NASA Astrophysics Data System (ADS)
Morikawa, Takumi; Harashima, Takuya; Kino, Hisashi; Fukushima, Takafumi; Tanaka, Tetsu
2017-04-01
A less invasive Si optoneural probe with an embedded optical fiber was proposed and successfully fabricated. The diameter of the optical fiber was completely controlled by hydrogen fluoride etching, and the thinned optical fiber can propagate light without any leakage. This optical fiber was embedded in a trench formed inside a probe shank, which causes less damage to tissues. In addition, it was confirmed that the optical fiber embedded in the probe shank successfully irradiated light to optically stimulate gene transfected neurons. The electrochemical impedance of the probe did not change despite the light irradiation. Furthermore, probe insertion characteristics were evaluated in detail and less invasive insertion was clearly indicated for the Si optoneural probe with the embedded optical fiber compared with conventional optical neural probes. This neural probe with the embedded optical fiber can be used as a simple and easy tool for optogenetics and brain science.
Multi-function diamond film fiber optic probe and measuring system employing same
Young, J.P.
1998-11-24
A fused fiber optic probe having a protective cover, a fiber optic probe system, and embodiments thereof for conducting electromagnetic spectral measurements are disclosed. The fused fiber optic probe comprises a probe tip having a specific geometrical configuration, an exciting optical fiber and at least one collection optical fiber fused within a housing, preferably silica, with a protective cover disposed over at least a portion of the probe tip. The specific geometrical configurations in which the probe tip can be shaped include a slanted probe tip with an angle greater than 0{degree}, an inverted cone-shaped probe tip, and a lens head. 9 figs.
Design of fiber optic probes for laser light scattering
NASA Technical Reports Server (NTRS)
Dhadwal, Harbans S.; Chu, Benjamin
1989-01-01
A quantitative analysis is presented of the role of optical fibers in laser light scattering. Design of a general fiber optic/microlens probe by means of ray tracing is described. Several different geometries employing an optical fiber of the type used in lightwave communications and a graded index microlens are considered. Experimental results using a nonimaging fiber optic detector probe show that due to geometrical limitations of single mode fibers, a probe using a multimode optical fiber has better performance, for both static and dynamic measurements of the scattered light intensity, compared with a probe using a single mode fiber. Fiber optic detector probes are shown to be more efficient at data collection when compared with conventional approaches to measurements of the scattered laser light. Integration of fiber optic detector probes into a fiber optic spectrometer offers considerable miniaturization of conventional light scattering spectrometers, which can be made arbitrarily small. In addition static and dynamic measurements of scattered light can be made within the scattering cell and consequently very close to the scattering center.
Micro-optical fiber probe for use in an intravascular Raman endoscope.
Komachi, Yuichi; Sato, Hidetoshi; Aizawa, Katsuo; Tashiro, Hideo
2005-08-01
We believe that we have developed the narrowest optical-fiber Raman probe ever reported, 600 microm in total diameter, that can be inserted into coronary arteries. The selection of suitable optical fibers, filters, and a processing method is discussed. Custom-made filters attached to the front end of a probe eliminate the background Raman signals of the optical fiber itself. The experimental evaluation of various optical fibers is carried out for the selection of suitable fibers. Measurement of the Raman spectra of an atherosclerotic lesion of a rabbit artery in vitro demonstrates the excellent performance of the micro-Raman probe.
Rugged fiber optic probe for raman measurement
O'Rourke, Patrick E.; Toole, Jr., William R.; Nave, Stanley E.
1998-01-01
An optical probe for conducting light scattering analysis is disclosed. The probe comprises a hollow housing and a probe tip. A fiber assembly made up of a transmitting fiber and a receiving bundle is inserted in the tip. A filter assembly is inserted in the housing and connected to the fiber assembly. A signal line from the light source and to the spectrometer also is connected to the filter assembly and communicates with the fiber assembly. By using a spring-loaded assembly to hold the fiber connectors together with the in-line filters, complex and sensitive alignment procedures are avoided. The close proximity of the filter assembly to the probe tip eliminates or minimizes self-scattering generated by the optical fiber. Also, because the probe can contact the sample directly, sensitive optics can be eliminated.
Noninvasive encapsulated fiber optic probes for interferometric measurement
NASA Astrophysics Data System (ADS)
Zboril, O.; Cubik, J.; Kepak, S.; Nedoma, J.; Fajkus, M.; Zavodny, P.; Vasinek, V.
2017-10-01
This article focuses on the sensitivity of encapsulated interferometric probes. These probes are used mainly for BioMed and security applications. Fiber-optic sensors are interesting for these applications, as they are resistant to electromagnetic interference (EMI) and that also do not affect the surrounding medical and security equipment. Using a loop of the optical fiber with is not a suitable for these measurements. The optical fiber should be fixed to one position, and should not significantly bend. For these reasons, the optical fiber is encapsulated. Furthermore, it is necessary that the encapsulated measuring probes were flexible, inert, water resistant and not toxic. Fiber-optic sensors shouldn't be magnetically active, so they can be used for example, in magnetic resonance environments (MR). Probes meeting these requirements can be widely used in health care and security applications. Encapsulation of interferometric measuring arm brings changes in susceptibility of measurements in comparison with the optical fiber without encapsulation. To evaluate the properties of the encapsulated probes, series of probes made from different materials for encapsulation was generated, using two types of optical fibers with various degrees of protection. Comparison of the sensitivity of different encapsulated probes was performed using a series of measurements at various frequencies. The measurement results are statistically compared in the article and commented. Given the desired properties polydimethylsiloxane (PDMS) polymer has been proven the most interesting encapsulating material for further research.
Hollow fiber-optic Raman probes for small experimental animals
NASA Astrophysics Data System (ADS)
Katagiri, Takashi; Hattori, Yusuke; Suzuki, Toshiaki; Matsuura, Yuji; Sato, Hidetoshi
2007-02-01
Two types of hollow fiber-optic probes are developed to measure the in vivo Raman spectra of small animals. One is the minimized probe which is end-sealed with the micro-ball lens. The measured spectra reflect the information of the sample's sub-surface. This probe is used for the measurement of the esophagus and the stomach via an endoscope. The other probe is a confocal Raman probe which consists of a single fiber and a lens system. It is integrated into the handheld microscope. A simple and small multimodal probe is realized because the hollow optical fiber requires no optical filters. The performance of each probe is examined and the effectiveness of these probes for in vivo Raman spectroscopy is shown by animal tests.
Microemulsion characterization by the use of a noninvasive backscatter fiber optic probe
NASA Technical Reports Server (NTRS)
Ansari, Rafat R.; Dhadwal, Harbans S.; Cheung, H. M.; Meyer, William V.
1993-01-01
This paper demonstrates the utility of a noninvasive backscatter fiber optic probe for dynamic light-scattering characterization of a microemulsion comprising sodium dodecyl sulfate/1-butanol/ brine/heptane. The fiber probe, comprising two optical fibers precisely positioned in a stainless steel body, is a miniaturized and efficient self-beating dynamic light-scattering system. Accuracy of particle size estimation is better than +/- 2 percent.
Dynamic light scattering homodyne probe
NASA Technical Reports Server (NTRS)
Meyer, William V. (Inventor); Cannell, David S. (Inventor); Smart, Anthony E. (Inventor)
2002-01-01
An optical probe for analyzing a sample illuminated by a laser includes an input optical fiber operably connectable to the laser where the input optical fiber has an entrance end and an exit end. The probe also includes a first beam splitter where the first beam splitter is adapted to transmit an alignment portion of a light beam from the input fiber exit end and to reflect a homodyning portion of the light beam from the input fiber. The probe also includes a lens between the input fiber exit end and the first beam splitter and a first and a second output optical fiber, each having an entrance end and an exit end, each exit end being operably connectable to respective optical detectors. The probe also includes a second beam splitter which is adapted to reflect at least a portion of the reflected homodyning portion into the output fiber entrance ends and to transmit light from the laser scattered by the sample into the entrance ends.
Fabrication and characterization of a real-time optical fiber dosimeter probe
NASA Astrophysics Data System (ADS)
Croteau, André; Caron, Serge; Rink, Alexandra; Jaffray, David; Mermut, Ozzy
2011-07-01
There is a pressing need for a low cost, passive optical fiber dosimeter probe for use in real-time monitoring of radiation dose delivered to clinical radiation therapy patients. An optical fiber probe using radiochromic material has been designed and fabricated based on the deposition of a radiochromic thin film on a dielectric mirror. Measurements of the net optical density vs. time before, during, and after irradiation at a rate of 500 cGy/minute to a total dose of 5 Gy were performed. Net optical densities increased from 0.2 to 2.0 for radiochromic thin film thicknesses of 2 to 20 μm, respectively. An improved optical fiber probe fabrication method is presented.
Xu, Guiling; Liang, Cai; Chen, Xiaoping; Liu, Daoyin; Xu, Pan; Shen, Liu; Zhao, Changsui
2013-01-01
This paper presents a review and analysis of the research that has been carried out on dynamic calibration for optical-fiber solids concentration probes. An introduction to the optical-fiber solids concentration probe was given. Different calibration methods of optical-fiber solids concentration probes reported in the literature were reviewed. In addition, a reflection-type optical-fiber solids concentration probe was uniquely calibrated at nearly full range of the solids concentration from 0 to packed bed concentration. The effects of particle properties (particle size, sphericity and color) on the calibration results were comprehensively investigated. The results show that the output voltage has a tendency to increase with the decreasing particle size, and the effect of particle color on calibration result is more predominant than that of sphericity. PMID:23867745
Integrated Fiber-Optic Light Probe: Measurement of Static Deflections in Rotating Turbomachinery
NASA Technical Reports Server (NTRS)
Kurkov, Anatole P.
1998-01-01
At the NASA Lewis Research Center, in cooperation with Integrated Fiber Optic Systems, Inc., an integrated fiber-optic light probe system was designed, fabricated, and tested for monitoring blade tip deflections, vibrations, and to some extent, changes in the blade tip clearances of a turbomachinery fan or a compressor rotor. The system comprises a set of integrated fiber-optic light probes that are positioned to detect the passing blade tip at the leading and trailing edges. In this configuration, measurements of both nonsynchronous blade vibrations and steady-state blade deflections can be made from the timing information provided by each light probe-consisting of an integrated fiber-optic transmitting channel and numerical aperture receiving fibers, all mounted in the same cylindrical housing. With integrated fiber-optic technology, a spatial resolution of 50 mm is possible while the outer diameter is kept below 2.5 mm. To evaluate these probes, we took measurements in a single-stage compressor facility and an advanced fan rig in Lewis' 9- by 15-Foot Low-Speed Wind Tunnel.
NASA Technical Reports Server (NTRS)
Zuckerwar, Allan J. (Inventor); Cuomo, Frank W. (Inventor); Robbins, William E. (Inventor); Hopson, Purnell, Jr. (Inventor)
1992-01-01
A fiber optic microphone is provided for measuring fluctuating pressures. An optical fiber probe having at least one transmitting fiber for transmitting light to a pressure-sensing membrane and at least one receiving fiber for receiving light reflected from a stretched membrane is provided. The pressure-sensing membrane may be stretched for high frequency response. Further, a reflecting surface of the pressure-sensing membrane may have dimensions which substantially correspond to dimensions of a cross section of the optical fiber probe. Further, the fiber optic microphone can be made of materials for use in high temperature environments, for example greater than 1000 F. A fiber optic probe is also provided with a backplate for damping membrane motion. The backplate further provides a means for on-line calibration of the microphone.
NASA Technical Reports Server (NTRS)
Zuckerwar, Allan J. (Inventor); Cuomo, Frank W. (Inventor); Robbins, William E. (Inventor)
1993-01-01
A fiber optic microphone is provided for measuring fluctuating pressures. An optical fiber probe having at least one transmitting fiber for transmitting light to a pressure-sensing membrane and at least one receiving fiber for receiving light reflected from a stretched membrane is provided. The pressure-sensing membrane may be stretched for high frequency response. Further, a reflecting surface of the pressure-sensing membrane may have dimensions which substantially correspond to dimensions of a cross section of the optical fiber probe. Further, the fiber optic microphone can be made of materials for use in high temperature environments, for example greater than 1000 F. A fiber optic probe is also provided with a back plate for damping membrane motion. The back plate further provides a means for on-line calibration of the microphone.
NASA Technical Reports Server (NTRS)
Dhadwal, Harbans Singh
1994-01-01
The research work presented in this report has established a new class of backscatter fiber optics probes for remote dynamic light scattering capability over a range of scattering angles from 94 degrees to 175 degrees. The fiber optic probes provide remote access to scattering systems, and can be utilized in either a noninvasive or invasive configuration. The fiber optics create an interference free data channel to inaccessible and harsh environments. Results from several studies of concentrated suspension, microemulsions, and protein systems are presented. The second part of the report describes the development of a new technology of wavefront processing within the optical fiber, that is, integrated fiber optics. Results have been very encouraging and the technology promises to have significant impact on the development of fiber optic sensors in a variety of fields ranging from environmental monitoring to optical recording, from biomedical sensing to photolithography.
Use of a fiber optic probe for organic species determination
Ekechukwu, A.A.
1996-12-10
A fiber optic probe is described for remotely detecting the presence and concentration organic species in aqueous solutions. The probe includes a cylindrical housing with an organic species indicator, preferably diaminonaphthyl sulfonic acid adsorbed in a silica gel (DANS-modified gel), contained in the probe`s distal end. The probe admits aqueous solutions to the probe interior for mixing within the DANS-modified gel. An optical fiber transmits light through the DANS-modified gel while the indicator reacts with organic species present in the solution, thereby shifting the location of the fluorescent peak. The altered light is reflected to a receiving fiber that carries the light to a spectrophotometer or other analysis device. 5 figs.
Singh, Kanwarpal; Reddy, Rohith; Sharma, Gargi; Verma, Yogesh; Gardecki, Joseph A; Tearney, Guillermo
2018-03-01
Endoscopic optical coherence tomography probes suffer from various artifacts due to dispersion imbalance and polarization mismatch between reference and sample arm light. Such artifacts can be minimized using a common path approach. In this work, we demonstrate a miniaturized common path probe for optical coherence tomography using an inline fiber mirror. A common path optical fiber probe suitable for performing high-resolution endoscopic optical coherence tomography imaging was developed. To achieve common path functionality, an inline fiber mirror was fabricated using a thin gold layer. A commercially available swept source engine was used to test the designed probe in a cadaver human coronary artery ex vivo. We achieved a sensitivity of 104 dB for this probe using a swept source optical coherence tomography system. To test the probe, images of a cadaver human coronary artery were obtained, demonstrating the quality that is comparable to those obtained by OCT systems with separate reference arms. Additionally, we demonstrate recovery of ranging depth by use of a Michelson interferometer in the detection path. We developed a miniaturized monolithic inline fiber mirror-based common path probe for optical coherence tomography. Owing to its simplicity, our design will be helpful in endoscopic applications that require high-resolution probes in a compact form factor while reducing system complexity. Lasers Surg. Med. 50:230-235, 2018. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Fujii, Takuro; Taguchi, Yoshihiro; Saiki, Toshiharu; Nagasaka, Yuji
2011-01-01
We have developed a novel nanoscale temperature-measurement method using fluorescence in the near-field called fluorescence near-field optics thermal nanoscopy (Fluor-NOTN). Fluor-NOTN enables the temperature distributions of nanoscale materials to be measured in vivo/in situ. The proposed method measures temperature by detecting the temperature dependent fluorescence lifetimes of Cd/Se quantum dots (QDs). For a high-sensitivity temperature measurement, the auto-fluorescence generated from a fiber probe should be reduced. In order to decrease the noise, we have fabricated a novel near-field optical-fiber probe by fusion-splicing a photonic crystal fiber (PCF) and a conventional single-mode fiber (SMF). The validity of the novel fiber probe was assessed experimentally by evaluating the auto-fluorescence spectra of the PCF. Due to the decrease of auto-fluorescence, a six- to ten-fold increase of S/N in the near-field fluorescence lifetime detection was achieved with the newly fabricated fusion-spliced near-field optical fiber probe. Additionally, the near-field fluorescence lifetime of the quantum dots was successfully measured by the fabricated fusion-spliced near-field optical fiber probe at room temperature, and was estimated to be 10.0 ns.
Optical probe with light fluctuation protection
Da Silva, Luiz B.; Chase, Charles L.
2003-11-11
An optical probe for tissue identification includes an elongated body. Optical fibers are located within the elongated body for transmitting light to and from the tissue. Light fluctuation protection is associated with the optical fibers. In one embodiment the light fluctuation protection includes a reflective coating on the optical fibers to reduce stray light. In another embodiment the light fluctuation protection includes a filler with very high absorption located within the elongated body between the optical fibers.
System for testing optical fibers
Golob, John E. [Olathe, KS; Looney, Larry D. [Los Alamos, NM; Lyons, Peter B. [Los Alamos, NM; Nelson, Melvin A. [Santa Barbara, CA; Davies, Terence J. [Santa Barbara, CA
1980-07-15
A system for measuring a combination of optical transmission properties of fiber optic waveguides. A polarized light pulse probe is injected into one end of the optical fiber. Reflections from discontinuities within the fiber are unpolarized whereas reflections of the probe pulse incident to its injection remain polarized. The polarized reflections are prevented from reaching a light detector whereas reflections from the discontinuities reaches the detector.
Fiber-Optical Sensors: Basics and Applications in Multiphase Reactors
Li, Xiangyang; Yang, Chao; Yang, Shifang; Li, Guozheng
2012-01-01
This work presents a brief introduction on the basics of fiber-optical sensors and an overview focused on the applications to measurements in multiphase reactors. The most commonly principle utilized is laser back scattering, which is also the foundation for almost all current probes used in multiphase reactors. The fiber-optical probe techniques in two-phase reactors are more developed than those in three-phase reactors. There are many studies on the measurement of gas holdup using fiber-optical probes in three-phase fluidized beds, but negative interference of particles on probe function was less studied. The interactions between solids and probe tips were less studied because glass beads etc. were always used as the solid phase. The vision probes may be the most promising for simultaneous measurements of gas dispersion and solids suspension in three-phase reactors. Thus, the following techniques of the fiber-optical probes in multiphase reactors should be developed further: (1) online measuring techniques under nearly industrial operating conditions; (2) corresponding signal data processing techniques; (3) joint application with other measuring techniques.
Use of a fiber optic probe for organic species determination
Ekechukwu, Amy A.
1996-01-01
A fiber optic probe for remotely detecting the presence and concentration organic species in aqueous solutions. The probe includes a cylindrical housing with an organic species indicator, preferably diaminonaphthyl sulfonic acid adsorbed in a silica gel (DANS-modified gel), contained in the probe's distal end. The probe admits aqueous solutions to the probe interior for mixing within the DANS-modified gel. An optical fiber transmits light through the DANS-modified gel while the indicator reacts with organic species present in the solution, thereby shifting the location of the fluorescent peak. The altered light is reflected to a receiving fiber that carries the light to a spectrophotometer or other analysis device.
System for testing optical fibers
Golob, J.E.; Looney, L.D.; Lyons, P.B.; Nelson, M.A.; Davies, T.J.
1980-07-15
A system for measuring a combination of optical transmission properties of fiber optic waveguides. A polarized light pulse probe is injected into one end of the optical fiber. Reflections from discontinuities within the fiber are unpolarized whereas reflections of the probe pulse incident to its injection remain polarized. The polarized reflections are prevented from reaching a light detector whereas reflections from the discontinuities reaches the detector. 2 figs.
Fiber optic probe for light scattering measurements
Nave, Stanley E.; Livingston, Ronald R.; Prather, William S.
1995-01-01
A fiber optic probe and a method for using the probe for light scattering analyses of a sample. The probe includes a probe body with an inlet for admitting a sample into an interior sample chamber, a first optical fiber for transmitting light from a source into the chamber, and a second optical fiber for transmitting light to a detector such as a spectrophotometer. The interior surface of the probe carries a coating that substantially prevents non-scattered light from reaching the second fiber. The probe is placed in a region where the presence and concentration of an analyte of interest are to be detected, and a sample is admitted into the chamber. Exciting light is transmitted into the sample chamber by the first fiber, where the light interacts with the sample to produce Raman-scattered light. At least some of the Raman-scattered light is received by the second fiber and transmitted to the detector for analysis. Two Raman spectra are measured, at different pressures. The first spectrum is subtracted from the second to remove background effects, and the resulting sample Raman spectrum is compared to a set of stored library spectra to determine the presence and concentration of the analyte.
Fiber optic probe for light scattering measurements
Nave, S.E.; Livingston, R.R.; Prather, W.S.
1993-01-01
This invention is comprised of a fiber optic probe and a method for using the probe for light scattering analyses of a sample. The probe includes a probe body with an inlet for admitting a sample into an interior sample chamber, a first optical fiber for transmitting light from a source into the chamber, and a second optical fiber for transmitting light to a detector such as a spectrophotometer. The interior surface of the probe carries a coating that substantially prevents non-scattered light from reaching the second fiber. The probe is placed in a region where the presence and concentration of an analyte of interest are to be detected, and a sample is admitted into the chamber. Exciting light is transmitted into the sample chamber by the first fiber, where the light interacts with the sample to produce Raman-scattered light. At least some of the Raman- scattered light is received by the second fiber and transmitted to the detector for analysis. Two Raman spectra are measured, at different pressures. The first spectrum is subtracted from the second to remove background effects, and the resulting sample Raman spectrum is compared to a set of stored library spectra to determine the presence and concentration of the analyte.
Flight testing of a fiber optic temperature sensor
NASA Technical Reports Server (NTRS)
Finney, M. J.; Tregay, G. W.; Calabrese, P. R.
1993-01-01
A fiber optic temperature sensor (FOTS) system consisting of an optical probe, a flexible fiber optic cable, and an electro-optic signal processor was fabricated to measure the gas temperature in a turbine engine. The optical probe contained an emissive source embedded in a sapphire lightguide coupled to a fiber-optic jumper cable and was retrofitted into an existing thermocouple probe housing. The flexible fiber optic cable was constructed with 200 micron core, polyimide-coated fiber and was ruggedized for an aircraft environment. The electro-optic signal processing unit was used to ratio the intensities of two wavelength intervals and provided an analog output value of the indicated temperature. Subsequently, this optical sensor system was installed on a NASA Dryden F-15 Highly Integrated Digital Electronic Control (HIDEC) Aircraft Engine and several flight tests were conducted. Over the course of flight testing, the FOTS system's response was proportional to the average of the existing thermocouples sensing the changes in turbine engine thermal conditions.
In-situ spectrophotometric probe
Prather, William S.
1992-01-01
A spectrophotometric probe for in situ absorption spectra measurements comprising a first optical fiber carrying light from a remote light source, a second optical fiber carrying light to a remote spectrophotometer, the proximal ends of the first and second optical fibers parallel and coterminal, a planoconvex lens to collimate light from the first optical fiber, a reflecting grid positioned a short distance from the lens to reflect the collimated light back to the lens for focussing on the second optical fiber. The lens is positioned with the convex side toward the optical fibers. A substrate for absorbing analyte or an analyte and reagent mixture may be positioned between the lens and the reflecting grid.
NASA Technical Reports Server (NTRS)
Dhadwal, Harbans S. (Inventor)
1992-01-01
A system for determining the physical properties of materials through the use of dynamic light scattering is disclosed. The system includes a probe, a laser source for directing a laser beam into the probe, and a photodetector for converting scattered light detected by the probe into electrical signals. The probe includes at least one optical fiber connected to the laser source and a second optical fiber connected to the photodetector. Each of the fibers may adjoin a gradient index microlens which is capable of providing a collimated laser beam into a scattering medium. The position of the second optical fiber with respect to the optical axis of the probe determines whether homodyne or self-beating detection is provided. Self-beating detection may be provided without a gradient index microlens. This allows a very small probe to be constructed which is insertable through a hypodermic needle or the like into a droplet extending from such a needle. A method of detecting scattered light through the use of a collimated, Gaussian laser beam is also provided. A method for controlling the waist and divergence of the optical field emanating from the free end of an optical fiber is also provided.
Lens-free all-fiber probe with an optimized output beam for optical coherence tomography.
Ding, Zhihua; Qiu, Jianrong; Shen, Yi; Chen, Zhiyan; Bao, Wen
2017-07-15
A high-efficiency lensless all-fiber probe for optical coherence tomography (OCT) is presented. The probe is composed of a segment of large-core multimode fiber (MMF), a segment of tapered MMF, and a length of single-mode fiber (SMF). A controllable output beam can be designed by a simple adjustment of its probe structure parameters (PSPs), instead of the selection of fibers with different optical parameters. A side-view probe with a diameter of 340 μm and a rigid length of 6.37 mm was fabricated, which provides an effective imaging range of ∼0.6 mm with a full width at half-maximum beam diameter of less than 30 μm. The insertion loss of the probe was measured to be 0.81 dB, ensuring a high sensitivity of 102.25 dB. Satisfactory images were obtained by the probe-based OCT system, demonstrating the feasibility of the probe for endoscopic OCT applications.
Integrated fiber optic light probe: Measurement of static deflections in rotating turbomachinery
NASA Astrophysics Data System (ADS)
Dhadwal, Harbans S.; Mehmud, Ali; Khan, Romel; Kurkov, Anatole
1996-02-01
This paper describes the design, fabrication, and testing of an integrated fiber optic light probe system for monitoring blade tip deflections, vibrational modes, and changes in blade tip clearances in the compressor stage of rotating turbomachinery. The system comprises a set of integrated fiber optic light probes which are positioned to detect the passing blade tip at the leading and the trailing edges. In this configuration measurements of both blade vibrations and steady-state blade deflection can be obtained from the timing information provided by each light probe, which comprises an integrated fiber optic transmitting channel and a number of high numerical aperture receiving fibers, all mounted in the same cylindrical housing. A spatial resolution of 50 μm is possible with the integrated fiber optic technology, while keeping the outer diameter below 2.5 mm. Additionally, one fiber sensor provides a capability of monitoring changes in the blade tip clearance of the order of 10 μm. Measurements from a single stage compressor facility and an engine-fan rig in a 9 ft×15 ft subsonic wind tunnel are presented.
U-Shaped and Surface Functionalized Polymer Optical Fiber Probe for Glucose Detection.
Azkune, Mikel; Ruiz-Rubio, Leire; Aldabaldetreku, Gotzon; Arrospide, Eneko; Pérez-Álvarez, Leyre; Bikandi, Iñaki; Zubia, Joseba; Vilas-Vilela, Jose Luis
2017-12-25
In this work we show an optical fiber evanescent wave absorption probe for glucose detection in different physiological media. High selectivity is achieved by functionalizing the surface of an only-core poly(methyl methacrylate) (PMMA) polymer optical fiber with phenilboronic groups, and enhanced sensitivity by using a U-shaped geometry. Employing a supercontinuum light source and a high-resolution spectrometer, absorption measurements are performed in the broadband visible light spectrum. Experimental results suggest the feasibility of such a fiber probe as a low-cost and selective glucose detector.
Anderson, G P; Golden, J P; Ligler, F S
1994-06-01
A fiber-optic biosensor capable of remote continuous monitoring has recently been designed. To permit sensing at locations separate from the optoelectronic instrumentation, long optical fibers are utilized. An evanescent wave immuno-probe is prepared by removing the cladding near the distal end of the fiber and covalently attaching antibodies to the core. Probes with a radius unaltered from that of the original core inefficiently returned the signal produced upon binding the fluorescent-labelled antigen. To elucidate the limiting factors in signal acquisition, a series of fibers with increasingly reduced probe core radius was examined. The results were consistent with the V-number mismatch, the difference in mode carrying capacity between the clad and unclad fiber, being a critical factor in limiting signal coupling from the fiber probe. However, it was also delineated that conditions which conserve excitation power, such that power in the evanescent wave is optimized, must also be met to obtain a maximal signal. The threshold sensitivity for the optimal step-etched fiber probe was improved by over 20-fold in an immunoassay, although, it was demonstrated that signal acquisition decreased along the probe length, suggesting that a sensor region of uniform radius is not ideal.
NASA Astrophysics Data System (ADS)
Zhang, Yunyao; Zhu, Jingping; Cui, Weiwen; Nie, Wei; Li, Jie; Xu, Zhenghong
2015-03-01
We investigated the performance of endoscopic diffuse optical spectroscopy probes with circular or linear fiber arrangements for tubular organ cancer detection. Probe performance was measured by penetration depth. A Monte Carlo model was employed to simulate light transport in the hollow cylinder that both emits and receives light from the inner boundary of the sample. The influence of fiber configurations and tissue optical properties on penetration depth was simulated. The results show that under the same condition, probes with circular fiber arrangement penetrate deeper than probes with linear fiber arrangement, and the difference between the two probes' penetration depth decreases with an increase in the 'distance between source and detector (SD)' and the radius of the probe. Other results show that the penetration depths and their differences both decrease with an increase in the absorption coefficient and the reduced scattering coefficient but remain constant with changes in the anisotropy factor. Moreover, the penetration depth was more affected by the absorption coefficient than the reduced scattering coefficient. It turns out that in NIR band, probes with linear fiber arrangements are more appropriate for diagnosing superficial cancers, whereas probes with circular fiber arrangements should be chosen for diagnosing adenocarcinoma. But in UV-VIS band, the two probe configurations exhibit nearly the same. These results are useful in guiding endoscopic diffuse optical spectroscopy-based diagnosis for esophageal, cervical, colorectal and other cancers.
In-situ spectrophotometric probe
Prather, W.S.
1992-12-15
A spectrophotometric probe is described for in situ absorption spectra measurements comprising a first optical fiber carrying light from a remote light source, a second optical fiber carrying light to a remote spectrophotometer, the proximal ends of the first and second optical fibers parallel and co-terminal, a planoconvex lens to collimate light from the first optical fiber, a reflecting grid positioned a short distance from the lens to reflect the collimated light back to the lens for focusing on the second optical fiber. The lens is positioned with the convex side toward the optical fibers. A substrate for absorbing analyte or an analyte and reagent mixture may be positioned between the lens and the reflecting grid. 5 figs.
Fiber-optic polarization diversity detection for rotary probe optical coherence tomography.
Lee, Anthony M D; Pahlevaninezhad, Hamid; Yang, Victor X D; Lam, Stephen; MacAulay, Calum; Lane, Pierre
2014-06-15
We report a polarization diversity detection scheme for optical coherence tomography with a new, custom, miniaturized fiber coupler with single mode (SM) fiber inputs and polarization maintaining (PM) fiber outputs. The SM fiber inputs obviate matching the optical lengths of the X and Y OCT polarization channels prior to interference and the PM fiber outputs ensure defined X and Y axes after interference. Advantages for this scheme include easier alignment, lower cost, and easier miniaturization compared to designs with free-space bulk optical components. We demonstrate the utility of the detection system to mitigate the effects of rapidly changing polarization states when imaging with rotating fiber optic probes in Intralipid suspension and during in vivo imaging of human airways.
Real-time optical fiber dosimeter probe
NASA Astrophysics Data System (ADS)
Croteau, André; Caron, Serge; Rink, Alexandra; Jaffray, David; Mermut, Ozzy
2011-03-01
There is a pressing need for a passive optical fiber dosimeter probe for use in real-time monitoring of radiation dose delivered to clinical radiation therapy patients. An optical fiber probe using radiochromic material has been designed and fabricated based on a thin film of the radiochromic material on a dielectric mirror. Measurements of the net optical density vs. time before, during, and after irradiation at a rate of 500cGy/minute to a total dose of 5 Gy were performed. Net optical densities increased from 0.2 to 2.0 for radiochromic thin film thicknesses of 2 to 20 μm, respectively.
Remote in-situ laser-induced breakdown spectroscopy using optical fibers
NASA Astrophysics Data System (ADS)
Marquardt, Brian James
The following dissertation describes the development of methods for performing remote Laser-Induced Breakdown Spectroscopy (LIBS) using optical fibers. Studies were performed to determine the optimal excitation and collection parameters for remote LIBS measurements of glasses, soils and paint. A number of fiber-optic LIBS probes were developed and used to characterize various samples by plasma emission spectroscopy. A novel method for launching high-power laser pulses into optical fibers without causing catastrophic failure is introduced. A systematic study of a number of commercially available optical fibers was performed to determine which optical fibers were best suited for delivering high-power laser pulses. The general design of an all fiber-optic LIBS probe is described and applied to the determination of Pb in soil. A fiber-optic probe was developed for the microanalysis of solid samples remotely by LIBS, Raman spectroscopy and Raman imaging. The design of the probe allows for real-time sample imaging in-situ using coherent imaging fibers. This allows for precise atomic emission and Raman measurements to be performed remotely on samples in hostile or inaccessible environments. A novel technique was developed for collecting spectral plasma images using an acousto-optic tunable filter (AOTF). The spatial and temporal characteristics of the plasma were studied as a function of delay time. From the plasma images the distribution of Pb emission could be determined and fiber-optic designs could be optimized for signal collection. The performance of a two fiber LIBS probe is demonstrated for the determination of the amount of lead in samples of dry paint. It is shown that dry paint samples can be analyzed for their Pb content in-situ using a fiber-optic LIBS probe with detection limits well below the levels currently regulated by the Consumer Products Safety Commission. It is also shown that these measurements can be performed on both latex and enamel paints, and that Pb containing paint can be detected even under layers of non-lead containing paint. Experiments were performed to determine the optimal measurement parameters for performing LIBS studies of Department of Energy "waste" glasses. Calibration data for a Al and Ti metals contained in the waste glass is presented. The effects of laser power on plasma temperature, emission intensity and mass of sample ablated are introduced.
Huang, Zhulin; Lei, Xing; Liu, Ye; Wang, Zhiwei; Wang, Xiujuan; Wang, Zhaoming; Mao, Qinghe; Meng, Guowen
2015-08-12
Optical fiber-Raman devices integrated with plasmonic nanostructures have promising potentials for in situ probing remote liquid samples and biological samples. In this system, the fiber probe is required to simultaneously demonstrate stable surface enhanced Raman scattering (SERS) signals and high sensitivity toward the target species. Here we demonstrate a generic approach to integrate presynthesized plasmonic nanostructures with tapered fiber probes that are prepared by a dipping-etching method, through reversed electrostatic attraction between the silane couple agent modified silica fiber probe and the nanostructures. Using this approach, both negatively and positively charged plasmonic nanostructures with various morphologies (such as Au nanosphere, Ag nanocube, Au nanorod, Au@Ag core-shell nanorod) can be stably assembled on the tapered silica fiber probes. Attributed to the electrostatic force between the plasmonic units and the fiber surface, the nanostructures do not disperse in liquid samples easily, making the relative standard deviation of SERS signals as low as 2% in analyte solution. Importantly, the detection sensitivity of the system can be optimized by adjusting the cone angle (from 3.6° to 22°) and the morphology of nanostructures assembled on the fiber. Thus, the nanostructures-sensitized optical fiber-Raman probes show great potentials in the applications of SERS-based environmental detection of liquid samples.
NASA Astrophysics Data System (ADS)
Huntington, S. T.; Jarvis, S. P.
2003-05-01
Scanning near field optical microscopy (SNOM) probes are typically tapered optical fibers with metallic coatings. The tip diameters are generally in excess of 300 nm and thus provide poor topographical resolution. Here we report on the attachment multiwalled carbon nanotubes to the probes in order to substantially enhance the topographical resolution, without adversely affecting the optical resolution.
Variable path length spectrophotometric probe
O'Rourke, Patrick E.; McCarty, Jerry E.; Haggard, Ricky A.
1992-01-01
A compact, variable pathlength, fiber optic probe for spectrophotometric measurements of fluids in situ. The probe comprises a probe body with a shaft having a polished end penetrating one side of the probe, a pair of optic fibers, parallel and coterminous, entering the probe opposite the reflecting shaft, and a collimating lens to direct light from one of the fibers to the reflecting surface of the shaft and to direct the reflected light to the second optic fiber. The probe body has an inlet and an outlet port to allow the liquid to enter the probe body and pass between the lens and the reflecting surface of the shaft. A linear stepper motor is connected to the shaft to cause the shaft to advance toward or away from the lens in increments so that absorption measurements can be made at each of the incremental steps. The shaft is sealed to the probe body by a bellows seal to allow freedom of movement of the shaft and yet avoid leakage from the interior of the probe.
Huang, Lin; Mills, Arthur K.; Zhao, Yuan; Jones, David J.; Tang, Shuo
2016-01-01
We report on a miniature fiber-optic multiphoton microscopy (MPM) system based on a frequency-doubled femtosecond Er-doped fiber laser. The femtosecond pulses from the laser source are delivered to the miniature fiber-optic probe at 1.58 µm wavelength, where a standard single mode fiber is used for delivery without the need of free-space dispersion compensation components. The beam is frequency-doubled inside the probe by a periodically poled MgO:LiNbO3 crystal. Frequency-doubled pulses at 786 nm with a maximum power of 80 mW and a pulsewidth of 150 fs are obtained and applied to excite intrinsic signals from tissues. A MEMS scanner, a miniature objective, and a multimode collection fiber are further used to make the probe compact. The miniature fiber-optic MPM system is highly portable and robust. Ex vivo multiphoton imaging of mammalian skins demonstrates the capability of the system in imaging biological tissues. The results show that the miniature fiber-optic MPM system using frequency-doubled femtosecond fiber laser can potentially bring the MPM imaging for clinical applications. PMID:27231633
Embedded calibration system for the DIII-D Langmuir probe analog fiber optic links
DOE Office of Scientific and Technical Information (OSTI.GOV)
Watkins, J. G.; Rajpal, R.; Mandaliya, H.
2012-10-15
This paper describes a generally applicable technique for simultaneously measuring offset and gain of 64 analog fiber optic data links used for the DIII-D fixed Langmuir probes by embedding a reference voltage waveform in the optical transmitted signal before every tokamak shot. The calibrated data channels allow calibration of the power supply control fiber optic links as well. The array of fiber optic links and the embedded calibration system described here makes possible the use of superior modern data acquisition electronics in the control room.
Fujii, T; Taguchi, Y; Saiki, T; Nagasaka, Y
2012-12-01
A novel local temperature measurement method using fluorescence near-field optics thermal nanoscopy (Fluor-NOTN) has been developed. Fluor-NOTN enables nanoscale temperature measurement in situ by detecting the temperature-dependent fluorescence lifetime of CdSe quantum dots (QDs). In this paper, we report a novel triple-tapered near-field optical fiber probe that can increase the temperature measurement sensitivity of Fluor-NOTN. The performance of the proposed probe was numerically evaluated by the finite difference time domain method. Due to improvements in both the throughput and collection efficiency of near-field light, the sensitivity of the proposed probe was 1.9 times greater than that of typical double-tapered probe. The proposed shape of the triple-tapered core was successfully fabricated utilizing a geometrical model. The detected signal intensity of dried layers of QDs was greater by more than two orders than that of auto-fluorescence from the fiber core. In addition, the near-field fluorescence lifetime of the QDs and its temperature dependence were successfully measured by the fabricated triple-tapered near-field optical fiber probe. These measurement results verified the capability of the proposed triple-tapered near-field optical fiber probe to improve the collection efficiency of near-field fluorescence.
Particle trapping in 3-D using a single fiber probe with an annular light distribution.
Taylor, R; Hnatovsky, C
2003-10-20
A single optical fiber probe has been used to trap a solid 2 ìm diameter glass bead in 3-D in water. Optical confinement in 2-D was produced by the annular light distribution emerging from a selectively chemically etched, tapered, hollow tipped metalized fiber probe. Confinement of the bead in 3-D was achieved by balancing an electrostatic force of attraction towards the tip and the optical scattering force pushing the particle away from the tip.
Bharadwaj, Reshma; Sai, V V R; Thakare, Kamini; Dhawangale, Arvind; Kundu, Tapanendu; Titus, Susan; Verma, Pradeep Kumar; Mukherji, Soumyo
2011-03-15
A novel label-free technique for the detection of pathogens based on evanescent wave absorbance (EWA) changes at 280 nm from a U-bent optical fiber sensor is demonstrated. Bending a decladded fiber into a U-shaped structure enhances the penetration depth of evanescent waves and hence sensitivity of the probe. We show that the enhanced EWA response from such U-bent probes, caused by the inherent optical absorbance properties of bacterial cells or biomolecules specifically bound to the sensor surface, can be exploited for the detection of pathogens. A portable optical set-up with a UV light emitting diode, a spectrometer and U-bent fiber optic probe of 200 μm core diameter, 0.75 mm bend radius and effective probe length of 1cm demonstrated an ability to detect less than 1000 cfu/ml. Copyright © 2011. Published by Elsevier B.V.
Yoo, Wook Jae; Jang, Kyoung Won; Seo, Jeong Ki; Moon, Jinsoo; Han, Ki-Tek; Park, Jang-Yeon; Park, Byung Gi; Lee, Bongsoo
2011-01-01
A 2-channel embedded infrared fiber-optic temperature sensor was fabricated using two identical silver halide optical fibers for accurate thermometry without complicated calibration processes. In this study, we measured the output voltages of signal and reference probes according to temperature variation over a temperature range from 25 to 225 °C. To decide the temperature of the water, the difference between the amounts of infrared radiation emitted from the two temperature sensing probes was measured. The response time and the reproducibility of the fiber-optic temperature sensor were also obtained. Thermometry with the proposed sensor is immune to changes if parameters such as offset voltage, ambient temperature, and emissivity of any warm object. In particular, the temperature sensing probe with silver halide optical fibers can withstand a high temperature/pressure and water-chemistry environment. It is expected that the proposed sensor can be further developed to accurately monitor temperature in harsh environments.
Chang, Win-Jin; Fang, Te-Hua; Lee, Haw-Long; Yang, Yu-Ching
2005-01-01
In this paper the Rayleigh-Ritz method was used to study the scanning near-field optical microscope (SNOM) with a tapered optical fiber probe's flexural and axial sensitivity to vibration. Not only the contact stiffness but also the geometric parameters of the probe can influence the flexural and axial sensitivity to vibration. According to the analysis, the lateral and axial contact stiffness had a significant effect on the sensitivity of vibration of the SNOM's probe, each mode had a different level of sensitivity and in the first mode the tapered optical fiber probe was the most acceptive to higher levels of flexural and axial vibration. Generally, when the contact stiffness was lower, the tapered probe was more sensitive to higher levels of both axial and flexural vibration than the uniform probe. However, the situation was reversed when the contact stiffness was larger. Furthermore, the effect that the probe's length and its tapered angle had on the SNOM's probe axial and flexural vibration were significant and these two conditions should be incorporated into the design of new SNOM probes.
Zhang, Zhonghuan; Hua, Fei; Liu, Ting; Zhao, Yong; Li, Jun; Yang, Ruifu; Yang, Changxi; Zhou, Lei
2014-01-01
Cylindrical or taper-and-cylinder combination optical fiber probe based on evanescent wave has been widely used for immunofluorescence biosensor to detect various analytes. In this study, in contrast to the contradiction between penetration depth and analyte diameter of optical fiber probe-based evanescent wave, we demonstrate that double-taper optical fiber used in a radiation wave-based all-fiber immunofluorescence biosensor (RWAIB) can detect micron-scale analytes using Escherichia coli O157:H7 as representative target. Finite-difference time-domain method was used to compare the properties of evanescent wave and radiation wave (RW). Ray-tracing model was formulated to optimize the taper geometry of the probe. Based on a commercial multi-mode fiber, a double-taper probe was fabricated and connected with biosensor through a "ferrule connector" optical fiber connector. The RWAIB configuration was accomplished using commercial multi-mode fibers and fiber-based devices according to the "all-fiber" method. The standard sample tests revealed that the sensitivity of the proposed technique for E. coli O157:H7 detection was 10(3) cfu · mL(-1). Quantitation could be achieved within the concentration range of 10(3) cfu · mL(-1) to 107 cfu · mL(-1). No non-specific recognition to ten kinds of food-borne pathogens was observed. The results demonstrated that based on the double-taper optical fiber RWAIB can be used for the quantitative detection of micron-scale targets, and RW sensing is an alternative for traditional evanescent wave sensing during the fabrication of fiber-optic biosensors.
Analysis and Design of a Fiber-optic Probe for DNA Sensors Final Report CRADA No. TSB-1147-95
DOE Office of Scientific and Technical Information (OSTI.GOV)
Molau, Nicole; Vail, Curtis
In 1995, a challenge in the field of genetics dealt with the acquisition of efficient DNA sequencing techniques for reading the 3 billion base-pairs that comprised the human genome. AccuPhotonics, Inc. proposed to develop and manufacture a state-of-the-art near-field scanning optical microscopy (NSOM) fiber-optic probe that was expected to increase probe efficiency by two orders of magnitude over the existing state-of-the-art and to improve resolution to 10Å. The detailed design calculation and optimization of electrical properties of the fiber-optic probe tip geometry would be performed at LLNL, using existing finite-difference time-domain (FDTD) electromagnetic (EM) codes.
Cone penetrometer fiber optic raman spectroscopy probe assembly
Kyle, Kevin R.; Brown, Steven B.
2000-01-01
A chemically and mechanically robust optical Raman spectroscopy probe assembly that can be incorporated in a cone penetrometer (CPT) for subsurface deployment. This assembly consists of an optical Raman probe and a penetrometer compatible optical probe housing. The probe is intended for in-situ chemical analysis of chemical constituents in the surrounding environment. The probe is optically linked via fiber optics to the light source and the detection system at the surface. A built-in broadband light source provides a strobe method for direct measurement of sample optical density. A mechanically stable sapphire window is sealed directly into the side-wall of the housing using a metallic, chemically resistant, hermetic seal design. This window permits transmission of the interrogation light beam and the resultant signal. The spectroscopy probe assembly is capable of accepting Raman, Laser induced Fluorescence, reflectance, and other optical probes with collimated output for CPT deployment.
Characterization of laser-driven shock waves in solids using a fiber optic pressure probe.
Cranch, Geoffrey A; Lunsford, Robert; Grün, Jacob; Weaver, James; Compton, Steve; May, Mark; Kostinski, Natalie
2013-11-10
Measurement of laser-driven shock wave pressure in solid blocks of polymethyl methacrylate is demonstrated using fiber optic pressure probes. Three probes based on a fiber Fabry-Perot, fiber Bragg grating, and interferometric fiber tip sensor are tested and compared. Shock waves are generated using a high-power laser focused onto a thin foil target placed in close proximity to the test blocks. The fiber Fabry-Perot sensor appears capable of resolving the shock front with a rise time of 91 ns. The peak pressure is estimated, using a separate shadowgraphy measurement, to be 3.4 GPa.
NASA Astrophysics Data System (ADS)
Schulze, H. Georg; Greek, L. Shane; Blades, Michael W.; Bree, Alan V.; Gorzalka, Boris B.; Turner, Robin F. B.
1997-05-01
Many techniques have been developed to investigate the chemistry associated with brain activity. These techniques generally fall into two categories: fast techniques with species restricted sensitivity and slow techniques with generally unrestricted species sensitivity. Therefore, a need exists for a fast non-invasive technique sensitive to a wide array of biologically relevant compounds in order to measure chemical brain events in real time. The work presented here describes the progress made toward the development of a novel neurotransmitter probe. A fiber-optic linked Raman and tunable ultraviolet resonance Raman system was assembled with custom designed optical fiber probes. Probes of several different geometries were constructed and their working curves obtained in aqueous mixtures of methyl orange and potassium nitrate to determine the best probe configuration given particular sample characteristics. Using this system, the ultraviolet resonance Raman spectra of some neurotransmitters were measured with a fiber-optic probe and are reported here for the first time. The probe has also been used to measure neurotransmitter secretions obtained from depolarized rat pheochromocytoma cells.
Fiber-optic-bundle-based optical coherence tomography.
Xie, Tuqiang; Mukai, David; Guo, Shuguang; Brenner, Matthew; Chen, Zhongping
2005-07-15
A fiber-optic-bundle-based optical coherence tomography (OCT) probe method is presented. The experimental results demonstrate this multimode optical fiber-bundle-based OCT system can achieve a lateral resolution of 12 microm and an axial resolution of 10 microm with a superluminescent diode source. This novel OCT imaging approach eliminates any moving parts in the probe and has a primary advantage for use in extremely compact and safe OCT endoscopes for imaging internal organs and great potential to be combined with confocal endoscopic microscopy.
Enhanced-locality fiber-optic two-photon-fluorescence live-brain interrogation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fedotov, I. V.; Doronina-Amitonova, L. V.; Russian Quantum Center, ul. Novaya 100, Skolkovo, Moscow Region 1430125
2014-02-24
Two-photon excitation is shown to substantially enhance the locality of fiber-based optical interrogation of strongly scattering biotissues. In our experiments, a high-numerical-aperture, large-core-are fiber probe is used to deliver the 200-fs output of a 100-MHz mode-locked ytterbium fiber laser to samples of live mouse brain, induce two-photon fluorescence of nitrogen–vacancy centers in diamond markers in brain sample. Fiber probes with a high numerical aperture and a large core area are shown to enable locality enhancement in fiber-laser–fiber-probe two-photon brain excitation and interrogation without sacrificing the efficiency of fluorescence response collection.
NASA Technical Reports Server (NTRS)
Borg, Stephen E.; Harper, Samuel E.
2001-01-01
This paper documents the design and development of the fiber-optic probes utilized in the flame detection systems used in NASA Langley Research Center's 8-Foot High Temperature Tunnel (8-ft HTT). Two independent flame detection systems are utilized to monitor the presence and stability of the main-burner and pilot-level flames during facility operation. Due to the harsh environment within the combustor, the successful development of a rugged and efficient fiber-optic probe was a critical milestone in the development of these flame detection systems. The final optical probe design for the two flame detection systems resulted from research that was conducted in Langley's 7-in High Temperature Pilot Tunnel (7-in HTT). A detailed description of the manufacturing process behind the optical probes used in the 8-ft HTT is provided in Appendix A of this report.
Fiberoptic probe and system for spectral measurements
Dai, Sheng; Young, Jack P.
1998-01-01
A fused fiberoptic probe, a system, method and embodiments thereof for conducting spectral measurements are disclosed. The fused fiberoptic probe comprises a probe tip having a specific geometrical configuration, an exciting optical fiber and at least one collection optical fiber fused within a housing, preferrably silica. The specific geometrical configurations in which the probe tip can be shaped include a slanted probe tip with an angle greater than 0.degree., an inverted cone-shaped probe tip, and a lens head.
Study of probe-sample distance for biomedical spectra measurement.
Wang, Bowen; Fan, Shuzhen; Li, Lei; Wang, Cong
2011-11-02
Fiber-based optical spectroscopy has been widely used for biomedical applications. However, the effect of probe-sample distance on the collection efficiency has not been well investigated. In this paper, we presented a theoretical model to maximize the illumination and collection efficiency in designing fiber optic probes for biomedical spectra measurement. This model was in general applicable to probes with single or multiple fibers at an arbitrary incident angle. In order to demonstrate the theory, a fluorescence spectrometer was used to measure the fluorescence of human finger skin at various probe-sample distances. The fluorescence spectrum and the total fluorescence intensity were recorded. The theoretical results show that for single fiber probes, contact measurement always provides the best results. While for multi-fiber probes, there is an optimal probe distance. When a 400- μm excitation fiber is used to deliver the light to the skin and another six 400- μm fibers surrounding the excitation fiber are used to collect the fluorescence signal, the experimental results show that human finger skin has very strong fluorescence between 475 nm and 700 nm under 450 nm excitation. The fluorescence intensity is heavily dependent on the probe-sample distance and there is an optimal probe distance. We investigated a number of probe-sample configurations and found that contact measurement could be the primary choice for single-fiber probes, but was very inefficient for multi-fiber probes. There was an optimal probe-sample distance for multi-fiber probes. By carefully choosing the probe-sample distance, the collection efficiency could be enhanced by 5-10 times. Our experiments demonstrated that the experimental results of the probe-sample distance dependence of collection efficiency in multi-fiber probes were in general agreement with our theory.
Highly sensitive evanescent wave combination tapered fiber optic fluorosensor for protein detection
NASA Astrophysics Data System (ADS)
Nardone, Vincent; Kapoor, Rakesh
2008-02-01
In this paper we are reporting the development of a highly sensitive evanescent wave combination tapered fiber optic fluorosensor. We have demonstrated detection of 5 pM Bovine Serum Albumin (BSA) protein using these fiber optic sensors. The sensor can be easily adopted for detection of other proteins. Six identical probes were prepared and affinity pure Goat anti-BSA antibodies were immobilized on the probe surface. We could detect signal from all the probes kept in 5 pM to 1 nM BSA solution while no signal was detected from the probes kept in 20 nM labeled ESA solution.
Biomedical and sensing applications of a multi-mode biodegradable phosphate-based optical fiber
NASA Astrophysics Data System (ADS)
Podrazky, Ondřej; Peterka, Pavel; Vytykáčová, SoÅa.; Proboštová, Jana; Kuneš, Martin; Lyutakov, Oleksiy; Ceci-Ginistrelli, Edoardo; Pugliese, Diego; Boetti, Nadia G.; Janner, Davide; Milanese, Daniel
2018-02-01
We report on the employment of a biodegradable phosphate-based optical fiber as a pH sensing probe in physiological environment. The phosphate-based optical fiber preform was fabricated by the rod-in-tube technique. The fiber biodegradability was first tested in-vitro and then its biodegradability and toxicity were tested in-vivo. Optical probes for pH sensing were prepared by the immobilization of a fluorescent dye on the fiber tip by a sol-gel method. The fluorescence response of the pH-sensor was measured as a ratio of the emission intensities at the excitation wavelengths of 405 and 450 nm.
Eom, Jonghyun; Shin, Jun Geun; Park, Soongho; Rim, Sunghwan; Lee, Byeong Ha
2016-01-01
We propose an all-fiber-based dual-modal imaging system that combines noncontact photoacoustic tomography (PAT) and optical coherence tomography (OCT). The PAT remotely measures photoacoustic (PA) signals with a 1550-nm laser on the surface of a sample by utilizing a fiber interferometer as an ultrasound detector. The fiber-based OCT, employing a swept-source laser centered at 1310 nm, shares the sample arm of the PAT system. The fiber-optic probe for the combined system was homemade with a lensed single-mode fiber (SMF) and a large-core multimode fiber (MMF). The compact and robust common probe is capable of obtaining both the PA and the OCT signals at the same position without any physical contact. Additionally, the MMF of the probe delivers the short pulses of a Nd:YAG laser to efficiently excite the PA signals. We experimentally demonstrate the feasibility of the proposed dual-modal system with a phantom made of a fishing line and a black polyethylene terephthalate fiber in a tissue mimicking solution. The all-fiber-optic system, capable of providing complementary information about absorption and scattering, has a promising potential in minimally invasive and endoscopic imaging. PMID:27213392
Eom, Jonghyun; Shin, Jun Geun; Park, Soongho; Rim, Sunghwan; Lee, Byeong Ha
2016-05-20
We propose an all-fiber-based dual-modal imaging system that combines noncontact photoacoustic tomography (PAT) and optical coherence tomography (OCT). The PAT remotely measures photoacoustic (PA) signals with a 1550-nm laser on the surface of a sample by utilizing a fiber interferometer as an ultrasound detector. The fiber-based OCT, employing a swept-source laser centered at 1310 nm, shares the sample arm of the PAT system. The fiber-optic probe for the combined system was homemade with a lensed single-mode fiber (SMF) and a large-core multimode fiber (MMF). The compact and robust common probe is capable of obtaining both the PA and the OCT signals at the same position without any physical contact. Additionally, the MMF of the probe delivers the short pulses of a Nd:YAG laser to efficiently excite the PA signals. We experimentally demonstrate the feasibility of the proposed dual-modal system with a phantom made of a fishing line and a black polyethylene terephthalate fiber in a tissue mimicking solution. The all-fiber-optic system, capable of providing complementary information about absorption and scattering, has a promising potential in minimally invasive and endoscopic imaging.
Characterization of laser-driven shock waves in solids using a fiber optic pressure probe
Cranch, Geoffrey A.; Lunsford, Robert; Grun, Jacob; ...
2013-11-08
Measurement of laser-driven shock wave pressure in solid blocks of polymethyl methacrylate is demonstrated using fiber optic pressure probes. Three probes based on a fiber Fabry–Perot, fiber Bragg grating, and interferometric fiber tip sensor are tested and compared. Shock waves are generated using a high-power laser focused onto a thin foil target placed in close proximity to the test blocks. The fiber Fabry–Perot sensor appears capable of resolving the shock front with a rise time of 91 ns. As a result, the peak pressure is estimated, using a separate shadowgraphy measurement, to be 3.4 GPa.
Fiber-optic temperature probe system for inner body
NASA Astrophysics Data System (ADS)
Liu, Bo; Deng, Xing-Zhong; Cao, Wei; Cheng, Xianping; Xie, Tuqiang; Zhong, Zugen
1991-08-01
The authors have designed a fiber-optic temperature probe system that can quickly insert its probe into bodies to measure temperature. Its thermometer unit has the function of program- controlled zeroing. The single-chip microcomputer is used to control the whole system and process data. The sample system has been tested in a coal furnace.
A Fiber Optic Probe for the Detection of Cataracts
NASA Technical Reports Server (NTRS)
Ansari, Rafat R.; Dhadwal, Harbans S.
1993-01-01
A compact fiber optic probe developed for on-orbit science experiments was used to detect the onset of cataracts, a capability that could eliminate physicians' guesswork and result in new drugs to 'dissolve' or slow down the cataract formation before surgery is necessary. The probe is based upon dynamic light scattering (DLS) principles. It has no moving parts, no apertures, and requires no optical alignment. It is flexible and easy to use. Results are presented for excised but intact human eye lenses. In a clinical setting, the device can be easily incorporated into a slit-lamp apparatus (ophthalmoscope) for complete eye diagnostics. In this set-up, the integrated fiber optic probe, the size of a pencil, delivers a low power cone of laser light into the eye of a patient and guides the light which is backscattered by the protein molecules of the lens through a receiving optical fiber to a photo detector. The non-invasive DLS measurements provide rapid determination of protein crystalline size and its size distribution in the eye lens.
Fiberoptic probe and system for spectral measurements
Dai, S.; Young, J.P.
1998-10-13
A fused fiberoptic probe, a system, method and embodiments thereof for conducting spectral measurements are disclosed. The fused fiberoptic probe comprises a probe tip having a specific geometrical configuration, an exciting optical fiber and at least one collection optical fiber fused within a housing, preferably silica. The specific geometrical configurations in which the probe tip can be shaped include a slanted probe tip with an angle greater than 0{degree}, an inverted cone-shaped probe tip, and a lens head. 12 figs.
Zhao, D; Campos, D; Yan, Y; Kimple, R; Jacques, S; van der Kogel, A; Kissick, M
2012-06-01
To demonstrate a novel interstitial optical fiber spectroscopic system, based on diffuse optical spectroscopies with spectral fitting, for the simultaneous monitoring of tumor blood volume and oxygen tension. The technique provides real-time, minimally-invasive and quantification of tissue micro-vascular hemodynamics. An optical fiber prototype probe characterizesthe optical transport in tissue between two large Numerical Aperture (NA) fibers of 200μm core diameter (BFH37-200, ThorLabs) spaced 3-mm apart. Two 21-Ga medical needles are used to protect fiber ends and to facilitate tissue penetration with minimum local blunt trauma in nude mice with xenografts. A 20W white light source (HL-2000-HP, Ocean Optics) is coupled to one fiber with SMA adapter. The other fiber is used to collect light, which is coupled into the spectrometer (QE65000 with Spectrasuite Operating software and OmniDriver, Ocean Optics). The wavelength response of the probe depends on the wavelength dependence of the light source, and of the light signal collection that includes considerable scatter, modeled with Monte-Carlo techniques (S. Jacques 2010 J. of Innov. Opt. Health Sci. 2 123-9). Measured spectra of tissue are normalized by a measured spectrum of a white standard, yielding the transmission spectrum. A head-and-neck xenograft on the flank of a live mouse is used for development. The optical fiber probe delivers and collects light at an arbitrary depth in the tumor. By spectral fitting of the measured transmission spectrum, an analysis of blood volume and oxygen tension is obtained from the fitting parameters in real time. A newly developed optical fiber spectroscopic system with an optical fiber probe takes spectroscopic techniques to a much deeper level in a tumor, which has potential applications for real-time monitoring hypoxic cell population dynamics for an eventual adaptive therapy metric of particular use in hypofractionated radiotherapy. © 2012 American Association of Physicists in Medicine.
Cho, Tae-Sik; Choi, Ki-Sun; Seo, Dae-Cheol; Kwon, Il-Bum; Lee, Jung-Ryul
2012-01-01
The use of a fiber optic quasi-distributed sensing technique for detecting the location and severity of water leakage is suggested. A novel fiber optic sensor probe is devised with a vessel of water absorption material called as water combination soil (WCS) located between two highly reflected connectors: one is a reference connector and the other is a sensing connector. In this study, the sensing output is calculated from the reflected light signals of the two connectors. The first reflected light signal is a reference and the second is a sensing signal which is attenuated by the optical fiber bending loss due to the WCS expansion absorbing water. Also, the bending loss of each sensor probe is determined by referring to the total number of sensor probes and the total power budget of an entire system. We have investigated several probe characteristics to show the design feasibility of the novel fiber sensor probe. The effects of vessel sizes of the probes on the water detection sensitivity are studied. The largest vessel probe provides the highest sensitivity of 0.267 dB/mL, while the smallest shows relatively low sensitivity of 0.067 dB/mL, and unstable response. The sensor probe with a high output value provides a high sensitivity with various detection levels while the number of total installable sensor probes decreases.
Effects of Temperature and X-rays on Plastic Scintillating Fiber and Infrared Optical Fiber.
Lee, Bongsoo; Shin, Sang Hun; Jang, Kyoung Won; Yoo, Wook Jae
2015-05-11
In this study, we have studied the effects of temperature and X-ray energy variations on the light output signals from two different fiber-optic sensors, a fiber-optic dosimeter (FOD) based on a BCF-12 as a plastic scintillating fiber (PSF) and a fiber-optic thermometer (FOT) using a silver halide optical fiber as an infrared optical fiber (IR fiber). During X-ray beam irradiation, the scintillating light and IR signals were measured simultaneously using a dosimeter probe of the FOD and a thermometer probe of the FOT. The probes were placed in a beaker with water on the center of a hotplate, under variation of the tube potential of a digital radiography system or the temperature of the water in the beaker. From the experimental results, in the case of the PSF, the scintillator light output at the given tube potential decreased as the temperature increased in the temperature range from 25 to 60 °C. We demonstrated that commonly used BCF-12 has a significant temperature dependence of -0.263 ± 0.028%/°C in the clinical temperature range. Next, in the case of the IR fiber, the intensity of the IR signal was almost uniform at each temperature regardless of the tube potential range from 50 to 150 kVp. Therefore, we also demonstrated that the X-ray beam with an energy range used in diagnostic radiology does not affect the IR signals transmitted via a silver halide optical fiber.
Effects of Temperature and X-rays on Plastic Scintillating Fiber and Infrared Optical Fiber
Lee, Bongsoo; Shin, Sang Hun; Jang, Kyoung Won; Yoo, Wook Jae
2015-01-01
In this study, we have studied the effects of temperature and X-ray energy variations on the light output signals from two different fiber-optic sensors, a fiber-optic dosimeter (FOD) based on a BCF-12 as a plastic scintillating fiber (PSF) and a fiber-optic thermometer (FOT) using a silver halide optical fiber as an infrared optical fiber (IR fiber). During X-ray beam irradiation, the scintillating light and IR signals were measured simultaneously using a dosimeter probe of the FOD and a thermometer probe of the FOT. The probes were placed in a beaker with water on the center of a hotplate, under variation of the tube potential of a digital radiography system or the temperature of the water in the beaker. From the experimental results, in the case of the PSF, the scintillator light output at the given tube potential decreased as the temperature increased in the temperature range from 25 to 60 °C. We demonstrated that commonly used BCF-12 has a significant temperature dependence of −0.263 ± 0.028%/°C in the clinical temperature range. Next, in the case of the IR fiber, the intensity of the IR signal was almost uniform at each temperature regardless of the tube potential range from 50 to 150 kVp. Therefore, we also demonstrated that the X-ray beam with an energy range used in diagnostic radiology does not affect the IR signals transmitted via a silver halide optical fiber. PMID:25970257
The cervical cancer detection system based on an endoscopic rotary probe
NASA Astrophysics Data System (ADS)
Yang, Yanshuang; Hou, Qiang; Zhao, Huijuan; Qin, Zhuanping; Gao, Feng
2012-03-01
To acquire the optical diffuse tomographic image of the cervix, a novel endoscopic rotary probe is designed and the frequency domain measurement system is developed. The finite element method and Gauss-Newton method are proposed to reconstruct the image of the phantom. In the optical diffuse tomographic imaging of the cervix, an endoscopic probe is needed and the detection of light at different separation to the irradiation spot is necessary. To simplify the system, only two optical fibers are adopted for light irradiation and collection, respectively. Two small stepper motors are employed to control the rotation of the incident fiber and the detection fiber, respectively. For one position of source fiber, the position of the detection fiber is changed from -61.875° to -50.625° and 50.625° to 61.875° to the source fiber, respectively. Then, the position of the source fiber is changed to another preconcerted position, which deviates the precious source position in an angle of 11.25°, and the detection fiber rotates within the above angles. To acquire the efficient irradiation and collection of the light, a gradient-index (GRIN) lens is connected at the head of the optical fiber. The other end of the GRIN lens is cut to 45°. With this design, light from optical fiber is reflected to the cervix wall, which is perpendicular to the optical fiber or vice versa. Considering the cervical size, the external diameter of the endoscopic probe is made to 20mm. A frequency domain (FD) near-infrared diffuse system is developed aiming at the detection of early cervical cancer, which modulates the light intensity in radio frequency and measures the amplitude attenuation and the phase delay of the diffused light using heterodyne detection. Phantom experiment results demonstrate that the endoscopic rotary scan probe and the system perform well in the endoscopic measurement.
U-bent plastic optical fiber based plasmonic biosensor for nucleic acid detection
NASA Astrophysics Data System (ADS)
Gowri, A.; Sai, V. V. R.
2017-05-01
This study presents the development of low cost, rapid and highly sensitive plasmonic sandwich DNA biosensor using U-bent plastic optical fiber (POF) probes with high evanescent wave absorbance sensitivity and gold nanoparticles (AuNP) as labels. Plastic optical fiber (PMMA core and fluorinated polymer as cladding) offer ease in machinability and handling due to which optimum U-bent geometry (with fiber and bend diameter of 0.5 and 1.5 mm respectively) for high sensitivity could be achieved. A sensitive fiber optic DNA biosensor is realized by (i) modifying the PMMA surface using ethylenediamine (EDA) in order to maximize the immobilization of capture oligonucleotides (ONs) and (ii) conjugating probe ONs to AuNP labels of optimum size ( 35 nm) with high extinction coefficient and optimal ON surface density. The sandwich hybridization assay on U-bent POF probes results in increase in optical absorbance through the probe with increase in target ON concentration due to the presence of increased number of AuNPs. The absorbance of light passing through the U-bent probe due to the presence of AuNP labels on its surface as result of sandwich DNA hybridization is measured using a halogen lamp and a fiber optic spectrometer. A picomolar limit of detection of target ON (0.2 pM or 1 pg/ml or 5 attomol in 25 μL) is achieved with this biosensing scheme, indicating its potential for the development of a highly sensitive DNA biosensor.
Water-Cooled Optical Thermometer
NASA Technical Reports Server (NTRS)
Menna, A. A.
1987-01-01
Water-cooled optical probe measures temperature of nearby radiating object. Intended primarily for use in silicon-growing furnace for measuring and controlling temperatures of silicon ribbon, meniscus, cartridge surfaces, heaters, or other parts. Cooling water and flushing gas cool fiber-optic probe and keep it clean. Fiber passes thermal radiation from observed surface to measuring instrument.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nave, S.E.
Recent advances in fiber optics, diode lasers, CCD detectors, dielectric and holographic optical filters, grating spectrometers, and chemometric data analysis have greatly simplified Raman spectroscopy. In order to make a rugged fiber optic Raman probe for solids/slurries like these at Savannah River, we have designed a probe that eliminates as many optical elements and surfaces as possible. The diffuse reflectance probe tip is modified for Raman scattering by installing thin dielectric in-line filters. Effects of each filter are shown for the NaNO{sub 3} Raman spectrum. By using a diode laser excitation at 780 nm, fluorescence is greatly reduced, and excellentmore » spectra may be obtained from organic solids. At SRS, fiber optic Raman probes are being developed for in situ chemical mapping of radioactive waste storage tanks. Radiation darkening of silica fiber optics is negligible beyond 700 nm. Corrosion resistance is being evaluated. Analysis of process gas (off-gas from SRS processes) is investigated in some detail: hydrogen in nitrogen with NO{sub 2} interference. Other applications and the advantages of the method are pointed out briefly.« less
Development of an optical fiber SERS microprobe for minimally invasive sensing applications
NASA Astrophysics Data System (ADS)
Mamun, Md Abdullah Al; Juodkazis, Saulius; Mahadevan-Jansen, Anita; Stoddart, Paul R.
2018-02-01
Numerous potential biomedical sensing applications of surface-enhanced Raman scattering (SERS) have been reported, but its practical use has been limited by the lack of a robust sensing platform. Optical fiber SERS probes show great promise, but are limited by the prominent silica Raman background, which requires the use of bulky optics for filtering the signal collection and excitation delivery paths. In the present study, a SERS microprobe has been designed and developed to eliminate the bottlenecks outlined above. For efficient excitation and delivery of the SERS signal, both hollow core photonic crystal fiber and double clad fiber have been investigated. While the hollow core fiber was still found to have excessive silica background, the double clad fiber allows efficient signal collection via the multi-mode inner cladding. A micro filtering mechanism has been designed, which can be integrated into the tip of the optical fiber SERS probe, providing filtering to suppress silica Raman background and thus avoiding the need for bulky optics. The design also assists in the efficient collection of SERS signal from the sample by rejecting Rayleigh scattered light from the sample. Optical fiber cleaving using ultra-short laser pulses was tested for improved control of the fiber tip geometry. With this miniaturized and integrated filtering mechanism, it is expected that the developed probe will promote the use of SERS for minimally invasive biomedical monitoring and sensing applications in future. The probe could potentially be placed inside a small gauge hypodermic needle and would be compatible with handheld portable spectrometers.
Reflection based Extraordinary Optical Transmission Fiber Optic Probe for Refractive Index Sensing.
Lan, Xinwei; Cheng, Baokai; Yang, Qingbo; Huang, Jie; Wang, Hanzheng; Ma, Yinfa; Shi, Honglan; Xiao, Hai
2014-03-31
Fiber optic probes for chemical sensing based on the extraordinary optical transmission (EOT) phenomenon are designed and fabricated by perforating subwavelength hole arrays on the gold film coated optical fiber endface. The device exhibits a red shift in response to the surrounding refractive index increases with high sensitivity, enabling a reflection-based refractive index sensor with a compact and simple configuration. By choosing the period of hole arrays, the sensor can be designed to operate in the near infrared telecommunication wavelength range, where the abundant source and detectors are available for easy instrumentation. The new sensor probe is demonstrated for refractive index measurement using refractive index matching fluids. The sensitivity reaches 573 nm/RIU in the 1.333~1.430 refractive index range.
Engine spectrometer probe and method of use
NASA Technical Reports Server (NTRS)
Barkhoudarian, Sarkis (Inventor); Kittinger, Scott A. (Inventor)
2006-01-01
The engine spectrometer probe and method of using the same of the present invention provides a simple engine spectrometer probe which is both lightweight and rugged, allowing an exhaust plume monitoring system to be attached to a vehicle, such as the space shuttle. The engine spectrometer probe can be mounted to limit exposure to the heat and debris of the exhaust plume. The spectrometer probe 50 comprises a housing 52 having an aperture 55 and a fiber optic cable 60 having a fiber optic tip 65. The fiber optic tip 65 has an acceptance angle 87 and is coupled to the aperture 55 so that the acceptance angle 87 intersects the exhaust plume 30. The spectrometer probe can generate a spectrum signal from light in the acceptance angle 506 and the spectrum signal can be provided to a spectrometer 508.
NASA Technical Reports Server (NTRS)
1997-01-01
Successive years of Small Business Innovation Research (SBIR) contracts from Langley Research Center to Sensiv Inc., a joint venture between Foster-Miller Inc. and Isorad, Ltd., assisted in the creation of remote fiber optic sensing systems. NASA's SBIR interest in infrared, fiber optic sensor technology was geared to monitoring the curing cycles of advanced composite materials. These funds helped in the fabrication of an infrared, fiber optic sensor to track the molecular vibrational characteristics of a composite part while it is being cured. Foster-Miller ingenuity allowed infrared transmitting optical fibers to combine with Fourier Transform Infrared spectroscopy to enable remote sensing. Sensiv probes operate in the mid-infrared range of the spectrum, although modifications to the instrument also permits its use in the near-infrared region. The Sensiv needle-probe is built to be placed in a liquid or powder and analyze the chemicals in the mixture. Other applications of the probe system include food processing control; combustion control in furnaces; and maintenance problem solving.
Evaluation of the Use of Optical Fiber Thermometers for Thermal Control of the Quench Module Insert
NASA Technical Reports Server (NTRS)
Jones, Matthew R.; Farmer, Jeffrey T.; Breeding, Shawn P.
2001-01-01
Issues regarding the use of optical fiber thermometers to control heater settings in a microgravity vacuum furnace are addressed. It is desirable to use these probes in environments such as the International Space Station, because they can be operated without re-calibration for extended periods. However, the analysis presented in this paper shows that temperature readings obtained using optical fiber thermometers can be corrupted by emissions from the fiber when extended portions of the probe are exposed to elevated temperatures.
Evaluation of the Use of Optical Fiber Thermometers for Thermal Control of the Quench Module Insert
NASA Technical Reports Server (NTRS)
Jones, Matthew R.; Farmer, Jeffrey T.; Breeding, Shawn P.
1999-01-01
Issues regarding the use of optical fiber thermometers to control heater settings in a microgravity vacuum furnace are addressed. It is desirable to use these probes in environments such as the International Space Station, because they can be operated without re-calibration for extended periods. However, the analysis presented in this paper shows that temperature readings obtained using optical fiber thermometers are corrupted due to emissions from the fiber when extended portions of the probe are exposed to elevated temperatures.
O`Rourke, P.E.; Livingston, R.R.
1995-03-28
A fiber optic probe is disclosed for detecting scattered light, with transmitting and receiving fibers having slanted ends and bundled together to form a bevel within the tip of the probe. The probe comprises a housing with a transparent window across its tip for protecting the transmitting and receiving fibers held therein. The endfaces of the fibers are slanted, by cutting, polishing and the like, so that they lie in a plane that is not perpendicular to the longitudinal axis of the respective fiber. The fibers are held in the tip of the probe using an epoxy and oriented so that lines normal to the slanted endfaces are divergent with respect to one another. The epoxy, which is positioned substantially between the transmitting and receiving fibers, is tapered so that the transmitting fiber, the epoxy and the receiving fiber form a bevel of not more than 20 degrees. The angled fiber endfaces cause directing of the light cones toward each other, resulting in improved light coupling efficiency. A light absorber, such as carbon black, is contained in the epoxy to reduce crosstalk between the transmitting and receiving fibers. 3 figures.
O'Rourke, Patrick E.; Livingston, Ronald R.
1995-01-01
A fiber optic probe for detecting scattered light, with transmitting and receiving fibers having slanted ends and bundled together to form a bevel within the tip of the probe. The probe comprises a housing with a transparent window across its tip for protecting the transmitting and receiving fibers held therein. The endfaces of the fibers are slanted, by cutting, polishing and the like, so that they lie in a plane that is not perpendicular to the longitudinal axis of the respective fiber. The fibers are held in the tip of the probe using an epoxy and oriented so that lines normal to the slanted endfaces are divergent with respect to one another. The epoxy, which is positioned substantially between the transmitting and receiving fibers, is tapered so that the transmitting fiber, the epoxy and the receiving fiber form a bevel of not more than 20 degrees. The angled fiber endfaces cause directing of the light cones toward each other, resulting in improved light coupling efficiency. A light absorber, such as carbon black, is contained in the epoxy to reduce crosstalk between the transmitting and receiving fibers.
True Tapping Mode Scanning Near-Field Optical Microscopy with Bent Glass Fiber Probes.
Smirnov, A; Yasinskii, V M; Filimonenko, D S; Rostova, E; Dietler, G; Sekatskii, S K
2018-01-01
In scanning near-field optical microscopy, the most popular probes are made of sharpened glass fiber attached to a quartz tuning fork (TF) and exploiting the shear force-based feedback. The use of tapping mode feedback could be preferable. Such an approach can be realized, for example, using bent fiber probes. Detailed analysis of fiber vibration modes shows that realization of truly tapping mode of the probe dithering requires an extreme caution. In case of using the second resonance mode, probes vibrate mostly in shear force mode unless the bending radius is rather small (ca. 0.3 mm) and the probe's tip is short. Otherwise, the shear force character of the dithering persists. Probes having these characteristics were prepared by irradiation of a tapered etched glass fiber with a CW CO 2 laser. These probes were attached to the TF in double resonance conditions which enables achieving significant quality factor (4000-6000) of the TF + probe system (Cherkun et al., 2006). We also show that, to achieve a truly tapping character, dithering, short, and not exceeding 3 mm lengths of a freestanding part of bent fiber probe beam should also be used in the case of nonresonant excitation.
Liang, Gaoling; Luo, Zewei; Liu, Kunping; Wang, Yimin; Dai, Jianxiong; Duan, Yixiang
2016-05-03
Fiber optic-based biosensors with surface plasmon resonance (SPR) technology are advanced label-free optical biosensing methods. They have brought tremendous progress in the sensing of various chemical and biological species. This review summarizes four sensing configurations (prism, grating, waveguide, and fiber optic) with two ways, attenuated total reflection (ATR) and diffraction, to excite the surface plasmons. Meanwhile, the designs of different probes (U-bent, tapered, and other probes) are also described. Finally, four major types of biosensors, immunosensor, DNA biosensor, enzyme biosensor, and living cell biosensor, are discussed in detail for their sensing principles and applications. Future prospects of fiber optic-based SPR sensor technology are discussed.
Multi-function diamond film fiberoptic probe and measuring system employing same
Young, Jack P.
1998-01-01
A fused fiberoptic probe having a protective cover, a fiberoptic probe system, and embodiments thereof for conducting electromagnetic spectral measurements are disclosed. The fused fiberoptic probe comprises a probe tip having a specific geometrical configuration, an exciting optical fiber and at least one collection optical fiber fused within a housing, preferrably silica, with a protective cover disposed over at least a portion of the probe tip. The specific geometrical configurations in which the probe tip can be shaped include a slanted probe tip with an angle greater than 0.degree., an inverted cone-shaped probe tip, and a lens head.
NASA Astrophysics Data System (ADS)
Qiu, Jianrong; Shen, Yi; Shangguan, Ziwei; Bao, Wen; Yang, Shanshan; Li, Peng; Ding, Zhihua
2018-04-01
Although methods have been proposed to maintain high transverse resolution over an increased depth range, it is not straightforward to scale down the bulk-optic solutions to minimized probes of optical coherence tomography (OCT). In this paper, we propose a high-efficient fiber-based filter in an all-fiber OCT probe to realize an extended depth of focus (DOF) while maintaining a high transverse resolution. Mode interference in the probe is exploited to modulate the complex field with controllable radial distribution. The principle of DOF extension by the fiber-based filter is theoretically analyzed. Numerical simulations are conducted to evaluate the performances of the designed probes. A DOF extension ratio of 2.6 over conventional Gaussian beam is obtainable in one proposed probe under a focused beam diameter of 4 . 6 μm. Coupling efficiencies of internal interfaces of the proposed probe are below -40 dB except the last probe-air interface, which can also be depressed to be -44 dB after minor modification in lengths for the filter. Length tolerance of the proposed probe is determined to be - 28 / + 20 μm, which is readily satisfied in fabrication. With the merits of extended-DOF, high-resolution, high-efficiency and easy-fabrication, the proposed probe is promising in endoscopic applications.
Toxin detection using a fiber-optic-based biosensor
NASA Astrophysics Data System (ADS)
Ogert, Robert A.; Shriver-Lake, Lisa C.; Ligler, Frances S.
1993-05-01
Using an evanescent wave fiber optic-based biosensor developed at Naval Research Laboratory, ricin toxin can be detected in the low ng/ml range. Sensitivity was established at 1 - 5 ng/ml using a two-step assay. The two-step assay showed enhanced signal levels in comparison to a one-step assay. A two-step assay utilizes a 10 minute incubation of an immobilized affinity purified anti-ricin antibody fiber optic probe in the ricin sample before placement in a solution of fluorophore-labeled goat anti-ricin antibodies. The specific fluorescent signal is obtained by the binding of the fluorophore-labeled antibodies to ricin which is bound by the immobilized antibodies on the fiber optic probe. The toxin can be detected directly from urine and river water using this fiber optic assay.
NASA Technical Reports Server (NTRS)
Ansari, Rafat R.; Suh, Kwang I.
1996-01-01
A new fiber optic probe developed for determining transport properties of sub-micron particles in fluids experiments in a microgravity environment has been applied to characterize particulate dispersions/suspensions in various challenging environments which have been hitherto impossible. The probe positioned in front of a sample delivers a low power light (few nW - 3mW) from a laser and guides the light which is back scattered by the suspended particles through a receiving optical fiber to a photo detector and to a digital correlator. The probe provides rapid determination of macromolecular diffusivities and their respective size distributions. It has been applied to characterize various biological fluids, protein crystals, and ophthalmic diseases.
Raman fiber optic probe assembly for use in hostile environments
Schmucker, John E.; Falk, Jon C.; Archer, William B.; Blasi, Raymond J.
2000-01-01
This invention provides a device for Raman spectroscopic measurement of composition and concentrations in a hostile environment by the use of a first fiber optic as a means of directing high intensity monochromatic light from a laser to the hostile environment and a second fiber optic to receive the lower intensity scattered light for transmittal to a monochromator for analysis. To avoid damage to the fiber optics, they are protected from the hostile environment. A preferred embodiment of the Raman fiber optic probe is able to obtain Raman spectra of corrosive gases and solutions at temperatures up to 600.degree. F. and pressures up to 2000 psi. The incident exciting fiber optic cable makes an angle of substantially 90.degree. with the collecting fiber optic cable. This 90.degree. geometry minimizes the Rayleigh scattering signal picked up by the collecting fiber, because the intensity of Rayleigh scattering is lowest in the direction perpendicular to the beam path of the exciting light and therefore a 90.degree. scattering geometry optimizes the signal to noise ratio.
Thin-film fiber optic hydrogen and temperature sensor system
Nave, S.E.
1998-07-21
The invention discloses a sensor probe device for monitoring of hydrogen gas concentrations and temperatures by the same sensor probe. The sensor probe is constructed using thin-film deposition methods for the placement of a multitude of layers of materials sensitive to hydrogen concentrations and temperature on the end of a light transparent lens located within the sensor probe. The end of the lens within the sensor probe contains a lens containing a layer of hydrogen permeable material which excludes other reactive gases, a layer of reflective metal material that forms a metal hydride upon absorbing hydrogen, and a layer of semi-conducting solid that is transparent above a temperature dependent minimum wavelength for temperature detection. The three layers of materials are located at the distal end of the lens located within the sensor probe. The lens focuses light generated by broad-band light generator and connected by fiber-optics to the sensor probe, onto a reflective metal material layer, which passes through the semi-conducting solid layer, onto two optical fibers located at the base of the sensor probe. The reflected light is transmitted over fiber optic cables to a spectrometer and system controller. The absence of electrical signals and electrical wires in the sensor probe provides for an elimination of the potential for spark sources when monitoring in hydrogen rich environments, and provides a sensor free from electrical interferences. 3 figs.
Cui, Jianlei; Yang, Lijun; Wang, Yang; Mei, Xuesong; Wang, Wenjun; Hou, Chaojian
2015-02-04
With the development of nanoscience and nanotechnology for the bottom-up nanofabrication of nanostructures formed from polystyrene nanoparticles, joining technology is an essential step in the manufacturing and assembly of nanodevices and nanostructures in order to provide mechanical integration and connection. To study the nanospot welding of polystyrene nanoparticles, we propose a new nanospot-soldering method using the near-field enhancement effect of a metallic atomic force microscope (AFM) probe tip that is irradiated by an optical fiber probe laser. On the basis of our theoretical analysis of the near-field enhancement effect, we set up an experimental system for nanospot soldering; this approach is carried out by using an optical fiber probe laser to irradiate the AFM probe tip to sinter the nanoparticles, providing a promising technical approach for the application of nanosoldering in nanoscience and nanotechnology.
Miniature all-optical probe for photoacoustic and ultrasound dual-modality imaging
NASA Astrophysics Data System (ADS)
Li, Guangyao; Guo, Zhendong; Chen, Sung-Liang
2018-02-01
Photoacoustic (PA) imaging forms an image based on optical absorption contrasts with ultrasound (US) resolution. In contrast, US imaging is based on acoustic backscattering to provide structural information. In this study, we develop a miniature all-optical probe for high-resolution PA-US dual-modality imaging over a large imaging depth range. The probe employs three individual optical fibers (F1-F3) to achieve optical generation and detection of acoustic waves for both PA and US modalities. To offer wide-angle laser illumination, fiber F1 with a large numerical aperture (NA) is used for PA excitation. On the other hand, wide-angle US waves are generated by laser illumination on an optically absorbing composite film which is coated on the end face of fiber F2. Both the excited PA and backscattered US waves are detected by a Fabry-Pérot cavity on the tip of fiber F3 for wide-angle acoustic detection. The wide angular features of the three optical fibers make large-NA synthetic aperture focusing technique possible and thus high-resolution PA and US imaging. The probe diameter is less than 2 mm. Over a depth range of 4 mm, lateral resolutions of PA and US imaging are 104-154 μm and 64-112 μm, respectively, and axial resolutions of PA and US imaging are 72-117 μm and 31-67 μm, respectively. To show the imaging capability of the probe, phantom imaging with both PA and US contrasts is demonstrated. The results show that the probe has potential for endoscopic and intravascular imaging applications that require PA and US contrast with high resolution.
Naglič, Peter; Pernuš, Franjo; Likar, Boštjan; Bürmen, Miran
2015-01-01
Light propagation models often simplify the interface between the optical fiber probe tip and tissue to a laterally uniform boundary with mismatched refractive indices. Such simplification neglects the precise optical properties of the commonly used probe tip materials, e.g. stainless steel or black epoxy. In this paper, we investigate the limitations of the laterally uniform probe-tissue interface in Monte Carlo simulations of diffuse reflectance. In comparison to a realistic probe-tissue interface that accounts for the layout and properties of the probe tip materials, the simplified laterally uniform interface is shown to introduce significant errors into the simulated diffuse reflectance. PMID:26504647
NDT of fiber-reinforced composites with a new fiber-optic pump–probe laser-ultrasound system☆
Pelivanov, Ivan; Buma, Takashi; Xia, Jinjun; Wei, Chen-Wei; O’Donnell, Matthew
2014-01-01
Laser-ultrasonics is an attractive and powerful tool for the non-destructive testing and evaluation (NDT&E) of composite materials. Current systems for non-contact detection of ultrasound have relatively low sensitivity compared to contact peizotransducers. They are also expensive, difficult to adjust, and strongly influenced by environmental noise. Moreover, laser-ultrasound (LU) systems typically launch only about 50 firings per second, much slower than the kHz level pulse repetition rate of conventional systems. As demonstrated here, most of these drawbacks can be eliminated by combining a new generation of compact, inexpensive, high repetition rate nanosecond fiber lasers with new developments in fiber telecommunication optics and an optimally designed balanced probe beam detector. In particular, a modified fiber-optic balanced Sagnac interferometer is presented as part of a LU pump–probe system for NDT&E of aircraft composites. The performance of the all-optical system is demonstrated for a number of composite samples with different types and locations of inclusions. PMID:25302156
Glucose Sensor Using U-Shaped Optical Fiber Probe with Gold Nanoparticles and Glucose Oxidase
Chen, Kuan-Chieh; Li, Yu-Le; Wu, Chao-Wei
2018-01-01
In this study, we proposed a U-shaped optical fiber probe fabricated using a flame heating method. The probe was packaged in glass tube to reduce human factors during experimental testing of the probe as a glucose sensor. The U-shaped fiber probe was found to have high sensitivity in detecting the very small molecule. When the sensor was dipped in solutions with different refractive indexes, its wavelength or transmission loss changed. We used electrostatic self-assembly to bond gold nanoparticles and glucose oxidase (GOD) onto the sensor’s surface. The results over five cycles of the experiment showed that, as the glucose concentration increased, the refractive index of the sensor decreased and its spectrum wavelength shifted. The best wavelength sensitivity was 2.899 nm/%, and the linearity was 0.9771. The best transmission loss sensitivity was 5.101 dB/%, and the linearity was 0.9734. Therefore, the proposed U-shaped optical fiber probe with gold nanoparticles and GOD has good potential for use as a blood sugar sensor in the future. PMID:29659536
Glucose Sensor Using U-Shaped Optical Fiber Probe with Gold Nanoparticles and Glucose Oxidase.
Chen, Kuan-Chieh; Li, Yu-Le; Wu, Chao-Wei; Chiang, Chia-Chin
2018-04-16
In this study, we proposed a U-shaped optical fiber probe fabricated using a flame heating method. The probe was packaged in glass tube to reduce human factors during experimental testing of the probe as a glucose sensor. The U-shaped fiber probe was found to have high sensitivity in detecting the very small molecule. When the sensor was dipped in solutions with different refractive indexes, its wavelength or transmission loss changed. We used electrostatic self-assembly to bond gold nanoparticles and glucose oxidase (GOD) onto the sensor’s surface. The results over five cycles of the experiment showed that, as the glucose concentration increased, the refractive index of the sensor decreased and its spectrum wavelength shifted. The best wavelength sensitivity was 2.899 nm/%, and the linearity was 0.9771. The best transmission loss sensitivity was 5.101 dB/%, and the linearity was 0.9734. Therefore, the proposed U-shaped optical fiber probe with gold nanoparticles and GOD has good potential for use as a blood sugar sensor in the future.
NASA Astrophysics Data System (ADS)
Chi, Jingmao; Chen, Hui; Tolias, Peter; Du, Henry
2014-06-01
We have explored the use of a fiber-optic probe with surface-enhanced Raman scattering (SERS) sensing modality for early, noninvasive and, rapid diagnosis of potential renal acute rejection (AR) and other renal graft dysfunction of kidney transplant patients. Multimode silica optical fiber immobilized with colloidal Ag nanoparticles at the distal end was used for SERS measurements of as-collected urine samples at 632.8 nm excitation wavelength. All patients with abnormal renal graft function (3 AR episodes and 2 graft failure episodes) who were clinically diagnosed independently show common unique SERS spectral features in the urines collected just one day after transplant. SERS-based fiber-optic probe has excellent potential to be a bedside tool for early diagnosis of kidney transplant patients for timely medical intervention of patients at high risk of transplant dysfunction.
3D silicon neural probe with integrated optical fibers for optogenetic modulation.
Kim, Eric G R; Tu, Hongen; Luo, Hao; Liu, Bin; Bao, Shaowen; Zhang, Jinsheng; Xu, Yong
2015-07-21
Optogenetics is a powerful modality for neural modulation that can be useful for a wide array of biomedical studies. Penetrating microelectrode arrays provide a means of recording neural signals with high spatial resolution. It is highly desirable to integrate optics with neural probes to allow for functional study of neural tissue by optogenetics. In this paper, we report the development of a novel 3D neural probe coupled simply and robustly to optical fibers using a hollow parylene tube structure. The device shanks are hollow tubes with rigid silicon tips, allowing the insertion and encasement of optical fibers within the shanks. The position of the fiber tip can be precisely controlled relative to the electrodes on the shank by inherent design features. Preliminary in vivo rat studies indicate that these devices are capable of optogenetic modulation simultaneously with 3D neural signal recording.
True Tapping Mode Scanning Near-Field Optical Microscopy with Bent Glass Fiber Probes
Yasinskii, V. M.; Filimonenko, D. S.; Rostova, E.; Dietler, G.; Sekatskii, S. K.
2018-01-01
In scanning near-field optical microscopy, the most popular probes are made of sharpened glass fiber attached to a quartz tuning fork (TF) and exploiting the shear force-based feedback. The use of tapping mode feedback could be preferable. Such an approach can be realized, for example, using bent fiber probes. Detailed analysis of fiber vibration modes shows that realization of truly tapping mode of the probe dithering requires an extreme caution. In case of using the second resonance mode, probes vibrate mostly in shear force mode unless the bending radius is rather small (ca. 0.3 mm) and the probe's tip is short. Otherwise, the shear force character of the dithering persists. Probes having these characteristics were prepared by irradiation of a tapered etched glass fiber with a CW CO2 laser. These probes were attached to the TF in double resonance conditions which enables achieving significant quality factor (4000–6000) of the TF + probe system (Cherkun et al., 2006). We also show that, to achieve a truly tapping character, dithering, short, and not exceeding 3 mm lengths of a freestanding part of bent fiber probe beam should also be used in the case of nonresonant excitation. PMID:29849857
Campanile Near-Field Probes Fabricated by Nanoimprint Lithography on the Facet of an Optical Fiber
Calafiore, Giuseppe; Koshelev, Alexander; Darlington, Thomas P.; ...
2017-05-10
One of the major challenges to the widespread adoption of plasmonic and nano-optical devices in real-life applications is the difficulty to mass-fabricate nano-optical antennas in parallel and reproducible fashion, and the capability to precisely place nanoantennas into devices with nanometer-scale precision. In this study, we present a solution to this challenge using the state-of-the-art ultraviolet nanoimprint lithography (UV-NIL) to fabricate functional optical transformers onto the core of an optical fiber in a single step, mimicking the 'campanile' near-field probes. Imprinted probes were fabricated using a custom-built imprinter tool with co-axial alignment capability with sub < 100 nm position accuracy, followedmore » by a metallization step. Scanning electron micrographs confirm high imprint fidelity and precision with a thin residual layer to facilitate efficient optical coupling between the fiber and the imprinted optical transformer. The imprinted optical transformer probe was used in an actual NSOM measurement performing hyperspectral photoluminescence mapping of standard fluorescent beads. The calibration scans confirmed that imprinted probes enable sub-diffraction limited imaging with a spatial resolution consistent with the gap size. This novel nano-fabrication approach promises a low-cost, high-throughput, and reproducible manufacturing of advanced nano-optical devices.« less
Campanile Near-Field Probes Fabricated by Nanoimprint Lithography on the Facet of an Optical Fiber
DOE Office of Scientific and Technical Information (OSTI.GOV)
Calafiore, Giuseppe; Koshelev, Alexander; Darlington, Thomas P.
One of the major challenges to the widespread adoption of plasmonic and nano-optical devices in real-life applications is the difficulty to mass-fabricate nano-optical antennas in parallel and reproducible fashion, and the capability to precisely place nanoantennas into devices with nanometer-scale precision. In this study, we present a solution to this challenge using the state-of-the-art ultraviolet nanoimprint lithography (UV-NIL) to fabricate functional optical transformers onto the core of an optical fiber in a single step, mimicking the 'campanile' near-field probes. Imprinted probes were fabricated using a custom-built imprinter tool with co-axial alignment capability with sub < 100 nm position accuracy, followedmore » by a metallization step. Scanning electron micrographs confirm high imprint fidelity and precision with a thin residual layer to facilitate efficient optical coupling between the fiber and the imprinted optical transformer. The imprinted optical transformer probe was used in an actual NSOM measurement performing hyperspectral photoluminescence mapping of standard fluorescent beads. The calibration scans confirmed that imprinted probes enable sub-diffraction limited imaging with a spatial resolution consistent with the gap size. This novel nano-fabrication approach promises a low-cost, high-throughput, and reproducible manufacturing of advanced nano-optical devices.« less
Design of a fiber-optic multiphoton microscopy handheld probe
Zhao, Yuan; Sheng, Mingyu; Huang, Lin; Tang, Shuo
2016-01-01
We have developed a fiber-optic multiphoton microscopy (MPM) system with handheld probe using femtosecond fiber laser. Here we present the detailed optical design and analysis of the handheld probe. The optical systems using Lightpath 352140 and 352150 as objective lens were analyzed. A custom objective module that includes Lightpath 355392 and two customized corrective lenses was designed. Their performances were compared by wavefront error, field curvature, astigmatism, F-θ error, and tolerance in Zemax simulation. Tolerance analysis predicted the focal spot size to be 1.13, 1.19 and 0.83 µm, respectively. Lightpath 352140 and 352150 were implemented in experiment and the measured lateral resolution was 1.22 and 1.3 µm, respectively, which matched with the prediction. MPM imaging by the handheld probe were conducted on leaf, fish scale and rat tail tendon. The MPM resolution can potentially be improved by the custom objective module. PMID:27699109
Design of a fiber-optic multiphoton microscopy handheld probe.
Zhao, Yuan; Sheng, Mingyu; Huang, Lin; Tang, Shuo
2016-09-01
We have developed a fiber-optic multiphoton microscopy (MPM) system with handheld probe using femtosecond fiber laser. Here we present the detailed optical design and analysis of the handheld probe. The optical systems using Lightpath 352140 and 352150 as objective lens were analyzed. A custom objective module that includes Lightpath 355392 and two customized corrective lenses was designed. Their performances were compared by wavefront error, field curvature, astigmatism, F-θ error, and tolerance in Zemax simulation. Tolerance analysis predicted the focal spot size to be 1.13, 1.19 and 0.83 µm, respectively. Lightpath 352140 and 352150 were implemented in experiment and the measured lateral resolution was 1.22 and 1.3 µm, respectively, which matched with the prediction. MPM imaging by the handheld probe were conducted on leaf, fish scale and rat tail tendon. The MPM resolution can potentially be improved by the custom objective module.
NASA Astrophysics Data System (ADS)
Beard, Paul C.; Mills, Timothy N.
1995-05-01
A miniature (1 mm diameter) all-optical photoacoustic probe for generating and detecting ultrasonic thermoelastic waves in biological media at the tip of an optical fiber has been developed. The probe provides a compact and convenient means of performing pulsed photoacoustic spectroscopy for the characterization of biological tissue. The device is based upon a transparent Fabry Perot polymer film ultrasound sensor mounted directly over the end of a multimode optical fiber. The optical fiber is used to deliver nanosecond laser pulses to the tissue producing thermoelastic waves which are then detected by the sensor. Detection sensitivities of 53 mv/MPa and a 10 kPa acoustic noise floor have been demonstrated giving excellent signal to noise ratios in a strong liquid absorber. Lower, but clearly detectable, signals in post mortem human aorta have also been observed. The performance and small physical size of the device suggest that it has the potential to perform remote in situ photoacoustic measurements in tissue.
Micro sized implantable ball lens-based fiber optic probe design
NASA Astrophysics Data System (ADS)
Cha, Jaepyeong; Kang, Jin U.
2014-02-01
A micro sized implantable ball lens-based fiber optic probe design is described for continuous monitoring of brain activity in freely behaving mice. A prototype uses a 500-micron ball lens and a highly flexible 350-micron-diameter fiber bundle, which are enclosed by a 21G stainless steel sheath. Several types and thickness of brain tissue, consisting of fluorescent probes such as GFP, GCaMP3 calcium indicator, are used to evaluate the performance of the imaging probe. Measured working distance is approximately 400-μm, but is long enough to detect neural activities from cortical and cerebellar tissues of mice brain.
SU-E-T-610: Phosphor-Based Fiber Optic Probes for Proton Beam Characterization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Darafsheh, A; Soldner, A; Liu, H
2015-06-15
Purpose: To investigate feasibility of using fiber optics probes with rare-earth-based phosphor tips for proton beam radiation dosimetry. We designed and fabricated a fiber probe with submillimeter resolution (<0.5 mm3) based on TbF3 phosphors and evaluated its performance for measurement of proton beam including profiles and range. Methods: The fiber optic probe with TbF3 phosphor tip, embedded in tissue-mimicking phantoms was irradiated with double scattering proton beam with energy of 180 MeV. Luminescence spectroscopy was performed by a CCD-coupled spectrograph to analyze the emission spectra of the fiber tip. In order to measure the spatial beam profile and percentage depthmore » dose, we used singular value decomposition method to spectrally separate the phosphors ionoluminescence signal from the background Cerenkov radiation signal. Results: The spectra of the TbF3 fiber probe showed characteristic ionoluminescence emission peaks at 489, 542, 586, and 620 nm. By using singular value decomposition we found the contribution of the ionoluminescence signal to measure the percentage depth dose in phantoms and compared that with measurements performed with ion chamber. We observed quenching effect at the spread out Bragg peak region, manifested as under-responding of the signal, due to the high LET of the beam. However, the beam profiles were not dramatically affected by the quenching effect. Conclusion: We have evaluated the performance of a fiber optic probe with submillimeter resolution for proton beam dosimetry. We demonstrated feasibility of spectral separation of the Cerenkov radiation from the collected signal. Such fiber probes can be used for measurements of proton beams profile and range. The experimental apparatus and spectroscopy method developed in this work provide a robust platform for characterization of proton-irradiated nanophosphor particles for ultralow fluence photodynamic therapy or molecular imaging applications.« less
Multiple-Fiber-Optic Probe For Light-Scattering Measurements
NASA Technical Reports Server (NTRS)
Dhadwal, Harbans Singh; Ansari, Rafat R.
1996-01-01
Multiple-fiber-optical probe developed for use in measuring light scattered at various angles from specimens of materials. Designed for both static and dynamic light-scattering measurements of colloidal dispersions. Probe compact, rugged unit containing no moving parts and remains stationary during operation. Not restricted to operation in controlled, research-laboratory environment. Positioned inside or outside light-scattering chamber. Provides simultaneous measurements at small angular intervals over range of angles, made to include small scattering angles by orienting probe in appropriate direction.
QUANTITATIVE DETECTION OF ENVIRONMENTALLY IMPORTANT DYES USING DIODE LASER/FIBER-OPTIC RAMAN
A compact diode laser/fiber-optic Raman spectrometer is used for quantitative detection of environmentally important dyes. This system is based on diode laser excitation at 782 mm, fiber optic probe technology, an imaging spectrometer, and state-of-the-art scientific CCD camera. ...
Passivated diamond film temperature sensing probe and measuring system employing same
Young, Jack P.; Mamantov, Gleb
1998-01-01
A high temperature sensing probe includes an optical fiber or rod having a distal end and a proximal end. The optical fiber or rod has a coating secured to the distal end thereof, wherein the coating is capable of producing a Raman spectrum when exposed to an exciting radiation source.
Koch, Cosima; Posch, Andreas E; Herwig, Christoph; Lendl, Bernhard
2016-12-01
The performance of a fiber optic and an optical conduit in-line attenuated total reflection mid-infrared (IR) probe during in situ monitoring of Penicillium chrysogenum fermentation were compared. The fiber optic probe was connected to a sealed, portable, Fourier transform infrared (FT-IR) process spectrometer via a plug-and-play interface. The optical conduit, on the other hand, was connected to a FT-IR process spectrometer via a knuckled probe with mirrors that had to be adjusted prior to each fermentation, which were purged with dry air. Penicillin V (PenV) and its precursor phenoxyacetic acid (POX) concentrations were determined by online high-performance liquid chromatography and the obtained concentrations were used as reference to build partial least squares regression models. Cross-validated root-mean-square errors of prediction were found to be 0.2 g L -1 (POX) and 0.19 g L -1 (PenV) for the fiber optic setup and 0.17 g L -1 (both POX and PenV) for the conduit setup. Higher noise-levels and spectrum-to-spectrum variations of the fiber optic setup lead to higher noise of estimated (i.e., unknown) POX and PenV concentrations than was found for the conduit setup. It seems that trade-off has to be made between ease of handling (fiber optic setup) and measurement accuracy (optical conduit setup) when choosing one of these systems for bioprocess monitoring. © The Author(s) 2016.
Essaidi, N; Chen, Y; Kottler, V; Cambril, E; Mayeux, C; Ronarch, N; Vieu, C
1998-02-01
The current scanning near-field optical microscopy has been developed with optical-fiber probes obtained by use of either laser-heated pulling or chemical etching. For high-resolution near-field imaging, the detected signal is rapidly attenuated as the aperture size of the probe decreases. It is thus important to fabricate probes optimized for both spot size and optical transmission. We present a two-step fabrication that allowed us to achieve an improved performance of the optical-fiber probes. Initially, a CO(2) laser-heated pulling was used to produce a parabolic transitional taper ending with a top thin filament. Then, a rapid chemical etching with 50% buffered hydrofluoric acid was used to remove the thin filament and to result in a final conical tip on the top of the parabolic transitional taper. Systematically, we obtained optical-fiber nanoprobes with the apex size as small as 10 nm and the final cone angle varying from 15 degrees to 80 degrees . It was found that the optical transmission efficiency increases rapidly as the taper angle increases from 15 degrees to 50 degrees , but a further increase in the taper angle gives rise to important broadening of the spot size. Finally, the fabricated nanoprobes were used in photon-scanning tunneling microscopy, which allowed observation of etched double lines and grating structures with periods as small as 200 nm.
[Transmission efficiency analysis of near-field fiber probe using FDTD simulation].
Huang, Wei; Dai, Song-Tao; Wang, Huai-Yu; Zhou, Yun-Song
2011-10-01
A fiber probe is the key component of near-field optical technology which is widely used in high resolution imaging, spectroscopy detection and nano processing. How to improve the transmission efficiency of the fiber probe is a very important problem in the application of near-field optical technology. Based on the results of 3D-FDTD computation, the dependence of the transmission efficiency on the cone angle, the aperture diameter, the wavelength and the thickness of metal cladding is revealed. The authors have also made a comparison between naked probe and the probe with metal cladding in terms of transmission efficiency and spatial resolution. In addition, the authors have discovered the fluctuation phenomena of transmission efficiency as the wavelength of incident laser increases.
All fiber optics circular-state swept source polarization-sensitive optical coherence tomography.
Lin, Hermann; Kao, Meng-Chun; Lai, Chih-Ming; Huang, Jyun-Cin; Kuo, Wen-Chuan
2014-02-01
A swept source (SS)-based circular-state (CS) polarization-sensitive optical coherence tomography (PS-OCT) constructed entirely with polarization-maintaining fiber optics components is proposed with the experimental verification. By means of the proposed calibration scheme, bulk quarter-wave plates can be replaced by fiber optics polarization controllers to, therefore, realize an all-fiber optics CS SSPS-OCT. We also present a numerical dispersion compensation method, which can not only enhance the axial resolution, but also improve the signal-to-noise ratio of the images. We demonstrate that this compact and portable CS SSPS-OCT system with an accuracy comparable to bulk optics systems requires less stringent lens alignment and can possibly serve as a technology to realize PS-OCT instrument for clinical applications (e.g., endoscopy). The largest deviations in the phase retardation (PR) and fast-axis (FA) angle due to sample probe in the linear scanning and a rotation angle smaller than 65 deg were of the same order as those in stationary probe setups. The influence of fiber bending on the measured PR and FA is also investigated. The largest deviations of the PR were 3.5 deg and the measured FA change by ~12 to 21 deg. Finally, in vivo imaging of the human fingertip and nail was successfully demonstrated with a linear scanning probe.
Tissue imaging using full field optical coherence microscopy with short multimode fiber probe
NASA Astrophysics Data System (ADS)
Sato, Manabu; Eto, Kai; Goto, Tetsuhiro; Kurotani, Reiko; Abe, Hiroyuki; Nishidate, Izumi
2018-03-01
In achieving minimally invasive accessibility to deeply located regions the size of the imaging probes is important. We demonstrated full-field optical coherence tomography (FF-OCM) using an ultrathin forward-imaging short multimode fiber (SMMF) probe of 50 μm core diameter, 125 μm diameter, and 7.4 mm length for optical communications. The axial resolution was measured to be 2.14 μm and the lateral resolution was also evaluated to be below 4.38 μm using a test pattern (TP). The spatial mode and polarization characteristics of SMMF were evaluated. Inserting SMMF to in vivo rat brain, 3D images were measured and 2D information of nerve fibers was obtained. The feasibility of an SMMF as an ultrathin forward-imaging probe in FF-OCM has been demonstrated.
Assembled Cantilever Fiber Touch Trigger Probe for Three-Dimensional Measurement of Microstructures
Zou, Limin; Ni, He; Zhang, Peng; Ding, Xuemei
2017-01-01
In this paper, an assembled cantilever fiber touch trigger probe was developed for three-dimensional measurements of clear microstructures. The probe consists of a shaft assembled vertically to an optical fiber cantilever and a probing sphere located at the free end of the shaft. The laser is emitted from the free end of the fiber cantilever and converges on the photosensitive surface of the camera through the lens. The position shift of the light spot centroid was used to detect the performance of the optical fiber cantilever, which changed dramatically when the probing sphere touched the objects being measured. Experimental results indicated that the sensing system has sensitivities of 3.32 pixels/μm, 1.35 pixels/μm, and 7.38 pixels/μm in the x, y, and z directions, respectively, and resolutions of 10 nm, 30 nm, and 5 nm were achieved in the x, y, and z, respectively. An experiment on micro slit measurement was performed to verify the high aspect ratio measurement capability of the assembled cantilever fiber (ACF) probe and to calibrate the effective two-point diameter of the probing sphere. The two-point probe sphere diameter was found to be 174.634 μm with a standard uncertainly of 0.045 μm. PMID:29156602
Assembled Cantilever Fiber Touch Trigger Probe for Three-Dimensional Measurement of Microstructures.
Zou, Limin; Ni, He; Zhang, Peng; Ding, Xuemei
2017-11-20
In this paper, an assembled cantilever fiber touch trigger probe was developed for three-dimensional measurements of clear microstructures. The probe consists of a shaft assembled vertically to an optical fiber cantilever and a probing sphere located at the free end of the shaft. The laser is emitted from the free end of the fiber cantilever and converges on the photosensitive surface of the camera through the lens. The position shift of the light spot centroid was used to detect the performance of the optical fiber cantilever, which changed dramatically when the probing sphere touched the objects being measured. Experimental results indicated that the sensing system has sensitivities of 3.32 pixels/μm, 1.35 pixels/μm, and 7.38 pixels/μm in the x, y, and z directions, respectively, and resolutions of 10 nm, 30 nm, and 5 nm were achieved in the x, y, and z, respectively. An experiment on micro slit measurement was performed to verify the high aspect ratio measurement capability of the assembled cantilever fiber (ACF) probe and to calibrate the effective two-point diameter of the probing sphere. The two-point probe sphere diameter was found to be 174.634 μm with a standard uncertainly of 0.045 μm.
All-fiber hybrid photon-plasmon circuits: integrating nanowire plasmonics with fiber optics.
Li, Xiyuan; Li, Wei; Guo, Xin; Lou, Jingyi; Tong, Limin
2013-07-01
We demonstrate all-fiber hybrid photon-plasmon circuits by integrating Ag nanowires with optical fibers. Relying on near-field coupling, we realize a photon-to-plasmon conversion efficiency up to 92% in a fiber-based nanowire plasmonic probe. Around optical communication band, we assemble an all-fiber resonator and a Mach-Zehnder interferometer (MZI) with Q-factor of 6 × 10(6) and extinction ratio up to 30 dB, respectively. Using the MZI, we demonstrate fiber-compatible plasmonic sensing with high sensitivity and low optical power.
DNA origami nanorobot fiber optic genosensor to TMV.
Torelli, Emanuela; Manzano, Marisa; Srivastava, Sachin K; Marks, Robert S
2018-01-15
In the quest of greater sensitivity and specificity of diagnostic systems, one continually searches for alternative DNA hybridization methods, enabling greater versatility and where possible field-enabled detection of target analytes. We present, herein, a hybrid molecular self-assembled scaffolded DNA origami entity, intimately immobilized via capture probes linked to aminopropyltriethoxysilane, onto a glass optical fiber end-face transducer, thus producing a novel biosensor. Immobilized DNA nanorobots with a switchable flap can then be actuated by a specific target DNA present in a sample, by exposing a hemin/G-quadruplex DNAzyme, which then catalyzes the generation of chemiluminescence, once the specific fiber probes are immersed in a luminol-based solution. Integrating organic nanorobots to inorganic fiber optics creates a hybrid system that we demonstrate as a proof-of-principle can be utilized in specific DNA sequence detection. This system has potential applications in a wide range of fields, including point-of-care diagnostics or cellular in vivo biosensing when using ultrathin fiber optic probes for research purposes. Copyright © 2017 Elsevier B.V. All rights reserved.
Liu, Shupeng; Rong, Ming; Zhang, Heng; Chen, Na; Pang, Fufei; Chen, Zhenyi; Wang, Tingyun; Yan, Jianshe
2016-01-01
Monitoring drug concentrations in vivo is very useful for adjusting a drug dosage during treatment and for drug research. Specifically, cutting-edge “on-line” drug research relies on knowing how drugs are metabolized or how they interact with the blood in real-time. Thus, this study explored performing in vivo Raman measurements of the model drug levofloxacin lactate in the blood using a nanoparticle-coated optical fiber probe (optical fiber nano-probe). The results show that we were able to measure real-time changes in the blood concentration of levofloxacin lactate, suggesting that this technique could be helpful for performing drug analyses and drug monitoring in a clinical setting without repeatedly withdrawing blood from patients. PMID:27231590
Pelivanov, Ivan; Buma, Takashi; Xia, Jinjun; Wei, Chen-Wei; O'Donnell, Matthew
2014-01-01
Laser ultrasonic (LU) inspection represents an attractive, non-contact method to evaluate composite materials. Current non-contact systems, however, have relatively low sensitivity compared to contact piezoelectric detection. They are also difficult to adjust, very expensive, and strongly influenced by environmental noise. Here, we demonstrate that most of these drawbacks can be eliminated by combining a new generation of compact, inexpensive fiber lasers with new developments in fiber telecommunication optics and an optimally designed balanced probe scheme. In particular, a new type of a balanced fiber-optic Sagnac interferometer is presented as part of an all-optical LU pump-probe system for non-destructive testing and evaluation of aircraft composites. The performance of the LU system is demonstrated on a composite sample with known defects. Wide-band ultrasound probe signals are generated directly at the sample surface with a pulsed fiber laser delivering nanosecond laser pulses at a repetition rate up to 76 kHz rate with a pulse energy of 0.6 mJ. A balanced fiber-optic Sagnac interferometer is employed to detect pressure signals at the same point on the composite surface. A- and B-scans obtained with the Sagnac interferometer are compared to those made with a contact wide-band polyvinylidene fluoride transducer. PMID:24737921
Hybrid catadioptric system for advanced optical cavity velocimetry
Frayer, Daniel K.
2018-02-06
A probe including reflector is disclosed to measure the velocity distribution of a moving surface along many lines of sight. Laser light, directed to the surface by the probe and then reflected back from the surface, is Doppler shifted by the moving surface, collected into probe, and then directed to detection equipment through optic fibers. The received light is mixed with reference laser light and using photonic Doppler velocimetry, a continuous time record of the surface movement is obtained. An array of single-mode optical fibers provides an optic signal to one or more lens groups and a reflector, such as a parabolic reflector having a mirrored interior surface.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guo, Haotian; Duan, Fajie; Wu, Guoxiu
2014-11-15
The blade tip clearance is a parameter of great importance to guarantee the efficiency and safety of the turbine engines. In this article, a laser ranging system designed for blade tip clearance measurement is presented. Multi-mode fiber is utilized for optical transmission to guarantee that enough optical power is received by the sensor probe. The model of the tiny sensor probe is presented. The error brought by the optical path difference of different modes of the fiber is estimated and the length of the fiber is limited to reduce this error. The measurement range in which the optical power receivedmore » by the probe remains essentially unchanged is analyzed. Calibration experiments and dynamic experiments are conducted. The results of the calibration experiments indicate that the resolution of the system is about 0.02 mm and the range of the system is about 9 mm.« less
Scanning fiber angle-resolved low coherence interferometry
Zhu, Yizheng; Terry, Neil G.; Wax, Adam
2010-01-01
We present a fiber-optic probe for Fourier-domain angle-resolved low coherence interferometry for the determination of depth-resolved scatterer size. The probe employs a scanning single-mode fiber to collect the angular scattering distribution of the sample, which is analyzed using the Mie theory to obtain the average size of the scatterers. Depth sectioning is achieved with low coherence Mach–Zehnder interferometry. In the sample arm of the interferometer, a fixed fiber illuminates the sample through an imaging lens and a collection fiber samples the backscattered angular distribution by scanning across the Fourier plane image of the sample. We characterize the optical performance of the probe and demonstrate the ability to execute depth-resolved sizing with subwavelength accuracy by using a double-layer phantom containing two sizes of polystyrene microspheres. PMID:19838271
Optical Antenna Arrays on a Fiber Facet for In Situ Surface Enhanced Raman Scattering Detection
Smythe, Elizabeth J.; Dickey, Michael D.; Bao, Jiming; Whitesides, George M.
2009-01-01
This paper reports a bidirectional fiber optic probe for the detection of surface enhanced Raman scattering (SERS). One facet of the probe features an array of gold optical antennas designed to enhance Raman signal, while the other facet of the fiber is used for the input and collection of light. Simultaneous detection of benzenethiol and 2-[(E)-2-pyridin-4-ylethenyl]pyridine is demonstrated through a 35 cm long fiber. The array of nanoscale optical antennas was first defined by electron-beam lithography on a silicon wafer. The array was subsequently stripped from the wafer and then transferred to the facet of a fiber. Lithographic definition of the antennas provides a method for producing two-dimensional arrays with well-defined geometry, which allows (i) the optical response of the probe to be tuned and (ii) the density of ‘hot spots’ generating the enhanced Raman signal to be controlled. It is difficult to determine the Raman signal enhancement factor (EF) of most fiber optic Raman sensors featuring ‘hot spots’ because the geometry of the Raman enhancing nanostructures is poorly defined. The ability to control the size and spacing of the antennas enables the EF of the transferred array to be estimated. EF values estimated after focusing a laser directly onto the transferred array ranged from 2.6 × 105 to 5.1 × 105. PMID:19236032
NASA Astrophysics Data System (ADS)
Simmonds, Boris; Wang, Chun-Wei; Kapoor, Rakesh
2010-02-01
This document reports a novel method of measuring association rate constant (ka) for antibody-antigen interaction using evanescent wave-based combination tapered fiber-optic biosensor (CTFOB) dip-probes. The method was demonstrated by measuring association rate constant for bovine serum albumin (BSA) and anti-BSA antibody interaction. "Direct method" was used for detection; goat anti-BSA "capture" antibodies were immobilized on the probe surfaces while the antigen (BSA) was directly labeled with Alexa 488 dye. The probes were subsequently submerged in 3nM Labeled BSA in egg albumin (1 mg/ml). The fluorescence signal recorded was proportional to BSA anti-BSA conjugates and continuous signal was acquired suing a fiber optic spectrometer (Ocean Optics, Inc.). A 476 nm diode laser was use as an excitation source. Association constant was estimated from a plot of signal as a function of time. Measured association rate constant ka for the binding of BSA with anti-BSA at room temperature is (8.33 +/- 0.01) x 104 M-1s-1.
NASA Astrophysics Data System (ADS)
Kumavor, Patrick D.; Alqasemi, Umar; Tavakoli, Behnoosh; Li, Hai; Yang, Yi; Zhu, Quing
2013-03-01
This paper presents a real-time transvaginal photoacoustic imaging probe for imaging human ovaries in vivo. The probe consists of a high-throughput (up to 80%) fiber-optic 1 x 19 beamsplitters, a commercial array ultrasound transducer, and a fiber protective sheath. The beamsplitter has a 940-micron core diameter input fiber and 240-micron core diameter output fibers numbering 36. The 36 small-core output fibers surround the ultrasound transducer and delivers light to the tissue during imaging. A protective sheath, modeled in the form of the transducer using a 3-D printer, encloses the transducer with array of fibers. A real-time image acquisition system collects and processes the photoacoustic RF signals from the transducer, and displays the images formed on a monitor in real time. Additionally, the system is capable of coregistered pulse-echo ultrasound imaging. In this way, we obtain both morphological and functional information from the ovarian tissue. Photoacousitc images of malignant human ovaries taken ex vivo with the probe revealed blood vascular and networks that was distinguishable from normal ovaries, making the probe potential useful for characterizing ovarian tissue.
Optical fiber-based sensors: application to chemical biology.
Brogan, Kathryn L; Walt, David R
2005-10-01
Optical fibers have been used to develop sensors based on nucleic acids and cells. Sensors employing DNA probes have been developed for various genomics applications and microbial pathogen detection. Live cell-based sensors have enabled the monitoring of environmental toxins, and have been used for fundamental studies on populations of individual cells. Both single-core optical fiber sensors and optical fiber sensor arrays have been used for sensing based on nucleic acids and live cells.
Application study of the optical biopsy system for small experimental animals
NASA Astrophysics Data System (ADS)
Sato, Hidetoshi; Suzuki, Toshiaki; Morita, Shin-ichi; Maruyama, Atsushi; Shimosegawa, Toru; Matsuura, Yuji; Kanai, Gen'ichi; Ura, Nobuo; Masutani, Koji; Ozaki, Yukihiro
2008-02-01
An optical biopsy system for small experimental animals has been developed. The system includes endoscope probe, portable probe and two kinds of miniaturized Raman probes. The micro Raman probe (MRP) is made of optical fibers and the ball lens hollow optical fiber Raman probe (BHRP) is made of hollow fiber. The former has large focal depth and suitable to measure average spectra of subsurface tissue. The latter has rather small focal depth and it is possible to control focal length by selecting ball lens attached at the probe head. It is suitable to survey materials at the fixed depth in the tissue. The system is applied to study various small animal cancer models, such as esophagus and stomach rat models and subcutaneous mouse models of pancreatic cancers. In the studies of subcutaneous tumor model mouse, it is suggested that protein conformational changes occur in the tumor tissue within few minutes after euthanasia of the mouse. No more change is observed for the following ten minutes. Any alterations in the molecular level are not observed in normal skin, muscle tissues. Since the change completes in such a short time, it is suggested that this phenomenon caused by termination of blood circulation.
Fiber bundle probes for interconnecting miniaturized medical imaging devices
NASA Astrophysics Data System (ADS)
Zamora, Vanessa; Hofmann, Jens; Marx, Sebastian; Herter, Jonas; Nguyen, Dennis; Arndt-Staufenbiel, Norbert; Schröder, Henning
2017-02-01
Miniaturization of medical imaging devices will significantly improve the workflow of physicians in hospitals. Photonic integrated circuit (PIC) technologies offer a high level of miniaturization. However, they need fiber optic interconnection solutions for their functional integration. As part of European funded project (InSPECT) we investigate fiber bundle probes (FBPs) to be used as multi-mode (MM) to single-mode (SM) interconnections for PIC modules. The FBP consists of a set of four or seven SM fibers hexagonally distributed and assembled into a holder that defines a multicore connection. Such a connection can be used to connect MM fibers, while each SM fiber is attached to the PIC module. The manufacturing of these probes is explored by using well-established fiber fusion, epoxy adhesive, innovative adhesive and polishing techniques in order to achieve reliable, low-cost and reproducible samples. An innovative hydrofluoric acid-free fiber etching technology has been recently investigated. The preliminary results show that the reduction of the fiber diameter shows a linear behavior as a function of etching time. Different etch rate values from 0.55 μm/min to 2.3 μm/min were found. Several FBPs with three different type of fibers have been optically interrogated at wavelengths of 630nm and 1550nm. Optical losses are found of approx. 35dB at 1550nm for FBPs composed by 80μm fibers. Although FBPs present moderate optical losses, they might be integrated using different optical fibers, covering a broad spectral range required for imaging applications. Finally, we show the use of FBPs as promising MM-to-SM interconnects for real-world interfacing to PIC's.
NASA Astrophysics Data System (ADS)
Park, Gaye; Lee, HyeYeon; Cho, HyungSu; Kim, DaeYoung; Han, JaeWan; Ouh, ChiHwan; Jung, ChangHyun
2018-02-01
The treatment using photodynamic therapy (PDT) among cancer treatment methods shows remedial value in various cancers. The optical fiber probe infiltrates into affected parts of the tissues that are difficult to access, such as pancreatic cancer, carcinoma of extrahepatic bile duct, prostate cancer, and bladder cancer by using endoscopic retrograde cholangiopancreatography (ERCP) and endoscopic ultrasonography (EUS) with various types of diffusing tips. In this study, we developed cylindrical diffusing optical fiber probe (CDOFP) for PDT, manufactured ball-shaped end which is easily infiltrated into tissues with diffusing length ranging from 10mm to 40mm through precision laser processing, and conducted beam profile characterization of manufactured CDOFP. Also, chemical reaction between photo-sensitizer and laser in PDT is important, and hence the thermal effect in tissues as per diffusing length of probe was also studied as it was used in a recent study.
Common path endoscopic probes for optical coherence tomography (Conference Presentation)
NASA Astrophysics Data System (ADS)
Singh, Kanwarpal; Gardecki, Joseph A.; Tearney, Guillermo J.
2017-02-01
Background: Dispersion imbalance and polarization mismatch between the reference and sample arm signals can lead to image quality degradation in optical coherence tomography (OCT). One approach to reduce these image artifacts is to employ a common-path geometry in fiber-based probes. In this work, we report an 800 um diameter all-fiber common-path monolithic probe for coronary artery imaging where the reference signal is generated using an inline fiber partial reflector. Methods: Our common-path probe was designed for swept-source based Fourier domain OCT at 1310 nm wavelength. A face of a coreless fiber was coated with gold and spliced to a standard SMF-28 single mode fiber creating an inline partial reflector, which acted as a reference surface. The other face of the coreless fiber was shaped into a ball lens for focusing. The optical elements were assembled within a 560 µm diameter drive shaft, which was attached to a rotary junction. The drive shaft was placed inside a transparent sheath having an outer diameter of 800 µm. Results: With a source input power of 30mW, the inline common-path probe achieved a sensitivity of 104 dB. Images of human finger skin showed the characteristic layers of skin as well as features such as sweat ducts. Images of coronary arteries ex vivo obtained with this probe enabled visualization of the characteristic architectural morphology of the normal artery wall and known features of atherosclerotic plaque. Conclusion: In this work, we have demonstrated a common path OCT probe for cardiovascular imaging. The probe is easy to fabricate, will reduce system complexity and overall cost. We believe that this design will be helpful in endoscopic applications that require high resolution and a compact form factor.
Window flaw detection by backscatter lighting
NASA Technical Reports Server (NTRS)
Crockett, L. K.; Minton, F. R.
1978-01-01
Portable fiber-optic probe detects tiny flaws in transparent materials. Probe transmits light through surface to illuminate interior of material by backscattering off its edges. Light-sensitive contact paper records scratch pattern. Technique can be used for rapid visual checks. Flexible fiber optics are safely used in explosive or flammable areas; they present no hazard of breakage or contamination in controlled environments.
Visible-Near Infrared (VNIR) and Shortwave Infrared (SWIR) Spectral Variability of Urban Materials
2013-03-01
extension). FieldSpec 4 spectrometer unit is contained in the backpack. The fiber optic cable and power cable for the contact probe are seen...spectroradiometer foreoptic (lens) is typically between 1 degree and 25 degrees when using natural lighting (or artificially lit in lab) but a bare fiber ... fiber optic cable and power cable for the contact probe are seen. In operation, the spectrometer is allowed to warm up prior to use for at least 30
75 FR 13486 - Application(s) for Duty-Free Entry of Scientific Instruments
Federal Register 2010, 2011, 2012, 2013, 2014
2010-03-22
... nanostructures. This instrument combines an optical microscope with a scanning probe imaging system. Specifically... soft materials than other instruments, as it detects the probe coming close to the sample surface by... conventional AFM type silicon cantilevers as well as cantilevered optical fiber probes with exposed probe...
2009-03-01
wavelength, pulse energy, and pulse rate) to produce strongest and most rapid erectile response as measured by intracavernosal pressure in the penis ...PC Fiber Rod Housing Optics 5-mm-ID Port Probe Handle Probe Stem Enlarged View of Probe Tip Oscilloscope FunctionGenerator Thulium Fiber Laser Shutter...rapid erectile response as measured by intracavernosal pressure (ICP) in the penis . ICP values were increased from an initial range of 30-40 mmHg
Fang, Yu-Lin; Wang, Chen-Tung; Chiang, Chia-Chin
2016-09-09
The study proposes a small U-shaped bending-induced interference optical fiber sensor; this novel sensor is a probe-type sensor manufactured using a mechanical device, a heat source, optical fiber and a packaging module. This probe-type sensor overcomes the shortcomings of conventional optical fibers, including being difficult to repair and a tendency to be influenced by external forces. We manufactured three types of sensors with different curvature radiuses. Specifically, sensors with three radiuses (1.5 mm, 2.0 mm, and 3.0 mm) were used to measure common water and glucose solutions with concentrations of between 6% and 30% (the interval between concentrations was 4%). The results show that the maximal sensitivity was 0.85 dB/% and that the linearly-dependent coefficient was 0.925. The results further show that not only can the small U-shaped bending-induced interference optical fiber sensor achieve high sensitivity in the measurement of glucose solutions, but that it can also achieve great stability and repeatability.
NASA Astrophysics Data System (ADS)
Laskar, S.; Bordoloi, S.
2016-01-01
This paper presents an instrumentation system to measure the degradation in lubricating oil using a bare, tapered and bent multi-mode optical fiber (BTBMOF) sensor probe and a temperature probe. The sensor system consists of (i) a bare, tapered and bent multi-mode optical fiber (BTBMOF) as optical sensor along with a laser source and a LDR (Light Dependent Resistor) as detector (ii) a temperature sensor (iii) a ATmega microcontroller based data acquisition system and (iv) a trained ANN for processing and calibration. The BTBMOF sensor and the temperature sensor are used to provide the measure of refractive index (RI) and the temperature of a lubricating oil sample. A microcontroller based instrumentation system with trained ANN algorithm has been developed to determine the degradation of the lubricating oil sample by sampling the readings of the optical fiber sensor, and the temperature sensor.
Lee, Dong-Joon; Kang, No-Weon; Choi, Jun-Ho; Kim, Junyeon; Whitaker, John F.
2011-01-01
In this paper we review recent design methodologies for fully dielectric electro-optic sensors that have applications in non-destructive evaluation (NDE) of devices and materials that radiate, guide, or otherwise may be impacted by microwave fields. In many practical NDE situations, fiber-coupled-sensor configurations are preferred due to their advantages over free-space bulk sensors in terms of optical alignment, spatial resolution, and especially, a low degree of field invasiveness. We propose and review five distinct types of fiber-coupled electro-optic sensor probes. The design guidelines for each probe type and their performances in absolute electric-field measurements are compared and summarized. PMID:22346604
An optical probe for local measurements of fast plasma ion dynamics
NASA Astrophysics Data System (ADS)
Fiksel, G.; Den Hartog, D. J.; Fontana, P. W.
1998-05-01
A novel insertable probe for local measurements of equilibrium and fluctuating plasma ion flow velocity and temperature via Doppler spectroscopy is described. Optical radiation is collected by two fused silica fiber optic bundles with perpendicular viewlines. Spatial resolution of about 5 cm is achieved by terminating each view with an optical dump. The collected light is transported by the fiber bundles to a high-resolution spectrometer. Two components of the velocity are measured simultaneously—the radial along the insertion of the probe and a perpendicular component (which can be varied by simply rotating the probe by 90°). The accuracy of the velocity measurements is better than 1 km/s. The probe is armored by a boron nitride enclosure and is inserted into a high temperature plasma to obtain radial profiles of the equilibrium and fluctuating plasma velocity. Initial measurements have been done in Madison Symmetric Torus reversed field pinch.
NASA Astrophysics Data System (ADS)
Smythe, Elizabeth Jennings
This thesis focuses on the development of a bidirectional fiber optic probe for the detection of surface enhanced Raman scattering (SERS). One facet of this fiber-based probe featured an array of coupled optical antennas, which we designed to enhance the Raman signal of nearby analytes. When this array interacted with an analyte, it generated SERS signals specific to the chemical composition of the sample; some of these SERS signals coupled back into the fiber. We used the other facet of the probe to input light into the fiber and collect the SERS signals that coupled into the probe. In this dissertation, the development of the probe is broken into three sections: (i) characterization of antenna arrays, (ii) fabrication of the probe, and (iii) device measurements. In the first section we present a comprehensive study of metallic antenna arrays. We carried out this study to determine the effects of antenna geometry, spacing, and composition on the surface plasmon resonance (SPR) of a coupled antenna array; the wavelength range and strength of the SPR are functions of the shape and interactions of the antennas. The SPR of the array ultimately amplified the Raman signal of analytes and produced a measurable SERS signal, thus determination of the optimal array geometries for SERS generation was an important first step in the development of the SERS fiber probe. We then introduce a new technique developed to fabricate the SERS fiber probes. This technique involves transferring antenna arrays (created by standard lithographic methods) from a large silicon substrate to a fiber facet. We developed this fabrication technique to bypass many of the limitations presented by previously developed methods for patterning unconventional substrates (i.e. small and/or non-planar substrates), such as focused ion-beam milling and soft lithography. In the third section of this thesis, we present SERS measurements taken with the fiber probe. We constructed a measurement system to couple light into the probe and filter out background noise; this allowed simultaneous detection of multiple chemicals. Antenna array enhancement factor (EF) calculations are shown; these allowed us to determine that the probe efficiently collected SERS signals.
NASA Astrophysics Data System (ADS)
Tran, Peter H.; Mukai, David S.; Brenner, Matthew; Chen, Zhongping
2004-06-01
A novel endoscopic optical coherence tomography probe was designed and constructed with a 1.9-mm microelectromechanical system (MEMS) motor. The new MEMS endoscopic probe design eliminates the need to couple the rotational energy from the proximal to the distal end of the probe. Furthermore, the endoscopic probe's sheath and fiber have the advantages of having a much smaller diameter and being more flexible than traditional endoscopes since no reinforcement is needed to couple the rotational torque. At the distal end, a prism mounted on a micromotor deflects the light rays to create a transverse circular-scanning pathway. Because our MEMS scanner does not require the coupling of a rotational single-mode fiber, a high scanning speed is possible while eliminating unstable optical signals caused by nonuniform coupling.
Tapered fiber optical tweezers for microscopic particle trapping: fabrication and application
NASA Astrophysics Data System (ADS)
Liu, Zhihai; Guo, Chengkai; Yang, Jun; Yuan, Libo
2006-12-01
A novel single tapered fiber optical tweezers is proposed and fabricated by heating and drawing technology. The microscopic particle tapping performance of this special designed tapered fiber probe is demonstrated and investigated. The distribution of the optical field emerging from the tapered fiber tip is numerically calculated based on the beam propagation method. The trapping force FDTD analysis results, both axial and transverse, are also given.
Soto, Marcelo A; Ricchiuti, Amelia Lavinia; Zhang, Liang; Barrera, David; Sales, Salvador; Thévenaz, Luc
2014-11-17
A technique to enhance the response and performance of Brillouin distributed fiber sensors is proposed and experimentally validated. The method consists in creating a multi-frequency pump pulse interacting with a matching multi-frequency continuous-wave probe. To avoid nonlinear cross-interaction between spectral lines, the method requires that the distinct pump pulse components and temporal traces reaching the photo-detector are subject to wavelength-selective delaying. This way the total pump and probe powers launched into the fiber can be incrementally boosted beyond the thresholds imposed by nonlinear effects. As a consequence of the multiplied pump-probe Brillouin interactions occurring along the fiber, the sensor response can be enhanced in exact proportion to the number of spectral components. The method is experimentally validated in a 50 km-long distributed optical fiber sensor augmented to 3 pump-probe spectral pairs, demonstrating a signal-to-noise ratio enhancement of 4.8 dB.
Single optical fiber probe for optogenetics
NASA Astrophysics Data System (ADS)
Falk, Ryan; Habibi, Mohammad; Pashaie, Ramin
2012-03-01
With the advent of optogenetics, all optical control and visualization of the activity of specific cell types is possible. We have developed a fiber optic based probe to control/visualize neuronal activity deep in the brain of awake behaving animals. In this design a thin multimode optical fiber serves as the head of the probe to be inserted into the brain. This fiber is used to deliver excitation/stimulation optical pulses and guide a sample of the emission signal back to a detector. The major trade off in the design of such a system is to decrease the size of the fiber and intensity of input light to minimize physical damage and to avoid photobleaching/phototoxicity but to keep the S/N reasonably high. Here the excitation light, and the associated emission signal, are frequency modulated. Then the output of the detector is passed through a time-lens which compresses the distributed energy of the emission signal and maximizes the instantaneous S/N. By measuring the statistics of the noise, the structure of the time lens can be designed to achieve the global optimum of S/N. Theoretically, the temporal resolution of the system is only limited by the time lens diffraction limit. By adding a second detector, we eliminated the effect of input light fluctuations, imperfection of the optical filters, and back-reflection of the excitation light. We have also designed fibers and micro mechanical assemblies for distributed delivery and detection of light.
NASA Astrophysics Data System (ADS)
Teng, Chuanxin; Yu, Fangda; Jing, Ning; Zheng, Jie
2016-11-01
The temperature dependence of a refractive index (RI) sensing probe based on a U-shape tapered plastic optical fiber (POF) was investigated experimentally. The changes in light propagation loss in the probe induced by temperature are of the same order of magnitude as those induced by measured RI changes. The temperature dependence loss and temperature dependence RI deviation of the sensing probe were measured (at the wavelength of 635 nm) in temperature of 10-60 °C. By extracting pure temperature dependence of the sensing probe alone, the influence of temperature to the sensor was characterized.
Zhou, Yang; Fu, Xiaping; Ying, Yibin; Fang, Zhenhuan
2015-06-23
A fiber-optic probe system was developed to estimate the optical properties of turbid media based on spatially resolved diffuse reflectance. Because of the limitations in numerical calculation of radiative transfer equation (RTE), diffusion approximation (DA) and Monte Carlo simulations (MC), support vector regression (SVR) was introduced to model the relationship between diffuse reflectance values and optical properties. The SVR models of four collection fibers were trained by phantoms in calibration set with a wide range of optical properties which represented products of different applications, then the optical properties of phantoms in prediction set were predicted after an optimal searching on SVR models. The results indicated that the SVR model was capable of describing the relationship with little deviation in forward validation. The correlation coefficient (R) of reduced scattering coefficient μ'(s) and absorption coefficient μ(a) in the prediction set were 0.9907 and 0.9980, respectively. The root mean square errors of prediction (RMSEP) of μ'(s) and μ(a) in inverse validation were 0.411 cm(-1) and 0.338 cm(-1), respectively. The results indicated that the integrated fiber-optic probe system combined with SVR model were suitable for fast and accurate estimation of optical properties of turbid media based on spatially resolved diffuse reflectance. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Zhu, Caigang; Liu, Quan
2011-08-01
The accurate understanding of optical properties of human tissues plays an important role in the optical diagnosis of early epithelial cancer. Many inverse models used to determine the optical properties of a tumor have assumed that the tumor was semi-infinite, which infers infinite width and length but finite thickness. However, this simplified assumption could lead to large errors for small tumor, especially at the early stages. We used a modified Monte Carlo code, which is able to simulate light transport in a layered tissue model with buried tumor-like targets, to investigate the validity of the semi-infinite tumor assumption in two common epithelial tissue models: a squamous cell carcinoma (SCC) tissue model and a basal cell carcinoma (BCC) tissue model. The SCC tissue model consisted of three layers, i.e. the top epithelium, the middle tumor and the bottom stroma. The BCC tissue model also consisted of three layers, i.e. the top epidermis, the middle tumor and the bottom dermis. Diffuse reflectance was simulated for two common fiber-optic probes. In one probe, both source and detector fibers were perpendicular to the tissue surface; while in the other, both fibers were tilted at 45 degrees relative to the normal axis of the tissue surface. It was demonstrated that the validity of the semi-infinite tumor model depends on both the fiber-optic probe configuration and the tumor dimensions. Two look-up tables, which relate the validity of the semi-infinite tumor model to the tumor width in terms of the source-detector separation, were derived to guide the selection of appropriate tumor models and fiber optic probe configuration for the optical diagnosis of early epithelial cancers.
High-density fiber optic biosensor arrays
NASA Astrophysics Data System (ADS)
Epstein, Jason R.; Walt, David R.
2002-02-01
Novel approaches are required to coordinate the immense amounts of information derived from diverse genomes. This concept has influenced the expanded role of high-throughput DNA detection and analysis in the biological sciences. A high-density fiber optic DNA biosensor was developed consisting of oligonucleotide-functionalized, 3.1 mm diameter microspheres deposited into the etched wells on the distal face of a 500 micrometers imaging fiber bundle. Imaging fiber bundles containing thousands of optical fibers, each associated with a unique oligonucleotide probe sequence, were the foundation for an optically connected, individually addressable DNA detection platform. Different oligonucleotide-functionalized microspheres were combined in a stock solution, and randomly dispersed into the etched wells. Microsphere positions were registered from optical dyes incorporated onto the microspheres. The distribution process provided an inherent redundancy that increases the signal-to-noise ratio as the square root of the number of sensors examined. The representative amount of each probe-type in the array was dependent on their initial stock solution concentration, and as other sequences of interest arise, new microsphere elements can be added to arrays without altering the existing detection capabilities. The oligonucleotide probe sequences hybridize to fluorescently-labeled, complementary DNA target solutions. Fiber optic DNA microarray research has included DNA-protein interaction profiles, microbial strain differentiation, non-labeled target interrogation with molecular beacons, and single cell-based assays. This biosensor array is proficient in DNA detection linked to specific disease states, single nucleotide polymorphism (SNP's) discrimination, and gene expression analysis. This array platform permits multiple detection formats, provides smaller feature sizes, and enables sensor design flexibility. High-density fiber optic microarray biosensors provide a fast, reversible format with the detection limit of a few hundred molecules.
NASA Astrophysics Data System (ADS)
Liang, Shanshan; Saidi, Arya; Jing, Joe; Liu, Gangjun; Li, Jiawen; Zhang, Jun; Sun, Changsen; Narula, Jagat; Chen, Zhongping
2012-07-01
We developed a multimodality fluorescence and optical coherence tomography probe based on a double-clad fiber (DCF) combiner. The probe is composed of a DCF combiner, grin lens, and micromotor in the distal end. An integrated swept-source optical coherence tomography and fluorescence intensity imaging system was developed based on the combined probe for the early diagnoses of atherosclerosis. This system is capable of real-time data acquisition and processing as well as image display. For fluorescence imaging, the inflammation of atherosclerosis and necrotic core formed with the annexin V-conjugated Cy5.5 were imaged. Ex vivo imaging of New Zealand white rabbit arteries demonstrated the capability of the combined system.
Damin, Craig A; Sommer, André J
2013-11-01
Advances in fiber optic materials have allowed for the construction of fibers and waveguides capable of transmitting infrared radiation. An investigation of the transmission characteristics associated with two commonly used types of infrared-transmitting fibers/waveguides for prospective use in a fiber/waveguide-coupled attenuated total internal reflection (ATR) probe was performed. Characterization of silver halide polycrystalline fiber optics and hollow silica waveguides was done on the basis of the transmission of infrared light using a conventional fiber optic coupling accessory and an infrared microscope. Using the fiber optic coupling accessory, the average percent transmission for three silver halide fibers was 18.1 ± 6.1% relative to a benchtop reflection accessory. The average transmission for two hollow waveguides (HWGs) using the coupling accessory was 8.0 ± 0.3%. (Uncertainties in the relative percent transmission represent the standard deviations.) Reduced transmission observed for the HWGs was attributed to the high numerical aperture of the coupling accessory. Characterization of the fibers/waveguides using a zinc selenide lens objective on an infrared microscope indicated 24.1 ± 7.2% of the initial light input into the silver halide fibers was transmitted. Percent transmission obtained for the HWGs was 98.7 ± 0.1%. Increased transmission using the HWGs resulted from the absence or minimization of insertion and scattering losses due to the hollow air core and a better-matched numerical aperture. The effect of bending on the transmission characteristics of the fibers/waveguides was also investigated. Significant deviations in the transmission of infrared light by the solid-core silver halide fibers were observed for various bending angles. Percent transmission greater than 98% was consistently observed for the HWGs at the bending angles. The combined benefits of high percent transmission, reproducible instrument responses, and increased bending tolerance indicated HWGs should be preferred in the construction of a fiber/waveguide-coupled ATR probe.
Infrared Hollow Optical Fiber Probe for Localized Carbon Dioxide Measurement in Respiratory Tracts.
Katagiri, Takashi; Shibayama, Kyosuke; Iida, Takeru; Matsuura, Yuji
2018-03-27
A real-time gas monitoring system based on optical absorption spectroscopy is proposed for localized carbon dioxide (CO₂) measurement in respiratory tracts. In this system, a small gas cell is attached to the end of a hollow optical fiber that delivers mid-infrared light with small transmission loss. The diameters of the fiber and the gas cell are smaller than 1.2 mm so that the probe can be inserted into a working channel of common bronchoscopes. The dimensions of the gas cell are designed based on absorption spectra of CO₂ standard gases in the 4.2 μm wavelength region, which are measured using a Fourier-transform infrared spectrometer. A miniature gas cell that is comprised of a stainless-steel tube with slots for gas inlet and a micro-mirror is fabricated. A compact probing system with a quantum cascade laser (QCL) light source is built using a gas cell with a hollow optical fiber for monitoring CO₂ concentration. Experimental results using human breaths show the feasibility of the system for in-situ measurement of localized CO₂ concentration in human airways.
Mondal, Samir K; Mitra, Anupam; Singh, Nahar; Sarkar, S N; Kapur, Pawan
2009-10-26
We propose a technique of chemical etching for fabrication of near perfect optical fiber nanoprobe (NNP). It uses photosensitive single mode optical fiber to etch in hydro fluoric (HF) acid solution. The difference in etching rate for cladding and photosensitive core in HF acid solution creates capillary ring along core-cladding boundary under a given condition. The capillary ring is filled with acid solution due to surface tension and capillary action. Finally it creates near perfect symmetric tip at the apex of the fiber as the height of the acid level in capillary ring decreases while width of the ring increases with continuous etching. Typical tip features are short taper length (approximately 4 microm), large cone angle (approximately 38 degrees ), and small probe tip dimension (<100 nm). A finite difference time domain (FDTD) analysis is also presented to compare near field optics of the NNP with conventional nanoprobe (CNP). The probe may be ideal for near field optical imaging and sensor applications.
High-temperature fiber-optic lever microphone
NASA Technical Reports Server (NTRS)
Zuckerwar, Allan J.; Cuomo, Frank W.; Nguyen, Trung D.; Rizzi, Stephen A.; Clevenson, Sherman A.
1995-01-01
The design and construction of a fiber-optic lever microphone, capable of operating continuously at temperatures up to 538 C (1000 F) are described. The design is based on the theoretical sensitivities of each of the microphone system components, namely, a cartridge containing a stretched membrane, an optical fiber probe, and an optoelectronic amplifier. Laboratory calibrations include the pistonphone sensitivity and harmonic distortion at ambient temperature, and frequency response, background noise, and optical power transmission at both ambient and elevated temperatures. A field test in the Thermal Acoustic Fatigue Apparatus at Langley Research Center, in which the microphone was subjected to overall sound-pressure levels in the range of 130-160 dB and at temperatures from ambient to 538 C, revealed good agreement with a standard probe microphone.
Development of a 1 x N Fiber Optic Sensor Array for Carbon Sequestration Site Monitoring
DOE Office of Scientific and Technical Information (OSTI.GOV)
Repasky, Kevin
2014-02-01
A fiber sensor array for sub-surface CO 2 concentrations measurements was developed for monitoring geologic carbon sequestration sites. The fiber sensor array uses a single temperature tunable distributed feedback (DFB) laser operating with a nominal wavelength of 2.004 μm. Light from this DFB laser is direct to one of the 4 probes via an in-line 1 x 4 fiber optic switch. Each of the 4 probes are buried and allow the sub-surface CO 2 to enter the probe through Millipore filters that allow the soil gas to enter the probe but keeps out the soil and water. Light from themore » DFB laser interacts with the CO 2 before it is directed back through the in-line fiber optic switch. The DFB laser is tuned across two CO 2 absorption features where a transmission measurement is made allowing the CO 2 concentration to be retrieved. The fiber optic switch then directs the light to the next probe where this process is repeated allowing sub-surface CO 2 concentration measurements at each of the probes to be made as a function of time. The fiber sensor array was deployed for fifty-eight days beginning June 19, 2012 at the Zero Emission Research Technology (ZERT) field site where sub-surface CO 2 concentrations were monitored. Background measurements indicate the fiber sensor array can monitor background levels as low as 1,000 parts per million (ppm). A thirty four day sub-surface release of 0.15 tones CO 2/day began on July 10, 2012. The elevated subsurface CO 2 concentration was easily detected by each of the four probes with values ranging to over 60,000 ppm, a factor of greater than 6 higher than background measurements. The fiber sensor array was also deploy at the Big Sky Carbon Sequestration Partnership (BSCSP) site in north-central Montana between July 9th and August 7th, 2013 where background measurements were made in a remote sequestration site with minimal infrastructure. The project provided opportunities for two graduate students to participate in research directly related to geologic carbon sequestration. Furthermore, commercialization of the technology developed is being pursued with five different companies via the Department of energy SBIR/STTR program« less
Chiarelli, Antonio M; Libertino, Sebania; Zappasodi, Filippo; Mazzillo, Massimo; Pompeo, Francesco Di; Merla, Arcangelo; Lombardo, Salvatore; Fallica, Giorgio
2017-07-01
We report development, testing, and in vivo characterization of a multichannel optical probe for continuous wave (CW) functional near-infrared spectroscopy (fNIRS) that relies on silicon photomultipliers (SiPMs) detectors. SiPMs are cheap, low voltage, and robust semiconductor light detectors with performances analogous to photomultiplier tubes (PMTs). In contrast with PMTs, SiPMs allow direct contact with the head and transfer of the analog signals through thin cables greatly increasing the system flexibility avoiding optical fibers. The coupling of SiPMs and light-emitting diodes (LEDs) made the optical probe lightweight and robust against motion artifacts. After characterization of SiPM performances, which was proven to provide a noise equivalent power below 3 fW, the apparatus was compared through an in vivo experiment to a commercial system relying on laser diodes, PMTs, and optical fibers for light probing and detection. The optical probes were located over the primary sensorimotor cortex and the similarities between the hemodynamic responses to the contralateral motor task were assessed. When compared to other state-of-the-art wearable fNIRS systems, where photodiode detectors are employed, the single photon sensitivity and dynamic range of SiPMs can fully exploit the long and variable interoptode distances needed for correct estimation of brain hemodynamics using CW-fNIRS.
Optical biopsy fiber-based fluorescence spectroscopy instrumentation
NASA Astrophysics Data System (ADS)
Katz, Alvin; Ganesan, Singaravelu; Yang, Yuanlong; Tang, Gui C.; Budansky, Yury; Celmer, Edward J.; Savage, Howard E.; Schantz, Stimson P.; Alfano, Robert R.
1996-04-01
Native fluorescence spectroscopy of biomolecules has emerged as a new modality to the medical community in characterizing the various physiological conditions of tissues. In the past several years, many groups have been working to introduce the spectroscopic methods to diagnose cancer. Researchers have successfully used native fluorescence to distinguish cancerous from normal tissue samples in rat and human tissue. We have developed three generations of instruments, called the CD-scan, CD-ratiometer and CD-map, to allow the medical community to use optics for diagnosing tissue. Using ultraviolet excitation and emission spectral measurements on both normal and cancerous tissue of the breast, gynecology, colon, and aerodigestive tract can be separated. For example, from emission intensities at 340 nm to 440 nm (300 nm excitation), a statistically consistent difference between malignant tissue and normal or benign tissue is observed. In order to utilize optical biopsy techniques in a clinical setting, the CD-scan instrument was developed, which allows for rapid and reliable in-vitro and in-vivo florescence measurements of the aerodigestive tract with high accuracy. The instrumentation employs high sensitivity detection techniques which allows for lamp excitation, small diameter optical fiber probes; the higher spatial resolution afforded by the small diameter probes can increase the ability to detect smaller tumors. The fiber optic probes allow for usage in the aerodigestive tract, cervix and colon. Needle based fiber probes have been developed for in-vivo detection of breast cancer.
Mobile fiber-optic sensor for detection of oral and cervical cancer in the developing world.
Yu, Bing; Nagarajan, Vivek Krishna; Ferris, Daron G
2015-01-01
Oral and cervical cancers are a growing global health problem that disproportionately impacts women and men living in the developing world. The high death rate in developing countries is largely due to the fact that these countries do not have the appropriate medical infrastructure and resources to support the organized screening and diagnostic programs that are available in the developed world. Diffuse reflectance spectroscopy (DRS) with a fiber-optic probe can noninvasively quantify the optical properties of epithelial tissues and has shown the potential as a cost-effective, easy-to-use, and sensitive tool for diagnosis of early precancerous changes in the cervix and oral cavity. However, current fiber-optic DRS systems have not been designed to be robust and reliable for use in developing countries. They are subject to various sources of systematic or random errors, arising from the uncontrolled probe-tissue interface and lack of real-time calibration, use bulky and expensive optical components, and require extensive training. This chapter describes a portable DRS device that is specifically designed for detection of oral and cervical cancers in resource-poor settings. The device uses an innovative smart fiber-optic probe to eliminate operator bias, state-of-the-art photonics components to reduce size and power consumption, and automated software to reduce the need of operator training. The size and cost of the smart fiber-optic DRS system may be further reduced by incorporating a smartphone based spectrometer.
Tapered optical fiber tip probes based on focused ion beam-milled Fabry-Perot microcavities
NASA Astrophysics Data System (ADS)
André, Ricardo M.; Warren-Smith, Stephen C.; Becker, Martin; Dellith, Jan; Rothhardt, Manfred; Zibaii, M. I.; Latifi, H.; Marques, Manuel B.; Bartelt, Hartmut; Frazão, Orlando
2016-09-01
Focused ion beam technology is combined with dynamic chemical etching to create microcavities in tapered optical fiber tips, resulting in fiber probes for temperature and refractive index sensing. Dynamic chemical etching uses hydrofluoric acid and a syringe pump to etch standard optical fibers into cone structures called tapered fiber tips where the length, shape, and cone angle can be precisely controlled. On these tips, focused ion beam is used to mill several different types of Fabry-Perot microcavities. Two main cavity types are initially compared and then combined to form a third, complex cavity structure. In the first case, a gap is milled on the tapered fiber tip which allows the external medium to penetrate the light guiding region and thus presents sensitivity to external refractive index changes. In the second, two slots that function as mirrors are milled on the tip creating a silica cavity that is only sensitive to temperature changes. Finally, both cavities are combined on a single tapered fiber tip, resulting in a multi-cavity structure capable of discriminating between temperature and refractive index variations. This dual characterization is performed with the aid of a fast Fourier transform method to separate the contributions of each cavity and thus of temperature and refractive index. Ultimately, a tapered optical fiber tip probe with sub-standard dimensions containing a multi-cavity structure is projected, fabricated, characterized and applied as a sensing element for simultaneous temperature and refractive index discrimination.
Optical sensor of magnetic fields
Butler, M.A.; Martin, S.J.
1986-03-25
An optical magnetic field strength sensor for measuring the field strength of a magnetic field comprising a dilute magnetic semi-conductor probe having first and second ends, longitudinally positioned in the magnetic field for providing Faraday polarization rotation of light passing therethrough relative to the strength of the magnetic field. Light provided by a remote light source is propagated through an optical fiber coupler and a single optical fiber strand between the probe and the light source for providing a light path therebetween. A polarizer and an apparatus for rotating the polarization of the light is provided in the light path and a reflector is carried by the second end of the probe for reflecting the light back through the probe and thence through the polarizer to the optical coupler. A photo detector apparatus is operably connected to the optical coupler for detecting and measuring the intensity of the reflected light and comparing same to the light source intensity whereby the magnetic field strength may be calculated.
Low-coherence interferometric tip-clearance probe
NASA Astrophysics Data System (ADS)
Kempe, Andreas; Schlamp, Stefan; Rösgen, Thomas; Haffner, Ken
2003-08-01
We propose an all-fiber, self-calibrating, economical probe that is capable of near-real-time, single-port, simultaneous blade-to-blade tip-clearance measurements with submillimeter accuracy (typically <100 μm, absolute) in the first stages of a gas turbine. Our probe relies on the interference between backreflected light from the blade tips during the 1-μs blade passage time and a frequency-shifted reference with variable time delay, making use of a low-coherence light source. A single optical fiber of arbitrary length connects the self-contained optics and electronics to the turbine.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhadauria, P. P. S.; Gupta, Anurag; Kumar, Pramod
2015-05-15
A fiber optic based probe is designed and developed for electrical transport measurements in presence of quasi-monochromatic (360–800 nm) light, varying temperature (T = 1.8–300 K), and magnetic field (B = 0–7 T). The probe is tested for the resistivity and Hall measurements performed on a LaAlO{sub 3}–SrTiO{sub 3} heterointerface system with a conducting two dimensional electron gas.
Sharma, Manu; Marple, Eric; Reichenberg, Jason; Tunnell, James W.
2014-01-01
The design and characterization of an instrument combining Raman, fluorescence, and reflectance spectroscopic modalities is presented. Instrument development has targeted skin cancer applications as a novel fiber-optic probe has been specially designed to interrogate cutaneous lesions. The instrument is modular and both its software and hardware components are described in depth. Characterization of the fiber-optic probe is also presented, which details the probe's ability to measure diagnostically important parameters such as intrinsic fluorescence and absorption and reduced scattering coefficients along with critical performance metrics such as high Raman signal-to-noise ratios at clinically practical exposure times. Validation results using liquid phantoms show that the probe and system can extract absorption and scattering coefficients with less than 10% error. As the goal is to use the instrument for the clinical early detection of skin cancer, preliminary clinical data are also presented, which indicates our system's ability to measure physiological quantities such as relative collagen and nicotinamide adenine dinucleotide concentration, oxygen saturation, blood volume fraction, and mean vessel diameter. PMID:25173240
Optic probe for multiple angle image capture and optional stereo imaging
Malone, Robert M.; Kaufman, Morris I.
2016-11-29
A probe including a multiple lens array is disclosed to measure velocity distribution of a moving surface along many lines of sight. Laser light, directed to the moving surface is reflected back from the surface and is Doppler shifted, collected into the array, and then directed to detection equipment through optic fibers. The received light is mixed with reference laser light and using photonic Doppler velocimetry, a continuous time record of the surface movement is obtained. An array of single-mode optical fibers provides an optic signal to the multiple lens array. Numerous fibers in a fiber array project numerous rays to establish many measurement points at numerous different locations. One or more lens groups may be replaced with imaging lenses so a stereo image of the moving surface can be recorded. Imaging a portion of the surface during initial travel can determine whether the surface is breaking up.
Dimensional measurement of micro parts with high aspect ratio in HIT-UOI
NASA Astrophysics Data System (ADS)
Dang, Hong; Cui, Jiwen; Feng, Kunpeng; Li, Junying; Zhao, Shiyuan; Zhang, Haoran; Tan, Jiubin
2016-11-01
Micro parts with high aspect ratios have been widely used in different fields including aerospace and defense industries, while the dimensional measurement of these micro parts becomes a challenge in the field of precision measurement and instrument. To deal with this contradiction, several probes for the micro parts precision measurement have been proposed by researchers in Center of Ultra-precision Optoelectronic Instrument (UOI), Harbin Institute of Technology (HIT). In this paper, optical fiber probes with structures of spherical coupling(SC) with double optical fibers, micro focal-length collimation (MFL-collimation) and fiber Bragg grating (FBG) are described in detail. After introducing the sensing principles, both advantages and disadvantages of these probes are analyzed respectively. In order to improve the performances of these probes, several approaches are proposed. A two-dimensional orthogonal path arrangement is propounded to enhance the dimensional measurement ability of MFL-collimation probes, while a high resolution and response speed interrogation method based on differential method is used to improve the accuracy and dynamic characteristics of the FBG probes. The experiments for these special structural fiber probes are given with a focus on the characteristics of these probes, and engineering applications will also be presented to prove the availability of them. In order to improve the accuracy and the instantaneity of the engineering applications, several techniques are used in probe integration. The effectiveness of these fiber probes were therefore verified through both the analysis and experiments.
Munce, Nigel R; Mariampillai, Adrian; Standish, Beau A; Pop, Mihaela; Anderson, Kevan J; Liu, George Y; Luk, Tim; Courtney, Brian K; Wright, Graham A; Vitkin, I Alex; Yang, Victor X D
2008-04-01
A novel flexible scanning optical probe is constructed with a finely etched optical fiber strung through a platinum coil in the lumen of a dissipative polymer. The packaged probe is 2.2 mm in diameter with a rigid length of 6mm when using a ball lens or 12 mm when scanning the fiber proximal to a gradient-index (GRIN) lens. Driven by constant high voltage (1-3 kV) at low current (< 5 microA), the probe oscillates to provide wide forward-viewing angle (13 degrees and 33 degrees with ball and GRIN lens designs, respectively) and high-frame-rate (10-140 fps) operation. Motion of the probe tip is observed with a high-speed camera and compared with theory. Optical coherence tomography (OCT) imaging with the probe is demonstrated with a wavelength-swept source laser. Images of an IR card as well as in vivo Doppler OCT images of a tadpole heart are presented. This optomechanical design offers a simple, inexpensive method to obtain a high-frame-rate forward-viewing scanning probe.
NASA Astrophysics Data System (ADS)
Cicchi, Riccardo; Anand, Suresh; Rossari, Susanna; Sturiale, Alessandro; Giordano, Flavio; De Giorgi, Vincenzo; Maio, Vincenza; Massi, Daniela; Nesi, Gabriella; Buccoliero, Anna Maria; Tonelli, Francesco; Guerrini, Renzo; Pimpinelli, Nicola; Pavone, Francesco S.
2015-03-01
Two different optical fiber probes for combined Raman and fluorescence spectroscopic measurements were designed, developed and used for tissue diagnostics. Two visible laser diodes were used for fluorescence spectroscopy, whereas a laser diode emitting in the NIR was used for Raman spectroscopy. The two probes were based on fiber bundles with a central multimode optical fiber, used for delivering light to the tissue, and 24 surrounding optical fibers for signal collection. Both fluorescence and Raman spectra were acquired using the same detection unit, based on a cooled CCD camera, connected to a spectrograph. The two probes were successfully employed for diagnostic purposes on various tissues in a good agreement with common routine histology. This study included skin, brain and bladder tissues and in particular the classification of: malignant melanoma against melanocytic lesions and healthy skin; urothelial carcinoma against healthy bladder mucosa; brain tumor against dysplastic brain tissue. The diagnostic capabilities were determined using a cross-validation method with a leave-one-out approach, finding very high sensitivity and specificity for all the examined tissues. The obtained results demonstrated that the multimodal approach is crucial for improving diagnostic capabilities. The system presented here can improve diagnostic capabilities on a broad range of tissues and has the potential of being used for endoscopic inspections in the near future.
NASA Astrophysics Data System (ADS)
Cicchi, Riccardo; Anand, Suresh; Crisci, Alfonso; Giordano, Flavio; Rossari, Susanna; De Giorgi, Vincenzo; Maio, Vincenza; Massi, Daniela; Nesi, Gabriella; Buccoliero, Anna Maria; Guerrini, Renzo; Pimpinelli, Nicola; Pavone, Francesco S.
2015-07-01
Two different optical fiber probes for combined Raman and fluorescence spectroscopic measurements were designed, developed and used for tissue diagnostics. Two visible laser diodes were used for fluorescence spectroscopy, whereas a laser diode emitting in the NIR was used for Raman spectroscopy. The two probes were based on fiber bundles with a central multimode optical fiber, used for delivering light to the tissue, and 24 surrounding optical fibers for signal collection. Both fluorescence and Raman spectra were acquired using the same detection unit, based on a cooled CCD camera, connected to a spectrograph. The two probes were successfully employed for diagnostic purposes on various tissues in a good agreement with common routine histology. This study included skin, brain and bladder tissues and in particular the classification of: malignant melanoma against melanocytic lesions and healthy skin; urothelial carcinoma against healthy bladder mucosa; brain tumor against dysplastic brain tissue. The diagnostic capabilities were determined using a cross-validation method with a leave-one-out approach, finding very high sensitivity and specificity for all the examined tissues. The obtained results demonstrated that the multimodal approach is crucial for improving diagnostic capabilities. The system presented here can improve diagnostic capabilities on a broad range of tissues and has the potential of being used for endoscopic inspections in the near future.
Mirza, Tahseen; Liu, Qian Julie; Vivilecchia, Richard; Joshi, Yatindra
2009-03-01
There has been a growing interest during the past decade in the use of fiber optics dissolution testing. Use of this novel technology is mainly confined to research and development laboratories. It has not yet emerged as a tool for end product release testing despite its ability to generate in situ results and efficiency improvement. One potential reason may be the lack of clear validation guidelines that can be applied for the assessment of suitability of fiber optics. This article describes a comprehensive validation scheme and development of a reliable, robust, reproducible and cost-effective dissolution test using fiber optics technology. The test was successfully applied for characterizing the dissolution behavior of a 40-mg immediate-release tablet dosage form that is under development at Novartis Pharmaceuticals, East Hanover, New Jersey. The method was validated for the following parameters: linearity, precision, accuracy, specificity, and robustness. In particular, robustness was evaluated in terms of probe sampling depth and probe orientation. The in situ fiber optic method was found to be comparable to the existing manual sampling dissolution method. Finally, the fiber optic dissolution test was successfully performed by different operators on different days, to further enhance the validity of the method. The results demonstrate that the fiber optics technology can be successfully validated for end product dissolution/release testing. (c) 2008 Wiley-Liss, Inc. and the American Pharmacists Association
Micromachined fiber optic Fabry-Perot underwater acoustic probe
NASA Astrophysics Data System (ADS)
Wang, Fuyin; Shao, Zhengzheng; Hu, Zhengliang; Luo, Hong; Xie, Jiehui; Hu, Yongming
2014-08-01
One of the most important branches in the development trend of the traditional fiber optic physical sensor is the miniaturization of sensor structure. Miniature fiber optic sensor can realize point measurement, and then to develop sensor networks to achieve quasi-distributed or distributed sensing as well as line measurement to area monitoring, which will greatly extend the application area of fiber optic sensors. The development of MEMS technology brings a light path to address the problems brought by the procedure of sensor miniaturization. Sensors manufactured by MEMS technology possess the advantages of small volume, light weight, easy fabricated and low cost. In this paper, a fiber optic extrinsic Fabry-Perot interferometric underwater acoustic probe utilizing micromachined diaphragm collaborated with fiber optic technology and MEMS technology has been designed and implemented to actualize underwater acoustic sensing. Diaphragm with central embossment, where the embossment is used to anti-hydrostatic pressure which would largely deflect the diaphragm that induce interferometric fringe fading, has been made by double-sided etching of silicon on insulator. By bonding the acoustic-sensitive diaphragm as well as a cleaved fiber end in ferrule with an outer sleeve, an extrinsic Fabry-Perot interferometer has been constructed. The sensor has been interrogated by quadrature-point control method and tested in field-stable acoustic standing wave tube. Results have been shown that the recovered signal detected by the sensor coincided well with the corresponding transmitted signal and the sensitivity response was flat in frequency range from 10 Hz to 2kHz with the value about -154.6 dB re. 1/μPa. It has been manifest that the designed sensor could be used as an underwater acoustic probe.
MEMS micromirrors for optical switching in multichannel spectrophotometers
NASA Astrophysics Data System (ADS)
Tuantranont, Adisorn; Lomas, Tanom; Bright, Victor M.
2004-04-01
This paper reports for the first time that a novel MEMS-based micromirror switch has successfully demonstrated for optical switching in a multi-channel fiber optics spectrophotometer system. The conventional optomechanical fiber optic switches for multi-channel spectrophotometers available in market are bulky, slow, low numbers of channels and expensive. Our foundry MEMS-based micromirror switch designed for integrating with commercially available spectrophotometers offers more compact devices, increased number of probing channels, higher performance and cheaper. Our MEMS-based micromirror switch is a surface micromachined mirror fabricated through MUMPs foundry. The 280 μm x 280 μm gold coated mirror is suspended by the double-gimbal structure for X and Y axis scanning. Self-assembly by solders is used to elevate the torsion mirror 30 μm over the substrate to achieve large scan angle. The solder self-assembly approach dramatically reduces the time to assembly the switch. The scan mirror is electrostatically controlled by applying voltages. The individual probing signal from each probing head is guided by fibers with collimated lenses and incidents on the center of the mirror. The operating scan angle is in the range of 3.5 degrees with driving voltage of 0-100 V. The fastest switching time of 4 millisecond (1 ms rise time and 3 ms fall time) is measured corresponding to the maximum speed of the mirror of 0.25 kHz when the mirror is scanning at +/- 1.5 degrees. The micromirror switch is packaged with a multi-mode fiber bundle using active alignment technique. A centered fiber is the output fiber that is connected to spectrophotometer. Maximum insertion loss of 5 dB has been obtained. The accuracy of measured spectral data is equivalent to the single channel spectrophotometer with a small degradation on probing signal due to fiber coupling.
Trapping and mixing of particles in water using a microbubble attached to an NSOM fiber probe.
Taylor, Rod; Hnatovsky, C
2004-03-08
Low power cw laser radiation at lambda=1.32microm was coupled into a chemically etched,metalized Near-Field Scanning Optical Microscopy (NSOM) fiber probe to generate a stable microbubble in water as well as in other fluids.The microbubble,which was attached to the end face of the fiber probe,was used to trap, manipulate and mix micron sized glass,latex and fluorescent particles as well as biological material.
Optical fibre PH sensor based on immobilized indicator
NASA Astrophysics Data System (ADS)
Cai, Defu; Cao, Qiang; Han, JingHong; Cai, Jine; Li, YaTing; Zhu, ZeMin; Fan, Jie; Gao, Ning
1991-08-01
An optical fiber pH sensor which has the immobilized pH sensitive indicator dye reagents on the tip of the optical fiber has been studied. The probe is made by covalently immobilizing the phenol red, bromine phenol blue, or bromothymol blue on the polyacrylamide microsphere fixed by polyterafluoroethylene (PTFE) film. A gap between the dye and optical fiber was used to make the diffusion of the hydrogen ions easier. The parameters of the optical fiber pH sensor have been given completely. The ranges of measurement are 3.0 - 5.0 pH, 7.0 - 8.5 pH, and 8.0 - 10.0 pH for bromine phenol blue, phenol red, and bromothymol blue, respectively. The sensitivity is 66.6 mV/pH. The probe has a precision of better than 0.55 pH. The linear correlation coefficient is 0.999. The response time is 1 - 2 min. The hysteresis is 0.52%. The repeatability is 0.013 mV, while the stability is 0.015 pH/h.
Development of a cylindrical diffusing optical fiber probe for pancreatic cancer therapy
NASA Astrophysics Data System (ADS)
Lee, Sangyeob; Park, Gaye; Park, Jihoon; Yu, Sungkon; Ha, Myungjin; Jang, Seulki; Ouh, Chihwan; Jung, Changhyun; Jung, Byungjo
2017-02-01
Although the patients with cancer on pancreas or pancreaticobiliary duct have been increased, it is very difficult to detect and to treat the pancreatic cancer because of its low accessibility and obtuseness. The pancreatic cancer has been diagnosed using ultrasonography, blood test, CT, endoscopic retrograde cholangiopancreatography (ERCP), endoscopic ultrasonography (EUS) and etc. Normally, light can be delivered to the target by optical fibers through the ERCP or EUS. Diffusing optical fibers have been developed with various methods. However, many of them have mechanical and biological problems in the use of small-bend-radius apparatus or in tissue area. This study developed a therapeutic cylindrical diffusing optical fiber probe (CDOFP) for ERCP and EUS which has moderate flexibility and solidity to treat the cancer on pancreaticobiliary duct or pancreas. The CDOFP consists of a biocompatible Teflon tube and multimode glass fiber which has diffusing area processed with laser and high refractive index resin. The CDOFP was characterized to investigate the clinical feasibility and other applications of light therapy using diffusing optical fiber. The results presented that the CDOFP may be used in clinic by combining with endoscopic method, such as ERCP or EUS, to treat cancer on pancreas and pancreaticobiliary duct.
NASA Astrophysics Data System (ADS)
Liu, Fukun; Cui, Minxin; Ma, Jiajun; Zou, Gang; Zhang, Qijin
2017-07-01
In this work, we report a novel optical fiber taper fluorescent probe for detection of nitro-explosives. The probe was fabricated by an in-situ photo-plating through evanescent wave and transmitted light initiated thiol-ene ;click; reaction, from which a cross-linked fluorescence porous polymer film was covalently bonded on the surface of the fiber taper. The film exhibits well-organized porous structure due to the presence of polyhedral oligomeric vinylsilsesquioxane moieties, and simultaneously displays strong fluorescence from tetraphenylethylene with aggregation-induced emission property. These two characters make the probe show a remarkable sensitivity, anti-photo-bleaching and a repeatability in detection of TNT and DNT vapors by fluorescence quenching. In addition, the detection is not interfered in the presence of other volatile organic gases.
Development of a fiber based Raman probe compatible with interventional magnetic resonance imaging
NASA Astrophysics Data System (ADS)
Ashok, Praveen C.; Praveen, Bavishna B.; Rube, Martin; Cox, Benjamin; Melzer, Andreas; Dholakia, Kishan
2014-02-01
Raman spectroscopy has proven to be a powerful tool for discriminating between normal and abnormal tissue types. Fiber based Raman probes have demonstrated its potential for in vivo disease diagnostics. Combining Raman spectroscopy with Magnetic Resonance Imaging (MRI) opens up new avenues for MR guided minimally invasive optical biopsy. Although Raman probes are commercially available, they are not compatible with a MRI environment due to the metallic components which are used to align the micro-optic components such as filters and lenses at the probe head. Additionally they are not mechanically compatible with a typical surgical environment as factors such as sterility and length of the probe are not addressed in those designs. We have developed an MRI compatible fiber Raman probe with a disposable probe head hence maintaining sterility. The probe head was specially designed to avoid any material that would cause MR imaging artefacts. The probe head that goes into patient's body had a diameter <1.5 mm so that it is compatible with biopsy needles and catheters. The probe has been tested in MR environment and has been proven to be capable of obtaining Raman signal while the probe is under real-time MR guidance.
Development of a multichannel hyperspectral imaging probe for food property and quality assessment
NASA Astrophysics Data System (ADS)
Huang, Yuping; Lu, Renfu; Chen, Kunjie
2017-05-01
This paper reports on the development, calibration and evaluation of a new multipurpose, multichannel hyperspectral imaging probe for property and quality assessment of food products. The new multichannel probe consists of a 910 μm fiber as a point light source and 30 light receiving fibers of three sizes (i.e., 50 μm, 105 μm and 200 μm) arranged in a special pattern to enhance signal acquisitions over the spatial distances of up to 36 mm. The multichannel probe allows simultaneous acquisition of 30 spatially-resolved reflectance spectra of food samples with either flat or curved surface over the spectral region of 550-1,650 nm. The measured reflectance spectra can be used for estimating the optical scattering and absorption properties of food samples, as well as for assessing the tissues of the samples at different depths. Several calibration procedures that are unique to this probe were carried out; they included linearity calibrations for each channel of the hyperspectral imaging system to ensure consistent linear responses of individual channels, and spectral response calibrations of individual channels for each fiber size group and between the three groups of different size fibers. Finally, applications of this new multichannel probe were demonstrated through the optical property measurement of liquid model samples and tomatoes of different maturity levels. The multichannel probe offers new capabilities for optical property measurement and quality detection of food and agricultural products.
A trifurcated fiber-optic-probe-based optical system designed for AGEs measurement
NASA Astrophysics Data System (ADS)
Wang, Yikun; Zhang, Long; Zhu, Ling; Liu, Yong; Zhang, Gong; Wang, An
2012-03-01
Advanced Glycation End-products (AGEs) are biochemical end-products of non-enzymatic glycation and are formed irreversibly in human serum and skin tissue. AGEs are thought to play an important role in the pathogenesis of diabetes and corresponding complications. All conventional methods for measuring AGEs must take sampling and measure in vitro. These methods are invasive and have the problem of relatively time-consuming. AGEs have fluorescent characteristics. Skin AGEs can be assessed noninvasively by collecting the fluorescence emitted from skin tissue when excited with proper light. However, skin tissue has absorption and scattering effects on fluorescence of AGEs, it is not reliable to evaluate the accumulation of AGEs according the emitted fluorescence but not considering optical properties of skin tissue. In this study, a portable system for detecting AGEs fluorescence and skin reflectance spectrum simultaneously has been developed. The system mainly consists of an ultraviolet light source, a broadband light source, a trifurcated fiber-optic probe, and a compact charge coupled device (CCD) spectrometer. The fiber-optic probe consists of 36 optical fibers which are connected to the ultraviolet light source, 6 optical fibers connected to the broadband light source, and a core fiber connected to the CCD spectrometer. Demonstrative test measurements with the system on skin tissue of 40 healthy subjects have been performed. Using parameters that are calculated from skin reflectance spectrum, the distortion effects caused by skin absorption and scattering can be eliminated, and the integral intensity of corrected fluorescence has a strong correlation with the accumulation of AGEs. The system looks very promising for both laboratory and clinical applications to monitor AGEs related diseases, especially for chronic diabetes and complications.
Lab-on-fiber technology: a new vision for chemical and biological sensing.
Ricciardi, Armando; Crescitelli, Alessio; Vaiano, Patrizio; Quero, Giuseppe; Consales, Marco; Pisco, Marco; Esposito, Emanuela; Cusano, Andrea
2015-12-21
The integration of microfluidics and photonic biosensors has allowed achievement of several laboratory functions in a single chip, leading to the development of photonic lab-on-a-chip technology. Although a lot of progress has been made to implement such sensors in small and easy-to-use systems, many applications such as point-of-care diagnostics and in vivo biosensing still require a sensor probe able to perform measurements at precise locations that are often hard to reach. The intrinsic property of optical fibers to conduct light to a remote location makes them an ideal platform to meet this demand. The motivation to combine the good performance of photonic biosensors on chips with the unique advantages of optical fibers has thus led to the development of the so-called lab-on-fiber technology. This emerging technology envisages the integration of functionalized materials on micro- and nano-scales (i.e. the labs) with optical fibers to realize miniaturized and advanced all-in-fiber probes, especially useful for (but not limited to) label-free chemical and biological applications. This review presents a broad overview of lab-on-fiber biosensors, with particular reference to lab-on-tip platforms, where the labs are integrated on the optical fiber facet. Light-matter interaction on the fiber tip is achieved through the integration of thin layers of nanoparticles or nanostructures supporting resonant modes, both plasmonic and photonic, highly sensitive to local modifications of the surrounding environment. According to the physical principle that is exploited, different configurations - such as localized plasmon resonance probes, surface enhanced Raman scattering probes and photonic probes - are classified, while various applications are presented in context throughout. For each device, the surface chemistry and the related functionalization protocols are reviewed. Moreover, the implementation strategies and fabrication processes, either based on bottom-up or top-down approaches, are discussed. In conclusion we highlight some of the further development opportunities, including lab-in-a-needle technology, which could have a direct and disruptive impact in localized cancer treatment applications.
Thin-film fiber optic hydrogen and temperature sensor system
Nave, Stanley E.
1998-01-01
The invention discloses a sensor probe device for monitoring of hydrogen gas concentrations and temperatures by the same sensor probe. The sensor probe is constructed using thin-film deposition methods for the placement of a multitude of layers of materials sensitive to hydrogen concentrations and temperature on the end of a light transparent lens located within the sensor probe. The end of the lens within the sensor probe contains a lens containing a layer of hydrogen permeable material which excludes other reactive gases, a layer of reflective metal material that forms a metal hydride upon absorbing hydrogen, and a layer of semi-conducting solid that is transparent above a temperature dependent minimum wavelength for temperature detection. The three layers of materials are located at the distal end of the lens located within the sensor probe. The lens focuses light generated by broad-band light generator and connected by fiber-optics to the sensor probe, onto a reflective metal material layer, which passes through the semi-conducting solid layer, onto two optical fibers located at the base of the sensor probe. The reflected light is transmitted over fiberoptic cables to a spectrometer and system controller. The absence of electrical signals and electrical wires in the sensor probe provides for an elimination of the potential for spark sources when monitoring in hydrogen rich environments, and provides a sensor free from electrical interferences.
Wide angle near-field optical probes by reverse tube etching.
Patanè, S; Cefalì, E; Arena, A; Gucciardi, P G; Allegrini, M
2006-04-01
We present a simple modification of the tube etching process for the fabrication of fiber probes for near-field optical microscopy. It increases the taper angle of the probe by a factor of two. The novelty is that the fiber is immersed in hydrofluoric acid and chemically etched in an upside-down geometry. The tip formation occurs inside the micrometer tube cavity formed by the polymeric jacket. By applying this approach, called reverse tube etching, to multimode fibers with 200/250 microm core/cladding diameter, we have fabricated tapered regions featuring high surface smoothness and average cone angles of approximately 30 degrees . A simple model based on the crucial role of the gravity in removing the etching products, explains the tip formation process.
NASA Astrophysics Data System (ADS)
Salceda-Delgado, G.; Martinez-Rios, A.; Sierra-Hernandez, J. M.; Rodríguez-Carreón, V. C.; Toral-Acosta, D.; Selvas-Aguilar, R.; Álvarez-Tamayo, R. I.; Castillo-Guzman, A. A.; Rojas-Laguna, R.
2018-03-01
A straightforward and versatile method for switching from single to different multiwavelength laser emission in ring cavity fiber lasers is proposed and demonstrated experimentally. The method is based on using the changeable interference pattern from an optical fiber modal Michelson interferometer as a wavelength selective filter into the ring cavity laser. The interferometer is constructed using a bi-conical tapered fiber and a single-mode fiber segment, with these being spliced together to form an optical fiber tip probe. When the length of the single-mode fiber piece is modified, the phase difference between the interfering modes of the interferometer causes a change in the interferometer free spectral range. As a consequence, the laser intra-cavity losses lead to gain competition, which allows us to adjust the number of simultaneously generated laser lines. A multiwavelength reconfiguration of the laser from one up to a maximum of eight emission lines was obtained, with a maximum SNR of around 47 dBm.
Prather, W.S.; O'Rourke, P.E.
1994-08-02
A support structure is described bearing at least one probe for making spectrophotometric measurements of a fluid using a source of light and a spectrophotometer. The probe includes a housing with two optical fibers and a planoconvex lens. A sleeve bearing a mirror surrounds the housing. The lens is separated from the mirror by a fixed distance, defining an interior space for receiving a volume of the fluid sample. A plurality of throughholes extending through the sleeve communicate between the sample volume and the exterior of the probe, all but one hole bearing a screen. A protective jacket surrounds the probe. A hollow conduit bearing a tube is formed in the wall of the probe for venting any air in the interior space when fluid enters. The probe is held at an acute angle so the optic fibers carrying the light to and from the probe are not bent severely on emergence from the probe. 3 figs.
Prather, William S.; O'Rourke, Patrick E.
1994-01-01
A support structure bearing at least one probe for making spectrophotometric measurements of a fluid using a source of light and a spectrophotometer. The probe includes a housing with two optical fibers and a planoconvex lens. A sleeve bearing a mirror surrounds the housing. The lens is separated from the mirror by a fixed distance, defining an interior space for receiving a volume of the fluid sample. A plurality of throughholes extending through the sleeve communicate between the sample volume and the exterior of the probe, all but one hole bearing a screen. A protective jacket surrounds the probe. A hollow conduit bearing a tube is formed in the wall of the probe for venting any air in the interior space when fluid enters. The probe is held at an acute angle so the optic fibers carrying the light to and from the probe are not bent severely on emergence from the probe.
Measurement Sensitivity Of Liquid Droplet Parameters Using Optical Fibers
NASA Astrophysics Data System (ADS)
Das, Alok K.; Mandal, Anup K.
1990-02-01
A new clad probing technique is used to measure the size, number, refractive index and viscosity of liquid droplets sprayed from a pressure nozzle on an uncoated core-clad fiber. The probe monitors the clad mode power loss within the leaky ray zone represented as a three region fiber. Liquid droplets measured are Glycerine, commercial grade Turpentine, Linseed oil and some oil mixtures. The measurement sensitivity depends on probing conditions and clad diameter which is observed experimentally and verified analytically. A maximum sensitivity is obtained for the tapered probe-fiber diameter made equal to the clad thickness. A slowly tapered probe-fiber and a small end angle as well as separation of the sensor-fiber and the probe-fiber further improve the sensitivity. Under the best probing condition for 90-percent Glycerine droplets of - 50 micron diameter and a 50/125 micron sensor fiber with clad refractive index of 1.465 and 0.2 NA, the measured sensitivity per drop is 0.015 and 0.006 dB, respectively, for (10-20) and (100-200) droplets. Sensitivities for different systems are shown. The sensitivity is optimized by choosing proper fiber for known liquids.
Infrared Hollow Optical Fiber Probe for Localized Carbon Dioxide Measurement in Respiratory Tracts
Katagiri, Takashi; Shibayama, Kyosuke; Iida, Takeru
2018-01-01
A real-time gas monitoring system based on optical absorption spectroscopy is proposed for localized carbon dioxide (CO2) measurement in respiratory tracts. In this system, a small gas cell is attached to the end of a hollow optical fiber that delivers mid-infrared light with small transmission loss. The diameters of the fiber and the gas cell are smaller than 1.2 mm so that the probe can be inserted into a working channel of common bronchoscopes. The dimensions of the gas cell are designed based on absorption spectra of CO2 standard gases in the 4.2 μm wavelength region, which are measured using a Fourier-transform infrared spectrometer. A miniature gas cell that is comprised of a stainless-steel tube with slots for gas inlet and a micro-mirror is fabricated. A compact probing system with a quantum cascade laser (QCL) light source is built using a gas cell with a hollow optical fiber for monitoring CO2 concentration. Experimental results using human breaths show the feasibility of the system for in-situ measurement of localized CO2 concentration in human airways. PMID:29584666
Experimentally Determined Plasma Parameters in a 30 cm Ion Engine
NASA Technical Reports Server (NTRS)
Sengupta, Anita; Goebel, Dan; Fitzgerald, Dennis; Owens, Al; Tynan, George; Dorner, Russ
2004-01-01
Single planar Langmuir probes and fiber optic probes are used to concurrently measure the plasma properties and neutral density variation in a 30cm diameter ion engine discharge chamber, from the immediate vicinity of the keeper to the near grid plasma region. The fiber optic probe consists of a collimated optical fiber recessed into a double bore ceramic tube fitted with a stainless steel light-limiting window. The optical fiber probe is used to measure the emission intensity of excited neutral xenon for a small volume of plasma, at various radial and axial locations. The single Langmuir probes, are used to generate current-voltage characteristics at a total of 140 spatial locations inside the discharge chamber. Assuming a maxwellian distribution for the electron population, the Langmuir probe traces provide spatially resolved measurements of plasma potential, electron temperature, and plasma density. Data reduction for the NSTAR TH8 and TH15 throttle points indicates an electron temperature range of 1 to 7.9 eV and an electron density range of 4e10 to le13 cm(sup -3), throughout the discharge chamber, consistent with the results in the literature. Plasma potential estimates, computed from the first derivative of the probe characteristic, indicate potential from 0.5V to 11V above the discharge voltage along the thruster centerline. These values are believed to be excessively high due to the sampling of the primary electron population along the thruster centerline. Relative neutral density profiles are also obtained with a fiber optic probe sampling photon flux from the 823.1 nm excited to ground state transition. Plasma parameter measurements and neutral density profiles will be presented as a function of probe location and engine discharge conditions. A discussion of the measured electron energy distribution function will also be presented, with regards to variation from pure maxwellian. It has been found that there is a distinct primary population found along the thruster centerline, which causes estimates of electron temperature, electron density, and plasma potential, to err on the high side, due this energetic population. Computation of the energy distribution fimction of the plasma clearly indicates the presence of primaries, whose presence become less obvious with radial distance from the main discharge plume.
U-shaped, double-tapered, fiber-optic sensor for effective biofilm growth monitoring.
Zhong, Nianbing; Zhao, Mingfu; Li, Yishan
2016-02-01
To monitor biofilm growth on polydimethylsiloxane in a photobioreactor effectively, the biofilm cells and liquids were separated and measured using a sensor with two U-shaped, double-tapered, fiber-optic probes (Sen. and Ref. probes). The probes' Au-coated hemispherical tips enabled double-pass evanescent field absorption. The Sen. probe sensed the cells and liquids inside the biofilm. The polyimide-silica hybrid-film-coated Ref. probe separated the liquids from the biofilm cells and analyzed the liquid concentration. The biofilm structure and active biomass were also examined to confirm the effectiveness of the measurement using a simulation model. The sensor was found to effectively respond to the biofilm growth in the adsorption through exponential phases at thicknesses of 0-536 μm.
Fiber optic chemical sensors: The evolution of high- density fiber-optic DNA microarrays
NASA Astrophysics Data System (ADS)
Ferguson, Jane A.
2001-06-01
Sensors were developed for multianalyte monitoring, fermentation monitoring, lactate analysis, remote oxygen detection for use in bioremediation monitoring and in a fuel spill clean-up project, heavy metal analysis, and high density DNA microarrays. The major focus of this thesis involved creating and improving high-density DNA gene arrays. Fiber optic sensors are created using fluorescent indicators, polymeric supports, and optical fiber substrates. The fluorescent indicator is entrapped in a polymer layer and attached to the tip of the optical fiber. The tip of the fiber bearing the sensing layer (the distal end) is placed in the sample of interest while the other end of the fiber (the proximal end) is connected to an analysis system. Any length of fiber can be used without compromising the integrity or sensitivity of the system. A fiber optic oxygen sensor was designed incorporating an oxygen sensitive fluorescent dye and a gas permeable polymer attached to an optical fiber. The construction simplicity and ruggedness of the sensor enabled its deployment for in situ chemical oxidation and bioremediation studies. Optical fibers were also used as the substrate to detect biomolecules in solution. To monitor bioprocesses, the production of the analyte of interest must be coupled with a species that is optically measurable. For example, oxygen is consumed in many metabolic functions. The fiber optic oxygen sensor is equipped with an additional sensing layer. Upon contact with a specific biochemical in the sample, a reaction occurs in the additional sensing layer that either consumes or produces oxygen. This dual layer system was used to monitor the presence of lactate, an important metabolite for clinical and bioprocess analysis. In many biological and environmental systems, the generation of one species occurs coincidentally with the generation or consumption of another species. A multianalyte sensor was prepared that can monitor the simultaneous activity of pH, CO2 and O2. This sensor is useful for monitoring bioprocesses such as (beer) fermentation and for clinical situations such as blood gas analysis. DNA sensors were created by attaching short single strands of DNA (probes) to the fiber tip. A matching single strand (target) forms a strong interacting pair with the probe upon contact. The target strands in a sample are labeled with a fluorescent dye. When a probe-target pair is formed and excitation light is sent down the fiber, the fiber bearing the pair emits light that is captured and detected. A high density DNA array was created by isolating thousands of discrete DNA sensors on the tip of an imaging optical fiber. This array was made possible by the formation of microwells on the imaging fiber tip. Microspheres functionalized with DNA were placed in the wells of the fiber and each microsphere was independently and simultaneously monitored. (Abstract shortened by UMI.)
Method and system for fiber optic determination of gas concentrations in liquid receptacles
NASA Technical Reports Server (NTRS)
Nguyen, Quang-Viet (Inventor)
2008-01-01
A system for determining gas compositions includes a probe, inserted into a source of gaseous material, the probe having a gas permeable sensor tip and being capable of sending and receiving light to and from the gaseous material, a sensor body, connected to the probe, situated outside of the source and a fiber bundle, connected to the sensor body and communicating light to and from the probe. The system also includes a laser source, connected to one portion of the fiber bundle and providing laser light to the fiber bundle and the probe a Raman spectrograph, connected to another portion of the fiber bundle, receiving light from the probe and filtering the received light into specific channels and a data processing unit, receiving and analyzing the received light in the specific channels and outputting concentration of specific gas species in the gaseous material based on the analyzed received light.
NASA Astrophysics Data System (ADS)
Blakley, Sean Michael
Nitrogen--vacancy diamond (NVD) quantum sensors are an emerging technology that has shown great promise in areas like high-resolution thermometry and magnetometry. Optical fibers provide attractive new application paradigms for NVD technology. A detailed description of the fabrication processes associated with the development of novel fiber-optic NVD probes are presented in this work. The demonstrated probes are tested on paradigmatic model systems designed to ascertain their suitability for use in challenging biological environments. Methods employing optically detected magnetic resonance (ODMR) are used to accurately measure and map temperature distributions of small objects and to demonstrate emergent temperature-dependent phenomena in genetically modified living organisms. These methods are also used to create detailed high resolution spatial maps of both magnetic scalar and magnetic vector field distributions of spatially localized weak field features in the presence of a noisy, high-field background.
Look-Ahead Distance of a fiber probe used to assist neurosurgery: Phantom and Monte Carlo study
NASA Astrophysics Data System (ADS)
Qian, Zhiyu; Victor, Sunder S.; Gu, Yueqing; Giller, Cole A.; Liu, Hanli
2003-08-01
A short-separation, optical reflectance probe has been developed to assist the neurosurgeon in functional neurosurgery for accurate localization of the surgical target. Because of the scattering nature of tissue, the optical probe has a "Look Ahead Distance" (LAD), at which the measured optical reflectance starts to "see" or "sense" the underlying brain structure due to the difference in light scattering of tissue. To quantify the LAD, 2-layer laboratory phantoms have been developed to mimic gray and white matter of the brain, and Monte Carlo simulations have been also used to confirm the experimental findings. Based on both the laboratory and simulation results, a quantitative empirical equation is developed to express the LAD as a function of scattering coefficient of the measured tissue for a 400-micron-diameter fiber probe. The quantified LAD of the probe is highly desirable so as to improve the spatial resolution of the probe for better surgery guidance.
Zhong, Nianbing; Liao, Qiang; Zhu, Xun; Chen, Rong
2014-04-15
A new simple fiber-optic evanescent wave sensor was created to accurately monitor the growth and hydrogen production performance of biofilms. The proposed sensor consists of two probes (i.e., a sensor and reference probe), using the etched fibers with an appropriate surface roughness to improve its sensitivity. The sensor probe measures the biofilm growth and change of liquid-phase concentration inside the biofilm. The reference probe is coated with a hydrophilic polytetrafluoroethylene membrane to separate the liquids from photosynthetic bacteria Rhodopseudomonas palustris CQK 01 and to measure the liquid concentration. We also developed a model to demonstrate the accuracy of the measurement. The biofilm measurement was calibrated using an Olympus microscope. A linear relationship was obtained for the biofilm thickness range from 0 to 120 μm with a synthetic medium under continuous supply to the bioreactor. The highest level of hydrogen production rate occurred at a thickness of 115 μm.
Tabassum, Rana; Gupta, Banshi D
2015-03-21
A highly sensitive chlorine sensor for an aqueous medium is fabricated using an optical fiber surface plasmon resonance (OFSPR) system. An OFSPR-based chlorine sensor is designed with a multilayer-type platform by zinc oxide (ZnO) and polyvinylpyrollidone (PVP) film morphology manipulations. Among all the methodologies of transduction reported in the field of solid state chemical and biochemical sensing, our attention is focused on the Kretschmann configuration optical fiber sensing technique using the mechanism of surface plasmon resonance. The optical fiber surface plasmon resonance (SPR) chlorine sensor is developed using a multimode optical fiber with the PVP-supported ZnO film deposited over a silver-coated unclad core of the fiber. A spectral interrogation mode of operation is used to characterize the sensor. In an Ag/ZnO/PVP multilayer system, the absorption of chlorine in the vicinity of the sensing region is performed by the PVP layer and the zinc oxide layer enhances the shift in resonance wavelength. It is, experimentally, demonstrated that the SPR wavelength shifts nonlinearly towards the red side of the visible region with an increase in the chlorine concentration in an aqueous medium while the sensitivity of the sensor decreases linearly with an increase in the chlorine concentration. As the proposed sensor utilizes an optical fiber, it possesses the additional advantages of fiber such as less signal degradation, less susceptibility to electromagnetic interference, possibility of remote sensing, probe miniaturization, probe re-usability, online monitoring, small size, light weight and low cost.
SU-E-T-672: Real-Time In Vivo Dosimeters Using LiPCDA and Optical Fibers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rink, A; Jaffray, DA; Croteau, A
2015-06-15
Purpose: To investigate dosimeter prototypes made with lithium pentacosa-10,12-diynoate (LiPCDA, the material used in GafChromic EBT films) and optical fibers for their suitability in real-time in vivo measurements. Methods: The prototypes, made with 500 µm plastic optical fibers and 8.5 µm thickness of LiPCDA at fiber tip, were irradiated with a 6 MV beam. To investigate the efficacy of pre-irradiation calibration, the probes were irradiated to 2 Gy twice, with 5 minutes in between. Net optical density values (netOD) around the main absorbance peak were compared, and effect of correcting second measurement by the first was assessed. Ageing was assessedmore » by irradiating two prototypes to 2 Gy and comparing the netOD to that obtained for 15 prototypes from the same batch 12–14 months earlier. To measure angular dependence, the probes were pre-irradiated with beam perpendicular to fiber axis and then, 5 minutes later either perpendicular or parallel to fiber axes. The thickness-corrected netOD measurements were compared. Results: Standard deviation of netOD for probes of the same batch was measured to be 5–6%. When netOD was corrected for material thickness by using results from the first irradiation, the standard deviation decreased to 1.3%. This was comparable to the uncertainty in measurements observed with a single probe and is attributed to variations in light output, spectrometer noise and splitter-to-probe connection variations. Comparison of netOD values obtained a year apart failed to illustrate statistically significant decrease in sensitivity due to ageing (0.38 ± 0.03 and 0.3656 ± 0.0003). NetOD measured with MV beam parallel to fiber was within error of netOD measured with MV beam perpendicular to fiber. Conclusion: Current prototype construction allows for shelf life of at least one year. With material thickness corrected for, the prototypes can measure dose with an uncertainty below 2% at a given energy and dose rate. This work has been funded by the Ontario Centres of Excellence Market Readiness grant. The authors have no conflict of interest to declare.« less
NASA Astrophysics Data System (ADS)
Lim, Ho-Joon; Chang, Kuang-An; Su, Chin B.; Chen, Chi-Yueh
2008-12-01
A fiber optic reflectometer (FOR) technique featuring a single fiber probe is investigated for its feasibility of measuring the bubble velocity, diameter, and void fraction in a multiphase flow. The method is based on the interference of the scattered signal from the bubble surface with the Fresnel reflection signal from the tip of the optical fiber. Void fraction is obtained with a high accuracy if an appropriate correction is applied to compensate the underestimated measurement value. Velocity information is accurately obtained from the reflected signals before the fiber tip touches the bubble surface so that several factors affecting the traditional dual-tip probes such as blinding, crawling, and drifting effects due to the interaction between the probe and bubbles can be prevented. The coherent signals reflected from both the front and rear ends of a bubble can provide velocity information. Deceleration of rising bubbles and particles due to the presence of the fiber probe is observed when they are very close to the fiber tip. With the residence time obtained, the bubble chord length can be determined by analyzing the coherent signal for velocity determination before the deceleration starts. The bubble diameters are directly obtained from analyzing the signals of the bubbles that contain velocity information. The chord lengths of these bubbles measured by FOR represent the bubble diameters when the bubble shape is spherical or represent the minor axes when the bubble shape is ellipsoidal. The velocity and size of bubbles obtained from the FOR measurements are compared with those obtained simultaneously using a high speed camera.
Marques Junior, Jucelino Medeiros; Muller, Aline Lima Hermes; Foletto, Edson Luiz; da Costa, Adilson Ben; Bizzi, Cezar Augusto; Irineu Muller, Edson
2015-01-01
A method for determination of propranolol hydrochloride in pharmaceutical preparation using near infrared spectrometry with fiber optic probe (FTNIR/PROBE) and combined with chemometric methods was developed. Calibration models were developed using two variable selection models: interval partial least squares (iPLS) and synergy interval partial least squares (siPLS). The treatments based on the mean centered data and multiplicative scatter correction (MSC) were selected for models construction. A root mean square error of prediction (RMSEP) of 8.2 mg g(-1) was achieved using siPLS (s2i20PLS) algorithm with spectra divided into 20 intervals and combination of 2 intervals (8501 to 8801 and 5201 to 5501 cm(-1)). Results obtained by the proposed method were compared with those using the pharmacopoeia reference method and significant difference was not observed. Therefore, proposed method allowed a fast, precise, and accurate determination of propranolol hydrochloride in pharmaceutical preparations. Furthermore, it is possible to carry out on-line analysis of this active principle in pharmaceutical formulations with use of fiber optic probe.
UW Imaging of Seismic-Physical-Models in Air Using Fiber-Optic Fabry-Perot Interferometer.
Rong, Qiangzhou; Hao, Yongxin; Zhou, Ruixiang; Yin, Xunli; Shao, Zhihua; Liang, Lei; Qiao, Xueguang
2017-02-17
A fiber-optic Fabry-Perot interferometer (FPI) has been proposed and demonstrated for the ultrasound wave (UW) imaging of seismic-physical models. The sensor probe comprises a single mode fiber (SMF) that is inserted into a ceramic tube terminated by an ultra-thin gold film. The probe performs with an excellent UW sensitivity thanks to the nanolayer gold film, and thus is capable of detecting a weak UW in air medium. Furthermore, the compact sensor is a symmetrical structure so that it presents a good directionality in the UW detection. The spectral band-side filter technique is used for UW interrogation. After scanning the models using the sensing probe in air, the two-dimensional (2D) images of four physical models are reconstructed.
Design and Evaluation of a Fiber Optic Probe as a means of Subsurface Planetary Exploration
NASA Astrophysics Data System (ADS)
Pilgrim, Robert Paul
The Optical Probe for Regolith Analysis (OPRA) is an instrumentation concept designed to provide spectroscopic analysis of the near subsurface of unconsolidated regolith on bodies such as moons, asteroids and planets. Below a chemically altered surface may lay the geological history in the form of stratigraphy that is shielded from degradation due to harsh external environments. Most of what we know about our solar system comes from remote platforms, such as satellites that are deployed into orbit around the target body. In the case of Mars, we have had several successful landers and rovers however, with the exception of the Mars Science Laboratory that just drilled its first hole, the complexity of subsurface excavation has limited the extent of subsurface exploration to simple scoops deployed on the ends of robotic arms which, by their very nature, will erase any stratigraphy that it may be digging into. The OPRA instrumentation concept allows for an integrated, lightweight and simple apparatus for subsurface exploration via a small, spike like structure which contains integrated optical fibers coupled to small windows running down the length of the probe. Each window is connected to a spectrometer housed onboard the deploying spacecraft. Each window is separately interrogated via the spectrometer over the wavelength range 1-2.5 nm to produce a spectroscopic profile as a function of depth. This project takes the Technology Readiness Level (TRL) of the OPRA instrumentation concept to level 3, which is defined by NASA to be the demonstration either analytically or experimentally of the proof of concept for critical functions of the proposed instrument. Firstly, to demonstrate that optical fibers are feasible for this type of application, we report on the techniques used by NASA to space qualify optical fibers. We investigate the optical performance of several fiber optic bundle configurations, both experimentally and numerically, to help optimize bundle performance. Optical bundles were then spectrally validated via a series of spectral comparisons between standardized reflectance spectroscopy targets and spectra obtained with the bundles. We also report on the integration of fiber optical bundles into other research and experimental results from several other groups within our research teams to obtain spectra under a more "space like" environment. Finally, the probe housing structural performance was investigated via finite element analysis, using probe penetration forces derived from data analysis of experimentation conducted by the Apollo lunar missions, and investigations into a mechanical analogue for the Martian regolith.
NASA Technical Reports Server (NTRS)
Kersten, Ralf T. (Editor)
1990-01-01
Recent advances in fiber-optic sensor (FOS) technology are examined in reviews and reports. Sections are devoted to components for FOSs, special fibers for FOSs, interferometry, FOS applications, and sensing principles and influence. Particular attention is given to solder glass sealing technology for FOS packaging, the design of optical-fiber current sensors, pressure and temperature effects on beat length in highly birefringent optical fibers, a pressure FOS based on vibrating-quartz-crystal technology, remote sensing of flammable gases using a fluoride-fiber evanescent probe, a displacement sensor with electronically scanned white-light interferometer, the use of multimode laser diodes in low-coherence coupled-cavity interferometry, electronic speckle interferometry compensated for environmentally induced phase noise, a dual-resolution noncontact vibration and displacement sensor based on a two-wavelength source, and fiber optics in composite materials.
Non-enzymatic glucose detection based on phenylboronic acid modified optical fibers
NASA Astrophysics Data System (ADS)
Sun, Xiaolan; Li, Nana; Zhou, Bin; Zhao, Wei; Liu, Liyuan; Huang, Chao; Ma, Longfei; Kost, Alan R.
2018-06-01
A non-enzymatic, sensitive glucose sensor was fabricated based on an evanescent wave absorbing optical fiber probe. The optical fiber sensor was functionalized by fixing a poly (phenylboronic acid) (polyPBA) film onto the conical region of the single mode fiber. The reflected light intensity of the polyPBA-functionalized fiber sensor increased proportionally with glucose concentration in the range of 0-60 mM, and the sensor showed good reproducibility and stability. The developed sensor possessed a high sensitivity of 0.1787%/mM and good linearity. The measurement of glucose concentration in human serum was also demonstrated.
NASA Astrophysics Data System (ADS)
Cicchi, Riccardo; Anand, Suresh; Fantechi, Riccardo; Giordano, Flavio; Gacci, Mauro; Conti, Valerio; Nesi, Gabriella; Buccoliero, Anna Maria; Carini, Marco; Guerrini, Renzo; Pavone, Francesco Saverio
2017-07-01
An optical fiber probe for multimodal spectroscopy was designed, developed and used for tissue diagnostics. The probe, based on a fiber bundle with optical fibers of various size and properties, allows performing spectroscopic measurements with different techniques, including fluorescence, Raman, and diffuse reflectance, using the same probe. Two visible laser diodes were used for fluorescence spectroscopy, a laser diode emitting in the NIR was used for Raman spectroscopy, and a fiber-coupled halogen lamp for diffuse reflectance. The developed probe was successfully employed for diagnostic purposes on various tissues, including brain and bladder. In particular, the device allowed discriminating healthy tissue from both tumor and dysplastic tissue as well as to perform tumor grading. The diagnostic capabilities of the method, determined using a cross-validation method with a leave-one-out approach, demonstrated high sensitivity and specificity for all the examined samples, as well as a good agreement with histopathological examination performed on the same samples. The obtained results demonstrated that the multimodal approach is crucial for improving diagnostic capabilities with respect to what can be obtained from individual techniques. The experimental setup presented here can improve diagnostic capabilities on a broad range of tissues and has the potential of being used clinically for guiding surgical resection in the near future.
Bianchi, S; Rajamanickam, V P; Ferrara, L; Di Fabrizio, E; Liberale, C; Di Leonardo, R
2013-12-01
The use of individual multimode optical fibers in endoscopy applications has the potential to provide highly miniaturized and noninvasive probes for microscopy and optical micromanipulation. A few different strategies have been proposed recently, but they all suffer from intrinsically low resolution related to the low numerical aperture of multimode fibers. Here, we show that two-photon polymerization allows for direct fabrication of micro-optics components on the fiber end, resulting in an increase of the numerical aperture to a value that is close to 1. Coupling light into the fiber through a spatial light modulator, we were able to optically scan a submicrometer spot (300 nm FWHM) over an extended region, facing the opposite fiber end. Fluorescence imaging with improved resolution is also demonstrated.
NASA Astrophysics Data System (ADS)
Nedoma, Jan; Fajkus, Marcel; Martinek, Radek; Jargus, Jan; Zboril, Ondrej; Vasinek, Vladimir
2017-10-01
This article describes an analysis of the use of fiber-optic technology in biomedical applications, specifically for the monitoring heart rate of the pregnant (mHR) and fetal (fHR). Authors focused on the use of Fiber Bragg Grating (FBG) and Fiber-Optic Interferometers (FOI). Thanks to the utilization of conventional method so-called cardiotocography (CTG), the mortality of newborn babies during delivery has decreased. Generally, among disadvantages of this method, there is a high sensitivity to noises caused by the movement of a mother, and it is connected with the frequent transfer of ultrasonic converters. This method is not suitable for a long-term continuous monitoring due to a possible influence of ultrasonic radiation on the fetus. Use of fiber-optic technology offers many advantages, for example, use measuring probes based FBG or FOI does not represent any additional radiation burden for the pregnant woman or fetus, fiber-optic measurement probes are resistant to technical artifacts such as electromagnetic interferences (EMI), thus they can be used in situations where it is impossible to use classic methods, e.g. examination by magnetic resonance (MR) or in case of delivery in water. The article describes the first experimental knowledge of based on real measurements.
Dual fiber microprobe for mapping elemental distributions in biological cells
Martin, Rodger C [Powell, TN; Martin, Madhavi Z [Powell, TN
2007-07-31
Laser-induced breakdown spectroscopy (LIBS) is applied on a microscale for in situ elemental analysis and spatial mapping in biological cells. A high power laser beam is focused onto a cell surface using a dual branching optical fiber probe for optical excitation of the cell constituents. Dual spectrometers and ICCD detectors capture the emission spectra from the excited cell(s). Repeated probing or repositioning of the laser beam with respect to the cell can provide 2-D or 3-D mapping of the cell.
Photonic Doppler velocimetry lens array probe incorporating stereo imaging
Malone, Robert M.; Kaufman, Morris I.
2015-09-01
A probe including a multiple lens array is disclosed to measure velocity distribution of a moving surface along many lines of sight. Laser light, directed to the moving surface is reflected back from the surface and is Doppler shifted, collected into the array, and then directed to detection equipment through optic fibers. The received light is mixed with reference laser light and using photonic Doppler velocimetry, a continuous time record of the surface movement is obtained. An array of single-mode optical fibers provides an optic signal to the multiple lens array. Numerous fibers in a fiber array project numerous rays to establish many measurement points at numerous different locations. One or more lens groups may be replaced with imaging lenses so a stereo image of the moving surface can be recorded. Imaging a portion of the surface during initial travel can determine whether the surface is breaking up.
On-line process control monitoring system
O'Rourke, Patrick E.; Van Hare, David R.; Prather, William S.
1992-01-01
An on-line, fiber-optic based apparatus for monitoring the concentration of a chemical substance at a plurality of locations in a chemical processing system comprises a plurality of probes, each of which is at a different location in the system, a light source, optic fibers for carrying light to and from the probes, a multiplexer for switching light from the source from one probe to the next in series, a diode array spectrophotometer for producing a spectrum from the light received from the probes, and a computer programmed to analyze the spectra so produced. The probes allow the light to pass through the chemical substance so that a portion of the light is absorbed before being returned to the multiplexer. A standard and a reference cell are included for data validation and error checking.
Darafsheh, Arash; Taleei, Reza; Kassaee, Alireza; Finlay, Jarod C
2016-11-01
Proton beam dosimetry using bare plastic optical fibers has emerged as a simple approach to proton beam dosimetry. The source of the signal in this method has been attributed to Čerenkov radiation. The aim of this work was a phenomenological study of the nature of the visible light responsible for the signal in bare fiber optic dosimetry of proton therapy beams. Plastic fiber optic probes embedded in solid water phantoms were irradiated with proton beams of energies 100, 180, and 225 MeV produced by a proton therapy cyclotron. Luminescence spectroscopy was performed by a CCD-coupled spectrometer. The spectra were acquired at various depths in phantom to measure the percentage depth dose (PDD) for each beam energy. For comparison, the PDD curves were acquired using a standard multilayer ion chamber device. In order to further analyze the contribution of the Čerenkov radiation in the spectra, Monte Carlo simulation was performed using fluka Monte Carlo code to stochastically simulate radiation transport, ionizing radiation dose deposition, and optical emission of Čerenkov radiation. The measured depth doses using the bare fiber are in agreement with measurements performed by the multilayer ion chamber device, indicating the feasibility of using bare fiber probes for proton beam dosimetry. The spectroscopic study of proton-irradiated fibers showed a continuous spectrum with a shape different from that of Čerenkov radiation. The Monte Carlo simulations confirmed that the amount of the generated Čerenkov light does not follow the radiation absorbed dose in a medium. The source of the optical signal responsible for the proton dose measurement using bare optical fibers is not Čerenkov radiation. It is fluorescence of the plastic material of the fiber.
Fiber optic biofluorometer for physiological research on muscle slices
NASA Astrophysics Data System (ADS)
Belz, Mathias; Dendorfer, Andreas; Werner, Jan; Lambertz, Daniel; Klein, Karl-Friedrich
2016-03-01
A focus of research in cell physiology is the detection of Ca2+, NADH, FAD, ATPase activity or membrane potential, only to name a few, in muscle tissues. In this work, we report on a biofluorometer using ultraviolet light emitting diodes (UV-LEDs), optical fibers and two photomultipliers (PMTs) using synchronized fluorescence detection with integrated background correction to detect free calcium, Ca2+, in cardiac muscle tissue placed in a horizontal tissue bath and a microscope setup. Fiber optic probes with imaging optics have been designed to transport excitation light from the biofluorometer's light output to a horizontal tissue bath and to collect emission light from a tissue sample of interest to two PMTs allowing either single excitation / single emission or ratiometric, dual excitation / single emission or single excitation / dual emission fluorescence detection of indicator dyes or natural fluorophores. The efficient transport of light from the excitation LEDs to the tissue sample, bleaching effects of the excitation light in both, polymer and fused silica-based fibers will be discussed. Furthermore, a new approach to maximize light collection of the emission light using high NA fibers and high NA coupling optics will be shown. Finally, first results on Ca2+ measurements in cardiac muscle slices in a traditional microscope setup and a horizontal tissue bath using fiber optic probes will be introduced and discussed.
Photonic Biosensor Assays to Detect and Distinguish Subspecies of Francisella tularensis
Cooper, Kristie L.; Bandara, Aloka B.; Wang, Yunmiao; Wang, Anbo; Inzana, Thomas J.
2011-01-01
The application of photonic biosensor assays to diagnose the category-A select agent Francisella tularensis was investigated. Both interferometric and long period fiber grating sensing structures were successfully demonstrated; both these sensors are capable of detecting the optical changes induced by either immunological binding or DNA hybridization. Detection was made possible by the attachment of DNA probes or immunoglobulins (IgG) directly to the fiber surface via layer-by-layer electrostatic self-assembly. An optical fiber biosensor was tested using a standard transmission mode long period fiber grating of length 15 mm and period 260 μm, and coated with the IgG fraction of antiserum to F. tularensis. The IgG was deposited onto the optical fiber surface in a nanostructured film, and the resulting refractive index change was measured using spectroscopic ellipsometry. The presence of F. tularensis was detected from the decrease of peak wavelength caused by binding of specific antigen. Detection and differentiation of F. tularensis subspecies tularensis (type A strain TI0902) and subspecies holarctica (type B strain LVS) was further accomplished using a single-mode multi-cavity fiber Fabry-Perot interferometric sensor. These sensors were prepared by depositing seven polymer bilayers onto the fiber tip followed by attaching one of two DNA probes: (a) a 101-bp probe from the yhhW gene unique to type-A strains, or (b) a 117-bp probe of the lpnA gene, common to both type-A and type-B strains. The yhhW probe was reactive with the type-A, but not the type-B strain. Probe lpnA was reactive with both type-A and type-B strains. Nanogram quantities of the target DNA could be detected, highlighting the sensitivity of this method for DNA detection without the use of PCR. The DNA probe reacted with 100% homologous target DNA, but did not react with sequences containing 2-bp mismatches, indicating the high specificity of the assay. These assays will fill an important void that exists for rapid, culture-free, and field-compatible diagnosis of F. tularensis. PMID:22163782
Method and apparatus for optical temperature measurement
O'Rourke, P.E.; Livingston, R.R.; Prather, W.S.
1994-09-20
A temperature probe and a method for using said probe for temperature measurements based on changes in light absorption by the probe are disclosed. The probe comprises a first and a second optical fiber that carry light to and from the probe, and a temperature sensor material, the absorbance of which changes with temperature, through which the light is directed. Light is directed through the first optical fiber, passes through the temperature sensor material, and is transmitted by a second optical fiber from the material to a detector. Temperature-dependent and temperature-independent factors are derived from measurements of the transmitted light intensity. For each sensor material, the temperature T is a function of the ratio, R, of these factors. The temperature function f(R) is found by applying standard data analysis techniques to plots of T versus R at a series of known temperatures. For a sensor having a known temperature function f(R) and known characteristic and temperature-dependent factors, the temperature can be computed from a measurement of R. Suitable sensor materials include neodymium-doped borosilicate glass, accurate to [+-]0.5 C over an operating temperature range of about [minus]196 C to 400 C; and a mixture of D[sub 2]O and H[sub 2]O, accurate to [+-]0.1 C over an operating range of about 5 C to 90 C. 13 figs.
Method and apparatus for optical temperature measurement
O'Rourke, Patrick E.; Livingston, Ronald R.; Prather, William S.
1994-01-01
A temperature probe and a method for using said probe for temperature measurements based on changes in light absorption by the probe. The probe comprises a first and a second optical fiber that carry light to and from the probe, and a temperature sensor material, the absorbance of which changes with temperature, through which the light is directed. Light is directed through the first optical fiber, passes through the temperature sensor material, and is transmitted by a second optical fiber from the material to a detector. Temperature-dependent and temperature-independent factors are derived from measurements of the transmitted light intensity. For each sensor material, the temperature T is a function of the ratio, R, of these factors. The temperature function f(R) is found by applying standard data analysis techniques to plots of T versus R at a series of known temperatures. For a sensor having a known temperature function f(R) and known characteristic and temperature-dependent factors, the temperature can be computed from a measurement of R. Suitable sensor materials include neodymium-doped boresilicate glass, accurate to .+-.0.5.degree. C. over an operating temperature range of about -196.degree. C. to 400.degree. C.; and a mixture of D.sub.2 O and H.sub.2 O, accurate to .+-.0.1.degree. C. over an operating range of about 5.degree. C. to 90.degree. C.
One-Step Optogenetics with Multifunctional Flexible Polymer Fibers
Park, Seongjun; Guo, Yuanyuan; Jia, Xiaoting; Choe, Han Kyoung; Grena, Benjamin; Kang, Jeewoo; Park, Jiyeon; Lu, Chi; Canales, Andres; Chen, Ritchie; Yim, Yeong Shin; Choi, Gloria B.; Fink, Yoel; Anikeeva, Polina
2017-01-01
Optogenetic interrogation of neural pathways relies on delivery of light-sensitive opsins into tissue and subsequent optical illumination and electrical recording from the regions of interest. Despite the recent development of multifunctional neural probes, integration of these modalities within a single biocompatible platform remains a challenge. Here, we introduce a device composed of an optical waveguide, six electrodes, and two microfluidic channels produced via fiber drawing. Our probes facilitated injections of viral vectors carrying opsin genes, while providing collocated neural recording and optical stimulation. The miniature (< 200 μm) footprint and modest weight (<0.5 g) of these probes allowed for multiple implantations into the mouse brain, which enabled opto-electrophysiological investigation of projections from the basolateral amygdala to the medial prefrontal cortex and ventral hippocampus during behavioral experiments. Fabricated solely from polymers and polymer composites, these flexible probes minimized tissue response to achieve chronic multimodal interrogation of brain circuits with high fidelity. PMID:28218915
Scolaro, Loretta; Lorenser, Dirk; Madore, Wendy-Julie; Kirk, Rodney W.; Kramer, Anne S.; Yeoh, George C.; Godbout, Nicolas; Sampson, David D.; Boudoux, Caroline; McLaughlin, Robert A.
2015-01-01
Molecular imaging using optical techniques provides insight into disease at the cellular level. In this paper, we report on a novel dual-modality probe capable of performing molecular imaging by combining simultaneous three-dimensional optical coherence tomography (OCT) and two-dimensional fluorescence imaging in a hypodermic needle. The probe, referred to as a molecular imaging (MI) needle, may be inserted tens of millimeters into tissue. The MI needle utilizes double-clad fiber to carry both imaging modalities, and is interfaced to a 1310-nm OCT system and a fluorescence imaging subsystem using an asymmetrical double-clad fiber coupler customized to achieve high fluorescence collection efficiency. We present, to the best of our knowledge, the first dual-modality OCT and fluorescence needle probe with sufficient sensitivity to image fluorescently labeled antibodies. Such probes enable high-resolution molecular imaging deep within tissue. PMID:26137379
Detection of chlorinated aromatic compounds
Ekechukwu, A.A.
1996-02-06
A method for making a composition for measuring the concentration of chlorinated aromatic compounds in aqueous fluids, and an optical probe for use with the method are disclosed. The composition comprises a hydrophobic polymer matrix, preferably polyamide, with a fluorescent indicator uniformly dispersed therein. The indicator fluoresces in the presence of the chlorinated aromatic compounds with an intensity dependent on the concentration of these compounds in the fluid of interest, such as 8-amino-2-naphthalene sulfonate. The probe includes a hollow cylindrical housing that contains the composition in its distal end. The probe admits an aqueous fluid to the probe interior for exposure to the composition. An optical fiber transmits excitation light from a remote source to the composition while the indicator reacts with chlorinated aromatic compounds present in the fluid. The resulting fluorescence light signal is reflected to a second optical fiber that transmits the light to a spectrophotometer for analysis. 5 figs.
Detection of chlorinated aromatic compounds
Ekechukwu, Amy A.
1996-01-01
A method for making a composition for measuring the concentration of chloated aromatic compounds in aqueous fluids, and an optical probe for use with the method. The composition comprises a hydrophobic polymer matrix, preferably polyamide, with a fluorescent indicator uniformly dispersed therein. The indicator fluoresces in the presence of the chlorinated aromatic compounds with an intensity dependent on the concentration of these compounds in the fluid of interest, such as 8-amino-2-naphthalene sulfonate. The probe includes a hollow cylindrical housing that contains the composition in its distal end. The probe admits an aqueous fluid to the probe interior for exposure to the composition. An optical fiber transmits excitation light from a remote source to the composition while the indicator reacts with chlorinated aromatic compounds present in the fluid. The resulting fluorescence light signal is reflected to a second optical fiber that transmits the light to a spectrophotometer for analysis.
Hirschfeld, T.B.
1985-09-24
Method and apparatus are provided for measuring temperature and for generating optical signals related to temperature. Light from a fiber optic is directed to a material whose fluorescent response varies with ambient temperature. The same fiber optic delivering the excitation beam also collects a portion of the fluorescent emission for analysis. Signal collection efficiency of the fiber optic is enhanced by requiring that the fluorescent probe material be in the shape of an oblong parabolically tapered solid. Reproducibility is enhanced by using Raman backscatter to monitor excitation beam fluctuations, and by using measurements of fluorescence lifetime. 10 figs.
A fiber optic sensor for ophthalmic refractive diagnostics
NASA Technical Reports Server (NTRS)
Ansari, Rafat R.; Dhadwal, Harbans S.; Campbell, Melanie C. W.; Dellavecchia, Michael A.
1992-01-01
This paper demonstrates the application of a lensless fiber optic spectrometer (sensor) to study the onset of cataracts. This new miniaturized and rugged fiber optic probe is based upon dynamic light scattering (DLS) principles. It has no moving parts, no apertures, and requires no optical alignment. It is flexible and easy to use. Results are presented for cold-induced cataract in excised bovine eye lenses, and aging effects in excised human eye lenses. The device can be easily incorporated into a slit-lamp apparatus (ophthalmoscope) for complete eye diagnostics.
High-density fiber-optic DNA random microsphere array.
Ferguson, J A; Steemers, F J; Walt, D R
2000-11-15
A high-density fiber-optic DNA microarray sensor was developed to monitor multiple DNA sequences in parallel. Microarrays were prepared by randomly distributing DNA probe-functionalized 3.1-microm-diameter microspheres in an array of wells etched in a 500-microm-diameter optical imaging fiber. Registration of the microspheres was performed using an optical encoding scheme and a custom-built imaging system. Hybridization was visualized using fluorescent-labeled DNA targets with a detection limit of 10 fM. Hybridization times of seconds are required for nanomolar target concentrations, and analysis is performed in minutes.
Hirschfeld, Tomas B.
1985-01-01
Method and apparatus are provided for measuring temperature and for generating optical signals related to temperature. Light from a fiber optic is directed to a material whose fluorescent response varies with ambient temperature. The same fiber optic delivering the excitation beam also collects a portion of the fluorescent emission for analysis. Signal collection efficiency of the fiber optic is enhanced by requiring that the fluorescent probe material be in the shape of an oblong parabolically tapered solid. Reproducibility is enhanced by using Raman backscatter to monitor excitation beam fluctuations, and by using measurements of fluorescence lifetime.
Mode-filtered large-core fiber for optical coherence tomography
Moon, Sucbei; Chen, Zhongping
2013-01-01
We have investigated the use of multimode fiber in optical coherence tomography (OCT) with a mode filter that selectively suppresses the power of the high-order modes (HOMs). A large-core fiber (LCF) that has a moderate number of guiding modes was found to be an attractive alternative to the conventional single-mode fiber for its large mode area and the consequentially wide Rayleigh range of the output beam if the HOMs of the LCF were efficiently filtered out by a mode filter installed in the middle. For this, a simple mode filtering scheme of a fiber-coil mode filter was developed in this study. The LCF was uniformly coiled by an optimal bend radius with a fiber winder, specially devised for making a low-loss mode filter. The feasibility of the mode-filtered LCF in OCT imaging was tested with a common-path OCT system. It has been successfully demonstrated that our mode-filtered LCF can provide a useful imaging or sensing probe without an objective lens that greatly simplifies the structure of the probing optics. PMID:23207399
Fiber optics reflectance spectroscopy (45°x: 45°) for color analysis of dental composite.
Gargano, Marco; Ludwig, Nicola; Federighi, Veronica; Sykes, Ros; Lodi, Giovanni; Sardella, Andrea; Carrassi, Antonio; Varoni, Elena M
2016-08-01
To evaluate the application of a fiber optic reflectance spectroscopy (FORS) prototype probe for 45°x: 45° FORS for determining color of dental materials. A portable spectrophotometer with a highly manageable fiber optics co-axial probe was used to apply 45°x: 45° FORS for color matching in restorative dentistry. The color coordinates in CIELAB space of two dental shade guides and of the corresponding photopolymerized composites were collected and compared. The 45°x: 45° FORS with the co-axial probe (test system), the integrating sphere spectroscopy (reference system) and a commercial dental colorimeter (comparator system) were used to collect data and calculate color differences (ΔE and ΔE00). FORS system displayed high repeatability, reproducibility and accuracy. ΔE and ΔE00 values between the shade-guide, each other, and the corresponding composites resulted above the clinically acceptable limit. The 45°x: 45° FORS test system demonstrated suitable in vitro performance for dental composite color evaluation. 45°x: 45° fiber optic reflectance spectroscopy allows reliable color analysis of small surfaces of dental composites, favoring the color matching of material with the closely surrounding dental tissue, and confirming significant color differences between shade guide tabs and photo-polymerized composites.
Miniaturized Fourier-plane fiber scanner for OCT endoscopy
NASA Astrophysics Data System (ADS)
Vilches, Sergio; Kretschmer, Simon; Ataman, Çağlar; Zappe, Hans
2017-10-01
A forward-looking endoscopic optical coherence tomography (OCT) probe featuring a Fourier-plane fiber scanner is designed, manufactured and characterized. In contrast to common image-plane fiber scanners, the Fourier-plane scanner is a telecentric arrangement that eliminates vignetting and spatial resolution variations across the image plane. To scan the OCT beam in a spiral pattern, a tubular piezoelectric actuator is used to resonate an optical fiber bearing a collimating GRIN lens at its tip. The free-end of the GRIN lens sits at the back focal plane of an objective lens, such that its rotation replicates the beam angles in the collimated region of a classical telecentric 4f optical system. Such an optical arrangement inherently has a low numerical aperture combined with a relatively large field-of-view, rendering it particularly useful for endoscopic OCT imaging. Furthermore, the optical train of the Fourier-plane scanner is shorter than that of a comparable image-plane scanner by one focal length of the objective lens, significantly shortening the final arrangement. As a result, enclosed within a 3D printed housing of 2.5 mm outer diameter and 15 mm total length, the developed probe is the most compact forward-looking endoscopic OCT imager to date. Due to its compact form factor and compatibility with real-time OCT imaging, the developed probe is also ideal for use in the working channel of flexible endoscopes as a potential optical biopsy tool.
Measurements of spectral responses for developing fiber-optic pH sensor
NASA Astrophysics Data System (ADS)
Yoo, Wook Jae; Heo, Ji Yeon; Jang, Kyoung Won; Seo, Jeong Ki; Moon, Jin Soo; Park, Jang-Yeon; Park, Byung Gi; Cho, Seunghyun; Lee, Bongsoo
2011-01-01
In this study, we have fabricated a fiber-optic pH sensor, which is composed of a light source, a pH-sensing probe, plastic optical fibers and a spectrometer, for determining the degree of infection by Helicobacter pylori in the stomach. As pH indicators, phenol red and m-cresol purple are used, and pH liquid solutions are prepared by mixing phenol red or m-cresol purple solutions and various kinds of pH buffer solutions. The light emitted by a light source is guided by plastic optical fibers to the pH liquid solution, and the optical characteristic of a reflected light is changed according to the color variations of the pH indicator in the pH-sensing probe. Therefore, we have measured the intensities and wavelength shifts of the reflected lights, which change according to the color variations of indicators at different pH values, by using a spectrometer for spectral analysis. Also, the relationships between the pH values of liquid solutions and the optical properties of the modulated lights are obtained on the basis of the changes of the colors of indicators.
Praveen, Bavishna B; Ashok, Praveen C; Mazilu, Michael; Riches, Andrew; Herrington, Simon; Dholakia, Kishan
2012-07-01
In the field of biomedical optics, Raman spectroscopy is a powerful tool for probing the chemical composition of biological samples. In particular, fiber Raman probes play a crucial role for in vivo and ex vivo tissue analysis. However, the high-fluorescence background typically contributed by the auto fluorescence from both a tissue sample and the fiber-probe interferes strongly with the relatively weak Raman signal. Here we demonstrate the implementation of wavelength-modulated Raman spectroscopy (WMRS) to suppress the fluorescence background while analyzing tissues using fiber Raman probes. We have observed a significant signal-to-noise ratio enhancement in the Raman bands of bone tissue, which have a relatively high fluorescence background. Implementation of WMRS in fiber-probe-based bone tissue study yielded usable Raman spectra in a relatively short acquisition time (∼30 s), notably without any special sample preparation stage. Finally, we have validated its capability to suppress fluorescence on other tissue samples such as adipose tissue derived from four different species.
Modeling and testing of fast response, fiber-optic temperature sensors
NASA Astrophysics Data System (ADS)
Tonks, Michael James
The objective of this work was to design, analyze and test a fast response fiber-optic temperature probe and sensor. The sensor is intended for measuring rapid temperature changes such as produced by a blast wave formed by a detonation. This work was performed in coordination with Luna Innovations Incorporated, and the design is based on extensions of an existing fiber-optic temperature sensor developed by Luna. The sensor consists of a glass fiber with an optical wafer attached to the tip. A basic description of the principles behind the fiber-optic temperature sensor and an accompanying demodulation system is provided. For experimental validation tests, shock tubes were used to simulate the blast wave experienced at a distance of 3.0 m from the detonation of 22.7 kg of TNT. The flow conditions were predicted using idealized shock tube theory. The temperature sensors were tested in three configurations, flush at the end of the shock tube, extended on a probe 2.54 cm into the flow and extended on a probe 12.7 cm into the flow. The total temperature was expected to change from 300 K to 1130 K for the flush wall experiments and from 300 K to 960 K for the probe experiments. During the initial 0.1 milliseconds of the data the temperature only changed 8 K when the sensors were flush in the end of the shock tube. The sensor temperature changed 36 K during the same time when mounted on a probe in the flow. Schlieren pictures were taken of the flow in the shock tube to further understand the shock tube environment. Contrary to ideal shock tube theory, it was discovered that the flow did not remain stagnant in the end of the shock tube after the shock reflects from the end of the shock tube. Instead, the effects of turbulence were recorded with the fiber-optic sensors, and this turbulence was also captured in the schlieren photographs. A fast-response thermocouple was used to collect data for comparison with the fiber-optic sensor, and the fiber-optic sensor was proven to have a faster response time compared to the thermocouple. When the sensors were extended 12.7 cm into the flow, the fiber-optic sensors recorded a temperature change of 143 K compared to 38 K recorded by the thermocouple during the 0.5 millisecond test. This corresponds to 22% of the change of total temperature in the air recorded by the fiber-optic sensor and only 6% recorded by the thermocouple. Put another way, the fiber-optic sensor experience a rate of temperature change equal to 2.9x105 K/s and the thermocouple changed at a rate of 0.79x105 K/s. The data recorded from the fiber-optic sensor also contained much less noise than the thermocouple data. An unsteady finite element thermal model was created using ANSYS to predict the temperature response of the sensor. Test cases with known analytical solutions were used to verify the ANSYS modeling procedures. The shock tube flow environment was also modeled with Fluent, a commercially available CFD code. Fluent was used to determine the heat transfer between the shock tube flow and the sensor. The convection film coefficient for the flow was predicted by Fluent to be 27,150 W/m2K for the front of the wafer and 13,385 W/m2K for the side. The Fluent results were used with the ANSYS model to predict the response of the fiber-optic sensor when exposed to the shock tube flow. The results from the Fluent/ANSYS model were compared to the fiber-optic measurements taken in the shock tube. It was seen that the heat flux to the sensor was slightly over-predicted by the model, and the heat losses from the wafer were also over-predicted. Since the prediction fell within the uncertainty of the measurement, it was found to be in good agreement with the measured values. (Abstract shortened by UMI.)
NASA Technical Reports Server (NTRS)
Ligler, Frances S.
1991-01-01
The NRL fiber optic biosensor is a device which measures the formation of a fluorescent complex at the surface of an optical fiber. Antibodies and DNA binding proteins provide the mechanism for recognizing an analyze and immobilizing a fluorescent complex on the fiber surface. The fiber optic biosensor is fast, sensitive, and permits analysis of hazardous materials remote from the instrumentation. The fiber optic biosensor is described in terms of the device configuration, chemistry for protein immobilization, and assay development. A lab version is being used for assay development and performance characterization while a portable device is under development. Antibodies coated on the fiber are stable for up to two years of storage prior to use. The fiber optic biosensor was used to measure concentration of toxins in the parts per billion (ng/ml) range in under a minute. Immunoassays for small molecules and whole bacteria are under development. Assays using DNA probes as the detection element can also be used with the fiber optic sensor, which is currently being developed to detect biological warfare agents, explosives, pathogens, and toxic materials which pollute the environment.
Dual-probe near-field fiber head with gap servo control for data storage applications.
Fang, Jen-Yu; Tien, Chung-Hao; Shieh, Han-Ping D
2007-10-29
We present a novel fiber-based near-field optical head consisting of a straw-shaped writing probe and a flat gap sensing probe. The straw-shaped probe with a C-aperture on the end face exhibits enhanced transmission by a factor of 3 orders of magnitude over a conventional fiber probe due to a hybrid effect that excites both propagation modes and surface plasmon waves. In the gap sensing probe, the spacing between the probe and the disk surface functions as an external cavity. The high sensitivity of the output power to the change in the gap width is used as a feedback control signal. We characterize and design the straw-shaped writing probe and the flat gap sensing probe. The dual-probe system is installed on a conventional biaxial actuator to demonstrate the capability of flying over a disk surface with nanometer position precision.
NASA Astrophysics Data System (ADS)
Pu, Yang; Wang, Wubao; Tang, Guichen; Budansky, Yury; Sharonov, Mikhail; Xu, Min; Achilefu, Samuel; Eastham, James A.; Alfano, Robert R.
2012-01-01
A portable near infrared scanning polarization imaging unit with an optical fiber-based rectal probe, namely Photonic Finger, was designed and developed o locate the 3D position of abnormal prostate site inside normal prostate tissue. An inverse algorithm, Optical Tomography using Independent Component Analysis (OPTICA) was improved particularly to unmix the signal from targets (cancerous tissue) embedded in a turbid medium (normal tissue) in the backscattering imaging geometry. Photonic Finger combined with OPTICA was tested to characterize different target(s) inside different tissue medium, including cancerous prostate tissue embedded by large piece of normal tissue.
Waveguide-loaded silica fibers for coupling to high-index micro-resonators
NASA Astrophysics Data System (ADS)
Latawiec, P.; Burek, M. J.; Venkataraman, V.; Lončar, M.
2016-01-01
Tapered silica fibers are often used to rapidly probe the optical properties of micro-resonators. However, their low refractive index precludes phase-matching when coupling to high-index micro-resonators, reducing efficiency. Here, we demonstrate efficient optical coupling from tapered fibers to high-index micro-resonators by loading the fibers with an ancillary adiabatic waveguide-coupler fabricated via angled-etching. We demonstrate greatly enhanced coupling to a silicon multimode micro-resonator when compared to coupling via the bare fiber only. Signatures of resonator optical bistability are observed at high powers. This scheme can be applied to resonators of any size and material, increasing the functional scope of fiber coupling.
Real-time needle guidance with photoacoustic and laser-generated ultrasound probes
NASA Astrophysics Data System (ADS)
Colchester, Richard J.; Mosse, Charles A.; Nikitichev, Daniil I.; Zhang, Edward Z.; West, Simeon; Beard, Paul C.; Papakonstantinou, Ioannis; Desjardins, Adrien E.
2015-03-01
Detection of tissue structures such as nerves and blood vessels is of critical importance during many needle-based minimally invasive procedures. For instance, unintentional injections into arteries can lead to strokes or cardiotoxicity during interventional pain management procedures that involve injections in the vicinity of nerves. Reliable detection with current external imaging systems remains elusive. Optical generation and reception of ultrasound allow for depth-resolved sensing and they can be performed with optical fibers that are positioned within needles used in clinical practice. The needle probe developed in this study comprised separate optical fibers for generating and receiving ultrasound. Photoacoustic generation of ultrasound was performed on the distal end face of an optical fiber by coating it with an optically absorbing material. Ultrasound reception was performed using a high-finesse Fabry-Pérot cavity. The sensor data was displayed as an M-mode image with a real-time interface. Imaging was performed on a biological tissue phantom.
Quasi-distributed sol-gel coated fiber optic oxygen sensing probe
NASA Astrophysics Data System (ADS)
Zolkapli, Maizatul; Saharudin, Suhairi; Herman, Sukreen Hana; Abdullah, Wan Fazlida Hanim
2018-03-01
In the field of aquaculture, optical sensor technology is beginning to provide alternatives to the conventional electrical sensor. Hence, the development and characterization of a multipoint quasi-distributed optical fiber sensor for oxygen measurement is reported. The system is based on 1 mm core diameter plastic optical fiber where sections of cladding have been removed and replaced with three metal complexes sol-gel films to form sensing points. The sensing locations utilize luminophores that have emission peaks at 385 nm, 405 nm and 465 nm which associated with each of the sensing points. Interrogation of the optical sensor system is through a fiber optic spectrometer incorporating narrow bandpass emission optical filter. The sensors showed comparable sensitivity and repeatability, as well as fast response and recovery towards oxygen.
Ophthalmic Diagnostics Using a New Dynamic Light Scattering Fiber Optic Probe
NASA Technical Reports Server (NTRS)
Ansari, Rafat R.; Suh, Kwang I.; Dellavecchia, Michael A.; Dubin, Stephen
1995-01-01
A new fiber optic probe is developed to study different parts of the eye. The probe positioned in front of an eye, delivers a low power light from a laser diode into the eye and guides the light which is back scattered by different components (aqueous humor, lens, and vitreous humor) of the eye through a receiving optical fiber to a photo detector. The probe provides rapid determination of macromolecular diffusivities and their respective size distributions in the eye lens and the gel-like material in the vitreous humor. We report alpha-crystalline size distributions, as a function of penetration depth, inside the lens and hyaluronic acid molecular size distribution in the vitreous body. In a clinical setting, the probe can be mounted on a slit-lamp apparatus simply by using a H-ruby lens holder. The capability of detecting cataracts, both nuclear and peripheral, in their early stages of formation, in a non invasive and quantitative fashion, has the potential in patient monitoring and in developing and testing new drugs or diet therapies to 'dissolve' or slow down the cataract formation before surgery is necessary. The ability to detect biochemical and macromolecular changes in the vitreous structure can be very useful in identifying certain diseases of the posterior chamber, e.g., posterior vitreous detachment.
Real-time soil sensing based on fiber optics and spectroscopy
NASA Astrophysics Data System (ADS)
Li, Minzan
2005-08-01
Using NIR spectroscopic techniques, correlation analysis and regression analysis for soil parameter estimation was conducted with raw soil samples collected in a cornfield and a forage field. Soil parameters analyzed were soil moisture, soil organic matter, nitrate nitrogen, soil electrical conductivity and pH. Results showed that all soil parameters could be evaluated by NIR spectral reflectance. For soil moisture, a linear regression model was available at low moisture contents below 30 % db, while an exponential model can be used in a wide range of moisture content up to 100 % db. Nitrate nitrogen estimation required a multi-spectral exponential model and electrical conductivity could be evaluated by a single spectral regression. According to the result above mentioned, a real time soil sensor system based on fiber optics and spectroscopy was developed. The sensor system was composed of a soil subsoiler with four optical fiber probes, a spectrometer, and a control unit. Two optical fiber probes were used for illumination and the other two optical fiber probes for collecting soil reflectance from visible to NIR wavebands at depths around 30 cm. The spectrometer was used to obtain the spectra of reflected lights. The control unit consisted of a data logging device, a personal computer, and a pulse generator. The experiment showed that clear photo-spectral reflectance was obtained from the underground soil. The soil reflectance was equal to that obtained by the desktop spectrophotometer in laboratory tests. Using the spectral reflectance, the soil parameters, such as soil moisture, pH, EC and SOM, were evaluated.
A multimodal spectroscopy system for real-time disease diagnosis
NASA Astrophysics Data System (ADS)
Šćepanović, Obrad R.; Volynskaya, Zoya; Kong, Chae-Ryon; Galindo, Luis H.; Dasari, Ramachandra R.; Feld, Michael S.
2009-04-01
The combination of reflectance, fluorescence, and Raman spectroscopy—termed multimodal spectroscopy (MMS)—provides complementary and depth-sensitive information about tissue composition. As such, MMS is a promising tool for disease diagnosis, particularly in atherosclerosis and breast cancer. We have developed an integrated MMS instrument and optical fiber spectral probe for simultaneous collection of all three modalities in a clinical setting. The MMS instrument multiplexes three excitation sources, a xenon flash lamp (370-740 nm), a nitrogen laser (337 nm), and a diode laser (830 nm), through the MMS probe to excite tissue and collect the spectra. The spectra are recorded on two spectrograph/charge-coupled device modules, one optimized for visible wavelengths (reflectance and fluorescence) and the other for the near-infrared (Raman), and processed to provide diagnostic parameters. We also describe the design and calibration of a unitary MMS optical fiber probe 2 mm in outer diameter, containing a single appropriately filtered excitation fiber and a ring of 15 collection fibers, with separate groups of appropriately filtered fibers for efficiently collecting reflectance, fluorescence, and Raman spectra from the same tissue location. A probe with this excitation/collection geometry has not been used previously to collect reflectance and fluorescence spectra, and thus physical tissue models ("phantoms") are used to characterize the probe's spectroscopic response. This calibration provides probe-specific modeling parameters that enable accurate extraction of spectral parameters. This clinical MMS system has been used recently to analyze artery and breast tissue in vivo and ex vivo.
Introduction to fiber optics: Sensors for biomedical applications.
Shah, R Y; Agrawal, Y K
2011-01-01
The paper focuses on the introduction of fiber optics, a fusion of science and engineering and describes the materials generally used for its construction along with the procedure used to design the fibers. It gives an idea of the materials used for the construction along with the pros and cons associated with them and various factors governing the emission of ultraviolet, infrared or visible radiations. The central core revolves around the applications of optical fibers in the medical and biomedical field and extending the use of the same in pharmaceutical industry as probes in quality control and dosage form analysis.
Fiber-optic control and thermometry of single-cell thermosensation logic.
Fedotov, I V; Safronov, N A; Ermakova, Yu G; Matlashov, M E; Sidorov-Biryukov, D A; Fedotov, A B; Belousov, V V; Zheltikov, A M
2015-11-13
Thermal activation of transient receptor potential (TRP) cation channels is one of the most striking examples of temperature-controlled processes in cell biology. As the evidence indicating the fundamental role of such processes in thermosensation builds at a fast pace, adequately accurate tools that would allow heat receptor logic behind thermosensation to be examined on a single-cell level are in great demand. Here, we demonstrate a specifically designed fiber-optic probe that enables thermal activation with simultaneous online thermometry of individual cells expressing genetically encoded TRP channels. This probe integrates a fiber-optic tract for the delivery of laser light with a two-wire microwave transmission line. A diamond microcrystal fixed on the fiber tip is heated by laser radiation transmitted through the fiber, providing a local heating of a cell culture, enabling a well-controlled TRP-assisted thermal activation of cells. Online local temperature measurements are performed by using the temperature-dependent frequency shift of optically detected magnetic resonance, induced by coupling the microwave field, delivered by the microwave transmission line, to nitrogen--vacancy centers in the diamond microcrystal. Activation of TRP channels is verified by using genetically encoded fluorescence indicators, visualizing an increase in the calcium flow through activated TRP channels.
Embedded infrared fiber-optic sensor for thermometry in a high temperature/pressure environment
NASA Astrophysics Data System (ADS)
Yoo, Wook Jae; Jang, Kyoung Won; Moon, Jinsoo; Han, Ki-Tek; Jeon, Dayeong; Lee, Bongsoo; Park, Byung Gi
2012-11-01
In this study, we developed an embedded infrared fiber-optic temperature sensor for thermometry in high temperature/pressure and water-chemistry environments by using two identical silver-halide optical fibers. The performance of the fabricated temperature sensor was assessed in an autoclave filled with an aqueous coolant solution containing boric acid and lithium hydroxide. We carried out real-time monitoring of the infrared radiation emitted from the signal and reference probes for various temperatures over a temperature range from 95 to 225 °C. In order to decide the temperature of the synthetic coolant solution, we measured the difference between the infrared radiation emitted from the two temperature-sensing probes. Thermometry with the proposed sensor is immune to any changes in the physical conditions and the emissivity of the heat source. From the experimental results, the embedded infrared fiber-optic temperature sensor can withstand, and normally operate in a high temperature/pressure test loop system corresponding to the coolant system used for nuclear power plant simulation. We expect that the proposed sensor can be developed to accurately monitor temperatures in harsh environments.
Fiber-optic microarray for simultaneous detection of multiple harmful algal bloom species.
Ahn, Soohyoun; Kulis, David M; Erdner, Deana L; Anderson, Donald M; Walt, David R
2006-09-01
Harmful algal blooms (HABs) are a serious threat to coastal resources, causing a variety of impacts on public health, regional economies, and ecosystems. Plankton analysis is a valuable component of many HAB monitoring and research programs, but the diversity of plankton poses a problem in discriminating toxic from nontoxic species using conventional detection methods. Here we describe a sensitive and specific sandwich hybridization assay that combines fiber-optic microarrays with oligonucleotide probes to detect and enumerate the HAB species Alexandrium fundyense, Alexandrium ostenfeldii, and Pseudo-nitzschia australis. Microarrays were prepared by loading oligonucleotide probe-coupled microspheres (diameter, 3 mum) onto the distal ends of chemically etched imaging fiber bundles. Hybridization of target rRNA from HAB cells to immobilized probes on the microspheres was visualized using Cy3-labeled secondary probes in a sandwich-type assay format. We applied these microarrays to the detection and enumeration of HAB cells in both cultured and field samples. Our study demonstrated a detection limit of approximately 5 cells for all three target organisms within 45 min, without a separate amplification step, in both sample types. We also developed a multiplexed microarray to detect the three HAB species simultaneously, which successfully detected the target organisms, alone and in combination, without cross-reactivity. Our study suggests that fiber-optic microarrays can be used for rapid and sensitive detection and potential enumeration of HAB species in the environment.
U-shaped, double-tapered, fiber-optic sensor for effective biofilm growth monitoring
Zhong, Nianbing; Zhao, Mingfu; Li, Yishan
2016-01-01
To monitor biofilm growth on polydimethylsiloxane in a photobioreactor effectively, the biofilm cells and liquids were separated and measured using a sensor with two U-shaped, double-tapered, fiber-optic probes (Sen. and Ref. probes). The probes’ Au-coated hemispherical tips enabled double-pass evanescent field absorption. The Sen. probe sensed the cells and liquids inside the biofilm. The polyimide–silica hybrid-film-coated Ref. probe separated the liquids from the biofilm cells and analyzed the liquid concentration. The biofilm structure and active biomass were also examined to confirm the effectiveness of the measurement using a simulation model. The sensor was found to effectively respond to the biofilm growth in the adsorption through exponential phases at thicknesses of 0–536 μm. PMID:26977344
Fiber optic apparatus for detecting molecular species by surface enhanced Raman spectroscopy
Angel, S.M.; Sharma, S.K.
1988-11-01
Optrode apparatus for detecting constituents of a fluid medium includes an optical fiber having a metal coating on at least a portion of a light transmissive core. The metal is one, such as silver, gold or copper, which enhances emission of Raman signal frequencies by molecules adsorbed on the surface of the coating when monochromatic probe light of a different frequency is scattered by such molecules and the metal coating is sufficiently thin to transmit light between the absorbed molecules and the core of the fiber. Probe light is directed into one end of the fiber and a detector analyzes light emitted from the fiber for Raman frequencies that identify one or more particular molecular species. In one form, the optrode may function as a working electrode of an electrochemical cell while also serving to detect the products of oxidation or reduction reactions which occur at the electrode surface. 6 figs.
Fiber optic apparatus for detecting molecular species by surface enhanced Raman spectroscopy
Angel, S.M.; Sharma, S.K.
1987-11-30
Optrode apparatus for detecting constituents of a fluid medium includes an optical fiber having a metal coating on at least a portion of a light transmissive core. The metal is one, such as silver, gold or copper, which enhances emission of Raman signal frequencies by molecules adsorbed on the surface of the coating when monochromatic probe light of a different frequency is scattered by such molecules and the metal coating is sufficiently thin to transmit light between the adsorbed molecules and the core of the fiber. Probe light is directed into one end of the fiber and a detector analyzes light emitted from the fiber for Raman frequencies that identify one or more particular molecular species. In one form, the optrode may function as a working electrode of an electrochemical cell while also serving to detect the products of oxidation or reduction reactions which occur at the electrode surface. 6 figs.
NASA Astrophysics Data System (ADS)
Wagner, A. M.; Lindsey, N.; Ajo Franklin, J. B.; Gelvin, A.; Saari, S.; Ekblaw, I.; Ulrich, C.; Dou, S.; James, S. R.; Martin, E. R.; Freifeld, B. M.; Bjella, K.; Daley, T. M.
2016-12-01
We present preliminary results from an experimental study targeting the use of passive fiber-optic distributed temperature sensing (DTS) in a variety of geometries to estimate moisture content evolution in a dynamic permafrost system. A 4 km continuous 2D array of multi-component fiber optic cable (6 SM/6 MM) was buried at the Fairbanks Permafrost Experiment Station to investigate the possibility of using fiber optic distributed sensing as an early detection system for permafrost thaw. A heating experiment using 120 60 Watt heaters was conducted in a 140 m2 area to artificially thaw the topmost section of permafrost. The soils at the site are primarily silt but some disturbed areas include backfilled gravel to depths of approximately 1.0 m. Where permafrost exists, the depth to permafrost ranges from 1.5 to approximately 5 m. The experiment was also used to spatially estimate soil water content distribution throughout the fiber optic array. The horizontal fiber optic cable was buried at depths between 10 and 20 cm. Soil temperatures were monitored with a DTS system at 25 cm increments along the length of the fiber. At five locations, soil water content time-domain reflectometer (TDR) probes were also installed at two depths, in line with the fiber optic cable and 15 to 25 cm below the cable. The moisture content along the fiber optic array was estimated using diurnal effects from the dual depth temperature measurements. In addition to the horizontally installed fiber optic cable, vertical lines of fiber optic cable were also installed inside and outside the heater plot to a depth of 10 m in small diameter (2 cm) boreholes. These arrays were installed in conjunction with thermistor strings and are used to monitor the thawing process and to cross correlate with soil temperatures at the depth of the TDR probes. Results will be presented from the initiation of the artificial thawing through subsequent freeze-up. A comparison of the DTS measured temperatures and thermistors in vertically installed PVC pipes will also be shown. Initial results from a thermal model of the artificial heating experiment and the model's correlation to the actual soil temperature measurements will also be presented. These results show the possibility of using fiber optic cable to measure moisture contents along a longer array with only limited control points.
Fiber optic photoacoustic probe with ultrasonic tracking for guiding minimally invasive procedures
NASA Astrophysics Data System (ADS)
Xia, Wenfeng; Mosse, Charles A.; Colchester, Richard J.; Mari, Jean Martial; Nikitichev, Daniil I.; West, Simeon J.; Ourselin, Sebastien; Beard, Paul C.; Desjardins, Adrien E.
2015-07-01
In a wide range of clinical procedures, accurate placement of medical devices such as needles and catheters is critical to optimize patient outcomes. Ultrasound imaging is often used to guide minimally invasive procedures, as it can provide real-time visualization of patient anatomy and medical devices. However, this modality can provide low image contrast for soft tissues, and poor visualization of medical devices that are steeply angled with respect to the incoming ultrasound beams. Photoacoustic sensors can provide information about the spatial distributions of tissue chromophores that could be valuable for guiding minimally invasive procedures. In this study, a system for guiding minimally invasive procedures using photoacoustic sensing was developed. This system included a miniature photoacoustic probe with three optical fibers: one with a bare end for photoacoustic excitation of tissue, a second for photoacoustic excitation of an optically absorbing coating at the distal end to transmit ultrasound, and a third with a Fabry-Perot cavity at the distal end for receiving ultrasound. The position of the photoacoustic probe was determined with ultrasonic tracking, which involved transmitting pulses from a linear-array ultrasound imaging probe at the tissue surface, and receiving them with the fiber-optic ultrasound receiver in the photoacoustic probe. The axial resolution of photoacoustic sensing was better than 70 μm, and the tracking accuracy was better than 1 mm in both axial and lateral dimensions. By translating the photoacoustic probe, depth scans were obtained from different spatial positions, and two-dimensional images were reconstructed using a frequency-domain algorithm.
Cyclic coding for Brillouin optical time-domain analyzers using probe dithering.
Iribas, Haritz; Loayssa, Alayn; Sauser, Florian; Llera, Miguel; Le Floch, Sébastien
2017-04-17
We study the performance limits of mono-color cyclic coding applied to Brillouin optical time-domain analysis (BOTDA) sensors that use probe wave dithering. BOTDA analyzers with dithering of the probe use a dual-probe-sideband setup in which an optical frequency modulation of the probe waves along the fiber is introduced. This avoids non-local effects while keeping the Brillouin threshold at its highest level, thus preventing the spontaneous Brillouin scattering from generating noise in the deployed sensing fiber. In these conditions, it is possible to introduce an unprecedented high probe power into the sensing fiber, which leads to an enhancement of the signal-to-noise ratio (SNR) and consequently to a performance improvement of the analyzer. The addition of cyclic coding in these set-ups can further increase the SNR and accordingly enhance the performance. However, this unprecedented probe power levels that can be employed result in the appearance of detrimental effects in the measurement that had not previously been observed in other BOTDA set-ups. In this work, we analyze the distortion in the decoding process and the errors in the measurement that this distortion causes, due to three factors: the power difference of the successive pulses of a code sequence, the appearance of first-order non-local effects and the non-linear amplification of the probe wave that results when using mono-color cyclic coding of the pump pulses. We apply the results of this study to demonstrate the performance enhancement that can be achieved in a long-range dithered dual-probe BOTDA. A 164-km fiber-loop is measured with 1-m spatial resolution, obtaining 3-MHz Brillouin frequency shift measurement precision at the worst contrast location. To the best of our knowledge, this is the longest sensing distance achieved with a BOTDA sensor using mono-color cyclic coding.
Single fiber temperature probe configuration using anti-Stokes luminescence from Cr:GdAlO3
NASA Astrophysics Data System (ADS)
Eldridge, Jeffrey I.
2018-06-01
Single-photon excitation of anti-Stokes-shifted emission from a thermographic phosphor allows operation of a luminescence decay-based single fiber temperature probe with negligible interference from background fiber-generated Raman scattering. While single fiber probe configurations for luminescence-based fiber optic thermometers offer advantages of simple design, compactness, and superior emission light collection efficiency, their effective use has been limited by interference from Raman scattering in the fiber probe and excitation delivery fiber that produces distortion of the luminescence decay that follows the excitation pulse. The near elimination of interference by background fiber-generated Raman scattering was demonstrated by incorporating a Cr-doped GdAlO3 (Cr:GdAlO3) thermographic phosphor as the sensing element at the end of a single fiber luminescence decay-based thermometer and detecting anti-Stokes-shifted luminescence centered at 542 or 593 nm produced by 695 nm excitation. Measurements were performed using both silica (up to 1150 °C) and single-crystal YAG (up to 1200 °C) fiber-based thermometers. Selection of emission detection centered at 542 nm greatly benefited the YAG fiber probe measurements by practically eliminating detection of otherwise significant luminescence from Cr3+ impurities in the YAG fiber. For both the silica and YAG fiber probes, the relative benefit of adopting single-photon excitation of anti-Stokes-shifted luminescence was evaluated by comparison with results obtained by conventional 532 nm excitation of Stokes-shifted luminescence.
Fiber-based time-resolved fluorescence and phosphorescence spectroscopy of tumors
NASA Astrophysics Data System (ADS)
Shirmanova, M.; Lukina, M.; Orlova, A.; Studier, H.; Zagaynova, E.; Becker, W.; Shcheslavskiy, V.
2017-07-01
The study of metabolic and oxygen states of cells in a tumor in vivo is crucial for understanding of the mechanisms responsible for the tumor development and provides background for the relevant tumor's treatment. Here, we show that a specially designed implantable fiber-optical probe provides a promising tool for optical interrogation of metabolic and oxygen states of a tumor in vivo. In our experiments, the excitation light from a ps diode laser source is delivered to the sample through an exchangeable tip via a multimode fiber, and the emission light is transferred to the detector by another multimode fiber. Fluorescence lifetime of nicotinamid adenine dinucleotide (NAD(P)H) and phosphorescence lifetime of an oxygen sensor based on iridium (III) complex of enzothienylpyridine (BTPDM1) are explored both in model experiment in solutions, and in living mice. The luminescence spectroscopy data is substantiated with immunohistochemistry experiments. To the best of our knowledge, the measurements of both metabolic status and oxygenation of tumor in vivo by fluorescence/phosphorescence lifetime spectroscopy with a fiber-optic probe are done for the first time.
Compact probing system using remote imaging for industrial plant maintenance
NASA Astrophysics Data System (ADS)
Ito, F.; Nishimura, A.
2014-03-01
Laser induced breakdown spectroscopy (LIBS) and endoscope observation were combined to design a remote probing device. We use this probing device to inspect a crack of the inner wall of the heat exchanger. Crack inspection requires speed at first, and then it requires accuracy. Once Eddy Current Testing (ECT) finds a crack with a certain signal level, another method should confirm it visually. We are proposing Magnetic particle Testing (MT) using specially fabricated the Magnetic Particle Micro Capsule (MPMC). For LIBS, a multichannel spectrometer and a Q-switch YAG laser were used. Irradiation area is 270 μm, and the pulse energy was 2 mJ. This pulse energy corresponds to 5-2.2 MW/cm2. A composite-type optical fiber was used to deliver both laser energy and optical image. Samples were prepared to heat a zirconium alloy plate by underwater arc welding in order to demonstrate severe accidents of nuclear power plants. A black oxide layer covered the weld surface and white particles floated on water surface. Laser induced breakdown plasma emission was taken into the spectroscope using this optical fiber combined with telescopic optics. As a result, we were able to simultaneously perform spectroscopic measurement and observation. For MT, the MPMC which gathered in the defective area is observed with this fiber. The MPMC emits light by the illumination of UV light from this optical fiber. The size of a defect is estimated with this amount of emission. Such technology will be useful for inspection repair of reactor pipe.
A novel 'Gold on Gold' biosensing scheme for an on-fiber immunoassay
NASA Astrophysics Data System (ADS)
Punjabi, N.; Satija, J.; Mukherji, S.
2015-05-01
In this paper, we propose a novel „gold on gold‟ biosensing scheme for absorbance based fiber-optic biosensor. First, a self-assembled monolayer of gold nanoparticles is formed at the sensing region of the fiber-optic probe by incubating an amino-silanized probe in a colloidal gold solution. Thereafter, the receptor moieties, i.e. Human immunoglobulin G (HIgG) were immobilized by using standard alkanethiol and classic carbodiimide coupling chemistry. Finally, biosensing experiments were performed with different concentrations of gold nanoparticle-tagged analyte, i.e. Goat anti- Human immunoglobulin G (Nanogold-GaHIgG). The sensor response was observed to be more than five-fold compared to the control bioassay, in which the sensor matrix was devoid of gold nanoparticle film. Also, the response was found to be ~10 times higher compared to the FITC-tagged scheme and ~14.5 times better compared to untagged scheme. This novel scheme also demonstrated the potential in improving the limit of detection for the fiber-optic biosensors.
Sutapun, Boonsong; Somboonkaew, Armote; Amarit, Ratthasart; Chanhorm, Sataporn
2015-01-01
This work describes a new design of a fiber-optic confocal probe suitable for measuring the central thicknesses of small-radius optical lenses or similar objects. The proposed confocal probe utilizes an integrated camera that functions as a shape-encoded position-sensing device. The confocal signal for thickness measurement and beam-shape data for off-axis measurement can be simultaneously acquired using the proposed probe. Placing the probe’s focal point off-center relative to a sample’s vertex produces a non-circular image at the camera’s image plane that closely resembles an ellipse for small displacements. We were able to precisely position the confocal probe’s focal point relative to the vertex point of a ball lens with a radius of 2.5 mm, with a lateral resolution of 1.2 µm. The reflected beam shape based on partial blocking by an aperture was analyzed and verified experimentally. The proposed confocal probe offers a low-cost, high-precision technique, an alternative to a high-cost three-dimensional surface profiler, for tight quality control of small optical lenses during the manufacturing process. PMID:25871720
USDA-ARS?s Scientific Manuscript database
A multichannel hyperspectral imaging probe with 30 optic fibers covering the wavelength range of 550-1,650 nm and the light source-detector distances of 1.5-36 mm was recently developed for optical property measurement and quality evaluation of food products with flat or curved surface. This paper r...
In-vivo fluorescence detection of breast cancer growth factor receptors by fiber-optic probe
NASA Astrophysics Data System (ADS)
Bustamante, Gilbert; Wang, Bingzhi; DeLuna, Frank; Sun, LuZhe; Ye, Jing Yong
2018-02-01
Breast cancer treatment options often include medications that target the overexpression of growth factor receptors, such as the proto-oncogene human epidermal growth factor receptor 2 (HER2/neu) and epidermal growth factor receptor (EGFR) to suppress the abnormal growth of cancerous cells and induce cancer regression. Although effective, certain treatments are toxic to vital organs, and demand assurance that the pursued receptor is present at the tumor before administration of the drug. This requires diagnostic tools to provide tumor molecular signatures, as well as locational information. In this study, we utilized a fiber-optic probe to characterize in vivo HER2 and EGFR overexpressed tumors through the fluorescence of targeted dyes. HER2 and EGFR antibodies were conjugated with ICG-Sulfo-OSu and Alexa Fluor 680, respectively, to tag BT474 (HER2+) and MDA-MB-468 (EGFR+) tumors. The fiber was inserted into the samples via a 30-gauge needle. Different wavelengths of a supercontinuum laser were selected to couple into the fiber and excite the corresponding fluorophores in the samples. The fluorescence from the dyes was collected through the same fiber and quantified by a time-correlated single photon counter. Fluorescence at different antibody-dye concentrations was measured for calibration. Mice with subcutaneous HER2+ and/or EGFR+ tumors received intravenous injections of the conjugates and were later probed at the tumor sites. The measured fluorescence was used to distinguish between tumor types and to calculate the concentration of the antibody-dye conjugates, which were detectable at levels as low as 40 nM. The fiber-optic probe presents a minimally invasive instrument to characterize the molecular signatures of breast cancer in vivo.
Phosphor Scanner For Imaging X-Ray Diffraction
NASA Technical Reports Server (NTRS)
Carter, Daniel C.; Hecht, Diana L.; Witherow, William K.
1992-01-01
Improved optoelectronic scanning apparatus generates digitized image of x-ray image recorded in phosphor. Scanning fiber-optic probe supplies laser light stimulating luminescence in areas of phosphor exposed to x rays. Luminescence passes through probe and fiber to integrating sphere and photomultiplier. Sensitivity and resolution exceed previously available scanners. Intended for use in x-ray crystallography, medical radiography, and molecular biology.
Two Fiber Optical Fiber Thermometry
NASA Technical Reports Server (NTRS)
Jones, Mathew R.; Farmer, Jeffery T.; Breeding, Shawn P.
2000-01-01
An optical fiber thermometer consists of an optical fiber whose sensing tip is given a metallic coating. The sensing tip of the fiber is essentially an isothermal cavity, so the emission from this cavity will be approximately equal to the emission from a blackbody. Temperature readings are obtained by measuring the spectral radiative heat flux at the end of the fiber at two wavelengths. The ratio of these measurements and Planck's Law are used to infer the temperature at the sensing tip. Optical fiber thermometers have high accuracy, excellent long-term stability and are immune to electromagnetic interference. In addition, they can be operated for extended periods without requiring re-calibration. For these reasons. it is desirable to use optical fiber thermometers in environments such as the International Space Station. However, it has recently been shown that temperature readings are corrupted by emission from the fiber when extended portions of the probe are exposed to elevated temperatures. This paper will describe several ways in which the reading from a second fiber can be used to correct the corrupted temperature measurements. The accuracy and sensitivity to measurement uncertainty will be presented for each method.
Optical fiber head for providing lateral viewing
Everett, Matthew J.; Colston, Billy W.; James, Dale L.; Brown, Steve; Da Silva, Luiz
2002-01-01
The head of an optical fiber comprising the sensing probe of an optical heterodyne sensing device includes a planar surface that intersects the perpendicular to axial centerline of the fiber at a polishing angle .theta.. The planar surface is coated with a reflective material so that light traveling axially through the fiber is reflected transverse to the fiber's axial centerline, and is emitted laterally through the side of the fiber. Alternatively, the planar surface can be left uncoated. The polishing angle .theta. must be no greater than 39.degree. or must be at least 51.degree.. The emitted light is reflected from adjacent biological tissue, collected by the head, and then processed to provide real-time images of the tissue. The method for forming the planar surface includes shearing the end of the optical fiber and applying the reflective material before removing the buffer that circumscribes the cladding and the core.
Lépinay, Sandrine; Ianoul, Anatoli; Albert, Jacques
2014-10-01
A biomimetic optical probe for detecting low molecular weight molecules (maltol, 3-hydroxy-2-methyl-4H-pyran-4-one, molecular weight of 126.11 g/mol), was designed, fabricated, and characterized. The sensor couples a molecular imprinted polymer (MIP) and the Bragg grating refractometry technology into an optical fiber. The probe is fabricated first by inscribing tilted grating planes in the core of the fiber, and then by photopolymerization to immobilize a maltol imprinted MIP on the fiber cladding surface over the Bragg grating. The sensor response to the presence of maltol in different media is obtained by spectral interrogation of the fiber transmission signal. The results showed that the limit of detection of the sensor reached 1 ng/mL in pure water with a sensitivity of 6.3 × 10(8)pm/M. The selectivity of the sensor against other compounds and its reusability were also studied experimentally. Finally, the unambiguous detection of concentrations as little as 10nM of maltol in complex media (real food samples) by the MIP-coated tilted fiber Bragg grating sensor was demonstrated. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Naglič, Peter; Ivančič, Matic; Pernuš, Franjo; Likar, Boštjan; Bürmen, Miran
2018-02-01
A measurement system was developed to acquire and analyze subdiffusive spatially resolved reflectance using an optical fiber probe with short source-detector separations. Since subdiffusive reflectance significantly depends on the scattering phase function, the analysis of the acquired reflectance is based on a novel inverse Monte Carlo model that allows estimation of phase function related parameters in addition to the absorption and reduced scattering coefficients. In conjunction with our measurement system, the model allowed real-time estimation of optical properties, which we demonstrate for a case of dynamically induced changes in human skin by applying pressure with an optical fiber probe.
NASA Astrophysics Data System (ADS)
Synovec, Robert E.; Renn, Curtiss N.
1991-07-01
The refractive index gradient (RIG) of hydrodynamically controlled profiles can be universally, yet sensitively, measured by carefully probing the radial RIG passing through a z-configuration flow cell. Fiber optic technology is applied in order to provide a narrow, collimated probe beam (100 micrometers diameter) that is deflected by a RIG and measured by a position sensitive detector. The fiber optic construction allows one to probe very small volumes (1 (mu) L to 3 (mu) L) amenable to microbore liquid chromatography ((mu) LC). The combination of (mu) LC and RIG detection is very useful for the analysis of trace quantities (ng injected amounts) of chemical species that are generally difficult to measure, i.e., species that are not amenable to absorbance detection or related techniques. Furthermore, the RIG detector is compatible with conventional mobile phase gradient and thermal gradient (mu) LC, unlike traditional RI detectors. A description of the RIG detector coupled with (mu) LC for the analysis of complex polymer samples is reported. Also, exploration into using the RIG detector for supercritical fluid chromatography is addressed.
NIR fluorescence lifetime sensing through a multimode fiber for intravascular molecular probing
NASA Astrophysics Data System (ADS)
Ingelberts, H.; Hernot, S.; Debie, P.; Lahoutte, T.; Kuijk, M.
2016-04-01
Coronary artery disease (CAD) contributes to millions of deaths each year. The identification of vulnerable plaques is essential to the diagnosis of CAD but is challenging. Molecular probes can improve the detection of these plaques using intravascular imaging methods. Fluorescence lifetime sensing is a safe and robust method to image these molecular probes. We present two variations of an optical system for intravascular near-infrared (NIR) fluorescence lifetime sensing through a multimode fiber. Both systems are built around a recently developed fast and efficient CMOS detector, the current-assisted photonic sampler (CAPS) that is optimized for sub-nanosecond NIR fluorescence lifetime sensing. One system mimics the optical setup of an epifluorescence microscope while the other uses a practical fiber optic coupler to separate fluorescence excitation and emission. We test both systems by measuring the lifetime of several NIR dyes in DMSO solutions and we show that these systems are capable of detecting lifetimes of solutions with concentrations down to 370 nM and this with short acquisition times. These results are compared with time-correlated single photon counting (TCSPC) measurements for reference.
Transurethral illumination probe design for deep photoacoustic imaging of prostate
NASA Astrophysics Data System (ADS)
Ai, Min; Salcudean, Tim; Rohling, Robert; Abolmaesumi, Purang; Tang, Shuo
2018-02-01
Photoacoustic (PA) imaging with internal light illumination through optical fiber could enable imaging of internal organs at deep penetration. We have developed a transurethral probe with a multimode fiber inserted in a rigid cystoscope sheath for illuminating the prostate. At the distal end, the fiber tip is processed to diffuse light circumferentially over 2 cm length. A parabolic cylinder mirror then reflects the light to form a rectangular-shaped parallel beam which has at least 1 cm2 at the probe surface. The relatively large rectangular beam size can reduce the laser fluence rate on the urethral wall and thus reduce the potential of tissue damage. A 3 cm optical penetration in chicken tissue is achieved at a fluence rate around 7 mJ/cm2 . For further validation, a prostate phantom was built with similar optical properties of the human prostate. A 1.5 cm penetration depth is achieved in the prostate mimicking phantom at 10 mJ/cm2 fluence rate. PA imaging of prostate can potentially be carried out in the future by combining a transrectal ultrasound transducer and the transurethral illumination.
Chen, I-Cherng; Lin, Shiu-Shiung; Lin, Tsao-Jen; Du, Je-Kang
2011-01-01
A novel fiber-optic probe based on reflection-based localized surface plasmon resonance (LSPR) was developed to quantify the concentration of hydrofluoric acid (HF) in aqueous solutions. The LSPR sensor was constructed with a gold nanoparticle-modified PMMA fiber, integrated with a SiO2 sol-gel coating. This fiber-sensor was utilized to assess the relationship between HF concentration and SiO2 sol-gel layer etching reduction. The results demonstrated the LSPR sensor was capable of detecting HF-related erosion of hydrofluoric acid solutions of concentrations ranging from 1% to 5% using Relative RI Change Rates. The development of the LSPR sensor constitutes the basis of a detector with significant sensitivity for practical use in monitoring HF solution concentrations. PMID:22319388
Fiber-based hybrid probe for non-invasive cerebral monitoring in neonatology
NASA Astrophysics Data System (ADS)
Rehberger, Matthias; Giovannella, Martina; Pagliazzi, Marco; Weigel, Udo; Durduran, Turgut; Contini, Davide; Spinelli, Lorenzo; Pifferi, Antonio; Torricelli, Alessandro; Schmitt, Robert
2015-07-01
Improved cerebral monitoring systems are needed to prevent preterm infants from long-term cognitive and motor restrictions. Combining advanced near-infrared diffuse spectroscopy measurement technologies, time-resolved spectroscopy (TRS) and diffuse correlation spectroscopy (DCS) will introduce novel indicators of cerebral oxygen metabolism and blood flow for neonatology. For non-invasive sensing a fiber-optical probe is used to send and receive light from the infant head. In this study we introduce a new fiber-based hybrid probe that is designed for volume production. The probe supports TRS and DCS measurements in a cross geometry, thus both technologies gain information on the same region inside the tissue. The probe is highly miniaturized to perform cerebral measurements on heads of extreme preterm infants down to head diameters of 6cm. Considerations concerning probe production focus on a reproducible accuracy in shape and precise optical alignment. In this way deviations in measurement data within a series of probes should be minimized. In addition to that, requirements for clinical use like robustness and hygiene are considered. An additional soft-touching sleeve made of FDA compatible silicone allows for a flexible attachment with respect to the individual anatomy of each patient. We present the technical concept of the hybrid probe and corresponding manufacturing methods. A prototype of the probe is shown and tested on tissue phantoms as well as in vivo to verify its operational reliability.
NASA Astrophysics Data System (ADS)
Dickenson, Nicholas E.; Erickson, Elizabeth S.; Mooren, Olivia L.; Dunn, Robert C.
2007-05-01
Tip-induced sample heating in near-field scanning optical microscopy (NSOM) is studied for fiber optic probes fabricated using the chemical etching technique. To characterize sample heating from etched NSOM probes, the spectra of a thermochromic polymer sample are measured as a function of probe output power, as was previously reported for pulled NSOM probes. The results reveal that sample heating increases rapidly to ˜55-60°C as output powers reach ˜50nW. At higher output powers, the sample heating remains approximately constant up to the maximum power studied of ˜450nW. The sample heating profiles measured for etched NSOM probes are consistent with those previously measured for NSOM probes fabricated using the pulling method. At high powers, both pulled and etched NSOM probes fail as the aluminum coating is damaged. For probes fabricated in our laboratory we find failure occurring at input powers of 3.4±1.7 and 20.7±6.9mW for pulled and etched probes, respectively. The larger half-cone angle for etched probes (˜15° for etched and ˜6° for pulled probes) enables more light delivery and also apparently leads to a different failure mechanism. For pulled NSOM probes, high resolution images of NSOM probes as power is increased reveal the development of stress fractures in the coating at a taper diameter of ˜6μm. These stress fractures, arising from the differential heating expansion of the dielectric and the metal coating, eventually lead to coating removal and probe failure. For etched tips, the absence of clear stress fractures and the pooled morphology of the damaged aluminum coating following failure suggest that thermal damage may cause coating failure, although other mechanisms cannot be ruled out.
Dickenson, Nicholas E; Erickson, Elizabeth S; Mooren, Olivia L; Dunn, Robert C
2007-05-01
Tip-induced sample heating in near-field scanning optical microscopy (NSOM) is studied for fiber optic probes fabricated using the chemical etching technique. To characterize sample heating from etched NSOM probes, the spectra of a thermochromic polymer sample are measured as a function of probe output power, as was previously reported for pulled NSOM probes. The results reveal that sample heating increases rapidly to approximately 55-60 degrees C as output powers reach approximately 50 nW. At higher output powers, the sample heating remains approximately constant up to the maximum power studied of approximately 450 nW. The sample heating profiles measured for etched NSOM probes are consistent with those previously measured for NSOM probes fabricated using the pulling method. At high powers, both pulled and etched NSOM probes fail as the aluminum coating is damaged. For probes fabricated in our laboratory we find failure occurring at input powers of 3.4+/-1.7 and 20.7+/-6.9 mW for pulled and etched probes, respectively. The larger half-cone angle for etched probes ( approximately 15 degrees for etched and approximately 6 degrees for pulled probes) enables more light delivery and also apparently leads to a different failure mechanism. For pulled NSOM probes, high resolution images of NSOM probes as power is increased reveal the development of stress fractures in the coating at a taper diameter of approximately 6 microm. These stress fractures, arising from the differential heating expansion of the dielectric and the metal coating, eventually lead to coating removal and probe failure. For etched tips, the absence of clear stress fractures and the pooled morphology of the damaged aluminum coating following failure suggest that thermal damage may cause coating failure, although other mechanisms cannot be ruled out.
Fourier transform infrared (FTIR) fiber optic monitoring of composites during cure in an autoclave
NASA Technical Reports Server (NTRS)
Druy, Mark A.; Elandjian, Lucy; Stevenson, William A.; Driver, Richard D.; Leskowitz, Garett M.
1990-01-01
Real-time in situ monitoring of the chemical states of epoxy resins was investigated during cure in an autoclave using infrared evanescent spectroscopy. Fiber evanescent sensors were developed which may be sandwiched between the plies of the prepreg sample. A short length of sapphire fiber was used as the sensor cell portion of the fiber probe. Heavy metal fluoride glass optical fiber cables were designed for connecting the FTIR spectrometer to the sensor fiber within the autoclave. The sapphire fibers have outstanding mechanical thermal properties which should permit their use as an embedded link in all thermoset composites. The system is capable of operation at a temperature of 250 C for periods up to 8 hours without major changes to the fiber transmission. A discussion of the selection of suitable sensor fibers, the construction of a fiber-optic interface, and the interpretation of in situ infrared spectra of the curing process is presented.
NASA Astrophysics Data System (ADS)
Ren, Yundong; Zhang, Rui; Ti, Chaoyang; Liu, Yuxiang
2016-09-01
Tapered optical fibers can deliver guided light into and carry light out of micro/nanoscale systems with low loss and high spatial resolution, which makes them ideal tools in integrated photonics and microfluidics. Special geometries of tapered fibers are desired for probing monolithic devices in plane as well as optical manipulation of micro particles in fluids. However, for many specially shaped tapered fibers, it remains a challenge to fabricate them in a straightforward, controllable, and repeatable way. In this work, we fabricated and characterized two special geometries of tapered optical fibers, namely fiber loops and helices, that could be switched between one and the other. The fiber loops in this work are distinct from previous ones in terms of their superior mechanical stability and high optical quality factors in air, thanks to a post-annealing process. We experimentally measured an intrinsic optical quality factor of 32,500 and a finesse of 137 from a fiber loop. A fiber helix was used to characterize a monolithic cavity optomechanical device. Moreover, a microfluidic "roller coaster" was demonstrated, where microscale particles in water were optically trapped and transported by a fiber helix. Tapered fiber loops and helices can find various applications ranging from on-the-fly characterization of integrated photonic devices to particle manipulation and sorting in microfluidics.
Wang, Ming-Fang; Xu, Yingshun; Prem, C S; Chen, Kelvin Wei Sheng; Xie, Jin; Mu, Xiaojing; Tan, Chee Wei; Yu, Aibin; Feng, Hanhua
2010-01-01
In this paper, we present a miniaturized endoscopic probe, consisted of MEMS micromirror, silicon optical bench (SiOB), grade index (GRIN) lens, single mode optical fiber (SMF) and transparent housing, for optical coherence tomography (OCT) bioimaging. Due to the use of the MEMS micromirror, the endoscopic OCT system is highly suitable for non-invasive imaging diagnosis of a wide variety of inner organs. The probe engineering and proof of concept were demonstrated by obtaining the two-dimensional OCT images with a cover slide and an onion used as standard samples and the axial resolution was around 10µm.
On the passive probing of fiber optic quantum communication channels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Korol'kov, A. V., E-mail: sergei.kulik@gmail.co; Katamadze, K. G.; Kulik, S. P.
2010-04-15
Avalanche photodetectors based on InGaAs:P are the most sensitive and only detectors operating in the telecommunication wavelength range 1.30-1.55 {mu}m in the fiber optic quantum cryptography systems that can operate in the single photon count mode. In contrast to the widely used silicon photodetectors for wavelengths up to 1 {mu}m operating in a waiting mode, these detectors always operate in a gated mode. The production of an electron-hole pair in the process of the absorption of a photon and the subsequent appearance of an avalanche of carriers can be accompanied by the inverse processes of the recombination and emission ofmore » photons. Such a backward emission can present a potential serious problem for the stability of fiber optic quantum cryptography systems against passive probing. The results of analyzing the detection of backscattered radiation are reported. The probability of such an emission has been estimated.« less
Comparison of two fiber-optical temperature measurement systems in magnetic fields up to 9.4 Tesla.
Buchenberg, Waltraud B; Dadakova, Tetiana; Groebner, Jens; Bock, Michael; Jung, Bernd
2015-05-01
Precise temperature measurements in the magnetic field are indispensable for MR safety studies and for temperature calibration during MR-guided thermotherapy. In this work, the interference of two commonly used fiber-optical temperature measurement systems with the static magnetic field B0 was determined. Two fiber-optical temperature measurement systems, a GaAs-semiconductor and a phosphorescent phosphor ceramic, were compared for temperature measurements in B0 . The probes and a glass thermometer for reference were placed in an MR-compatible tube phantom within a water bath. Temperature measurements were carried out at three different MR systems covering static magnetic fields up to B0 = 9.4T, and water temperatures were changed between 25°C and 65°C. The GaAs-probe significantly underestimated absolute temperatures by an amount related to the square of B0 . A maximum difference of ΔT = -4.6°C was seen at 9.4T. No systematic temperature difference was found with the phosphor ceramic probe. For both systems, the measurements were not dependent on the orientation of the sensor to B0 . Temperature measurements with the phosphor ceramic probe are immune to magnetic fields up to 9.4T, whereas the GaAs-probes either require a recalibration inside the MR system or a correction based on the square of B0. © 2014 Wiley Periodicals, Inc.
An earth-isolated optically coupled wideband high voltage probe powered by ambient light.
Zhai, Xiang; Bellan, Paul M
2012-10-01
An earth-isolated optically-coupled wideband high voltage probe has been developed for pulsed power applications. The probe uses a capacitive voltage divider coupled to a fast light-emitting diode that converts high voltage into an amplitude-modulated optical signal, which is then conveyed to a receiver via an optical fiber. A solar cell array, powered by ambient laboratory lighting, charges a capacitor that, when triggered, acts as a short-duration power supply for an on-board amplifier in the probe. The entire system has a noise level ≤0.03 kV, a DC-5 MHz bandwidth, and a measurement range from -6 to 2 kV; this range can be conveniently adjusted.
All-optical short pulse translation through cross-phase modulation in a VO₂ thin film.
Fardad, Shima; Das, Susobhan; Salandrino, Alessandro; Breckenfeld, Eric; Kim, Heungsoo; Wu, Judy; Hui, Rongqing
2016-01-15
VO2 is a promising material for reconfigurable photonic devices due to the ultrafast changes in electronic and optical properties associated with its dielectric-to-metal phase transition. Based on a fiber-optic, pump-probe setup at 1550 nm wavelength window, and by varying the pump-pulse duration, we show that the material phase transition is primarily caused by the pump-pulse energy. For the first time, we demonstrate that the instantaneous optical phase modulation of probe during pump leading edge can be utilized to create short optical pulses at probe wavelength, through optical frequency discrimination. This circumvents the impact of long recovery time well known for the phase transition of VO2.
Coupled-mode propagation in multicore fibers characterized by optical low-coherence reflectometry.
Salathé, R P; Gilgen, H; Bodmer, G
1996-07-01
A fiber-optical low-coherence ref lectometer has been used to probe a multicore fiber locally at a wavelength of 1.3 microm. This technique allows one to determine the group index of refraction of the modes in the multicore fiber with high accuracy. Light propagation that is due to noncoherent coupling of energy from one fiber core to adjacent cores through cladding modes can be distinguished quantitatively from light propagating in coherently coupled modes. Intercore coupling constants in the range of 0.6-2 mm(-1) have been evaluated for the coupled modes.
NASA Astrophysics Data System (ADS)
Gareau, Daniel S.; Truffer, Frederic; Perry, Kyle; Pham, Thai; Enestvedt, C. Kristian; Dolan, James; Hunter, John G.; Jacques, Steven L.
2010-11-01
Anastomotic complication is a major morbidity associated with esophagectomy. Gastric ischemia after conduit creation contributes to anastomotic complications, but a reliable method to assess oxygenation in the gastric conduit is lacking. We hypothesize that fiber optic spectroscopy can reliably assess conduit oxygenation, and that intraoperative gastric ischemia will correlate with the development of anastomotic complications. A simple optical fiber probe spectrometer is designed for nondestructive laparoscopic measurement of blood content and hemoglobin oxygen saturation in the stomach tissue microvasculature during human esophagectomies. In 22 patients, the probe measured the light transport in stomach tissue between two fibers spaced 3-mm apart (500- to 650-nm wavelength range). The stomach tissue site of measurement becomes the site of a gastroesophageal anastamosis following excision of the cancerous esophagus and surgical ligation of two of the three gastric arteries that provide blood perfusion to the anastamosis. Measurements are made at each of five steps throughout the surgery. The resting baseline saturation is 0.51+/-0.15 and decreases to 0.35+/-0.20 with ligation. Seven patients develop anastomotic complications, and a decreased saturation at either of the last two steps (completion of conduit and completion of anastamosis) is predictive of complication with a sensitivity of 0.71 when the specificity equaled 0.71.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-04-22
... conventional AFM type silicon cantilevers as well as cantilevered optical fiber probes with exposed probed... probe and the ability to image in both NSOM and AFM with AC operating modes. We know of no instrument...
Fiber-optical analog of the event horizon.
Philbin, Thomas G; Kuklewicz, Chris; Robertson, Scott; Hill, Stephen; König, Friedrich; Leonhardt, Ulf
2008-03-07
The physics at the event horizon resembles the behavior of waves in moving media. Horizons are formed where the local speed of the medium exceeds the wave velocity. We used ultrashort pulses in microstructured optical fibers to demonstrate the formation of an artificial event horizon in optics. We observed a classical optical effect: the blue-shifting of light at a white-hole horizon. We also showed by theoretical calculations that such a system is capable of probing the quantum effects of horizons, in particular Hawking radiation.
NASA Astrophysics Data System (ADS)
Zhang, Zaixuan; Wang, Kequan; Kim, Insoo S.; Wang, Jianfeng; Feng, Haiqi; Guo, Ning; Yu, Xiangdong; Zhou, Bangquan; Wu, Xiaobiao; Kim, Yohee
2000-05-01
The DOFTS system that has applied to temperature automatically alarm system of coal mine and tunnel has been researched. It is a real-time, on line and multi-point measurement system. The wavelength of LD is 1550 nm, on the 6 km optical fiber, 3000 points temperature signal is sampled and the spatial position is certain. Temperature measured region: -50 degree(s)C--100 degree(s)C; measured uncertain value: +/- 3 degree(s)C; temperature resolution: 0.1 degree(s)C; spatial resolution: <5 cm (optical fiber sensor probe); <8 m (spread optical fiber); measured time: <70 s. In the paper, the operated principles, underground test, test content and practical test results have been discussed.
A Compact Fiber Optic Eye Diagnostic System
NASA Technical Reports Server (NTRS)
Ansari, Rafat R.; Suh, Kwang I.; Dubin, Stephen; Dellavecchia, Michael A.
1995-01-01
A new fiber optic probe developed for determining transport properties of sub-micron particles in fluid experiments in a microgravity environment has been applied to study different parts of an eye. The probe positioned in front of an eye, delivers a low power (approximately few microW) light from a laser diode into the eye and guides the light which is back scattered by different components (aqueous humor, lens, and vitreous humor) of the eye through a receiving optical fiber to a photo detector. The probe provides rapid determination of macromolecular diffusivities and their respective size distributions in the eye lens and the gel-like materials in the vitreous humor. In a clinical setting, the probe can be mounted on a standard slit-lamp apparatus simply using a Hruby lens holder. The capability of detecting cataracts, both nuclear and cortical, in their early stages of formation, in a non invasive and quantitative fashion, has the potential in patient monitoring and in developing and testing new drugs or diet therapies to 'dissolve' or slow down the cataract formation before the surgery becomes necessary. The ability to detect biochemical and macromolecular changes in the vitreous structure can be very useful in identifying certain diseases of the posterior chamber and their complications, e.g., posterior vitreous detachment and diabetic retinopathy.
A Compact Fiber Optic Eye Diagnostics System
NASA Technical Reports Server (NTRS)
Ansari, Rafat R.; Suh, Kwang I.; DellaVecchia, Michael A.; Dubin, Stephen; Zigler, J. Samuel, Jr.
1995-01-01
A new fiber optic probe development for determining transport properties of sub-micron particles in fluids experiments in a microgravity environment has been applied to study different parts of the eye. The probe positioned in front of an eye, delivers a low power (approximately a few mu W) light from a laser diode into the eye and guides the light which is back scattered by different components (aqueous humor, lens, and vitreous humor) of the eye through a receiving optical fiber to a photo detector. The probe provides rapid determination of macromolecular diffusivities and their respective size distributions in the eye lens and the gel-like material in the vitreous humor. For a clinical use, the probe is mounted on a standard slit-lamp apparatus simply using Hruby lens holder. The capability of detecting cataracts, both nuclear and cortical, in their early stages of formation, in a non invasive and quantitative fashion, has the potential in patient monitoring and in developing and testing new drugs or diet therapies to 'dissolve' or slow down the cataract formation before the surgery becomes necessary. The ability to detect biochemical and macromolecular changes in the vitreous structure can be very useful in identifying certain diseases of the posterior chamber and their complications, e.g., posterior vitreous detachment and diabetic retinopathy.
Durable fiber optic sensor for gas temperature measurement in the hot section of turbine engines
NASA Astrophysics Data System (ADS)
Tregay, George W.; Calabrese, Paul R.; Finney, Mark J.; Stukey, K. B.
1994-10-01
An optical sensor system extends gas temperature measurement capability in turbine engines beyond the present generation of thermocouple technology. The sensing element which consists of a thermally emissive insert embedded inside a sapphire lightguide is capable of operating above the melting point of nickel-based super alloys. The emissive insert generates an optical signal as a function of temperature. Continued development has led to an optically averaged system by combining the optical signals from four individual sensing elements at a single detector assembly. The size of the signal processor module has been reduced to overall dimensions of 2 X 4 X 0.7 inches. The durability of the optical probe design has been evaluated in an electric-utility operated gas turbine under the sponsorship of the Electric Power Research Institute. The temperature probe was installed between the first stage rotor and second stage nozzle on a General Electric MS7001B turbine. The combined length of the ceramic support tube and sensing element reached 1.5 inches into the hot gas stream. A total of over 2000 hours has been accumulated at probe operation temperatures near 1600 degree(s)F. An optically averaged sensor system was designed to replace the existing four thermocouple probes on the upper half of a GE F404 aircraft turbine engine. The system was ground tested for 250 hours as part of GE Aircraft Engines IR&D Optical Engine Program. Subsequently, two flight sensor systems were shipped for use on the FOCSI (Fiber Optic Control System Integration) Program. The optical harnesses, each with four optical probes, measure the exhaust gas temperature in a GE F404 engine.
Zhang, Yu; Tang, Xiaoyun; Zhang, Yaxun; Su, Wenjie; Liu, Zhihai; Yang, Xinghua; Zhang, Jianzhong; Yang, Jun; Oh, Kyunghwan; Yuan, Libo
2018-06-15
We proposed and experimentally demonstrated 3-dimensional dark traps for low refractive index bio-cells using a single optical fiber Bessel beam. The Bessel beam was produced by concatenating single-mode fiber and a step index multimode fiber, which was then focused by a high refractive index glass microsphere integrated on the fiber end facet. The focused Bessel beam provided two dark fields along the axial direction, where stable trapping of low refractive index bio-cells was realized in a high refractive index liquid bath. The all-fiber and seamlessly integrated structure of the proposed scheme can find ample potential as a micro-optical probe in in situ characterization and manipulation of multiple bio-cells with refractive indices lower than that of the liquid bath.
In vivo light scattering for the detection of cancerous and precancerous lesions of the cervix
Mourant, Judith R.; Powers, Tamara M.; Bocklage, Thérese J.; Greene, Heather M.; Dorin, Maxine H.; Waxman, Alan G.; Zsemlye, Meggan M.; Smith, Harriet O.
2009-01-01
A non-invasive optical diagnostic system for detection of cancerous and precancerous lesions of the cervix was evaluated, in vivo. The optical system included a fiber optic probe designed to measure polarized and unpolarized light transport properties of a small volume of tissue. An algorithm for diagnosing tissue based on the optical measurements was developed which used four optical properties, three of which were related to light scattering properties and the fourth of which was related to hemoglobin concentration. A sensitivity of ∼77% and specificities in the mid 60's were obtained for separating high grade squamous intraepithelial lesions and cancer from other pathologies and normal tissue. The use of different cross-validation methods in algorithm development is analyzed and the relative difficulties of diagnosing certain pathologies is assessed. Furthermore, the robustness of the optical system for use by different doctors and to changes in fiber optic probe were also assessed and potential improvements in the optical system are discussed. PMID:19340117
The CritiView: a new fiber optic based optical device for the assessment of tissue vitality
NASA Astrophysics Data System (ADS)
Mayevsky, Avraham; Blum, Yoram; Dekel, Nava; Deutsch, Assaf; Halfon, Rafael; Kremer, Shlomi; Pewzner, Eliyahu; Sherman, Efrat; Barnea, Ofer
2006-02-01
The most important parameter that reflects the balance between oxygen supply and demand in tissues is the mitochondrial NADH redox state that could be monitored In vivo. Nevertheless single parameter monitoring is limited in the interpretation capacity of the very complicated pathophysiological events, therefore three more parameters were added to the NADH and the multiparametric monitoring system was used in experimental and clinical studies. In our previous paper1 we described the CritiView (CRV1) including a fiber optic probe that monitor four physiological parameters in real time. In the new model (CRV3) several factors such as UV safety, size and price of the device were improved significantly. The CRV3 enable to monitor the various parameters in three different locations in the tissue thus increasing the reliability of the data due to the better statistics. The connection between the device and the monitored tissue could be done by various types of probes. The main probe that was tested also in clinical studies was a special 3 points probe that includes 9 optical fibers (3 in each point) that was embedded in a three way Foley catheter. This catheter enabled the monitoring of urethral wall vitality as an indicator of the development of body metabolic emergency state. The three point probe was tested in the brain exposed to the lack of oxygen (Anoxia, Hypoxia or Ischemia). A decrease in blood oxygenation and a large increase in mitochondrial NADH fluorescence were recorded. The microcirculatory blood flow increased during anoxia and hypoxia and decreased significantly under ischemia.
Yücel, Meryem A; Selb, Juliette; Boas, David A; Cash, Sydney S; Cooper, Robert J
2014-01-15
As the applications of near-infrared spectroscopy (NIRS) continue to broaden and long-term clinical monitoring becomes more common, minimizing signal artifacts due to patient movement becomes more pressing. This is particularly true in applications where clinically and physiologically interesting events are intrinsically linked to patient movement, as is the case in the study of epileptic seizures. In this study, we apply an approach common in the application of EEG electrodes to the application of specialized NIRS optical fibers. The method provides improved optode-scalp coupling through the use of miniaturized optical fiber tips fixed to the scalp using collodion, a clinical adhesive. We investigate and quantify the performance of this new method in minimizing motion artifacts in healthy subjects, and apply the technique to allow continuous NIRS monitoring throughout epileptic seizures in two epileptic in-patients. Using collodion-fixed fibers reduces the percent signal change of motion artifacts by 90% and increases the SNR by 6 and 3 fold at 690 and 830 nm wavelengths respectively when compared to a standard Velcro-based array of optical fibers. The SNR has also increased by 2 fold during rest conditions without motion with the new probe design because of better light coupling between the fiber and scalp. The change in both HbO and HbR during motion artifacts is found to be statistically lower for the collodion-fixed fiber probe. The collodion-fixed optical fiber approach has also allowed us to obtain good quality NIRS recording of three epileptic seizures in two patients despite excessive motion in each case. Copyright © 2013 Elsevier Inc. All rights reserved.
Polarization anisotropy in fiber-optic second harmonic generation microscopy.
Fu, Ling; Gu, Min
2008-03-31
We report the investigation and implementation of a compact second harmonic generation microscope that uses a single-mode fiber coupler and a double-clad photonic crystal fiber. Second harmonic polarization anisotropy through the fiber-optic microscope systems is quantitatively measured with KTP microcrystals, fish scale and rat tail tendon. It is demonstrated that the polarized second harmonic signals can be excited and collected through the single-mode fiber coupler to analyze the molecular orientations of structural proteins. It has been discovered that a double-clad photonic crystal fiber can preserve the linear polarization in the core, although a depolarization effect is observed in the inner cladding region. The feasibility of polarization anisotropy measurements in fiber-optic second harmonic generation microscopy will benefit the in vivo study of collagen-related diseases with a compact imaging probe.
Multivariate reference technique for quantitative analysis of fiber-optic tissue Raman spectroscopy.
Bergholt, Mads Sylvest; Duraipandian, Shiyamala; Zheng, Wei; Huang, Zhiwei
2013-12-03
We report a novel method making use of multivariate reference signals of fused silica and sapphire Raman signals generated from a ball-lens fiber-optic Raman probe for quantitative analysis of in vivo tissue Raman measurements in real time. Partial least-squares (PLS) regression modeling is applied to extract the characteristic internal reference Raman signals (e.g., shoulder of the prominent fused silica boson peak (~130 cm(-1)); distinct sapphire ball-lens peaks (380, 417, 646, and 751 cm(-1))) from the ball-lens fiber-optic Raman probe for quantitative analysis of fiber-optic Raman spectroscopy. To evaluate the analytical value of this novel multivariate reference technique, a rapid Raman spectroscopy system coupled with a ball-lens fiber-optic Raman probe is used for in vivo oral tissue Raman measurements (n = 25 subjects) under 785 nm laser excitation powers ranging from 5 to 65 mW. An accurate linear relationship (R(2) = 0.981) with a root-mean-square error of cross validation (RMSECV) of 2.5 mW can be obtained for predicting the laser excitation power changes based on a leave-one-subject-out cross-validation, which is superior to the normal univariate reference method (RMSE = 6.2 mW). A root-mean-square error of prediction (RMSEP) of 2.4 mW (R(2) = 0.985) can also be achieved for laser power prediction in real time when we applied the multivariate method independently on the five new subjects (n = 166 spectra). We further apply the multivariate reference technique for quantitative analysis of gelatin tissue phantoms that gives rise to an RMSEP of ~2.0% (R(2) = 0.998) independent of laser excitation power variations. This work demonstrates that multivariate reference technique can be advantageously used to monitor and correct the variations of laser excitation power and fiber coupling efficiency in situ for standardizing the tissue Raman intensity to realize quantitative analysis of tissue Raman measurements in vivo, which is particularly appealing in challenging Raman endoscopic applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kidane, Getnet S; Desilva, Upul P.; He, Chengli
A gas turbine includes first and second parts having outer surfaces located adjacent to each other to create an interface where wear occurs. A wear probe is provided for monitoring wear of the outer surface of the first part, and includes an optical guide having first and second ends, wherein the first end is configured to be located flush with the outer surface of the first part. A fiber bundle includes first and second ends, the first end being located proximate to the second end of the optical guide. The fiber bundle includes a transmit fiber bundle comprising a firstmore » plurality of optical fibers coupled to a light source, and a receive fiber bundle coupled to a light detector and configured to detect reflected light. A processor is configured to determine a length of the optical guide based on the detected reflected light.« less
Optical Diagnostics in Medicine
NASA Astrophysics Data System (ADS)
Iftimia, Nicusor
2003-03-01
Light has a unique potential for non-invasive tissue diagnosis. The relatively short wavelength of light allows imaging of tissue at the resolution of histopathology. While strong multiple scattering of light in tissue makes attainment of this resolution difficult for thick tissues, most pathology emanates from epithelial surfaces. Therefore, high-resolution diagnosis of many important diseases may be achieved by transmitting light to the surface of interest. The recent fiber-optic implementation of technologies that reject multiple scattering, such as confocal microscopy and optical low coherence interferometry, have brought us one step closer to realizing non-invasive imaging of architectural and cellular features of tissue. Optical coherence tomography (OCT) can produce high-resolution cross-sectional images of biological structures. Clinical OCT studies conducted in the gastrointestinal tract and cardiovascular system have shown that OCT is capable of providing images of the architectural (> 20 µm) microanatomy of a variety of epithelial tissues, including the layered structure of squamous epithelium and arterial vessels. Fine Needle Aspiration- Low Coherence Interferometry (FNA-LCI) is another optical diagnostics technique, which is a suitable solution to increase the effectiveness of the FNA procedures. LCI is capable of measuring depth resolved (axial, z) tissue structure, birefringence, flow (Doppler shift), and spectra at a resolution of several microns. Since LCI systems are fiber-optic based, LCI probes may easily fit within the bore of a fine gauge needle, allowing diagnostic information to be obtained directly from the FNA biopsy site. Fiber optic spectrally encoded confocal microscopy (SECM) is a new confocal microscopy method, which eliminates the need for rapid beam scanning within the optical probe. This advance enables confocal microscopy to be performed through small diameter probes and will allow assessment of internal human tissues in vivo at the cellular level. A detailed description of several fiber optics based systems for early diseases diagnosis, as well as preliminary clinic results, will be presented.
Usha, Sruthi P; Gupta, Banshi D
2018-03-15
A lossy mode resonance (LMR) based sensor for urinary p-cresol testing on optical fiber substrate is developed. The sensor probe fabrication includes dip coating of nanocomposite layer of zinc oxide and molybdenum sulphide (ZnO/MoS 2 ) over unclad core of optical fiber as the transducer layer followed by the layer of molecular imprinted polymer (MIP) as the recognition medium. The addition of molybdenum sulphide in the transducer layer increases the absorption of light in the medium which enhances the LMR properties of zinc oxide thereby increasing the conductivity and hence the sensitivity of the sensor. The sensor probe is characterized for p-cresol concentration range from 0µM (reference sample) to 1000µM in artificially prepared urine. Optimizations of various probe fabrication parameters are carried to bring out the sensor's optimal performance with a sensitivity of 11.86nm/µM and 28nM as the limit of detection (LOD). A two-order improvement in LOD is obtained as compared to the recently reported p-cresol sensor. The proposed sensor possesses a response time of 15s which is 8 times better than that reported in the literature utilizing electrochemical method. Its response time is also better than the p-cresol sensor currently available in the market for the medical field. Thus, with a fast response, significant stability and repeatability, the proposed sensor holds practical implementation possibilities in the medical field. Further, the realization of sensor probe over optical fiber substrate adds remote sensing and online monitoring feasibilities. Copyright © 2017 Elsevier B.V. All rights reserved.
Optical Fiber On-Line Detection System for Non-Touch Monitoring Roller Shape
NASA Astrophysics Data System (ADS)
Guo, Y.; Wang, Y. T.
2006-10-01
Basing on the principle of reflective displacement fiber-optic sensor, a high accuracy non-touch on-line optical fiber measurement system for roller shape is presented. The principle and composition of the detection system and the operation process are expatiated also. By using a novel probe of three optical fibers in equal transverse space, the effects of fluctuations in the light source, reflective changing of target surface and the intensity losses in the fiber lines are automatically compensated. Meantime, an optical fiber sensor model of correcting static error based on BP artificial neural network (ANN) is set up. Also by using interpolation method and value filtering to process the signals, effectively reduce the influence of random noise and the vibration of the roller bearing. So enhance the accuracy and resolution remarkably. Experiment proves that the accuracy of the system reach to the demand of practical production process, it provides a new method for the high speed, accurate and automatic on line detection of the mill roller shape.
Xia, Ji; Wang, Qi; Liu, Xu; Luo, Hong
2015-01-01
An optical fiber current sensor based on Fabry-Perot interferometer using a fiber Bragg grating demodulation is proposed. Magnetic fluid is used as a sensitive medium in fiber optical Fabry-Perot (F-P) cavity for the optical characteristic of magnetic-controlled refractive index. A Fiber Bragg grating (FBG) is connected after the F-P interferometer which is used to reflect the optical power at the Bragg wavelength of the interference transmission spectrum. The corresponding reflective power of the FBG will change with different external current intensity, due to the shift on the interference spectrum of the F-P interferometer. The sensing probe has the advantages of convenient measurement for its demodulation, low cost and high current measurement accuracy on account of its sensing structure. Experimental results show that an optimal sensitivity of 0.8522 nw/A and measurement resolution of 0.001 A is obtained with a FBG at 1550 nm with 99% reflectivity. PMID:26184201
Xia, Ji; Wang, Qi; Liu, Xu; Luo, Hong
2015-07-09
An optical fiber current sensor based on Fabry-Perot interferometer using a fiber Bragg grating demodulation is proposed. Magnetic fluid is used as a sensitive medium in fiber optical Fabry-Perot (F-P) cavity for the optical characteristic of magnetic-controlled refractive index. A Fiber Bragg grating (FBG) is connected after the F-P interferometer which is used to reflect the optical power at the Bragg wavelength of the interference transmission spectrum. The corresponding reflective power of the FBG will change with different external current intensity, due to the shift on the interference spectrum of the F-P interferometer. The sensing probe has the advantages of convenient measurement for its demodulation, low cost and high current measurement accuracy on account of its sensing structure. Experimental results show that an optimal sensitivity of 0.8522 nw/A and measurement resolution of 0.001 A is obtained with a FBG at 1550 nm with 99% reflectivity.
NASA Astrophysics Data System (ADS)
Puszka, Agathe; Di Sieno, Laura; Dalla Mora, Alberto; Pifferi, Antonio; Contini, Davide; Boso, Gianluca; Tosi, Alberto; Hervé, Lionel; Planat-Chrétien, Anne; Koenig, Anne; Dinten, Jean-Marc
2014-02-01
Fiber optic probes with a width limited to a few centimeters can enable diffuse optical tomography (DOT) in intern organs like the prostate or facilitate the measurements on extern organs like the breast or the brain. We have recently shown on 2D tomographic images that time-resolved measurements with a large dynamic range obtained with fast-gated single-photon avalanche diodes (SPADs) could push forward the imaged depth range in a diffusive medium at short source-detector separation compared with conventional non-gated approaches. In this work, we confirm these performances with the first 3D tomographic images reconstructed with such a setup and processed with the Mellin- Laplace transform. More precisely, we investigate the performance of hand-held probes with short interfiber distances in terms of spatial resolution and specifically demonstrate the interest of having a compact probe design featuring small source-detector separations. We compare the spatial resolution obtained with two probes having the same design but different scale factors, the first one featuring only interfiber distances of 15 mm and the second one, 10 mm. We evaluate experimentally the spatial resolution obtained with each probe on the setup with fast-gated SPADs for optical phantoms featuring two absorbing inclusions positioned at different depths and conclude on the potential of short source-detector separations for DOT.
NASA Astrophysics Data System (ADS)
Yin, Biwei; Liang, Chia-Pin; Vuong, Barry; Tearney, Guillermo J.
2017-02-01
Conventional OCT images, obtained using a focused Gaussian beam have a lateral resolution of approximately 30 μm and a depth of focus (DOF) of 2-3 mm, defined as the confocal parameter (twice of Gaussian beam Rayleigh range). Improvement of lateral resolution without sacrificing imaging range requires techniques that can extend the DOF. Previously, we described a self-imaging wavefront division optical system that provided an estimated one order of magnitude DOF extension. In this study, we further investigate the properties of the coaxially focused multi-mode (CAFM) beam created by this self-imaging wavefront division optical system and demonstrate its feasibility for real-time biological tissue imaging. Gaussian beam and CAFM beam fiber optic probes with similar numerical apertures (objective NA≈0.5) were fabricated, providing lateral resolutions of approximately 2 μm. Rigorous lateral resolution characterization over depth was performed for both probes. The CAFM beam probe was found to be able to provide a DOF that was approximately one order of magnitude greater than that of Gaussian beam probe. By incorporating the CAFM beam fiber optic probe into a μOCT system with 1.5 μm axial resolution, we were able to acquire cross-sectional images of swine small intestine ex vivo, enabling the visualization of subcellular structures, providing high quality OCT images over more than a 300 μm depth range.
Birefringence insensitive optical coherence domain reflectometry system
Everett, Matthew J.; Davis, Joseph G.
2002-01-01
A birefringence insensitive fiber optic optical coherence domain reflectometry (OCDR) system is provided containing non-polarization maintaining (non-PM) fiber in the sample arm and the reference arm without suffering from signal degradation caused by birefringence. The use of non-PM fiber significantly reduces the cost of the OCDR system and provides a disposable or multiplexed section of the sample arm. The dispersion in the reference arm and sample arm of the OCDR system are matched to achieve high resolution imaging. This system is useful in medical applications or for non-medical in situ probes. The disposable section of non-PM fiber in the sample arm can be conveniently replaced when contaminated by a sample or a patient.
On fiber optic probe hydrophone measurements in a cavitating liquid.
Zijlstra, Aaldert; Ohl, Claus Dieter
2008-01-01
The measurement of high-pressure signals is often hampered by cavitation activity. The usage of a fiber optic probe hydrophone possesses advantages over other hydrophones, yet when measuring in a cavitating liquid large variations in the signal amplitude are found; in particular when the pressure signal recovers back to positive values. With shadowgraphy the wave propagation and cavity dynamics are imaged and the important contributions of secondary shock waves emitted from collapsing cavitation bubbles are revealed. Interestingly, just adding a small amount of acidic acid reduces the cavitation activity to a large extent. With this treatment an altered primary pressure profile which does not force the cavitation bubbles close to fiber tip into collapse has been found. Thereby, the shot-to-shot variations are greatly reduced.
Common path ball lens probe for optical coherence tomography (Conference Presentation)
NASA Astrophysics Data System (ADS)
Singh, Kanwarpal; Yamada, Daisuke; Tearney, Guillermo J.
2016-02-01
Background: Common path probes are highly desirable for optical coherence tomography (OCT) as they reduce system complexity and cost. In this work we report an all-fiber common path side viewing monolithic probe for coronary artery imaging. Methods: Our common path probe was designed for spectrometer based Fourier domain OCT at 1310 nm wavelength. Light from the fiber expands in the coreless fiber region and then focussed by the ball lens. Reflection from ball lens-air interface served as reference signal. The monolithic ball lens probe was assembled within a 560 µmouter diameter drive shaft which was attached to a rotary junction. The drive shaft was placed inside an outer, transparent sheath of 800 µm diameter. Results: With a source input power of 25 mW, we could achieve sensitivity of 100.5 dB. The axial resolution of the system was found to be 15.6 µm in air and the lateral resolution (full width half maximum) was approximately 49 µm. As proof of principal, images of skin acquired using this probe demonstrated clear visualization of the stratum corneum, epidermis, and papillary dermis, along with sweat ducts. Conclusion: In this work we have demonstrated a monolithic, ball lens common, path probe for OCT imaging. The designed ball lens probe is easy to fabricate using a laser splicer. Based on the features and capability of common path probes to provide a simpler solution for OCT, we believe that this development will be an important enhancement for certain types of catheters.
Optical Fiber Sensing Using Quantum Dots
Jorge, Pedro; Martins, Manuel António; Trindade, Tito; Santos, José Luís; Farahi, Faramarz
2007-01-01
Recent advances in the application of semiconductor nanocrystals, or quantum dots, as biochemical sensors are reviewed. Quantum dots have unique optical properties that make them promising alternatives to traditional dyes in many luminescence based bioanalytical techniques. An overview of the more relevant progresses in the application of quantum dots as biochemical probes is addressed. Special focus will be given to configurations where the sensing dots are incorporated in solid membranes and immobilized in optical fibers or planar waveguide platforms. PMID:28903308
NASA Astrophysics Data System (ADS)
Vizet, Jérémy; Manhas, Sandeep; Tran, Jacqueline; Validire, Pierre; Benali, Abdelali; Garcia-Caurel, Enric; Pierangelo, Angelo; Martino, Antonello De; Pagnoux, Dominique
2016-07-01
This paper reports a technique based on spectrally differential measurement for determining the full Mueller matrix of a biological sample through an optical fiber. In this technique, two close wavelengths were used simultaneously, one for characterizing the fiber and the other for characterizing the assembly of fiber and sample. The characteristics of the fiber measured at one wavelength were used to decouple its contribution from the measurement on the assembly of fiber and sample and then to extract sample Mueller matrix at the second wavelength. The proof of concept was experimentally validated by measuring polarimetric parameters of various calibrated optical components through the optical fiber. Then, polarimetric images of histological cuts of human colon tissues were measured, and retardance, diattenuation, and orientation of the main axes of fibrillar regions were displayed. Finally, these images were successfully compared with images obtained by a free space Mueller microscope. As the reported method does not use any moving component, it offers attractive integration possibilities with an endoscopic probe.
Vizet, Jérémy; Manhas, Sandeep; Tran, Jacqueline; Validire, Pierre; Benali, Abdelali; Garcia-Caurel, Enric; Pierangelo, Angelo; De Martino, Antonello; Pagnoux, Dominique
2016-07-01
This paper reports a technique based on spectrally differential measurement for determining the full Mueller matrix of a biological sample through an optical fiber. In this technique, two close wavelengths were used simultaneously, one for characterizing the fiber and the other for characterizing the assembly of fiber and sample. The characteristics of the fiber measured at one wavelength were used to decouple its contribution from the measurement on the assembly of fiber and sample and then to extract sample Mueller matrix at the second wavelength. The proof of concept was experimentally validated by measuring polarimetric parameters of various calibrated optical components through the optical fiber. Then, polarimetric images of histological cuts of human colon tissues were measured, and retardance, diattenuation, and orientation of the main axes of fibrillar regions were displayed. Finally, these images were successfully compared with images obtained by a free space Mueller microscope. As the reported method does not use any moving component, it offers attractive integration possibilities with an endoscopic probe.
Fiber-optic Singlet Oxygen [1O2 (1Δg)] Generator Device Serving as a Point Selective Sterilizer
Aebisher, David; Zamadar, Matibur; Mahendran, Adaickapillai; Ghosh, Goutam; McEntee, Catherine; Greer, Alexander
2016-01-01
Traditionally, Type II heterogeneous photo-oxidations produce singlet oxygen via external irradiation of a sensitizer and external supply of ground-state oxygen. A potential improvement is reported here. A hollow-core fiber-optic device was developed with an “internal” supply of light and flowing oxygen, and a porous photosensitizer-end capped configuration. Singlet oxygen was delivered through the fiber tip. The singlet oxygen steady-state concentration in the immediate vicinity of the probe tip was ca 20 fM by N-benzoyl-DL-methionine trapping. The device is portable and the singlet oxygen-generating tip is maneuverable, which opened the door to simple disinfectant studies. Complete Escherichia coli inactivation was observed in 2 h when the singlet oxygen sensitizing probe tip was immersed in 0.1 mL aqueous samples of 0.1–4.4 × 107 cells. Photobleaching of the probe tip occurred after ca 12 h of use, requiring baking and sensitizer reloading steps for reuse. PMID:20497367
Optical fiber-based fluorescent viscosity sensor
NASA Astrophysics Data System (ADS)
Haidekker, Mark A.; Akers, Walter J.; Fischer, Derek; Theodorakis, Emmanuel A.
2006-09-01
Molecular rotors are a unique group of viscosity-sensitive fluorescent probes. Several recent studies have shown their applicability as nonmechanical fluid viscosity sensors, particularly in biofluids containing proteins. To date, molecular rotors have had to be dissolved in the fluid for the measurement to be taken. We now show that molecular rotors may be covalently bound to a fiber-optic tip without loss of viscosity sensitivity. The optical fiber itself may be used as a light guide for emission light (external illumination of the tip) as well as for both emission and excitation light. Covalently bound molecular rotors exhibit a viscosity-dependent intensity increase similar to molecular rotors in solution. An optical fiber-based fluorescent viscosity sensor may be used in real-time measurement applications ranging from biomedical applications to the food industry.
Optical fiber-based fluorescent viscosity sensor.
Haidekker, Mark A; Akers, Walter J; Fischer, Derek; Theodorakis, Emmanuel A
2006-09-01
Molecular rotors are a unique group of viscosity-sensitive fluorescent probes. Several recent studies have shown their applicability as nonmechanical fluid viscosity sensors, particularly in biofluids containing proteins. To date, molecular rotors have had to be dissolved in the fluid for the measurement to be taken. We now show that molecular rotors may be covalently bound to a fiber-optic tip without loss of viscosity sensitivity. The optical fiber itself may be used as a light guide for emission light (external illumination of the tip) as well as for both emission and excitation light. Covalently bound molecular rotors exhibit a viscosity-dependent intensity increase similar to molecular rotors in solution. An optical fiber-based fluorescent viscosity sensor may be used in real-time measurement applications ranging from biomedical applications to the food industry.
NASA Astrophysics Data System (ADS)
Mazurenka, M.; Behrendt, L.; Meinhardt-Wollweber, M.; Morgner, U.; Roth, B.
2017-10-01
A combined optical coherence tomography (OCT)-Raman probe was designed and built into a spectral domain OCT head, and its performance was evaluated and compared to the most common Raman probe setups, based on a fiber bundle and confocal free space optics. Due to the use of the full field of view of an OCT scanning lens, the combined probe has a superior performance within maximum permissible exposure limits, compared to the other two probes. Skin Raman spectra, recorded in vivo, further prove the feasibility of the OCT-Raman probe for the future in vivo clinical applications in skin cancer screening.
Rayleigh scattering in few-mode optical fibers
Wang, Zhen; Wu, Hao; Hu, Xiaolong; Zhao, Ningbo; Mo, Qi; Li, Guifang
2016-01-01
The extremely low loss of silica fibers has enabled the telecommunication revolution, but single-mode fiber-optic communication systems have been driven to their capacity limits. As a means to overcome this capacity crunch, space-division multiplexing (SDM) using few-mode fibers (FMF) has been proposed and demonstrated. In single-mode optical fibers, Rayleigh scattering serves as the dominant mechanism for optical loss. However, to date, the role of Rayleigh scattering in FMFs remains elusive. Here we establish and experimentally validate a general model for Rayleigh scattering in FMFs. Rayleigh backscattering not only sets the intrinsic loss limit for FMFs but also provides the theoretical foundation for few-mode optical time-domain reflectometry, which can be used to probe perturbation-induced mode-coupling dynamics in FMFs. We also show that forward inter-modal Rayleigh scattering ultimately sets a fundamental limit on inter-modal-crosstalk for FMFs. Therefore, this work not only has implications specifically for SDM systems but also broadly for few-mode fiber optics and its applications in amplifiers, lasers, and sensors in which inter-modal crosstalk imposes a fundamental performance limitation. PMID:27775003
Rayleigh scattering in few-mode optical fibers.
Wang, Zhen; Wu, Hao; Hu, Xiaolong; Zhao, Ningbo; Mo, Qi; Li, Guifang
2016-10-24
The extremely low loss of silica fibers has enabled the telecommunication revolution, but single-mode fiber-optic communication systems have been driven to their capacity limits. As a means to overcome this capacity crunch, space-division multiplexing (SDM) using few-mode fibers (FMF) has been proposed and demonstrated. In single-mode optical fibers, Rayleigh scattering serves as the dominant mechanism for optical loss. However, to date, the role of Rayleigh scattering in FMFs remains elusive. Here we establish and experimentally validate a general model for Rayleigh scattering in FMFs. Rayleigh backscattering not only sets the intrinsic loss limit for FMFs but also provides the theoretical foundation for few-mode optical time-domain reflectometry, which can be used to probe perturbation-induced mode-coupling dynamics in FMFs. We also show that forward inter-modal Rayleigh scattering ultimately sets a fundamental limit on inter-modal-crosstalk for FMFs. Therefore, this work not only has implications specifically for SDM systems but also broadly for few-mode fiber optics and its applications in amplifiers, lasers, and sensors in which inter-modal crosstalk imposes a fundamental performance limitation.
NASA Astrophysics Data System (ADS)
Tanaka, Kazunori; Pacheco, Marcos T. T.; Brennan, James F., III; Itzkan, Irving; Berger, Andrew J.; Dasari, Ramachandra R.; Feld, Michael S.
1996-02-01
We describe a compound parabolic concentrator (CPC)-based probe for enhanced signal collection in the spectroscopy of biological tissues. Theoretical considerations governing signal enhancement compared with conventional collection methods are given. A ray-tracing program was used to analyze the throughput of CPC's with shape deviations and surface imperfections. A modified CPC shape with 99% throughput was discovered. A 4.4-mm-long CPC was manufactured and incorporated into an optical fiber-based near-infrared Raman spectrometer system. For human tissue samples, light collection was enhanced by a factor of 7 compared with collection with 0.29-NA optical fibers.
Magnetic and electric field meters developed for the US Department of Energy
NASA Technical Reports Server (NTRS)
Kirkham, H.; Johnson, A.
1988-01-01
This report describes work done at the Jet Propulsion Laboratory for the Office of Energy Storage and Distribution of DOE on the measurement of power line fields. A magnetic field meter is discussed that uses fiber optics to couple a small measuring probe to a remote readout device. The use of fiber optics minimizes electric field perturbation due to the presence of the probe and provides electric isolation for the probe, so that it could be used in a high field or high voltage environment. Power to operate the sensor electronics is transferred via an optical fiber, and converted to electrical form by a small photodiode array. The fundamental, the second and third harmonics of the field are filtered and separately measured, as well as the broadband rms level of the field. The design of the meter is described in detail and data from laboratory tests are presented. The report also describes work done to improve the performance of a DC bushing in a Swedish factory, using the improved meter. The DC electric fields are measured with synchronous detection to provide field magnitude data in two component directions.
NASA Astrophysics Data System (ADS)
Tozburun, Serhat; Lagoda, Gwen A.; Mayeh, Mona; Burnett, Arthur L.; Farahi, Faramarz; Fried, Nathaniel M.
2010-02-01
The cavernous nerves (CN) course along the prostate surface and are responsible for erectile function. Improved identification and preservation of the CN's is critical to maintaining sexual potency after prostate cancer surgery. Noncontact optical nerve stimulation (ONS) of the CN's was recently demonstrated in a rat model, in vivo, as a potential alternative to electrical nerve stimulation (ENS) for identification of the CN's during prostate surgery. However, the therapeutic window for ONS is narrow, so optimal design of the fiber optic delivery system is critical for safe, reproducible stimulation. This study describes modeling, assembly, and testing of an ONS probe for delivering a small, collimated, flat-top laser beam for uniform CN stimulation. A direct comparison of the magnitude and response time of the intracavernosal pressure (ICP) for both Gaussian and flat-top spatial beam profiles was performed. Thulium fiber laser radiation (λ=1870 nm) was delivered through a 200-μm fiber, with distal fiber tip chemically etched to convert a Gaussian to flat-top beam profile. The laser beam was collimated to a 1-mm-diameter spot using an aspheric lens. Computer simulations of light propagation were used to optimize the probe design. The 10-Fr (3.4-mm-OD) laparoscopic probe provided a constant radiant exposure at the nerve surface. The probe was tested in four rats, in vivo. ONS of the CN's was performed with a 1-mm-diameter spot, 5- ms pulse duration, and pulse rate of 20 Hz for a duration of 15-30 s. The flat-top laser beam profile consistently produced a faster and higher ICP response at a lower radiant exposure than the Gaussian beam profile due, in part, to easier alignment of the more uniform beam with nerve. With further development, ONS may be used as a diagnostic tool for identification of the CN's during laparoscopic and robotic nerve-sparing prostate cancer surgery.
Advanced instrumentation for aircraft icing research
NASA Technical Reports Server (NTRS)
Bachalo, W.; Smith, J.; Rudoff, R.
1990-01-01
A compact and rugged probe based on the phase Doppler method was evaluated as a means for characterizing icing clouds using airborne platforms and for advancing aircraft icing research in large scale wind tunnels. The Phase Doppler Particle Analyzer (PDPA) upon which the new probe was based is now widely recognized as an accurate method for the complete characterization of sprays. The prototype fiber optic-based probe was evaluated in simulated aircraft icing clouds and found to have the qualities essential to providing information that will advance aircraft icing research. Measurement comparisons of the size and velocity distributions made with the standard PDPA and the fiber optic probe were in excellent agreement as were the measurements of number density and liquid water content. Preliminary testing in the NASA Lewis Icing Research Tunnel (IRT) produced reasonable results but revealed some problems with vibration and signal quality at high speeds. The cause of these problems were identified and design changes were proposed to eliminate the shortcomings of the probe.
Fiber optic microphone with large dynamic range based on bi-fiber Fabry-Perot cavity
NASA Astrophysics Data System (ADS)
Cheng, Jin; Lu, Dan-feng; Gao, Ran; Qi, Zhi-mei
2017-10-01
In this paper, we report a fiber optic microphone with a large dynamic range. The probe of microphone consists of bi-fiber Fabry-Perot cavity architecture. The wavelength of the working laser is about 1552.05nm. At this wavelength, the interference spectroscopies of these two fiber Fabry-Perot cavities have a quadrature shift. So the outputs of these two fiber Fabry-Perot sensors are orthogonal signal. By using orthogonal signal demodulation method, this microphone can output a signal of acoustic wave. Due to no relationship between output signal and the linear region on interference spectroscopy, the microphones have a large maximum acoustic pressure above 125dB.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Louge, M. Y.; Jenkins, J. T.
The main objective of this work is to develop probes for local measurements of solid velocity and holdup in dense gas-solid flows. In particular, capacitance probes are designed to measure local, time-dependent particle concentrations. In addition, a new optical fiber probe based on laser-induced-phosphorescence is developed to measure particle velocities. The principles for the capacitance and optical diagnostics were given in our first and second quarterly reports. In this reporting period, we have demonstrated with success the feasibility of the optical fiber probe. Another objective of this work is to develop a model of dense-phase conveying and to test thismore » model in a setup that incorporates our diagnostics. In this period, as a prelude to these modeling efforts scheduled for the third year of the contract, we have carried out additional computer simulations of rapid granular flows to verify the theories of Jenkins and Richman (1988) on the anisotropy of the second moment in simple shear. 2 refs., 5 figs.« less
Development and utilization of new diagnostics for dense-phase pneumatic transport
DOE Office of Scientific and Technical Information (OSTI.GOV)
Louge, M.Y.; Jenkins, J.T.
Dense-phase pneumatic transport is an attractive means of conveying solids. Unfortunately, because of the high solid concentrations, this transport method is a difficult regime in which to carry out detailed measurements. Hence most details of the flow are unknown. In this context, the main objective of this work is to develop probes for local measurements of solid velocity and holdup in dense gas-solid flows. In particular, the authors have designed capacitance probes to measure local, time-dependent particle concentrations, and a new optical fiber probe based on laser-induced-phosphorescence to measure particle velocities. The principles for the capacitance and optical diagnostics weremore » given in the first and second quarterly reports. A final version of the optical fiber probe was designed in the previous reporting period. Because granular flows depends strongly on the nature of their interaction with a boundary, the authors have sought in the present reporting period to verify the boundary conditions recently calculated by Jenkins (J. Appl. Mech., in press (1991)) using computer simulations. 2 refs., 2 figs.« less
NASA Astrophysics Data System (ADS)
Hogan, B.; Stone, W.; Bramall, N. E.; Siegel, V.; Lelievre, S.; Rothhammer, B.; Richmond, K.; Flesher, C.
2016-12-01
Subsurface exploration of icy ocean worlds requires an efficient method of penetrating ice to significant depths under extreme environment conditions. Searching for extant life dictates descent to a depth which is habitable or where biomarkers can survive and allow detection. It's anticipated that several meters to 10s of meters of shielding is required to prevent cosmic background radiation and other energetic particles from destroying biomarker evidence. We have devised, developed and demonstrated an entirely novel ice penetrating technology utilizing laser light carried by an optical fiber tether and emitted from a probe's optical nose cone and radiated directly into the volume of ice preceding the penetrator. We have termed it a "Direct Laser Penetrator" or DLP. We present design details, modeling, and test data from preliminary proof-of-concept experiments conducted at Stone Aerospace with results exceeding expectations and achieving the fastest reported thermal probe descent rate to date (> 12 m / hr). DLP has critical benefits over conventional "hot point" melt probes, which must generate large temperature gradients to force heat by conduction through the nose cone, and layers of ice and water. Additionally, hot point melt probes tested under vacuum have shown extreme difficulty initiating penetration, as virtually no thermal contact exists between the probe nose and rough ice surface. The ice simply sublimates and any transferred heat is quickly dissipated due to the low power density and extreme cold. DLP requires NO thermal contact between the probe nose and the ice surface since the laser energy is radiated directly into the volume (vs. surface) of ice preceding the penetrator. A proposed key element of the DLP is the fiber optic tether, coupled with a dedicated sensor fiber, enables "optical access" to the subsurface environment by a lander's shared or DLP dedicated on-board instruments (Raman / Fluorescence / fiber / UV / VIS / NIR spectroscopy, etc). These sensors can search for extant life by detecting biomarkers as well as characterizing the radiation / light environment for subsurface habitability. The combination of a laser penetrator w/ integrated fiber coupled instruments could be an important tool for an icy ocean worlds lander. (Supported by NASA funded SAS projects VALKYRIE and SPINDLE)
Koshelev, Alexander; Calafiore, Giuseppe; Piña-Hernandez, Carlos; Allen, Frances I; Dhuey, Scott; Sassolini, Simone; Wong, Edward; Lum, Paul; Munechika, Keiko; Cabrini, Stefano
2016-08-01
In this Letter, we present a Fresnel lens fabricated on the end of an optical fiber. The lens is fabricated using nanoimprint lithography of a functional high refractive index material, which is suitable for mass production. The main advantage of the presented Fresnel lens compared to a conventional fiber lens is its high refractive index (n=1.68), which enables efficient light focusing even inside other media, such as water or an adhesive. Measurement of the lens performance in an immersion liquid (n=1.51) shows a near diffraction limited focal spot of 810 nm in diameter at the 1/e2 intensity level for a wavelength of 660 nm. Applications of such fiber lenses include integrated optics, optical trapping, and fiber probes.
Multichannel Dynamic Fourier-Transform IR Spectrometer
NASA Astrophysics Data System (ADS)
Balashov, A. A.; Vaguine, V. A.; Golyak, Il. S.; Morozov, A. N.; Khorokhorin, A. I.
2017-09-01
A design of a multichannel continuous scan Fourier-transform IR spectrometer for simultaneous recording and analysis of the spectral characteristics of several objects is proposed. For implementing the design, a multi-probe fiber is used, constructed from several optical fibers connected into a single optical connector and attached at the output of the interferometer. The Fourier-transform spectrometer is used as a signal modulator. Each fiber is individually mated with an investigated sample and a dedicated radiation detector. For the developed system, the radiation intensity of the spectrometer is calculated from the condition of the minimum spectral resolution and parameters of the optical fibers. Using the proposed design, emission spectra of a gas-discharge neon lamp have been recorded using a single fiber 1 mm in diameter with a numerical aperture NA = 0.22.
Applications of fiber-optics-based nanosensors to drug discovery.
Vo-Dinh, Tuan; Scaffidi, Jonathan; Gregas, Molly; Zhang, Yan; Seewaldt, Victoria
2009-08-01
Fiber-optic nanosensors are fabricated by heating and pulling optical fibers to yield sub-micron diameter tips and have been used for in vitro analysis of individual living mammalian cells. Immobilization of bioreceptors (e.g., antibodies, peptides, DNA) selective to targeting analyte molecules of interest provides molecular specificity. Excitation light can be launched into the fiber, and the resulting evanescent field at the tip of the nanofiber can be used to excite target molecules bound to the bioreceptor molecules. The fluorescence or surface-enhanced Raman scattering produced by the analyte molecules is detected using an ultra-sensitive photodetector. This article provides an overview of the development and application of fiber-optic nanosensors for drug discovery. The nanosensors provide minimally invasive tools to probe subcellular compartments inside single living cells for health effect studies (e.g., detection of benzopyrene adducts) and medical applications (e.g., monitoring of apoptosis in cells treated with anticancer drugs).
Evanescent wave assisted nanomaterial coating.
Mondal, Samir K; Pal, Sudipta Sarkar; Kumbhakar, Dharmadas; Tiwari, Umesh; Bhatnagar, Randhir
2013-08-01
In this work we present a novel nanomaterial coating technique using evanescent wave (EW). The gradient force in the EW is used as an optical tweezer for tweezing and self-assembling nanoparticles on the source of EW. As a proof of the concept, we have used a laser coupled etched multimode optical fiber, which generates EW for the EW assisted coating. The section-wise etched multimode optical fiber is horizontally and superficially dipped into a silver/gold nanoparticles solution while the laser is switched on. The fiber is left until the solution recedes due to evaporation leaving the fiber in air. The coating time usually takes 40-50 min at room temperature. The scanning electron microscope image shows uniform and thin coating of self-assembled nanoparticles due to EW around the etched section. A coating thickness <200 nm is achieved. The technique could be useful for making surface-plasmon-resonance-based optical fiber probes and other plasmonic circuits.
Multipoint photonic doppler velocimetry using optical lens elements
Frogget, Brent Copely; Romero, Vincent Todd
2014-04-29
A probe including a fisheye lens is disclosed to measure the velocity distribution of a moving surface along many lines of sight. Laser light, directed to the surface and then reflected back from the surface, is Doppler shifted by the moving surface, collected into fisheye lens, and then directed to detection equipment through optic fibers. The received light is mixed with reference laser light and using photonic Doppler velocimetry, a continuous time record of the surface movement is obtained. An array of single-mode optical fibers provides an optic signal to an index-matching lens and eventually to a fisheye lens. The fiber array flat polished and coupled to the index-matching lens using index-matching gel. Numerous fibers in a fiber array project numerous rays through the fisheye lens which in turn project many measurement points at numerous different locations to establish surface coverage over a hemispherical shape with very little crosstalk.
Ling, Li; Tugaoen, Heather; Brame, Jonathon; Sinha, Shahnawaz; Li, Chuanhao; Schoepf, Jared; Hristovski, Kiril; Kim, Jae-Hong; Shang, Chii; Westerhoff, Paul
2017-11-21
A photocatalyst-coated optical fiber was coupled with a 318 nm ultraviolet-A light emitting diode, which activated the photocatalysts by interfacial photon-electron excitation while minimizing photonic energy losses due to conventional photocatalytic barriers. The light delivery mechanism was explored via modeling of evanescent wave energy produced upon total internal reflection and photon refraction into the TiO 2 surface coating. This work explores aqueous phase LED-irradiated optical fibers for treating organic pollutants and for the first time proposes a dual-mechanistic approach to light delivery and photocatalytic performance. Degradation of a probe organic pollutant was evaluated as a function of optical fiber coating thickness, fiber length, and photocatalyst attachment method and compared against the performance of an equivalent catalyst mass in a completely mixed slurry reactor. Measured and simulated photon fluence through the optical fibers decreased as a function of fiber length, coating thickness, or TiO 2 mass externally coated on the fiber. Thinner TiO 2 coatings achieved faster pollutant removal rates from solution, and dip coating performed better than sol-gel attachment methods. TiO 2 attached to optical fibers achieved a 5-fold higher quantum yield compared against an equivalent mass of TiO 2 suspended in a slurry solution.
NASA Astrophysics Data System (ADS)
Gupta, Banshi D.; Kant, Ravi
2018-05-01
Surface plasmon resonance has established itself as an immensely acclaimed and influential optical sensing tool with quintessential applications in life sciences, environmental monitoring, clinical diagnostics, pharmaceutical developments and ensuring food safety. The implementation of sensing principle of surface plasmon resonance employing an optical fiber as a substrate has concomitantly resulted in the evolution of fiber optic surface plasmon resonance as an exceptionally lucrative scaffold for chemical and biosensing applications. This perspective article outlines the contemporary studies on fiber optic sensors founded on the sensing architecture of propagating as well as localized surface plasmon resonance. An in-depth review of the prevalent analytical and surface chemical tactics involved in configuring the sensing layer over an optical fiber for the detection of various chemical and biological entities is presented. The involvement of nanomaterials as a strategic approach to enhance the sensor sensitivity is furnished concurrently providing an insight into the diverse geometrical blueprints for designing fiber optic sensing probes. Representative examples from the literature are discussed to appreciate the latest advancements in this potentially valuable research avenue. The article concludes by identifying some of the key challenges and exploring the opportunities for expanding the scope and impact of surface plasmon resonance based fiber optic sensors.
NASA Astrophysics Data System (ADS)
Boutet, J.; Debourdeau, M.; Laidevant, A.; Hervé, L.; Dinten, J.-M.
2010-02-01
Finding a way to combine ultrasound and fluorescence optical imaging on an endorectal probe may improve early detection of prostate cancer. A trans-rectal probe adapted to fluorescence diffuse optical tomography measurements was developed by our team. This probe is based on a pulsed NIR laser source, an optical fiber network and a time-resolved detection system. A reconstruction algorithm was used to help locate and quantify fluorescent prostate tumors. In this study, two different kinds of time-resolved detectors are compared: High Rate Imaging system (HRI) and a photon counting system. The HRI is based on an intensified multichannel plate and a CCD Camera. The temporal resolution is obtained through a gating of the HRI. Despite a low temporal resolution (300ps), this system allows a simultaneous acquisition of the signal from a large number of detection fibers. In the photon counting setup, 4 photomultipliers are connected to a Time Correlated Single Photon Counting (TCSPC) board, providing a better temporal resolution (0.1 ps) at the expense of a limited number of detection fibers (4). At last, we show that the limited number of detection fibers of the photon counting setup is enough for a good localization and dramatically improves the overall acquisition time. The photon counting approach is then validated through the localization of fluorescent inclusions in a prostate-mimicking phantom.
Detecting skin malignancy using elastic light scattering spectroscopy
NASA Astrophysics Data System (ADS)
Canpolat, Murat; Akman, Ayşe; Çiftçioğlu, M. Akif; Alpsoy, Erkan
2007-07-01
We have used elastic light scattering spectroscopy to differentiate between malign and benign skin lesions. The system consists of a UV spectrometer, a single optical fiber probe and a laptop. The single optical fiber probe was used for both delivery and detection of white light to tissue and from the tissue. The single optical fiber probe received singly scattered photons rather than diffused photons in tissue. Therefore, the spectra are correlated with morphological differences of the cells. It has been shown that spectra of malign skin lesions are different than spectra of benign skin lesions. While slopes of the spectra taken on benign lesions or normal skin tissues were positive, slopes of the spectra taken on malign skin lesions tissues were negative. In vivo experiments were conducted on 20 lesions from 18 patients (11 men with mean age of 68 +/- 9 years and 7 women with mean age of 52 +/- 20 years) applied to the Department of Dermatology and Venerology. Before the biopsy, spectra were taken on the lesion and adjacent (approximately 1 cm distant) normal-appearing skin. Spectra of the normal skin were used as a control group. The spectra were correlated to the pathology results with sensitivity and specificity of 82% and 89%, respectively. Due to small diameter of fiber probe and limited number of sampling (15), some positive cases are missed, which is lowered the sensitivity of the system. The results are promising and could suggest that the system may be able to detect malignant skin lesion non-invasively and in real time.
NASA Astrophysics Data System (ADS)
Darafsheh, Arash; Taleei, Reza; Kassaee, Alireza; Finlay, Jarod C.
2017-03-01
We experimentally and by means of Monte Carlo simulations investigated the origin of the visible signal responsible for proton therapy dose measurement using bare plastic optical fibers. Experimentally, the fiber optic probe, embedded in tissue-mimicking plastics, was irradiated with a proton beam produced by a proton therapy cyclotron and the luminescence spectroscopy was performed by a CCD-coupled spectrograph to analyze the emission spectrum of the fiber tip. Monte Carlo simulations were performed using FLUKA Monte Carlo code to stochastically simulate radiation transport, ionizing radiation dose deposition, and optical emission of Čerenkov radiation. The spectroscopic study of proton-irradiated plastic fibers showed a continuous spectrum with shape different from that of Čerenkov radiation. The Monte Carlo simulations confirmed that the amount of the generated Čerenkov light does not follow the radiation absorbed dose in a medium. Our results show that the origin of the optical signal responsible for the proton dose measurement using bare optical fibers is not Čerenkov radiation. Our results point toward a connection between the scintillation of the plastic material of the fiber and the origin of the signal responsible for dose measurement.
Nondestructive surface analysis for material research using fiber optic vibrational spectroscopy
NASA Astrophysics Data System (ADS)
Afanasyeva, Natalia I.
2001-11-01
The advanced methods of fiber optical vibrational spectroscopy (FOVS) has been developed in conjunction with interferometer and low-loss, flexible, and nontoxic optical fibers, sensors, and probes. The combination of optical fibers and sensors with Fourier Transform (FT) spectrometer has been used in the range from 2.5 to 12micrometers . This technique serves as an ideal diagnostic tool for surface analysis of numerous and various diverse materials such as complex structured materials, fluids, coatings, implants, living cells, plants, and tissue. Such surfaces as well as living tissue or plants are very difficult to investigate in vivo by traditional FT infrared or Raman spectroscopy methods. The FOVS technique is nondestructive, noninvasive, fast (15 sec) and capable of operating in remote sampling regime (up to a fiber length of 3m). Fourier transform infrared (FTIR) and Raman fiber optic spectroscopy operating with optical fibers has been suggested as a new powerful tool. These techniques are highly sensitive techniques for structural studies in material research and various applications during process analysis to determine molecular composition, chemical bonds, and molecular conformations. These techniques could be developed as a new tool for quality control of numerous materials as well as noninvasive biopsy.
Design of a multimodal fibers optic system for small animal optical imaging.
Spinelli, Antonello E; Pagliazzi, Marco; Boschi, Federico
2015-02-01
Small animals optical imaging systems are widely used in pre-clinical research to image in vivo the bio-distribution of light emitting probes using fluorescence or bioluminescence modalities. In this work we presented a set of simulated results of a novel small animal optical imaging module based on a fibers optics matrix, coupled with a position sensitive detector, devoted to acquire bioluminescence and Cerenkov images. Simulations were performed using GEANT 4 code with the GAMOS architecture using the tissue optics plugin. Results showed that it is possible to image a 30 × 30 mm region of interest using a fiber optics array containing 100 optical fibers without compromising the quality of the reconstruction. The number of fibers necessary to cover an adequate portion of a small animal is thus quite modest. This design allows integrating the module with magnetic resonance (MR) in order to acquire optical and MR images at the same time. A detailed model of the mouse anatomy, obtained by segmentation of 3D MRI images, will improve the quality of optical 3D reconstruction. Copyright © 2014 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
Lin, Tsao-Jen; Chung, Mon-Fu
2008-01-01
A novel reflection-based localized surface plasmon resonance (LSPR) fiberoptic probe has been developed to determine the heavy metal lead ion concentration. Monoclonal antibody as the detecting probe containing massive amino groups to capture Pb(II)-chelate complexes was immobilized onto gold nanoparticle-modified optical fiber (NMAuOF). The optimal immobilizing conditions of monoclonal antibody on to the NMAuOF are 189 μg/mL in pH7.4 PBS for 2 h at 25°C. The absorbability of the functionalized NMAuOF sensor increases to 12.2 % upon changing the Pb(II)-EDTA level from 10 to 100 ppb with a detection limit of 0.27 ppb. The sensor retains 92.7 % of its original activity and gives reproducible results after storage in 5% D-(+)-Trehalose dehydrate solution at 4°C for 35 days. In conclusion, the monoclonal antibody-functionalized NMAuOF sensor shows a promising result for determining the concentration of Pb(II) with high sensitivity. PMID:27879723
In situ TEM Raman spectroscopy and laser-based materials modification.
Allen, F I; Kim, E; Andresen, N C; Grigoropoulos, C P; Minor, A M
2017-07-01
We present a modular assembly that enables both in situ Raman spectroscopy and laser-based materials processing to be performed in a transmission electron microscope. The system comprises a lensed Raman probe mounted inside the microscope column in the specimen plane and a custom specimen holder with a vacuum feedthrough for a tapered optical fiber. The Raman probe incorporates both excitation and collection optics, and localized laser processing is performed using pulsed laser light delivered to the specimen via the tapered optical fiber. Precise positioning of the fiber is achieved using a nanomanipulation stage in combination with simultaneous electron-beam imaging of the tip-to-sample distance. Materials modification is monitored in real time by transmission electron microscopy. First results obtained using the assembly are presented for in situ pulsed laser ablation of MoS 2 combined with Raman spectroscopy, complimented by electron-beam diffraction and electron energy-loss spectroscopy. Copyright © 2016 Elsevier B.V. All rights reserved.
Jang, Kyoung Won; Shin, Sang Hun; Kim, Seon Geun; Kim, Jae Seok; Yoo, Wook Jae; Ji, Young Hoon; Lee, Bongsoo
2014-04-21
In this study, a wavelength shifting fiber that shifts ultra-violet and blue light to green light was employed as a sensor probe of a fiber-optic Cerenkov radiation sensor. In order to characterize Cerenkov radiation generated in the developed wavelength shifting fiber and a plastic optical fiber, spectra and intensities of Cerenkov radiation were measured with a spectrometer. The spectral peaks of light outputs from the wavelength shifting fiber and the plastic optical fiber were measured at wavelengths of 500 and 510 nm, respectively, and the intensity of transmitted light output of the wavelength shifting fiber was 22.2 times higher than that of the plastic optical fiber. Also, electron fluxes and total energy depositions of gamma-ray beams generated from a Co-60 therapy unit were calculated according to water depths using the Monte Carlo N-particle transport code. The relationship between the fluxes of electrons over the Cerenkov threshold energy and the energy depositions of gamma-ray beams from the Co-60 unit is a near-identity function. Finally, percentage depth doses for the gamma-ray beams were obtained using the fiber-optic Cerenkov radiation sensor, and the results were compared with those obtained by an ionization chamber. The average dose difference between the results of the fiber-optic Cerenkov radiation sensor and those of the ionization chamber was about 2.09%.
Nanosphere Lithography on Fiber: Towards Engineered Lab-On-Fiber SERS Optrodes
Quero, Giuseppe; Zito, Gianluigi; Cusano, Andrea
2018-01-01
In this paper we report on the engineering of repeatable surface enhanced Raman scattering (SERS) optical fiber sensor devices (optrodes), as realized through nanosphere lithography. The Lab-on-Fiber SERS optrode consists of polystyrene nanospheres in a close-packed arrays configuration covered by a thin film of gold on the optical fiber tip. The SERS surfaces were fabricated by using a nanosphere lithography approach that is already demonstrated as able to produce highly repeatable patterns on the fiber tip. In order to engineer and optimize the SERS probes, we first evaluated and compared the SERS performances in terms of Enhancement Factor (EF) pertaining to different patterns with different nanosphere diameters and gold thicknesses. To this aim, the EF of SERS surfaces with a pitch of 500, 750 and 1000 nm, and gold films of 20, 30 and 40 nm have been retrieved, adopting the SERS signal of a monolayer of biphenyl-4-thiol (BPT) as a reliable benchmark. The analysis allowed us to identify of the most promising SERS platform: for the samples with nanospheres diameter of 500 nm and gold thickness of 30 nm, we measured values of EF of 4 × 105, which is comparable with state-of-the-art SERS EF achievable with highly performing colloidal gold nanoparticles. The reproducibility of the SERS enhancement was thoroughly evaluated. In particular, the SERS intensity revealed intra-sample (i.e., between different spatial regions of a selected substrate) and inter-sample (i.e., between regions of different substrates) repeatability, with a relative standard deviation lower than 9 and 15%, respectively. Finally, in order to determine the most suitable optical fiber probe, in terms of excitation/collection efficiency and Raman background, we selected several commercially available optical fibers and tested them with a BPT solution used as benchmark. A fiber probe with a pure silica core of 200 µm diameter and high numerical aperture (i.e., 0.5) was found to be the most promising fiber platform, providing the best trade-off between high excitation/collection efficiency and low background. This work, thus, poses the basis for realizing reproducible and engineered Lab-on-Fiber SERS optrodes for in-situ trace detection directed toward highly advanced in vivo sensing. PMID:29495322
Multi-chord fiber-coupled interferometer with a long coherence length laser
NASA Astrophysics Data System (ADS)
Merritt, Elizabeth C.; Lynn, Alan G.; Gilmore, Mark A.; Hsu, Scott C.
2012-03-01
This paper describes a 561 nm laser heterodyne interferometer that provides time-resolved measurements of line-integrated plasma electron density within the range of 1015-1018 cm-2. Such plasmas are produced by railguns on the plasma liner experiment, which aims to produce μs-, cm-, and Mbar-scale plasmas through the merging of 30 plasma jets in a spherically convergent geometry. A long coherence length, 320 mW laser allows for a strong, sub-fringe phase-shift signal without the need for closely matched probe and reference path lengths. Thus, only one reference path is required for all eight probe paths, and an individual probe chord can be altered without altering the reference or other probe path lengths. Fiber-optic decoupling of the probe chord optics on the vacuum chamber from the rest of the system allows the probe paths to be easily altered to focus on different spatial regions of the plasma. We demonstrate that sub-fringe resolution capability allows the interferometer to operate down to line-integrated densities of the order of 5 × 1015 cm-2.
Common-path low-coherence interferometry fiber-optic sensor guided microincision
NASA Astrophysics Data System (ADS)
Zhang, Kang; Kang, Jin U.
2011-09-01
We propose and demonstrate a common-path low-coherence interferometry (CP-LCI) fiber-optic sensor guided precise microincision. The method tracks the target surface and compensates the tool-to-surface relative motion with better than +/-5 μm resolution using a precision micromotor connected to the tool tip. A single-fiber distance probe integrated microdissector was used to perform an accurate 100 μm incision into the surface of an Intralipid phantom. The CP-LCI guided incision quality in terms of depth was evaluated afterwards using three-dimensional Fourier-domain optical coherence tomography imaging, which showed significant improvement of incision accuracy compared to free-hand-only operations.
Low-Cost Interrogation Technique for Dynamic Measurements with FBG-Based Devices.
Díaz, Camilo A R; Leitão, Cátia; Marques, Carlos A; Domingues, M Fátima; Alberto, Nélia; Pontes, Maria José; Frizera, Anselmo; Ribeiro, Moisés R N; André, Paulo S B; Antunes, Paulo F C
2017-10-23
Fiber Bragg gratings are widely used optical fiber sensors for measuring temperature and/or mechanical strain. Nevertheless, the high cost of the interrogation systems is the most important drawback for their large commercial application. In this work, an in-line Fabry-Perot interferometer based edge filter is explored in the interrogation of fiber Bragg grating dynamic measurements up to 5 kHz. Two devices an accelerometer and an arterial pulse wave probe were interrogated with the developed approach and the results were compared with a commercial interrogation monitor. The data obtained with the edge filter are in agreement with the commercial device, with a maximum RMSE of 0.05 being able to meet the requirements of the measurements. Resolutions of 3.6 pm and 2.4 pm were obtained, using the optical accelerometer and the arterial pulse wave probe, respectively.
NASA Astrophysics Data System (ADS)
Xie, Yijing; Bonin, Tim; Löffler, Susanne; Hüttmann, Gereon; Tronnier, Volker; Hofmann, Ulrich G.
2013-02-01
A well-established navigation method is one of the key conditions for successful brain surgery: it should be accurate, safe and online operable. Recent research shows that optical coherence tomography (OCT) is a potential solution for this application by providing a high resolution and small probe dimension. In this study a fiber-based spectral-domain OCT system utilizing a super-luminescent-diode with the center wavelength of 840 nm providing 14.5 μm axial resolution was used. A composite 125 μm diameter detecting probe with a gradient index (GRIN) fiber fused to a single mode fiber was employed. Signals were reconstructed into grayscale images by horizontally aligning A-scans from the same trajectory with different depths. The reconstructed images can display brain morphology along the entire trajectory. For scans of typical white matter, the signals showed a higher reflection of light intensity with lower penetration depth as well as a steeper attenuation rate compared to the scans typical for gray matter. Micro-structures such as axon bundles (70 μm) in the caudate nucleus are visible in the reconstructed images. This study explores the potential of OCT to be a navigation modality in brain surgery.
Khan, Md Rajibur Rahaman; Kang, Shin-Won
2016-07-09
In this paper, we propose a temperature/thermal sensor that contains a Rhodamine-B sensing membrane. We applied two different sensing methods, namely, fiber-optic pulse width modulation (PWM) and an interdigitated capacitor (IDC)-based temperature sensor to measure the temperature from 5 °C to 100 °C. To the best of our knowledge, the fiber-optic PWM-based temperature sensor is reported for the first time in this study. The proposed fiber-optic PWM temperature sensor has good sensing ability; its sensitivity is ~3.733 mV/°C. The designed temperature-sensing system offers stable sensing responses over a wide dynamic range, good reproducibility properties with a relative standard deviation (RSD) of ~0.021, and the capacity for a linear sensing response with a correlation coefficient of R² ≈ 0.992 over a wide sensing range. In our study, we also developed an IDC temperature sensor that is based on the capacitance variation principle as the IDC sensing element is heated. We compared the performance of the proposed temperature-sensing systems with different fiber-optic temperature sensors (which are based on the fiber-optic wavelength shift method, the long grating fiber-optic Sagnac loop, and probe type fiber-optics) in terms of sensitivity, dynamic range, and linearity. We observed that the proposed sensing systems have better sensing performance than the above-mentioned sensing system.
Diffuse reflectance spectroscopy of liver tissue
NASA Astrophysics Data System (ADS)
Reistad, Nina; Nilsson, Jan; Vilhelmsson Timmermand, Oskar; Sturesson, Christian; Andersson-Engels, Stefan
2015-06-01
Diffuse reflectance spectroscopy (DRS) with a fiber-optic contact probe is a cost-effective, rapid, and non-invasive optical method used to extract diagnosis information of tissue. By combining commercially available VIS- and NIR-spectrometers with various fiber-optic contact-probes, we have access to the full wavelength range from around 400 to 1600 nm. Using this flexible and portable spectroscopy system, we have acquired ex-vivo DRS-spectra from murine, porcine, and human liver tissue. For extracting the tissue optical properties from the measured spectra, we have employed and compared predictions from two models for light propagation in tissue, diffusion theory model (DT) and Monte Carlo simulations (MC). The focus in this work is on the capacity of this DRS-technique in discriminating metastatic tumor tissue from normal liver tissue as well as in assessing and characterizing damage to non-malignant liver tissue induced by preoperative chemotherapy for colorectal liver metastases.
NASA Astrophysics Data System (ADS)
Shinde, Anant; Perinchery, Sandeep Menon; Murukeshan, Vadakke Matham
2017-04-01
An optical imaging probe with targeted multispectral and spatiotemporal illumination features has applications in many diagnostic biomedical studies. However, these systems are mostly adapted in conventional microscopes, limiting their use for in vitro applications. We present a variable resolution imaging probe using a digital micromirror device (DMD) with an achievable maximum lateral resolution of 2.7 μm and an axial resolution of 5.5 μm, along with precise shape selective targeted illumination ability. We have demonstrated switching of different wavelengths to image multiple regions in the field of view. Moreover, the targeted illumination feature allows enhanced image contrast by time averaged imaging of selected regions with different optical exposure. The region specific multidirectional scanning feature of this probe has facilitated high speed targeted confocal imaging.
Technique development for photoacoustic imaging guided interventions
NASA Astrophysics Data System (ADS)
Cheng, Qian; Zhang, Haonan; Yuan, Jie; Feng, Ting; Xu, Guan; Wang, Xueding
2015-03-01
Laser-induced thermotherapy (LITT), i.e. tissue destruction induced by a local increase of temperature by means of laser light energy transmission, has been frequently used for minimally invasive treatments of various diseases such as benign thyroid nodules and liver cancer. The emerging photoacoustic (PA) imaging, when integrated with ultrasound (US), could contribute to LITT procedure. PA can enable a good visualization of percutaneous apparatus deep inside tissue and, therefore, can offer accurate guidance of the optical fibers to the target tissue. Our initial experiment demonstrated that, by picking the strong photoacoustic signals generated at the tips of optical fibers as a needle, the trajectory and position of the fibers could be visualized clearly using a commercial available US unit. When working the conventional US Bscan mode, the fibers disappeared when the angle between the fibers and the probe surface was larger than 60 degree; while working on the new PA mode, the fibers could be visualized without any problem even when the angle between the fibers and the probe surface was larger than 75 degree. Moreover, with PA imaging function integrated, the optical fibers positioned into the target tissue, besides delivering optical energy for thermotherapy, can also be used to generate PA signals for on-line evaluation of LITT. Powered by our recently developed PA physio-chemical analysis, PA measurements from the tissue can provide a direct and accurate feedback of the tissue responses to laser ablation, including the changes in not only chemical compositions but also histological microstructures. The initial experiment on the rat liver model has demonstrated the excellent sensitivity of PA imaging to the changes in tissue temperature rise and tissue status (from native to coagulated) when the tissue is treated in vivo with LITT.
Alcohol sensor based on u-bent hetero-structured fiber optic
NASA Astrophysics Data System (ADS)
Patrialova, Sefi N.; Hatta, Agus M.; Sekartedjo, Sekartedjo
2016-11-01
A sensor based on a fiber optic hetero-structure to determine the concentration of alcohol has been proposed. The structure of the sensing probe in this research is a singlemode-multimode-singlemode (SMS) which bent into Ushaped and soon called as SMS u-bent. The SMS structure was chosen to get a higher sensitivity. This research utilizes the principle of multimode interference and evanescent field by modifying the cladding with various alcohol concentration. Testing of the sensor's performance has been done by measuring the sensor's power output response to the length of the SMS fiber optic, bending diameter, and alcohol concentration. Based on the experiment result, the ubent SMS fiber optic with 50 mm bending diameter and 63 mm MMF lenght has the highest sensitivity, 3.87 dB/% and the minimum resolution, 0.26 x 10-3 %.
Infrared fiber optic probe evaluation of degenerative cartilage correlates to histological grading.
Hanifi, Arash; Bi, Xiaohong; Yang, Xu; Kavukcuoglu, Beril; Lin, Ping Chang; DiCarlo, Edward; Spencer, Richard G; Bostrom, Mathias P G; Pleshko, Nancy
2012-12-01
Osteoarthritis (OA), a degenerative cartilage disease, results in alterations of the chemical and structural properties of tissue. Arthroscopic evaluation of full-depth tissue composition is limited and would require tissue harvesting, which is inappropriate in daily routine. Fourier transform infrared (FT-IR) spectroscopy is a modality based on molecular vibrations of matrix components that can be used in conjunction with fiber optics to acquire quantitative compositional data from the cartilage matrix. To develop a model based on infrared spectra of articular cartilage to predict the histological Mankin score as an indicator of tissue quality. Comparative laboratory study. Infrared fiber optic probe (IFOP) spectra were collected from nearly normal and more degraded regions of tibial plateau articular cartilage harvested during knee arthroplasty (N = 61). Each region was graded using a modified Mankin score. A multivariate partial least squares algorithm using second-derivative spectra was developed to predict the histological modified Mankin score. The partial least squares model derived from IFOP spectra predicted the modified Mankin score with a prediction error of approximately 1.4, which resulted in approximately 72% of the Mankin-scored tissues being predicted correctly and 96% being predicted within 1 grade of their true score. These data demonstrate that IFOP spectral parameters correlate with histological tissue grade and can be used to provide information on tissue composition. Infrared fiber optic probe studies have significant potential for the evaluation of cartilage tissue quality without the need for tissue harvest. Combined with arthroscopy, IFOP analysis could facilitate the definition of tissue margins in debridement procedures.
Li, Dongdong; Wang, Lili
2010-05-01
A highly sensitive microstructured polymer optical fiber (MPOF) probe for hydrogen peroxide was made by forming a rhodamine 6G-doped titanium dioxide film on the side walls of array holes in an MPOF. It was found that hydrogen peroxide only has a response to the MPOF probe in a certain concentration of potassium iodide in sulfuric acid solution. The calibration graph of fluorescence intensity versus hydrogen peroxide concentration is linear in the range of 1.6 x 10(-7) mol/L to 9.6 x 10(-5) mol/L. The method, with high sensitivity and a wide linear range, has been applied to the determination of trace amounts of hydrogen peroxide in a few real samples, such as rain water and contact lens disinfectant, with satisfactory results.
Microinterferometer transducer
Corey, III, Harry S.
1979-01-01
An air-bearing microinterferometer transducer is provided for increased accuracy, range and linearity over conventional displacement transducers. A microinterferometer system is housed within a small compartment of an air-bearing displacement transducer housing. A movable cube corner reflector of the interferometer is mounted to move with the displacement gauging probe of the transducer. The probe is disposed for axial displacement by means of an air-bearing. Light from a single frequency laser is directed into an interferometer system within the transducer housing by means of a self-focusing fiber optic cable to maintain light coherency. Separate fringe patterns are monitored by a pair of fiber optic cables which transmit the patterns to a detecting system. The detecting system includes a bidirectional counter which counts the light pattern fringes according to the direction of movement of the probe during a displacement gauging operation.
Optical calibration of a new two-way optical component network analyzer
NASA Astrophysics Data System (ADS)
Tsao, Shyh-Lin; Ko, Chih-Han; Liou, Tai-Chi
2003-12-01
High-speed fiber communications show promising results recently [1,2]. Using of lightwave technology for measuring S parameters with optical component becoming important. For this purpose to develop a two-way network analyzer has been reported [3]. In this paper, we report the calibration method of a new two-way lightwave component analyze for applying in fiber optical signal processing elements. The background error and circulator wavelength response are all calibrated. We have designed a new probe for two-way optical component network analyzer. The probe is composed of frequency division multiplexer(FDM), electrical circulator, optical transmitter, optical receiver, and an optical circulator. We design 2-D grating structures as frequency division. The PCB we adopted is Kinstan GD1530 160 whose relative dielectric constantɛ= 4.3, length= 120 mm, and height= 1.8 mm. Two dimensional non-metal covered array square pads are designed on FR4 Glass-Epoxy board for FDM. The FDM can be achieved by the two dimensional non-metalized covered array square pads. Finally we use a single fiber ring resonator filter as our test samples. Comparing the numerical and experimental results, test the device we made. References [1] D. D. Curtis and E. E. Ames,"Optical Test Set for Microwave Fiber-Optic Network Analysis," IEEE Transactions on Microwave Theory and Techniques. , vol. 38, NO.5, pp. 552-559, 1990. [2] J. A. C. Bingham,"Multicarrier modulation for data transmission: an idea whose time has come," IEEE Commun. Magazine., pp. 5 -14, 1990. [3] M. Nakazawa, K. Suzuki, and Y. Kimura, " 3.2-5 Gbps 100km error-free soliton transmission with erbium amplifiers and repenters," IEEE Photonics Tech Lett.,vol.2,pp.216-219,1990.
NASA Astrophysics Data System (ADS)
Cosci, Alessandro; Cicchi, Riccardo; Rossari, Susanna; De Giorgi, Vincenzo; Massi, Daniela; Pavone, Francesco S.
2012-02-01
We have designed and developed an optical fiber-probe for spectroscopic measurements on human tissues. The experimental setup combines fluorescence spectroscopy and Raman spectroscopy in a multidimensional approach. Concerning fluorescence spectroscopy, the excitation is provided by two laser diodes, one emitting in the UV (378 nm) and the other emitting in the visible (445 nm). These two lasers are used to selectively excite fluorescence from NADH and FAD, which are among the brightest endogenous fluorophores in human tissues. For Raman and NIR spectroscopy, the excitation is provided by a third laser diode with 785 nm excitation wavelength. Laser light is delivered to the tissue through the central optical fiber of a fiber bundle. The surrounding 48 fibers of the bundle are used for collecting fluorescence and Raman and for delivering light to the spectrograph. Fluorescence and Raman spectra are acquired on a cooled CCD camera. The instrument has been tested on fresh human skin biopsies clinically diagnosed as malignant melanoma, melanocytic nevus, or healthy skin, finding an optimal correlation with the subsequent histological exam. In some cases our examination was not in agreement with the clinical observation, but it was with the histological exam, demonstrating that the system can potentially contribute to improve clinical diagnostic capabilities and hence reduce the number of unnecessary biopsies.
Advances in engineering of high contrast CARS imaging endoscopes
Deladurantaye, Pascal; Paquet, Alex; Paré, Claude; Zheng, Huimin; Doucet, Michel; Gay, David; Poirier, Michel; Cormier, Jean-François; Mermut, Ozzy; Wilson, Brian C.; Seibel, Eric J.
2014-01-01
The translation of CARS imaging towards real time, high resolution, chemically selective endoscopic tissue imaging applications is limited by a lack of sensitivity in CARS scanning probes sufficiently small for incorporation into endoscopes. We have developed here a custom double clad fiber (DCF)-based CARS probe which is designed to suppress the contaminant Four-Wave-Mixing (FWM) background generated within the fiber and integrated it into a fiber based scanning probe head of a few millimeters in diameter. The DCF includes a large mode area (LMA) core as a first means of reducing FWM generation by ~3 dB compared to commercially available, step-index single mode fibers. A micro-fabricated miniature optical filter (MOF) was grown on the distal end of the DCF to block the remaining FWM background from reaching the sample. The resulting probe was used to demonstrate high contrast images of polystyrene beads in the forward-CARS configuration with > 10 dB suppression of the FWM background. In epi-CARS geometry, images exhibited lower contrast due to the leakage of MOF-reflected FWM from the fiber core. Improvements concepts for the fiber probe are proposed for high contrast epi-CARS imaging to enable endoscopic implementation in clinical tissue assessment contexts, particularly in the early detection of endoluminal cancers and in tumor margin assessment. PMID:25401538
Wang, Kaiwei; Martin, Haydn; Jiang, Xiangqian
2008-02-01
In this paper, we report the recent progress in optical-beam scanning fiber interferometry for potential online nanoscale surface measurement based on the previous research. It attempts to generate a robust and miniature measurement device for future development into a multiprobe array measurement system. In this research, both fiber-optic-interferometry and the wavelength-division-multiplexing techniques have been used, so that the optical probe and the optical interferometer are well spaced and fast surface scanning can be carried out, allowing flexibility for online measurement. In addition, this system provides a self-reference signal to stabilize the optical detection with high common-mode noise suppression by adopting an active phase tracking and stabilization technique. Low-frequency noise was significantly reduced compared with unstabilized result. The measurement of a sample surface shows an attained repeatability of 3.3 nm.
Simultaneous Optical Measurements of Axial and Tangential Steady-State Blade Deflections
NASA Technical Reports Server (NTRS)
Kurkov, Anatole P.; Dhadwal, Harbans S.
1999-01-01
Currently, the majority of fiber-optic blade instrumentation is being designed and manufactured by aircraft-engine companies for their own use. The most commonly employed probe for optical blade deflection measurements is the spot probe. One of its characteristics is that the incident spot on a blade is not fixed relative to the blade, but changes depending on the blade deformation associated with centrifugal and aerodynamic loading. While there are geometrically more complicated optical probe designs in use by different engine companies, this paper offers an alternate solution derived from a probe-mount design feature that allows one to change the probe axial position until the incident spot contacts either a leading or a trailing edge. By tracing the axial position of either blade edge one is essentially extending the deflection measurement to two dimensions, axial and tangential. The blade deflection measurements were obtained during a wind tunnel test of a fan prototype.
Optical trapping and control of nanoparticles inside evacuated hollow core photonic crystal fibers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grass, David, E-mail: david.grass@univie.ac.at; Fesel, Julian; Hofer, Sebastian G.
2016-05-30
We demonstrate an optical conveyor belt for levitated nanoparticles over several centimeters inside both air-filled and evacuated hollow-core photonic crystal fibers (HCPCF). Detection of the transmitted light field allows three-dimensional read-out of the particle center-of-mass motion. An additional laser enables axial radiation pressure based feedback cooling over the full fiber length. We show that the particle dynamics is a sensitive local probe for characterizing the optical intensity profile inside the fiber as well as the pressure distribution along the fiber axis. In contrast to some theoretical predictions, we find a linear pressure dependence inside the HCPCF, extending over three ordersmore » of magnitude from 0.2 mbar to 100 mbar. A targeted application is the controlled delivery of nanoparticles from ambient pressure into medium vacuum.« less
NASA Astrophysics Data System (ADS)
Goosman, David R.; Avara, George R.; Perry, Stephen J.
2001-04-01
We have in the past used several types of optical probe lenses for delivering and collecting laser light to an experiment for laser velocimetry. When the test surface was in focus, however, the collected light would fill mostly the laser fiber rather than the collection fiber(s). We have designed, developed and used for 8 years nested-lens probe assemblies that solve this problem. Our first version used a commercial AR-coated glass achromat, which we cored to remove the inner fourth of its area. The core was then reinserted with its optical center offset from that of annulus by an amount slightly less than the separation between the laser and collector fibers. The laser and collector fibers are placed in contact with each other behind the lens and have NA values of 0.11 and 0.22, respectively. Because most of the collected light now focused on the collection fiber, this system was far superior to the single lens systems, but was laborious. For the last five years we used injection-molded acrylic aspheric nested lenses, which are inexpensive in quantity and require little labor to install into a probe. Only an azimuthal rotation and positioning of the fiber plane are needed to incorporate the plastic lens into a probe. Special ray-trace codes were written and used to design the lens, and many iterations by the molder were required to develop the injection processing parameters to produce a good lens, since it was thick for its diameter. These probes have real light collection efficiencies of 75% of theoretical, work well over a wide range of distances, with collection depths of field matching theory. The lenses can take 100 watts of pulsed power many times without damage, since the lens is designed so that reflections from the lens surface do not focus within the lens. The collection fiber size is designed to work with our manybeam velocimeter facility reported in a previous Congress, where the collection NA times collection fiber size exceeds the acceptance of the velocimeter. The Doppler-shifted light enters the collection fiber with angles between 0.11 and 0.2, with little light in the 0 to 0.11 NA region. However, the manybeam velocimeter uses just the light in the 0 to 0.11 NA range, except when we link two analyzer tables together. A slight amount of mode scrambling of the Doppler shifted light converts the light into a uniformly filled NA equals 0.2 angular range before entering the velocimeter analyzer table. We have expended seven hundred plastic nested lenses in various experiments. The most recent version of the fiber cable assembly will be shown. Six situations will be discussed where multiple reflected frequencies were observed in experiments, illustrating an advantage of the Fabry-Perot vs. the VISAR method.
Microstructured optical fiber Bragg grating sensor for DNA detection
NASA Astrophysics Data System (ADS)
Candiani, A.; Giannetti, S.; Sozzi, M.; Coscelli, E.; Poli, F.; Cucinotta, A.; Bertucci, A.; Corradini, R.; Konstantaki, M.; Margulis, W.; Pissadakis, S.; Selleri, S.
2013-03-01
In this work the inner surface of a microstructured optical fiber, where a Bragg grating was previously inscribed, has been functionalized using peptide nucleic acid probe targeting a DNA sequence of the cystic fibrosis disease. The solution of DNA molecules, matched with the PNA probes, has been infiltrated inside the fiber capillaries and hybridization has been realized according to the Watson - Crick Model. In order to achieve signal amplification, oligonucleotide-functionalized gold nanoparticles were then infiltrated and used to form a sandwich-like system. Experimental measurements show a clear wavelength shift of the reflected high order mode for a 100 nM DNA solution. Several experiments have been carried out on the same fiber using the identical concentration, showing the same modulation and proving a good reproducibility of the results, suggesting the possibility of the reuse of the sensor. Measurements have been also made using a 100 nM mis-matched DNA solution, containing a single nucleotide polymorphism, demonstrating the high selectivity of the sensor.
Fiber optic apparatus for detecting molecular species by surface enhanced Raman spectroscopy
Angel, Stanley M.; Sharma, Shiv K.
1988-01-01
Optrode apparatus for detecting constituents of a fluid medium includes an optical fiber (13, 13a to 13e) having a metal coating (22, 22a to 22e) on at least a portion of a light transmissive core (17, 17a to 17d). The metal is one, such as silver, gold or copper, which enhances emission of Raman signal frequencies by molecules adsorbed on the surface of the coating when monochromatic probe light of a different frequency is scattered by such molecules and the metal coating is sufficiently thin to transmit light between the absorbed molecules and the core of the fiber. Probe light is directed into one end of the fiber and a detector (16, 16d, 16e) analyzes light emitted from the fiber for Raman frequencies that identify one or more particular molecular species. In one form, the optrode (13e) may function as a working electrode of an electrochemical cell (53) while also serving to detect the products of oxidation or reduction reactions which occur at the electrode surface.
Evaluation of toxic agent effects on lung cells by fiber evanescent wave spectroscopy.
Lucas, Pierre; Le Coq, David; Juncker, Christophe; Collier, Jayne; Boesewetter, Dianne E; Boussard-Plédel, Catherine; Bureau, Bruno; Riley, Mark R
2005-01-01
Biochemical changes in living cells are detected using a fiber probe system composed of a single chalcogenide fiber acting as both the sensor and transmission line for infrared optical signals. The signal is collected via evanescent wave absorption along the tapered sensing zone of the fiber. We spectroscopically monitored the effects of the surfactant Triton X-100, which serves as a toxic agent simulant on a transformed human lung carcinoma type II epithelial cell line (A549). We observe spectral changes between 2800-3000 cm(-1) in four absorptions bands, which are assigned to hydrocarbon vibrations of methylene and methyl groups in membrane lipids. Comparison of fiber and transmission spectra shows that the present technique allows one to locally probe the cell plasma membrane in the lipid spectral region. These optical responses are correlated with cellular metabolic activity measurements and LDH (lactate dehydrogenase) release assays that indicate a loss of cellular function and membrane integrity as would be expected in response to the membrane solubilizing Triton. The spectroscopic technique shows a significantly greater detection resolution in time and concentration.
Immunosensing with Near-Infrared Plasmonic Optical Fiber Gratings.
Caucheteur, Christophe; Ribaut, Clotilde; Malachovska, Viera; Wattiez, Ruddy
2017-01-01
Surface Plasmon resonance (SPR) optical fiber biosensors constitute a miniaturized counterpart to the bulky prism configuration and offer remote operation in very small volumes of analyte. They are a cost-effective and relatively straightforward technique to yield in situ (or even possibly in vivo) molecular detection. They are usually obtained from a gold-coated fiber segment for which the core-guided light is brought into contact with the surrounding medium, either by etching (or side-polishing) or by using grating coupling. Recently, SPR generation was achieved in gold-coated tilted fiber Bragg gratings (TFBGs). These sensors probe the surrounding medium with near-infrared narrowband resonances, which enhances both the penetration depth of the evanescent field in the external medium and the wavelength resolution of the interrogation. They constitute the unique configuration able to probe all the fiber cladding modes individually, with high Q-factors. We use these unique spectral features in our work to sense proteins and extra-cellular membrane receptors that are both overexpressed in cancerous tissues. Impressive limit of detection (LOD) and sensitivity are reported, which paves the way for the further use of such immunosensors for cancer diagnosis.
Photothermal camera port accessory for microscopic thermal diffusivity imaging
NASA Astrophysics Data System (ADS)
Escola, Facundo Zaldívar; Kunik, Darío; Mingolo, Nelly; Martínez, Oscar Eduardo
2016-06-01
The design of a scanning photothermal accessory is presented, which can be attached to the camera port of commercial microscopes to measure thermal diffusivity maps with micrometer resolution. The device is based on the thermal expansion recovery technique, which measures the defocusing of a probe beam due to the curvature induced by the local heat delivered by a focused pump beam. The beam delivery and collecting optics are built using optical fiber technology, resulting in a robust optical system that provides collinear pump and probe beams without any alignment adjustment necessary. The quasiconfocal configuration for the signal collection using the same optical fiber sets very restrictive conditions on the positioning and alignment of the optical components of the scanning unit, and a detailed discussion of the design equations is presented. The alignment procedure is carefully described, resulting in a system so robust and stable that no further alignment is necessary for the day-to-day use, becoming a tool that can be used for routine quality control, operated by a trained technician.
Im, Jooeun; Kim, Mihyun; Choi, Ki-Sun; Hwang, Tae-Kyung; Kwon, Il-Bum
2014-06-10
In this paper, new fiber Bragg grating (FBG) sensor probes are designed to intermittently detect the maximum tensile strain of composite materials, so as to evaluate the structural health status. This probe is fabricated by two thin Al films bonded to an FBG optical fiber and two supporting brackets, which are fixed on the surface of composite materials. The residual strain of the Al packaged FBG sensor probe is induced by the strain of composite materials. This residual strain can indicate the maximum strain of composite materials. Two types of sensor probes are prepared-one is an FBG with 18 μm thick Al films, and the other is an FBG with 36 μm thick Al films-to compare the thickness effect on the detection sensitivity. These sensor probes are bonded on the surfaces of carbon fiber reinforced plastics composite specimens. In order to determine the strain sensitivity between the residual strain of the FBG sensor probe and the maximum strain of the composite specimen, tensile tests are performed by universal testing machine, under the loading-unloading test condition. The strain sensitivities of the probes, which have the Al thicknesses of 18 and 36 μm, are determined as 0.13 and 0.23, respectively.
NASA Astrophysics Data System (ADS)
Xi, Jiefeng; Zhang, Yuying; Huo, Li; Chen, Yongping; Jabbour, Toufic; Li, Ming-Jun; Li, Xingde
2010-09-01
This paper reviews our recent developments of ultrathin fiber-optic endomicroscopy technologies for transforming high-resolution noninvasive optical imaging techniques to in vivo and clinical applications such as early disease detection and guidance of interventions. Specifically we describe an all-fiber-optic scanning endomicroscopy technology, which miniaturizes a conventional bench-top scanning laser microscope down to a flexible fiber-optic probe of a small footprint (i.e. ~2-2.5 mm in diameter), capable of performing two-photon fluorescence and second harmonic generation microscopy in real time. This technology aims to enable realtime visualization of histology in situ without the need for tissue removal. We will also present a balloon OCT endoscopy technology which permits high-resolution 3D imaging of the entire esophagus for detection of neoplasia, guidance of biopsy and assessment of therapeutic outcome. In addition we will discuss the development of functional polymeric fluorescent nanocapsules, which use only FAD approved materials and potentially enable fast track clinical translation of optical molecular imaging and targeted therapy.
DNA biosensors implemented on PNA-functionalized microstructured optical fibers Bragg gratings
NASA Astrophysics Data System (ADS)
Candiani, A.; Giannetti, S.; Cucinotta, A.; Bertucci, A.; Manicardi, A.; Konstantaki, M.; Margulis, W.; Pissadakis, S.; Corradini, R.; Selleri, S.
2013-05-01
A novel DNA sensing platform based on a Peptide Nucleic Acid - functionalized Microstructured Optical Fibers gratings has been demonstrated. The inner surface of different MOFs has been functionalized using PNA probes, OligoNucleotides mimic that are well suited for specific DNA target sequences detection. The hybrid sensing systems were tested for optical DNA detection of targets of relevance in biomedical application, using the cystic fibrosis gene mutation, and food-analysis, using the genomic DNA from genetic modified organism soy flour. After the solutions of DNA molecules has been infiltrated inside the fibers capillaries and hybridization has occurred, oligonucleotidefunctionalized gold nanoparticles were infiltrated and used to form a sandwich-like system to achieve signal amplification. Spectral measurements of the reflected signal reveal a clear wavelength shift of the reflected modes when the infiltrated complementary DNA matches with the PNA probes placed on the inner fiber surface. Measurements have also been made using the mismatched DNA solution for the c, containing a single nucleotide polymorphism, showing no significant changes in the reflected spectrum. Several experiments have been carried out demonstrating the reproducibility of the results and the high selectivity of the sensors, showing the simplicity and the potential of this approach.
Wavefront Processing Through Integrated Fiber Optics.
NASA Astrophysics Data System (ADS)
Khan, Romel Rabiul
This thesis is devoted to the development of a new technology of integrated fiber optics. Through the use of fusion splicing and etching several dissimilar optical fibers can be integrated into a single fiber providing wave-front processing capabilities not previously possible. Optical fibers have been utilized for their unique capabilities; such as, remote beam delivery and immunity from electromagnetic noise. In this thesis, the understanding of integrated fiber optics through fusion splicing is furthered both theoretically and experimentally. Most of the common optical components such as lenses, apertures, and modulators can be implemented through the use of fiber optics and then integrated together through fusion splicing, resulting in an alignment-free, rugged and miniaturized system. For example, a short length of multimode graded-index fiber can be used as either a lens or a window to relay an image. A step-index multimode fiber provides a spacer or an aperture. Other special arrangements can be exploited to do in-line modulation in both amplitude and phase. The power of this technique is demonstrated by focusing on a few applications where significant advantages are obtained through this technology. In laser light scattering fiber optic systems, integrated fiber optics is used for delivering and receiving light from small scattering volumes in a spatially constrained environment. When applied for the detection of cataracts in the human eye lens, laser light scattering probes with integrated fiber optics could obtain a map of the eye lens and provide invaluable data for further understanding of cataractogenesis. Use of integrated fiber optics in the high resolution structural analysis of aircraft propeller blades is also presented. Coupling of laser diode to monomode fiber through integrated fiber optics is analyzed. The generation of nondiffracting Bessel-Gauss beams using integrated fiber optics is described. The significance of the Bessel-Gauss beam lies in the fact that it has a sharply defined main-lobe whose width can be designed to be as narrow as desired, while maintaining a long propagation-invariant range. Different methods of generation and properties of this beam are reviewed. Effects of misalignments in the input plane and discretization of the source are derived and evaluated.
Detecting Biological Warfare Agents
Song, Linan; Ahn, Soohyoun
2005-01-01
We developed a fiber-optic, microsphere-based, high-density array composed of 18 species-specific probe microsensors to identify biological warfare agents. We simultaneously identified multiple biological warfare agents in environmental samples by looking at specific probe responses after hybridization and response patterns of the multiplexed array. PMID:16318712
Time resolved optical system for an early detection of prostate tumor
NASA Astrophysics Data System (ADS)
Hervé, Lionel; Laidevant, Aurélie; Debourdeau, Mathieu; Boutet, Jérôme; Dinten, Jean-Marc
2011-02-01
We developed an endorectal time-resolved optical probe aiming at an early detection of prostate tumors targeted by fluorescent markers. Optical fibers are embedded inside a clinical available ultrasound endorectal probe. Excitation light is driven sequentially from a femtosecond laser (775 nm) into 6 source fibers. 4 detection fibers collect the medium responses at the excitation and fluorescence wavelength (850 nm) by the mean of 4 photomultipliers associated with a 4 channel time-correlated single photon counting card. We also developed the method to process the experimental data. This involves the numerical computation of the forward model, the creation of robust features which are automatically correctly from numerous experimental possible biases and the reconstruction of the inclusion by using the intensity and mean time of these features. To evaluate our system performance, we acquired measurements of a 40 μL ICG inclusion (10 μmol.L-1) at various lateral and depth locations in a phantom. Analysis of results showed we correctly reconstructed the fluorophore for the lateral positions (16 mm range) and for a distance to the probe going up to 1.5 cm. Precision of localization was found to be around 1 mm which complies well with precision specifications needed for the clinical application.
Measuring joint cartilage thickness using reflectance spectroscopy non-invasively and in real-time
NASA Astrophysics Data System (ADS)
Canpolat, Murat; Denkceken, Tuba; Karagol, Cosar; Aydin, Ahmet T.
2011-03-01
Joint cartilage thickness has been estimated using spatially resolved steady-state reflectance spectroscopy noninvasively and in-real time. The system consists of a miniature UV-VIS spectrometer, a halogen tungsten light source, and an optical fiber probe with six 400 um diameter fibers. The first fiber was used to deliver the light to the cartilage and the other five were used to detect back-reflected diffused light. Distances from the detector fibers to the source fiber were 0.8 mm, 1.6 mm, 2.4 mm, 3.2 mm and 4 mm. Spectra of back-reflected diffused light were taken on 40 bovine patella cartilages. The samples were grouped into four; the first group was the control group with undamaged cartilages, in the 2nd, 3rd and 4th groups cartilage thickness was reduced approximately 25%, 50% and 100%, respectively. A correlation between cartilage thicknesses and hemoglobin absorption of light in the wavelength range of 500 nm- 600 nm for source-detector pairs was found. The proposed system with an optical fiber probe less than 4 mm in diameter has the potential for cartilage thickness assessment through an arthroscopy channel in real-time without damaging the cartilage.
A line-scan hyperspectral Raman system for spatially offset Raman spectroscopy
USDA-ARS?s Scientific Manuscript database
Conventional methods of spatially offset Raman spectroscopy (SORS) typically use single-fiber optical measurement probes to slowly and incrementally collect a series of spatially offset point measurements moving away from the laser excitation point on the sample surface, or arrays of multiple fiber ...
Engine throat/nozzle optics for plume spectroscopy
NASA Technical Reports Server (NTRS)
Bickford, R. L.; Duncan, D. B.
1991-01-01
The Task 2.0 Engine Throat/Nozzle Optics for Plume Spectroscopy, effort was performed under the NASA LeRC Development of Life Prediction Capabilities for Liquid Propellant Rocket Engines program. This Task produced the engineering design of an optical probe to enable spectroscopic measurements within the SSME main chamber. The probe mounts on the SSME nozzle aft manifold and collects light emitted from the throat plane and chamber. Light collected by the probe is transferred to a spectrometer through a fiber optic cable. The design analyses indicate that the probe will function throughout the engine operating cycle and is suitable for both test stand and flight operations. By detecting metallic emissions that are indicative of component degradation or incipient failure, engine shutdown can be initiated before catastrophic failure. This capability will protect valuable test stand hardware and provide enhanced mission safety.
Low-Cost Interrogation Technique for Dynamic Measurements with FBG-Based Devices
Domingues, M. Fátima; Alberto, Nélia; Pontes, Maria José; Ribeiro, Moisés R. N.; André, Paulo S. B.; Antunes, Paulo F. C.
2017-01-01
Fiber Bragg gratings are widely used optical fiber sensors for measuring temperature and/or mechanical strain. Nevertheless, the high cost of the interrogation systems is the most important drawback for their large commercial application. In this work, an in-line Fabry–Perot interferometer based edge filter is explored in the interrogation of fiber Bragg grating dynamic measurements up to 5 kHz. Two devices an accelerometer and an arterial pulse wave probe were interrogated with the developed approach and the results were compared with a commercial interrogation monitor. The data obtained with the edge filter are in agreement with the commercial device, with a maximum RMSE of 0.05 being able to meet the requirements of the measurements. Resolutions of 3.6 pm and 2.4 pm were obtained, using the optical accelerometer and the arterial pulse wave probe, respectively. PMID:29065518
Nano-cone optical fiber array sensors for MiRNA profiling
NASA Astrophysics Data System (ADS)
Wang, Yunshan; Senapati, Satyajyoti; Stoddart, Paul; Howard, Scott; Chang, Hsueh-Chia
2013-09-01
Up/down regulation of microRNA panels has been correlated to cardiovascular diseases and cancer. Frequent miRNA profiling at home can hence allow early cancer diagnosis and home-use chronic disease monitoring, thus reducing both mortality rate and healthcare cost. However, lifetime of miRNAs is less than 1 hour without preservation and their concentrations range from pM to mM. Despite rapid progress in the last decade, modern nucleic acid analysis methods still do not allow personalized miRNA profiling---Real-time PCR and DNA micro-array both require elaborate miRNA preservation steps and expensive equipment and nano pore sensors cannot selectively quantify a large panel with a large dynamic range. We report a novel and low-cost optical fiber sensing platform, which has the potential to profile a panel of miRNA with simple LED light sources and detectors. The individual tips of an optical imaging fiber bundle (mm in diameter with 7000 fiber cores) were etched into cones with 10 nm radius of curvature and coated with Au. FRET (Forster Resonant Energy Transfer) hairpin oligo probes, with the loop complementary to a specific miRNA that can release the hairpin, were functionalized onto the conic tips. Exciting light in the optical fiber waveguide is optimally coupled to surface plasmonics on the gold surface, which then converges to the conic tips with two orders of magnitude enhancement in intensity. Unlike nanoparticle plasmonics, tip plasmonics can be excited over a large band width and hence the plasmonic enhanced fluorescence signal of the FRET reporter is also focused towards the tip--- and is further enhanced with the periodic resonant grid of the fiber array which gives rise to pronounced standing wave interference patterns. Multiplexing is realized by functionalizing different probes onto one fiber bundle using a photoactivation process.
NASA Astrophysics Data System (ADS)
Huang, Yong; Song, Cheol; Liu, Xuan; Kang, Jin U.
2013-03-01
A motion-compensated hand-held common-path Fourier-domain optical coherence tomography imaging probe has been developed for image guided intervention during microsurgery. A hand-held prototype instrument was designed and fabricated by integrating an imaging fiber probe inside a stainless steel needle which is attached to the ceramic shaft of a piezoelectric motor housed in an aluminum handle. The fiber probe obtains A-scan images. The distance information was extracted from the A-scans to track the sample surface distance and a fixed distance was maintained by a feedback motor control which effectively compensated hand tremor and target movements in the axial direction. Graphical user interface, real-time data processing, and visualization based on a CPU-GPU hybrid programming architecture were developed and used in the implantation of this system. To validate the system, free-hand optical coherence tomography images using various samples were obtained. The system can be easily integrated into microsurgical tools and robotics for a wide range of clinical applications. Such tools could offer physicians the freedom to easily image sites of interest with reduced risk and higher image quality.
NASA Astrophysics Data System (ADS)
Dong, Bo; Han, Ming; Wang, Anbo
2012-06-01
A reliable and low-cost two-wavelength quadrature interrogating method has been developed to demodulate optical signals from diaphragm-based Fabry-Perot interferometric fiber optic sensors for multipoint partial discharge detection in power transformers. Commercial available fused-silica parts (a wafer, a fiber ferrule, and a mating sleeve) and a cleaved optical single mode fiber were bonded together to form an extrinsic Fabry-Perot acoustic sensor. Two lasers with center wavelengths separated by a quarter of the period of sensor interference fringes were used to probe acousticwave- induced diaphragm vibration. A coarse wavelength-division multiplexing (CWDM) add/drop multiplexer was used to separate the reflected two wavelengths before two photo detectors. Optical couplers were used to distribute mixed laser light to each sensor-detector module for multiplexing purpose. Sensor structure, detection system design and experiment results are presented.
Fast and accurate determination of the detergent efficiency by optical fiber sensors
NASA Astrophysics Data System (ADS)
Patitsa, Maria; Pfeiffer, Helge; Wevers, Martine
2011-06-01
An optical fiber sensor was developed to control the cleaning efficiency of surfactants. Prior to the measurements, the sensing part of the probe is covered with a uniform standardized soil layer (lipid multilayer), and a gold mirror is deposited at the end of the optical fiber. For the lipid multilayer deposition on the fiber, Langmuir-Blodgett technique was used and the progress of deposition was followed online by ultraviolet spectroscopy. The invention provides a miniaturized Surface Plasmon Resonance dip-sensor for automated on-line testing that can replace the cost and time consuming existing methods and develop a breakthrough in detergent testing in combining optical sensing, surface chemistry and automated data acquisition. The sensor is to be used to evaluate detergency of different cleaning products and also indicate how formulation, concentration, lipid nature and temperature affect the cleaning behavior of a surfactant.
Triaxial fiber optic magnetic field sensor for MRI applications
NASA Astrophysics Data System (ADS)
Filograno, Massimo L.; Pisco, Marco; Catalano, Angelo; Forte, Ernesto; Aiello, Marco; Soricelli, Andrea; Davino, Daniele; Visone, Ciro; Cutolo, Antonello; Cusano, Andrea
2016-05-01
In this paper, we report a fiber-optic triaxial magnetic field sensor, based on Fiber Bragg Gratings (FBGs) integrated with giant magnetostrictive material, the Terfenol-D. The realized sensor has been designed and engineered for Magnetic Resonance Imaging (MRI) applications. A full magneto-optical characterization of the triaxial sensing probe has been carried out, providing the complex relationship among the FBGs wavelength shift and the applied magnetostatic field vector. Finally, the developed fiber optic sensors have been arranged in a sensor network composed of 20 triaxial sensors for mapping the magnetic field distribution in a MRI-room at a diagnostic center in Naples (SDN), equipped with Positron emission tomography/magnetic resonance (PET/MR) instrumentation. Experimental results reveal that the proposed sensor network can be efficiently used in MRI centers for performing quality assurance tests, paving the way for novel integrated tools to measure the magnetic dose accumulated day by day by MRI operators.
NASA Technical Reports Server (NTRS)
1996-01-01
Under a Small Business Innovation Research (SBIR) contract to Kennedy Space Center, EIC Laboratories invented a Raman Spectrograph with fiber optic sampling for space applications such as sensing hazardous fuel vapors and making on-board rapid analyses of chemicals and minerals. Raman spectroscopy is a laser-based measurement technique that provides through a unique vibrational spectrum a molecular 'fingerprint,' and can function in aqueous environments. EIC combined optical fiber technology with Raman methods to develop sensors that can be operated at a distance from the spectrographic analysis instruments and the laser excitation source. EIC refined and commercialized the technology to create the Fiber Optic Raman Spectrograph and the RamanProbe. Commercial applications range from process control to monitoring hazardous materials.
Common-path low-coherence interferometry fiber-optic sensor guided microincision
Zhang, Kang; Kang, Jin U.
2011-01-01
We propose and demonstrate a common-path low-coherence interferometry (CP-LCI) fiber-optic sensor guided precise microincision. The method tracks the target surface and compensates the tool-to-surface relative motion with better than ±5 μm resolution using a precision micromotor connected to the tool tip. A single-fiber distance probe integrated microdissector was used to perform an accurate 100 μm incision into the surface of an Intralipid phantom. The CP-LCI guided incision quality in terms of depth was evaluated afterwards using three-dimensional Fourier-domain optical coherence tomography imaging, which showed significant improvement of incision accuracy compared to free-hand-only operations. PMID:21950912
Bertucci, Alessandro; Manicardi, Alex; Candiani, Alessandro; Giannetti, Sara; Cucinotta, Annamaria; Spoto, Giuseppe; Konstantaki, Maria; Pissadakis, Stavros; Selleri, Stefano; Corradini, Roberto
2015-01-15
Microstructured optical fibers containing microchannels and Bragg grating inscribed were internally functionalized with a peptide nucleic acid (PNA) probe specific for a gene tract of the genetically modified Roundup Ready soy. These fibers were used as an optofluidic device for the detection of DNA by measuring the shift in the wavelength of the reflected IR light. Enhancement of optical read-out was obtained using streptavidin coated gold-nanoparticles interacting with the genomic DNA captured in the fiber channels (0%, 0.1%, 1% and 10% RR-Soy), enabling to achieve statistically significant, label-free, and amplification-free detection of target DNA in low concentrations, low percentages, and very low sample volumes. Computer simulations of the fiber optics based on the finite element method (FEM) were consistent with the formation of a layer of organic material with an average thickness of 39 nm for the highest percentage (10% RR soy) analysed. Copyright © 2014 Elsevier B.V. All rights reserved.
Fiber optic vibration sensor using bifurcated plastic optical fiber
NASA Astrophysics Data System (ADS)
Abdullah, M.; Bidin, N.; Yasin, M.
2016-11-01
An extrinsic fiber optic vibration sensor is demonstrated for a fiber optic displacement sensor based on a bundled multimode fiber to measure a vibration frequency ranging from 100 until 3000 Hz. The front slope has a sensitivity of 0.1938mV/mm and linearity of 99.7% within a measurement range between 0.15-3.00 mm. By placing the diaphragm of the concave load-speaker within the linear range from the probe, the frequency of the vibration can be measured with error percentage of less than 1.54%. The graph of input against output frequency for low, medium and high frequency range show very high linearity up to 99%. Slope for low, medium, and high frequency range are calculated as 1.0026, 0.9934, and 1.0007 respectively. Simplicity, long term stability, low power consumption, wide dynamic and frequency ranges, noise reduction, ruggedness, linearity and light weight make it promising alternative to other well-establish methods for vibration frequency measurement.
Koshelev, Alexander; Munechika, Keiko; Cabrini, Stefano
2017-11-01
In this Letter, we present a design and simulations of the novel hybrid photonic-plasmonic near-field probe. Near-field optics is a unique imaging tool that provides optical images with resolution down to tens of nanometers. One of the main limitations of this technology is its low light sensitivity. The presented hybrid probe solves this problem by combining a campanile plasmonic probe with the photonic layer, consisting of the diffractive optic element (DOE). The DOE is designed to match the plasmonic field at the broad side of the campanile probe with the fiber mode. This makes it possible to optimize the size of the campanile tip to convert light efficiently into the hot spot. The simulations show that the hybrid probe is ∼540 times more efficient compared with the conventional campanile on average in the 600-900 nm spectral range.
The Use of Spontaneous Raman Scattering for Hydrogen Leak Detection
NASA Technical Reports Server (NTRS)
Degroot, Wim A.
1994-01-01
A fiber optic probe has been built and demonstrated that utilizes back scattered spontaneous Raman spectroscopy to detect and identify gaseous species. The small probe, coupled to the laser and data acquisition equipment with optical fibers, has applications in gaseous leak detection and process monitoring. The probe design and data acquisition system are described. Raman scattering theory has been reviewed and the results of intensity calculations of hydrogen and nitrogen Raman scattering are given. Because the device is in its developmental stage, only preliminary experimental results are presented here. Intensity scans across the rotational-vibrational Raman lines of nitrogen and hydrogen are presented. Nitrogen at a partial pressure of 0.077 MPa was detected. Hydrogen at a partial pressure of 2 kPa approached the lower limit of detectability with the present apparatus. Potential instrument improvements that would allow more sensitive and rapid hydrogen detection are identified.
NASA Astrophysics Data System (ADS)
London, Yosef; Diamandi, Hilel Hagai; Zadok, Avi
2017-04-01
An opto-electronic radio-frequency oscillator that is based on forward scattering by the guided acoustic modes of a standard single-mode optical fiber is proposed and demonstrated. An optical pump wave is used to stimulate narrowband, resonant guided acoustic modes, which introduce phase modulation to a co-propagating optical probe wave. The phase modulation is converted to an intensity signal at the output of a Sagnac interferometer loop. The intensity waveform is detected, amplified, and driven back to modulate the optical pump. Oscillations are achieved at a frequency of 319 MHz, which matches the resonance of the acoustic mode that provides the largest phase modulation of the probe wave. Oscillations at the frequencies of competing acoustic modes are suppressed by at least 40 dB. The linewidth of the acoustic resonance is sufficiently narrow to provide oscillations at a single longitudinal mode of the hybrid cavity. Competing longitudinal modes are suppressed by at least 38 dB as well. Unlike other opto-electronic oscillators, no radio-frequency filtering is required within the hybrid cavity. The frequency of oscillations is entirely determined by the fiber opto-mechanics.
NASA Astrophysics Data System (ADS)
DePaoli, Damon T.; Lapointe, Nicolas; Goetz, Laurent; Parent, Martin; Prudhomme, Michel; Cantin, Léo.; Galstian, Tigran; Messaddeq, Younès.; Côté, Daniel C.
2016-03-01
Deep brain stimulation's effectiveness relies on the ability of the stimulating electrode to be properly placed within a specific target area of the brain. Optical guidance techniques that can increase the accuracy of the procedure, without causing any additional harm, are therefore of great interest. We have designed a cheap optical fiber-based device that is small enough to be placed within commercially available DBS stimulating electrodes' hollow cores and that is capable of sensing biological information from the surrounding tissue, using low power white light. With this probe we have shown the ability to distinguish white and grey matter as well as blood vessels, in vitro, in human brain samples and in vivo, in rats. We have also repeated the in vitro procedure with the probe inserted in a DBS stimulating electrode and found the results were in good agreement. We are currently validating a second fiber optic device, with micro-optical components, that will result in label free, molecular level sensing capabilities, using CARS spectroscopy. The final objective will be to use this data in real time, during deep brain stimulation neurosurgery, to increase the safety and accuracy of the procedure.
Self-referencing remote optical probe
O'Rourke, Patrick E.; Prather, William S.; Livingston, Ronald R.
1991-01-01
A probe for remote spectrometric measurements of fluid samples having a hollow probe body with a sliding reflective plug therein and a lens at one end, ports for admitting and expelling the fluid sample and a means for moving the reflector so that reference measurement can be made with the reflector in a first position near the lens and a sample measurement can be made with the reflector away from the lens and the fluid sample between the reflector and the lens. Comparison of the two measurements will yield the composition of the fluid sample. The probe is preferably used for remote measurements and light is carried to and from the probe via fiber optic cables.
Self-referencing remote optical probe
O'Rourke, P.E.; Prather, W.S.; Livingston, R.R.
1991-08-13
A probe is described for remote spectrometric measurements of fluid samples having a hollow probe body with a sliding reflective plug therein and a lens at one end, ports for admitting and expelling the fluid sample and a means for moving the reflector so that reference measurement can be made with the reflector in a first position near the lens and a sample measurement can be made with the reflector away from the lens and the fluid sample between the reflector and the lens. Comparison of the two measurements will yield the composition of the fluid sample. The probe is preferably used for remote measurements and light is carried to and from the probe via fiber optic cables. 3 figures.
Plasma and radiation detection via fiber interferometry
NASA Astrophysics Data System (ADS)
Dolan, D. H.; Bell, K.; Fox, B.; Jones, S. C.; Knapp, P.; Gomez, M. R.; Martin, M.; Porwitzky, A.; Laity, G.
2018-01-01
Photonic Doppler velocimetry tracks motion during high-speed, single-event experiments using telecommunication fiber components. The same technology can be applied in situations where there is no actual motion, but rather a change in the optical path length. Migration of plasma into vacuum alters the refractive index near a fiber probe, while intense radiation modifies the refractive index of the fiber itself. These changes can diagnose extreme environments in a flexible, time-resolved manner.
Plasma and radiation detection via fiber interferometry
Dolan, D. H.; Bell, Kate Suzanne; Fox, Brian Philip; ...
2018-01-17
Photonic Doppler velocimetry tracks motion during high-speed, single-event experiments using telecommunication fiber components. The same technology can be applied in situations where there is no actual motion, but rather a change in the optical path length. Migration of plasma into vacuum alters the refractive index near a fiber probe, while intense radiation modifies the refractive index of the fiber itself. Lastly, these changes can diagnose extreme environments in a flexible, time-resolved manner.
Plasma and radiation detection via fiber interferometry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dolan, D. H.; Bell, Kate Suzanne; Fox, Brian Philip
Photonic Doppler velocimetry tracks motion during high-speed, single-event experiments using telecommunication fiber components. The same technology can be applied in situations where there is no actual motion, but rather a change in the optical path length. Migration of plasma into vacuum alters the refractive index near a fiber probe, while intense radiation modifies the refractive index of the fiber itself. Lastly, these changes can diagnose extreme environments in a flexible, time-resolved manner.
Metallized Capillaries as Probes for Raman Spectroscopy
NASA Technical Reports Server (NTRS)
Pelletier, Michael
2003-01-01
A class of miniature probes has been proposed to supplant the fiber-optic probes used heretofore in some Raman and fluorescence spectroscopic systems. A probe according to the proposal would include a capillary tube coated with metal on its inside to make it reflective. A microlens would be hermetically sealed onto one end of the tube. A spectroscopic probe head would contain a single such probe, which would both deliver laser light to a sample and collect Raman or fluorescent light emitted by the sample.
In Vivo Fiber-Optic Raman Mapping Of Metastases In Mouse Brains
NASA Astrophysics Data System (ADS)
Stelling, A.; Kirsch, M.; Steiner, G.; Krafft, C.; Schackert, G.; Salzer, R.
2010-08-01
Vibrational spectroscopy, in particular Raman spectroscopy, has potential applications in the field of in vivo diagnostics. Raman and FT-IR spectroscopy analyze the complete biochemical information at any given pixel within the visual field. Here we demonstrate the feasibility of performing Raman spectroscopic measurements on living mice brains using a fiber-optic probe with a nominal spatial resolution of 60 μm. The objectives of this study were to 1) evaluate preclinical models, namely murine brain slices containing experimental tumors, 2) optimize the preparation of pristine brain tissue to obtain reference information, to 3) optimize the conditions for introducing a fiber-optic probe to acquire Raman maps in vivo, and 4) to transfer results obtained from human brain tumors to an animal model. Disseminated brain metastases of malignant melanomas were induced by injecting tumor cells into the carotid artery of mice. The procedure mimicked hematogenous tumor spread in one brain hemisphere while the other hemisphere remained tumor free. Three series of sections were prepared consecutively from whole mouse brains: pristine, 2-mm thick sections for Raman mapping and dried, thin sections for FT-IR imaging, hematoxylin and eosin-stained thin sections for histopathological assessment. Raman maps were collected serially using a spectrometer coupled to a fiber-optic probe. FT-IR images were recorded using a spectrometer with a multi-channel detector. The FT-IR images and the Raman maps were evaluated by multivariate data analysis. The results obtained from the thin section studies were employed to guide measurements of murine brains in vivo. Raman maps with an acquisition time of over an hour could be performed on the living animals. No damage to the tissue was observed.
Time-of-Flight Tip-Clearance Measurements
NASA Technical Reports Server (NTRS)
Dhadwal, H. S.; Kurkov, A. P.; Janetzke, D. C.
1999-01-01
In this paper a time-of-flight probe system incorporating the two integrated fiber optic probes which are tilted equally relative to the probe holder centerline, is applied for the first time to measure the tip clearance of an advanced fan prototype. Tip clearance is largely independent of the signal amplitude and it relies on timing measurement. This work exposes optical effects associated with the fan blade stagger angle that were absent during the original spin-rig experiment on the zero stagger rotor. Individual blade tip clearances were measured with accuracy of +/- 127-mm (+/- 0.005-in). Probe features are discussed and improvements to the design are suggested.
Park, Kyoung-Duck; Park, Doo Jae; Lee, Seung Gol; Choi, Geunchang; Kim, Dai-Sik; Byeon, Clare Chisu; Choi, Soo Bong; Jeong, Mun Seok
2014-02-21
A resonant shift and a decrease of resonance quality of a tuning fork attached to a conventional fiber optic probe in the vicinity of liquid is monitored systematically while varying the protrusion length and immersion depth of the probe. Stable zones where the resonance modification as a function of immersion depth is minimized are observed. A wet near-field scanning optical microscope (wet-NSOM) is operated for a sample within water by using such a stable zone.
Ultrathin forward-imaging short multimode fiber probe for full-field optical coherence microscopy
NASA Astrophysics Data System (ADS)
Sato, Manabu; Saito, Daisuke; Shouji, Kou; Kurotani, Reiko; Abe, Hiroyuki; Nishidate, Izumi
2016-12-01
To extend the applications of optical coherence tomography (OCT) to the fields of physiology and clinical medicine, less invasive, robust, and reliable optical probes are required. Thus, we demonstrate an ultrathin forward-imaging short multimode fiber (SMMF) optical coherence microscopy (OCM) probe with a 50 μm core diameter, 125 μm total diameter, and 5.12 mm length. Imaging conditions and magnification were analyzed, and they correspond closely to the measured results. The dispersion of the SMMF was investigated, and the modal dispersion coefficient was found to be 2.3% of the material dispersion coefficient. The axial resolution was minimized at 2.15 μm using a 0.885-mm-thick dispersion compensator. The lateral resolution was evaluated to be 4.38 μm using a test pattern. The contrast of the OCM images was 5.7 times higher than that of the signal images owing to the coherence gate. The depth of focus and diameter of the field of view were measured to be 60 μm and 40-50 μm, respectively. OCM images of the dried fins of small fish (Medaka) were measured and internal structures could be recognized.
Novel laser contact probe for periodontal treatment
NASA Astrophysics Data System (ADS)
Watanabe, Hisashi; Kataoka, Kenzo; Ishikawa, Isao
2001-04-01
Application of the erbium: YAG laser to periodontal treatment has been attempted and preferable results have been reported for calculus removal, vaporization of granulation tissue, periodontal pocket sterilization and so on. However, it has been difficult to reach and treat some conditions involving complex root morphology and furcated rots with conventional probes. The new broom probe was designed and tested to overcome these obstacles. The probe was made of 20 super-fine optical fibers bound into a broom shape. The experiments were carried out to evaluate the destructive power of a single fiber and to examine the morphology of tissue destruction and the accessibility to a bifurcated root of a human tooth using the broom probe. The Er:YAG laser prototype was used. A flat specimen plate was made by cutting the root of a cow tooth and then attached to an electrically operated table and irradiated under various conditions. The specimens were examined with both an optical and scanning electron microscope. The irradiated surfaces were also examined with a roughness meter. An irradiation applied with a single fiber with an energy level of 1 to 1.5 mJ at its tip results in a destruction depth of 3 to 24 micrometers . The optimum conditions for the fibers of this probe was 1.0 mJ at 10 pps and a scanning speed of 100 mm/min. No part of the tooth surface remained un-irradiated after using the broom probe to cover the surface 5 times parallel to the tooth axis and then five times at a 30 degree angle to the previous irradiation at a power of 20 mJ at 10 pps. Also curved and irregular surface were destroyed to a maximum depth of 19 micrometers . In conclusion, these results suggest that the broom probe would be applicable for periodontal laser treatments even if the tooth surface has a complex and irregular shape.
NASA Astrophysics Data System (ADS)
Ma, H. P.; Jin, Y. Q.; Ha, Y. W.; Liu, L. H.
2006-10-01
Non-contact torque measurement system of fiber grating is proposed in this paper. It is used for the dynamic torque measurement of the rotating axis in the spaceflight servo system. Optical fiber is used as sensing probe with high sensitivity, anti-electromagnetic interference, resistance to high temperature and corrosion. It is suitable to apply in a bad environment. Signals are processed by digital circuit and Single Chip Microcomputer. This project can realize super speed dynamic measurement and it is the first time to apply the project in the spaceflight system.
Pham, Thanh Binh; Bui, Huy; Le, Huu Thang; Pham, Van Hoi
2016-12-22
The necessity of environmental protection has stimulated the development of many kinds of methods allowing the determination of different pollutants in the natural environment, including methods for determining nitrate in source water. In this paper, the characteristics of an etched fiber Bragg grating (e-FBG) sensing probe-which integrated in fiber laser structure-are studied by numerical simulation and experiment. The proposed sensor is demonstrated for determination of the low nitrate concentration in a water environment. Experimental results show that this sensor could determine nitrate in water samples at a low concentration range of 0-80 ppm with good repeatability, rapid response, and average sensitivity of 3.5 × 10 -3 nm/ppm with the detection limit of 3 ppm. The e-FBG sensing probe integrated in fiber laser demonstrates many advantages, such as a high resolution for wavelength shift identification, high optical signal-to-noise ratio (OSNR of 40 dB), narrow bandwidth of 0.02 nm that enhanced accuracy and precision of wavelength peak measurement, and capability for optical remote sensing. The obtained results suggested that the proposed e-FBG sensor has a large potential for the determination of low nitrate concentrations in water in outdoor field work.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goode, S.R.; Angel, S.M.
1997-01-01
'The long-term goal of this project is to develop a system to measure the elemental composition of unprepared samples using laser-induced breakdown spectroscopy, LIBS, with a fiber-optic probe. From images shown in this report it is evident that the temporal and spatial behavior of laser-induced plasmas IS a complex process. However, through the use of spectral imaging, optimal conditions can be determined for collecting the atomic emission signal in these plasmas. By tailoring signal collection to the regions of the plasma that contain the highest emission signal with the least amount of background interference both the detection limits and themore » precision of LIBS measurements could be improved. The optimal regions for both gated and possibly non-gated LIBS measurements have been shown to correspond to the inner regions and outer regions, respectively, in an axial plasma. By using this data fiber-optic LIBS probe designs can be optimized for collecting plasma emission at the optimal regions for improved detection limits and precision in a LIBS measurement.'« less
NASA Astrophysics Data System (ADS)
Yu, Lu; Ye, Linhua; Bao, Renjie; Zhang, Xianwei; Wang, Li-Gang
2018-03-01
Optical thermometry based on Y3Al5O12 (YAG) single crystal optical fiber with end Tm3+/Yb3+ co-doped is presented. The YAG crystal fiber with end Tm3+/Yb3+ co-doped was grown by laser heated pedestal growth (LHPG) method. Under a 976 nm laser diode excitation, the upconversion (UC) emissions, originating from 3F2,3 →3H6 and 3H4 →3H6 transitions of Tm3+ ions, were investigated in the temperature range from 333 K to 733 K. Interestingly, the UC emission intensity of 3F2,3 →3H6 transition was significantly enhanced with increase of temperature, as compared with the other Tm3+/Yb3+ co-doped materials. The temperature dependence of fluorescence intensity ratio (FIR) of these two emission bands (3F2,3/3H4 →3H6) suggests that this doped YAG crystal fiber can be used as a highly sensitive optical thermal probe, which demonstrates a high absolute sensitivity with the maximum value of 0.021 K-1 at 733 K. In addition, due to the compact structure, strong mechanical strength and high thermal stability, such thermal probe may be a more promising candidate for temperature sensor with a high spatial resolution.
Multimode-Optical-Fiber Imaging Probe
NASA Technical Reports Server (NTRS)
Jackson, Deborah
2000-01-01
Currently, endoscopic surgery uses single-mode fiber-bundles to obtain in vivo image information inside orifices of the body. This limits their use to the larger natural bodily orifices and to surgical procedures where there is plenty of room for manipulation. The knee joint, for example can be easily viewed with a fiber optic viewer, but joints in the finger cannot. However, there are a host of smaller orifices where fiber endoscopy would play an important role if a cost effective fiber probe were developed with small enough dimensions (< 250 microns). Examples of beneficiaries of micro-endoscopes are the treatment of the Eustatian tube of the middle ear, the breast ducts, tear ducts, coronary arteries, fallopian tubes, as well as the treatment of salivary duct parotid disease, and the neuro endoscopy of the ventricles and spinal canal. To solve this problem, this work describes an approach for recovering images from. tightly confined spaces using multimode fibers and analytically demonstrates that the concept is sound. The proof of concept draws upon earlier works that concentrated on image recovery after two-way transmission through a multimode fiber as well as work that demonstrated the recovery of images after one-way transmission through a multimode fiber. Both relied on generating a phase conjugated wavefront which was predistorted with the characteristics of the fiber. The described approach also relies on generating a phase conjugated wavefront, but utilizes two fibers to capture the image at some intermediate point (accessible by the fibers, but which is otherwise visually unaccessible).
Cardiovascular Optical Coherence Tomography
NASA Astrophysics Data System (ADS)
Yonetsu, Taishi; Villiger, Martin; Bouma, Brett E.; Jang, Ik-Kyung
The potential of optical coherence tomography (OCT) for intravascular imaging and assessing the microstructure of atherosclerosis was suggested already by Huang et al. at the very beginning of OCT [1]. For ophthalmology, the eye provides a natural window for OCT to image the retinal microstructure, and OCT has rapidly become the standard imaging modality to diagnose retinal disease and assess disease progression and response to therapy [1, 2]. Intravascular imaging is more invasive by nature and requires imaging through a catheter probe. This has triggered the development of advanced fiber-optic OCT systems with compact, rotating fiber probes, to image the vessel by circumferentially scanning the luminal wall [3, 4]. In 1998, we established the first cardiac OCT research group at the Massachusetts General Hospital to explore the clinical applications of OCT. The first imaging of rabbit aorta was reported by Fujimoto et al. [5], followed by the first swine measurements in vivo by Tearney et al. [6], and finally the first assessment of coronary arteries in patients by Jang et al. [7]. The scope of this chapter is to highlight the steps taken to bring intravascular OCT from bench to bedside over the last 15 years. We will give a general description of atherosclerosis and its pathophysiology and the specific technical implementation of OCT for intravascular imaging through a fiber-optic probe. The motivation is to provide sufficient medical details to provide a basic introduction to the terminology, principles, and challenges of intracoronary imaging.
Enhancing the performance of coherent OTDR systems with polarization diversity complementary codes.
Dorize, Christian; Awwad, Elie
2018-05-14
Monitoring the optical phase change in a fiber enables a wide range of applications where fast phase variations are induced by acoustic signals or by vibrations in general. However, the quality of the estimated fiber response strongly depends on the method used to modulate the light sent to the fiber and capture the variations of the optical field. In this paper, we show that distributed optical fiber sensing systems can advantageously exploit techniques from the telecommunication domain, as those used in coherent optical transmission, to enhance their performance in detecting mechanical events, while jointly offering a simpler setup than widespread pulse-cloning or spectral-sweep based schemes with acousto-optic modulators. We periodically capture an overall fiber Jones matrix estimate thanks to a novel probing technique using two mutually orthogonal complementary (Golay) pairs of binary sequences applied simultaneously in phase and quadrature on two orthogonal polarization states. A perfect channel response estimation of the sensor array is achieved, subject to conditions detailed in the paper, thus enhancing the sensitivity and bandwidth of coherent ϕ-OTDR systems. High sensitivity, linear response, and bandwidth coverage up to 18 kHz are demonstrated with a sensor array composed of 10 fiber Bragg gratings (FBGs).
Enhancing the performance of coherent OTDR systems with polarization diversity complementary codes
NASA Astrophysics Data System (ADS)
Dorize, Christian; Awwad, Elie
2018-05-01
Monitoring the optical phase change in a fiber enables a wide range of applications where fast phase variations are induced by acoustic signals or vibrations in general. However, the quality of the estimated fiber response strongly depends on the method used to modulate the light sent to the fiber and capture the variations of the optical field. In this paper, we show that distributed optical fiber sensing systems can advantageously exploit techniques from the telecommunication domain, as those used in coherent optical transmission, to enhance their performance in detecting mechanical events, while jointly offering a simpler setup than widespread pulse-cloning or spectral-sweep based schemes with acousto-optic modulators. We periodically capture an overall fiber Jones matrix estimate thanks to a novel probing technique using two mutually orthogonal complementary (Golay) pairs of binary sequences applied simultaneously in phase and quadrature on two orthogonal polarization states. A perfect channel response estimation of the sensor array is achieved, subject to conditions detailed in the paper, thus enhancing the sensitivity and bandwidth of coherent phase-OTDR systems. High sensitivity, linear response, and bandwidth coverage up to 18 kHz are demonstrated with a sensor array composed of 10 fiber Bragg gratings (FBGs).
NASA Astrophysics Data System (ADS)
McDonald, Greg
1998-09-01
Optimal loading, prevention of catastrophic failures and reduced maintenance costs are some of the benefits of accurate determination of hot spot winding temperatures in medium and high power transformers. Temperature estimates obtained using current theoretical models are not always accurate. Traditional technology (IR, thermocouples...) are unsuitable or inadequate for direct measurement. Nortech fiber-optic temperature sensors offer EMI immunity and chemical resistance and are a proven solution to the problem. The Nortech sensor's measurement principle is based on variations in the spectral absorption of a fiber-mounted semiconductor chip and probes are interchangeable with no need for recalibration. Total length of probe + extension can be up to several hundred meters allowing system electronics to be located in the control room or mounted in the transformer instrumentation cabinet. All of the sensor materials withstand temperatures up to 250 degree(s)C and have demonstrated excellent resistance to the harsh transformer environment (hot oil, kerosene). Thorough study of the problem and industry collaboration in testing and installation allows Nortech to identify and meet the need for durable probes, leak-proof feedthroughs, standard computer interfaces and measurement software. Refined probe technology, the method's simplicity and reliable calibration are all assets that should lead to growing acceptance of this type of direct measuring in the electric power industry.
Probe-controlled soliton frequency shift in the regime of optical event horizon.
Gu, Jie; Guo, Hairun; Wang, Shaofei; Zeng, Xianglong
2015-08-24
In optical analogy of the event horizon, temporal pulse collision and mutual interactions are mainly between an intense solitary wave (soliton) and a dispersive probe wave. In such a regime, here we numerically investigate the probe-controlled soliton frequency shift as well as the soliton self-compression. In particular, in the dispersion landscape with multiple zero dispersion wavelengths, bi-directional soliton spectral tunneling effects is possible. Moreover, we propose a mid-infrared soliton self-compression to the generation of few-cycle ultrashort pulses, in a bulk of quadratic nonlinear crystals in contrast to optical fibers or cubic nonlinear media, which could contribute to the community with a simple and flexible method to experimental implementations.
Canpolat, Murat; Mourant, Judith R.
2003-12-09
Apparatus and method for measuring scatterer size in a dense media with only a single fiber for both light delivery and collection are disclosed. White light is used as a source and oscillations of the detected light intensities are measured as a function of wavelength. The maximum and minimum of the oscillations can be used to determine scatterer size for monodisperse distributions of spheres when the refractive indices are known. In addition several properties of the probe relevant to tissue diagnosis are disclosed including the effects of absorption, a broad distribution of scatterers, and the depth probed.
Optical fiber endface biosensor based on resonances in dielectric waveguide gratings
NASA Astrophysics Data System (ADS)
Wawro, Debra D.; Tibuleac, Sorin; Magnusson, Robert; Liu, Hanli
2000-05-01
A new fiber optic sensor integrating dielectric diffraction gratings and thin films on optical fiber endfaces is prosed for biomedical sensing applications. This device utilizes a resonant dielectric waveguide grating structure fabricated on an optical fiber endface to probe reactions occurring in a sensing layer deposited on its surface. The operation of this sensor is based upon a fundamental resonance effect that occurs in waveguide gratings. An incident broad- spectrum signal is guided within an optical fiber and is filtered to reflect or transmit a desired spectral band by the diffractive thin film structure on its endface. Slight changes in one or more parameters of the waveguide grating, such as refractive index or thickness, can result in a responsive shift of the reflected or transmitted spectral peak that can be detected with spectroscopic instruments. This new sensor concept combines improved sensitivity and accuracy with attractive features found separately in currently available fiber optic sensors, such as large dynamic range, small sensing proximity, real time operation, and remote sensing. Diffractive elements of this type consisting of a photoresist grating on a Si3N4 waveguide have been fabricated on multimode optical fiber endfaces with 100 micrometers cores. Preliminary experimental tests using a tunable Ti:sapphire laser indicate notches of 18 percent in the transmission spectrum of the fiber endface guided-mode resonance devices. A theoretical analysis of the device performance capabilities is presented and applied to evaluate the feasibility and potential advantages of this bioprobe.
Turbine-blade tip clearance and tip timing measurements using an optical fiber bundle sensor
NASA Astrophysics Data System (ADS)
Garcia, Iker; Beloki, Josu; Zubia, Joseba; Durana, Gaizka; Aldabaldetreku, Gotzon
2013-04-01
Traditional limitations of capacitive, inductive or discharging probe sensor for tip timing and tip clearance measurements are overcome by reflective intensity modulated optical fiber sensors. This paper presents the signals and results corresponding to a one stage turbine rig which rotor has 146 blades, obtained from a transonic wind-tunnel test. The probe is based on a trifurcated bundle of optical fibers that is mounted on turbine casing. It is composed of a central illuminating fiber that guides the light from a laser to the turbine blade, and two concentric rings of receiving fibers that collect the reflected light. Two photodetectors turn this reflected light signal from the receiving rings into voltage. The electrical signals are acquired and saved by a high-sample-rate oscilloscope. In tip clearance calculations the ratio of the signals provided by each ring of receiving fibers is evaluated and translated into distance. In the case of tip timing measurements, only one of the signals is considered to get the arrival time of the blade. The differences between the real and theoretical arrival times of the blades are used to obtain the deflections amplitude. The system provides the travelling wave spectrum, which presents the average vibration amplitude of the blades at a certain nodal diameter. The reliability of the results in the turbine rig testing facilities suggests the possibility of performing these measurements in real turbines under real working conditions.
Fiber-Optic SPR Immunosensors Tailored To Target Epithelial Cells through Membrane Receptors.
Malachovská, Viera; Ribaut, Clotilde; Voisin, Valérie; Surin, Mathieu; Leclère, Philippe; Wattiez, Ruddy; Caucheteur, Christophe
2015-06-16
We report, for the first time, the use of a surface plasmon resonance (SPR) fiber-optic immunosensor for selective cellular detection through membrane protein targeting. The sensor architecture lies on gold-coated tilted fiber Bragg gratings (Au-coated TFBGs) photoimprinted in the fiber core via a laser technique. TFBGs operate in the near-infrared wavelength range at ∼1550 nm, yielding optical and SPR sensing characteristics that are advantageous for the analyses of cellular bindings and technical compatibility with relatively low-cost telecommunication-grade measurement devices. In this work, we take consider their numerous assets to figure out their ability to selectively detect intact epithelial cells as analytes in cell suspensions in the range of 2-5 × 10(6) cells mL(-1). For this, the probe was first thermally annealed to ensure a strong adhesion of the metallic coating to the fiber surface. Its surface was then functionalized with specific monoclonal antibodies via alkanethiol self-assembled monolayers (SAMs) against extracellular domain of epidermal growth factor receptors (EGFRs) and characterized by peak force tapping atomic force microscopy. A differential diagnosis has been demonstrated between two model systems. The developed immunosensors were able to monitor, in real time, the specific attachment of single intact cells in concentrations from 3 × 10(6) cells mL(-1). Such results confirm that the developed probe fits the lab-on-fiber technology and has the potential to be used as a disposable device for in situ and real-time clinical diagnosis.
Fiber-Laser-Based Ultrasound Sensor for Photoacoustic Imaging
Liang, Yizhi; Jin, Long; Wang, Lidai; Bai, Xue; Cheng, Linghao; Guan, Bai-Ou
2017-01-01
Photoacoustic imaging, especially for intravascular and endoscopic applications, requires ultrasound probes with miniature size and high sensitivity. In this paper, we present a new photoacoustic sensor based on a small-sized fiber laser. Incident ultrasound waves exert pressures on the optical fiber laser and induce harmonic vibrations of the fiber, which is detected by the frequency shift of the beating signal between the two orthogonal polarization modes in the fiber laser. This ultrasound sensor presents a noise-equivalent pressure of 40 Pa over a 50-MHz bandwidth. We demonstrate this new ultrasound sensor on an optical-resolution photoacoustic microscope. The axial and lateral resolutions are 48 μm and 3.3 μm. The field of view is up to 1.57 mm2. The sensor exhibits strong resistance to environmental perturbations, such as temperature changes, due to common-mode cancellation between the two orthogonal modes. The present fiber laser ultrasound sensor offers a new tool for all-optical photoacoustic imaging. PMID:28098201
Power system applications of fiber optic sensors
NASA Technical Reports Server (NTRS)
Johnston, A. R.; Jackson, S. P.; Kirkham, H.; Yeh, C.
1986-01-01
This document is a progress report of work done in 1985 on the Communications and Control for Electric Power Systems Project at the Jet Propulsion Laboratory. These topics are covered: Electric Field Measurement, Fiber Optic Temperature Sensing, and Optical Power transfer. Work was done on the measurement of ac and dc electric fields. A prototype sensor for measuring alternating fields was made using a very simple electroscope approach. An electronic field mill sensor for dc fields was made using a fiber optic readout, so that the entire probe could be operated isolated from ground. There are several instances in which more precise knowledge of the temperature of electrical power apparatus would be useful. This report describes a number of methods whereby the distributed temperature profile can be obtained using a fiber optic sensor. The ability to energize electronics by means of an optical fiber has the advantage that electrical isolation is maintained at low cost. In order to accomplish this, it is necessary to convert the light energy into electrical form by means of photovoltaic cells. JPL has developed an array of PV cells in gallium arsenide specifically for this purpose. This work is described.
Hectospec, the MMT's 300 Optical Fiber-Fed Spectrograph
NASA Astrophysics Data System (ADS)
Fabricant, Daniel; Fata, Robert; Roll, John; Hertz, Edward; Caldwell, Nelson; Gauron, Thomas; Geary, John; McLeod, Brian; Szentgyorgyi, Andrew; Zajac, Joseph; Kurtz, Michael; Barberis, Jack; Bergner, Henry; Brown, Warren; Conroy, Maureen; Eng, Roger; Geller, Margaret; Goddard, Richard; Honsa, Michael; Mueller, Mark; Mink, Douglas; Ordway, Mark; Tokarz, Susan; Woods, Deborah; Wyatt, William; Epps, Harland; Dell'Antonio, Ian
2005-12-01
The Hectospec is a 300 optical fiber fed spectrograph commissioned at the MMT in the spring of 2004. In the configuration pioneered by the Autofib instrument at the Anglo-Australian Telescope, Hectospec's fiber probes are arranged in a radial ``fisherman on the pond'' geometry and held in position with small magnets. A pair of high-speed, six-axis robots move the 300 fiber buttons between observing configurations within ~300 s, and to an accuracy of ~25 μm. The optical fibers run for 26 m between the MMT's focal surface and the bench spectrograph, operating at R~1000-2000. Hectochelle, another high-dispersion bench spectrograph offering R~35,000, is also available. The system throughput, including all losses in the telescope optics, fibers, and spectrograph, peaks at ~10% at the grating blaze in 1" FWHM seeing. Correcting for aperture losses at the 1.5" diameter fiber entrance aperture, the system throughput peaks at ~17%, close to our prediction of 20%. Hectospec has proven to be a workhorse instrument at the MMT. Together, Hectospec and Hectochelle have been scheduled for 1/3 of the available nights since its commissioning. Hectospec has returned approximately 60,000 reduced spectra for 16 scientific programs during its first year of operation.
Multimode-Optical-Fiber Imaging Probe
NASA Technical Reports Server (NTRS)
Jackson, Deborah
1999-01-01
Currently, endoscopic surgery uses single-mode fiber-bundles to obtain in vivo image information inside the orifices of the body. This limits their use to the larger natural orifices and to surgical procedures where there is plenty of room for manipulation. The knee joint, for example, can be easily viewed with a fiber optic viewer, but joints in the finger cannot. However, there are a host of smaller orifices where fiber endoscopy would play an important role if a cost effective fiber probe were developed with small enough dimensions (less than or equal to 250 microns). Examples of beneficiaries of micro-endoscopes are the treatment of the Eustatian tube of the middle ear, the breast ducts, tear ducts, coronary arteries, fallopian tubes, as well as the treatment of salivary duct parotid disease, and the neuro endoscopy of the ventricles and spinal canal. This work describes an approach for recovering images from tightly confined spaces using multimode. The concept draws upon earlier works that concentrated on image recovery after two-way transmission through a multimode fiber as well as work that demonstrated the recovery of images after one-way transmission through a multimode fiber. Both relied on generating a phase conjugated wavefront, which was predistorted with the characteristics of the fiber. The approach described here also relies on generating a phase conjugated wavefront, but utilizes two fibers to capture the image at some intermediate point (accessible by the fibers, but which is otherwise visually inaccessible).
Recent Progress In Optical Oxygen Sensing
NASA Astrophysics Data System (ADS)
Wolfbeis, Otto S.; Leiner, Marc J. P.
1988-06-01
Following a brief review on the history of optical oxygen sensing (which shows that a variety of ideas exists in the literature that awaits the extension to fiber optic sensing schemes), the present state of probing oxygen by optical methods is discussed in terms of new methods and materials for sensor construction. Promising sensing schemes include simultaneous measurement of parameters such as oxygen and carbon dioxide with one fiber, measurement of fluorescence lifetimes and radiative energy transfer efficiency as well as phosphorescence quenching. New longwave-excitable fluorophores have been introduced recently, two-band emit-ting indicators can help to eliminate drift problems, and new methods have been found by which both indicators and enzymes may be entrapped in silicone rubber, which opens the way for the design of new biosensors. In a final chapter, the application of fiber optic oxygen sensors for blood gas measurement and as transducers in biosensors are presented.
NASA Astrophysics Data System (ADS)
Zhang, Linna; Ding, Hongyan; Lin, Ling; Wang, Yimin; Guo, Xin
2017-12-01
A fiber is usually used as a probe in visible and near-infrared diffuse spectra measurement. However, the use of different fiber probes in the same measurement may cause data mismatch problems. Our group has researched the influence of the parameters of fiber probe, including the aperture angle, on the diffuse spectrum by a modified Monte Carlo model. To eliminate the influence of the aperture angle, we proposed a fitted equation of correction coefficient to correct its difference in practical range. However, we did not discuss the limitation of this method. In this work, we explored the collection efficiency in different optical environment with Monte Carlo simulation method, and find the suitable conditions-weak absorbing and strong scattering media, for the proposed collection efficiency. Furthermore, we tried to explain the stability of the collection efficiency in this condition. This work gives suitable conditions for the collection efficiency. The use of collection efficiency can help reduce the influence of different measurement systems and is also helpful to the model translation.
Double optical fibre-probe device for the diagnosis of melanocytic lesions
NASA Astrophysics Data System (ADS)
Cicchi, Riccardo; Cosci, Alessandro; Rossari, Susanna; De Giorgi, Vincenzo; Kapsokalyvas, Dimitrios; Massi, Daniela; Pavone, Francesco S.
2012-06-01
We have designed and developed an optical fiber-probe for spectroscopic measurements on human tissues. The experimental setup combines fluorescence spectroscopy and Raman spectroscopy in a multidimensional approach. Concerning fluorescence spectroscopy, the excitation is provided by two laser diodes, one emitting in the UV (378 nm) and the other emitting in the visible (445 nm). These two lasers are used to selectively excite fluorescence from NADH and FAD, which are among the brightest endogenous fluorophores in human tissues. For Raman and NIR spectroscopy, the excitation is provided by a third laser diode with 785 nm excitation wavelength. Laser light is delivered to the tissue through the central optical fiber of a fiber bundle. The surrounding 48 fibers of the bundle are used for collecting fluorescence and Raman and for delivering light to the spectrograph. Fluorescence and Raman spectra are acquired on a cooled CCD camera. The instrument has been tested on fresh human skin biopsies clinically diagnosed as malignant melanoma, melanocytic nevus, or healthy skin, finding an optimal correlation with the subsequent histological exam. In some cases our examination was not in agreement with the clinical observation, but it was with the histological exam, demonstrating that the system can potentially contribute to improve clinical diagnostic capabilities and hence reduce the number of unnecessary biopsies.
LLE Review 120 (July-September 2009)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Edgell, D.H., editor
2001-02-19
This issue has the following articles: (1) The Omega Laser Facility Users Group Workshop; (2) The Effect of Condensates and Inner Coatings on the Performance of Vacuum Hohlraum Targets; (3) Zirconia-Coated-Carbonyl-Iron-Particle-Based Magnetorheological Fluid for Polishing Optical Glasses and Ceramics; (4) All-Fiber Optical Magnetic Field Sensor Based on Faraday Rotation in Highly Terbium Doped Fiber; (5) Femtosecond Optical Pump-Probe Characterization of High-Pressure-Grown Al{sub 0.86}Ga{sub 0.14}N Single Crystals; (6) LLE's Summer High School Research Program; (7) Laser Facility Report; and (8) National Laser Users Facility and External Users Programs.
Masoudi, Ali; Belal, Mohammad; Newson, Trevor P
2013-09-01
A Brillouin-based distributed optical fiber dynamic strain sensor is described which converts strain-induced Brillouin frequency shift into optical intensity variations by using an imbalanced Mach-Zhender interferometer. A 3×3 coupler is used at the output of this interferometer to permit differentiate and cross multiply demodulation. The demonstrated sensor is capable of probing dynamic strain disturbances over 2 km of sensing length every 0.5 s up to a strain of 10 mε with an accuracy of ±50 με and spatial resolution of 1.3 m.
Rat brain imaging using full field optical coherence microscopy with short multimode fiber probe
NASA Astrophysics Data System (ADS)
Sato, Manabu; Saito, Daisuke; Kurotani, Reiko; Abe, Hiroyuki; Kawauchi, Satoko; Sato, Shunichi; Nishidate, Izumi
2017-02-01
We demonstrated FF OCM(full field optical coherence microscopy) using an ultrathin forward-imaging SMMF (short multimode fiber) probe of 50 μm core diameter, 125 μm diameter, and 7.4 mm length, which is a typical graded-index multimode fiber for optical communications. The axial resolution was measured to be 2.20 μm, which is close to the calculated axial resolution of 2.06 μm. The lateral resolution was evaluated to be 4.38 μm using a test pattern. Assuming that the FWHM of the contrast is the DOF (depth of focus), the DOF of the signal is obtained at 36 μm and that of the OCM is 66 μm. The contrast of the OCT images was 6.1 times higher than that of the signal images due to the coherence gate. After an euthanasia the rat brain was resected and cut at 2.6mm tail from Bregma. Contacting SMMF to the primary somatosensory cortex and the agranular insular cortex of ex vivo brain, OCM images of the brain were measured 100 times with 2μm step. 3D OCM images of the brain were measured, and internal structure information was obtained. The feasibility of an SMMF as an ultrathin forward-imaging probe in full-field OCM has been demonstrated.
Elastic light single-scattering spectroscopy for detection of dysplastic tissues
NASA Astrophysics Data System (ADS)
Canpolat, Murat; Denkçeken, Tuba; Akman, Ayşe.; Alpsoy, Erkan; Tuncer, Recai; Akyüz, Mahmut; Baykara, Mehmet; Yücel, Selçuk; Başsorgun, Ibrahim; ćiftçioǧlu, M. Akif; Gökhan, Güzide Ayşe.; Gürer, ElifInanç; Peştereli, Elif; Karaveli, Šeyda
2013-11-01
Elastic light single-scattering spectroscopy (ELSSS) system has been developed and tested in diagnosis of cancerous tissues of different organs. ELSSS system consists of a miniature visible light spectrometer, a single fiber optical probe, a halogen tungsten light source and a laptop. Measurements were performed on excised brain, skin, cervix and prostate tumor specimens and surrounding normal tissues. Single fiber optical probe with a core diameter of 100 μm was used to deliver white light to and from tissue. Single optical fiber probe mostly detects singly scattered light from tissue rather than diffused light. Therefore, measured spectra are sensitive to size of scatters in tissue such as cells, nuclei, mitochondria and other organelles of cells. Usually, nuclei of tumor cells are larger than nuclei of normal cells. Therefore, spectrum of singly scattered light of tumor tissue is different than normal tissue. The spectral slopes were shown to be positive for normal brain, skin and prostate and cervix tissues and negative for the tumors of the same tissues. Signs of the spectral slopes were used as a discrimination parameter to differentiate tumor from normal tissues for the three organ tissues. Sensitivity and specificity of the system in differentiation between tumors from normal tissues were 93% and %100 for brain, 87% and 85% for skin, 93.7% and 46.1% for cervix and 98% and 100% for prostate.
Development and optimization of a miniaturized fiber-optic photoplethysmographic sensor
NASA Astrophysics Data System (ADS)
Morley, Aisha; Davenport, John J.; Hickey, Michelle; Phillips, Justin P.
2017-11-01
Photoplethysmography (PPG) is a widely used technique for measuring blood oxygen saturation, commonly using an external pulse oximeter applied to a finger, toe, or earlobe. Previous research has demonstrated the utility of direct monitoring of the oxygen saturation of internal organs, using optical fibers to transmit light between the photodiode/light emitting diode and internal site. However, little research into the optimization and standardization of such a probe has yet been carried out. This research establishes the relationship between fiber separation distance and PPG signal, and between fiber core width and PPG signal. An ideal setup is suggested: 1000-μm fibers at a separation distance of 3 to 3.5 mm, which was found to produce signals around 0.35 V in amplitude with a low variation coefficient.
NASA Astrophysics Data System (ADS)
Halkare, Pallavi; Punjabi, Nirmal; Wangchuk, Jigme; Kondabagil, Kiran; Mukherji, Soumyo
2016-04-01
Hollow gold nanostructures (HGNS) have been used in variety of optical biosensors due to their inherent advantage of operating at near infra red (NIR) wavelength, large extinction coefficient and high dielectric sensitivity. The absorption wavelength of these nanostructures can be modulated by changing the ratio of hollow region to the core shell thickness. The aim of the present study is to incorporate the properties of HGNS, to develop LSPR based U-bent fiber optic sensor for detection of pathogens. The detection was carried out using an experimental set up consisting of a white light source, 200 μm diameter optical fiber having bend diameter of 1.6 mm +/- 0. 2 mm and a spectrometer. The HGNS were immobilized on the decladded portion of the fiber optic probe by chemisorptions. The effective plasmon penetration depth of the HGNS immobilized fiber optic sensor was approximated by using alternating layers of positively and negatively charged polyelectrolytes. The HGNS immobilized U-bent fiber optic sensor was used for detection of E.coli B40 strain using bacteriophage T4. The preliminary experiments were carried out with 104 cfu/ml of E.coli B40 and the change in absorbance obtained was approx. 0.042 +/- 0.0045 abs. units (n = 3). The response of this sensor was found to be better than spherical gold nanoparticle immobilized sensing platforms.
Towards mid-infrared fiber-optic devices and systems for sensing, mapping and imaging
NASA Astrophysics Data System (ADS)
Jayasuriya, D.; Wilson, B.; Furniss, D.; Tang, Z.; Barney, E.; Benson, T. M.; Seddon, A. B.
2016-03-01
Novel chalcogenide glass-based fiber opens up the mid-infrared (MIR) range for real-time monitoring and control in medical diagnostics and chemical processing. Fibers with long wavelength cut-off are of interest here. Sulfide, selenide and telluride based chalcogenide glass are candidates, but there are differences in their glass forming region, thermal stability and in the short and long wavelength cut-off positions. In general sulfide and selenide glasses have greater glass stability, but shorter long-wavelength cut-off edge, compared to telluride glasses; selenide-telluride glasses are a good compromise. Low optical loss selenide-telluride based long wavelength fibers could play a substantial role in improving medical diagnostic systems, chemical sensing, and processing, and in security and agriculture. For biological tissue, the molecular finger print lies between ~3-15 μm wavelengths in the MIR region. Using MIR spectral mapping, information about diseased tissue may be obtained with improved accuracy and in vivo using bright broadband MIR super-continuum generation (SCG) fiber sources and low optical loss fiber for routing. The Ge-As-Se-Te chalcogenide glass system is a potential candidate for both MIR SCG and passive-routing fiber, with good thermal stability, wide intrinsic transparency from ~1.5 to 20 μm and low phonon energy. This paper investigates Ge-As-Se-Te glass system pairs for developing high numerical aperture (NA) small-core, step-index optical fiber for MIR SCG and low NA passive step-index optical fiber for an in vivo fiber probe. Control of fiber geometry of small-core optical fiber and methods of producing the glass material are also included in this paper.
Colposcopic imaging using visible-light optical coherence tomography.
Duan, Lian; McRaven, Michael D; Liu, Wenzhong; Shu, Xiao; Hu, Jianmin; Sun, Cheng; Veazey, Ronald S; Hope, Thomas J; Zhang, Hao F
2017-05-01
High-resolution colposcopic optical coherence tomography (OCT) provides key anatomical measures, such as thickness and minor traumatic injury of vaginal epithelium, of the female reproductive tract noninvasively. This information can be helpful in both fundamental investigations in animal models and disease screenings in humans. We present a fiber-based visible-light OCT and two probe designs for colposcopic application. One probe conducts circular scanning using a DC motor, and the other probe is capable of three-dimensional imaging over a 4.6 × 4.6 - mm 2 area using a pair of galvo scanners. Using this colposcopic vis-OCT with both probes, we acquired high-resolution images from whole isolated macaque vaginal samples and identified biopsy lesions.
Colposcopic imaging using visible-light optical coherence tomography
NASA Astrophysics Data System (ADS)
Duan, Lian; McRaven, Michael D.; Liu, Wenzhong; Shu, Xiao; Hu, Jianmin; Sun, Cheng; Veazey, Ronald S.; Hope, Thomas J.; Zhang, Hao F.
2017-05-01
High-resolution colposcopic optical coherence tomography (OCT) provides key anatomical measures, such as thickness and minor traumatic injury of vaginal epithelium, of the female reproductive tract noninvasively. This information can be helpful in both fundamental investigations in animal models and disease screenings in humans. We present a fiber-based visible-light OCT and two probe designs for colposcopic application. One probe conducts circular scanning using a DC motor, and the other probe is capable of three-dimensional imaging over a 4.6×4.6-mm2 area using a pair of galvo scanners. Using this colposcopic vis-OCT with both probes, we acquired high-resolution images from whole isolated macaque vaginal samples and identified biopsy lesions.
Fiber optic reference frequency distribution to remote beam waveguide antennas
NASA Technical Reports Server (NTRS)
Calhoun, Malcolm; Kuhnle, Paul; Law, Julius
1995-01-01
In the NASA/JPL Deep Space Network (DSN), radio science experiments (probing outer planet atmospheres, rings, gravitational waves, etc.) and very long-base interferometry (VLBI) require ultra-stable, low phase noise reference frequency signals at the user locations. Typical locations for radio science/VLBI exciters and down-converters are the cone areas of the 34 m high efficiency antennas or the 70 m antennas, located several hundred meters from the reference frequency standards. Over the past three years, fiber optic distribution links have replaced coaxial cable distribution for reference frequencies to these antenna sites. Optical fibers are the preferred medium for distribution because of their low attenuation, immunity to EMI/IWI, and temperature stability. A new network of Beam Waveguide (BWG) antennas presently under construction in the DSN requires hydrogen maser stability at tens of kilometers distance from the frequency standards central location. The topic of this paper is the design and implementation of an optical fiber distribution link which provides ultra-stable reference frequencies to users at a remote BWG antenna. The temperature profile from the earth's surface to a depth of six feet over a time period of six months was used to optimize the placement of the fiber optic cables. In-situ evaluation of the fiber optic link performance indicates Allan deviation on the order of parts in 10(exp -15) at 1000 and 10,000 seconds averaging time; thus, the link stability degradation due to environmental conditions still preserves hydrogen maser stability at the user locations. This paper reports on the implementation of optical fibers and electro-optic devices for distributing very stable, low phase noise reference signals to remote BWG antenna locations. Allan deviation and phase noise test results for a 16 km fiber optic distribution link are presented in the paper.
Fiber optic reference frequency distribution to remote beam waveguide antennas
NASA Astrophysics Data System (ADS)
Calhoun, Malcolm; Kuhnle, Paul; Law, Julius
1995-05-01
In the NASA/JPL Deep Space Network (DSN), radio science experiments (probing outer planet atmospheres, rings, gravitational waves, etc.) and very long-base interferometry (VLBI) require ultra-stable, low phase noise reference frequency signals at the user locations. Typical locations for radio science/VLBI exciters and down-converters are the cone areas of the 34 m high efficiency antennas or the 70 m antennas, located several hundred meters from the reference frequency standards. Over the past three years, fiber optic distribution links have replaced coaxial cable distribution for reference frequencies to these antenna sites. Optical fibers are the preferred medium for distribution because of their low attenuation, immunity to EMI/IWI, and temperature stability. A new network of Beam Waveguide (BWG) antennas presently under construction in the DSN requires hydrogen maser stability at tens of kilometers distance from the frequency standards central location. The topic of this paper is the design and implementation of an optical fiber distribution link which provides ultra-stable reference frequencies to users at a remote BWG antenna. The temperature profile from the earth's surface to a depth of six feet over a time period of six months was used to optimize the placement of the fiber optic cables. In-situ evaluation of the fiber optic link performance indicates Allan deviation on the order of parts in 10(exp -15) at 1000 and 10,000 seconds averaging time; thus, the link stability degradation due to environmental conditions still preserves hydrogen maser stability at the user locations. This paper reports on the implementation of optical fibers and electro-optic devices for distributing very stable, low phase noise reference signals to remote BWG antenna locations. Allan deviation and phase noise test results for a 16 km fiber optic distribution link are presented in the paper.
Antibody-based bacterial toxin detection
NASA Astrophysics Data System (ADS)
Menking, Darrell E.; Heitz, Jonathon M.; Anis, Nabil A.; Thompson, Roy G.
1994-03-01
Fiber optic evanescent fluorosensors are under investigation in our laboratory for the study of drug-receptor interactions for detection of threat agents and antibody-antigen interactions for detection of biological toxins. In a one step assay, antibodies against Cholera toxin or Staphylococcus Enterotoxin B were noncovalently immobilized on quartz fibers and probed with fluorescein-isothiocyanate (FITC)-labeled toxins. In the two-step assay, Cholera toxin or Botulinum toxoid A was immobilized onto the fiber, followed by incubation in an antiserum or partially purified antitoxin IgG. These were then probed with FITC-anti-IgG antibodies. Unlabeled toxins competed with labeled toxins or antitoxin IgG in a dose-dependent manner and the detection of the toxins was in the nanomolar range.
Fiber-optic laser Doppler turbine tip clearance probe
NASA Astrophysics Data System (ADS)
Büttner, Lars; Pfister, Thorsten; Czarske, Jürgen
2006-05-01
A laser Doppler based method for in situ single blade tip clearance measurements of turbomachines with high precision is presented for what we believe is the first time. The sensor is based on two superposed fanlike interference fringe systems generated by two laser wavelengths from a fiber-coupled, passive, and therefore compact measurement head employing diffractive optics. Tip clearance measurements at a transonic centrifugal compressor performed during operation at 50,000 rpm (833 Hz, 586 m/s tip speed) are reported. At these speeds the measured uncertainty of the tip position was less than 20 μm, a factor of 2 more accurate than that of capacitive probes. The sensor offers great potential for in situ and online high-precision tip clearance measurements of metallic and nonmetallic turbine blades.
Fiber-optic laser Doppler turbine tip clearance probe.
Büttner, Lars; Pfister, Thorsten; Czarske, Jürgen
2006-05-01
A laser Doppler based method for in situ single blade tip clearance measurements of turbomachines with high precision is presented for what we believe is the first time. The sensor is based on two superposed fanlike interference fringe systems generated by two laser wavelengths from a fiber-coupled, passive, and therefore compact measurement head employing diffractive optics. Tip clearance measurements at a transonic centrifugal compressor performed during operation at 50,000 rpm (833 Hz, 586 m/s tip speed) are reported. At these speeds the measured uncertainty of the tip position was less than 20 microm, a factor of 2 more accurate than that of capacitive probes. The sensor offers great potential for in situ and online high-precision tip clearance measurements of metallic and nonmetallic turbine blades.
Kim, Young Hoon; Song, Kwang Yong
2017-06-26
A Brillouin optical time domain analysis (BOTDA) system utilizing tailored compensation for the propagation loss of the pump pulse is demonstrated for long-range and high-resolution distributed sensing. A continuous pump wave for distributed Brillouin amplification (DBA pump) of the pump pulse co-propagates with the probe wave, where gradual variation of the spectral width is additionally introduced to the DBA pump to obtain a uniform Brillouin gain along the position. In the experimental confirmation, a distributed strain measurement along a 51.2 km fiber under test is presented with a spatial resolution of 20 cm, in which the measurement error (σ) of less than 1.45 MHz and the near-constant Brillouin gain of the probe wave are maintained throughout the fiber.
Fiber-optic two-photon optogenetic stimulation.
Dhakal, K; Gu, L; Black, B; Mohanty, S K
2013-06-01
Optogenetic stimulation of genetically targeted cells is proving to be a powerful tool in the study of cellular systems, both in vitro and in vivo. However, most opsins are activated in the visible spectrum, where significant absorption and scattering of stimulating light occurs, leading to low penetration depth and less precise stimulation. Since we first (to the best of our knowledge) demonstrated two-photon optogenetic stimulation (TPOS), it has gained considerable interest in the probing of cellular circuitry by precise spatial modulation. However, all existing methods use microscope objectives and complex scanning beam geometries. Here, we report a nonscanning method based on multimode fiber to accomplish fiber-optic TPOS of cells.
10-channel fiber array fabrication technique for parallel optical coherence tomography system
NASA Astrophysics Data System (ADS)
Arauz, Lina J.; Luo, Yuan; Castillo, Jose E.; Kostuk, Raymond K.; Barton, Jennifer
2007-02-01
Optical Coherence Tomography (OCT) shows great promise for low intrusive biomedical imaging applications. A parallel OCT system is a novel technique that replaces mechanical transverse scanning with electronic scanning. This will reduce the time required to acquire image data. In this system an array of small diameter fibers is required to obtain an image in the transverse direction. Each fiber in the array is configured in an interferometer and is used to image one pixel in the transverse direction. In this paper we describe a technique to package 15μm diameter fibers on a siliconsilica substrate to be used in a 2mm endoscopic probe tip. Single mode fibers are etched to reduce the cladding diameter from 125μm to 15μm. Etched fibers are placed into a 4mm by 150μm trench in a silicon-silica substrate and secured with UV glue. Active alignment was used to simplify the lay out of the fibers and minimize unwanted horizontal displacement of the fibers. A 10-channel fiber array was built, tested and later incorporated into a parallel optical coherence system. This paper describes the packaging, testing, and operation of the array in a parallel OCT system.
Baliyan, Anjli; Usha, Sruthi Prasood; Gupta, Banshi D; Gupta, Rani; Sharma, Enakshi Khular
2017-10-01
A label-free technique for the detection of triacylglycerides by a localized surface plasmon resonance (LSPR)-based biosensor is demonstrated. An LSPR-based fiber-optic sensor probe is fabricated by immobilizing lipase enzyme on silver nanoparticles (Ag-NPs) coated on an unclad segment of a plastic clad optical fiber. The size and shape of nanoparticles were characterized by high-resolution transmission electron microscopy and UV-visible spectroscopy. The peak absorbance wavelength changes with concentration of triacylglycerides surrounding the sensor probe, and sensitivity is estimated from shift in the peak absorbance wavelength as a function of concentration. The fabricated sensor was characterized for the concentration of triacylglyceride solution in the range 0 to 7 mM. The sensor shows the best sensitivity at a temperature of 37°C and pH 7.4 of the triacylglycerides emulsion with a response time of 40 s. A sensitivity of 28.5 nm/mM of triacylglyceride solution is obtained with a limit of detection of 0.016 mM in the entire range of triacylglycerides. This compact biosensor shows good selectivity, stability, and reproducibility in the entire physiological range of triacylglycerides and is well-suited to real-time online monitoring and remote sensing. (2017) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).
NASA Astrophysics Data System (ADS)
Sharma, Anuj K.; Kaur, Baljinder
2018-07-01
Surface plasmon resonance (SPR) based chalcogenide fiber-optic sensor with polymer clad and MoS2 monolayer is simulated and analyzed in near infrared (NIR) for detection of mixture of alcohols (ethanol and methanol) dissolved in water solution. The proposed fiber optic sensor is analyzed under angular interrogation method, which is based on selective ray (on-axis) launching of monochromatic light into the fiber core at varying angle followed by measuring the loss of power (in dB) after passing through the SPR probe region. The performance of the sensor is analyzed in terms of its figure of merit (FOM). The sensor's specificity towards alcohols along with considerably larger FOM is achieved by utilizing a polythiophene (PT) layer. The results indicate that longer NIR wavelength (λ) provides superior sensing performance. The sensor's performance is better for larger volume fraction of methanol in the water solution. The proposed fiber optic SPR sensor has the capability of providing much greater FOM compared with the previously-reported SPR sensors.
Jin, Lu; Li, Li; Li, Xin-xia; Yang, Ting; Kong, Bin; Xu, Ping-ping
2011-02-01
The paper is to report the development of an optic-fiber sensing technology method to analyze metronidazole tablets rapidly. In this fiber-optic sensing system, the light from source delivering to probe can be dipped into simple-handling sample solution, absorbed by the solution and reflected to the fiber-optic and detected in the detection system at last. Then the drug content can be shown in the screen from the ultraviolet absorption spectra and the consistency between that obtained by this method and that in China Pharmacopoeia can be compared. With regard to data processing, a new method is explored to identify the authenticity of drugs using the similarity between the sample map and the standard pattern by full ultraviolet spectrum. The results indicate that ultraviolet spectra of tablets can be obtained from this technology and the determination results showed no significant difference as compared with the method in China Pharmacopoeia (P > 0.05), and the similarity can be a parameter to identify the authenticity of drugs.
Spectral fiber sensors for cancer diagnostics in vitro
NASA Astrophysics Data System (ADS)
Artyushenko, V.; Schulte, F.; Zabarylo, U.; Berlien, H.-P.; Usenov, I.; Saeb Gilani, T.; Eichler, H.; Pieszczek, Ł.; Bogomolov, A.; Krause, H.; Minet, O.
2015-07-01
Cancer is one of the leading causes for morbidity and mortality worldwide. Therefore, efforts are concentrated on cancer detection in an early stage to enhance survival rates for cancer patients. A certain intraoperative navigation in the tumor border zone is also an essential task to lower the mortality rate after surgical treatment. Molecular spectroscopy methods proved to be powerful tools to differentiate cancerous and healthy tissue. Within our project comparison of different vibration spectroscopy methods were tested to select the better one or to reach synergy from their combination. One key aspect was in special fiber probe development for each technique. Using fiber optic probes in Raman, MIR and NIR spectroscopy is a very powerful method for non-invasive in vivo applications. Miniaturization of Raman probes was achieved by deposition of dielectric filters directly onto the silica fiber end surfaces. Raman, NIR and MIR spectroscopy were used to analyze samples from kidney tumors. The differentiation between cancer and healthy samples was successfully obtained by multivariate data analysis.
Single Nanowire Probe for Single Cell Endoscopy and Sensing
NASA Astrophysics Data System (ADS)
Yan, Ruoxue
The ability to manipulate light in subwavelength photonic and plasmonic structures has shown great potentials in revolutionizing how information is generated, transformed and processed. Chemically synthesized nanowires, in particular, offers a unique toolbox not only for highly compact and integrated photonic modules and devices, including coherent and incoherent light sources, waveguides, photodetectors and photovoltaics, but also for new types of nanoscopic bio-probes for spot cargo delivery and in-situ single cell endoscopy and sensing. Such nanowire probes would enable us to carry out intracellular imaging and probing with high spatial resolution, monitor in-vivo biological processes within single living cells and greatly improve our fundamental understanding of cell functions, intracellular physiological processes, and cellular signal pathways. My work is aimed at developing a material and instrumental platform for such single nanowire probe. Successful optical integration of Ag nanowire plasmonic waveguides, which offers deep subwavelength mode confinement, and conventional photonic waveguides was demonstrated on a single nanowire level. The highest plasmonic-photonic coupling efficiency coupling was found at small coupling angles and low input frequencies. The frequency dependent propagation loss was observed in Ag nanowire and was confirmed by quantitative measurement and in agreement with theoretical expectations. Rational integration of dielectric and Ag nanowire waveguide components into hybrid optical-plasmonic routing devices has been demonstrated. This capability is essential for incorporating sub-100nm Ag nanowire waveguides into optical fiber based nanoprobes for single cell endoscopy. The nanoprobe system based on single nanowire waveguides was demonstrated by optically coupling semiconductor or metal nanowire with an optical fiber with tapered tip. This nanoprobe design requires minimal instrumentation which makes it cost efficient and readily adaptable to average bio-lab environment. These probes are mechanically robust and flexible and can withstand repeated bending and deformation without significant deterioration in optical performance, which offers an ideal instrumental platform for out subsequent effort of using these nanoprobes in chemical sensing as well as single cell endoscopy and spot delivery. Parameters affecting the coupling efficiency and output power of the nanoprobe were studied and chemical etched of single mode fiber with small cone angle was established to be optimized for highly effective optical nanoprobes. The versatility of the nanoprobe design was first tested by transforming the nanowire probe into a pH sensor with near-field photopolymerization of a copolymer containing pH sensitive dye on the tip of the nanowire. The pH-sensitive nanoprobe was able to report the pH difference in micro-droplets containing buffer solution with the excitation of light waveguided on the nanoprobe with internal calibration, fast response time and good photostability and reversibility. Such nanoprobe sensors are ideal for high definition spatial and temporal sensing of concentration profile, especially for the kinetic processes in single cell studies for which chemical probes of minute sizes and fast response are desired. The nanoprobe was then applied into spot cargo delivery and in-situ single cell endoscopy. It was demonstrated that nanowire-based optical probe can deliver payloads into the cell with a high spatiotemporal precision, guide and confine visible light into intracellular compartments selectively and detect optical signals from the subcellular regions with high spatial resolution. The nanoprobe was proven to be biocompatible and non-invasive. The effective optical coupling between the fiber optics and the nanowire enables highly localized excitation and detection, limiting the probe volume to the close proximity of the nanowire. None the less, this versatile technique does not rely on any expensive or bulky instrumentation, and relies only on micromanipulator and optical microscope that are readily available in most biological labs. The different functions can be further integrated to make the whole nanoprobe system more compact and even portable. In addition, my research also includes the first demonstration of the synthesis of the longitudinal heterostructured SiO2/Al2O 3 nanotubes and the nanofluidic diode device based on the discontinuity of their internal surface charge. Comprehensive characterization shows that the nanotubes has heterostructured inner tube walls, as well as a discontinuity of surface charge. The ionic transport through these nanotube heterojunctions exhibits clear current rectification, a signature of ionic diode behavior. The development of such nanofluidic devices would enable the modulation of ionic and molecular transport at a more sophisticated level, and lead to large-scale integrated nanofluidic networks and logic circuits.
Miniature injection-molded optics for fiber-optic, in vivo confocal microscopy
NASA Astrophysics Data System (ADS)
Chidley, Matthew D.; Liang, Chen; Descour, Michael R.; Sung, Kung-Bin; Richards-Kortum, Rebecca R.; Gillenwater, Ann
2002-12-01
In collaboration with the Department of Biomedical Engineering at the University of Texas at Austin and the UT MD Anderson Cancer Center, a laser scanning fiber confocal reflectance microscope (FCRM) system has been designed and tested for in vivo detection of cervical and oral pre-cancers. This system along with specially developed diagnosis algorithms and techniques can achieve an unprecedented specificity and sensitivity for the diagnosis of pre-cancers in epithelial tissue. The FCRM imaging system consists of an NdYAG laser (1064 nm), scanning mirrors/optics, precision pinhole, detector, and an endoscopic probe (the objective). The objective is connected to the rest of the imaging system via a fiber bundle. The fiber bundle allows the rest of the system to be remotely positioned in a convenient location. Only the objective comes into contact with the patient. It is our intent that inexpensive mass-produced disposable endoscopic probes would be produced for large clinical trials. This paper touches on the general design process of developing a miniature, high numerical aperture, injection-molded (IM) objective. These IM optical designs are evaluated and modified based on manufacturing and application constraints. Based on these driving criteria, one specific optical design was chosen and a detailed tolerance analysis was conducted. The tolerance analysis was custom built to create a realistic statistical analysis for integrated IM lens elements that can be stacked one on top of another using micro-spheres resting in tiny circular grooves. These configurations allow each lens element to be rotated and possibly help compensate for predicted manufacturing errors. This research was supported by a grant from the National Institutes of Health (RO1 CA82880). Special thanks go to Applied Image Group/Optics for the numerous fabrication meetings concerning the miniature IM objective.
Detection of adulteration in diesel and petrol by kerosene using SPR based fiber optic technique
NASA Astrophysics Data System (ADS)
Verma, Rajneesh K.; Suwalka, Payal; Yadav, Jatin
2018-07-01
In this paper we focused on the experimental investigations for fabricating a surface plasmon resonance (SPR) based fiber optic sensor for the detection of the extent of adulteration in petrochemicals: petrol and diesel by kerosene. Primarily it is observed that the refractive index of the petrol and diesel changes if we mix kerosene in it. The variation in refractive index is linear in nature. Utilizing the phenomenon of surface plasmon resonance in Krestchmann configuration on optical fiber, the percentage of adulteration in petrol and diesel is detected. The detection level of adulteration is quantified systematically for both the petrol and diesel. The study carried out here explores the possibility of utilizing SPR technique for the detection of the level of adulteration in petrochemicals. The suitability of the optical fiber for remote sensing and its immunity towards electromagnetic interaction makes this probe very useful for such endeavor. High sensitivity, easy construction and its portability, makes this study important in the development of SPR based optical fiber sensors for petrochemical industries. Apart from this various aspects of environment polluting hazardous/toxic gases as an emission product of automobile fuels has also been discussed.
Surface Plasmon Resonance-Based Fiber Optic Sensors Utilizing Molecular Imprinting
Gupta, Banshi D.; Shrivastav, Anand M.; Usha, Sruthi P.
2016-01-01
Molecular imprinting is earning worldwide attention from researchers in the field of sensing and diagnostic applications, due to its properties of inevitable specific affinity for the template molecule. The fabrication of complementary template imprints allows this technique to achieve high selectivity for the analyte to be sensed. Sensors incorporating this technique along with surface plasmon or localized surface plasmon resonance (SPR/LSPR) provide highly sensitive real time detection with quick response times. Unfolding these techniques with optical fiber provide the additional advantages of miniaturized probes with ease of handling, online monitoring and remote sensing. In this review a summary of optical fiber sensors using the combined approaches of molecularly imprinted polymer (MIP) and the SPR/LSPR technique is discussed. An overview of the fundamentals of SPR/LSPR implementation on optical fiber is provided. The review also covers the molecular imprinting technology (MIT) with its elementary study, synthesis procedures and its applications for chemical and biological anlayte detection with different sensing methods. In conclusion, we explore the advantages, challenges and the future perspectives of developing highly sensitive and selective methods for the detection of analytes utilizing MIT with the SPR/LSPR phenomenon on optical fiber platforms. PMID:27589746
NASA Astrophysics Data System (ADS)
Kant, Ravi; Tabassum, Rana; Gupta, Banshi D.
2017-05-01
Caffeine is the most popular psychoactive drug consumed in the world for improving alertness and enhancing wakefulness. However, caffeine consumption beyond limits can result in lot of physiological complications in human beings. In this work, we report a novel detection scheme for caffeine integrating nanohybrid membranes of reduced graphene oxide (rGO) in chitosan modified silica sol gel (rGO: chitosan: silica sol gel) with fiber optic surface plasmon resonance. The chemically synthesized nanohybrid membrane forming the sensing route has been dip coated over silver coated unclad central portion of an optical fiber. The sensor works on the mechanism of modification of dielectric function of sensing layer on exposure to analyte solution which is manifested in terms of red shift in resonance wavelength. The concentration of rGO in polymer network of chitosan and silica sol gel and dipping time of the silver coated probe in the solution of nanohybrid membrane have been optimized to extricate the supreme performance of the sensor. The optimized sensing probe possesses a reasonably good sensitivity and follows an exponentially declining trend within the entire investigating range of caffeine concentration. The sensor boasts of an unparalleled limit of detection value of 1.994 nM and works well in concentration range of 0-500 nM with a response time of 16 s. The impeccable sensor methodology adopted in this work combining fiber optic SPR with nanotechnology furnishes a novel perspective for caffeine determination in commercial foodstuffs and biological fluids.
NASA Astrophysics Data System (ADS)
Haj-Hosseini, Neda; Lowndes, Shannely; Salerud, Göran; Wårdell, Karin
2011-03-01
Fluorescence guidance in brain tumor resection is performed intra-operatively where bleeding is included. When using fiber-optical probes, the transmission of light to and from the tissue is totally or partially blocked if a small amount of blood appears in front of the probe. Sometimes even after rinsing with saline, the remnant blood cells on the optical probe head, disturb the measurements. In such a case, the corresponding spectrum cannot be reliably quantified and is therefore discarded. The optimal case would be to calculate and take out the blood effect systematically from the collected signals. However, the first step is to study the pattern of blood interference in the fluorescence spectrum. In this study, a fiber-optical based fluorescence spectroscopy system with a laser excitation light of 405 nm (1.4 J/cm2) was used during fluorescence guided brain tumor resection using 5-aminolevulinic acid (5-ALA). The blood interference pattern in the fluorescence spectrum collected from the brain was studied in two patients. The operation situation was modeled in the laboratory by placing blood drops from the finger tip on the skin of forearm and the data was compared to the brain in vivo measurements. Additionally, a theoretical model was developed to simulate the blood interference pattern on the skin autofluorescence. The blood affects the collected fluorescence intensity and leaves traces of oxy and deoxy-hemoglobin absorption peaks. According to the developed theoretical model, the autofluorescence signal is considered to be totally blocked by an approximately 500 μm thick blood layer.
NASA Astrophysics Data System (ADS)
Wang, Chun Wei; Manne, Upender; Reddy, Vishnu B.; Oelschlager, Denise K.; Katkoori, Venkat R.; Grizzle, William E.; Kapoor, Rakesh
2010-11-01
A combination tapered fiber-optic biosensor (CTFOB) dip probe for rapid and cost-effective quantification of proteins in serum samples has been developed. This device relies on diode laser excitation and a charged-coupled device spectrometer and functions on a technique of sandwich immunoassay. As a proof of principle, this technique was applied in a quantitative estimation of interleukin IL-6. The probes detected IL-6 at picomolar levels in serum samples obtained from a patient with lupus, an autoimmune disease, and a patient with lymphoma. The estimated concentration of IL-6 in the lupus sample was 5.9 +/- 0.6 pM, and in the lymphoma sample, it was below the detection limit. These concentrations were verified by a procedure involving bead-based xMAP technology. A similar trend in the concentrations was observed. The specificity of the CTFOB dip probes was assessed by analysis with receiver operating characteristics. This analysis suggests that the dip probes can detect 5-pM or higher concentration of IL-6 in these samples with specificities of 100%. The results provide information for guiding further studies in the utilization of these probes to quantify other analytes in body fluids with high specificity and sensitivity.
Conjugation of fiber-coupled wide-band light sources and acousto-optical spectral elements
NASA Astrophysics Data System (ADS)
Machikhin, Alexander; Batshev, Vladislav; Polschikova, Olga; Khokhlov, Demid; Pozhar, Vitold; Gorevoy, Alexey
2017-12-01
Endoscopic instrumentation is widely used for diagnostics and surgery. The imaging systems, which provide the hyperspectral information of the tissues accessible by endoscopes, are particularly interesting and promising for in vivo photoluminescence diagnostics and therapy of tumour and inflammatory diseases. To add the spectral imaging feature to standard video endoscopes, we propose to implement acousto-optical (AO) filtration of wide-band illumination of incandescent-lamp-based light sources. To collect maximum light and direct it to the fiber-optic light guide inside the endoscopic probe, we have developed and tested the optical system for coupling the light source, the acousto-optical tunable filter (AOTF) and the light guide. The system is compact and compatible with the standard endoscopic components.
Bio-analytical applications of mid-infrared spectroscopy using silver halide fiber-optic probes1
NASA Astrophysics Data System (ADS)
Heise, H. M.; Küpper, L.; Butvina, L. N.
2002-10-01
Infrared-spectroscopy has proved to be a powerful method for the study of various biomedical samples, in particular for in-vitro analysis in the clinical laboratory and for non-invasive diagnostics. In general, the analysis of biofluids such as whole blood, urine, microdialysates and bioreactor broth media takes advantage of the fact that a multitude of analytes can be quantified simultaneously and rapidly without the need for reagents. Progress in the quality of infrared silver halide fibers enabled us to construct several flexible fiber-optic probes of different geometries, which are particularly suitable for the measurement of small biosamples. Recent trends show that dry film measurements by mid-infrared spectroscopy could revolutionize analytical tools in the clinical chemistry laboratory, and an example is given. Infrared diagnostic tools show a promising potential for patients, and minimal-invasive blood glucose assays or skin tissue pathology in particular cannot be left out using mid-infrared fiber-based probes. Other applications include the measurement of skin samples including penetration studies of vitamins and constituents of cosmetic cream formulations. A further field is the micro-domain analysis of biopsy samples from bog mummified corpses, and recent results on the chemistry of dermis and hair samples are reported. Another field of application, for which results are reported, is food analysis and bio-reactor monitoring.
NASA Astrophysics Data System (ADS)
Li, Jiahua; Zhang, Suzhen; Yu, Rong; Zhang, Duo; Wu, Ying
2014-11-01
Based on a single atom coupled to a fiber-coupled, chip-based microresonator [B. Dayan et al., Science 319, 1062 (2008), 10.1126/science.1152261], we put forward a scheme to generate optical frequency combs at driving laser powers as low as a few nanowatts. Using state-of-the-art experimental parameters, we investigate in detail the influences of different atomic positions and taper-resonator coupling regimes on optical-frequency-comb generation. In addition to numerical simulations demonstrating this effect, a physical explanation of the underlying mechanism is presented. We find that the combination of the atom and the resonator can induce a large third-order nonlinearity which is significantly stronger than Kerr nonlinearity in Kerr frequency combs. Such enhanced nonlinearity can be used to generate optical frequency combs if driven with two continuous-wave control and probe lasers and significantly reduce the threshold of nonlinear optical processes. The comb spacing can be well tuned by changing the frequency beating between the driving control and probe lasers. The proposed method is versatile and can be adopted to different types of resonators, such as microdisks, microspheres, microtoroids or microrings.
Neurosurgical hand-held optical coherence tomography (OCT) forward-viewing probe
NASA Astrophysics Data System (ADS)
Sun, Cuiru; Lee, Kenneth K. C.; Vuong, Barry; Cusimano, Michael; Brukson, Alexander; Mariampillai, Adrian; Standish, Beau A.; Yang, Victor X. D.
2012-02-01
A prototype neurosurgical hand-held optical coherence tomography (OCT) imaging probe has been developed to provide micron resolution cross-sectional images of subsurface tissue during open surgery. This new ergonomic hand-held probe has been designed based on our group's previous work on electrostatically driven optical fibers. It has been packaged into a catheter probe in the familiar form factor of the clinically accepted Bayonet shaped neurosurgical non-imaging Doppler ultrasound probes. The optical design was optimized using ZEMAX simulation. Optical properties of the probe were tested to yield an ~20 um spot size, 5 mm working distance and a 3.5 mm field of view. The scan frequency can be increased or decreased by changing the applied voltage. Typically a scan frequency of less than 60Hz is chosen to keep the applied voltage to less than 2000V. The axial resolution of the probe was ~15 um (in air) as determined by the OCT system. A custom-triggering methodology has been developed to provide continuous stable imaging, which is crucial for clinical utility. Feasibility of this probe, in combination with a 1310 nm swept source OCT system was tested and images are presented to highlight the usefulness of such a forward viewing handheld OCT imaging probe. Knowledge gained from this research will lay the foundation for developing new OCT technologies for endovascular management of cerebral aneurysms and transsphenoidal neuroendoscopic treatment of pituitary tumors.
Faraday spectroscopy of ultracold atoms guided in hollow core optical fibers
NASA Astrophysics Data System (ADS)
Fatemi, Fredrik; Pechkis, Joseph
2013-05-01
We have performed spatially and temporally resolved magnetometry using Faraday spectroscopy of ultracold rubidium atoms confined in hollow core optical fibers. We first guide 105 Rb atoms into a 3-cm-long, 100-micron-core hollow fiber using blue-detuned hollow waveguide modes. Inside the fiber, the atoms are exposed to an optical pumping pulse, and the Larmor precession is monitored by the polarization rotation of a probe laser beam detuned by 50 GHz. The intense guide beams can perturb the detected Larmor precession frequencies, but we show that by confining the atoms to the intensity null of higher order blue-detuned hollow modes, these perturbations are reduced by over 95% compared to red-detuned guides. By adjusting the guide beam detuning and polarization, the deleterious effects of both photon scattering and frequency shifts can be suppressed such that multiple magnetic field measurements with sensitivity of 30 nT per sampling pulse can be obtained throughout the length of the fiber in a single loading cycle. Work supported by ONR and DARPA.
Portable evanescent wave fiber biosensor for highly sensitive detection of Shigella
NASA Astrophysics Data System (ADS)
Xiao, Rui; Rong, Zhen; Long, Feng; Liu, Qiqi
2014-11-01
A portable evanescent wave fiber biosensor was developed to achieve the rapid and highly sensitive detection of Shigella. In this study, a DNA probe was covalently immobilized onto fiber-optic biosensors that can hybridize with a fluorescently labeled complementary DNA. The sensitivity of detection for synthesized oligonucleotides can reach 10-10 M. The surface of the sensor can be regenerated with 0.5% sodium dodecyl sulfate solution (pH 1.9) for over 30 times without significant deterioration of performance. The total analysis time for a single sample, including the time for measurement and surface regeneration, was less than 6 min. We employed real-time polymerase chain reaction (PCR) and compared the results of both methods to investigate the actual Shigella DNA detection capability of the fiber-optic biosensor. The fiber-optic biosensor could detect as low as 102 colony-forming unit/mL Shigella. This finding was comparable with that by real-time PCR, which suggests that this method is a potential alternative to existing detection methods.
Maruyama, Kenichi; Ohkawa, Hiroyuki; Ogawa, Sho; Ueda, Akio; Niwa, Osamu; Suzuki, Koji
2006-03-15
We have already reported a method for fabricating ultramicroelectrodes (Suzuki, K. JP Patent, 2004-45394, 2004). This method is based on the selective chemical etching of optical fibers. In this work, we undertake a detailed investigation involving a combination of etched optical fibers with various types of tapered tip (protruding-shape, double- (or pencil-) shape and triple-tapered electrode) and insulation with electrophoretic paint. Our goal is to establish a method for fabricating nanometer-sized optical fiber electrodes with high reproducibility. As a result, we realized pencil-shaped and triple-tapered electrodes that had radii in the nanometer range with high reproducibility. These nanometer-sized electrodes showed well-defined sigmoidal curves and stable diffusion-limited responses with cyclic voltammetry. The pencil-shaped optical fiber, which has a conical tip with a cone angle of 20 degrees , was effective for controlling the electrode radius. The pencil-shaped electrodes had higher reproducibility and smaller electrode radii (r(app) < 1.0 nm) than those of other etched optical fiber electrodes. By using a pencil-shaped electrode with a 105-nm radius as a probe, we obtained simultaneous electrochemical and optical images of an implantable interdigitated array electrode. We achieved nanometer-scale resolution with a combination of scanning electrochemical microscopy SECM and optical microscopy. The resolution of the electrochemical and optical images indicated sizes of 300 and 930 nm, respectively. The neurites of living PC12 cells were also successfully imaged on a 1.6-microm scale by using the negative feedback mode of an SECM.
Enzyme-enhanced fluorescence detection of DNA on etched optical fibers.
Niu, Shu-yan; Li, Quan-yi; Ren, Rui; Zhang, Shu-sheng
2009-05-15
A novel DNA biosensor based on enzyme-enhanced fluorescence detection on etched optical fibers was developed. The hybridization complex of DNA probe and biotinylated target was formed on the etched optical fiber, and was then bound with streptavidin labeled horseradish peroxidase (streptavidin-HRP). The target DNA was quantified through the fluorescent detection of bi-p,p'-4-hydroxyphenylacetic acid (DBDA) generated from the substrate 4-hydroxyphenylacetic acid (p-HPA) under the catalysis of HRP, with a detection limit of 1 pM and a linear range from 1.69 pM to 169 pM. It is facile to regenerate this sensor through surface treatment with concentrated urea solution. It was discovered that the sensor can retain 70% of its original activity after three detection-regeneration cycles.
A Fiber Optic Probe for Monitoring Protein Aggregation, Nucleation, and Crystallization
NASA Technical Reports Server (NTRS)
Ansari, Rafat R.; Suh, Kwang I.; Arabshahi, Alireza; Wilson, William W.; Bray, Terry L.; DeLucas, Lawrence J.
1996-01-01
Protein crystals are experimentally grown in hanging drops in microgravity experiments on-board the Space Shuttle orbiter. The technique of dynamic light scattering (DLS) can be used to monitor crystal growth process in hanging droplets (approx. 30 (L)) in microgravity experiments, but elaborate instrumentation and optical alignment problems have made in-situ applications difficult. In this paper we demonstrate that such experiments are now feasible. We apply a newly developed fiber optic probe to various earth and space (micro- gravity) bound protein crystallization system configurations to test its capability. These include conventional batch (cuvette or capillary) systems, hanging drop method in a six-pack hanging drop vapor diffusion apparatus (HDVDA), a modified HDVDA for temperature- induced nucleation and aggregation studies, and a newly envisioned dynamically controlled vapor diffusion system (DCVDS) configuration. Our compact system exploits the principles of DLS and offers a fast (within a few seconds) means of quantitatively and non-invasively monitoring the various growth stages of protein crystallization. In addition to DLS capability, the probe can also be used for performing single-angle static light scattering measurements. It utilizes extremely low levels of laser power (approx. few (W)) without a need of having any optical alignment and vibration isolation. The compact probe is also equipped with a miniaturized microscope for visualization of macroscopic protein crystals. This new optical diagnostic system opens up enormous opportunity for exploring new ways to grow good quality crystals suitable for x-ray crystallographic analysis and may help develop a concrete scientific basis for understanding the process of crystallization.
An optical fiber bundle sensor for tip clearance and tip timing measurements in a turbine rig.
García, Iker; Beloki, Josu; Zubia, Joseba; Aldabaldetreku, Gotzon; Illarramendi, María Asunción; Jiménez, Felipe
2013-06-05
When it comes to measuring blade-tip clearance or blade-tip timing in turbines, reflective intensity-modulated optical fiber sensors overcome several traditional limitations of capacitive, inductive or discharging probe sensors. This paper presents the signals and results corresponding to the third stage of a multistage turbine rig, obtained from a transonic wind-tunnel test. The probe is based on a trifurcated bundle of optical fibers that is mounted on the turbine casing. To eliminate the influence of light source intensity variations and blade surface reflectivity, the sensing principle is based on the quotient of the voltages obtained from the two receiving bundle legs. A discrepancy lower than 3% with respect to a commercial sensor was observed in tip clearance measurements. Regarding tip timing measurements, the travel wave spectrum was obtained, which provides the average vibration amplitude for all blades at a particular nodal diameter. With this approach, both blade-tip timing and tip clearance measurements can be carried out simultaneously. The results obtained on the test turbine rig demonstrate the suitability and reliability of the type of sensor used, and suggest the possibility of performing these measurements in real turbines under real working conditions.
An Optical Fiber Bundle Sensor for Tip Clearance and Tip Timing Measurements in a Turbine Rig
García, Iker; Beloki, Josu; Zubia, Joseba; Aldabaldetreku, Gotzon; Illarramendi, María Asunción; Jiménez, Felipe
2013-01-01
When it comes to measuring blade-tip clearance or blade-tip timing in turbines, reflective intensity-modulated optical fiber sensors overcome several traditional limitations of capacitive, inductive or discharging probe sensors. This paper presents the signals and results corresponding to the third stage of a multistage turbine rig, obtained from a transonic wind-tunnel test. The probe is based on a trifurcated bundle of optical fibers that is mounted on the turbine casing. To eliminate the influence of light source intensity variations and blade surface reflectivity, the sensing principle is based on the quotient of the voltages obtained from the two receiving bundle legs. A discrepancy lower than 3% with respect to a commercial sensor was observed in tip clearance measurements. Regarding tip timing measurements, the travel wave spectrum was obtained, which provides the average vibration amplitude for all blades at a particular nodal diameter. With this approach, both blade-tip timing and tip clearance measurements can be carried out simultaneously. The results obtained on the test turbine rig demonstrate the suitability and reliability of the type of sensor used, and suggest the possibility of performing these measurements in real turbines under real working conditions. PMID:23739163
NASA Astrophysics Data System (ADS)
Chung, Chieh-Wen; Tsai, May-Jywan; Lin, Peng-Wei; Huang, Ding-Wen; Wang, Kuan-Hsun; Chen, Yu-An; Meng, Hsin-Fei; Zan, Hsiao-Wen; Cheng, Henrich; Tong, Limin; Zhang, Lei; Horng, Sheng-Fu; Hung, Cheng-Hsiung
2018-02-01
A NO sensing tip is made by inserting two parallel optical fibers inside a poly 2-hydroxyethyl methacrylate (PolyHEMA) hydrogel waveguide mixed with the probe molecule 1, 2-Diaminoanthraquinone (DAQ). There is a length difference of 1 mm between the two fibers, and the light has to propagate through the difference from the short fiber to the long fiber. The total cross section area of the active hydrogel waveguide embedded with the fibers is only 3mm x 1.2 mm. For practical use the tip is housed in a needle for mechanical protection and the sensing tip is able to detect aqueous NO concentration around 1 μM with time resolution about 5 minutes. Such a sensing tip can be used to monitor the medical conditions inside the brain after a stroke or a brain injury.
Multiplexed displacement fiber sensor using thin core fiber exciter.
Chen, Zhen; Hefferman, Gerald; Wei, Tao
2015-06-01
This letter reports a multiplexed optical displacement sensor using a thin core fiber (TCF) exciter. The TCF exciter is followed by a stripped single mode optical fiber. A small section of buffer is used as the movable component along the single mode fiber. Ultra-weak cladding mode reflection (< - 75 dB) was employed to probe the refractive index discontinuity between the air and buffer coating boundary. The position change of the movable buffer segment results in a delay change of the cladding mode reflection. Thus, it is a measure of the displacement of the buffer segment with respect to the glass fiber. The insertion loss of one sensor was measured to be less than 3 dB. A linear relationship was evaluated between the measurement position and absolute position of the moving actuator. Multiplexed capability was demonstrated and no cross talk was found between the sensors.
Novel nano-OLED based probes for very high resolution optical microscopy
NASA Astrophysics Data System (ADS)
Zhao, Yiying
Near-field scanning optical microscopy (NSOM) has been applied in the study of nanomaterials, microelectronics, photonics, plasmonics, cells, and molecules. However, conventional NSOM relies on optically pumped probes, suffering low optical transmission, heating of the tip, and poor reproducibility of probe fabrication, increasing the cost, impeding usability, reducing practical imaging resolution, and limiting NSOM's utility. In this thesis, I demonstrate a novel probe based on a nanoscale, electrically pumped organic light-emitting device (OLED) formed on the tip of a low-cost, commercially available atomic force microscopy (AFM) probe. I describe the structure, fabrication, and principles of this novel probe's operation, and discuss its potential to overcome the limitations of conventional NSOM probes. The broader significance of this work in the field of organic optoelectronics is also discussed. Briefly, OLEDs consist of organic thin films sandwiched between two electrodes. Under bias, electrons and holes are injected into the organic layers, leading to radiative recombination. Depositing a small molecular OLED in vacuum onto a pyramid-tipped AFM probe results in a laminar structure that is highly curved at the tip. Simple electrical modeling predicts concentration of electric field and localized electron injection into the organic layers at the tip, improving the local charge balance in an otherwise electron-starved OLED. Utilizing an "inverted" OLED structure (i.e. cathode on the "bottom"), light emission is localized to sub-200 nm sized, green light emitting regions on probe vertices; light output power in the range of 0.1-0.5 nanowatts was observed, comparable to that of typical fiber based NSOM probes but with greater power efficiency. Massive arrays of similar sub-micron OLEDs were also fabricated by depositing onto textured silicon substrates, demonstrating the superior scalability of the probe fabrication process (e.g. relative to pulled glass fibers). The investigation of the effect of non-planar substrate geometry on charge injection, transport and recombination provides broader insights into OLEDs made on rough substrates, general understanding of OLED operation (e.g. filamentary charge conduction) and degradation, and potentially helps to improve technologically important "inverted" OLED structures.
Orientation-dependent fiber-optic accelerometer based on grating inscription over fiber cladding.
Rong, Qiangzhou; Qiao, Xueguang; Guo, Tuan; Bao, Weijia; Su, Dan; Yang, Hangzhou
2014-12-01
An orientation-sensitive fiber-optic accelerometer based on grating inscription over fiber cladding has been demonstrated. The sensor probe comprises a compact structure in which a short section of thin-core fiber (TCF) stub containing a "cladding" fiber Bragg grating (FBG) is spliced to another single-mode fiber (SMF) without any lateral offset. A femtosecond laser side-illumination technique was utilized to ensure that the grating inscription remains close to the core-cladding interface of the TCF. The core mode and the cladding mode of the TCF are coupled at the core-mismatch junction, and two well-defined resonances in reflection appear from the downstream FBG, in which the cladding resonance exhibits a strong polarization and bending dependence due to the asymmetrical distribution of the cladding FBG along the fiber cross section. Strong orientation dependence of the vibration (acceleration) measurement has been achieved by power detection of the cladding resonance. Meanwhile, the unwanted power fluctuations and temperature perturbations can be referenced out by monitoring the fundamental core resonance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bigio, I.J.; Boyer, J.; Johnson, T.M.
1994-10-01
The Los Alamos National Laboratory has continued the development of the Optical Biopsy System (OBS) for noninvasive, real-time in situ diagnosis of tissue pathologies. Our clinical studies have expanded since the last Biomedical Optics Europe conference (Budapest, September 1993), and we report here on the latest results of clinical tests in gastrointestinal tract. The OBS invokes a unique approach to optical diagnosis of tissue pathologies based on the elastic scattering properties, over a wide range of wavelengths, of the tissue. The use of elastic scattering as the key to optical tissue diagnostics in the OBS is based on the factmore » that many tissue pathologies, including a majority of cancer forms, manifest significant architectural changes at the cellular and sub-cellular level. Since the cellular components that cause elastic scattering have dimensions typically on the order of visible to near-IR wavelengths, the elastic (Mie) scattering properties will be wavelength dependent. Thus, morphology and size changes can be expected to cause significant changes in an optical signature that is derived from the wavelength-dependence of elastic scattering. The OBS employs a small fiberoptic probe that is amenable to use with any endoscope or catheter, or to direct surface examination. The probe is designed to be used in optical contact with the tissue under examination and has separate illuminating and collecting fibers. Thus, the light that is collected and transmitted to the analyzing spectrometer must first scatter through a small volume of the tissue before entering the collection fiber(s). Consequently, the system is also sensitive to the optical absorption spectrum of the tissue, over an effective operating range of <300 to 950 nm, and such absorption adds valuable complexity to the scattering spectral signature.« less
Development of a fiber optic compressor blade sensor
NASA Technical Reports Server (NTRS)
Dhadwal, Harbans Singh
1995-01-01
A complete working prototype of the fiber optic blade tip sensor was first tested in the laboratory, followed by a thorough evaluation at NASA W8 Single Compressor Stage Facility in Lewis Research Center. Subsequently, a complete system with three parallel channels was fabricated and delivered to Dr. Kurkov. The final system was tested in the Subsonic Wind Tunnel Facility, in parallel with The General Electric Company's light probe system. The results at all operating speeds were comparable. This report provides a brief description of the system and presents a summary of the experimental results.
NASA Technical Reports Server (NTRS)
Ansari, Rafat R.; Jones, Jeffrey A.; Pollonini, Luca; Rodriquez, Mikael; Opperman, Roedolph; Hochstein, Jason
2009-01-01
During extra-vehicular activities (EVAs) or spacewalks astronauts over use their fingertips under pressure inside the confined spaces of gloves/space suits. The repetitive hand motion is a probable cause for discomfort and injuries to the fingertips. We describe a new wireless fiber-optic probe that can be integrated inside the astronaut glove for noninvasive blood perfusion measurements in distal fingertips. In this preliminary study, we present blood perfusion measurements while performing hand-grip exercises simulating the use of space tools.
Fiber-Optic Surface Temperature Sensor Based on Modal Interference.
Musin, Frédéric; Mégret, Patrice; Wuilpart, Marc
2016-07-28
Spatially-integrated surface temperature sensing is highly useful when it comes to controlling processes, detecting hazardous conditions or monitoring the health and safety of equipment and people. Fiber-optic sensing based on modal interference has shown great sensitivity to temperature variation, by means of cost-effective image-processing of few-mode interference patterns. New developments in the field of sensor configuration, as described in this paper, include an innovative cooling and heating phase discrimination functionality and more precise measurements, based entirely on the image processing of interference patterns. The proposed technique was applied to the measurement of the integrated surface temperature of a hollow cylinder and compared with a conventional measurement system, consisting of an infrared camera and precision temperature probe. As a result, the optical technique is in line with the reference system. Compared with conventional surface temperature probes, the optical technique has the following advantages: low heat capacity temperature measurement errors, easier spatial deployment, and replacement of multiple angle infrared camera shooting and the continuous monitoring of surfaces that are not visually accessible.
Fiber-optic multiphoton flow cytometry in whole blood and in vivo
NASA Astrophysics Data System (ADS)
Chang, Yu-Chung; Ye, Jing Yong; Thomas, Thommey P.; Cao, Zhengyi; Kotlyar, Alina; Tkaczyk, Eric R.; Baker, James R.; Norris, Theodore B.
2010-07-01
Circulating tumor cells in the bloodstream are sensitive indicators for metastasis and disease prognosis. Circulating cells have usually been monitored via extraction from blood, and more recently in vivo using free-space optics; however, long-term intravital monitoring of rare circulating cells remains a major challenge. We demonstrate the application of a two-photon-fluorescence optical fiber probe for the detection of cells in whole blood and in vivo. A double-clad fiber was used to enhance the detection sensitivity. Two-channel detection was employed to enable simultaneous measurement of multiple fluorescent markers. Because the fiber probe circumvents scattering and absorption from whole blood, the detected signal strength from fluorescent cells was found to be similar in phosphate-buffered saline (PBS) and in whole blood. The detection efficiency of cells labeled with the membrane-binding dye 1,1'-dioctadecyl-3,3,3',3'-tetramethylindoldicarbocyanine, 4-chlorobenzenesulfonate (DiD) was demonstrated to be the same in PBS and in whole blood. A high detection efficiency of green fluorescent protein (GFP)-expressing cells in whole blood was also demonstrated. To characterize in vivo detection, DiD-labeled untransfected and GFP-transfected cells were injected into live mice, and the cell circulation dynamics was monitored in real time. The detection efficiency of GFP-expressing cells in vivo was consistent with that observed ex vivo in whole blood.
Fiber sensors for molecular detection
NASA Astrophysics Data System (ADS)
Gu, Claire; Yang, Xuan; Zhang, Jin; Newhouse, Rebecca; Cao, Liangcai
2010-11-01
The demand on sensors for detecting chemical and biological agents is greater than ever before, including medical, environmental, food safety, military, and security applications. At present, most detection or sensing techniques tend to be either non-molecular specific, bulky, expensive, relatively inaccurate, or unable to provide real time data. Clearly, alternative sensing technologies are urgently needed. Recently, we have been working to develop a compact fiber optic surface enhanced Raman scattering (SERS) sensor system that integrates various novel ideas to achieve compactness, high sensitivity and consistency, molecular specificity, and automatic preliminary identification capabilities. The unique sensor architecture is expected to bring SERS sensors to practical applications due to a combination of 1) novel SERS substrates that provide the high sensitivity and consistency, molecular specificity, and applicability to a wide range of compounds; 2) a unique hollow core optical fiber probe with double SERS substrate structure that provides the compactness, reliability, low cost, and ease of sampling; and 3) an innovative matched spectral filter set that provides automatic preliminary molecule identification. In this paper, we will review the principle of operation and some of the important milestones of fiber SERS sensor development with emphasis on our recent work to integrate photonic crystal fiber SERS probes with a portable Raman spectrometer and to demonstrate a matched spectral filter for molecule identification.
Hutchens, Thomas C; Darafsheh, Arash; Fardad, Amir; Antoszyk, Andrew N; Ying, Howard S; Astratov, Vasily N; Fried, Nathaniel M
2012-06-01
Ophthalmic surgery may benefit from use of more precise fiber delivery systems during laser surgery. Some current ophthalmic surgical techniques rely on tedious mechanical dissection of tissue layers. In this study, chains of sapphire microspheres integrated into a hollow waveguide distal tip are used for erbium:YAG laser ablation studies in contact mode with ophthalmic tissues, ex vivo. The laser's short optical penetration depth combined with the small spot diameters achieved with this fiber probe may provide more precise tissue removal. One-, three-, and five-microsphere chain structures were characterized, resulting in FWHM diameters of 67, 32, and 30 μm in air, respectively, with beam profiles comparable to simulations. Single Er:YAG pulses of 0.1 mJ and 75-μs duration produced ablation craters with average diameters of 44, 30, and 17 μm and depths of 26, 10, and 8 μm, for one-, three-, and five-sphere structures, respectively. Microsphere chains produced spatial filtering of the multimode Er:YAG laser beam and fiber, providing spot diameters not otherwise available with conventional fiber systems. Because of the extremely shallow treatment depth, compact focused beam, and contact mode operation, this probe may have potential for use in dissecting epiretinal membranes and other ophthalmic tissues without damaging adjacent retinal tissue.
Multiwaveguide implantable probe for light delivery to sets of distributed brain targets.
Zorzos, Anthony N; Boyden, Edward S; Fonstad, Clifton G
2010-12-15
Optical fibers are commonly inserted into living tissues such as the brain in order to deliver light to deep targets for neuroscientific and neuroengineering applications such as optogenetics, in which light is used to activate or silence neurons expressing specific photosensitive proteins. However, an optical fiber is limited to delivering light to a single target within the three-dimensional structure of the brain. We here demonstrate a multiwaveguide probe capable of independently delivering light to multiple targets along the probe axis, thus enabling versatile optical control of sets of distributed brain targets. The 1.45-cm-long probe is microfabricated in the form of a 360-μm-wide array of 12 parallel silicon oxynitride (SiON) multimode waveguides clad with SiO(2) and coated with aluminum; probes of custom dimensions are easily created as well. The waveguide array accepts light from a set of sources at the input end and guides the light down each waveguide to an aluminum corner mirror that efficiently deflects light away from the probe axis. Light losses at each stage are small (input coupling loss, 0.4 ± 0.3 dB; bend loss, negligible; propagation loss, 3.1 ± 1 dB/cm using the outscattering method and 3.2 ± 0.4 dB/cm using the cutback method; corner mirror loss, 1.5 ± 0.4 dB); a waveguide coupled, for example, to a 5 mW source will deliver over 1.5 mW to a target at a depth of 1 cm.
Lin, Yen-Chih; Mao, Ming-Hua; Lin, You-Ru; Lin, Hao-Hsiung; Lin, Che-An; Wang, Lon A
2014-09-01
We demonstrate ultrafast all-optical switching in GaAs microdisk resonators using a femtosecond pump-probe technique through tapered-fiber coupling. The temporal tuning of the resonant modes resulted from the refractive index change due to photoexcited carrier density variation inside the GaAs microdisk resonator. Transmission through the GaAs microdisk resonator can be modulated by more than 10 dB with a switching time window of 8 ps in the switch-off operation using pumping pulses with energies as low as 17.5 pJ. The carrier lifetime was fitted to be 42 ps, much shorter than that of the bulk GaAs, typically of the order of nanoseconds. The above observation indicates that the surface recombination plays an important role in increasing the switching speed.
Ferreira, Mário F S; Castro-Camus, Enrique; Ottaway, David J; López-Higuera, José Miguel; Feng, Xian; Jin, Wei; Jeong, Yoonchan; Picqué, Nathalie; Tong, Limin; Reinhard, Björn M; Pellegrino, Paul M; Méndez, Alexis; Diem, Max; Vollmer, Frank; Quan, Qimin
2017-08-01
Sensors are devices or systems able to detect, measure and convert magnitudes from any domain to an electrical one. Using light as a probe for optical sensing is one of the most efficient approaches for this purpose. The history of optical sensing using some methods based on absorbance, emissive and florescence properties date back to the 16th century. The field of optical sensors evolved during the following centuries, but it did not achieve maturity until the demonstration of the first laser in 1960. The unique properties of laser light become particularly important in the case of laser-based sensors, whose operation is entirely based upon the direct detection of laser light itself, without relying on any additional mediating device. However, compared with freely propagating light beams, artificially engineered optical fields are in increasing demand for probing samples with very small sizes and/or weak light-matter interaction. Optical fiber sensors constitute a subarea of optical sensors in which fiber technologies are employed. Different types of specialty and photonic crystal fibers provide improved performance and novel sensing concepts. Actually, structurization with wavelength or subwavelength feature size appears as the most efficient way to enhance sensor sensitivity and its detection limit. This leads to the area of micro- and nano-engineered optical sensors. It is expected that the combination of better fabrication techniques and new physical effects may open new and fascinating opportunities in this area. This roadmap on optical sensors addresses different technologies and application areas of the field. Fourteen contributions authored by experts from both industry and academia provide insights into the current state-of-the-art and the challenges faced by researchers currently. Two sections of this paper provide an overview of laser-based and frequency comb-based sensors. Three sections address the area of optical fiber sensors, encompassing both conventional, specialty and photonic crystal fibers. Several other sections are dedicated to micro- and nano-engineered sensors, including whispering-gallery mode and plasmonic sensors. The uses of optical sensors in chemical, biological and biomedical areas are described in other sections. Different approaches required to satisfy applications at visible, infrared and THz spectral regions are also discussed. Advances in science and technology required to meet challenges faced in each of these areas are addressed, together with suggestions on how the field could evolve in the near future.
NASA Astrophysics Data System (ADS)
Ferreira, Mário F. S.; Castro-Camus, Enrique; Ottaway, David J.; López-Higuera, José Miguel; Feng, Xian; Jin, Wei; Jeong, Yoonchan; Picqué, Nathalie; Tong, Limin; Reinhard, Björn M.; Pellegrino, Paul M.; Méndez, Alexis; Diem, Max; Vollmer, Frank; Quan, Qimin
2017-08-01
Sensors are devices or systems able to detect, measure and convert magnitudes from any domain to an electrical one. Using light as a probe for optical sensing is one of the most efficient approaches for this purpose. The history of optical sensing using some methods based on absorbance, emissive and florescence properties date back to the 16th century. The field of optical sensors evolved during the following centuries, but it did not achieve maturity until the demonstration of the first laser in 1960. The unique properties of laser light become particularly important in the case of laser-based sensors, whose operation is entirely based upon the direct detection of laser light itself, without relying on any additional mediating device. However, compared with freely propagating light beams, artificially engineered optical fields are in increasing demand for probing samples with very small sizes and/or weak light-matter interaction. Optical fiber sensors constitute a subarea of optical sensors in which fiber technologies are employed. Different types of specialty and photonic crystal fibers provide improved performance and novel sensing concepts. Actually, structurization with wavelength or subwavelength feature size appears as the most efficient way to enhance sensor sensitivity and its detection limit. This leads to the area of micro- and nano-engineered optical sensors. It is expected that the combination of better fabrication techniques and new physical effects may open new and fascinating opportunities in this area. This roadmap on optical sensors addresses different technologies and application areas of the field. Fourteen contributions authored by experts from both industry and academia provide insights into the current state-of-the-art and the challenges faced by researchers currently. Two sections of this paper provide an overview of laser-based and frequency comb-based sensors. Three sections address the area of optical fiber sensors, encompassing both conventional, specialty and photonic crystal fibers. Several other sections are dedicated to micro- and nano-engineered sensors, including whispering-gallery mode and plasmonic sensors. The uses of optical sensors in chemical, biological and biomedical areas are described in other sections. Different approaches required to satisfy applications at visible, infrared and THz spectral regions are also discussed. Advances in science and technology required to meet challenges faced in each of these areas are addressed, together with suggestions on how the field could evolve in the near future.
NASA Astrophysics Data System (ADS)
Wanser, Keith H.
1988-06-01
In order to understand the various phenomenon in fiber gyroscopes, we have developed a unified theory of polarization and vector coherence theory for fiber optics, using propagator techniques, which is valid for arbitrarily large relative polarization phase delays, arbitrary source polarization properties, in combination with birefringent phase modulation. The propagator representation makes clear the multi-path nature of the polarization effects, similar to the multiple scattering of waves, and an example illustrating this point is given. A "master" equation has been obtained for fiber gyroscopes which i s sufficiently general to permit modeling of the many parasitic effects and their interactions, as well as allow realistic assessment of methods for their reduction. As a result of the development of the propagator approach, several interesting results have been found. One important issue is the performance and characterization of the polarizer used in the fiber gyro. A theorem has been shown that "not all polarizers are created equal", even though they have equal extinction ratios. We have found that the fiber gyroscope probes properties of polarizers that cannot be probed without an interferometer that is equivalent to a ring interferometer. It has been found that there is a considerable difference in performance between two polarizers having the same extinction ratio, but one short, the other long, depending on the birefringence and mode coupling. This leads to an extended classification of polarizer properties beyond an ordinary Jones matrix. A new bound on polarizer performance using the propagator approach is given. Another important issue with fiber optic gyroscopes is drift as a function of temperature. Those familiar with testing of fiber gyroscopes are well aware of the often bizarre (highly non monotonic) drift behaviour as a function of temperature. It is shown how temperature drift can be related to the location of various types of birefringence in the gyro coil using a realistic coil model. The propagator for this coil model is also obtained.
Multi-material optoelectronic fiber devices
NASA Astrophysics Data System (ADS)
Sorin, F.; Yan, Wei; Volpi, Marco; Page, Alexis G.; Nguyen Dang, Tung; Qu, Y.
2017-05-01
The recent ability to integrate materials with different optical and optoelectronic properties in prescribed architectures within flexible fibers is enabling novel opportunities for advanced optical probes, functional surfaces and smart textiles. In particular, the thermal drawing process has known a series of breakthroughs in recent years that have expanded the range of materials and architectures that can be engineered within uniform fibers. Of particular interest in this presentation will be optoelectronic fibers that integrate semiconductors electrically addressed by conducting materials. These long, thin and flexible fibers can intercept optical radiation, localize and inform on a beam direction, detect its wavelength and even harness its energy. They hence constitute ideal candidates for applications such as remote and distributed sensing, large-area optical-detection arrays, energy harvesting and storage, innovative health care solutions, and functional fabrics. To improve performance and device complexity, tremendous progresses have been made in terms of the integrated semiconductor architectures, evolving from large fiber solid-core, to sub-hundred nanometer thin-films, nano-filaments and even nanospheres. To bridge the gap between the optoelectronic fiber concept and practical applications however, we still need to improve device performance and integration. In this presentation we will describe the materials and processing approaches to realize optoelectronic fibers, as well as give a few examples of demonstrated systems for imaging as well as light and chemical sensing. We will then discuss paths towards practical applications focusing on two main points: fiber connectivity, and improving the semiconductor microstructure by developing scalable approaches to make fiber-integrated single-crystal nanowire based devices.
Radar signal transmission and switching over optical networks
NASA Astrophysics Data System (ADS)
Esmail, Maged A.; Ragheb, Amr; Seleem, Hussein; Fathallah, Habib; Alshebeili, Saleh
2018-03-01
In this paper, we experimentally demonstrate a radar signal distribution over optical networks. The use of fiber enables us to distribute radar signals to distant sites with a low power loss. Moreover, fiber networks can reduce the radar system cost, by sharing precise and expensive radar signal generation and processing equipment. In order to overcome the bandwidth challenges in electrical switches, a semiconductor optical amplifier (SOA) is used as an all-optical device for wavelength conversion to the desired port (or channel) of a wavelength division multiplexing (WDM) network. Moreover, the effect of chromatic dispersion in double sideband (DSB) signals is combated by generating optical single sideband (OSSB) signals. The optimal values of the SOA device parameters required to generate an OSSB with a high sideband suppression ratio (SSR) are determined. We considered various parameters such as injection current, pump power, and probe power. In addition, the effect of signal wavelength conversion and transmission over fiber are studied in terms of signal dynamic range.
Kim, Myun-Sik; Jo, Kyoung-Woo; Lee, Jong-Hyun
2005-07-01
We propose a method for designing a self-aligned microlens. We have improved its fabrication by employing metallization on a 45 degrees angled surface of the optical fiber. We designed the focal length of the microlens to be 14.0 microm, considering the dimensions of a scanning near-field optical microscopy (SNOM) probe, and we calculated possible dimensions of diameter and height by the ray-tracing method. The modeling of lens formation was also carried out with two assumptions: no volume change and no movement of peripheral parts of the photoresist (PR) on the substrate during reflow. To fabricate a microlens of diameter 16.0 microm and height 5.0 microm we exposed a coated PR to UV light guided into the optical fiber, followed by optimized reflow of 150 degrees C for 2 min. For this microlens the focal length and the beam waist were 14.0 and 1.4 microm, respectively. This lens can be used for compact optical data storage.
Developing a clinically viable angle-resolved low coherence interferometry optical biopsy system
NASA Astrophysics Data System (ADS)
Pyhtila, John W.
2007-12-01
Non-invasive optical biopsy techniques, which interrogate tissue in situ, offer a potential method to improve the detection of dysplasia, a pre-cancerous tissue state. Specifically, monitoring of Barrett's esophagus (BE) patients for dysplasia, currently done through systematic biopsy, can be improved by increasing the proportion of at-risk tissue examined. Angle-resolved low coherence interferometry (a/LCI) is an optical spectroscopic technique which measures the depth resolved nuclear morphology of tissue, a key biomarker for identifying dysplasia. Using an animal carcinogenesis model, it was shown that a/LCI can detect dysplasia with great sensitivity and specificity. However, for the clinical application of a/LCI, numerous hurdles must be overcome. This dissertation presents the development of three new a/LCI systems which incrementally address the three main obstacles preventing the clinical application of a/LCI. First, data acquisition time is reduced by implementing a frequency-domain detection scheme using an imaging spectrograph that collects the complete depth resolved angular scattering distribution in parallel. This advance reduces data collection time to a clinically acceptable 40 ms. Second, a fiber probe is developed to enable the endoscopic application of a/LCI. The probe incorporates a single fiber for delivering light and a coherent fiber bundle for collecting the angular distribution of scattered light. Third, a portable device is created through miniaturization of the optical design, and a flexible fiber probe is created using polarization maintaining fiber to deliver the light. These advances allow for the clinical application of the system to ex vivo human tissue samples. The performance of each described system is evaluated through a number of validation studies, including the sizing of polystyrene microspheres, a typical model used in light scattering studies, and the measurement of in vitro cell nuclear diameters, accomplished with sub-wavelength precision and accuracy. The culmination of this work is the first human study using a/LCI in which it is demonstrated that a/LCI depth resolved nuclear morphology measurements provide an excellent means to identify dysplasia in BE patients. The described results demonstrate the great potential for the in vivo application of a/LCI as a targeting mechanism for the detection of dysplasia in Barrett's esophagus patients.
Progress in molecular imaging in endoscopy and endomicroscopy for cancer imaging
Khondee, Supang; Wang, Thomas D.
2014-01-01
Imaging is an essential tool for effective cancer management. Endoscopes are important medical instruments for performing in vivo imaging in hollow organs. Early detection of cancer can be achieved with surveillance using endoscopy, and has been shown to reduce mortality and to improve outcomes. Recently, great advancements have been made in endoscopic instruments, including new developments in optical designs, light sources, optical fibers, miniature scanners, and multimodal systems, allowing for improved resolution, greater tissue penetration, and multispectral imaging. In addition, progress has been made in the development of highly-specific optical probes, allowing for improved specificity for molecular targets. Integration of these new endoscopic instruments with molecular probes provides a unique opportunity for significantly improving patient outcomes and has potential to further improve early detection, image guided therapy, targeted therapy, and personalized medicine. This work summarizes current and evolving endoscopic technologies, and provides an overview of various promising optical molecular probes. PMID:23502247
NASA Astrophysics Data System (ADS)
Liasi, Faezeh Talebi; Samatham, Ravikant; Jacques, Steven L.
2017-11-01
Assessing the metabolic activity of a tissue, whether normal, damaged, aged, or pathologic, is useful for diagnosis and evaluating the effects of drugs. This report describes a handheld optical fiber probe that contacts the skin, applies pressure to blanch the superficial vascular plexus of the skin, then releases the pressure to allow refill of the plexus. The optical probe uses white light spectroscopy to record the time dynamics of blanching and refilling. The magnitude and dynamics of changes in blood content and hemoglobin oxygen saturation yield an estimate of the oxygen consumption rate (OCR) in units of attomoles per cell per second. The average value of OCR on nine forearm sites on five subjects was 10±5 (amol/cell/s). This low-cost, portable, rapid, noninvasive optical probe can characterize the OCR of a skin site to assess the metabolic activity of the epidermis or a superficial lesion.
Park, HyungDal; Shin, Hyun-Joon; Cho, Il-Joo; Yoon, Eui-sung; Suh, Jun-Kyo Francis; Im, Maesoon; Yoon, Euisik; Kim, Yong-Jun; Kim, Jinseok
2011-01-01
In this paper, we report a neural probe which can selectively stimulate target neurons optically through Si wet etched mirror surface and record extracellular neural signals in iridium oxide tetrodes. Consequently, the proposed approach provides to improve directional problem and achieve at least 150/m gap distance between stimulation and recording sites by wet etched mirror surface in V-groove. Also, we developed light source, blue laser diode (OSRAM Blue Laser Diode_PL 450), integration through simple jig for one-touch butt-coupling. Furthermore, optical power and impedance of iridium oxide tetrodes were measured as 200 μW on 5 mW from LD and 206.5 k Ω at 1 kHz and we demonstrated insertion test of probe in 0.5% agarose-gel successfully. We have successfully transmitted a light of 450 nm to optical fiber through the integrated LD using by butt-coupling method.
Ultra-compact switchable SLO/OCT handheld probe design
NASA Astrophysics Data System (ADS)
LaRocca, Francesco; Nankivil, Derek; DuBose, Theodore; Farsiu, Sina; Izatt, Joseph A.
2015-03-01
Handheld scanning laser ophthalmoscopy (SLO) and optical coherence tomography (OCT) systems facilitate imaging of young children and subjects that have difficulty fixating. More compact and lightweight probes allow for better portability and increased comfort for the operator of the handheld probe. We describe a very compact, novel SLO and OCT handheld probe design. A single 2D microelectromechanical systems (MEMS) scanner and a custom optical design using a converging beam prior to the scanner permitted significant reduction in the system size. Our design utilized a combination of commercial and custom optics that were optimized in Zemax to achieve near diffraction-limited resolution of 8 μm over a 7° field of view. The handheld probe has a form factor of 7 x 6 x 2.5 cm and a weight of only 94 g, which is over an order of magnitude lighter than prior SLO-OCT handheld probes. Images were acquired from a normal subject with an incident power on the eye under the ANSI limit. With this device, which is the world's lightest and smallest SLO-OCT system, we were able to visualize parafoveal cone photoreceptors and nerve fiber bundles without the use of adaptive optics.
Optogenetic activation of neocortical neurons in vivo with a sapphire-based micro-scale LED probe.
McAlinden, Niall; Gu, Erdan; Dawson, Martin D; Sakata, Shuzo; Mathieson, Keith
2015-01-01
Optogenetics has proven to be a revolutionary technology in neuroscience and has advanced continuously over the past decade. However, optical stimulation technologies for in vivo need to be developed to match the advances in genetics and biochemistry that have driven this field. In particular, conventional approaches for in vivo optical illumination have a limitation on the achievable spatio-temporal resolution. Here we utilize a sapphire-based microscale gallium nitride light-emitting diode (μLED) probe to activate neocortical neurons in vivo. The probes were designed to contain independently controllable multiple μLEDs, emitting at 450 nm wavelength with an irradiance of up to 2 W/mm(2). Monte-Carlo stimulations predicted that optical stimulation using a μLED can modulate neural activity within a localized region. To validate this prediction, we tested this probe in the mouse neocortex that expressed channelrhodopsin-2 (ChR2) and compared the results with optical stimulation through a fiber at the cortical surface. We confirmed that both approaches reliably induced action potentials in cortical neurons and that the μLED probe evoked strong responses in deep neurons. Due to the possibility to integrate many optical stimulation sites onto a single shank, the μLED probe is thus a promising approach to control neurons locally in vivo.
Atom detection and photon production in a scalable, open, optical microcavity.
Trupke, M; Goldwin, J; Darquié, B; Dutier, G; Eriksson, S; Ashmore, J; Hinds, E A
2007-08-10
A microfabricated Fabry-Perot optical resonator has been used for atom detection and photon production with less than 1 atom on average in the cavity mode. Our cavity design combines the intrinsic scalability of microfabrication processes with direct coupling of the cavity field to single-mode optical waveguides or fibers. The presence of the atom is seen through changes in both the intensity and the noise characteristics of probe light reflected from the cavity input mirror. An excitation laser passing transversely through the cavity triggers photon emission into the cavity mode and hence into the single-mode fiber. These are first steps toward building an optical microcavity network on an atom chip for applications in quantum information processing.
A Non-Invasive Multichannel Hybrid Fiber-Optic Sensor System for Vital Sign Monitoring
Fajkus, Marcel; Nedoma, Jan; Martinek, Radek; Vasinek, Vladimir; Nazeran, Homer; Siska, Petr
2017-01-01
In this article, we briefly describe the design, construction, and functional verification of a hybrid multichannel fiber-optic sensor system for basic vital sign monitoring. This sensor uses a novel non-invasive measurement probe based on the fiber Bragg grating (FBG). The probe is composed of two FBGs encapsulated inside a polydimethylsiloxane polymer (PDMS). The PDMS is non-reactive to human skin and resistant to electromagnetic waves, UV absorption, and radiation. We emphasize the construction of the probe to be specifically used for basic vital sign monitoring such as body temperature, respiratory rate and heart rate. The proposed sensor system can continuously process incoming signals from up to 128 individuals. We first present the overall design of this novel multichannel sensor and then elaborate on how it has the potential to simplify vital sign monitoring and consequently improve the comfort level of patients in long-term health care facilities, hospitals and clinics. The reference ECG signal was acquired with the use of standard gel electrodes fixed to the monitored person’s chest using a real-time monitoring system for ECG signals with virtual instrumentation. The outcomes of these experiments have unambiguously proved the functionality of the sensor system and will be used to inform our future research in this fast developing and emerging field. PMID:28075341
Micro-drive and headgear for chronic implant and recovery of optoelectronic probes.
Chung, Jinho; Sharif, Farnaz; Jung, Dajung; Kim, Soyoun; Royer, Sebastien
2017-06-05
Silicon probes are multisite electrodes used for the electrophysiological recording of large neuronal ensembles. Optoelectronic probes (OEPs) are recent upgrades that allow, in parallel, the delivery of local optical stimuli. The procedures to use these delicate electrodes for chronic experiments in mice are still underdeveloped and typically assume one-time uses. Here, we developed a micro-drive, a support for OEPs optical fibers, and a hat enclosure, which fabrications consist in fitting and fastening together plastic parts made with 3D printers. Excluding two parts, all components and electrodes are relatively simple to recover after the experiments, via the loosening of screws. To prevent the plugging of OEPs laser sources from altering the stability of recordings, the OEPs fibers can be transiently anchored to the hat via the tightening of screws. We test the stability of recordings in the mouse hippocampus under three different conditions: acute head-fixed, chronic head-fixed, and chronic freely moving. Drift in spike waveforms is significantly smaller in chronic compared to acute conditions, with the plugging/unplugging of head-stage and fiber connectors not affecting much the recording stability. Overall, these tools generate stable recordings of place cell in chronic conditions, and make the recovery and reuse of electrode packages relatively simple.
Multiplexed neural recording along a single optical fiber via optical reflectometry
Rodriques, Samuel G.; Marblestone, Adam H.; Scholvin, Jorg; Dapello, Joel; Sarkar, Deblina; Mankin, Max; Gao, Ruixuan; Wood, Lowell; Boyden, Edward S.
2016-01-01
Abstract. We introduce the design and theoretical analysis of a fiber-optic architecture for neural recording without contrast agents, which transduces neural electrical signals into a multiplexed optical readout. Our sensor design is inspired by electro-optic modulators, which modulate the refractive index of a waveguide by applying a voltage across an electro-optic core material. We estimate that this design would allow recording of the activities of individual neurons located at points along a 10-cm length of optical fiber with 40-μm axial resolution and sensitivity down to 100 μV using commercially available optical reflectometers as readout devices. Neural recording sites detect a potential difference against a reference and apply this potential to a capacitor. The waveguide serves as one of the plates of the capacitor, so charge accumulation across the capacitor results in an optical effect. A key concept of the design is that the sensitivity can be improved by increasing the capacitance. To maximize the capacitance, we utilize a microscopic layer of material with high relative permittivity. If suitable materials can be found—possessing high capacitance per unit area as well as favorable properties with respect to toxicity, optical attenuation, ohmic junctions, and surface capacitance—then such sensing fibers could, in principle, be scaled down to few-micron cross-sections for minimally invasive neural interfacing. We study these material requirements and propose potential material choices. Custom-designed multimaterial optical fibers, probed using a reflectometric readout, may, therefore, provide a powerful platform for neural sensing. PMID:27194640
Optical fiber ultrasound transmitter with electrospun carbon nanotube-polymer composite
NASA Astrophysics Data System (ADS)
Poduval, Radhika K.; Noimark, Sacha; Colchester, Richard J.; Macdonald, Thomas J.; Parkin, Ivan P.; Desjardins, Adrien E.; Papakonstantinou, Ioannis
2017-05-01
All-optical ultrasound transducers are promising for imaging applications in minimally invasive surgery. In these devices, ultrasound is transmitted and received through laser modulation, and they can be readily miniaturized using optical fibers for light delivery. Here, we report optical ultrasound transmitters fabricated by electrospinning an absorbing polymer composite directly onto the end-face of optical fibers. The composite coating consisting of an aqueous dispersion of multi-walled carbon nanotubes (MWCNTs) in polyvinyl alcohol was directly electrospun onto the cleaved surface of a multimode optical fiber and subsequently dip-coated with polydimethylsiloxane (PDMS). This formed a uniform nanofibrous absorbing mesh over the optical fiber end-face wherein the constituent MWCNTs were aligned preferentially along individual nanofibers. Infiltration of the PDMS through this nanofibrous mesh onto the underlying substrate was observed and the resulting composites exhibited high optical absorption (>97%). Thickness control from 2.3 μm to 41.4 μm was obtained by varying the electrospinning time. Under laser excitation with 11 μJ pulse energy, ultrasound pressures of 1.59 MPa were achieved at 1.5 mm from the coatings. On comparing the electrospun ultrasound transmitters with a dip-coated reference fabricated using the same constituent materials and possessing identical optical absorption, a five-fold increase in the generated pressure and wider bandwidth was observed. The electrospun transmitters exhibited high optical absorption, good elastomer infiltration, and ultrasound generation capability in the range of pressures used for clinical pulse-echo imaging. All-optical ultrasound probes with such transmitters fabricated by electrospinning could be well-suited for incorporation into catheters and needles for diagnostics and therapeutic applications.
Improved wavelength coded optical time domain reflectometry based on the optical switch.
Zhu, Ninghua; Tong, Youwan; Chen, Wei; Wang, Sunlong; Sun, Wenhui; Liu, Jianguo
2014-06-16
This paper presents an improved wavelength coded time-domain reflectometry based on the 2 × 1 optical switch. In this scheme, in order to improve the signal-noise-ratio (SNR) of the beat signal, the improved system used an optical switch to obtain wavelength-stable, low-noise and narrow optical pulses for probe and reference. Experiments were set up to demonstrate a spatial resolution of 2.5m within a range of 70km and obtain the beat signal with line width narrower than 15 MHz within a range of 50 km in fiber break detection. A system for wavelength-division-multiplexing passive optical network (WDM-PON) monitoring was also constructed to detect the fiber break of different channels by tuning the current applied on the gating section of the distributed Bragg reflector (DBR) laser.
In-Fiber Optic Salinity Sensing: A Potential Application for Offshore Concrete Structure Protection.
Luo, Dong; Li, Peng; Yue, Yanchao; Ma, Jianxun; Yang, Hangzhou
2017-05-04
The protection of concrete structures against corrosion in marine environments has always been a challenge due to the presence of a saline solution-A natural corrosive agent to the concrete paste and steel reinforcements. The concentration of salt is a key parameter influencing the rate of corrosion. In this paper, we propose an optical fiber-based salinity sensor based on bundled multimode plastic optical fiber (POF) as a sensor probe and a concave mirror as a reflector in conjunction with an intensity modulation technique. A refractive index (RI) sensing approach is analytically investigated and the findings are in agreement with the experimental results. A maximum sensitivity of 14,847.486/RIU can be achieved at RI = 1.3525. The proposed technique is suitable for in situ measurement and monitoring of salinity in liquid.
Investigation of breadboard temperature profiling system for SSME fuel preburner diagnostics
NASA Technical Reports Server (NTRS)
Shirley, J. A.
1986-01-01
The feasibility of measuring temperatures in the space shuttle main engine (SSME) fuel preburner using spontaneous Raman scattering from molecular hydrogen was studied. Laser radiation is transmitted to the preburner through a multimode optical fiber. Backscattered Raman-shifted light is collected and focused into a second fiber which connects to a remote-located spectrograph and a mutlichannel optical detector. Optics collimate and focus laser light from the transmitter fiber defining the probe volume. The high pressure, high temperature preburner environment was simulated by a heated pressure cell. Temperatures determined by the distribution of Q-branch co-vibrational transitions demonstrate precision and accuracy of 3%. It is indicated heat preburner temperatures can be determined with 5% accuracy with spatial resolution less than 1 cm and temporal resolution of 10 millisec at the nominal preburner operation conditions.
Fiber optics spectrochemical emission sensors
Griffin, Jeffrey W.; Olsen, Khris B.
1992-01-01
A method of in situ monitoring of a body of a fluid stored in a tank or groundwater or vadose zone gases in a well for the presence of selected chemical species uses a probe insertable into the well or tank via a cable and having electrical apparatus for exciting selected chemical species in the body of fluid. The probe can have a pair of electrodes for initiating a spark or a plasma cell for maintaining a plasma to excite the selected chemical species. The probe also has optical apparatus for receiving optical emissions emitted by the excited species and optically transmitting the emissions via the cable to an analysis location outside the well. The analysis includes detecting a selected wavelength in the emissions indicative of the presence of the selected chemical species. A plurality of probes can be suspended at an end of a respective cable, with the transmitting and analyzing steps for each probe being synchronized sequentially for one set of support equipment and instrumentation to monitor at multiple test points. The optical apparatus is arranged about the light guide axis so that the selected chemical species are excited the fluid in alignment with the light guide axis and optical emissions are received from the excited chemical species along such axis.
Fiber optics spectrochemical emission sensors
Griffin, J.W.; Olsen, K.B.
1992-02-04
A method is described of in situ monitoring of a body of a fluid stored in a tank or groundwater or vadose zone gases in a well for the presence of selected chemical species. The method uses a probe insertable into the well or tank via a cable and having an electrical apparatus for exciting selected chemical species in the body of fluid. The probe can have a pair of electrodes for initiating a spark or a plasma cell for maintaining a plasma to excite the selected chemical species. The probe also has an optical apparatus for receiving optical emissions emitted by the excited species and optically transmitting the emissions via the cable to an analysis location outside the well. The analysis includes detecting a selected wavelength in the emissions indicative of the presence of the selected chemical species. A plurality of probes can be suspended at an end of a respective cable, with the transmitting and analyzing steps for each probe being synchronized sequentially for one set of support equipment and instrumentation to monitor at multiple test points. The optical apparatus is arranged about the light guide axis so that the selected chemical species are excited in the fluid in alignment with the light guide axis. Optical emissions are received from the excited chemical species along such axis. 18 figs.
Chemical-assisted femtosecond laser writing of lab-in-fibers.
Haque, Moez; Lee, Kenneth K C; Ho, Stephen; Fernandes, Luís A; Herman, Peter R
2014-10-07
The lab-on-chip (LOC) platform has presented a powerful opportunity to improve functionalization, parallelization, and miniaturization on planar or multilevel geometries that has not been possible with fiber optic technology. A migration of such LOC devices into the optical fiber platform would therefore open the revolutionary prospect of creating novel lab-in-fiber (LIF) systems on the basis of an efficient optical transport highway for multifunctional sensing. For the LIF, the core optical waveguide inherently offers a facile means to interconnect numerous types of sensing elements along the optical fiber, presenting a radical opportunity for optimizing the packaging and densification of diverse components in convenient geometries beyond that available with conventional LOCs. In this paper, three-dimensional patterning inside the optical fiber by femtosecond laser writing, together with selective chemical etching, is presented as a powerful tool to form refractive index structures such as optical waveguides and gratings as well as to open buried microfluidic channels and optical resonators inside the flexible and robust glass fiber. In this approach, optically smooth surfaces (~12 nm rms) are introduced for the first time inside the fiber cladding that precisely conform to planar nanograting structures when formed by aberration-free focusing with an oil-immersion lens across the cylindrical fiber wall. This process has enabled optofluidic components to be precisely embedded within the fiber to be probed by either the single-mode fiber core waveguide or the laser-formed optical circuits. We establish cladding waveguides, X-couplers, fiber Bragg gratings, microholes, mirrors, optofluidic resonators, and microfluidic reservoirs that define the building blocks for facile interconnection of inline core-waveguide devices with cladding optofluidics. With these components, more advanced, integrated, and multiplexed fiber microsystems are presented demonstrating fluorescence detection, Fabry-Perot interferometric refractometry, and simultaneous sensing of refractive index, temperature, and bending strain. The flexible writing technique and multiplexed sensors described here open powerful prospects to migrate the benefits of LOCs into a more flexible and miniature LIF platform for highly functional and distributed sensing capabilities. The waveguide backbone of the LIF inherently provides an efficient exchange of information, combining sensing data that are attractive in telecom networks, smart catheters for medical procedures, compact sensors for security and defense, shape sensors, and low-cost health care products.
Akkus, Anna; Yang, Shan; Roperto, Renato; Mustafa, Hathem; Teich, Sorin; Akkus, Ozan
2017-02-01
Measurement of tooth enamel mineralization using a clinically viable method is essential since variation of mineralization may be used to monitor caries risk or in assessing the effectiveness of remineralization therapy. Fiber optic Raman systems are becoming more affordable and popular in context of biomedical applications. However, the applicability of fiber optic Raman systems for measurement of mineral content within enamel tissue has not been elucidated significantly in the prior literature. Human teeth with varying degrees of enamel mineralization were selected. In addition alligator, boar and buffalo teeth which have increasing amount of mineral content, respectively, were also included as another set of samples. Reference Raman measurements of mineralization were performed using a high-fidelity confocal Raman microscope. Analysis of human teeth by research grade Raman system indicated a 2-fold difference in the Raman intensities of v1 symmetric-stretch bands of mineral-related phosphate bonds and 7-fold increase in mineral related Raman intensities of animal teeth. However, fiber optic system failed to resolve the differences in the mineralization of human teeth. These results indicate that the sampling volume of fiber optic systems extends to the underlying dentin and that confocal aperture modification is essential to limit the sampling volume to within the enamel. Further research efforts will focus on putting together portable Raman systems integrated with confocal fiber probe. Key words: Enamel, mineral content, raman spectroscopy.
NASA Astrophysics Data System (ADS)
Liu, Tao; Wang, Feng; Zhang, Xuping; Zhang, Lin; Yuan, Quan; Liu, Yu; Yan, Zhijun
2017-08-01
A distributed vibration sensing technique using double-optical-pulse based on phase-sensitive optical time-domain reflectometry (ϕ-OTDR) and an ultraweak fiber Bragg grating (UWFBG) array is proposed for the first time. The single-mode sensing fiber is integrated with the UWFBG array that has uniform spatial interval and ultraweak reflectivity. The relatively high reflectivity of the UWFBG, compared with the Rayleigh scattering, gains a high signal-to-noise ratio for the signal, which can make the system achieve the maximum detectable frequency limited by the round-trip time of the probe pulse in fiber. A corresponding experimental ϕ-OTDR system with a 4.5 km sensing fiber integrated with the UWFBG array was setup for the evaluation of the system performance. Distributed vibration sensing is successfully realized with spatial resolution of 50 m. The sensing range of the vibration frequency can cover from 3 Hz to 9 kHz.
Fiber-based modulated optical reflectance configuration allowing for offset pump and probe beams
NASA Astrophysics Data System (ADS)
Fleming, A.; Folsom, C.; Jensen, C.; Ban, H.
2016-12-01
A new fiber-based modulated optical reflectance configuration is developed in this work. The technique maintains the fiber-based heating laser (pump) and detection laser (probe) in close proximity at a fixed separation distance in a ceramic ferrule. The pump beam periodically heats the sample inducing thermal waves into the sample. The probe beam measures the temperature response at a known distance from the pump beam over a range of heating modulation frequencies. The thermal diffusivity of the sample may be calculated from the phase response between the input heat flux and the temperature response of a sample having a reflective surface. The unique measurement configuration is ideal for in situ measurements and has many advantages for laboratory-based systems. The design and development of the system are reported along with theoretical justification for the experimental design. The thermal diffusivities of Ge and SiC are measured and found to be within 10% of reported literature values. The diffusivity for SiO2 is measured with a relative difference of approximately 100% from the literature value when the ferrule is in contact with the sample. An additional measurement was made on the SiO2 sample with the ferrule not in contact resulting in a difference of less than 2% from the literature value. The difference in the SiO2 measurement when the ferrule is in contact with the sample is likely due to a parallel heat transfer path through the dual-fiber ferrule assembly.
Fiber-based modulated optical reflectance configuration allowing for offset pump and probe beams.
Fleming, A; Folsom, C; Jensen, C; Ban, H
2016-12-01
A new fiber-based modulated optical reflectance configuration is developed in this work. The technique maintains the fiber-based heating laser (pump) and detection laser (probe) in close proximity at a fixed separation distance in a ceramic ferrule. The pump beam periodically heats the sample inducing thermal waves into the sample. The probe beam measures the temperature response at a known distance from the pump beam over a range of heating modulation frequencies. The thermal diffusivity of the sample may be calculated from the phase response between the input heat flux and the temperature response of a sample having a reflective surface. The unique measurement configuration is ideal for in situ measurements and has many advantages for laboratory-based systems. The design and development of the system are reported along with theoretical justification for the experimental design. The thermal diffusivities of Ge and SiC are measured and found to be within 10% of reported literature values. The diffusivity for SiO 2 is measured with a relative difference of approximately 100% from the literature value when the ferrule is in contact with the sample. An additional measurement was made on the SiO 2 sample with the ferrule not in contact resulting in a difference of less than 2% from the literature value. The difference in the SiO 2 measurement when the ferrule is in contact with the sample is likely due to a parallel heat transfer path through the dual-fiber ferrule assembly.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, M; Finlay, J; Zhu, T
Purpose: Photosensitizer concentration during photodynamic therapy (PDT) is an important parameter for accurate dosimetry. Fluorescence signal can be used as a measure of photosensitizer concentration. Two methods of data acquisition were compared to an ex vivo study both for in vivo and phantom models. Methods: Fluorescence signal of commonly used photosensitizer benzoporphyrin derivative monoacid ring A (BPD) was obtained in phantoms and mouse tumors using an excitation light of 405 nm. Interstitial fluorescence signal was obtained using a side-cut fiber inserted into the tumor tissue of interest. Using a previously developed multi-fiber probe, tumor surface fluorescence measurements were also collected.more » Signals were calibrated according to optical phantoms with known sensitizer fluorescence. Optical properties for each sample were determined and the influence of different absorption and scattering properties on the fluorescence signals was investigated. Using single value decomposition of the spectra, the sensitizer concentration was determined using the two different measurement geometries. An ex vivo analysis was also performed for tumor samples to determine the sensitizer concentration. Results: The two fluorescence signals obtained from the surface multi-fiber probe and the interstitial measurements were compared and were corresponding for both phantoms and mouse models. The values obtained were comparable to the ex vivo measurements as well. Despite the difference in geometry, the surface probe measurements can still be used as a metric for determining the presence of sensitizer in small volume tumors. Conclusion: The multi-fiber contact probe can be used as a tool to measure fluorescence at the surface of the treatment area for PDT and predict sensitizer concentration throughout the tumor. This is advantageous in that the measurement does not damage any tissue. Future work will include investigating the dependence of these results on intratumor sensitizer distribution.« less
Mid-infrared chalcogenide fiber devices for medical applications
NASA Astrophysics Data System (ADS)
Chenard, Francois; Alvarez, Oseas; Buff, Andrew
2018-02-01
High-purity chalcogenide glasses and fiber draw processes enable the production of state-of-the-art mid-infrared fibers for 1.5 to 10 micron transmission. Multimode and single-mode mid-infrared fibers are produced with low-loss (<0.2 dB/m), high tensile strength (>25 kpsi), and high power laser handling capability (>11.8 MW/cm2). Chalcogenide fibers support the development of cutting-edge devices for mid-infrared medical applications. Connectorized cables transmit laser power to a sample or mid-infrared radiation to a detector. Broadband antireflection microstructures are thermally stamped on the chalcogenide fiber tip to reduce the surface reflection from 17% to <5%. Also custom fiber-optic probe bundles are made with multiple fiber legs (source, sample, signal) for reflection and backscatter spectroscopy measurement. For example, a 7 x 1 fiber probe bundle is presented. Additionally imaging fiber bundle is made to perform remote thermal and spectral imaging. Square preforms are drawn, stacked, squared and fused multiple times to produce a 64 x 64 imaging fiber bundle with fiber pixel size of 34 microns and the numerical aperture of 0.3. The 2- meter long imaging fiber bundle is small (2.2 mm x 2.2 mm), flexible (bend radius >10 mm) and transmits over the spectral range of 1.5 to 6.5 micron.
Development of ultra-precision micro-cavity measurement technique in HIT-UOI
NASA Astrophysics Data System (ADS)
Cui, Jiwen; Li, Lei; Tan, Jiubin
2010-08-01
Micro cavities with high aspect ratio are widely used in different fields including aerospace and defense industries with the development of manufacturing technology. So how to measure the dimension of these cavities has become one of the major research subjects in the field of measurement and instrument. This paper describes some activities of the precision micro cavity measurement technique in Center of Ultra-precision Optoelectronic Instrument (UOI), Harbin Institute of Technology (HIT). The key issue of micro cavity measurement in UOI is called touch-trigger measurement method. The first scheme is double optical fiber coupling, in which light coming from the incident optical fiber is transmitted in the reversal direction via the optical fiber coupling into the effluent optical fiber, the lateral displacement of the touch-trigger sensor is transformed into the deflexion of light coming out from the effluent optical fiber, and the deflexion is transformed into an image signal by the object lens and CCD capturing system. And the second scheme is micro focal-length collimation, in which a fiber stem with a ball mounted on its end is used as a probe and a small segment of it is used as a cylindrical lens to collimate a point light source and image it to a camera, the deflection of the fiber stem can be inferred from the change in image acquired by the camera with ultrahigh displacement sensitivity. Experiments for these activities will be given with a focus on the measurement results and repeatability uncertainty.
Yücel, Meryem A.; Selb, Juliette; Boas, David A.; Cash, Sydney S.; Cooper, Robert J.
2013-01-01
As the applications of near-infrared spectroscopy (NIRS) continue to broaden and long-term clinical monitoring becomes more common, minimizing signal artifacts due to patient movement becomes more pressing. This is particularly true in applications where clinically and physiologically interesting events are intrinsically linked to patient movement, as is the case in the study of epileptic seizures. In this study, we apply an approach common in the application of EEG electrodes to the application of specialized NIRS optical fibers. The method provides improved optode-scalp coupling through the use of miniaturized optical fiber tips fixed to the scalp using collodion, a clinical adhesive. We investigate and quantify the performance of this new method in minimizing motion artifacts in healthy subjects, and apply the technique to allow continuous NIRS monitoring throughout epileptic seizures in two epileptic in-patients. Using collodion-fixed fibers reduces the percent signal change of motion artifacts by 90 % and increases the SNR by 6 and 3 fold at 690 and 830 nm wavelengths respectively when compared to a standard Velcro-based array of optical fibers. The change in both HbO and HbR during motion artifacts is found to be statistically lower for the collodion-fixed fiber probe. The collodion-fixed optical fiber approach has also allowed us to obtain good quality NIRS recording of three epileptic seizures in two patients despite excessive motion in each case. PMID:23796546
NASA Astrophysics Data System (ADS)
Ramella-Roman, Jessica C.; Ho, Thuan; Le, Du; Ghassemi, Pejhman; Nguyen, Thu; Lichy, Alison; Groah, Suzanne
2013-03-01
Skin perfusion and oxygenation is easily disrupted by imposed pressure. Fiber optics probes, particularly those spectroscopy or Doppler based, may relay misleading information about tissue microcirculation dynamics depending on external forces on the sensor. Such forces could be caused by something as simple as tape used to secure the fiber probe to the test subject, or as in our studies by the full weight of a patient with spinal cord injury (SCI) sitting on the probe. We are conducting a study on patients with SCI conducting pressure relief maneuvers in their wheelchairs. This study aims to provide experimental evidence of the optimal timing between pressure relief maneuvers. We have devised a wireless pressure-controlling device; a pressure sensor positioned on a compression aluminum plate reads the imposed pressure in real time and sends the information to a feedback system controlling two position actuators. The actuators move accordingly to maintain a preset value of pressure onto the sample. This apparatus was used to monitor the effect of increasing values of pressure on spectroscopic fiber probes built to monitor tissue oxygenation and Doppler probes used to assess tissue perfusion.
NASA Astrophysics Data System (ADS)
Ghosh, Goutam
This thesis summarizes a new micro-optic method for singlet oxygen generation and sensitizer drug delivery, which include i) synthesis and evaluation of a first generation device for drug delivery from native and fluorinated silica probe tips, ii) synthesis of PEG conjugated sensitizers to study phototoxicity in ovarian cancer cells, and iii) synthesis and evaluation of tris-PEGylated chlorin conjugated fluorinated silica for its future integration into the device to use as a 2nd generation device. A first generation micro-optic device was developed that works by sparging O2 gas and light generating cytotoxic singlet oxygen that cleaves the covalently attached drug (sensitizer) from the probe tip at the distal end of the fiber. The aim is to develop a 1st and 2nd generation device for site specific delivery of photosensitizer and singlet oxygen to overcome the challenges involved in systemic administration of the sensitizer. Synthesis and evaluation of drug (pheophorbide-a) delivery applying micro-optic method from native and fluorinated silica probe tip was achieved. The amount of sensitizer photocleavage depends on the loading level of sensitizer onto the probe tips. We also found that photorelease efficiency depends on the nature of the solvents where sensitizer is photocleaved. For example, no photorelease was observed in an aqueous solvent where sensitizer remained adsorbed to the native silica probe-tip. But, 90% photocleavage was obtained in octanol. A significant amount of photosensitizer (formate ester of pyropheophorbide- a) diffused into the liposome when photocleavage study was carried out in liposome. Substantial increase of photorelease was observed in organic solvent when pyropheophorbide-a (PPa) sensitizer was attached to the partially fluorinated porous Vycor glass. We also explored sensitizer photorelease from the fluorinated silica surface at various temperatures and we found that autocatalytic photorelease happened at room temperature and above. No photorelease was observed at low temperature. Chlorin e6 and its one, two and three short chain methoxy triethylene glycol (PEG) conjugated derivatives were synthesized. A comparative study of photocytotoxicity and cellular uptake between each showed that 17 3,152,131- chlorin e6 methoxy triethylene glycol triester has the highest photocytotoxic activity and uptake by ovarian OVCAR-5 cancer cells. Therefore, we decided to load three short chain PEG conjugated chlorin e6 onto the silica surface through spacer alkene for delivery via a fiber-optic probe tip. In order to load chlorin e6-triPEG ester conjugate, in chapter 4, we explored different synthetic strategies. We have been successful in synthesizing spacer alkene succinate linker conjugated chlorin e6 -tri PEG ester, which was attached to the fiber-optic probe tip. Reactions were carried out in mild conditions to avoid detachment of the PEG ester from the carboxylic acid sites of chlorin. Photocleavage of the triPEG modified fluorinated probe tip system was studied in n-butanol.
Yoo, Wook Jae; Shin, Sang Hun; Jeon, Dayeong; Hong, Seunghan; Sim, Hyeok In; Kim, Seon Geun; Jang, Kyoung Won; Cho, Seunghyun; Youn, Won Sik; Lee, Bongsoo
2014-01-01
A miniature fiber-optic dosimeter (FOD) system was fabricated using a plastic scintillating fiber, a plastic optical fiber, and a multi-pixel photon counter to measure real-time entrance surface dose (ESD) during radiation diagnosis. Under varying exposure parameters of a digital radiography (DR) system, we measured the scintillating light related to the ESD using the sensing probe of the FOD, which was placed at the center of the beam field on an anthropomorphic thorax phantom. Also, we obtained DR images using a flat panel detector of the DR system to evaluate the effects of the dosimeter on image artifacts during posteroanterior (PA) chest radiography. From the experimental results, the scintillation output signals of the FOD were similar to the ESDs including backscatter simultaneously obtained using a semiconductor dosimeter. We demonstrated that the proposed miniature FOD can be used to measure real-time ESDs with minimization of DR image artifacts in the X-ray energy range of diagnostic radiology. PMID:24694678
Yoo, Wook Jae; Shin, Sang Hun; Jeon, Dayeong; Hong, Seunghan; Sim, Hyeok In; Kim, Seon Geun; Jang, Kyoung Won; Cho, Seunghyun; Youn, Won Sik; Lee, Bongsoo
2014-04-01
A miniature fiber-optic dosimeter (FOD) system was fabricated using a plastic scintillating fiber, a plastic optical fiber, and a multi-pixel photon counter to measure real-time entrance surface dose (ESD) during radiation diagnosis. Under varying exposure parameters of a digital radiography (DR) system, we measured the scintillating light related to the ESD using the sensing probe of the FOD, which was placed at the center of the beam field on an anthropomorphic thorax phantom. Also, we obtained DR images using a flat panel detector of the DR system to evaluate the effects of the dosimeter on image artifacts during posteroanterior (PA) chest radiography. From the experimental results, the scintillation output signals of the FOD were similar to the ESDs including backscatter simultaneously obtained using a semiconductor dosimeter. We demonstrated that the proposed miniature FOD can be used to measure real-time ESDs with minimization of DR image artifacts in the X-ray energy range of diagnostic radiology.
Xie, Shangran; Pang, Meng; Bao, Xiaoyi; Chen, Liang
2012-03-12
The dependence of Brillouin linewidth and peak frequency on lightwave state of polarization (SOP) due to fiber inhomogeneity in single mode fiber (SMF) is investigated by using Brillouin optical time domain analysis (BOTDA) system. Theoretical analysis shows fiber inhomogeneity leads to fiber birefringence and sound velocity variation, both of which can cause the broadening and asymmetry of the Brillouin gain spectrum (BGS) and thus contribute to the variation of Brillouin linewidth and peak frequency with lightwave SOP. Due to fiber inhomogeneity both in lateral profile and longitudinal direction, the measured BGS is the superposition of several spectrum components with different peak frequencies within the interaction length. When pump or probe SOP changes, both the peak Brillouin gain and the overlapping area of the optical and acoustic mode profile that determine the peak efficiency of each spectrum component vary within the interaction length, which further changes the linewidth and peak frequency of the superimposed BGS. The SOP dependence of Brillouin linewidth and peak frequency was experimentally demonstrated and quantified by measuring the spectrum asymmetric factor and fitting obtained effective peak frequency respectively via BOTDA system on standard step-index SMF-28 fiber. Experimental results show that on this fiber the Brillouin spectrum asymmetric factor and effective peak frequency vary in the range of 2% and 0.06MHz respectively over distance with orthogonal probe input SOPs. Experimental results also show that in distributed fiber Brillouin sensing, polarization scrambler (PS) can be used to reduce the SOP dependence of Brillouin linewidth and peak frequency caused by fiber inhomogeneity in lateral profile, however it maintains the effects caused by fiber inhomogeneity in longitudinal direction. In the case of non-ideal polarization scrambling using practical PS, the fluctuation of effective Brillouin peak frequency caused by fiber inhomogeneity provides another limit of sensing frequency resolution of distributed fiber Brillouin sensor.
Hemodynamic monitoring in different cortical layers with a single fiber optical system
NASA Astrophysics Data System (ADS)
Yu, Linhui; Noor, M. Sohail; Kiss, Zelma H. T.; Murari, Kartikeya
2018-02-01
Functional monitoring of highly-localized deep brain structures is of great interest. However, due to light scattering, optical methods have limited depth penetration or can only measure from a large volume. In this research, we demonstrate continuous measurement of hemodynamics in different cortical layers in response to thalamic deep brain stimulation (DBS) using a single fiber optical system. A 200-μm-core-diameter multimode fiber is used to deliver and collect light from tissue. The fiber probe can be stereotaxically implanted into the brain region of interest at any depth to measure the di use reflectance spectra from a tissue volume of 0.02-0.03 mm3 near the fiber tip. Oxygenation is then extracted from the reflectance spectra using an algorithm based on Monte Carlo simulations. Measurements were performed on the surface (cortical layer I) and at 1.5 mm depth (cortical layer VI) of the motor cortex in anesthetized rats with thalamic DBS. Preliminary results revealed the oxygenation changes in response to DBS. Moreover, the baseline as well as the stimulus-evoked change in oxygenation were different at the two depths of cortex.
Beaudette, Kathy; Baac, Hyoung Won; Madore, Wendy-Julie; Villiger, Martin; Godbout, Nicolas; Bouma, Brett E; Boudoux, Caroline
2015-04-01
Double-clad fiber (DCF) is herein used in conjunction with a double-clad fiber coupler (DCFC) to enable simultaneous and co-registered optical coherence tomography (OCT) and laser tissue coagulation. The DCF allows a single channel fiber-optic probe to be shared: i.e. the core propagating the OCT signal while the inner cladding delivers the coagulation laser light. We herein present a novel DCFC designed and built to combine both signals within a DCF (>90% of single-mode transmission; >65% multimode coupling). Potential OCT imaging degradation mechanisms are also investigated and solutions to mitigate them are presented. The combined DCFC-based system was used to induce coagulation of an ex vivo swine esophagus allowing a real-time assessment of thermal dynamic processes. We therefore demonstrate a DCFC-based system combining OCT imaging with laser coagulation through a single fiber, thus enabling both modalities to be performed simultaneously and in a co-registered manner. Such a system enables endoscopic image-guided laser marking of superficial epithelial tissues or laser thermal therapy of epithelial lesions in pathologies such as Barrett's esophagus.
Beaudette, Kathy; Baac, Hyoung Won; Madore, Wendy-Julie; Villiger, Martin; Godbout, Nicolas; Bouma, Brett E.; Boudoux, Caroline
2015-01-01
Double-clad fiber (DCF) is herein used in conjunction with a double-clad fiber coupler (DCFC) to enable simultaneous and co-registered optical coherence tomography (OCT) and laser tissue coagulation. The DCF allows a single channel fiber-optic probe to be shared: i.e. the core propagating the OCT signal while the inner cladding delivers the coagulation laser light. We herein present a novel DCFC designed and built to combine both signals within a DCF (>90% of single-mode transmission; >65% multimode coupling). Potential OCT imaging degradation mechanisms are also investigated and solutions to mitigate them are presented. The combined DCFC-based system was used to induce coagulation of an ex vivo swine esophagus allowing a real-time assessment of thermal dynamic processes. We therefore demonstrate a DCFC-based system combining OCT imaging with laser coagulation through a single fiber, thus enabling both modalities to be performed simultaneously and in a co-registered manner. Such a system enables endoscopic image-guided laser marking of superficial epithelial tissues or laser thermal therapy of epithelial lesions in pathologies such as Barrett’s esophagus. PMID:25909013
Depth-sensitive optical spectroscopy for layered tissue measurements (Conference Presentation)
NASA Astrophysics Data System (ADS)
Liu, Wei; Yu, Xiaojun; Liu, Quan; Liu, Linbo; Ong, Yi Hong
2017-02-01
Disease diagnosis based on the visual inspection of the pathological presentations or symptoms on the epithelial tissue such as the skin are subjective and highly depend on the experience of the doctors. Vital diagnostic information for the accurate identification of diseases is usually located underneath the surface and its depth distribution is known to be related to disease progression. Although optical spectroscopic measurements are fast and non-invasive, the accurate retrieval of the depth-specific diagnostic information is complicated by the heterogeneous nature of epithelial tissues. The optical signal measured from a tissue is often the result of averaging from a large tissue volume that mixes information from the region of interest and the surrounding tissue region, especially from the overlaying layers. Our group has developed a series of techniques for depth sensitive optical measurements from such layered tissues. We will first review the earlier development of composite fiber-optic probe, in which the source-detector separation and the angles of source and detector fibers are varied to achieve depth sensitive measurements. Then the more recent development of non-contact axicon lens based probes for depth sensitive fluorescence measurements and the corresponding numerical methods for optimization will be introduced. Finally, the most recently developed snapshot axicon lens based probe that can measure Raman spectra from five different depths at the same time will be discussed. Results from tissue phantoms, ex vivo pork samples and in vivo fingernail measurements will be presented, which indicates the great potential of depth sensitive optical spectroscopy for clinical tissue diagnosis.
Xu, Hongsong; Wang, Guanyu; Ma, Jun; Jin, Long; Oh, Kyunghwan; Guan, Bai-Ou
2018-04-30
A new type of tunable broadband fiber-optic acousto-optic sensor was experimentally demonstrated by utilizing a bubble-on-fiber (BoF) interferometer. A single micro-bubble was generated by injecting a heating laser at λ = 980 nm on the metalized facet of an optical fiber. The BoF formed a spherical micro-cavity in water whose acoustic deformation was precisely detected by using a narrowband DFB laser at 1550 nm. The heating light and the interrogating light were fed into a single fiber probe by wavelength division multiplexing (WDM) realizing a small footprint all-fiber configuration. The diameter of the BoF was stabilized with a variation less than 0.5 nm by fast servo-control of the heating laser power. The stabilized BoF served as a Fabry-Pérot cavity that can be deformed by acoustic perturbation, and a minimum detectable pressure level of as low as ~1 mPa/Hz 1/2 was achieved in a frequency range of over 60 kHz in water at room temperature. Our proposed BoF technology can provide a tunable, flexible and all-fiber solution to detect minute acoustically driven perturbations combining high-precision interferometry. Due to the very small form-factor, the technique can find applications of liquid-immersible in situ measurements in bio-molecular/cell detection and biochemical phenomena study.
Biconically tapered fiber optic probes for rapid label-free immunoassays.
Miller, John; Castaneda, Angelica; Lee, Kun Ho; Sanchez, Martin; Ortiz, Adrian; Almaz, Ekrem; Almaz, Zuleyha Turkoglu; Murinda, Shelton; Lin, Wei-Jen; Salik, Ertan
2015-04-01
We report use of U-shaped biconically tapered optical fibers (BTOF) as probes for label-free immunoassays. The tapered regions of the sensors were functionalized by immobilization of immunoglobulin-G (Ig-G) and tested for detection of anti-IgG at concentrations of 50 ng/mL to 50 µg/mL. Antibody-antigen reaction creates a biological nanolayer modifying the waveguide structure leading to a change in the sensor signal, which allows real-time monitoring. The kinetics of the antibody (mouse Ig-G)-antigen (rabbit anti-mouse IgG) reactions was studied. Hydrofluoric acid treatment makes the sensitive region thinner to enhance sensitivity, which we confirmed by experiments and simulations. The limit of detection for the sensor was estimated to be less than 50 ng/mL. Utilization of the rate of the sensor peak shift within the first few minutes of the antibody-antigen reaction is proposed as a rapid protein detection method.