novel device technologies enabling photonics in switching, such as optical switch fabrics, optical memory, and wavelength conversion
    • Routing protocols
    • WDM switching and routing
    • Quality of service
    • Performance measurement and evaluation
    • Next-generation optical networks: architecture, signaling, and control
    • Traffic measurement and field trials
    • Optical burst and packet switching
    • OBS/OPS node architectures
    • Burst/Packet scheduling and routing algorithms
    • Contention resolution/avoidance strategies
    • Services and applications for OBS/OPS (e.g., grid networks, storage-area networks, etc.)
    • Burst assembly and ingress traffic shaping
    • Hybrid OBS/TDM or OBS/wavelength routing

    Manuscript Submission

    To submit to this special issue, follow the normal procedure for submission to JON and select ``Photonics in Switching' in the features indicator of the online submission form. For all other questions relating to this feature issue, please send an e-mail to jon@osa.org, subject line ``Photonics in Switching.' Additional information can be found on the JON website: http://www.osa-jon.org/journal/jon/author.cfm. Submission Deadline: 15 September 2006

  13. Yb- and Er-doped fiber laser Q-switched with an optically uniform, broadband WS2 saturable absorber

    PubMed Central

    Zhang, M.; Hu, Guohua; Hu, Guoqing; Howe, R. C. T.; Chen, L.; Zheng, Z.; Hasan, T.

    2015-01-01

    We demonstrate a ytterbium (Yb) and an erbium (Er)-doped fiber laser Q-switched by a solution processed, optically uniform, few-layer tungsten disulfide saturable absorber (WS2-SA). Nonlinear optical absorption of the WS2-SA in the sub-bandgap region, attributed to the edge-induced states, is characterized by 3.1% and 4.9% modulation depths with 1.38 and 3.83 MW/cm2 saturation intensities at 1030 and 1558 nm, respectively. By integrating the optically uniform WS2-SA in the Yb- and Er-doped laser cavities, we obtain self-starting Q-switched pulses with microsecond duration and kilohertz repetition rates at 1030 and 1558 nm. Our work demonstrates broadband sub-bandgap saturable absorption of a single, solution processed WS2-SA, providing new potential efficacy for WS2 in ultrafast photonic applications. PMID:26657601

  14. Optical switch based on thermocapillarity

    NASA Astrophysics Data System (ADS)

    Sakata, Tomomi; Makihara, Mitsuhiro; Togo, Hiroyoshi; Shimokawa, Fusao; Kaneko, Kazumasa

    2001-11-01

    Space-division optical switches are essential for the protection, optical cross-connects (OXCs), and optical add/drop multiplexers (OADMs) needed in future fiber-optic communication networks. For applications in these areas, we proposed a thermocapillarity switch called oil-latching interfacial-tension variation effect (OLIVE) switch. An OLIVE switch is a micro-mechanical optical switch fabricated on planar lightwave circuits (PLC) using micro-electro-mechanical systems (MEMS) technology. It consists of a crossing waveguide that has a groove at each crossing point and a pair of microheaters. The groove is partially filled with the refractive-index-matching liquid, and optical signals are switched according to the liquid's position in the groove, i.e., whether it is passing straight through the groove or reflecting at the sidewall of the groove. The liquid is driven by thermocapillarity and latched by capillarity. Using the total internal reflection to switch the optical path, the OLIVE switch exhibits excellent optical characteristics, such as high transparency (insertion loss: < 2 dB), high extinction ratio (> 50 dB), and low crosstalk (< -50 dB). Moreover, since this switch has a simple structure and bi-stability, it has wide variety of applications in wavelength division multiplexing (WDM) networks.

  15. Range Imaging without Moving Parts

    NASA Technical Reports Server (NTRS)

    Blair, J. Bryan; Scott, V. Stanley, III; Ramos-Izquierdo, Luis

    2008-01-01

    Range-imaging instruments of a type now under development are intended to generate the equivalent of three-dimensional images from measurements of the round-trip times of flight of laser pulses along known directions. These instruments could also provide information on characteristics of targets, including roughnesses and reflectivities of surfaces and optical densities of such semi-solid objects as trees and clouds. Unlike in prior range-imaging instruments based on times of flight along known directions, there would be no moving parts; aiming of the laser beams along the known directions would not be accomplished by mechanical scanning of mirrors, prisms, or other optical components. Instead, aiming would be accomplished by using solid-state devices to switch input and output beams along different fiber-optic paths. Because of the lack of moving parts, these instruments could be extraordinarily reliable, rugged, and long-lasting. An instrument of this type would include an optical transmitter that would send out a laser pulse along a chosen direction to a target. An optical receiver coaligned with the transmitter would measure the temporally varying intensity of laser light reflected from the target to determine the distance and surface characteristics of the target. The transmitter would be a combination of devices for generating precise directional laser illumination. It would include a pulsed laser, the output of which would be coupled into a fiber-optic cable with a fan-out and solid-state optical switches that would enable switching of the laser beam onto one or more optical fibers terminated at known locations in an array on a face at the focal plane of a telescope. The array would be imaged by the telescope onto the target space. The receiver optical system could share the aforementioned telescope with the transmitter or could include a separate telescope aimed in the same direction as that of the transmitting telescope. In either case, light reflected from the target would be focused by the receiver optical system onto an array of optical fibers matching the array in the transmitter. These optical fibers would couple the received light to one or more photodetector( s). Optionally, the receiver could include solid-state optical switches for choosing which optical fiber(s) would couple light to the photodetector(s). This instrument architecture is flexible and can be optimized for a wide variety of applications and levels of performance. For example, it is scalable to any number of pixels and pixel resolutions and is compatible with a variety of ranging and photodetection methodologies, including, for example, ranging by use of modulated (including pulsed and encoded) light signals. The use of fixed arrays of optical fibers to generate controlled illumination patterns would eliminate the mechanical complexity and much of the bulk of optomechanical scanning assemblies. Furthermore, digital control of the selection of the fiber-optic pathways for the transmitted beams could afford capabilities not seen in previous three-dimensional range-imaging systems. Instruments of this type could be specialized for use as, for example, proximity detectors, three-dimensional robotic vision systems, airborne terrain-mapping systems, and inspection systems.

  16. A Novel Reliable WDM-PON System

    NASA Astrophysics Data System (ADS)

    Chen, Benyang; Gan, Chaoqin; Qi, Yongqian; Xia, Lei

    2011-12-01

    In this paper, a reliable Wavelength-Division-Multiplexing Passive Optical Network (WDM-PON) system is proposed. It can provide the protection against both the feeder fiber failure and the distribution fiber failure. When the fiber failure occurs, the corresponding switches in the OLT and in the ONU can switch to the protection link without affecting the users in normal status. That is to say, the protection for one ONU is independent of the other ONUs.

  17. Multifunction Imaging and Spectroscopic Instrument

    NASA Technical Reports Server (NTRS)

    Mouroulis, Pantazis

    2004-01-01

    A proposed optoelectronic instrument would perform several different spectroscopic and imaging functions that, heretofore, have been performed by separate instruments. The functions would be reflectance, fluorescence, and Raman spectroscopies; variable-color confocal imaging at two different resolutions; and wide-field color imaging. The instrument was conceived for use in examination of minerals on remote planets. It could also be used on Earth to characterize material specimens. The conceptual design of the instrument emphasizes compactness and economy, to be achieved largely through sharing of components among subsystems that perform different imaging and spectrometric functions. The input optics for the various functions would be mounted in a single optical head. With the exception of a targeting lens, the input optics would all be aimed at the same spot on a specimen, thereby both (1) eliminating the need to reposition the specimen to perform different imaging and/or spectroscopic observations and (2) ensuring that data from such observations can be correlated with respect to known positions on the specimen. The figure schematically depicts the principal components and subsystems of the instrument. The targeting lens would collect light into a multimode optical fiber, which would guide the light through a fiber-selection switch to a reflection/ fluorescence spectrometer. The switch would have four positions, enabling selection of spectrometer input from the targeting lens, from either of one or two multimode optical fibers coming from a reflectance/fluorescence- microspectrometer optical head, or from a dark calibration position (no fiber). The switch would be the only moving part within the instrument.

  18. Multiple-Ring Digital Communication Network

    NASA Technical Reports Server (NTRS)

    Kirkham, Harold

    1992-01-01

    Optical-fiber digital communication network to support data-acquisition and control functions of electric-power-distribution networks. Optical-fiber links of communication network follow power-distribution routes. Since fiber crosses open power switches, communication network includes multiple interconnected loops with occasional spurs. At each intersection node is needed. Nodes of communication network include power-distribution substations and power-controlling units. In addition to serving data acquisition and control functions, each node acts as repeater, passing on messages to next node(s). Multiple-ring communication network operates on new AbNET protocol and features fiber-optic communication.

  19. Improved passive optical network architectures to support local area network emulation and protection

    NASA Astrophysics Data System (ADS)

    Wong, Elaine; Nadarajah, Nishaanthan; Chae, Chang-Joon; Nirmalathas, Ampalavanapillai; Attygalle, Sanjeewa M.

    2006-01-01

    We describe two optical layer schemes which simultaneously facilitate local area network emulation and automatic protection switching against distribution fiber breaks in passive optical networks. One scheme employs a narrowband fiber Bragg grating placed close to the star coupler in the feeder fiber of the passive optical network, while the other uses an additional short length distribution fiber from the star coupler to each customer for the redirection of the customer traffic. Both schemes use RF subcarrier multiplexed transmission for intercommunication between customers in conjunction with upstream access to the central office at baseband. Failure detection and automatic protection switching are performed independently by each optical network unit that is located at the customer premises in a distributed manner. The restoration of traffic transported between the central office and an optical network unit in the event of the distribution fiber break is performed by interconnecting adjacent optical network units and carrying out signal transmissions via an independent but interconnected optical network unit. Such a protection mechanism enables multiple adjacent optical network units to be simultaneously protected by a single optical network unit utilizing its maximum available bandwidth. We experimentally verify the feasibility of both schemes with 1.25 Gb/s upstream baseband transmission to the central office and 155 Mb/s local area network data transmission on a RF subcarrier frequency. The experimental results obtained from both schemes are compared, and the power budgets are calculated to analyze the scalability of each scheme.

  20. Radar signal transmission and switching over optical networks

    NASA Astrophysics Data System (ADS)

    Esmail, Maged A.; Ragheb, Amr; Seleem, Hussein; Fathallah, Habib; Alshebeili, Saleh

    2018-03-01

    In this paper, we experimentally demonstrate a radar signal distribution over optical networks. The use of fiber enables us to distribute radar signals to distant sites with a low power loss. Moreover, fiber networks can reduce the radar system cost, by sharing precise and expensive radar signal generation and processing equipment. In order to overcome the bandwidth challenges in electrical switches, a semiconductor optical amplifier (SOA) is used as an all-optical device for wavelength conversion to the desired port (or channel) of a wavelength division multiplexing (WDM) network. Moreover, the effect of chromatic dispersion in double sideband (DSB) signals is combated by generating optical single sideband (OSSB) signals. The optimal values of the SOA device parameters required to generate an OSSB with a high sideband suppression ratio (SSR) are determined. We considered various parameters such as injection current, pump power, and probe power. In addition, the effect of signal wavelength conversion and transmission over fiber are studied in terms of signal dynamic range.

  1. Optical coupling elements for coherent optical multiport receivers

    NASA Astrophysics Data System (ADS)

    Langenhorst, Ralf

    1992-05-01

    Three by three (3 by 3) and four by four (4 by 4) port coupling elements and receivers for heterodyne multiport systems are realized. Commercial (3 by 3) fiber coupling elements were used to achieve a usual (3 by 3) port receiver and a (3 by 3) port receiver in pushpull switching, whose concept was theoretically and experimentally analyzed. It is established that intensity oscillations of laser sources are suppressed by pushpull switching. The influence of thermal noise of opto-electronic input levels is shown to be weaker than in usual (3 by 3) port and (4 by 4) port receivers. Thermal noise effect in pushpull switching is similar to this one in heterodyne receivers. An integrated optical coupling element in LiNbO3 was made with bridge circuit from four waveguide coupling elements and two phase converters, which are electro-optically tunable so that a continuous regulation of intermediate frequency phase can be compensated by temperature variations of the element. To obtain fiber-to-fiber losses lower than a dB, a compact crystal optical coupling element was developed with reference to polarization properties of optical waves. This element supplied the eight necessary intermediate frequency output signals. A direct experimental comparison of bandwidth efficiency of multiport and heterodyne receivers shows a factor two in optical area and a factor three in electrical frequency area.

  2. Nonlinear performance of asymmetric coupler based on dual-core photonic crystal fiber: Towards sub-nanojoule solitonic ultrafast all-optical switching

    NASA Astrophysics Data System (ADS)

    Curilla, L.; Astrauskas, I.; Pugzlys, A.; Stajanca, P.; Pysz, D.; Uherek, F.; Baltuska, A.; Bugar, I.

    2018-05-01

    We demonstrate ultrafast soliton-based nonlinear balancing of dual-core asymmetry in highly nonlinear photonic crystal fiber at sub-nanojoule pulse energy level. The effect of fiber asymmetry was studied experimentally by selective excitation and monitoring of individual fiber cores at different wavelengths between 1500 nm and 1800 nm. Higher energy transfer rate to non-excited core was observed in the case of fast core excitation due to nonlinear asymmetry balancing of temporal solitons, which was confirmed by the dedicated numerical simulations based on the coupled generalized nonlinear Schrödinger equations. Moreover, the simulation results correspond qualitatively with the experimentally acquired dependences of the output dual-core extinction ratio on excitation energy and wavelength. In the case of 1800 nm fast core excitation, narrow band spectral intensity switching between the output channels was registered with contrast of 23 dB. The switching was achieved by the change of the excitation pulse energy in sub-nanojoule region. The performed detailed analysis of the nonlinear balancing of dual-core asymmetry in solitonic propagation regime opens new perspectives for the development of ultrafast nonlinear all-optical switching devices.

  3. Microelectromechanical apparatus for elevating and tilting a platform

    DOEpatents

    Miller, Samuel Lee; McWhorter, Paul Jackson; Rodgers, Murray Steven; Sniegowski, Jeffry J.; Barnes, Stephen M.

    2003-04-08

    A microelectromechanical (MEM) apparatus is disclosed which has a platform that can be elevated above a substrate and tilted at an arbitrary angle using a plurality of flexible members which support the platform and control its movement. Each flexible member is further controlled by one or more MEM actuators which act to bend the flexible member. The MEM actuators can be electrostatic comb actuators or vertical zip actuators, or a combination thereof. The MEM apparatus can include a mirror coating to form a programmable mirror for redirecting or switching one or more light beams for use in a projection display. The MEM apparatus with the mirror coating also has applications for switching light beams between optical fibers for use in a local area fiber optic network, or for use in fiber optic telecommunications or data communications systems.

  4. Microelectromechanical apparatus for elevating and tilting a platform

    DOEpatents

    Miller, Samuel Lee; McWhorter, Paul Jackson; Rodgers, Murray Steven; Sniegowski, Jeffry J.; Barnes, Stephen M.

    2004-07-06

    A microelectromechanical (MEM) apparatus is disclosed which has a platform that can be elevated above a substrate and tilted at an arbitrary angle using a plurality of flexible members which support the platform and control its movement. Each flexible member is further controlled by one or more MEM actuators which act to bend the flexible member. The MEM actuators can be electrostatic comb actuators or vertical zip actuators, or a combination thereof. The MEM apparatus can include a mirror coating to form a programmable mirror for redirecting or switching one or more light beams for use in a projection display. The MEM apparatus with-the mirror coating also has applications for switching light beams between optical fibers for use in a local area fiber optic network, or for use in fiber optic telecommunications or data communications systems.

  5. [New type distributed optical fiber temperature sensor (DTS) based on Raman scattering and its' application].

    PubMed

    Wang, Jian-Feng; Liu, Hong-Lin; Zhang, Shu-Qin; Yu, Xiang-Dong; Sun, Zhong-Zhou; Jin, Shang-Zhong; Zhang, Zai-Xuan

    2013-04-01

    Basic principles, development trends and applications status of distributed optical fiber Raman temperature sensor (DTS) are introduced. Performance parameters of DTS system include the sensing optical fiber length, temperature measurement uncertainty, spatial resolution and measurement time. These parameters have a certain correlation and it is difficult to improve them at the same time by single technology. So a variety of key techniques such as Raman amplification, pulse coding technique, Raman related dual-wavelength self-correction technique and embedding optical switching technique are researched to improve the performance of the DTS system. A 1 467 nm continuous laser is used as pump laser and the light source of DTS system (1 550 nm pulse laser) is amplified. When the length of sensing optical fiber is 50 km the Raman gain is about 17 dB. Raman gain can partially compensate the transmission loss of optical fiber, so that the sensing length can reach 50 km. In DTS system using pulse coding technique, pulse laser is coded by 211 bits loop encoder and correlation calculation is used to demodulate temperature. The encoded laser signal is related, whereas the noise is not relevant. So that signal-to-noise ratio (SNR) of DTS system can be improved significantly. The experiments are carried out in DTS system with single mode optical fiber and multimode optical fiber respectively. Temperature measurement uncertainty can all reach 1 degrees C. In DTS system using Raman related dual-wavelength self-correction technique, the wavelength difference of the two light sources must be one Raman frequency shift in optical fiber. For example, wavelength of the main laser is 1 550 nm and wavelength of the second laser must be 1 450 nm. Spatial resolution of DTS system is improved to 2 m by using dual-wavelength self-correction technique. Optical switch is embedded in DTS system, so that the temperature measurement channel multiply extended and the total length of the sensing optical fiber effectively extended. Optical fiber sensor network is composed.

  6. Spatial Soliton Interactions for Photonic Switching. Part I

    DTIC Science & Technology

    2000-03-07

    technique , a fully vectorial, first-order nonlinear wave equation that consistently includes terms two -orders beyond the slowly-varying amplitude , slowly...by using two tunable mode-locked Er-doped fiber lasers ," in Conference on Optical Fiber Communications, OSA Technical Digest Series, vol. 4, 1994...instead, based on optical logic gates. In addition, optical logic could be used for contention resolution, real-time encryption /decryption, and other

  7. Integrated Optical Circuit Engineering

    NASA Astrophysics Data System (ADS)

    Sriram, S.

    1985-04-01

    Implementation of single-mode optical fiber systems depends largely on the availability of integrated optical components for such functions as switching, multiplexing, and modulation. The technology of integrated optics is maturing very rapidly, and its growth justifies the optimism that now exists in the optical community.

  8. Power system applications of fiber optics

    NASA Technical Reports Server (NTRS)

    Kirkham, H.; Johnston, A.; Lutes, G.; Daud, T.; Hyland, S.

    1984-01-01

    Power system applications of optical systems, primarily using fiber optics, are reviewed. The first section reviews fibers as components of communication systems. The second section deals with fiber sensors for power systems, reviewing the many ways light sources and fibers can be combined to make measurements. Methods of measuring electric field gradient are discussed. Optical data processing is the subject of the third section, which begins by reviewing some widely different examples and concludes by outlining some potential applications in power systems: fault location in transformers, optical switching for light fired thyristors and fault detection based on the inherent symmetry of most power apparatus. The fourth and final section is concerned with using optical fibers to transmit power to electric equipment in a high voltage situation, potentially replacing expensive high voltage low power transformers. JPL has designed small photodiodes specifically for this purpose, and fabricated and tested several samples. This work is described.

  9. Apparatus and Method for Elimination of Polarization-Induced Fading in Fiber-optic Sensor System

    NASA Technical Reports Server (NTRS)

    Chan, Hon Man (Inventor); Parker, Jr., Allen R. (Inventor)

    2015-01-01

    The invention is an apparatus and method of eliminating polarization-induced fading in interferometric fiber-optic sensor system having a wavelength-swept laser optical signal. The interferometric return signal from the sensor arms are combined and provided to a multi-optical path detector assembly and ultimately to a data acquisition and processing unit by way of a switch that is time synchronized with the laser scan sweep cycle.

  10. A Fully Implemented 12 × 12 Data Vortex Optical Packet Switching Interconnection Network

    NASA Astrophysics Data System (ADS)

    Shacham, Assaf; Small, Benjamin A.; Liboiron-Ladouceur, Odile; Bergman, Keren

    2005-10-01

    A fully functional optical packet switching (OPS) interconnection network based on the data vortex architecture is presented. The photonic switching fabric uniquely capitalizes on the enormous bandwidth advantage of wavelength division multiplexing (WDM) wavelength parallelism while delivering minimal packet transit latency. Utilizing semiconductor optical amplifier (SOA)-based switching nodes and conventional fiber-optic technology, the 12-port system exhibits a capacity of nearly 1 Tb/s. Optical packets containing an eight-wavelength WDM payload with 10 Gb/s per wavelength are routed successfully to all 12 ports while maintaining a bit error rate (BER) of 10-12 or better. Median port-to-port latencies of 110 ns are achieved with a distributed deflection routing network that resolves packet contention on-the-fly without the use of optical buffers and maintains the entire payload path in the optical domain.

  11. Architecture design and performance evaluation of multigranularity optical networks based on optical code division multiplexing

    NASA Astrophysics Data System (ADS)

    Huang, Shaowei; Baba, Ken-Ichi; Murata, Masayuki; Kitayama, Ken-Ichi

    2006-12-01

    In traditional lambda-based multigranularity optical networks, a lambda is always treated as the basic routing unit, resulting in low wavelength utilization. On the basis of optical code division multiplexing (OCDM) technology, a novel OCDM-based multigranularity optical cross-connect (MG-OXC) is proposed. Compared with the traditional lambda-based MG-OXC, its switching capability has been extended to support fiber switching, waveband switching, lambda switching, and OCDM switching. In a network composed of OCDM-based MG-OXCs, a single wavelength can be shared by distinct label switched paths (LSPs) called OCDM-LSPs, and OCDM-LSP switching can be implemented in the optical domain. To improve the network flexibility for an OCDM-LSP provisioning, two kinds of switches enabling hybrid optical code (OC)-wavelength conversion are designed. Simulation results indicate that a blocking probability reduction of 2 orders can be obtained by deploying only five OCs to a single wavelength. Furthermore, compared with time-division-multiplexing LSP (TDM-LSP), owing to the asynchronous accessibility and the OC conversion, OCDM-LSPs have been shown to permit a simpler switch architecture and achieve better blocking performance than TDM-LSPs.

  12. Design of an All-Optical Network Based on LCoS Technologies

    NASA Astrophysics Data System (ADS)

    Cheng, Yuh-Jiuh; Shiau, Yhi

    2016-06-01

    In this paper, an all-optical network composed of the ROADMs (reconfigurable optical add-drop multiplexer), L2/L3 optical packet switches, and the fiber optical cross-connection for fiber scheduling and measurement based on LCoS (liquid crystal on silicon) technologies is proposed. The L2/L3 optical packet switches are designed with optical output buffers. Only the header of optical packets is converted to electronic signals to control the wavelength of input ports and the packet payloads can be transparently destined to their output ports. An optical output buffer is designed to queue the packets when more than one incoming packet should reach to the same destination output port. For preserving service-packet sequencing and fairness of routing sequence, a priority scheme and a round-robin algorithm are adopted at the optical output buffer. The wavelength of input ports is designed for routing incoming packets using LCoS technologies. Finally, the proposed OFS (optical flow switch) with input buffers can quickly transfer the big data to the output ports and the main purpose of the OFS is to reduce the number of wavelength reflections. The all-optical content delivery network is comprised of the OFSs for a large amount of audio and video data transmissions in the future.

  13. Design of a novel passive flexure-based mechanism for microelectromechanical system optical switch assembly

    NASA Astrophysics Data System (ADS)

    Zhang, Jianbin; Sun, Xiantao; Chen, Weihai; Chen, Wenjie; Jiang, Lusha

    2014-12-01

    In microelectromechanical system (MEMS) optical switch assembly, the collision always exists between the optical fiber and the edges of the U-groove due to the positioning errors between them. It will cause the irreparable damage since the optical fiber and the silicon-made U-groove are usually very fragile. Typical solution is first to detect the positioning errors by the machine vision or high-resolution sensors and then to actively eliminate them with the aid of the motion of precision mechanisms. However, this method will increase the cost and complexity of the system. In this paper, we present a passive compensation method to accommodate the positioning errors. First, we study the insertion process of the optical fiber into the U-groove to analyze all possible positioning errors as well as the conditions of successful insertion. Then, a novel passive flexure-based mechanism based on the remote center of compliance concept is designed to satisfy the required insertion condition. The pseudo-rigid-body-model method is utilized to calculate the stiffness of the mechanism along the different directions, which is verified by finite element analysis (FEA). Finally, a prototype of the passive flexure-based mechanism is fabricated for performance tests. Both FEA and experimental results indicate that the designed mechanism can be used to the MEMS optical switch assembly.

  14. Design of a novel passive flexure-based mechanism for microelectromechanical system optical switch assembly.

    PubMed

    Zhang, Jianbin; Sun, Xiantao; Chen, Weihai; Chen, Wenjie; Jiang, Lusha

    2014-12-01

    In microelectromechanical system (MEMS) optical switch assembly, the collision always exists between the optical fiber and the edges of the U-groove due to the positioning errors between them. It will cause the irreparable damage since the optical fiber and the silicon-made U-groove are usually very fragile. Typical solution is first to detect the positioning errors by the machine vision or high-resolution sensors and then to actively eliminate them with the aid of the motion of precision mechanisms. However, this method will increase the cost and complexity of the system. In this paper, we present a passive compensation method to accommodate the positioning errors. First, we study the insertion process of the optical fiber into the U-groove to analyze all possible positioning errors as well as the conditions of successful insertion. Then, a novel passive flexure-based mechanism based on the remote center of compliance concept is designed to satisfy the required insertion condition. The pseudo-rigid-body-model method is utilized to calculate the stiffness of the mechanism along the different directions, which is verified by finite element analysis (FEA). Finally, a prototype of the passive flexure-based mechanism is fabricated for performance tests. Both FEA and experimental results indicate that the designed mechanism can be used to the MEMS optical switch assembly.

  15. Micro optical fiber display switch based on the magnetohydrodynamic (MHD) principle

    NASA Astrophysics Data System (ADS)

    Lian, Kun; Heng, Khee-Hang

    2001-09-01

    This paper reports on a research effort to design, microfabricate and test an optical fiber display switch based on magneto hydrodynamic (MHD) principal. The switch is driven by the Lorentz force and can be used to turn on/off the light. The SU-8 photoresist and UV light source were used for prototype fabrication in order to lower the cost. With a magnetic field supplied by an external permanent magnet, and a plus electrical current supplied across the two inert sidewall electrodes, the distributed body force generated will produce a pressure difference on the fluid mercury in the switch chamber. By change the direction of current flow, the mercury can turn on or cut off the light pass in less than 10 ms. The major advantages of a MHD-based micro-switch are that it does not contain any solid moving parts and power consumption is much smaller comparing to the relay type switches. This switch can be manufactured by molding gin batch production and may have potential applications in extremely bright traffic control,, high intensity advertising display, and communication.

  16. Development of optical packet and circuit integrated ring network testbed.

    PubMed

    Furukawa, Hideaki; Harai, Hiroaki; Miyazawa, Takaya; Shinada, Satoshi; Kawasaki, Wataru; Wada, Naoya

    2011-12-12

    We developed novel integrated optical packet and circuit switch-node equipment. Compared with our previous equipment, a polarization-independent 4 × 4 semiconductor optical amplifier switch subsystem, gain-controlled optical amplifiers, and one 100 Gbps optical packet transponder and seven 10 Gbps optical path transponders with 10 Gigabit Ethernet (10GbE) client-interfaces were newly installed in the present system. The switch and amplifiers can provide more stable operation without equipment adjustments for the frequent polarization-rotations and dynamic packet-rate changes of optical packets. We constructed an optical packet and circuit integrated ring network testbed consisting of two switch nodes for accelerating network development, and we demonstrated 66 km fiber transmission and switching operation of multiplexed 14-wavelength 10 Gbps optical paths and 100 Gbps optical packets encapsulating 10GbE frames. Error-free (frame error rate < 1×10(-4)) operation was achieved with optical packets of various packet lengths and packet rates, and stable operation of the network testbed was confirmed. In addition, 4K uncompressed video streaming over OPS links was successfully demonstrated. © 2011 Optical Society of America

  17. Demonstration of 720×720 optical fast circuit switch for intra-datacenter networks

    NASA Astrophysics Data System (ADS)

    Ueda, Koh; Mori, Yojiro; Hasegawa, Hiroshi; Matsuura, Hiroyuki; Ishii, Kiyo; Kuwatsuka, Haruhiko; Namiki, Shu; Sato, Ken-ichi

    2016-03-01

    Intra-datacenter traffic is growing more than 20% a year. In typical datacenters, many racks/pods including servers are interconnected via multi-tier electrical switches. The electrical switches necessitate power-consuming optical-to- electrical (OE) and electrical-to-optical (EO) conversion, the power consumption of which increases with traffic. To overcome this problem, optical switches that eliminate costly OE and EO conversion and enable low power consumption switching are being investigated. There are two major requirements for the optical switch. First, it must have a high port count to construct reduced tier intra-datacenter networks. Second, switching speed must be short enough that most of the traffic load can be offloaded from electrical switches. Among various optical switches, we focus on those based on arrayed-waveguide gratings (AWGs), since the AWG is a passive device with minimal power consumption. We previously proposed a high-port-count optical switch architecture that utilizes tunable lasers, route-and-combine switches, and wavelength-routing switches comprised of couplers, erbium-doped fiber amplifiers (EDFAs), and AWGs. We employed conventional external cavity lasers whose wavelength-tuning speed was slower than 100 ms. In this paper, we demonstrate a large-scale optical switch that offers fast wavelength routing. We construct a 720×720 optical switch using recently developed lasers whose wavelength-tuning period is below 460 μs. We evaluate the switching time via bit-error-ratio measurements and achieve 470-μs switching time (includes 10-μs guard time to handle EDFA surge). To best of our knowledge, this is the first demonstration of such a large-scale optical switch with practical switching time.

  18. Wideband fiber optic communications link

    NASA Astrophysics Data System (ADS)

    Bray, J. R.

    1984-12-01

    This thesis examined the feasibility of upgrading a nine port fiber optic bundle telecommunications system to a single strand fiber optic system. Usable pieces of equipment were identified and new Light Emitting Diodes (LED), Photodetectors and single strand SMA styled fiber optic connectors were ordered. Background research was conducted in the area of fiber optic power launching, fiber losses, connector losses and efficiencies. A new modulation/demodulation circuit was designed and constructed using parts from unused equipment. A new front panel was constructed to house the components, switches and connectors. A 2-m piece of optical fiber was terminated with the new connectors and tested for connector loss, numeric aperture and attenuation. The new LED was characterized by its emission radiation pattern and the entire system was tested for functional operation, frequency response and bandwidth of operation. An operations manual was prepared to ensure proper use in the future. The result was a two piece, single strand, fiber optic communications systems fully TTL compatible, capable of transmitting digital signals from 80 Kbit/sec to 20 Mbit/sec. The system was tested in a half duplex mode using both baseband and carrier modulated signals.

  19. Process control using fiber optics and Fourier transform infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Kemsley, E. K.; Wilson, Reginald H.

    1992-03-01

    A process control system has been constructed using optical fibers interfaced to a Fourier transform infrared (FT-IR) spectrometer, to achieve remote spectroscopic analysis of food samples during processing. The multichannel interface accommodates six fibers, allowing the sequential observation of up to six samples. Novel fiber-optic sampling cells have been constructed, including transmission and attenuated total reflectance (ATR) designs. Different fiber types have been evaluated; in particular, plastic clad silica (PCS) and zirconium fluoride fibers. Processes investigated have included the dilution of fruit juice concentrate, and the addition of alcohol to fruit syrup. Suitable algorithms have been written which use the results of spectroscopic measurements to control and monitor the course of each process, by actuating devices such as valves and switches.

  20. Novel polarization diversity without switch duplication of a Si-wire PILOSS optical switch.

    PubMed

    Tanizawa, Ken; Suzuki, Keijiro; Ikeda, Kazuhiro; Namiki, Shu; Kawashima, Hitoshi

    2016-04-04

    We demonstrate the compact polarization diversity based on the bidirectional full-port use of a path-independent-insertion-loss (PILOSS) optical switch. A polarization-diversity 4 × 4 strictly non-blocking optical switch is developed using a single thermooptic PILOSS Si-wire switch and fiber-based polarization beam splitters (PBSs) and combiners (PBCs). We measure characteristics of the switch and confirm that the proposed configuration demonstrates the performance in the insertion loss, polarization-dependent loss (PDL), and differential group delay (DGD) comparable with that of a conventional polarization-diversity 4 × 4 PILOSS switch using double switch elements. On the other hand, higher crosstalk is observed. The crosstalk increase is associated with the backward crosstalk at a waveguide intersection based on a directional coupler. The effect of the backward crosstalk on the total crosstalk is estimated, and future prospects are discussed.

  1. Photonics

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Optoelectronic materials and devices are examined. Optoelectronic devices, which generate, detect, modulate, or switch electromagnetic radiation are being developed for a variety of space applications. The program includes spatial light modulators, solid state lasers, optoelectronic integrated circuits, nonlinear optical materials and devices, fiber optics, and optical networking photovoltaic technology and optical processing.

  2. Multiple-mode reconfigurable electro-optic switching network for optical fiber sensor array

    NASA Technical Reports Server (NTRS)

    Chen, Ray T.; Wang, Michael R.; Jannson, Tomasz; Baumbick, Robert

    1991-01-01

    This paper reports the first switching network compatible with multimode fibers. A one-to-many cascaded reconfigurable interconnection was built. A thin glass substrate was used as the guiding medium which provides not only higher coupling efficiency from multimode fiber to waveguide but also better tolerance of phase-matching conditions. Involvement of a total-internal-reflection hologram and multimode waveguide eliminates interface problems between fibers and waveguides. The DCG polymer graft has proven to be reliable from -180 C to +200 C. Survivability of such an electrooptic system in harsh environments is further ensured. LiNbO3 was chosen as the E-O material because of its stability at high temperatures (phase-transition temperature of more than 1000 C) and maturity of E-O device technology. Further theoretical calculation was conducted to provide the optimal interaction length and device capacitance.

  3. On the impact of fiber-delay-lines (FDL) in an all-optical network (AON) bottleneck without wavelength conversion

    NASA Astrophysics Data System (ADS)

    Argibay-Losada, Pablo Jesus; Sahin, Gokhan

    2014-08-01

    Random access memories (RAM) are fundamental in conventional electronic switches and routers to manage short-term congestion and to decrease data loss probabilities. Switches in all-optical networks (AONs), however, do not have access to optical RAM, and therefore are prone to much higher loss levels than their electronic counterparts. Fiber-delay-lines (FDLs), able to delay an optical data packet a fixed amount of time, have been proposed in the literature as a means to alleviate those high loss levels. However, they are extremely bulky to manage, so their usage introduces a trade-off between practicality and performance in the design and operation of the AON. In this paper we study the influence that FDLs have in the performance of flows crossing an all-optical switch that acts as their bottleneck. We show how extremely low numbers of FDLs (e.g., 1 or 2) can help in reducing losses by several orders of magnitude in several illustrative scenarios with high aggregation levels. Our results therefore suggest that FDLs can be a practical means of dealing with congestion in AONs in the absence of optical RAM buffers or of suitable data interchange protocols specifically designed for AONs.

  4. Fabrication and demonstration of 1 × 8 silicon-silica multi-chip switch based on optical phased array

    NASA Astrophysics Data System (ADS)

    Katayose, Satomi; Hashizume, Yasuaki; Itoh, Mikitaka

    2016-08-01

    We experimentally demonstrated a 1 × 8 silicon-silica hybrid thermo-optic switch based on an optical phased array using a multi-chip integration technique. The switch consists of a silicon chip with optical phase shifters and two silica-based planar lightwave circuit (PLC) chips composed of optical couplers and fiber connections. We adopted a rib waveguide as the silicon waveguide to reduce the coupling loss and increase the alignment tolerance for coupling between silicon and silica waveguides. As a result, we achieved a fast switching response of 81 µs, a high extinction ratio of over 18 dB and a low insertion loss of 4.9-8.1 dB including a silicon-silica coupling loss of 0.5 ± 0.3 dB at a wavelength of 1.55 µm.

  5. Optical resolution photoacoustic microscopy using novel high-repetition-rate passively Q-switched microchip and fiber lasers.

    PubMed

    Shi, Wei; Kerr, Shaun; Utkin, Ilya; Ranasinghesagara, Janaka; Pan, Lei; Godwal, Yogesh; Zemp, Roger J; Fedosejevs, Robert

    2010-01-01

    Optical-resolution photoacoustic microscopy (OR-PAM) is a novel imaging technology for visualizing optically absorbing superficial structures in vivo with lateral spatial resolution determined by optical focusing rather than acoustic detection. Since scanning of the illumination spot is required, OR-PAM imaging speed is limited by both scanning speed and laser pulse repetition rate. Unfortunately, lasers with high repetition rates and suitable pulse durations and energies are not widely available and can be cost-prohibitive and bulky. We are developing compact, passively Q-switched fiber and microchip laser sources for this application. The properties of these lasers are discussed, and pulse repetition rates up to 100 kHz are demonstrated. OR-PAM imaging was conducted using a previously developed photoacoustic probe, which enabled flexible scanning of the focused output of the lasers. Phantom studies demonstrate the ability to image with lateral spatial resolution of 7±2 μm with the microchip laser system and 15±5 μm with the fiber laser system. We believe that the high pulse repetition rates and the potentially compact and fiber-coupled nature of these lasers will prove important for clinical imaging applications where real-time imaging performance is essential.

  6. Effects of adding metals to MoS2 in a ytterbium doped Q-switched fiber laser

    NASA Astrophysics Data System (ADS)

    Khaleque, Abdul; Liu, Liming

    2018-03-01

    Molybdenum disulfide (MoS2) is widely used in lubricants, metallic alloys and in electronic and optical components. It is also used as saturable absorbers (SAs) in lasers (e.g. fiber lasers): a simple deposition of MoS2 on the fiber end can create a saturable absorber without the necessity of extensive alignment of the optical beam. In this article, we study the effects of adding different metals (Cr, Au, and Al) to MoS2 in a ytterbium (Yb)-doped Q-switched fiber laser. Experimental results show that the addition of a thin layer of gold and aluminium can reduce pulse durations to about 5.8 μs and 8.5 μs, respectively, compared with pure MoS2 with pulse duration of 12 μs. Experimental analysis of the combined metal and MoS2 based composite SAs can be useful in fiber laser applications where it may also find applications in medical, three dimensional (3D) active imaging and dental applications.

  7. A hybrid optical switch architecture to integrate IP into optical networks to provide flexible and intelligent bandwidth on demand for cloud computing

    NASA Astrophysics Data System (ADS)

    Yang, Wei; Hall, Trevor J.

    2013-12-01

    The Internet is entering an era of cloud computing to provide more cost effective, eco-friendly and reliable services to consumer and business users. As a consequence, the nature of the Internet traffic has been fundamentally transformed from a pure packet-based pattern to today's predominantly flow-based pattern. Cloud computing has also brought about an unprecedented growth in the Internet traffic. In this paper, a hybrid optical switch architecture is presented to deal with the flow-based Internet traffic, aiming to offer flexible and intelligent bandwidth on demand to improve fiber capacity utilization. The hybrid optical switch is capable of integrating IP into optical networks for cloud-based traffic with predictable performance, for which the delay performance of the electronic module in the hybrid optical switch architecture is evaluated through simulation.

  8. The Advent of WDM and the All-Optical Network: A Reality Check.

    ERIC Educational Resources Information Center

    Lutkowitz, Mark

    1998-01-01

    Discussion of the telecommunications industry focuses on WDM (wavelength division multiplexing) as a solution for dealing with capacity constraints. Highlights include fiber optic technology; cross-connecting and switching wavelengths; SONET (Synchronous Optical Network) and wavelength networking; and optical TDM (Time Division Multiplexing). (LRW)

  9. Optical pulse response of a fibre ring resonator

    NASA Astrophysics Data System (ADS)

    Pandian, G. S.; Seraji, Faramarz E.

    1991-06-01

    This article presents the optical pulse response analysis of a fiber ring resonator. It is shown that several interesting functions, namely optical pulse generation, and equalization of fiber dispersion can be realized by using the resonator. The theory is presented in an easy to understand manner, by first considering the steady-state response. The results of the transient pulse response are explained in relation to the steady state results. The results related to optical pulse shaping will be of interest to the future when coherent optical pulse and switching circuits will become available.

  10. Optical fiber loops and helices: tools for integrated photonic device characterization and microfluidic trapping

    NASA Astrophysics Data System (ADS)

    Ren, Yundong; Zhang, Rui; Ti, Chaoyang; Liu, Yuxiang

    2016-09-01

    Tapered optical fibers can deliver guided light into and carry light out of micro/nanoscale systems with low loss and high spatial resolution, which makes them ideal tools in integrated photonics and microfluidics. Special geometries of tapered fibers are desired for probing monolithic devices in plane as well as optical manipulation of micro particles in fluids. However, for many specially shaped tapered fibers, it remains a challenge to fabricate them in a straightforward, controllable, and repeatable way. In this work, we fabricated and characterized two special geometries of tapered optical fibers, namely fiber loops and helices, that could be switched between one and the other. The fiber loops in this work are distinct from previous ones in terms of their superior mechanical stability and high optical quality factors in air, thanks to a post-annealing process. We experimentally measured an intrinsic optical quality factor of 32,500 and a finesse of 137 from a fiber loop. A fiber helix was used to characterize a monolithic cavity optomechanical device. Moreover, a microfluidic "roller coaster" was demonstrated, where microscale particles in water were optically trapped and transported by a fiber helix. Tapered fiber loops and helices can find various applications ranging from on-the-fly characterization of integrated photonic devices to particle manipulation and sorting in microfluidics.

  11. Optically triggered high voltage switch network and method for switching a high voltage

    DOEpatents

    El-Sharkawi, Mohamed A.; Andexler, George; Silberkleit, Lee I.

    1993-01-19

    An optically triggered solid state switch and method for switching a high voltage electrical current. A plurality of solid state switches (350) are connected in series for controlling electrical current flow between a compensation capacitor (112) and ground in a reactive power compensator (50, 50') that monitors the voltage and current flowing through each of three distribution lines (52a, 52b and 52c), which are supplying three-phase power to one or more inductive loads. An optical transmitter (100) controlled by the reactive power compensation system produces light pulses that are conveyed over optical fibers (102) to a switch driver (110') that includes a plurality of series connected optical triger circuits (288). Each of the optical trigger circuits controls a pair of the solid state switches and includes a plurality of series connected resistors (294, 326, 330, and 334) that equalize or balance the potential across the plurality of trigger circuits. The trigger circuits are connected to one of the distribution lines through a trigger capacitor (340). In each switch driver, the light signals activate a phototransistor (300) so that an electrical current flows from one of the energy reservoir capacitors through a pulse transformer (306) in the trigger circuit, producing gate signals that turn on the pair of serially connected solid state switches (350).

  12. Fiber Optic Handpiece Illumination Systems

    DTIC Science & Technology

    1989-01-01

    only available from the manufacturer. Method of Light Activation Three systems are currently employed: 1. Handpiece Air Pressure Switch . The...Average Easy 3. Type of lamp (note brand and part #): 4. Method of light activation: Touch Air pressure Switch 5. Will it activate while the operator

  13. Switchable Q-switched and modelocked operation in ytterbium doped fiber laser under all-normal-dispersion configuration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mukhopadhyay, Pranb K., E-mail: pkm@rrcat.gov.in; Gupta, Pradeep K.; Singh, Chandra Pal

    2015-03-15

    We have constructed an Yb-doped fiber laser in all-normal-dispersion configuration which can be independently operated in Q-switched or modelocked configuration with the help of a simple fiber optic ring resonator (FORR). In the presence of FORR, the laser operates in Q-switched mode producing stable pulses in the range of 1 μs-200 ns with repetition rate in the range of 45 kHz-82 kHz. On the other hand, the laser can be easily switched to mode-locked operation by disjoining the FORR loop producing train of ultrashort pulses of ∼5 ps duration (compressible to ∼150 fs) at ∼38 MHz repetition rate. The transmissionmore » characteristics of FORR in combination with the nonlinear polarization rotation for passive Q-switching operation is numerically investigated and experimentally verified. The laser can serve as a versatile seed source for power amplifier which can be easily configured for application in the fields that require different pulsed fiber lasers.« less

  14. Q-switched all-fiber laser with short pulse duration based on tungsten diselenide

    NASA Astrophysics Data System (ADS)

    Li, Wenyi; OuYang, Yuyi; Ma, Guoli; Liu, Mengli; Liu, Wenjun

    2018-05-01

    Fiber lasers are widely used in industrial processing, sensing, medical and communications applications due to their simple structure, good stability and low cost. With the rapid development of fiber lasers and the sustained improvement of industrial laser quality requirements, researchers in ultrafast optics focus on how to get laser pulses with high output power and narrow pulse duration. Q-switched technology is one of the most effective techniques to generate ultrashort pulses. In this paper, a tungsten diselenide saturable absorber with 16.82% modulation depth is prepared by chemical vapor deposition. Experimental results show that when the pump power changes from 115.7 mW to 630 mW, the all-fiber laser can achieve a stable Q-switched pulse output. The repetition rate of the output pulse varies from 80.32 kHz to 204.2 kHz, the pulse duration is 581 ns, the maximum output power is 17.1 mW and the maximum pulse energy is 83.7 nJ. Results in this paper show that tungsten diselenide can be applied to ultrafast optics, which is a kind of saturable absorption material with excellent properties.

  15. Dual-wavelength passively Q-switched ytterbium-doped fiber laser using Fe3O4-nanoparticle saturable absorber and intracavity polarization

    NASA Astrophysics Data System (ADS)

    Al-Hayali, S. K. M.; Al-Janabi, A. H.

    2018-03-01

    We have experimentally demonstrated the operation of a dual-wavelength passively Q-switched ytterbium-doped fiber laser by using a saturable absorber (SA) based on Fe3O4 nanoparticles in a magnetic fluid. The SA was fabricated by depositing magnetic fluid at the end of an optical fiber ferrule. By performing adjustments to the pump power and polarization controller state in the cavity, a stable dual-wavelength lasing operation was generated without intracavity spectral filters or modulation elements. The Q-switched laser output was achieved at a pump threshold of 80 mW with a maximum output pulse energy of 38.8 nJ, a repetition rate of 73.4 kHz and a minimum pulse width of 3.4 µs. To the best of the authors’ knowledge, this is the first demonstration of a dual-wavelength passively Q-switched fiber laser using Fe3O4 nanoparticles as the SA in the 1.0 µm operation region.

  16. Passively Q-switched dual-wavelength thulium-doped fiber laser based on a multimode interference filter and a semiconductor saturable absorber

    NASA Astrophysics Data System (ADS)

    Wang, M.; Huang, Y. J.; Ruan, S. C.

    2018-04-01

    In this paper, we have demonstrated a theta cavity passively Q-switched dual-wavelength fiber laser based on a multimode interference filter and a semiconductor saturable absorber. Relying on the properties of the fiber theta cavity, the laser can operate unidirectionally without an optical isolator. A semiconductor saturable absorber played the role of passive Q-switch while a section of single-mode-multimode-single-mode fiber structure served as an multimode interference filter and was used for selecting the lasing wavelengths. By suitably manipulating the polarization controller, stable dual-wavelength Q-switched operation was obtained at ~1946.8 nm and ~1983.8 nm with maximum output power and minimum pulse duration of ~47 mW and ~762.5 ns, respectively. The pulse repetition rate can be tuned from ~20.2 kHz to ~79.7 kHz by increasing the pump power from ~2.12 W to ~5.4 W.

  17. Widely-tunable, passively Q-switched erbium-doped fiber laser with few-layer MoS2 saturable absorber.

    PubMed

    Huang, Yizhong; Luo, Zhengqian; Li, Yingyue; Zhong, Min; Xu, Bin; Che, Kaijun; Xu, Huiying; Cai, Zhiping; Peng, Jian; Weng, Jian

    2014-10-20

    We propose and demonstrate a MoS2-based passively Q-switched Er-doped fiber laser with a wide tuning range of 1519.6-1567.7 nm. The few-layer MoS2 nano-platelets are prepared by the liquid-phase exfoliation method, and are then made into polymer-composite film to construct the fiber-compatible MoS2 saturable absorber (SA). It is measured at 1560 nm wavelength, that such MoS2 SA has the modulation depth of ∼ 2% and the saturable optical intensity of ∼ 10 MW/cm(2). By further inserting the filmy MoS2-SA into an Er-doped fiber laser, stable Q-switching operation with a 48.1 nm continuous tuning from S- to C-waveband is successfully achieved. The shortest pulse duration and the maximum pulse energy are 3.3 μs and 160 nJ, respectively. The repetition rate and the pulse duration under different operation conditions have been also characterized. To the best of our knowledge, it is the first demonstration of MoS2 Q-switched, widely-tunable fiber laser.

  18. Q-switched Nd:YAG optical vortex lasers.

    PubMed

    Kim, D J; Kim, J W; Clarkson, W A

    2013-12-02

    Q-switched operation of a high-quality Nd:YAG optical vortex laser with the first order Laguerre-Gaussian mode and well-determined helical wavefronts using a fiber-based pump beam conditioning scheme is reported. A simple two-mirror resonator incorporating an acousto-optic Q-switch was employed, along with an etalon and a Brewster plate to enforce the particular helicity of the output. The laser yielded Q-switched pulses with ~250 μJ pulse energy and ~33 ns pulse duration (FWHM) at a 0.1 kHz repetition rate for 5.1 W of absorbed pump power. The handedness of the helical wavefronts was preserved regardless of the repetition rates. The prospects of further power scaling and improved laser performance are discussed.

  19. The use of 2D and 3D WA-BPM models to analyze total-internal-reflection-based integrated optical switches

    NASA Astrophysics Data System (ADS)

    Wang, Pengfei; Brambilla, Gilberto; Semenova, Yuliya; Wu, Qiang; Zheng, Jie; Farrell, Gerald

    2011-08-01

    The well known beam propagation method (BPM) has become one of the most useful, robust and effective numerical simulation tools for the investigation of guided-wave optics, for example integrated optical waveguides and fiber optic devices. In this paper we examine the use of the 2D and 3D wide angle-beam propagation method (WA-BPM) combined with the well known perfectly matched layer (PML) boundary conditions as a tool to analyze TIR based optical switches, in particular the relationship between light propagation and the geometrical parameters of a TIR based optical switch. To analyze the influence of the length and the width of the region in which the refractive index can be externally controlled, the 3D structure of a 2x2 TIR optical switch is firstly considered in 2D using the effective index method (EIM). Then the influence of the etching depth and the tilt angle of the reflection facet on the switch performance are investigated with a 3D model.

  20. Delivering dispersion-managed soliton and Q-switched pulse in fiber laser based on graphene and nonlinear optical loop mirror

    NASA Astrophysics Data System (ADS)

    Wang, W. B.; Wang, F.; Yu, Q.; Zhang, X.; Lu, Y. X.; Gu, J.

    2016-11-01

    We propose and experimentally demonstrate a bidirectional erbium-doped fiber laser delivering dispersion-managed soliton (DMS) and Q-switched pulse based on a graphene-polyvinyl alcohol (PVA) and nonlinear optical loop mirror (NOLM) saturable absorbers (SAs). In proposed structure, the DMS is achieved in clockwise (CW) direction and Q-switched pulse is obtained in counter-clockwise (CCW) direction. By properly adjusting the intracavity attenuators (ATT) and polarizer controllers (PCs), DMS in the CW direction and Q-switched pulse in the CCW direction can be obtained, respectively or simultaneously. The DMS with full width at half maximum (FWHM) of ~480 fs, signal to noise ratio (SNR) of ~60 dB and repetition frequency about 3.907 MHz is obtained. The Q-switched pulse is established at a pump power of 180 mW with a repetition rate of ~43.5 kHz and FWHM of ~8.18 μs. When the pump power is increased to 700 mW, Q-switched pulse with a repetition rate of ~107.1 kHz and FWHM of ~2.15 μs is generated. When the two type pulses are formed simultaneously, the maximum repetition rate of Q-switched pulse is 55.8 kHz and minimum FWHM is 2.81 μs, the DMS can be formed by properly adjusting PC and ATT in this case. To the best of our knowledge, it is the first time that Q-switched pulse and DMS have been acquired respectively or simultaneously in a fiber laser.

  1. Fiber Optic Communication System For Medical Images

    NASA Astrophysics Data System (ADS)

    Arenson, Ronald L.; Morton, Dan E.; London, Jack W.

    1982-01-01

    This paper discusses a fiber optic communication system linking ultrasound devices, Computerized tomography scanners, Nuclear Medicine computer system, and a digital fluoro-graphic system to a central radiology research computer. These centrally archived images are available for near instantaneous recall at various display consoles. When a suitable laser optical disk is available for mass storage, more extensive image archiving will be added to the network including digitized images of standard radiographs for comparison purposes and for remote display in such areas as the intensive care units, the operating room, and selected outpatient departments. This fiber optic system allows for a transfer of high resolution images in less than a second over distances exceeding 2,000 feet. The advantages of using fiber optic cables instead of typical parallel or serial communication techniques will be described. The switching methodology and communication protocols will also be discussed.

  2. Advanced optical components for next-generation photonic networks

    NASA Astrophysics Data System (ADS)

    Yoo, S. J. B.

    2003-08-01

    Future networks will require very high throughput, carrying dominantly data-centric traffic. The role of Photonic Networks employing all-optical systems will become increasingly important in providing scalable bandwidth, agile reconfigurability, and low-power consumptions in the future. In particular, the self-similar nature of data traffic indicates that packet switching and burst switching will be beneficial in the Next Generation Photonic Networks. While the natural conclusion is to pursue Photonic Packet Switching and Photonic Burst Switching systems, there are significant challenges in realizing such a system due to practical limitations in optical component technologies. Lack of a viable all-optical memory technology will continue to drive us towards exploring rapid reconfigurability in the wavelength domain. We will introduce and discuss the advanced optical component technologies behind the Photonic Packet Routing system designed and demonstrated at UC Davis. The system is capable of packet switching and burst switching, as well as circuit switching with 600 psec switching speed and scalability to 42 petabit/sec aggregated switching capacity. By utilizing a combination of rapidly tunable wavelength conversion and a uniform-loss cyclic frequency (ULCF) arrayed waveguide grating router (AWGR), the system is capable of rapidly switching the packets in wavelength, time, and space domains. The label swapping module inside the Photonic Packet Routing system containing a Mach-Zehnder wavelength converter and a narrow-band fiber Bragg-grating achieves all-optical label swapping with optical 2R (potentially 3R) regeneration while maintaining optical transparency for the data payload. By utilizing the advanced optical component technologies, the Photonic Packet Routing system successfully demonstrated error-free, cascaded, multi-hop photonic packet switching and routing with optical-label swapping. This paper will review the advanced optical component technologies and their role in the Next Generation Photonic Networks.

  3. Intelligent switches of integrated lightwave circuits with core telecommunication functions

    NASA Astrophysics Data System (ADS)

    Izhaky, Nahum; Duer, Reuven; Berns, Neil; Tal, Eran; Vinikman, Shirly; Schoenwald, Jeffrey S.; Shani, Yosi

    2001-05-01

    We present a brief overview of a promising switching technology based on Silica on Silicon thermo-optic integrated circuits. This is basically a 2D solid-state optical device capable of non-blocking switching operation. Except of its excellent performance (insertion loss<5dB, switching time<2ms...), the switch enables additional important build-in functionalities. It enables single-to- single channel switching and single-to-multiple channel multicasting/broadcasting. In addition, it has the capability of channel weighting and variable output power control (attenuation), for instance, to equalize signal levels and compensate for unbalanced different optical input powers, or to equalize unbalanced EDFA gain curve. We examine the market segments appropriate for the switch size and technology, followed by a discussion of the basic features of the technology. The discussion is focused on important requirements from the switch and the technology (e.g., insertion loss, power consumption, channel isolation, extinction ratio, switching time, and heat dissipation). The mechanical design is also considered. It must take into account integration of optical fiber, optical planar wafer, analog electronics and digital microprocessor controls, embedded software, and heating power dissipation. The Lynx Photon.8x8 switch is compared to competing technologies, in terms of typical market performance requirements.

  4. Optical zero-differential pressure switch and its evaluation in a multiple pressure measuring system

    NASA Technical Reports Server (NTRS)

    Powell, J. A.

    1977-01-01

    The design of a clamped-diaphragm pressure switch is described in which diaphragm motion is detected by a simple fiber-optic displacement sensor. The switch was evaluated in a pressure measurement system where it detected the zero crossing of the differential pressure between a static test pressure and a tank pressure that was periodically ramped from near zero to fullscale gage pressure. With a ramping frequency of 1 hertz and a full-scale tank pressure of 69 N/sq cm gage (100 psig), the switch delay was as long as 2 milliseconds. Pressure measurement accuracies were 0.25 to 0.75 percent of full scale. Factors affecting switch performance are also discussed.

  5. Electro-optical 1 x 2, 1 x N and N x N fiber-optic and free-space switching over 1.55 to 3.0 μm using a Ge-Ge(2)Sb(2)Te(5)-Ge prism structure.

    PubMed

    Hendrickson, Joshua; Soref, Richard; Sweet, Julian; Majumdar, Arka

    2015-01-12

    New device designs are proposed and theoretical simulations are performed on electro-optical routing switches in which light beams enter and exit the device either from free space or from lensed fibers. The active medium is a ~100 nm layer of phase change material (Ge(2)Sb(2)Te(5) or GeTe) that is electrically "triggered" to change its phase, giving "self-holding" behavior in each of two phases. Electrical current is supplied to that film by a pair of transparent highly doped conducting Ge prisms on both sides of the layer. For S-polarized light incident at ~80° on the film, a three-layer Fabry-Perot analysis, including dielectric loss, predicts good 1 x 2 and 2 x 2 switch performance at infrared wavelengths of 1.55, 2.1 and 3.0 μm, although the performance at 1.55 μm is degraded by material loss and prism mismatch. Proposals for in-plane and volumetric 1 x 4 and 4 x 4 switches are also presented. An unpolarized 1 x 2 switch projects good performance at mid infrared.

  6. Tunable narrow linewidth all-fiber thulium-doped fiber laser in a 2 µm-band using two Hi-Bi fiber optical loop mirrors

    NASA Astrophysics Data System (ADS)

    Posada-Ramírez, B.; Durán-Sánchez, M.; Álvarez-Tamayo, R. I.; Ibarra-Escamilla, B.; Hernández-Arriaga, M. V.; Sánchez-de-la-Llave, D.; Kuzin, E. A.

    2017-08-01

    We propose an all-fiber Tm-doped fiber laser with a tunable and narrow laser line generated in a wavelength region of 2 µm. A single laser line with a linewidth below 0.05 nm, tunable in a wavelength range of 44.25 nm, is obtained. The laser linewidth and the discrete wavelength tuning range depend on the characteristics of the two fiber optical loop mirrors with high birefringence in the loop that forms the cavity. Dual-wavelength laser operation is also observed at tuning range limits with a wavelength separation of 47 nm. Alternate wavelength switching is also observed.

  7. Optical MEMS platform for low-cost on-chip integration of planar light circuits and optical switching

    NASA Astrophysics Data System (ADS)

    German, Kristine A.; Kubby, Joel; Chen, Jingkuang; Diehl, James; Feinberg, Kathleen; Gulvin, Peter; Herko, Larry; Jia, Nancy; Lin, Pinyen; Liu, Xueyuan; Ma, Jun; Meyers, John; Nystrom, Peter; Wang, Yao Rong

    2004-07-01

    Xerox Corporation has developed a technology platform for on-chip integration of latching MEMS optical waveguide switches and Planar Light Circuit (PLC) components using a Silicon On Insulator (SOI) based process. To illustrate the current state of this new technology platform, working prototypes of a Reconfigurable Optical Add/Drop Multiplexer (ROADM) and a l-router will be presented along with details of the integrated latching MEMS optical switches. On-chip integration of optical switches and PLCs can greatly reduce the size, manufacturing cost and operating cost of multi-component optical equipment. It is anticipated that low-cost, low-overhead optical network products will accelerate the migration of functions and services from high-cost long-haul markets to price sensitive markets, including networks for metropolitan areas and fiber to the home. Compared to the more common silica-on-silicon PLC technology, the high index of refraction of silicon waveguides created in the SOI device layer enables miniaturization of optical components, thereby increasing yield and decreasing cost projections. The latching SOI MEMS switches feature moving waveguides, and are advantaged across multiple attributes relative to alternative switching technologies, such as thermal optical switches and polymer switches. The SOI process employed was jointly developed under the auspice of the NIST APT program in partnership with Coventor, Corning IntelliSense Corp., and MicroScan Systems to enable fabrication of a broad range of free space and guided wave MicroOptoElectroMechanical Systems (MOEMS).

  8. Scheme for generating the singlet state of three atoms trapped in distant cavities coupled by optical fibers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Dong-Yang; Wen, Jing-Ji; Bai, Cheng-Hua

    2015-09-15

    An effective scheme is proposed to generate the singlet state with three four-level atoms trapped in three distant cavities connected with each other by three optical fibers, respectively. After a series of appropriate atom–cavity interactions, which can be arbitrarily controlled via the selective pairing of Raman transitions and corresponding optical switches, a three-atom singlet state can be successfully generated. The influence of atomic spontaneous decay, photon leakage of cavities and optical fibers on the fidelity of the state is numerically simulated showing that the three-atom singlet state can be generated with high fidelity by choosing the experimental parameters appropriately.

  9. A stable dual-wavelength Q-switch using a compact passive device containing photonics crystal fiber embedded with carbon platinum

    NASA Astrophysics Data System (ADS)

    Safaei, R.; Amiri, I. S.; Rezayi, M.; Ahmad, H.

    2018-01-01

    A compact fiber laser utilizing platinum nanoparticles doped on carbon (Pt/C) embedded in photonic crystal fiber capable of generating a stable Q-switch dual-wavelength is designed and verified. Stable Q-switch pulses, with a repetition rate of 73.6 kHz, pulse width of 1.45 µs and power of 3.8 nJ in two separated wavelengths of 1557.39 nm and 1558.86 nm at a pump power of 350 mW, have been obtained. This is a novel method for generating Q-switch dual-wavelength pulses using a well-protected component that introduces both a saturable absorber and Mach-Zehnder interferometer effects simultaneously in the laser cavity. Furthermore, to best of our knowledge, this is the first time that Pt/C nanoparticles have been used in a saturable absorber for optical pulse generation.

  10. Stable nonlinear Mach-Zehnder fiber switch

    DOEpatents

    Digonnet, Michel J. F.; Shaw, H. John; Pantell, Richard H.; Sadowski, Robert W.

    1999-01-01

    An all-optical fiber switch is implemented within a short Mach-Zehnder interferometer configuration. The Mach-Zehnder switch is constructed to have a high temperature stability so as to minimize temperature gradients and other thermal effects which result in undesirable instability at the output of the switch. The Mach-Zehnder switch of the preferred embodiment is advantageously less than 2 cm in length between couplers to be sufficiently short to be thermally stable, and full switching is accomplished by heavily doping one or both of the arms between the couplers so as to provide a highly nonlinear region within one or both of the arms. A pump input source is used to affect the propagation characteristics of one of the arms to control the output coupling ratio of the switch. Because of the high nonlinearity of the pump input arm, low pump powers can be used, thereby alleviating difficulties and high cost associated with high pump input powers.

  11. Feasibility of Using Interstate Highway Right-of-Way to Obtain a More Survivable Fiber-Optics Network

    DTIC Science & Technology

    1988-01-01

    to rees- tablish connectivity for governmental users on a damaged net- work in...telephone call originates as an electrical current at a user’s home or business and travels to a telephone switching office over a local loop of copper...infrastructure. HISTORICAL PERSPECTIVE A timeline of key events with respect to the two key study components-fiber-optics communications

  12. Tunable Q-switched erbium doped fiber laser based on metal transition oxide saturable absorber and refractive index characteristic of multimode interference effects

    NASA Astrophysics Data System (ADS)

    Mohammed, D. Z.; Khaleel, Wurood Abdulkhaleq; Al-Janabi, A. H.

    2017-12-01

    Ferro-oxide (Fe3O4) nanoparticles were used as a saturable absorber (SA) for a passively Q-switched erbium doped fiber laser (EDFL) with ring cavity. The Q-switching operation was achieved at a pump threshold of 80 mW. The proposed fiber laser produces stable pulses train of repetition rate ranging from 25 kHz to 80 kHz as the pump power increases from threshold to 342 mW. The minimum recorded pulse width was 2.7 μs at 342 mW. The C-band tunability operation was performed using single mode-multimode-single mode fiber (SM-MM-SM) structure. The laser exhibited a total tuning range of 7 nm, maximum sensitivity of 106.9 nm, optical signal to noise ratio (OSNR) of 38 dB and 3-dB linewidth of 0.06 nm.

  13. Evanescent wave assisted nanomaterial coating.

    PubMed

    Mondal, Samir K; Pal, Sudipta Sarkar; Kumbhakar, Dharmadas; Tiwari, Umesh; Bhatnagar, Randhir

    2013-08-01

    In this work we present a novel nanomaterial coating technique using evanescent wave (EW). The gradient force in the EW is used as an optical tweezer for tweezing and self-assembling nanoparticles on the source of EW. As a proof of the concept, we have used a laser coupled etched multimode optical fiber, which generates EW for the EW assisted coating. The section-wise etched multimode optical fiber is horizontally and superficially dipped into a silver/gold nanoparticles solution while the laser is switched on. The fiber is left until the solution recedes due to evaporation leaving the fiber in air. The coating time usually takes 40-50 min at room temperature. The scanning electron microscope image shows uniform and thin coating of self-assembled nanoparticles due to EW around the etched section. A coating thickness <200 nm is achieved. The technique could be useful for making surface-plasmon-resonance-based optical fiber probes and other plasmonic circuits.

  14. Modeling of optical mirror and electromechanical behavior

    NASA Astrophysics Data System (ADS)

    Wang, Fang; Lu, Chao; Liu, Zishun; Liu, Ai Q.; Zhang, Xu M.

    2001-10-01

    This paper presents finite element (FE) simulation and theoretical analysis of novel MEMS fiber-optical switches actuated by electrostatic attraction. FE simulation for the switches under static and dynamic loading are first carried out to reveal the mechanical characteristics of the minimum or critical switching voltages, the natural frequencies, mode shapes and response under different levels of electrostatic attraction load. To validate the FE simulation results, a theoretical (or analytical) model is then developed for one specific switch, i.e., Plate_40_104. Good agreement is found between the FE simulation and the analytical results. From both FE simulation and theoretical analysis, the critical switching voltage for Plate_40_104 is derived to be 238 V for the switching angel of 12 degree(s). The critical switching on and off times are 431 microsecond(s) and 67 microsecond(s) , respectively. The present study not only develops good FE and analytical models, but also demonstrates step by step a method to simplify a real optical switch structure with reference to the FE simulation results for analytical purpose. With the FE and analytical models, it is easy to obtain any information about the mechanical behaviors of the optical switches, which are helpful in yielding optimized design.

  15. Distributed intrusion monitoring system with fiber link backup and on-line fault diagnosis functions

    NASA Astrophysics Data System (ADS)

    Xu, Jiwei; Wu, Huijuan; Xiao, Shunkun

    2014-12-01

    A novel multi-channel distributed optical fiber intrusion monitoring system with smart fiber link backup and on-line fault diagnosis functions was proposed. A 1× N optical switch was intelligently controlled by a peripheral interface controller (PIC) to expand the fiber link from one channel to several ones to lower the cost of the long or ultra-long distance intrusion monitoring system and also to strengthen the intelligent monitoring link backup function. At the same time, a sliding window auto-correlation method was presented to identify and locate the broken or fault point of the cable. The experimental results showed that the proposed multi-channel system performed well especially whenever any a broken cable was detected. It could locate the broken or fault point by itself accurately and switch to its backup sensing link immediately to ensure the security system to operate stably without a minute idling. And it was successfully applied in a field test for security monitoring of the 220-km-length national borderline in China.

  16. Demonstration of 20Gb/s polarization-insensitive wavelength switching system for high-speed free-space optical network

    NASA Astrophysics Data System (ADS)

    Qian, Feng-chen; Ye, Ya-lin; Wen, Yu; Duan, Tao; Feng, Huan

    2015-10-01

    A 20Gb/s polarization-insensitive all-optical wavelength switching system for high-speed free-space optical communication (FSO) network is experimentally demonstrated All-optical wavelength conversion (AOWC) is implemented using four-wave mixing (FWM) by highly-nonlinear fiber (HNLF). In the experimental setup, a simple actively mode-locked fiber ring laser (AML-FRL) with repetition frequency from 1 to 15 GHz is used to generate eight 2.5Gb/s tributary signals, which are multiplexed into one 20Gb/s optical data stream. At the receiver, the 20 Gb/s OTDM data stream is demultiplexed down to 2.5 Gb/s via a polarization-insensitive FWM scheme. The whole space communication distance is over 10 meters in building hallway. The experimental results show that this system can stably run over 24 hours at 10-9 BER level, thus the proposed architecture can work at higher rate with wavelength-division multiplexing (WDM) and high order modulation schemes.

  17. All-optical encryption based on interleaved waveband switching modulation for optical network security.

    PubMed

    Fok, Mable P; Prucnal, Paul R

    2009-05-01

    All-optical encryption for optical code-division multiple-access systems with interleaved waveband-switching modulation is experimentally demonstrated. The scheme explores dual-pump four-wave mixing in a 35 cm highly nonlinear bismuth oxide fiber to achieve XOR operation of the plaintext and the encryption key. Bit 0 and bit 1 of the encrypted data are represented by two different wavebands. Unlike on-off keying encryption methods, the encrypted data in this approach has the same intensity for both bit 0 and bit 1. Thus no plaintext or ciphertext signatures are observed.

  18. Optical technologies for the Internet of Things era

    NASA Astrophysics Data System (ADS)

    Ji, Philip N.

    2017-08-01

    Internet of Things (IoT) is a network of interrelated physical objects that can collect and exchange data with one another through embedded electronics, software, sensors, over the Internet. It extends Internet connectivity beyond traditional networking devices to a diverse range of physical devices and everyday things that utilize embedded technologies to communicate and interact with the external environment. The IoT brings automation and efficiency improvement to everyday life, business, and society. Therefore IoT applications and market are growing rapidly. Contrary to common belief that IoT is only related to wireless technology, optical technologies actually play important roles in the growth of IoT and contribute to its advancement. Firstly, fiber optics provides the backbone for transporting large amount of data generated by IoT network in the core , metro and access networks, and in building or in the physical object. Secondly, optical switching technologies, including all-optical switching and hybrid optical-electrical switching, enable fast and high bandwidth routing in IoT data processing center. Thirdly, optical sensing and imaging delivers comprehensive information of multiple physical phenomena through monitoring various optical properties such as intensity, phase, wavelength, frequency, polarization, and spectral distribution. In particular, fiber optic sensor has the advantages of high sensitivity, low latency, and long distributed sensing range. It is also immune to electromagnetic interference, and can be implemented in harsh environment. In this paper, the architecture of IoT is described, and the optical technologies and their applications in the IoT networks are discussed with practical examples.

  19. 36 W Q-switched Ho:YAG laser at 2097 nm pumped by a Tm fiber laser: evaluation of different Ho3+ doping concentrations

    NASA Astrophysics Data System (ADS)

    Antipov, O. L.; Eranov, I. D.; Kositsyn, R. I.

    2017-01-01

    A laser oscillator based on Ho:YAG crystal pumped by a Tm fiber laser with an acousto-optical Q-switch was optimized for maximum output power and pulse-to-pulse stability. Stable operation at 2097 nm in Q-switched mode is demonstrated, with pulse repetition rates from 10 to 30 kHz, and output power of 36 W (at 55 W of pump power at 1908 nm) in the good quality beam. The influence of Ho ion up-conversion and thermal lensing on the oscillation efficiency is discussed.

  20. Integration of GaN/AlN all-optical switch with SiN/AlN waveguide utilizing spot-size conversion.

    PubMed

    Iizuka, Norio; Yoshida, Haruhiko; Managaki, Nobuto; Shimizu, Toshimasa; Hassanet, Sodabanlu; Cumtornkittikul, Chiyasit; Sugiyama, Masakazu; Nakano, Yoshiaki

    2009-12-07

    Spot-size converters for an all-optical switch utilizing the intersubband transition in GaN/AlN multiple quantum wells are studied with the purpose of reducing operation power by improving the coupling efficiency between the input fiber and the switch. With a stair-like spot-size converter, the absorption saturation of 5 dB is achieved with a pulse energy of 25 pJ. The switch is integrated with a SiN/AlN waveguide and spot-size converters, and the structure provides the possibility of an integration of the switch with other functional devices. To further improve the coupling loss between the waveguide and the switch, triangular-shaped converters are investigated, demonstrating losses as low as 2 dB/facet.

  1. Integrated liquid-core optical fibers for ultra-efficient nonlinear liquid photonics.

    PubMed

    Kieu, K; Schneebeli, L; Norwood, R A; Peyghambarian, N

    2012-03-26

    We have developed a novel integrated platform for liquid photonics based on liquid core optical fiber (LCOF). The platform is created by fusion splicing liquid core optical fiber to standard single-mode optical fiber making it fully integrated and practical - a major challenge that has greatly hindered progress in liquid-photonic applications. As an example, we report here the realization of ultralow threshold Raman generation using an integrated CS₂ filled LCOF pumped with sub-nanosecond pulses at 532 nm and 1064 nm. The measured energy threshold for the Stokes generation is 1nJ, about three orders of magnitude lower than previously reported values in the literature for hydrogen gas, a popular Raman medium. The integrated LCOF platform opens up new possibilities for ultralow power nonlinear optics such as efficient white light generation for displays, mid-IR generation, slow light generation, parametric amplification, all-optical switching and wavelength conversion using liquids that have orders of magnitude larger optical nonlinearities compared with silica glass.

  2. Experimental demonstration of the switching dose-rate method on doped optical fibers

    NASA Astrophysics Data System (ADS)

    Thomas, J.; Myara, M.; Troussellier, L.; Régnier, E.; Burov, E.; Gilard, O.; Sottom, M.; Signoret, P.

    2017-11-01

    Optical technology developed for ground and submarine telecommunications is becoming of strong interest for next generation satellites. In addition to inter-satellite laser communications and LIDAR's, new applications are being considered such as on-board distribution and processing of microwave signals, fiber sensors or gyroscopes as well. Whereas common optical / optoelectronic components are known to be weakly sensitive to radiations, the essential optical amplifiers are strongly degraded in such an environment because of the RIA (Radio-Induced-Absorption) experienced by the Erbium-Doped Fiber (EDF) itself [1-3]. This degradation is mainly caused by the presence of co-doping ions, such as Aluminium or Germanium, inserted in the fibre to assist the inclusion of the Erbium ions in the silica matrix or to provide to the optical fibre its guiding properties.

  3. Dissemination of optical-comb-based ultra-broadband frequency reference through a fiber network.

    PubMed

    Nagano, Shigeo; Kumagai, Motohiro; Li, Ying; Ido, Tetsuya; Ishii, Shoken; Mizutani, Kohei; Aoki, Makoto; Otsuka, Ryohei; Hanado, Yuko

    2016-08-22

    We disseminated an ultra-broadband optical frequency reference based on a femtosecond (fs)-laser optical comb through a kilometer-scale fiber link. Its spectrum ranged from 1160 nm to 2180 nm without additional fs-laser combs at the end of the link. By employing a fiber-induced phase noise cancellation technique, the linewidth and fractional frequency instability attained for all disseminated comb modes were of order 1 Hz and 10-18 in a 5000 s averaging time. The ultra-broad optical frequency reference, for which absolute frequency is traceable to Japan Standard Time, was applied in the frequency stabilization of an injection-seeded Q-switched 2051 nm pulse laser for a coherent light detection and ranging LIDAR system.

  4. Intelligent optical networking with photonic cross connections

    NASA Astrophysics Data System (ADS)

    Ceuppens, L.; Jerphagnon, Olivier L.; Lang, Jonathan; Banerjee, Ayan; Blumenthal, Daniel J.

    2002-09-01

    Optical amplification and dense wavelength division multiplexing (DWDM) have fundamentally changed optical transport networks. Now that these technologies are widely adopted, the bottleneck has moved from the outside line plant to nodal central offices, where electrical switching equipment has not kept pace. While OEO technology was (and still is) necessary for grooming and traffic aggregation, the transport network has dramatically changed, requiring a dramatic rethinking of how networks need to be designed and operated. While todays transport networks carry remarkable amounts of bandwidth, their optical layer is fundamentally static and provides for only simple point-to-point transport. Efficiently managing the growing number of wavelengths can only be achieved through a new breed of networking element. Photonic switching systems (PSS) can efficiently execute these functions because they are bit rate, wavelength, and protocol transparent. With their all-optical switch cores and interfaces, PSS can switch optical signals at various levels of granularity wavelength, sub band, and composite DWDM fiber levels. Though cross-connect systems with electrical switch cores are available, they perform these functions at very high capital costs and operational inefficiencies. This paper examines enabling technologies for deployment of intelligent optical transport networks (OTN), and takes a practical perspective on survivability architecture migration and implementation issues.

  5. Spatial Light Modulators as Optical Crossbar Switches

    NASA Technical Reports Server (NTRS)

    Juday, Richard

    2003-01-01

    A proposed method of implementing cross connections in an optical communication network is based on the use of a spatial light modulator (SLM) to form controlled diffraction patterns that connect inputs (light sources) and outputs (light sinks). Sources would typically include optical fibers and/or light-emitting diodes; sinks would typically include optical fibers and/or photodetectors. The sources and/or sinks could be distributed in two dimensions; that is, on planes. Alternatively or in addition, sources and/or sinks could be distributed in three dimensions -- for example, on curved surfaces or in more complex (including random) three-dimensional patterns.

  6. High-power laser with Nd:YAG single-crystal fiber grown by the micro-pulling-down technique

    NASA Astrophysics Data System (ADS)

    Didierjean, Julien; Castaing, Marc; Balembois, François; Georges, Patrick; Perrodin, Didier; Fourmigué, Jean Marie; Lebbou, Kherreddine; Brenier, Alain; Tillement, Olivier

    2006-12-01

    We present optical characterization and laser results achieved with single-crystal fibers directly grown by the micro-pulling-down technique. We investigate the spectroscopic and optical quality of the fiber, and we present the first laser results. We achieved a cw laser power of 10 W at 1064 nm for an incident pump power of 60 W at 808 nm and 360 kW peak power for 12 ns pulses at 1 kHz in the Q-switched regime. It is, to the best of our knowledge, the highest laser power ever achieved with directly grown single-crystal fibers.

  7. Design of liquid temperature sensor based on bending loss phenomenon of plastic optic fiber and electro-optic effect of Mach-Zehnder interferometer

    NASA Astrophysics Data System (ADS)

    Kumar, Santosh; Swaminathan, S.

    2016-04-01

    The efficient application of electro-optic effect in lithium niobate based Mach-Zehnder interferometer (MZI) to construct the temperature sensor is used. An experimental set up for liquid temperature sensor is proposed. Temperature dependence of the bending loss light energy in multimode micro-plastic optical fiber (m-POF) and electro-optic effect of MZI are used. The performance of sensor at different temperatures is measured. It is seen that the light output of MZI switches from one port to the other port as temperature of liquid changes from 0°C to 100°C.

  8. Multigranular integrated services optical network

    NASA Astrophysics Data System (ADS)

    Yu, Oliver; Yin, Leping; Xu, Huan; Liao, Ming

    2006-12-01

    Based on all-optical switches without requiring fiber delay lines and optical-electrical-optical interfaces, the multigranular optical switching (MGOS) network integrates three transport services via unified core control to efficiently support bursty and stream traffic of subwavelength to multiwavelength bandwidth. Adaptive robust optical burst switching (AR-OBS) aggregates subwavelength burst traffic into asynchronous light-rate bursts, transported via slotted-time light paths established by fast two-way reservation with robust blocking recovery control. Multiwavelength optical switching (MW-OS) decomposes multiwavelength stream traffic into a group of timing-related light-rate streams, transported via a light-path group to meet end-to-end delay-variation requirements. Optical circuit switching (OCS) simply converts wavelength stream traffic from an electrical-rate into a light-rate stream. The MGOS network employs decoupled routing, wavelength, and time-slot assignment (RWTA) and novel group routing and wavelength assignment (GRWA) to select slotted-time light paths and light-path groups, respectively. The selected resources are reserved by the unified multigranular robust fast optical reservation protocol (MG-RFORP). Simulation results show that elastic traffic is efficiently supported via AR-OBS in terms of loss rate and wavelength utilization, while connection-oriented wavelength traffic is efficiently supported via wavelength-routed OCS in terms of connection blocking and wavelength utilization. The GRWA-tuning result for MW-OS is also shown.

  9. Development of a 1 x N Fiber Optic Sensor Array for Carbon Sequestration Site Monitoring

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Repasky, Kevin

    2014-02-01

    A fiber sensor array for sub-surface CO 2 concentrations measurements was developed for monitoring geologic carbon sequestration sites. The fiber sensor array uses a single temperature tunable distributed feedback (DFB) laser operating with a nominal wavelength of 2.004 μm. Light from this DFB laser is direct to one of the 4 probes via an in-line 1 x 4 fiber optic switch. Each of the 4 probes are buried and allow the sub-surface CO 2 to enter the probe through Millipore filters that allow the soil gas to enter the probe but keeps out the soil and water. Light from themore » DFB laser interacts with the CO 2 before it is directed back through the in-line fiber optic switch. The DFB laser is tuned across two CO 2 absorption features where a transmission measurement is made allowing the CO 2 concentration to be retrieved. The fiber optic switch then directs the light to the next probe where this process is repeated allowing sub-surface CO 2 concentration measurements at each of the probes to be made as a function of time. The fiber sensor array was deployed for fifty-eight days beginning June 19, 2012 at the Zero Emission Research Technology (ZERT) field site where sub-surface CO 2 concentrations were monitored. Background measurements indicate the fiber sensor array can monitor background levels as low as 1,000 parts per million (ppm). A thirty four day sub-surface release of 0.15 tones CO 2/day began on July 10, 2012. The elevated subsurface CO 2 concentration was easily detected by each of the four probes with values ranging to over 60,000 ppm, a factor of greater than 6 higher than background measurements. The fiber sensor array was also deploy at the Big Sky Carbon Sequestration Partnership (BSCSP) site in north-central Montana between July 9th and August 7th, 2013 where background measurements were made in a remote sequestration site with minimal infrastructure. The project provided opportunities for two graduate students to participate in research directly related to geologic carbon sequestration. Furthermore, commercialization of the technology developed is being pursued with five different companies via the Department of energy SBIR/STTR program« less

  10. Optical interconnect technologies for high-bandwidth ICT systems

    NASA Astrophysics Data System (ADS)

    Chujo, Norio; Takai, Toshiaki; Mizushima, Akiko; Arimoto, Hideo; Matsuoka, Yasunobu; Yamashita, Hiroki; Matsushima, Naoki

    2016-03-01

    The bandwidth of information and communication technology (ICT) systems is increasing and is predicted to reach more than 10 Tb/s. However, an electrical interconnect cannot achieve such bandwidth because of its density limits. To solve this problem, we propose two types of high-density optical fiber wiring for backplanes and circuit boards such as interface boards and switch boards. One type uses routed ribbon fiber in a circuit board because it has the ability to be formed into complex shapes to avoid interfering with the LSI and electrical components on the board. The backplane is required to exhibit high density and flexibility, so the second type uses loose fiber. We developed a 9.6-Tb/s optical interconnect demonstration system using embedded optical modules, optical backplane, and optical connector in a network apparatus chassis. We achieved 25-Gb/s transmission between FPGAs via the optical backplane.

  11. Multi-Gigabit Fiber Optic Wide Area Network Development.

    DTIC Science & Technology

    1991-07-01

    to propagate, no modal dispersion can occur. In multimode fiber , a parabolic index profile across the core is often used so that mode travel times are...In the fiber plant, such as connectors, splices couplers, splitters, switches, tunable filters , wavelength division multiplexers and demultiplexers...losses are much higher, at around 0.5 dB, and are usually avoided in long-haul systems. 30 Some fiber plant components have a filtering effect on the

  12. Compact, passively Q-switched, all-solid-state master oscillator-power amplifier-optical parametric oscillator (MOPA-OPO) system pumped by a fiber-coupled diode laser generating high-brightness, tunable, ultraviolet radiation.

    PubMed

    Peuser, Peter; Platz, Willi; Fix, Andreas; Ehret, Gerhard; Meister, Alexander; Haag, Matthias; Zolichowski, Paul

    2009-07-01

    We report on a compact, tunable ultraviolet laser system that consists of an optical parametric oscillator (OPO) and a longitudinally diode-pumped Nd:YAG master oscillator-power amplifier (MOPA). The pump energy for the whole laser system is supplied via a single delivery fiber. Nanosecond pulses are produced by an oscillator that is passively Q-switched by a Cr(4+):YAG crystal. The OPO is pumped by the second harmonic of the Nd:YAG MOPA. Continuously tunable radiation is generated by an intracavity sum-frequency mixing process within the OPO in the range of 245-260 nm with high beam quality. Maximum pulse energies of 1.2 mJ were achieved, which correspond to an optical efficiency of 3.75%, relating to the pulse energy of the MOPA at 1064 nm.

  13. Numerical calculation of phase-matching properties in photonic crystal fibers with three and four zero-dispersion wavelengths.

    PubMed

    Zhao, Xingtao; Liu, Xiaoxu; Wang, Shutao; Wang, Wei; Han, Ying; Liu, Zhaolun; Li, Shuguang; Hou, Lantian

    2015-10-19

    Photonic crystal fibers with three and four zero-dispersion wavelengths are presented through special design of the structural parameters, in which the closing to zero and ultra-flattened dispersion can be obtained. The unique phase-matching properties of the fibers with three and four zero-dispersion wavelengths are analyzed. Variation of the phase-matching wavelengths with the pump wavelengths, pump powers, dispersion properties, and fiber structural parameters is analyzed. The presence of three and four zero-dispersion wavelengths can realize wavelength conversion of optical soliton between two anomalous dispersion regions, generate six phase-matching sidebands through four-wave mixing and create more new photon pairs, which can be used for the study of supercontinuum generation, optical switches and quantum optics.

  14. Laser ablation system, and method of decontaminating surfaces

    DOEpatents

    Ferguson, Russell L.; Edelson, Martin C.; Pang, Ho-ming

    1998-07-14

    A laser ablation system comprising a laser head providing a laser output; a flexible fiber optic cable optically coupled to the laser output and transmitting laser light; an output optics assembly including a nozzle through which laser light passes; an exhaust tube in communication with the nozzle; and a blower generating a vacuum on the exhaust tube. A method of decontaminating a surface comprising the following steps: providing an acousto-optic, Q-switched Nd:YAG laser light ablation system having a fiber optically coupled output optics assembly; and operating the laser light ablation system to produce an irradiance greater than 1.times.10.sup.7 W/cm.sup.2, and a pulse width between 80 and 170 ns.

  15. Infrared laser transillumination CT imaging system using parallel fiber arrays and optical switches for finger joint imaging

    NASA Astrophysics Data System (ADS)

    Sasaki, Yoshiaki; Emori, Ryota; Inage, Hiroki; Goto, Masaki; Takahashi, Ryo; Yuasa, Tetsuya; Taniguchi, Hiroshi; Devaraj, Balasigamani; Akatsuka, Takao

    2004-05-01

    The heterodyne detection technique, on which the coherent detection imaging (CDI) method founds, can discriminate and select very weak, highly directional forward scattered, and coherence retaining photons that emerge from scattering media in spite of their complex and highly scattering nature. That property enables us to reconstruct tomographic images using the same reconstruction technique as that of X-Ray CT, i.e., the filtered backprojection method. Our group had so far developed a transillumination laser CT imaging method based on the CDI method in the visible and near-infrared regions and reconstruction from projections, and reported a variety of tomographic images both in vitro and in vivo of biological objects to demonstrate the effectiveness to biomedical use. Since the previous system was not optimized, it took several hours to obtain a single image. For a practical use, we developed a prototype CDI-based imaging system using parallel fiber array and optical switches to reduce the measurement time significantly. Here, we describe a prototype transillumination laser CT imaging system using fiber-optic based on optical heterodyne detection for early diagnosis of rheumatoid arthritis (RA), by demonstrating the tomographic imaging of acrylic phantom as well as the fundamental imaging properties. We expect that further refinements of the fiber-optic-based laser CT imaging system could lead to a novel and practical diagnostic tool for rheumatoid arthritis and other joint- and bone-related diseases in human finger.

  16. ImNet: a fiber optic network with multistar topology for high-speed data transmission

    NASA Astrophysics Data System (ADS)

    Vossebuerger, F.; Keizers, Andreas; Soederman, N.; Meyer-Ebrecht, Dietrich

    1993-10-01

    ImNet is a fiber-optic local area network, which has been developed for high speed image communication in Picture Archiving and Communication Systems (PACS). A comprehensive analysis of image communication requirements in hospitals led to the conclusion that there is a need for networks which are optimized for the transmission of large datafiles. ImNet is optimized for this application in contrast to current-state LANs. ImNet consists of two elements: a link module and a switch module. The point-to-point link module can be up to 4 km by using fiber optic cable. For short distances up to 100 m a cheaper module using shielded twisted pair cable is available. The link module works bi-directionally and handles all protocols up to OSI-Level 3. The data rate per link is up to 140 MBit/s (clock rate 175 MHz). The switch module consists of the control unit and the cross-point-switch array. The array has up to fourteen interfaces for link modules. Up to fourteen data transfers each with a maximal transfer rate of 400 MBit/s can be handled at the same time. Thereby the maximal throughput of a switch module is 5.6 GBit/s. Out of these modules a multi-star network can be built i.e., an arbitrary tree structure of stars. This topology allows multiple transmissions at the same time as long as they do not require identical links. Therefore the overall throughput of ImNet can be a multiple of the datarate per link.

  17. Analysis of an optically controlled photonic switch.

    PubMed

    Attard, A E

    1999-05-20

    The principle that the coupling of light between two fiber waveguides can be controlled by the resonant interference of a third waveguide has been developed [Attard, Appl. Opt. 37, 2296-2302 (1998)]. Here significant details concerning the operation of a photonic switch are obtained, and a more complete analysis is presented. Multiple-resonant conditions are identified for slab and fiber control waveguides at large indices of refraction. Thus a selection of materials with an appropriate refractive index and a Kerr coefficient is rendered more easily. Furthermore it is shown that the light used to control the index of refraction in the control waveguide does not enter the output of the photonic switch but remains confined to the control waveguide, for either a slab or a multimode fiber control waveguide. Spatial fluctuations of the control light beam in the control waveguide do not affect the operation of the photonic switch. Tolerances have been determined for the spacing between the control waveguide and the photonic coupler and also for the index of refraction of the control waveguide.

  18. A Filmy Black-Phosphorus Polyimide Saturable Absorber for Q-Switched Operation in an Erbium-Doped Fiber Laser.

    PubMed

    Feng, Tianxian; Mao, Dong; Cui, Xiaoqi; Li, Mingkun; Song, Kun; Jiang, Biqiang; Lu, Hua; Quan, Wangmin

    2016-11-11

    We demonstrate an erbium-doped fiber laser passively Q-switched by a black-phosphorus polyimide film. The multi-layer black-phosphorus (BP) nanosheets were prepared via a liquid exfoliation approach exploiting N -methylpyrrolidone as the dispersion liquid. By mixing the BP nanosheets with polyimide (PI), a piece of BP-PI film was obtained after evaporating the mixture in a petri dish. The BP-PI saturable absorber had a modulation depth of 0.47% and was inserted into an erbium-doped fiber laser to realize passive Q-switched operations. The repetition rate of the Q-switched laser increased from 5.73 kHz to 31.07 kHz when the laser pump was enhanced from 31.78 mW to 231.46 mW. Our results show that PI is an excellent host material to protect BP from oxidation, and the BP-PI film can act as a promising nonlinear optical device for laser applications.

  19. Study of the OCDMA Transmission Characteristics in FSO-FTTH at Various Distances, Outdoor

    NASA Astrophysics Data System (ADS)

    Aldouri, Muthana Y.; Aljunid, S. A.; Fadhil, Hilal A.

    2013-06-01

    It is important to apply the field Programmable Gate Array (FPGA), and Optical Switch technology as an encoder and decoder for Spectral Amplitude Coding Optical Code Division Multiple Access (SAC-OCDMA) Free Space Optic Fiber to the Home (FSO-FTTH) transmitter and receiver system design. The encoder and decoder module will be using FPGA as a code generator, optical switch using as encode and decode of optical source. This module was tested by using the Modified Double Weight (MDW) code, which is selected as an excellent candidate because it had shown superior performance were by the total noise is reduced. It is also easy to construct and can reduce the number of filters required at a receiver by a newly proposed detection scheme known as AND Subtraction technique. MDW code is presented here to support Fiber-To-The-Home (FTTH) access network in Point-To-Multi-Point (P2MP) application. The conversion used a Mach-Zehnder interferometer (MZI) wavelength converter. The performances are characterized through BER and bit rate (BR), also, the received power at a variety of bit rates.

  20. Narrow-linewidth broadly tunable Yb-doped Q-switched fiber laser using multimode interference filter.

    PubMed

    Chakravarty, Usha; Mukhopadhyay, P K; Kuruvilla, A; Upadhyaya, B N; Bindra, K S

    2017-05-01

    A narrow-linewidth broadly tunable Yb-doped Q-switched fiber laser using an acousto-optic modulator and multimode interference filter (MMIF) in the linear bulk cavity resonator and an all-fiber ring cavity resonator has been demonstrated. Insertion of an MMIF in the linear cavity resonator using bulk components decreased the spectral bandwidth of the Q-switched signal by two orders of magnitude from 11 to less than 0.1 nm. Spectral tunability of more than 16 nm in the range from 1057 to 1073 nm has also been achieved by the combination of MMIF and a standard polarization controller (SPC). A decrease in the pulse duration with a decrease in the spectral bandwidth of the output signal has also been recorded. The pulse duration of the Q-switched signal was reduced from ∼305 to ∼240  ns by the introduction of the MMIF in the resonator at the same value of the input pump power. In the case of the all-fiber Q-switched ring cavity resonator, the spectral bandwidth of the Q-switched signal was reduced by two orders of magnitude from ∼17 to less than 0.1 nm due to the introduction of the MMIF in the resonator. The spectral tunability of more than 12 nm in the range from 1038 to 1050 nm was achieved by an MMIF and an SPC.

  1. Progress in holographic applications; Proceedings of the Meeting, Cannes, France, December 5, 6, 1985

    NASA Technical Reports Server (NTRS)

    Ebbeni, Jean (Editor)

    1986-01-01

    Papers are presented on a holographic recording material containing poly-n-vinylcarbozole, photoelectrochemical etching of holographic gratings in semiconductors, the analysis and construction of powered reflection holographic optical elements, achromatic display holograms in dichromated gelatin, and image blurring in display holograms and in holographic optical elements. Topics discussed include two-dimensional optical beam switching techniques using dynamnic holography, a new holographic interferometer with monomode fibers for integrated optics applications, computer controlled holography, and the copying of holograms using incoherent light. Consideration is given to holography of very far objects, rainbow holography with a multimode laser source, and the use of an endoscope for optical fiber holography.

  2. Experimental investigation of high power pulsed 2.8 μm Er3+-doped ZBLAN fiber lasers

    NASA Astrophysics Data System (ADS)

    Shen, Yanlong; Wang, Yishan; Huang, Ke; Luan, Kunpeng; Chen, Hongwei; Tao, Mengmeng; Yu, Li; Yi, Aiping; Si, Jinhai

    2017-05-01

    We report on the recent progress on high power pulsed 2.8 μm Er3+-doped ZBLAN fiber laser through techniques of passively and actively Q-switching in our research group. In passively Q-switched operation, a diode-cladding-pumped mid-infrared passively Q-switched Er3+-doped ZBLAN fiber laser with an average output power of watt-level based on a semiconductor saturable absorber mirror (SESAM) was demonstrated. Stable pulse train was produced at a slope efficient of 17.8% with respect to launched pump power. The maximum average power of 1.01 W at a repetition rate of 146.3 kHz was achieved with a corresponding pulse energy of 6.9 μJ. The maximum peak power was calculated to be 21.9 W. In actively Q-switched operation, a diode-pumped actively Q-switched Er3+-doped ZBLAN fiber laser at 2.8 μm with an optical chopper was reported. The maximum laser pulse energy of up to 130 μJ and a pulse width of 127.3 ns at a repetition rate of 10 kHz with an operating wavelength of 2.78 μm was obtained, yielding the maximum peak power of exceeding 1.1 kW.

  3. High sensitivity cascaded preamplifier with an optical bridge structure in Brillouin distributed fiber sensing system

    NASA Astrophysics Data System (ADS)

    Bi, Weihong; Lin, Hang; Fu, Xinghu; Fu, Guangwei

    2013-12-01

    Fiber amplifiers such as Erbium-doped fiber amplifier (EDFA) played a key role in developing long-haul transmission system and have been an important element for enabling the development of optical communication system. EDFA amplifies the optical signal directly, without the optical-electric-optical switch and has the advantages such as high gain, broad band, low noise figure. It is widely used in repeaterless submarine system, smart grid and community antenna television system. This article describe the application of optical-fiber amplifiers in distributed optical fiber sensing system, focusing on erbium-doped fiber preamplifiers in modern transmission optical systems. To enhance the measurement range of a spontaneous Brillouin intensity based distributed fiber optical sensor and improve the receiver sensitivity, a two cascaded EDFAs C-band preamplifier with an optical bridge structure is proposed in this paper. The first cascaded EDFA is consisted of a length of 4.3m erbium-doped fiber and pumped in a forward pump light using a laser operating at 975nm. The second one made by using a length of 16m erbium-doped fiber is pumped in a forward pump light which is the remnant pump light of the first cascaded EDFA. At the preamplifier output, DWDM, centered at the signal wavelength, is used to suppress unwanted amplified spontaneous emission. The experimental results show that the two cascade preamplifier with a bridge structure can be used to amplify for input Brillouin backscattering light greater than about -43dBm. The optical gain is characterized and more than 26dB is obtained at 1549.50nm with 300mW pump power.

  4. Propagation and switching of light in rectangular waveguiding structures

    NASA Astrophysics Data System (ADS)

    Sala, Anca L.

    1998-10-01

    In this dissertation, we investigate the conditions for the propagation and processing of temporal optical solitons in the rectangular geometry waveguides which are expected to play an important role as processing elements in optical communication systems. It is anticipated that the optical signals carrying information through optical fibers will be in the form of temporal soliton pulses, which can propagate undistorted for long distances under the condition that the dispersion is balanced by a nonlinearity in the optical fiber. An important parameter in the equation that governs temporal soliton propagation in a waveguide is the second derivative of the propagation vector with respect to the angular frequency, /omega, denoted by β/prime'. We evaluate β/prime' for rectangular waveguides using a channel model of the waveguide, which takes into account the two transverse dimensions of the rectangular channel. Significant differences are found in the values of β/prime' obtained from our model and those obtained from the more traditional, one dimensional slab model. A major additional effort in the present thesis relates to the development of a theory of temporal soliton switching in a planar geometry nonlinear directional coupler. The theory is formulated in terms of the supermodes of the total structure, and again accounts for the two transverse dimensions of the channels. To accurately determine the coupling length and switching power of the nonlinear coupler, we apply corrections to the propagation constants of the supermodes that account for the non-zero electromagnetic fields in the outer corner regions of the waveguide channels. It is shown for the case of a SiO2 based nonlinear directional coupler operating at the central wavelength of 1.55 μm, that these corrections have a significant effect on both the coupling length and the switching power. Finally, we develop the conditions under which single mode rectangular waveguides can have zero dispersion at the optical communications wavelengths 1.31 μm or 1.55 μm, and discuss the end-to-end coupling of rectangular waveguides to the standard optical fibers used in optical communications. Our results are expected to serve as a guide for the design of planar geometry based processing elements in a variety of optical communications devices.

  5. Q-switched dual-wavelength pumped 3.5-μm erbium-doped mid-Infrared fiber laser

    NASA Astrophysics Data System (ADS)

    Bawden, Nathaniel; Matsukuma, Hiraku; Henderson-Sapir, Ori; Klantsataya, Elizaveta; Tokita, Shigeki; Ottaway, David J.

    2018-02-01

    Short pulse operation of fiber lasers operating at wavelengths up 3 micron have been reported in recent years. At longer wavelengths, fiber lasers have only been demonstrated with a continuous operation mode. Short pulse operation in the mid-IR is necessary for utilizing such lasers in laser radars and for medical applications. Our previous numerical work suggested that Q-switching is possible on the 3.5 μm transition in erbium-doped ZBLAN in a similar manner to work demonstrated on the 2.8 μm transition in erbium. In this work we report on initial experimental results of a Q-switched, dualwavelength pumped fiber laser operating on the 3.5 μm transition in erbium-doped ZBLAN glass fibers. Using a hybrid fiber and open resonator configuration utilizing an acousto-optic modulator we demonstrated stable single pulse Q-switching while operating at repetition rates of 20 kHz and up to 120 kHz. The laser achieved a peak power of 8 W with pulse energy of 7 μJ while operating at 25 kHz. Long pulse widths on the order of 1 μs were obtained. The low peak power and long pulses are likely the result of both low gain of the transition and additional losses in the resonator which are currently being investigated. Our latest results will be presented.

  6. Interrogation and mitigation of polarization effects for standard and birefringent FBGs

    NASA Astrophysics Data System (ADS)

    Ibrahim, Selwan K.; Van Roosbroeck, Jan; O'Dowd, John A.; Van Hoe, Bram; Lindner, Eric; Vlekken, Johan; Farnan, Martin; Karabacak, Devrez M.; Singer, Johannes M.

    2016-05-01

    Optical sensors based on Fiber Bragg Gratings (FBGs) are used in several applications and industries. Several inscription techniques and type of fibers can be used. However, depending on the writing process, type of fiber used and the packaging of the sensor a Polarization Dependent Frequency Shift (PDFS) can often be observed with polarized tunable laser based optical interrogators. Here we study the PDFS of the FBG peak for the different FBG types. A PDFS of <1pm up to >20pm was observed across the FBGs. To mitigate and reduce this effect we propose a polarization mitigation technique which relies on a synchronous polarization switch to reduce the effect typically by a factor greater than 4. In other scenarios the sensor itself is designed to be birefringent (Bi-FBG) to allow pressure and/or simultaneous temperature and strain measurements. Using the same polarization switch we demonstrate how we can interrogate the Bi-FBGs with high accuracy to enable high performance of such sensors to be achievable.

  7. Low-profile fiber connector for co-packaged optics

    NASA Astrophysics Data System (ADS)

    Brusberg, Lars; DeJong, Michael; Butler, Douglas L.; Clark, Jeffrey S.; Sutton, Clifford G.

    2018-02-01

    We developed a small form factor connector that can be assembled on all four sides of a high-data switch package for fiber connectivity. This paper discusses a novel connector approach that has the potential to meet all co-packaging requirements including solder-reflow-compatibility, de-mateability, low insertion loss and state-of-the art FAU attach. The connector was attached to the PIC for performance evaluation. The average insertion loss across all eight fibers of the assembly was 1.77 dB, including the three optical interfaces: (1) MT-to-MT between connector and receptacle, (2) receptacle-to-PLC and (3) PIC-to-FAU. Also included is the propagation loss of the PIC waveguide. Optical return loss was measured to be -55 dB or lower.

  8. Reconfiguration of the multiwavelength operation of optical fiber ring lasers by the modifiable intra-cavity induced losses of an in-fiber tip probe modal Michelson interferometer

    NASA Astrophysics Data System (ADS)

    Salceda-Delgado, G.; Martinez-Rios, A.; Sierra-Hernandez, J. M.; Rodríguez-Carreón, V. C.; Toral-Acosta, D.; Selvas-Aguilar, R.; Álvarez-Tamayo, R. I.; Castillo-Guzman, A. A.; Rojas-Laguna, R.

    2018-03-01

    A straightforward and versatile method for switching from single to different multiwavelength laser emission in ring cavity fiber lasers is proposed and demonstrated experimentally. The method is based on using the changeable interference pattern from an optical fiber modal Michelson interferometer as a wavelength selective filter into the ring cavity laser. The interferometer is constructed using a bi-conical tapered fiber and a single-mode fiber segment, with these being spliced together to form an optical fiber tip probe. When the length of the single-mode fiber piece is modified, the phase difference between the interfering modes of the interferometer causes a change in the interferometer free spectral range. As a consequence, the laser intra-cavity losses lead to gain competition, which allows us to adjust the number of simultaneously generated laser lines. A multiwavelength reconfiguration of the laser from one up to a maximum of eight emission lines was obtained, with a maximum SNR of around 47 dBm.

  9. Reconfigurable visible nanophotonic switch for optogenetic applications (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Mohanty, Aseema; Li, Qian; Tadayon, Mohammad Amin; Bhatt, Gaurang R.; Cardenas, Jaime; Miller, Steven A.; Kepecs, Adam; Lipson, Michal

    2017-02-01

    High spatiotemporal resolution deep-brain optical excitation for optogenetics would enable activation of specific neural populations and in-depth study of neural circuits. Conventionally, a single fiber is used to flood light into a large area of the brain with limited resolution. The scalability of silicon photonics could enable neural excitation over large areas with single-cell resolution similar to electrical probes. However, active control of these optical circuits has yet to be demonstrated for optogenetics. Here we demonstrate the first active integrated optical switch for neural excitation at 473 nm, enabling control of multiple beams for deep-brain neural stimulation. Using a silicon nitride waveguide platform, we develop a cascaded Mach-Zehnder interferometer (MZI) network located outside the brain to direct light to 8 different grating emitters located at the tip of the neural probe. We use integrated platinum microheaters to induce a local thermo-optic phase shift in the MZI to control the switch output. We measure an ON/OFF extinction ratio of >8dB for a single switch and a switching speed of 20 microseconds. We characterize the optical output of the switch by imaging its excitation of fluorescent dye. Finally, we demonstrate in vivo single-neuron optical activation from different grating emitters using a fully packaged device inserted into a mouse brain. Directly activated neurons showed robust spike firing activities with low first-spike latency and small jitter. Active switching on a nanophotonic platform is necessary for eventually controlling highly-multiplexed reconfigurable optical circuits, enabling high-resolution optical stimulation in deep-brain regions.

  10. Polarization switch of four-wave mixing in a lawtunable fiber optical parametric oscillator.

    PubMed

    Yang, Kangwen; Ye, Pengbo; Zheng, Shikai; Jiang, Jieshi; Huang, Kun; Hao, Qiang; Zeng, Heping

    2018-02-05

    We reported the simultaneous generation and selective manipulation of scalar and cross-phase modulation instabilities in a fiber optical parametric oscillator. Numerical and experimental results show independent control of parametric gain by changing the input pump polarization state. The resonant cavity enables power enhancement of 45 dB for the spontaneous sidebands, generating laser pulses tunable from 783 to 791 nm and 896 to 1005 nm due to the combination of four-wave mixing, cascaded Raman scattering and other nonlinear effects. This gain controlled, wavelength tunable, fiber-based laser source may find applications in the fields of nonlinear biomedical imaging and stimulated Raman spectroscopy.

  11. Microsecond reconfigurable NxN data-communication switch using DMD

    NASA Astrophysics Data System (ADS)

    Blanche, Pierre-Alexandre; Miles, Alexander; Lynn, Brittany; Wissinger, John; Carothers, Daniel; Norwood, Robert A.; Peyghambarian, Nasser

    2014-03-01

    We present here the use the DMD as a diffraction-based optical switch, where Fourier diffraction patterns are used to steer the incoming beams to any output configuration. We have implemented a single-mode fiber coupled N X N switch and demonstrated its ability to operate over the entire telecommunication C-band centered at 1550 nm. The all-optical switch was built primarily with off-the-shelf components and a Texas Instruments DLP7000™with an array of 1024 X 768 micromirrors. This DMD is capable of switching 100 times faster than currently available technology (3D MOEMS). The switch is robust to typical failure modes, protocol and bit-rate agnostic, and permits full reconfigurable optical add drop multiplexing (ROADM). The switch demonstrator was inserted into a networking testbed for the majority of the measurements. The testbed assembled under the Center for Integrated Access Networks (ClAN), a National Science Foundation (NSF) Engineering Research Center (ERC), provided an environment in which to simulate and test the data routing functionality of the switch. A Fujitsu Flashwave 9500 PS was used to provide the data signal, which was sent through the switch and received by a second Flashwave node. We successfully transmitted an HD video stream through a switched channel without any measurable data loss.

  12. Fiber optics for aircraft engine/inlet control

    NASA Technical Reports Server (NTRS)

    Baumbick, R. J.

    1981-01-01

    NASA programs that focus on the use of fiber optics for aircraft engine/inlet control are reviewed. Fiber optics for aircraft control is attractive because of its inherent immunity to EMI and RFI noise. Optical signals can be safely transmitted through areas that contain flammable or explosive materials. The use of optics also makes remote sensing feasible by eliminating the need for electrical wires to be connected between sensors and computers. Using low-level optical signals to control actuators is also feasible when power is generated at the actuator. Each application of fiber optics for aircraft control has different requirements for both the optical cables and the optical connectors. Sensors that measure position and speed by using slotted plates can use lossy cables and bundle connectors if data transfer is in the parallel mode. If position and speed signals are multiplexed, cable and connector requirements change. Other sensors that depend on changes in transmission through materials require dependable characteristics of both the optical cables and the optical connectors. A variety of sensor types are reviewed, including rotary position encoders, tachometers, temperature sensors, and blade tip clearance sensors for compressors and turbines. Research on a gallium arsenide photoswitch for optically switched actuators that operate at 250 C is also described.

  13. Complete chirp analysis of a gain-switched pulse using an interferometric two-photon absorption autocorrelation.

    PubMed

    Chin, Sang Hoon; Kim, Young Jae; Song, Ho Seong; Kim, Dug Young

    2006-10-10

    We propose a simple but powerful scheme for the complete analysis of the frequency chirp of a gain-switched optical pulse using a fringe-resolved interferometric two-photon absorption autocorrelator. A frequency chirp imposed on the gain-switched pulse from a laser diode was retrieved from both the intensity autocorrelation trace and the envelope of the second-harmonic interference fringe pattern. To verify the accuracy of the proposed phase retrieval method, we have performed an optical pulse compression experiment by using dispersion-compensating fibers with different lengths. We have obtained close agreement by less than a 1% error between the compressed pulse widths and numerically calculated pulse widths.

  14. Refractive-index dispersion measurement of bulk optical materials using a fiber raman laser widely tunable in the visible and near-infrared

    NASA Astrophysics Data System (ADS)

    Ilev, Ilko K.; Kumagai, Hiroshi; Toyoda, Koichi

    1997-01-01

    We propose a simple, highly sensitive fiber-optic autocollimation method for refractive-index dispersion measurement of solid-state and liquid bulk optical materials using a double-pass fiber Raman laser with Littrow-prism-tuned emission. The optical fiber is a key element of the scheme and serves simultaneously as a point laser source for the test, as a highly sensitive point receiver (or spatial filter) of the autocollimation backreflectance signal and as a medium for nonlinear frequency conversion and generation of a broadband continuum spectrum. When the Raman medium is a graded-index multimode fiber with powerful pumping (over 100 kW) using the second harmonic of a Q-switched Nd:YAG laser (λp=532nm), we obtain widely tunable (0.54-1.01 μm) generation in both the visible and near-IR ranges. The results obtained in the refractive-index dispersion measurements are fitted to the Sellmeier dispersion equation and the standard deviation of the experimental data from the analytical curve does not exceed 5x10-5.

  15. Fiber-optic perimeter security system based on WDM technology

    NASA Astrophysics Data System (ADS)

    Polyakov, Alexandre V.

    2017-10-01

    Intelligent underground fiber optic perimeter security system is presented. Their structure, operation, software and hardware with neural networks elements are described. System allows not only to establish the fact of violation of the perimeter, but also to locate violations. This is achieved through the use of WDM-technology division spectral information channels. As used quasi-distributed optoelectronic recirculation system as a discrete sensor. The principle of operation is based on registration of the recirculation period change in the closed optoelectronic circuit at different wavelengths under microstrain exposed optical fiber. As a result microstrain fiber having additional power loss in a fiber optical propagating pulse, which causes a time delay as a result of switching moments of the threshold device. To separate the signals generated by intruder noise and interference, the signal analyzer is used, based on the principle of a neural network. The system detects walking, running or crawling intruder, as well as undermining attempts to register under the perimeter line. These alarm systems can be used to protect the perimeters of facilities such as airports, nuclear reactors, power plants, warehouses, and other extended territory.

  16. "Reliability Of Fiber Optic Lans"

    NASA Astrophysics Data System (ADS)

    Code n, Michael; Scholl, Frederick; Hatfield, W. Bryan

    1987-02-01

    Fiber optic Local Area Network Systems are being used to interconnect increasing numbers of nodes. These nodes may include office computer peripherals and terminals, PBX switches, process control equipment and sensors, automated machine tools and robots, and military telemetry and communications equipment. The extensive shared base of capital resources in each system requires that the fiber optic LAN meet stringent reliability and maintainability requirements. These requirements are met by proper system design and by suitable manufacturing and quality procedures at all levels of a vertically integrated manufacturing operation. We will describe the reliability and maintainability of Codenoll's passive star based systems. These include LAN systems compatible with Ethernet (IEEE 802.3) and MAP (IEEE 802.4), and software compatible with IBM Token Ring (IEEE 802.5). No single point of failure exists in this system architecture.

  17. Q-switched Erbium-doped fiber laser at 1600 nm for photoacoustic imaging application

    PubMed Central

    Zeng, Lvming; Chen, Zhongping; Kim, Chang-Seok

    2016-01-01

    We present a nanosecond Q-switched Erbium-doped fiber (EDF) laser system operating at 1600 nm with a tunable repetition rate from 100 kHz to 1 MHz. A compact fiber coupled, acousto-optic modulator-based EDF ring cavity was used to generate a nanosecond seed laser at 1600 nm, and a double-cladding EDF based power amplifier was applied to achieve the maximum average power of 250 mW. In addition, 12 ns laser pulses with the maximum pulse energy of 2.4 μJ were obtained at 100 kHz. Furthermore, the Stokes shift by Raman scattering over a 25 km long fiber was measured, indicating that the laser can be potentially used to generate the high repetition rate pulses at the 1.7 μm region. Finally, we detected the photoacoustic signal from a human hair at 200 kHz repetition rate with a pulse energy of 1.2 μJ, which demonstrates that a Q-switched Er-doped fiber laser can be a promising light source for the high speed functional photoacoustic imaging. PMID:27110032

  18. Exploiting nonlinear properties of pure and Sn-doped Bi2Te2Se for passive Q-switching of all-polarization maintaining ytterbium- and erbium-doped fiber lasers.

    PubMed

    Bogusławski, Jakub; Kowalczyk, Maciej; Iwanowski, Przemysław; Hruban, Andrzej; Diduszko, Ryszard; Piotrowski, Kazimierz; Dybko, Krzysztof; Wojciechowski, Tomasz; Aleszkiewicz, Marta; Sotor, Jarosław

    2017-08-07

    Due to their broadband nonlinear optical properties, low-dimensional materials are widely used for pulse generation in fiber and solid-state lasers. Here we demonstrate novel materials, Bi 2 Te 2 Se (BTS) and Sn-doped Bi 2 Te 2 Se (BSTS), which can be used as a universal saturable absorbers for distinct spectral regimes. The material was mechanically exfoliated from a bulk single-crystal and deposited onto a side-polished fiber. We have performed characterization of the fabricated devices and employed them in polarization-maintaining ytterbium- and erbium-doped fiber lasers. This enabled us to obtain self-starting passively Q-switched regime at 1 µm and 1.56 µm. The oscillators emitted stable, linearly polarized radiation with the highest single pulse energy approaching 692 nJ. Both lasers are characterized by the best performance observed in all-polarization maintaining Q-switched fiber lasers with recently investigated new saturable absorbers, which was enabled by a very high damage threshold of the devices. This demonstrates the great potential of the investigated materials for the ultrafast photonics community.

  19. Q-switched Erbium-doped fiber laser at 1600 nm for photoacoustic imaging application

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Piao, Zhonglie; Beckman Laser Institute, Department of Biomedical Engineering, University of California, Irvine, California 92612; Zeng, Lvming

    We present a nanosecond Q-switched Erbium-doped fiber (EDF) laser system operating at 1600 nm with a tunable repetition rate from 100 kHz to 1 MHz. A compact fiber coupled, acousto-optic modulator-based EDF ring cavity was used to generate a nanosecond seed laser at 1600 nm, and a double-cladding EDF based power amplifier was applied to achieve the maximum average power of 250 mW. In addition, 12 ns laser pulses with the maximum pulse energy of 2.4 μJ were obtained at 100 kHz. Furthermore, the Stokes shift by Raman scattering over a 25 km long fiber was measured, indicating that the laser can be potentially used to generate the highmore » repetition rate pulses at the 1.7 μm region. Finally, we detected the photoacoustic signal from a human hair at 200 kHz repetition rate with a pulse energy of 1.2 μJ, which demonstrates that a Q-switched Er-doped fiber laser can be a promising light source for the high speed functional photoacoustic imaging.« less

  20. Motion-artifact-robust, polarization-resolved second-harmonic-generation microscopy based on rapid polarization switching with electro-optic Pockells cell and its application to in vivo visualization of collagen fiber orientation in human facial skin

    PubMed Central

    Tanaka, Yuji; Hase, Eiji; Fukushima, Shuichiro; Ogura, Yuki; Yamashita, Toyonobu; Hirao, Tetsuji; Araki, Tsutomu; Yasui, Takeshi

    2014-01-01

    Polarization-resolved second-harmonic-generation (PR-SHG) microscopy is a powerful tool for investigating collagen fiber orientation quantitatively with low invasiveness. However, the waiting time for the mechanical polarization rotation makes it too sensitive to motion artifacts and hence has hampered its use in various applications in vivo. In the work described in this article, we constructed a motion-artifact-robust, PR-SHG microscope based on rapid polarization switching at every pixel with an electro-optic Pockells cell (PC) in synchronization with step-wise raster scanning of the focus spot and alternate data acquisition of a vertical-polarization-resolved SHG signal and a horizontal-polarization-resolved one. The constructed PC-based PR-SHG microscope enabled us to visualize orientation mapping of dermal collagen fiber in human facial skin in vivo without the influence of motion artifacts. Furthermore, it implied the location and/or age dependence of the collagen fiber orientation in human facial skin. The robustness to motion artifacts in the collagen orientation measurement will expand the application scope of SHG microscopy in dermatology and collagen-related fields. PMID:24761292

  1. UV diode-pumped solid state laser for medical applications

    NASA Astrophysics Data System (ADS)

    Apollonov, Victor V.; Konstantinov, K. V.; Sirotkin, A. A.

    1999-07-01

    A compact, solid-state, high-efficiency, and safe UV laser medical system with optical fiber output was created for treatment of destructive forms of pulmonary tuberculosis. A frequency-quadruped quasi-CW Nd:YVO4 laser system pumped by laser-diode array is investigated with various resonator configurations. A longitudinal end-pumping scheme was used in a compact acousto-optical Q-switched laser for producing stable pulses of UV radiation at the repetition frequency 10-20 kHz and the duration 7-10 ns with the fiber-guide output power exceeding 10 mW.

  2. An All-Optical Picosecond Switch in Polydiacetylene

    NASA Technical Reports Server (NTRS)

    Abdeldayem, Hossin; Frazier, Donald O.; Paley, Mark S.

    2002-01-01

    Polydiacetylene derivative of 2-methyl-4-nitroaniline (PDAMNA) showed a picosecond switching property. This phenomenon was demonstrated by wave guiding a cw He-Ne laser collinearly with a mode-locked picosecond Nd:YAG laser at 532 nm through a hollow fiber coated on the inside with a thin film of PDAMNA. The z-scan investigations of PDAMNA thin film revealed that the PDAMNA system is a three level system and the switching is caused by excited state absorption of the He-Ne beam.

  3. Ferroelectric liquid crystal device based photonic controllers for microwave antenna arrays

    NASA Astrophysics Data System (ADS)

    Madamopoulos, Nicholas

    For the first time, this dissertation proposes, studies, analyzes, and experimentally demonstrates the use of ferroelectric liquid crystal (FLC) technology for wideband phased array control applications. FLC devices are used as polarization switches in photonic delay lines (PDLs) to control and process optical signals that drive the elements of a phased array antenna (PAA). The use of photonics for PAA control is, at present, a vital area of applied research. This dissertation work concludes with the demonstration of a multichannel 7-bit PDL system for a wideband PAA such as the Navy's advanced Aegis radar system. The unique system issues and problems to be examined and solved in this Ph.D. dissertation include the theoretical analysis and experimental demonstration of different PDL architectures covering a sub-nanosecond to several nanoseconds time delay range. New noise reduction/suppression schemes are proposed, studied and applied to give record level time delay system performance in terms of signal-to-leakage noise ratio, and switching speeds (e.g., 35 microseconds) required for fast radar scan. We show that the external modulation FO link gives more degrees of freedom to the system engineer, and we propose a novel synchronous RF signal calibration time delay control technique to obtain optimum dynamic range performance for our PDL. The use of low loss fibers for remoting of the photonic beamformer, as well as the losses associated with multiple fiber interconnects that limit the maximum number of array channels in the systems are studied. Different fiber optic coupling techniques are investigated for enhanced fiber coupling. Multimode fibers are used, for the first time, at the output plane of the PDL to obtain improved coupling efficiency. We demonstrate a low ~1.7 dB optical insertion loss/bit, which is very close to the desired insertion loss required for the Navy system. A novel approach for hardware reduction based on wavelength multiplexing is proposed, where the use of a combination of wavelength dependent and wavelength independent optical paths provides the required time delays. Finally, new switching fabric approaches are studied based on polarization selective holograms and their potential use for the implementation of PDLs is discussed.

  4. Fiber optic evanescent field sensor for detection of explosives and CO2 dissolved in water

    NASA Astrophysics Data System (ADS)

    Orghici, R.; Willer, U.; Gierszewska, M.; Waldvogel, S. R.; Schade, W.

    2008-02-01

    A fiber optic approach for the determination of the carbon dioxide concentration in the gas or fluid phase during sequestration, as well as for the sensing of the explosive TNT is described. The sensor consists of a quartz glass multimode fiber with core diameter of 200 μm and is based on the evanescent field principle. Cladding and jacket of the fiber are removed in the sensing portion, therefore interaction between light within the fiber and the surrounding medium is possible. A single-mode distributed feedback (DFB) laser diode with an emission wavelength around λ= 1.57 μm and a frequency doubled passively Q-switched Cr4+:Nd3+:YAG microchip laser (λ= 1064 nm)are used as light sources. The experimental setup and the sensitivity of the evanescent field sensor are characterized.

  5. Effect of control-beam polarization and power on optical time-domain demultiplexing in a new nonlinear optical loop mirror design

    NASA Astrophysics Data System (ADS)

    Grendár, Drahomír; Pottiez, Olivier; Dado, Milan; Müllerová, Jarmila; Dubovan, Jozef

    2009-05-01

    A new scheme of a control-beam-driven nonlinear optical loop mirror (NOLM) with a birefringent twisted fiber and a symmetrical coupler designed for optical time division demultiplexing (OTDM) is analyzed. The theoretical model of the proposed NOLM scheme considers the evolution of polarization states of data and control beams and the mutual interactions of the data and control beams due to the cross-phase modulation (XPM). Attention is given to the optical switching commanded by the control-beam power and by the manipulation of nonlinear polarization rotation of the data and control beam. The simulations of NOLM transmissions demonstrate that the cross talk between demultiplexed and nondemultiplexed beams as an important parameter for optical switching by the presented NOLM can be significantly reduced. The results show that the device can be of interest for all-optical signal manipulations in optical communication networks.

  6. Power requirements reducing of FBG based all-optical switching

    NASA Astrophysics Data System (ADS)

    Scholtz, Ľubomír.; Solanská, Michaela; Ladányi, Libor; Müllerová, Jarmila

    2017-12-01

    Although Fiber Bragg gratings (FBGs) are well known devices, their using as all-optical switching elements has been still examined. Current research is focused on optimization of their properties for their using in future all-optical networks. The main problem are high switching intensities needed for achieving the changes of the transmission state. Over several years switching intensities have been reduced from hundreds of GW/cm2 to tens of MW/cm2 by selecting appropriate gratings and signal parameters or using suitable materials. Two principal nonlinear effects with similar power requirements can result in the bistable transmission/reflection of an input optical pulse. In the self-phase modulation (SPM) regime switching is achieved by the intense probe pulse itself. Using cross-phase modulation (XPM) a strong pump alters the FBG refractive index experienced by a weak probe pulse. As a result of this the detuning of the probe pulse from the center of the photonic band gap occurs. Using of XPM the effect of modulation instability is reduced. Modulation instability which is the main SPM degradation mechanism. We focused on nonlinear FBGs based on chalcogenide glasses which are very often used in various applications. Thanks to high nonlinear parameters chalcogenide glasses are suitable candidates for reducing switching intensities of nonlinear FBGs.

  7. Design of EPON far-end equipment based on FTTH

    NASA Astrophysics Data System (ADS)

    Feng, Xiancheng; Yun, Xiang

    2008-12-01

    Now, most favors fiber access is mainly the EPON fiber access system. Inheriting from the low cost of Ethernet, usability and bandwidth of optical network, EPON technology is one of the best technologies in fiber access and is adopted by the carriers all over the world widely. According to the scheme analysis to FTTH fan-end equipment, hardware design of ONU is proposed in this paper. The FTTH far-end equipment software design deference modulation design concept, it divides the software designment into 5 function modules: the module of low-layer driver, the module of system management, the module of master/slave communication, and the module of main/Standby switch and the module of command line. The software flow of the host computer is also analyzed. Finally, test is made for Ethernet service performance of FTTH far-end equipment, E1 service performance and the optical path protection switching, and so on. The results of test indicates that all the items are accordance with technical request of far-end ONU equipment and possess good quality and fully reach the requirement of telecommunication level equipment. The far-end equipment of FTTH divides into several parts based on the function: the control module, the exchange module, the UNI interface module, the ONU module, the EPON interface module, the network management debugging module, the voice processing module, the circuit simulation module, the CATV module. In the downstream direction, under the protect condition, we design 2 optical modules. The system can set one group optical module working and another group optical module closure when it is initialized. When the optical fiber line is cut off, the LOS warning comes out. It will cause MUX to replace another group optical module, simultaneously will reset module 3701/3711 and will make it again test the distance, and will give the plug board MPC850 report through the GPIO port. During normal mode, the downstream optical signal is transformed into the electrical signal by the optical module. In the upstream direction, the upstream Ethernet data is retransmitted through the exchange chip BCM5380 to the GMII/MII in module 3701/3711, and then is transmitted to EPON port. The 2MB data are transformed the Ethernet data packet in the plug board TDM, then it's transmitted to the interface MII of the module 3701/3711. The software design of FTTH far-end equipment compiles with modulation design concept. According to the system realization duty, the software is divided into 5 function modules: low-level driver module, system management module, master/slave communication module, the man/Standby switch module and the command line module. The FTTH far-end equipment test, is mainly the Ethernet service performance test, E1 service performance test and the optical path protection switching test and so on the key specification test.

  8. Sub-5-ps, multimegawatt peak-power pulses from a fiber-amplified and optically compressed passively Q-switched microchip laser.

    PubMed

    Steinmetz, A; Jansen, F; Stutzki, F; Lehneis, R; Limpert, J; Tünnermann, A

    2012-07-01

    We report on high-energy picosecond pulse generation from a passively Q-switched and fiber-amplified microchip laser system. Initially, the utilized microchip lasers produce pulses with durations of around 100 ps at 1064 nm central wavelength. These pulses are amplified to energies exceeding 100 μJ, simultaneously chirped and spectrally broadened by self-phase modulation using a double stage amplifier based on single-mode LMA photonic crystal fibers at repetition rates of up to 1 MHz. Subsequently, the pulse duration of chirped pulses is reduced by means of nonlinear pulse compression to durations of 2.7 ps employing a conventional grating compressor and 4.7 ps using a compact compressor based on a chirped volume Bragg grating.

  9. Widely tunable eye-safe laser by a passively Q-switched photonic crystal fiber laser and an external-cavity optical parametric oscillator

    NASA Astrophysics Data System (ADS)

    Chang, H. L.; Zhuang, W. Z.; Huang, W. C.; Huang, J. Y.; Huang, K. F.; Chen, Y. F.

    2011-09-01

    We report on a widely tunable passively Q-switched photonic crystal fiber (PCF) laser with wavelength tuning range up to 80 nm. The PCF laser utilizes an AlGaInAs quantum well/barrier structure as a saturable absorber and incorporates an external-cavity optical parametric oscillator (OPO) to achieve wavelength conversion. Under a pump power of 13.1 W at 976 nm, the PCF laser generated 1029-nm radiation with maximum output energy of 750 μJ and was incident into an external-cavity OPO. The output energy and peak power of signal wave was found to be 138 μJ and 19 kW, respectively. By tuning the temperature of nonlinear crystal, periodically poled lithium niobate (PPLN), in the OPO, the signal wavelength in eye-safe regime from 1513 to 1593 nm was obtained.

  10. Optical stealth transmission based on super-continuum generation in highly nonlinear fiber over WDM network.

    PubMed

    Zhu, Huatao; Wang, Rong; Pu, Tao; Fang, Tao; Xiang, Peng; Zheng, Jilin; Chen, Dalei

    2015-06-01

    In this Letter, the optical stealth transmission carried by super-continuum spectrum optical pulses generated in highly nonlinear fiber is proposed and experimentally demonstrated. In the proposed transmission scheme, super-continuum signals are reshaped in the spectral domain through a wavelength-selective switch and are temporally spread by a chromatic dispersion device to achieve the same noise-like characteristic as the noise in optical networks, so that in both the time domain and the spectral domain, the stealth signals are hidden in public channel. Our experimental results show that compared with existing schemes where stealth channels are carried by amplified spontaneous emission noise, super-continuum signal can increase the transmission performance and robustness.

  11. A low-latency high-port count optical switch with optical delay line buffering for disaggregated data centers

    NASA Astrophysics Data System (ADS)

    Moralis-Pegios, M.; Terzenidis, N.; Mourgias-Alexandris, G.; Vyrsokinos, K.; Pleros, N.

    2018-02-01

    Disaggregated Data Centers (DCs) have emerged as a powerful architectural framework towards increasing resource utilization and system power efficiency, requiring, however, a networking infrastructure that can ensure low-latency and high-bandwidth connectivity between a high-number of interconnected nodes. This reality has been the driving force towards high-port count and low-latency optical switching platforms, with recent efforts concluding that the use of distributed control architectures as offered by Broadcast-and-Select (BS) layouts can lead to sub-μsec latencies. However, almost all high-port count optical switch designs proposed so far rely either on electronic buffering and associated SerDes circuitry for resolving contention or on buffer-less designs with packet drop and re-transmit procedures, unavoidably increasing latency or limiting throughput. In this article, we demonstrate a 256x256 optical switch architecture for disaggregated DCs that employs small-size optical delay line buffering in a distributed control scheme, exploiting FPGA-based header processing over a hybrid BS/Wavelength routing topology that is implemented by a 16x16 BS design and a 16x16 AWGR. Simulation-based performance analysis reveals that even the use of a 2- packet optical buffer can yield <620nsec latency with >85% throughput for up to 100% loads. The switch has been experimentally validated with 10Gb/s optical data packets using 1:16 optical splitting and a SOA-MZI wavelength converter (WC) along with fiber delay lines for the 2-packet buffer implementation at every BS outgoing port, followed by an additional SOA-MZI tunable WC and the 16x16 AWGR. Error-free performance in all different switch input/output combinations has been obtained with a power penalty of <2.5dB.

  12. Driver-receiver combined optical transceiver modules for bidirectional optical interconnection

    NASA Astrophysics Data System (ADS)

    Park, Hyo-Hoon; Kang, Sae-Kyoung; Kim, Do-Won; Nga, Nguyen T. H.; Hwang, Sung-Hwan; Lee, Tae-Woo

    2008-02-01

    We review a bidirectional optical link scheme for memory-interface applications. A driver-receiver combined optical transceiver (TRx) modules was demonstrated on an optical printed-circuit board (OPCB) platform. To select the bidirectional electric input/output signals, a driver-receiver combined TRx IC with a switching function was designed in 0.18-μm CMOS technology. The TRx IC was integrated with VCSEL/PD chips for optical link in the TRx module. The optical TRx module was assembled on a fiber-embedded OPCB, employing a 90°-bent fiber connector for 90° deflection of light beams between the TRx module and the OPCB. The TRx module and the 90° connector were passively assembled on the OPCB, using ferrule-type guide pins/ holes. Employing these constituent components, the bidirectional optical link between a pair of TRx modules has been successfully demonstrated up to 1.25 Gb/s on the OPCB.

  13. Silicon Micromachining in RF and Photonic Applications

    NASA Technical Reports Server (NTRS)

    Lin, Tsen-Hwang; Congdon, Phil; Magel, Gregory; Pang, Lily; Goldsmith, Chuck; Randall, John; Ho, Nguyen

    1995-01-01

    Texas Instruments (TI) has developed membrane and micromirror devices since the late 1970s. An eggcrate space membrane was used as the spatial light modulator in the early years. Discrete micromirrors supported by cantilever beams created a new era for micromirror devices. Torsional micromirror and flexure-beam micromirror devices were promising for mass production because of their stable supports. TI's digital torsional micromirror device is an amplitude modulator (known as the digital micromirror device (DMD) and is in production development, discussed elsewhere. We also use a torsional device for a 4 x 4 fiber-optic crossbar switch in a 2 cm x 2 cm package. The flexure-beam micromirror device is an analog phase modulator and is considered more efficient than amplitude modulators for use in optical processing systems. TI also developed millimeter-sized membranes for integrated optical switches for telecommunication and network applications. Using a member in radio frequency (RF) switch applications is a rapidly growing area because of the micromechanical device performance in microsecond-switching characteristics. Our preliminary membrane RF switch test structure results indicate promising speed and RF switching performance. TI collaborated with MIT for modeling of metal-based micromachining.

  14. Scalable, high-capacity optical switches for Internet routers and moving platforms

    NASA Astrophysics Data System (ADS)

    Joe, In-Sung

    Internet traffic nearly doubles every year, and we need faster routers with higher ports count, yet lower electrical power consumption. Current internet routers use electrical switches that consume large amounts of electrical power to operate at high data rates. These internet routers dissipate ˜ 10kW per rack, and their capacity is limited by cooling constraints. The power consumption is also critical for moving platforms. As avionics advance, the demand for larger capacity networks increases. Optical fibers are already chosen for high speed data transmission in advanced aircraft. In optical communication systems, integrated passive optical components, such as Array Waveguide Gratings (AWGs), have provided larger capacity with lower power consumption, because minimal electrical power is required for their operation. In addition, compact, wavelength-tunable semiconductor lasers with wide tuning ranges that can switch their wavelengths in tens of nanoseconds have been demonstrated. Here we present a wavelength-selective optical packet switch based on Waveguide Grating Routers (WGRs), passive splitters, and combiners. Tunable lasers on the transmitter side are the only active switching elements. The WGR is operated on multiple Free Spectral Ranges (FSRs) to achieve increased port count and switching capacity while maintaining strict-sense, non-blocking operation. Switching times of less than 24ns between two wavelengths covering three FSRs is demonstrated experimentally. The electrical power consumption, size, weight, and cost of our optical switch is compared with those of conventional electrical switches, showing substantial improvements at large throughputs (˜2 Tb/s full duplex). A revised switch design that does not suffer optical loss from star couplers is proposed. This switch design uses only WGRs, and it is suitable for networks with stringent power budgets. The burst nature of the optical packet transmission requires clock recovery for every incoming packet, and conventional continuous-mode receivers are not suitable for this application. An Embedded Clock Transport (ECT) technique is adopted here. The ECT combines a clock tone with the data payload before the transmission. Simple band pass filtering can extract the transmitted clock tone, and low pass filtering can recover the data. Error-free transmissions at 2.488 Gb/s with ˜16 ns clock recovery time were demonstrated.

  15. Development and Deployment of a Compact Eye-Safe Scanning Differential absorption Lidar (DIAL) for Spatial Mapping of Carbon Dioxide for Monitoring/Verification/Accounting at Geologic Sequestration Sites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Repasky, Kevin

    2014-03-31

    A scanning differential absorption lidar (DIAL) instrument for monitoring carbon dioxide has been developed. The laser transmitter uses two tunable discrete mode laser diodes (DMLD) operating in the continuous wave (cw) mode with one locked to the online absorption wavelength and the other operating at the offline wavelength. Two in-line fiber optic switches are used to switch between online and offline operation. After the fiber optic switch, an acousto- optic modulator (AOM) is used to generate a pulse train used to injection seed an erbium doped fiber amplifier (EDFA) to produce eye-safe laser pulses with maximum pulse energies of 66more » {micro}J, a pulse repetition frequency of 15 kHz, and an operating wavelength of 1.571 {micro}m. The DIAL receiver uses a 28 cm diameter Schmidt-Cassegrain telescope to collect that backscattered light, which is then monitored using a photo-multiplier tube (PMT) module operating in the photon counting mode. The DIAL instrument has been operated from a laboratory environment on the campus of Montana State University, at the Zero Emission Research Technology (ZERT) field site located in the agricultural research area on the western end of the Montana State University campus, and at the Big Sky Carbon Sequestration Partnership site located in north-central Montana. DIAL data has been collected and profiles have been validated using a co-located Licor LI-820 Gas Analyzer point sensor.« less

  16. A hybrid optic-fiber sensor network with the function of self-diagnosis and self-healing

    NASA Astrophysics Data System (ADS)

    Xu, Shibo; Liu, Tiegen; Ge, Chunfeng; Chen, Cheng; Zhang, Hongxia

    2014-11-01

    We develop a hybrid wavelength division multiplexing optical fiber network with distributed fiber-optic sensors and quasi-distributed FBG sensor arrays which detect vibrations, temperatures and strains at the same time. The network has the ability to locate the failure sites automatically designated as self-diagnosis and make protective switching to reestablish sensing service designated as self-healing by cooperative work of software and hardware. The processes above are accomplished by master-slave processors with the help of optical and wireless telemetry signals. All the sensing and optical telemetry signals transmit in the same fiber either working fiber or backup fiber. We take wavelength 1450nm as downstream signal and wavelength 1350nm as upstream signal to control the network in normal circumstances, both signals are sent by a light emitting node of the corresponding processor. There is also a continuous laser wavelength 1310nm sent by each node and received by next node on both working and backup fibers to monitor their healthy states, but it does not carry any message like telemetry signals do. When fibers of two sensor units are completely damaged, the master processor will lose the communication with the node between the damaged ones.However we install RF module in each node to solve the possible problem. Finally, the whole network state is transmitted to host computer by master processor. Operator could know and control the network by human-machine interface if needed.

  17. Digital Telematics: Present and Future.

    ERIC Educational Resources Information Center

    Stalberg, Christian E.

    1987-01-01

    This overview of developments in international telecommunications networks focuses on their importance for developing countries and the necessary interdependence of all countries. Highlights include digital technology, telephone service, packet switching networks, communications satellites, fiber optic cables, and possible future developments.…

  18. Going End to End to Deliver High-Speed Data

    NASA Technical Reports Server (NTRS)

    2005-01-01

    By the end of the 1990s, the optical fiber "backbone" of the telecommunication and data-communication networks had evolved from megabits-per-second transmission rates to gigabits-per-second transmission rates. Despite this boom in bandwidth, however, users at the end nodes were still not being reached on a consistent basis. (An end node is any device that does not behave like a router or a managed hub or switch. Examples of end node objects are computers, printers, serial interface processor phones, and unmanaged hubs and switches.) The primary reason that prevents bandwidth from reaching the end nodes is the complex local network topology that exists between the optical backbone and the end nodes. This complex network topology consists of several layers of routing and switch equipment which introduce potential congestion points and network latency. By breaking down the complex network topology, a true optical connection can be achieved. Access Optical Networks, Inc., is making this connection a reality with guidance from NASA s nondestructive evaluation experts.

  19. A targeted illumination optical fiber probe for high resolution fluorescence imaging and optical switching

    NASA Astrophysics Data System (ADS)

    Shinde, Anant; Perinchery, Sandeep Menon; Murukeshan, Vadakke Matham

    2017-04-01

    An optical imaging probe with targeted multispectral and spatiotemporal illumination features has applications in many diagnostic biomedical studies. However, these systems are mostly adapted in conventional microscopes, limiting their use for in vitro applications. We present a variable resolution imaging probe using a digital micromirror device (DMD) with an achievable maximum lateral resolution of 2.7 μm and an axial resolution of 5.5 μm, along with precise shape selective targeted illumination ability. We have demonstrated switching of different wavelengths to image multiple regions in the field of view. Moreover, the targeted illumination feature allows enhanced image contrast by time averaged imaging of selected regions with different optical exposure. The region specific multidirectional scanning feature of this probe has facilitated high speed targeted confocal imaging.

  20. Ultra-broadband nonlinear saturable absorption of high-yield MoS2 nanosheets

    NASA Astrophysics Data System (ADS)

    Wei, Rongfei; Zhang, Hang; Hu, Zhongliang; Qiao, Tian; He, Xin; Guo, Qiangbing; Tian, Xiangling; Chen, Zhi; Qiu, Jianrong

    2016-07-01

    High-yield MoS2 nanosheets with strong nonlinear optical (NLO) responses in a broad near-infrared range were synthesized by a facile hydrothermal method. The observation of saturable absorption, which was excited by the light with photon energy smaller than the gap energy of MoS2, can be attributed to the enhancement of the hybridization between the Mo d-orbital and S p-orbital by the oxygen incorporation into MoS2. High-yield MoS2 nanosheets with high modulation depth and large saturable intensity generated a stable, passively Q-switched fiber laser pulse at 1.56 μm. The high output power of 1.08 mW can be attained under a very low pump power of 30.87 mW. Compared to recently reported passively Q-switched fiber lasers utilizing exfoliated MoS2 nanosheets, the efficiency of the laser for our passive Q-switching operation is larger and reaches 3.50%. This research may extend the understanding on the NLO properties of MoS2 and indicate the feasibility of the high-yield MoS2 nanosheets to passively Q-switched fiber laser effectively at low pump strengths.

  1. Passively synchronized Q-switched and mode-locked dual-band Tm3+:ZBLAN fiber lasers using a common graphene saturable absorber

    NASA Astrophysics Data System (ADS)

    Jia, Chenglai; Shastri, Bhavin J.; Abdukerim, Nurmemet; Rochette, Martin; Prucnal, Paul R.; Saad, Mohammed; Chen, Lawrence R.

    2016-11-01

    Dual-band fiber lasers are emerging as a promising technology to penetrate new industrial and medical applications from their dual-band properties, in addition to providing compactness and environmental robustness from the waveguide structure. Here, we demonstrate the use of a common graphene saturable absorber and a single gain medium (Tm3+:ZBLAN fiber) to implement (1) a dual-band fiber ring laser with synchronized Q-switched pulses at wavelengths of 1480 nm and 1840 nm, and (2) a dual-band fiber linear laser with synchronized mode-locked pulses at wavelengths of 1480 nm and 1845 nm. Q-switched operation at 1480 nm and 1840 nm is achieved with a synchronized repetition rate from 20 kHz to 40.5 kHz. For synchronous mode-locked operation, pulses with full-width at half maximum durations of 610 fs and 1.68 ps at wavelengths of 1480 nm and 1845 nm, respectively, are obtained at a repetition rate of 12.3 MHz. These dual-band pulsed sources with an ultra-broadband wavelength separation of ~360 nm will add new capabilities in applications including optical sensing, spectroscopy, and communications.

  2. Passively synchronized Q-switched and mode-locked dual-band Tm3+:ZBLAN fiber lasers using a common graphene saturable absorber.

    PubMed

    Jia, Chenglai; Shastri, Bhavin J; Abdukerim, Nurmemet; Rochette, Martin; Prucnal, Paul R; Saad, Mohammed; Chen, Lawrence R

    2016-11-02

    Dual-band fiber lasers are emerging as a promising technology to penetrate new industrial and medical applications from their dual-band properties, in addition to providing compactness and environmental robustness from the waveguide structure. Here, we demonstrate the use of a common graphene saturable absorber and a single gain medium (Tm 3+ :ZBLAN fiber) to implement (1) a dual-band fiber ring laser with synchronized Q-switched pulses at wavelengths of 1480 nm and 1840 nm, and (2) a dual-band fiber linear laser with synchronized mode-locked pulses at wavelengths of 1480 nm and 1845 nm. Q-switched operation at 1480 nm and 1840 nm is achieved with a synchronized repetition rate from 20 kHz to 40.5 kHz. For synchronous mode-locked operation, pulses with full-width at half maximum durations of 610 fs and 1.68 ps at wavelengths of 1480 nm and 1845 nm, respectively, are obtained at a repetition rate of 12.3 MHz. These dual-band pulsed sources with an ultra-broadband wavelength separation of ~360 nm will add new capabilities in applications including optical sensing, spectroscopy, and communications.

  3. Q-plates as higher order polarization controllers for orbital angular momentum modes of fiber.

    PubMed

    Gregg, P; Mirhosseini, M; Rubano, A; Marrucci, L; Karimi, E; Boyd, R W; Ramachandran, S

    2015-04-15

    We demonstrate that a |q|=1/2 plate, in conjunction with appropriate polarization optics, can selectively and switchably excite all linear combinations of the first radial mode order |l|=1 orbital angular momentum (OAM) fiber modes. This enables full mapping of free-space polarization states onto fiber vector modes, including the radially (TM) and azimuthally polarized (TE) modes. The setup requires few optical components and can yield mode purities as high as ∼30  dB. Additionally, just as a conventional fiber polarization controller creates arbitrary elliptical polarization states to counteract fiber birefringence and yield desired polarizations at the output of a single-mode fiber, q-plates disentangle degenerate state mixing effects between fiber OAM states to yield pure states, even after long-length fiber propagation. We thus demonstrate the ability to switch dynamically, potentially at ∼GHz rates, between OAM modes, or create desired linear combinations of them. We envision applications in fiber-based lasers employing vector or OAM mode outputs, as well as communications networking schemes exploiting spatial modes for higher dimensional encoding.

  4. Coherent control of flexural vibrations in dual-nanoweb fibers using phase-modulated two-frequency light

    NASA Astrophysics Data System (ADS)

    Koehler, J. R.; Noskov, R. E.; Sukhorukov, A. A.; Novoa, D.; Russell, P. St. J.

    2017-12-01

    Coherent control of the resonant response in spatially extended optomechanical structures is complicated by the fact that the optical drive is affected by the backaction from the generated phonons. Here we report an approach to coherent control based on stimulated Raman-like scattering, in which the optical pressure can remain unaffected by the induced vibrations even in the regime of strong optomechanical interactions. We demonstrate experimentally coherent control of flexural vibrations simultaneously along the whole length of a dual-nanoweb fiber, by imprinting steps in the relative phase between the components of a two-frequency pump signal, the beat frequency being chosen to match a flexural resonance. Furthermore, sequential switching of the relative phase at time intervals shorter than the lifetime of the vibrations reduces their amplitude to a constant value that is fully adjustable by tuning the phase modulation depth and switching rate. The results may trigger new developments in silicon photonics, since such coherent control uniquely decouples the amplitude of optomechanical oscillations from power-dependent thermal effects and nonlinear optical loss.

  5. Room temperature single photon source using fiber-integrated hexagonal boron nitride

    NASA Astrophysics Data System (ADS)

    Vogl, Tobias; Lu, Yuerui; Lam, Ping Koy

    2017-07-01

    Single photons are a key resource for quantum optics and optical quantum information processing. The integration of scalable room temperature quantum emitters into photonic circuits remains to be a technical challenge. Here we utilize a defect center in hexagonal boron nitride (hBN) attached by Van der Waals force onto a multimode fiber as a single photon source. We perform an optical characterization of the source in terms of spectrum, state lifetime, power saturation and photostability. A special feature of our source is that it allows for easy switching between fiber-coupled and free space single photon generation modes. In order to prove the quantum nature of the emission we measure the second-order correlation function {{g}(2)}≤ft(τ \\right) . For both fiber-coupled and free space emission, the {{g}(2)}≤ft(τ \\right) dips below 0.5 indicating operation in the single photon regime. The results so far demonstrate the feasibility of 2D material single photon sources for scalable photonic quantum information processing.

  6. Framework for waveband switching in multigranular optical networks: part I-multigranular cross-connect architectures [Invited

    NASA Astrophysics Data System (ADS)

    Cao, Xiaojun; Anand, Vishal; Qiao, Chunming

    2006-12-01

    Optical networks using wavelength-division multiplexing (WDM) are the foremost solution to the ever-increasing traffic in the Internet backbone. Rapid advances in WDM technology will enable each fiber to carry hundreds or even a thousand wavelengths (using dense-WDM, or DWDM, and ultra-DWDM) of traffic. This, coupled with worldwide fiber deployment, will bring about a tremendous increase in the size of the optical cross-connects, i.e., the number of ports of the wavelength switching elements. Waveband switching (WBS), wherein wavelengths are grouped into bands and switched as a single entity, can reduce the cost and control complexity of switching nodes by minimizing the port count. This paper presents a detailed study on recent advances and open research issues in WBS networks. In this study, we investigate in detail the architecture for various WBS cross-connects and compare them in terms of the number of ports and complexity and also in terms of how flexible they are in adjusting to dynamic traffic. We outline various techniques for grouping wavelengths into bands for the purpose of WBS and show how traditional wavelength routing is different from waveband routing and why techniques developed for wavelength-routed networks (WRNs) cannot be simply applied to WBS networks. We also outline how traffic grooming of subwavelength traffic can be done in WBS networks. In part II of this study [Cao , submitted to J. Opt. Netw.], we study the effect of wavelength conversion on the performance of WBS networks with reconfigurable MG-OXCs. We present an algorithm for waveband grouping in wavelength-convertible networks and evaluate its performance. We also investigate issues related to survivability in WBS networks and show how waveband and wavelength conversion can be used to recover from failures in WBS networks.

  7. New CATV fiber-to-the-subscriber architectures

    NASA Astrophysics Data System (ADS)

    Kim, Gary

    1991-01-01

    Although the cable television industry has seriously proposed the widespread use of optical fiber technology as the foundation of its networks only since 1988 an important financial watershed already has been reached. Based on stunningly rapid AM technology developments and new research by industry engineers the CATV industry has already reached the point where building new optical trunk is cheaper than building conventional coaxial cable plant. Although as recently as 1988 it might have seemed preposterous to suggest that the financial crossover point between optical media and copper media would soon be reached that indeed has occurred. Using a topology dubbed the " fiber trunk and feeder engineers at American Television Communications the second-largest U. S. CATV operator have demonstrated that it is currently feasible to build new optical fiber trunking networks at costs equal to or less than conventional 450-MHz coaxial cable plant. Installation of the first such network already is underway and it is expected that the significant change in fiber economics will further spur the already-heady pace of fiber introduction in the CATV industry. That in turn will create new types of networks with topologies resembling telephone " star" networks more than conventional " tree-and-branch" systems. The new optically-based networks will be far more reliable more flexible and better adapted to signal switching than conventional CATV networks have been. Although the new networks will be put into place

  8. Polydiacetylene as an all-optical picosecond Switch

    NASA Technical Reports Server (NTRS)

    Abdeldayem, Hossin A.; Frazier, D. O.; Paley, M. S.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    Polydiacetylene derivative of 2-methyl-4-nitroaniline (PDAMNA) shows a picosecond switching property, which illustrated a partial all-optical picosecond NAND logic gate. The switching phenomenon was demonstrated by waveguiding two collinear beams at 633 nm and 532 nm through a hollow fiber of 50 micrometers diameter, coated from inside with a thin film of PDAMNA. A Z-scan investigations of a PDAMNA thin film on quartz substrate revealed that the switching effect was attributed to an excited state absorption in the systems. The studies also showed that the polymer suffers a photo-oxidation beyond an intensity level of 2.9 x 10(exp 6) w/square cm. The photo-oxidized film has different physical properties that are different from the original film before oxidation. The life time of both excited states before and after oxidation as well as their absorption coefficients were estimated by fitting a three level system model to the experimental results.

  9. Self-healing failures in the aerial plant

    NASA Astrophysics Data System (ADS)

    Kiss, Gabor D.

    1994-03-01

    This account begins in the wee hours of a bitterly cold night in the winter of '92 - '93. A fiber optic transmission system starts to incur unacceptable errors and switches to a protect channel. The system is being run at 1550 nm because it is a route which is long enough to otherwise require a repeater at 1310 nm. OTDR measurement shows high splice losses. By dawn the high-loss splices have partially recovered so the system is switched back to the original fibers. Failure of the mechanical splices is suspected, the RBOC requests post-mortem assistance from Bellcore, and a team is dispatched immediately to work with RBOC personnel in determining the cause of the failure.

  10. Optical wireless communication in data centers

    NASA Astrophysics Data System (ADS)

    Arnon, Shlomi

    2018-01-01

    In the last decade data centers have become a crucial element in modern human society. However, to keep pace with internet data rate growth, new technologies supporting data center should develop. Integration of optical wireless communication (OWC) in data centers is one of the proposed technologies as augmented technology to the fiber network. One implementation of the OWC technology is deployment of optical wireless transceiver on top of the existing cable/fiber network as extension to the top of rack (TOR) switch; in this way, a dynamic and flexible network is created. Optical wireless communication could reduce energy consumption, increase the data rate, reduce the communication latency, increase flexibility and scalability, and reduce maintenance time and cost, in comparison to extra fiber network deployment. In this paper we review up to date literature in the field, propose an implementation scheme of OWC network, discuss ways to reduce energy consumption by parallel link communication and report preliminary measurement result of university data center environment.

  11. High Efficiency Coupling of Optical Fibres with SU8 Micro-droplet Using Laser Welding Process

    NASA Astrophysics Data System (ADS)

    Yardi, Seema; Gupta, Ankur; Sundriyal, Poonam; Bhatt, Geeta; Kant, Rishi; Boolchandani, D.; Bhattacharya, Shantanu

    2016-09-01

    Apart from micro- structure fabrication, ablation, lithography etc., lasers find a lot of utility in various areas like precision joining, device fabrication, local heat delivery for surface texturing and local change of microstructure fabrication of standalone optical micro-devices (like microspheres, micro-prisms, micro-scale ring resonators, optical switches etc). There is a wide utility of such systems in chemical/ biochemical diagnostics and also communications where the standalone optical devices exist at a commercial scale but chip based devices with printed optics are necessary due to coupling issues between printed structures and external optics. This paper demonstrates a novel fabrication strategy used to join standalone optical fibres to microchip based printed optics using a simple SU8 drop. The fabrication process is deployed for fiber to fiber optical coupling and coupling between fiber and printed SU-8 waveguides. A CO2 laser is used to locally heat the coupling made up of SU8 material. Optimization of various dimensional parameters using design of experiments (DOE) on the bonded assembly has been performed as a function of laser power, speed, cycle control, spot size so on so forth. Exclusive optical [RF] modelling has been performed to estimate the transmissibility of the optical fibers bonded to each other on a surface with SU8. Our studies indicate the formation of a Whispering gallery mode (WGM) across the micro-droplet leading to high transmissibility of the signal. Through this work we have thus been able to develop a method of fabrication for optical coupling of standalone fibers or coupling of on-chip optics with off-chip illumination/detection.

  12. Development and Testing of a Scanning Differential Absorption Lidar For Carbon Sequestration Site Monitoring

    NASA Astrophysics Data System (ADS)

    Soukup, B.; Johnson, W.; Repasky, K. S.; Carlsten, J. L.

    2013-12-01

    A scanning differential absorption lidar (DIAL) instrument for carbon sequestration site monitoring is under development and testing at Montana State University. The laser transmitter uses two tunable discrete mode laser diodes (DMLD) operating in the continuous wave (cw) mode with one locked to the on-line absorption wavelength at 1571.4067 nm and the second operating at the off-line wavelength at 1571.2585 nm. Two in-line fiber optic switches are used to switch between on-line and off-line operation. After the fiber optic switches, an acousto-optic modulator (AOM) is used to generate a pulse train used to injection seed an erbium doped fiber amplifier (EDFA) to produce eye-safe laser pulses with maximum pulse energies of 66 J and a pulse repetition frequency of 15 kHz. The DIAL receiver uses a 28 cm diameter Schmidt-Cassegrain telescope to collect that backscattered light, which is then monitored using a fiber coupled photo-multiplier tube (PMT) module operating in the photon counting mode. The PMT has a 3% quantum efficiency, a dark count rate of 90 kHz, and a maximum count rate of 1 MHz. Recently, a fiber coupled avalanche photodiode (APD) operating in the geiger mode has been incorporated into the DIAL receiver. The APD has a quantum efficiency of 10%, a dark count rate of 10 kHz, and a maximum count rate of 1 MHz and provides a much larger dynamic range than the PMT. Both the PMT and APD provide TTL logic pulses that are monitored using a multichannel scaler card used to count the return photons as a function of time of flight and are thus interchangeable. The DIAL instrument was developed at the 1.571 m wavelength to take advantage of commercial-off-the-shelf components. The instrument is operated using a custom Labview program that switches to the DMLD operating at the on-line wavelength, locks this laser to a user defined wavelength setting, and collects return signals for a user defined time. The control program switches to the DMLD operating at the off-line wavelength where data is again collected for a user defined time. The control program repeats this process until stopped by the operator. The DIAL instrument has been operated at the Zero Emission Research Technology (ZERT) field site located on the Montana State University campus and at the Big Sky Carbon Sequestration Partnership site located in north-central Montana. Data collected by the DIAL instrument at both field sites demonstrate that the DIAL is capable of retrieving night time CO2 number density profiles out to a range of 2.5 km with a 150 m range resolution. The DIAL retrievals are validated using a co-located Li-COR 820 gas analyzer placed along the DIAL optical path allowing comparison at a single range as a function of time.

  13. High-temperature optically activated GaAs power switching for aircraft digital electronic control

    NASA Technical Reports Server (NTRS)

    Berak, J. M.; Grantham, D. H.; Swindal, J. L.; Black, J. F.; Allen, L. B.

    1983-01-01

    Gallium arsenide high-temperature devices were fabricated and assembled into an optically activated pulse-width-modulated power control for a torque motor typical of the kinds used in jet engine actuators. A bipolar heterojunction phototransistor with gallium aluminum arsenide emitter/window, a gallium arsenide junction field-effect power transistor and a gallium arsenide transient protection diode were designed and fabricated. A high-temperature fiber optic/phototransistor coupling scheme was implemented. The devices assembled into the demonstrator were successfully tested at 250 C, proving the feasibility of actuator-located switching of control power using optical signals transmitted by fibers. Assessments of the efficiency and technical merits were made for extension of this high-temperature technology to local conversion of optical power to electrical power and its control at levels useful for driving actuators. Optical power sources included in the comparisons were an infrared light-emitting diode, an injection laser diode, tungsten-halogen lamps and arc lamps. Optical-to-electrical power conversion was limited to photovoltaics located at the actuator. Impedance matching of the photovoltaic array to the load was considered over the full temperature range, -55 C to 260 C. Loss of photovoltaic efficiency at higher temperatures was taken into account. Serious losses in efficiency are: (1) in the optical source and the cooling which they may require in the assumed 125 C ambient, (2) in the decreased conversion efficiency of the gallium arsenide photovoltaic at 260 C, and (3) in impedance matching. Practical systems require improvements in these areas.

  14. Future optical communication networks beyond 160 Gbit/s based on OTDM

    NASA Astrophysics Data System (ADS)

    Prati, Giancarlo; Bogoni, Antonella; Poti, Luca

    2005-01-01

    The virtually unlimited bandwidth of optical fibers has caused a great increase in data transmission speed over the past decade and, hence, stimulated high-demand multimedia services such as distance learning, video-conferencing and peer to peer applications. For this reason data traffic is exceeding telephony traffic, and this trend is driving the convergence of telecommunications and computer communications. In this scenario Internet Protocol (IP) is becoming the dominant protocol for any traffic, shifting the attention of the network designers from a circuit switching approach to a packet switching approach. A role of paramount importance in packet switching networks is played by the router that must implement the functionalities to set up and maintain the inter-nodal communications. The main functionalities a router must implement are routing, forwarding, switching, synchronization, contention resolution, and buffering. Nowadays, opto-electronic conversion is still required at each network node to process the incoming signal before routing that to the right output port. However, when the single channel bit rate increases beyond electronic speed limit, Optical Time Division Multiplexing (OTDM) becomes a forced choice, and all-optical processing must be performed to extract the information from the incoming packet. In this paper enabling techniques for ultra-fast all-optical network will be addressed. First a 160 Gbit/s complete transmission system will be considered. As enabling technique, an overview for all-optical logics will be discussed and experimental results will be presented using a particular reconfigurable NOLM based on Self-Phase-Modulation (SPM) or Cross-Phase-Modulation (XPM). Finally, a rough experiment on label extraction, all-optical switching and packet forwarding is shown.

  15. 2-Micron Laser Transmitter for Coherent CO2 DIAL Measurement

    NASA Technical Reports Server (NTRS)

    Singh, Upendra N.; Bai, Yingxin; Yu, Jirong

    2009-01-01

    Carbon dioxide (CO2) has been recognized as one of the most important greenhouse gases. It is essential for the study of global warming to accurately measure the CO2 concentration in the atmosphere and continuously record its variation. A high repetition rate, highly efficient, Q-switched 2-micron laser system as the transmitter of a coherent differential absorption lidar for CO2 measurement has been developed in NASA Langley Research Center. This laser system is capable of making a vertical profiling of CO2 from ground and column measurement of CO2 from air and space-borne platform. The transmitter is a master-slave laser system. The master laser operates in a single frequency, either on-line or off-line of a selected CO2 absorption line. The slave laser is a Q-switched ring-cavity Ho:YLF laser which is pumped by a Tm:fiber laser. The repetition rate can be adjusted from a few hundred Hz to 10 kHz. The injection seeding success rate is from 99.4% to 99.95%. For 1 kHz operation, the output pulse energy is 5.5mJ with the pulse length of 50 ns. The optical-to-optical efficiency is 39% when the pump power is 14.5W. A Ho:YLF laser operating in the range of 2.05 micrometers can be tuned over several characteristic lines of CO2 absorption. Experimentally, a diode pumped Ho:Tm:YLF laser has been successfully used as the transmitter of coherent differential absorption lidar for the measurement of CO2 with a repetition rate of 5 Hz and pulse energy of 75 mJ. For coherent detection, high repetition rate is required for speckle averaging to obtain highly precise measurements. However, a diode pumped Ho:Tm:YLF laser can not operate in high repetition rate due to the large heat loading and up-conversion. A Tm:fiber laser pumped Ho:YLF laser with low heat loading can operate in high repetition rate. A theoretical model has been established to simulate the performance of Tm:fiber laser pumped Ho:YLF lasers. For continuous wave (CW) operation, high pump intensity with small beam size is suitable for high efficiency. For Q-switched operation, the optimal energy extraction relies on the pump intensity, pump volume, and pump duration which is inversely proportion to the repetition rate. CW and Q-switched Ho:YLF lasers with different linear cavity configurations have been designed and demonstrated for a 30 W Tm:fiber pump laser. The CW Ho laser slope efficiency and optical-to-optical efficiencies reach 65% and 55%, respectively. The pulsed laser efficiency depends on the repetition rate. For 1 kHz operation, the optical-to-optical efficiency is 39% when the pump power is 14.5W. Currently, the injection seeding success rate is between 99.4% and 99.95%. After a ten thousand pulses, the standard deviation of the laser frequency jitter is about 3 MHz. It meets the requirements of highly precise CO2 concentration measurement. In conclusion, an injection seeded, high repetition rate, Q-switched Ho:YLF laser has been developed for a coherent CO2 differential absorption lidar. This master-slave laser system has high optical-to-optical efficiency and seeding success rate. It can potentially meet the requirements of the coherent detection of CO2 concentration by a differential absorption lidar technique.

  16. Narrow-linewidth Q-switched random distributed feedback fiber laser.

    PubMed

    Xu, Jiangming; Ye, Jun; Xiao, Hu; Leng, Jinyong; Wu, Jian; Zhang, Hanwei; Zhou, Pu

    2016-08-22

    A narrow-linewidth Q-switched random fiber laser (RFL) based on a half-opened cavity, which is realized by narrow-linewidth fiber Bragg grating (FBG) and a section of 3 km passive fiber, has been proposed and experimentally investigated. The narrow-linewidth lasing is generated by the spectral filtering of three FBGs with linewidth of 1.21 nm, 0.56 nm, and 0.12 nm, respectively. The Q switching of the distributed cavity is achieved by placing an acousto-optical modulator (AOM) between the FBG and the passive fiber. The maximal output powers of the narrow-linewidth RFLs with the three different FBGs are 0.54 W, 0.27 W, and 0.08 W, respectively. Furthermore, the repetition rates of the output pulses are 500 kHz, and the pulse durations are about 500 ns. The corresponding pulse energies are about 1.08 μJ, 0.54 μJ, and 0.16 μJ, accordingly. The linewidth of FBG can influence the output characteristics in full scale. The narrower the FBG, the higher the pump threshold; the lower the output power at the same pump level, the more serious the linewidth broadening; and thus the higher the proportion of the CW-ground exists in the output pulse trains. Thanks to the assistance of the band-pass filter (BPF), the proportion of the CW-ground of narrow-linewidth Q-switched RFL under the relative high-pump-low-output condition can be reduced effectively. The experimental results indicate that it is challenging to demonstrate a narrow-linewidth Q-switched RFL with high quality output. But further power scaling and linewidth narrowing is possible in the case of operating parameters, optimization efforts, and a more powerful pump source. To the best of our knowledge, this is the first demonstration of narrow-linewidth generation in a Q-switched RFL.

  17. Polarization and Thickness Dependent Absorption Properties of Black Phosphorus: New Saturable Absorber for Ultrafast Pulse Generation

    PubMed Central

    Li, Diao; Jussila, Henri; Karvonen, Lasse; Ye, Guojun; Lipsanen, Harri; Chen, Xianhui; Sun, Zhipei

    2015-01-01

    Black phosphorus (BP) has recently been rediscovered as a new and interesting two-dimensional material due to its unique electronic and optical properties. Here, we study the linear and nonlinear optical properties of BP flakes. We observe that both the linear and nonlinear optical properties are anisotropic and can be tuned by the film thickness in BP, completely different from other typical two-dimensional layered materials (e.g., graphene and the most studied transition metal dichalcogenides). We then use the nonlinear optical properties of BP for ultrafast (pulse duration down to ~786 fs in mode-locking) and large-energy (pulse energy up to >18 nJ in Q-switching) pulse generation in fiber lasers at the near-infrared telecommunication band ~1.5 μm. We observe that the output of our BP based pulsed lasers is linearly polarized (with a degree-of-polarization ~98% in mode-locking, >99% in Q-switching, respectively) due to the anisotropic optical property of BP. Our results underscore the relatively large optical nonlinearity of BP with unique polarization and thickness dependence, and its potential for polarized optical pulse generation, paving the way to BP based nonlinear and ultrafast photonic applications (e.g., ultrafast all-optical polarization switches/modulators, frequency converters etc.). PMID:26514090

  18. Optical wireless communications to OC-768 and beyond

    NASA Astrophysics Data System (ADS)

    Medved, David B.; Davidovich, Leonid

    2001-10-01

    Laser and LED-based wireless communication systems are currently providing license-free interconnection for broadband voice, data and video transport. These systems allow for the immediate, reliable and low-cost extension of copper and fiber-based networks to any end user, providing efficient First Mile bypass access to high data rate backbone networks at speeds ranging from T-1 voice to full throughput ATM at 155 Mbps and up to Gigabit Ethernet. These wireless optical beams constitute a Virtual Fiber in the air, providing the capabilities of fiber in situations where wired connectivity is unavailable, impractical, expensive or slow-to-implement, while achieving a combination of low cost, speed and reliability that cannot be matched by microwave, mm wave, spread spectrum or other competing (actually complementary) wireless technologies. The carrier frequency of the optical beam is about 10,000 times higher than the highest frequencies used by the millimeter wave technology. By means of Wavelength Division Multiplexing more than 1000 independent data channels can be projected into the air on a single beam thus providing a potential bandwidth ten million times that of any RF solution. The twin barriers of physics and regulatory bureaucracy to this essentially infinite wireless bandwidth are thus eliminated by this Virtual Fiber. As user density and individual bandwidth needs escalate, the optical wireless will be the preferred medium of choice in both network and cellular interconnection. A mesh topology which integrates our optical wireless systems with the latest Optical Access switches and routing equipment will be described using case study examples from Japan to South America. As the Bandwidth Blowout continues to push the limits of electronics and especially in the case of DWDM (Dense Wavelength Division Multiples), the conventional optical wireless solutions are no longer feasible. Instead of using f.o. transceivers to convert photons to electrons and thence back to photons we have designed a series of airlinks whose transmitters and receivers operate without electronics. At the PATX (Photonic Airlink Transmitter), instead of demodulating the fiber optic input signals from a Network Interface Unit (NIU) we project the light from the polished terminated fiber end into the air using appropriate optics. Any signal being carried by the fiber from the NIU is now airborne without any intermediate processing electronics thus realizing the full potential of the optical carrier. At the receiver end (PARX - Photonic Airlink Receiver), the weak optical signals are collected by the appropriate optics (including combiners using large area MMF) and guided to the NIU (switch, PABX, etc.) by compatible fiber. It is necessary to maintain a large field-of-view at the receiver to ensure reliability, stability and ease of alignment. This is achieved by use of high N.A. fiber. In this paper we discuss the design trade off's, construction and field test results of several systems implementing the all- photonic wireless concept including: Transmission of WDM signals through the air at distances up to 1 km. Results with wireless transmission of Gigabit Ethernet using the Optiswitch modules as the NIU. Providing high speed wireless (Fast Ethernet and beyond) to the home at a cost of less than $250 per node. The paper will conclude with a discussion on the role of the all-photonic wireless technology in the emerging field of Passive Optical Networking.

  19. Optical-fiber-based laser-induced breakdown spectroscopy for detection of early caries

    NASA Astrophysics Data System (ADS)

    Sasazawa, Shuhei; Kakino, Satoko; Matsuura, Yuji

    2015-06-01

    A laser-induced breakdown spectroscopy (LIBS) system targeting for the in vivo analysis of tooth enamel is described. The system is planned to enable real-time analysis of teeth during laser dental treatment by utilizing a hollow optical fiber that transmits both Q-switched Nd:YAG laser light for LIBS and infrared Er:YAG laser light for tooth ablation. The sensitivity of caries detection was substantially improved by expanding the spectral region under analysis to ultraviolet (UV) light and by focusing on emission peaks of Zn in the UV region. Subsequently, early caries were distinguished from healthy teeth with accuracy rates above 80% in vitro.

  20. Photonics

    NASA Astrophysics Data System (ADS)

    Roh, Won B.

    Photonic technologies-based computational systems are projected to be able to offer order-of-magnitude improvements in processing speed, due to their intrinsic architectural parallelism and ultrahigh switching speeds; these architectures also minimize connectors, thereby enhancing reliability, and preclude EMP vulnerability. The use of optoelectronic ICs would also extend weapons capabilities in such areas as automated target recognition, systems-state monitoring, and detection avoidance. Fiber-optics technologies have an information-carrying capacity fully five orders of magnitude greater than copper-wire-based systems; energy loss in transmission is two orders of magnitude lower, and error rates one order of magnitude lower. Attention is being given to ZrF glasses for optical fibers with unprecedentedly low scattering levels.

  1. ROADMs for reconfigurable metro networks

    NASA Astrophysics Data System (ADS)

    Homa, Jonathan; Bala, Krishna

    2009-01-01

    Reconfigurable Optical Add-Drop Multiplexers (ROADMs) are the key nodal sub-systems that are used to implement modern DWDM networks. They provide network flexibility by switching wavelengths among fibers under software control without expensive conversion to the electronic domain. They speed up provisioning time, reduce operational costs and eliminate human errors. Two general types of ROADMs are used in Metro optical networks, two-degree and multi-degree, where the degree refers to the numbers of DWDM fibers entering and exiting the ROADM node. A twodegree ROADM is like a location on a highway with off and on ramps to drop off and accept local traffic while a multidegree ROADM is like an interchange where highways meet and is used for interconnecting DWDM rings or for mesh networking. The paper describes two-degree and multi-degree ROADM architectures and how these relate to the technology alternatives used to implement the ROADMs themselves. Focus is provided on the role and expected evolution of the wavelength selective switch (WSS) which is the primary engine used to power ROADMs.

  2. A 100 mW-level single-mode switchable dual-wavelength erbium-doped fiber laser

    NASA Astrophysics Data System (ADS)

    Cheng, Jianqun; Zhang, Liaolin; Sharafudeen, Kaniyarakkal; Qiu, Jianrong

    2013-10-01

    A switchable dual-wavelength CW erbium-doped fiber laser with two cascaded fiber Bragg gratings has been proposed and demonstrated experimentally at room temperature. The laser uses a linear resonant cavity configuration incorporating a Sagnac loop with a polarization controller (PC) and can switch flexibly to output a single wavelength or dual wavelengths based on the polarization hole burning (PHB) effect. The slope efficiency and maximum output power can reach 23% and 96 mW, respectively. The two lasing peaks of the laser, with a narrow linewidth output and an optical signal-to-noise ratio of more than 50 dB, are located in the C and L bands of the optical communication window, respectively. The laser shows good stability with respect to the wavelength and output power.

  3. Study of nonlinear liquid effects into ytterbium-doped fiber laser for multi-wavelength generation

    NASA Astrophysics Data System (ADS)

    Lozano-Hernandez, T.; Jauregui-Vazquez, D.; Estudillo-Ayala, J.; Herrera-Piad, L. A.; Rojas-Laguna, R.; Hernandez-Garcia, J. M.; Sierra-Hernandez, J. M.

    2018-02-01

    We present an experimental study of liquid refractive index effects into Ytterbium ring fiber laser cavity configuration. The laser is operated using a bi-tapered optical fiber immersed in water-alcohol concentrations. When the tapered fiber is dipped into a distilled water, a single lasing line with a peak power centered at 1025 nm is achieved. Afterward, by changing the polarization state into the cavity the lasing line can be switched. Moreover, by modifying the refractive index liquid surrounding media the lasing lines can be controlled and special liquid provide nonlinear response. The laser offers compactness, low effective cost and good stability.

  4. Microstructured Optical Fiber-based Biosensors: Reversible and Nanoliter-Scale Measurement of Zinc Ions.

    PubMed

    Heng, Sabrina; McDevitt, Christopher A; Kostecki, Roman; Morey, Jacqueline R; Eijkelkamp, Bart A; Ebendorff-Heidepriem, Heike; Monro, Tanya M; Abell, Andrew D

    2016-05-25

    Sensing platforms that allow rapid and efficient detection of metal ions would have applications in disease diagnosis and study, as well as environmental sensing. Here, we report the first microstructured optical fiber-based biosensor for the reversible and nanoliter-scale measurement of metal ions. Specifically, a photoswitchable spiropyran Zn(2+) sensor is incorporated within the microenvironment of a liposome attached to microstructured optical fibers (exposed-core and suspended-core microstructured optical fibers). Both fiber-based platforms retains high selectivity of ion binding associated with a small molecule sensor, while also allowing nanoliter volume sampling and on/off switching. We have demonstrated that multiple measurements can be made on a single sample without the need to change the sensor. The ability of the new sensing platform to sense Zn(2+) in pleural lavage and nasopharynx of mice was compared to that of established ion sensing methodologies such as inductively coupled plasma mass spectrometry (ICP-MS) and a commercially available fluorophore (Fluozin-3), where the optical-fiber-based sensor provides a significant advantage in that it allows the use of nanoliter (nL) sampling when compared to ICP-MS (mL) and FluoZin-3 (μL). This work paves the way to a generic approach for developing surface-based ion sensors using a range of sensor molecules, which can be attached to a surface without the need for its chemical modification and presents an opportunity for the development of new and highly specific ion sensors for real time sensing applications.

  5. Spatial-spectral flexible optical networking: enabling switching solutions for a simplified and efficient SDM network platform

    NASA Astrophysics Data System (ADS)

    Tomkos, I.; Zakynthinos, P.; Klonidis, D.; Marom, D.; Sygletos, S.; Ellis, A.; Salvadori, E.; Siracusa, D.; Angelou, M.; Papastergiou, G.; Psaila, N.; Ferran, J. F.; Ben-Ezra, S.; Jimenez, F.; Fernández-Palacios, J. P.

    2013-12-01

    The traffic carried by core optical networks grows at a steady but remarkable pace of 30-40% year-over-year. Optical transmissions and networking advancements continue to satisfy the traffic requirements by delivering the content over the network infrastructure in a cost and energy efficient manner. Such core optical networks serve the information traffic demands in a dynamic way, in response to requirements for shifting of traffics demands, both temporally (day/night) and spatially (business district/residential). However as we are approaching fundamental spectral efficiency limits of singlemode fibers, the scientific community is pursuing recently the development of an innovative, all-optical network architecture introducing the spatial degree of freedom when designing/operating future transport networks. Spacedivision- multiplexing through the use of bundled single mode fibers, and/or multi-core fibers and/or few-mode fibers can offer up to 100-fold capacity increase in future optical networks. The EU INSPACE project is working on the development of a complete spatial-spectral flexible optical networking solution, offering the network ultra-high capacity, flexibility and energy efficiency required to meet the challenges of delivering exponentially growing traffic demands in the internet over the next twenty years. In this paper we will present the motivation and main research activities of the INSPACE consortium towards the realization of the overall project solution.

  6. Architecture and design of optical path networks utilizing waveband virtual links

    NASA Astrophysics Data System (ADS)

    Ito, Yusaku; Mori, Yojiro; Hasegawa, Hiroshi; Sato, Ken-ichi

    2016-02-01

    We propose a novel optical network architecture that uses waveband virtual links, each of which can carry several optical paths, to directly bridge distant node pairs. Future photonic networks should not only transparently cover extended areas but also expand fiber capacity. However, the traversal of many ROADM nodes impairs the optical signal due to spectrum narrowing. To suppress the degradation, the bandwidth of guard bands needs to be increased, which degrades fiber frequency utilization. Waveband granular switching allows us to apply broader pass-band filtering at ROADMs and to insert sufficient guard bands between wavebands with minimum frequency utilization offset. The scheme resolves the severe spectrum narrowing effect. Moreover, the guard band between optical channels in a waveband can be minimized, which increases the number of paths that can be accommodated per fiber. In the network, wavelength path granular routing is done without utilizing waveband virtual links, and it still suffers from spectrum narrowing. A novel network design algorithm that can bound the spectrum narrowing effect by limiting the number of hops (traversed nodes that need wavelength path level routing) is proposed in this paper. This algorithm dynamically changes the waveband virtual link configuration according to the traffic distribution variation, where optical paths that need many node hops are effectively carried by virtual links. Numerical experiments demonstrate that the number of necessary fibers is reduced by 23% compared with conventional optical path networks.

  7. Time stretch dispersive Fourier transform based single-shot pulse-by-pulse spectrum measurement using a pulse-repetition-frequency-variable gain-switched laser

    NASA Astrophysics Data System (ADS)

    Furukawa, Hideaki; Makino, Takeshi; Wang, Xiaomin; Kobayashi, Tetsuya; Asghari, Mohammad H.; Trinh, Paul; Jalali, Bahram; Man, Wai Sing; Tsang, Kwong Shing; Wada, Naoya

    2018-02-01

    The time stretch dispersive Fourier Transform (TS-DFT) technique based on a fiber chromatic dispersion is a powerful tool for pulse-by-pulse single-shot spectrum measurement for highrepetition rate optical pulses. The distributed feedback laser diode (DFB-LD) with the gain switch operation can flexibly change the pulse repetition frequency (PRF). In this paper, we newly introduce a semiconductor gain-switched DFB-LD operating from 1 MHz up to 1 GHz PRF into the TS-DFT based spectrum measurement system to improve the flexibility and the operability. The pulse width can be below 2 ps with a pulse compression technique. We successfully measure the spectrum of each optical pulse at 1 GHz, 100 MHz, and 10 MHz PRF, and demonstrate the flexibility of the measurement system.

  8. Alterable Magnetic Gratings for Fiber Optic Switching.

    DTIC Science & Technology

    1982-12-01

    monotonically decreasing function as X moves into the infrared from the visible. The Faraday rotation of bismuth garnet samples including the new large... photodector giving as fast a response as possible while still providing usable signal levels, measure the detector response * using the electro-optic...icity. Normally a stripe domain array is configured as a linear grating. In-plane magnetic fields can rotate the grating as well as alter the periodicity

  9. Picosecond pulse generation in a hybrid Q-switched laser source by using a microelectromechanical mirror.

    PubMed

    Couderc, Vincent; Crunteanu, Aurelian; Fabert, Marc; Doutre, Florent; El Bassri, Farid; Pagnoux, Dominique; Jalocha, Alain

    2012-02-27

    We present a novel Q-switched laser source using a micro-optical-electromechanical mirror (MOEM) designed for short pulse emission. It is based on a hybrid configuration including a passively Q-switched microchip laser coupled to a fiber cavity closed by a cantilever type MOEM acting as an active modulator. This specially designed mirror with a single reflecting gold membrane is switched by low bias voltage ~50 V (peak to peak). This device emits pulses at tunable repetition rates up to 1.6 kHz, with ~564 ps duration and 3.4 kW peak power, which constitutes the shortest pulse duration ever reported with MOEMs based pulsed lasers.

  10. A Solution-Processed Ultrafast Optical Switch Based on a Nanostructured Epsilon-Near-Zero Medium.

    PubMed

    Guo, Qiangbing; Cui, Yudong; Yao, Yunhua; Ye, Yuting; Yang, Yue; Liu, Xueming; Zhang, Shian; Liu, Xiaofeng; Qiu, Jianrong; Hosono, Hideo

    2017-07-01

    All the optical properties of materials are derived from dielectric function. In spectral region where the dielectric permittivity approaches zero, known as epsilon-near-zero (ENZ) region, the propagating light within the material attains a very high phase velocity, and meanwhile the material exhibits strong optical nonlinearity. The interplay between the linear and nonlinear optical response in these materials thus offers unprecedented pathways for all-optical control and device design. Here the authors demonstrate ultrafast all-optical modulation based on a typical ENZ material of indium tin oxide (ITO) nanocrystals (NCs), accessed by a wet-chemistry route. In the ENZ region, the authors find that the optical response in these ITO NCs is associated with a strong nonlinear character, exhibiting sub-picosecond response time (corresponding to frequencies over 2 THz) and modulation depth up to ≈160%. This large optical nonlinearity benefits from the highly confined geometry in addition to the ENZ enhancement effect of the ITO NCs. Based on these ENZ NCs, the authors successfully demonstrate a fiber optical switch that allows switching of continuous laser wave into femtosecond laser pulses. Combined with facile processibility and tunable optical properties, these solution-processed ENZ NCs may offer a scalable and printable material solution for dynamic photonic and optoelectronic devices. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. A Telecommunications Primer for College Presidents. Part I. The Technologies Defined. Educational Technology Profile 25.

    ERIC Educational Resources Information Center

    Smith, Ralph Lee

    1978-01-01

    Intended for use by presidents, planners, and administrators to acquaint them with developments in electronic communications, this primer describes cable television, common carrier, videotape recorders and videodiscs, satellites, microwave, circuit integration, digital transmission, data packet switching, and fiber optics. (LBH)

  12. Information Technology and the Third Industrial Revolution.

    ERIC Educational Resources Information Center

    Fitzsimmons, Joe

    1994-01-01

    Discusses the so-called third industrial revolution, or the information revolution. Topics addressed include the progression of the revolution in the U.S. economy, in Europe, and in Third World countries; the empowering technologies, including digital switches, optical fiber, semiconductors, CD-ROM, networks, and combining technologies; and future…

  13. System for delivery of broadcast digital video as an overlay to baseband switched services on a fiber-to-the-home access network

    NASA Astrophysics Data System (ADS)

    Chand, Naresh; Magill, Peter D.; Swaminathan, Venkat S.; Yadvish, R. D.

    1999-04-01

    For low cost fiber-to-the-home (FTTH) passive optical networks (PON), we have studied the delivery of broadcast digital video as an overlay to baseband switched digital services on the same fiber using a single transmitter and a single receiver. We have multiplexed the baseband data at 155.52 Mbps with digital video QPSK channels in the 270 - 1450 MHz range with minimal degradation. We used an additional 860 MHz carrier modulated with 8 Mbps QPSK as a test-signal. An optical to electrical (O/E) receiver using an APD satisfies the power budget needs of ITU-T document G983.x for both class B and C operations (i.e., receiver sensitivity less than -33 dBm for a 10-10 bit error rate) without any FEC for both data and video. The PIN diode O/E receiver nearly satisfies the need for class B operation (-30 dBm receiver sensitivity) of G983 with FEC in QPSK FDM video. For a 155.52 Mbps baseband data transmission and for a given bit error rate, there is approximately 6 dBo1 optical power penalty due to video overlay. Of this, 1 dBo penalty is due to biasing the laser with an extinction ratio reduced from 10 dBo to approximately 6 dBo, and approximately 5 dBo penalty is due to receiver bandwidth increasing from approximately 100 MHz to approximately 1 GHz. The penalty due to receiver is after optimizing the filter for baseband data, and is caused by the reduced value of feedback resistor of the first stage transimpedance amplifier. The optical power penalty for video transmission is about 2 dBo due to reduced optical modulation index.

  14. Single-frequency gain-switched Ho-doped fiber laser

    NASA Astrophysics Data System (ADS)

    Geng, Jihong; Wang, Q.; Luo, T.; Case, B.; Jiang, S.; Amzajerdian, Farzin; Yu, Jirong

    2012-10-01

    We demonstrate a single-frequency gain-switched Ho-doped fiber laser based on heavily doped silicate glass fiber fabricated in house. A Q-switched Tm-doped fiber laser at 1.95μm was used to gain-switch the Ho-doped fiber laser via in-band pumping. Output power of the single-frequency gain-switched pulses has been amplified in a cladding-pumped Tm-Ho-codoped fiber amplifier with 1.2m active fiber pumped at 803nm. Two different nonlinear effects, i.e., modulation instability and stimulated Brillouin scattering, could be seen in the 10μm-core fiber amplifier when the peak power exceeds 3kW. The single-frequency gain-switched fiber laser was operated at 2.05μm, a popular laser wavelength for Doppler lidar application. This is the first demonstration of this kind of fiber laser.

  15. Reusable split-aptamer-based biosensor for rapid detection of cocaine in serum by using an all-fiber evanescent wave optical biosensing platform.

    PubMed

    Tang, Yunfei; Long, Feng; Gu, Chunmei; Wang, Cheng; Han, Shitong; He, Miao

    2016-08-24

    A rapid, facile, and sensitive assay of cocaine in biological fluids is important to prevent illegal abuse of drugs. A two-step structure-switching aptasensor has been developed for cocaine detection based on evanescent wave optical biosensing platform. In the proposed biosensing platform, two tailored aptamer probes were used to construct the molecular structure switching. In the existence of cocaine, two fragments of cocaine aptamer formed a three-way junction quickly, and the fluorophore group of one fragment was effectively quenched by the quencher group of the other one. The tail of the three-way junction hybridized with the cDNA sequences immobilized on the optical fiber biosensor. Fluorescence was excited by evanescent wave, and the fluorescence signal was proportional to cocaine concentration. Cocaine was detected in 450 s (300 s for incubation and 150 s for detection and regeneration) with a limit of detection (LOD) of 165.2 nM. The proposed aptasensor was evaluated in human serum samples, and it exhibited good recovery, precision, and accuracy without complicated sample pretreatments. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Microgroove fabrication with excimer laser ablation techniques for optical fiber array alignment purposes

    NASA Astrophysics Data System (ADS)

    Naessens, Kris; Van Hove, An; Coosemans, Thierry; Verstuyft, Steven; Vanwassenhove, Luc; Van Daele, Peter; Baets, Roel G.

    2000-11-01

    Currently, an ever increasing need for bandwidth, compactness and efficiency characterizes the world of interconnect and data communication. This tendency has already led to serial links being gradually replaced by parallel optical interconnect solutions. However, as the maximum capacity for the latter will be reached in the near future, new approaches are required to meet demand. One possible option is to switch to 2D parallel implementations of fiber arrays. In this paper we present the fabrication of a 2D connector for coupling a 4x8 array of plastic optical fibers to RCLED or VCSEL arrays. The connector consists primarily of dedicated PMMA plates in which arrays of 8 precisely dimensioned grooves at a pitch of 250 micrometers are introduced. The trenches are each 127 micrometers deep and their width is optimized to allow fixation of plastic optical fibers. We used excimer laser ablation for prototype fabrication of these alignment microstructures. In a later stage, the plates can be replicated using standard molding techniques. The laser ablation technique is extremely well suited for rapid prototyping and proves to be a versatile process yielding high accuracy dimensioning and repeatability of features in a wide diversity of materials. The dependency of the performance in terms of quality of the trenches (bottom roughness) and wall angle on various parameters (wavelength, energy density, pulse frequency and substrate material) is discussed. The fabricated polymer sheets with grooves are used to hold optical fibers by means of a UV-curable adhesive. In a final phase, the plates are stacked and glued in order to realize the 2D-connector of plastic optical fibers for short distance optical interconnects.

  17. Laser-triggered vacuum switch

    DOEpatents

    Brannon, Paul J.; Cowgill, Donald F.

    1990-01-01

    A laser-triggered vacuum switch has a material such as a alkali metal halide on the cathode electrode for thermally activated field emission of electrons and ions upon interaction with a laser beam, the material being in contact with the cathode with a surface facing the discharge gap. The material is preferably a mixture of KCl and Ti powders. The laser may either shine directly on the material, preferably through a hole in the anode, or be directed to the material over a fiber optic cable.

  18. Laser-triggered vacuum switch

    DOEpatents

    Brannon, P.J.; Cowgill, D.F.

    1990-12-18

    A laser-triggered vacuum switch has a material such as a alkali metal halide on the cathode electrode for thermally activated field emission of electrons and ions upon interaction with a laser beam, the material being in contact with the cathode with a surface facing the discharge gap. The material is preferably a mixture of KCl and Ti powders. The laser may either shine directly on the material, preferably through a hole in the anode, or be directed to the material over a fiber optic cable. 10 figs.

  19. Dynamics of a gain-switched distributed feedback ridge waveguide laser in nanoseconds time scale under very high current injection conditions.

    PubMed

    Klehr, A; Wenzel, H; Brox, O; Schwertfeger, S; Staske, R; Erbert, G

    2013-02-11

    We present detailed experimental investigations of the temporal, spectral and spatial behavior of a gain-switched distributed feedback (DFB) laser emitting at a wavelength of 1064 nm. Gain-switching is achieved by injecting nearly rectangular shaped current pulses having a length of 50 ns and a very high amplitude up to 2.5 A. The repetition frequency is 200 kHz. The laser has a ridge waveguide (RW) for lateral waveguiding with a ridge width of 3 µm and a cavity length of 1.5 mm. Time resolved investigations show, depending on the amplitude of the current pulses, that the optical power exhibits different types of oscillatory behavior during the pulses, accompanied by changes in the lateral near field intensity profiles and optical spectra. Three different types of instabilities can be distinguished: mode beating with frequencies between 25 GHz and 30 GHz, switching between different lateral intensity profiles with a frequency of 0.4 GHz and self-sustained oscillations with a frequency of 4 GHz. The investigations are of great relevance for the utilization of gain-switched DFB-RW lasers as seed lasers for fiber laser systems and in other applications, which require a high optical power.

  20. Fiber-coupled THz spectroscopy for monitoring polymeric compounding processes

    NASA Astrophysics Data System (ADS)

    Vieweg, N.; Krumbholz, N.; Hasek, T.; Wilk, R.; Bartels, V.; Keseberg, C.; Pethukhov, V.; Mikulics, M.; Wetenkamp, L.; Koch, M.

    2007-06-01

    We present a compact, robust, and transportable fiber-coupled THz system for inline monitoring of polymeric compounding processes in an industrial environment. The system is built on a 90cm x 90cm large shock absorbing optical bench. A sealed metal box protects the system against dust and mechanical disturbances. A closed loop controller unit is used to ensure optimum coupling of the laser beam into the fiber. In order to build efficient and stable fiber-coupled antennas we glue the fibers directly onto photoconductive switches. Thus, the antenna performance is very stable and it is secured from dust or misalignment by vibrations. We discuss fabrication details and antenna performance. First spectroscopic data obtained with this system is presented.

  1. Optical burst switching for the next generation Optical Internet

    NASA Astrophysics Data System (ADS)

    Yoo, Myungsik

    2000-11-01

    In recent years, Internet Protocol (IP) over Wavelength Division Multiplexing (WDM) networks for the next generation Internet (or the so-called Optical Internet) have received enormous attention. There are two main drivers for an Optical Internet. One is the explosion of Internet traffic, which seems to keep growing exponentially. The other driver is the rapid advance in the WDM optical networking technology. In this study, key issues in the optical (WDM) layer will be investigated. As a novel switching paradigm for Optical Internet, Optical Burst Switching (OBS) is discussed. By leveraging the attractive properties of optical communications and at the same time, taking into account its limitations, OBS can combine the best of optical circuit-switching and packet/cell switching. The general concept of JET-based OBS protocol is described, including offset time and delayed reservation. In the next generation Optical Internet, one must address how to support Quality of Service (QoS) at the WDM layer since current IP provides only best effort services. The offset-time- based QoS scheme is proposed as a way of supporting QoS at the WDM layer. Unlike existing QoS schemes, offset- time-based QoS scheme does not mandate the use of buffer to differentiate services. For the bufferless WDM switch, the performance of offset- time-based QoS scheme is evaluated in term of blocking probability. In addition, the extra offset time required for class isolation is quantified and the theoretical bounds on blocking probability are analyzed. The offset-time-based scheme is applied to WDM switch with limited fiber delay line (FDL) buffer. We evaluate the effect of having a FDL buffer on the QoS performance of the offset-time-based scheme in terms of the loss probability and queuing delay of bursts. Finally, in order to dimension the network resources in Optical Internet backbone networks, the performance of the offset-time-based QoS scheme is evaluated for the multi-hop case. In particular, we consider very high performance Backbone Network Service (vBNS) backbone network. Various policies such as drop, retransmission, deflection routing and buffering are considered for performance evaluation. The performance results obtained under these policies are compared to decide the most efficient policy for the WDM backbone network.

  2. Large-area and highly crystalline MoSe2 for optical modulator

    NASA Astrophysics Data System (ADS)

    Yin, Jinde; Chen, Hao; Lu, Wei; Liu, Mengli; Li, Irene Ling; Zhang, Min; Zhang, Wenfei; Wang, Jinzhang; Xu, Zihan; Yan, Peiguang; Liu, Wenjun; Ruan, Shuangchen

    2017-12-01

    Transition metal dichalcogenides (TMDs) have been successfully used as broadband optical modulator materials for pulsed fiber laser systems. However, the nonlinear optical absorptions of exfoliated TMDs are strongly limited by their nanoflakes morphology with uncontrollable lateral size and thickness. In this work, we provide an effective method to fully explore the nonlinear optical properties of MoSe2. Large-area and high quality lattice MoSe2 grown by chemical vapor deposition method was adopted as an optical modulator for the first time. The large-area MoSe2 shows excellent nonlinear optical absorption with a large modulation depth of 21.7% and small saturable intensity of 9.4 MW cm-2. After incorporating the MoSe2 optical modulator into fiber laser cavity as a saturable absorber, a highly stable Q-switching operation with single pulse energy of 224 nJ is achieved. The large-area MoSe2 possessing superior nonlinear optical properties compared to exfoliated nanoflakes affords possibility for the larger-area two-dimensional materials family as high performance optical devices.

  3. Vehicle security apparatus and method

    DOEpatents

    Veligdan, James T.

    1996-02-13

    A vehicle security apparatus for use in a motor vehicle, the apparatus comprising an optical key, a receptacle, a receiver and at least one optical fiber. The optical key has a transmitter having at least one first preprogrammed coded signal stored in a first electric circuit. The receptacle receives the optical key and at least one transmittable coded optical signal from the transmitter corresponding to the at least one preprogrammed coded signal stored in the first electric circuit. The receiver compares the at least one transmittable coded optical signal to at least one second preprogrammed coded signal stored in a second electric circuit and the receiver is adapted to trigger switching effects for at least one of enabling starting the motor vehicle and starting the motor vehicle upon determination that the at least one transmittable coded optical signal corresponds to the at least one second preprogrammed signal in the second electric circuit. The at least one optical fiber is operatively connected between the receptacle and the receiver for carrying the optical signal from the receptacle to the receiver. Also disclosed is a method for permitting only authorized use of a motor vehicle.

  4. Optical Closed-Loop Propulsion Control System Development

    NASA Technical Reports Server (NTRS)

    Poppel, Gary L.

    1998-01-01

    The overall objective of this program was to design and fabricate the components required for optical closed-loop control of a F404-400 turbofan engine, by building on the experience of the NASA Fiber Optic Control System Integration (FOCSI) program. Evaluating the performance of fiber optic technology at the component and system levels will result in helping to validate its use on aircraft engines. This report includes descriptions of three test plans. The EOI Acceptance Test is designed to demonstrate satisfactory functionality of the EOI, primarily fail-safe throughput of the F404 sensor signals in the normal mode, and validation, switching, and output of the five analog sensor signals as generated from validated optical sensor inputs, in the optical mode. The EOI System Test is designed to demonstrate acceptable F404 ECU functionality as interfaced with the EOI, making use of a production ECU test stand. The Optical Control Engine Test Request describes planned hardware installation, optical signal calibrations, data system coordination, test procedures, and data signal comparisons for an engine test demonstration of the optical closed-loop control.

  5. Optical implementation of (3, 3, 2) regular rectangular CC-Banyan optical network

    NASA Astrophysics Data System (ADS)

    Yang, Junbo; Su, Xianyu

    2007-07-01

    CC-Banyan network plays an important role in the optical interconnection network. Based on previous reports of (2, 2, 3) the CC-Banyan network, another rectangular-Banyan network, i.e. (3, 3, 2) rectangular CC-Banyan network, has been discussed. First, according to its construction principle, the topological graph and the routing rule of (3, 3, 2) rectangular CC-Banyan network have been proposed. Then, the optically experimental setup of (3, 3, 2) rectangular CC-Banyan network has been designed and achieved. Each stage of node switch consists of phase spatial light modulator (PSLM) and polarizing beam-splitter (PBS), and fiber has been used to perform connection between adjacent stages. PBS features that s-component (perpendicular to the incident plane) of the incident light beam is reflected, and p-component (parallel to the incident plane) passes through it. According to switching logic, under the control of external electrical signals, PSLM functions to control routing paths of the signal beams, i.e. the polarization of each optical signal is rotated or not rotated 90° by a programmable PSLM. Finally, the discussion and analysis show that the experimental setup designed here can realize many functions such as optical signal switch and permutation. It has advantages of large number of input/output-ports, compact in structure, and low energy loss. Hence, the experimental setup can be used in optical communication and optical information processing.

  6. Deployment of the National Transparent Optical Network around the San Francisco Bay Area

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCammon, K.; Haigh, R.; Armstrong, G.

    1996-06-01

    We report on the deployment and initial operation of the National Transparent Optical Network, an experimental WDM network testbed around the San Francisco Bay Area, during the Optical Fiber Conference (OFC`96) held in San Jose, CA. The deployment aspects of the physical plant, optical and SONET layers are examined along with a discussion of broadband applications which utilized the network during the OFC`96 demonstration. The network features dense WDM technology, transparent optical routing technology using acousto- optic tunable filter based switches, and network modules with add/drop, multicast, and wavelength translation capabilities. The physical layer consisted of over 300 km ofmore » Sprint and Pacific Bell conventional single mode fiber which was amplified with I I optical amplifiers deployed in pre-amp, post-amp, and line amp configurations. An out-of-band control network provided datacom channels from remote equipment sites to the SONET network manager deployed at the San Jose Convention Center for the conference. Data transport over five wavelengths was achieved in the 1550 nm window using a variety of signal formats including analog and digital signal transmission on different wavelengths on the same fiber. The network operated throughout the week of OFC`96 and is still in operation today.« less

  7. Crosstalk analyse of DFB fiber laser hydrophone array based on time division multiplexing

    NASA Astrophysics Data System (ADS)

    Li, Yu; Huang, Junbin; Gu, Hongcan; Tang, Bo; Wu, Jing

    2014-12-01

    In this paper, the crosstalk of a time division multiplexed (TDM) system of distributed feedback (DFB) fiber laser (FL)hydrophones based on optical switch using Phase Generated Carrier (PGC) method was quantitatively analyzed. After mathematical deduction, the relationship among crosstalk, multiplexing scale and extinction ratio of optical switch was given. The simulation results show that to realize a TDM system of DFB fiber laser hydrophones with crosstalk lower than -40dB, the average extinction ratio should be higher than 24.78dB for a 4- channel system, while higher than 28.45dB for an 8- channel system. Two experiments to analyze the array crosstalk to a certain channel in an 8- channel array were conducted in this paper. Firstly, by testing the powers of leak laser to a certain channel from others, the array crosstalk to this channel was obtained according to the equation mathematically deduced in this paper. The result shows the array crosstalk to a certain channel of the 8-channel array was -7.6dB. An experiment of underwater acoustic detection was carried out finally to get the real array crosstalk to this certain channel, and the experimental result shows that the array crosstalk to this channel is -8.8dB, which is close to the calculated result.

  8. Switched Broadband Services For The Home

    NASA Astrophysics Data System (ADS)

    Sawyer, Don M.

    1990-01-01

    In considering the deployment of fiber optics to the residence, two critical questions arise: what are the leading services that could be offered to justify the required investment; and what is the nature of the business that would offer these services to the consumer ? This talk will address these two questions together with the related issue of how the "financial engine" of today's television distribution infrastructure - TV advertising - would be affected by an open access system based on fiber optics coupled with broadband switching. On the business side, the talk concludes that the potential for open ended capacity expansion, fair competition between service providers, and new interactive services inherent in an open access, switched broadband system are the critical items in differentiating it from existing video and TV distribution systems. On the question of broadband services, the talk will highlight several new opportunities together with some findings from recent market research conducted by BNR. The talk will show that there are variations on existing services plus many new services that could be offered and which have real consumer appeal. The postulated open access system discussed here is visualized as having ultimately 1,000 to 2,000 video channels available to the consumer. Although this may appear to hopelessly fragment the TV audience and destroy the current TV advertising infrastructure, the technology of open access, switched broadband will present many new advertising techniques, which have the potential to be far more effective than those available today. Some of these techniques will be described in this talk.

  9. Cross layer optimization for cloud-based radio over optical fiber networks

    NASA Astrophysics Data System (ADS)

    Shao, Sujie; Guo, Shaoyong; Qiu, Xuesong; Yang, Hui; Meng, Luoming

    2016-07-01

    To adapt the 5G communication, the cloud radio access network is a paradigm introduced by operators which aggregates all base stations computational resources into a cloud BBU pool. The interaction between RRH and BBU or resource schedule among BBUs in cloud have become more frequent and complex with the development of system scale and user requirement. It can promote the networking demand among RRHs and BBUs, and force to form elastic optical fiber switching and networking. In such network, multiple stratum resources of radio, optical and BBU processing unit have interweaved with each other. In this paper, we propose a novel multiple stratum optimization (MSO) architecture for cloud-based radio over optical fiber networks (C-RoFN) with software defined networking. Additionally, a global evaluation strategy (GES) is introduced in the proposed architecture. MSO can enhance the responsiveness to end-to-end user demands and globally optimize radio frequency, optical spectrum and BBU processing resources effectively to maximize radio coverage. The feasibility and efficiency of the proposed architecture with GES strategy are experimentally verified on OpenFlow-enabled testbed in terms of resource occupation and path provisioning latency.

  10. Dynamic optical coupled system employing Dammann gratings

    NASA Astrophysics Data System (ADS)

    Di, Caihui; Zhou, Changhe; Ru, Huayi

    2004-10-01

    With the increasing of the number of users in optical fiber communications, fiber-to-home project has a larger market value. Then the need of dynamic optical couplers, especially of N broad-band couplers, becomes greater. Though some advanced fiber fusion techniques have been developed, they still have many shortcomings. In this paper we propose a dynamic optical coupled system employing even-numbered Dammann gratings, which have the characteristic that the phase distribution in the first half-period accurately equals to that in the second-period with π phase inversion. In our experiment, we divide a conventional even-numbered Dammann grating into two identical gratings. The system can achieve the beam splitter and combiner as the switch between them according to the relative shift between two complementary gratings. When there is no shift between the gratings, the demonstrated 1×8 dynamic optical coupler achieves good uniformity of 0.06 and insertion loss of around 10.8 dB for each channel as a splitter. When the two gratings have an accurate shift of a half-period between them, our system has a low insertion loss of 0.46 dB as a combiner at a wavelength of 1550 nm.

  11. All-Union Conference on Laser Optics, 4th, Leningrad, USSR, January 13-18, 1984, Proceedings

    NASA Astrophysics Data System (ADS)

    Bukhenskii, M. F.

    1984-08-01

    The papers presented in this volume provide an overview of current theoretical and experimental research in laser optics. Topics discussed include electronically controlled tunable lasers, nonlinear phenomena in fiber-optic waveguides, holographic distributed-feedback dye lasers, and new developments in solid-state lasers. Papers are also presented on the generation of picosecond pulses through self-Q-switching in a distributed-feedback laser, temporal compression of light pulses during stimulated backscattering, and optimization of second harmonic generation in a multimode Nd:glass laser.

  12. Optical Diagnostics of Multi-Gap Gas Switches for Linear Transformer Drivers

    NASA Astrophysics Data System (ADS)

    Sheng, Liang; Li, Yang; Sun, Tieping; Cong, Peitian; Zhang, Mei; Peng, Bodong; Zhao, Jizhen; Yue, Zhiqin; Wei, Fuli; Yuan, Yuan

    2014-07-01

    The trigger characteristics of a multi-gap gas switch with double insulating layers, a square-groove electrode supporter and a UV pre-ionizing structure are investigated aided by a high sensitivity fiber-bundle array detector, a UV fiber detector, and a framing camera, in addition to standard electrical diagnostics. The fiber-bundle-array detector is used to track the turn-on sequence of each electrode gap at a timing precision of 0.6 ns. Each fiber bundle, including five fibers with different azimuth angles, aims at the whole emitting area of each electrode gap and is fed to a photomultiplier tube. The UV fiber detector with a spectrum response of 260-320 nm, including a fused-quartz fiber of 200 μm in diameter and a solar-blinded photomultiplier tube, is adopted to study the effect of UV pre-ionizing on trigger characteristics. The framing camera, with a capacity of 4 frames per shot and an exposure time of 5 ns, is employed to capture the evolution of channel arcs. Based on the turn-on light signal of each electrode gap, the breakdown delay is divided into statistical delay and formative delay. A decrease in both of them, a smaller switch jitter and more channel arcs are observed with lower gas pressure. An increase in trigger voltage can reduce the statistical delay and its jitter, while higher trigger voltage has a relatively small influence on the formative delay and the number of channel arcs. With the UV pre-ionizing structure at 0.24 MPa gas pressure and 60 kV trigger voltage, the statistical delay and its jitter can be reduced by 1.8 ns and 0.67 ns, while the formative delay and its jitter can only be reduced by 0.5 ns and 0.25 ns.

  13. Photonic and Opto-Electronic Applications of Polydiacetylene Films Photodeposited from Solution and Polydiacetylene Copolymer Networks

    NASA Technical Reports Server (NTRS)

    Paley, Mark S.; Frazier, Donald O.; Smith, David D.; Witherow, William K.; Addeldeyem, Hossin A.; Wolfe, Daniel B.

    1998-01-01

    Polydiacetylenes (PDAS) are attractive materials for both electronic and photonic applications because of their highly conjugated electronic structures. They have been investigated for applications as both one-dimensional (linear chain) conductors and nonlinear optical (NLO) materials. One of the chief limitations to the use of PDAs has been the inability to readily process them into useful forms such as films and fibers. In our laboratory we have developed a novel process for obtaining amorphous films of a PDA derived from 2-methyl4-nitroaniline using photodeposition with Ultraviolet (UV) light from monomer solutions onto transparent substrates. Photodeposition from solution provides a simple technique for obtaining PDA films in any desired pattern with good optical quality. This technique has been used to produce PDA films that show potential for optical applications such as holographic memory storage and optical limiting, as well as third-order NLO applications such as all-optical refractive index modulation, phase modulation and switching. Additionally, copolymerization of diacetylenes with other monomers such as methacrylates provides a means to obtain materials with good processibility. Such copolymers can be spin cast to form films, or drawn by either melt or solution extrusion into fibers. These films or fibers can then be irradiated with UV to photopolymerize the diacetylene units to form a highly stable cross-linked PDA-copolymer network. If such films are electrically poled while being irradiated, they can achieve the asymmetry necessary for second-order NLO applications such as electro-optic switching. On Earth, formation of PDAs by the above mentioned techniques suffers from defects and inhomogeneities caused by convective flows that can arise during processing. By studying the formation of these materials in the reduced-convection, diffusion-controlled environment of space we hope to better understand the factors that affect their processing, and thereby, their nature and properties. Ultimately it may even be feasible to conduct space processing of PDAs for technological applications.

  14. Nerve fiber layer (NFL) degeneration associated with acute q-switched laser exposure in the nonhuman primate

    NASA Astrophysics Data System (ADS)

    Zwick, Harry; Zuclich, Joseph A.; Stuck, Bruce E.; Gagliano, Donald A.; Lund, David J.; Glickman, Randolph D.

    1995-01-01

    We have evaluated acute laser retinal exposure in non-human primates using a Rodenstock scanning laser ophthalmoscope (SLO) equipped with spectral imaging laser sources at 488, 514, 633, and 780 nm. Confocal spectral imaging at each laser wavelength allowed evaluation of the image plane from deep within the retinal vascular layer to the more superficial nerve fiber layer in the presence and absence of the short wavelength absorption of the macular pigment. SLO angiography included both fluorescein and indocyanine green procedures to assess the extent of damage to the sensory retina, the retinal pigment epithelium (RPE), and the choroidal vasculature. All laser exposures in this experiment were from a Q-switched Neodymium laser source at an exposure level sufficient to produce vitreous hemorrhage. Confocal imaging of the nerve fiber layer revealed discrete optic nerve sector defects between the lesion site and the macula (retrograde degeneration) as well as between the lesion site and the optic disk (Wallerian degeneration). In multiple hemorrhagic exposures, lesions placed progressively distant from the macula or overlapping the macula formed bridging scars visible at deep retinal levels. Angiography revealed blood flow disturbance at the retina as well as at the choroidal vascular level. These data suggest that acute parafoveal laser retinal injury can involve both direct full thickness damage to the sensory and non-sensory retina and remote nerve fiber degeneration. Such injury has serious functional implications for both central and peripheral visual function.

  15. Study of imaging fiber bundle coupling technique in IR system

    NASA Astrophysics Data System (ADS)

    Chen, Guoqing; Yang, Jianfeng; Yan, Xingtao; Song, Yansong

    2017-02-01

    Due to its advantageous imaging characteristic and banding flexibility, imaging fiber bundle can be used for line-plane-switching push-broom infrared imaging. How to precisely couple the fiber bundle in the optics system is the key to get excellent image for transmission. After introducing the basic system composition and structural characteristics of the infrared systems coupled with imaging fiber bundle, this article analysis the coupling efficiency and the design requirements of its relay lenses with the angle of the numerical aperture selecting in the system and cold stop matching of the refrigerant infrared detector. For an actual need, one relay coupling system has been designed with the magnification is -0.6, field of objective height is 4mm, objective numerical aperture is 0.15, which has excellent image quality and enough coupling efficiency. In the end, the push broom imaging experiment is carried out. The results show that the design meets the requirements of light energy efficiency and image quality. This design has a certain reference value for the design of the infrared fiber optical system.

  16. LOLS Research in Technology for the Development and Application of New Fiber-Based Sensors

    PubMed Central

    Coelho, João; Nespereira, Marta; Silva, Catarina; Rebordão, José

    2012-01-01

    This paper presents the research made at the Laboratory of Optics, Lasers and Systems (LOLS) of the Faculty of Sciences of University of Lisbon, Portugal, in the field of fiber-based sensors. Three areas are considered: sensor encapsulation for natural aqueous environments, refractive index modulation and laser micropatterning. We present the main conclusions on the issues and parameters to take in consideration for the encapsulation process and results of its design and application. Mid-infrared laser radiation was applied to produce long period fiber gratings and nanosecond pulses of near-infrared Q-switch laser were used for micropatterning. PMID:22736970

  17. Limiting of microjoule femtosecond pulses in air-guided modes of a hollow photonic-crystal fiber

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Konorov, S.O.; Serebryannikov, E.E.; Sidorov-Biryukov, D.A.

    Self-phase-modulation-induced spectral broadening of laser pulses in air-guided modes of hollow photonic-crystal fibers (PCFs) is shown to allow the creation of fiber-optic limiters for high-intensity ultrashort laser pulses. The performance of PCF limiters is analyzed in terms of elementary theory of self-phase modulation. Experiments performed with 100 fs microjoule pulses of 800 nm Ti:sapphire laser radiation demonstrate the potential of hollow PCFs as limiters for 10 MW ultrashort laser pulses and show the possibility to switch the limiting level of output radiation energy by guiding femtosecond pulses in different PCF modes.

  18. Nonlinear characterization of silver nanocrystals incorporated tellurite glasses for fiber development

    NASA Astrophysics Data System (ADS)

    Zhou, Zhiguang; Tan, Wenjiang; Si, Jinhai; Zhan, Huan; He, Jianli; Lin, Aoxiang

    2011-12-01

    To develop high nonlinear optical fibers for all-optical switching applications, 7.5 wt% AgNO3 was incorporated into tellurite glasses with composition of 75TeO2-20ZnO-5Na2CO3 (TZN75) under precisely-controlled experimental conditions to form 7.5Ag-TZN75 glass. Surface Plasmon resonance absorption peak of Ag nanocrystals embedded in 7.5Ag-TZN75 glass was found to center at 552 nm. By degenerated four-wave mixing method, the non-resonant nonlinear refractive index, n2, of 7.5Ag-TZN75 glass was measured to be 7.54×10-19 m2•W-1 at 1500 nm, about 3 times of the reference TZN75 glass without any dopant and 27 times of the silicate glasses and fibers, and the response time is about 1 picosecond.

  19. Novel WRM-based architecture of hybrid PON featuring online access and full-fiber-fault protection for smart grid

    NASA Astrophysics Data System (ADS)

    Li, Xingfeng; Gan, Chaoqin; Liu, Zongkang; Yan, Yuqi; Qiao, HuBao

    2018-01-01

    In this paper, a novel architecture of hybrid PON for smart grid is proposed by introducing a wavelength-routing module (WRM). By using conventional optical passive components, a WRM with M ports is designed. The symmetry and passivity of the WRM makes it be easily integrated and very cheap in practice. Via the WRM, two types of network based on different ONU-interconnected manner can realize online access. Depending on optical switches and interconnecting fibers, full-fiber-fault protection and dynamic bandwidth allocation are realized in these networks. With the help of amplitude modulation, DPSK modulation and RSOA technology, wavelength triple-reuse is achieved. By means of injecting signals into left and right branches in access ring simultaneously, the transmission delay is decreased. Finally, the performance analysis and simulation of the network verifies the feasibility of the proposed architecture.

  20. Switchable single-longitudinal-mode dual-wavelength erbium-doped fiber ring laser based on one polarization-maintaining fiber Bragg grating incorporating saturable absorber and feedback fiber loop

    NASA Astrophysics Data System (ADS)

    Feng, Suchun; Xu, Ou; Lu, Shaohua; Ning, Tigang; Jian, Shuisheng

    2009-06-01

    Switchable single-longitudinal-mode (SLM) dual-wavelength erbium-doped fiber ring laser based on one polarization-maintaining fiber Bragg grating (PMFBG) is demonstrated. Due to the enhancement of the polarization hole burning (PHB) by the PMFBG, the laser can be designed to operate in stable dual-wavelength or wavelength-switching modes with a wavelength spacing of 0.336 nm at room temperature by adjusting a polarization controller (PC). The stable SLM operation is guaranteed by a compound-ring cavity and a saturable absorber (SA). The optical signal-to-noise ratio (OSNR) is over 45 dB. The amplitude variation in nearly one and half an hour is less than 0.2 dB.

  1. Saturated evanescent-wave absorption of few-layer graphene-covered side-polished single-mode fiber for all-optical switching

    NASA Astrophysics Data System (ADS)

    Peng, Kaung-Jay; Wu, Chun-Lung; Lin, Yung-Hsiang; Wang, Hwai-Yung; Cheng, Chih-Hsien; Chi, Yu-Chieh; Lin, Gong-Ru

    2018-01-01

    Using the evanescent-wave saturation effect of hydrogen-free low-temperature synthesized few-layer graphene covered on the cladding region of a side-polished single-mode fiber, a blue pump/infrared probe-based all-optical switch is demonstrated with specific wavelength-dependent probe modulation efficiency. Under the illumination of a blue laser diode at 405 nm, the few-layer graphene exhibits cross-gain modulation at different wavelengths covering the C- and L-bands. At a probe power of 0.5 mW, the L-band switching throughput power variant of 16 μW results in a probe modulation depth of 3.2%. Blue shifting the probe wavelength from 1580 to 1520 nm further enlarges the switching throughput power variant to 24 mW and enhances the probe modulation depth to 5%. Enlarging the probe power from 0.5 to 1 mW further enlarges the switching throughput power variant from 25 to 58 μW to promote its probe modulation depth of up to 5.8% at 1520 nm. In contrast, the probe modulation depth degrades from 5.1% to 1.2% as the pumping power reduces from 85 to 24 mW, which is attributed to the saturable absorption of the few-layer graphene-based evanescent-wave absorber. The modulation depth at wavelength of 1550 nm under a probe power of 1 mW increases from 1.2% to 5.1%, as more carriers can be excited when increasing the blue laser power from 24 to 85 mW, whereas it decreases from 5.1% to 3.3% by increasing the input probe power from 1 to 2 mW to show an easier saturated condition at longer wavelength.

  2. Wavelength-switched phase interrogator for extrinsic Fabry-Perot interferometric sensors.

    PubMed

    Xia, Ji; Xiong, Shuidong; Wang, Fuyin; Luo, Hong

    2016-07-01

    We report on phase interrogation of extrinsic Fabry-Perot interferometric (EFPI) sensors through a wavelength-switched unit with a polarization-maintaining fiber Bragg grating (PMFBG). The measurements at two wavelengths are first achieved in one total-optical path. The reflected peaks of the PMFBG with two natural wavelengths are in mutually perpendicular polarization detection, and they are switched through an electro-optic modulator at a high switching speed of 10 kHz. An ellipse fitting differential cross multiplication (EF-DCM) algorithm is proposed for interrogating the variation of the gap length of the EFPI sensors. The phase demodulation system has been demonstrated to recover a minimum phase of 0.42  μrad/Hz at the test frequency of 100 Hz with a stable intensity fluctuation level of ±0.8  dB. Three EFPI sensors with different cavity lengths are tested at the test frequency of 200 Hz, and the results indicate that the system can achieve the demodulation of EFPI sensors with different cavity lengths stably.

  3. Gradient Index (GRIN) Lens Multimode Fiber Probe for Laser Induced Breakdown in the Eye

    DTIC Science & Technology

    1994-01-23

    34 Applied Optics, VoL 22, No. 3, p. 383, 1983 SPIE Vol. 2126 Ophthalmic Technologies IV (1994) /303 3. M. M. Pankratov , 0. Pomerantzeff, K. P...R. D. Jones, ’Laser-Produced Plasmas in Medicine," IEEE Transactions on Plasma Science, Vol. 19, p. 1209, 1991 6. T. I. Margolis, D. A. Farnath, M...Ophthalmology, Vol. 109, p.1605, 1991 8. P. Rol, P. Niederer, F. Fankhauser, M. Arigoni, E. De HaIler, ’p-Switched pulses and optical breakdown

  4. Stable CW Single Frequency Operation of Fabry-Perot Laser Diodes by Self-Injection Phase Locking

    NASA Technical Reports Server (NTRS)

    Duerksen, Gary L.; Krainak, Michael A.

    1999-01-01

    Previously, single-frequency semiconductor laser operation using fiber Bragg gratings has been achieved by tWo methods: 1) use of the FBG as the output coupler for an anti-reflection-coated semiconductor gain element'; 2) pulsed operation of a gain-switched Fabry-Perot laser diode with FBG-optical and RF-electrical feedback'. Here, we demonstrate CW single frequency operation from a non-AR coated Fabry-Perot laser diode using only FBG optical feedback.

  5. Stable CW Single-Frequency Operation of Fabry-Perot Laser Diodes by Self-Injection Phase Locking

    NASA Technical Reports Server (NTRS)

    Duerksen, Gary L.; Krainak, Michael A.

    1998-01-01

    Previously, single-frequency semiconductor laser operation using fiber Bragg gratings (FBG) has been achieved by two methods: (1) use of the FBG as the output coupler for an anti-reflection-coated semiconductor gain element; (2) pulsed operation of a gain-switched Fabry-Perot laser diode with FBG-optical and RF-electrical feedback. Here, we demonstrate CW single frequency operation from a non-AR coated Fabry-Perot laser diode using only FBG optical feedback.

  6. Electromagnetic Environmental Effects System Testing

    DTIC Science & Technology

    2013-11-20

    battery packs or air turbine power generators. The sensitivity of the entire instrumentation system should be taken into consideration from the sensor ...Electromagnetic Radiation to Ordnance (HERO) sensors , pneumatic switching, and those equipments associated with fiber optic technology. c. Test...Field probes to determine environment -Thermal heating sensors (e.g., FISO or Metricor systems) used to detect bridgewire heating induced by

  7. Vehicle security apparatus and method

    DOEpatents

    Veligdan, J.T.

    1996-02-13

    A vehicle security apparatus for use in a motor vehicle is disclosed, the apparatus comprising an optical key, a receptacle, a receiver and at least one optical fiber. The optical key has a transmitter having at least one first preprogrammed coded signal stored in a first electric circuit. The receptacle receives the optical key and at least one transmittable coded optical signal from the transmitter corresponding to the at least one preprogrammed coded signal stored in the first electric circuit. The receiver compares the at least one transmittable coded optical signal to at least one second preprogrammed coded signal stored in a second electric circuit and the receiver is adapted to trigger switching effects for at least one of enabling starting the motor vehicle and starting the motor vehicle upon determination that the at least one transmittable coded optical signal corresponds to the at least one second preprogrammed signal in the second electric circuit. The at least one optical fiber is operatively connected between the receptacle and the receiver for carrying the optical signal from the receptacle to the receiver. Also disclosed is a method for permitting only authorized use of a motor vehicle. 7 figs.

  8. SDN-Enabled Dynamic Feedback Control and Sensing in Agile Optical Networks

    NASA Astrophysics Data System (ADS)

    Lin, Likun

    Fiber optic networks are no longer just pipelines for transporting data in the long haul backbone. Exponential growth in traffic in metro-regional areas has pushed higher capacity fiber toward the edge of the network, and highly dynamic patterns of heterogeneous traffic have emerged that are often bursty, severely stressing the historical "fat and dumb pipe" static optical network, which would need to be massively over-provisioned to deal with these loads. What is required is a more intelligent network with a span of control over the optical as well as electrical transport mechanisms which enables handling of service requests in a fast and efficient way that guarantees quality of service (QoS) while optimizing capacity efficiency. An "agile" optical network is a reconfigurable optical network comprised of high speed intelligent control system fed by real-time in situ network sensing. It provides fast response in the control and switching of optical signals in response to changing traffic demands and network conditions. This agile control of optical signals is enabled by pushing switching decisions downward in the network stack to the physical layer. Implementing such agility is challenging due to the response dynamics and interactions of signals in the physical layer. Control schemes must deal with issues such as dynamic power equalization, EDFA transients and cascaded noise effects, impairments due to self-phase modulation and dispersion, and channel-to-channel cross talk. If these issues are not properly predicted and mitigated, attempts at dynamic control can drive the optical network into an unstable state. In order to enable high speed actuation of signal modulators and switches, the network controller must be able to make decisions based on predictive models. In this thesis, we consider how to take advantage of Software Defined Networking (SDN) capabilities for network reconfiguration, combined with embedded models that access updates from deployed network monitoring sensors. In order to maintain signal quality while optimizing network resources, we find that it is essential to model and update estimates of the physical link impairments in real-time. In this thesis, we consider the key elements required to enable an agile optical network, with contributions as follows: • Control Framework: extended the SDN concept to include the optical transport network through extensions to the OpenFlow (OF) protocol. A unified SDN control plane is built to facilitate control and management capability across the electrical/packet-switched and optical/circuit-switched portions of the network seamlessly. The SDN control plane serves as a platform to abstract the resources of multilayer/multivendor networks. Through this platform, applications can dynamically request the network resources to meet their service requirements. • Use of In-situ Monitors: enabled real-time physical impairment sensing in the control plane using in-situ Optical Performance Monitoring (OPM) and bit error rate (BER) analyzers. OPM and BER values are used as quantitative indicators of the link status and are fed to the control plane through a high-speed data collection interface to form a closed-loop feedback system to enable adaptive resource allocation. • Predictive Network Model: used a network model embedded in the control layer to study the link status. The estimated results of network status is fed into the control decisions to precompute the network resources. The performance of the network model can be enhanced by the sensing results. • Real-Time Control Algorithms: investigated various dynamic resource allocation mechanisms supporting an agile optical network. Intelligent routing and wavelength switching for recovering from traffic impairments is achieved experimentally in the agile optical network within one second. A distance-adaptive spectrum allocation scheme to address transmission impairments caused by cascaded Wavelength Selective Switches (WSS) is proposed and evaluated for improving network spectral efficiency.

  9. Investigation on nonautonomous soliton management in generalized external potentials via dispersion and nonlinearity

    NASA Astrophysics Data System (ADS)

    Vijayalekshmi, S.; Mani Rajan, M. S.; Mahalingam, A.; Uthayakumar, A.

    2015-09-01

    We investigate the controllable behavior of nonautonomous soliton in external potentials with variable dispersion and nonlinearity management functions, which describes the propagation of optical pulses in an inhomogeneous fiber system. We derive the Lax pair with a variable spectral parameter and the exact multi-soliton solution is generated via Darboux transformation. Based on these solutions, several novel optical solitons are constructed by selecting appropriate functions and the main evolution features of these waves are shown by some interesting figures with computer simulation. As few examples, breathers in periodic potential, soliton compression in an exponentially dispersion decreasing fiber and interaction of boomerang solitons are discussed. The presented results have applications in the study of nonautonomous soliton birefringence-managed switching architecture. These results are potentially useful in the management of nonautonomous soliton with external potentials in the optical soliton communications and long-haul telecommunication networks.

  10. Book Reviews

    NASA Astrophysics Data System (ADS)

    Horner, Joseph L.

    1987-04-01

    Progress in the fields of integrated optics and fiber optics is continuing at a rapid pace. Recognizing this trend, the goal of the author is to provide an introductory textbook on time-harmonic electromagnetic theory, with an emphasis on optical rather than microwave technologies. The book is appropriate for an upper-level undergraduate or graduate course. Each chapter includes examples of problems. The book focuses on several areas of prime importance to intergrated optics. These include dielectric waveguide analysis, couple-mode thoery, Bragg scattering, and prism coupling There is very little coverage of active components such as electro-optic modulators and switches. The author assumes the reader has a working knowledge of vector calculus and is familiar with Maxwell's equations.

  11. Optically detonated explosive device

    NASA Technical Reports Server (NTRS)

    Yang, L. C.; Menichelli, V. J. (Inventor)

    1974-01-01

    A technique and apparatus for optically detonating insensitive high explosives, is disclosed. An explosive device is formed by containing high explosive material in a house having a transparent window. A thin metallic film is provided on the interior surface of the window and maintained in contact with the high explosive. A laser pulse provided by a Q-switched laser is focussed on the window to vaporize the metallic film and thereby create a shock wave which detonates the high explosive. Explosive devices may be concurrently or sequentially detonated by employing a fiber optic bundle to transmit the laser pulse to each of the several individual explosive devices.

  12. All-Optical Wavelength-Path Service With Quality Assurance by Multilayer Integration System

    NASA Astrophysics Data System (ADS)

    Yagi, Mikio; Tanaka, Shinya; Satomi, Shuichi; Ryu, Shiro; Asano, Shoichiro

    2006-09-01

    In the future all-optical network controlled by generalized multiprotocol label switching (GMPLS), the wavelength path between end nodes will change dynamically. This inevitably means that the fiber parameters along the wavelength path will also vary. This variation in fiber parameters influences the signal quality of high-speed-transmission system (bit rates over 40 Gb/s). Therefore, at a path setup, the fiber-parameter effect should be adequately compensated. Moreover, the path setup must be completed fast enough to meet the network-application demands. To realize the rapid setup of adequate paths, a multilayer integration system for all-optical wavelength-path quality assurance is proposed. This multilayer integration system is evaluated in a field trial. In the trial, the GMPLS control plane, measurement plane, and data plane coordinated to maintain the quality of a 40-Gb/s wavelength path that would otherwise be degraded by the influence of chromatic dispersion. It is also demonstrated that the multilayer integration system can assure the signal quality in the face of not only chromatic dispersion but also degradation in the optical signal-to-noise ratio by the use of a 2R regeneration system. Our experiments confirm that the proposed multilayer integration system is an essential part of future all-optical networks.

  13. Switchable single-longitudinal-mode dual-wavelength erbium-doped fiber laser based on one polarization-maintaining fiber Bragg grating incorporating saturable absorber

    NASA Astrophysics Data System (ADS)

    Feng, Suchun; Xu, Ou; Lu, Shaohua; Chen, Ming; Jian, Shuisheng

    2009-08-01

    Switchable single-longitudinal-mode (SLM) dual-wavelength erbium-doped fiber laser at room temperature is demonstrated. One fiber Bragg grating (FBG) directly written in a polarization-maintaining and photosensitive erbiumdoped fiber (PMPEDF) as the wavelength-selective component is used in a linear laser cavity. Due to the polarization hole burning (PHB) enhanced by the polarization-maintaining fiber Bragg grating (PMFBG), the laser can be designed to operate in stable dual-wavelength or wavelength-switching modes with a wavelength spacing of 0.202 nm by adjusting a polarization controller (PC). The stable SLM operation is guaranteed by a saturable absorber (SA). The optical signal-tonoise ratio (OSNR) of the laser is over 40 dB. The amplitude variation in nearly one and half an hour is less than 0.5 dB for both wavelengths.

  14. Giant Pulse Phenomena in a High Gain Erbium Doped Fiber Amplifier

    NASA Technical Reports Server (NTRS)

    Li, Stephen X.; Merritt, Scott; Krainak, Michael A.; Yu, Anthony

    2018-01-01

    High gain Erbium Doped Fiber Amplifiers (EDFAs) are vulnerable to optical damage when unseeded, e.g. due to nonlinear effects that produce random, spontaneous Q-switched (SQS) pulses with high peak power, i.e. giant pulses. Giant pulses can damage either the components within a high gain EDFA or external components and systems coupled to the EDFA. We explore the conditions under which a reflective, polarization-maintaining (PM), core-pumped high gain EDFA generates giant pulses, provide details on the evolution of normal pulses into giant pulses, and provide results on the transient effects of giant pulses on an amplifier's fused-fiber couplers, an effect which we call Fiber Overload Induced Leakage (FOIL). While FOIL's effect on fused-fiber couplers is temporary, its damage to forward pump lasers in a high gain EDFA can be permanent.

  15. A highly stable and switchable dual-wavelength laser using coupled microfiber Mach-Zehnder interferometer as an optical filter

    NASA Astrophysics Data System (ADS)

    Jasim, A. A.; Ahmad, H.

    2017-12-01

    The generation and switching of dual-wavelength laser based on compact coupled microfiber Mach-Zehnder interferometer (CM-MZI) is reported. The CM-MZI is constructed by overlapping two portions of a single tapered optical fiber which has a diameter of 9 μm as to create multi-mode interference and also to produce spatial mode beating as to suppress mode competition in the homogeneous gain medium. The system is able to generate a dual-wavelength laser output that can be switched with the aid of the polarization rotation technique. Four dual-wavelength oscillation pairs are obtained from the interference fringe peaks of the CM-MZI comb filter with a switched channel spacing of 1.5 nm, 3.0 nm, and 6.0 nm. The wavelength spacing is stable at different pump powers. The lasing wavelength has a 3-dB linewidth of about 30 pm and peak-to-floor ration of about 55 dB at a pump power of 38 mW.

  16. Compact probing system using remote imaging for industrial plant maintenance

    NASA Astrophysics Data System (ADS)

    Ito, F.; Nishimura, A.

    2014-03-01

    Laser induced breakdown spectroscopy (LIBS) and endoscope observation were combined to design a remote probing device. We use this probing device to inspect a crack of the inner wall of the heat exchanger. Crack inspection requires speed at first, and then it requires accuracy. Once Eddy Current Testing (ECT) finds a crack with a certain signal level, another method should confirm it visually. We are proposing Magnetic particle Testing (MT) using specially fabricated the Magnetic Particle Micro Capsule (MPMC). For LIBS, a multichannel spectrometer and a Q-switch YAG laser were used. Irradiation area is 270 μm, and the pulse energy was 2 mJ. This pulse energy corresponds to 5-2.2 MW/cm2. A composite-type optical fiber was used to deliver both laser energy and optical image. Samples were prepared to heat a zirconium alloy plate by underwater arc welding in order to demonstrate severe accidents of nuclear power plants. A black oxide layer covered the weld surface and white particles floated on water surface. Laser induced breakdown plasma emission was taken into the spectroscope using this optical fiber combined with telescopic optics. As a result, we were able to simultaneously perform spectroscopic measurement and observation. For MT, the MPMC which gathered in the defective area is observed with this fiber. The MPMC emits light by the illumination of UV light from this optical fiber. The size of a defect is estimated with this amount of emission. Such technology will be useful for inspection repair of reactor pipe.

  17. Implementation of a tactical voice/data network over FDDI. [Fiber Distributed Data Interface

    NASA Technical Reports Server (NTRS)

    Bergman, L. A.; Halloran, F.; Martinez, J.

    1988-01-01

    An asynchronous high-speed fiber-optic local-area network is described that simultaneously supports packet data traffic with synchronous TI voice traffic over a standard asynchronous FDDI (fiber distributed data interface) token-ring channel. A voice interface module was developed that parses, buffers, and resynchronizes the voice data to the packet network. The technique is general, however, and can be applied to any deterministic class of networks, including multitier backbones. In addition, the higher layer packet data protocols may operate independently of those for the voice, thereby permitting great flexibility in reconfiguring the network. Voice call setup and switching functions are performed external to the network with PABX equipment.

  18. Q-switched oscillation in thulium-doped fiber lasers using preloaded dynamic microbending technique

    NASA Astrophysics Data System (ADS)

    Sakata, H.; Takahashi, N.; Ushiro, Y.

    2018-01-01

    We demonstrate Q-switched pulse generation in thulium-doped fiber lasers by introducing piezoelectric-driven microbend with preloaded stress. We employed a pair of corrugated chips each attached on piezoelectric actuators (PAs) to clamp the fiber in a ring laser resonator. The thulium-doped fiber is pumped by a laser diode emitting at 1.63 μm and generates the Q-switched laser pulses at around 1.9 μm by switching off the PAs. The laser pulse performance is improved by optimizing the preload and switch-off period for the PAs. The Q-switched pulses with a peak power of 2.8 W and a pulsewidth of 900 ns are observed for a launched pump power of 161 mW. We expect that the in-fiber Q-switching technique will provide efficient laser systems for environmental sensing and medical applications.

  19. An Application for the Quantitative Analysis of Pharmaceutical Tablets Using a Rapid Switching System Between a Near-Infrared Spectrometer and a Portable Near-Infrared Imaging System Equipped with Fiber Optics.

    PubMed

    Murayama, Kodai; Ishikawa, Daitaro; Genkawa, Takuma; Ozaki, Yukihiro

    2018-04-01

    We present a rapid switching system between a newly developed near-infrared (NIR) spectrometer and its imaging system to select the spot size of a diffuse reflectance (DR) probe. In a previous study, we developed a portable NIR imaging system, known as D-NIRs, which has significant advantages over other systems. Its high speed, high spectral resolution, and portability are particularly useful in the process of monitoring pharmaceutical tablets. However, the spectral accuracies relating to the changes in the formulation of the pharmaceutical tablets have not been fully discussed. Therefore, we improved the rapid optical switching system and present a new model of D-NIRs (ND-NIRs) here. This system can automatically switch the optical paths of the DR and NIR imaging probes, greatly contributing to the simultaneous measurement of both the imaging and spot. The NIR spectra of the model tablets, including 0-10% ascorbic acid, were measured and simultaneous NIR images of the tablets were obtained. The predicted results using spot sizes for the DR probe of 1 and 5 mm diameter, resulted in concentrations of R2 = 0.79 and 0.94, with root mean square errors (RMSE) of 1.78 and 0.89, respectively. For tablets with a high concentration of ascorbic acid, the NIR imaging results showed inhomogeneity in concentration. However, the predicted values for the low concentration samples appeared higher than the known concentration of the tablets, although the homogeneity of the concentration was confirmed. In addition, the optimal spot size using NIR imaging data was estimated to be 5-7 mm. The results obtained in this study show that the spot size of the fiber probe, attached to a spectrometer, is important in developing a highly reliable model to determine the component concentration of a tablet.

  20. Optical fiber network sensor system for monitoring methane concentration

    NASA Astrophysics Data System (ADS)

    Zhang, Zhi-wei; Zhang, Ji-long

    2011-08-01

    With regard to the high accuracy optic-fiber sensor for monitoring methane concentration, the choice of light source depends on methane peak values. Besides, the environment of mine should be considered, that is to say other gas should be considered, such as vapor, CO and CO2 etc, without absorbent spectrum in the decided wavelength. It has been reported that vapor, CO and CO2 have no obvious absorption in 0.85μm, 1.3μm and 1.66μm area, CH4 has no obvious absorption in 0.85μm area. So diode laser with 1.3μm or 1.66μm peak wavelength is chosen as the optic-fiber sensor's light source for detecting methane concentration. On the basis of the principle of optic absorption varied with methane concentration at its characteristic absorbent wavelength, the advantage of optic-fiber sensor technology and the circumstance characteristic of the coal mine. An optic-fiber sensor system is presented for monitoring methane concentration. Space Division Multiple Access Technology (SDMAT) and long optical path absorbent pool technology are combined in the study. Considering the circumstance characteristic of the coal mine, the optic-fiber network sensors for detecting methane concentration from mix gas of vapor, CO, CH4 and CO2 are used. It introduces the principle of an optic-fiber sensor system for monitoring methane concentration in coal mine. It contains the structure block diagram of monitoring system, the system is mainly made up of diode laser for monitoring methane concentration, Y-shaped photo-coupler with coupled rate 50:50, optical switch 1×2, gas absorbent cell, the computer data process and control system and photoelectric transformer. In this study, in order to decrease to the influence of the dark-current of photodiode, intensity in light sources and temperature drifts of processing circuit on the system accuracy in measurement, a beam of light is broken down into two beams in the coupler of Y-shaped coupler, the one acts as the reference optical path, the other is known as the sensing optical path. The experimental result shows that diode laser with 1654.141nm in wavelength is taken as the optic source for detecting methane concentration, the detective limit of the sensor is below 4.274mg/m3 when the optical path of absorbent pool is 20 centimeters, and the prevision and stability could satisfy practical application. The whole instrument can also reach on-line measurement with multiple points on different spot.

  1. A conjunct near-surface spectroscopy system for fix-angle and multi-angle continuous measurements of canopy reflectance and sun-induced chlorophyll fluorescence

    NASA Astrophysics Data System (ADS)

    Zhang, Qian; Fan, Yifeng; Zhang, Yongguang; Chou, Shuren; Ju, Weimin; Chen, Jing M.

    2016-09-01

    An automated spectroscopy system, which is divided into fix-angle and multi-angle subsystems, for collecting simultaneous, continuous and long-term measurements of canopy hyper-spectra in a crop ecosystem is developed. The fix-angle subsystem equips two spectrometers: one is HR2000+ (OceanOptics) covering the spectral range 200-1100 nm with 1.0 nm spectral resolution, and another one is QE65PRO (OceanOptics) providing 0.1 nm spectral resolution within the 730-780 nm spectral range. Both spectrometers connect a cosine-corrected fiber-optic fixed up-looking to collect the down-welling irradiance and a bare fiber-optic to measure the up-welling radiance from the vegetation. An inline fiber-optic shutter FOS-2x2-TTL (OceanOptics) is used to switch between input fibers to collect the signal from either the canopy or sky at one time. QE65PRO is used to permit estimation of vegetation Sun-Induced Fluorescence (SIF) in the O2-A band. The data collection scheme includes optimization of spectrometer integration time to maximize the signal to noise ratio and measurement of instrument dark currency. The multi-angle subsystem, which can help understanding bidirectional reflectance effects, alternatively use HR4000 (OceanOptics) providing 0.1 nm spectral resolution within the 680-800 nm spectral range to measure multi-angle SIF. This subsystem additionally includes a spectrometer Unispec-DC (PPSystems) featuring both up-welling and down-welling channels with 3 nm spectral resolution covering the 300-1100 nm spectral range. Two down-looking fiber-optics are mounted on a rotating device PTU-D46 (FLIR Systems), which can rotate horizontally and vertically at 10° angular step widths. Observations can be used to calculate canopy reflectance, vegetation indices and SIF for monitoring plant physiological processes.

  2. Mechanical cause for acute left lung atelectasis after neonatal aortic arch repair with arterial switch operation: Conservative management.

    PubMed

    Maddali, Madan Mohan; Kandachar, Pranav Subbaraya; Al-Hanshi, Said; Al Ghafri, Mohammed; Valliattu, John

    2017-01-01

    Respiratory complications due to mechanical obstruction of the airways can occur following pediatric cardiac surgery. Clinically significant intrathoracic vascular compression of the airway can occur when extensive dissection and mobilization of arch and neck vessels is involved as in repair of interrupted aortic arch. This case report describes a neonate who underwent interrupted aortic arch repair along with an arterial switch operation and developed a left lung collapse immediately after tracheal extubation. Fiber-optic bronchoscopy revealed vascular compression as the real culprit. The child was successfully managed conservatively.

  3. NASA/ASEE Summer Faculty Fellowship Program

    NASA Technical Reports Server (NTRS)

    Hosler, E. Ramon (Editor); Valdes, Carol (Editor); Brown, Tom (Editor)

    1993-01-01

    This document is a collection of technical reports on research conducted by the participants in the 1993 NASA/ASEE Summer Faculty Fellowship Program at KSC. The basic common objectives of the Program are: to further the professional knowledge of qualified engineering and science faculty members; to stimulate an exchange of ideas between participants and NASA; to enrich and refresh the research and teaching activities of participants' institutions; and to contribute to the research objectives of the NASA centers. 1993 topics include wide band fiber optic communications, a prototype expert/information system for examining environmental risks of KSC activities, alternatives to premise wiring using ATM and microcellular technologies, rack insertion end effector (RIEE) automation, FTIR quantification of industrial hydraulic fluids in perchloroethylene, switch configuration for migration to optical fiber network, and more.

  4. A fiber optic tactical voice/data network based on FDDI

    NASA Technical Reports Server (NTRS)

    Bergman, L. A.; Hartmayer, R.; Marelid, S.; Wu, W. H.; Edgar, G.; Cassell, P.; Mancini, R.; Kiernicki, J.; Paul, L. J.; Jeng, J.

    1988-01-01

    An asynchronous high-speed fiber optic local area network is described that supports ordinary data packet traffic simultaneously with synchronous Tl voice traffic over a common FDDI token ring channel. A voice interface module was developed that parses, buffers, and resynchronizes the voice data to the packet network. The technique is general, however, and can be applied to any deterministic class of networks, including multi-tier backbones. A conventional single token access protocol was employed at the lowest layer, with fixed packet sizes for voice and variable for data. In addition, the higher layer packet data protocols are allowed to operate independently of those for the voice thereby permitting great flexibility in reconfiguring the network. Voice call setup and switching functions were performed external to the network with PABX equipment.

  5. On-line process control monitoring system

    DOEpatents

    O'Rourke, Patrick E.; Van Hare, David R.; Prather, William S.

    1992-01-01

    An on-line, fiber-optic based apparatus for monitoring the concentration of a chemical substance at a plurality of locations in a chemical processing system comprises a plurality of probes, each of which is at a different location in the system, a light source, optic fibers for carrying light to and from the probes, a multiplexer for switching light from the source from one probe to the next in series, a diode array spectrophotometer for producing a spectrum from the light received from the probes, and a computer programmed to analyze the spectra so produced. The probes allow the light to pass through the chemical substance so that a portion of the light is absorbed before being returned to the multiplexer. A standard and a reference cell are included for data validation and error checking.

  6. GLOBECOM '88 - IEEE Global Telecommunications Conference and Exhibition, Hollywood, FL, Nov. 28-Dec. 1, 1988, Conference Record. Volumes 1, 2, & 3

    NASA Astrophysics Data System (ADS)

    Various papers on communications for the information age are presented. Among the general topics considered are: telematic services and terminals, satellite communications, telecommunications mangaement network, control of integrated broadband networks, advances in digital radio systems, the intelligent network, broadband networks and services deployment, future switch architectures, performance analysis of computer networks, advances in spread spectrum, optical high-speed LANs, and broadband switching and networks. Also addressed are: multiple access protocols, video coding techniques, modulation and coding, photonic switching, SONET terminals and applications, standards for video coding, digital switching, progress in MANs, mobile and portable radio, software design for improved maintainability, multipath propagation and advanced countermeasure, data communication, network control and management, fiber in the loop, network algorithm and protocols, and advances in computer communications.

  7. Tunable and switchable dual-waveband ultrafast fiber laser with 100 GHz repetition-rate.

    PubMed

    Tan, Xiao-Mei; Chen, Hong-Jie; Cui, Hu; Lv, Yao-Kun; Zhao, Guan-Kai; Luo, Zhi-Chao; Luo, Ai-Ping; Xu, Wen-Cheng

    2017-07-10

    We demonstrate a tunable and switchable dual-waveband 100 GHz high-repetition-rate (HRR) ultrafast fiber laser based on dissipative four-wave-mixing (DFWM) mode-locked technique. Each waveband maintains HRR operation. The DFWM effect was realized by combining a Fabry-Perot (F-P) filter and a piece of highly nonlinear fiber (HNLF). The tunable and switchable operations were achieved by nonlinear polarization rotation (NPR) technique. Through appropriately controlling the filtering effect induced by NPR, the laser could operate at two kinds of tunable regimes. One is that the spacing between these two wavebands could be tuned while keeping their center at 1559 nm. The other is that the central position of the entire dual-waveband is tunable while with the same separation between these two wavebands of 13.2 nm. Moreover, the laser could switch between these two wavebands. Correspondingly, the center of the single-waveband has a tuning range of 15.2 nm. This versatile ultrafast fiber laser may find applications in fields of optical frequency combs, high speed optical communications, where HRR pulses are necessary.

  8. An L-band multi-wavelength Brillouin-erbium fiber laser with switchable frequency spacing

    NASA Astrophysics Data System (ADS)

    Zhou, Xuefang; Hu, Kongwen; Wei, Yizhen; Bi, Meihua; Yang, Guowei

    2017-01-01

    In this paper, a novel L-band multi-wavelength Brillouin-erbium fiber laser consisting of two ring cavities is proposed and demonstrated. The frequency spacing can be switched, corresponding to the single and double Brillouin frequency shifts, by toggling the optical switch. Under a 980 nm pump power of 600 mw, and a Brillouin pump power of 4 mW and wavelength of 1599.4 nm, up to 16 Stokes signals with a frequency spacing of 0.089 nm and 5 Stokes signals with double spacing of 0.178 nm are generated. A wavelength tunability of 15 nm (1593 nm  -  1608 nm) is realized for both frequency spacings. The fluctuation of Stokes signals for both single and double Brillouin spacing regimes in the proposed setup is less than 1.5 dB throughout a 30 min time span.

  9. Efficient sweep buffering in swept source optical coherence tomography using a fast optical switch

    PubMed Central

    Dhalla, Al-Hafeez; Shia, Kevin; Izatt, Joseph A.

    2012-01-01

    We describe a novel buffering technique for increasing the A-scan rate of swept source optical coherence tomography (SSOCT) systems employing low duty cycle swept source lasers. This technique differs from previously reported buffering techniques in that it employs a fast optical switch, capable of switching in 60 ns, instead of a fused fiber coupler at the end of the buffering stage, and is therefore appreciably more power efficient. The use of the switch also eliminates patient exposure to light that is not used for imaging that occurs at the end of the laser sweep, thereby increasing the system sensitivity. We also describe how careful management of polarization can remove undesirable artifacts due to polarization mode dispersion. In addition, we demonstrate how numerical compensation techniques can be used to modify the signal from a Mach-Zehnder interferometer (MZI) clock obtained from the original sweep to recalibrate the buffered sweep, thereby reducing the complexity of systems employing lasers with integrated MZI clocks. Combining these methods, we constructed an SSOCT system employing an Axsun technologies laser with a sweep rate of 100kHz and 6dB imaging range of 5.5mm. The sweep rate was doubled with sweep buffering to 200 kHz, and the imaging depth was extended to 9 mm using coherence revival. We demonstrated the feasibility of this system by acquiring images of the anterior segments and retinas of healthy human volunteers. PMID:23243559

  10. Efficient sweep buffering in swept source optical coherence tomography using a fast optical switch.

    PubMed

    Dhalla, Al-Hafeez; Shia, Kevin; Izatt, Joseph A

    2012-12-01

    We describe a novel buffering technique for increasing the A-scan rate of swept source optical coherence tomography (SSOCT) systems employing low duty cycle swept source lasers. This technique differs from previously reported buffering techniques in that it employs a fast optical switch, capable of switching in 60 ns, instead of a fused fiber coupler at the end of the buffering stage, and is therefore appreciably more power efficient. The use of the switch also eliminates patient exposure to light that is not used for imaging that occurs at the end of the laser sweep, thereby increasing the system sensitivity. We also describe how careful management of polarization can remove undesirable artifacts due to polarization mode dispersion. In addition, we demonstrate how numerical compensation techniques can be used to modify the signal from a Mach-Zehnder interferometer (MZI) clock obtained from the original sweep to recalibrate the buffered sweep, thereby reducing the complexity of systems employing lasers with integrated MZI clocks. Combining these methods, we constructed an SSOCT system employing an Axsun technologies laser with a sweep rate of 100kHz and 6dB imaging range of 5.5mm. The sweep rate was doubled with sweep buffering to 200 kHz, and the imaging depth was extended to 9 mm using coherence revival. We demonstrated the feasibility of this system by acquiring images of the anterior segments and retinas of healthy human volunteers.

  11. High-energy directly diode-pumped Q-switched 1617 nm Er:YAG laser at room temperature.

    PubMed

    Wang, Mingjian; Zhu, Liang; Chen, Weibiao; Fan, Dianyuan

    2012-09-01

    We describe high-energy Erbium-doped yttrium aluminum garnet (Er:YAG) lasers operating at 1617 nm, resonantly pumped using 1532 nm fiber-coupled laser diodes. A maximum continuous wave output power of 4.3 W at 1617 nm was achieved with an output coupler of 20% transmission under incident pump power of 29.7 W, resulting in an optical conversion of 14% with respect to the incident pump power. In Q-switched operation, the pulse energy of 11.8 mJ at 100 Hz pulse repetition frequency and 81 ns pulse duration was obtained. This energy is the highest pulse energy reported for a directly diode-pumped Q-switched Er:YAG laser operating at 1617 nm.

  12. 220 microJ Monolithic Single-Frequency Q-switched Fiber Laser at 2 micrometers by Using Highly Tm-doped Germanate Fibers

    DTIC Science & Technology

    2011-09-15

    actively Q-switching all-fiber lasers include mag- netostriction modulation of fiber Bragg gratings ( FBGs ), stretching of FBGs with piezoelectric...report an all- fiber single-frequency actively Q-switched laser operat- ing at ∼1920 nm by using a piezo to press the fiber in the FBG cavity based on...fusion-spliced between two FBGs as shown in Fig. 1. One FBG has a high reflectivity (HR) grating imprinted on a non-PM silica fiber. The other FBG

  13. Transmission performance of a wavelength and NRZ-to-RZ format conversion with pulsewidth tunability by combination of SOA- and fiber-based switches.

    PubMed

    Tan, Hung Nguyen; Matsuura, Motoharu; Kishi, Naoto

    2008-11-10

    An all-optical signal processing scheme coupling wavelength conversion and NRZ-to-RZ data format conversion with pulsewidth tunability into one by combination of SOA- and fiber-based switches, is experimentally demonstrated, and its transmission performance is investigated. An 1558 nm NRZ data signal is converted to RZ data format at 1546 nm with widely tunable pulsewidth from 20 % to 80 % duty cycle at the bit-rate of 10 Gb/s. The investigation on transmission performance of the converted RZ signals at each different pulsewidth is carried out over various standard single-mode fiber (SSMF) links up to 65 km long without dispersion compensation. The results clarify a significant improvement on transmission performance of converted signal in comparison with the conventional NRZ signal through tunable pulsewidth management and show the existence of an optimal pulsewidth for the RZ data format at each transmission distance with particular cumulative dispersion. The optimal pulsewidths of the converted RZ signal and its corresponding power penalties against the NRZ signal are also investigated in different SSMF links.

  14. Next-generation optical wireless communications for data centers

    NASA Astrophysics Data System (ADS)

    Arnon, Shlomi

    2015-01-01

    Data centers collect and process information with a capacity that has been increasing from year to year at an almost exponential pace. Traditional fiber/cable data center network interconnections suffer from bandwidth overload, as well as flexibility and scalability issues. Therefore, a technology-shift from the fiber and cable to wireless has already been initiated in order to meet the required data-rate, flexibility and scalability demands for next-generation data center network interconnects. In addition, the shift to wireless reduces the volume allocated to the cabling/fiber and increases the cooling efficiency. Optical wireless communication (OWC), or free space optics (FSO), is one of the most effective wireless technologies that could be used in future data centers and could provide ultra-high capacity, very high cyber security and minimum latency, due to the low index of refraction of air in comparison to fiber technologies. In this paper we review the main concepts and configurations for next generation OWC for data centers. Two families of technologies are reviewed: the first technology regards interconnects between rack units in the same rack and the second technology regards the data center network that connects the server top of rack (TOR) to the switch. A comparison between different network technologies is presented.

  15. Few-Nucleon Charge Radii and a Precision Isotope Shift Measurement in Helium

    NASA Astrophysics Data System (ADS)

    Hassan Rezaeian, Nima; Shiner, David

    2015-05-01

    Precision atomic theory and experiment provide a valuable method to determine few nucleon charge radii, complementing the more direct scattering approaches, and providing sensitive tests of few-body nuclear theory. Some puzzles with respect to this method exist, particularly in the muonic and electronic measurements of the proton radius, and as well with respect to measurements of nuclear size in helium. We perform precision measurements of the isotope shift of the 23S -23P transitions in 3He and 4He. A tunable laser frequency discriminator and electro-optic modulation technique give precise frequency and intensity control. We select (ts <50 ms) and stabilize the intensity of the required sideband and eliminate the unused sidebands (<= 10¬5) . The technique uses a MEMS fiber switch (ts = 10 ms) and several temperature stabilized narrow band (3 GHz) fiber gratings. A fiber based optical circulator and amplifier provide the desired isolation and net gain for the selected frequency. A beam with both species of helium is achieved using a custom fiber laser for simultaneous optical pumping. A servo-controlled retro-reflected laser beam eliminates Doppler effects. Careful detection design and software control allows for unbiased data collection. Current results will be discussed. This work is supported by NSF PHY-1068868 and PHY-1404498.

  16. Multicasting for all-optical multifiber networks

    NASA Astrophysics Data System (ADS)

    Kã¶Ksal, Fatih; Ersoy, Cem

    2007-02-01

    All-optical wavelength-routed WDM WANs can support the high bandwidth and the long session duration requirements of the application scenarios such as interactive distance learning or on-line diagnosis of patients simultaneously in different hospitals. However, multifiber and limited sparse light splitting and wavelength conversion capabilities of switches result in a difficult optimization problem. We attack this problem using a layered graph model. The problem is defined as a k-edge-disjoint degree-constrained Steiner tree problem for routing and fiber and wavelength assignment of k multicasts. A mixed integer linear programming formulation for the problem is given, and a solution using CPLEX is provided. However, the complexity of the problem grows quickly with respect to the number of edges in the layered graph, which depends on the number of nodes, fibers, wavelengths, and multicast sessions. Hence, we propose two heuristics layered all-optical multicast algorithm [(LAMA) and conservative fiber and wavelength assignment (C-FWA)] to compare with CPLEX, existing work, and unicasting. Extensive computational experiments show that LAMA's performance is very close to CPLEX, and it is significantly better than existing work and C-FWA for nearly all metrics, since LAMA jointly optimizes routing and fiber-wavelength assignment phases compared with the other candidates, which attack the problem by decomposing two phases. Experiments also show that important metrics (e.g., session and group blocking probability, transmitter wavelength, and fiber conversion resources) are adversely affected by the separation of two phases. Finally, the fiber-wavelength assignment strategy of C-FWA (Ex-Fit) uses wavelength and fiber conversion resources more effectively than the First Fit.

  17. Real-time monitoring implementation in a remote-pumped WDM PON

    NASA Astrophysics Data System (ADS)

    Liaw, S.-K.; Hong, K.-L.; Shei, Y.-S.

    2008-08-01

    We report on an improved configuration to monitor a passive optical network with high quality in service. This proposed system comprises fiber-Bragg gratings, a 1 × 4 optical switch, and an optical time-domain reflectometry to diagnose the broken point in real time. It could simultaneously detect multioptical network units in a WDM PON. The remote-pump integrated residual pumping reused function is implemented. Broken points in different optical paths can be detected simultaneously even when the distances to the central office are identical. The bit-error rate testing is verified with a small power penalty, making it an ideal solution for the real-time monitoring in a WDM PON.

  18. Integration and manufacture of multifunctional planar lightwave circuits

    NASA Astrophysics Data System (ADS)

    Lipscomb, George F.; Ticknor, Anthony J.; Stiller, Marc A.; Chen, Wenjie; Schroeter, Paul

    2001-11-01

    The demands of exponentially growing Internet traffic, coupled with the advent of Dense Wavelength Division Multiplexing (DWDM) fiber optic systems to meet those demands, have triggered a revolution in the telecommunications industry. This dramatic change has been built upon, and has driven, improvements in fiber optic component technology. The next generation of systems for the all optical network will require higher performance components coupled with dramatically lower costs. One approach to achieve significantly lower costs per function is to employ Planar Lightwave Circuits (PLC) to integrate multiple optical functions in a single package. PLCs are optical circuits laid out on a silicon wafer, and are made using tools and techniques developed to extremely high levels by the semi-conductor industry. In this way multiple components can be fabricated and interconnected at once, significantly reducing both the manufacturing and the packaging/assembly costs. Currently, the predominant commercial application of PLC technology is arrayed-waveguide gratings (AWG's) for multiplexing and demultiplexing multiple wavelength channels in a DWDM system. Although this is generally perceived as a single-function device, it can be performing the function of more than 100 discrete fiber-optic components and already represents a considerable degree of integration. Furthermore, programmable functions such as variable-optical attenuators (VOAs) and switches made with compatible PLC technology are now moving into commercial production. In this paper, we present results on the integration of active and passive functions together using PLC technology, e.g. a 40 channel AWG multiplexer with 40 individually controllable VOAs.

  19. Gravitational Influences on the Growth of Polydiacetylene Films by Ultraviolet Solution Polymerization

    NASA Technical Reports Server (NTRS)

    Frazier, Donald O.

    2000-01-01

    Technically, the field of integrated optics using organic/polymer materials as a new means of information processing, has emerged as of vital importance to optical computers, optical switching, optical communications, the defense industry, etc. The goal is to replace conventional electronic integrated circuits and wires by equivalent miniaturized optical integrated circuits and fibers, offering larger bandwidths, more compactness and reliability, immunity to electromagnetic interference and less cost. From the Code E perspective, this research area represents an opportunity to marry "front-line" education in science and technology with national scientific and technological interests while maximizing human resources utilization. This can be achieved by the development of untapped resources for scientific research - such as minorities, women, and universities traditionally uninvolved in scientific research.

  20. Multiband Photonic Phased-Array Antenna

    NASA Technical Reports Server (NTRS)

    Tang, Suning

    2015-01-01

    A multiband phased-array antenna (PAA) can reduce the number of antennas on shipboard platforms while offering significantly improved performance. Crystal Research, Inc., has developed a multiband photonic antenna that is based on a high-speed, optical, true-time-delay beamformer. It is capable of simultaneously steering multiple independent radio frequency (RF) beams in less than 1,000 nanoseconds. This high steering speed is 3 orders of magnitude faster than any existing optical beamformer. Unlike other approaches, this technology uses a single controlling device per operation band, eliminating the need for massive optical switches, laser diodes, and fiber Bragg gratings. More importantly, only one beamformer is needed for all antenna elements.

  1. Characterization of ultrafast devices using novel optical techniques

    NASA Astrophysics Data System (ADS)

    Ali, Md Ershad

    Optical techniques have been extensively used to examine the high frequency performance of a number of devices including High Electron Mobility Transistors (HEMTs), Heterojunction Bipolar Phototransistors (HPTs) and Low Temperature GaAs (LT-GaAs) Photoconductive Switches. To characterize devices, frequency and time domain techniques, namely optical heterodyning and electro-optic sampling, having measurement bandwidths in excess of 200 GHz, were employed. Optical mixing in three-terminal devices has been extended for the first time to submillimeter wave frequencies. Using a new generation of 50-nm gate pseudomorphic InP-based HEMTs, optically mixed signals were detected to 552 GHz with a signal-to-noise ratio of approximately 5 dB. To the best of our knowledge, this is the highest frequency optical mixing obtained in three- terminal devices to date. A novel harmonic three-wave detection scheme was used for the detection of the optically generated signals. The technique involved downconversion of the signal in the device by the second harmonic of a gate-injected millimeter wave local oscillator. Measurements were also conducted up to 212 GHz using direct optical mixing and up to 382 GHz using a fundamental three-wave detection scheme. New interesting features in the bias dependence of the optically mixed signals have been reported. An exciting novel development from this work is the successful integration of near-field optics with optical heterodyning. The technique, called near-field optical heterodyning (NFOH), allows for extremely localized injection of high-frequency stimulus to any arbitrary point of an ultrafast device or circuit. Scanning the point of injection across the sample provides details of the high frequency operation of the device with high spatial resolution. For the implementation of the technique, fiber-optic probes with 100 nm apertures were fabricated. A feedback controlled positioning system was built for accurate placement and scanning of the fiber probe with nanometric precision. The applicability of the NFOH technique was first confirmed by measurements on heterojunction phototransistors at 100 GHz. Later NFOH scans were performed at 63 GHz on two other important devices, HEMTs and LT-GaAs Photoconductive Switches. Spatially resolved response characteristics of these devices revealed interesting details of their operation.

  2. Active Q switching of a fiber laser with a microsphere resonator

    NASA Astrophysics Data System (ADS)

    Kieu, Khanh; Mansuripur, Masud

    2006-12-01

    We propose and demonstrate an active Q-switched fiber laser using a high-Q microsphere resonator as the Q-switching element. The laser cavity consists of an Er-doped fiber as the gain medium, a glass microsphere reflector (coupled through a fiber taper) at one end of the cavity, and a fiber Bragg grating reflector at the other end. The reflectivity of the microsphere is modulated by changing the gap between the microsphere and the fiber taper. Active Q switching is realized by oscillating the microsphere in and out of contact with the taper. Using this novel technique, we have obtained giant pulses (maximum peak power ˜102W, duration ˜160ns) at a low pump-power threshold (˜3mW).

  3. Method and apparatus for producing cryogenic targets

    DOEpatents

    Murphy, James T.; Miller, John R.

    1984-01-01

    An improved method and apparatus are given for producing cryogenic inertially driven fusion targets in the fast isothermal freezing (FIF) method. Improved coupling efficiency and greater availability of volume near the target for diagnostic purposes and for fusion driver beam propagation result. Other embodiments include a new electrical switch and a new explosive detonator, all embodiments making use of a purposeful heating by means of optical fibers.

  4. Research on a practical telecom and CATV co-network transmission system

    NASA Astrophysics Data System (ADS)

    Mao, Youju

    1998-12-01

    A practical co-network transmission system of Telecom and CATV over installed Telecom network is designed. The system, making use of WDM and other technologies, has undergone experiments and performance tests on the Public Switched Telephone Network, which illustrate that optical fiber telecommunication network could be thereby transformed into a unified broadband network integrating VOICE, DATA, and VEDIO expeditiously and conveniently.

  5. A fiber-based quasi-continuous-wave quantum key distribution system

    PubMed Central

    Shen, Yong; Chen, Yan; Zou, Hongxin; Yuan, Jianmin

    2014-01-01

    We report a fiber-based quasi-continuous-wave (CW) quantum key distribution (QKD) system with continuous variables (CV). This system employs coherent light pulses and time multiplexing to maximally reduce cross talk in the fiber. No-switching detection scheme is adopted to optimize the repetition rate. Information is encoded on the sideband of the pulsed coherent light to fully exploit the continuous wave nature of laser field. With this configuration, high secret key rate can be achieved. For the 50 MHz detected bandwidth in our experiment, when the multidimensional reconciliation protocol is applied, a secret key rate of 187 kb/s can be achieved over 50 km of optical fiber against collective attacks, which have been shown to be asymptotically optimal. Moreover, recently studied loopholes have been fixed in our system. PMID:24691409

  6. Active holographic interconnects for interfacing volume storage

    NASA Astrophysics Data System (ADS)

    Domash, Lawrence H.; Schwartz, Jay R.; Nelson, Arthur R.; Levin, Philip S.

    1992-04-01

    In order to achieve the promise of terabit/cm3 data storage capacity for volume holographic optical memory, two technological challenges must be met. Satisfactory storage materials must be developed and the input/output architectures able to match their capacity with corresponding data access rates must also be designed. To date the materials problem has received more attention than devices and architectures for access and addressing. Two philosophies of parallel data access to 3-D storage have been discussed. The bit-oriented approach, represented by recent work on two-photon memories, attempts to store bits at local sites within a volume without affecting neighboring bits. High speed acousto-optic or electro- optic scanners together with dynamically focused lenses not presently available would be required. The second philosophy is that volume optical storage is essentially holographic in nature, and that each data write or read is to be distributed throughout the material volume on the basis of angle multiplexing or other schemes consistent with the principles of holography. The requirements for free space optical interconnects for digital computers and fiber optic network switching interfaces are also closely related to this class of devices. Interconnects, beamlet generators, angle multiplexers, scanners, fiber optic switches, and dynamic lenses are all devices which may be implemented by holographic or microdiffractive devices of various kinds, which we shall refer to collectively as holographic interconnect devices. At present, holographic interconnect devices are either fixed holograms or spatial light modulators. Optically or computer generated holograms (submicron resolution, 2-D or 3-D, encoding 1013 bits, nearly 100 diffraction efficiency) can implement sophisticated mathematical design principles, but of course once fabricated they cannot be changed. Spatial light modulators offer high speed programmability but have limited resolution (512 X 512 pixels, encoding about 106 bits of data) and limited diffraction efficiency. For any application, one must choose between high diffractive performance and programmability.

  7. Multiwavelength fiber laser

    NASA Astrophysics Data System (ADS)

    Das, Goutam

    This thesis studies experimentally and theoretically a few designs of multiwavelength fiber lasers. Four different configurations are proposed and demonstrated; all of which can operate at room temperatures. An elliptical core erbium-doped fiber is used as the gain medium, which is single mode along the minor axis and multimode along the major axis. The principle of operation is based on the anisotropic gain effect of an elliptical core erbium-doped fiber. Stable multiwavelength operation is achieved at room temperatures. A polarization controller is used to control and select the lasing wavelengths. The stability of the lasing lines, in the presence of anisotropic gain effects, has been examined. The maximum number of stable lasing lines that may be obtained depends on the number of modes supported by the erbium-doped fiber. The effects of the dimensions of the fiber are also studied. A ring resonator is formed using an elliptical core erbium-doped fiber. The basic theoretical expression for the threshold pump power for each lasing line is developed. The theoretical results are in excellent agreement with the values obtained experimentally. The dependence of the separations between the lasing wavelengths on the dimensions of the erbium-doped fiber is examined. A theoretical study of a Sagnac loop interferometer and its applications in a passive ring resonator is reported. A ring resonator is formed by using the Sagnac loop filter in the cavity. The experimental results show that the separations between the lasing wavelengths may be controlled by adjusting the birefringence of the Sagnac loop interferometer. These experimental results agree with the theoretical findings. Similarly, another resonator is formed using a Sagnac loop reflector and a broadband reflector in a Fabry-Perot configuration. An optical switch is made, where two wavelengths may be switched by using a polarization controller in the cavity. To study the stability of the lasing wavelengths, the outputs of the lasers are monitored for a few hours using an optical spectrum analyzer with a resolution bandwidth of 0.06 nm. The experimental results show that intensity fluctuations of the lasing lines of less than 0.2 dB are possible with no changes in wavelength. High concentrations of erbium in the fiber degrade the stability of the lasing wavelengths resulting in greater intensity fluctuations. The lasers may be made to lase in the C band or L band by adjusting the length of the erbium-doped fiber in the cavity.

  8. Time-domain fiber loop ringdown sensor and sensor network

    NASA Astrophysics Data System (ADS)

    Kaya, Malik

    Optical fibers have been mostly used in fiber optic communications, imaging optics, sensing technology, etc. Fiber optic sensors have gained increasing attention for scientific and structural health monitoring (SHM) applications. In this study, fiber loop ringdown (FLRD) sensors were fabricated for scientific, SHM, and sensor networking applications. FLRD biosensors were fabricated for both bulk refractive index (RI)- and surface RI-based DNA sensing and one type of bacteria sensing. Furthermore, the effect of glucose oxidase (GOD) immobilization at the sensor head on sensor performance was evaluated for both glucose and synthetic urine solutions with glucose concentration between 0.1% and 10%. Detection sensitivities of the glucose sensors were achieved as low as 0.05%. For chemical sensing, heavy water, ranging from 97% to 10%, and several elemental solutions were monitored by using the FLRD chemical sensors. Bulk index-based FLRD sensing showed that trace elements can be detected in deionized water. For physical sensing, water and cracking sensors were fabricated and embedded into concrete. A partially-etched single-mode fiber (SMF) was embedded into a concrete bar for water monitoring while a bare SMF without any treatment was directly embedded into another concrete bar for monitoring cracks. Furthermore, detection sensitivities of water and crack sensors were investigated as 10 ml water and 0.5 mm surface crack width, respectively. Additionally fiber loop ringdown-fiber Bragg grating temperature sensors were developed in the laboratory; two sensor units for water, crack, and temperature sensing were deployed into a concrete cube in a US Department of Energy test bed (Miami, FL). Multi-sensor applications in a real concrete structure were accomplished by testing the six FLRD sensors. As a final stage, a sensor network was assembled by multiplexing two or three FLRD sensors in series and parallel. Additionally, two FLRD sensors were combined in series and parallel by using a 2x1 micro-electromechanical system optical switch to control sensors individually. For both configurations, contributions of each sensor to two or three coupled signals were simulated theoretically. Results show that numerous FLRD sensors can be connected in different configurations, and a sensor network can be built up for multi-function sensing applications.

  9. All-optical SR flip-flop based on SOA-MZI switches monolithically integrated on a generic InP platform

    NASA Astrophysics Data System (ADS)

    Pitris, St.; Vagionas, Ch.; Kanellos, G. T.; Kisacik, R.; Tekin, T.; Broeke, R.; Pleros, N.

    2016-03-01

    At the dawning of the exaflop era, High Performance Computers are foreseen to exploit integrated all-optical elements, to overcome the speed limitations imposed by electronic counterparts. Drawing from the well-known Memory Wall limitation, imposing a performance gap between processor and memory speeds, research has focused on developing ultra-fast latching devices and all-optical memory elements capable of delivering buffering and switching functionalities at unprecedented bit-rates. Following the master-slave configuration of electronic Flip-Flops, coupled SOA-MZI based switches have been theoretically investigated to exceed 40 Gb/s operation, provided a short coupling waveguide. However, this flip-flop architecture has been only hybridly integrated with silica-on-silicon integration technology exhibiting a total footprint of 45x12 mm2 and intra-Flip-Flop coupling waveguide of 2.5cm, limited at 5 Gb/s operation. Monolithic integration offers the possibility to fabricate multiple active and passive photonic components on a single chip at a close proximity towards, bearing promises for fast all-optical memories. Here, we present for the first time a monolithically integrated all-optical SR Flip-Flop with coupled master-slave SOA-MZI switches. The photonic chip is integrated on a 6x2 mm2 die as a part of a multi-project wafer run using library based components of a generic InP platform, fiber-pigtailed and fully packaged on a temperature controlled ceramic submount module with electrical contacts. The intra Flip-Flop coupling waveguide is 5 mm long, reducing the total footprint by two orders of magnitude. Successful flip flop functionality is evaluated at 10 Gb/s with clear open eye diagram, achieving error free operation with a power penalty of 4dB.

  10. Nonlinear Optics and Applications

    NASA Technical Reports Server (NTRS)

    Abdeldayem, Hossin A. (Editor); Frazier, Donald O. (Editor)

    2007-01-01

    Nonlinear optics is the result of laser beam interaction with materials and started with the advent of lasers in the early 1960s. The field is growing daily and plays a major role in emerging photonic technology. Nonlinear optics play a major role in many of the optical applications such as optical signal processing, optical computers, ultrafast switches, ultra-short pulsed lasers, sensors, laser amplifiers, and many others. This special review volume on Nonlinear Optics and Applications is intended for those who want to be aware of the most recent technology. This book presents a survey of the recent advances of nonlinear optical applications. Emphasis will be on novel devices and materials, switching technology, optical computing, and important experimental results. Recent developments in topics which are of historical interest to researchers, and in the same time of potential use in the fields of all-optical communication and computing technologies, are also included. Additionally, a few new related topics which might provoke discussion are presented. The book includes chapters on nonlinear optics and applications; the nonlinear Schrodinger and associated equations that model spatio-temporal propagation; the supercontinuum light source; wideband ultrashort pulse fiber laser sources; lattice fabrication as well as their linear and nonlinear light guiding properties; the second-order EO effect (Pockels), the third-order (Kerr) and thermo-optical effects in optical waveguides and their applications in optical communication; and, the effect of magnetic field and its role in nonlinear optics, among other chapters.

  11. Grating-based real-time smart optics for biomedicine and communications

    NASA Astrophysics Data System (ADS)

    Yaqoob, Zahid

    Novel photonic systems are proposed and experimentally validated using active as well as passive wavelength dispersive optical devices in unique fashions to solve important system level application problems in biomedicine and laser communications. Specifically for the first time are proposed, high dynamic range variable optical attenuators (VOAs) using bulk acousto-optics (AO). These AO-based architectures have excellent characteristics such as high laser damage threshold (e.g., 1 Watt CW laser power operations), large (e.g., >40 dB) dynamic range, and microsecond domain attenuation setting speed. The demonstrated architectures show potentials for compact, low static insertion loss, and low power VOA designs for wavelength division multiplexed (WDM) fiber-optic communication networks and high speed photonic signal processing for optical and radio frequency (RF) radar and electronic warfare (EW). Acoustic diffraction of light in isotropic media has been manipulated to design and demonstrate on a proof-of-principle basis, the first bulk AO-based optical coherence tomography (OCT) system for high-resolution sub-surface tissue diagnostics. As opposed to the current OCT systems that use mechanical means to generate optical delays, both free-space as well as fiber-optic AO-based OCT systems utilize unique electronically-controlled acousto-optically switched no-moving parts optical delay lines and therefore promise microsecond speed OCT data acquisition rates. The proposed OCT systems also feature high (e.g., >100 MHz) intermediate frequency for low 1/f noise heterodyne detection. For the first time, two agile laser beam steering schemes that are members of a new beam steering technology known as Multiplexed-Optical Scanner Technology (MOST) are theoretically investigated and experimentally demonstrated. The new scanner technologies are based on wavelength and space manipulations and possess remarkable features such as a no-moving parts fast (e.g., microseconds domain or less) beam switching speed option, large (e.g., several centimeters) scanner apertures for high-resolution scans, and large (e.g., >10°) angular scans in more than one dimensions. These incredible features make these scanners excellent candidates for high-end applications. Specifically discussed and experimentally analyzed for the first time are novel MOST-based systems for agile free-space lasercom links, internal and external cavity scanning biomedical probes, and high-speed optical data handling such as barcode scanners. In addition, a novel low sidelobe wavelength selection filter based on a single bulk crystal acousto-optic tunable filter device is theoretically analyzed and experimentally demonstrated showing its versatility as a scanner control fiber-optic component for interfacing with the proposed wavelength based optical scanners. In conclusion, this thesis has shown how powerful photonic systems can be realized via novel architectures using active and passive wavelength sensitive optics leading to advanced solutions for the biomedical and laser communications research communities.

  12. High-power highly stable passively Q-switched fiber laser based on monolayer graphene

    NASA Astrophysics Data System (ADS)

    Wu, Hanshuo; Song, Jiaxin; Wu, Jian; Xu, Jiangming; Xiao, Hu; Leng, Jinyong; Zhou, Pu

    2018-03-01

    We demonstrate a monolayer graphene-based passively Q-switched fiber laser with three-stage amplifiers that can deliver an average power of over 80 W at 1064 nm. The highest average power achieved is 84.1 W, with a pulse energy of 1.67 mJ. To the best of our knowledge this is the first report of a high-power passively Q-switched fiber laser in the 1 µm range. More importantly, the Q-switched fiber laser operated stably during a week of tests for a few hours per day, which proves the stability and practical application potential of graphene in high-power pulsed fiber lasers.

  13. Bandwidth-variable tunable optical filter unit for illumination and spectral imaging systems using thin-film optical band-pass filters.

    PubMed

    Hennig, Georg; Brittenham, Gary M; Sroka, Ronald; Kniebühler, Gesa; Vogeser, Michael; Stepp, Herbert

    2013-04-01

    An optical filter unit is demonstrated, which uses two successively arranged tunable thin-film optical band-pass filters and allows for simultaneous adjustment of the central wavelength in the spectral range 522-555 nm and of the spectral bandwidth in the range 3-16 nm with a wavelength switching time of 8 ms∕nm. Different spectral filter combinations can cover the complete visible spectral range. The transmitted intensity was found to decrease only linearly with the spectral bandwidth for bandwidths >6 nm, allowing a high maximum transmission efficiency of >75%. The image of a fiber bundle was spectrally filtered and analyzed in terms of position-dependency of the transmitted bandwidth and central wavelength.

  14. Experimental GMPLS-Based Provisioning for Future All-Optical DPRing-Based MAN

    NASA Astrophysics Data System (ADS)

    Mu�oz, Ra�l; V�ctor Mart�nez Rivera, Ricardo; Sorribes, Jordi; Junyent Giralt, Gabriel

    2005-10-01

    Given the abundance and strategic importance of ring fiber plants in metropolitan area networks (MANs), and the accelerating growth of Internet traffic, it is crucial to extend the existing Internet protocol (IP)-based generalized multiprotocol label switching (GMPLS) framework to provision dynamic wavelength division multiplexing (WDM) optical rings. Nevertheless, the emerging GMPLS-based lightpath provisioning does not cover the intricacies of optical rings. No GMPLS standard exists for optical add-drop multiplexer (OADM) rings, relying instead upon proprietary static solution. The objective of this paper is to propose and evaluate novel GMPLS-based lightpath signaling and wavelength reservation schemes specifically designed for dedicated protection ring (DPRing)-based MANs. Performance evaluation has been carried out in a GMPLS-based testbed named ADRENALINE.

  15. GLOBECOM '85 - Global Telecommunications Conference, New Orleans, LA, December 2-5, 1985, Conference Record. Volumes 1, 2, & 3

    NASA Astrophysics Data System (ADS)

    Various papers on global telecommunications are presented. The general topics addressed include: multiservice integration with optical fibers, multicompany owned telecommunication networks, softworks quality and reliability, advanced on-board processing, impact of new services and systems on operations and maintenance, analytical studies of protocols for data communication networks, topics in packet radio networking, CCITT No. 7 to support new services, document processing and communication, antenna technology and system aspects in satellite communications. Also considered are: communication systems modelling methodology, experimental integrated local area voice/data nets, spread spectrum communications, motion video at the DS-0 rate, optical and data communications, intelligent work stations, switch performance analysis, novel radio communication systems, wireless local networks, ISDN services, LAN communication protocols, user-system interface, radio propagation and performance, mobile satellite system, software for computer networks, VLSI for ISDN terminals, quality management, man-machine interfaces in switching, and local area network performance.

  16. Thermo-optical dynamics in an optically pumped Photonic Crystal nano-cavity.

    PubMed

    Brunstein, M; Braive, R; Hostein, R; Beveratos, A; Rober-Philip, I; Sagnes, I; Karle, T J; Yacomotti, A M; Levenson, J A; Moreau, V; Tessier, G; De Wilde, Y

    2009-09-14

    Linear and non-linear thermo-optical dynamical regimes were investigated in a photonic crystal cavity. First, we have measured the thermal relaxation time in an InP-based nano-cavity with quantum dots in the presence of optical pumping. The experimental method presented here allows one to obtain the dynamics of temperature in a nanocavity based on reflectivity measurements of a cw probe beam coupled through an adiabatically tapered fiber. Characteristic times of 1.0+/-0.2 micros and 0.9+/-0.2 micros for the heating and the cooling processes were obtained. Finally, thermal dynamics were also investigated in a thermo-optical bistable regime. Switch-on/off times of 2 micros and 4 micros respectively were measured, which could be explained in terms of a simple non-linear dynamical representation.

  17. Method and apparatus for producing cryogenic targets

    DOEpatents

    Murphy, J.T.; Miller, J.R.

    1984-08-07

    An improved method and apparatus are given for producing cryogenic inertially driven fusion targets in the fast isothermal freezing (FIF) method. Improved coupling efficiency and greater availability of volume near the target for diagnostic purposes and for fusion driver beam propagation result. Other embodiments include a new electrical switch and a new explosive detonator, all embodiments making use of a purposeful heating by means of optical fibers. 6 figs.

  18. Nonlinear Optical Fiber Arrays for Limiting Application

    DTIC Science & Technology

    2006-09-05

    Absorption [ RSA ], Two-Photon Absorption [TPA] and Excited State Absorption [ESA] or Nonlinear Scattering properties [NS] (e.g. carbon black suspension...practical implementation: I. "Saturation Effect and Dynamic Range" - In general, RSA materials have low switching threshold (<<pJ), but are (linearly...transition between the molecular levels involved, RSA materials can be easily ’bleached’, i.e. the absorption electronic state is depopulated by the laser. TPA

  19. BPSK optical mm-wave signal generation by septupling frequency via a single optical phase modulator

    NASA Astrophysics Data System (ADS)

    Wu, Peng; Ma, Jianxin

    2016-09-01

    In this paper, we have proposed a novel and simple scheme to generate the BPSK optical millimeter wave (MMW) signal with frequency septupling by using an optical phase modulator (PM) and a wavelength selective switch (WSS). In this scheme, the PM is driven by a radio frequency (RF) BPSK signal at the optimized modulation index of 4.89 to assure the 4th and 3rd-order sidebands have equal amplitudes. An wavelength selective switch (WSS) is used to abstract the -4th and +3rd-order sidebands from the spectrum generated by RF BPSK signal modulating the lightwave to form the BPSK optical MMW signal with frequency septupling the driving RF signal. In these two tones, only the +3rd-order sideband bears the BPSK signal while the -4th-order sideband is unmodulated since the phase information is canceled by the even times multiplication of the phase of BPSK signal. The MMW signal can avoid the pulse walk-off effect and the amplitude fading effect caused by the fiber chromatic dispersion. By adjusting the modulation index to assure the two tones have equal amplitude, the generated optical MMW signal has the maximal opto-electrical conversion efficiency and good transmission performance.

  20. Abstracts for student symposium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goldman, B.

    Lawrence Livermore National Laboratory Science and Engineering Research Semester (SERS) students are participants in a national program sponsored by the DOE Office of Energy Research. Presented topics from Fall 1993 include: Laser glass, wiring codes, lead in food and food containers, chromium removal from ground water, fiber optic sensors for ph measurement, CFC replacement, predator/prey simulation, detection of micronuclei in germ cells, DNA conformation, stimulated brillouin scattering, DNA sequencing, evaluation of education programs, neural network analysis of nuclear glass, lithium ion batteries, Indonesian snails, optical switching systems, and photoreceiver design. Individual papers are indexed separately on the Energy Data Base.

  1. Three-dimensional microelectromechanical tilting platform operated by gear-driven racks

    DOEpatents

    Klody, Kelly A.; Habbit, Jr., Robert D.

    2005-11-01

    A microelectromechanical (MEM) tiltable-platform apparatus is disclosed which utilizes a light-reflective platform (i.e. a micromirror) which is supported above a substrate by flexures which can be bent upwards to tilt the platform in any direction over an angle of generally .+-.10 degrees using a gear-driven rack attached to each flexure. Each rack is driven by a rotary microengine (i.e. a micromotor); and an optional thermal actuator can be used in combination with each microengine for initially an initial uplifting of the platform away from the substrate. The MEM apparatus has applications for optical switching (e.g. between a pair of optical fibers) or for optical beam scanning.

  2. Extremely stable piezo mechanisms for the new gravitational wave observatory

    NASA Astrophysics Data System (ADS)

    Pijnenburg, Joep; Rijnveld, Niek; Hogenhuis, Harm

    2017-11-01

    Detection and observation of gravitational waves requires extreme stability in the frequency range 3e-5 Hz to 1 Hz. NGO/LISA will attain this by creating a giant interferometer in space, based on free floating proof masses in three spacecrafts. To operate NGO/LISA, the following piezo mechanisms are developed: 1. A piezo stack mechanism (Point Angle Ahead Mechanism) Due to time delay in the interferometer arms, the beam angle needs to be corrected. A mechanism rotating a mirror with a piezo stack performs this task. The critical requirements are the contribution to the optical path difference (less than 1.4 pm/√Hz) and the angular jitter (less than 8 nrad/√Hz). 2. A piezo sliding mechanism (Fiber Switching Unit Actuator) To switch from primary to the redundant laser source, a Fiber Switching Unit Actuator (FSUA) is developed. The critical requirements are the coalignment of outgoing beams of <+/-1 micro radian and <+/-1 micro meter. A redundant piezo sliding mechanism rotates a wave plate over 45 degrees. 3. A piezo stepping mechanism (In Field Pointing Mechanism) Due to seasonal orbit evolution effects, beams have to be corrected over a stroke of +/-2.5 degrees. The critical requirements are the contribution to the optical path difference (less than 3.0 pm/√Hz) and the angular jitter (less than 1 nrad/√Hz). Due to the large stroke, a piezo stepping concept was selected. Dedicated control algorithms have been implemented to achieve these challenging requirements. This paper gives description of the designs and the ongoing process of qualifying the mechanisms for space applications.

  3. Electronically tunable femtosecond all-fiber optical parametric oscillator for multi-photon microscopy

    NASA Astrophysics Data System (ADS)

    Hellwig, Tim; Brinkmann, Maximilian; Fallnich, Carsten

    2018-02-01

    We present a femtosecond fiber-based optical parametric oscillator (FOPO) for multiphoton microscopy with wavelength tuning by electronic repetition rate tuning in combination with a dispersive filter in the FOPO cavity. The all-spliced, all-fiber FOPO cavity is based on polarization-maintaining fibers and a broadband output coupler, allowing to get access to the resonant signal pulses as well as the idler pulses simultaneously. The system was pumped by a gain-switched fiber-coupled laser diode emitting pulses at a central wavelength of 1030 nm and an electronically tunable repetition frequency of about 2 MHz. The pump pulses were amplified in an Ytterbium fiber amplifier system with a pulse duration after amplification of 13 ps. Tuning of the idler (1140 nm - 1300 nm) and signal wavelengths (850 nm - 940 nm) was achieved by changing the repetition frequency of the pump laser by about 4 kHz. The generated signal pulses reached a pulse energy of up to 9.2 nJ at 920 nm and were spectrally broadened to about 6 nm in the FOPO by a combination of self-phase and cross-phase modulation. We showed external compression of the idler pulses at 920 nm to about 430 fs and appleid them to two-photon excitation microscopy with green fluorescent dyes. The presented system constitutes an important step towards a fully fiber-integrated all-electronically tunable and, thereby, programmable light source and already embodies a versatile and flexible light source for applications, e.g., for smart microscopy.

  4. Vacuum-surface flashover switch with cantilever conductors

    DOEpatents

    Caporaso, George J.; Sampayan, Stephen E.; Kirbie, Hugh C.

    2001-01-01

    A dielectric-wall linear accelerator is improved by a high-voltage, fast rise-time switch that includes a pair of electrodes between which are laminated alternating layers of isolated conductors and insulators. A high voltage is placed between the electrodes sufficient to stress the voltage breakdown of the insulator on command. A light trigger, such as a laser, is focused along at least one line along the edge surface of the laminated alternating layers of isolated conductors and insulators extending between the electrodes. The laser is energized to initiate a surface breakdown by a fluence of photons, thus causing the electrical switch to close very promptly. Such insulators and lasers are incorporated in a dielectric wall linear accelerator with Blumlein modules, and phasing is controlled by adjusting the length of fiber optic cables that carry the laser light to the insulator surface.

  5. 78 FR 49308 - Self-Regulatory Organizations; The NASDAQ Stock Market LLC; Notice of Filing and Immediate...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-13

    ... latency fiber connection option, and provide a waiver of installation fees for subscriptions through..., including a 40Gb fiber connection, a 10Gb fiber connection, a 1Gb fiber connection, and a 1Gb copper... fiber connection offering, which uses new ultra- low latency switches.\\4\\ A switch is a type of network...

  6. Tungsten disulphide based all fiber Q-switching cylindrical-vector beam generation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, J.; Yan, K.; Zhou, Y.

    2015-11-09

    We proposed and demonstrated an all fiber passively Q-switching laser to generate cylindrical-vector beam, a two dimensional material, tungsten disulphide (WS{sub 2}), was adopted as a saturable absorber inside the laser cavity, while a few-mode fiber Bragg grating was used as a transverse mode-selective output coupler. The repetition rate of the Q-switching output pulses can be varied from 80 kHz to 120 kHz with a shortest duration of 958 ns. Attributed to the high damage threshold and polarization insensitivity of the WS{sub 2} based saturable absorber, the radially polarized beam and azimuthally polarized beam can be easily generated in the Q-switching fiber laser.

  7. A large-scale photonic node architecture that utilizes interconnected OXC subsystems.

    PubMed

    Iwai, Yuto; Hasegawa, Hiroshi; Sato, Ken-ichi

    2013-01-14

    We propose a novel photonic node architecture that is composed of interconnected small-scale optical cross-connect subsystems. We also developed an efficient dynamic network control algorithm that complies with a restriction on the number of intra-node fibers used for subsystem interconnection. Numerical evaluations verify that the proposed architecture offers almost the same performance as the equivalent single large-scale cross-connect switch, while enabling substantial hardware scale reductions.

  8. Experimental realization of a CMOS-compatible optical directed priority encoder using cascaded micro-ring resonators

    NASA Astrophysics Data System (ADS)

    Xiao, Huifu; Li, Dezhao; Liu, Zilong; Han, Xu; Chen, Wenping; Zhao, Ting; Tian, Yonghui; Yang, Jianhong

    2018-03-01

    In this paper, we propose and experimentally demonstrate an integrated optical device that can implement the logical function of priority encoding from a 4-bit electrical signal to a 2-bit optical signal. For the proof of concept, the thermo-optic modulation scheme is adopted to tune each micro-ring resonator (MRR). A monochromatic light with the working wavelength is coupled into the input port of the device through a lensed fiber, and the four input electrical logic signals regarded as pending encode signals are applied to the micro-heaters above four MRRs to control the working states of the optical switches. The encoding results are directed to the output ports in the form of light. At last, the logical function of priority encoding with an operation speed of 10 Kbps is demonstrated successfully.

  9. Mechanically latchable tiltable platform for forming micromirrors and micromirror arrays

    DOEpatents

    Garcia, Ernest J [Albuquerque, NM; Polosky, Marc A [Tijeras, NM; Sleefe, Gerard E [Cedar Crest, NM

    2006-12-12

    A microelectromechanical (MEM) apparatus is disclosed which includes a platform that can be electrostatically tilted from being parallel to a substrate on which the platform to being tilted at an angle of 1 20 degrees with respect to the substrate. Once the platform has been tilted to a maximum angle of tilt, the platform can be locked in position using an electrostatically-operable latching mechanism which engages a tab protruding below the platform. The platform has a light-reflective upper surface which can be optionally coated to provide an enhanced reflectivity and form a micromirror. An array of such micromirrors can be formed on a common substrate for applications including optical switching (e.g. for fiber optic communications), optical information processing, image projection displays or non-volatile optical memories.

  10. Widely wavelength tunable gain-switched Er3+-doped ZBLAN fiber laser around 2.8 μm.

    PubMed

    Wei, Chen; Luo, Hongyu; Shi, Hongxia; Lyu, YanJia; Zhang, Han; Liu, Yong

    2017-04-17

    In this paper, we demonstrate a wavelength widely tunable gain-switched Er3+-doped ZBLAN fiber laser around 2.8 μm. The laser can be tuned over 170 nm (2699 nm~2869.9 nm) for various pump power levels, while maintaining stable μs-level single-pulse gain-switched operation with controllable output pulse duration at a selectable repetition rate. To the best of our knowledge, this is the first wavelength tunable gain-switched fiber laser in the 3 μm spectral region with the broadest tuning range (doubling the record tuning range) of the pulsed fiber lasers around 3 μm. Influences of pump energy and power on the output gain-switched laser performances are investigated in detail. This robust, simple, and versatile mid-infrared pulsed fiber laser source is highly suitable for many applications including laser surgery, material processing, sensing, spectroscopy, as well as serving as a practical seed source in master oscillator power amplifiers.

  11. Bilinearization of the generalized coupled nonlinear Schrödinger equation with variable coefficients and gain and dark-bright pair soliton solutions.

    PubMed

    Chakraborty, Sushmita; Nandy, Sudipta; Barthakur, Abhijit

    2015-02-01

    We investigate coupled nonlinear Schrödinger equations (NLSEs) with variable coefficients and gain. The coupled NLSE is a model equation for optical soliton propagation and their interaction in a multimode fiber medium or in a fiber array. By using Hirota's bilinear method, we obtain the bright-bright, dark-bright combinations of a one-soliton solution (1SS) and two-soliton solutions (2SS) for an n-coupled NLSE with variable coefficients and gain. Crucial properties of two-soliton (dark-bright pair) interactions, such as elastic and inelastic interactions and the dynamics of soliton bound states, are studied using asymptotic analysis and graphical analysis. We show that a bright 2-soliton, in addition to elastic interactions, also exhibits multiple inelastic interactions. A dark 2-soliton, on the other hand, exhibits only elastic interactions. We also observe a breatherlike structure of a bright 2-soliton, a feature that become prominent with gain and disappears as the amplitude acquires a minimum value, and after that the solitons remain parallel. The dark 2-soliton, however, remains parallel irrespective of the gain. The results found by us might be useful for applications in soliton control, a fiber amplifier, all optical switching, and optical computing.

  12. Broadband light-emitting diode

    DOEpatents

    Fritz, Ian J.; Klem, John F.; Hafich, Michael J.

    1998-01-01

    A broadband light-emitting diode. The broadband light-emitting diode (LED) comprises a plurality of III-V compound semiconductor layers grown on a semiconductor substrate, with the semiconductor layers including a pair of cladding layers sandwiched about a strained-quantum-well active region having a plurality of different energy bandgaps for generating light in a wavelength range of about 1.3-2 .mu.m. In one embodiment of the present invention, the active region may comprise a first-grown quantum-well layer and a last-grown quantum-well layer that are oppositely strained; whereas in another embodiment of the invention, the active region is formed from a short-period superlattice structure (i.e. a pseudo alloy) comprising alternating thin layers of InGaAs and InGaAlAs. The use a short-period superlattice structure for the active region allows different layers within the active region to be simply and accurately grown by repetitively opening and closing one or more shutters in an MBE growth apparatus to repetitively switch between different growth states therein. The broadband LED may be formed as either a surface-emitting LED or as an edge-emitting LED for use in applications such as chemical sensing, fiber optic gyroscopes, wavelength-division-multiplexed (WDM) fiber-optic data links, and WDM fiber-optic sensor networks for automobiles and aircraft.

  13. Broadband light-emitting diode

    DOEpatents

    Fritz, I.J.; Klem, J.F.; Hafich, M.J.

    1998-07-14

    A broadband light-emitting diode is disclosed. The broadband light-emitting diode (LED) comprises a plurality of III-V compound semiconductor layers grown on a semiconductor substrate, with the semiconductor layers including a pair of cladding layers sandwiched about a strained-quantum-well active region having a plurality of different energy bandgaps for generating light in a wavelength range of about 1.3--2 {micro}m. In one embodiment of the present invention, the active region may comprise a first-grown quantum-well layer and a last-grown quantum-well layer that are oppositely strained; whereas in another embodiment of the invention, the active region is formed from a short-period superlattice structure (i.e. a pseudo alloy) comprising alternating thin layers of InGaAs and InGaAlAs. The use a short-period superlattice structure for the active region allows different layers within the active region to be simply and accurately grown by repetitively opening and closing one or more shutters in an MBE growth apparatus to repetitively switch between different growth states therein. The broadband LED may be formed as either a surface-emitting LED or as an edge-emitting LED for use in applications such as chemical sensing, fiber optic gyroscopes, wavelength-divisionmultiplexed (WDM) fiber-optic data links, and WDM fiber-optic sensor networks for automobiles and aircraft. 10 figs.

  14. Low-Crosstalk Composite Optical Crosspoint Switches

    NASA Technical Reports Server (NTRS)

    Pan, Jing-Jong; Liang, Frank

    1993-01-01

    Composite optical switch includes two elementary optical switches in tandem, plus optical absorbers. Like elementary optical switches, composite optical switches assembled into switch matrix. Performance enhanced by increasing number of elementary switches. Advantage of concept: crosstalk reduced to acceptably low level at moderate cost of doubling number of elementary switches rather than at greater cost of tightening manufacturing tolerances and exerting more-precise control over operating conditions.

  15. Graphene Oxide saturable absorber for generating eye-safe Q-switched fiber laser

    NASA Astrophysics Data System (ADS)

    Rosol, A. H. A.; Jusoh, Z.; Rahman, H. A.; Rusdi, M. F. M.; Harun, S. W.; Latiff, A. A.

    2017-06-01

    This paper reports the generation of Q-switched fiber laser using thulium doped fiber (TDF) as a gain medium and graphene oxide (GO) as a saturable absorber (SA). The GO powder is embedded into polyvinyl alcohol (PVA) to form an SA film based on a drop-casting technique. GO-SA film is sandwiched between two fiber connectors and tighten by FC adapter before it is incorporated into an TDF laser cavity for Q-switching pulse generation. At 344 mW pump level, a stable Q-switching regime presence at 1943 nm with a 3-dB spectral bandwidth of 9 nm. The maximum repetition rate, pulse width, and pulse energy are at 25 kHz, 4.2 µs, and 0.68 µJ, respectively. All finding results are comparable with other reported pulse fiber lasers.

  16. Controllable all-fiber generation/conversion of circularly polarized orbital angular momentum beams using long period fiber gratings

    NASA Astrophysics Data System (ADS)

    Han, Ya; Liu, Yan-Ge; Wang, Zhi; Huang, Wei; Chen, Lei; Zhang, Hong-Wei; Yang, Kang

    2018-01-01

    Mode-division multiplexing (MDM) is a promising technology for increasing the data-carrying capacity of a single few-mode optical fiber. The flexible mode manipulation would be highly desired in a robust MDM network. Recently, orbital angular momentum (OAM) modes have received wide attention as a new spatial mode basis. In this paper, we firstly proposed a long period fiber grating (LPFG) system to realize mode conversions between the higher order LP core modes in four-mode fiber. Based on the proposed system, we, for the first time, demonstrate the controllable all-fiber generation and conversion of the higher order LP core modes to the first and second order circularly polarized OAM beams with all the combinations of spin and OAM. Therefore, the proposed LPFG system can be potentially used as a controllable higher order OAM beam switch and a physical layer of the translating protocol from the conventional LP modes communication to the OAM modes communication in the future mode carrier telecommunication system and light calculation protocols.

  17. Universal method for constructing N-port non-blocking optical router based on 2 × 2 optical switch for photonic networks-on-chip.

    PubMed

    Chen, Qiaoshan; Zhang, Fanfan; Ji, Ruiqiang; Zhang, Lei; Yang, Lin

    2014-05-19

    We propose a universal method for constructing N-port non-blocking optical router for photonic networks-on-chip, in which all microring (MR) optical switches or Mach-Zehnder (M-Z) optical switches behave as 2 × 2 optical switches. The optical router constructed by the proposed method has minimum optical switches, in which the number of the optical switches is reduced about 50% compared to the reported optical routers based on MR optical switches and more than 30% compared to the reported optical routers based on M-Z optical switches, and therefore is more compact in footprint and more power-efficient. We also present a strict mathematical proof of the non-blocking routing of the proposed N-port optical router.

  18. Scalable boson sampling with time-bin encoding using a loop-based architecture.

    PubMed

    Motes, Keith R; Gilchrist, Alexei; Dowling, Jonathan P; Rohde, Peter P

    2014-09-19

    We present an architecture for arbitrarily scalable boson sampling using two nested fiber loops. The architecture has fixed experimental complexity, irrespective of the size of the desired interferometer, whose scale is limited only by fiber and switch loss rates. The architecture employs time-bin encoding, whereby the incident photons form a pulse train, which enters the loops. Dynamically controlled loop coupling ratios allow the construction of the arbitrary linear optics interferometers required for boson sampling. The architecture employs only a single point of interference and may thus be easier to stabilize than other approaches. The scheme has polynomial complexity and could be realized using demonstrated present-day technologies.

  19. Definition, analysis and development of an optical data distribution network for integrated avionics and control systems

    NASA Technical Reports Server (NTRS)

    Burns, R. R.

    1981-01-01

    The potential and functional requirements of fiber optic bus designs for next generation aircraft are assessed. State-of-the-art component evaluations and projections were used in the system study. Complex networks were decomposed into dedicated structures, star buses, and serial buses for detailed analysis. Comparisons of dedicated links, star buses, and serial buses with and without full duplex operation and with considerations for terminal to terminal communication requirements were obtained. This baseline was then used to consider potential extensions of busing methods to include wavelength multiplexing and optical switches. Example buses were illustrated for various areas of the aircraft as potential starting points for more detail analysis as the platform becomes definitized.

  20. Poly (N-vinyl Carbazole) - Polypyrrole/graphene oxide nanocomposite material on tapered fiber for Q-switched pulse generation

    NASA Astrophysics Data System (ADS)

    Ahmad, H.; Faruki, M. J.; Jasim, A. A.; Ooi, S. I.; Thambiratnam, K.

    2018-02-01

    A passively Q-switched fiber laser using a Saturable Absorber (SA) fabricated from a new Poly (N-vinyl Carbazole) - Polypyrrole/Graphene Oxide (PNVC-PPy/GO) nanocomposite material deposited on a tapered fiber is proposed and demonstrated. The PNVC-PPy/GO composition is deposited along a 3 mm length of the 6.5 cm tapered fiber which has a tapered waist of 8 μm. Q-switched pulses are obtained with repetition rates of 25.15-42.7 kHz and pulse widths of 5.74-2.48 μs over a pump power range of 12.8-40.0 mW. A maximum average power of 0.19 mW and pulse energy of 4.43 nJ are also observed. The proposed Q-switched maintains advantages of a simple design and low fabrication cost while at the same time generating high quality Q-switched pulses.

  1. Optically Driven Q-Switches For Lasers

    NASA Technical Reports Server (NTRS)

    Hemmati, Hamid

    1994-01-01

    Optically driven Q-switches for pulsed lasers proposed, taking place of acousto-optical, magneto-optical, and electro-optical switches. Optical switching beams of proposed Q-switching most likely generated in pulsed diode lasers or light-emitting diodes, outputs of which are amplitude-modulated easily by direct modulation of relatively small input currents. Energy efficiencies exceed those of electrically driven Q-switches.

  2. Satellite networks in the ISDN era

    NASA Astrophysics Data System (ADS)

    Amadesi, P.; Haines, P.; Patacchini, A.

    1986-12-01

    The development of an integrated service digital network (ISDN) capable of supporting a wide range of services using a small set of standard multipurpose user-network interfaces is examined. The ISDN environment is expected to consist of functional elements such as, circuit switching, packet switching, and common channel signaling. The use of satellites or fiber optics in the ISDN is evaluated. The relation between satellites and the ISDN in the short-, medium-, and long-terms is analyzed. The recommendations of the consultative committee, CCIR, concerning the definition of the hypothetical reference digital path and the required quality and availability for ISDN applications, and the proposed plans of Eutelsat and Intelsat for satellite systems compatible with an ISDN are discussed. The application of business satellite networks and packet satellite networks to an ISDN is studied. The long-term objectives for an ISDN is a wideband system that accommodates digital transmission on circuit and packet switched bases.

  3. GLOBECOM '89 - IEEE Global Telecommunications Conference and Exhibition, Dallas, TX, Nov. 27-30, 1989, Conference Record. Volumes 1, 2, & 3

    NASA Astrophysics Data System (ADS)

    The present conference discusses topics in multiwavelength network technology and its applications, advanced digital radio systems in their propagation environment, mobile radio communications, switching programmability, advancements in computer communications, integrated-network management and security, HDTV and image processing in communications, basic exchange communications radio advancements in digital switching, intelligent network evolution, speech coding for telecommunications, and multiple access communications. Also discussed are network designs for quality assurance, recent progress in coherent optical systems, digital radio applications, advanced communications technologies for mobile users, communication software for switching systems, AI and expert systems in network management, intelligent multiplexing nodes, video and image coding, network protocols and performance, system methods in quality and reliability, the design and simulation of lightwave systems, local radio networks, mobile satellite communications systems, fiber networks restoration, packet video networks, human interfaces for future networks, and lightwave networking.

  4. Switching of bound vector solitons for the coupled nonlinear Schrödinger equations with nonhomogenously stochastic perturbations

    NASA Astrophysics Data System (ADS)

    Sun, Zhi-Yuan; Gao, Yi-Tian; Yu, Xin; Liu, Ying

    2012-12-01

    We investigate the dynamics of the bound vector solitons (BVSs) for the coupled nonlinear Schrödinger equations with the nonhomogenously stochastic perturbations added on their dispersion terms. Soliton switching (besides soliton breakup) can be observed between the two components of the BVSs. Rate of the maximum switched energy (absolute values) within the fixed propagation distance (about 10 periods of the BVSs) enhances in the sense of statistics when the amplitudes of stochastic perturbations increase. Additionally, it is revealed that the BVSs with enhanced coherence are more robust against the perturbations with nonhomogenous stochasticity. Diagram describing the approximate borders of the splitting and non-splitting areas is also given. Our results might be helpful in dynamics of the BVSs with stochastic noises in nonlinear optical fibers or with stochastic quantum fluctuations in Bose-Einstein condensates.

  5. Switching of bound vector solitons for the coupled nonlinear Schrödinger equations with nonhomogenously stochastic perturbations.

    PubMed

    Sun, Zhi-Yuan; Gao, Yi-Tian; Yu, Xin; Liu, Ying

    2012-12-01

    We investigate the dynamics of the bound vector solitons (BVSs) for the coupled nonlinear Schrödinger equations with the nonhomogenously stochastic perturbations added on their dispersion terms. Soliton switching (besides soliton breakup) can be observed between the two components of the BVSs. Rate of the maximum switched energy (absolute values) within the fixed propagation distance (about 10 periods of the BVSs) enhances in the sense of statistics when the amplitudes of stochastic perturbations increase. Additionally, it is revealed that the BVSs with enhanced coherence are more robust against the perturbations with nonhomogenous stochasticity. Diagram describing the approximate borders of the splitting and non-splitting areas is also given. Our results might be helpful in dynamics of the BVSs with stochastic noises in nonlinear optical fibers or with stochastic quantum fluctuations in Bose-Einstein condensates.

  6. All-optical switch with two periodically modulated nonlinear waveguides.

    PubMed

    Xie, Qiongtao; Luo, Xiaobing; Wu, Biao

    2010-02-01

    We propose a type of all-optical switch which consists of two periodically modulated nonlinear optical waveguides placed in parallel. Compared to the all-optical switch based on the traditional nonlinear directional coupler without periodic modulation, this all-optical switch has much lower switching threshold power and sharper switching width.

  7. High Repetition Rate Pulsed 2-Micron Laser Transmitter for Coherent CO2 DIAL Measurement

    NASA Technical Reports Server (NTRS)

    Singh, Uprendra N.; Bai, Yingxin; Yu, Jirong; Petros, Mulugeta; Petzar, Paul J.; Trieu, Bo C.; Lee, Hyung

    2009-01-01

    A high repetition rate, highly efficient, Q-switched 2-micron laser system as the transmitter of a coherent differential absorption lidar for CO2 measurement has been developed at NASA Langley Research Center. Such a laser transmitter is a master-slave laser system. The master laser operates in a single frequency, either on-line or off-line of a selected CO2 absorption line. The slave laser is a Q-switched ring-cavity Ho:YLF laser which is pumped by a Tm:fiber laser. The repetition rate can be adjusted from a few hundred Hz to 10 kHz. The injection seeding success rate is from 99.4% to 99.95%. For 1 kHz operation, the output pulse energy is 5.5mJ with the pulse length of approximately 50 ns. The optical-to-optical efficiency is 39% when the pump power is 14.5W. The measured standard deviation of the laser frequency jitter is about 3 MHz.

  8. Optical resonators for true-time-delay beam steering

    NASA Astrophysics Data System (ADS)

    Gesell, Leslie H.; Evanko, Stephen M.

    1996-06-01

    Conventional true time delay beamforming and steering devices rely on switching between various lengths of delay line. Therefore only discrete delays are possible. Proposed is a new photonics concept for true time delay beamforming which provides a finely controlled continuum of delays with switching speeds on the order of 10's of nanoseconds or faster. The architecture uses an array of waveguide cavities with different resonate frequencies to channelize the signal. Each spectral component of the signal is phase shifted by an amount proportional to the frequency of that component and the desired time delay. These phase shifted spectral components are then summed to obtain the delayed signal. This paper provides an overview of the results of a Phase I SBIR contract where this concept has been refined and analyzed. The parameters for an operational system are determined and indication of the feasibility of this approach is given. Among the issues addressed are the requirements of the resonators and the methods necessary to implement fiber optic Bragg gratings as these resonators.

  9. SDN-controlled topology-reconfigurable optical mobile fronthaul architecture for bidirectional CoMP and low latency inter-cell D2D in the 5G mobile era.

    PubMed

    Cvijetic, Neda; Tanaka, Akihiro; Kanonakis, Konstantinos; Wang, Ting

    2014-08-25

    We demonstrate the first SDN-controlled optical topology-reconfigurable mobile fronthaul (MFH) architecture for bidirectional coordinated multipoint (CoMP) and low latency inter-cell device-to-device (D2D) connectivity in the 5G mobile networking era. SDN-based OpenFlow control is used to dynamically instantiate the CoMP and inter-cell D2D features as match/action combinations in control plane flow tables of software-defined optical and electrical switching elements. Dynamic re-configurability is thereby introduced into the optical MFH topology, while maintaining back-compatibility with legacy fiber deployments. 10 Gb/s peak rates with <7 μs back-to-back transmission latency and 29.6 dB total power budget are experimentally demonstrated, confirming the attractiveness of the new approach for optical MFH of future 5G mobile systems.

  10. Soliton interactions and complexes for coupled nonlinear Schrödinger equations.

    PubMed

    Jiang, Yan; Tian, Bo; Liu, Wen-Jun; Sun, Kun; Li, Min; Wang, Pan

    2012-03-01

    Under investigation in this paper are the coupled nonlinear Schrödinger (CNLS) equations, which can be used to govern the optical-soliton propagation and interaction in such optical media as the multimode fibers, fiber arrays, and birefringent fibers. By taking the 3-CNLS equations as an example for the N-CNLS ones (N≥3), we derive the analytic mixed-type two- and three-soliton solutions in more general forms than those obtained in the previous studies with the Hirota method and symbolic computation. With the choice of parameters for those soliton solutions, soliton interactions and complexes are investigated through the asymptotic and graphic analysis. Soliton interactions and complexes with the bound dark solitons in a mode or two modes are observed, including that (i) the two bright solitons display the breatherlike structures while the two dark ones stay parallel, (ii) the two bright and dark solitons all stay parallel, and (iii) the states of the bound solitons change from the breatherlike structures to the parallel one even with the distance between those solitons smaller than that before the interaction with the regular one soliton. Asymptotic analysis is also used to investigate the elastic and inelastic interactions between the bound solitons and the regular one soliton. Furthermore, some discussions are extended to the N-CNLS equations (N>3). Our results might be helpful in such applications as the soliton switch, optical computing, and soliton amplification in the nonlinear optics.

  11. Fiber optic and laser sensors IX; Proceedings of the Meeting, Boston, MA, Sept. 3-5, 1991

    NASA Technical Reports Server (NTRS)

    Depaula, Ramon P. (Editor); Udd, Eric (Editor)

    1991-01-01

    The present volume on fiber-optic and laser sensors discusses industrial applications of fiber-optic sensors, fiber-optic temperature sensors, fiber-optic current sensors, fiber-optic pressure/displacement/vibration sensors, and generic fiber-optic systems. Attention is given to a fiber-sensor design for turbine engines, fiber-optic remote Fourier transform IR spectroscopy, near-IR fiber-optic temperature sensors, and an intensity-type fiber-optic electric current sensor. Topics addressed include fiber-optic magnetic field sensors based on the Faraday effect in new materials, diaphragm size and sensitivity for fiber-optic pressure sensors, a microbend pressure sensor for high-temperature environments, and linear position sensing by light exchange between two lossy waveguides. Also discussed are two-mode elliptical-core fiber sensors for measurement of strain and temperature, a fiber-optic interferometric X-ray dosimeter, fiber-optic interferometric sensors using multimode fibers, and optical fiber sensing of corona discharges.

  12. Mechanically switchable polymer fibers for sensing in biological conditions

    NASA Astrophysics Data System (ADS)

    McMillan, Sean; Rader, Chris; Jorfi, Mehdi; Pickrell, Gary; Foster, E. Johan

    2017-02-01

    The area of in vivo sensing using optical fibers commonly uses materials such as silica and polymethyl methacrylate, both of which possess much higher modulus than human tissue. The mechanical mismatch between materials and living tissue has been seen to cause higher levels of glial encapsulation, scarring, and inflammation, leading to failure of the implanted medical device. We present the use of a fiber made from polyvinyl alcohol (PVA) for use as an implantable sensor as it is an easy to work with functionalized polymer that undergoes a transition from rigid to soft when introduced to water. This ability to switch from stiff to soft reduces the severity of the immune response. The fabricated PVA fibers labeled with fluorescein for sensing applications showed excellent response to various stimuli while exhibiting mechanical switchability. For the dry fibers, a tensile storage modulus of 4700 MPa was measured, which fell sharply to 145 MPa upon wetting. The fibers showed excellent response to changing pH levels, producing values that were detectable in a range consistent with those seen in the literature and in proposed applications. The results show that these mechanically switchable fibers are a viable option for future sensing applications.

  13. Controlling slow and fast light and dynamic pulse-splitting with tunable optical gain in a whispering-gallery-mode microcavity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Asano, M.; Ikuta, R.; Imoto, N.

    We report controllable manipulation of slow and fast light in a whispering-gallery-mode microtoroid resonator fabricated from Erbium (Er{sup 3+}) doped silica. We observe continuous transition of the coupling between the fiber-taper waveguide and the microresonator from undercoupling to critical coupling and then to overcoupling regimes by increasing the pump power even though the spatial distance between the resonator and the waveguide was kept fixed. This, in turn, enables switching from fast to slow light and vice versa just by increasing the optical gain. An enhancement of delay of two-fold over the passive silica resonator (no optical gain) was observed inmore » the slow light regime. Moreover, we show dynamic pulse splitting and its control in slow/fast light systems using optical gain.« less

  14. High-power microwave generation using optically activated semiconductor switches

    NASA Astrophysics Data System (ADS)

    Nunnally, William C.

    1990-12-01

    The two prominent types of optically controlled switches, the optically controlled linear (OCL) switch and the optically initiated avalanche (OIA) switch, are described, and their operating parameters are characterized. Two transmission line approaches, one using a frozen-wave generator and the other using an injected-wave generator, for generation of multiple cycles of high-power microwave energy using optically controlled switches are discussed. The point design performances of the series-switch, frozen-wave generator and the parallel-switch, injected-wave generator are compared. The operating and performance limitations of the optically controlled switch types are discussed, and additional research needed to advance the development of the optically controlled, bulk, semiconductor switches is indicated.

  15. Radially polarized and passively Q-switched fiber laser

    PubMed Central

    Lin, Di; Xia, Kegui; Li, Ruxin; Li, Xiaojun; Li, Guoqiang; Ueda, Ken-ichi; Li, Jianlang

    2017-01-01

    We report, for the first time to our knowledge, a radially polarized and passively Q-switched Yb-doped fiber laser. By using a Cr4+:YAG crystal as a saturable absorber and a photonic crystal grating as a polarization mirror, a radially polarized pulse is produced, which has 202 W of peak power, 75 ns duration, and ~92% polarization purity at a 56.6 kHz repetition rate. The Q-switched pulse with radial polarization from the fiber laser would facilitate numerous applications. PMID:21042354

  16. Method to optimize optical switch topology for photonic network-on-chip

    NASA Astrophysics Data System (ADS)

    Zhou, Ting; Jia, Hao

    2018-04-01

    In this paper, we propose a method to optimize the optical switch by substituting optical waveguide crossings for optical switching units and an optimizing algorithm to complete the optimization automatically. The functionality of the optical switch remains constant under optimization. With this method, we simplify the topology of optical switch, which means the insertion loss and power consumption of the whole optical switch can be effectively minimized. Simulation result shows that the number of switching units of the optical switch based on Spanke-Benes can be reduced by 16.7%, 20%, 20%, 19% and 17.9% for the scale from 4 × 4 to 8 × 8 respectively. As a proof of concept, the experimental demonstration of an optimized six-port optical switch based on Spanke-Benes structure by means of silicon photonics chip is reported.

  17. Design and Development of a Series Switch for High Voltage in RF Heating

    NASA Astrophysics Data System (ADS)

    Patel, Himanshu K.; Shah, Deep; Thacker, Mauli; Shah, Atman

    2013-02-01

    Plasma is the fourth state of matter. To sustain plasma in its ionic form very high temperature is essential. RF heating systems are used to provide the required temperature. Arching phenomenon in these systems can cause enormous damage to the RF tube. Heavy current flows across the anode-cathode junction, which need to be suppressed in minimal time for its protection. Fast-switching circuit breakers are used to cut-off the load from the supply in cases of arching. The crowbar interrupts the connection between the high voltage power supply (HVPS) and the RF tube for a temporary period between which the series switch has to open. The crowbar shunts the current across the load but in the process leads to short circuiting the HVPS. Thus, to protect the load as well as the HVPS a series switch is necessary. This paper presents the design and development of high voltage Series Switch for the high power switching applications. Fiber optic based Optimum triggering scheme is designed and tested to restrict the time delay well within the stipulated limits. The design is well supported with the experimental results for the whole set-up along with the series switch at various voltage level before its approval for operation at 5.2 kV.

  18. Open-cavity fiber laser with distributed feedback based on externally or self-induced dynamic gratings.

    PubMed

    Lobach, Ivan A; Drobyshev, Roman V; Fotiadi, Andrei A; Podivilov, Evgeniy V; Kablukov, Sergey I; Babin, Sergey A

    2017-10-15

    Dynamic population inversion gratings induced in an active medium by counter-propagating optical fields may have a reverse effect on writing laser radiation via feedback they provide. In this Letter we report, to the best of our knowledge, on the first demonstration of an open-cavity fiber laser in which the distributed feedback is provided by a dynamic grating "written" in a Yb-doped active fiber, either by an external source or self-induced via a weak (∼0.1%) reflection from an angle-cleaved fiber end. It has been shown that meters-long dynamic grating is formed with a narrow bandwidth (<50  MHz) and a relatively high-reflection coefficient (>7%) securing single-frequency operation, but the subsequent hole-burning effects accompanied by new grating formation lead to the switching from one longitudinal mode to another. providing a regular pulse-mode dynamics. As a result, periodically generated pulse trains cover a spectrum range of several terahertz delivering millions of cavity modes in sequent pulses.

  19. Advanced optical network architecture for integrated digital avionics

    NASA Astrophysics Data System (ADS)

    Morgan, D. Reed

    1996-12-01

    For the first time in the history of avionics, the network designer now has a choice in selecting the media that interconnects the sources and sinks of digital data on aircraft. Electrical designs are already giving way to photonics in application areas where the data rate times distance product is large or where special design requirements such as low weight or EMI considerations are critical. Future digital avionic architectures will increasingly favor the use of photonic interconnects as network data rates of one gigabit/second and higher are needed to support real-time operation of high-speed integrated digital processing. As the cost of optical network building blocks is reduced and as temperature-rugged laser sources are matured, metal interconnects will be forced to retreat to applications spanning shorter and shorter distances. Although the trend is already underway, the widespread use of digital optics will first occur at the system level, where gigabit/second, real-time interconnects between sensors, processors, mass memories and displays separated by a least of few meters will be required. The application of photonic interconnects for inter-printed wiring board signalling across the backplane will eventually find application for gigabit/second applications since signal degradation over copper traces occurs before one gigabit/second and 0.5 meters are reached. For the foreseeable future however, metal interconnects will continue to be used to interconnect devices on printed wiring boards since 5 gigabit/second signals can be sent over metal up to around 15 centimeters. Current-day applications of optical interconnects at the system level are described and a projection of how advanced optical interconnect technology will be driven by the use of high speed integrated digital processing on future aircraft is presented. The recommended advanced network for application in the 2010 time frame is a fiber-based system with a signalling speed of around 2-3 gigabits per second. This switch-based unified network will interconnect sensors, displays, mass memory and controls and displays to computer modules within the processing complex. The characteristics of required building blocks needed for the future are described. These building blocks include the fiber, an optical switch, a laser-based transceiver, blind-mate connectors and an optical backplane.

  20. Optically controlled waveplate at a telecom wavelength using a ladder transition in Rb atoms for all-optical switching and high speed Stokesmetric imaging.

    PubMed

    Krishnamurthy, Subramanian; Tu, Y; Wang, Y; Tseng, S; Shahriar, M S

    2014-11-17

    We demonstrate an optically controlled waveplate at ~1323 nm using the 5S(1/2)-5P(1/2)-6S(1/2) ladder transition in a Rb vapor cell. The lower leg of the transitions represents the control beam, while the upper leg represents the signal beam. We show that we can place the signal beam in any arbitrary polarization state with a suitable choice of polarization of the control beam. Specifically, we demonstrate a differential phase retardance of ~180 degrees between the two circularly polarized components of a linearly polarized signal beam. We also demonstrate that the system can act as a Quarter Wave plate. The optical activity responsible for the phase retardation process is explained in terms of selection rules involving the Zeeman sublevels. As such, the system can be used to realize a fast Stokesmetric imaging system with a speed of ~3 MHz. When implemented using a tapered nano fiber embedded in a vapor cell, this system can be used to realize an ultra-low power all-optical switch as well as a Quantum Zeno Effect based all-optical logic gate by combining it with an optically controlled polarizer, previously demonstrated by us. We present numerical simulations of the system using a comprehensive model which incorporates all the relevant Zeeman sub-levels in the system, using a novel algorithm recently developed by us for efficient computation of the evolution of an arbitrary large scale quantum system.

  1. Optimization Of Shear Modes To Produce Enhanced Bandwidth In Ghz GaP Bragg Cells

    NASA Astrophysics Data System (ADS)

    Soos, J., I.; Rosemeier, R. G.; Rosenbaum, J.

    1988-02-01

    Applications of Gallium Phosphide (GaP) acousto-optic devices, at wavelengths from 570nm - 1.06um seem to be ideal for fiber optic modulators, scanners, deflectors, frequency shifters, Q-switches and mode lockers. One of the major applications are for RF spectrometers in early warning radar receivers and auto-correlators. Longitudinal GaP acousto-optic Bragg cells which have respectively operational frequencies in the range of 200 MHz - 3 GHz and diffraction efficiencies in the range of 120%/RF watt to 1%/RF watt have recently been fabricated. Comparatively, shear GaP devices which have operational frequencies in the range of 200 MHz to 2 GHz and diffraction efficiencies from 80%/RF watt to 7%/RF watt have also been constructed.

  2. High-speed switching of biphoton delays through electro-optic pump frequency modulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Odele, Ogaga D.; Lukens, Joseph M.; Jaramillo-Villegas, Jose A.

    The realization of high-speed tunable delay control has received significant attention in the scene of classical photonics. In quantum optics, however, such rapid delay control systems for entangled photons have remained undeveloped. Here for the first time, we demonstrate rapid (2.5 MHz) modulation of signal-idler arrival times through electro-optic pump frequency modulation. Our technique applies the quantum phenomenon of nonlocal dispersion cancellation along with pump frequency tuning to control the relative delay between photon pairs. Chirped fiber Bragg gratings are employed to provide large amounts of dispersion which result in biphoton delays exceeding 30 ns. This rapid delay modulation schememore » could be useful for on-demand single-photon distribution in addition to quantum versions of pulse position modulation.« less

  3. High-speed switching of biphoton delays through electro-optic pump frequency modulation

    DOE PAGES

    Odele, Ogaga D.; Lukens, Joseph M.; Jaramillo-Villegas, Jose A.; ...

    2016-12-08

    The realization of high-speed tunable delay control has received significant attention in the scene of classical photonics. In quantum optics, however, such rapid delay control systems for entangled photons have remained undeveloped. Here for the first time, we demonstrate rapid (2.5 MHz) modulation of signal-idler arrival times through electro-optic pump frequency modulation. Our technique applies the quantum phenomenon of nonlocal dispersion cancellation along with pump frequency tuning to control the relative delay between photon pairs. Chirped fiber Bragg gratings are employed to provide large amounts of dispersion which result in biphoton delays exceeding 30 ns. This rapid delay modulation schememore » could be useful for on-demand single-photon distribution in addition to quantum versions of pulse position modulation.« less

  4. Semiconductor saturable absorber mirror passively Q-switched 2.97 μm fluoride fiber laser

    NASA Astrophysics Data System (ADS)

    Li, Jianfeng; Luo, Hongyu; He, Yulian; Liu, Yong; Luo, Binbin; Sun, Zhongyuan; Zhang, Lin; Turitsyn, Sergei K.

    2014-05-01

    A diode-cladding-pumped mid-infrared passively Q-switched Ho3+-doped fluoride fiber laser using a reverse designed broad band semiconductor saturable mirror (SESAM) was demonstrated. Nonlinear reflectivity of the SESAM was measured using an in-house Yb3+-doped mode-locked fiber laser at 1062 nm. Stable pulse train was produced at a slope efficient of 12.1% with respect to the launched pump power. Maximum pulse energy of 6.65 μJ with a pulse width of 1.68 μs and signal to noise ratio (SNR) of ~50 dB was achieved at a repetition rate of 47.6 kHz and center wavelength of 2.971 μm. To the best of our knowledge, this is the first 3 μm region SESAM based Q-switched fiber laser with the highest average power and pulse energy, as well as the longest wavelength from mid-infrared passively Q-switched fluoride fiber lasers.

  5. Semiconductor saturable absorber mirror passively Q-switched 2.97 μm fluoride fiber laser

    NASA Astrophysics Data System (ADS)

    Li, J. F.; Luo, H. Y.; He, Y. L.; Liu, Y.; Zhang, L.; Zhou, K. M.; Rozhin, A. G.; Turistyn, S. K.

    2014-06-01

    A diode-cladding-pumped mid-infrared passively Q-switched Ho3+-doped fluoride fiber laser using a reverse designed broad band semiconductor saturable mirror (SESAM) was demonstrated. Nonlinear reflectivity of the SESAM was measured using an in-house Yb3+-doped mode-locked fiber laser at 1062 nm. Stable pulse train was produced at a slope efficient of 12.1% with respect to the launched pump power. Maximum pulse energy of 6.65 µJ with a pulse width of 1.68 µs and signal-to-noise ratio (SNR) of ~50 dB was achieved at a repetition rate of 47.6 kHz and center wavelength of 2.971 µm. To the best of our knowledge, this is the first 3 µm region SESAM-based Q-switched fiber laser with the highest average power and pulse energy, as well as the longest wavelength from mid-infrared passively Q-switched fluoride fiber lasers.

  6. Optical bench development for LISA

    NASA Astrophysics Data System (ADS)

    d'Arcio, L.; Bogenstahl, J.; Dehne, M.; Diekmann, C.; Fitzsimons, E. D.; Fleddermann, R.; Granova, E.; Heinzel, G.; Hogenhuis, H.; Killow, C. J.; Perreur-Lloyd, M.; Pijnenburg, J.; Robertson, D. I.; Shoda, A.; Sohmer, A.; Taylor, A.; Tröbs, M.; Wanner, G.; Ward, H.; Weise, D.

    2017-11-01

    For observation of gravitational waves at frequencies between 30 μHz and 1 Hz, the LISA mission will be implemented in a triangular constellation of three identical spacecraft, which are mutually linked by laser interferometry in an active transponder scheme over a 5 million kilometer arm length. On the end point of each laser link, remote and local beam metrology with respect to inertial proof masses inside the spacecraft is realized by the LISA Optical Bench. It implements further- more various ancillary functions such as point-ahead correction, acquisition sensing, transmit beam conditioning, and laser redundancy switching. A comprehensive design of the Optical Bench has been developed, which includes all of the above mentioned functions and at the same time ensures manufacturability on the basis of hydroxide catalysis bonding, an ultrastable integration technology already perfected in the context of LISA's technology demonstrator mission LISA Pathfinder. Essential elements of this design have been validated by dedicated pre-investigations. These include the demonstration of polarizing heterodyne interferometry at the required Picometer and Nanoradian performance levels, the investigation of potential non-reciprocal noise sources in the so-called backlink fiber, as well as the development of a laser redundancy switch breadboard.

  7. Optical Circuit Switched Protocol

    NASA Technical Reports Server (NTRS)

    Monacos, Steve P. (Inventor)

    2000-01-01

    The present invention is a system and method embodied in an optical circuit switched protocol for the transmission of data through a network. The optical circuit switched protocol is an all-optical circuit switched network and includes novel optical switching nodes for transmitting optical data packets within a network. Each optical switching node comprises a detector for receiving the header, header detection logic for translating the header into routing information and eliminating the header, and a controller for receiving the routing information and configuring an all optical path within the node. The all optical path located within the node is solely an optical path without having electronic storage of the data and without having optical delay of the data. Since electronic storage of the header is not necessary and the initial header is eliminated by the first detector of the first switching node. multiple identical headers are sent throughout the network so that subsequent switching nodes can receive and read the header for setting up an optical data path.

  8. Implementation of a Si/SiC hybrid optically controlled high-power switching device

    NASA Astrophysics Data System (ADS)

    Bhadri, Prashant; Ye, Kuntao; Guliants, E.; Beyette, Fred R., Jr.

    2002-03-01

    The ever-increasing performance and economy of operation requirements placed on commercial and military transport aircraft are resulting in very complex systems. As a result, the use of fiber optic component technology has lead to high data throughput, immunity to EMI, reduced certification and maintenance costs and reduced weight features. In particular, in avionic systems, data integrity and high data rates are necessary for stable flight control. Fly-by-Light systems that use optical signals to actuate the flight control surfaces of an aircraft have been suggested as a solution to the EMI problem in avionic systems. Current fly-by-light systems are limited by the lack of optically activated high-power switching devices. The challenge has been the development of an optoelectronic switching technology that can withstand the high power and harsh environmental conditions common in a flight surface actuation system. Wide bandgap semiconductors such as Silicon Carbide offer the potential to overcome both the temperature and voltage blocking limitations that inhibit the use of Silicon. Unfortunately, SiC is not optically active at the near IR wavelengths where communications grade light sources are readily available. Thus, we have proposed a hybrid device that combines a silicon based photoreceiver model with a SiC power transistor. When illuminated with the 5mW optical control signal the silicon chip produces a 15mA drive current for a SiC Darlington pair. The SiC Darlington pair then produces a 150 A current that is suitable for driving an electric motor with sufficient horsepower to actuate the control surfaces on an aircraft. Further, when the optical signal is turned off, the SiC is capable of holding off a 270 V potential to insure that the motor drive current is completely off. We present in this paper the design and initial tests from a prototype device that has recently been fabricated.

  9. Transition metal dichalcogenide (WS2 and MoS2) saturable absorbers for Q-switched Er-doped fiber lasers

    NASA Astrophysics Data System (ADS)

    Li, Lu; Lv, Ruidong; Liu, Sicong; Wang, Xi; Wang, Yonggang; Chen, Zhendong; Wang, Jiang

    2018-05-01

    This report demonstrates a stable Q-switched Er-doped fiber laser with MoS2 (WS2)-based saturable absorber (SA) in the net normal dispersion regime. The SA is obtained by mixing MoS2 (WS2) nanosheets with polyvinyl alcohol (PVA) into polystyrene cells, and then evaporating them to form MoS2 (WS2)/PVA film. The modulation depth values for MoS2/PVA and WS2/PVA are measured to be 2.7% and 2.1% respectively. Employing the MoS2 (WS2)/PVA film in the Er-doped fiber laser cavity, stable Q-switching operation is achieved with central wavelength of 1560 nm. The shortest pulse durations of the two Q-switched fiber lasers are, respectively, 3.97 and 3.71 µs, and their maximum single pulse energies are measured to be 131.52 and 126.96 nJ. The experimental results clearly show that MoS2 (WS2) is a promising nonlinear material, and that improvements in Q-switching performance due to two SAs in the net normal dispersion regime might be helpful in the design of fiber lasers.

  10. Construction of large scale switch matrix by interconnecting integrated optical switch chips with EDFAs

    NASA Astrophysics Data System (ADS)

    Liao, Mingle; Wu, Baojian; Hou, Jianhong; Qiu, Kun

    2018-03-01

    Large scale optical switches are essential components in optical communication network. We aim to build up a large scale optical switch matrix by the interconnection of silicon-based optical switch chips using 3-stage CLOS structure, where EDFAs are needed to compensate for the insertion loss of the chips. The optical signal-to-noise ratio (OSNR) performance of the resulting large scale optical switch matrix is investigated for TE-mode light and the experimental results are in agreement with the theoretical analysis. We build up a 64 ×64 switch matrix by use of 16 ×16 optical switch chips and the OSNR and receiver sensibility can respectively be improved by 0.6 dB and 0.2 dB by optimizing the gain configuration of the EDFAs.

  11. Research on the demodulation techniques of long-period fiber gratings strain sensing with low cost

    NASA Astrophysics Data System (ADS)

    Wang, Qingwei; Liu, Yueming; Tian, Weijian; Feng, Guilan

    2012-10-01

    The working principle of LPFG(Long-Period Fiber Grating) is based on coupling effect between propagating core-mode and co-propagating cladding-modes. The effective refractive index of cladding-modes could be obviously influenced by the environmental changes resulting in LPFG more sensitive than FBG (Fiber Bragg Grating) in sensing areas, such as temperature, strain, concentration, bending and etc. LPFG should have more potential in the field of sensors compared with FBG. One of the challenges in using LPFG for environmental sensing is how to interrogate the signal from the LPFG transmission spectrum, due to the large spectral range of the resonant dip. Nowadays the application of LPFG is normally limited in signal interrogation of FBG as optical edge filter. The signal interrogation of LPFG itself needs further research. Presently research on signal interrogation of fiber grating focuses on wavelength interrogation. The aim of wavelength interrogation is to get the wavelength shift caused by environmental change. To solve these problems, a kind of strain sensing interrogation technique for LPFG with low-cost based on tunable FBGs has been developed. Comparing with the method using Fabry-Perot cavity, tunable FBGs can lower the cost with the guarantee of sensing precision. The cost is further lowered without using expensive optical instruments such as optical switch. The problem of temperature cross-sensitivity was solved by using reference gratings. An experiment was performed to demonstrate the interrogation system. And in the experiment, the sensing signal of LPFG applied 0-1300μɛ was successfully interrogated. The results of the interrogation system and OSA are similar.

  12. Feasibility study of an integrated optic switching center. [satellite tracking application

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The design of a high data rate switching center for a satellite tracking station is discussed. The feasibility of a switching network using an integrated switching matrix is assessed. The preferred integrated optical switching scheme was found to be an electro-optic Bragg diffraction switch. To ascertain the advantages of the integrated optics switching center, its properties are compared to those of opto-electronic and to electronics switching networks.

  13. Organization of the channel-switching process in parallel computer systems based on a matrix optical switch

    NASA Technical Reports Server (NTRS)

    Golomidov, Y. V.; Li, S. K.; Popov, S. A.; Smolov, V. B.

    1986-01-01

    After a classification and analysis of electronic and optoelectronic switching devices, the design principles and structure of a matrix optical switch is described. The switching and pair-exclusion operations in this type of switch are examined, and a method for the optical switching of communication channels is elaborated. Finally, attention is given to the structural organization of a parallel computer system with a matrix optical switch.

  14. Improved Electro-Optical Switches

    NASA Technical Reports Server (NTRS)

    Nelson, Bruce N.; Cooper, Ronald F.

    1994-01-01

    Improved single-pole, double-throw electro-optical switches operate in switching times less than microsecond developed for applications as optical communication systems and networks of optical sensors. Contain no moving parts. In comparison with some prior electro-optical switches, these are simpler and operate with smaller optical losses. Beam of light switched from one output path to other by applying, to electro-optical crystal, voltage causing polarization of beam of light to change from vertical to horizontal.

  15. 128×128 three-dimensional MEMS optical switch module with simultaneous optical path connection for optical cross-connect systems.

    PubMed

    Mizukami, Masato; Yamaguchi, Joji; Nemoto, Naru; Kawajiri, Yuko; Hirata, Hirooki; Uchiyama, Shingo; Makihara, Mitsuhiro; Sakata, Tomomi; Shimoyama, Nobuhiro; Oda, Kazuhiro

    2011-07-20

    A 128×128 three-dimensional MEMS optical switch module and a switching-control algorithm for high-speed connection and optical power stabilization are described. A prototype switch module enables the simultaneous switching of all optical paths. The insertion loss is less than 4.6 dB and is 2.3 dB on average. The switching time is less than 38 ms and is 8 ms on average. We confirmed that the maximum optical power can be obtained and optical power stabilization control is possible. The results confirm that the module is suitable for practical use in optical cross-connect systems. © 2011 Optical Society of America

  16. 1 kHz 3.3 μm Nd:YAG KTiOAsO₄ optical parametric oscillator system for laser ultrasound excitation of carbon-fiber-reinforced plastics.

    PubMed

    Puncken, Oliver; Gandara, David Mendoza; Damjanic, Marcin; Mahnke, Peter; Bergmann, Ralf B; Kalms, Michael; Peuser, Peter; Wessels, Peter; Neumann, Jörg; Schnars, Ulf

    2016-02-20

    We present a new laser prototype for laser ultrasonics excitation. The fundamental wavelength of a Q-switched Nd:YAG laser with a repetition rate of 1 kHz is converted to 3.3 μm with a KTiOAsO4 optical parametric oscillator. The achieved pulse energy at 3.3 μm is 1.7 mJ, and the pulse duration at the fundamental wavelength of 1.06 μm has been measured to be 21 ns. The ultrasonic excitation efficiency is about 3.5 times better compared to the application of state-of-the-art CO2 lasers.

  17. Design of a digital, ultra-broadband electro-optic switch for reconfigurable optical networks-on-chip.

    PubMed

    Van Campenhout, Joris; Green, William M J; Vlasov, Yurii A

    2009-12-21

    We present a novel design for a noise-tolerant, ultra-broadband electro-optic switch, based on a Mach-Zehnder lattice (MZL) interferometer. We analyze the switch performance through rigorous optical simulations, for devices implemented in silicon-on-insulator with carrier-injection-based phase shifters. We show that such a MZL switch can be designed to have a step-like switching response, resulting in improved tolerance to drive-voltage noise and temperature variations as compared to a single-stage Mach-Zehnder switch. Furthermore, we show that degradation in switching crosstalk and insertion loss due to free-carrier absorption can be largely overcome by a MZL switch design. Finally, MZL switches can be designed for having an ultra-wide, temperature-insensitive optical bandwidth of more than 250 nm. The proposed device shows good potential as a broadband optical switch in reconfigurable optical networks-on-chip.

  18. Improved fatigue resistance in Gsα-deficient and aging mouse skeletal muscles due to adaptive increases in slow fibers

    PubMed Central

    Feng, Han-Zhong; Chen, Min; Weinstein, Lee S.

    2011-01-01

    Genetically modified mice with deficiency of the G protein α-subunit (Gsα) in skeletal muscle showed metabolic abnormality with reduced glucose tolerance, low muscle mass, and low contractile force, along with a fast-to-slow-fiber-type switch (Chen M, Feng HZ, Gupta D, Kelleher J, Dickerson KE, Wang J, Hunt D, Jou W, Gavrilova O, Jin JP, Weinstein LS. Am J Physiol Cell Physiol 296: C930–C940, 2009). Here we investigated a hypothesis that the switching to more slow fibers is an adaptive response with specific benefit. The results showed that, corresponding to the switch of myosin isoforms, the thin-filament regulatory proteins troponin T and troponin I both switched to their slow isoforms in the atrophic soleus muscle of 3-mo-old Gsα-deficient mice. This fiber-type switch involving coordinated changes of both thick- and thin-myofilament proteins progressed in the Gsα-deficient soleus muscles of 18- to 24-mo-old mice, as reflected by the expression of solely slow isoforms of myosin and troponin. Compared with age-matched controls, Gsα-deficient soleus muscles with higher proportion of slow fibers exhibited slower contractile and relaxation kinetics and lower developed force, but significantly increased resistance to fatigue, followed by a better recovery. Gsα-deficient soleus muscles of neonatal and 3-wk-old mice did not show the increase in slow fibers. Therefore, the fast-to-slow-fiber-type switch in Gsα deficiency at older ages was likely an adaptive response. The benefit of higher fatigue resistance in adaption to metabolic deficiency and aging provides a mechanism to sustain skeletal muscle function in diabetic patients and elderly individuals. PMID:21680879

  19. Directly q-switched high power resonator based on XLMA-fibers

    NASA Astrophysics Data System (ADS)

    Giesberts, M.; Fitzau, O.; Hoffmann, H.-D.; Lange, R.; Bachert, C.; Krause, V.

    2018-02-01

    In this paper we present a simple approach to achieving nanosecond pulses from a directly q-switched high-power resonator based on extra-large mode area (XLMA) fibers with a beam quality factor M2 < 15. An average output power of > 500 W has been demonstrated for repetition frequencies between 50-100 kHz. The resonator consists of a single fiber q-switched with soldered Pockels-cells which exhibit a very high contrast ratio leading to output pulses down to about 10 ns and peak powers up to > 250 kW at 1064 nm wavelength. By using this design instead of a fiber MOPA setup, a cost-effective and less complex system could be implemented.

  20. Parallel processing of embossing dies with ultrafast lasers

    NASA Astrophysics Data System (ADS)

    Jarczynski, Manfred; Mitra, Thomas; Brüning, Stephan; Du, Keming; Jenke, Gerald

    2018-02-01

    Functionalization of surfaces equips products and components with new features like hydrophilic behavior, adjustable gloss level, light management properties, etc. Small feature sizes demand diffraction-limited spots and adapted fluence for different materials. Through the availability of high power fast repeating ultrashort pulsed lasers and efficient optical processing heads delivering diffraction-limited small spot size of around 10μm it is feasible to achieve fluences higher than an adequate patterning requires. Hence, parallel processing is becoming of interest to increase the throughput and allow mass production of micro machined surfaces. The first step on the roadmap of parallel processing for cylinder embossing dies was realized with an eight- spot processing head based on ns-fiber laser with passive optical beam splitting, individual spot switching by acousto optical modulation and an advanced imaging. Patterning of cylindrical embossing dies shows a high efficiency of nearby 80%, diffraction-limited and equally spaced spots with pitches down to 25μm achieved by a compression using cascaded prism arrays. Due to the nanoseconds laser pulses the ablation shows the typical surrounding material deposition of a hot process. In the next step the processing head was adapted to a picosecond-laser source and the 500W fiber laser was replaced by an ultrashort pulsed laser with 300W, 12ps and a repetition frequency of up to 6MHz. This paper presents details about the processing head design and the analysis of ablation rates and patterns on steel, copper and brass dies. Furthermore, it gives an outlook on scaling the parallel processing head from eight to 16 individually switched beamlets to increase processing throughput and optimized utilization of the available ultrashort pulsed laser energy.

  1. On-chip broadband silicon thermo-optic 2☓2 four-mode optical switch for optical space and local mode switching.

    PubMed

    Zhou, Ting; Jia, Hao; Ding, Jianfeng; Zhang, Lei; Fu, Xin; Yang, Lin

    2018-04-02

    We present a silicon thermo-optic 2☓2 four-mode optical switch optimized for optical space switching plus local optical mode switching. Four asymmetric directional couplers are utilized for mode multiplexing and de-multiplexing. Sixteen 2☓2 single-mode optical switches based on balanced thermally tunable Mach-Zehnder interferometers are exploited for switching function. The measured insertion losses are 8.0~12.2 dB and the optical signal-to-noise ratios are larger than 11.2 dB in the wavelength range of 1525~1565 nm. The optical links in "all-bar" and "all-cross" states exhibit less than 2.0 dB and 1.4 dB power penalties respectively below 10 -9 bit error rates for 40 Gbps data transmission.

  2. Synchronization of pairs of nanosecond pulses from a laser with two gain crystals pumped with two different sources.

    PubMed

    Staufert, Daniel; Cudney, Roger S

    2018-05-10

    We report a laser that emits two Q-switched pulses, one at 1.047 μm and the other at 1.064 μm, generated by a Nd:YLF and a Nd:YVO 4 , respectively. The crystals are pumped by two fiber-coupled diode lasers (808 nm and 880 nm); the delay between the pulses can be controlled by adjusting the power of the pumps. Two kinds of Q-switching techniques are reported, passive (Cr:YAG saturable absorber) and active (electro-optic modulator). We model both the active and passive Q switching and make a comparison between numerical simulations and experiments. We show experimentally and theoretically that in both cases the pulses can be synchronized; however, the stability of the synchronization (sensitivity to pump power fluctuations) is better for active than for passive Q switching. We also report that under certain experimental conditions a third wavelength is obtained, 1156 nm, which corresponds to the first Stokes shift of the 1047 nm pulse produced by stimulated Raman scattering from the Nd:YVO 4 crystal.

  3. Transparent electrode for optical switch

    DOEpatents

    Goldhar, J.; Henesian, M.A.

    1984-10-19

    The invention relates generally to optical switches and techniques for applying a voltage to an electro-optical crystal, and more particularly, to transparent electodes for an optical switch. System architectures for very large inertial confinement fusion (ICF) lasers require active optical elements with apertures on the order of one meter. Large aperture optical switches are needed for isolation of stages, switch-out from regenerative amplifier cavities and protection from target retroreflections.

  4. Recent progress in InP/polymer-based devices for telecom and data center applications

    NASA Astrophysics Data System (ADS)

    Kleinert, Moritz; Zhang, Ziyang; de Felipe, David; Zawadzki, Crispin; Maese Novo, Alejandro; Brinker, Walter; Möhrle, Martin; Keil, Norbert

    2015-02-01

    Recent progress on polymer-based photonic devices and hybrid photonic integration technology using InP-based active components is presented. High performance thermo-optic components, including compact polymer variable optical attenuators and switches are powerful tools to regulate and control the light flow in the optical backbone. Polymer arrayed waveguide gratings integrated with InP laser and detector arrays function as low-cost optical line terminals (OLTs) in the WDM-PON network. External cavity tunable lasers combined with C/L band thinfilm filter, on-chip U-groove and 45° mirrors construct a compact, bi-directional and color-less optical network unit (ONU). A tunable laser integrated with VOAs, TFEs and two 90° hybrids builds the optical front-end of a colorless, dual-polarization coherent receiver. Multicore polymer waveguides and multi-step 45°mirrors are demonstrated as bridging devices between the spatialdivision- multiplexing transmission technology using multi-core fibers and the conventional PLCbased photonic platforms, appealing to the fast development of dense 3D photonic integration.

  5. Rectangular optical filter based on high-order silicon microring resonators

    NASA Astrophysics Data System (ADS)

    Bao, Jia-qi; Yu, Kan; Wang, Li-jun; Yin, Juan-juan

    2017-07-01

    The rectangular optical filter is one of the most important optical switching components in the dense wavelength division multiplexing (DWDM) fiber-optic communication system and the intelligent optical network. The integrated highorder silicon microring resonator (MRR) is one of the best candidates to achieve rectangular filtering spectrum response. In general, the spectrum response rectangular degree of the single MRR is very low, so it cannot be used in the DWDM system. Using the high-order MRRs, the bandwidth of flat-top pass band, the out-of-band rejection degree and the roll-off coefficient of the edge will be improved obviously. In this paper, a rectangular optical filter based on highorder MRRs with uniform couplers is presented and demonstrated. Using 15 coupled race-track MRRs with 10 μm in radius, the 3 dB flat-top pass band of 2 nm, the out-of-band rejection ratio of 30 dB and the rising and falling edges of 48 dB/nm can be realized successfully.

  6. Modeling of mode-locked fiber lasers

    NASA Astrophysics Data System (ADS)

    Shaulov, Gary

    This thesis presents the results of analytical and numerical simulations of mode-locked fiber lasers and their components: multiple quantum well saturable absorbers and nonlinear optical loop mirrors. Due to the growing interest in fiber lasers as a compact source of ultrashort pulses there is a need to develop a full understanding of the advantages and limitations of the different mode-locked techniques. The mode-locked fiber laser study performed in this thesis can be used to optimize the design and performance of mode-locked fiber laser systems. A group at Air Force Research Laboratory reported a fiber laser mode-locked by multiple quantum well (MQW) saturable absorber with stable pulses generated as short as 2 ps [21]. The laser cavity incorporates a chirped fiber Bragg grating as a dispersion element; our analysis showed that the laser operates in the soliton regime. Soliton perturbation theory was applied and conditions for stable pulse operation were investigated. Properties of MQW saturable absorbers and their effect on cavity dynamics were studied and the cases of fast and slow saturable absorbers were considered. Analytical and numerical results are in a good agreement with experimental data. In the case of the laser cavity with a regular fiber Bragg grating, the properties of MQW saturable absorbers dominate the cavity dynamics. It was shown that despite the lack of a soliton shaping mechanism, there is a regime in parameter space where stable or quasi-stable solitary waves solutions can exist. Further a novel technique of fiber laser mode-locking by nonlinear polarization rotation was proposed. Polarization rotation of vector solitons was simulated in a birefringent nonlinear optical loop mirror (NOLM) and the switching characteristics of this device was studied. It was shown that saturable absorber-like action of NOLM allows mode-locked operation of the two fiber laser designs. Laser cavity designs were proposed: figure-eight-type and sigma-type cavity.

  7. Effect of Young's modulus on bubble formation and pressure waves during pulsed holmium ablation of tissue phantoms

    NASA Astrophysics Data System (ADS)

    Jansen, E. Duco; Asshauer, Thomas; Frenz, Martin; Delacretaz, Guy P.; Motamedi, Massoud; Welch, Ashley J.

    1995-05-01

    Mechanical injury during pulsed laser ablation of tissue is caused by rapid bubble expansions and collapse or by laser-induced pressure waves. In this study the effect of material elasticity on the ablation process has been investigated. Polyacrylamide tissue phantoms with various water concentrations (75-95%) were made. The Young's moduli of the gels were determined by measuring the stress-strain relationship. An optical fiber (200 or 400 micrometers ) was translated into the clear gel and one pulse of holmium:YAG laser radiation was given. The laser was operated in either the Q-switched mode (tau) p equals 500 ns, Qp equals 14 +/- 1 mJ, 200 micrometers fiber, Ho equals 446 mJ/mm2) or the free-running mode ((tau) p equals 100 microsecond(s) , Qp equals 200 +/- 5 mJ, 400 micrometers fiber, Ho equals 1592 mJ/mm2). Bubble formation inside the gels was recorded using a fast flash photography setup while simultaneously recording pressures with a PVDP needle hydrophone (40 ns risetime) positioned in the gel, approximately 2 mm away from the fibertip. A thermo-elastic expansion wave was measured only during Q-switched pulse delivery. The amplitude of this wave (approximately equals 40 bar at 1 mm from the fiber) did not vary significantly in any of the phantoms investigated. Rapid bubble formation and collapse was observed inside the clear gels. Upon bubble collapse, a pressure transient was emitted; the amplitude of this transient depended strongly on bubble size and geometry. It was found that (1) the bubble was almost spherical for the Q-switched pulse and became more elongated for the free-running pulse, and (2) the maximum bubble size and thus the collapse amplitude decreased with an increase in Young's modulus (from 68 +/- 11 bar at 1 mm in 95% water gel to 25 +/- 10 bar at 1 mm in 75% water gel).

  8. Survivable architectures for time and wavelength division multiplexed passive optical networks

    NASA Astrophysics Data System (ADS)

    Wong, Elaine

    2014-08-01

    The increased network reach and customer base of next-generation time and wavelength division multiplexed PON (TWDM-PONs) have necessitated rapid fault detection and subsequent restoration of services to its users. However, direct application of existing solutions for conventional PONs to TWDM-PONs is unsuitable as these schemes rely on the loss of signal (LOS) of upstream transmissions to trigger protection switching. As TWDM-PONs are required to potentially use sleep/doze mode optical network units (ONU), the loss of upstream transmission from a sleeping or dozing ONU could erroneously trigger protection switching. Further, TWDM-PONs require its monitoring modules for fiber/device fault detection to be more sensitive than those typically deployed in conventional PONs. To address the above issues, three survivable architectures that are compliant with TWDM-PON specifications are presented in this work. These architectures combine rapid detection and protection switching against multipoint failure, and most importantly do not rely on upstream transmissions for LOS activation. Survivability analyses as well as evaluations of the additional costs incurred to achieve survivability are performed and compared to the unprotected TWDM-PON. Network parameters that impact the maximum achievable network reach, maximum split ratio, connection availability, fault impact, and the incremental reliability costs for each proposed survivable architecture are highlighted.

  9. Optoelectronics components and technology for optical networking in China: recent progress and future trends

    NASA Astrophysics Data System (ADS)

    Jiang, Shan; Liu, Shuihua

    2004-04-01

    Current optical communication systems are more and more relying on the advanced opto-electronic components. A series of revolutionary optical and optoelectronics components technology accounts for the fast progress and field deployment of high-capacity telecommunication and data-transmission systems. Since 1990s, the optical communication industry in China entered a high-speed development period and its wide deployment had already established the solid base for China information infrastructure. In this presentation, the main progress of optoelectronics components and technology in China are reviewed, which includes semiconductor laser diode/photo receiver, fiber optical amplifier, DWDM multiplexer/de-multiplexer, dispersion compensation components and all optical network node components, such as optical switch, OADM, tunable optical filters and variable optical attenuators, etc. Integration discrete components into monolithic/hybrid platform component is an inevitable choice for the consideration of performance, mass production and cost reduction. The current status and the future trends of OEIC and PIC components technology in China will also be discuss mainly on the monolithic integration DFB LD + EA modulator, and planar light-wave circuit (PLC) technology, etc.

  10. MEMS-based Optic Fiber Fabry-Perot Sensor for Underwater Acoustic Measurement with A Wavelength-switched System

    NASA Astrophysics Data System (ADS)

    Xia, J.; Y Wang, F.; Luo, H.; Hu, Y. M.; Xiong, S. D.

    2017-12-01

    In this paper, a MEMS-based extrinsic Farby-Perot Interferometric (EFPI) acoustic pressure acoustic sensor is presented. The diaphragm structure is used as the second reflected surface, and the sensitive surface to acoustic pressure. A wavelength-switched phase demodulation system for EFPI sensors is used for acoustic signal recovery. The modified phase demodulation system has been demonstrated to recover the signal to a stable intensity fluctuation level of ±0.5 dB at the test frequency of 2000 Hz. In the test depth of 50cm, the sensor has a resonant frequency of 3.7 kHz, a flat frequency range of 10-800Hz, and a corresponding acoustic pressure sensitivity of -159 dB re. 1/μPa.

  11. Chemical, biochemical, and environmental fiber sensors III; Proceedings of the Meeting, Boston, MA, Sept. 4, 5, 1991

    NASA Astrophysics Data System (ADS)

    Lieberman, Robert A.

    Various papers on chemical, biochemical, and environmental fiber sensors are presented. Individual topics addressed include: fiber optic pressure sensor for combustion monitoring and control, viologen-based fiber optic oxygen sensors, renewable-reagent fiber optic sensor for ocean pCO2, transition metal complexes as indicators for a fiber optic oxygen sensor, fiber optic pH measurements using azo indicators, simple reversible fiber optic chemical sensors using solvatochromic dyes, totally integrated optical measuring sensors, integrated optic biosensor for environmental monitoring, radiation dosimetry using planar waveguide sensors, optical and piezoelectric analysis of polymer films for chemical sensor characterization, source polarization effects in an optical fiber fluorosensor, lens-type refractometer for on-line chemical analysis, fiber optic hydrocarbon sensor system, chemical sensors for environmental monitoring, optical fibers for liquid-crystal sensing and logic devices, suitability of single-mode fluoride fibers for evanescent-wave sensing, integrated modules for fiber optic sensors, optoelectronic sensors based on narrowband A3B5 alloys, fiber Bragg grating chemical sensor.

  12. A Fiber Bragg Grating Interrogation System with Self-Adaption Threshold Peak Detection Algorithm.

    PubMed

    Zhang, Weifang; Li, Yingwu; Jin, Bo; Ren, Feifei; Wang, Hongxun; Dai, Wei

    2018-04-08

    A Fiber Bragg Grating (FBG) interrogation system with a self-adaption threshold peak detection algorithm is proposed and experimentally demonstrated in this study. This system is composed of a field programmable gate array (FPGA) and advanced RISC machine (ARM) platform, tunable Fabry-Perot (F-P) filter and optical switch. To improve system resolution, the F-P filter was employed. As this filter is non-linear, this causes the shifting of central wavelengths with the deviation compensated by the parts of the circuit. Time-division multiplexing (TDM) of FBG sensors is achieved by an optical switch, with the system able to realize the combination of 256 FBG sensors. The wavelength scanning speed of 800 Hz can be achieved by a FPGA+ARM platform. In addition, a peak detection algorithm based on a self-adaption threshold is designed and the peak recognition rate is 100%. Experiments with different temperatures were conducted to demonstrate the effectiveness of the system. Four FBG sensors were examined in the thermal chamber without stress. When the temperature changed from 0 °C to 100 °C, the degree of linearity between central wavelengths and temperature was about 0.999 with the temperature sensitivity being 10 pm/°C. The static interrogation precision was able to reach 0.5 pm. Through the comparison of different peak detection algorithms and interrogation approaches, the system was verified to have an optimum comprehensive performance in terms of precision, capacity and speed.

  13. A Fiber Bragg Grating Interrogation System with Self-Adaption Threshold Peak Detection Algorithm

    PubMed Central

    Zhang, Weifang; Li, Yingwu; Jin, Bo; Ren, Feifei

    2018-01-01

    A Fiber Bragg Grating (FBG) interrogation system with a self-adaption threshold peak detection algorithm is proposed and experimentally demonstrated in this study. This system is composed of a field programmable gate array (FPGA) and advanced RISC machine (ARM) platform, tunable Fabry–Perot (F–P) filter and optical switch. To improve system resolution, the F–P filter was employed. As this filter is non-linear, this causes the shifting of central wavelengths with the deviation compensated by the parts of the circuit. Time-division multiplexing (TDM) of FBG sensors is achieved by an optical switch, with the system able to realize the combination of 256 FBG sensors. The wavelength scanning speed of 800 Hz can be achieved by a FPGA+ARM platform. In addition, a peak detection algorithm based on a self-adaption threshold is designed and the peak recognition rate is 100%. Experiments with different temperatures were conducted to demonstrate the effectiveness of the system. Four FBG sensors were examined in the thermal chamber without stress. When the temperature changed from 0 °C to 100 °C, the degree of linearity between central wavelengths and temperature was about 0.999 with the temperature sensitivity being 10 pm/°C. The static interrogation precision was able to reach 0.5 pm. Through the comparison of different peak detection algorithms and interrogation approaches, the system was verified to have an optimum comprehensive performance in terms of precision, capacity and speed. PMID:29642507

  14. Health monitoring of Binzhou Yellow River highway bridge using fiber Bragg gratings

    NASA Astrophysics Data System (ADS)

    Ou, Jinping; Zhao, Xuefeng; Li, Hui; Zhou, Zhi; Zhang, Zhichun; Wang, Chuan

    2005-05-01

    Binzhou yellow river Highway Bridge with 300 meter span and 768 meter length is located in the Shandong province of China and is the first cable stayed bridge with three towers along the yellow river, one of the biggest rivers in China. In order to monitoring the strain and temperature of the bridge and evaluate the health condition, one fiber Bragg grating sensing network consists of about one hundred and thirty FBG sensors mounted in 31 monitoring sections respectively, had been built during three years time. Signal cables of sensors were led to central control room located near the main tower. One four-channel FBG interrogator was used to read the wavelengths from all the sensors, associated with four computer-controlled optic switches connected to each channel. One program was written to control the interrogator and optic switches simultaneously, and ensure signal input precisely. The progress of the monitoring can be controlled through the internet. The sensors embedded were mainly used to monitor the strain and temperature of the steel cable and reinforced concrete beam. PE jacket opening embedding technique of steel cable had been developed to embed FBG sensors safely, and ensure the reliability of the steel cable opened at the same time. Data obtained during the load test can show the strain and temperature status of elements were in good condition. The data obtained via internet since the bridge's opening to traffic shown the bridge under various load such as traffic load, wind load were in good condition.

  15. Optical switching using IP protocol

    NASA Astrophysics Data System (ADS)

    Utreras, Andres J.; Gusqui, Luis; Reyes, Andres; Mena, Ricardo I.; Licenko, Gennady L.; Amirgaliyev, Yedilkhan; Komada, Paweł; Luganskaya, Saule; Kashaganova, Gulzhan

    2017-08-01

    To understand and evaluate the Optical Layer, and how it will affect the IP protocols over WDM (Switching), the present analyse is proposed. Optical communications have attractive proprieties, but also have some disadvantages, so the challenge is to combine the best of both branches. In this paper, general concepts for different options of switching are reviewed as: optical burst switching (OBS) and automatically switching optical network (ASON). Specific details such as their architectures are also discussed. In addition, the relevant characteristics of each variation for switching are reviewed.

  16. Concentric core optical fiber with multiple-mode signal transmission

    DOEpatents

    Muhs, J.D.

    1997-05-06

    A concentric core optical fiber provides for the simultaneous but independent transmission of signals over a single optical fiber. The concentric optical fiber is constructed of a single-mode or multimode inner optical fiber defined by a core and a cladding of a lower index of refraction than the core and an outer optical fiber defined by additional cladding concentrically disposed around the cladding and of an index of refraction lower than the first mentioned cladding whereby the latter functions as the core of the outer optical fiber. By employing such an optical fiber construction with a single-mode inner core or optical fiber, highly sensitive interferometric and stable less sensitive amplitude based sensors can be placed along the same length of a concentric core optical fiber. Also, by employing the concentric core optical fiber secure telecommunications can be achieved via the inner optical fiber since an intrusion of the concentric optical fiber will first cause a variation in the light being transmitted through the outer optical fiber and this variation of light being used to trigger a suitable alarm indicative of the intrusion. 3 figs.

  17. Concentric core optical fiber with multiple-mode signal transmission

    DOEpatents

    Muhs, Jeffrey D.

    1997-01-01

    A concentric core optical fiber provides for the simultaneous but independent transmission of signals over a single optical fiber. The concentric optical fiber is constructed of a single-mode or multimode inner optical fiber defined by a core and a cladding of a lower index of refraction than the core and an outer optical fiber defined by additional cladding concentrically disposed around the cladding and of an index of refraction lower than the first mentioned cladding whereby the latter functions as the core of the outer optical fiber. By employing such an optical fiber construction with a single-mode inner core or optical fiber, highly sensitive interferometric and stable less sensitive amplitude based sensors can be placed along the same length of a concentric core optical fiber. Also, by employing the concentric core optical fiber secure telecommunications can be achieved via the inner optical fiber since an intrusion of the concentric optical fiber will first cause a variation in the light being transmitted through the outer optical fiber and this variation of light being used to trigger a suitable alarm indicative of the intrusion.

  18. Dielectric-wall linear accelerator with a high voltage fast rise time switch that includes a pair of electrodes between which are laminated alternating layers of isolated conductors and insulators

    DOEpatents

    Caporaso, G.J.; Sampayan, S.E.; Kirbie, H.C.

    1998-10-13

    A dielectric-wall linear accelerator is improved by a high-voltage, fast rise-time switch that includes a pair of electrodes between which are laminated alternating layers of isolated conductors and insulators. A high voltage is placed between the electrodes sufficient to stress the voltage breakdown of the insulator on command. A light trigger, such as a laser, is focused along at least one line along the edge surface of the laminated alternating layers of isolated conductors and insulators extending between the electrodes. The laser is energized to initiate a surface breakdown by a fluence of photons, thus causing the electrical switch to close very promptly. Such insulators and lasers are incorporated in a dielectric wall linear accelerator with Blumlein modules, and phasing is controlled by adjusting the length of fiber optic cables that carry the laser light to the insulator surface. 12 figs.

  19. Dielectric-wall linear accelerator with a high voltage fast rise time switch that includes a pair of electrodes between which are laminated alternating layers of isolated conductors and insulators

    DOEpatents

    Caporaso, George J.; Sampayan, Stephen E.; Kirbie, Hugh C.

    1998-01-01

    A dielectric-wall linear accelerator is improved by a high-voltage, fast rise-time switch that includes a pair of electrodes between which are laminated alternating layers of isolated conductors and insulators. A high voltage is placed between the electrodes sufficient to stress the voltage breakdown of the insulator on command. A light trigger, such as a laser, is focused along at least one line along the edge surface of the laminated alternating layers of isolated conductors and insulators extending between the electrodes. The laser is energized to initiate a surface breakdown by a fluence of photons, thus causing the electrical switch to close very promptly. Such insulators and lasers are incorporated in a dielectric wall linear accelerator with Blumlein modules, and phasing is controlled by adjusting the length of fiber optic cables that carry the laser light to the insulator surface.

  20. Organic Materials For Optical Switching

    NASA Technical Reports Server (NTRS)

    Cardelino, Beatriz H.

    1993-01-01

    Equations predict properties of candidate materials. Report presents results of theoretical study of nonlinear optical properties of organic materials. Such materials used in optical switching devices for computers and telecommunications, replacing electronic switches. Optical switching potentially offers extremely high information throughout in compact hardware.

  1. Thin film technologies for optoelectronic components in fiber optic communication

    NASA Astrophysics Data System (ADS)

    Perinati, Agostino

    1998-02-01

    'The Asian Routes Towards the Global Information Society' and 'Towards a Strategic Planning for the Global Information Society' will be the forum themes of 'Asia Telecom 97' and 'Telecom Interactice 97' events respectively, to be held by the International Telecommunication Union (ITU) in order to further telecommunication development around the world. International telecommunications network affects our life by keeping us in touch, bringing us world news and underpinning the global economy. Global tele-economy, global information infrastructure, global information society terms are more and more used to indicate the evolution towards an information- driven world where the access to information, communication and technologies is essential to the economic and social development in every country. Telecommunication industry can strongly contribute to this evolution together with broadcasting and computer industry, and fiber optic communications are expected to continue to grow up and share a relevant part of the total telecom market. In 1995 telecom market shown a 3.8 percent worldwide investment growth reaching a 545 billion value. According to 'Kessler Marketing Intelligence (KMI) Corp.' analysis of fiberoptics and multimedia market the amount of cabled fiber installed in U.S. will be around 11 million fiber-km in 1997 and 15 million fiber-km are predicted in the year 2000. Between 1995 and 1998 the undersea industry is estimated to deal with 13.9 billion as additional undersea cable systems investment in the global telecom network. In China beside satellite telecom stations and digital microwave systems 22 fiber optic backbones have been realized and another 23 systems are expected to be built in the Ninth Five-Year National Plan (1996 to approximately 2000) with a total length of nearly 30,000 sheat-km. The study, Fiber and Fiberoptic Cable Markets in China, recently released by KMI Corp. shows that fiber optic cable installation by MPT and other network operators will grow at an annual average rate of 22 percent from 1.3 million fiber-km in 1995 to 3.5 million fiber-km in 2000. The worldwide components market-cable, transceivers and connectors - 6.1 billion in 1994, is forecasted to grow and show a 19 percent combined annual growth rate through the year 2000 when is predicted to reach 17.38 billion. Fiber-in-the-loop and widespread use of switched digital services will dominate this scenario being the fiber the best medium for transmitting multimedia services. As long as communication will partially replace transportation, multimedia services will push forward technology for systems and related components not only for higher performances but for lower cost too in order to get the consumers wanting to buy the new services. In the long distance transmission area (trunk network) higher integration of electronic and optoelectronic functions are required for transmitter and receiver in order to allow for higher system speed, moving from 2.5 Gb/s to 5, 10, 40 Gb/s; narrow band wavelength division multiplexing (WDM) filters are required for higher transmission capacity through multiwavelength technique and for optical amplifier. In the access area (distribution network) passive components as splitters, couplers, filters are needed together with optical amplifiers and transceivers for point-to-multipoint optical signal distribution: main issue in this area is the total cost to be paid by the customer for basic and new services. Multimedia services evolution, through fiber to the home and to the desktop approach, will be mainly affected by the availability of technologies suitable for component consistent integration, high yield manufacturing processes and final low cost. In this paper some of the optoelectronic components and related thin film technologies expected to mainly affect the fiber optic transmission evolution, either for long distance telecommunication systems or for subscriber network, are presented.

  2. Compound semiconductor optical waveguide switch

    DOEpatents

    Spahn, Olga B.; Sullivan, Charles T.; Garcia, Ernest J.

    2003-06-10

    An optical waveguide switch is disclosed which is formed from III-V compound semiconductors and which has a moveable optical waveguide with a cantilevered portion that can be bent laterally by an integral electrostatic actuator to route an optical signal (i.e. light) between the moveable optical waveguide and one of a plurality of fixed optical waveguides. A plurality of optical waveguide switches can be formed on a common substrate and interconnected to form an optical switching network.

  3. Gold nanorod as saturable absorber for Q-switched Yb-doped fiber laser

    NASA Astrophysics Data System (ADS)

    Wang, Xu-De; Luo, Zhi-Chao; Liu, Hao; Zhao, Nian; Liu, Meng; Zhu, Yan-Fang; Xue, Jian-Ping; Luo, Ai-Ping; Xu, Wen-Cheng

    2015-07-01

    We reported on the generation of Q-switched pulse in an Yb-doped fiber laser by using a filmy polyvinyl alcohol (PVA)-based gold nanorods (GNRs) saturable absorber (SA). The GNRs are synthesized through seed-mediated method whose longitudinal surface plasmon resonance (SPR) absorption peak is located at 1038 nm. The modulation depth of the GNRs SA is ∼4.06%. By gradually increasing the pump power from 62 mW to 128 mW, the repetition rate of Q-switched pulse increases from 8.78 kHz to 20.78 kHz and the pulse duration decreases from 9.43 μs to 3.65 μs. In addition, the dual-wavelength switchable Q-switched operation was also observed. The obtained results further expand the applications of GNRs SA to the field of Q-switched pulsed fiber lasers at 1.0 μm waveband.

  4. QKD-Based Secured Burst Integrity Design for Optical Burst Switched Networks

    NASA Astrophysics Data System (ADS)

    Balamurugan, A. M.; Sivasubramanian, A.; Parvathavarthini, B.

    2016-03-01

    The field of optical transmission has undergone numerous advancements and is still being researched mainly due to the fact that optical data transmission can be done at enormous speeds. It is quite evident that people prefer optical communication when it comes to large amount of data involving its transmission. The concept of switching in networks has matured enormously with several researches, architecture to implement and methods starting with Optical circuit switching to Optical Burst Switching. Optical burst switching is regarded as viable solution for switching bursts over networks but has several security vulnerabilities. However, this work exploited the security issues associated with Optical Burst Switching with respect to integrity of burst. This proposed Quantum Key based Secure Hash Algorithm (QKBSHA-512) with enhanced compression function design provides better avalanche effect over the conventional integrity algorithms.

  5. All-fiber pulse shortening of passively Q-switched microchip laser pulses down to sub-200 fs.

    PubMed

    Lehneis, R; Steinmetz, A; Limpert, J; Tünnermann, A

    2014-10-15

    We present an all-fiber concept that generates ultrashort pulses using a passively Q-switched microchip seed laser. A proof-of-principle configuration combines nonlinear pulse compression applying a chirped fiber-Bragg-grating, dispersion-free pulse shortening by means of a fiber-integrated spectral filtering, and a final hollow-core-fiber compression to reach the sub-200-fs pulse-duration region. In a compact all-fiber pulse-shortening unit, initial 100 ps long microchip pulses at 1064 nm wavelength have been shortened to 174 fs and shifted to 1034 nm while preserving a high temporal quality.

  6. A low-latency optical switch architecture using integrated μm SOI-based contention resolution and switching

    NASA Astrophysics Data System (ADS)

    Mourgias-Alexandris, G.; Moralis-Pegios, M.; Terzenidis, N.; Cherchi, M.; Harjanne, M.; Aalto, T.; Vyrsokinos, K.; Pleros, N.

    2018-02-01

    The urgent need for high-bandwidth and high-port connectivity in Data Centers has boosted the deployment of optoelectronic packet switches towards bringing high data-rate optics closer to the ASIC, realizing optical transceiver functions directly at the ASIC package for high-rate, low-energy and low-latency interconnects. Even though optics can offer a broad range of low-energy integrated switch fabrics for replacing electronic switches and seamlessly interface with the optical I/Os, the use of energy- and latency-consuming electronic SerDes continues to be a necessity, mainly dictated by the absence of integrated and reliable optical buffering solutions. SerDes undertakes the role of optimally synergizing the lower-speed electronic buffers with the incoming and outgoing optical streams, suggesting that a SerDes-released chip-scale optical switch fabric can be only realized in case all necessary functions including contention resolution and switching can be implemented on a common photonic integration platform. In this paper, we demonstrate experimentally a hybrid Broadcast-and-Select (BS) / wavelength routed optical switch that performs both the optical buffering and switching functions with μm-scale Silicon-integrated building blocks. Optical buffering is carried out in a silicon-integrated variable delay line bank with a record-high on-chip delay/footprint efficiency of 2.6ns/mm2 and up to 17.2 nsec delay capability, while switching is executed via a BS design and a silicon-integrated echelle grating, assisted by SOA-MZI wavelength conversion stages and controlled by a FPGA header processing module. The switch has been experimentally validated in a 3x3 arrangement with 10Gb/s NRZ optical data packets, demonstrating error-free switching operation with a power penalty of <5dB.

  7. Compact sub-nanosecond pulse seed source with diode laser driven by a high-speed circuit

    NASA Astrophysics Data System (ADS)

    Wang, Xiaoqian; Wang, Bo; Wang, Junhua; Cheng, Wenyong

    2018-06-01

    A compact sub-nanosecond pulse seed source with 1550 nm diode laser (DL) was obtained by employing a high-speed circuit. The circuit mainly consisted of a short pulse generator and a short pulse driver. The short pulse generator, making up of a complex programmable logic device (CPLD), a level translator, two programmable delay chips and an AND gate chip, output a triggering signal to control metal-oxide-semiconductor field-effect transistor (MOSFET) switch of the short pulse driver. The MOSFET switch with fast rising time and falling time both shorter than 1 ns drove the DL to emit short optical pulses. Performances of the pulse seed source were tested. The results showed that continuously adjustable repetition frequency ranging from 500 kHz to 100 MHz and pulse duration in the range of 538 ps to 10 ns were obtained, respectively. 537 μW output was obtained at the highest repetition frequency of 100 MHz with the shortest pulse duration of 538 ps. These seed pulses were injected into an fiber amplifier, and no optical pulse distortions were found.

  8. Watt-level passively Q-switched heavily Er3+-doped ZBLAN fiber laser with a semiconductor saturable absorber mirror

    PubMed Central

    Shen, Yanlong; Wang, Yishan; Luan, Kunpeng; Huang, Ke; Tao, Mengmeng; Chen, Hongwei; Yi, Aiping; Feng, Guobin; Si, Jinhai

    2016-01-01

    A diode-cladding pumped mid-infrared passively Q-switched Er3+-doped ZBLAN fiber laser with an average output power of watt-level based on a semiconductor saturable absorber mirror (SESAM) is demonstrated. Stable pulse train was produced at a slope efficiency of 17.8% with respect to launched pump power. The maximum average power of 1.01 W at a repetition rate of 146.3 kHz was achieved with a corresponding pulse energy of 6.9 μJ, from which the maximum peak power was calculated to be 21.9 W. To the best of our knowledge, the average power and the peak power are the highest in 3 μm region passively Q-switched fiber lasers. The influence of gain fiber length on the operation regime of the fiber laser has been investigated in detail. PMID:27225029

  9. An autonomous recovery mechanism against optical distribution network failures in EPON

    NASA Astrophysics Data System (ADS)

    Liem, Andrew Tanny; Hwang, I.-Shyan; Nikoukar, AliAkbar

    2014-10-01

    Ethernet Passive Optical Network (EPON) is chosen for servicing diverse applications with higher bandwidth and Quality-of-Service (QoS), starting from Fiber-To-The-Home (FTTH), FTTB (business/building) and FTTO (office). Typically, a single OLT can provide services to both residential and business customers on the same Optical Line Terminal (OLT) port; thus, any failures in the system will cause a great loss for both network operators and customers. Network operators are looking for low-cost and high service availability mechanisms that focus on the failures that occur within the drop fiber section because the majority of faults are in this particular section. Therefore, in this paper, we propose an autonomous recovery mechanism that provides protection and recovery against Drop Distribution Fiber (DDF) link faults or transceiver failure at the ONU(s) in EPON systems. In the proposed mechanism, the ONU can automatically detect any signal anomalies in the physical layer or transceiver failure, switching the working line to the protection line and sending the critical event alarm to OLT via its neighbor. Each ONU has a protection line, which is connected to the nearest neighbor ONU, and therefore, when failure occurs, the ONU can still transmit and receive data via the neighbor ONU. Lastly, the Fault Dynamic Bandwidth Allocation for recovery mechanism is presented. Simulation results show that our proposed autonomous recovery mechanism is able to maintain the overall QoS performance in terms of mean packet delay, system throughput, packet loss and EF jitter.

  10. Scintillation probe with photomultiplier tube saturation indicator

    DOEpatents

    Ruch, Jeffrey F.; Urban, David J.

    1996-01-01

    A photomultiplier tube saturation indicator is formed by supplying a supplemental light source, typically an light emitting diode (LED), adjacent to the photomultiplier tube. A switch allows the light source to be activated. The light is forwarded to the photomultiplier tube by an optical fiber. If the probe is properly light tight, then a meter attached to the indicator will register the light from the LED. If the probe is no longer light tight, and the saturation indicator is saturated, no signal will be registered when the LED is activated.

  11. NASA Tech Briefs, October 2007

    NASA Technical Reports Server (NTRS)

    2007-01-01

    Topics covered include; Wirelessly Interrogated Position or Displacement Sensors; Ka-Band Radar Terminal Descent Sensor; Metal/Metal Oxide Differential Electrode pH Sensors; Improved Sensing Coils for SQUIDs; Inductive Linear-Position Sensor/Limit-Sensor Units; Hilbert-Curve Fractal Antenna With Radiation- Pattern Diversity; Single-Camera Panoramic-Imaging Systems; Interface Electronic Circuitry for an Electronic Tongue; Inexpensive Clock for Displaying Planetary or Sidereal Time; Efficient Switching Arrangement for (N + 1)/N Redundancy; Lightweight Reflectarray Antenna for 7.115 and 32 GHz; Opto-Electronic Oscillator Using Suppressed Phase Modulation; Alternative Controller for a Fiber-Optic Switch; Strong, Lightweight, Porous Materials; Nanowicks; Lightweight Thermal Protection System for Atmospheric Entry; Rapid and Quiet Drill; Hydrogen Peroxide Concentrator; MMIC Amplifiers for 90 to 130 GHz; Robot Would Climb Steep Terrain; Measuring Dynamic Transfer Functions of Cavitating Pumps; Advanced Resistive Exercise Device; Rapid Engineering of Three-Dimensional, Multicellular Tissues With Polymeric Scaffolds; Resonant Tunneling Spin Pump; Enhancing Spin Filters by Use of Bulk Inversion Asymmetry; Optical Magnetometer Incorporating Photonic Crystals; WGM-Resonator/Tapered-Waveguide White-Light Sensor Optics; Raman-Suppressing Coupling for Optical Parametric Oscillator; CO2-Reduction Primary Cell for Use on Venus; Cold Atom Source Containing Multiple Magneto- Optical Traps; POD Model Reconstruction for Gray-Box Fault Detection; System for Estimating Horizontal Velocity During Descent; Software Framework for Peer Data-Management Services; Autogen Version 2.0; Tracking-Data-Conversion Tool; NASA Enterprise Visual Analysis; Advanced Reference Counting Pointers for Better Performance; C Namelist Facility; and Efficient Mosaicking of Spitzer Space Telescope Images.

  12. Efficient visible and UV generation by frequency conversion of a mode-filtered fiber amplifier

    NASA Astrophysics Data System (ADS)

    Kliner, Dahv A. V.; Di Teodoro, Fabio; Koplow, Jeffrey P.; Moore, Sean W.; Smith, Arlee V.

    2003-07-01

    We have generated the second, third, fourth, and fifth harmonics of the output of a Yb-doped fiber amplifier seeded by a passively Q-switched Nd:YAG microchip laser. The fiber amplifier employed multimode fiber (25 μm core diameter, V ~ 7.4) to provide high-peak-power pulses, but diffraction-limited beam quality was obtained by use of bend-loss-induced mode filtering. The amplifier output had a pulse duration of 0.97 ns and smooth, transform-limited temporal and spectral profiles (~500 MHz linewidth). We obtained high nonlinear conversion efficiencies using a simple optical arrangement and critically phase-matched crystals. Starting with 320 mW of average power at 1064 nm (86 ´J per pulse at a 3.7 kHz repetition rate), we generated 160 mW at 532 nm, 38 mW at 355 nm, 69 mW at 266 nm, and 18 mW at 213 nm. The experimental results are in excellent agreement with calculations. Significantly higher visible and UV powers will be possible by operating the fiber amplifier at higher repetition rates and pulse energies and by further optimizing the nonlinear conversion scheme.

  13. Nonlinear optical polymers for electro-optic signal processing

    NASA Technical Reports Server (NTRS)

    Lindsay, Geoffrey A.

    1991-01-01

    Photonics is an emerging technology, slated for rapid growth in communications systems, sensors, imagers, and computers. Its growth is driven by the need for speed, reliability, and low cost. New nonlinear polymeric materials will be a key technology in the new wave of photonics devices. Electron-conjubated polymeric materials offer large electro-optic figures of merit, ease of processing into films and fibers, ruggedness, low cost, and a plethora of design options. Several new broad classes of second-order nonlinear optical polymers were developed at the Navy's Michelson Laboratory at China Lake, California. Polar alignment in thin film waveguides was achieved by electric-field poling and Langmuir-Blodgett processing. Our polymers have high softening temperatures and good aging properties. While most of the films can be photobleached with ultraviolet (UV) light, some have excellent stability in the 500-1600 nm range, and UV stability in the 290-310 nm range. The optical nonlinear response of these polymers is subpicosecond. Electro-optic switches, frequency doublers, light modulators, and optical data storage media are some of the device applications anticipated for these polymers.

  14. Metal-Coated Optical Fibers for High Temperature Applications

    NASA Technical Reports Server (NTRS)

    Zeakes, Jason; Murphy, Kent; Claus, Richard; Greene, Jonathan; Tran, Tuan

    1996-01-01

    This poster will highlight on-going research at the Virginia Tech Fiber & Electro-Optics Research Center (FEORC) in the area of thin films on optical fibers. Topics will include the sputter deposition of metals and metal; alloys onto optical fiber and fiber optic sensors for innovative applications. Specific information will be available on thin film fiber optic hydrogen sensors, corrosion sensors, and metal-coated optical fiber for high temperature aerospace applications.

  15. Fiber optics: A research paper

    NASA Technical Reports Server (NTRS)

    Drone, Melinda M.

    1987-01-01

    Some basic aspects concerning fiber optics are examined. Some history leading up to the development of optical fibers which are now used in the transmission of data in many areas of the world is discussed. Basic theory of the operation of fiber optics is discussed along with methods for improving performance of the optical fiber through much research and design. Splices and connectors are compared and short haul and long haul fiber optic networks are discussed. Fiber optics plays many roles in the commercial world. The use of fiber optics for communication applications is emphasized.

  16. Fiber optic connector

    DOEpatents

    Rajic, Slobodan; Muhs, Jeffrey D.

    1996-01-01

    A fiber optic connector and method for connecting composite materials within which optical fibers are imbedded. The fiber optic connector includes a capillary tube for receiving optical fibers at opposing ends. The method involves inserting a first optical fiber into the capillary tube and imbedding the unit in the end of a softened composite material. The capillary tube is injected with a coupling medium which subsequently solidifies. The composite material is machined to a desired configuration. An external optical fiber is then inserted into the capillary tube after fluidizing the coupling medium, whereby the optical fibers are coupled.

  17. Initial Performance Evaluation of Optical Fibers and Sensors Under High-Energy Electron Beam Irradiation

    NASA Astrophysics Data System (ADS)

    Palmer, Matthew E.; Slusher, David; Fielder, Robert S.

    2006-01-01

    In this paper, recent work on the performance of optical fiber, fiber optic sensors, and fiber optic connectors under the influence of a high-energy electron beam is presented. Electron beam irradiation is relevant for the Jupiter Icy Moons Orbiter (JIMO) mission due to the high electron radiation environment surrounding Jupiter. As an initial feasibility test, selected optical fiber components were exposed to dose levels relevant to the Jupiter environment. Three separate fiber types were used: one series consisted of pure silica core fiber, two other series consisted of different levels of Germania-doped fiber. Additionally, a series of fused silica Extrinsic Fabry-Perot Interferometer (EFPI)-based fiber optic sensors and two different types of fiber optic connectors were tested. Two types of fiber coatings were evaluated: acrylate and polyimide. All samples were exposed to three different dose levels: 2 MRad, 20 MRad, and 50 MRad. Optical loss measurements were made on the optical fiber spools as a function of wavelength between 750 and 1750nm at periodic intervals up to 75 hrs after exposure. Attenuation is minimal and wavelength-dependent. Fiber optic sensors were evaluated using a standard EFPI sensor readout and diagnostic system. Optical connectors and optical fiber coatings were visually inspected for degradation. Additionally, tensile testing and minimum bend radius testing was conducted on the fibers. Initial loss measurements indicate a low-level of induced optical attenuation in the fiber which recovers with time. The fiber optic sensors exhibited no observable degradation after exposure. The optical fiber connectors and coatings also showed no observable degradation. In addition to harsh environment survivability, fiber optic sensors offer a number of intrinsic advantages for space nuclear power applications including extremely low mass, immunity to electromagnetic interference, self diagnostics / prognostics, and smart sensor capability. Deploying fiber optic sensors on future space exploration missions would provide a substantial improvement in spacecraft instrumentation.

  18. An all-optical switch based on a surface plasmon polariton resonator

    NASA Astrophysics Data System (ADS)

    Pan, Zijuan; Lang, Peilin; Duan, Gaoyan

    2018-04-01

    All-optical switch is one of the key parts of optical circuit. We employ a temperature-sensitive resonator to form an optical switch. The resonator deforms under the applied light and adjusts the transmittance of the structure. To our knowledge, this is the first design of an all-optical surface plasmon polariton (SPP) switch based on the heat deformation effect.

  19. International Conference on Integrated Optical Circuit Engineering, 1st, Cambridge, MA, October 23-25, 1984, Proceedings

    NASA Astrophysics Data System (ADS)

    Ostrowsky, D. B.; Sriram, S.

    Aspects of waveguide technology are explored, taking into account waveguide fabrication techniques in GaAs/GaAlAs, the design and fabrication of AlGaAs/GaAs phase couplers for optical integrated circuit applications, ion implanted GaAs integrated optics fabrication technology, a direct writing electron beam lithography based process for the realization of optoelectronic integrated circuits, and advances in the development of semiconductor integrated optical circuits for telecommunications. Other subjects examined are related to optical signal processing, optical switching, and questions of optical bistability and logic. Attention is given to acousto-optic techniques in integrated optics, acousto-optic Bragg diffraction in proton exchanged waveguides, optical threshold logic architectures for hybrid binary/residue processors, integrated optical modulation and switching, all-optic logic devices for waveguide optics, optoelectronic switching, high-speed photodetector switching, and a mechanical optical switch.

  20. Photonic band gap materials: towards an all-optical transistor

    NASA Astrophysics Data System (ADS)

    Florescu, Marian

    2002-05-01

    The transmission of information as optical signals encoded on light waves traveling through optical fibers and optical networks is increasingly moving to shorter and shorter distance scales. In the near future, optical networking is poised to supersede conventional transmission over electric wires and electronic networks for computer-to-computer communications, chip-to-chip communications, and even on-chip communications. The ever-increasing demand for faster and more reliable devices to process the optical signals offers new opportunities in developing all-optical signal processing systems (systems in which one optical signal controls another, thereby adding "intelligence" to the optical networks). All-optical switches, two-state and many-state all-optical memories, all-optical limiters, all-optical discriminators and all-optical transistors are only a few of the many devices proposed during the last two decades. The "all-optical" label is commonly used to distinguish the devices that do not involve dissipative electronic transport and require essentially no electrical communication of information. The all-optical transistor action was first observed in the context of optical bistability [1] and consists in a strong differential gain regime, in which, for small variations in the input intensity, the output intensity has a very strong variation. This analog operation is for all-optical input what transistor action is for electrical inputs.

  1. Fiber distributed feedback laser

    NASA Technical Reports Server (NTRS)

    Elachi, C.; Evans, G. A.; Yeh, C. (Inventor)

    1976-01-01

    Utilizing round optical fibers as communication channels in optical communication networks presents the problem of obtaining a high efficiency coupling between the optical fiber and the laser. A laser is made an integral part of the optical fiber channel by either diffusing active material into the optical fiber or surrounding the optical fiber with the active material. Oscillation within the active medium to produce lasing action is established by grating the optical fiber so that distributed feedback occurs.

  2. Picosecond 1064-nm fiber laser with tunable pulse width and low timing jitter

    NASA Astrophysics Data System (ADS)

    Tian, Wenyan; Zhang, Shukui

    2018-02-01

    We report an all-fiber, linearly polarized, 1.1-W, 1064-nm fiber laser based on a two-stage Ytterbium-doped fiber amplifier seeded by a gain-switched diode laser with tunable pulse width from 21 to 200 ps at repetition rates of 0.5-1.5 GHz. Timing jitter of our 1064-nm fiber laser was measured to be 0.60 ps over 10 Hz-40 MHz when the gain-switched diode laser was operated at a repetition rate of 0.5, 1, and 1.5 GHz. The fiber laser offers an excellent long term power stability of +/- 0.3% and wavelength stability of +/- 0.01 nm over 8 hours

  3. Highly integrated 3×3 silicon thermo-optical switch using a single combined phase shifter for optical interconnects.

    PubMed

    Wang, Wanjun; Zhou, Haifeng; Yang, Jianyi; Wang, Minghua; Jiang, Xiaoqing

    2012-06-15

    We report on an experimental 3×3 thermo-optical switch on silicon on insulator. By controlling a single combined phase shifter, light from any input waveguide can be directed to any output waveguide, showing a simple control method and highly integrated structure as compared to the conventional multiway optical switches. Furthermore, the proposed optical switch can be generalized to be a 1×N and N×N optical switch without an extra phase shifter. The switch is fabricated by complementary metal oxide semiconductor technology. By experiment, full 3×3 switching functionality is demonstrated at a wavelength of 1.55 μm, with an average cross talk of -11.1  dB and a power consumption of 97.5 mW.

  4. Analysis of optical route in a micro high-speed magneto-optic switch

    NASA Astrophysics Data System (ADS)

    Weng, Zihua; Yang, Guoguang; Huang, Yuanqing; Chen, Zhimin; Zhu, Yun; Wu, Jinming; Lin, Shufen; Mo, Weiping

    2005-02-01

    A novel micro high-speed 2x2 magneto-optic switch and its optical route, which is used in high-speed all-optical communication network, is designed and analyzed in this paper. The study of micro high-speed magneto-optic switch mainly involves the optical route and high-speed control technique design. The optical route design covers optical route design of polarization in optical switch, the performance analysis and material selection of magneto-optic crystal and magnetic path design in Faraday rotator. The research of high-speed control technique involves the study of nanosecond pulse generator, high-speed magnetic field and its control technique etc. High-speed current transients from nanosecond pulse generator are used to switch the magnetization of the magneto-optic crystal, which propagates a 1550nm optical beam. The optical route design schemes and electronic circuits of high-speed control technique are both simulated on computer and test by the experiments respectively. The experiment results state that the nanosecond pulse generator can output the pulse with rising edge time 3~35ns, voltage amplitude 10~90V and pulse width 10~100ns. Under the control of CPU singlechip, the optical beam can be stably switched and the switching time is less than 1μs currently.

  5. Enhanced dielectric-wall linear accelerator

    DOEpatents

    Sampayan, S.E.; Caporaso, G.J.; Kirbie, H.C.

    1998-09-22

    A dielectric-wall linear accelerator is enhanced by a high-voltage, fast e-time switch that includes a pair of electrodes between which are laminated alternating layers of isolated conductors and insulators. A high voltage is placed between the electrodes sufficient to stress the voltage breakdown of the insulator on command. A light trigger, such as a laser, is focused along at least one line along the edge surface of the laminated alternating layers of isolated conductors and insulators extending between the electrodes. The laser is energized to initiate a surface breakdown by a fluence of photons, thus causing the electrical switch to close very promptly. Such insulators and lasers are incorporated in a dielectric wall linear accelerator with Blumlein modules, and phasing is controlled by adjusting the length of fiber optic cables that carry the laser light to the insulator surface. 6 figs.

  6. Enhanced dielectric-wall linear accelerator

    DOEpatents

    Sampayan, Stephen E.; Caporaso, George J.; Kirbie, Hugh C.

    1998-01-01

    A dielectric-wall linear accelerator is enhanced by a high-voltage, fast e-time switch that includes a pair of electrodes between which are laminated alternating layers of isolated conductors and insulators. A high voltage is placed between the electrodes sufficient to stress the voltage breakdown of the insulator on command. A light trigger, such as a laser, is focused along at least one line along the edge surface of the laminated alternating layers of isolated conductors and insulators extending between the electrodes. The laser is energized to initiate a surface breakdown by a fluence of photons, thus causing the electrical switch to close very promptly. Such insulators and lasers are incorporated in a dielectric wall linear accelerator with Blumlein modules, and phasing is controlled by adjusting the length of fiber optic cables that carry the laser light to the insulator surface.

  7. Fiber optic voice/data network

    NASA Technical Reports Server (NTRS)

    Bergman, Larry A. (Inventor)

    1989-01-01

    An asynchronous, high-speed, fiber optic local area network originally developed for tactical environments with additional benefits for other environments such as spacecraft, and the like. The network supports ordinary data packet traffic simultaneously with synchronous T1 voice traffic over a common token ring channel; however, the techniques and apparatus of this invention can be applied to any deterministic class of packet data networks, including multitier backbones, that must transport stream data (e.g., video, SAR, sensors) as well as data. A voice interface module parses, buffers, and resynchronizes the voice data to the packet network employing elastic buffers on both the sending and receiving ends. Voice call setup and switching functions are performed external to the network with ordinary PABX equipment. Clock information is passed across network boundaries in a token passing ring by preceeding the token with an idle period of non-transmission which allows the token to be used to re-establish a clock synchronized to the data. Provision is made to monitor and compensate the elastic receiving buffers so as to prevent them from overflowing or going empty.

  8. The First Geodetic VLBI Field Test of LIFT: A 550-km-long Optical Fiber Link for Remote Antenna Synchronization

    NASA Astrophysics Data System (ADS)

    Perini, Federico; Bortolotti, Claudio; Roma, Mauro; Ambrosini, Roberto; Negusini, Monia; Maccaferri, Giuseppe; Stagni, Matteo; Nanni, Mauro; Clivati, Cecilia; Frittelli, Matteo; Mura, Alberto; Levi, Filippo; Zucco, Massimo; Calonico, Davide; Bertarini, Alessandra; Artz, Thomas

    2016-12-01

    We present the first field test of the implementation of a coherent optical fiber link for remote antenna synchronization realized in Italy between the Italian Metrological Institute (INRIM) and the Medicina radio observatory of the National Institute for Astrophysics (INAF). The Medicina VLBI antenna participated in the EUR137 experiment carried out in September 2015 using, as reference systems, both the local H-maser and a remote H-maser hosted at the INRIM labs in Turin, separated by about 550 km. In order to assess the quality of the remote clock, the observed radio sources were split into two sets, using either the local or the remote H-maser. A system to switch automatically between the two references was integrated into the antenna field system. The observations were correlated in Bonn and preliminary results are encouraging since fringes were detected with both time references along the full 24 hours of the session. The experimental set-up, the results, and the perspectives for future radio astronomical and geodetic experiments are presented.

  9. All-optical switching for 10-Gb/s packet data by using an ultralow-power optical bistability of photonic-crystal nanocavities.

    PubMed

    Nozaki, Kengo; Lacraz, Amedee; Shinya, Akihiko; Matsuo, Shinji; Sato, Tomonari; Takeda, Koji; Kuramochi, Eiichi; Notomi, Masaya

    2015-11-16

    An all-optical packet switching using bistable photonic crystal nanocavity memories was demonstrated for the first time. Nanocavity-waveguide coupling systems were configured for 1 × 1, 1 × 2, and 1 × 3 switches for 10-Gb/s optical packet, and they were all operated with an optical bias power of only a few μW. The power is several magnitudes lower than that of previously reported all-optical packet switches incorporating all-optical memories. A theoretical investigation indicated the optimum design for reducing the power consumption even further, and for realizing a higher data-rate capability and higher extinction. A small footprint and integrability are also features of our switches, which make them attractive for constructing an all-optical packet switching subsystem with a view to realizing optical routing on a chip.

  10. Fiber optic monitoring device

    DOEpatents

    Samborsky, James K.

    1993-01-01

    A device for the purpose of monitoring light transmissions in optical fibers comprises a fiber optic tap that optically diverts a fraction of a transmitted optical signal without disrupting the integrity of the signal. The diverted signal is carried, preferably by the fiber optic tap, to a lens or lens system that disperses the light over a solid angle that facilitates viewing. The dispersed light indicates whether or not the monitored optical fiber or system of optical fibers is currently transmitting optical information.

  11. Fiber optic connector

    DOEpatents

    Rajic, S.; Muhs, J.D.

    1996-10-22

    A fiber optic connector and method for connecting composite materials within which optical fibers are imbedded are disclosed. The fiber optic connector includes a capillary tube for receiving optical fibers at opposing ends. The method involves inserting a first optical fiber into the capillary tube and imbedding the unit in the end of a softened composite material. The capillary tube is injected with a coupling medium which subsequently solidifies. The composite material is machined to a desired configuration. An external optical fiber is then inserted into the capillary tube after fluidizing the coupling medium, whereby the optical fibers are coupled. 3 figs.

  12. All fiber passively Q-switched laser

    DOEpatents

    Soh, Daniel B. S.; Bisson, Scott E

    2015-05-12

    Embodiments relate to an all fiber passively Q-switched laser. The laser includes a large core doped gain fiber having a first end. The large core doped gain fiber has a first core diameter. The laser includes a doped single mode fiber (saturable absorber) having a second core diameter that is smaller than the first core diameter. The laser includes a mode transformer positioned between a second end of the large core doped gain fiber and a first end of the single mode fiber. The mode transformer has a core diameter that transitions from the first core diameter to the second core diameter and filters out light modes not supported by the doped single mode fiber. The laser includes a laser cavity formed between a first reflector positioned adjacent the large core doped gain fiber and a second reflector positioned adjacent the doped single mode fiber.

  13. Development, implementation, and test results on integrated optics switching matrix

    NASA Technical Reports Server (NTRS)

    Rutz, E.

    1982-01-01

    A small integrated optics switching matrix, which was developed, implemented, and tested, indicates high performance. The matrix serves as a model for the design of larger switching matrices. The larger integrated optics switching matrix should form the integral part of a switching center with high data rate throughput of up to 300 megabits per second. The switching matrix technique can accomplish the design goals of low crosstalk and low distortion. About 50 illustrations help explain and depict the many phases of the integrated optics switching matrix. Many equations used to explain and calculate the experimental data are also included.

  14. Flexible-rate optical packet generation/detection and label swapping for optical label switching networks

    NASA Astrophysics Data System (ADS)

    Wu, Zhongying; Li, Juhao; Tian, Yu; Ge, Dawei; Zhu, Paikun; Chen, Yuanxiang; Chen, Zhangyuan; He, Yongqi

    2017-03-01

    In recent years, optical label switching (OLS) gains lots of attentions due to its intrinsic advantages to implement protocol, bit-rate, granularity and data format transparency packet switching. In this paper, we propose a novel scheme to realize flexible-rate optical packet switching for OLS networks. At the transmitter node, flexible-rate packet is generated by parallel modulating different combinations of optical carriers generated from the optical multi-carrier generator (OMCG), among which the low-speed optical label occupies one carrier. At the switching node, label is extracted and re-generated in label processing unit (LPU). The payloads are switched based on routing information and new label is added after switching. At the receiver node, another OMCG serves as local oscillators (LOs) for optical payloads coherent detection. The proposed scheme offers good flexibility for dynamic optical packet switching by adjusting the payload bandwidth and could also effectively reduce the number of lasers, modulators and receivers for packet generation/detection. We present proof-of-concept demonstrations of flexible-rate packet generation/detection and label swapping in 12.5 GHz grid. The influence of crosstalk for cascaded label swapping is also investigated.

  15. Saturable absorber Q- and gain-switched all-Yb3+ all-fiber laser at 976 and 1064 nm.

    PubMed

    Tsai, Tzong-Yow; Fang, Yen-Cheng; Huang, Huai-Min; Tsao, Hong-Xi; Lin, Shih-Ting

    2010-11-08

    We demonstrate a novel passively pulsed all-Yb3+ all-fiber laser pumped by a continuous-wave 915-nm pump laser diode. The laser was saturable absorber Q-switched at 976 nm and gain-switched at 1064 nm, using the method of mode-field-area mismatch. With a pump power of 
105 mW, the laser iteratively produced a 976-nm pulse with an energy of 2.8 μJ and a duration of 280 ns, followed by a 1064-nm pulse with 1.1 μJ and a 430-ns duration at a repetition rate of 9 kHz. A set of rate equations was established to simulate the self-balancing mechanism and the correlation between the Q- and gain-switched photon numbers and the populations of the gain and absorber fibers.

  16. Fiber optic and laser sensors IV; Proceedings of the Meeting, Cambridge, MA, Sept. 22-24, 1986

    NASA Technical Reports Server (NTRS)

    De Paula, Ramon P. (Editor); Udd, Eric (Editor)

    1987-01-01

    The conference presents papers on industrial uses of fiber optic sensors, point and distributed polarimetric optical fiber sensors, fiber optic electric field sensor technology, micromachined resonant structures, single-mode fibers for sensing applications, and measurement techniques for magnetic field gradient detection. Consideration is also given to electric field meter and temperature measurement techniques for the power industry, the calibration of high-temperature fiber-optic microbend pressure transducers, and interferometric sensors for dc measurands. Other topics include the recognition of colors and collision avoidance in robotics using optical fiber sensors, the loss compensation of intensity-modulating fiber-optic sensors, and an embedded optical fiber strain tensor for composite structure applications.

  17. Simple ps microchip Nd:YVO4 laser with 3.3-ps pulses at 0.2 to 1.4 MHz and single-stage amplification to the microjoule level

    NASA Astrophysics Data System (ADS)

    Türkyilmaz, Erdal; Lohbreier, Jan; Günther, Christian; Mehner, Eva; Kopf, Daniel; Giessen, Harald; Braun, Bernd

    2016-06-01

    Commercial picosecond sources have found widespread applications. Typical system parameters are pulse widths below 20 ps, repetition rates between 0.1 and 2 MHz, and microjoule level pulse energies. Most systems are based on short pulse mode-locked oscillators, regenerative amplifiers, and pockel cells as active beam switches. In contrast, we present a completely passive system, consisting of a passively Q-switched microchip laser, a single-stage amplifier, and a pulse compressor. The Q-switched microchip laser has a 50-μm-long Nd:YVO4 gain material optically bonded to a 4.6-mm-thick undoped YVO4 crystal. It delivers pulse widths of 40 ps and repetition rates of 0.2 to 1.4 MHz at a wavelength of 1.064 μm. The pulse energy is a few nanojoule. These 40-ps pulses are spectrally broadened in a standard single-mode fiber and then compressed in a 24-mm-long chirped Bragg grating to as low as 3.3 ps. The repetition rate can be tuned from ˜0.2 to 1.4 MHz by changing the pump power, while the pulse width and the pulse energy from the microchip laser are unchanged. The spectral broadening in the fiber is observed throughout the pulse repetition rate, supporting sub-10-ps pulses. Finally, the pulses are amplified in a single-stage Nd:YVO4 amplifier up to the microjoule level (up to 4 μJ pulse energy). As a result, the system delivers sub-10-ps pulses at a microjoule level with about 1 MHz repetition rate, and thus fulfills the requirements for ps-micromachining. It does not contain any active switching elements and can be integrated in a very compact setup.

  18. Lithotripsy of gallstones by means of a quality-switched giant-pulse neodymium:yttrium-aluminum-garnet laser. Basic in vitro studies using a highly flexible fiber system.

    PubMed

    Hochberger, J; Gruber, E; Wirtz, P; Dürr, U; Kolb, A; Zanger, U; Hahn, E G; Ell, C

    1991-11-01

    The quality-switched neodymium:yttrium-aluminum-garnet laser represents a new instrument for athermal fragmentation of gallstones by transformation of optical energy into mechanical energy in the form of shock waves via local plasma formation. A highly flexible 300-micron fiber transmission system was used in basic investigations to determine the influence of varying pulse repetition rates (5-30 Hz) and pulse energies (15 and 20 mJ) on shock wave intensity and stone fragmentation in vitro for 105 biliary calculi of known size and chemical composition. After performance of 1200 shock wave pressure measurements using polyvinylidenefluoride hydrophones, stone fragmentation was analyzed by determination of fragment removal rates (volume of fragments removed per fragmentation time), ablation rates (mean volume removed per laser pulse), and median fragment sizes for each laser setting. With the quality-switched neodymium:yttrium-aluminum-garnet laser system, all concrements could be reliably disintegrated into small fragments (median diameter, 0.7-1.7 mm). Compared with pure cholesterol stones, a significantly higher fragment removal rate was achieved in cholesterol stones containing 30% calcium phosphate (P = 0.039), in cholesterol stones containing 20% pigment (P = 0.015), and in pure pigment stones (P = 0.007). Fragment removal rates, local shock wave pressures, and median grain sizes were significantly higher at a pulse energy of 20 mJ than with 15 mJ. Shock wave pressures showed a distinct dependence on pulse repetition rates at 20 mJ, yet not at 15 mJ. Because there is no evident hazard of thermal damage to tissue using the quality-switched neodymium:yttrium-aluminum-garnet laser, it appears to be a promising device for nonsurgical biliary stone therapy.

  19. Characterization of light transmissions in various optical fibers with proton beam

    NASA Astrophysics Data System (ADS)

    Song, Young Beom; Kim, Hye Jin; Kim, Mingeon; Lee, Bongsoo; Shin, Sang Hun; Yoo, Wook Jae; Jang, Kyoung Won; Hwang, Sung Won

    2017-12-01

    As a feasibility study on the development of a fiber-optic radiation sensor for proton therapy dosimetry, we characterized light transmissions of various commercial optical fibers such as silica and plastic based optical fibers by the irradiation of proton beams. In this study, we measured light transmission spectra of optical fibers as a function of absorbed doses of proton beams using a deuterium & tungsten halogen lamps and a spectrometer. To be used as a fiber-optic radiation sensor, the optical fibers should have the radiation resistant characteristics and provide stable output signals during the proton beam irradiation. In this study, we could select suitable optical fibers to be used in the fiber-optic radiation sensor without quenching effects for proton therapy dosimetry. As a result, the light transmittance of the optical fibers had decreasing trends with increasing absorbed dose as expected.

  20. Microstructure of the smart composite structures with embedded fiber optic sensing nerves

    NASA Astrophysics Data System (ADS)

    Liu, Jingyuan; Luo, Fei; Li, Changchun; Ma, Naibin

    1997-11-01

    The composite structures with embedded optical fiber sensors construct a smart composite structure system, which may have the characteristics of the in-service self-measurement, self- recognition and self-judgement action. In the present work, we studied the microstructures of carbon/epoxy composite laminates with embedded sensing optical fibers, and the integration of optical fiber with composites was also discussed. The preliminary experiment results show that because of the difference between the sensing optical fibers and the reinforcing fibers in their size, the microstructure of the composites with embedded optical fibers will produce partial local changes in the area of embedded optical fiber, these changes may affect the mechanical properties of composite structures. When the optical fibers are embedded parallel to the reinforcing fibers, due to the composite prepregs are formed under a press action during its curing process, the reinforcing fibers can be arranged equably around the optical fibers. But when the optical fibers are embedded perpendicularly to the reinforcement fibers, the resin rich pocket will appear in the composite laminates surrounding the embedded optical fiber. The gas holes will be easily produced in these zones which may produce a premature failure of the composite structure. The photoelastic experiments are also given in the paper.

  1. Tunable optical assembly with vibration dampening

    NASA Technical Reports Server (NTRS)

    Allison, Sidney G. (Inventor); Shams, Qamar A. (Inventor); Fox, Robert L. (Inventor); Fox, legal representative, Christopher L. (Inventor); Fox Chattin, legal representative, Melanie L. (Inventor)

    2009-01-01

    An optical assembly is formed by one or more piezoelectric fiber composite actuators having one or more optical fibers coupled thereto. The optical fiber(s) experiences strain when actuation voltage is applied to the actuator(s). Light passing through the optical fiber(s) is wavelength tuned by adjusting the actuation voltage.

  2. Optically-switched submillimeter-wave oscillator and radiator having a switch-to-switch propagation delay

    NASA Technical Reports Server (NTRS)

    Spencer, Michael G. (Inventor); Maserjian, Joseph (Inventor)

    1995-01-01

    A submillimeter wave-generating integrated circuit includes an array of N photoconductive switches biased across a common voltage source and an optical path difference from a common optical pulse of repetition rate f sub 0 providing a different optical delay to each of the switches. In one embodiment, each incoming pulse is applied to successive ones of the N switches with successive delays. The N switches are spaced apart with a suitable switch-to-switch spacing so as to generate at the output load or antenna radiation of a submillimeter wave frequency f on the order of N f sub 0. Preferably, the optical pulse has a repetition rate of at least 10 GHz and N is of the order of 100, so that the circuit generates radiation of frequency of the order of or greater than 1 Terahertz.

  3. A random Q-switched fiber laser

    PubMed Central

    Tang, Yulong; Xu, Jianqiu

    2015-01-01

    Extensive studies have been performed on random lasers in which multiple-scattering feedback is used to generate coherent emission. Q-switching and mode-locking are well-known routes for achieving high peak power output in conventional lasers. However, in random lasers, the ubiquitous random cavities that are formed by multiple scattering inhibit energy storage, making Q-switching impossible. In this paper, widespread Rayleigh scattering arising from the intrinsic micro-scale refractive-index irregularities of fiber cores is used to form random cavities along the fiber. The Q-factor of the cavity is rapidly increased by stimulated Brillouin scattering just after the spontaneous emission is enhanced by random cavity resonances, resulting in random Q-switched pulses with high brightness and high peak power. This report is the first observation of high-brightness random Q-switched laser emission and is expected to stimulate new areas of scientific research and applications, including encryption, remote three-dimensional random imaging and the simulation of stellar lasing. PMID:25797520

  4. Rapid constructions of microstructures for optical fiber sensors using a commercial CO2 laser system.

    PubMed

    Irawan, Rudi; Chuan, Tjin Swee; Meng, Tay Chia; Ming, Tan Khay

    2008-06-27

    Exposing an optical fiber core to the measurand surrounding the fiber is often used to enhance the sensitivity of an optical fiber sensor. This paper reports on the rapid fabrication of microstructures in an optical fiber using a CO₂ laser system which help exposing the optical fiber core to the measurand. The direct-write CO₂ laser system used is originally designed for engraving the polymeric material. Fabrications of microstructures such as in-fiber microhole, D-shaped fiber, in-fiber microchannel, side-sliced fiber and tapered fiber were attempted. The microstructures in the fibers were examined using a SEM and an optical microscope. Quality of microstructures shown by the SEM images and promising results from fluorescence sensor tests using in-fiber microchannels of 100μm width, 210μm depth and 10mm length show the prospect of this method for use in optical fiber sensor development. The direct-write CO₂ laser system is a flexible and fast machining tool for fabricating microstructures in an optical fiber, and can possibly be a replacement of the time consuming chemical etching and polishing methods used for microstructure fabrications of optical the fiber sensors reported in other literatures.

  5. Rapid Constructions of Microstructures for Optical Fiber Sensors Using a Commercial CO2 Laser System

    PubMed Central

    Irawan, Rudi; Chuan, Tjin Swee; Meng, Tay Chia; Ming, Tan Khay

    2008-01-01

    Exposing an optical fiber core to the measurand surrounding the fiber is often used to enhance the sensitivity of an optical fiber sensor. This paper reports on the rapid fabrication of microstructures in an optical fiber using a CO2 laser system which help exposing the optical fiber core to the measurand. The direct-write CO2 laser system used is originally designed for engraving the polymeric material. Fabrications of microstructures such as in-fiber microhole, D-shaped fiber, in-fiber microchannel, side-sliced fiber and tapered fiber were attempted. The microstructures in the fibers were examined using a SEM and an optical microscope. Quality of microstructures shown by the SEM images and promising results from fluorescence sensor tests using in-fiber microchannels of 100μm width, 210μm depth and 10mm length show the prospect of this method for use in optical fiber sensor development. The direct-write CO2 laser system is a flexible and fast machining tool for fabricating microstructures in an optical fiber, and can possibly be a replacement of the time consuming chemical etching and polishing methods used for microstructure fabrications of optical the fiber sensors reported in other literatures. PMID:19662114

  6. Free-Space Optical Switch Modules Using Risley Optical Beam Deflectors

    NASA Astrophysics Data System (ADS)

    Matsui, Takashi; Oohira, Fumikazu; Hosogi, Maho; Yamamoto, Tsuyoshi

    2006-03-01

    This paper describes new optical switch modules based on Risley optical beam deflectors. The Risley deflector consists of two wedge-shaped prisms and precisely controllable rotation mechanisms. An optical beam can be deflected to the direction of two axes by rotating each prism independently. The deflectors potentially have a self-latching function, which provides a reliable switching operation, and a large-deflection angle of 19.2°, which makes the switch compact. We experimentally confirmed that prototype switch modules, hardware volume: 15× 15× 31 mm3, deflection angle: <19.2°, have a scalability of the switch up to 256 ports, low-loss characteristics of 1.0-1.5 dB, and switching time of within 6 s.

  7. Fiber optic temperature sensor

    NASA Technical Reports Server (NTRS)

    Sawatari, Takeo (Inventor); Gaubis, Philip A. (Inventor)

    2000-01-01

    A fiber optic temperature sensor uses a light source which transmits light through an optical fiber to a sensor head at the opposite end of the optical fiber from the light source. The sensor head has a housing coupled to the end of the optical fiber. A metallic reflective surface is coupled to the housing adjacent the end of the optical fiber to form a gap having a predetermined length between the reflective surface and the optical fiber. A detection system is also coupled to the optical fiber which determines the temperature at the sensor head from an interference pattern of light which is reflected from the reflective surface.

  8. Fiber optic temperature sensor

    NASA Technical Reports Server (NTRS)

    Sawatari, Takeo (Inventor); Gaubis, Philip A. (Inventor); Mattes, Brenton L. (Inventor); Charnetski, Clark J. (Inventor)

    1999-01-01

    A fiber optic temperature sensor uses a light source which transmits light through an optical fiber to a sensor head at the opposite end of the optical fiber from the light source. The sensor head has a housing coupled to the end of the optical fiber. A metallic reflective surface is coupled to the housing adjacent the end of the optical fiber to form a gap having a predetermined length between the reflective surface and the optical fiber. A detection system is also coupled to the optical fiber which determines the temperature at the sensor head from an interference pattern of light which is reflected from the reflective surface.

  9. Ultra-fast all-optical plasmonic switching in near infra-red spectrum using a Kerr nonlinear ring resonator

    NASA Astrophysics Data System (ADS)

    Nurmohammadi, Tofiq; Abbasian, Karim; Yadipour, Reza

    2018-03-01

    In this paper, an all-optical plasmonic switch based on metal-insulator-metal (MIM) nanoplasmonic waveguide with a Kerr nonlinear ring resonator is introduced and studied. Two-dimensional simulations utilizing the finite-difference time-domain algorithm are used to demonstrate an apparent optical bistability and significant switching mechanisms (in enabled-low condition: T(ON/OFF) =21.9 and in enabled-high condition: T(ON/OFF) =24.9) of the signal light arisen by altering the pump-light intensity. The proposed all-optical switching demonstrates femtosecond-scale feedback time (90 fs) and then ultra-fast switching can be achieved. The offered all-optical switch may recognize potential significant applications in integrated optical circuits.

  10. Broadband tunable integrated CMOS pulser with 80-ps minimum pulse width for gain-switched semiconductor lasers.

    PubMed

    Chen, Shaoqiang; Diao, Shengxi; Li, Pengtao; Nakamura, Takahiro; Yoshita, Masahiro; Weng, Guoen; Hu, Xiaobo; Shi, Yanling; Liu, Yiqing; Akiyama, Hidefumi

    2017-07-31

    High power pulsed lasers with tunable pulse widths are highly favored in many applications. When combined with power amplification, gain-switched semiconductor lasers driven by broadband tunable electric pulsers can meet such requirements. For this reason, we designed and produced a low-cost integrated CMOS pulse generator with a minimum pulse width of 80 ps and a wide tuning range of up to 270 ns using a 40-nm microelectronic process technique. We used this pulser to drive a 1.3-µm semiconductor laser diode directly, and thereafter investigated the gain-switching properties of the laser system. The optical pulses consist of a spike followed by a steady state region. Tuning the width of the electrical pulse down to approximately 1.5 ns produces optical pulses consisting only of the spike, which has a minimum pulse-width of 100 ps. Moreover, the duration of the steady state can be tuned continuously by tuning the electrical pulse width, with a peak power of approximately 5 mW. The output voltage of the electric pulser has a tuning range of 0.8-1.5 V that can be used to directly drive semiconductor laser diodes with wavelengths in the near-infrared spectrum, which are suitable for power amplification with rare-earth doped fiber amplifiers.

  11. Mo0.5W0.5S2 for Q-switched pulse generation in ytterbium-doped fiber laser.

    PubMed

    Wang, Junli; Chen, Lei; Dou, Chenxi; Yan, Haiting; Meng, Lingjie; Wei, Zhiyi

    2018-06-01

    In this work, we fabricate the Mo 0.5 W 0.5 S 2 by microwave-assisted solvothermal method, and report the Q-switched Yb-doped fiber lasers (YDFL) using Mo 0.5 W 0.5 S 2 polymer film and tapered fiber as the saturable absorbers (SAs). The modulation depth and saturable intensity of the film SA are 5.63% and 6.82 MW cm -2 . The shortest pulse duration and the maximum single pulse energy are 1.22 μs and 148.8 nJ for the film SA, 1.46 μs and 339 nJ for the fiber-taper SA. To the best of our knowledge, this is the first report on the Q-switched YDFL using Mo 0.5 W 0.5 S 2 SAs.

  12. Mo0.5W0.5S2 for Q-switched pulse generation in ytterbium-doped fiber laser

    NASA Astrophysics Data System (ADS)

    Wang, Junli; Chen, Lei; Dou, Chenxi; Yan, Haiting; Meng, Lingjie; Wei, Zhiyi

    2018-06-01

    In this work, we fabricate the Mo0.5W0.5S2 by microwave-assisted solvothermal method, and report the Q-switched Yb-doped fiber lasers (YDFL) using Mo0.5W0.5S2 polymer film and tapered fiber as the saturable absorbers (SAs). The modulation depth and saturable intensity of the film SA are 5.63% and 6.82 MW cm‑2. The shortest pulse duration and the maximum single pulse energy are 1.22 μs and 148.8 nJ for the film SA, 1.46 μs and 339 nJ for the fiber-taper SA. To the best of our knowledge, this is the first report on the Q-switched YDFL using Mo0.5W0.5S2 SAs.

  13. Bi2Te3 based passively Q-switched at 1042.76 and 1047 nm wavelength

    NASA Astrophysics Data System (ADS)

    Salim, M. A. M.; Shaharuddin, R. A.; Ismail, M. A.; Harun, S. W.; Ahmad, H.; Azzuhri, Saaidal R.

    2017-12-01

    In this paper, we propose and demonstrate the generation of dual wavelength based photonic crystal fiber passively Q-switched using few-layer TI:Bi2Te3 (bismuth telluride) saturable absorbers in a 1 micron waveband. The system employs a few-layer bismuth, induced onto a fiber ferrule using a dry oven method. A centered dual-wavelength output at 1042.76 and 1047.0 nm was produced from the Ytterbium doped fiber laser setup by incorporating 10 cm of photonic crystal fiber and finely adjusting the polarization controller. The self-started Q-switch had a pump power of 132.15 mW and a frequency ranging from 3.79 to 15.63 kHz. Therefore, TI:Bi2Te3 was suitable as a potential broadband SA in a 1 micron region.

  14. Magneto-Optic Field Coupling in Optical Fiber Bragg Gratings

    NASA Technical Reports Server (NTRS)

    Carman, Gregory P. (Inventor); Mohanchandra, Panduranga K. (Inventor); Emmons, Michael C. (Inventor); Richards, William Lance (Inventor)

    2016-01-01

    The invention is a magneto-optic coupled magnetic sensor that comprises a standard optical fiber Bragg grating system. The system includes an optical fiber with at least one Bragg grating therein. The optical fiber has at least an inner core and a cladding that surrounds the inner core. The optical fiber is part of an optical system that includes an interrogation device that provides a light wave through the optical fiber and a system to determine the change in the index of refraction of the optical fiber. The cladding of the optical fiber comprises at least a portion of which is made up of ferromagnetic particles so that the ferromagnetic particles are subject to the light wave provided by the interrogation system. When a magnetic field is present, the ferromagnetic particles change the optical properties of the sensor directly.

  15. Acousto-optic RF signal acquisition system

    NASA Astrophysics Data System (ADS)

    Bloxham, Laurence H.

    1990-09-01

    This paper describes the architecture and performance of a prototype Acousto-Optic RF Signal Acquisition System designed to intercept, automatically identify, and track communication signals in the VHF band. The system covers 28.0 to 92.0 MHz with five manually selectable, dual conversion; 12.8 MHZ bandwidth front ends. An acousto-optic spectrum analyzer (AOSA) implemented using a tellurium dioxide (Te02) Bragg cell is used to channelize the 12.8 MHz pass band into 512 25 KHz channels. Polarization switching is used to suppress optical noise. Excellent isolation and dynamic range are achieved by using a linear array of 512 custom 40/50 micron fiber optic cables to collect the light at the focal plane of the AOSA and route the light to individual photodetectors. The photodetectors are operated in the photovoltaic mode to compress the greater than 60 dB input optical dynamic range into an easily processed electrical signal. The 512 signals are multiplexed and processed as a line in a video image by a customized digital image processing system. The image processor simultaneously analyzes the channelized signal data and produces a classical waterfall display.

  16. Retinotopic and temporal organization of the optic nerve and tracts in the adult goldfish.

    PubMed

    Bunt, S M

    1982-04-10

    In order to investigate the role of the different factors controlling the pathways and termination sites of growing axons, selected optic fibers were traced from the eye to the tectum in adult goldfish either by filling them with HRP, or by severing a group of fibers and tracing their degeneration in 2 micrometers plastic sections stained with toluidine blue. Some fish received more than one lesion and others received both lesions and HRP applications. Two major rearrangements of the optic fibers were identified, one at the exit from the eye, the other within the optic tracts. Near the eye the optic fibers appear to be guided by the conformation of the underlying tissue planes that they encounter. The most recently added fibers, from the peripheral retina, grow over the vitread surface of the older fibers toward the blood vessel in the center of the optic nerve head. Behind the eye the fibers follow this blood vessel until it leaves the side of the optic nerve, and the fibers from peripheral retina are left as a single group on the ventral edge of the optic nerve cross section. As a consequence of this pattern of fiber growth the fibers form an orderly temporal sequence in the optic nerve, with the oldest fibers from the central retina on one side of the nerve and the youngest from peripheral retina on the other. In addition, the fibers are ordered topographically at right angles to this central-to-peripheral axis, with fibers from ventral retina on each edge of the nerve, dorsal fibers in the center, and nasal and temporal fibers in between. This arrangement of the optic fibers continues with only a little loss of precision up to the optic tracts. A more radical fiber rearrangement, seemingly incompatible with the fibers simply following tissue planes occurs within the optic tracts. Each newly arriving set of fibers grows over the surface of the optic tracts so that the older fibers come to lie deepest in the tracts. This segregation of fibers of different ages ensures that the rearrangement is limited to each layer of fibers. The abrupt reorganization of the fibers occurs as the tracts split around the nucleus rotundus to form the brachia of the optic tracts. The fibers are then arranged with temporal fibers nearest the nucleus rotundus and nasal fibers on the opposite edges of the brachia. From this point the fibers grow out over the tectal surface to their termination sites with only minimal rearrangements. Therefore the optic fiber rearrangements show evidence of several different sorts of constraints acting on the fibers at separate points in the optic pathway, each contributing to the final orderly arrangement of the fibers on the optic tectum.

  17. Method for optical and mechanically coupling optical fibers

    DOEpatents

    Toeppen, J.S.

    1996-10-01

    A method and apparatus are disclosed for splicing optical fibers. A fluorescing solder glass frit having a melting point lower than the melting point of first and second optical fibers is prepared. The solder glass frit is then attached to the end of the first optical fiber and/or the end of the second optical fiber. The ends of the optical fibers are aligned and placed in close proximity to each other. The solder glass frit is then heated to a temperature which is lower than the melting temperature of the first and second optical fibers, but which is high enough to melt the solder glass frit. A force is applied to the first and second optical fibers pushing the ends of the fibers towards each other. As the solder glass flit becomes molten, the layer of molten solder glass is compressed into a thin layer between the first and second optical fibers. The thin compressed layer of molten solder glass is allowed to cool such that the first and second optical fibers are bonded to each other by the hardened layer of solder glass. 6 figs.

  18. Method for optical and mechanically coupling optical fibers

    DOEpatents

    Toeppen, John S.

    1996-01-01

    A method and apparatus for splicing optical fibers. A fluorescing solder glass frit having a melting point lower than the melting point of first and second optical fibers is prepared. The solder glass frit is then attached to the end of the first optical fiber and/or the end of the second optical fiber. The ends of the optical fibers are aligned and placed in close proximity to each other. The solder glass frit is then heated to a temperature which is lower than the melting temperature of the first and second optical fibers, but which is high enough to melt the solder glass frit. A force is applied to the first and second optical fibers pushing the ends of the fibers towards each other. As the solder glass flit becomes molten, the layer of molten solder glass is compressed into a thin layer between the first and second optical fibers. The thin compressed layer of molten solder glass is allowed to cool such that the first and second optical fibers are bonded to each other by the hardened layer of solder glass.

  19. Multi-channel measurement for hetero-core optical fiber sensor by using CMOS camera

    NASA Astrophysics Data System (ADS)

    Koyama, Yuya; Nishiyama, Michiko; Watanabe, Kazuhiro

    2015-07-01

    Fiber optic smart structures have been developed over several decades by the recent fiber optic sensor technology. Optical intensity-based sensors, which use LD or LEDs, can be suitable for the monitor system to be simple and cost effective. In this paper, a novel fiber optic smart structure with human-like perception has been demonstrated by using intensity-based hetero-core optical fiber sensors system with the CMOS detector. The optical intensity from the hetero-core optical fiber bend sensor is obtained as luminance spots indicated by the optical power distributions. A number of optical intensity spots are simultaneously readout by taking a picture of luminance pattern. To recognize the state of fiber optic smart structure with the hetero-core optical fibers, the template matching process is employed with Sum of Absolute Differences (SAD). A fiber optic smart glove having five optic fiber nerves have been employed to monitor hand postures. Three kinds of hand postures have been recognized by means of the template matching process. A body posture monitoring has also been developed by placing the wearable hetero-core optical fiber bend sensors on the body segments. In order for the CMOS system to be a human brain-like, the luminescent spots in the obtained picture were arranged to make the pattern corresponding to the position of body segments. As a result, it was successfully demonstrated that the proposed fiber optic smart structure could recognize eight kinds of body postures. The developed system will give a capability of human brain-like processing to the existing fiber optic smart structures.

  20. In-band pumped Q-switched fiber laser based on monolayer graphene

    NASA Astrophysics Data System (ADS)

    Wu, Hanshuo; Wu, Jian; Xiao, Hu; Leng, Jinyong; Xu, Jiangming; Zhou, Pu

    2017-06-01

    We propose and demonstrate an in-band pumped all-fiberized passively Q-switched laser emitting at 1080 nm. A single mode 1030 nm fiber laser is used as the pump source, while a 2D material, CVD-grown monolayer graphene, is adopted as a saturable absorber inside the ring cavity. The repetition rate of the output pulses can be varied from 12.74 to 24.6 kHz with the pulse duration around 12 µs. The maximum average output power is 34.25 mW, with the pulse energy of 1.392 µJ. This work proves the practicability of achieving passively Q-switched operation via in-band pump.

  1. The simultaneous generation of soliton bunches and Q-switched-like pulses in a partially mode-locked fiber laser with a graphene saturable absorber

    NASA Astrophysics Data System (ADS)

    Wang, Zhenhong; Wang, Zhi; Liu, Yan-ge; He, Ruijing; Wang, Guangdou; Yang, Guang; Han, Simeng

    2018-05-01

    We experimentally report the coexistence of soliton bunches and Q-switched-like pulses in a partially mode-locked fiber laser with a microfiber-based graphene saturable absorber. The soliton bunches, like isolated spikes with extreme amplitude and ultrashort duration, randomly generate in the background of the Q-switched-like pulses. The soliton bunches have some pulse envelopes in which pulses operate at a fundamental repetition rate in the temporal domain. Further investigation shows that the composite pulses are highly correlated with the noise-like pulses. Our work can make a further contribution to enrich the understanding of the nonlinear dynamics in fiber lasers.

  2. Optical fiber stripper positioning apparatus

    DOEpatents

    Fyfe, Richard W.; Sanchez, Jr., Amadeo

    1990-01-01

    An optical fiber positioning apparatus for an optical fiber stripping device is disclosed which is capable of providing precise axial alignment between an optical fiber to be stripped of its outer jacket and the cutting blades of a stripping device. The apparatus includes a first bore having a width approximately equal to the diameter of an unstripped optical fiber and a counter bore axially aligned with the first bore and dimensioned to precisely receive a portion of the stripping device in axial alignment with notched cutting blades within the stripping device to thereby axially align the notched cutting blades of the stripping device with the axis of the optical fiber to permit the notched cutting blades to sever the jacket on the optical fiber without damaging the cladding on the optical fiber. In a preferred embodiment, the apparatus further includes a fiber stop which permits determination of the length of jacket to be removed from the optical fiber.

  3. Watt-level passively Q-switched double-cladding fiber laser based on graphene oxide saturable absorber.

    PubMed

    Yu, Zhenhua; Song, Yanrong; Dong, Xinzheng; Li, Yanlin; Tian, Jinrong; Wang, Yonggang

    2013-10-10

    A watt-level passively Q-switched ytterbium-doped double-cladding fiber laser with a graphene oxide (GO) absorber was demonstrated. The structure of the GO saturable absorber mirror (GO-SAM) was of the sandwich type. A maximum output power of 1.8 W was obtained around a wavelength of 1044 nm. To the best of our knowledge, this is the highest output power in Q-switched fiber lasers based on a GO saturable absorber. The pure GO was protected from the oxygen in the air so that the damage threshold of the GO-SAM was effectively raised. The gain fiber was a D-shaped ytterbium-doped double-cladding fiber. The pulse repetition rates were tuned from 120 to 215 kHz with pump powers from 3.89 to 7.8 W. The maximum pulse energy was 8.37 μJ at a pulse width of 1.7 μs.

  4. Role of Frontotemporal Fiber Tract Integrity in Task-Switching Performance of Healthy Controls and Patients with Temporal Lobe Epilepsy

    PubMed Central

    Kucukboyaci, N. Erkut; Girard, H.M.; Hagler, D.J.; Kuperman, J.; Tecoma, E.S.; Iragui, V.J.; Halgren, E.; McDonald, C.R.

    2012-01-01

    The objective of this study is to investigate the relationships among frontotemporal fiber tract compromise and task-switching performance in healthy controls and patients with temporal lobe epilepsy (TLE). We performed diffusion tensor imaging (DTI) on 30 controls and 32 patients with TLE (15 left TLE). Fractional anisotropy (FA) was calculated for four fiber tracts [uncinate fasciculus (UncF), arcuate fasciculus (ArcF), dorsal cingulum (CING), and inferior fronto-occipital fasciculus (IFOF)]. Participants completed the Trail Making Test-B (TMT-B) and Verbal Fluency Category Switching (VFCS) test. Multivariate analyses of variances (MANOVAs) were performed to investigate group differences in fiber FA and set-shifting performances. Canonical correlations were used to examine the overall patterns of structural-cognitive relationships and were followed by within-group bivariate correlations. We found a significant canonical correlation between fiber FA and task-switching performance. In controls, TMT-B correlated with left IFOF, whereas VFCS correlated with FA of left ArcF and left UncF. These correlations were not significant in patients with TLE. We report significant correlations between frontotemporal fiber tract integrity and set-shifting performance in healthy controls that appear to be absent or attenuated in patients with TLE. These findings suggest a breakdown of typical structure-function relationships in TLE that may reflect aberrant developmental or degenerative processes. PMID:22014246

  5. Fiber optic vibration sensor

    DOEpatents

    Dooley, Joseph B.; Muhs, Jeffrey D.; Tobin, Kenneth W.

    1995-01-01

    A fiber optic vibration sensor utilizes two single mode optical fibers supported by a housing with one optical fiber fixedly secured to the housing and providing a reference signal and the other optical fiber having a free span length subject to vibrational displacement thereof with respect to the housing and the first optical fiber for providing a signal indicative of a measurement of any perturbation of the sensor. Damping or tailoring of the sensor to be responsive to selected levels of perturbation is provided by altering the diameter of optical fibers or by immersing at least a portion of the free span length of the vibration sensing optical fiber into a liquid of a selected viscosity.

  6. Fiber optic vibration sensor

    DOEpatents

    Dooley, J.B.; Muhs, J.D.; Tobin, K.W.

    1995-01-10

    A fiber optic vibration sensor utilizes two single mode optical fibers supported by a housing with one optical fiber fixedly secured to the housing and providing a reference signal and the other optical fiber having a free span length subject to vibrational displacement thereof with respect to the housing and the first optical fiber for providing a signal indicative of a measurement of any perturbation of the sensor. Damping or tailoring of the sensor to be responsive to selected levels of perturbation is provided by altering the diameter of optical fibers or by immersing at least a portion of the free span length of the vibration sensing optical fiber into a liquid of a selected viscosity. 2 figures.

  7. Design of fiber optic probes for laser light scattering

    NASA Technical Reports Server (NTRS)

    Dhadwal, Harbans S.; Chu, Benjamin

    1989-01-01

    A quantitative analysis is presented of the role of optical fibers in laser light scattering. Design of a general fiber optic/microlens probe by means of ray tracing is described. Several different geometries employing an optical fiber of the type used in lightwave communications and a graded index microlens are considered. Experimental results using a nonimaging fiber optic detector probe show that due to geometrical limitations of single mode fibers, a probe using a multimode optical fiber has better performance, for both static and dynamic measurements of the scattered light intensity, compared with a probe using a single mode fiber. Fiber optic detector probes are shown to be more efficient at data collection when compared with conventional approaches to measurements of the scattered laser light. Integration of fiber optic detector probes into a fiber optic spectrometer offers considerable miniaturization of conventional light scattering spectrometers, which can be made arbitrarily small. In addition static and dynamic measurements of scattered light can be made within the scattering cell and consequently very close to the scattering center.

  8. Optical switching property of electromagnetically induced transparency in a Λ system

    NASA Astrophysics Data System (ADS)

    Zhang, Lianshui; Wang, Jian; Feng, Xiaomin; Yang, Lijun; Li, Xiaoli; Zhao, Min

    2008-12-01

    In this paper we study the coherent transient property of a Λ-three-level system (Ωd = 0) and a quasi- Λ -four-level system (Ωd>0). Optical switching of the probe field can be achieved by applying a pulsed coupling field or rf field. In Λ -shaped three-level system, when the coupling field was switched on, there is a almost total transparency of the probe field and the time required for the absorption changing from 90% to 10% of the maximum absorption is 2.9Γ0 (Γ0 is spontaneous emission lifetime). When the coupling field was switched off, there is an initial increase of the probe field absorption and then gradually evolves to the maximum of absorption of the two-level absorption, the time required for the absorption of the system changing from 10% to 90% is 4.2Γ0. In four-level system, where rf driving field is used as switching field, to achieve the same depth of the optical switching, the time of the optical switching is 2.5Γ0 and 6.1Γ0, respectively. The results show that with the same depth of the optical switching, the switch-on time of the four-level system is shorter than that of the three-level system, while the switch-off time of the four-level system is longer. The depth of the optical switching of the four-level system was much larger than that of the three-level system, where the depth of the optical switching of the latter is merely 14.8% of that of the former. The speed of optical switching of the two systems can be increased by the increase of Rabi frequency of coupling field or rf field.

  9. Characteristics of silicon-based Sagnac optical switches using magneto-optical micro-ring array

    NASA Astrophysics Data System (ADS)

    Ni, Shuang; Wu, Baojian; Liu, Yawen

    2018-01-01

    The miniaturization and integration of optical switches are necessary for photonic switching networks and the utilization of magneto optical effects is a promising candidate. We propose a Sagnac optical switch chip based on the principle of nonreciprocal phase shift (NPS) of the magneto-optical (MO) micro-ring (MOMR) array, composed of SiO2/Si/Ce:YIG/SGGG. The MO switching function is realized by controlling the drive current in the snake-like metal microstrip circuit layered on the MOMRs. The transmission characteristics of the Sagnac MO switch chip dependent on magnetization intensity, waveguide coupling coefficient and waveguide loss are simulated. By optimizing the coupling coefficients, we design an MO switch using two serial MOMRs with a circumference of 38.37 μm, and the 3dB bandwidth and the extinction ratio are respectively up to 1.6 nm and 50dB for the waveguide loss coefficient of ?. And the switching magnetization can be further reduced by increasing the number of parallel MOMRs. The frequency response of the MO Sagnac switch is analyzed as well.

  10. Software Defined Networking (SDN) controlled all optical switching networks with multi-dimensional switching architecture

    NASA Astrophysics Data System (ADS)

    Zhao, Yongli; Ji, Yuefeng; Zhang, Jie; Li, Hui; Xiong, Qianjin; Qiu, Shaofeng

    2014-08-01

    Ultrahigh throughout capacity requirement is challenging the current optical switching nodes with the fast development of data center networks. Pbit/s level all optical switching networks need to be deployed soon, which will cause the high complexity of node architecture. How to control the future network and node equipment together will become a new problem. An enhanced Software Defined Networking (eSDN) control architecture is proposed in the paper, which consists of Provider NOX (P-NOX) and Node NOX (N-NOX). With the cooperation of P-NOX and N-NOX, the flexible control of the entire network can be achieved. All optical switching network testbed has been experimentally demonstrated with efficient control of enhanced Software Defined Networking (eSDN). Pbit/s level all optical switching nodes in the testbed are implemented based on multi-dimensional switching architecture, i.e. multi-level and multi-planar. Due to the space and cost limitation, each optical switching node is only equipped with four input line boxes and four output line boxes respectively. Experimental results are given to verify the performance of our proposed control and switching architecture.

  11. High-speed optical switch fabrics with large port count.

    PubMed

    Yeo, Yong-Kee; Xu, Zhaowen; Wang, Dawei; Liu, Jianguo; Wang, Yixin; Cheng, Tee-Hiang

    2009-06-22

    We report a novel architecture that can be used to construct optical switch fabrics with very high port count and nanoseconds switching speed. It is well known that optical switch fabrics with very fast switching time and high port count are challenging to realize. Currently, one of the most promising solutions is based on a combination of wavelength-tunable lasers and the arrayed waveguide grating router (AWGR). To scale up the number of ports in such switches, a direct method is to use AWGRs with a high channel count. However, such AWGRs introduce very large crosstalk noise due to the close wavelength channel spacing. In this paper, we propose an architecture for realizing a high-port count optical switch fabric using a combination of low-port count AWGRs, optical ON-OFF gates and WDM couplers. Using this new methodology, we constructed a proof-of concept experiment to demonstrate the feasibility of a 256 x 256 optical switch fabric. To our knowledge, this port count is the highest ever reported for switch fabrics of this type.

  12. Fiber optic sensor and method for making

    DOEpatents

    Vartuli, James Scott; Bousman, Kenneth Sherwood; Deng, Kung-Li; McEvoy, Kevin Paul; Xia, Hua

    2010-05-18

    A fiber optic sensor including a fiber having a modified surface integral with the fiber wherein the modified surface includes an open pore network with optical agents dispersed within the open pores of the open pore network. Methods for preparing the fiber optic sensor are also provided. The fiber optic sensors can withstand high temperatures and harsh environments.

  13. Numerical investigation of an all-optical switch in a graded nonlinear plasmonic grating.

    PubMed

    Wang, Guoxi; Lu, Hua; Liu, Xueming; Gong, Yongkang

    2012-11-09

    We have proposed and numerically investigated an all-optical switch based on a metal-insulator-metal waveguide with graded nonlinear plasmonic gratings. The influences of grating depth and refractive index of a Kerr nonlinear medium on the transmission of the switch are exactly analyzed by utilizing transmission line theory. The finite-difference time-domain simulation results show that the highly compact structure possesses excellent switch function by tuning the incident electric field intensity. In addition, the simulation results show that this all-optical switch has an ultrawide operating frequency regime and femtosecond-scale response time (~130 fs). Such a switch can find potential applications for all-optical signal processing and optical communication.

  14. High bandwidth all-optical 3×3 switch based on multimode interference structures

    NASA Astrophysics Data System (ADS)

    Le, Duy-Tien; Truong, Cao-Dung; Le, Trung-Thanh

    2017-03-01

    A high bandwidth all-optical 3×3 switch based on general interference multimode interference (GI-MMI) structure is proposed in this study. Two 3×3 multimode interference couplers are cascaded to realize an all-optical switch operating at both wavelengths of 1550 nm and 1310 nm. Two nonlinear directional couplers at two outer-arms of the structure are used as all-optical phase shifters to achieve all switching states and to control the switching states. Analytical expressions for switching operation using the transfer matrix method are presented. The beam propagation method (BPM) is used to design and optimize the whole structure. The optimal design of the all-optical phase shifters and 3×3 MMI couplers are carried out to reduce the switching power and loss.

  15. Optical-Fiber Fluorosensors With Polarized Light Sources

    NASA Technical Reports Server (NTRS)

    Egalon, Claudio O.; Rogowski, Robert S.

    1995-01-01

    Chemiluminescent and/or fluorescent molecules in optical-fiber fluorosensors oriented with light-emitting dipoles along transverse axis. Sensor of proposed type captures greater fraction of chemiluminescence or fluorescence and transmits it to photodetector. Transverse polarization increases sensitivity. Basic principles of optical-fiber fluorosensors described in "Making Optical-Fiber Chemical Sensors More Sensitive" (LAR-14525), "Improved Optical-Fiber Chemical Sensors" (LAR-14607), and "Improved Optical-Fiber Temperature Sensors" (LAR-14647).

  16. Temporal switching jitter in photoconductive switches

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    GAUDET,JOHN A.; SKIPPER,MICHAEL C.; ABDALLA,MICHAEL D.

    This paper reports on a recent comparison made between the Air Force Research Laboratory (AFRL) gallium arsenide, optically-triggered switch test configuration and the Sandia National Laboratories (SNL) gallium arsenide, optically-triggered switch test configuration. The purpose of these measurements was to compare the temporal switch jitter times. It is found that the optical trigger laser characteristics are dominant in determining the PCSS jitter.

  17. Apollo Ring Optical Switch

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maestas, J.H.

    1987-03-01

    An optical switch was designed, built, and installed at Sandia National Laboratories in Albuquerque, New Mexico, to facilitate the integration of two Apollo computer networks into a single network. This report presents an overview of the optical switch as well as its layout, switch testing procedure and test data, and installation.

  18. Refractive index retrieving of polarization maintaining optical fibers

    NASA Astrophysics Data System (ADS)

    Ramadan, W. A.; Wahba, H. H.; Shams El-Din, M. A.; Abd El-Sadek, I. G.

    2018-01-01

    In this paper, the cross-section images, of two different types of polarization maintaining (PM) optical fibers, are employed to estimate the optical phase variation due to transverse optical rays passing through these optical fibers. An adaptive algorithm is proposed to recognize the different areas constituting the PM optical fibers cross-sections. These areas are scanned by a transverse beam to calculate the optical paths for given values of refractive indices. Consequently, the optical phases across the PM optical fibers could be recovered. PM optical fiber is immersed in a matching fluid and set in the object arm of Mach-Zehnder interferometer. The produced interferograms are analyzed to extract the optical phases caused by the PM optical fibers. The estimated optical phases could be optimized to be in good coincidence with experimentally extracted ones. This has been achieved through changing of the PM optical fibers refractive indices to retrieve the correct values. The correct refractive indices values are confirmed by getting the best fit between the estimated and the extracted optical phases. The presented approach is a promising one because it provides a quite direct and accurate information about refractive index, birefringence and beat length of PM optical fibers comparing with different techniques handle the same task.

  19. Optical fiber end-facet polymer suspended-mirror devices

    NASA Astrophysics Data System (ADS)

    Yao, Mian; Wu, Jushuai; Zhang, A. Ping; Tam, Hwa-Yaw; Wai, P. K. A.

    2017-04-01

    This paper presents a novel optical fiber device based on a polymer suspended mirror on the end facet of an optical fiber. With an own-developed optical 3D micro-printing technology, SU-8 suspended-mirror devices (SMDs) were successfully fabricated on the top of a standard single-mode optical fiber. Optical reflection spectra of the fabricated SU- 8 SMDs were measured and compared with theoretical analysis. The proposed technology paves a way towards 3D microengineering of the small end-facet of optical fibers to develop novel fiber-optic sensors.

  20. Improved Optical Fiber Chemical Sensors

    NASA Technical Reports Server (NTRS)

    Egalon, Claudio O.; Rogowski, Robert S.

    1994-01-01

    Calculations, based on exact theory of optical fiber, have shown how to increase optical efficiency sensitivity of active-core, step-index-profile optical-fiber fluorosensor. Calculations result of efforts to improve efficiency of optical-fiber chemical sensor of previous concept described in "Making Optical-Fiber Chemical Sensors More Sensitive" (LAR-14525). Optical fiber chemical detector of enhanced sensitivity made in several configurations. Portion of fluorescence or chemiluminescence generated in core, and launched directly into bound electromagnetic modes that propagate along core to photodetector.

Top