Science.gov

Sample records for fiber radiation detectors

  1. RADIATION DETECTOR

    DOEpatents

    Wilson, H.N.; Glass, F.M.

    1960-05-10

    A radiation detector of the type is described wherein a condenser is directly connected to the electrodes for the purpose of performing the dual function of a guard ring and to provide capacitance coupling for resetting the detector system.

  2. Radiation Hardness Tests of a Scintillation Detector with Wavelength Shifting Fiber Readout

    SciTech Connect

    Alfaro, R.; Sandoval, A.; Cruz, E.; Martinez, M. I.; Paic, G.; Montano, L. M.

    2006-09-25

    We have performed radiation tolerance tests on the BCF-99-29MC wavelength shifting fibers and the BC404 plastic scintillator from Bicron as well as on silicon rubber optical couplers. We used the 60Co gamma source at the Instituto de Ciencias Nucleares facility to irradiate 30-cm fiber samples with doses from 50 Krad to 1 Mrad. We also irradiated a 10x10 cm2 scintillator detector with the WLS fibers embedded on it with a 200 krad dose and the optical conectors between the scintillator and the PMT with doses from 100 to 300 krad. We measured the radiation damage on the materials by comparing the pre- and post-irradiation optical transparency as a function of time.

  3. WE-AB-BRB-12: Nanoscintillator Fiber-Optic Detector System for Microbeam Radiation Therapy Dosimetry

    SciTech Connect

    Rivera, J; Dooley, J; Chang, S; Belley, M; Yoshizumi, T; Stanton, I; Langloss, B; Therien, M

    2015-06-15

    Purpose: Microbeam Radiation Therapy (MRT) is an experimental radiation therapy that has demonstrated a higher therapeutic ratio than conventional radiation therapy in animal studies. There are several roadblocks in translating the promising treatment technology to clinical application, one of which is the lack of a real-time, high-resolution dosimeter. Current clinical radiation detectors have poor spatial resolution and, as such, are unsuitable for measuring microbeams with submillimeter-scale widths. Although GafChromic film has high spatial resolution, it lacks the real-time dosimetry capability necessary for MRT preclinical research and potential clinical use. In this work we have demonstrated the feasibility of using a nanoscintillator fiber-optic detector (nanoFOD) system for real-time MRT dosimetry. Methods: A microplanar beam array is generated using a x-ray research irradiator and a custom-made, microbeam-forming collimator. The newest generation nanoFOD has an effective size of 70 µm in the measurement direction and was calibrated against a kV ion chamber (RadCal Accu-Pro) in open field geometry. We have written a computer script that performs automatic data collection with immediate background subtraction. A computer-controlled detector positioning stage is used to precisely measure the microbeam peak dose and beam profile by translating the stage during data collection. We test the new generation nanoFOD system, with increased active scintillation volume, against the previous generation system. Both raw and processed data are time-stamped and recorded to enable future post-processing. Results: The real-time microbeam dosimetry system worked as expected. The new generation dosimeter has approximately double the active volume compared to the previous generation resulting in over 900% increase in signal. The active volume of the dosimeter still provided the spatial resolution that meets the Nyquist criterion for our microbeam widths. Conclusion: We have

  4. Fiber optic detector

    NASA Astrophysics Data System (ADS)

    Partin, Judy K.; Ward, Thomas E.; Grey, Alan E.

    1990-04-01

    This invention is comprised of a portable fiber optic detector that senses the presence of specific target chemicals by exchanging the target chemical for a fluorescently-tagged antigen that is bound to an antibody which is in turn attached to an optical fiber. Replacing the fluorescently-tagged antigen reduces the fluorescence so that a photon sensing detector records the reduced light level and activates an appropriate alarm or indicator.

  5. Fiber optic detector

    SciTech Connect

    Partin, J.K.; Ward, T.E.; Grey, A.E.

    1990-12-31

    This invention is comprised of a portable fiber optic detector that senses the presence of specific target chemicals by exchanging the target chemical for a fluorescently-tagged antigen that is bound to an antibody which is in turn attached to an optical fiber. Replacing the fluorescently-tagged antigen reduces the fluorescence so that a photon sensing detector records the reduced light level and activates an appropriate alarm or indicator.

  6. Radiation detector

    DOEpatents

    Fultz, B.T.

    1980-12-05

    Apparatus is provided for detecting radiation such as gamma rays and x-rays generated in backscatter Moessbauer effect spectroscopy and x-ray spectrometry, which has a large window for detecting radiation emanating over a wide solid angle from a specimen and which generates substantially the same output pulse height for monoenergetic radiation that passes through any portion of the detection chamber. The apparatus includes a substantially toroidal chamber with conductive walls forming a cathode, and a wire anode extending in a circle within the chamber with the anode lying closer to the inner side of the toroid which has the least diameter than to the outer side. The placement of the anode produces an electric field, in a region close to the anode, which has substantially the same gradient in all directions extending radially from the anode, so that the number of avalanche electrons generated by ionizing radiation is independent of the path of the radiation through the chamber.

  7. Radiation detector

    DOEpatents

    Fultz, Brent T.

    1983-01-01

    Apparatus is provided for detecting radiation such as gamma rays and X-rays generated in backscatter Mossbauer effect spectroscopy and X-ray spectrometry, which has a large "window" for detecting radiation emanating over a wide solid angle from a specimen and which generates substantially the same output pulse height for monoenergetic radiation that passes through any portion of the detection chamber. The apparatus includes a substantially toroidal chamber with conductive walls forming a cathode, and a wire anode extending in a circle within the chamber with the anode lying closer to the inner side of the toroid which has the least diameter than to the outer side. The placement of the anode produces an electric field, in a region close to the anode, which has substantially the same gradient in all directions extending radially from the anode, so that the number of avalanche electrons generated by ionizing radiation is independent of the path of the radiation through the chamber.

  8. Optical electromagnetic radiation detector

    NASA Astrophysics Data System (ADS)

    Miceli, W. J.; Ludman, J. E.

    1985-08-01

    An optical electromagnetic radiation detector is invented having a probe for receiving nearby electromagnetic radiation. The probe includes a loop antenna connected to a pair of transparent electrodes deposited on the end surfaces of an electro-optic Fabry-Perot interferometer. When the loop antenna picks up the presence of electromagnetic radiation, a voltage will be developed across the crystal of the electro-optic Fabry-Perot interferometer thereby changing the optical length of the interferometer. A beam of light from a remote location is transmitted through an optical fiber onto the Fabry-Perot interferometer. The change in optical length of the Fabry-Perot interferometer alters the intensity of the beam of light as its is reflected from the Fabry-Perot interferometer back through the optical fiber to the remote location. A beamsplitter directs this reflected beam of light onto an intensity detector in order to provide an output indicative of the variations in intensity. The variations in intensity are directly related to the strength of the electromagnetic radiation received by the loop antenna.

  9. Adaptors for radiation detectors

    DOEpatents

    Livesay, Ronald Jason

    2015-07-28

    Described herein are adaptors and other devices for radiation detectors that can be used to make accurate spectral measurements of both small and large bulk sources of radioactivity, such as building structures, soils, vessels, large equipment, and liquid bodies. Some exemplary devices comprise an adaptor for a radiation detector, wherein the adaptor can be configured to collimate radiation passing through the adapter from an external radiation source to the radiation detector and the adaptor can be configured to enclose a radiation source within the adapter to allow the radiation detector to measure radiation emitted from the enclosed radiation source.

  10. Adaptors for radiation detectors

    DOEpatents

    Livesay, Ronald Jason

    2014-04-22

    Described herein are adaptors and other devices for radiation detectors that can be used to make accurate spectral measurements of both small and large bulk sources of radioactivity, such as building structures, soils, vessels, large equipment, and liquid bodies. Some exemplary devices comprise an adaptor for a radiation detector, wherein the adaptor can be configured to collimate radiation passing through the adapter from an external radiation source to the radiation detector and the adaptor can be configured to enclose a radiation source within the adapter to allow the radiation detector to measure radiation emitted from the enclosed radiation source.

  11. Tin Can Radiation Detector.

    ERIC Educational Resources Information Center

    Crull, John L.

    1986-01-01

    Provides instructions for making tin can radiation detectors from empty aluminum cans, aluminum foil, clear plastic, copper wire, silica gel, and fine, unwaxed dental floss put together with tape or glue. Also provides suggestions for activities using the detectors. (JN)

  12. Coated Fiber Neutron Detector Test

    SciTech Connect

    Lintereur, Azaree T.; Ely, James H.; Kouzes, Richard T.; Stromswold, David C.

    2009-10-23

    Radiation portal monitors used for interdiction of illicit materials at borders include highly sensitive neutron detection systems. The main reason for having neutron detection capability is to detect fission neutrons from plutonium. The currently deployed radiation portal monitors (RPMs) from Ludlum and Science Applications International Corporation (SAIC) use neutron detectors based upon 3He-filled gas proportional counters, which are the most common large neutron detector. There is a declining supply of 3He in the world, and thus, methods to reduce the use of this gas in RPMs with minimal changes to the current system designs and sensitivity to cargo-borne neutrons are being investigated. Reported here are the results of tests of the 6Li/ZnS(Ag)-coated non-scintillating plastic fibers option. This testing measured the required performance for neutron detection efficiency and gamma ray rejection capabilities of a system manufactured by Innovative American Technology (IAT).

  13. Fiber optic fluid detector

    DOEpatents

    Angel, S. Michael

    1989-01-01

    Particular gases or liquids are detected with a fiber optic element (11, 11a to 11j) having a cladding or coating of a material (23, 23a to 23j) which absorbs the fluid or fluids and which exhibits a change of an optical property, such as index of refraction, light transmissiveness or fluoresence emission, for example, in response to absorption of the fluid. The fluid is sensed by directing light into the fiber optic element and detecting changes in the light, such as exit angle changes for example, that result from the changed optical property of the coating material. The fluid detector (24, 24a to 24j) may be used for such purposes as sensing toxic or explosive gases in the atmosphere, measuring ground water contamination or monitoring fluid flows in industrial processes, among other uses.

  14. Fiber optic fluid detector

    DOEpatents

    Angel, S.M.

    1987-02-27

    Particular gases or liquids are detected with a fiber optic element having a cladding or coating of a material which absorbs the fluid or fluids and which exhibits a change of an optical property, such as index of refraction, light transmissiveness or fluoresence emission, for example, in response to absorption of the fluid. The fluid is sensed by directing light into the fiber optic element and detecting changes in the light, such as exit angle changes for example, that result from the changed optical property of the coating material. The fluid detector may be used for such purposes as sensing toxic or explosive gases in the atmosphere, measuring ground water contamination or monitoring fluid flows in industrial processes, among other uses. 10 figs.

  15. RADIATION WAVE DETECTOR

    DOEpatents

    Wouters, L.F.

    1958-10-28

    The detection of the shape and amplitude of a radiation wave is discussed, particularly an apparatus for automatically indicating at spaced lntervals of time the radiation intensity at a flxed point as a measure of a radiation wave passing the point. The apparatus utilizes a number of photomultiplier tubes surrounding a scintillation type detector, For obtainlng time spaced signals proportional to radiation at predetermined intervals the photolnultiplier tubes are actuated ln sequence following detector incidence of a predetermined radiation level by electronic means. The time spaced signals so produced are then separately amplified and relayed to recording means.

  16. Electromagnetic radiation detector

    DOEpatents

    Benson, Jay L.; Hansen, Gordon J.

    1976-01-01

    An electromagnetic radiation detector including a collimating window, a cathode member having a photoelectric emissive material surface angularly disposed to said window whereby radiation is impinged thereon at acute angles, an anode, separated from the cathode member by an evacuated space, for collecting photoelectrons emitted from the emissive cathode surface, and a negatively biased, high transmissive grid disposed between the cathode member and anode.

  17. Fiber optic linear smoke fire detector

    NASA Astrophysics Data System (ADS)

    Kulakov, Sergei V.; Moskaletz, Oleg D.; Preslenev, Leonid N.; Shabardin, Alexander N.

    2001-11-01

    A global and versatile problem of fire and environmental safety is formulated. It is pointed out that one of the main ways to solve this problem is the development of equipment for early fire detection. The results of the development and study of a smoke fiber optic fire detector are presented. Such detector is absolutely explosion-safe and immune to increased radiation level and aggressive chemical environment.

  18. Underwater radiation detector

    DOEpatents

    Kruse, Lyle W.; McKnight, Richard P.

    1986-01-01

    A detector apparatus for differentiating between gamma and neutron radiation is provided. The detector includes a pair of differentially shielded Geiger-Mueller tubes. The first tube is wrapped in silver foil and the second tube is wrapped in lead foil. Both the silver and lead foils allow the passage of gamma rays at a constant rate in a gamma ray only field. When neutrons are present, however, the silver activates and emits beta radiation that is also detected by the silver wrapped Geiger-Mueller tube while the radiation detected by the lead wrapped Geiger-Mueller tube remains constant. The amount of radiation impinging on the separate Geiger-Mueller tubes is then correlated in order to distinguish between the neutron and gamma radiations.

  19. Radiation Detectors and Art

    NASA Astrophysics Data System (ADS)

    Denker, Andrea

    The use of radiation detectors in the analysis of art objects represents a very special application in a true interdisciplinary field. Radiation detectors employed in this field detect, e.g., x-rays, γ-rays, β particles, and protons. Analyzed materials range from stones, metals, over porcelain to paintings. The available nondestructive and noninvasive analytical methods cover a broad range of techniques. Hence, for the sake of brevity, this chapter will concentrate on few techniques: Proton Induced X-ray Emission (PIXE) and Proton Induced γ-ray Emission (PIGE).

  20. Ionizing radiation detector

    DOEpatents

    Thacker, Louis H.

    1990-01-01

    An ionizing radiation detector is provided which is based on the principle of analog electronic integration of radiation sensor currents in the sub-pico to nano ampere range between fixed voltage switching thresholds with automatic voltage reversal each time the appropriate threshold is reached. The thresholds are provided by a first NAND gate Schmitt trigger which is coupled with a second NAND gate Schmitt trigger operating in an alternate switching state from the first gate to turn either a visible or audible indicating device on and off in response to the gate switching rate which is indicative of the level of radiation being sensed. The detector can be configured as a small, personal radiation dosimeter which is simple to operate and responsive over a dynamic range of at least 0.01 to 1000 R/hr.

  1. Amorphous silicon radiation detectors

    DOEpatents

    Street, Robert A.; Perez-Mendez, Victor; Kaplan, Selig N.

    1992-01-01

    Hydrogenated amorphous silicon radiation detector devices having enhanced signal are disclosed. Specifically provided are transversely oriented electrode layers and layered detector configurations of amorphous silicon, the structure of which allow high electric fields upon application of a bias thereby beneficially resulting in a reduction in noise from contact injection and an increase in signal including avalanche multiplication and gain of the signal produced by incoming high energy radiation. These enhanced radiation sensitive devices can be used as measuring and detection means for visible light, low energy photons and high energy ionizing particles such as electrons, x-rays, alpha particles, beta particles and gamma radiation. Particular utility of the device is disclosed for precision powder crystallography and biological identification.

  2. Amorphous silicon radiation detectors

    DOEpatents

    Street, R.A.; Perez-Mendez, V.; Kaplan, S.N.

    1992-11-17

    Hydrogenated amorphous silicon radiation detector devices having enhanced signal are disclosed. Specifically provided are transversely oriented electrode layers and layered detector configurations of amorphous silicon, the structure of which allow high electric fields upon application of a bias thereby beneficially resulting in a reduction in noise from contact injection and an increase in signal including avalanche multiplication and gain of the signal produced by incoming high energy radiation. These enhanced radiation sensitive devices can be used as measuring and detection means for visible light, low energy photons and high energy ionizing particles such as electrons, x-rays, alpha particles, beta particles and gamma radiation. Particular utility of the device is disclosed for precision powder crystallography and biological identification. 13 figs.

  3. Photovoltaic radiation detector element

    DOEpatents

    Agouridis, Dimitrios C.

    1983-01-01

    A radiation detector element is formed of a body of semiconductor material, a coating on the body which forms a photovoltaic junction therewith, and a current collector consisting of narrow metallic strips, the aforesaid coating having an opening therein the edge of which closely approaches but is spaced from the current collector strips.

  4. Semiconductor radiation detector

    DOEpatents

    Patt, Bradley E.; Iwanczyk, Jan S.; Tull, Carolyn R.; Vilkelis, Gintas

    2002-01-01

    A semiconductor radiation detector is provided to detect x-ray and light photons. The entrance electrode is segmented by using variable doping concentrations. Further, the entrance electrode is physically segmented by inserting n+ regions between p+ regions. The p+ regions and the n+ regions are individually biased. The detector elements can be used in an array, and the p+ regions and the n+ regions can be biased by applying potential at a single point. The back side of the semiconductor radiation detector has an n+ anode for collecting created charges and a number of p+ cathodes. Biased n+ inserts can be placed between the p+ cathodes, and an internal resistor divider can be used to bias the n+ inserts as well as the p+ cathodes. A polysilicon spiral guard can be implemented surrounding the active area of the entrance electrode or surrounding an array of entrance electrodes.

  5. Handheld CZT radiation detector

    DOEpatents

    Murray, William S.; Butterfield, Kenneth B.; Baird, William

    2004-08-24

    A handheld CZT radiation detector having a CZT gamma-ray sensor, a multichannel analyzer, a fuzzy-logic component, and a display component is disclosed. The CZT gamma-ray sensor may be a coplanar grid CZT gamma-ray sensor, which provides high-quality gamma-ray analysis at a wide range of operating temperatures. The multichannel analyzer categorizes pulses produce by the CZT gamma-ray sensor into channels (discrete energy levels), resulting in pulse height data. The fuzzy-logic component analyzes the pulse height data and produces a ranked listing of radioisotopes. The fuzzy-logic component is flexible and well-suited to in-field analysis of radioisotopes. The display component may be a personal data assistant, which provides a user-friendly method of interacting with the detector. In addition, the radiation detector may be equipped with a neutron sensor to provide an enhanced mechanism of sensing radioactive materials.

  6. Semiconductor radiation detector

    DOEpatents

    Bell, Zane W.; Burger, Arnold

    2010-03-30

    A semiconductor detector for ionizing electromagnetic radiation, neutrons, and energetic charged particles. The detecting element is comprised of a compound having the composition I-III-VI.sub.2 or II-IV-V.sub.2 where the "I" component is from column 1A or 1B of the periodic table, the "II" component is from column 2B, the "III" component is from column 3A, the "IV" component is from column 4A, the "V" component is from column 5A, and the "VI" component is from column 6A. The detecting element detects ionizing radiation by generating a signal proportional to the energy deposited in the element, and detects neutrons by virtue of the ionizing radiation emitted by one or more of the constituent materials subsequent to capture. The detector may contain more than one neutron-sensitive component.

  7. Radiation Hazard Detector

    NASA Technical Reports Server (NTRS)

    1978-01-01

    NASA technology has made commercially available a new, inexpensive, conveniently-carried device for protection, of people exposed to potentially dangerous levels of microwave radiation. Microwaves are radio emissions of extremely high frequency. They can be hazardous but the degree of hazard is not yet well understood. Generally, it is believed that low intensity radiation of short duration is not harmful but that exposure to high levels can induce deep internal burns, affecting the circulatory and nervous systems, and particularly the eyes. The Department of Labor's Occupational Safety and Health Administration (OSHA) has established an allowable safe threshold of exposure. However, people working near high intensity sources of microwave energy-for example, radar antennas and television transmitters-may be unknowingly exposed to radiation levels beyond the safe limit. This poses not only a personal safety problem but also a problem for employers in terms of productivity loss, workman's compensation claims and possible liability litigation. Earlier-developed monitoring devices which warn personnel of dangerous radiation levels have their shortcomings. They can be cumbersome and awkward to use while working. They also require continual visual monitoring to determine if a person is in a dangerous area of radiation, and they are relatively expensive, another deterrent to their widespread adoption. In response to the need for a cheaper and more effective warning system, Jet Propulsion Laboratory developed, under NASA auspices, a new, battery-powered Microwave Radiation Hazard Detector. To bring the product to the commercial market, California Institute Research Foundation, the patent holder, granted an exclusive license to Cicoil Corporation, Chatsworth, California, an electronic components manufacturer.

  8. Effects of radiation on scintillating fiber performance

    SciTech Connect

    Bauer, M.L.; Cohn, H.; Efremenko, Yu.; Gordeev, A.; Kamyshkov, Yu.; Onopienko, D.; Savin, S.; Shmakov, K.; Tarkovsky, E.; Young, K.G.; Carey, R.; Rothman, M.; Sulak, L.; Worstell, W.; Parr, H.

    1992-12-31

    Continued rapid improvements in formulations for scintillating fibers require the ability to parameterize and predict effects of radiation on detector performance. Experimental techniques necessary to obtain needed information and calculational procedures used in performing predications for hadron scintillating fiber calorimetry in the Superconducting Supercollider environment are described. The experimental techniques involve control of the testing environment, consideration of dose rate effects, and other factors. These calculations involve the behavior of particle showers in the detector, expected levels of radiation, and parameterization of the radiation effects. A summary of significant work is also presented.

  9. Effects of radiation on scintillating fiber performance

    SciTech Connect

    Young, K.G.; Bauer, M.L.; Cohn, H.; Efremenko, Yu.; Gordeev, A.; Kamyshkov, Yu.; Onopienko, D.; Savin, S.; Shmakov, K.; Tarkovsky, E. ); Carey, R.; Rothman, M.; Sulak, L.; Worstell, W. ); Paar, H. )

    1993-08-01

    Continued rapid improvements in formulations for scintillating fibers require the ability to parameterize and predict effects of radiation on detector performance. Experimental techniques necessary to obtain desired information and calculational procedures used in performing predictions for hadron scintillating fiber calorimetry in the Superconducting Supercollider environment are described. The experimental techniques involve control of the testing environment, consideration of dose rate effects, and other factors. The calculations involve the behavior of particle showers in the detector, expected levels of radiation, and parameterization of the radiation effects. A summary of significant work is also presented.

  10. PAMELA Space Mission: The Transition Radiation Detector

    NASA Astrophysics Data System (ADS)

    Ambriola, M.; Bellotti, R.; Cafagna, F.; Circella, M.; De Marzo, C.; Giglietto, N.; Marangelli, B.; Mirizzi, N.; Romita, M.; Spinelli, P.

    2003-07-01

    PAMELA telescope is a satellite-b orne magnetic spectrometer built to fulfill the primary scientific objectives of detecting antiparticles (antiprotons and positrons) in the cosmic rays, and to measure spectra of particles in cosmic rays. The PAMELA telescope is currently under integration and is composed of: a silicon tracker housed in a permanent magnet, a time of flight and an anticoincidence system both made of plastic scintillators, a silicon imaging calorimeter, a neutron detector and a Transition Radiation Detector (TRD). The TRD detector is composed of 9 sensitive layers of straw tubes working in proportional mode for a total of 1024 channels. Each layer is interleaved with a radiator plane made of carbon fibers. The TRD detector characteristics will be described along with its performance studied exposing the detector to particle beams of electrons, pions, muons and protons of different momenta at both CERN-PS and CERN-SPS facilities.

  11. Foam radiators for transition radiation detectors

    NASA Astrophysics Data System (ADS)

    Chernyatin, V.; Dolgoshein, B.; Gavrilenko, I.; Potekhin, M.; Romaniouk, A.; Sosnovtsev, V.

    1993-02-01

    A wide variety of foam radiators, potentially useful in the design of a transition radiation detector, the possible particle identification tool in collider experiments, have been tested in the beam. Various characteristics of these radiators are compared, and the conclusion is reached that certain brands of polyethylene foam are best suited for use in the detector. Comparison is made with a "traditional" radiator, which is a periodic structure of plastic foils.

  12. Enhanced radiation resistant fiber optics

    DOEpatents

    Lyons, Peter B.; Looney, Larry D.

    1993-01-01

    A process for producing an optical fiber having enhanced radiation resitance is provided, the process including maintaining an optical fiber within a hydrogen-containing atmosphere for sufficient time to yield a hydrogen-permeated optical fiber having an elevated internal hydrogen concentration, and irradiating the hydrogen-permeated optical fiber at a time while the optical fiber has an elevated internal hydrogen concentration with a source of ionizing radiation. The radiation source is typically a cobalt-60 source and the fiber is pre-irradiated with a dose level up to about 1000 kilorads of radiation.

  13. Enhanced radiation resistant fiber optics

    DOEpatents

    Lyons, P.B.; Looney, L.D.

    1993-11-30

    A process for producing an optical fiber having enhanced radiation resistance is provided, the process including maintaining an optical fiber within a hydrogen-containing atmosphere for sufficient time to yield a hydrogen-permeated optical fiber having an elevated internal hydrogen concentration, and irradiating the hydrogen-permeated optical fiber at a time while the optical fiber has an elevated internal hydrogen concentration with a source of ionizing radiation. The radiation source is typically a cobalt-60 source and the fiber is pre-irradiated with a dose level up to about 1000 kilorads of radiation. 4 figures.

  14. Simple dynamic electromagnetic radiation detector

    NASA Technical Reports Server (NTRS)

    Been, J. F.

    1972-01-01

    Detector monitors gamma dose rate at particular position in a radiation facility where a mixed neutron-gamma environment exists, thus determining reactor power level changes. Device also maps gamma intensity profile across a neutron-gamma beam.

  15. Ship Effect Measurements With Fiber Optic Neutron Detector

    SciTech Connect

    King, Kenneth L.; Dean, Rashe A.; Akbar, Shahzad; Kouzes, Richard T.; Woodring, Mitchell L.

    2010-08-10

    The main objectives of this research project was to assemble, operate, test and characterize an innovatively designed scintillating fiber optic neutron radiation detector manufactured by Innovative American Technology with possible application to the Department of Homeland Security screening for potential radiological and nuclear threats at US borders (Kouzes 2004). One goal of this project was to make measurements of the neutron ship effect for several materials. The Virginia State University DOE FaST/NSF summer student-faculty team made measurements with the fiber optic radiation detector at PNNL above ground to characterize the ship effect from cosmic neutrons, and underground to characterize the muon contribution.

  16. Lithium Loaded Glass Fiber Neutron Detector Tests

    SciTech Connect

    Ely, James H.; Erikson, Luke E.; Kouzes, Richard T.; Lintereur, Azaree T.; Stromswold, David C.

    2009-11-12

    Radiation portal monitors used for interdiction of illicit materials at borders include highly sensitive neutron detection systems. The main reason for having neutron detection capability is to detect fission neutrons from plutonium. The currently deployed radiation portal monitors (RPMs) from Ludlum and Science Applications International Corporation (SAIC) use neutron detectors based upon 3He-filled gas proportional counters, which are the most common large neutron detector. There is a declining supply of 3He in the world and, thus, methods to reduce the use of this gas in RPMs with minimal changes to the current system designs and sensitivity to cargo-borne neutrons are being investigated. Four technologies have been identified as being currently commercially available, potential alternative neutron detectors to replace the use of 3He in RPMs. Reported here are the results of tests of the lithium-loaded glass fibers option. This testing measured the neutron detection efficiency and gamma ray rejection capabilities of a small system manufactured by Nucsafe (Oak Ridge, TN).

  17. Cadmium telluride photovoltaic radiation detector

    DOEpatents

    Agouridis, Dimitrios C.; Fox, Richard J.

    1981-01-01

    A dosimetry-type radiation detector is provided which employs a polycrystalline, chlorine-compensated cadmium telluride wafer fabricated to operate as a photovoltaic current generator used as the basic detecting element. A photovoltaic junction is formed in the wafer by painting one face of the cadmium telluride wafer with an n-type semiconductive material. The opposite face of the wafer is painted with an electrically conductive material to serve as a current collector. The detector is mounted in a hermetically sealed vacuum containment. The detector is operated in a photovoltaic mode (zero bias) while DC coupled to a symmetrical differential current amplifier having a very low input impedance. The amplifier converts the current signal generated by radiation impinging upon the barrier surface face of the wafer to a voltage which is supplied to a voltmeter calibrated to read quantitatively the level of radiation incident upon the detecting wafer.

  18. Cadmium telluride photovoltaic radiation detector

    DOEpatents

    Agouridis, D.C.; Fox, R.J.

    A dosimetry-type radiation detector is provided which employs a polycrystalline, chlorine-compensated cadmium telluride wafer fabricated to operate as a photovoltaic current generator used as the basic detecting element. A photovoltaic junction is formed in the wafer by painting one face of the cadmium telluride wafer with an n-type semi-conductive material. The opposite face of the wafer is painted with an electrically conductive material to serve as a current collector. The detector is mounted in a hermetically sealed vacuum containment. The detector is operated in a photovoltaic mode (zero bias) while DC coupled to a symmetrical differential current amplifier having a very low input impedance. The amplifier converts the current signal generated by radiation impinging upon the barrier surface face of the wafer to a voltage which is supplied to a voltmeter calibrated to read quantitatively the level of radiation incident upon the detecting wafer.

  19. Portable Radiation Detectors

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Through a Small Business Innovation Research (SBIR) contract from Kennedy Space Center, General Pneumatics Corporation's Western Research Center satisfied a NASA need for a non-clogging Joule-Thomson cryostat to provide very low temperature cooling for various sensors. This NASA-supported cryostat development played a key part in the development of more portable high-purity geranium gamma-ray detectors. Such are necessary to discern between the radionuclides in medical, fuel, weapon, and waste materials. The outcome of the SBIR project is a cryostat that can cool gamma-ray detectors, without vibration, using compressed gas that can be stored compactly and indefinitely in a standby mode. General Pneumatics also produces custom J-T cryostats for other government, commercial and medical applications.

  20. Fiber optic thermal/fast neutron and gamma ray scintillation detector

    DOEpatents

    Neal, John S.; Mihalczo, John T.

    2006-11-28

    A detector system that combines a .sup.6Li loaded glass fiber scintillation thermal neutron detector with a fast scintillation detector in a single layered structure. Detection of thermal and fast neutrons and ionizing electromagnetic radiation is achieved in the unified detector structure. The fast scintillator replaces the polyethelene moderator layer adjacent the .sup.6Li loaded glass fiber panel of the neutron detector and acts as the moderator for the glass fibers. Fast neutrons, x-rays and gamma rays are detected in the fast scintillator. Thermal neutrons, x-rays and gamma rays are detected in the glass fiber scintillator.

  1. Advanced Space Radiation Detector Technology Development

    NASA Technical Reports Server (NTRS)

    Wrbanek, John D.; Wrbanek, Susan Y.; Fralick, Gustave C.

    2013-01-01

    The advanced space radiation detector development team at NASA Glenn Research Center (GRC) has the goal of developing unique, more compact radiation detectors that provide improved real-time data on space radiation. The team has performed studies of different detector designs using a variety of combinations of solid-state detectors, which allow higher sensitivity to radiation in a smaller package and operate at lower voltage than traditional detectors. Integration of multiple solid-state detectors will result in an improved detector system in comparison to existing state-of-the-art (SOA) instruments for the detection and monitoring of the space radiation field for deep space and aerospace applications.

  2. Advanced Space Radiation Detector Technology Development

    NASA Technical Reports Server (NTRS)

    Wrbanek, John D.; Wrbanek, Susan Y.; Fralick, Gustave C.

    2013-01-01

    The advanced space radiation detector development team at NASA Glenn Research Center (GRC) has the goal of developing unique, more compact radiation detectors that provide improved real-time data on space radiation. The team has performed studies of different detector designs using a variety of combinations of solid-state detectors, which allow higher sensitivity to radiation in a smaller package and operate at lower voltage than traditional detectors. Integration of multiple solid-state detectors will result in an improved detector system in comparison to existing state-of-the-art instruments for the detection and monitoring of the space radiation field for deep space and aerospace applications.

  3. Advanced Space Radiation Detector Technology Development

    NASA Technical Reports Server (NTRS)

    Wrbanek, John D.; Wrbanek, Susan Y.; Fralick, Gustave C.

    2013-01-01

    The advanced space radiation detector development team at the NASA Glenn Research Center (GRC) has the goal of developing unique, more compact radiation detectors that provide improved real-time data on space radiation. The team has performed studies of different detector designs using a variety of combinations of solid-state detectors, which allow higher sensitivity to radiation in a smaller package and operate at lower voltage than traditional detectors. Integration of multiple solid-state detectors will result in an improved detector system in comparison to existing state-of-the-art instruments for the detection and monitoring of the space radiation field for deep space and aerospace applications.

  4. Flexible composite radiation detector

    DOEpatents

    Cooke, D. Wayne; Bennett, Bryan L.; Muenchausen, Ross E.; Wrobleski, Debra A.; Orler, Edward B.

    2006-12-05

    A flexible composite scintillator was prepared by mixing fast, bright, dense rare-earth doped powdered oxyorthosilicate (such as LSO:Ce, LSO:Sm, and GSO:Ce) scintillator with a polymer binder. The binder is transparent to the scintillator emission. The composite is seamless and can be made large and in a wide variety of shapes. Importantly, the composite can be tailored to emit light in a spectral region that matches the optimum response of photomultipliers (about 400 nanometers) or photodiodes (about 600 nanometers), which maximizes the overall detector efficiency.

  5. Ionizing Radiation Detector

    DOEpatents

    Wright, Gomez W.; James, Ralph B.; Burger, Arnold; Chinn, Douglas A.

    2003-11-18

    A CdZnTe (CZT) crystal provided with a native CdO dielectric coating to reduce surface leakage currents and thereby, improve the resolution of instruments incorporating detectors using CZT crystals is disclosed. A two step process is provided for forming the dielectric coating which includes etching the surface of a CZT crystal with a solution of the conventional bromine/methanol etch treatment, and passivating the CZT crystal surface with a solution of 10 w/o NH.sub.4 F and 10 w/o H.sub.2 O.sub.2 in water after attaching electrical contacts to the crystal surface.

  6. Radiation detector spectrum simulator

    DOEpatents

    Wolf, M.A.; Crowell, J.M.

    1985-04-09

    A small battery operated nuclear spectrum simulator having a noise source generates pulses with a Gaussian distribution of amplitudes. A switched dc bias circuit cooperating therewith to generate several nominal amplitudes of such pulses and a spectral distribution of pulses that closely simulates the spectrum produced by a radiation source such as Americium 241.

  7. Radiation detector spectrum simulator

    DOEpatents

    Wolf, Michael A.; Crowell, John M.

    1987-01-01

    A small battery operated nuclear spectrum simulator having a noise source nerates pulses with a Gaussian distribution of amplitudes. A switched dc bias circuit cooperating therewith generates several nominal amplitudes of such pulses and a spectral distribution of pulses that closely simulates the spectrum produced by a radiation source such as Americium 241.

  8. Advanced Radiation Detector Development

    SciTech Connect

    The University of Michigan

    1998-07-01

    Since our last progress report, the project at The University of Michigan has continued to concentrate on the development of gamma ray spectrometers fabricated from cadmium zinc telluride (CZT). This material is capable of providing energy resolution that is superior to that of scintillation detectors, while avoiding the necessity for cooling associated with germanium systems. In our past reports, we have described one approach (the coplanar grid electrode) that we have used to partially overcome some of the major limitations on charge collection that is found in samples of CZT. This approach largely eliminates the effect of hole motion in the formation of the output signal, and therefore leads to pulses that depend only on the motion of a single carrier (electrons). Since electrons move much more readily through CZT than do holes, much better energy resolution can be achieved under these conditions. In our past reports, we have described a 1 cm cube CZT spectrometer fitted with coplanar grids that achieved an energy resolution of 1.8% from the entire volume of the crystal. This still represents, to our knowledge, the best energy resolution ever demonstrated in a CZT detector of this size.

  9. Fiber optic detector for immuno-testing

    DOEpatents

    Partin, Judy K.; Ward, Thomas E.; Grey, Alan E.

    1992-01-01

    A portable fiber optic detector that senses the presence of specific target chemicals in air or a gas by exchanging the target chemical for a fluoroescently-tagged antigen that is bound to an antibody which is in turn attached to an optical fiber. Replacing the fluorescently-tagged antigen reduces the fluorescence so that a photon sensing detector records the reduced light level and activates an appropriate alarm or indicator.

  10. Thermopile detector radiation hard readout

    NASA Astrophysics Data System (ADS)

    Gaalema, Stephen; Van Duyne, Stephen; Gates, James L.; Foote, Marc C.

    2010-08-01

    The NASA Jupiter Europa Orbiter (JEO) conceptual payload contains a thermal instrument with six different spectral bands ranging from 8μm to 100μm. The thermal instrument is based on multiple linear arrays of thermopile detectors that are intrinsically radiation hard; however, the thermopile CMOS readout needs to be hardened to tolerate the radiation sources of the JEO mission. Black Forest Engineering is developing a thermopile readout to tolerate the JEO mission radiation sources. The thermal instrument and ROIC process/design techniques are described to meet the JEO mission requirements.

  11. Optical-Fiber Leak Detector

    NASA Technical Reports Server (NTRS)

    Workman, Gary L.; Kosten, Susan E.

    1994-01-01

    Proposed optical-fiber sensor detects small changes in pressure in elastomeric O-ring or similar pressure seal, which may indicate deterioration of seal and interpreted as indications of incipient failure. According to concept, length of optical fiber embedded in seal. Light-emitting diode illuminates one end of fiber; photodetector measures intensity of light emerging from other end. Pressure-induced changes in seal bend fiber slightly, altering microbending-induced loss of light from fiber and alter intensity of light at photodetector. Change in intensity approximately proportional to change in pressure.

  12. Direct detector for terahertz radiation

    DOEpatents

    Wanke, Michael C.; Lee, Mark; Shaner, Eric A.; Allen, S. James

    2008-09-02

    A direct detector for terahertz radiation comprises a grating-gated field-effect transistor with one or more quantum wells that provide a two-dimensional electron gas in the channel region. The grating gate can be a split-grating gate having at least one finger that can be individually biased. Biasing an individual finger of the split-grating gate to near pinch-off greatly increases the detector's resonant response magnitude over prior QW FET detectors while maintaining frequency selectivity. The split-grating-gated QW FET shows a tunable resonant plasmon response to FIR radiation that makes possible an electrically sweepable spectrometer-on-a-chip with no moving mechanical optical parts. Further, the narrow spectral response and signal-to-noise are adequate for use of the split-grating-gated QW FET in a passive, multispectral terahertz imaging system. The detector can be operated in a photoconductive or a photovoltaic mode. Other embodiments include uniform front and back gates to independently vary the carrier densities in the channel region, a thinned substrate to increase bolometric responsivity, and a resistive shunt to connect the fingers of the grating gate in parallel and provide a uniform gate-channel voltage along the length of the channel to increase the responsivity and improve the spectral resolution.

  13. Micrometric Position Monitoring Using Fiber Bragg Grating Sensors in Silicon Detectors

    NASA Astrophysics Data System (ADS)

    Basile, E.; Bellucci, F.; Benussi, L.; Bertani, M.; Bianco, S.; Caponero, M. A.; Colonna, D.; di Falco, F.; Fabbri, F. L.; Felli, F.; Giardoni, M.; La Monaca, A.; Massa, F.; Mensitieri, G.; Ortenzi, B.; Pallotta, M.; Paolozzi, A.; Passamonti, L.; Pierluigi, D.; Pucci, C.; Russo, A.; Saviano, G.

    2006-04-01

    We show R&D results including long term stability, resolution, radiation hardness and characterization of Fiber Bragg Grating sensors used to monitor structure deformation, repositioning, and surveying of silicon detectors in High Energy Physics.

  14. A space fiber-optic x-ray burst detector

    SciTech Connect

    Moss, C.E.; Casperson, D.E.; Echave, M.A.; Edwards, B.C.; Miller, J.R.; Saylor, W.W.; Sweet, M.R.; Valencia, J.E.

    1993-10-01

    We describe a novel, lightweight x-ray burst detector that can be embedded in a satellite structure, thus forming a ``smart skin,`` which has minimal impact on the host satellite. The design is based on two types of optical fibers coupled to photodiodes. The first is a scintillating fiber, which gives a fast signal for timing. The second is a germanium-doped silica fiber, which darkens for a few milliseconds when irradiated with a burst of x rays. The resulting slow signal is used to discriminate against electrostatic discharges. The coincidence of a fast signal from the scintillating fiber with a slow signal from the darkening fiber is the signature of an x-ray burst. The response is linear at low doses and becomes nonlinear at high doses. We have two techniques to test the instrument in a space experiment scheduled for 1994. First, a small, space-qualified flash x-ray unit can illuminate the fibers. Second, we can detect space background radiation. The cumulative dose will be monitored by RADFET dosimeters. Future work on embedding the fibers and the electronics as Application Specific Integrated Circuits (ASICs) in the spacecraft skin could lead to use of these detectors on many satellites.

  15. Effects of radiation on scintillating fiber performance. [SSC hadron calorimeter

    SciTech Connect

    Bauer, M.L.; Cohn, H.; Efremenko, Yu.; Gordeev, A.; Kamyshkov, Yu.; Onopienko, D.; Savin, S.; Shmakov, K.; Tarkovsky, E.; Young, K.G. ); Carey, R.; Rothman, M.; Sulak, L.; Worstell, W. ); Parr, H. )

    1992-01-01

    Continued rapid improvements in formulations for scintillating fibers require the ability to parameterize and predict effects of radiation on detector performance. Experimental techniques necessary to obtain needed information and calculational procedures used in performing predications for hadron scintillating fiber calorimetry in the Superconducting Supercollider environment are described. The experimental techniques involve control of the testing environment, consideration of dose rate effects, and other factors. These calculations involve the behavior of particle showers in the detector, expected levels of radiation, and parameterization of the radiation effects. A summary of significant work is also presented.

  16. Hybrid anode for semiconductor radiation detectors

    DOEpatents

    Yang, Ge; Bolotnikov, Aleksey E; Camarda, Guiseppe; Cui, Yonggang; Hossain, Anwar; Kim, Ki Hyun; James, Ralph B

    2013-11-19

    The present invention relates to a novel hybrid anode configuration for a radiation detector that effectively reduces the edge effect of surface defects on the internal electric field in compound semiconductor detectors by focusing the internal electric field of the detector and redirecting drifting carriers away from the side surfaces of the semiconductor toward the collection electrode(s).

  17. Radiation experience with the CDF silicon detectors

    SciTech Connect

    Husemann, Ulrich; /Rochester U.

    2005-11-01

    The silicon detectors of the CDF experiment at the Tevatron collider are operated in a harsh radiation environment. The lifetime of the silicon detectors is limited by radiation damage, and beam-related incidents are an additional risk. This article describes the impact of beam-related incidents on detector operation and the effects of radiation damage on electronics noise and the silicon sensors. From measurements of the depletion voltage as a function of the integrated luminosity, estimates of the silicon detector lifetime are derived.

  18. The HERMES dual-radiator ring imaging Cherenkov detector

    NASA Astrophysics Data System (ADS)

    Akopov, N.; Aschenauer, E. C.; Bailey, K.; Bernreuther, S.; Bianchi, N.; Capitani, G. P.; Carter, P.; Cisbani, E.; De Leo, R.; De Sanctis, E.; De Schepper, D.; Djordjadze, V.; Filippone, B. W.; Frullani, S.; Garibaldi, F.; Hansen, J.-O.; Hommez, B.; Iodice, M.; Jackson, H. E.; Jung, P.; Kaiser, R.; Kanesaka, J.; Kowalczyk, R.; Lagamba, L.; Maas, A.; Muccifora, V.; Nappi, E.; Negodaeva, K.; Nowak, W.-D.; O'Connor, T.; O'Neill, T. G.; Potterveld, D. H.; Ryckbosch, D.; Sakemi, Y.; Sato, F.; Schwind, A.; Shibata, T.-A.; Suetsugu, K.; Thomas, E.; Tytgat, M.; Urciuoli, G. M.; Van de Kerckhove, K.; Van de Vyver, R.; Yoneyama, S.; Zohrabian, H.; Zhang, L. F.

    2002-03-01

    The construction and use of a dual radiator Ring Imaging Cherenkov (RICH) detector is described. This instrument was developed for the HERMES experiment at DESY which emphasises measurements of semi-inclusive deep-inelastic scattering. It provides particle identification for pions, kaons, and protons in the momentum range from 2 to 15 GeV, which is essential to these studies. The instrument uses two radiators, C 4F 10, a heavy fluorocarbon gas, and a wall of silica aerogel tiles. The use of aerogel in a RICH detector has only recently become possible with the development of clear, large, homogeneous and hydrophobic aerogel. A lightweight mirror was constructed using a newly perfected technique to make resin-coated carbon-fiber surfaces of optical quality. The photon detector consists of 1934 photomultiplier tubes (PMT) for each detector half, held in a soft steel matrix to provide shielding against the residual field of the main spectrometer magnet.

  19. Wavelength-codified fiber laser hydrogen detector

    NASA Astrophysics Data System (ADS)

    Ortigosa-Blanch, A.; Díez, A.; González-Segura, A.; Cruz, J. L.; Andrés, M. V.

    2005-11-01

    We report a scheme for an optical hydrogen detector that codifies the information in wavelength. The system is based on an erbium-doped fiber laser with two coupled cavities and a Palladium-coated tapered fiber within one of the laser cavities. The tapered fiber acts as the hydrogen-sensing element. When the sensing element is exposed to a hydrogen atmosphere, its attenuation decreases changing the cavity losses. This change leads the system to switch lasing from the wavelength of the auxiliary cavity to the characteristic wavelength of the cavity which contains the sensing element. The detection level can be shifted by adjusting the reflective elements of the cavity containing the sensing element.

  20. The HERMES dual-radiator RICH detector

    NASA Astrophysics Data System (ADS)

    Jackson, H. E.

    2003-04-01

    The HERMES experiment emphasizes measurements of semi-inclusive deep-inelastic scattering. Most of the hadrons produced lie between 2 and 10 GeV, a region in which it had not previously been feasible to separate pions, kaons, and protons with standard particle identification (PID) techniques. The recent development of new clear, large, homogeneous and hydrophobic silica aerogel material with a low index of refraction offered the means to apply RICH PID techniques to this difficult momentum region. The HERMES instrument uses two radiators, C 4F 10, a heavy fluorocarbon gas, and a wall of silica aerogel tiles. A lightweight spherical mirror constructed using a newly perfected technique to make resin-coated carbon-fiber surfaces of optical quality provides optical focusing on a photon detector consisting of 1934 photomultiplier tubes (PMT) for each detector half. The PMT array is held in a soft steel matrix to provide shielding against the residual field of the main spectrometer magnet. Ring reconstruction is accomplished with pattern recognition techniques based on a combination of inverse and direct ray tracing.

  1. Radiation damage effects on solid state detectors

    NASA Technical Reports Server (NTRS)

    Trainor, J. H.

    1972-01-01

    Totally depleted silicon diodes are discussed which are used as nuclear particle detectors in investigations of galactic and solar cosmic radiation and trapped radiation. A study of radiation and chemical effects on the diodes was conducted. Work on electron and proton irradiation of surface barrier detectors with thicknesses up to 1 mm was completed, and work on lithium-drifted silicon devices with thicknesses of several millimeters was begun.

  2. Ultra-thin plasma radiation detector

    DOEpatents

    Friedman, Peter S.

    2017-01-24

    A position-sensitive ionizing-radiation counting detector includes a radiation detector gas chamber having at least one ultra-thin chamber window and an ultra-thin first substrate contained within the gas chamber. The detector further includes a second substrate generally parallel to and coupled to the first substrate and defining a gas gap between the first substrate and the second substrate. The detector further includes a discharge gas between the substrates and contained within the gas chamber, where the discharge gas is free to circulate within the gas chamber and between the first and second substrates at a given gas pressure. The detector further includes a first electrode coupled to one of the substrates and a second electrode electrically coupled to the first electrode. The detector further includes a first discharge event detector coupled to at least one of the electrodes for detecting a gas discharge counting event in the electrode.

  3. Electron gas grid semiconductor radiation detectors

    DOEpatents

    Lee, Edwin Y.; James, Ralph B.

    2002-01-01

    An electron gas grid semiconductor radiation detector (EGGSRAD) useful for gamma-ray and x-ray spectrometers and imaging systems is described. The radiation detector employs doping of the semiconductor and variation of the semiconductor detector material to form a two-dimensional electron gas, and to allow transistor action within the detector. This radiation detector provides superior energy resolution and radiation detection sensitivity over the conventional semiconductor radiation detector and the "electron-only" semiconductor radiation detectors which utilize a grid electrode near the anode. In a first embodiment, the EGGSRAD incorporates delta-doped layers adjacent the anode which produce an internal free electron grid well to which an external grid electrode can be attached. In a second embodiment, a quantum well is formed between two of the delta-doped layers, and the quantum well forms the internal free electron gas grid to which an external grid electrode can be attached. Two other embodiments which are similar to the first and second embodiment involve a graded bandgap formed by changing the composition of the semiconductor material near the first and last of the delta-doped layers to increase or decrease the conduction band energy adjacent to the delta-doped layers.

  4. Resonant-mass detectors of gravitational radiation

    NASA Astrophysics Data System (ADS)

    Michelson, Peter F.; Price, John C.; Taber, Robert C.

    1987-07-01

    A network of second-generation low-temperature gravitational radiation detectors is nearing completion. These detectors, sensitive to mechanical strains of order 10 to the -18th, are possible because of a variety of technical innovations that have been made in cryogenics, low-noise superconducting instrumentation, and vibration isolation techniques. Another five orders of magnitude improvement in energy sensitivity of resonant-mass detectors is possible before the linear amplifier quantum limit is encountered.

  5. Metamaterials for Cherenkov Radiation Based Particle Detectors

    SciTech Connect

    Tyukhtin, A. V.; Schoessow, P.; Kanareykin, A.; Antipov, S.

    2009-01-22

    Measurement of Cherenkov radiation (CR) has long been a useful technique for charged particle detection and beam diagnostics. We are investigating metamaterials engineered to have refractive indices tailored to enhance properties of CR that are useful for particle detectors and that cannot be obtained using conventional media. Cherenkov radiation in dispersive media with a large refractive index differs significantly from the same effect in conventional detector media, like gases or aerogel. The radiation pattern of CR in dispersive metamaterials presents lobes at very large angles with respect to particle motion. Moreover, the frequency and particle velocity dependence of the radiated energy can differ significantly from CR in a conventional dielectric medium.

  6. Solar irradiance measurements by means of optical fibers and silicon detectors.

    PubMed

    Corrons, A; Pons, A

    1979-08-15

    An experimental system has been constructed for the continuous measurement of solar irradiance using silicon diode detectors not directly exposed to solar radiation. The received incident solar radiation is conducted from the roof of the building to the detectors by an optical fiber. An electronic computer receives the signal and processes it, introducing the necessary corrections to calculate the total solar irradiance in W m(-2). The system measures with a proved accuracy to better than 3%.

  7. Scintillating fiber detector performance, detector geometries, trigger, and electronics issues for scintillating fiber tracking

    SciTech Connect

    Baumbaugh, A.E.

    1994-06-01

    Scintillating Fiber tracking technology has made great advances and has demonstrated great potential for high speed charged particle tracking and triggering. The small detector sizes and fast scintillation fluors available make them very promising for use at high luminosity experiments at today`s and tomorrow`s colliding and fixed target experiments where high rate capability is essential. This talk will discuss the current state of Scintillating fiber performance and current Visual Light Photon Counter (VLPC) characteristics. The primary topic will be some of the system design and integration issues which should be considered by anyone attempting to design a scintillating fiber tracking system which includes a high speed tracking trigger. Design. constraints placed upon the detector system by the electronics and mechanical sub-systems will be discussed. Seemingly simple and unrelated decisions can have far reaching effects on overall system performance. SDC and DO example system designs will be discussed.

  8. Enhanced radiation detectors using luminescent materials

    DOEpatents

    Vardeny, Zeev V.; Jeglinski, Stefan A.; Lane, Paul A.

    2001-01-01

    A radiation detecting device comprising a radiation sensing element, and a layer of luminescent material to expand the range of wavelengths over which the sensing element can efficiently detect radiation. The luminescent material being selected to absorb radiation at selected wavelengths, causing the luminescent material to luminesce, and the luminescent radiation being detected by the sensing element. Radiation sensing elements include photodiodes (singly and in arrays), CCD arrays, IR detectors and photomultiplier tubes. Luminescent materials include polymers, oligomers, copolymers and porphyrines, Luminescent layers include thin films, thicker layers, and liquid polymers.

  9. Wafer-fused semiconductor radiation detector

    DOEpatents

    Lee, Edwin Y.; James, Ralph B.

    2002-01-01

    Wafer-fused semiconductor radiation detector useful for gamma-ray and x-ray spectrometers and imaging systems. The detector is fabricated using wafer fusion to insert an electrically conductive grid, typically comprising a metal, between two solid semiconductor pieces, one having a cathode (negative electrode) and the other having an anode (positive electrode). The wafer fused semiconductor radiation detector functions like the commonly used Frisch grid radiation detector, in which an electrically conductive grid is inserted in high vacuum between the cathode and the anode. The wafer-fused semiconductor radiation detector can be fabricated using the same or two different semiconductor materials of different sizes and of the same or different thicknesses; and it may utilize a wide range of metals, or other electrically conducting materials, to form the grid, to optimize the detector performance, without being constrained by structural dissimilarity of the individual parts. The wafer-fused detector is basically formed, for example, by etching spaced grooves across one end of one of two pieces of semiconductor materials, partially filling the grooves with a selected electrical conductor which forms a grid electrode, and then fusing the grooved end of the one semiconductor piece to an end of the other semiconductor piece with a cathode and an anode being formed on opposite ends of the semiconductor pieces.

  10. Processing circuitry for single channel radiation detector

    NASA Technical Reports Server (NTRS)

    Holland, Samuel D. (Inventor); Delaune, Paul B. (Inventor); Turner, Kathryn M. (Inventor)

    2009-01-01

    Processing circuitry is provided for a high voltage operated radiation detector. An event detector utilizes a comparator configured to produce an event signal based on a leading edge threshold value. A preferred event detector does not produce another event signal until a trailing edge threshold value is satisfied. The event signal can be utilized for counting the number of particle hits and also for controlling data collection operation for a peak detect circuit and timer. The leading edge threshold value is programmable such that it can be reprogrammed by a remote computer. A digital high voltage control is preferably operable to monitor and adjust high voltage for the detector.

  11. Imaging Using Energy Discriminating Radiation Detector Array

    SciTech Connect

    Willson, Paul D.; Clajus, Martin; Tuemer, Tuemay O.; Visser, Gerard; Cajipe, Victoria

    2003-08-26

    Industrial X-ray radiography is often done using a broad band energy source and always a broad band energy detector. There exist several major advantages in the use of narrow band sources and or detectors, one of which is the separation of scattered radiation from primary radiation. ARDEC has developed a large detector array system in which every detector element acts like a multi-channel analyzer. A radiographic image is created from the number of photons detected in each detector element, rather than from the total energy absorbed in the elements. For high energies, 25 KeV to 4 MeV, used in radiography, energy discriminating detectors have been limited to less than 20,000 photons per second per detector element. This rate is much too slow for practical radiography. Our detector system processes over two million events per second per detector pixel, making radiographic imaging practical. This paper expounds on the advantages of the ARDEC radiographic imaging process.

  12. Two-dimensional position sensitive radiation detectors

    DOEpatents

    Mihalczo, J.T.

    1994-02-22

    Nuclear reaction detectors capable of position sensitivity with submillimeter resolution in two dimensions are each provided by placing arrays of scintillation or wavelength shifting optical fibers formed of a plurality of such optical fibers in a side-by-side relationship in X and Y directions with a layer of nuclear reactive material operatively associated with surface regions of the optical fiber arrays. Each nuclear reaction occurring in the layer of nuclear reactive material produces energetic particles for simultaneously providing a light pulse in a single optical fiber in the X oriented array and in a single optical fiber in the Y oriented array. These pulses of light are transmitted to a signal producing circuit for providing signals indicative of the X-Y coordinates of each nuclear event. 6 figures.

  13. Two-dimensional position sensitive radiation detectors

    DOEpatents

    Mihalczo, John T.

    1994-01-01

    Nuclear reaction detectors capable of position sensitivity with submillimeter resolution in two dimensions are each provided by placing arrays of scintillation or wave length shifting optical fibers formed of a plurality of such optical fibers in a side-by-side relationship in X and Y directions with a layer of nuclear reactive material operatively associated with surface regions of the optical fiber arrays. Each nuclear reaction occurring in the layer of nuclear reactive material produces energetic particles for simultaneously providing a light pulse in a single optical fiber in the X oriented array and in a single optical fiber in the Y oriented array. These pulses of light are transmitted to a signal producing circuit for providing signals indicative of the X-Y coordinates of each nuclear event.

  14. Space radiation dosimetry using bubble detectors.

    PubMed

    Ing, H; Mortimer, A

    1994-10-01

    Bubble detectors--a new development in radiation detection--has only recently been used for radiation measurements in space. One important characteristic of the bubble detector is that it operates on a phenomenon which bears considerable resemblance to biological response. Recent experimental results from irradiating bubble detectors with high-energy heavy ions point to the need to re-examine the methodology used for assessing space radiation and the relevance of conventional quantities such as dose equivalent for space dosimetry. It may be that biological hazard associated with the intensely ionizing events--associated with nuclear fragmentation but delivering relatively small dose equivalent--may be much more important than that associated with lightly ionizing events which comprise the bulk of the conventional radiation dose equivalent.

  15. Device for calibrating a radiation detector system

    DOEpatents

    McFee, M.C.; Kirkham, T.J.; Johnson, T.H.

    1994-12-27

    A device is disclosed for testing a radiation detector system that includes at least two arrays of radiation detectors that are movable with respect to each other. The device includes a ''shield plate'' or shell, and an opposing ''source plate'' containing a source of ionizing radiation. Guides are attached to the outer surface of the shell for engaging the forward ends of the detectors, thereby reproducibly positioning the detectors with respect to the source and with respect to each other, thereby ensuring that a predetermined portion of the radiation emitted by the source passes through the shell and reaches the detectors. The shell is made of an hydrogenous material having approximately the same radiological attenuation characteristics as composite human tissue. The source represents a human organ such as the lungs, heart, kidneys, liver, spleen, pancreas, thyroid, testes, prostate, or ovaries. The source includes a source of ionizing radiation having a long half-life and an activity that is within the range typically searched for in human subjects. 3 figures.

  16. Device for calibrating a radiation detector system

    DOEpatents

    Mc Fee, Matthew C.; Kirkham, Tim J.; Johnson, Tippi H.

    1994-01-01

    A device for testing a radiation detector system that includes at least two arrays of radiation detectors that are movable with respect to each other. The device includes a "shield plate" or shell, and an opposing "source plate" containing a source of ionizing radiation. Guides are attached to the outer surface of the shell for engaging the forward ends of the detectors, thereby reproducibly positioning the detectors with respect to the source and with respect to each other, thereby ensuring that a predetermined portion of the radiation emitted by the source passes through the shell and reaches the detectors. The shell is made of an hydrogenous material having approximately the same radiological attenuation characteristics as composite human tissue. The source represents a human organ such as the lungs, heart, kidneys, heart, liver, spleen, pancreas, thyroid, testes, prostate, or ovaries. The source includes a source of ionizing radiation having a long half-life and an activity that is within the range typically searched for in human subjects.

  17. Resonant tuning fork detector for electromagnetic radiation.

    PubMed

    Pohlkötter, Andreas; Willer, Ulrike; Bauer, Christoph; Schade, Wolfgang

    2009-02-01

    A mechanical quartz microresonator (tuning fork) is used to detect electromagnetic radiation. The detection scheme is based on forces created due to the incident electromagnetic radiation on the piezoelectric tuning fork. A force can be created due to the transfer of the photon momentum of the incident electromagnetic radiation. If the surfaces of the tuning fork are nonuniformly heated, a second force acts on it, the so-called photophoretic force. These processes occur for all wavelengths of the incident radiation, making the detector suitable for sensing of ultraviolet, visible, and mid-infrared light, even THz-radiation. Here the detector is characterized in the visible range; noise analysis is performed for 650 nm and 5.26 microm. A linear power characteristic and the dependence on pulse lengths of the incoming light are shown. Examples for applications for the visible and mid-infrared spectral region are given by 2f and absorption spectroscopy of oxygen and nitric oxide, respectively.

  18. Radiation and particle detector and amplifier

    NASA Technical Reports Server (NTRS)

    Schmidt, K. C. (Inventor)

    1973-01-01

    A radiation or charged particle detector is described which incorporates a channel multiplier structure to amplify the detected rays or particles. The channel multiplier structure has a support multiplying element with a longitudinal slot along one side. The element supports a pair of plates positioned contiguous with the slot. The plates funnel the particles or rays to be detected into the slotted aperture and the element, thus creating an effectively wide aperture detector of the windowless type.

  19. Multiple-mode radiation detector

    DOEpatents

    Claus, Liam D.; Derzon, Mark S.; Kay, Randolph R.; Bauer, Todd; Trotter, Douglas Chandler; Henry, Michael David

    2015-08-25

    An apparatus for detecting radiation is provided. In embodiments, at least one sensor medium is provided, of a kind that interacts with radiation to generate photons and/or charge carriers. The apparatus also includes at least one electrode arrangement configured to collect radiation-generated charge from a sensor medium that has been provided. The apparatus also includes at least one photodetector configured to produce an electrical output in response to photons generated by radiation in such a sensor medium, and an electronic circuit configured to produce an output that is jointly responsive to the collected charge and to the photodetector output. At least one such electrode arrangement, at least one such photodetector, and at least one such sensor medium are combined to form an integral unit.

  20. The transition radiation detector of the PAMELA space mission

    NASA Astrophysics Data System (ADS)

    Ambriola, M.; Bellotti, R.; Cafagna, F.; Circella, M.; de Marzo, C.; Giglietto, N.; Marangelli, B.; Mirizzi, N.; Romita, M.; Spinelli, P.

    2004-04-01

    PAMELA space mission objective is to flight a satellite-borne magnetic spectrometer built to fulfill the primary scientific goals of detecting antiparticles (antiprotons and positrons) and to measure spectra of particles in cosmic rays. The PAMELA telescope is composed of: a silicon tracker housed in a permanent magnet, a time-of-flight and an anticoincidence system both made of plastic scintillators, a silicon imaging calorimeter, a neutron detector and a Transition Radiation Detector (TRD). The TRD is composed of nine sensitive layers of straw tubes working in proportional mode for a total of 1024 channels. Each layer is interleaved with a radiator plane made of carbon fibers. The TRD characteristics will be described along with its performances studied at both CERN-PS and CERN-SPS facilities, using electrons, pions, muons and protons of different momenta.

  1. Low-Power Multi-Aspect Space Radiation Detector System

    NASA Technical Reports Server (NTRS)

    Wrbanek, John D.; Wrbanek, Susan Y.; Fralick, Gustave; Freeman, Jon C.; Burkebile, Stephen P.

    2012-01-01

    The advanced space radiation detector development team at NASA Glenn Research Center (GRC) has the goal of developing unique, more compact radiation detectors that provide improved real-time data on space radiation. The team has performed studies of different detector designs using a variety of combinations of solid-state detectors, which allow higher sensitivity to radiation in a smaller package and operate at lower voltage than traditional detectors. Integration of all of these detector technologies will result in an improved detector system in comparison to existing state-of-the-art (SOA) instruments for the detection and monitoring of the deep space radiation field.

  2. Imaging radiation detector with gain

    DOEpatents

    Morris, Christopher L.; Idzorek, George C.; Atencio, Leroy G.

    1984-01-01

    A radiation imaging device which has application in x-ray imaging. The device can be utilized in CAT scanners and other devices which require high sensitivity and low x-ray fluxes. The device utilizes cumulative multiplication of charge carriers on the anode plane and the collection of positive ion charges to image the radiation intensity on the cathode plane. Parallel and orthogonal cathode wire arrays are disclosed as well as a two-dimensional grid pattern for collecting the positive ions on the cathode.

  3. Imaging radiation detector with gain

    DOEpatents

    Morris, C.L.; Idzorek, G.C.; Atencio, L.G.

    1982-07-21

    A radiation imaging device which has application in x-ray imaging. The device can be utilized in CAT scanners and other devices which require high sensitivity and low x-ray fluxes. The device utilizes cumulative multiplication of charge carriers on the anode plane and the collection of positive ion charges to image the radiation intensity on the cathode plane. Parallel and orthogonal cathode wire arrays are disclosed as well as a two-dimensional grid pattern for collecting the positive ions on the cathode.

  4. Radiation damage in barium fluoride detector materials

    SciTech Connect

    Levey, P.W.; Kierstead, J.A.; Woody, C.L.

    1988-01-01

    To develop radiation hard detectors, particularly for high energy physics studies, radiation damage is being studied in BaF/sub 2/, both undoped and doped with La, Ce, Nd, Eu, Gd and Tm. Some dopants reduce radiation damage. In La doped BaF/sub 2/ they reduce the unwanted long lifetime luminescence which interferes with the short-lived fluorescence used to detect particles. Radiation induced coloring is being studied with facilities for making optical measurements before, during and after irradiation with /sup 60/C0 gamma rays. Doses of 10/sup 6/ rad, or less, create only ionization induced charge transfer effects since lattice atom displacement damage is negligible at these doses. All crystals studied exhibit color center formation, between approximately 200 and 800 nm, during irradiation and color center decay after irradiation. Thus only measurements made during irradiation show the total absorption present in a radiation field. Both undoped and La doped BaF/sub 2/ develop damage at minimum detectable levels in the UV---which is important for particle detectors. For particle detector applications these studies must be extended to high dose irradiations with particles energetic enough to cause lattice atom displacement damage. In principle, the reduction in damage provided by dopants could apply to other applications requiring radiation damage resistant materials.

  5. Scintillator-fiber charged-particle track-imaging detector

    NASA Technical Reports Server (NTRS)

    Binns, W. R.; Israel, M. H.; Klarmann, J.

    1983-01-01

    A scintillator-fiber charged-particle track-imaging detector has been developed using a bundle of square cross-section plastic scintillator fiber optics, proximity focused onto an image intensified Charge Injection Device (CID) camera. Detector to beams of 15 MeV protons and relativistic Neon, Manganese, and Gold nuclei have been exposed and images of their tracks are obtained. This paper presents details of the detector technique, properties of the tracks obtained, and range measurements of 15 MeV protons stopping in the fiber bundle.

  6. Neutron responsive self-powered radiation detector

    DOEpatents

    Brown, Donald P.; Cannon, Collins P.

    1978-01-01

    An improved neutron responsive self-powered radiation detector is disclosed in which the neutron absorptive central emitter has a substantially neutron transmissive conductor collector sheath spaced about the emitter and the space between the emitter and collector sheath is evacuated.

  7. Integrator Circuitry for Single Channel Radiation Detector

    NASA Technical Reports Server (NTRS)

    Holland, Samuel D. (Inventor); Delaune, Paul B. (Inventor); Turner, Kathryn M. (Inventor)

    2008-01-01

    Input circuitry is provided for a high voltage operated radiation detector to receive pulses from the detector having a rise time in the range of from about one nanosecond to about ten nanoseconds. An integrator circuit, which utilizes current feedback, receives the incoming charge from the radiation detector and creates voltage by integrating across a small capacitor. The integrator utilizes an amplifier which closely follows the voltage across the capacitor to produce an integrator output pulse with a peak value which may be used to determine the energy which produced the pulse. The pulse width of the output is stretched to approximately 50 to 300 nanoseconds for use by subsequent circuits which may then use amplifiers with lower slew rates.

  8. Radiation detectors: needs and prospects

    SciTech Connect

    Armantrout, G.A.

    1981-01-01

    Important applications for x- and ..gamma..-ray spectroscopy are found in prospecting, materials characterization, environmental monitoring, the life sciences, and nuclear physics. The specific requirements vary for each application with varying degrees of emphasis on either spectrometer resolution, detection efficiency, or both. Since no one spectrometer is ideally suited to this wide range of needs, compromises are usually required. Gas and scintillation spectrometers have reached a level of maturity, and recent interest has concentrated on semiconductor spectrometers. Germanium detectors are showing continuing refinement and are the spectrometers of choice for high resolution applications. The new high-Z semiconductors, such as CdTe and HgI/sub 2/, have shown steady improvement but are limited in both resolution and size and will likely be used only in applications which require their unique properties.

  9. Workshop on detectors for synchrotron radiation

    SciTech Connect

    Robinson, Arthur L.

    2000-11-22

    Forefront experiments in many scientific areas for which synchrotron sources provide sufficient flux are nonetheless hindered because detectors cannot collect data fast enough, do not cover sufficiently solid angle, or do no have adequate resolution. Overall, the synchrotron facilities, each of which represents collective investments from funding agencies and user institutions ranging from many hundreds of millions to more than a billion dollars, are effectively significantly underutilized. While this chronic and growing problem plagues facilities around the world, it is particularly acute in the United States, where detector research often has to ride on the coat tails of explicitly science-oriented projects. As a first step toward moving out of this predicament, scientists from the U.S. synchrotron facilities held a national workshop in Washington, DC, on October 30-31, 2000. The Workshop on Detectors for Synchrotron Research aimed to create a national ''roadmap'' for development of synchrotron-radiation detectors.

  10. A semiconductor radiation imaging pixel detector for space radiation dosimetry.

    PubMed

    Kroupa, Martin; Bahadori, Amir; Campbell-Ricketts, Thomas; Empl, Anton; Hoang, Son Minh; Idarraga-Munoz, John; Rios, Ryan; Semones, Edward; Stoffle, Nicholas; Tlustos, Lukas; Turecek, Daniel; Pinsky, Lawrence

    2015-07-01

    Progress in the development of high-performance semiconductor radiation imaging pixel detectors based on technologies developed for use in high-energy physics applications has enabled the development of a completely new generation of compact low-power active dosimeters and area monitors for use in space radiation environments. Such detectors can provide real-time information concerning radiation exposure, along with detailed analysis of the individual particles incident on the active medium. Recent results from the deployment of detectors based on the Timepix from the CERN-based Medipix2 Collaboration on the International Space Station (ISS) are reviewed, along with a glimpse of developments to come. Preliminary results from Orion MPCV Exploration Flight Test 1 are also presented.

  11. Status of the D0 fiber tracker and preshower detectors

    SciTech Connect

    Smirnov, Dmitri; /Notre Dame U.

    2009-01-01

    In this report we focus on the performance of the D0 central fiber tracker and preshower detectors during the high luminosity p{bar p} collisions at {radical}s = 1.96 GeV delivered by the Tevatron collider at Fermilab (Run IIb). Both fiber tracker and preshower detectors utilize a similar readout system based on high quantum efficiency solid state photo-detectors capable of converting light into electrical signals. We also give a brief description of the D0 detector and the central track trigger, and conclude with a summary on the central tracker performance.

  12. High resolution amorphous silicon radiation detectors

    DOEpatents

    Street, Robert A.; Kaplan, Selig N.; Perez-Mendez, Victor

    1992-01-01

    A radiation detector employing amorphous Si:H cells in an array with each detector cell having at least three contiguous layers (n type, intrinsic, p type), positioned between two electrodes to which a bias voltage is applied. An energy conversion layer atop the silicon cells intercepts incident radiation and converts radiation energy to light energy of a wavelength to which the silicon cells are responsive. A read-out device, positioned proximate to each detector element in an array allows each such element to be interrogated independently to determine whether radiation has been detected in that cell. The energy conversion material may be a layer of luminescent material having a columnar structure. In one embodiment a column of luminescent material detects the passage therethrough of radiation to be detected and directs a light beam signal to an adjacent a-Si:H film so that detection may be confined to one or more such cells in the array. One or both electrodes may have a comb structure, and the teeth of each electrode comb may be interdigitated for capacitance reduction. The amorphous Si:H film may be replaced by an amorphous Si:Ge:H film in which up to 40 percent of the amorphous material is Ge. Two dimensional arrays may be used in X-ray imaging, CT scanning, crystallography, high energy physics beam tracking, nuclear medicine cameras and autoradiography.

  13. High resolution amorphous silicon radiation detectors

    DOEpatents

    Street, R.A.; Kaplan, S.N.; Perez-Mendez, V.

    1992-05-26

    A radiation detector employing amorphous Si:H cells in an array with each detector cell having at least three contiguous layers (n-type, intrinsic, p-type), positioned between two electrodes to which a bias voltage is applied. An energy conversion layer atop the silicon cells intercepts incident radiation and converts radiation energy to light energy of a wavelength to which the silicon cells are responsive. A read-out device, positioned proximate to each detector element in an array allows each such element to be interrogated independently to determine whether radiation has been detected in that cell. The energy conversion material may be a layer of luminescent material having a columnar structure. In one embodiment a column of luminescent material detects the passage therethrough of radiation to be detected and directs a light beam signal to an adjacent a-Si:H film so that detection may be confined to one or more such cells in the array. One or both electrodes may have a comb structure, and the teeth of each electrode comb may be interdigitated for capacitance reduction. The amorphous Si:H film may be replaced by an amorphous Si:Ge:H film in which up to 40 percent of the amorphous material is Ge. Two dimensional arrays may be used in X-ray imaging, CT scanning, crystallography, high energy physics beam tracking, nuclear medicine cameras and autoradiography. 18 figs.

  14. Amorphous silicon based radiation detectors

    SciTech Connect

    Perez-Mendez, V.; Cho, G.; Drewery, J.; Jing, T.; Kaplan, S.N.; Qureshi, S.; Wildermuth, D. ); Fujieda, I.; Street, R.A. )

    1991-07-01

    We describe the characteristics of thin(1 {mu}m) and thick (>30{mu}m) hydrogenated amorphous silicon p-i-n diodes which are optimized for detecting and recording the spatial distribution of charged particles, x-rays and {gamma} rays. For x-ray, {gamma} ray, and charged particle detection we can use thin p-i-n photosensitive diode arrays coupled to evaporated layers of suitable scintillators. For direct detection of charged particles with high resistance to radiation damage, we use the thick p-i-n diode arrays. 13 refs., 7 figs.

  15. The Radiation Assessment Detector (RAD) Investigation

    NASA Astrophysics Data System (ADS)

    Hassler, D. M.; Zeitlin, C.; Wimmer-Schweingruber, R. F.; Böttcher, S.; Martin, C.; Andrews, J.; Böhm, E.; Brinza, D. E.; Bullock, M. A.; Burmeister, S.; Ehresmann, B.; Epperly, M.; Grinspoon, D.; Köhler, J.; Kortmann, O.; Neal, K.; Peterson, J.; Posner, A.; Rafkin, S.; Seimetz, L.; Smith, K. D.; Tyler, Y.; Weigle, G.; Reitz, G.; Cucinotta, F. A.

    2012-09-01

    The Radiation Assessment Detector (RAD) on the Mars Science Laboratory (MSL) is an energetic particle detector designed to measure a broad spectrum of energetic particle radiation. It will make the first-ever direct radiation measurements on the surface of Mars, detecting galactic cosmic rays, solar energetic particles, secondary neutrons, and other secondary particles created both in the atmosphere and in the Martian regolith. The radiation environment on Mars, both past and present, may have implications for habitability and the ability to sustain life. Radiation exposure is also a major concern for future human missions. The RAD instrument combines charged- and neutral-particle detection capability over a wide dynamic range in a compact, low-mass, low-power instrument. These capabilities are required in order to measure all the important components of the radiation environment. RAD consists of the RAD Sensor Head (RSH) and the RAD Electronics Box (REB) integrated together in a small, compact volume. The RSH contains a solid-state detector telescope with three silicon PIN diodes for charged particle detection, a thallium doped Cesium Iodide scintillator, plastic scintillators for neutron detection and anti-coincidence shielding, and the front-end electronics. The REB contains three circuit boards, one with a novel mixed-signal ASIC for processing analog signals and an associated control FPGA, another with a second FPGA to communicate with the rover and perform onboard analysis of science data, and a third board with power supplies and power cycling or "sleep"-control electronics. The latter enables autonomous operation, independent of commands from the rover. RAD is a highly capable and highly configurable instrument that paves the way for future compact energetic particle detectors in space.

  16. Electromechanically cooled germanium radiation detector system

    NASA Astrophysics Data System (ADS)

    Lavietes, Anthony D.; Joseph Mauger, G.; Anderson, Eric H.

    1999-02-01

    We have successfully developed and fielded an electromechanically cooled germanium radiation detector (EMC-HPGe) at Lawrence Livermore National Laboratory (LLNL). This detector system was designed to provide optimum energy resolution, long lifetime, and extremely reliable operation for unattended and portable applications. For most analytical applications, high purity germanium (HPGe) detectors are the standard detectors of choice, providing an unsurpassed combination of high energy resolution performance and exceptional detection efficiency. Logistical difficulties associated with providing the required liquid nitrogen (LN) for cooling is the primary reason that these systems are found mainly in laboratories. The EMC-HPGe detector system described in this paper successfully provides HPGe detector performance in a portable instrument that allows for isotopic analysis in the field. It incorporates a unique active vibration control system that allows the use of a Sunpower Stirling cycle cryocooler unit without significant spectral degradation from microphonics. All standard isotopic analysis codes, including MGA and MGA++ [1], GAMANL [2], GRPANL [3]and MGAU [4], typically used with HPGe detectors can be used with this system with excellent results. Several national and international Safeguards organisations including the International Atomic Energy Agency (IAEA) and U.S. Department of Energy (DOE) have expressed interest in this system. The detector was combined with custom software and demonstrated as a rapid Field Radiometric Identification System (FRIS) for the U.S. Customs Service [5]. The European Communities' Safeguards Directorate (EURATOM) is field-testing the first Safeguards prototype in their applications. The EMC-HPGe detector system design, recent applications, and results will be highlighted.

  17. Alpha-beta radiation detector

    DOEpatents

    Fleming, D.M.; Simmons, K.L.; Froelich, T.J.; Carter, G.L.

    1998-08-18

    The invention is based in part on the discovery that a plastic housing that is lightweight is surprisingly efficient inasmuch as background signals from any gamma radiation are significantly reduced by using a plastic housing instead of a metal housing. A further aspect of the present invention is the profile of the housing as a bi-linear approximation to a parabola resulting in full optical response from any location on the scintillation material to the photomultiplier tube. A yet further aspect of the present invention is that the survey probe is resistant to magnetic fields. A yet further aspect of the present invention is the use of a snap-fit retaining bracket that overcomes the need for multiple screws. 16 figs.

  18. Alpha-beta radiation detector

    DOEpatents

    Fleming, Dale M.; Simmons, Kevin L.; Froelich, Thomas J.; Carter, Gregory L.

    1998-01-01

    The invention is based in part on the discovery that a plastic housing that is lightweight is surprisingly efficient inasmuch as background signals from any gamma radiation are significantly reduced by using a plastic housing instead of a metal housing. A further aspect of the present invention is the profile of the housing as a bi-linear approximation to a parabola resulting in full optical response from any location on the scintillation material to the photomultiplier tube. A yet further aspect of the present invention is that the survey probe is resistant to magnetic fields. A yet further aspect of the present invention is the use of a snap-fit retaining bracket that overcomes the need for multiple screws.

  19. Development of a plasma panel radiation detector

    NASA Astrophysics Data System (ADS)

    Ball, R.; Beene, J. R.; Ben-Moshe, M.; Benhammou, Y.; Bensimon, B.; Chapman, J. W.; Etzion, E.; Ferretti, C.; Friedman, P. S.; Levin, D. S.; Silver, Y.; Varner, R. L.; Weaverdyck, C.; Wetzel, R.; Zhou, B.; Anderson, T.; McKinny, K.; Bentefour, E. H.

    2014-11-01

    This article reports on the development and experimental results of commercial plasma display panels adapted for their potential use as micropattern gas radiation detectors. The plasma panel sensor (PPS) design and materials include glass substrates, metal electrodes and inert gas mixtures which provide a physically robust, hermetically sealed device. Plasma display panels used as detectors were tested with cosmic ray muons, beta rays and gamma rays, protons, and thermal neutrons. The results demonstrated rise times and time resolution of a few nanoseconds, as well as sub-millimeter spatial resolution compatible with the pixel pitch.

  20. Surface wave chemical detector using optical radiation

    DOEpatents

    Thundat, Thomas G.; Warmack, Robert J.

    2007-07-17

    A surface wave chemical detector comprising at least one surface wave substrate, each of said substrates having a surface wave and at least one measurable surface wave parameter; means for exposing said surface wave substrate to an unknown sample of at least one chemical to be analyzed, said substrate adsorbing said at least one chemical to be sensed if present in said sample; a source of radiation for radiating said surface wave substrate with different wavelengths of said radiation, said surface wave parameter being changed by said adsorbing; and means for recording signals representative of said surface wave parameter of each of said surface wave substrates responsive to said radiation of said different wavelengths, measurable changes of said parameter due to adsorbing said chemical defining a unique signature of a detected chemical.

  1. Summary of the SWS Detector Radiation Effects

    NASA Astrophysics Data System (ADS)

    Heras, A. M.; Wieprecht, E.; Nieminen, P.; Feuchtgruber, H.; Lahuis, F.; Leech, K.; Lorente, R.; Morris, P. W.; Salama, A.; Vandenbussche, B.

    We present a study of the space radiation effects on the ISO SWS detectors. Radiation effects were mainly recognised by the presence of glitches in the science data, although in some cases they were also associated with changes in detector responsivity, dark current levels and noise. The glitch rates observed in the science observation window were from 2 to 4 times higher than the value predicted by the CREME96 model for the cosmic ray flux in the period considered. A comparison of the glitch derived energy deposited distributions with the results of ray-tracing simulations (which model primary cosmic ray-induced glitches) showed a good agreement at high energies, but the peak of the observed distributions at the lower deposited energies was not reproduced. Furthermore we found a good correlation between the electron fluxes detected by the GOES-9 spacecraft and the glitch rates in the first measurements after perigee passage. These facts lead us to the conclusion that the contribution to the glitch rates from γ-rays and secondary particles produced by cosmic rays and electrons in the detectors and the shield were as important, at least, as the contribution from primary cosmic rays. The effects of the only intense solar proton event during the ISO mission, on 6 November 1997, on dark currents, dark current noise, responsivity and glitch rates were such that all observations in the revolution were declared failed. The space radiation environment affected the long term behaviour of band 3 Si:As detectors, causing their dark current levels, and in some cases their dark current noise, to increase during the mission. The other SWS detector bands were stable and did not show long-term trends.

  2. Window for radiation detectors and the like

    DOEpatents

    Sparks, C.J. Jr.; Ogle, J.C.

    1975-10-28

    An improved x- and gamma-radiation and particle transparent window for the environment-controlling enclosure of various types of radiation and particle detectors is provided by a special graphite foil of a thickness of from about 0.1 to 1 mil. The graphite must have very parallel hexagonal planes with a mosaic spread no greater than 5$sup 0$ to have the necessary strength in thin sections to support one atmosphere or more of pressure. Such graphite is formed by hot- pressing and annealing pyrolytically deposited graphite and thereafter stripping off layers of sufficient thickness to form the window.

  3. Radiation response issues for infrared detectors

    NASA Technical Reports Server (NTRS)

    Kalma, Arne H.

    1990-01-01

    Researchers describe the most important radiation response issues for infrared detectors. In general, the two key degradation mechanisms in infrared detectors are the noise produced by exposure to a flux of ionizing particles (e.g.; trapped electronics and protons, debris gammas and electrons, radioactive decay of neutron-activated materials) and permanent damage produced by exposure to total dose. Total-dose-induced damage is most often the result of charge trapping in insulators or at interfaces. Exposure to short pulses of ionization (e.g.; prompt x rays or gammas, delayed gammas) will cause detector upset. However, this upset is not important to a sensor unless the recovery time is too long. A few detector technologies are vulnerable to neutron-induced displacement damage, but fortunately most are not. Researchers compare the responses of the new technologies with those of the mainstream technologies of PV HgCdTe and IBC Si:As. One important reason for this comparison is to note where some of the newer technologies have the potential to provide significantly improved radiation hardness compared with that of the mainstream technologies, and thus to provide greater motivation for the pursuit of these technologies.

  4. Nano structural anodes for radiation detectors

    DOEpatents

    Cordaro, Joseph V.; Serkiz, Steven M.; McWhorter, Christopher S.; Sexton, Lindsay T.; Retterer, Scott T.

    2015-07-07

    Anodes for proportional radiation counters and a process of making the anodes is provided. The nano-sized anodes when present within an anode array provide: significantly higher detection efficiencies due to the inherently higher electric field, are amenable to miniaturization, have low power requirements, and exhibit a small electromagnetic field signal. The nano-sized anodes with the incorporation of neutron absorbing elements (e.g., .sup.10B) allow the use of neutron detectors that do not use .sup.3He.

  5. Thermal stability of grafted fibers. [Gamma radiation

    SciTech Connect

    Sundardi, F.; Kadariah; Marlianti, I.

    1983-10-01

    Presented the experimental results on the study of thermal stability of grafted fibers, i.e., polypropylene-, polyester-, and rayon-grafted fibers. These fibers were obtained by radiation grafting processes using hydrophylic monomers such as 1-vinyl 2-pyrolidone, acrylic acid, N-methylol acrylamide, and acrylonitrile. The thermal stability of the fibers was studied using a Shimadzu Thermal Analyzer DT-30. The thermal stability of the fibers, which can be indicated by the value of the activation energy for thermal degradation, was not improved by radiation grafting. The degree of improvement depends on the thermal stability of the monomers used for grafting. The thermal stability of a polypropylene fiber, either a grafted or an ungrafted one, was found to be inferior compared to the polyester of a rayon fiber, which may be due to the lack of C=O and C=C bonds in the polypropylene molecules. The thermal stability of a fiber grafted with acrylonitrile monomer was found to be better than that of an ungrafted one. However, no improvement was detected in the fibers grafted with 1-vinyl 2-pyrrolidone monomer, which may be due to the lower thermal stability of poly(1-vinyl-2-pyrrolidone), compared to the polypropylene or polyester fibers. 17 figures, 3 tables.

  6. The radiation tolerance of particular optical fibers at low temperatures

    NASA Astrophysics Data System (ADS)

    Abramovitch, Joshua

    2011-10-01

    This research project seeks to characterize a number of optical fibers in an irradiated, low-temperature environment, so that they may be used in the Large Hadron Collider's (LHC's) high luminosity upgrade at the European Organization for Nuclear Research (CERN). In the LHC experiments such as ATLAS and CMS, silicon pixel detectors are used to precisely measure the trajectories of charged particles. These detectors operate in a radioactive environment with ambient temperatures of -20 to -30 degrees Celsius, hence the requirement of radiation tolerance at low temperatures. A number of new fibers have been selected for their decreased bend sensitivity and improved bandwidth. Since, the LHC luminosity upgrade's requirements are very stringent, the vendor's specification data will be replaced with the results of this project. An optical test bench was needed to characterize the optical fibers in ionizing radiation from a Co-60 gamma source at Brookhaven National Laboratory in February 2011. Such a multi-channel optical measurement setup is not commercially available, and was as such designed in-house. Multiple 850nm VCSEL laser were used as sources, and TI OPT101 chips were used as detectors. This research contributes to the optical link R&D project with Fermi National Laboratory, Oxford University, and CERN, and my work's progress is integrated into the project flow of this international collaborative group.

  7. Scintillator-fiber charged particle track-imaging detector

    NASA Technical Reports Server (NTRS)

    Binns, W. R.; Israel, M. H.; Klarmann, J.

    1983-01-01

    A scintillator-fiber charged-particle track-imaging detector was developed using a bundle of square cross section plastic scintillator fiber optics, proximity focused onto an image intensified charge injection device (CID) camera. The tracks of charged particle penetrating into the scintillator fiber bundle are projected onto the CID camera and the imaging information is read out in video format. The detector was exposed to beams of 15 MeV protons and relativistic Neon, Manganese, and Gold nuclei and images of their tracks were obtained. Details of the detector technique, properties of the tracks obtained, and preliminary range measurements of 15 MeV protons stopping in the fiber bundle are presented.

  8. Low-cost fiber-optic chemochromic hydrogen detector

    SciTech Connect

    Benson, D.K.; Tracy, C.E.; Hishmeh, G.; Ciszek, P.; Lee, S.H.

    1998-08-01

    The ability to detect hydrogen gas leaks economically and with inherent safety is an important technology that could facilitate commercial acceptance of hydrogen fuel in various applications. In particular, hydrogen fueled passenger vehicles will require hydrogen leak detectors to signal the activation of safety devices such as shutoff valves, ventilating fans, alarms, etc. Such detectors may be required in several locations within a vehicle--wherever a leak could pose a safety hazard. It is therefore important that the detectors be very economical. This paper reports progress on the development of low-cost fiber-optic hydrogen detectors intended to meet the needs of a hydrogen-fueled passenger vehicle. In the design, the presence of hydrogen in air is sensed by a thin-film coating at the end of a polymer optical fiber. When the coating reacts reversibly with the hydrogen, its optical properties are changed. Light from a central electro-optic control unit is projected down the optical fiber where it is reflected from the sensor coating back to central optical detectors. A change in the reflected intensity indicates the presence of hydrogen. The fiber-optic detector offers inherent safety by removing all electrical power from the leak sites and offers reduced signal processing problems by minimizing electromagnetic interference. Critical detector performance requirements include high selectivity, response speed and durability as well as potential for low-cost production.

  9. Fiber Optic Detector For Liquid Chemical Leaks

    NASA Astrophysics Data System (ADS)

    Luukkala, Mauri; Raatikainen, Pekka; Salo, Olli

    1989-10-01

    This paper describes a simple and economical sensor which employs fiber optics to detect the presence of hazardous liquid chemicals, particularly undiluted hydrocarbons. The device is best suited to monitor the interstitial space of double walled underground storage tanks. Because the sensor is plastic and is situated at the end of a passive and insulating optical fiber the sensor can be considered inherently safe. The optical fiber used for this device can be up to several hundred meters long.

  10. PERDaix -Proton Electron Radiation Detector Aix-la-Chapelle

    NASA Astrophysics Data System (ADS)

    Schug, David; Schael, Stefan; Yearwood Roper, Gregorio; Bachlechner, Andreas; Beischer, Bastian; Deckenhoff, Mirco; Greim, Roman; Jenniches, Laura; Kucirek, Philipp; Lewke, Ronja; Mai, Carsten; Schug, David; Shchutska, Lesya; Tholen, Heiner; Ulrich, Jascha; Wienkenhoever, Jens; Zimmermann, Nikolas

    For the purpose of understanding recent cosmic ray measurements in the energy region below 10 GeV it is important to obtain good knowledge of the charge-sign dependent modulation caused by interplanetary magnetic fields. Existing three-dimensional time-dependent models of the heliosphere can be constrained further using series of measurements of the low-energy cosmic ray fluxes over the course of a solar cycle. Following the measurements of the positron fraction from AESOP in 2006 and 2009, we present a new light-weighted spectrometer which is under construction in Aachen for measuring helium, proton, positron and electron fluxes. The detector is designed to measure in the energy range between 0.5 GeV and 5 GeV and identify helium, protons, electrons and positrons. The detector consists of a spectrometer made up of a permanent magnet and a scintillating fiber tracking detector, a transition radiation detector and a time of flight system with a total weight of approximately 30kg. We applied successfully for a flight on a stratosphere balloon in late 2010 as part of the German-Swedish Balloon-Borne Experiments for University Students (BEXUS) Program.

  11. Discriminating cosmic muons and radioactivity using a liquid scintillation fiber detector

    NASA Astrophysics Data System (ADS)

    Zhang, Y. P.; Xu, J. L.; Lu, H. Q.; Zhang, P.; Zhang, C. C.; Yang, C. G.

    2017-03-01

    In the case of underground experiments for neutrino physics or rare event searches, the background caused by cosmic muons contributes significantly and therefore must be identified and rejected. We proposed and optimized a new detector using liquid scintillator with wavelenghth-shifting fibers which can be employed as a veto detector for cosmic muons background rejection. From the prototype study, it has been found that the detector has good performances and is capable of discriminating between muons induced signals and environmental radiation background. Its muons detection efficiency is greater than 98%, and on average, 58 photo-electrons (p.e.) are collected when a muon passes through the detector. To optimize the design and enhance the collection of light, the reflectivity of the coating materials has been studied in detail. A Monte Carlo simulation of the detector has been developed and compared to the performed measurements showing a good agreement between data and simulation results.

  12. Radiation simulations of the CMS detector

    NASA Astrophysics Data System (ADS)

    Stoddard, Graham J.

    This thesis presents results of recent radiation simulations for the Compact Muon Solenoid detector at the Large Hadron Collider at CERN performed using the Monte Carlo simulation package FLUKA. High statistics simulations with a fine granularity in the detector were carried out using the Condor batch system at the Fermilab LHC Physics Center. In addition, an existing web tool for accessing and displaying simulation data was upgraded. The FLUKA data and previously generated MARS Monte Carlo data can be plotted using 1-D or 2-D plotting functionalities along R and Z, the transverse distance from the beamline and the distance along the beamline, respectively. Comparisons between the data sets have been carried out; the effect of particle transport thresholds in both packages was explored, comparisons with zero magnetic field in the CMS solenoid and full field are made, a model of non-ionizing energy losses is examined, and sensitive areas of interest within the simulation are identified.

  13. Radiation detector having a multiplicity of individual detecting elements

    DOEpatents

    Whetten, Nathan R.; Kelley, John E.

    1985-01-01

    A radiation detector has a plurality of detector collection element arrays immersed in a radiation-to-electron conversion medium. Each array contains a multiplicity of coplanar detector elements radially disposed with respect to one of a plurality of positions which at least one radiation source can assume. Each detector collector array is utilized only when a source is operative at the associated source position, negating the necessity for a multi-element detector to be moved with respect to an object to be examined. A novel housing provides the required containment of a high-pressure gas conversion medium.

  14. Portable radiation detector and mapping system

    SciTech Connect

    Hofstetter, K.J.; Hayes, D.W.; Eakle, R.F.

    1995-12-31

    A portable radiation detector and mapping system (RADMAPS) has been developed to detect, locate, and plot nuclear radiation intensities on commercially available digital maps and other images. The field unit records gamma-ray spectra or neutron signals together with positions from a global positioning system (GPS) on flash memory cards. The recorded information is then transferred to a laptop computer for spectral data analyses and then georegistered graphically on maps, photographs, etc. RADMAPS integrates several existing technologies to produce a preprogrammable field unit uniquely suited for each survey, as required. The system records spectra from a NaI(Tl) gamma-ray detector or an enriched {sup 6}Li doped glass neutron scintillator. Standard Geographic Information System (GIS) software installed in a lap-top, complete with CD-ROM supporting digitally imaged maps, permits the characterization of nuclear material in the field when the presence of such material is not otherwise documented. This paper gives the results of a typical site survey of the Savannah River site (SRS) using RADMAPS. The ability to provide rapid field data should be of use in treaty verification, safeguards, decontamination, and nuclear weapons dismantlement.

  15. Radiation detector system having heat pipe based cooling

    DOEpatents

    Iwanczyk, Jan S.; Saveliev, Valeri D.; Barkan, Shaul

    2006-10-31

    A radiation detector system having a heat pipe based cooling. The radiation detector system includes a radiation detector thermally coupled to a thermo electric cooler (TEC). The TEC cools down the radiation detector, whereby heat is generated by the TEC. A heat removal device dissipates the heat generated by the TEC to surrounding environment. A heat pipe has a first end thermally coupled to the TEC to receive the heat generated by the TEC, and a second end thermally coupled to the heat removal device. The heat pipe transfers the heat generated by the TEC from the first end to the second end to be removed by the heat removal device.

  16. Characterisation of bubble detectors for aircrew and space radiation exposure.

    PubMed

    Green, A R; Bennett, L G I; Lewis, B J; Tume, P; Andrews, H R; Noulty, R A; Ing, H

    2006-01-01

    The Earth's atmosphere acts as a natural radiation shield which protects terrestrial dwellers from the radiation environment encountered in space. In general, the intensity of this radiation field increases with distance from the ground owing to a decrease in the amount of atmospheric shielding. Neutrons form an important component of the radiation field to which the aircrew and spacecrew are exposed. In light of this, the neutron-sensitive bubble detector may be ideal as a portable personal dosemeter at jet altitudes and in space. This paper describes the ground-based characterisation of the bubble detector and the application of the bubble detector for the measurement of aircrew and spacecrew radiation exposure.

  17. Explosion-proof fiber optic fire detector: design and mathematical description

    NASA Astrophysics Data System (ADS)

    Kazakov, V. I.; Moskaletz, O. D.

    2014-10-01

    The problem of early fire detection in areas classified as potentially explosive is considered in this paper. These include, for example, some types of facilities and plants, which may cause environmental disasters in case of fires. Hard safety requirements impose serious terms for the technical performance the detectors for the protection of such objects from the fire. Detector itself should not cause a fire. The main danger is open conductive parts in the construction of the sensitive elements of detectors, which can lead to the generation of sparks and fire. The using of fiber-optic technology allows creating smoke and heating fire detectors, which only the sensors will be located in the protected area, and all electronic components generate signals and their processing may be removed at considerable distances measured by kilometers. The block diagram of the fire smoke point detector based on fiber-optic technology is considered, the mathematical description of the propagation of optical radiation through the sensing element of the detector is provided, sensitivity is analyzed.

  18. Self-powered radiation detector with conductive emitter support

    SciTech Connect

    Bauer, R.F.; Goldstein, N.P.; Playfoot, K.C.

    1981-05-12

    A more reliable self-powered radiation detector structure and method of manufacture is provided by a detector structure in which a relatively ductile centrally disposed conductive emitter wire supports and is in electrical contact with a generally tubular emitter electrode. The detector is fabricated by swaging and the ductile center wire insures that electrical discontinuities of the emitter are minimized.

  19. Space Radiation Detector with Spherical Geometry

    NASA Technical Reports Server (NTRS)

    Wrbanek, John D. (Inventor); Fralick, Gustave C. (Inventor); Wrbanek, Susan Y. (Inventor)

    2011-01-01

    A particle detector is provided, the particle detector including a spherical Cherenkov detector, and at least one pair of detector stacks. In an embodiment of the invention, the Cherenkov detector includes a sphere of ultraviolet transparent material, coated by an ultraviolet reflecting material that has at least one open port. The Cherenkov detector further includes at least one photodetector configured to detect ultraviolet light emitted from a particle within the sphere. In an embodiment of the invention, each detector stack includes one or more detectors configured to detect a particle traversing the sphere.

  20. Space Radiation Detector with Spherical Geometry

    NASA Technical Reports Server (NTRS)

    Wrbanek, John D. (Inventor); Fralick, Gustave C. (Inventor); Wrbanek, Susan Y. (Inventor)

    2012-01-01

    A particle detector is provided, the particle detector including a spherical Cherenkov detector, and at least one pair of detector stacks. In an embodiment of the invention, the Cherenkov detector includes a sphere of ultraviolet transparent material, coated by an ultraviolet reflecting material that has at least one open port. The Cherenkov detector further includes at least one photodetector configured to detect ultraviolet light emitted from a particle within the sphere. In an embodiment of the invention, each detector stack includes one or more detectors configured to detect a particle traversing the sphere.

  1. Ruggedization of CdZnTe detectors and detector assemblies for radiation detection applications

    NASA Astrophysics Data System (ADS)

    Lu, P. H.; Gomolchuk, P.; Chen, H.; Beitz, D.; Grosser, A. W.

    2015-06-01

    This paper described improvements in the ruggedization of CdZnTe detectors and detector assemblies for use in radiation detection applications. Research included experimenting with various conductive and underfill adhesive material systems suitable for CZT substrates. A detector design with encapsulation patterning was developed to protect detector surfaces and to control spacing between CZT anode and PCB carrier. Robustness of bare detectors was evaluated through temperature cycling and metallization shear testing. Attachment processes using well-chosen adhesives and PCB carrier materials were optimized to improve reliability of detector assemblies, resulted in Improved Attachment Detector Assembly. These detector assemblies were subjected to aggressive temperature cycling, and varying levels of drop/shock and vibration, in accordance with modified JEDEC, ANSI and FedEx testing standards, to assess their ruggedness. Further enhanced detector assembly ruggedization methods were investigated involving adhesive conformal coating, potting and dam filling on detector assemblies, which resulted in the Enhanced Ruggedization Detector Assembly. Large numbers of CZT detectors and detector assemblies with 5 mm and 15 mm thick, over 200 in total, were tested. Their performance was evaluated by exposure to various radioactive sources using comprehensive predefined detector specifications and testing protocols. Detector assemblies from improved attachment and enhanced ruggedization showed stable performances during the harsh environmental condition tests. In conclusion, significant progress has been made in improving the reliability and enhancing the ruggedness of CZT detector assemblies for radiation detection applications deployed in operational environments.

  2. Simulation of radiation environment for the LHeC detector

    NASA Astrophysics Data System (ADS)

    Nayaz, Abdullah; Piliçer, Ercan; Joya, Musa

    2017-02-01

    The detector response and simulation of radiation environment for the Large Hadron electron Collider (LHeC) baseline detector is estimated to predict its performance over the lifetime of the project. In this work, the geometry of the LHeC detector, as reported in LHeC Conceptual Design Report (CDR), built in FLUKA Monte Carlo tool in order to simulate the detector response and radiation environment. For this purpose, events of electrons and protons with high enough energy were sent isotropically from interaction point of the detector. As a result, the detector response and radiation background for the LHeC detector, with different USRBIN code (ENERGY, HADGT20M, ALL-CHAR, ALL-PAR) in FLUKA, are presented.

  3. Pyroelectric detector development for the Radiation Measurement system

    NASA Technical Reports Server (NTRS)

    Hubbard, G. S.; Mcmurray, Robert E., Jr.; Hanel, R. P.; Dominguez, D. E.; Valero, F. P. J.; Baumann, Hilary; Hansen, W. L.; Haller, E. E.

    1993-01-01

    A new class of high detectivity pyroelectric detectors developed for optimization of the radiation measurement system within the framework of the Atmospheric Radiation Measurement program is described. These devices are intended to provide detectivities of up to about 10 exp 11 cm Hz exp 0.5/W with cooling to about 100 K required for the detector focal plane.

  4. Real-time self-networking radiation detector apparatus

    DOEpatents

    Kaplan, Edward; Lemley, James; Tsang, Thomas Y.; Milian, Laurence W.

    2007-06-12

    The present invention is for a radiation detector apparatus for detecting radiation sources present in cargo shipments. The invention includes the features of integrating a bubble detector sensitive to neutrons and a GPS system into a miniaturized package that can wirelessly signal the presence of radioactive material in shipping containers. The bubble density would be read out if such indicated a harmful source.

  5. A large area transition radiation detector for the NOMAD experiment

    NASA Astrophysics Data System (ADS)

    Bassompierre, G.; Bermond, M.; Berthet, M.; Bertozzi, T.; Détraz, C.; Dubois, J.-M.; Dumps, L.; Engster, C.; Fazio, T.; Gaillard, G.; Gaillard, J.-M.; Gouanère, M.; Manola-Poggioli, E.; Mossuz, L.; Mendiburu, J.-P.; Nédélec, P.; Palazzini, E.; Pessard, H.; Petit, P.; Petitpas, P.; Placci, A.; Sillou, D.; Sottile, R.; Valuev, V.; Verkindt, D.; Vey, H.; Wachnik, M.

    1998-02-01

    A transition radiation detector to identify electrons at 90% efficiency with a rejection factor against pions of 10 3 on an area of 2.85 × 2.85 m 2 has been constructed for the NOMAD experiment. Each of its 9 modules includes a 315 plastic foil radiator and a detector plane of 176 vertical straw tubes filled with a xenon-methane gas mixture. Details of the design, construction and operation of the detector are given.

  6. Wire chamber radiation detector with discharge control

    DOEpatents

    Perez-Mendez, Victor; Mulera, Terrence A.

    1984-01-01

    A wire chamber radiation detector (11) has spaced apart parallel electrodes (16) and grids (17, 18, 19) defining an ignition region (21) in which charged particles (12) or other ionizing radiations initiate brief localized avalanche discharges (93) and defining an adjacent memory region (22) in which sustained glow discharges (94) are initiated by the primary discharges (93). Conductors (29, 32) of the grids (18, 19) at each side of the memory section (22) extend in orthogonal directions enabling readout of the X-Y coordinates of locations at which charged particles (12) were detected by sequentially transmitting pulses to the conductors (29) of one grid (18) while detecting transmissions of the pulses to the orthogonal conductors (36) of the other grid (19) through glow discharges (94). One of the grids (19) bounding the memory region (22) is defined by an array of conductive elements (32) each of which is connected to the associated readout conductor (36) through a separate resistance (37). The wire chamber (11) avoids ambiguities and imprecisions in the readout of coordinates when large numbers of simultaneous or near simultaneous charged particles (12) have been detected. Down time between detection periods and the generation of radio frequency noise are also reduced.

  7. Multiple Detector Optimization for Hidden Radiation Source Detection

    DTIC Science & Technology

    2015-03-26

    copyright protection in the United States. AFIT-ENP-MS-15-M-082 OPTIMIZATION OF DETECTOR PLACEMENT FOR HIDDEN RADIATION SOURCE DETECTION...AFIT-ENP-MS-15-M-082 OPTIMIZATION OF DETECTOR PLACEMENT FOR HIDDEN RADIATION SOURCE DETECTION Michael E. Morrison, BS Major, USA Committee...process of hidden source detection significantly. The model focused on detection of the full energy peak of a radiation source. Methods to optimize

  8. Radiation damage studies for the D0 silicon detector

    SciTech Connect

    Lehner, F.; /Zurich U.

    2004-01-01

    We report on irradiation studies performed on spare production silicon detector modules for the current D0 silicon detector. The lifetime expectations due to radiation damage effects of the existing silicon detector are reviewed. A new upgrade project was started with the goal of a complete replacement of the existing silicon detector. In that context, several investigations on the radiation hardness of new prototype silicon microstrip detectors were carried out. The irradiation on different detector types was performed with 10 MeV protons up to fluences of 10{sup 14} p/cm{sup 2} at the J.R. Mcdonald Laboratory at Kansas State University. The flux calibration was carefully checked using different normalization techniques. As a result, we observe roughly 40-50% less radiation damage in silicon for 10 MeV p exposure than it is expected by the predicted NIEL scaling.

  9. Radiation Hardened Silica-Based Optical Fibers

    DTIC Science & Technology

    1988-12-01

    Induced absorption occurs when existing defects in the glass form color centers by trapping electrons and holes generated by ionizing radiation. The...drawn fiber from capturing charge carriers and thereby forming color centers is to transform them into benign defects. The latter are defined as defects...which do not form color centers or which form centers that absorb out- side the wavelength range of interest. The passivation process is performed on

  10. Radiation Hardened Silica-Based Optical Fibers.

    DTIC Science & Technology

    1986-10-01

    Induced absorption occurs when existing defects in the glass form color centers by trapping electrons and holes generated by ionizing radiation. Three...I. Defect Passivation One method to prevent defects in as-drawn fiber from capturing carriers and forming color centers is to transform them into...benign defects. The lat- ter are defined as either defects which form color centers that absorb out- side the wavelength range of interest, or

  11. Three dimensional imaging detector employing wavelength-shifting optical fibers

    DOEpatents

    Worstell, William A.

    1997-01-01

    A novel detector element structure and method for its use is provided. In a preferred embodiment, one or more inorganic scintillating crystals are coupled through wavelength shifting optical fibers (WLSFs) to position sensitive photomultipliers (PS-PMTs). The superior detector configuration in accordance with this invention is designed for an array of applications in high spatial resolution gamma ray sensing with particular application to SPECT, PET and PVI imaging systems. The design provides better position resolution than prior art devices at a lower total cost. By employing wavelength shifting fibers (WLSFs), the sensor configuration of this invention can operate with a significant reduction in the number of photomultipliers and electronics channels, while potentially improving the resolution of the system by allowing three dimensional reconstruction of energy deposition positions.

  12. Three dimensional imaging detector employing wavelength-shifting optical fibers

    DOEpatents

    Worstell, W.A.

    1997-02-04

    A novel detector element structure and method for its use is provided. In a preferred embodiment, one or more inorganic scintillating crystals are coupled through wavelength shifting optical fibers (WLSFs) to position sensitive photomultipliers (PS-PMTs). The superior detector configuration in accordance with this invention is designed for an array of applications in high spatial resolution gamma ray sensing with particular application to SPECT, PET and PVI imaging systems. The design provides better position resolution than prior art devices at a lower total cost. By employing wavelength shifting fibers (WLSFs), the sensor configuration of this invention can operate with a significant reduction in the number of photomultipliers and electronics channels, while potentially improving the resolution of the system by allowing three dimensional reconstruction of energy deposition positions. 11 figs.

  13. Large dynamic range radiation detector and methods thereof

    DOEpatents

    Marrs, Roscoe E [Livermore, CA; Madden, Norman W [Sparks, NV

    2012-02-14

    According to one embodiment, a radiation detector comprises a scintillator and a photodiode optically coupled to the scintillator. The radiation detector also includes a bias voltage source electrically coupled to the photodiode, a first detector operatively electrically coupled to the photodiode for generating a signal indicative of a level of a charge at an output of the photodiode, and a second detector operatively electrically coupled to the bias voltage source for generating a signal indicative of an amount of current flowing through the photodiode.

  14. Heat Transfer Issues in Thin-Film Thermal Radiation Detectors

    NASA Technical Reports Server (NTRS)

    Barry, Mamadou Y.

    1999-01-01

    The Thermal Radiation Group at Virginia Polytechnic Institute and State University has been working closely with scientists and engineers at NASA's Langley Research Center to develop accurate analytical and numerical models suitable for designing next generation thin-film thermal radiation detectors for earth radiation budget measurement applications. The current study provides an analytical model of the notional thermal radiation detector that takes into account thermal transport phenomena, such as the contact resistance between the layers of the detector, and is suitable for use in parameter estimation. It was found that the responsivity of the detector can increase significantly due to the presence of contact resistance between the layers of the detector. Also presented is the effect of doping the thermal impedance layer of the detector with conducting particles in order to electrically link the two junctions of the detector. It was found that the responsivity and the time response of the doped detector decrease significantly in this case. The corresponding decrease of the electrical resistance of the doped thermal impedance layer is not sufficient to significantly improve the electrical performance of the detector. Finally, the "roughness effect" is shown to be unable to explain the decrease in the thermal conductivity often reported for thin-film layers.

  15. 49 CFR 173.310 - Exceptions for radiation detectors.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... from the specification packaging in this subchapter and, except when transported by air, from labeling... with a burst pressure of not less than three times the design pressure if the radiation detector...

  16. 49 CFR 173.310 - Exceptions for radiation detectors.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... from the specification packaging in this subchapter and, except when transported by air, from labeling... with a burst pressure of not less than three times the design pressure if the radiation detector...

  17. 49 CFR 173.310 - Exceptions for radiation detectors.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... from the specification packaging in this subchapter and, except when transported by air, from labeling... with a burst pressure of not less than three times the design pressure if the radiation detector...

  18. 49 CFR 173.310 - Exceptions for radiation detectors.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... from the specification packaging in this subchapter and, except when transported by air, from labeling... with a burst pressure of not less than three times the design pressure if the radiation detector...

  19. 49 CFR 173.310 - Exceptions for radiation detectors.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... from the specification packaging in this subchapter and, except when transported by air, from labeling... with a burst pressure of not less than three times the design pressure if the radiation detector...

  20. Diamond radiation detectors I. Detector properties for IIa diamond

    SciTech Connect

    Kania, D.R.

    1997-05-16

    The detector properties and carrier dynamics of type IIa diamonds are reasonably well understood. The trends in the electron and hole mobilities have been characterized as a function of temperature, impurity content, electric field and carrier density. The carrier lifetimes are coupled through the nitrogen impurity. This leaves us with typical samples with collection distances of 20 to 50 micrometers. The detailed dynamics of the carriers can be modeled using a rate equation analysis. Much progress has been made in understanding the detector properties of diamond, but continued progress has been limited by the geologic processes used to make the material, for example sample size and no synthesis control. CVD diamond promises to eliminate these restrictions.

  1. A small high sensitivity neutron detector using a wavelength shifting fiber.

    PubMed

    Yagi, T; Misawa, T; Pyeon, C H; Shiroya, S

    2011-01-01

    A small neutron detector using an optical fiber was previously developed for reaction rate measurements at research reactors and accelerator facilities. This detector can be inserted into narrow spaces and its spatial resolution is less than 1mm; however, its neutron sensitivity is low because of the small size of its detector. The purpose of this study is to develop a new optical fiber detector with high neutron sensitivity by using a wavelength shifting fiber. Through the measurement of the reaction rate distribution in a reactor core, we found that it is possible to increase the effective length of the detector, resulting in increased neutron sensitivity compared with a conventional optical fiber detector. Additionally, using a longer wavelength shifting fiber, the sensitivity can be increased until it is as large as that of a typical small BF(3) proportional counter, which means that this detector can be used for even low neutron flux fields.

  2. Development of bulk GaAs room temperature radiation detectors

    SciTech Connect

    McGregor, D.S.; Knoll, G.F. . Dept. of Nuclear Engineering); Eisen, Y. . Soreq Nuclear Research Center); Brake, R. )

    1992-10-01

    This paper reports on GaAs, a wide band gap semiconductor with potential use as a room temperature radiation detector. Various configurations of Schottky diode detectors were fabricated with bulk crystals of liquid encapsulated Czochralski (LEC) semi-insulating undoped GaAs material. Basic detector construction utilized one Ti/Au Schottky contact and one Au/Ge/Ni alloyed ohmic contact. Pulsed X-ray analysis indicated pulse decay times dependent on bias voltage. Pulse height analysis disclosed non-uniform electric field distributions across the detectors tentatively explained as a consequence of native deep level donors (EL2) in the crystal.

  3. Proton-induced radiation damage in germanium detectors

    SciTech Connect

    Bruckner, J.; Korfer, M.; Wanke, H. , Mainz ); Schroeder, A.N.F. ); Figes, D.; Dragovitsch, P. ); Englert, P.A.J. ); Starr, R.; Trombka, J.I. . Goddard Space Flight Center); Taylor, I. ); Drake, D.M.; Shunk, E.R. )

    1991-04-01

    High-purity germanium (HPGe) detectors will be used in future space missions for gamma-ray measurements and will be subject to interactions with energetic particles. To simulate this process several large-volume n-type HPGe detectors were incrementally exposed to a particle fluence of up to 10{sub 8} protons cm{sup {minus}2} (proton energy: 1.5 GeV) at different operating temperatures (90 to 120 K) to induce radiation damage. Basic scientific as well as engineering data on detector performance were collected. During the incremental irradiation, the peak shape produced by the detectors showed a significant change from a Gaussian shape to a broad complex structure. After the irradiation all detectors were thoroughly characterized by measuring many parameters. To remove the accumulated radiation damage the detectors were stepwise annealed at temperatures T {le} 110{degrees}C while staying specially designed cryostats. This paper shows that n-type HPGe detectors can be used in charged particles environments as high-energy resolution devices until a certain level of radiation damage is accumulated and that the damage can be removed at moderate annealing temperatures and the detector returned to operating condition.

  4. Monolithic active pixel radiation detector with shielding techniques

    DOEpatents

    Deptuch, Grzegorz W.

    2016-09-06

    A monolithic active pixel radiation detector including a method of fabricating thereof. The disclosed radiation detector can include a substrate comprising a silicon layer upon which electronics are configured. A plurality of channels can be formed on the silicon layer, wherein the plurality of channels are connected to sources of signals located in a bulk part of the substrate, and wherein the signals flow through electrically conducting vias established in an isolation oxide on the substrate. One or more nested wells can be configured from the substrate, wherein the nested wells assist in collecting charge carriers released in interaction with radiation and wherein the nested wells further separate the electronics from the sensing portion of the detector substrate. The detector can also be configured according to a thick SOA method of fabrication.

  5. Nuclear radiation-warning detector that measures impedance

    DOEpatents

    Savignac, Noel Felix; Gomez, Leo S; Yelton, William Graham; Robinson, Alex; Limmer, Steven

    2013-06-04

    This invention is a nuclear radiation-warning detector that measures impedance of silver-silver halide on an interdigitated electrode to detect light or radiation comprised of alpha particles, beta particles, gamma rays, X rays, and/or neutrons. The detector is comprised of an interdigitated electrode covered by a layer of silver halide. After exposure to alpha particles, beta particles, X rays, gamma rays, neutron radiation, or light, the silver halide is reduced to silver in the presence of a reducing solution. The change from the high electrical resistance (impedance) of silver halide to the low resistance of silver provides the radiation warning that detected radiation levels exceed a predetermined radiation dose threshold.

  6. Recent progress in the development of transition radiation detectors

    NASA Technical Reports Server (NTRS)

    Cherry, M. L.; Hartmann, G.; Prince, T.; Mueller, D.

    1978-01-01

    Transition-radiation detectors have been used in several recent cosmic-ray experiments for particle identification at energies E/mc-squared of at least about 1000. In order to optimize the design of such detectors and to use them for energy measurements over a broad energy range, it is necessary to study the details of the transition-radiation process. Experimental results are presented which test the theoretical predictions more precisely and at higher energies than in previous experiments. The dependence of the interference pattern in the frequency spectrum on the radiator dimensions is studied, and the total transition-radiation yield generated by electrons in various radiators is measured over a very wide energy range, from 5 to 300 GeV. The significance of the individual experimental parameters in the design of transition radiation detectors is reviewed, and the characteristics of transition-radiation detectors capable of measuring particle energies over the range E/mc-squared from about 300 to 100,000 are discussed.

  7. Incident position detector for radiation beam

    SciTech Connect

    Koumura, N.; Niwa, Y.; Ogino, Y.; Ohwada, M.; Tanaka, K.

    1983-05-17

    Disclosed is a device for detecting an incident position of radiation beam, particularly, its center or center of gravity. The detecting device is provided with a scanning type radiation beam sensing device having a plurality of radiation sensing elements in a linear arrangement, and the sensing device is disposed in such a manner that its radiation receiving surface may be substantially coincided with an incident surface of the radiation beam to be detected. When reading an output from the sensing device, the time sequential output signals from the sensing device are split into predetermined sections, and the signal quantities among the sections are compared. In this way, the position of the center or the center of gravity of the radiation beam on the incident surface is detected with the position corresponding to a split point of the signals as the reference.

  8. Modernization of radiation detectors thickness gauge

    NASA Astrophysics Data System (ADS)

    Artemyev, I. B.; Artemiev, B. V.; Vladimirov, Yu L.; Vladimirov, L. V.

    2017-02-01

    Currently, there is a tendency in the industry by refusing isotopic radiation sources in favor of the X-ray machines. This is due to several factors, main among them radiation safety and maintenance problems, movement and disposal of gamma-ray sources. Compared to the gamma ray-source these devices have a number of disadvantages. The spectral energy distribution and therefore change in the spectrum as the radiation passes through the controlled material. Instability of radiation compared with gamma sources. All this complicates the use of X-ray sources for the materials thickness measurement with different chemical compositions.

  9. Research of radiation resistant Er doped fiber for space detection

    NASA Astrophysics Data System (ADS)

    Huang, Jian-ping; Zhang, Ge; Wang, Pu-pu; Li, Run-dong; Jiang, Cong; Xiao, Chun

    2016-11-01

    In this paper, erbium doped fibers for space detection are researched for feature of radiation resistance. Fibers with different coated carbon are hydrogen loaded and radiated, and too thick of carbon layer around fiber would not bring best radiation-resistant performance, since thick carbon layer would make the entering of hydrogen difficult. We also research the duration of saturated hydrogen loading under the high and low temperature respectively, and it's found that the fibers' photo sensitivities tend to be flat after some days. Hydrogen is reloaded into the fibers which have been loaded once, this help us to deep understand the mechanism of hydrogen loading for the fiber gratings. Loss and wave width changes are also researched under different radiation dose.

  10. RADIATION EFFECTS ON EPOXY CARBON FIBER COMPOSITE

    SciTech Connect

    Hoffman, E

    2008-05-30

    Carbon fiber-reinforced bisphenol-A epoxy matrix composite was evaluated for gamma radiation resistance. The composite was exposed to total gamma doses of 50, 100, and 200 Mrad. Irradiated and baseline samples were tested for tensile strength, hardness and evaluated using FTIR (Fourier transform infrared) spectroscopy and DSC (differential scanning calorimetry) for structural changes. Scanning electron microscopy was used to evaluate microstructural behavior. Mechanical testing of the composite bars revealed no apparent change in modulus, strain to failure, or fracture strength after exposures. However, testing of only the epoxy matrix revealed changes in hardness, thermal properties, and FTIR results with increasing gamma irradiation. The results suggest the epoxy within the composite can be affected by exposure to gamma irradiation.

  11. Radiation hardness of three-dimensional polycrystalline diamond detectors

    SciTech Connect

    Lagomarsino, Stefano Sciortino, Silvio; Bellini, Marco; Corsi, Chiara; Cindro, Vladimir; Kanxheri, Keida; Servoli, Leonello; Morozzi, Arianna; Passeri, Daniele; Schmidt, Christian J.

    2015-05-11

    The three-dimensional concept in particle detection is based on the fabrication of columnar electrodes perpendicular to the surface of a solid state radiation sensor. It permits to improve the radiation resistance characteristics of a material by lowering the necessary bias voltage and shortening the charge carrier path inside the material. If applied to a long-recognized exceptionally radiation-hard material like diamond, this concept promises to pave the way to the realization of detectors of unprecedented performances. We fabricated conventional and three-dimensional polycrystalline diamond detectors, and tested them before and after neutron damage up to 1.2 ×10{sup 16 }cm{sup −2}, 1 MeV-equivalent neutron fluence. We found that the signal collected by the three-dimensional detectors is up to three times higher than that of the conventional planar ones, at the highest neutron damage ever experimented.

  12. Three-axis asymmetric radiation detector system

    DOEpatents

    Martini, Mario Pierangelo; Gedcke, Dale A.; Raudorf, Thomas W.; Sangsingkeow, Pat

    2000-01-01

    A three-axis radiation detection system whose inner and outer electrodes are shaped and positioned so that the shortest path between any point on the inner electrode and the outer electrode is a different length whereby the rise time of a pulse derived from a detected radiation event can uniquely define the azimuthal and radial position of that event, and the outer electrode is divided into a plurality of segments in the longitudinal axial direction for locating the axial location of a radiation detection event occurring in the diode.

  13. Chemical imaging of cotton fibers using an infrared microscope and a focal-plane array detector

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In this presentation, the chemical imaging of cotton fibers with an infrared microscope and a Focal-Plane Array (FPA) detector will be discussed. Infrared spectroscopy can provide us with information on the structure and quality of cotton fibers. In addition, FPA detectors allow for simultaneous spe...

  14. Low dose radiation damage effects in silicon strip detectors

    NASA Astrophysics Data System (ADS)

    Wiącek, P.; Dąbrowski, W.

    2016-11-01

    The radiation damage effects in silicon segmented detectors caused by X-rays have become recently an important research topic driven mainly by development of new detectors for applications at the European X-ray Free Electron Laser (E-XFEL). However, radiation damage in silicon strip is observed not only after extreme doses up to 1 GGy expected at E-XFEL, but also at doses in the range of tens of Gy, to which the detectors in laboratory instruments like X-ray diffractometers or X-ray spectrometers can be exposed. In this paper we report on investigation of radiation damage effects in a custom developed silicon strip detector used in laboratory diffractometers equipped with X-ray tubes. Our results show that significant degradation of detector performance occurs at low doses, well below 200 Gy, which can be reached during normal operation of laboratory instruments. Degradation of the detector energy resolution can be explained by increasing leakage current and increasing interstrip capacitance of the sensor. Another observed effect caused by accumulation of charge trapped in the surface oxide layer is change of charge division between adjacent strips. In addition, we have observed unexpected anomalies in the annealing process.

  15. Radiation detectors as surveillance monitors for IAEA safeguards

    SciTech Connect

    Fehlau, P.E.; Dowdy, E.J.

    1980-10-01

    Radiation detectors used for personnel dosimetry are examined for use under IAEA Safeguards as monitors to confirm the passage or nonpassage (YES/NO) of plutonium-bearing nuclear material at barrier penetrations declared closed. In this application where backgrounds are ill defined, no advantage is found for a particular detector type because of intrinsic efficiency. Secondary considerations such as complexity, ease of tamper-proofing, and ease of readout are used to recommend specific detector types for routine monitoring and for data-base measurements. Recommendations are made for applications, data acquisition, and instrument development.

  16. R&D for Better Nuclear Security: Radiation Detector Materials

    SciTech Connect

    Kammeraad, J E

    2009-04-02

    I am going to talk about the need for better materials for radiation detectors. I believe that government investment in this area can enable transformational technology change that could impact domestic nuclear security and also national nuclear security in some very positive and powerful ways. I'm not going to give you a lecture on how radiation detectors work, but I am going to tell you a bit about today's off-the-shelf technology and why it is not sufficient, what we need, and what security benefit you could get from improvements. I think we're at a critical point in time for some very impactful investments. In particular I'm going to focus on the use of gamma-ray radiation detectors at ports of entry. Not long before DHS was formed, Congress decreed that counter measures against the delivery of radiological and nuclear threats would be put in place at US ports of entry, under the authority of US Customs (later Customs and Border Protection in DHS). This included the screening of all cars and trucks passing through a port of entry. Existing off-the-shelf radiation detectors had to be selected for this purpose. Plans were made to make the most of the available technologies, but there are some inherent limitations of these detectors, plus the operational setting can bring out other limitations.

  17. Effect of temperature on silicon PIN photodiode radiation detectors

    NASA Astrophysics Data System (ADS)

    Kim, Han Soo; Jeong, Manhee; Kim, Young Soo; Ha, Jang Ho; Cho, Seong Yeon

    2014-03-01

    One of the noise sources of a semiconductor radiation detector is thermal noise, which degrades the performance, such as the energy resolution and unexpected random pulse signals. In this study, PIN photodiode radiation detectors, with different active areas were designed and fabricated for an experimental comparison of the energy resolutions for different temperatures and capacitances by using a Ba-133 calibration gamma-ray source. The experimental temperature was approximately in the range from -7 to 24 °C and was controlled by using a peltier device. The design considerations and the electrical characteristics, such as the I-V and the C-V characteristics, are also addressed.

  18. Micro-Fabricated Solid-State Radiation Detectors for Active Personal Dosimetry

    NASA Technical Reports Server (NTRS)

    Wrbanek, John D.; Wrbanek, Susan Y.; Fralick, Gustave C.; Chen, Liang-Yu

    2007-01-01

    Active radiation dosimetry is important to human health and equipment functionality for space applications outside the protective environment of a space station or vehicle. This is especially true for long duration missions to the moon, where the lack of a magnetic field offers no protection from space radiation to those on extravehicular activities. In order to improve functionality, durability and reliability of radiation dosimeters for future NASA lunar missions, single crystal silicon carbide devices and scintillating fiber detectors are currently being investigated for applications in advanced extravehicular systems. For many years, NASA Glenn Research Center has led significant efforts in silicon carbide semiconductor technology research and instrumentation research for sensor applications under extreme conditions. This report summarizes the technical progress and accomplishments toward characterization of radiation-sensing components for the recommendation of their fitness for advanced dosimetry development.

  19. Three-dimensional photoacoustic imaging using fiber-based line detectors

    NASA Astrophysics Data System (ADS)

    Grün, Hubert; Berer, Thomas; Burgholzer, Peter; Nuster, Robert; Paltauf, Günther

    2010-03-01

    For photoacoustic imaging, usually point-like detectors are used. As a special sensing technology for photoacoustic imaging, integrating detectors have been investigated that integrate the acoustic pressure over an area or line that is larger than the imaged object. Different kinds of optical fiber-based detectors are compared regarding their sensitivity and resolution in three-dimensional photoacoustic tomography. In the same type of interferometer, polymer optical fibers yielded much higher sensitivity than glass fibers. Fabry-Pérot glass-fiber interferometers in turn gave higher sensitivity than Mach-Zehnder-type interferometers. Regarding imaging resolution, the single-mode glass fiber showed the best performance. Last, three-dimensional images of phantoms and insects using a glass-fiber-based Fabry-Pérot interferometer as integrating line detector are presented.

  20. Pulsed radiation-induced attenuation in certain optical fibers

    SciTech Connect

    Weiss, J.D. )

    1992-05-01

    Using the X-ray pulse from the HERMES II simulation machine at Sandia National Laboratories, the pulsed radiation-induced attenuation was measured in two optical fibers considered to be 'nonrad-hard': the 50-micron-core, graded-index fiber from Corning and the plastic (PMMA) fiber from the Mitsubishi Rayon Company. These fibers were exposed to radiation up to doses of 19.5 and 28 krad(Si), respectively. In addition, fits of their post-radiation recovery were made to the geminate recombination model, from which the recombination-rate and generation constants, characteristic of this theory, were determined. These parameters should be useful in determining the response of the fibers to radiation conditions other than those encountered here. 18 refs.

  1. Semiconductor radiation detector with internal gain

    DOEpatents

    Iwanczyk, Jan; Patt, Bradley E.; Vilkelis, Gintas

    2003-04-01

    An avalanche drift photodetector (ADP) incorporates extremely low capacitance of a silicon drift photodetector (SDP) and internal gain that mitigates the surface leakage current noise of an avalanche photodetector (APD). The ADP can be coupled with scintillators such as CsI(Tl), NaI(Tl), LSO or others to form large volume scintillation type gamma ray detectors for gamma ray spectroscopy, photon counting, gamma ray counting, etc. Arrays of the ADPs can be used to replace the photomultiplier tubes (PMTs) used in conjunction with scintillation crystals in conventional gamma cameras for nuclear medical imaging.

  2. Research on radiation detectors, boiling transients, and organic lubricants

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The accomplishments of a space projects research facility are presented. The subjects discussed are: (1) a study of radiation resistant semiconductor devices, (2) synthesis of high temperature organic lubricants, (3) departure from phase equilibrium during boiling transients, (4) effects of neutron irradiation on defect state in tungsten, and (5) determination of photon response function of NE-213 liquid scintillation detectors.

  3. Radiation Response of Emerging High Gain, Low Noise Detectors

    NASA Technical Reports Server (NTRS)

    Becker, Heidi N.; Farr, William H; Zhu, David Q.

    2007-01-01

    Data illustrating the radiation response of emerging high gain, low noise detectors are presented. Ionizing dose testing of silicon internal discrete avalanche photodiodes, and 51-MeV proton testing of InGaAs/InAlAs avalanche photodiodes operated in Geiger mode are discussed.

  4. Mercuric iodide single crystals for nuclear radiation detectors

    SciTech Connect

    Li, W.; Li, Z.; Zhu, S.; Yin, S.; Zhao, B.; Chen, G.; Yin, S.; Yuan, H.; Xu, H.

    1996-06-01

    Large size HgI{sub 2} single crystals were grown using the Modified Temperature Oscillation Method (MTOM) with low dislocation densities in a relatively stable temperature environment. Radiation detectors were fabricated from the single crystals which showed good energy resolution with small polarization. Applications have been found in geological explorations, marine mineral analysis, environment pollution monitoring, industrial material quality assurance, and space explorations.

  5. Evaluation of a digital optical ionizing radiation particle track detector

    SciTech Connect

    Hunter, S.R.

    1987-06-01

    An ionizing radiation particle track detector is outlined which can, in principle, determine the three-dimensional spatial distribution of all the secondary electrons produced by the passage of ionizing radiation through a low-pressure (0.1 to 10 kPa) gas. The electrons in the particle track are excited by the presence of a high-frequency AC electric field, and two digital cameras image the optical radiation produced in electronic excitation collisions of the surroundings gas by the electrons. The specific requirements of the detector for neutron dosimetry and microdosimetry are outlined (i.e., operating conditions of the digital cameras, high voltage fields, gas mixtures, etc.) along with an estimate of the resolution and sensitivity achievable with this technique. The proposed detector is shown to compare favorable with other methods for obtaining the details of the track structure, particularly in the quality of the information obtainable about the particle track and the comparative simplicity and adaptability of the detector for measuring the secondary electron track structure for many forms of ionizing radiation over a wide range of energies.

  6. R&D Studies on Radiation Hard Wavelength Shifting Fiber for CMS Hadronic Endcap Calorimeter Upgrade

    NASA Astrophysics Data System (ADS)

    Neuhaus, John

    2009-11-01

    The Hadronic Endcap (HE) calorimeters of the CMS experiment cover the pseudorapidity range of 1.4 to 3 on both sides of the CMS detector, contributing to superior jet and missing transverse energy resolutions. As the integrated luminosity of the LHC increases, the scintillator tiles used in the CMS Hadronic Endcap calorimeter will lose their efficiency. Here, we propose to replace the scintillator tiles in high radiation area with ``radiation hard'' quartz plates. To increase the light collection efficiency, the generated Cerenkov photons are collected by UV absorbing wavelength shifting (WLS) fibers. Our previous study has shown that quartz plates and plastic wavelength shifting fibers can be used as an effective calorimeter. However there is no radiation hard WLS fiber commercially available. Here we summarize the R&D studies on constructing a radiation hard WLS fiber prototype in University of Iowa CMS Laboratories. The results from the tests performed on quartz fibers treated with p-Terphenyl, as well as the Geant4 simulations of this prototype are presented.

  7. Thermoluminescence characteristics of Ge-doped optical fibers with different dimensions for radiation dosimetry.

    PubMed

    Begum, Mahfuza; Rahman, A K M Mizanur; Abdul-Rashid, H A; Yusoff, Z; Begum, Mahbuba; Mat-Sharif, K A; Amin, Y M; Bradley, D A

    2015-06-01

    Important thermoluminescence (TL) properties of five (5) different core sizes Ge-doped optical fibers have been studied to develop new TL material with better response. These are drawn from same preform applying different speed and tension during drawing phase to produce Ge-doped optical fibers with five (5) different core sizes. The results of the investigations are also compared with most commonly used standard TLD-100 chips (LiF:Mg,Ti) and commercial multimode Ge-doped optical fiber (Yangtze Optical Fiber, China). Scanning Electron Microscope (SEM) and EDX analysis of the fibers are also performed to map Ge distribution across the deposited region. Standard Gamma radiation source in Secondary Standard Dosimetry Lab (SSDL) was used for irradiation covering dose range from 1Gy to 10Gy. The essential dosimetric parameters that have been studied are TL linearity, reproducibility and fading. Prior to irradiation all samples ∼0.5cm length are annealed at temperature of 400°C for 1h period to standardize their sensitivities and background. Standard TLD-100 chips are also annealed for 1h at 400°C and subsequently 2h at 100°C to yield the highest sensitivity. TL responses of these fibers show linearity over a wide gamma radiation dose that is an important property for radiation dosimetry. Among all fibers used in this study, 100μm core diameter fiber provides highest response that is 2.6 times than that of smallest core (20μm core) optical fiber. These fiber-samples demonstrate better response than commercial multi-mode optical fiber and also provide low degree of fading about 20% over a period of fifteen days for gamma radiation. Effective atomic number (Zeff) is found in the range (13.25-13.69) which is higher than soft tissue (7.5) however within the range of human-bone (11.6-13.8). All the fibers can also be re-used several times as a detector after annealing. TL properties of the Ge-doped optical fibers indicate promising applications in ionizing radiation

  8. Three-dimensional architecture for solid state radiation detectors

    DOEpatents

    Parker, Sherwood

    1999-01-01

    A radiation-damage resistant radiation detector is formed on a substrate formed of a material doped with a first conductivity type dopant. The detector includes at least one first electrode formed of first conductivity type dopant, and at least one second electrode that is spaced-apart from the first electrode and formed of a second conductivity type dopant. Each first and second electrode penetrates into the substrate from a substrate surface, and one or more electrodes may penetrate entirely through the substrate, that is traversing from one surface to the other surface. Particulate and/or electromagnetic radiation penetrating at least a surface of the substrate releases electrons and holes in substrate regions. Because the electrodes may be formed entirely through the substrate thickness, the released charges will be a relatively small distance from at least a portion of such an electrode, e.g., a distance less than the substrate thickness. The electrons and/or holes traverse the small distance and are collected by said electrodes, thus promoting rapid detection of the radiation. By providing one or more electrodes with a dopant profile radially graded in a direction parallel to a substrate surface, an electric field results that promotes rapid collection of released electrons and said holes. Monolithic combinations of such detectors may be fabricated including CMOS electronics to process radiation signals.

  9. Three-dimensional architecture for solid state radiation detectors

    DOEpatents

    Parker, S.

    1999-03-30

    A radiation-damage resistant radiation detector is formed on a substrate formed of a material doped with a first conductivity type dopant. The detector includes at least one first electrode formed of first conductivity type dopant, and at least one second electrode that is spaced-apart from the first electrode and formed of a second conductivity type dopant. Each first and second electrode penetrates into the substrate from a substrate surface, and one or more electrodes may penetrate entirely through the substrate, that is traversing from one surface to the other surface. Particulate and/or electromagnetic radiation penetrating at least a surface of the substrate releases electrons and holes in substrate regions. Because the electrodes may be formed entirely through the substrate thickness, the released charges will be a relatively small distance from at least a portion of such an electrode, e.g., a distance less than the substrate thickness. The electrons and/or holes traverse the small distance and are collected by said electrodes, thus promoting rapid detection of the radiation. By providing one or more electrodes with a dopant profile radially graded in a direction parallel to a substrate surface, an electric field results that promotes rapid collection of released electrons and said holes. Monolithic combinations of such detectors may be fabricated including CMOS electronics to process radiation signals. 45 figs.

  10. Multi-directional radiation detector using photographic film

    NASA Astrophysics Data System (ADS)

    Junet, L. K.; Majid, Z. A. Abdul; Sapuan, A. H.; Sayed, I. S.; Pauzi, N. F.

    2014-11-01

    Ionising radiation has always been part of our surrounding and people are continuously exposed to it. Ionising radiation is harmful to human health, thus it is vital to monitor the radiation. To monitor radiation, there are three main points that should be observed cautiously, which are energy, quantity, and direction of the radiation sources. A three dimensional (3D) dosimeter is an example of a radiation detector that provide these three main points. This dosimeter is able to record the radiation dose distribution in 3D. Applying the concept of dose detection distribution, study has been done to design a multi-directional radiation detector of different filter thicknesses. This is obtained by designing a cylinder shaped aluminum filter with several layers of different thickness. Black and white photographic material is used as a radiation-sensitive material and a PVC material has been used as the enclosure. The device is then exposed to a radiation source with different exposure factors. For exposure factor 70 kVp, 16 mAs; the results have shown that optical density (OD) value at 135° is 1.86 higher compared with an OD value at 315° which is 0.71 as the 135° area received more radiation compare to 315° region. Furthermore, with an evidence of different angle of film give different value of OD shows that this device has a multidirectional ability. Materials used to develop this device are widely available in the market, thus reducing the cost of development and making it suitable for commercialisation.

  11. Examination results of the Three Mile Island radiation detector HP-R-212

    SciTech Connect

    Mueller, G M

    1984-01-01

    Area radiation detector HP-R-212 was removed from the Three Mile Island containment building on November 13, 1981. The detector apparently started to fail during November 1979 and by the first part of December 1979 the detector readings had degraded from 1 R/h to 20 mR/h. This report discusses the cause of ailure, detector radiation measurement characteristics, and our estimates of the total gamma radiation dose received by the detector electronics.

  12. Radiation damage effects in Si materials and detectors and rad-hard Si detectors for SLHC

    NASA Astrophysics Data System (ADS)

    Li, Z.

    2009-03-01

    Silicon sensors, widely used in high energy and nuclear physics experiments, suffer severe radiation damage that leads to degradations in sensor performance. These degradations include significant increases in leakage current, bulk resistivity, space charge concentration, and free carrier trapping. For LHC applications, where the total fluence is in the order of 1 × 1015 neq/cm2 for 10 years, the increase in space charge concentration has been the main problem since it can significantly increase the sensor full depletion voltage, causing either breakdown if operated at high biases or charge collection loss if operated at lower biases than full depletion. For LHC Upgrade, or the SLHC, however, whit an increased total fluence up to 1 × 1016 neq/cm2, the main limiting factor for Si detector operation is the severe trapping of free carriers by radiation-induced defect levels. Several new approaches have been developed to make Si detector more radiation hard/tolerant to such ultra-high radiation, including 3D Si detectors, Current-Injected-Diodes (CID) detectors, and Elevated temperature annealing.

  13. Development of a small scintillation detector with an optical fiber for fast neutrons.

    PubMed

    Yagi, T; Unesaki, H; Misawa, T; Pyeon, C H; Shiroya, S; Matsumoto, T; Harano, H

    2011-02-01

    To investigate the characteristics of a reactor and a neutron generator, a small scintillation detector with an optical fiber with ThO(2) has been developed to measure fast neutrons. However, experimental facilities where (232)Th can be used are limited by regulations, and S/N ratio is low because the background counts of this detector are increase by alpha decay of (232)Th. The purpose of this study is to develop a new optical fiber detector for measuring fast neutrons that does not use nuclear material such as (232)Th. From the measured and calculated results, the new optical fiber detector which uses ZnS(Ag) as a converter material together with a scintillator have the highest detection efficiency among several developed detectors. It is applied for the measurement of reaction rates generated from fast neutrons; furthermore, the absolute detection efficiency of this detector was obtained experimentally.

  14. Recent synchrotron radiation microdiffraction experiments on polymer and biopolymer fibers.

    PubMed

    Riekel, C; García Gutiérrez, M C; Gourrier, A; Roth, S

    2003-07-01

    The status of synchrotron radiation (SR) microdiffraction techniques developed at the ID13 beamline of the European Synchrotron Radiation Facility (ESRF) is reviewed for polymer and biopolymer fiber applications. Beam sizes in the micrometer-range have been used to study the local structure of whole fibers such as viscose-rayon or poly(p-phenylene terephthalamide). The possibilities for in situ studies during stretching, extrusion, or indentation will be discussed.

  15. Device for detachably securing a collimator to a radiation detector

    SciTech Connect

    Hanz, G.J.; Jung, G.; Pflaum, M.

    1986-12-16

    A device is described for detachably securing a collimator to a radiation detector, comprising: (a) a first annular groove means secured to the radiation detector; (b) a second annular groove means secured to the collimator; (c) a split ring having a first and second ring ends, the ring being received in the first annular groove means; and (d) a ring diameter control system, including (d1) a first lever system having two ends; (d2) a second lever system having two ends; and (d3) a rotating hub being rotatably secured to the detector head; wherein the first lever system is rotatably mounted with one end linked to the first ring end and with the other end linked to the rotating hub. The second lever system is rotatably mounted with one end linked to the second ring end and with the other end linked to the rotating hub, such that rotation of the rotating hub moves the first and second lever systems in opposite directions thereby moving the first and second ring ends between a first position, in which the split ring is positioned only in the first annular groove means, and a second position, in which the split ring is located in both the first annular groove means and the second annular groove means, thus attaching the collimator to the radiation detector.

  16. A novel structure optical fiber radiation dosimeter for radiotherapy applications

    NASA Astrophysics Data System (ADS)

    Sun, Weimin; Qin, Zhuang; Ma, Yu; Zhao, Wenhui; Hu, Yaosheng; Zhang, Daxin; Chen, Ziyin; Lewis, Elfed

    2016-04-01

    An investigation into a novel in-vivo PMMA (polymethyl methacrylate) fiber-optic dosimeter to monitor the dose of ionizing radiation, both for instantaneous and integrating measurements, for radiotherapy applications is proposed. This fiber sensor is designed as an intracorporal X-ray ionizing sensor to enhance the curative effect of radiotherapy. The fiber-optic dosimeter is made in a PMMA fiber, whose core is micromachined to create a small diameter (0.25 to 0.5 mm) hole at one fiber end. An inorganic scintillating material, terbium-doped gadolinium oxysulfide (Gd2O2S:Tb) is chosen as the sensing material, because it can fluoresce on immediately under exposure of ionizing radiation (X-Rays or electron beam). This sensing material is filled and packaged in the small hole by epoxy resin adhesive. This kind of novel structure dosimeter shows high light coupling efficiency compared with other kind of inorganic scintillation dosimeter. This fiber-optic dosimeter shows good repeatability with a maximum deviation of 0.16%. The testing results of the fiber-optic dosimeter are perfectly proportional to the data of IC with R2 as 0.9999. In addition, the fiber sensor shows excellent isotropic in its radial angular dependence. All the experiments indicate that the fiber-optic dosimeter is properly used for patient in-vivo dosimeter such as brachytherapy applications or intraoperative radiation therapy.

  17. A scintillating plastic fiber tracking detector for neutron and proton imaging and spectroscopy

    NASA Astrophysics Data System (ADS)

    Ryan, J. M.; Castaneda, C. M.; Holslin, D.; Macri, J. R.; McConnell, M. L.; Romero, J. L.; Wunderer, C. B.

    1999-02-01

    We report on a prototype detector system designed to perform imaging and spectroscopy on 20-250MeV neutrons. The detection techniques employed can be applied to measurements in a variety of disciplines including solar and atmospheric physics, radiation therapy and nuclear materials monitoring. The detector measures the energy and direction of neutrons by detecting double neutron-proton scatters and recording images of the ionization tracks of the recoil protons in a densely packed bundle of scintillating plastic fibers stacked in orthogonal layers. The scintillation tracks are detected and imaged by photomultipliers and image intensifier/CCD camera optics. By tracking the recoil protons from individual neutrons, the kinematics of the scatter are determined. This directional information results in a high signal-to-noise measurement. The self-triggering and track imaging features of a prototype for tracking in two dimensions are demonstrated in calibrations with 14-65MeV neutrons, 20-67.5MeV protons, and with cosmic-ray muons. Preliminary results of phantom imaging measurements using a proton beam are also presented. We discuss several applications for this detector technique and outline future development work.

  18. Accuracy of Analog Fiber-Optic Links in Pulsed Radiation Environments

    SciTech Connect

    E. K. Miller, G. S. Macrum, I. J. McKenna, et al.

    2007-12-01

    second case, we present data using a state-of-the-art fiber-optic link for single-shot transmission and recording, fielded at the OMEGA laser facility on high-yield fusion experiments. Gamma reaction history data are measured with a gas Cherenkov detector (GCD) [4], [5] and transmitted by M-Z link to a 12 GHz digitizer. Since radiation effects on the fibers are not above the noise floor, the error analysis for the unfolded data is dominated by the performance of the fast digitizer, the photoreceiver, and the laser.

  19. Characterization of fiber optic Cerenkov radiation sensor for detecting neutrons

    NASA Astrophysics Data System (ADS)

    Jang, K. W.; Yagi, T.; Pyeon, C. H.; Shin, S. H.; Yoo, W. J.; Misawa, T.; Lee, B.

    2013-09-01

    Cerenkov radiation can be observed easily as a shimmer of blue light from the water in boiling- and pressurized-water reactors, or spent fuel storage pools. In this research, we fabricated the fiber-optic Cerenkov radiation sensor using a Gdfoil, rutile crystal and optical fiber for detecting neutrons. Also, the reference sensor for measuring background gammarays was fabricated with the rutile crystal and optical fiber. The neutron fluxes could be obtained by measuring the signal difference between two sensors. To characterize the fiber-optic Cerenkov radiation sensor, we measured neutron fluxes using a Cf-252 neutron source according to depths of polyethylene. As the results, the counts of fiber-optic Cerenkov radiation sensor were higher than those of reference sensor due to additional interactions between Gd-foil and neutrons. Also, the counts of Cerenkov radiation decreased with increasing polyethylene thickness. It is anticipated that the novel and simple fiber-optic Cerenkov radiation sensor using the Cerenkov effect can be widely used to detect the neutrons in hazardous nuclear facilities.

  20. Diamond based detectors for high temperature, high radiation environments

    NASA Astrophysics Data System (ADS)

    Metcalfe, A.; Fern, G. R.; Hobson, P. R.; Smith, D. R.; Lefeuvre, G.; Saenger, R.

    2017-01-01

    Single crystal CVD diamond has many desirable properties as a radiation detector; exceptional radiation hardness and physical hardness, chemical inertness, low Z (close to human tissue, good for dosimetry and transmission mode applications), wide bandgap (high temperature operation with low noise and solar blind), an intrinsic pathway to fast neutron detection through the 12C(n,α)9Be reaction. This combination of radiation hardness, temperature tolerance and ability to detect mixed radiation types with a single sensor makes diamond particularly attractive as a detector material for harsh environments such as nuclear power station monitoring (fission and fusion) and oil well logging. Effective exploitation of these properties requires the development of a metallisation scheme to give contacts that remain stable over extended periods at elevated temperatures (up to 250°C in this instance). Due to the cost of the primary detector material, computational modelling is essential to best utilise the available processing methods for optimising sensor response through geometry and conversion media configurations and to fully interpret experimental data. Monte Carlo simulations of our diamond based sensor have been developed, using MCNP6 and FLUKA2011, assessing the sensor performance in terms of spectral response and overall efficiency as a function of the detector and converter geometry. Sensors with varying metallisation schemes for high temperature operation have been fabricated at Brunel University London and by Micron Semiconductor Limited. These sensors have been tested under a varied set of conditions including irradiation with fast neutrons and alpha particles at high temperatures. The presented study indicates that viable metallisation schemes for high temperature contacts have been successfully developed and the modelling results, supported by preliminary experimental data from partners, indicate that the simulations provide a reasonable representation of

  1. Perfluorinated polymer optical fiber for gamma radiation monitoring

    NASA Astrophysics Data System (ADS)

    Stajanca, P.; Mihai, L.; Sporea, D.; Negut, D.; Krebber, K.

    2016-05-01

    The sensitivity of low-loss perfluorinated polymer optical fiber (PF-POF) to gamma radiation is investigated for on-line radiation monitoring purposes. The radiation-induced attenuation (RIA) of a commercial PF-POF based on Cytop material is measured in the visible spectral region. The fiber RIA shows strong wavelength dependence with rapid increase towards the blue side of the spectrum. The wide range of radiation sensitivities is available via careful selection of appropriate monitoring wavelength. The accessible sensitivities span from 1.6 +/- 0.2 dBm-1/kGy measured at 750 nm to 18.3 +/- 0.7 dBm-1/kGy measured at 420 nm. The fairly high radiation sensitivity as well as its wide tunability makes the fiber a promising candidate for a broad range of applications.

  2. Studies of high temperature superconductors as radiation detectors

    NASA Astrophysics Data System (ADS)

    Qiu, A.; Bhattarai, A. R.; Dahlberg, E. D.; Khan, M. Asif; Moloni, K.; van Hove, James M.

    1992-12-01

    Both DyBaCuO (DBCO) and YBaCuO (YBCO) films deposited on a variety of substrates have been investigated for their applicability as detectors of high frequency radiation. Both 10 GHz and infrared radiation (IR) were used as the high frequency radiation source. The measurements consisted of monitoring the temperature dependent resistance of superconducting films both in the presence and absence of radiation. This investigation shows that because the superconducting transition temperature is sensitive to the magnitude of the current in the film, the temperature dependence of the bolometric response is slightly tunable. In addition, effects of radiation on the current voltage characteristics below T superconducting were studied. This study found that films in this regime could also serve as radiation detectors. The substrates used included MgO, SiO, LaAlO(subscript 3), and SrTiO(subscript 3). The results obtained were independent of the substrate except for the width of the resistive transition. Disorder in the films as characterized by the resistive transition, affected the microwave more than the IR response.

  3. Comparison of gamma-ray detectors: Scintillators, scintillating fibers, and semiconductors

    SciTech Connect

    Moss, C.E.

    1994-12-31

    New scintillators that have advantages relative to NaI(Tl) and BGO include GSO, LSO, YAP, and BaF{sub 2}. GSO, for example, is very radiation hard, and BaF{sub 2} is very fast. Scintillating fibers, which allow good spatial resolution and complex geometries, have been used extensively in high energy physics, but they can also be used at lower energies. Semiconductors such as germanium, silicon, CdTe, CdZnTe, and HgI{sub 2} can provide good resolution. The proliferation of types has made selection of a gamma-ray detector for a particular application difficult. The authors compare the different types and give examples of choices that have been made for laboratory experiments, portable instruments, and space applications.

  4. Multipurpose High Sensitivity Radiation Detector: Terradex

    NASA Astrophysics Data System (ADS)

    Alpat, Behcet; Aisa, Damiano; Bizzarri, Marco; Blasko, Sandor; Esposito, Gennaro; Farnesini, Lucio; Fiori, Emmanuel; Papi, Andrea; Postolache, Vasile; Renzi, Francesca; Ionica, Romeo; Manolescu, Florentina; Ozkorucuklu, Suat; Denizli, Haluk; Tapan, Ilhan; Pilicer, Ercan; Egidi, Felice; Moretti, Cesare; Dicola, Luca

    2007-05-01

    Terradex project aims to realise an accurate and programmable multiparametric tool which will measure relevant physical quantities such as observation time, energy and type of all decay products of three naturally occurring decay chains of uranium and thorium series present in nature as well as the decay products of man-made radioactivity. The measurements described in this work are based on the performance tests of the first version of an instrument that is designed to provide high counting accuracy, by introducing self-triggering, delayed time-coincidence technique, of products of a given decay chain. In order to qualify the technique and to calibrate the Terradex, a 222Rn source is used. The continuous and accurate monitoring of radon concentration in air is realised by observing the alpha and beta particles produced by the decay of 222Rn and its daughters and tag each of them with a precise occurrence time. The validity of delayed coincident technique by using the state of the art electronics with application of novel data sampling and analysis methods are discussed. The flexibility of sampling protocols and the advantages of online calibration capability to achieve the highest level of precision in natural and man-made radiation measurements are also described.

  5. Radiation Curing of Natural Fiber Composite

    NASA Astrophysics Data System (ADS)

    Liu, Xueyuan

    This research is a study of the process and feasibility of applying UV to cure natural and recycled fiber composites. The influence of HEMA on the water absorption and mechanical properties of the composites also investigated. Results show that UV curing is feasible in the manufacture of natural and recycle fiber composites. HEMA significantly improved the water resistance of the composite. HEMA-treated natural and recycled fiber composites have better bending strength after water impregnation, than non-treated composites.

  6. Fiber Bragg grating photoacoustic detector for liquid chromatography.

    PubMed

    Yang, Qingxin; Loock, Hans-Peter; Kozin, Igor; Pedersen, David

    2008-11-01

    Fiber Bragg Gratings (FBGs) are known to be sensitive acoustic transducers and have previously been used for the photoacoustic detection of small solid samples. Here, we demonstrate the use of an FBG as an on-line detector for liquid chromatography. The FBG was inserted into a silica capillary and the photoacoustic response from the effluent was generated by a 10 ns pulsed laser. The acoustic pulse was quantified by the FBG through a characteristic change in the reflection spectrum. Good repeatability and linear response were obtained over three orders of magnitude (R(2) > 0.99), and the limit of detection of Coumarin 440 was determined to be 5 microM. The technique was successfully coupled to high performance liquid chromatography and applied to on-line analysis of a three-compound solution. Photoacoustic detection in liquid chromatography using FBGs is a label-free method, which can be applied to the detection of any chromogenic compound irrespective of its fluorogenic properties. It is a simple, inexpensive, and inherently micron-sized technique, insensitive to electromagnetic interference.

  7. Charge transport properties of CdMnTe radiation detectors

    SciTech Connect

    Kim K.; Rafiel, R.; Boardman, M.; Reinhard, I.; Sarbutt, A.; Watt, G.; Watt, C.; Uxa, S.; Prokopovich, D.A.; Belas, E.; Bolotnikov, A.E.; James, R.B.

    2012-04-11

    Growth, fabrication and characterization of indium-doped cadmium manganese telluride (CdMnTe)radiation detectors have been described. Alpha-particle spectroscopy measurements and time resolved current transient measurements have yielded an average charge collection efficiency approaching 100 %. Spatially resolved charge collection efficiency maps have been produced for a range of detector bias voltages. Inhomogeneities in the charge transport of the CdMnTe crystals have been associated with chains of tellurium inclusions within the detector bulk. Further, it has been shown that the role of tellurium inclusions in degrading chargecollection is reduced with increasing values of bias voltage. The electron transit time was determined from time of flight measurements. From the dependence of drift velocity on applied electric field the electron mobility was found to be n = (718 55) cm2/Vs at room temperature.

  8. Effects of gamma radiation on perfluorinated polymer optical fibers

    NASA Astrophysics Data System (ADS)

    Stajanca, Pavol; Mihai, Laura; Sporea, Dan; Neguţ, Daniel; Sturm, Heinz; Schukar, Marcus; Krebber, Katerina

    2016-08-01

    The paper presents the first complex study of gamma radiation effects on a low-loss perfluorinated polymer optical fiber (PF-POF) based on Cytop® polymer. Influence of gamma radiation on fiber's optical, mechanical and climatic performance is investigated. The radiation-induced attenuation (RIA) in the visible and near-infrared region (0.4 μm-1.7 μm) is measured and its origins are discussed. Besides attenuation increase, radiation is also shown to decrease the thermal degradation stability of the fiber and to increase its susceptibility to water. With regard to complex fiber transmission performance upon irradiation, the optimal operation wavelength region of PF-POF-based systems intended for use in radiation environments is determined to be around 1.1 μm. On the other hand, the investigated fiber holds potential for low-cost RIA-based optical fiber dosimetry applications with sensitivity as high as 260 dBm-1/kGy in the visible region.

  9. Liquid cooled fiber thermal radiation receiver

    DOEpatents

    Butler, Barry L.

    1987-01-01

    A radiation-to-thermal receiver apparatus for collecting radiation and converting it to thermal energy is disclosed. The invention includes a fibrous mat material which captures radiation striking the receiver. Captured radiation is removed from the fibrous mat material by a transparent fluid within which the material is bathed.

  10. Liquid cooled fiber thermal radiation receiver

    DOEpatents

    Butler, B.L.

    1985-03-29

    A radiation-to-thermal receiver apparatus for collecting radiation and converting it to thermal energy is disclosed. The invention includes a fibrous mat material which captures radiation striking the receiver. Captured radiation is removed from the fibrous mat material by a transparent fluid within which the material is bathed.

  11. Modelling radiation loads to detectors in a SNAP mission.

    PubMed

    Mokhov, N V; Rakhno, I L; Striganov, S I; Peterson, T J

    2005-01-01

    In order to investigate the degradation of optical detectors of the Supernova Acceleration Project (SNAP) space mission because of irradiation, a three-dimensional model of the satellite has been developed. A realistic radiation environment at the satellite orbit, including both galactic cosmic rays and cosmic ray trapped in radiation belts, has been taken into account. The modelling has been performed with the MARS14 Monte Carlo code. In a current design, the main contribution to dose accumulated in the photo-detectors is shown to be due to trapped protons. The contribution of primary alpha particles is estimated. Predicted performance degradation for the photodetector for a four-year space mission is 40% and this can be reduced further by means of shielding optimisation.

  12. Radiation Tolerance of Aluminum Microwave Kinetic Inductance Detector

    NASA Astrophysics Data System (ADS)

    Karatsu, K.; Dominjon, A.; Fujino, T.; Funaki, T.; Hazumi, M.; Irie, F.; Ishino, H.; Kida, Y.; Matsumura, T.; Mizukami, K.; Naruse, M.; Nitta, T.; Noguchi, T.; Oka, N.; Sekiguchi, S.; Sekimoto, Y.; Sekine, M.; Shu, S.; Yamada, Y.; Yamashita, T.

    2016-08-01

    Microwave kinetic inductance detector (MKID) is one of the candidates of focal plane detector for future satellite missions such as LiteBIRD. For the space use of MKIDs, the radiation tolerance is one of the challenges to be characterized prior to the launch. Aluminum (Al) MKIDs with 50 nm thickness on silicon substrate and on sapphire substrate were irradiated with a proton beam of 160 MeV at the heavy ion medical accelerator in Chiba. The total water-equivalent absorbed dose was ˜ 10 krad which should simulate the worst radiation absorption of 5 years observation at the Lagrange point L2. We measured characteristics of these MKIDs before and after the irradiation. We found no significant changes on resonator quality factor, responsivity, and recombination time of quasi-particles. The change on electrical noise equivalent power was also evaluated, and no significant increase was found at the noise level of O(10^{-18}) W/√{ Hz }.

  13. Cadmium selenide: a promising novel room temperature radiation detector

    SciTech Connect

    Burger, A.; Schieber, M.; Shilo, I.

    1983-02-01

    Large single crystals of CdSe weighing about 30g were grown by the vertical unseeded vapor growth technique at a linear growth rate of 5mm/day and a temperature gradient of 10/sup 0/C/cm. Crystal perfection and homogeneity were evaluated by Laue X-ray diffraction, etch pit density, SEM and microprobe analysis methods. The dark resistivity of the as-grown and the heat treated crystal was about 1..cap omega..cm and 10/sup 12/..cap omega..cm respectively. Slices were used to fabricate room temperature detectors for nuclear radiation energy. The detectors showed high efficiency and stability as a function of time for radiation sources from 10KeV to 660KeV.

  14. Modeling radiation loads to detectors in a SNAP mission

    SciTech Connect

    Nikolai V. Mokhov et al.

    2004-05-12

    In order to investigate degradation of optical detectors of the Supernova Acceleration Project (SNAP) space mission due to irradiation, a three-dimensional model of the satellite has been developed. Realistic radiation environment at the satellite orbit, including both galactic and trapped in radiation belts cosmic rays, has been taken into account. The modeling has been performed with the MARS14 Monte Carlo code. In a current design, the main contribution to dose accumulated in the photodetectors is shown to be due to trapped protons. A contribution of primary {alpha}-particles is estimated. Predicted performance degradation for the photo-detector for a 4-year space mission is 40% and can be reduced further by means of shielding optimization.

  15. Experiences with radiation portal detectors for international rail transport

    NASA Astrophysics Data System (ADS)

    Stromswold, D. C.; McCormick, K.; Todd, L.; Ashbaker, E. D.; Evans, J. C.

    2006-08-01

    Radiation detectors monitored trains at two international borders to evaluate the performance of NaI(Tl) and plastic (polyvinyltoluene: PVT) gamma-ray detectors to characterize rail cargo. The detectors included a prototype NaI(Tl) radiation-portal-monitor panel having four large detectors (10-cm × 10-cm × 41-cm) and a PVT panel with a 41 cm × 173 cm × 3.8-cm detector. Spectral data from the NaI(Tl) and PVT detectors were recorded. Of particular emphasis was the identification of naturally occurring radioactive material (NORM) and the resultant frequency of nuisance alarms. For rail monitoring, the difficulty in stopping trains to perform secondary inspection on alarming cars creates a need for reliable identification of NORM during initial screening. Approximately 30 trains were monitored, and the commodities in individual railcars were ascertained from manifest information. At one test site, the trains carried inter-modal containers that had been unloaded from ships, and at the other site, the trains contained bulk cargo in tanker cars and hopper cars or individual items in boxcars or flatbeds. NORM encountered included potash, liquefied petroleum gas, fireworks, televisions, and clay-based products (e.g., pottery). Analysis of the spectral data included the use of the template-fitting portion of the program GADRAS developed at Sandia National Laboratories. For most of the NORM, the NaI(Tl) data produced a correct identification of the radionuclides present in the railcars. The same analysis was also used for PVT data in which the spectral information (no peaks but only gradual spectral changes including Compton edges) was limited. However, the PVT analysis provided correct identification of 40K and 226Ra in many cases.

  16. Experiences with radiation portal detectors for international rail transport

    SciTech Connect

    Stromswold, David C.; McCormick, Kathleen R.; Todd, Lindsay C.; Ashbaker, Eric D.; Evans, J. C.

    2006-08-30

    Radiation detectors monitored trains at two international borders to evaluate the performance of NaI(Tl) and plastic (polyvinyltoluene: PVT) gamma-ray detectors to characterize rail cargo. The detectors included a prototype NaI(Tl) radiation-portal-monitor panel having four large detectors (10-cm × 10-cm × 41-cm) and a PVT panel with a 41 cm × 173 cm × 3.8-cm detector. Spectral data from the NaI(Tl) and PVT detectors were recorded. Of particular emphasis was the identification of naturally occurring radioactive material (NORM) and the resultant frequency of nuisance alarms. For rail monitoring, the difficulty in stopping trains to perform secondary inspection on alarming cars creates a need for reliable identification of NORM during initial screening. Approximately 30 trains were monitored, and the commodities in individual railcars were ascertained from manifest information. At one test site the trains carried inter-modal containers that had been unloaded from ships, and at the other site the trains contained bulk cargo or individual items in boxcars or flatbeds. NORM encountered included potash, liquefied petroleum gas, fireworks, televisions, and clay-based products (e.g., pottery). Analysis of the spectral data included the use of the template-fitting program GADRAS/FitToDB from Sandia National Laboratories. For much of the NORM the NaI(Tl) data produced a correct identification of the radionuclides present in the railcars. The same analysis was also used for PVT data in which the spectral information (no peaks but only gradual spectral changes including Compton edges) was limited. However, the PVT analysis provided correct identification of 40K and 226Ra in many cases.

  17. Calibration of the active radiation detector for Spacelab-One

    NASA Technical Reports Server (NTRS)

    1982-01-01

    The flight models of the active radiation detector (ARD) for the ENV-01 environmental monitor were calibrated using gamma radiation. Measured sensitivities of the ion chambers were 6.1 + or - 0.3 micron rad per count for ARD S/N1, and 10.4 + or - 0.5 micron rad per count for ARD S/N2. Both were linear over the measured range 0.10 to 500 m/rad hour. The particle counters (proportional counters) were set to respond to approximately 85% of minimum ionizing particles of unit charge passing through them. These counters were also calibrated in the gamma field.

  18. A precision synchrotron radiation detector using phosphorescent screens

    SciTech Connect

    Jung, C.K.; Lateur, M.; Nash, J.; Tinsman, J. ); Butler, J. ); Wormser, G. . Lab. de l'Accelerateur Lineaire); Levi, M.; Rouse, F. )

    1990-01-01

    A precision detector to measure synchrotron radiation beam positions has been designed and installed as part of beam energy spectrometers at the Stanford Linear Collider (SLC). The distance between pairs of synchrotron radiation beams is measured absolutely to better than 28 {mu}m on a pulse-to-pulse basis. This contributes less than 5 MeV to the error in the measurement of SLC beam energies (approximately 50 GeV). A system of high-resolution video cameras viewing precisely aligned fiducial wire arrays overlaying phosphorescent screens has achieved this accuracy. 3 refs., 5 figs., 1 tab.

  19. A Silicon detector system on carbon fiber support at small radius

    SciTech Connect

    Marvin E. Johnson

    2004-04-28

    The design of a silicon detector for a p{bar p} collider experiment will be described. The detector uses a carbon fiber support structure with sensors positioned at small radius with respect to the beam. A brief overview of the mechanical design is given. The emphasis is on the electrical characteristics of the detector. General principles involved in grounding systems with carbon fiber structures will be covered. The electrical characteristics of the carbon fiber support structure will be presented. Test results imply that carbon fiber must be regarded as a conductor for the frequency region of interest of 10 to 100 MHz. No distinction is found between carbon fiber and copper. Performance results on noise due to pick-up through the low mass fine pitch cables carrying the analogue signals and floating metal is discussed.

  20. Detecting ionizing radiation with optical fibers down to biomedical doses

    NASA Astrophysics Data System (ADS)

    Avino, S.; D'Avino, V.; Giorgini, A.; Pacelli, R.; Liuzzi, R.; Cella, L.; De Natale, P.; Gagliardi, G.

    2013-10-01

    We report on a passive ionizing radiation sensor based on a fiber-optic resonant cavity interrogated by a high resolution interferometric technique. After irradiation in clinical linear accelerators, we observe significant variations of the fiber thermo-optic coefficient. Exploiting this effect, we demonstrate an ultimate detection limit of 160 mGy with an interaction volume of only 6 × 10-4 mm3. Thanks to its reliability, compactness, and sensitivity at biomedical dose levels, our system lends itself to real applications in radiation therapy procedures as well as in radiation monitoring and protection in medicine, aerospace, and nuclear power plants.

  1. Simple classical model for Fano statistics in radiation detectors

    NASA Astrophysics Data System (ADS)

    Jordan, David V.; Renholds, Andrea S.; Jaffe, John E.; Anderson, Kevin K.; René Corrales, L.; Peurrung, Anthony J.

    2008-02-01

    A simple classical model that captures the essential statistics of energy partitioning processes involved in the creation of information carriers (ICs) in radiation detectors is presented. The model pictures IC formation from a fixed amount of deposited energy in terms of the statistically analogous process of successively sampling water from a large, finite-volume container ("bathtub") with a small dipping implement ("shot or whiskey glass"). The model exhibits sub-Poisson variance in the distribution of the number of ICs generated (the "Fano effect"). Elementary statistical analysis of the model clarifies the role of energy conservation in producing the Fano effect and yields Fano's prescription for computing the relative variance of the IC number distribution in terms of the mean and variance of the underlying, single-IC energy distribution. The partitioning model is applied to the development of the impact ionization cascade in semiconductor radiation detectors. It is shown that, in tandem with simple assumptions regarding the distribution of energies required to create an (electron, hole) pair, the model yields an energy-independent Fano factor of 0.083, in accord with the lower end of the range of literature values reported for silicon and high-purity germanium. The utility of this simple picture as a diagnostic tool for guiding or constraining more detailed, "microscopic" physical models of detector material response to ionizing radiation is discussed.

  2. Radiation Testing of IR Detectors for WFC3

    NASA Astrophysics Data System (ADS)

    Hill, R. J.; Waczynski, A.; Johnson, S. D.; Marshall, P.; Marshall, C.; Foltz, R.; Kimble, R. A.

    2005-12-01

    The near-IR channel of Wide Field Camera 3, an instrument being developed for installation onto the Hubble Space Telescope, employs a Rockwell Scientific Company 1K x 1K HgCdTe detector array hybridized to a Hawaii-1R multiplexer. Radiation testing of test detectors showed that the WFC3 detectors do not exhibit a post-SAA glow of the sort seen in the NICMOS detectors. However, an anomalously high background was observed during the irradiation in the proton beam. This background goes away promptly when the beam is turned off. Subsequent testing and analysis revealed that the background arises due to emission of photons from within the CdZnTe detector substrate at the blue transmission edge of the substrate material. Further testing of devices with the substrate removed show no excess background signal. These results lead to a recommendation that the CdZnTe substrate material should be removed for space applications which require the ability to detect faint objects.

  3. [Influence of Detector Radiation Damage on CR Mammography Quality Control].

    PubMed

    Moriwaki, Atsumi; Ishii, Mie; Terazono, Shiho; Arao, Keiko; Ishii, Rie; Sanada, Taizo; Yoshida, Akira

    2016-05-01

    Recently, radiation damage to the detector apparatus employed in computed radiography (CR) mammography has become problematic. The CR system and the imaging plate (IP) applied to quality control (QC) program were also used in clinical mammography in our hospital, and the IP to which radiation damage has occurred was used for approximately 5 years (approximately 13,000 exposures). We considered using previously acquired QC image data, which is stored in a server, to investigate the influence of radiation damage to an IP. The mammography unit employed in this study was a phase contrast mammography (PCM) Mermaid (KONICA MINOLTA) system. The QC image was made newly, and it was output in the film, and thereafter the optical density of the step-phantom image was measured. An input (digital value)-output (optical density) conversion curve was plotted using the obtained data. The digital values were then converted to optical density values using a reference optical density vs. digital value curve. When a high radiation dose was applied directly, radiation damage occurred at a position on the IP where no object was present. Daily QC for mammography is conducted using an American College of Radiology (ACR) accreditation phantom and acrylic disc, and an environmental background density measurement is performed as one of the management indexes. In this study, the radiation damage sustained by the acrylic disc was shown to differ from that of the background. Thus, it was revealed that QC results are influenced by radiation damage.

  4. System for determining the type of nuclear radiation from detector output pulse shape

    DOEpatents

    Miller, W.H.; Berliner, R.R.

    1994-09-13

    A radiation detection system determines the type of nuclear radiation received in a detector by producing a correlation value representative of the statistical cross correlation between the shape of the detector signal and pulse shape data previously stored in memory and characteristic of respective types of radiation. The correlation value is indicative of the type of radiation. The energy of the radiation is determined from the detector signal and is used to produce a spectrum of radiation energies according to radiation type for indicating the nature of the material producing the radiation. 2 figs.

  5. System for determining the type of nuclear radiation from detector output pulse shape

    DOEpatents

    Miller, William H.; Berliner, Ronald R.

    1994-01-01

    A radiation detection system determines the type of nuclear radiation received in a detector by producing a correlation value representative of the statistical cross correlation between the shape of the detector signal and pulse shape data previously stored in memory and characteristic of respective types of radiation. The correlation value is indicative of the type of radiation. The energy of the radiation is determined from the detector signal and is used to produce a spectrum of radiation energies according to radiation type for indicating the nature of the material producing the radiation.

  6. Field Testing of a Portable Radiation Detector and Mapping System

    SciTech Connect

    Hofstetter, K.J.; Hayes, D.W.; Eakle, R.F.

    1998-03-01

    Researchers at the Savannah River Site (SRS) have developed a man- portable radiation detector and mapping system (RADMAPS) which integrates the accumulation of radiation information with precise ground locations. RADMAPS provides field personnel with the ability to detect, locate, and characterize nuclear material at a site or facility by analyzing the gamma or neutron spectra and correlating them with position. the man-portable field unit records gamma or neutron count rate information and its location, along with date and time, using an embedded Global Positioning System (GPS). RADMAPS is an advancement in data fusion, integrating several off-the-shelf technologies with new computer software resulting in a system that is simple to deploy and provides information useful to field personnel in an easily understandable form. Decisions on subsequent actions can be made in the field to efficiently use available field resources. The technologies employed in this system include: recording GPS, radiation detection (typically scintillation detectors), pulse height analysis, analog-to-digital converters, removable solid-state (Flash or SRAM) memory cards, Geographic Information System (GIS) software and personal computers with CD-ROM supporting digital base maps. RADMAPS includes several field deployable data acquisition systems designed to simultaneously record radiation and geographic positions. This paper summarizes the capabilities of RADMAPS and some of the results of field tests performed with the system.

  7. Novel semiconductor radiation detector based on mercurous halides

    NASA Astrophysics Data System (ADS)

    Chen, Henry; Kim, Joo-Soo; Amarasinghe, Proyanthi; Palosz, Withold; Jin, Feng; Trivedi, Sudhir; Burger, Arnold; Marsh, Jarrod C.; Litz, Marc S.; Wiejewarnasuriya, Priyalal S.; Gupta, Neelam; Jensen, Janet; Jensen, James

    2015-08-01

    The three most important desirable features in the search for room temperature semiconductor detector (RTSD) candidate as an alternative material to current commercially off-the-shelf (COTS) material for gamma and/or thermal neutron detection are: low cost, high performance and long term stability. This is especially important for pager form application in homeland security. Despite years of research, no RTSD candidate so far can satisfy the above 3 features simultaneously. In this work, we show that mercurous halide materials Hg2X2 (X= I, Cl, Br) is a new class of innovative compound semiconductors that is capable of delivering breakthrough advances to COTS radiation detector materials. These materials are much easier to grow thicker and larger volume crystals. They can detect gamma and potentially neutron radiation making it possible to detect two types of radiation with just one crystal material. The materials have wider bandgaps (compared to COTS) meaning higher resistivity and lower leakage current, making this new technology more compatible with available microelectronics. The materials also have higher atomic number and density leading to higher stopping power and better detector sensitivity/efficiency. They are not hazardous so there are no environmental and health concerns during manufacturing and are more stable making them more practical for commercial deployment. Focus will be on Hg2I2. Material characterization and detector performance will be presented and discussed. Initial results show that an energy resolution better than 2% @ 59.6 keV gamma from Am-241 and near 1% @ 662 keV from Cs-137 source can be achieved at room temperature.

  8. Neutron measurements with Time-Resolved Event-Counting Optical Radiation (TRECOR) detector

    NASA Astrophysics Data System (ADS)

    Brandis, M.; Vartsky, D.; Dangendorf, V.; Bromberger, B.; Bar, D.; Goldberg, M. B.; Tittelmeier, K.; Friedman, E.; Czasch, A.; Mardor, I.; Mor, I.; Weierganz, M.

    2012-04-01

    Results are presented from the latest experiment with a new neutron/gamma detector, a Time-Resolved, Event-Counting Optical Radiation (TRECOR) detector. It is composed of a scintillating fiber-screen converter, bending mirror, lens and Event-Counting Image Intensifier (ECII), capable of specifying the position and time-of-flight of each event. TRECOR is designated for a multipurpose integrated system that will detect Special Nuclear Materials (SNM) and explosives in cargo. Explosives are detected by Fast-Neutron Resonance Radiography, and SNM by Dual Discrete-Energy gamma-Radiography. Neutrons and gamma-rays are both produced in the 11B(d,n+γ)12C reaction. The two detection modes can be implemented simultaneously in TRECOR, using two adjacent radiation converters that share a common optical readout. In the present experiment the neutron detection mode was studied, using a plastic scintillator converter. The measurements were performed at the PTB cyclotron, using the 9Be(d,n) neutron spectrum obtained from a thick Be-target at Ed ~ 13 MeV\\@. The basic characteristics of this detector were investigated, including the Contrast Transfer Function (CTF), Point Spread Function (PSF) and elemental discrimination capability.

  9. Fiber-coupled quantum-communications receiver based on two NbN superconducting single-photon detectors

    NASA Astrophysics Data System (ADS)

    Slysz, W.; Wegrzecki, M.; Bar, J.; Grabiec, P.; Górska, M.; Latta, C.; Zwiller, V.; Pearlman, A.; Cross, A.; Korneev, A.; Kouminov, P.; Smirnov, K.; Voronov, B.; Gol'tsman, G.; Verevkin, A.; Currie, M.; Sobolewski, R.

    2005-09-01

    We present the design and performance of a novel, two-channel single-photon receiver, based on two fiber-coupled NbN superconducting single-photon detectors (SSPDs). The SSPDs are nanostructured superconducting meanders covering an area of 100 μm2 and are known for ultrafast and efficient counting of single, visible-to-infrared photons. Their operation has been explained within a phenomenological hot-electron photoresponse model. Our receiver is intended for fiber-based quantum cryptography and communication systems, operational at near-infrared (NIR) telecommunication wavelengths, λ = 1.3 μm and λ = 1.55 μm. Coupling between the NbN detector and a single-mode optical fiber was achieved using a specially designed, micromechanical photoresist ring, positioned directly over the SSPD active area. The positioning accuracy of the ring was below 1 μm. The receiver with SSPDs was placed (immersed) in a standard liquid-helium transport Dewar and kept without interruption for over two months at 4.2 K. At the same time, the optical fiber inputs and electrical outputs were kept at room temperature. Our best system reached a system quantum efficiency of up to 0.3 % in the NIR radiation range, with the detector coupling efficiency of about 30 %. The response time was measured to be about 250 ps and was limited by our read-out electronics. The measured jitter was close to 35 ps. The presented performance parameters show that our NIR single photon detectors are suitable for practical quantum cryptography and for applications in quantum-correlation experiments.

  10. Radiation Effects on Ytterbium-doped Optical Fibers

    DTIC Science & Technology

    2014-06-02

    the radiation response of RE-doped fibers, focusing on YDFs is also provided. 2.2 Rare-earth doped optical fibers The concept of total internal ...light. The glass core has the highest refractive index while the refractive index of the cladding is lower in order to allow for total internal ...Optiques Soumises a Divers Environnments Radiatifs. L’Universite Jean Monnet de Saint-Étienne, PhD Dissertation. Girard, S., & Marcandella, C. (2010

  11. Characterization of Silicon Photomultiplier Detectors using Cosmic Radiation

    NASA Astrophysics Data System (ADS)

    Zavala, Favian; Castro, Juan; Niduaza, Rexavalmar; Wedel, Zachary; Fan, Sewan; Ritt, Stefan; Fatuzzo, Laura

    2014-03-01

    The silicon photomultiplier light detector has gained a lot of attention lately in fields such as particle physics, astrophysics, and medical physics. Its popularity stems from its lower cost, compact size, insensitivity to magnetic fields, and its excellent ability to distinguish a quantized number of photons. They are normally operated at room temperature and biased above their breakdown voltages. As such, they may also exhibit properties that may hinder their optimal operation which include a thermally induced high dark count rate, after pulse effects, and cross talk from photons in nearby pixels. At this poster session, we describe our data analysis and our endeavor to characterize the multipixel photon counter (MPPC) detectors from Hamamatsu under different bias voltages and temperature conditions. Particularly, we describe our setup which uses cosmic rays to induce scintillation light delivered to the detector by wavelength shifting optical fibers and the use of a fast 1 GHz waveform sampler, the domino ring sampler (DRS4) digitizer board. Department of Education grant number P031S90007.

  12. SENTIRAD—An innovative personal radiation detector based on a scintillation detector and a silicon photomultiplier

    NASA Astrophysics Data System (ADS)

    Osovizky, A.; Ginzburg, D.; Manor, A.; Seif, R.; Ghelman, M.; Cohen-Zada, I.; Ellenbogen, M.; Bronfenmakher, V.; Pushkarsky, V.; Gonen, E.; Mazor, T.; Cohen, Y.

    2011-10-01

    The alarming personal radiation detector (PRD) is a device intended for Homeland Security (HLS) applications. This portable device is designed to be worn or carried by security personnel to detect photon-emitting radioactive materials for the purpose of crime prevention. PRD is required to meet the scope of specifications defined by various HLS standards for radiation detection. It is mandatory that the device be sensitive and simultaneously small, pocket-sized, of robust mechanical design and carriable on the user's body. To serve these specialized purposes and requirements, we developed the SENTIRAD, a new radiation detector designed to meet the performance criteria established for counterterrorist applications. SENTIRAD is the first commercially available PRD based on a CsI(Tl) scintillation crystal that is optically coupled with a silicon photomultiplier (SiPM) serving as a light sensor. The rapidly developing technology of SiPM, a multipixel semiconductor photodiode that operates in Geiger mode, has been thoroughly investigated in previous studies. This paper presents the design considerations, constraints and radiological performance relating to the SENTIRAD radiation sensor.

  13. Porous Silicon-Based Quantum Dot Broad Spectrum Radiation Detector

    PubMed Central

    Urdaneta, M.; Stepanov, P.; Weinberg, I. N.; Pala, I. R.; Brock, S.

    2013-01-01

    Silicon is a convenient and inexpensive platform for radiation detection, but has low stopping power for x-rays and gamma-rays with high energy (e.g., 100 keV, as used in computed tomography and digital radiography, or 1 MeV, as desired for detection of nuclear materials). We have effectively increased the stopping power of silicon detectors by producing a layer of porous or micro-machined silicon, and infusing this layer with semiconductor quantum dots made of electron-dense materials. Results of prototype detectors show sensitivity to infrared, visible light, and x-rays, with dark current of less than 1 nA/mm2. PMID:24432047

  14. Physics studies with ICARUS and a hybrid ionization and scintillation fiber detector

    SciTech Connect

    Cline, D.B.

    1992-12-31

    We discuss the physics possibilities for the ICARUS detector currently being tested at CERN. The physics potential goes from a massive proton decay detector to the study of solar neutrinos. In addition, the detection of {nu}{sub {mu}} {yields} {nu}{sub {tau}} and {nu}{sub e} {yields} {nu}{sub {tau}} will be possible with such a detector. One major topic involves the possibility of a complete determination of the MSW solar neutrino parameters with the ICARUS. The possibility of detecting WIMPS with a scintillating fiber liquid Argon (Ar) detector or fiber Xenon (Xe) detector doped with Ar is also described. Some comments on the measurement of the {sup 42}Ar level from an experiment at the Gran Sasso will be made.

  15. IceCube: A Cubic Kilometer Radiation Detector

    SciTech Connect

    IceCube Collaboration; Klein, Spencer R; Klein, S.R.

    2008-06-01

    IceCube is a 1 km{sup 3} neutrino detector now being built at the Amudsen-Scott South Pole Station. It consists of 4800 Digital Optical Modules (DOMs) which detect Cherenkov radiation from the charged particles produced in neutrino interactions. IceCube will observe astrophysical neutrinos with energies above about 100 GeV. IceCube will be able to separate {nu}{sub {mu}}, {nu}{sub t}, and {nu}{sub {tau}} interactions because of their different topologies. IceCube construction is currently 50% complete.

  16. Making Optical-Fiber Chemical Detectors More Sensitive

    NASA Technical Reports Server (NTRS)

    Rogowski, Robert S.; Egalon, Claudio O.

    1993-01-01

    Calculations based on exact theory of optical fiber shown how to increase optical efficiency and sensitivity of active-cladding step-index-profile optical-fiber fluorosensor using evanescent wave coupling. Optical-fiber fluorosensor contains molecules fluorescing when illuminated by suitable light in presence of analyte. Fluorescence coupled into and launched along core by evanescent-wave interaction. Efficiency increases with difference in refractive indices.

  17. GEM detectors development for radiation environment: neutron tests and simulations

    NASA Astrophysics Data System (ADS)

    Chernyshova, Maryna; Jednoróg, Sławomir; Malinowski, Karol; Czarski, Tomasz; Ziółkowski, Adam; Bieńkowska, Barbara; Prokopowicz, Rafał; Łaszyńska, Ewa; Kowalska-Strzeciwilk, Ewa; Poźniak, Krzysztof T.; Kasprowicz, Grzegorz; Zabołotny, Wojciech; Wojeński, Andrzej; Krawczyk, Rafał D.; Linczuk, Paweł; Potrykus, Paweł; Bajdel, Barcel

    2016-09-01

    One of the requests from the ongoing ITER-Like Wall Project is to have diagnostics for Soft X-Ray (SXR) monitoring in tokamak. Such diagnostics should be focused on tungsten emission measurements, as an increased attention is currently paid to tungsten due to a fact that it became a main candidate for the plasma facing material in ITER and future fusion reactor. In addition, such diagnostics should be able to withstand harsh radiation environment at tokamak during its operation. The presented work is related to the development of such diagnostics based on Gas Electron Multiplier (GEM) technology. More specifically, an influence of neutron radiation on performance of the GEM detectors is studied both experimentally and through computer simulations. The neutron induced radioactivity (after neutron source exposure) was found to be not pronounced comparing to an impact of other secondary neutron reaction products (during the exposure).

  18. High field CdS detector for infrared radiation

    NASA Technical Reports Server (NTRS)

    Tyagi, R. C.; Robertson, J. B.; Boer, K. W.; Hadley, H. C., Jr. (Inventor)

    1974-01-01

    An infrared radiation detector including a cadmium sulfide platelet having a cathode formed on one of its ends and an anode formed on its other end is presented. The platelet is suitably doped such that stationary high-field domains are formed adjacent the cathode when based in the negative differential conductivity region. A negative potential is applied to the cathode such that a high-field domain is formed adjacent to the cathode. A potential measuring probe is located between the cathode and the anode at the edge of the high-field domain and means are provided for measuring the potential at the probe whereby this measurement is indicative of the infrared radiation striking the platelet.

  19. Gravitational wave radiation by LIGO-type detectors and its reciprocity relation with the detector's fundamental quantum limited sensitivity

    NASA Astrophysics Data System (ADS)

    Pang, Belinda; Ma, Yiqiu; Miao, Haixing; Chen, Yanbei

    2017-01-01

    We relate the radiation of gravitational waves (GW) by a light interferometer with cavity arms (such as LIGO) to its quantum limited sensitivity as a detector of GW's, thereby demonstrating a reciprocity relation between the interferometer's function as a detector and emitter. We derive the pairwise interactions among the cavity optical field, the cavity end mirror, and the gravitational perturbation from the action principle. We quantize these degrees of freedom to calculate the GW's generated by a quantum object. We find that the rate of gravitational wave generation is related to the so-called quantum Cramer Rao bound of the detector, which is a general result from linear measurement theory that gives the fundamental limit to a detector's sensitivity. We show that increasing the maximal sensitivity for the interferometer also increases its GW radiation. This finding may point towards a new paradigm for improving detector sensitivity by maximizing GW radiator.

  20. Ambient temperature cadmium zinc telluride radiation detector and amplifier circuit

    DOEpatents

    McQuaid, J.H.; Lavietes, A.D.

    1998-05-26

    A low noise, low power consumption, compact, ambient temperature signal amplifier for a Cadmium Zinc Telluride (CZT) radiation detector is disclosed. The amplifier can be used within a larger system (e.g., including a multi-channel analyzer) to allow isotopic analysis of radionuclides in the field. In one embodiment, the circuit stages of the low power, low noise amplifier are constructed using integrated circuit (IC) amplifiers , rather than discrete components, and include a very low noise, high gain, high bandwidth dual part preamplification stage, an amplification stage, and an filter stage. The low noise, low power consumption, compact, ambient temperature amplifier enables the CZT detector to achieve both the efficiency required to determine the presence of radionuclides and the resolution necessary to perform isotopic analysis to perform nuclear material identification. The present low noise, low power, compact, ambient temperature amplifier enables a CZT detector to achieve resolution of less than 3% full width at half maximum at 122 keV for a Cobalt-57 isotope source. By using IC circuits and using only a single 12 volt supply and ground, the novel amplifier provides significant power savings and is well suited for prolonged portable in-field use and does not require heavy, bulky power supply components. 9 figs.

  1. Ambient temperature cadmium zinc telluride radiation detector and amplifier circuit

    DOEpatents

    McQuaid, James H.; Lavietes, Anthony D.

    1998-05-29

    A low noise, low power consumption, compact, ambient temperature signal amplifier for a Cadmium Zinc Telluride (CZT) radiation detector. The amplifier can be used within a larger system (e.g., including a multi-channel analyzer) to allow isotopic analysis of radionuclides in the field. In one embodiment, the circuit stages of the low power, low noise amplifier are constructed using integrated circuit (IC) amplifiers , rather than discrete components, and include a very low noise, high gain, high bandwidth dual part preamplification stage, an amplification stage, and an filter stage. The low noise, low power consumption, compact, ambient temperature amplifier enables the CZT detector to achieve both the efficiency required to determine the presence of radio nuclides and the resolution necessary to perform isotopic analysis to perform nuclear material identification. The present low noise, low power, compact, ambient temperature amplifier enables a CZT detector to achieve resolution of less than 3% full width at half maximum at 122 keV for a Cobalt-57 isotope source. By using IC circuits and using only a single 12 volt supply and ground, the novel amplifier provides significant power savings and is well suited for prolonged portable in-field use and does not require heavy, bulky power supply components.

  2. Methodology for Assessing Radiation Detectors Used by Emergency Responders

    SciTech Connect

    Piotr Wasiolek; April Simpson

    2008-03-01

    The threat of weapons of mass destruction terrorism resulted in the U.S. Department of Homeland Security deploying large quantities of radiation detectors throughout the emergency responder community. However, emergency responders specific needs were not always met by standard health physics instrumentation used in radiation facilities. Several American National Standards Institute standards were developed and approved to evaluate the technical capabilities of detection equipment. Establishing technical capability is a critical step, but it is equally important to emergency responders that the instruments are easy to operate and can withstand the rugged situations they encounter. The System Assessment and Validation for Emergency Responders (SAVER) Program (managed by the U.S. Department of Homeland Security, Office of Grants and Training, Systems Support Division) focuses predominantly on the usability, ergonomics, readability, and other features of the detectors, rather than performance controlled by industry standards and the manufacturers. National Security Technologies, LLC, as a SAVER Technical Agent, conducts equipment evaluations using active emergency responders who are familiar with the detection equipment and knowledgeable of situations encountered in the field, which provides more relevant data to emergency responders.

  3. Laser system for testing radiation imaging detector circuits

    NASA Astrophysics Data System (ADS)

    Zubrzycka, Weronika; Kasinski, Krzysztof

    2015-09-01

    Performance and functionality of radiation imaging detector circuits in charge and position measurement systems need to meet tight requirements. It is therefore necessary to thoroughly test sensors as well as read-out electronics. The major disadvantages of using radioactive sources or particle beams for testing are high financial expenses and limited accessibility. As an alternative short pulses of well-focused laser beam are often used for preliminary tests. There are number of laser-based devices available on the market, but very often their applicability in this field is limited. This paper describes concept, design and validation of laser system for testing silicon sensor based radiation imaging detector circuits. The emphasis is put on keeping overall costs low while achieving all required goals: mobility, flexible parameters, remote control and possibility of carrying out automated tests. The main part of the developed device is an optical pick-up unit (OPU) used in optical disc drives. The hardware includes FPGA-controlled circuits for laser positioning in 2 dimensions (horizontal and vertical), precision timing (frequency and number) and amplitude (diode current) of short ns-scale (3.2 ns) light pulses. The system is controlled via USB interface by a dedicated LabVIEW-based application enabling full manual or semi-automated test procedures.

  4. Transition radiation detectors: state of art and new developments

    NASA Astrophysics Data System (ADS)

    Mazziotta, M. N.; Brigida, M.; Favuzzi, C.; Fusco, P.; Gargano, F.; Giglietto, N.; Giordano, F.; Loparco, F.; Marangelli, B.; Mirizzi, N.; Rainò, S.; Spinelli, P.

    2005-08-01

    Transition radiation (TR) is emitted whenever a fast particle (γ > 1000) crosses the boundaries of a periodic structure. Since the prediction of this effect, many studies and tests have been accomplished to understand both the features of this radiation and the eventual practical applications. Nowadays. the main application of TR is particle identification in accelerator physics and astrophysics. Particle identification is one of the most challenging aspect of the experiments performed in these fields. In fact the experimental problems arisen in the recent accelerator physics pose stringent constraints on the detectors due to the high rates, severe background conditions, event final state complexity. On the other hand, the cosmic ray physics requires in some cases simple but refined and reliable devices to be used in outer space or otherwise huge and stable apparata for surface and underground laboratories. After a brief presentation of the TR phenomenon produced by ultrarelativistic particles and relative detectors, the state of the art of this particle identification technique relative to the more recent TRDs will be discussed.

  5. Room temperature aluminum antimonide radiation detector and methods thereof

    DOEpatents

    Lordi, Vincenzo; Wu, Kuang Jen J.; Aberg, Daniel; Erhart, Paul; Coombs, III, Arthur W; Sturm, Benjamin W

    2015-03-03

    In one embodiment, a method for producing a high-purity single crystal of aluminum antimonide (AlSb) includes providing a growing environment with which to grow a crystal, growing a single crystal of AlSb in the growing environment which comprises hydrogen (H.sub.2) gas to reduce oxide formation and subsequent incorporation of oxygen impurities in the crystal, and adding a controlled amount of at least one impurity to the growing environment to effectively incorporate at least one dopant into the crystal. In another embodiment, a high energy radiation detector includes a single high-purity crystal of AlSb, a supporting structure for the crystal, and logic for interpreting signals obtained from the crystal which is operable as a radiation detector at a temperature of about 25.degree. C. In one embodiment, a high-purity single crystal of AlSb includes AlSb and at least one dopant selected from a group consisting of selenium (Se), tellurium (Te), and tin (Sn).

  6. Radiation effects on wavelength shifting fibers used with liquid scintillators

    SciTech Connect

    Ables, E.; Armatis, P.; Bionta, R.; Britt, H.; Clamp, O.; Cochran, C.; Graham, G.; Lowry, M.; Masquelier, D.; Skulina, K.; Wuest, C.; Bolen, L.; Cremaldi, L.; Harper, S.; Moore, B.; Quinn, B.; Reidy, J.; Zhou, J.; Croft, L.; Piercey, R.; Bauer, M.L.; Bishop, B.L.; Cohn, H.O.; Gabriel, T.A.; Gordeev, A.; Kamyshkov, Yu.; Lillei, R.A.; Plasil, F.; Read, K.; Rennich, M.J.; Savin, A.; Shmakov, K.; Singeltary, B.H.; Smirnov, A.; Tarkovsky, E.; Todd, R.A.; Young, K.G.; Berridge, S.C.; Bugg, W.M.; Handler, T.; Pisharody, M.; Aziz, T.; Banerjee, S.; Chendvankar, S.R.; Ganfuli, S.N.; Malhotra, K.; Mazumdar, K.; Raghavan, R.; Shankar, K.; Sudhakar, K.; Tonwar, S.C.; Arefiev, A.; Baranov, O.; Efremenko, Yu.; Gorodkov, Yu.; Malinin, A.; Nikitin, A.; Markizov, V.; Onoprienko, D.; Rozjkov, A.; Shoumilov, E.; Shoutko, V.

    1992-06-01

    The chemical compatibility of wave length shifting fibers with several liquid scintillators has been investigated. Based on systematic characterization of the behavior of the BC-517 family, a time of life of 70{endash}450 years was estimated for the polystyrene based wave length shifting fiber in BC-517P scintillator. WLS (wavelength shifting) fibers irradiated continuously to a dose of 6.4 Mrads (at .377Mrad/hr of Co-60) were observed to decrease from 100% to 5% transmission; however, after 100 hours of annealing, the transmission increased to 90%. Geant simulations of a simplified calorimeter located behind a BaF2 electromagnetic calorimeter for the GEM detector at SSC showed that the constant term in the energy resolution will change from 1.8 to 2.9 in five years at 10{star}{star}34 luminosity for psuedorapidity eta=3.

  7. Performance of the Time Expansion Chamber / Transition Radiation Detector in PHENIX Experiment at RHIC

    NASA Astrophysics Data System (ADS)

    Luiz Silva, Cesar

    2004-10-01

    The Time Expansion Chamber / Transition Radiation Detector (TEC/TRD) in the PHENIX Experiment at RHIC measures ionization losses (dE/dX) and transition radiation from charged particles produced by beam collisions. It is designed to perform tracking and identification for charged particles on very high particle multiplicity environment. The TEC/TRD consists of 24 wire chambers readout on both sides filled with recycled Xe-based gas mixture. This wire chamber configuration, besides providing measurements of ionization losses for charged particles, can absorb X-Ray photons generated by transition radiation from incident particles with γ>1000 crossing fiber radiators placed at the entrance of the chambers. This allows TEC/TRD to distinguish electrons from the huge pion signal produced over a broad momentum range (1GeV/c

  8. Radiation effects on carbon fiber reinforced thermoplastics

    SciTech Connect

    Sasuga, Tsuneo; Udagawa, Akira; Seguchi, Tadao

    1993-12-31

    Polyether-ether-ketone (PEEK) and a newly developed thermoplastic polyimide ``new-TPI`` were applied to carbon fiber reinforced plastic (CFRP) as a matrix resin. PEEK and new-TPI showed excellent resistance over 50 MGy to electron irradiation and the crosslinking proceeded predominantly by irradiation. The changes in mechanical properties induced by electron irradiation of the CFRP with the two resins were examined at various temperatures. The flexural strength and modulus measured at {minus}196 and 25{degree}C were scarcely affected up to 120 MGy and both the values measured at high temperature were increased with dose.

  9. The Thermoluminescence Response of Ge-Doped Flat Fibers to Gamma Radiation

    PubMed Central

    Mat Nawi, Siti Nurasiah Binti; Wahib, Nor Fadira Binti; Zulkepely, Nurul Najua Binti; Amin, Yusoff Bin Mohd; Min, Ung Ngie; Bradley, David Andrew; Md Nor, Roslan Bin; Maah, Mohd Jamil

    2015-01-01

    Study has been undertaken of the thermoluminescence (TL) yield of various tailor-made flat cross-section 6 mol% Ge-doped silica fibers, differing only in respect of external dimensions. Key TL dosimetric characteristics have been investigated, including glow curves, dose response, sensitivity, fading and reproducibility. Using a 60Co source, the samples were irradiated to doses within the range 1 to 10 Gy. Prior to irradiation, the flat fibers were sectioned into 6 mm lengths, weighed, and annealed at 400 °C for 1 h. TL readout was by means of a Harshaw Model 3500 TLD reader, with TLD-100 chips (LiF:Mg, Ti) used as a reference dosimeter to allow the relative response of the fibers to be evaluated. The fibers have been found to provide highly linear dose response and excellent reproducibility over the range of doses investigated, demonstrating high potential as TL-mode detectors in radiation medicine applications. Mass for mass, the results show the greatest TL yield to be provided by fibers of the smallest cross-section, analysis indicating this to be due to minimal light loss in transport of the TL through the bulk of the silica medium. PMID:26307987

  10. The Thermoluminescence Response of Ge-Doped Flat Fibers to Gamma Radiation.

    PubMed

    Nawi, Siti Nurasiah Binti Mat; Wahib, Nor Fadira Binti; Zulkepely, Nurul Najua Binti; Amin, Yusoff Bin Mohd; Min, Ung Ngie; Bradley, David Andrew; Nor, Roslan Bin Md; Maah, Mohd Jamil

    2015-08-20

    Study has been undertaken of the thermoluminescence (TL) yield of various tailor-made flat cross-section 6 mol% Ge-doped silica fibers, differing only in respect of external dimensions. Key TL dosimetric characteristics have been investigated, including glow curves, dose response, sensitivity, fading and reproducibility. Using a (60)Co source, the samples were irradiated to doses within the range 1 to 10 Gy. Prior to irradiation, the flat fibers were sectioned into 6 mm lengths, weighed, and annealed at 400 °C for 1 h. TL readout was by means of a Harshaw Model 3500 TLD reader, with TLD-100 chips (LiF:Mg, Ti) used as a reference dosimeter to allow the relative response of the fibers to be evaluated. The fibers have been found to provide highly linear dose response and excellent reproducibility over the range of doses investigated, demonstrating high potential as TL-mode detectors in radiation medicine applications. Mass for mass, the results show the greatest TL yield to be provided by fibers of the smallest cross-section, analysis indicating this to be due to minimal light loss in transport of the TL through the bulk of the silica medium.

  11. WE-AB-BRB-09: Real Time In Vivo Scintillating Fiber Array Detector for Medical LINACS

    SciTech Connect

    Knewtson, T; Pokhrel, S; Hernandez-Morales, D; Loyalka, S; Rangaraj, D; Izaguirre, E; Price, S

    2015-06-15

    Purpose: An in vivo transmission scintillation fiber detector was developed to monitor patient treatment in real time for the enhancement of patient safety and treatment accuracy. The detector system is capable of monitoring each pulse from a medical LINAC during treatment to determine the dose delivered as treatment progresses. Methods: The detector system consists of 60 parallel scintillating fibers coupled to fast data processing optoelectronics that can monitor the beam fluence in real time. Each 2.5mm{sup 2} square fiber is aligned with an MLC leaf pair and is long enough to capture a 40cm field. The fibers are embedded within a water equivalent polymer substrate that is secured in the LINAC accessory tray. The fibers are coupled to high speed photosensors and front end amplifiers that filter noise and pass each pulse to a high speed analog-to-digital converter. The system components are capable of detecting pulse repetition times shorter than what is delivered by a medical LINAC to ensure true real time data acquisition. Results: The system was able to capture and record the signal from each linac pulse and display the information in real time with no pulse pile up. It was found that the fiber array attenuates 2.65% of the beam which can easily be compensated for in treatment planning. The fibers responded linearly with dose, are independent of clinical beam energies, and are independent of dose rate. Calibration of the system was performed as a function of beam energy, beam size, dose rate, and monitor units to optimize beam fluence error detection. Conclusion: The detector system presented provides true real time in vivo beam monitoring to enhance patient safety and treatment delivery accuracy. Furthermore, the detector can be used for current patient specific QA.

  12. PARROT A fiber optic link for particle detectors

    NASA Astrophysics Data System (ADS)

    Leone, Maurizio; Trasatti, Luciano; Stefani, Giovanni; Avaldi, Lorenzo

    1993-09-01

    The fiber optic technology has been used to build a transmitter-receiver system capable of delivering channeltron or PM tube signals through a few hundred meter span. The intrinsic immunity of optical fibers to e.m. noise has been used to reduce noise problems in an experimental apparatus equipped with two electrostatic analyzers for coincidence (e, 2e) spectroscopy. A coincidence energy separation spectrum of He, used for calibration of the apparatus energy scale, has been measured using fiber optic links instead of coaxial cables. The system was completely built using cheap and easily available commercial components. The results show that fiber optic links could become a viable technique for noise reduction, high voltage decoupling and low temperature calorimeters signal transfer.

  13. Photoacoustic projection imaging using a 64-channel fiber optic detector array

    NASA Astrophysics Data System (ADS)

    Bauer-Marschallinger, Johannes; Felbermayer, Karoline; Bouchal, Klaus-Dieter; Veres, Istvan A.; Grün, Hubert; Burgholzer, Peter; Berer, Thomas

    2015-03-01

    In this work we present photoacoustic projection imaging with a 64-channel integrating line detector array, which average the pressure over cylindrical surfaces. For imaging, the line detectors are arranged parallel to each other on a cylindrical surface surrounding a specimen. Thereby, the three-dimensional imaging problem is reduced to a twodimensional problem, facilitating projection imaging. After acquisition of a dataset of pressure signals, a twodimensional photoacoustic projection image is reconstructed. The 64 channel line detector array is realized using optical fibers being part of interferometers. The parts of the interferometers used to detect the ultrasonic pressure waves consist of graded-index polymer-optical fibers (POFs), which exhibit better sensitivity than standard glass-optical fibers. Ultrasonic waves impinging on the POFs change the phase of light in the fiber-core due to the strain-optic effect. This phase shifts, representing the pressure signals, are demodulated using high-bandwidth balanced photo-detectors. The 64 detectors are optically multiplexed to 16 detection channels, thereby allowing fast imaging. Results are shown on a Rhodamine B dyed microsphere.

  14. Influence of structure on radiation shielding effectiveness of graphite fiber reinforced polyethylene composite

    NASA Astrophysics Data System (ADS)

    Emmanuel, A.; Raghavan, J.

    2015-10-01

    While LEO and GEO are used for most satellite missions, Highly Elliptical Orbits (HEOs) are also used for satellite missions covering Polar Regions of Earth. Satellites in HEO are exposed to a relatively harsher radiation environment than LEO and GEO. The mass of traditionally used aluminum radiation shield, required to attenuate the radiation to a level below a certain threshold that is safe for the satellite bus and payload, scales with the level of radiation. It has been shown (Emmanuel et al., 2014) that materials with low atomic number (Z) such as polyethylene (PE) can result in a lighter shield than aluminum (Al) in HEO. However, PE has to be reinforced with relatively high Z fibers such as graphite (G) to improve its mechanical properties. The effect of introduction of G and the resulting composite structure (that meets the requirements on mechanical properties, manufacturing and service) on the radiation shielding effectiveness of PE was studied through simulation using a layered PE-G composite. The Total Ionization Dose (TID), deposited in a silicon detector behind the composite shield, has been found to be function of layer volume fraction, layer thickness and stacking sequence of the PE and G layers. One composite configuration has resulted in a TID lower than that for PE, demonstrating the possibility of tailoring the mechanical properties of PE-based composite radiation shield with minimal negative impact on its radiation shielding effectiveness.

  15. Development of a novel polymeric fiber-optic magnetostrictive metal detector.

    PubMed

    Hua, Wei-Shu; Hooks, Joshua Rosenberg; Wu, Wen-Jong; Wang, Wei-Chih

    2010-01-01

    The purpose this paper is the development a novel polymeric fiber-optic magnetostrictive metal detector, using a fiber-optic Mach-Zehnder interferometer and polymeric magnetostrictive material. Metal detection is based on the strain-induced optical path length change steming from the ferromagnetic material introduced in the magnetic field. Varied optical phase shifts resulted largely from different metal objects. In this paper, the preliminary results on the different metal material detection will be discussed.

  16. Development of a novel polymeric fiber-optic magnetostrictive metal detector

    NASA Astrophysics Data System (ADS)

    Hua, Wei-Shu; Hooks, Joshua Rosenberg; Wu, Wen-Jong; Wang, Wei-Chih

    2010-03-01

    The purpose this paper is the development a novel polymeric fiber-optic magnetostrictive metal detector, using a fiber- optic Mach-Zehnder interferometer and polymeric magnetostrictive material. Metal detection is based on the straininduced optical path length change steming from the ferromagnetic material introduced in the magnetic field. Varied optical phase shifts resulted largely from different metal objects. In this paper, the preliminary results on the different metal material detection will be discussed.

  17. Field Deployable Gamma Radiation Detectors for DHS Use

    SciTech Connect

    Sanjoy Mukhopadhyay

    2007-08-01

    Recently, the Department of Homeland Security (DHS) has integrated all nuclear detection research, development, testing, evaluation, acquisition, and operational support into a single office: the Domestic Nuclear Detection Office (DNDO). The DNDO has specific requirements set for all commercial off-the-shelf and government off-the-shelf radiation detection equipment and data acquisition systems. This article would investigate several recent developments in field deployable gamma radiation detectors that are attempting to meet the DNDO specifications. Commercially available, transportable, handheld radio isotope identification devices (RIID) are inadequate for DHS requirements in terms of sensitivity, resolution, response time, and reach-back capability. The leading commercial vendor manufacturing handheld gamma spectrometer in the United States is Thermo Electron Corporation. Thermo Electron's identiFINDER{trademark}, which primarily uses sodium iodide crystals (3.18 x 2.54cm cylinders) as gamma detectors, has a Full-Width-at-Half-Maximum energy resolution of 7 percent at 662 keV. Thermo Electron has just recently come up with a reach-back capability patented as RadReachBack{trademark} that enables emergency personnel to obtain real-time technical analysis of radiation samples they find in the field. The current project has the goal to build a prototype handheld gamma spectrometer, equipped with a digital camera and an embedded cell phone to be used as an RIID with higher sensitivity, better resolution, and faster response time (able to detect the presence of gamma-emitting radio isotopes within 5 seconds of approach), which will make it useful as a field deployable tool. The handheld equipment continuously monitors the ambient gamma radiation, and, if it comes across any radiation anomalies with higher than normal gamma gross counts, it sets an alarm condition. When a substantial alarm level is reached, the system automatically triggers the saving of relevant

  18. Field Deployable Gamma Radiation Detectors for DHS Use

    SciTech Connect

    Sanjoy Mukhopadhyay

    2007-08-31

    Recently, the U.S. Department of Homeland Security (DHS) has integrated all nuclear detection research, development, testing, evaluation, acquisition, and operational support into a single office: the Domestic Nuclear Detection Office (DNDO). The DNDO has specific requirements set for all commercial and government off-the-shelf radiation detection equipment and data acquisition systems. This article would investigate several recent developments in field deployable gamma radiation detectors that are attempting to meet the DNDO specifications. Commercially available, transportable, handheld radio isotope identification devices (RIID) are inadequate for DHS’s requirements in terms of sensitivity, resolution, response time and reach back capability. The leading commercial vendor manufacturing handheld gamma spectrometer in the United States is Thermo Electron Corporation. Thermo Electron’s identiFINDER™, which primarily uses sodium iodide crystals (3.18-cm x 2.54-cm cylinders) as gamma detector, has a Full-Width-at-Half-Maximum energy resolution of 7 percent at 662 keV. Thermo Electron has just recently come up with a reach-back capability patented as RadReachBack™ that enables emergency personnel to obtain real-time technical analysis of radiation samples they find in the field. The current project has the goal to build a prototype handheld gamma spectrometer, equipped with a digital camera and an embedded cell phone to be used as an RIID with higher sensitivity (comparable to that of a 7.62-cm x 7.62-cm sodium iodide crystal at low gamma energy ranging from 30 keV to 3,000 keV), better resolution (< 3.0 percent at 662 keV), faster response time (able to detect the presence of gamma-emitting radio isotopes within 5 seconds of approach), which will make it useful as a field deployable tool. The handheld equipment continuously monitors the ambient gamma radiation and, if it comes across any radiation anomalies with higher than normal gamma gross counts, it sets

  19. Field-deployable gamma-radiation detectors for DHS use

    NASA Astrophysics Data System (ADS)

    Mukhopadhyay, Sanjoy

    2007-09-01

    Recently, the Department of Homeland Security (DHS) has integrated all nuclear detection research, development, testing, evaluation, acquisition, and operational support into a single office: the Domestic Nuclear Detection Office (DNDO). The DNDO has specific requirements set for all commercial off-the-shelf and government off-the-shelf radiation detection equipment and data acquisition systems. This article would investigate several recent developments in field deployable gamma radiation detectors that are attempting to meet the DNDO specifications. Commercially available, transportable, handheld radio isotope identification devices (RIID) are inadequate for DHS' requirements in terms of sensitivity, resolution, response time, and reach-back capability. The leading commercial vendor manufacturing handheld gamma spectrometer in the United States is Thermo Electron Corporation. Thermo Electron's identiFINDER TM, which primarily uses sodium iodide crystals (3.18 x 2.54cm cylinders) as gamma detectors, has a Full-Width-at-Half-Maximum energy resolution of 7 percent at 662 keV. Thermo Electron has just recently come up with a reach-back capability patented as RadReachBack TM that enables emergency personnel to obtain real-time technical analysis of radiation samples they find in the field1. The current project has the goal to build a prototype handheld gamma spectrometer, equipped with a digital camera and an embedded cell phone to be used as an RIID with higher sensitivity, better resolution, and faster response time (able to detect the presence of gamma-emitting radio isotopes within 5 seconds of approach), which will make it useful as a field deployable tool. The handheld equipment continuously monitors the ambient gamma radiation, and, if it comes across any radiation anomalies with higher than normal gamma gross counts, it sets an alarm condition. When a substantial alarm level is reached, the system automatically triggers the saving of relevant spectral data and

  20. Improved detector for the measurement of gamma radiation

    NASA Astrophysics Data System (ADS)

    Zelt, F. B.

    1985-07-01

    The present invention lies in the field of gamma ray spectrometry of geologic deposits and other materials, such as building materials (cement, asphalt, etc.) More specifically, the invention is an improved device for the gamma ray spetcrometery of gelogical deposits as a tool for petroleum exploration, geologic research and monitoring of radio-active materials such as in uranium mill tailings and the like. Improvement consists in enlarging the area of the receptor face and without any necessarily substantial increase in the volume of the receptor crystal over the current cylindrical shapes. The invention also provides, as a corollary of the increase in area receptor crystal face, a reduction in the weight of the amount of material necessary to provide effective shielding of the crystal from atmospheric radiation and radiation from deposits not under examination. The area of the receptor crystal face is increased by forming the crystal as a truncated cone with the shielding shaped as a hollow frustrum of a cone. A photomultiplier device is secured to the smaller face of the crystal. The improved detector shape can also be used in scintillometers which measure total gamma radiation.

  1. SU-E-T-167: Characterization of In-House Plastic Scintillator Detectors Array for Radiation Therapy

    SciTech Connect

    Zhu, T; Liu, H; Dimofte, A; Darafsheh, A; Lin, H; Kassaee, A; Finlay, J; Both, S

    2015-06-15

    Purpose: To characterize basic performance of plastic scintillator detectors (PSD) array designed for dosimetry of radiation therapy. Methods: An in-house PSD array has been developed by placing single point PSD into customized 2D holder. Each point PSD is a plastic scintillating fiber-based detector designed for highly accurate measurement of small radiotherapy fields used in patient plan verification and machine commissioning and QA procedures. A parallel fiber without PSD is used for Cerenkov separation by subtracting from PSD readings. Cerenkov separation was confirmed by optical spectroscopy. Alternative Cerenkov separation approaches are also investigated. The optical signal was converted to electronic signal with a photodiode and then subsequently amplified. We measured its dosimetry performance, including percentage depth dose and output factor, and compared with reference ion chamber measurements. The PSD array is then placed along the radiation beam for multiple point dose measurement, representing subsets of PDD measurements, or perpendicular to the beam for profile measurements. Results: The dosimetry results of PSD point measurements agree well with reference ion chamber measurements. For percentage depth dose, the maximal differences between PSD and ion chamber results are 3.5% and 2.7% for 6MV and 15MV beams, respectively. For the output factors, PSD measurements are within 3% from ion chamber results. PDD and profile measurement with PSD array are also performed. Conclusions: The current design of multichannel PSD array is feasible for the dosimetry measurement in radiation therapy. Dose distribution along or perpendicular to the beam path could be measured. It might as well be used as range verification in proton therapy.A PS hollow fiber detector will be investigated to eliminate the Cerenkov radiation effect so that all 32 channels can be used.

  2. Examination system utilizing ionizing radiation and a flexible, miniature radiation detector probe

    DOEpatents

    Majewski, Stanislaw; Kross, Brian J.; Zorn, Carl J.; Majewski, Lukasz A.

    1996-01-01

    An optimized examination system and method based on the Reverse Geometry X-Ray.RTM. (RGX.RTM.) radiography technique are presented. The examination system comprises a radiation source, at least one flexible, miniature radiation detector probe positioned in appropriate proximity to the object to be examined and to the radiation source with the object located between the source and the probe, a photodetector device attachable to an end of the miniature radiation probe, and a control unit integrated with a display device connected to the photodetector device. The miniature radiation detector probe comprises a scintillation element, a flexible light guide having a first end optically coupled to the scintillation element and having a second end attachable to the photodetector device, and an opaque, environmentally-resistant sheath surrounding the flexible light guide. The probe may be portable and insertable, or may be fixed in place within the object to be examined. An enclosed, flexible, liquid light guide is also presented, which comprises a thin-walled flexible tube, a liquid, preferably mineral oil, contained within the tube, a scintillation element located at a first end of the tube, closures located at both ends of the tube, and an opaque, environmentally-resistant sheath surrounding the flexible tube. The examination system and method have applications in non-destructive material testing for voids, cracks, and corrosion, and may be used in areas containing hazardous materials. In addition, the system and method have applications for medical and dental imaging.

  3. Examination system utilizing ionizing radiation and a flexible, miniature radiation detector probe

    DOEpatents

    Majewski, S.; Kross, B.J.; Zorn, C.J.; Majewski, L.A.

    1996-10-22

    An optimized examination system and method based on the Reverse Geometry X-Ray{trademark} (RGX{trademark}) radiography technique are presented. The examination system comprises a radiation source, at least one flexible, miniature radiation detector probe positioned in appropriate proximity to the object to be examined and to the radiation source with the object located between the source and the probe, a photodetector device attachable to an end of the miniature radiation probe, and a control unit integrated with a display device connected to the photodetector device. The miniature radiation detector probe comprises a scintillation element, a flexible light guide having a first end optically coupled to the scintillation element and having a second end attachable to the photodetector device, and an opaque, environmentally-resistant sheath surrounding the flexible light guide. The probe may be portable and insertable, or may be fixed in place within the object to be examined. An enclosed, flexible, liquid light guide is also presented, which comprises a thin-walled flexible tube, a liquid, preferably mineral oil, contained within the tube, a scintillation element located at a first end of the tube, closures located at both ends of the tube, and an opaque, environmentally-resistant sheath surrounding the flexible tube. The examination system and method have applications in non-destructive material testing for voids, cracks, and corrosion, and may be used in areas containing hazardous materials. In addition, the system and method have applications for medical and dental imaging. 5 figs.

  4. Fiber-Optic Micrometeoroid/Orbital Debris Impact Detector System

    NASA Technical Reports Server (NTRS)

    Christiansen, Eric L.; Tennyson, R. C.; Morison, W. D.

    2012-01-01

    A document describes a reliable, lightweight micrometeoroid/orbital debris (MMOD) detection system that can be located at strategic positions of "high consequence" to provide real-time warning of a penetration, its location, and the extent of the damage to a spacecraft. The concept is to employ fiber-optic sensors to detect impact damage and penetration of spacecraft structures. The fibers are non-electrical, employ light waves, and are immune to electromagnetic interference. The fiber-optic sensor array can be made as a stand-alone product, being bonded to a flexible membrane material or a structure that is employed as a MMOD shield material. The optical sensors can also be woven into hybrid MMOD shielding fabrics. The glass fibers of the fiber-optic sensor provide a dual purpose in contributing to the breakup of MMOD projectiles. The grid arrays can be made in a modular configuration to provide coverage over any area desired. Each module can be connected to a central scanner instrument and be interrogated in a continuous or periodic mode.

  5. Multiple cell radiation detector system, and method, and submersible sonde

    DOEpatents

    Johnson, Larry O.; McIsaac, Charles V.; Lawrence, Robert S.; Grafwallner, Ervin G.

    2002-01-01

    A multiple cell radiation detector includes a central cell having a first cylindrical wall providing a stopping power less than an upper threshold; an anode wire suspended along a cylindrical axis of the central cell; a second cell having a second cylindrical wall providing a stopping power greater than a lower threshold, the second cylindrical wall being mounted coaxially outside of the first cylindrical wall; a first end cap forming a gas-tight seal at first ends of the first and second cylindrical walls; a second end cap forming a gas-tight seal at second ends of the first and second cylindrical walls; and a first group of anode wires suspended between the first and second cylindrical walls.

  6. BOBCAT Personal Radiation Detector Field Test and Evaluation Campaign

    SciTech Connect

    Chris Hodge

    2008-03-01

    Following the success of the Anole test of portable detection system, the U.S. Department of Homeland Security (DHS) Domestic Nuclear Detection Office organized a test and evaluation campaign for personal radiation detectors (PRDs), also known as “Pagers.” This test, “Bobcat,” was conducted from July 17 to August 8, 2006, at the Nevada Test Site. The Bobcat test was designed to evaluate the performance of PRDs under various operational scenarios, such as pedestrian surveying, mobile surveying, cargo container screening, and pedestrian chokepoint monitoring. Under these testing scenarios, many operational characteristics of the PRDs, such as gamma and neutron sensitivities, positive detection and false alarm rates, response delay times, minimum detectable activities, and source localization errors, were analyzed. This paper will present the design, execution, and methodologies used to test this equipment for the DHS.

  7. Personal Radiation Detector Field Test and Evaluation Campaign

    SciTech Connect

    Chris A. Hodge, Ding Yuan, Raymond P. Keegan, Michael A. Krstich

    2007-07-09

    Following the success of the Anole test of portable detection system, the U.S. Department of Homeland Security (DHS) Domestic Nuclear Detection Office organized a test and evaluation campaign for personal radiation detectors (PRDs), also known as 'Pagers'. This test, 'Bobcat', was conducted from July 17 to August 8, 2006, at the Nevada Test Site. The Bobcat test was designed to evaluate the performance of PRDs under various operational scenarios, such as pedestrian surveying, mobile surveying, cargo container screening, and pedestrian chokepoint monitoring. Under these testing scenarios, many operational characteristics of the PRDs, such as gamma and neutron sensitivities, positive detection and false alarm rates, response delay times, minimum detectable activities, and source localization errors, were analyzed. This paper will present the design, execution, and methodologies used to test this equipment for the DHS.

  8. Electrical delay line multiplexing for pulsed mode radiation detectors

    NASA Astrophysics Data System (ADS)

    Vinke, Ruud; Yeom, Jung Yeol; Levin, Craig S.

    2015-04-01

    Medical imaging systems are composed of a large number of position sensitive radiation detectors to provide high resolution imaging. For example, whole-body Positron Emission Tomography (PET) systems are typically composed of thousands of scintillation crystal elements, which are coupled to photosensors. Thus, PET systems greatly benefit from methods to reduce the number of data acquisition channels, in order to reduce the system development cost and complexity. In this paper we present an electrical delay line multiplexing scheme that can significantly reduce the number of readout channels, while preserving the signal integrity required for good time resolution performance. We experimented with two 4 × 4 LYSO crystal arrays, with crystal elements having 3 mm × 3 mm × 5 mm and 3 mm × 3 mm × 20 mm dimensions, coupled to 16 Hamamatsu MPPC S10931-050P SiPM elements. Results show that each crystal could be accurately identified, even in the presence of scintillation light sharing and inter-crystal Compton scatter among neighboring crystal elements. The multiplexing configuration degraded the coincidence timing resolution from ∼243 ps FWHM to ∼272 ps FWHM when 16 SiPM signals were combined into a single channel for the 4 × 4 LYSO crystal array with 3 mm × 3 mm × 20 mm crystal element dimensions, in coincidence with a 3 mm × 3 mm × 5 mm LYSO crystal pixel. The method is flexible to allow multiplexing configurations across different block detectors, and is scalable to an entire ring of detectors.

  9. Electrical delay line multiplexing for pulsed mode radiation detectors.

    PubMed

    Vinke, Ruud; Yeom, Jung Yeol; Levin, Craig S

    2015-04-07

    Medical imaging systems are composed of a large number of position sensitive radiation detectors to provide high resolution imaging. For example, whole-body Positron Emission Tomography (PET) systems are typically composed of thousands of scintillation crystal elements, which are coupled to photosensors. Thus, PET systems greatly benefit from methods to reduce the number of data acquisition channels, in order to reduce the system development cost and complexity. In this paper we present an electrical delay line multiplexing scheme that can significantly reduce the number of readout channels, while preserving the signal integrity required for good time resolution performance. We experimented with two 4 × 4 LYSO crystal arrays, with crystal elements having 3 mm × 3 mm × 5 mm and 3 mm × 3 mm × 20 mm dimensions, coupled to 16 Hamamatsu MPPC S10931-050P SiPM elements. Results show that each crystal could be accurately identified, even in the presence of scintillation light sharing and inter-crystal Compton scatter among neighboring crystal elements. The multiplexing configuration degraded the coincidence timing resolution from ∼243 ps FWHM to ∼272 ps FWHM when 16 SiPM signals were combined into a single channel for the 4 × 4 LYSO crystal array with 3 mm × 3 mm × 20 mm crystal element dimensions, in coincidence with a 3 mm × 3 mm × 5 mm LYSO crystal pixel. The method is flexible to allow multiplexing configurations across different block detectors, and is scalable to an entire ring of detectors.

  10. Electrical delay line multiplexing for pulsed mode radiation detectors

    PubMed Central

    Vinke, Ruud; Yeom, Jung Yeol; Levin, Craig S.

    2015-01-01

    Medical imaging systems are composed of a large number of position sensitive radiation detectors to provide high resolution imaging. For example, whole-body Positron Emission Tomography (PET) systems are typically composed of thousands of scintillation crystal elements, which are coupled to photosensors. Thus, PET systems greatly benefit from methods to reduce the number of data acquisition channels, in order to reduce the system development cost and complexity. In this paper we present an electrical delay line multiplexing scheme that can significantly reduce the number of readout channels, while preserving the signal integrity required for good time resolution performance. We experimented with two 4 × 4 LYSO crystal arrays, with crystal elements having 3 mm × 3 mm × 5 mm and 3 mm × 3 mm × 20 mm dimensions, coupled to 16 Hamamatsu MPPC S10931-050P SiPM elements. Results show that each crystal could be accurately identified, even in the presence of scintillation light sharing and inter-crystal Compton scatter among neighboring crystal elements. The multiplexing configuration degraded the coincidence timing resolution from ~ 243 ps FWHM to ~272 ps FWHM when 16 SiPM signals were combined into a single channel for the 4 × 4 LYSO crystal array with 3 mm × 3 mm × 20 mm crystal element dimensions, in coincidence with a 3 mm × 3 mm × 5 mm LYSO crystal pixel. The method is exible to allow multiplexing configurations across different block detectors, and is scalable to an entire ring of detectors. PMID:25768002

  11. Improved gas mixtures for gas-filled radiation detectors

    DOEpatents

    Christophorou, L.G.; McCorkle, D.L.; Maxey, D.V.; Carter, J.G.

    1980-03-28

    Improved binary and ternary gas mixtures for gas-filled radiation detectors are provided. The components are chosen on the basis of the principle that the first component is one molecular gas or mixture of two molecular gases having a large electron scattering cross section at energies of about 0.5 eV and higher, and the second component is a noble gas having a very small cross section at and below about 1.0 eV, whereby fast electrons in the gaseous mixture are slowed into the energy range of about 0.5 eV where the cross section for the mixture is small and hence the electron mean free path is large. The reduction in both the cross section and the electron energy results in an increase in the drift velocity of the electrons in the gas mixtures over that for the separate components for a range of E/P (pressure-reduced electric field) values. Several gas mixtures are provided that provide faster response in gas-filled detectors for convenient E/P ranges as compared with conventional gas mixtures.

  12. Gas mixtures for gas-filled radiation detectors

    DOEpatents

    Christophorou, Loucas G.; McCorkle, Dennis L.; Maxey, David V.; Carter, James G.

    1982-01-05

    Improved binary and ternary gas mixtures for gas-filled radiation detectors are provided. The components are chosen on the basis of the principle that the first component is one molecular gas or mixture of two molecular gases having a large electron scattering cross section at energies of about 0.5 eV and higher, and the second component is a noble gas having a very small cross section at and below about 1.0 eV, whereby fast electrons in the gaseous mixture are slowed into the energy range of about 0.5 eV where the cross section for the mixture is small and hence the electron mean free path is large. The reduction in both the cross section and the electron energy results in an increase in the drift velocity of the electrons in the gas mixtures over that for the separate components for a range of E/P (pressure-reduced electric field) values. Several gas mixtures are provided that provide faster response in gas-filled detectors for convenient E/P ranges as compared with conventional gas mixtures.

  13. Compensation for radiation damage of SOI pixel detector via tunneling

    NASA Astrophysics Data System (ADS)

    Yamada, M.; Arai, Y.; Fujita, Y.; Hamasaki, R.; Ikegami, Y.; Kurachi, I.; Miyoshi, T.; Nishimura, R.; Tauchi, K.; Tsuboyama, T.

    2016-09-01

    We are developing a method for removing holes trapped in the oxide layer of a silicon-on-insulator (SOI) monolithic pixel detector after irradiation. Radiation that passes through the detector generates positive charge by trapped holes in the buried oxide layer (BOX) underneath the MOSFET. The positive potential caused by these trapped holes modifies the characteristics of the MOSFET of the signal readout circuit. In order to compensate for the effect of the positive potential, we tried to recombine the trapped holes with electrons via Fowler-Nordheim (FN) tunneling. By applying high voltage to the buried p-well (BPW) under the oxide layer with the MOSFET fixed at 0 V, electrons are injected into the BOX by FN tunneling. X-rays cause a negative shift in the threshold voltage Vth of the MOSFET. We can successfully recover Vth close to its pre-irradiation level after applying VBPW ≥ 120 V. However, the drain leakage current increased after applying VBPW; we find that this can be suppressed by applying a negative voltage to the BPW.

  14. Development of high temperature, radiation hard detectors based on diamond

    NASA Astrophysics Data System (ADS)

    Metcalfe, Alex; Fern, George R.; Hobson, Peter R.; Ireland, Terry; Salimian, Ali; Silver, Jack; Smith, David R.; Lefeuvre, Gwenaelle; Saenger, Richard

    2017-02-01

    Single crystal CVD diamond has many desirable properties compared to current, well developed, detector materials; exceptional radiation, chemical and physical hardness, chemical inertness, low Z (close to human tissue, good for dosimetry), wide bandgap and an intrinsic pathway to fast neutron detection through the 12C(n,α)9Be reaction. However effective exploitation of these properties requires development of a suitable metallisation scheme to give stable contacts for high temperature applications. To best utilise available processing techniques to optimise sensor response through geometry and conversion media configurations, a reliable model is required. This must assess the performance in terms of spectral response and overall efficiency as a function of detector and converter geometry. The same is also required for proper interpretation of experimental data. Sensors have been fabricated with varying metallisation schemes indented to permit high temperature operation; Present test results indicate that viable fabrication schemes for high temperature contacts have been developed and present modelling results, supported by preliminary data from partners indicate simulations provide a useful representation of response.

  15. Comparative Response of Microchannel Plate and Channel Electron Multiplier Detectors to Penetrating Radiation in Space

    DOE PAGES

    Funsten, Herbert O.; Harper, Ronnie W.; Dors, Eric E.; ...

    2015-10-02

    Channel electron multiplier (CEM) and microchannel plate (MCP) detectors are routinely used in space instrumentation for measurement of space plasmas. Here, our goal is to understand the relative sensitivities of these detectors to penetrating radiation in space, which can generate background counts and shorten detector lifetime. We use 662 keV γ-rays as a proxy for penetrating radiation such as γ-rays, cosmic rays, and high-energy electrons and protons that are ubiquitous in the space environment. We find that MCP detectors are ~20 times more sensitive to 662 keV γ-rays than CEM detectors. This is attributed to the larger total area ofmore » multiplication channels in an MCP detector that is sensitive to electronic excitation and ionization resulting from the interaction of penetrating radiation with the detector material. In contrast to the CEM detector, whose quantum efficiency εγ for 662 keVγ -rays is found to be 0.00175 and largely independent of detector bias, the quantum efficiency of the MCP detector is strongly dependent on the detector bias, with a power law index of 5.5. Lastly, background counts in MCP detectors from penetrating radiation can be reduced using MCP geometries with higher pitch and smaller channel diameter.« less

  16. Comparative Response of Microchannel Plate and Channel Electron Multiplier Detectors to Penetrating Radiation in Space

    SciTech Connect

    Funsten, Herbert O.; Harper, Ronnie W.; Dors, Eric E.; Janzen, Paul A.; Larsen, Brian A.; MacDonald, Elizabeth A.; Poston, David I.; Ritzau, Stephen M.; Skoug, Ruth M.; Zurbuchen, Thomas H.

    2015-10-02

    Channel electron multiplier (CEM) and microchannel plate (MCP) detectors are routinely used in space instrumentation for measurement of space plasmas. Here, our goal is to understand the relative sensitivities of these detectors to penetrating radiation in space, which can generate background counts and shorten detector lifetime. We use 662 keV γ-rays as a proxy for penetrating radiation such as γ-rays, cosmic rays, and high-energy electrons and protons that are ubiquitous in the space environment. We find that MCP detectors are ~20 times more sensitive to 662 keV γ-rays than CEM detectors. This is attributed to the larger total area of multiplication channels in an MCP detector that is sensitive to electronic excitation and ionization resulting from the interaction of penetrating radiation with the detector material. In contrast to the CEM detector, whose quantum efficiency εγ for 662 keVγ -rays is found to be 0.00175 and largely independent of detector bias, the quantum efficiency of the MCP detector is strongly dependent on the detector bias, with a power law index of 5.5. Lastly, background counts in MCP detectors from penetrating radiation can be reduced using MCP geometries with higher pitch and smaller channel diameter.

  17. Radiation detector device for rejecting and excluding incomplete charge collection events

    SciTech Connect

    Bolotnikov, Aleksey E.; De Geronimo, Gianluigi; Vernon, Emerson; Yang, Ge; Camarda, Giuseppe; Cui, Yonggang; Hossain, Anwar; Kim, Ki Hyun; James, Ralph B.

    2016-05-10

    A radiation detector device is provided that is capable of distinguishing between full charge collection (FCC) events and incomplete charge collection (ICC) events based upon a correlation value comparison algorithm that compares correlation values calculated for individually sensed radiation detection events with a calibrated FCC event correlation function. The calibrated FCC event correlation function serves as a reference curve utilized by a correlation value comparison algorithm to determine whether a sensed radiation detection event fits the profile of the FCC event correlation function within the noise tolerances of the radiation detector device. If the radiation detection event is determined to be an ICC event, then the spectrum for the ICC event is rejected and excluded from inclusion in the radiation detector device spectral analyses. The radiation detector device also can calculate a performance factor to determine the efficacy of distinguishing between FCC and ICC events.

  18. Radiation-curable carbon fiber prepreg composites

    SciTech Connect

    Saunders, C.B.; Dickson, L.W.; Singh, A.; Carmichael, A.A.; Lopata, V.J.

    1988-12-01

    A radiation-curable prepreg designed to meet the specifications set by a major aircraft company is described. The resin, consisting of a mixture of an epoxy diacrylate, polybutadiene diacrylate, and a multifunctional monomer, was used to impregnate a plain weave carbon fabric by a solvent process. The cured polymer, produced by irradiation in air to a dose of 40 kGy, is amorphous, with a gel fraction of 85 percent. The linear thermal expansion coefficient of the polymer was found to be 0.00017 m/m deg C from 25 to 150 C; it was not affected by varying the applied irradiation dose from 30 to 50 kGy. 14 references.

  19. A Scintillator tile-fiber preshower detector for the CDF Central Calorimeter

    SciTech Connect

    S. Lami

    2004-08-12

    The front face of the CDF central calorimeter is being equipped with a new Preshower detector, based on scintillator tiles read out by WLS fibers. A light yield of about 40 pe/MIP at the tile exit was obtained, exceeding the design requirements.

  20. Elimination of ghosting artifacts from wavelength-shifting fiber neutron detectors

    SciTech Connect

    Clonts, Lloyd G.; Diawara, Yacouba; Hannan, Bruce W.; Hodges, Jason P.; Wang, Cai-Lin

    2013-01-31

    Misassignment of neutron position (ghosting) produces artifacts, which have been observed in wavelength-shifting (WLS) fiber detectors developed for time-of-flight (TOF) neutron powder diffraction. In position-sensitive detectors (PSDs) with WLS fiber encoding, thermal and cold neutrons interact with a monolithic 6LiF/ZnS:Ag scintillator screen, and scintillation photons are generated and transported through the crossed fibers to photomultipliers (PMTs). The neutron position is determined by photon counts in PMTs within a preset time window. Ghosting occurs when neutrons hit the group boundaries of two neighboring PMTs for x-position multiplexing, which is modeled as resulting from a long travel length (about 3-5 mm) of a small number of scintillation photons. This model is supported by the change observed in aperture images when the threshold number for photon-pulses was adjusted for a neutron event determination. When the threshold number of photon-pulses was set above 10 for each PMT, the ghost peaks in the aperture images and TOF spectra of powder diffraction were strongly suppressed or completely eliminated, and the intrinsic background levels of the WLS detectors were significantly reduced. Our result indicates that WLS fiber detector is a promising alternative for 3He PSDs for neutron scattering.

  1. Elimination of ghosting artifacts from wavelength-shifting fiber neutron detectors

    SciTech Connect

    Wang, C. L.; Diawara, Y.; Hannan, B. W.; Hodges, J. P.; Clonts, L. G.

    2013-01-15

    Misassignment of neutron position (ghosting) produces artifacts which have been observed in wavelength-shifting (WLS) fiber detectors developed for time-of-flight (TOF) neutron powder diffraction. In position-sensitive detectors (PSDs) with WLS fiber encoding, thermal and cold neutrons interact with a monolithic {sup 6}LiF/ZnS:Ag scintillator screen, and scintillation photons are generated and transported through the crossed fibers to photomultipliers (PMTs). The neutron position is determined by photon counts in the PMTs within a preset time window. Ghosting occurs when neutrons hit the group boundaries of two neighboring PMTs for x-position multiplexing, which is modeled as resulting from a long travel length (about 3-5 mm) of a small number of scintillation photons. This model is supported by the change observed in aperture images when the threshold number for photon-pulses was adjusted for neutron event determination. When the threshold number of photon-pulses was set above 10 for each PMT, the ghost peaks in the aperture images and TOF spectra of powder diffraction were strongly suppressed or completely eliminated, and the intrinsic background levels of the WLS detectors were significantly reduced. Our result indicates that WLS fiber detector is a promising alternative for {sup 3}He PSDs for neutron scattering.

  2. Development of a thermal neutron detector based on scintillating fibers and silicon photomultipliers

    SciTech Connect

    Barbagallo, Massimo; Greco, Giuseppe; Scire, Carlotta; Scire, Sergio; Cosentino, Luigi; Pappalardo, Alfio; Finocchiaro, Paolo; Montereali, Rosa Maria; Vincenti, Maria Aurora

    2010-09-15

    We propose a technique for thermal neutron detection, based on a {sup 6}Li converter placed in front of scintillating fibers readout by means of silicon photomultipliers. Such a technique allows building cheap and compact detectors and dosimeters, thus possibly opening new perspectives in terms of granular monitoring of neutron fluxes as well as space-resolved neutron detection.

  3. Scintillating fiber detectors for precise time and position measurements read out with Si-PMs

    NASA Astrophysics Data System (ADS)

    Damyanova, A.; Bravar, A.

    2017-02-01

    We present the development and performance of compact scintillating fiber detectors read out with silicon photo-multipliers (Si-PMs). The compact size, fast response, and insensitivity to magnetic fields make these detectors suitable for a variety of applications where precise tracking and timing information is required. These detectors will be used with different particle beams (electrons, protons, heavy ions) at very high rates. In particular, we present the SciFi tracker/time of flight detector that is being developed for the Mu3e experiment at PSI (search for the lepton flavor violating decay μ → eee at very high rates). We also present the SciFi beam position detectors that will be employed in NA61 at CERN to track the incoming proton and heavy ion beam particles. We are considering different readout scenarios in which (a) each fiber is individually coupled to a single Si-PM photo-sensor and (b) fibers are arranged in columns and coupled to a Si-PM arrays.

  4. Interlaboratory comparison of radiation-induced attenuation in optical fibers

    SciTech Connect

    Friebele, E.J.; Lyons, P.B.; Blackburn, J.C.; Henschel, H.; Johan, A.; Krinsky, J.A.; Robinson, A.; Schneider, W.; Smith, D.; Taylor, E.W.; Los Alamos National Lab., NM; Harry Diamond Labs., Adelphi, MD; Fraunhofer-Institut fuer Naturwissenschaftlich-Technische Trendanalysen , Euskirchen; Direction des Recherches, Etudes et Techni

    1989-08-01

    A comparison of the losses induced in step index multimode, graded index multimode and single mode fibers by pulsed radiation exposure has been made among 12 laboratories over a period of 5 years. The recoveries of the incremental attenuations from 10{sup -9} to 10{sup 1} s are reported. Although a standard set of measurement parameters was attempted, differences between the laboratories are evident; possible origins for these are discussed. 18 refs., 18 figs., 7 tabs.

  5. Effect of microwave radiation on Jayadhar cotton fibers: WAXS studies

    SciTech Connect

    Niranjana, A. R. Mahesh, S. S. Divakara, S. Somashekar, R.

    2014-04-24

    Thermal effect in the form of micro wave energy on Jayadhar cotton fiber has been investigated. Microstructural parameters have been estimated using wide angle x-ray scattering (WAXS) data and line profile analysis program developed by us. Physical properties like tensile strength are correlated with X-ray results. We observe that the microwave radiation do affect significantly many parameters and we have suggested a multivariate analysis of these parameters to arrive at a significant result.

  6. Absorption, Scattering, and Thermal Radiation by Conductive Fibers

    DTIC Science & Technology

    1987-07-16

    radiation spectrum. 72 As can be seen, the precise calculation of thermal radia-ion from a small ensemble of randomly oriented nonspherical particles ... nonspherical and randomly oriented . 2.7.1 Geometrical Considerations As already mentioned, the foregoing analyses were carried out under the tacit assumption...reprosentation for the thin-layer starting values of the transmission and reflection matrices. For a cloud of identical fibers randomly oriented , as considered

  7. Estimation of time resolution for DOI-PET detector using diameter 0.2 mm WLS fibers

    SciTech Connect

    Kobayashi, A.; Ito, H.; Han, S.; Kaneko, N.; Kawai, H.; Kodama, S.; Han, S.; Kamada, K.; Shoji, Y.; Yoshikawa, A.

    2015-07-01

    We are developing the whole-body PET detector with high position resolution (1 mm) and low cost (1 M dollars). Scintillator plates, Wave Length Sifting Fibers and SiPMs are used. In this work, time resolution of our PET detector is estimated. Our detector may also have good time resolution such as a few ps. (authors)

  8. Wire-chamber radiation detector with discharge control

    DOEpatents

    Perez-Mendez, V.; Mulera, T.A.

    1982-03-29

    A wire chamber; radiation detector has spaced apart parallel electrodes and grids defining an ignition region in which charged particles or other ionizing radiations initiate brief localized avalanche discharges and defining an adjacent memory region in which sustained glow discharges are initiated by the primary discharges. Conductors of the grids at each side of the memory section extend in orthogonal directions enabling readout of the X-Y coordinates of locations at which charged particles were detected by sequentially transmitting pulses to the conductors of one grid while detecting transmissions of the pulses to the orthogonal conductors of the other grid through glow discharges. One of the grids bounding the memory region is defined by an array of conductive elements each of which is connected to the associated readout conductor through a separate resistance. The wire chamber avoids ambiguities and imprecisions in the readout of coordinates when large numbers of simultaneous or; near simultaneous charged particles have been detected. Down time between detection periods and the generation of radio frequency noise are also reduced.

  9. Examination of cotton fibers and common contaminants using an infrared microscope and a focal-plane array detector

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The chemical imaging of cotton fibers and common contaminants in fibers is presented. Chemical imaging was performed with an infrared microscope equipped with a Focal-Plane Array (FPA) detector. Infrared spectroscopy can provide us with information on the structure and quality of cotton fibers. In a...

  10. Method and system for determining depth distribution of radiation-emitting material located in a source medium and radiation detector system for use therein

    DOEpatents

    Benke, Roland R.; Kearfott, Kimberlee J.; McGregor, Douglas S.

    2004-04-27

    A radiation detector system includes detectors having different properties (sensitivity, energy resolution) which are combined so that excellent spectral information may be obtained along with good determinations of the radiation field as a function of position.

  11. Apparatus for dimensional characterization of fused silica fibers for the suspensions of advanced gravitational wave detectors.

    PubMed

    Cumming, A; Jones, R; Barton, M; Cagnoli, G; Cantley, C A; Crooks, D R M; Hammond, G D; Heptonstall, A; Hough, J; Rowan, S; Strain, K A

    2011-04-01

    Detection of gravitational waves from astrophysical sources remains one of the most challenging problems faced by experimental physicists. A significant limit to the sensitivity of future long-baseline interferometric gravitational wave detectors is thermal displacement noise of the test mass mirrors and their suspensions. Suspension thermal noise results from mechanical dissipation in the fused silica suspension fibers suspending the test mass mirrors and is therefore an important noise source at operating frequencies between ∼10 and 30 Hz. This dissipation occurs due to a combination of thermoelastic damping, surface and bulk losses. Its effects can be reduced by optimizing the thermoelastic and surface loss, and these parameters are a function of the cross sectional dimensions of the fiber along its length. This paper presents a new apparatus capable of high resolution measurements of the cross sectional dimensions of suspension fibers of both rectangular and circular cross section, suitable for use in advanced detector mirror suspensions.

  12. The point-spread function of fiber-coupled area detectors

    PubMed Central

    Holton, James M.; Nielsen, Chris; Frankel, Kenneth A.

    2012-01-01

    The point-spread function (PSF) of a fiber-optic taper-coupled CCD area detector was measured over five decades of intensity using a 20 µm X-ray beam and ∼2000-fold averaging. The ‘tails’ of the PSF clearly revealed that it is neither Gaussian nor Lorentzian, but instead resembles the solid angle subtended by a pixel at a point source of light held a small distance (∼27 µm) above the pixel plane. This converges to an inverse cube law far from the beam impact point. Further analysis revealed that the tails are dominated by the fiber-optic taper, with negligible contribution from the phosphor, suggesting that the PSF of all fiber-coupled CCD-type detectors is best described as a Moffat function. PMID:23093762

  13. Reconstruction algorithms for optoacoustic imaging based on fiber optic detectors

    NASA Astrophysics Data System (ADS)

    Lamela, Horacio; Díaz-Tendero, Gonzalo; Gutiérrez, Rebeca; Gallego, Daniel

    2011-06-01

    Optoacoustic Imaging (OAI), a novel hybrid imaging technology, offers high contrast, molecular specificity and excellent resolution to overcome limitations of the current clinical modalities for detection of solid tumors. The exact time-domain reconstruction formula produces images with excellent resolution but poor contrast. Some approximate time-domain filtered back-projection reconstruction algorithms have also been reported to solve this problem. A wavelet transform implementation filtering can be used to sharpen object boundaries while simultaneously preserving high contrast of the reconstructed objects. In this paper, several algorithms, based on Back Projection (BP) techniques, have been suggested to process OA images in conjunction with signal filtering for ultrasonic point detectors and integral detectors. We apply these techniques first directly to a numerical generated sample image and then to the laserdigitalized image of a tissue phantom, obtaining in both cases the best results in resolution and contrast for a waveletbased filter.

  14. Silica optical fibers with high oxygen excess in the core: a new type of radiation-resistant fiber

    NASA Astrophysics Data System (ADS)

    Kashaykin, Pavel F.; Tomashuk, Alexander L.; Salgansky, Mikhail Y.; Abramov, Alexey N.; Iskhakova, Lyudmila D.; Lobanov, Nikolay S.; Nishchev, Konstantin N.; Guryanov, Alexey N.; Dianov, Evgeny M.

    2015-05-01

    The technology, initial properties, and the value of radiation-induced attenuation (RIA) of light in the optical communication spectral range ~1.1-1.7 μm are discussed of the novel MCVD-produced undoped-silica-core F-dopedsilica- cladding fibers, of which the core is synthesized in high O2 excess (HOE) conditions (HOE-fibers). The RIA mechanisms are analyzed and compared in the HOE-fibers and in the F-doped-silica-core fibers previously commonly considered as the most radiation-resistant. The measured RIA values in the HOE-fibers and the literature data on the RIA in the commercial radiation-resistant F-doped-silica-core fibers of Fujikura are compared at λ=1.31 and 1.55 μm. Based on this consideration, the HOE-fibers are argued to be potentially superior to the F-doped-silica-core fibers as to radiation resistance especially at long wavelengths (in particular, at λ~1.55 μm). It is also argued that the fiber drawing tension reduction can further lower RIA in the HOE-fibers. A direct experimental comparison of RIA under γ-radiation from a 60Co-source at a dose rate of 8.7 Gy/s up to a dose of 94 kGy is carried out in two HOE-fibers and a commercial radiation-resistant fiber of European make. RIA in the HOE-fibers is found to be many times lower than that in the commercial fiber throughout the optical communication spectral range ~1.1-1.7 μm.

  15. Feasibility of fiber-optic radiation sensor using Cerenkov effect for detecting thermal neutrons.

    PubMed

    Jang, Kyoung Won; Yagi, Takahiro; Pyeon, Cheol Ho; Yoo, Wook Jae; Shin, Sang Hun; Misawa, Tsuyoshi; Lee, Bongsoo

    2013-06-17

    In this research, we propose a novel method for detecting thermal neutrons with a fiber-optic radiation sensor using the Cerenkov effect. We fabricate a fiber-optic radiation sensor that detects thermal neutrons with a Gd-foil, a rutile crystal, and a plastic optical fiber. The relationship between the fluxes of electrons inducing Cerenkov radiation in the sensor probe of the fiber-optic radiation sensor and thermal neutron fluxes is determined using the Monte Carlo N-particle transport code simulations. To evaluate the fiber-optic radiation sensor, the Cerenkov radiation generated in the fiber-optic radiation sensor by irradiation of pure thermal neutron beams is measured according to the depths of polyethylene.

  16. RADIATION EFFECTS ON EPOXY/CARBON-FIBER COMPOSITE

    SciTech Connect

    Hoffman, E

    2008-01-11

    Piping in the Defense Waste Processing Facility (DWPF) at the Savannah River Site (SRS) must withstand the stresses involved during an unlikely but potential deflagration event. One method proposed for protection and reinforcement of piping during such an event is the use of a carbon fiber-reinforced epoxy composite (Diamond-Wrap{reg_sign}). In the DWPF, this reinforcement composite product would be required to maintain its safety function for a 20-year service life. This product has been ASME-approved (nuclear code case 589) for post-construction maintenance and is DOT-compliant per 49CFR 192 and 195. However, its radiation resistance properties have not been evaluated. This report documents initial radiation resistance testing of the product and microstructural effects. Additional testing is recommended to evaluate radiation effects on specific properties such as burst strength, chemical resistance/weeping and for service life prediction in critical applications.

  17. Plural-wavelength flame detector that discriminates between direct and reflected radiation

    NASA Technical Reports Server (NTRS)

    Hall, Gregory H. (Inventor); Barnes, Heidi L. (Inventor); Medelius, Pedro J. (Inventor); Simpson, Howard J. (Inventor); Smith, Harvey S. (Inventor)

    1997-01-01

    A flame detector employs a plurality of wavelength selective radiation detectors and a digital signal processor programmed to analyze each of the detector signals, and determine whether radiation is received directly from a small flame source that warrants generation of an alarm. The processor's algorithm employs a normalized cross-correlation analysis of the detector signals to discriminate between radiation received directly from a flame and radiation received from a reflection of a flame to insure that reflections will not trigger an alarm. In addition, the algorithm employs a Fast Fourier Transform (FFT) frequency spectrum analysis of one of the detector signals to discriminate between flames of different sizes. In a specific application, the detector incorporates two infrared (IR) detectors and one ultraviolet (UV) detector for discriminating between a directly sensed small hydrogen flame, and reflections from a large hydrogen flame. The signals generated by each of the detectors are sampled and digitized for analysis by the digital signal processor, preferably 250 times a second. A sliding time window of approximately 30 seconds of detector data is created using FIFO memories.

  18. Characterizing energy dependence and count rate performance of a dual scintillator fiber-optic detector for computed tomography

    SciTech Connect

    Hoerner, Matthew R. Stepusin, Elliott J.; Hyer, Daniel E.; Hintenlang, David E.

    2015-03-15

    Purpose: Kilovoltage (kV) x-rays pose a significant challenge for radiation dosimetry. In the kV energy range, even small differences in material composition can result in significant variations in the absorbed energy between soft tissue and the detector. In addition, the use of electronic systems in light detection has demonstrated measurement losses at high photon fluence rates incident to the detector. This study investigated the feasibility of using a novel dual scintillator detector and whether its response to changes in beam energy from scatter and hardening is readily quantified. The detector incorporates a tissue-equivalent plastic scintillator and a gadolinium oxysulfide scintillator, which has a higher sensitivity to scatter x-rays. Methods: The detector was constructed by coupling two scintillators: (1) small cylindrical plastic scintillator, 500 μm in diameter and 2 mm in length, and (2) 100 micron sheet of gadolinium oxysulfide 500 μm in diameter, each to a 2 m long optical fiber, which acts as a light guide to transmit scintillation photons from the sensitive element to a photomultiplier tube. Count rate linearity data were obtained from a wide range of exposure rates delivered from a radiological x-ray tube by adjusting the tube current. The data were fitted to a nonparalyzable dead time model to characterize the time response. The true counting rate was related to the reference free air dose air rate measured with a 0.6 cm{sup 3} Radcal{sup ®} thimble chamber as described in AAPM Report No. 111. Secondary electron and photon spectra were evaluated using Monte Carlo techniques to analyze ionization quenching and photon energy-absorption characteristics from free-in-air and in phantom measurements. The depth/energy dependence of the detector was characterized using a computed tomography dose index QA phantom consisting of nested adult head and body segments. The phantom provided up to 32 cm of acrylic with a compatible 0.6 cm{sup 3} calibrated

  19. Analysis of a distributed fiber-optic temperature sensor using single-photon detectors.

    PubMed

    Dyer, Shellee D; Tanner, Michael G; Baek, Burm; Hadfield, Robert H; Nam, Sae Woo

    2012-02-13

    We demonstrate a high-accuracy distributed fiber-optic temperature sensor using superconducting nanowire single-photon detectors and single-photon counting techniques. Our demonstration uses inexpensive single-mode fiber at standard telecommunications wavelengths as the sensing fiber, which enables extremely low-loss experiments and compatibility with existing fiber networks. We show that the uncertainty of the temperature measurement decreases with longer integration periods, but is ultimately limited by the calibration uncertainty. Temperature uncertainty on the order of 3 K is possible with spatial resolution of the order of 1 cm and integration period as small as 60 seconds. Also, we show that the measurement is subject to systematic uncertainties, such as polarization fading, which can be reduced with a polarization diversity receiver.

  20. CONCORD: comparison of cosmic radiation detectors in the radiation field at aviation altitudes

    NASA Astrophysics Data System (ADS)

    Meier, Matthias M.; Trompier, François; Ambrozova, Iva; Kubancak, Jan; Matthiä, Daniel; Ploc, Ondrej; Santen, Nicole; Wirtz, Michael

    2016-05-01

    Space weather can strongly affect the complex radiation field at aviation altitudes. The assessment of the corresponding radiation exposure of aircrew and passengers has been a challenging task as well as a legal obligation in the European Union for many years. The response of several radiation measuring instruments operated by different European research groups during joint measuring flights was investigated in the framework of the CONCORD (COmparisoN of COsmic Radiation Detectors) campaign in the radiation field at aviation altitudes. This cooperation offered the opportunity to measure under the same space weather conditions and contributed to an independent quality control among the participating groups. The CONCORD flight campaign was performed with the twin-jet research aircraft Dassault Falcon 20E operated by the flight facility Oberpfaffenhofen of the German Aerospace Center (Deutsches Zentrum für Luft- und Raumfahrt, DLR). Dose rates were measured at four positions in the atmosphere in European airspace for about one hour at each position in order to obtain acceptable counting statistics. The analysis of the space weather situation during the measuring flights demonstrates that short-term solar activity did not affect the results which show a very good agreement between the readings of the instruments of the different institutes.

  1. Recovery of optical properties using interstitial cylindrical diffusers as source and detector fibers

    NASA Astrophysics Data System (ADS)

    Baran, Timothy M.

    2016-07-01

    We demonstrate recovery of optical properties using arrays of interstitial cylindrical diffusing fibers as sources and detectors. A single 1-cm diffuser delivered laser illumination at 665 nm, while seven 1- and 2-cm diffusers at 1-cm grid spacing acted as detectors. Extraction of optical properties from these measurements was based upon a diffusion model of emission and detection distributions for these diffuser fibers, informed by previous measurements of heterogeneous axial detection. Verification of the technique was performed in 15 liquid tissue-simulating phantoms consisting of deionized water, India ink as absorber, and Intralipid 20% as scatterer. For the range of optical properties tested, mean errors were 4.4% for effective attenuation coefficient, 12.6% for absorption coefficient, and 7.6% for reduced scattering coefficient. Error in recovery tended to increase with decreasing transport albedo. For therapeutic techniques involving the delivery of light to locations deep within the body, such as interstitial photodynamic and photothermal therapies, the methods described here would allow the treatment diffuser fibers also to be used as sources and detectors for recovery of optical properties. This would eliminate the need for separately inserted fibers for spectroscopy, reducing clinical complexity and improving the accuracy of treatment planning.

  2. Compact cryogenic self-aligning fiber-to-detector coupling with losses below one percent.

    PubMed

    Miller, Aaron J; Lita, Adriana E; Calkins, Brice; Vayshenker, Igor; Gruber, Steven M; Nam, Sae Woo

    2011-05-09

    We present a compact packaging technique for coupling light from a single-mode telecommunication fiber to cryogenic single-photon sensitive devices. Our single-photon detectors are superconducting transition-edge sensors (TESs) with a collection area only a factor of a few larger than the area of the fiber core which presents significant challenges to low-loss fiber-to-detector coupling. The coupling method presented here has low loss, cryogenic compatibility, easy and reproducible assembly and low component cost. The system efficiency of the packaged single-photon counting detectors is verified by the "triplet method" of power-source calibration along with the "multiple attenuator" method that produces a calibrated single-photon flux. These calibration techniques, when used in combination with through-wafer imaging and fiber back-reflection measurements, give us confidence that we have achieved coupling losses below 1% for all devices packaged according to the self-alignment method presented in this paper.

  3. Radiation response of SiC-based fibers

    SciTech Connect

    Youngblood, G.E.; Jones, R.H.; Kohyama, Akira; Snead, L.L.

    1998-03-01

    The radiation response of a base-line carbide composite (SiC/SiC) made with Nicalon{trademark} CG fiber reinforcement was presented for a broad range of dose and irradiation temperatures. Strength loss in this composite and a similar composite made with Tyranno{trademark} fiber was related to shrinkage and a predicted mass loss in the Nicalon CG or Tyranno fibers. In Table 1, measured relative density and length changes ({Delta}p/p{sub o} and {Delta}L/L{sub o}, respectively) for coated and uncoated fibers irradiated at high doses and temperatures (43 dpa-SiC at 1000 C and 80 dpa-SiC at 800 C) are given. Also given are the relative mass loss changes {Delta}m/m{sub o}, calculated from {Delta}p/p{sub o} and {Delta}L/L{sub o} by the expression {Delta}m/m{sub o} = 3 {Delta}L/L{sub o} + {Delta}p/p{sub o}.

  4. Charge-coupled device/fiber optic taper array x-ray detector for protein crystallography

    SciTech Connect

    Naday, I.; Ross, S.; Westbrook, E.M.; Zentai, G.

    1998-04-01

    A large area charge-coupled device (CCD) based fiber optic taper array detector (APS-1) is installed at the insertion-device beamline of the Structural Biology Center at the Argonne Advanced Photon Source x-ray synchrotron. The detector is used in protein crystallography diffraction experiments, where the objective is to measure the position and intensity of x-ray Bragg peaks in diffraction images. Large imaging area, very high spatial resolution, high x-ray sensitivity, good detective quantum efficiency, low noise, wide dynamic range, excellent stability and short readout time are all fundamental requirements in this application. The APS-1 detector converts the 2-D x-ray patterns to visible light images by a thin layer of x-ray sensitive phosphor. The phosphor coating is directly deposited on the large ends of nine fiber optic tapers arranged in a 3{times}3 array. Nine, thermoelectrically cooled 1024{times}1024pixel CCDs image the patterns, demagnified by the tapers. After geometrical and uniformity corrections, the nine areas give a continuous image of the detector face with virtually no gaps between the individual tapers. The 18 parallel analog signal-processing channels and analog-to-digital converters ensure short readout time and low readout noise. We discuss the design and measured performance of the detector. {copyright} {ital 1998 Society of Photo-Optical Instrumentation Engineers.}{ital Key words:} charge-coupled device; fiber optic taper; x-ray diffraction; crystallography; imaging detector. {copyright} {ital 1998} {ital Society of Photo-Optical Instrumentation Engineers}

  5. Activation of Organic Photovoltaic Light Detectors Using Bend Leakage from Optical Fibers.

    PubMed

    Griffith, Matthew J; Willis, Matthew S; Kumar, Pankaj; Holdsworth, John L; Bezuidenhout, Henco; Zhou, Xiaojing; Belcher, Warwick; Dastoor, Paul C

    2016-03-01

    This work investigates the detection and subsequent utilization of leaked light from bends in a silica optical fiber using organic photovoltaic detectors. The optic power lost by single mode and multimode silica optical fibers was calibrated for bend radii between 1 and 7 mm for 532 and 633 nm light, exhibiting excellent agreement with previous theoretical solutions. The spatial location of maximum power leakage on the exterior of the fiber was found to exist in the same plane as the fiber, with a 10° offset from the normal. Two different organic photovoltaic detectors fabricated using a poly(3-hexylthiophene):indene-C60-bisadduct donor-acceptor blend cast from chloroform and chlorobenzene were fabricated to detect the leaked light. The two detectors exhibited different photovoltaic performances, predominantly due to different active layer thicknesses. Both devices showed sensitivity to leakage light, exhibiting voltages between 200 and 300 mV in response to leaked light from the fiber. The temporal responses of the devices were observed to differ, with a rise time from 10% to 90% of maximum voltage of 1430 μs for the chlorobenzene device, and a corresponding rise time of 490 μs for the higher performing chloroform device. The two OPVs were used to simultaneously detect leaked light from induced bends in the optical fiber, with the differing temporal profiles employed to create a unique time-correlated detection signal with enhanced security. The delay between detection of each OPV voltage could be systematically varied, allowing for either a programmable and secure single detection signal or triggering of multiple events with variable time resolution. The results reported in this study present exciting avenues toward the deployment of this simple and noninvasive optical detection system in a range of different applications.

  6. A New scintillator tile / fiber preshower detector for the CDF central calorimeter

    SciTech Connect

    Gallinaro, Michele; Artikov, A.; Bromberg, C.; Budagov, J.; Byrum, K.; Chang, S.; Chlachidze, G.; Goulianos, K.; Huston, J.; Iori, M.; Kim, M.; Kuhlmann, S.; Lami, S.; Lindgren, M.; Lytken, E.; Miller, R.; Nodulman, L.; Pauletta, G.; Penzo, A.; Proudfoot, J.; Roser, R.; /Argonne /Dubna, JINR /Fermilab /Kyungpook Natl. U. /Michigan State U. /INFN, Siena /Rockefeller U. /INFN, Rome /INFN, Trieste /INFN, Udine /Tsukuba U.

    2004-11-01

    A detector designed to measure early particle showers has been installed in front of the central CDF calorimeter at the Tevatron. This new preshower detector is based on scintillator tiles coupled to wavelength-shifting fibers read out by multianode photomultipliers and has a total of 3,072 readout channels. The replacement of the old gas detector was required due to an expected increase in instantaneous luminosity of the Tevatron collider in the next few years. Calorimeter coverage, jet energy resolution, and electron and photon identification are among the expected improvements. The final detector design, together with the R&D studies that led to the choice of scintillator and fiber, mechanical assembly, and quality control are presented. The detector was installed in the fall 2004 Tevatron shutdown and is expected to start collecting colliding beam data by the end of 2004. First measurements indicate a light yield of 12 photoelectrons/MIP, a more than two-fold increase over the design goals.

  7. Experimental investigation of the radiation shielding of a MCP detector in the radiation environment near Europa

    NASA Astrophysics Data System (ADS)

    Tulej, Marek; Wurz, Peter; Meyer, Stefan; Lasi, Davide; Lüthi, Matthias; Galli, André; Piazza, Daniele; Desorgher, Laurent; Hajdas, Wojciech; Reggiani, Davide; Karlsson, Stefan; Kalla, Leif

    2016-04-01

    The Neutral Ion Mass spectrometer (NIM) is one of the six instruments in the Particle Environmental Package (PEP) designed for the JUICE mission of ESA to the Jupiter system. NIM will conduct detailed measurements of chemical composition of Jovian moon exospheres and is equipped with a sensitive MCP ion detector. To maintain high sensitivity of the NIM instrument, background signals arising from the presence of a large background of penetrating radiation (mostly high-energy electrons and protons) in Jupiter's magnetosphere have to be minimised. We investigate the performance of a layered-Z radiation shield, an Al-Ta-Al sandwich, as a potential shielding against high-energy electrons. The experimental investigations were performed at the PiM1 beam line of the High Intensity Proton Accelerator Facilities located at the Paul Scherrer Institute (PSI), Villigen, Switzerland. The facility delivers a particle beam containing e,  and  with an adjustable momentum ranging from 17.5 to 345 MeV/c. The measurements of the induced radiation background generated during the interaction of primary particles with Al-Ta-Al sandwich were conducted by beam diagnostic methods and a MCP detector. Diagnostic methods provided for the characterisation of the beam parameters (beam geometry, flux and intensity) and identification of individual particles in the primary beam and in the flux of secondary particles. The MCP detector measurements provided information on the effects of radiation and the results of these measurements define the performance of the shielding material in reducing the background arising from penetrating radiation. In parallel, we performed modelling studies using GEANT 4 and GRASS methods to identify products of the interaction and predict their fluxes and particle rates at the MCP detector. Combination of the experiment and modelling studies yields detailed characterisation of the radiation effects produced by the interaction of the incident e- in the

  8. Some results of test beam studies of Transition Radiation Detector prototypes at CERN

    NASA Astrophysics Data System (ADS)

    Tikhomirov, V. O.; Brooks, T.; Joos, M.; Rembser, C.; Celebi, E.; Gurbuz, S.; Cetin, S. A.; Konovalov, S. P.; Zhukov, K.; Fillipov, K. A.; Romaniouk, A.; Smirnov, S. Yu; Teterin, P. E.; Vorobev, K. A.; Boldyrev, A. S.; Maevsky, A.; Derendarz, D.

    2017-01-01

    Operating conditions and challenging demands of present and future accelerator experiments result in new requirements on detector systems. There are many ongoing activities aimed to develop new technologies and to improve the properties of detectors based on existing technologies. Our work is dedicated to development of Transition Radiation Detectors (TRD) suitable for different applications. In this paper results obtained in beam tests at SPS accelerator at CERN with the TRD prototype based on straw technology are presented. TRD performance was studied as a function of thickness of the transition radiation radiator and working gas mixture pressure.

  9. LHCb Scintillating Fiber detector front end electronics design and quality assurance

    NASA Astrophysics Data System (ADS)

    Vink, W. E. W.; Pellegrino, A.; Ietswaard, G. C. M.; Verkooijen, J. C.; Carneiro, U.; Massefferi, A.

    2017-03-01

    The on-detector electronics of the LHCb Scintillating Fiber Detector consists of multiple PCBs assembled in a unit called Read Out Box, capable of reading out 2048 channels with an output rate of 70 Gbps. There are three types of boards: PACIFIC, Clusterization and Master Board. The Pacific Boards host PACIFIC ASICs, with pre-amplifier and comparator stages producing two bits of data per channel. A cluster-finding algorithm is then run in an FPGA on the Clusterization Board. The Master Board distributes fast and slow control, and power. We describe the design, production and test of prototype PCBs.

  10. Radiation Transport Properties of Polyethylene-Fiber Composites

    NASA Technical Reports Server (NTRS)

    Kaul, Raj K.; Barghouty, A. F.; Dahche, H. M.

    2003-01-01

    Composite materials that can both serve as effective shielding materials against cosmic-ray and energetic solar particles in deep space as well as structural materials for habitat and spacecraft remain a critical and mission enabling piece in mission planning and exploration. Polyethylene is known to have excellent shielding properties due to its low density coupled with high hydrogen content. Polyethylene fiber reinforced composites promise to combine this shielding effectiveness with the required mechanical properties of structural materials. Samples of Polyethylene-fiber reinforced epoxy matrix composite 1-5 cm thick were prepared at NASA's Marshall Space Flight Center and tested against 500 MeV/nucleon Fe beam at the HIMAC facility of NIRS in Chiba, Japan. This paper presents measured and calculated results for the radiation transport properties of these samples.

  11. Gamma radiation resistant Fabry-Perot fiber optic sensors

    NASA Astrophysics Data System (ADS)

    Liu, Hanying; Miller, Don W.; Talnagi, Joseph

    2002-08-01

    The Nuclear Regulatory Commission (NRC) in 1998 completed a study of emerging technologies that could be applicable to measurement systems in nuclear power plants [H. M. Hashemian [et al.], "Advanced Instrumentation and Maintenance Technologies for Nuclear Power Plants," NUREG/CR-5501 (1998)]. This study concluded that advanced fiber optic sensing technology is an emerging technology that should be investigated. It also indicated that there had been very little research related to performance evaluation of fiber optic sensors in nuclear plant harsh environments, although substantial research has been performed on nuclear radiation effects on optical fibers in the last two decades. A type of Fabry-Perot fiber optic temperature sensor, which is manufactured by Fiso Technologies in Canada, is qualified to be a candidate for potential applications in nuclear radiation environment due to its unique signal processing technique and its resistance to power loss. The gamma irradiation effects on this type of sensors are investigated in this article. Two sensors were irradiated in a gamma irradiation field and one of them was irradiated up to a total gamma dose of 133 Mrad. The sensor on-line performance was monitored during each gamma irradiation test. Furthermore, the sensor static and dynamic performance before and after each irradiation test were evaluated according to the Standard ISA-dS67.06.01 ("Performance Monitoring for Nuclear Safety-Related Instrument Channels in Nuclear Power Plants", Standard ISA-dS67.06.01, Draft 7, Instrument Society of America, 1999). Although several abnormal phenomena were observed, analysis shows that gamma irradiation is not accredited to the abnormal behavior, which implies that this type of sensor is suitable to a gamma irradiation environment with a high gamma dose.

  12. Radiation-induced nonlinear optical response of quartz fibers

    NASA Astrophysics Data System (ADS)

    Plaksin, O. A.

    2006-10-01

    The intensity of radiation-induced luminescence and transient optical losses in KU-1 (Russia) and K-3 (Japan) quartz glass optical tibers irradiated in a fast pulsed fission reactor (a pulse duration of 80 μs and a neutron flux up to 7 × 1016 cm 2 s 2) has been measured in the visible range. The intensity of the fast luminescence component nonlinearly depends on the neutron flux. The luminescence intensity and the transient optical losses depend on the probe light intensity. Suppression of radiation-induced luminescence is observed at wavelengths that are longer or shorter than the probe light wavelength. Light probing leads to an increase in transient optical losses and a more rapid recovery of transparency. A model of two photon fluxes is proposed to analyze the relationship of the effects of suppression of radiation-induced luminescence and the increase in optical losses upon light probing. The effect of suppression of radiation-induced luminescence can be used to control the optical properties of fibers in radiation fields.

  13. Charged Particle Induced Radiation damage of Germanium Detectors in Space: Two Mars Observer Gamma-Ray Detectors

    NASA Technical Reports Server (NTRS)

    Bruekner, J.; Koenen, M.; Evans, L. G.; Starr, R.; Bailey, S. H.; Boynton W. V.

    1997-01-01

    The Mars Observer Gamma-Ray Spectrometer (MO GRS) was designed to measure gamma-rays emitted by the Martian surface. This gamma-ray emission is induced by energetic cosmic-ray particles penetrating the Martian surface and producing many secondary particles and gamma rays. The MO GRS consisted of an high-purity germanium (HPGe) detector with a passive cooler. Since radiation damage due to permanent bombardment of energetic cosmic ray particles (with energies up to several GeV) was expected for the MO GRS HPGe crystal, studies on radiation damage effects of HPGe crystals were carried on earth. One of the HPGe crystals (paradoxically called FLIGHT) was similar to the MO GRS crystal. Both detectors, MO GRS and FLIGHT, contained closed-end coaxial n-type HPGe crystals and had the same geometrical dimensions (5.6 x 5.6 cm). Many other parameters, such as HV and operation temperature, differed in space and on earth, which made it somewhat difficult to directly compare the performance of both detector systems. But among other detectors, detector FLIGHT provided many useful data to better understand radiation damage effects.

  14. Dynamic Electrothermal Model of a Sputtered Thermopile Thermal Radiation Detector for Earth Radiation Budget Applications

    NASA Technical Reports Server (NTRS)

    Weckmann, Stephanie

    1997-01-01

    The Clouds and the Earth's Radiant Energy System (CERES) is a program sponsored by the National Aeronautics and Space Administration (NASA) aimed at evaluating the global energy balance. Current scanning radiometers used for CERES consist of thin-film thermistor bolometers viewing the Earth through a Cassegrain telescope. The Thermal Radiation Group, a laboratory in the Department of Mechanical Engineering at Virginia Polytechnic Institute and State University, is currently studying a new sensor concept to replace the current bolometer: a thermopile thermal radiation detector. This next-generation detector would consist of a thermal sensor array made of thermocouple junction pairs, or thermopiles. The objective of the current research is to perform a thermal analysis of the thermopile. Numerical thermal models are particularly suited to solve problems for which temperature is the dominant mechanism of the operation of the device (through the thermoelectric effect), as well as for complex geometries composed of numerous different materials. Feasibility and design specifications are studied by developing a dynamic electrothermal model of the thermopile using the finite element method. A commercial finite element-modeling package, ALGOR, is used.

  15. Status of radiation damage measurements in room temperature semiconductor radiation detectors

    SciTech Connect

    Franks, L.A.; James, R.B.

    1998-04-01

    The literature of radiation damage measurements on cadmium zinc telluride (CZT), cadmium telluride (CT), and mercuric iodide (HgI{sub 2}) is reviewed for the purpose of determining their applicability to space applications. CZT strip detectors exposed to intermediate energy (1.3 MeV) proton fluences exhibit increased interstrip leakage after 10{sup 10} p/cm{sup 2} and significant bulk leakage after 10{sup 12} p/cm{sup 2}. CZT exposed to 200 MeV protons shows a two-fold loss in energy resolution after a fluence of 5 {times} 10{sup 9} p/cm{sup 2} in thick (3 mm) planar devices but little effect in 2 mm devices. No energy resolution effects were noted from moderated fission spectrum neutrons after fluences up to 10{sup 10} n/cm{sup 2}, although activation was evident. CT detectors show resolution losses after fluences of 3 {times} 10{sup 9} p/cm{sup 2} at 33 MeV for chlorine-doped detectors. Indium doped material may be more resistant. Neutron exposures (8 MeV) caused resolution losses after fluences of 2 {times} 10{sup 10} n/cm{sup 2}. Mercuric iodide has been studied with intermediate energy protons (10 to 33 MeV) at fluences up to 10{sup 12} p/cm{sup 2} and with 1.5 GeV protons at fluences up to 1.2 {times} 10{sup 8} p/cm{sup 2}. Neutron exposures at 8 MeV have been reported at fluences up to 10{sup 15} n/cm{sup 2}. No radiation damage was found under these irradiation conditions.

  16. Asymmetric devices based on carbon nanotubes as detectors of sub-THz radiation

    NASA Astrophysics Data System (ADS)

    Gayduchenko, I. A.; Fedorov, G. E.; Stepanova, T. S.; Titova, N.; Voronov, B. M.; But, D.; Coquillat, D.; Diakonova, N.; Knap, W.; Goltsman, G. N.

    2016-08-01

    Demand for efficient terahertz (THz) radiation detectors resulted in intensive study of the asymmetric carbon nanostructures as a possible solution for that problem. In this work, we systematically investigate the response of asymmetric carbon nanodevices to sub-terahertz radiation using different sensing elements: from dense carbon nanotube (CNT) network to individual CNT. We conclude that the detectors based on individual CNTs both semiconducting and quasi-metallic demonstrate much stronger response in sub-THz region than detectors based on disordered CNT networks at room temperature. We also demonstrate the possibility of using asymmetric detectors based on CNT for imaging in the THz range at room temperature. Further optimization of the device configuration may result in appearance of novel terahertz radiation detectors.

  17. Development of a novel polymeric fiber-optic magnetostrictive metal detector

    PubMed Central

    Hua, Wei-Shu; Hooks, Joshua Rosenberg; Wu, Wen-Jong

    2011-01-01

    The purpose this paper is the development a novel polymeric fiber-optic magnetostrictive metal detector, using a fiber–optic Mach-Zehnder interferometer and polymeric magnetostrictive material. Metal detection is based on the strain-induced optical path length change steming from the ferromagnetic material introduced in the magnetic field. Varied optical phase shifts resulted largely from different metal objects. In this paper, the preliminary results on the different metal material detection will be discussed. PMID:22140300

  18. Invited article: CO2 laser production of fused silica fibers for use in interferometric gravitational wave detector mirror suspensions.

    PubMed

    Heptonstall, A; Barton, M A; Bell, A; Cagnoli, G; Cantley, C A; Crooks, D R M; Cumming, A; Grant, A; Hammond, G D; Harry, G M; Hough, J; Jones, R; Kelley, D; Kumar, R; Martin, I W; Robertson, N A; Rowan, S; Strain, K A; Tokmakov, K; van Veggel, M

    2011-01-01

    In 2000 the first mirror suspensions to use a quasi-monolithic final stage were installed at the GEO600 detector site outside Hannover, pioneering the use of fused silica suspension fibers in long baseline interferometric detectors to reduce suspension thermal noise. Since that time, development of the production methods of fused silica fibers has continued. We present here a review of a novel CO(2) laser-based fiber pulling machine developed for the production of fused silica suspensions for the next generation of interferometric gravitational wave detectors and for use in experiments requiring low thermal noise suspensions. We discuss tolerances, strengths, and thermal noise performance requirements for the next generation of gravitational wave detectors. Measurements made on fibers produced using this machine show a 0.8% variation in vertical stiffness and 0.05% tolerance on length, with average strengths exceeding 4 GPa, and mechanical dissipation which meets the requirements for Advanced LIGO thermal noise performance.

  19. Taking a look at the calibration of a CCD detector with a fiber-optic taper

    DOE PAGES

    Alkire, R. W.; Rotella, F. J.; Duke, Norma E. C.; ...

    2016-02-16

    At the Structural Biology Center beamline 19BM, located at the Advanced Photon Source, the operational characteristics of the equipment are routinely checked to ensure they are in proper working order. After performing a partial flat-field calibration for the ADSC Quantum 210r CCD detector, it was confirmed that the detector operates within specifications. However, as a secondary check it was decided to scan a single reflection across one-half of a detector module to validate the accuracy of the calibration. The intensities from this single reflection varied by more than 30% from the module center to the corner of the module. Redistributionmore » of light within bent fibers of the fiber-optic taper was identified to be a source of this variation. As a result, the degree to which the diffraction intensities are corrected to account for characteristics of the fiber-optic tapers depends primarily upon the experimental strategy of data collection, approximations made by the data processing software during scaling, and crystal symmetry.« less

  20. Taking a look at the calibration of a CCD detector with a fiber-optic taper

    PubMed Central

    Alkire, R. W.; Rotella, F. J.; Duke, N. E. C.; Otwinowski, Zbyszek; Borek, Dominika

    2016-01-01

    At the Structural Biology Center beamline 19BM, located at the Advanced Photon Source, the operational characteristics of the equipment are routinely checked to ensure they are in proper working order. After performing a partial flat-field calibration for the ADSC Quantum 210r CCD detector, it was confirmed that the detector operates within specifications. However, as a secondary check it was decided to scan a single reflection across one-half of a detector module to validate the accuracy of the calibration. The intensities from this single reflection varied by more than 30% from the module center to the corner of the module. Redistribution of light within bent fibers of the fiber-optic taper was identified to be a source of this variation. The degree to which the diffraction intensities are corrected to account for characteristics of the fiber-optic tapers depends primarily upon the experimental strategy of data collection, approximations made by the data processing software during scaling, and crystal symmetry. PMID:27047303

  1. Taking a look at the calibration of a CCD detector with a fiber-optic taper

    SciTech Connect

    Alkire, R. W.; Rotella, F. J.; Duke, Norma E. C.; Otwinowski, Zbyszek; Borek, Dominika M.

    2016-02-16

    At the Structural Biology Center beamline 19BM, located at the Advanced Photon Source, the operational characteristics of the equipment are routinely checked to ensure they are in proper working order. After performing a partial flat-field calibration for the ADSC Quantum 210r CCD detector, it was confirmed that the detector operates within specifications. However, as a secondary check it was decided to scan a single reflection across one-half of a detector module to validate the accuracy of the calibration. The intensities from this single reflection varied by more than 30% from the module center to the corner of the module. Redistribution of light within bent fibers of the fiber-optic taper was identified to be a source of this variation. As a result, the degree to which the diffraction intensities are corrected to account for characteristics of the fiber-optic tapers depends primarily upon the experimental strategy of data collection, approximations made by the data processing software during scaling, and crystal symmetry.

  2. Radiation tolerance studies of neutron irradiated double sided silicon microstrip detectors

    NASA Astrophysics Data System (ADS)

    Singla, M.; Larionov, P.; Balog, T.; Heuser, J.; Malygina, H.; Momot, I.; Sorokin, I.; Sturm, C.

    2016-07-01

    Radiation tolerance studies were made on double-sided silicon microstrip detectors for the Silicon Tracking System of the Compressed Baryonic Matter experiment at FAIR. The prototype detectors from two different vendors were irradiated to twice the highest expected fluence (1 ×1014 1 MeVneqcm-2) in the CBM experimental runs of several years. Test results from these prototype detectors both before and after irradiations have been discussed.

  3. Terahertz spectroscopy with a holographic Fourier transform spectrometer plus array detector using coherent synchrotron radiation

    SciTech Connect

    Nikolay I. Agladz, John Klopf, Gwyn Williams, Albert J. Sievers

    2010-06-01

    By use of coherent terahertz synchrotron radiation, we experimentally tested a holographic Fourier transform spectrometer coupled to an array detector to determine its viability as a spectral device. Somewhat surprisingly, the overall performance strongly depends on the absorptivity of the birefringent lithium tantalate pixels in the array detector.

  4. DIRC, the internally reflecting ring imaging Cerenkov detector for BABAR: Properties of the quartz radiators

    SciTech Connect

    Schwiening, Jochen

    1998-02-01

    A description of DIRC, a particle identification detector for the BABAR experiment at the Standard Linear Collider B Factory is given. It is the barrel region of the detector and its name is an acronym for detection of internally reflected Cherenkov radiation. It is a Cherenkov ring imaging device which utilizes totally internally reflected Cherenkov light in the visible and ultraviolet regions.

  5. Performance improvements of wavelength-shifting-fiber neutron detectors using high-resolution positioning algorithms

    SciTech Connect

    Wang, C. L.

    2016-05-17

    On the basis of FluoroBancroft linear-algebraic method [S.B. Andersson, Opt. Exp. 16, 18714 (2008)] three highly-resolved positioning methods were proposed for wavelength-shifting fiber (WLSF) neutron detectors. Using a Gaussian or exponential-decay light-response function (LRF), the non-linear relation of photon-number profiles vs. x-pixels was linearized and neutron positions were determined. The proposed algorithms give an average 0.03-0.08 pixel position error, much smaller than that (0.29 pixel) from a traditional maximum photon algorithm (MPA). The new algorithms result in better detector uniformity, less position misassignment (ghosting), better spatial resolution, and an equivalent or better instrument resolution in powder diffraction than the MPA. Moreover, these characters will facilitate broader applications of WLSF detectors at time-of-flight neutron powder diffraction beamlines, including single-crystal diffraction and texture analysis.

  6. Performance improvements of wavelength-shifting-fiber neutron detectors using high-resolution positioning algorithms

    DOE PAGES

    Wang, C. L.

    2016-05-17

    On the basis of FluoroBancroft linear-algebraic method [S.B. Andersson, Opt. Exp. 16, 18714 (2008)] three highly-resolved positioning methods were proposed for wavelength-shifting fiber (WLSF) neutron detectors. Using a Gaussian or exponential-decay light-response function (LRF), the non-linear relation of photon-number profiles vs. x-pixels was linearized and neutron positions were determined. The proposed algorithms give an average 0.03-0.08 pixel position error, much smaller than that (0.29 pixel) from a traditional maximum photon algorithm (MPA). The new algorithms result in better detector uniformity, less position misassignment (ghosting), better spatial resolution, and an equivalent or better instrument resolution in powder diffraction than the MPA.more » Moreover, these characters will facilitate broader applications of WLSF detectors at time-of-flight neutron powder diffraction beamlines, including single-crystal diffraction and texture analysis.« less

  7. A Geant Study of the Scintillating Optical Fiber (SOFCAL) Cosmic Ray Detector

    NASA Technical Reports Server (NTRS)

    Munroe, Ray B., Jr.

    1998-01-01

    Recent energy measurements by balloon-borne passive emulsion chambers indicate that the flux ratios of protons to helium nuclei and of protons to all heavy nuclei decrease as the primary cosmic ray energy per nucleon increases above approx. 200 GeV/n, and suggest a "break" in the proton spectrum between 200 GeV and 5 TeV. However, these passive emulsion chambers are limited to a lower energy threshold of approx. 5 TeV/n, and cannot fully explore this energy regime. Because cosmic ray flux and composition details may be significant to acceleration models, a hybrid detector system called the Scintillating Optical Fiber Calorimeter (SOFCAL) has been designed and flown. SOFCAL incorporates both conventional passive emulsion chambers and an active calorimeter utilizing scintillating plastic fibers as detectors. These complementary types of detectors allow the balloon-borne SOFCAL experiment to measure the proton and helium spectra from approx. 400 GeV/n to approx. 20 TeV. The fundamental purpose of this study is to use the GEANT simulation package to model the hadronic and electromagnetic shower evolution of cosmic rays incident on the SOFCAL detector. This allows the interpretation of SOFCAL data in terms of charges and primary energies of cosmic rays, thus allowing the determinations of cosmic ray flux and composition as functions of primary energy.

  8. Wavelength-Shifting-Fiber Scintillation Detectors for Thermal Neutron Imaging at SNS

    SciTech Connect

    Clonts, Lloyd G; Cooper, Ronald G; Crow, Lowell; Diawara, Yacouba; Ellis, E Darren; Funk, Loren L; Hannan, Bruce W; Hodges, Jason P; Richards, John D; Riedel, Richard A; Wang, Cai-Lin

    2012-01-01

    We have developed wavelength-Shifting-fiber Scintillator Detector (SSD) with 0.3 m2 area per module. Each module has 154 x 7 pixels and a 5 mm x 50 mm pixel size. Our goal is to design a large area neutron detector offering higher detection efficiency and higher count-rate capability for Time-Of-Flight (TOF) neutron diffraction in Spallation Neutron Source (SNS). A ZnS/6LiF scintillator combined with a novel fiber encoding scheme was used to record the neutron events. A channel read-out-card (CROC) based digital-signal processing electronics and position-determination algorithm was applied for neutron imaging. Neutron-gamma discrimination was carried out using pulse-shape discrimination (PSD). A sandwich flat-scintillator detector can have detection efficiency close to He-3 tubes (about 10 atm). A single layer flat-scintillator detector has count rate capability of 6,500 cps/cm2, which is acceptable for powder diffractometers at SNS.

  9. Radiation detection system using semiconductor detector with differential carrier trapping and mobility

    DOEpatents

    Whited, Richard C.

    1981-01-01

    A system for obtaining improved resolution in relatively thick semiconductor radiation detectors, such as HgI.sub.2, which exhibit significant hole trapping. Two amplifiers are used: the first measures the charge collected and the second the contribution of the electrons to the charge collected. The outputs of the two amplifiers are utilized to unfold the total charge generated within the detector in response to a radiation event.

  10. Application of scintillating fiber gamma-ray detectors for medical imaging

    NASA Astrophysics Data System (ADS)

    Chaney, Roy C.; Fenyves, Ervin J.; Nelson, Gregory S.; Anderson, Jon A.; Antich, Peter P.; Atac, Muzaffer

    1993-02-01

    The recently developed plastic scintillating fiber technology started the development of a new generation of high spatial and time resolution gamma ray detectors for medical imaging, such as positron emission tomography (PET) and single photon emission computed tomography (SPECT). A scintillating fiber PET module consisting of two 5 X 5 X 2.5 cm(superscript 3) detector stacks made of parallel 1.0 mm diameter fiber, separated by 20 cm, each viewed by a Hamamatsu R2486 position sensitive photomultiplier was developed and tested. The time resolution of the coincidence system is 10 nsec. The spatial resolution and efficiency of this module turned out to be 2.3 mm (FWHM) and 2.0%, respectively, and independent of the location of the (superscript 22)Na testing source inside a sphere of 2 cm radius around the center of the two fiber stacks. The effect of gammas scattered in a 15 cm diameter water filled glass cylinder into which the (superscript 22)Na was immersed did not change the spatial resolution of the system.

  11. Water-equivalent fiber radiation dosimeter with two scintillating materials

    PubMed Central

    Qin, Zhuang; Hu, Yaosheng; Ma, Yu; Lin, Wei; Luo, Xianping; Zhao, Wenhui; Sun, Weimin; Zhang, Daxin; Chen, Ziyin; Wang, Boran; Lewis, Elfed

    2016-01-01

    An inorganic scintillating material plastic optical fiber (POF) dosimeter for measuring ionizing radiation during radiotherapy applications is reported. It is necessary that an ideal dosimeter exhibits many desirable qualities, including water equivalence, energy independence, reproducibility, dose linearity. There has been much recent research concerning inorganic dosimeters. However, little reference has been made to date of the depth-dose characteristics of dosimeter materials. In the case of inorganic scintillating materials, they are predominantly non water-equivalent, with their effective atomic weight (Zeff) being typically much greater than that of water. This has been a barrier in preventing inorganic scintillating material dosimeter from being used in actual clinical applications. In this paper, we propose a parallel-paired fiber light guide structure to solve this problem. Two different inorganic scintillating materials are embedded separately in the parallel-paired fiber. It is shown that the information of water depth and absorbed dose at the point of measurement can be extracted by utilizing their different depth-dose properties. PMID:28018715

  12. Water-equivalent fiber radiation dosimeter with two scintillating materials.

    PubMed

    Qin, Zhuang; Hu, Yaosheng; Ma, Yu; Lin, Wei; Luo, Xianping; Zhao, Wenhui; Sun, Weimin; Zhang, Daxin; Chen, Ziyin; Wang, Boran; Lewis, Elfed

    2016-12-01

    An inorganic scintillating material plastic optical fiber (POF) dosimeter for measuring ionizing radiation during radiotherapy applications is reported. It is necessary that an ideal dosimeter exhibits many desirable qualities, including water equivalence, energy independence, reproducibility, dose linearity. There has been much recent research concerning inorganic dosimeters. However, little reference has been made to date of the depth-dose characteristics of dosimeter materials. In the case of inorganic scintillating materials, they are predominantly non water-equivalent, with their effective atomic weight (Zeff) being typically much greater than that of water. This has been a barrier in preventing inorganic scintillating material dosimeter from being used in actual clinical applications. In this paper, we propose a parallel-paired fiber light guide structure to solve this problem. Two different inorganic scintillating materials are embedded separately in the parallel-paired fiber. It is shown that the information of water depth and absorbed dose at the point of measurement can be extracted by utilizing their different depth-dose properties.

  13. RADIATION EFFECTS ON EPOXY/CARBON FIBER COMPOSITE

    SciTech Connect

    Hoffman, E; Eric Skidmore, E

    2008-12-12

    The Department of Energy Savannah River Site vitrifies nuclear waste incident to defense programs through its Defense Waste Processing Facility (DWPF). The piping in the DWPF seal pot jumper configuration must withstand the stresses during an unlikely but potential deflagration event, and maintain its safety function for a 20-year service life. Carbon fiber-reinforced epoxy composites (CFR) were proposed for protection and reinforcement of piping during such an event. The proposed CFR materials have been ASME-approved (Section XI, Code Case N-589-1) for post-construction maintenance and is DOT-compliant per 49CFR 192 and 195. The proposed carbon fiber/epoxy composite reinforcement system was originally developed for pipeline rehabilitation and post-construction maintenance in petrochemical, refineries, DOT applications and other industries. The effects of ionizing radiation on polymers and organic materials have been studied for many years. The majority of available data are based on traditional exposures to gamma irradiation at high dose rates ({approx}10,000 Gy/hr) allowing high total dose within reasonable test periods and general comparison of different materials exposed at such conditions. However, studies in recent years have shown that degradation of many polymers are sensitive to dose rate, with more severe degradation often observed at similar or even lower total doses when exposed to lower dose rates. This behavior has been primarily attributed to diffusion-limited oxidation which is minimized during very high dose rate exposures. Most test standards for accelerated aging and nuclear qualification of components acknowledge these limitations. The results of testing to determine the radiation resistance and microstructural effects of gamma irradiation exposure on a bisphenol-A based epoxy matrix composite reinforced with carbon fibers are presented. This work provides a foundation for a more extensive evaluation of dose rate effects on advanced epoxy

  14. Organic liquid scintillation detector shape and volume impact on radiation portal monitors

    NASA Astrophysics Data System (ADS)

    Paff, Marc G.; Clarke, Shaun D.; Pozzi, Sara A.

    2016-07-01

    We have developed and tested a radiation portal monitor using organic liquid scintillation detectors. In order to optimize our system designs, neutron measurements were carried out with three organic liquid scintillation detectors of different shapes and sizes, along with a 3He radiation portal monitor (RPM) as a reference. The three liquids tested were a 7.62 cm diameter by 7.62 cm length cylindrical active volume organic liquid scintillation detector, a 12.7 cm diameter by 12.7 cm length cylindrical active volume organic liquid scintillation detector, and a 25 cm by 25 cm by 10 cm "paddle" shaped organic liquid scintillation detector. Background and Cf-252 neutron measurements were recorded to allow for a comparison of neutron intrinsic efficiencies as well as receiver operating characteristics (ROC) curves between detectors. The 12.7 cm diameter cylindrical active volume organic liquid scintillation detector exhibited the highest intrinsic neutron efficiency (54%) of all three liquid scintillators. An ROC curve analysis for a heavily moderated Cf-252 measurement showed that using the 12.7 cm diameter by 12.7 cm length cylindrical active volume Eljen EJ309 organic liquid scintillation detector would result in the fewest needed detector units in order to achieve a near 100% positive neutron alarm rate while maintaining a better than 1 in 10,000 false alarm rate on natural neutron background. A small number of organic liquid scintillation detectors could therefore be a valid alternative to 3He in some RPM applications.

  15. Development of CdZnTe radiation detectors

    NASA Astrophysics Data System (ADS)

    Bolotnikov, Aleksey; Camarda, Giuseppe; Hossain, Anwar; Kim, Ki Hyun; Yang, Ge; Gul, Rubi; Cui, Yonggang; James, Ralph B.

    2011-08-01

    Cadmium Zinc Telluride (CdZnTe or CZT) is a very attractive material for room-temperature semiconductor detectors because of its wide band-gap and high atomic number. Despite these advantages, CZT still presents some material limitations and poor hole mobility. In the past decade most of the efforts developing CZT detectors focused on designing different electrode configurations, mainly to minimize the deleterious effect due to the poor hole mobility. A few different electrode geometries were designed and fabricated, such as pixelated anodes and Frisch-grid detectors developed at Brookhaven National Lab (BNL). However, crystal defects in CZT materials still limit the yield of detector-grade crystals, and, in general, dominate the detector's performance. In the past few years, our group's research extended to characterizing the CZT materials at the micro-scale, and to correlating crystal defects with the detector's performance. We built a set of unique tools for this purpose, including infrared (IR) transmission microscopy, X-ray micro-scale mapping using synchrotron light source, X-ray transmission- and reflection- topography, current deep level transient spectroscopy (I-DLTS), and photoluminescence measurements. Our most recent work on CZT detectors was directed towards detailing various crystal defects, studying the internal electrical field, and delineating the effects of thermal annealing on improving the material properties. In this paper, we report our most recent results.

  16. PRD3000: A novel Personnel Radiation Detector with Radiation Exposure Monitoring

    SciTech Connect

    Fallu-Labruyere, A.; Micou, C.; Schulcz, F.; Fellinger, J.

    2015-07-01

    PRD3000{sup TM} is a novel Personal Radiation Detector (PRD) with personnel radiation dose exposure monitoring. It is intended for First Responders, Law Enforcement, Customs Inspectors protecting critical infrastructures for detecting unexpected radioactive sources, who also need real time Hp(10) dose equivalent information. Traditional PRD devices use scintillator materials instrumented through either a photomultiplier tube or a photodiode photodetector. While the former is bulky and sensitive to magnetic fields, the latter has to compromise radiation sensitivity and energy threshold given its current noise per unit of photo-detection surface. Recently, solid state photodetectors (SiPM), based on arrays of Geiger operated diodes, have emerged as a scalable digital photodetector for photon counting. Their strong breakdown voltage temperature dependence (on the order of tens of milli-volts per K) has however limited their use for portable instruments where strong temperature gradients can be experienced, and limited power is available to temperature stabilize. The PRD3000 is based on the industry standard DMC3000 active dosimeter that complies with IEC 61526 Ed. 3 and ANSI 42.20 for direct reading personal dose equivalent meters and active personnel radiation monitors. An extension module is based on a CsI(Tl) scintillator readout by a temperature compensated SiPM. Preliminary nuclear tests combined with a measured continuous operation in excess of 240 hours from a single AAA battery cell indicate that the PRD3000 complies with the IEC 62401 Ed.2 and ANSI 42.32 without sacrificing battery life time. We present a summary of the device test results, starting with performance stability over a temperature range of - 20 deg. C to 50 deg. C, false alarm rates and dynamic response time. (authors)

  17. Developments in gas detectors for synchrotron x-ray radiation

    SciTech Connect

    Fischer, J.; Radeka, V.; Smith, G.C.

    1985-09-01

    New results on the physical limitations to position resolution in gas detectors for x-rays (approx. =3 to 20 keV) due to the range of photoelectrons and Auger electrons are discussed. These results were obtained with a small gap detector in which position readout was accomplished by using a very low noise centroid finding technique. A description is given of position sensitive detectors for medium rates (a few x 10/sup 5/ photons per second), using delay line readout, and for very high rates (approx. =10/sup 8/ photons per second), using fast signal shaping on the output of each anode wire.

  18. Role of electrode metallization in performance of semi-insulating GaAs radiation detectors

    NASA Astrophysics Data System (ADS)

    Dubecký, František; Boháček, Pavol; Sekáčová, Mária; Zaťko, Bohumír; Lalinský, Tibor; Linhart, Vladimír; Šagátová-Perd'ochová, Andrea; Mudroň, Ján; Pospíšil, Stanislav

    2007-06-01

    In the present work, a comparative study of semi-insulating (SI) GaAs radiation detectors with different blocking (Schottky) and ohmic contact metallization is presented. The detectors fabricated from "detector-grade" bulk SI GaAs are characterized by current-voltage measurements and their detection performance is evaluated from pulse-height spectra of 241Am and 57Co γ-sources. Observed results are evaluated and discussed. Importance of the optimized electrodes technology of SI GaAs detector with good performance is demonstrated.

  19. Methods for radiation detection and characterization using a multiple detector probe

    DOEpatents

    Akers, Douglas William; Roybal, Lyle Gene

    2014-11-04

    Apparatuses, methods, and systems relating to radiological characterization of environments are disclosed. Multi-detector probes with a plurality of detectors in a common housing may be used to substantially concurrently detect a plurality of different radiation activities and types. Multiple multi-detector probes may be used in a down-hole environment to substantially concurrently detect radioactive activity and contents of a buried waste container. Software may process, analyze, and integrate the data from the different multi-detector probes and the different detector types therein to provide source location and integrated analysis as to the source types and activity in the measured environment. Further, the integrated data may be used to compensate for differential density effects and the effects of radiation shielding materials within the volume being measured.

  20. Space radiation dosimetry: An optically stimulated luminescence radiation detector for low-Earth orbit

    NASA Astrophysics Data System (ADS)

    Gaza, Ramona

    Scope and method of study. The purpose of this study was to investigate Al2O3:C as a potential optically stimulated luminescence (OSL) radiation detector for Low-Earth Orbit. The OSL response of Al2O3:C was characterized in terms of its luminescence efficiency for a variety of heavy charged particles (HCPs) with features similar to those found in space. The HCP irradiations were performed using the HIMAC accelerator at Chiba (Japan), the proton facility at Loma Linda (CA) and the NSRL facility at Brookhaven (NY). The OSL curves were further investigated to obtain information about the 'mean efficiency' and 'mean LET', parameters that needed to assess the absorbed dose and the dose equivalent. This analysis was applied for simulated mixed radiation fields (ICCHIBAN) and actual space radiation exposures (i.e., STS-105, BRADOS, and TRACER). In parallel, the thermoluminescence response of dosimetry materials LiF:Mg,Ti and CaF2:Tm was also studied. Findings and conclusions. The OSL efficiency of Al2O 3:C exposed to HCPs was found to decrease with increasing linear energy transfer (LET) for the investigated LET range (i.e., from 0.4 keV/mum to 459 keV/mum). For simulated mixed radiation fields with a strong low-LET component, the results indicated that the OSL calibration methods (i.e., tau-method and R-method) can be used with good accuracy to obtain information about the absorbed dose and the dose equivalent. Nevertheless, for mixed fields with a strong high-LET component these methods will give larger errors when estimating the absorbed dose and the dose equivalent. For actual space radiation exposures, the results indicated that different materials/calibration methods (i.e., the LiF:Mg,Ti/HTR-method and the CaF2:Tm/peak 5 + 6/peak 3-method) give different results in terms of 'mean efficiency' and 'mean LET'. This was explained by suggesting that none of the above calibration methods can give information about the true average LET of the incident radiation, but rather

  1. Evidence of Dopant Type-Inversion and Other Radiation Damage Effects of the CDF Silicon Detectors

    SciTech Connect

    Martinez-Ballarin, Roberto

    2010-06-01

    The aim of this document is to study the effect of radiation damage on the silicon sensors. The reflection of the effect of radiation can be observed in two fundamental parameters of the detector: the bias current and the bias voltage. The leakage current directly affects the noise, while the bias voltage is required to collect the maximum signal deposited by the charged particle.

  2. Low radioactivity material for use in mounting radiation detectors

    NASA Technical Reports Server (NTRS)

    Fong, Marshall; Metzger, Albert E.; Fox, Richard L.

    1988-01-01

    Two materials, sapphire and synthetic quartz, have been found for use in Ge detector mounting assemblies. These materials combine desirable mechanical, thermal, and electrical properties with the radioactive cleanliness required to detect minimal amounts of K, Th, and U.

  3. Study of counting characteristics of porous dielectric detectors of radiations

    NASA Astrophysics Data System (ADS)

    Lorikyan, M. P.

    2003-12-01

    Multiwire and microstrip porous detectors have been developed and investigated for DC operation. The multiwire porous detector consists of anode wires, an Al cathode and a gap between them filled with porous CsI. The microstrip porous detector consists of an insulating plate covered with metallic strips, micromesh cathode and a gap between them filled with porous CsI. For some time after being manufactured, these detectors' performances are non-stable and they have poor spatial resolution. However, after being kept in vacuum for a certain time, they spontaneously acquire stability and spatial resolution better than 100 μm and have detection efficiencies of 100% and 70% for heavily ionizing α-particles and 5.9 keV X-rays, respectively. The MWPDD performs stably at an intensity of heavily ionizing α-particles of 711 cts/(cm 2 s).

  4. Radiation Resistance Study of Semi-Insulating GaAs-Based Radiation Detectors to Extremely High Gamma Doses

    NASA Astrophysics Data System (ADS)

    Ly Anh, T.; Perd'ochová, A.; Nečas, V.; Pavlicová, V.

    2006-01-01

    In our previous paper [V. Nečas et al.: Nucl. Inst. and Meth. A 458 (2001) 348-351] we reported on the study on radiation stability of semi-insulating (SI) LEG GaAs detectors to doses of photons from 60Co up to 19.2 kGy. Later we presented a study, which covered radiation hardness to the same doses on the base of detector material itself, where strong dependence has been proved [T. Ly Anh et al., Proceedings of the XII th International Conference on Semiconducting and Insulating Materials (SIMC-XII-2002). Smolenice Castle, Slovakia (2002) 292-295 (0-7803-7418-5)]. In this paper we present both the key electrical and detection characteristics of SI GaAs radiation detectors prepared using substrates from four various supplies and two different types of contacts, which were exposed to several gamma doses from 60Co up to the integral dose of about 1 MGy. The obtained results show that SI LEG GaAs detectors provide good spectroscopic performances and even their slight improvement after low to middle gamma irradiation doses (3 -10 kGy) was observed. Further dose exposure caused the degradation of detection properties with an extreme and following improvement depending on detector material properties. SI GaAs detector still retains its working capabilities even after very high doses applied, up to 1 MGy.

  5. Radiation hardness of 3HF-tile/O2-WLS-fiber calorimeter

    SciTech Connect

    Han, S.W.; Hu, L.D.; Liu, N.Z.

    1993-11-01

    The radiation hardness of a 3HF-tile/O2-WLS-fiber calorimeter with two different tile/fiber patterns has been studied. Two calorimeter modules were irradiated up to 10 Mrad with the BEPC 1.3 GeV electron beam. The radiation damage of these modules is compared with our previous measurements from SCSN81-tile/BCF91A-WLS-fiber modules. The longitudinal damage profiles are fitted as a function of depth.

  6. A scintillating-fiber 14-MeV neutron detector on TFTR during DT operation

    SciTech Connect

    Wurden, G.A.; Chrien, R.E.; Barnes, C.W.; Sailor, W.C.; Roquemore, A.L.; Lavelle, M.J.; O`Gara, P.M.; Jordan, R.J.

    1994-07-01

    A compact 14-MeV neutron detector using an array of scintillating fibers has been tested on the TFTR tokamak under conditions of a high gamma background. This detector uses a fiber-matrix geometry, a magnetic field-insensitive phototube with an active HV base and pulse-height discrimination to reject low-level pulses from 2.5 MeV neutron and intense gammas. Laboratory calibrations have been performed at EG&G Las Vegas using a pulsed DT neutron generator and a 30 kCi {sup 60}Co source as background, at PPPL using DT neutron sources, and at LANL using an energetic deuterium beam and target at a tandem Van de Graaff accelerator. During the first high power DT shots on TFTR in December 1993, the detector was 15.5 meters from the torus in a large collimator. For a rate of 1 {times} 10{sup 18} n/sec from the tokamak, it operated in an equivalent background of 1 {times} 10{sup 10} gammas/cm{sup 2}/sec ({approximately}4 mA current drain) at a DT count rate of 200 kHz.

  7. Design and development of a low-cost fiber-optic hydrogen detector

    SciTech Connect

    Benson, D.K.; Tracy, C.E.; Bechinger, C.

    1996-10-01

    A cost-effective detector for hydrogen gas leaks will be needed in many hydrogen-fueled technologies of the future. The hydrogen-fueled automobile may require hydrogen leak sensors in several locations and their cost could be prohibitive if conventional sensor technology is used. This project is directed at the development of low-cost fiber-optic (FO) hydrogen gas detectors that could provide adequate sensitivity, response speeds and reliability in an automobile application. A new, faster sensor design was invented that relies upon the resonant absorption of light at a beveled facet on the end of the optical fiber. The resonance occurs when the incident light strikes the metal coated facet at an angle just above the critical angle for total internal reflection. The evanescent wave stimulates resonant absorption by free electrons in the metal to produce a so-called surface-plasmon (SP). An overcoat of thin tungsten oxide on top of the metal film is designed to provide an optical wave-guide for light at the surface plasmon resonance. The two layer coating produces a coupled resonance at the SP wavelength that is very sensitive to the optical constants of the tungsten oxide. When hydrogen reacts with the tungsten oxide the resonance frequency shifts and this shift is detected in the spectrum of the reflected light beam. The facets are angled at 45 degrees to the fiber axis so as to reflect the light back along the fiber with a doubling of the SP absorption from the double reflection. A facet perpendicular to the fiber axis produces a reflected signal that is not affected by hydrogen that is used to produce an internal reference signal for comparison to the resonance, hydrogen-sensitive signal. The ratio of these two signals cancels out noise due to variation in the transmittance of the optical fiber. A patent application has been filed for this new design and a small business partner has formed a CRADA with NREL to develop a commercial detector based upon it.

  8. Performance test of pipe-shaped radiation shields for cryogenic interferometric gravitational wave detectors

    NASA Astrophysics Data System (ADS)

    Sakakibara, Yusuke; Kimura, Nobuhiro; Akutsu, Tomotada; Suzuki, Toshikazu; Kuroda, Kazuaki

    2015-08-01

    One of the most important challenges in cryogenic interferometric gravitational wave detectors is to reduce the undesirable thermal radiation coming through holes in the radiation shield, which are necessary for the laser beam to pass through. For this purpose, pipe-shaped radiation shields called duct shields are used. Here, we have manufactured duct shields for KAGRA in Japan, one of the cryogenic interferometric gravitational wave detectors, and measured the thermal radiation coming through the duct shields. The measured result was found to be consistent with the calculation result that the duct shield can reduce the thermal radiation to less than 1%. This fact confirmed that the amount of thermal radiation coming through the duct shields was smaller than KAGRA’s requirement.

  9. Radiation hard silicon particle detectors for HL-LHC-RD50 status report

    NASA Astrophysics Data System (ADS)

    Terzo, S.

    2017-02-01

    It is foreseen to significantly increase the luminosity of the LHC by upgrading towards the HL-LHC (High Luminosity LHC). The Phase-II-Upgrade scheduled for 2024 will mean unprecedented radiation levels, way beyond the limits of the silicon trackers currently employed. All-silicon central trackers are being studied in ATLAS, CMS and LHCb, with extremely radiation hard silicon sensors to be employed on the innermost layers. Within the RD50 Collaboration, a massive R&D program is underway across experimental boundaries to develop silicon sensors with sufficient radiation tolerance. We will present results of several detector technologies and silicon materials at radiation levels corresponding to HL-LHC fluences. Based on these results, we will give recommendations for the silicon detectors to be used at the different radii of tracking systems in the LHC detector upgrades. In order to complement the measurements, we also perform detailed simulation studies of the sensors.

  10. A low radiation optical system with lens positioned inside of the infrared detector Dewar

    NASA Astrophysics Data System (ADS)

    Zhou, Jun; Zhen, Zheng; Wang, Yingrui; Li, Juan; Ou, Wen; Li, Ang; Xiong, Jian

    2016-10-01

    For the far distance and weak signal detecting, low background noise is essential. Because the spatial noise of infrared system is mostly determined by spontaneous thermal radiation, it is the most directly method to achieve low spatial noise by refrigerating optics. This paper introduced a low radiation optical system with lens positioned inside of the infrared detector Dewar. The system includes two parts: the two mirror Cassegrain system working at room temperature which images the intermediate focus (IF) and the lens positioned inside of infrared detector Dewar which image the IF to focal plane. The working temperature inside of the infrared detector Dewar is 80K, the cryogenic lens contain three pieces lens whose total weight is below 5g. In view of engineering application, the low radiation optical system, the stray light analysis, cryogenic optics mounting and system testing were discussed. Calculations indicate that the equivalent blackbody radiation temperature (EBRT) is less than 180K.

  11. Simulation of ion beam induced current in radiation detectors and microelectronic devices.

    SciTech Connect

    Vizkelethy, Gyorgy

    2009-10-01

    Ionizing radiation is known to cause Single Event Effects (SEE) in a variety of electronic devices. The mechanism that leads to these SEEs is current induced by the radiation in these devices. While this phenomenon is detrimental in ICs, this is the basic mechanism behind the operation of semiconductor radiation detectors. To be able to predict SEEs in ICs and detector responses we need to be able to simulate the radiation induced current as the function of time. There are analytical models, which work for very simple detector configurations, but fail for anything more complex. On the other end, TCAD programs can simulate this process in microelectronic devices, but these TCAD codes costs hundreds of thousands of dollars and they require huge computing resources. In addition, in certain cases they fail to predict the correct behavior. A simulation model based on the Gunn theorem was developed and used with the COMSOL Multiphysics framework.

  12. Simulation of ion beam induced current in radiation detectors and microelectronic devices.

    SciTech Connect

    Vizkelethy, Gyorgy

    2010-07-01

    Ionizing radiation is known to cause Single Event Effects (SEE) in a variety of electronic devices. The mechanism that leads to these SEEs is current induced by the radiation in these devices. While this phenomenon is detrimental in ICs, this is the basic mechanism behind the operation of semiconductor radiation detectors. To be able to predict SEEs in ICs and detector responses we need to be able to simulate the radiation induced current as the function of time. There are analytical models, which work for very simple detector configurations, but fail for anything more complex. On the other end, TCAD programs can simulate this process in microelectronic devices, but these TCAD codes costs hundreds of thousands of dollars and they require huge computing resources. In addition, in certain cases they fail to predict the correct behavior. A simulation model based on the Gunn theorem was developed and used with the COMSOL Multiphysics framework.

  13. A program in detector development for the US synchrotron radiation community

    SciTech Connect

    Thompson, A.; Mills, D.; Naday, S.; Gruner, S.; Siddons, P.; Arthur, J.; Wehlitz, R.; Padmore, H.

    2001-07-14

    There is a clear gulf between the capabilities of modern synchrotrons to deliver high photon fluxes, and the capabilities of detectors to measure the resulting photon, electron or ion signals. While a huge investment has been made in storage ring technology, there has not to date been a commensurate investment in detector systems. With appropriate detector technology, gains in data rates could be 3 to 4 orders of magnitude in some cases. The US community working in detector technology is under-funded and fragmented and works without the long term funding commitment required for development of the most advanced detector systems. It is becoming apparent that the US is falling behind its international competitors in provision of state-of-the-art detector technology for cutting edge synchrotron radiation based experiments.

  14. Radiation and temperature effects on LDEF fiber optic samples

    NASA Technical Reports Server (NTRS)

    Johnston, A. R.; Hartmayer, R.; Bergman, L. A.

    1993-01-01

    Results obtained from the JPL Fiber Optics Long Duration Exposure Facility (LDEF) Experiment since the June 1991 Experimenters' Workshop are addressed. Radiation darkening of laboratory control samples and the subsequent annealing was measured in the laboratory for the control samples. The long-time residual loss was compared to the LDEF flight samples and found to be in agreement. The results of laboratory temperature tests on the flight samples, extending over a period of about nine years, including the pre-flight and post-flight analysis periods, are described. The temperature response of the different cable samples varies widely, and appears in two samples to be affected by polymer aging. Conclusions to date are summarized.

  15. Air core Bragg fibers for delivery of near-infrared laser radiation

    NASA Astrophysics Data System (ADS)

    Jelínek, Michal; Frank, Milan; Kubeček, Václav; Matějec, Vlastimil; Kašík, Ivan; Podrazký, Ondřej

    2014-12-01

    Optical fibers designed for high power laser radiation delivery represent important tools in medicine, solar systems, or industry. For such purposes several different types of glass optical fibers such as silica, sapphire, or chalcogenide ones as well as hollow-glass fibers, photonic crystal fibers and Bragg fibers have been investigated. Air-core Bragg fibers or photonic crystal fibers offer us the possibility of light transmission in a low dispersive material - air having a high damage threshold and small non-linear coefficient. However, preforms for drawing Bragg fibers can be fabricated by MCVD method similarly as preforms of standard silica fibers. In this paper we present fundamental characteristics of laboratory-designed and fabricated Bragg fibers with air cores intended for delivery of laser radiation at a wavelength range from 0.9 to 1.5 μm. Bragg fibers with different air core diameters of 5, 45 and 73 mm were prepared. The fiber core was surrounded by three pairs of circular Bragg layers. Each pair was composed of one layer with a high and one layer with a low refractive index with a contrast up to 0.03. Several laser sources emitting at 0.975, 1.06, and 1.55 μm were used as radiation sources. Attenuation coefficients, overall transmissions, bending losses, and spatial profiles of output beams from fibers were determined at these wavelengths. The lowest attenuation coefficient of 70 dB/km was determined for the 45 μm and 73 mm air-core fiber when radiation from a laser was launched into the fibers by using optical lenses. However, multimodal transmission has been observed in such condition. It has also been found that bending losses of such fibers are negligible for bending diameters higher than 15 mm.

  16. Construction and data analysis of the fiber tracker detector for pCT project

    NASA Astrophysics Data System (ADS)

    Zvoda, Viktoriya

    Proton radiation therapy is a fast growing form of cancer treatment; it requires a precise knowledge of the dose delivered to the tumor and verification of the correct patient position with respect to the proton beam to avoid damage to critical normal tissues and geographical tumor misses. In existing proton treatment centers dose calculations are performed based on conventional x-ray computed tomography (CT). The goal of the Proton Computed Tomography (pCT) project is provide a fully operational detecting system that allows imaging of the patient (or a phantom) directly with proton CT by measuring the energy loss and trajectories of high-energy protons that traverse the patient. The pCT detector contains the upstream tracking detectors, phantom, the downstream tracking detectors, and a calorimeter. The step-by-step assembly of the pCT NIU Phase 2 Scanner and the subsequent tests and calibration procedures are described in the current thesis.

  17. Probe And Enhancement Of SBS Based Phonons In Infrared Fibers Using Waveguide Coupled External Radiation

    NASA Astrophysics Data System (ADS)

    Yu, Chung; Chong, Yat C.; Fong, Chee K.

    1989-06-01

    Interaction of GHz and MHz radiation with CO2 laser propagation in a silver halide fiber using sBs based phonon coupling is furthet investigated. The external signal serves to both probe and enhance laser generated sBs phonons in the fiber. Efficient coupling of microwave radiation into the fiber is accomplished by placing the fiber in a hollow metallic waveguide, designed and constructed to transmit the dominant mode in the 0.9-2.0 GHz band. MHz radiation is conveniently coupled into the fiber using the guided microwave radiation as carrier. Phonon emissions from the fiber under CO2 laser pumping are first established on a spectrum analyzer; low frequency generators ale then tuned to match these frequencies and their maximum interaction recorded. Such interactions are systematically studied by monitoring the amplitude and waveform of the reflected and transmitted laser pulse at various power levels and frequencies of the externally coupled radiation. A plot of reflected laser power versus incident laser power reveals a distinct sBs generated phonon threshold. Variouslaunch directions of the GHz and MHz radiation with respect to the direction of laser propagation are realized to verify theory governing sBs interactions. The MHz radiation and its associated phonons in the fiber are convenient tools for probing sBs related phenomenon in infrared fibers.

  18. Electromagnetic and nuclear radiation detector using micromechanical sensors

    DOEpatents

    Thundat, Thomas G.; Warmack, Robert J.; Wachter, Eric A.

    2000-01-01

    Electromagnetic and nuclear radiation is detected by micromechanical sensors that can be coated with various interactive materials. As the micromechanical sensors absorb radiation, the sensors bend and/or undergo a shift in resonance characteristics. The bending and resonance changes are detected with high sensitivity by any of several detection methods including optical, capacitive, and piezoresistive methods. Wide bands of the electromagnetic spectrum can be imaged with picoJoule sensitivity, and specific absorptive coatings can be used for selective sensitivity in specific wavelength bands. Microcantilevers coated with optical cross-linking polymers are useful as integrating optical radiation dosimeters. Nuclear radiation dosimetry is possible by fabricating cantilevers from materials that are sensitive to various nuclear particles or radiation. Upon exposure to radiation, the cantilever bends due to stress and its resonance frequency shifts due to changes in elastic properties, based on cantilever shape and properties of the coating.

  19. Radiation Hard AlGaN Detectors and Imager

    SciTech Connect

    2012-05-01

    Radiation hardness of AlGaN photodiodes was tested using a 65 MeV proton beam with a total proton fluence of 3x10{sup 12} protons/cm{sup 2}. AlGaN Deep UV Photodiode have extremely high radiation hardness. These new devices have mission critical applications in high energy density physics (HEDP) and space explorations. These new devices satisfy radiation hardness requirements by NIF. NSTec is developing next generation AlGaN optoelectronics and imagers.

  20. 2D metal profile detector using a polymeric fiber optic sensor

    NASA Astrophysics Data System (ADS)

    Hua, Wei-Shu; Hooks, Joshua R.; Erwin, Nicholas A.; Wu, Wen-Jong; Wang, Wei-Chih

    2012-04-01

    As sensors become integrated in more applications, interest in magnetostrictive sensor technology has blossomed. Magnetostrictive materials have many advantages and useful applications in daily life, such as high efficient coupling between elastic and polymer material, large displacement, magnetic field sensors, micro actuator and motion motor, etc. The purpose of this paper is to develop a metal sensor which is capable of detecting different geometries and shapes of metal objects. The main configuration is using a Mach-Zehnder fiber-optic interferometer coated with magnetostrictive material. The metal detector system is a novel design of metal detector, easy to fabricate and capable of high sensitivity. In our design, metal detection is made possible by disrupting the magnetic flux density that encompasses the magnetostriction sensor. In this paper, experimental setups are described and metal sensing results are presented. The results of detecting complex metal's geometry and metal's mapping results are discussed.

  1. Design and optimization of a radiation detector for ground and spaced-based exposure

    NASA Astrophysics Data System (ADS)

    Saint-Jean, Dileon; Abbot, Kazim; Williams, Darnel; Jana, Dilip; Sawyer, Lee; Derosa, Pedro

    2015-08-01

    In response to the critical need of more effective bio-dosimetric techniques to improve cancer risk estimation, this paper focuses on the design of an advanced biomedical instrumentation that could be used for radiation risk analysis on space missions. A designed concept for a hodoscope for radiation detection and tracking is tested via Monte Carlo simulation. The device consists of a set of layers of scintillating fibers, above and below a biological sample, in a design that allows for the determination of the direction of incoming and outgoing radiation. The efficiency of energy deposition on each of the different layers of the device is studied for proton radiation. The study of the response for different incoming energy is the main focus, but fiber-size is also a designed parameter considered in this study. The optimum energy range as found to be around 30 MeV's - 50MeV's depending on arrangement. It is found that energy deposited by protons in the optimum range in 1 mm-diameter fibers, is large enough for detection. Since smaller fibers allow for larger resolution, it is concluded that they are preferable than 2 mm fibers. Alternative arrangements consisting respectively of 3 and 4 layers of fibers on each side of the sample are tested and compared. It is observed that although one more coordinate for the source is needed, the 3-layers array is a viable alternative when that extra information is available. With this arrangement, the device is sensitive to lower energy photons.

  2. Line-scanning fiber bundle endomicroscopy with a virtual detector slit

    PubMed Central

    Hughes, Michael; Yang, Guang-Zhong

    2016-01-01

    Coherent fiber bundles can be used to relay the image plane from the distal tip of an endomicroscope to an external confocal microscopy system. The frame rate is therefore determined by the speed of the microscope’s laser scanning system which, at 10-20 Hz, may be undesirably low for in vivo clinical applications. Line-scanning allows an increase in the frame rate by an order of magnitude in exchange for some loss of optical sectioning, but the width of the detector slit cannot easily be adapted to suit different imaging conditions. The rolling shutter of a CMOS camera can be used as a virtual detector slit for a bench-top line-scanning confocal microscope, and here we extend this idea to endomicroscopy. By synchronizing the camera rolling shutter with a scanning laser line we achieve confocal imaging with an electronically variable detector slit. This architecture allows us to acquire every other frame with the detector slit offset by a known distance, and we show that subtracting this second image leads to improved optical sectioning. PMID:27375942

  3. Fiber optic inclination detector system having a weighted sphere with reference points

    DOEpatents

    Cwalinski, Jeffrey P.

    1995-01-01

    A fiber optic inclination detector system for determining the angular displacement of an object from a reference surface includes a simple mechanical transducer which requires a minimum number of parts and no electrical components. The system employs a single light beam which is split into two light beams and provided to the transducer. Each light beam is amplitude modulated upon reflecting off the transducer to detect inclination. The power values associated with each of the reflected light beams are converted by a pair of photodetectors into voltage signals, and a microprocessor manipulates the voltage signals to provide a measure of the angular displacement between the object and the reference surface.

  4. Stable, high-performance operation of a fiber-coupled superconducting nanowire avalanche photon detector

    NASA Astrophysics Data System (ADS)

    Miki, Shigehito; Yabuno, Masahiro; Yamashita, Taro; Terai, Hirotaka

    2017-03-01

    We present a stable and high-performance fiber-coupled NbTiN superconducting nanowire avalanche photon detector (SNAP). We demonstrate afterpulse-free operation in serially connected two SNAPs (SC-2SNAP), even in the absence of a choke inductor, achieving a 7.7 times faster response speed than standard SSPDs. The SC-2SNAP device showed a system detection efficiency (SDE) of 81.0% with wide bias current margin, a dark count rate of 6.8 counts/s, and full width at half maximum timing jitter of 68 ps, operating at 2.3 K.

  5. Technical Note: Response measurement for select radiation detectors in magnetic fields

    SciTech Connect

    Reynolds, M.; Fallone, B. G.; Rathee, S.

    2015-06-15

    Purpose: Dose response to applied magnetic fields for ion chambers and solid state detectors has been investigated previously for the anticipated use in linear accelerator–magnetic resonance devices. In this investigation, the authors present the measured response of selected radiation detectors when the magnetic field is applied in the same direction as the radiation beam, i.e., a longitudinal magnetic field, to verify previous simulation only data. Methods: The dose response of a PR06C ion chamber, PTW60003 diamond detector, and IBA PFD diode detector is measured in a longitudinal magnetic field. The detectors are irradiated with buildup caps and their long axes either parallel or perpendicular to the incident photon beam. In each case, the magnetic field dose response is reported as the ratio of detector signals with to that without an applied longitudinal magnetic field. The magnetic field dose response for each unique orientation as a function of magnetic field strength was then compared to the previous simulation only studies. Results: The measured dose response of each detector in longitudinal magnetic fields shows no discernable response up to near 0.21 T. This result was expected and matches the previously published simulation only results, showing no appreciable dose response with magnetic field. Conclusions: Low field longitudinal magnetic fields have been shown to have little or no effect on the dose response of the detectors investigated and further lend credibility to previous simulation only studies.

  6. SU-E-T-159: Characteristics of Fiber-Optic Radiation Sensor for Proton Therapeutic Beam

    SciTech Connect

    Son, J; Kim, M; Hwang, U; Park, J; Lim, Y; Lee, S; Shin, D; Park, S; Yoon, M

    2015-06-15

    Purpose: A fiber-optic radiation sensor using Cerenkov radiation has been widely studied for use as a dosimeter for proton therapeutic beam. Although the fiber-optic radiation sensor has already been investigated for proton therapeutic, it has been examined relatively little work for clinical therapeutic proton beams. In this study, we evaluated characteristics of a fiber-optic radiation sensor for clinical therapeutic proton beams. We experimentally evaluated dose-rate dependence, dose response and energy dependence for the proton beam. Methods: A fiber-optic radiation sensor was placed in a water phantom. Beams with energies of low, middle and high were used in the passively-scattered proton therapeutic beam at the National Cancer Center in Korea. The sensor consists of two plastic optical fibers (POF). A reference POF and 2 cm longer POF were used to utilize the subtraction method for having sensitive volume. Each POF is optically coupled to the Multi-Anode Photo Multiplier Tube (MAPMT) and the MAPMT signals are processed using National Instruments Data Acquisition System (NI-DAQ). We were investigated dosimetric properties including dose-rate dependence, dose response and energy dependence. Results: We have successfully evaluated characteristics of a fiber optic radiation sensor using Cerenkov radiation. The fiber-optic radiation sensor showed the dose response linearity and low energy dependence. In addition, as the dose-rate was increased, Cerenkov radiation increased linearly. Conclusion: We evaluated the basic characteristics of the fiber optic radiation sensor, the dosimetry tool, to raise the quality of proton therapy. Based on the research, we developed a real time dosimetry system of the optic fiber to confirm the real time beam position and energy for therapeutic proton pencil beam.

  7. Active noise canceling system for mechanically cooled germanium radiation detectors

    SciTech Connect

    Nelson, Karl Einar; Burks, Morgan T

    2014-04-22

    A microphonics noise cancellation system and method for improving the energy resolution for mechanically cooled high-purity Germanium (HPGe) detector systems. A classical adaptive noise canceling digital processing system using an adaptive predictor is used in an MCA to attenuate the microphonics noise source making the system more deployable.

  8. High field CdS detector for infrared radiation

    NASA Technical Reports Server (NTRS)

    Tyagi, R. C.; Boer, K. W.; Hadley, H. C.; Robertson, J. B.

    1972-01-01

    New and highly sensitive method of detecting infrared irradiation makes possible solid state infrared detector which is more sensitive near room temperature than usual photoconductive low band gap semiconductor devices. Reconfiguration of high field domains in cadmium sulphide crystals provides basis for discovery.

  9. Fabrication process development for high-purity germanium radiation detectors with amorphous semiconductor contacts

    NASA Astrophysics Data System (ADS)

    Looker, Quinn

    High-purity germanium (HPGe) radiation detectors are well established as a valuable tool in nuclear science, astrophysics, and nuclear security applications. HPGe detectors excel in gamma-ray spectroscopy, offering excellent energy resolution with large detector sizes for high radiation detection efficiency. Although a robust fabrication process has been developed, improvement is needed, especially in developing electrical contact and surface passivation technology for position-sensitive detectors. A systematic study is needed to understand how the detector fabrication process impacts detector performance and reliability. In order to provide position sensitivity, the electrical contacts are segmented to form multiple electrodes. This segmentation creates new challenges in the fabrication process and warrants consideration of additional detector effects related to the segmentation. A key area of development is the creation of the electrical contacts in a way that enables reliable operation, provides low electronic noise, and allows fine segmentation of electrodes, giving position sensitivity for radiation interactions in the detector. Amorphous semiconductor contacts have great potential to facilitate new HPGe detector designs by providing a thin, high-resistivity surface coating that is the basis for electrical contacts that block both electrons and holes and can easily be finely segmented. Additionally, amorphous semiconductor coatings form a suitable passivation layer to protect the HPGe crystal surface from contamination. This versatility allows a simple fabrication process for fully passivated, finely segmented detectors. However, the fabrication process for detectors with amorphous semiconductors is not as highly developed as for conventional technologies. The amorphous semiconductor layer properties can vary widely based on how they are created and these can translate into varying performance of HPGe detectors with these contacts. Some key challenges include

  10. Radiation Hard Silicon Particle Detectors for Phase-II LHC Trackers

    NASA Astrophysics Data System (ADS)

    Oblakowska-Mucha, A.

    2017-02-01

    The major LHC upgrade is planned after ten years of accelerator operation. It is foreseen to significantly increase the luminosity of the current machine up to 1035 cm‑2s‑1 and operate as the upcoming High Luminosity LHC (HL-LHC) . The major detectors upgrade, called the Phase-II Upgrade, is also planned, a main reason being the aging processes caused by severe particle radiation. Within the RD50 Collaboration, a large Research and Development program has been underway to develop silicon sensors with sufficient radiation tolerance for HL-LHC trackers. In this summary, several results obtained during the testing of the devices after irradiation to HL-LHC levels are presented. Among the studied structures, one can find advanced sensors types like 3D silicon detectors, High-Voltage CMOS technologies, or sensors with intrinsic gain (LGAD). Based on these results, the RD50 Collaboration gives recommendation for the silicon detectors to be used in the detector upgrade.

  11. Improvement of terahertz field effect transistor detectors by substrate thinning and radiation losses reduction.

    PubMed

    Coquillat, Dominique; Marczewski, Jacek; Kopyt, Pawel; Dyakonova, Nina; Giffard, Benoit; Knap, Wojciech

    2016-01-11

    Phenomena of the radiation coupling to the field effect transistors based terahertz (THz) detectors are studied. We show that in the case of planar metal antennas a significant portion of incoming radiation, instead of being coupled to the transistors, is coupled to an antenna substrate leading to responsivity losses and/or cross-talk effects in the field effect based THz detector arrays. Experimental and theoretical investigations of the responsivity versus substrate thickness are performed. They clearly show how to minimize the losses by the detector/ array substrate thinning. In conclusion simple quantitative rules of losses minimization by choosing a proper substrate thickness of field effect transistor THz detectors are presented for common materials (Si, GaAs, InP, GaN) used in semiconductor technologies.

  12. Characterization of a novel two dimensional diode array the ''magic plate'' as a radiation detector for radiation therapy treatment

    SciTech Connect

    Wong, J. H. D.; Fuduli, I.; Carolan, M.; Petasecca, M.; Lerch, M. L. F.; Perevertaylo, V. L.; Metcalfe, P.; Rosenfeld, A. B.

    2012-05-15

    Purpose: Intensity modulated radiation therapy (IMRT) utilizes the technology of multileaf collimators to deliver highly modulated and complex radiation treatment. Dosimetric verification of the IMRT treatment requires the verification of the delivered dose distribution. Two dimensional ion chamber or diode arrays are gaining popularity as a dosimeter of choice due to their real time feedback compared to film dosimetry. This paper describes the characterization of a novel 2D diode array, which has been named the ''magic plate'' (MP). It was designed to function as a 2D transmission detector as well as a planar detector for dose distribution measurements in a solid water phantom for the dosimetric verification of IMRT treatment delivery. Methods: The prototype MP is an 11 x 11 detector array based on thin (50 {mu}m) epitaxial diode technology mounted on a 0.6 mm thick Kapton substrate using a proprietary ''drop-in'' technology developed by the Centre for Medical Radiation Physics, University of Wollongong. A full characterization of the detector was performed, including radiation damage study, dose per pulse effect, percent depth dose comparison with CC13 ion chamber and build up characteristics with a parallel plane ion chamber measurements, dose linearity, energy response and angular response. Results: Postirradiated magic plate diodes showed a reproducibility of 2.1%. The MP dose per pulse response decreased at higher dose rates while at lower dose rates the MP appears to be dose rate independent. The depth dose measurement of the MP agrees with ion chamber depth dose measurements to within 0.7% while dose linearity was excellent. MP showed angular response dependency due to the anisotropy of the silicon diode with the maximum variation in angular response of 10.8% at gantry angle 180 deg. Angular dependence was within 3.5% for the gantry angles {+-} 75 deg. The field size dependence of the MP at isocenter agrees with ion chamber measurement to within 1.1%. In

  13. A transition radiation detector for RHIC featuring accurate tracking and dE/dx particle identification

    SciTech Connect

    O`Brien, E.; Lissauer, D.; McCorkle, S.; Polychronakos, V.; Takai, H.; Chi, C.Y.; Nagamiya, S.; Sippach, W.; Toy, M.; Wang, D.; Wang, Y.F.; Wiggins, C.; Willis, W.; Cherniatin, V.; Dolgoshein, B.; Bennett, M.; Chikanian, A.; Kumar, S.; Mitchell, J.T.; Pope, K.

    1991-12-31

    We describe the results of a test ran involving a Transition Radiation Detector that can both distinguish electrons from pions which momenta greater titan 0.7 GeV/c and simultaneously track particles passing through the detector. The particle identification is accomplished through a combination of the detection of Transition Radiation from the electron and the differences in electron and pion energy loss (dE/dx) in the detector. The dE/dx particle separation is most, efficient below 2 GeV/c while particle ID utilizing Transition Radiation effective above 1.5 GeV/c. Combined, the electron-pion separation is-better than 5 {times} 10{sup 2}. The single-wire, track-position resolution for the TRD is {approximately}230 {mu}m.

  14. SiC detectors for radiation sources characterization and fast plasma diagnostic

    NASA Astrophysics Data System (ADS)

    Cannavò, A.; Torrisi, L.

    2016-09-01

    Semiconductor detectors based on SiC have been investigated to characterize the radiations (photons and particles) emitted from different sources, such as radioactive sources, electron guns, X-ray tubes and laser-generated plasmas. Detectors show high response velocity, low leakage current, high energy gap and high radiation hardness. Their high detection efficiency permits to use the detectors in spectroscopic mode and in time-of-flight (TOF) approach, generally employed to monitor low and high radiation fluxes, respectively. Using the laser start signal, they permit to study the properties of the generated plasma in vacuum by measuring accurately the particle velocity and energy using pulsed lasers at low and high intensities. Possible applications will be reported and discussed.

  15. Review on the characteristics of radiation detectors for dosimetry and imaging

    NASA Astrophysics Data System (ADS)

    Seco, Joao; Clasie, Ben; Partridge, Mike

    2014-10-01

    The enormous advances in the understanding of human anatomy, physiology and pathology in recent decades have led to ever-improving methods of disease prevention, diagnosis and treatment. Many of these achievements have been enabled, at least in part, by advances in ionizing radiation detectors. Radiology has been transformed by the implementation of multi-slice CT and digital x-ray imaging systems, with silver halide films now largely obsolete for many applications. Nuclear medicine has benefited from more sensitive, faster and higher-resolution detectors delivering ever-higher SPECT and PET image quality. PET/MR systems have been enabled by the development of gamma ray detectors that can operate in high magnetic fields. These huge advances in imaging have enabled equally impressive steps forward in radiotherapy delivery accuracy, with 4DCT, PET and MRI routinely used in treatment planning and online image guidance provided by cone-beam CT. The challenge of ensuring safe, accurate and precise delivery of highly complex radiation fields has also both driven and benefited from advances in radiation detectors. Detector systems have been developed for the measurement of electron, intensity-modulated and modulated arc x-ray, proton and ion beams, and around brachytherapy sources based on a very wide range of technologies. The types of measurement performed are equally wide, encompassing commissioning and quality assurance, reference dosimetry, in vivo dosimetry and personal and environmental monitoring. In this article, we briefly introduce the general physical characteristics and properties that are commonly used to describe the behaviour and performance of both discrete and imaging detectors. The physical principles of operation of calorimeters; ionization and charge detectors; semiconductor, luminescent, scintillating and chemical detectors; and radiochromic and radiographic films are then reviewed and their principle applications discussed. Finally, a general

  16. High-energy cosmic-ray electrons - A new measurement using transition-radiation detectors

    NASA Technical Reports Server (NTRS)

    Hartmann, G.; Mueller, D.; Prince, T.

    1977-01-01

    A new detector for cosmic-ray electrons, consisting of a combination of a transition-radiation detector and a shower detector, has been constructed, calibrated at accelerator beams, and exposed in a balloon flight under 5 g/sq cm of atmosphere. The design of this instrument and the methods of data analysis are described. Preliminary results in the energy range 9-300 GeV are presented. The energy spectrum of electrons is found to be significantly steeper than that of protons, consistent with a long escape lifetime of cosmic rays in the galaxy.

  17. Gas chromatography - optical fiber detector for assessment of fatty acids in urban soils.

    PubMed

    Silva, Lurdes; Cachada, Anabela; Pereira, Ruth; Freitas, Ana Cristina; Rocha-Santos, Teresa A P; Panteleitchouk, Teresa S L; Pereira, Maria E; Duarte, Armando Costa

    2011-07-15

    Fatty acids have been used as biomarkers of the microbial community composition of soils and they are usually separated and quantified by gas-chromatography coupled to a flame ionization detector (GC-FID). The aim of this study was to develop, validate and apply a methodology based on gas chromatography coupled to optical fiber detection (GC-OF) for screening five fatty acids used as indicators of fungal and bacterial communities in urban soils. The performance of the GC-OF methodology (optical fiber detector at 1,550 nm) was evaluated by comparison with the GC-FID methodology and it was found that they were comparable in terms of linear range, detection limit and analytical errors. Besides these similar analytical characteristics, the GC-OF is much cheaper than the GC-FID methodology. Different concentrations were determined for each fatty acid indicator which in turn varied significantly between the soil samples analyzed from Lisbon ornamental gardens. Additionally, the GC-OF showed a great potential as alternative for determination of eleven or more fatty acids in urban soils.

  18. Development of passive radiation detectors of improved sensitivity

    NASA Technical Reports Server (NTRS)

    Chakrabarty, M. R.

    1986-01-01

    The future development of a solid track high energy particle detector is discussed. The goal is to improve the sensitivity and lower the threshold of the detector. One most widely used material for such purpose is a plastic commercially known as CR-39. A scheme is presented which involves changing the formula of the monomer, diethylene glycol-bis-allyl carbonate. This is to be accomplished by substituting some heteroatoms for H and substituting sulfur atoms for oxygen in the ether linkages. Use of a new plasticizer to make the etched surface clearer than what has been accomplished as of today is suggested. Possible improvement in acquiring better tracks and increasing the ratio of V sub T/V sub B was planned. This is to be accomplished by changing the composition of the etchants, etching time, and etching temperature.

  19. Analytical/Experimental Investigation of Corpuscular Radiation Detectors

    DTIC Science & Technology

    1985-09-15

    exchange of charged intermediate vector bosons but he could only speculate that neutral vector bosons might also contribute. Today we know from high energy...large value of the neutral-current cross section due to coherence indicates a detector would be relatively light and suggests the possibility of a...more PC (best IBM compatible with STD bus). An important element in the UBC program is possibility to use facilities of Canadian Meson Factory - Triumf

  20. Radiation Hard Plastic Scintillators for a New Generation of Particle Detectors

    NASA Astrophysics Data System (ADS)

    Dettmann, M.; Herrig, V.; Maldonis, J.; Neuhaus, J.; Shrestha, D.; Rajbhandari, P.; Thune, Z.; Been, M.; Martinez-Szewczyk, M.; Khristenko, V.; Onel, Y.; Akgun, U.

    2017-03-01

    The radiation hardness of specific scintillating materials used in particle physics experiments is one of the main focuses of research in detector development. This report summarizes the preparation methods, light yield characterization and radiation damage tests of a plastic scintillator with a polysiloxane base and pTP and bis-MSB dopants. The scintillator is shown to be a promising candidate for particle detectors with its intense light output around 400 nm and very little scintillation or transmission loss after proton irradiation of 4 × 105 Gy.

  1. R&D Studies of a Lead-Scintillating Fiber Calorimeter as a STAR Forward Detector

    NASA Astrophysics Data System (ADS)

    Shanmuganathan, Prashanth; STAR Collaboration

    2015-10-01

    A forward upgrade of the STAR detector will achieve several physics goals. Examples are studying the internal structure of nucleons and nuclei through measurement of di-jets and Drell-Yan and improvements in the resolution of energy weighted event plane determination for study of more central and more peripheral events in heavy-ion collisions. The AGS E864 lead-scintillating fiber calorimeter cells ((10 cm) 2 × 117 cm) were repurposed by pixelizing their readout into a three by three array of (3 . 3 cm) 2 pixels. A prototype six by six array of these cells (324 pixels) was mounted on the west side of the STAR detector during Run14 and events from 3He+Au collisions at √{sNN} = 200 GeV were recorded. The detector response was simulated by a GEANT model using HIJING particle production. Further tests of the pixelized cells were conducted at the Fermilab Test Beam Facility. In this talk, we will present the calorimeter response in 3He+Au collisions using reconstructed π0 from clusters formed from energy deposition by π0 decay gammas. Energy resolution and shower shapes from pixelization are also discussed using test beam data and simulations.

  2. Exploring graphene field effect transistor devices to improve spectral resolution of semiconductor radiation detectors

    SciTech Connect

    Harrison, Richard Karl; Howell, Stephen Wayne; Martin, Jeffrey B.; Hamilton, Allister B.

    2013-12-01

    Graphene, a planar, atomically thin form of carbon, has unique electrical and material properties that could enable new high performance semiconductor devices. Graphene could be of specific interest in the development of room-temperature, high-resolution semiconductor radiation spectrometers. Incorporating graphene into a field-effect transistor architecture could provide an extremely high sensitivity readout mechanism for sensing charge carriers in a semiconductor detector, thus enabling the fabrication of a sensitive radiation sensor. In addition, the field effect transistor architecture allows us to sense only a single charge carrier type, such as electrons. This is an advantage for room-temperature semiconductor radiation detectors, which often suffer from significant hole trapping. Here we report on initial efforts towards device fabrication and proof-of-concept testing. This work investigates the use of graphene transferred onto silicon and silicon carbide, and the response of these fabricated graphene field effect transistor devices to stimuli such as light and alpha radiation.

  3. RADIATION HARDNESS / TOLERANCE OF SI SENSORS / DETECTORS FOR NUCLEAR AND HIGH ENERGY PHYSICS EXPERIMENTS.

    SciTech Connect

    LI,Z.

    2002-09-09

    Silicon sensors, widely used in high energy and nuclear physics experiments, suffer severe radiation damage that leads to degradations in sensor performance. These degradations include significant increases in leakage current, bulk resistivity, and space charge concentration. The increase in space charge concentration is particularly damaging since it can significantly increase the sensor full depletion voltage, causing either breakdown if operated at high biases or charge collection loss if operated at lower biases than full depletion. Several strategies can be used to make Si detectors more radiation had tolerant to particle radiations. In this paper, the main radiation induced degradations in Si detectors will be reviewed. The details and specifics of the new engineering strategies: material/impurity/defect engineering (MIDE); device structure engineering (DSE); and device operational mode engineering (DOME) will be given.

  4. Physical design and Monte Carlo simulations of a space radiation detector onboard the SJ-10 satellite

    NASA Astrophysics Data System (ADS)

    Liu, Ya-Qing; Wang, Huan-Yu; Cui, Xing-Zhu; Peng, Wen-Xi; Fan, Rui-Rui; Liang, Xiao-Hua; Gao, Ming; Zhang, Yun-Long; Zhang, Cheng-Mo; Zhang, Jia-Yu; Yang, Jia-Wei; Wang, Jin-Zhou; Zhang, Fei; Dong, Yi-Fan; Guo, Dong-Ya; Zhou, Da-Wei

    2015-01-01

    A radiation gene box (RGB) onboard the SJ-10 satellite is a device carrying mice and drosophila cells to determine the biological effects of space radiation environment. The shielded fluxes of different radioactive sources were calculated and the linear energy transfers of γ-rays, electrons, protons and α-particles in the tissue were acquired using A-150 tissue-equivalent plastic. Then, a conceptual model of a space radiation instrument employing three semiconductor sub-detectors for deriving the charged and uncharged radiation environment of the RGB was designed. The energy depositions in the three sub-detectors were classified into 15 channels (bins) in an algorithm derived from the Monte Carlo method. The physical feasibility of the conceptual instrument was also verified by Monte Carlo simulations.

  5. Fiber-optic thermometry using thermal radiation from Tm end doped SiO{sub 2} fiber sensor

    SciTech Connect

    Morita, Kentaro; Katsumata, Toru; Komuro, Shuji; Aizawa, Hiroaki

    2014-04-15

    Fiber-optic thermometry based on temperature dependence of thermal radiation from Tm{sup 3+} ions was studied using Tm end doped SiO{sub 2} fiber sensor. Visible light radiation peaks due to f-f transition of Tm{sup 3+} ion were clearly observed at λ = 690 and 790 nm from Tm end doped SiO{sub 2} fibers sensor at the temperature above 600 °C. Thermal radiation peaks are assigned with f-f transition of Tm{sup 3+} ion, {sup 1}D{sub 2}-{sup 3}H{sub 6}, and {sup 1}G{sub 4}-{sup 3}H{sub 6}. Peak intensity of thermal radiation from Tm{sup 3+} ion increases with temperature. Intensity ratio of thermal radiation peaks at λ = 690 nm against that at λ = 790 nm, I{sub 790/690}, is suitable for the temperature measurement above 750 °C. Two-dimensional temperature distribution in a flame is successfully evaluated by Tm end doped SiO{sub 2} fiber sensor.

  6. Coherent radiation of relativistic electrons in dielectric fibers in the millimeter wavelength range

    NASA Astrophysics Data System (ADS)

    Naumenko, G. A.; Potylitsyn, A. P.; Bleko, V. V.; Soboleva, V. V.

    2015-02-01

    The generation of visible light by a relativistic electron beam in dielectric fibers was considered in X. Artru and C. Ray, Nucl. Inst. Meth. B 309, 4 (2013), where the characteristics of radiation induced in a fiber by the electromagnetic field of a relativistic charged particle were studied and it was emphasized that they differ from those in the traditional mechanisms of radiation such as transition and diffraction. We have experimentally studied the characteristics of such a radiation in the millimeter wavelength range. It has been shown that radiation can be generated through different mechanisms depending on the geometry of the position of a fiber with respect to the trajectory of the charged particle. Fibers have been shown to be promising for nondestructive diagnostics of accelerator beams.

  7. High-efficiency scintillation detector for combined detection of thermal and fast neutrons and gamma radiation

    DOEpatents

    Chiles, M.M.; Mihalczo, J.T.; Blakeman, E.D.

    1987-02-27

    A scintillation based radiation detector for the combined detection of thermal neutrons, high-energy neutrons and gamma rays in a single detecting unit. The detector consists of a pair of scintillators sandwiched together and optically coupled to the light sensitive face of a photomultiplier tube. A light tight radiation pervious housing is disposed about the scintillators and a portion of the photomultiplier tube to hold the arrangement in assembly and provides a radiation window adjacent the outer scintillator through which the radiation to be detected enters the detector. The outer scintillator is formed of a material in which scintillations are produced by thermal-neutrons and the inner scintillator is formed of a material in which scintillations are produced by high-energy neutrons and gamma rays. The light pulses produced by events detected in both scintillators are coupled to the photomultiplier tube which produces a current pulse in response to each detected event. These current pulses may be processed in a conventional manner to produce a count rate output indicative of the total detected radiation event count rate. Pulse discrimination techniques may be used to distinguish the different radiations and their energy distribution.

  8. High-efficiency scintillation detector for combined of thermal and fast neutrons and gamma radiation

    DOEpatents

    Chiles, Marion M.; Mihalczo, John T.; Blakeman, Edward D.

    1989-01-01

    A scintillation based radiation detector for the combined detection of thermal neutrons, high-energy neutrons and gamma rays in a single detecting unit. The detector consists of a pair of scintillators sandwiched together and optically coupled to the light sensitive face of a photomultiplier tube. A light tight radiation pervious housing is disposed about the scintillators and a portion of the photomultiplier tube to hold the arrangement in assembly and provides a radiation window adjacent the outer scintillator through which the radiation to be detected enters the detector. The outer scintillator is formed of a material in which scintillations are produced by thermal-neutrons and the inner scintillator is formed of a material in which scintillations are produced by high-energy neutrons and gamma rays. The light pulses produced by events detected in both scintillators are coupled to the photomultiplier tube which produces a current pulse in response to each detected event. These current pulses may be processed in a conventional manner to produce a count rate output indicative of the total detected radiation even count rate. Pulse discrimination techniques may be used to distinguish the different radiations and their energy distribution.

  9. High-efficiency scintillation detector for combined of thermal and fast neutrons and gamma radiation

    DOEpatents

    Chiles, Marion M.; Mihalczo, John T.; Blakeman, Edward D.

    1989-02-07

    A scintillation based radiation detector for the combined detection of thermal neutrons, high-energy neutrons and gamma rays in a single detecting unit. The detector consists of a pair of scintillators sandwiched together and optically coupled to the light sensitive face of a photomultiplier tube. A light tight radiation pervious housing is disposed about the scintillators and a portion of the photomultiplier tube to hold the arrangement in assembly and provides a radiation window adjacent the outer scintillator through which the radiation to be detected enters the detector. The outer scintillator is formed of a material in which scintillations are produced by thermal-neutrons and the inner scintillator is formed of a material in which scintillations are produced by high-energy neutrons and gamma rays. The light pulses produced by events detected in both scintillators are coupled to the photomultiplier tube which produces a current pulse in response to each detected event. These current pulses may be processed in a conventional manner to produce a count rate output indicative of the total detected radiation even count rate. Pulse discrimination techniques may be used to distinguish the different radiations and their energy distribution.

  10. Radiation detectors and sources enhanced with micro/nanotechnology

    NASA Astrophysics Data System (ADS)

    Whitney, Chad Michael

    The ongoing threat of nuclear terrorism presents major challenges to maintaining national security. Currently, only a small percentage of the cargo containers that enter America are searched for fissionable bomb making materials. This work reports on a multi-channel radiation detection platform enabled with nanoparticles that is capable of detecting and discriminating all types of radiation emitted from fissionable bomb making materials. Typical Geiger counters are limited to detecting only beta and gamma radiation. The micro-Geiger counter reported here detects all species of radiation including beta particles, gamma/X-rays, alpha particles, and neutrons. The multi-species detecting micro-Geiger counter contains a hermetically sealed and electrically biased fill gas. Impinging radiation interacts with tailored nanoparticles to release secondary charged particles that ionize the fill gas. The ionized particles collect on respectively biased electrodes resulting in a characteristic electrical pulse. Pulse height spectroscopy and radiation energy binning techniques can then be used to analyze the pulses to determine the specific radiation isotope. The ideal voltage range of operation for energy discrimination was found to be in the proportional region at 1000VDC. In this region, specific pulse heights for different radiation species resulted. The amplification region strength which determines the device sensitivity to radiation energy can be tuned with the electrode separation distance. Considerable improvements in count rates were achieved by using the charge conversion nanoparticles with the highest cross sections for particular radiation species. The addition of tungsten nanoparticles to the microGeiger counter enabled the device to be four times more efficient at detecting low level beta particles with a dose rate of 3.2uR/hr (micro-Roentgen per hour) and just under three times more efficient than an off the shelf Geiger counter. The addition of lead

  11. [Assessment of parameters of digital X-ray detectors by the method of exposure of the working area of the detector to uniform X-ray radiation].

    PubMed

    Mazurov, A I

    2007-01-01

    It is shown that the main parameters determining the imaging quality of digital X-ray image detectors can be assessed by the method of exposure of the working area of the detector to uniform X-ray radiation. This method makes unnecessary the expert evaluation and measurements using high-precision test objects. It can be used in clinical practice for effective monitoring of the quality of digital X-ray detectors.

  12. Effects of high energy radiation on the mechanical properties of epoxy-graphite fiber reinforced composites

    NASA Technical Reports Server (NTRS)

    Fornes, R. E.; Gilbert, R. D.; Memory, J. D.

    1985-01-01

    In an effort to elucidate the changes in molecular structural and mechanical properties of epoxy/graphite fiber composites upon exposure to ionizing radiation in a simulated space environment, spectroscopic and surface properties of tetraglycidyl-4,4'-diamino diphenyl methane (TGDDM) red with diamino diphenyl sulfone (DDS) and T-300 graphite fiber were investigated following exposure to ionizing radiation. Cobalt-60 gamma radiation and 1/2 MeV electrons were used as radiation sources. The system was studied using electron spin resonance (ESR) spectroscopy, infrared absorption spectroscopy, contact angle measurements, and electron spectroscopy for chemical analysis.

  13. Method and system for determining depth distribution of radiation-emitting material located in a source medium and radiation detector system for use therein

    DOEpatents

    Benke, Roland R.; Kearfott, Kimberlee J.; McGregor, Douglas S.

    2003-03-04

    A method, system and a radiation detector system for use therein are provided for determining the depth distribution of radiation-emitting material distributed in a source medium, such as a contaminated field, without the need to take samples, such as extensive soil samples, to determine the depth distribution. The system includes a portable detector assembly with an x-ray or gamma-ray detector having a detector axis for detecting the emitted radiation. The radiation may be naturally-emitted by the material, such as gamma-ray-emitting radionuclides, or emitted when the material is struck by other radiation. The assembly also includes a hollow collimator in which the detector is positioned. The collimator causes the emitted radiation to bend toward the detector as rays parallel to the detector axis of the detector. The collimator may be a hollow cylinder positioned so that its central axis is perpendicular to the upper surface of the large area source when positioned thereon. The collimator allows the detector to angularly sample the emitted radiation over many ranges of polar angles. This is done by forming the collimator as a single adjustable collimator or a set of collimator pieces having various possible configurations when connected together. In any one configuration, the collimator allows the detector to detect only the radiation emitted from a selected range of polar angles measured from the detector axis. Adjustment of the collimator or the detector therein enables the detector to detect radiation emitted from a different range of polar angles. The system further includes a signal processor for processing the signals from the detector wherein signals obtained from different ranges of polar angles are processed together to obtain a reconstruction of the radiation-emitting material as a function of depth, assuming, but not limited to, a spatially-uniform depth distribution of the material within each layer. The detector system includes detectors having

  14. Preliminary Results from an Investigation into Nanostructured Nuclear Radiation Detectors for Non-Proliferation Applications

    SciTech Connect

    ,

    2012-10-01

    In recent years, the concept of embedding composite scintillators consisting of nanosized inorganic crystals in an organic matrix has been actively pursued. Nanocomposite detectors have the potential to meet many of the homeland security, non-proliferation, and border and cargo-screening needs of the nation and, by virtue of their superior nuclear identification capability over plastic, at roughly the same cost as plastic, have the potential to replace all plastic detectors. Nanocomposites clearly have the potential of being a gamma ray detection material that would be sensitive yet less expensive and easier to produce on a large scale than growing large, whole crystals of similar sensitivity. These detectors would have a broad energy range and a sufficient energy resolution to perform isotopic identification. The material can also be fabricated on an industrial scale, further reducing cost. This investigation focused on designing and fabricating prototype core/shell and quantum dot (QD) detectors. Fourteen core/shell and four QD detectors, all with the basic consistency of a mixture of nanoparticles in a polymer matrix with different densities of nanoparticles, were prepared. Nanoparticles with sizes <10 nm were fabricated, embedded in a polystyrene matrix, and the resultant scintillators’ radiation detector properties were characterized. This work also attempted to extend the gamma energy response on both low- and high-energy regimes by demonstrating the ability to detect low-energy and high-energy gamma rays. Preliminary results of this investigation are consistent with a significant response of these materials to nuclear radiation.

  15. Radiation hardness of semiconductor avalanche detectors for calorimeters in future HEP experiments

    NASA Astrophysics Data System (ADS)

    Kushpil, V.; Mikhaylov, V.; Kugler, A.; Kushpil, S.; Ladygin, V. P.; Svoboda, O.; Tlustý, P.

    2016-02-01

    During the last years, semiconductor avalanche detectors are being widely used as the replacement of classical PMTs in calorimeters for many HEP experiments. In this report, basic selection criteria for replacement of PMTs by solid state devices and specific problems in the investigation of detectors radiation hardness are discussed. The design and performance of the hadron calorimeters developed for the future high energy nuclear physics experiments at FAIR, NICA, and CERN are discussed. The Projectile Spectator Detector (PSD) for the CBM experiment at the future FAIR facility, the Forward Calorimeter for the NA61 experiment at CERN and the Multi Purpose Detector at the future NICA facility are reviewed. Moreover, new methods of data analysis and results interpretation for radiation experiments are described. Specific problems of development of detectors control systems and possibilities of reliability improvement of multi-channel detectors systems are shortly overviewed. All experimental material is based on the investigation of SiPM and MPPC at the neutron source in NPI Rez.

  16. Application of radiation-crosslinked polytetrafluoroethylene to fiber-reinforced composite materials

    NASA Astrophysics Data System (ADS)

    Oshima, Akihiro; Udagawa, Akira; Morita, Yousuke

    2001-01-01

    Plain-woven carbon fiber-filled polytetrafluoroethylene (PTFE) composites were fabricated by radiation-crosslinking under selective conditions. High mechanical and frictional properties are found in the composite materials compared with crosslinked PTFE without fiber. The composite materials with optional shapes, which are laminated after electron beam (EB) crosslinking treatment of each mono-layer could also be fabricated.

  17. Using Ionizing Radiation Detectors. Module 11. Vocational Education Training in Environmental Health Sciences.

    ERIC Educational Resources Information Center

    Consumer Dynamics Inc., Rockville, MD.

    This module, one of 25 on vocational education training for careers in environmental health occupations, contains self-instructional materials on using ionizing radiation detectors. Following guidelines for students and instructors and an introduction that explains what the student will learn are three lessons: (1) naming and telling the function…

  18. Low-cost cadmium zinc telluride radiation detectors based on electron-transport-only designs

    SciTech Connect

    B. A. Brunett; J. C. Lund; J. M. Van Scyoc; N. R. Hilton; E. Y. Lee; R. B. James

    1999-01-01

    The goal of this project was to utilize a novel device design to build a compact, high resolution, room temperature operated semiconductor gamma ray sensor. This sensor was constructed from a cadmium zinc telluride (CZT) crystal. It was able to both detect total radiation intensity and perform spectroscopy on the detected radiation. CZT detectors produced today have excellent electron charge carrier collection, but suffer from poor hole collection. For conventional gamma-ray spectrometers, both the electrons and holes must be collected with high efficiency to preserve energy resolution. The requirement to collect the hole carriers, which have relatively low lifetimes, limits the efficiency and performance of existing experimental devices. By implementing novel device designs such that the devices rely only on the electron signal for energy information, the sensitivity of the sensors for detecting radiation can be increased substantially. In this report the authors describe a project to develop a new type of electron-only CZT detector. They report on their successful efforts to design, implement and test these new radiation detectors. In addition to the design and construction of the sensors the authors also report, in considerable detail, on the electrical characteristics of the CZT crystals used to make their detectors.

  19. [The use of a detector of the extremely weak radiation as a variometer of gravitation field].

    PubMed

    Gorshkov, E S; Bondarenko, E G; Shapovalov, S N; Sokolovskiĭ, V V; Troshichev, O A

    2001-01-01

    It was shown that the detector of extremely weak radiation with selectively increased sensitivity to the nonelectromagnetic, including the gravitational component of the spectrum of active physical fields can be used as the basis for constructing a variometer of gravitational field of a new type.

  20. Mixed ionic-electronic conductor-based radiation detectors and methods of fabrication

    DOEpatents

    Conway, Adam; Beck, Patrick R; Graff, Robert T; Nelson, Art; Nikolic, Rebecca J; Payne, Stephen A; Voss, Lars; Kim, Hadong

    2015-04-07

    A method of fabricating a mixed ionic-electronic conductor (e.g. TlBr)-based radiation detector having halide-treated surfaces and associated methods of fabrication, which controls polarization of the mixed ionic-electronic MIEC material to improve stability and operational lifetime.

  1. Silicon field-effect transistors as radiation detectors for the Sub-THz range

    SciTech Connect

    But, D. B. Golenkov, O. G.; Sakhno, N. V.; Sizov, F. F.; Korinets, S. V.; Gumenjuk-Sichevska, J. V.; Reva, V. P.; Bunchuk, S. G.

    2012-05-15

    The nonresonance response of silicon metal-oxide-semiconductor field-effect transistors (Si-MOSFETs) with a long channel (1-20 {mu}m) to radiation in the frequency range 43-135 GHz is studied. The transistors are fabricated by the standard CMOS technology with 1-{mu}m design rules. The volt-watt sensitivity and the noise equivalent power (NEP) for such detectors are estimated with the calculated effective area of the detecting element taken into account. It is shown that such transistors can operate at room temperature as broadband direct detectors of sub-THz radiation. In the 4-5 mm range of wavelengths, the volt-watt sensitivity can be as high as tens of kV/W and the NEP can amount to 10{sup -11} - 10{sup -12}W/{radical}Hz . The parameters of detectors under study can be improved by the optimization of planar antennas.

  2. Comparison of cosmic rays radiation detectors on-board commercial jet aircraft.

    PubMed

    Kubančák, Ján; Ambrožová, Iva; Brabcová, Kateřina Pachnerová; Jakůbek, Jan; Kyselová, Dagmar; Ploc, Ondřej; Bemš, Július; Štěpán, Václav; Uchihori, Yukio

    2015-06-01

    Aircrew members and passengers are exposed to increased rates of cosmic radiation on-board commercial jet aircraft. The annual effective doses of crew members often exceed limits for public, thus it is recommended to monitor them. In general, the doses are estimated via various computer codes and in some countries also verified by measurements. This paper describes a comparison of three cosmic rays detectors, namely of the (a) HAWK Tissue Equivalent Proportional Counter; (b) Liulin semiconductor energy deposit spectrometer and (c) TIMEPIX silicon semiconductor pixel detector, exposed to radiation fields on-board commercial Czech Airlines company jet aircraft. Measurements were performed during passenger flights from Prague to Madrid, Oslo, Tbilisi, Yekaterinburg and Almaty, and back in July and August 2011. For all flights, energy deposit spectra and absorbed doses are presented. Measured absorbed dose and dose equivalent are compared with the EPCARD code calculations. Finally, the advantages and disadvantages of all detectors are discussed.

  3. Dichroic filters to protect milliwatt far-infrared detectors from megawatt ECRH radiation.

    PubMed

    Bertschinger, G; Endres, C P; Lewen, F; Oosterbeek, J W

    2008-10-01

    Dichroic filters have been used to shield effectively the far infrared (FIR) detectors at the interferometer/polarimeter on TEXTOR. The filters consist of metal foils with regular holes, the hole diameter, the mutual spacing and the thickness of the foils are chosen to transmit radiation at the design frequency with transmission >90%. The attenuation at the low frequency end of the bandpass filter is about 30 dB per octave, the high frequency transmission is between 20% and 40%. The filters have been used to block the stray radiation from the megawatt microwave heating beam to the detectors of the FIR interferometer, operating with power on the detector in the milliwatt range. If required, the low frequency attenuation can be still enhanced, without compromising the transmission in the passband. The FIR interferometer used for plasma density and position control is no longer disturbed by electromagnetic waves used for plasma heating.

  4. Digital configurable instrument for emulation of signals from radiation detectors

    SciTech Connect

    Abba, A.; Caponio, F.; Geraci, A.

    2014-01-15

    The paper presents a digital instrument characterized by a specially designed architecture that is able to emulate in real time signals from a generic radiation detection system. The instrument is not a pulse generator of recorded shapes but a synthesizer of random pulses compliant to programmable statistics for height and starting time of events. Completely programmable procedures for emulation of noise, disturbances, and reference level variation are implemented.

  5. Measurements of longitudinal gamma ray distribution using a multichannel fiber-optic Cerenkov radiation sensor

    NASA Astrophysics Data System (ADS)

    Shin, S. H.; Jeon, D.; Kim, J. S.; Jang, J. S.; Jang, K. W.; Yoo, W. J.; Moon, J. H.; Park, B. G.; Kim, S.; Lee, B.

    2014-11-01

    Cerenkov radiation occurs when charged particles are moving faster than the speed of light in a transparent dielectric medium. In optical fibers, Cerenkov radiation can also be generated due to the fiber’s dielectric components. Accordingly, the radiation-induced light signals can be obtained using the optical fibers without any scintillating material. In this study, we fabricated a multichannel, fiber-optic Cerenkov radiation sensor (FOCRS) system using silica optical fibers (SOFs), plastic optical fibers (POFs), an optical spectrometer, multi-anode photomultiplier tubes (MA-PMTs) and a scanning system to measure the light intensities of Cerenkov radiation induced by gamma rays. To evaluate the fading effects in optical fibers, the spectra of Cerenkov radiation generated in the SOFs and POFs were measured based on the irradiation time by using an optical spectrometer. In addition, we measured the longitudinal distribution of gamma rays emitted from the cylindrical type Co-60 source by using MA-PMTs. The result was also compared with the distribution of the electron flux calculated by using the Monte Carlo N-particle transport code (MCNPX).

  6. Improved mid infrared detector for high spectral or spatial resolution and synchrotron radiation use

    NASA Astrophysics Data System (ADS)

    Faye, Mbaye; Bordessoule, Michel; Kanouté, Brahim; Brubach, Jean-Blaise; Roy, Pascale; Manceron, Laurent

    2016-06-01

    When using bright, small effective size sources, such as synchrotron radiation light beam, for broadband spectroscopy at spectral or spatial high resolution for mid-IR FTIR measurements, a marked detectivity improvement can be achieved by setting up a device matching the detector optical étendue to that of the source. Further improvement can be achieved by reducing the background unmodulated flux and other intrinsic noise sources using a lower temperature cryogen, such as liquid helium. By the combined use of cooled apertures, cold reimaging optics, filters and adapted detector polarization, and preamplification electronics, the sensitivity of a HgCdTe photoconductive IR detector can be improved by a significant factor with respect to standard commercial devices (more than one order of magnitude on average over 6-20 μm region) and the usable spectral range extended to longer wavelengths. The performances of such an optimized detector developed on the AILES Beamline at SOLEIL are presented here.

  7. Calibration of modified Liulin detector for cosmic radiation measurements on-board aircraft.

    PubMed

    Kyselová, D; Ambrožová, I; Krist, P; Kubančák, J; Uchihori, Y; Kitamura, H; Ploc, O

    2015-06-01

    The annual effective doses of aircrew members often exceed the limit of 1 mSv for the public due to the increased level of cosmic radiation at the flight altitudes, and thus, it is recommended to monitor them. Aircrew dosimetry is usually performed using special computer programs mostly based on results of Monte Carlo simulations. Contemporary, detectors are used mostly for validation of these computer codes, verification of effective dose calculations and for research purposes. One of such detectors is active silicon semiconductor deposited energy spectrometer Liulin. Output quantities of measurement with the Liulin detector are the absorbed dose in silicon D and the ambient dose equivalent H*(10); to determine it, two calibrations are necessary. The purpose of this work was to develop a calibration methodology that can be used to convert signal from the detector to D independently on calibration performed at Heavy Ion Medical Accelerator facility in Chiba, Japan.

  8. Improved mid infrared detector for high spectral or spatial resolution and synchrotron radiation use.

    PubMed

    Faye, Mbaye; Bordessoule, Michel; Kanouté, Brahim; Brubach, Jean-Blaise; Roy, Pascale; Manceron, Laurent

    2016-06-01

    When using bright, small effective size sources, such as synchrotron radiation light beam, for broadband spectroscopy at spectral or spatial high resolution for mid-IR FTIR measurements, a marked detectivity improvement can be achieved by setting up a device matching the detector optical étendue to that of the source. Further improvement can be achieved by reducing the background unmodulated flux and other intrinsic noise sources using a lower temperature cryogen, such as liquid helium. By the combined use of cooled apertures, cold reimaging optics, filters and adapted detector polarization, and preamplification electronics, the sensitivity of a HgCdTe photoconductive IR detector can be improved by a significant factor with respect to standard commercial devices (more than one order of magnitude on average over 6-20 μm region) and the usable spectral range extended to longer wavelengths. The performances of such an optimized detector developed on the AILES Beamline at SOLEIL are presented here.

  9. Cerenkov light spectrum in an optical fiber exposed to a photon or electron radiation therapy beam

    SciTech Connect

    Lambert, Jamil; Yin Yongbai; McKenzie, David R.; Law, Sue; Suchowerska, Natalka

    2009-06-20

    A Cerenkov signal is generated when energetic charged particles enter the core of an optical fiber. The Cerenkov intensity can be large enough to interfere with signals transmitted through the fiber. We determine the spectrum of the Cerenkov background signal generated in a poly(methyl methacrylate) optical fiber exposed to photon and electron therapeutic beams from a linear accelerator. This spectral measurement is relevant to discrimination of the signal from the background, as in scintillation dosimetry using optical fiber readouts. We find that the spectrum is approximated by the theoretical curve after correction for the wavelength dependent attenuation of the fiber. The spectrum does not depend significantly on the angle between the radiation beam and the axis of the fiber optic but is dependent on the depth in water at which the fiber is exposed to the beam.

  10. Detectors

    DOEpatents

    Orr, Christopher Henry; Luff, Craig Janson; Dockray, Thomas; Macarthur, Duncan Whittemore; Bounds, John Alan; Allander, Krag

    2002-01-01

    The apparatus and method provide techniques through which both alpha and beta emission determinations can be made simultaneously using a simple detector structure. The technique uses a beta detector covered in an electrically conducting material, the electrically conducting material discharging ions generated by alpha emissions, and as a consequence providing a measure of those alpha emissions. The technique also offers improved mountings for alpha detectors and other forms of detectors against vibration and the consequential effects vibration has on measurement accuracy.

  11. Fiber Bragg gratings in the radiation environment: Change under the influence of radiolytic hydrogen

    SciTech Connect

    Butov, Oleg V. Golant, Konstantin M.; Shevtsov, Igor' A.; Fedorov, Artem N.

    2015-08-21

    The change of the transmission spectra of fiber Bragg gratings written in the optical fibers, whose silica cores are doped with either germanium or nitrogen, is studied experimentally under the influence of gamma-radiation. The transmission spectra in the neighborhood of the resonance (Bragg) wavelengths were regularly recorded “in-situ” in the course of irradiation during 24 days. For this purpose, uncoated gratings were placed in a pool near the spent fuel rods of a nuclear reactor. The fibers with the gratings written in them were in immediate contact with water. The estimated total absorbed radiation dose of the fibers is approximately 5 MGy. Molecular hydrogen, which is produced by radiolysis of water and penetrates into the core of silica fiber, is found to interact with the defects of Ge-doped silica induced by gamma-radiation, thereby causing a strong impact on the parameters of the spectrum of the Bragg gratings. On the contrary, in the case of gratings inscribed in N-doped silica fibers, the hydrogen molecules interact with defects induced in the course of laser UV exposure during the grating writing only. The possible subsequent formation of additional defects in N-doped silica under the influence of gamma-radiation has no substantial impact on the transmission spectra of Bragg gratings, which remained stable. The obtained results suggest that a small amount of molecular hydrogen resided in the fiber core is the main source of radiation instability of Ge-doped fiber Bragg grating sensors in radiation environments. These hydrogen molecules can remain in the Bragg gratings, in particular, after the inscription process in the hydrogen-loaded fibers.

  12. Fiber Bragg gratings in the radiation environment: Change under the influence of radiolytic hydrogen

    NASA Astrophysics Data System (ADS)

    Butov, Oleg V.; Golant, Konstantin M.; Shevtsov, Igor'A.; Fedorov, Artem N.

    2015-08-01

    The change of the transmission spectra of fiber Bragg gratings written in the optical fibers, whose silica cores are doped with either germanium or nitrogen, is studied experimentally under the influence of gamma-radiation. The transmission spectra in the neighborhood of the resonance (Bragg) wavelengths were regularly recorded "in-situ" in the course of irradiation during 24 days. For this purpose, uncoated gratings were placed in a pool near the spent fuel rods of a nuclear reactor. The fibers with the gratings written in them were in immediate contact with water. The estimated total absorbed radiation dose of the fibers is approximately 5 MGy. Molecular hydrogen, which is produced by radiolysis of water and penetrates into the core of silica fiber, is found to interact with the defects of Ge-doped silica induced by gamma-radiation, thereby causing a strong impact on the parameters of the spectrum of the Bragg gratings. On the contrary, in the case of gratings inscribed in N-doped silica fibers, the hydrogen molecules interact with defects induced in the course of laser UV exposure during the grating writing only. The possible subsequent formation of additional defects in N-doped silica under the influence of gamma-radiation has no substantial impact on the transmission spectra of Bragg gratings, which remained stable. The obtained results suggest that a small amount of molecular hydrogen resided in the fiber core is the main source of radiation instability of Ge-doped fiber Bragg grating sensors in radiation environments. These hydrogen molecules can remain in the Bragg gratings, in particular, after the inscription process in the hydrogen-loaded fibers.

  13. Cosmic radiation measurements on the Foton-M4 satellite by passive detectors

    NASA Astrophysics Data System (ADS)

    Strádi, Andrea; Pálfalvi, József K.; Szabó, Julianna; Pázmándi, Tamás; Ivanova, Olga A.; Shurshakov, Vyacheslav A.

    2017-02-01

    The Russian Foton spacecraft was designed to deliver scientific experiments to low Earth orbit and return them safely to the ground for further analysis. During the 44-d Foton-M4 satellite mission in 2014 several passive cosmic ray detectors were exposed outside (in a single holder) and inside (in 4 locations) the recoverable capsule to study the radiation field. The applied thermoluminescent detectors (TLDs) are more sensitive to the particles with LET under 10 keV μm-1, while the solid state nuclear track detectors (SSNTDs) measure the particles having LET over this value. According to our measurements the average internal absorbed dose rate varied between 374-562 μGy/day for low LET radiation and 40-52 μGy/day for high LET radiation. Outside the capsule the dose rate was much higher, 1078 μGy/day for low LET radiation and 75 μGy/day for high LET radiation. Within the paper the obtained absorbed dose rates has been compared to those measured on the previous Foton-M flights, during the Bion-M1 mission and in the Columbus module of the International Space Station.

  14. Radiation Measurements Performed with Active Detectors Relevant for Human Space Exploration

    PubMed Central

    Narici, Livio; Berger, Thomas; Matthiä, Daniel; Reitz, Günther

    2015-01-01

    A reliable radiation risk assessment in space is a mandatory step for the development of countermeasures and long-duration mission planning in human spaceflight. Research in radiobiology provides information about possible risks linked to radiation. In addition, for a meaningful risk evaluation, the radiation exposure has to be assessed to a sufficient level of accuracy. Consequently, both the radiation models predicting the risks and the measurements used to validate such models must have an equivalent precision. Corresponding measurements can be performed both with passive and active devices. The former is easier to handle, cheaper, lighter, and smaller but they measure neither the time dependence of the radiation environment nor some of the details useful for a comprehensive radiation risk assessment. Active detectors provide most of these details and have been extensively used in the International Space Station. To easily access such an amount of data, a single point access is becoming essential. This review presents an ongoing work on the development of a tool that allows obtaining information about all relevant measurements performed with active detectors providing reliable inputs for radiation model validation. PMID:26697408

  15. Radiation Measurements Performed with Active Detectors Relevant for Human Space Exploration.

    PubMed

    Narici, Livio; Berger, Thomas; Matthiä, Daniel; Reitz, Günther

    2015-01-01

    A reliable radiation risk assessment in space is a mandatory step for the development of countermeasures and long-duration mission planning in human spaceflight. Research in radiobiology provides information about possible risks linked to radiation. In addition, for a meaningful risk evaluation, the radiation exposure has to be assessed to a sufficient level of accuracy. Consequently, both the radiation models predicting the risks and the measurements used to validate such models must have an equivalent precision. Corresponding measurements can be performed both with passive and active devices. The former is easier to handle, cheaper, lighter, and smaller but they measure neither the time dependence of the radiation environment nor some of the details useful for a comprehensive radiation risk assessment. Active detectors provide most of these details and have been extensively used in the International Space Station. To easily access such an amount of data, a single point access is becoming essential. This review presents an ongoing work on the development of a tool that allows obtaining information about all relevant measurements performed with active detectors providing reliable inputs for radiation model validation.

  16. Evaluation of detectors for the small field measurements used for clinical radiation dosimetry

    NASA Astrophysics Data System (ADS)

    Markovic, Miljenko

    Advanced radiation therapy treatments with very small field sizes are complex. Increasingly higher doses delivered in single or few fractions are being commonly used for the treatments of the small target volume. Absolute or relative small field dosimetry is difficult due to radiation transport. Therefore it is very important to understand characteristics of the small field, detector selection as well as correction factors that have to be taken into account for the accurate measurements. Reducing uncertainty in relative dose measurement and modeling dose on treatment planning systems are factors contributing to the accuracy of the small field radiation treatments. Several challenges in small field dosimetry arise because of the lack of lateral charge particle equilibrium as well as the occlusion of the direct photon beam source and collimator settings. Presence of low-density media in irradiation geometry does complicate dosimetry even more. All those conditions are representing the challenge when it comes to dosimetric measurements. Size and construction are crucial when it comes to choice of the detector. Depending on beam energy, resolving the beam profile and penumbra for the small field sizes are a challenge and practically impossible with detectors commonly used in clinics. With decreasing field size and due to changes in particle spectrum, variations in radiological parameters have to be taken into account. To measure percent depth dose, tissue maximum ratios, tissue phantom ratios as well as output factors for the small field size experimental studies and Monte Carlo simulations have been conducted to determine appropriate detectors for the measurements. The primary goal of Specific Aim 1 was experimental quantification of the performance parameters for single detectors used for dosimetric verification of the small fields in radiotherapy. The proposed method and qualitative value for appropriate detectors selection defined by field size has been set. The

  17. Monte Carlo code G3sim for simulation of plastic scintillator detectors with wavelength shifter fiber readout

    NASA Astrophysics Data System (ADS)

    Mohanty, P. K.; Dugad, S. R.; Gupta, S. K.

    2012-04-01

    A detailed description of a compact Monte Carlo simulation code "G3sim" for studying the performance of a plastic scintillator detector with wavelength shifter (WLS) fiber readout is presented. G3sim was developed for optimizing the design of new scintillator detectors used in the GRAPES-3 extensive air shower experiment. Propagation of the blue photons produced by the passage of relativistic charged particles in the scintillator is treated by incorporating the absorption, total internal, and diffuse reflections. Capture of blue photons by the WLS fibers and subsequent re-emission of longer wavelength green photons is appropriately treated. The trapping and propagation of green photons inside the WLS fiber is treated using the laws of optics for meridional and skew rays. Propagation time of each photon is taken into account for the generation of the electrical signal at the photomultiplier. A comparison of the results from G3sim with the performance of a prototype scintillator detector showed an excellent agreement between the simulated and measured properties. The simulation results can be parametrized in terms of exponential functions providing a deeper insight into the functioning of these versatile detectors. G3sim can be used to aid the design and optimize the performance of scintillator detectors prior to actual fabrication that may result in a considerable saving of time, labor, and money spent.

  18. A prototype of radiation imaging detector using silicon strip sensors

    NASA Astrophysics Data System (ADS)

    Ryu, S.; Hyun, H. J.; Kah, D. H.; Kang, H. D.; Kim, H. J.; Kim, Kyeryung; Kim, Y. I.; Park, H.; Son, D. H.

    2008-06-01

    The aim of this work is to evaluate the performance of a strip sensor with a single photon counting data acquisition system based on VA1 readout chips to study the feasibility of a silicon microstrip detector for medical application. The sensor is an AC-coupled single-sided microstrip sensor and the active area of the sensor is 32.0 mm×32.0 mm with a thickness of 380 μm. The sensor has 64 readout strips with a pitch of 500 μm. The sensor was biased at 45 V and the experiment was performed at room temperature. Two silicon strip sensors were mounted perpendicularly one another to get two-dimensional position information with a 5 mm space gap. Two low noise analog ASICs, VA1 chips, were used for signal readout of the strip sensor. The assembly of sensors and readout electronics was housed in an Al light-tight box. A CsI(Tl) scintillation crystal and a 2-in. photomultiplier tube were used to trigger signal events. The data acquisition system was based on a 64 MHz FADC and control softwares for the PC-Linux platform. Imaging tests were performed by using a lead phantom with a 90Sr radioactive source and a 45 MeV proton beam at Korea Institute of Radiological and Medical Science in Seoul, respectively. Results of the S/ N ratio measurement and phantom images are presented.

  19. Detection of gamma-neutron radiation by solid-state scintillation detectors. Detection of gamma-neutron radiation by novel solid-state scintillation detectors

    SciTech Connect

    Ryzhikov, V.; Grinyov, B.; Piven, L.; Onyshchenko, G.; Sidletskiy, O.; Naydenov, S.; Pochet, T.; Smith, C.

    2015-07-01

    It is known that solid-state scintillators can be used for detection of both gamma radiation and neutron flux. In the past, neutron detection efficiencies of such solid-state scintillators did not exceed 5-7%. At the same time it is known that the detection efficiency of the gamma-neutron radiation characteristic of nuclear fissionable materials is by an order of magnitude higher than the efficiency of detection of neutron fluxes alone. Thus, an important objective is the creation of detection systems that are both highly efficient in gamma-neutron detection and also capable of exhibiting high gamma suppression for use in the role of detection of neutron radiation. In this work, we present the results of our experimental and theoretical studies on the detection efficiency of fast neutrons from a {sup 239}Pu-Be source by the heavy oxide scintillators BGO, GSO, CWO and ZWO, as well as ZnSe(Te, O). The most probable mechanism of fast neutron interaction with nuclei of heavy oxide scintillators is the inelastic scattering (n, n'γ) reaction. In our work, fast neutron detection efficiencies were determined by the method of internal counting of gamma-quanta that emerge in the scintillator from (n, n''γ) reactions on scintillator nuclei with the resulting gamma energies of ∼20-300 keV. The measured efficiency of neutron detection for the scintillation crystals we considered was ∼40-50 %. The present work included a detailed analysis of detection efficiency as a function of detector and area of the working surface, as well as a search for new ways to create larger-sized detectors of lower cost. As a result of our studies, we have found an unusual dependence of fast neutron detection efficiency upon thickness of the oxide scintillators. An explanation for this anomaly may involve the competition of two factors that accompany inelastic scattering on the heavy atomic nuclei. The transformation of the energy spectrum of neutrons involved in the (n, n'γ) reactions towards

  20. Fiber-optic thermometer application of thermal radiation from rare-earth end-doped SiO{sub 2} fiber

    SciTech Connect

    Katsumata, Toru Morita, Kentaro; Komuro, Shuji; Aizawa, Hiroaki

    2014-08-15

    Visible light thermal radiation from SiO{sub 2} glass doped with Y, La, Ce, Pr, Nd, Eu, Tb, Dy, Ho, Er, Tm, Yb, and Lu were studied for the fiber-optic thermometer application based on the temperature dependence of thermal radiation. Thermal radiations according to Planck's law of radiation are observed from the SiO{sub 2} fibers doped with Y, La, Ce, Pr, Eu, Tb, and Lu at the temperature above 1100 K. Thermal radiations due to f-f transitions of rare-earth ions are observed from the SiO{sub 2} fibers doped with Nd, Dy, Ho, Er, Tm, and Yb at the temperature above 900 K. Peak intensities of thermal radiations from rare-earth doped SiO{sub 2} fibers increase sensitively with temperature. Thermal activation energies of thermal radiations by f-f transitions seen in Nd, Dy, Ho, Er, Tm, and Yb doped SiO{sub 2} fibers are smaller than those from SiO{sub 2} fibers doped with Y, La, Ce, Pr, Eu, Tb, and Lu. Thermal radiation due to highly efficient f-f transitions in Nd, Dy, Ho, Er, Tm, and Yb ions emits more easily than usual thermal radiation process. Thermal radiations from rare-earth doped SiO{sub 2} are potentially applicable for the fiber-optic thermometry above 900 K.

  1. Stable, high-performance operation of a fiber-coupled superconducting nanowire avalanche photon detector.

    PubMed

    Miki, Shigehito; Yabuno, Masahiro; Yamashita, Taro; Terai, Hirotaka

    2017-03-20

    Recent progress in the development of superconducting nanowire single photon detectors (SSPD or SNSPD) has delivered excellent performance, and has had a great impact on a range of research fields. Significant efforts are being made to further improve the technology, and a primary concern remains to resolve the trade-offs between detection efficiency (DE), timing jitter, and response speed. We present a stable and high-performance fiber-coupled niobium titanium nitride superconducting nanowire avalanche photon detector (SNAP) that resolves these trade-offs. Autocorrelation function measurement revealed an afterpulse-free operation in serially connected two SNAP (SC-2SNAP), even in the absence of a choke inductor, achieving a 7.65 times faster response speed than standard SSPDs. The SC-2SNAP device showed a system detection efficiency (SDE) of 81.0% with wide bias current margin, a dark count rate of 6.8 counts/s, and full width at half maximum timing jitter of 68 ps, operating in a practical Gifford-McMahon cryocooler system.

  2. New 3D Silicon detectors for dosimetry in Microbeam Radiation Therapy

    NASA Astrophysics Data System (ADS)

    Lerch, M. L. F.; Dipuglia, A.; Cameron, M.; Fournier, P.; Davis, J.; Petasecca, M.; Cornelius, I.; Perevertaylo, V.; Rosenfeld, A. B.

    2017-01-01

    Microbeam Radiation Therapy (MRT) involves the use of a spatially fractionated beam of synchrotron generated X-rays to treat tumours. MRT treatment is delivered via an array of high dose ‘peaks’ separated by low dose ‘valleys’. A good Peak to Valley Dose Ratio (PVDR) is an important indicator of successful treatment outcomes. MRT dosimetry requires a radiation hard detector with high spatial resolution, large dynamic range, which is ideally real-time and tissue equivalent. We have developed a Silicon Strip Detector (SSD) and very recently, a new 3D MESA SSD to meet the very stringent requirements of MRT dosimetry. We have compared these detectors through the characterisation of the MRT radiation field at the Australian Synchrotron Imaging and Medical Beamline. The EPI SSD was able to measure the microbeam profiles and PVDRs, however the effective spatial resolution was limited by the detector alignment options available at the time. The geometry of the new 3D MESA SSD is less sensitive to this alignment restriction was able to measure the microbeam profiles within 2 μm of that expected. The 3D MESA SSD measured PVDRs were possibly affected by undesired and slow charge collection outside the sensitive volume and additional scattering from the device substrate.

  3. Radiation Effects of n-type, Low Resistivity, Spiral Silicon Drift Detector Hybrid Systems

    SciTech Connect

    Chen W.; De Geronimo G.; Carini, G.A.; Gaskin, J.A.; Keister, J.W.; Li, S.; Li, Z.; Ramsey, B.D.; Siddons, D.P.; Smith, G.C.; Verbitskaya, E.

    2011-11-15

    We have developed a new thin-window, n-type, low-resistivity, spiral silicon drift detector (SDD) array - to be used as an extraterrestrial X-ray spectrometer (in varying environments) for NASA. To achieve low-energy response, a thin SDD entrance window was produced using a previously developed method. These thin-window devices were also produced on lower resistivity, thinner, n-type, silicon material, effectively ensuring their radiation hardness in anticipation of operation in potentially harsh radiation environments (such as found around the Jupiter system). Using the Indiana University Cyclotron Facility beam line RERS1, we irradiated a set of suitable diodes up to 5 Mrad and the latest iteration of our ASICs up to 12 Mrad. Then we irradiated two hybrid detectors consisting of newly, such-produced in-house (BNL) SDD chips bonded with ASICs with doses of 0.25 Mrad and 1 Mrad. Also we irradiated another hybrid detector consisting of previously produced (by KETEK) on n-type, high-resistivity SDD chip bonded with BNL's ASICs with a dose of 1 Mrad. The measurement results of radiated diodes (up to 5 Mrad), ASICs (up to 12 Mrad) and hybrid detectors (up to 1 Mrad) are presented here.

  4. Radiation dosimetry in radiotherapy: a model for an extrinsic optical fiber sensor

    NASA Astrophysics Data System (ADS)

    Mignani, Anna G.; Romano, Salvatore; Fusi, Franco; Mencaglia, Andrea A.

    1998-06-01

    The success of radiotherapy relies on the on-line monitoring of the dose of radiation to which the tumor and its adjacent tissues are exposed. Conventional thermoluminescence dosimeters provide only off-line monitoring, since they determine the radiation dosage after completion of the exposure. In order to overcome this limitation, optical fiber sensors have been proposed, which allow for a minimally invasive, real time and continuous monitoring of the delivered which allow for a minimally invasive, real time and continuous monitoring of the delivered dosage. These sensors make use of radio-transducers which are coupled at the end of a radiation-resistant fiber link, so as to obtain a radiation-induced intensity modulation. Typical radio-transducers are: (1) phosphors, which are stimulated to produce a visible luminescence linearly related to the radiation exposure; (2) heavy-metal-doped fiber sections, which undergo an intensity attenuation in the presence of radiation; (3) radiochromic dyes, which exhibit radiation-modulated optical absorption spectra. This paper presents preliminary test of radiation dosimetry performed by means of an extrinsic optical fiber sensor which makes use of a radiochromic film as radio-transducer. The spectral behavior of the transducer allows for two- wavelength differential measurements, so as to obtain a reference intensity-based sensor output.

  5. Prototype Radiation Detector Positioning System For The Automated Nondestructive Assay Of Uf6 Cylinders

    SciTech Connect

    Hatchell, Brian K.; Valdez, Patrick LJ; Orton, Christopher R.; Mace, Emily K.

    2011-08-07

    International Atomic Energy Agency (IAEA) inspectors currently perform periodic inspections at uranium enrichment plants to verify UF6 cylinder enrichment declarations. Measurements are typically performed with handheld high-resolution sensors on a sampling of cylinders taken to be representative of the facility’s entire cylinder inventory. These measurements are time-consuming, expensive, and assay only a small fraction of the total cylinder volume. An automated nondestructive assay system capable of providing enrichment measurements over the full volume of the cylinder could improve upon current verification practices in terms of efficiency and assay accuracy. This paper describes an approach denoted the Integrated Cylinder Verification Station (ICVS) that supports 100% cylinder verification, provides volume-averaged cylinder enrichment assay, and reduces inspector manpower needs. To allow field measurements to be collected to validate data collection algorithms, a prototype radiation detector positioning system was constructed. The system was designed to accurately position an array of radiation detectors along the length of a cylinder to measure UF6 enrichment. A number of alternative radiation shields for the detectors were included with the system. A collimated gamma-ray spectrometer module that allows translation of the detectors in the surrounding shielding to adjust the field of view, and a collimating plug in the end to further reduce the low-energy field of view, were also developed. Proof-of-principle measurements of neutron and high-energy gamma-ray signatures, using moderated neutron detectors and large-volume spectrometers in a fixed-geometry, portal-like configuration, supported an early assessment of the viability of the concept. The system has been used successfully on two testing campaigns at an AREVA fuel fabrication plant to scan over 30 product cylinders. This paper will describe the overall design of the detector positioning system and

  6. Evaluation of coded aperture radiation detectors using a Bayesian approach

    NASA Astrophysics Data System (ADS)

    Miller, Kyle; Huggins, Peter; Labov, Simon; Nelson, Karl; Dubrawski, Artur

    2016-12-01

    We investigate tradeoffs arising from the use of coded aperture gamma-ray spectrometry to detect and localize sources of harmful radiation in the presence of noisy background. Using an example application scenario of area monitoring and search, we empirically evaluate weakly supervised spectral, spatial, and hybrid spatio-spectral algorithms for scoring individual observations, and two alternative methods of fusing evidence obtained from multiple observations. Results of our experiments confirm the intuition that directional information provided by spectrometers masked with coded aperture enables gains in source localization accuracy, but at the expense of reduced probability of detection. Losses in detection performance can however be to a substantial extent reclaimed by using our new spatial and spatio-spectral scoring methods which rely on realistic assumptions regarding masking and its impact on measured photon distributions.

  7. The simulation of the LANFOS-H food radiation contamination detector using Geant4 package

    NASA Astrophysics Data System (ADS)

    Piotrowski, Lech Wiktor; Casolino, Marco; Ebisuzaki, Toshikazu; Higashide, Kazuhiro

    2015-02-01

    Recent incident in the Fukushima power plant caused a growing concern about the radiation contamination and resulted in lowering the Japanese limits for the permitted amount of 137Cs in food to 100 Bq/kg. To increase safety and ease the concern we are developing LANFOS (Large Food Non-destructive Area Sampler)-a compact, easy to use detector for assessment of radiation in food. Described in this paper LANFOS-H has a 4 π coverage to assess the amount of 137Cs present, separating it from the possible 40K food contamination. Therefore, food samples do not have to be pre-processed prior to a test and can be consumed after measurements. It is designed for use by non-professionals in homes and small institutions such as schools, showing safety of the samples, but can be also utilized by specialists providing radiation spectrum. Proper assessment of radiation in food in the apparatus requires estimation of the γ conversion factor of the detectors-how many γ photons will produce a signal. In this paper we show results of the Monte Carlo estimation of this factor for various approximated shapes of fish, vegetables and amounts of rice, performed with Geant4 package. We find that the conversion factor combined from all the detectors is similar for all food types and is around 37%, varying maximally by 5% with sample length, much less than for individual detectors. The different inclinations and positions of samples in the detector introduce uncertainty of 1.4%. This small uncertainty validates the concept of a 4 π non-destructive apparatus.

  8. On the use of a single-fiber multipoint plastic scintillation detector for 192Ir high-dose-rate brachytherapy

    PubMed Central

    Therriault-Proulx, François; Beddar, Sam; Beaulieu, Luc

    2013-01-01

    Purpose: The goal of this study was to prove the feasibility of using a single-fiber multipoint plastic scintillation detector (mPSD) as an in vivo verification tool during 192Ir high-dose-rate brachytherapy treatments. Methods: A three-point detector was built and inserted inside a catheter-positioning template placed in a water phantom. A hyperspectral approach was implemented to discriminate the different optical signals composing the light output at the exit of the single collection optical fiber. The mPSD was tested with different source-to-detector positions, ranging from 1 to 5 cm radially and over 10.5 cm along the longitudinal axis of the detector, and with various integration times. Several strategies for improving the accuracy of the detector were investigated. The device's accuracy in detecting source position was also tested. Results: Good agreement with the expected doses was obtained for all of the scintillating elements, with average relative differences from the expected values of 3.4 ± 2.1%, 3.0 ± 0.7%, and 4.5 ± 1.0% for scintillating elements from the distal to the proximal. A dose threshold of 3 cGy improved the general accuracy of the detector. An integration time of 3 s offered a good trade-off between precision and temporal resolution. Finally, the mPSD measured the radioactive source positioning uncertainty to be no more than 0.32 ± 0.06 mm. The accuracy and precision of the detector were improved by a dose-weighted function combining the three measurement points and known details about the geometry of the detector construction. Conclusions: The use of a mPSD for high-dose-rate brachytherapy dosimetry is feasible. This detector shows great promise for development of in vivo applications for real-time verification of treatment delivery. PMID:23718599

  9. On electromagnetic radiation under destruction of ultrathin glass fibers

    NASA Astrophysics Data System (ADS)

    Devyatkin, E. A.; Simonov, I. V.; Sirotin, A. A.

    2009-02-01

    We study how the characteristics of electric signals emitted in the course of vibrations and fracture of ultrathin fibers under tension depend on the geometric parameters and physical properties of the fibers. A unique highly sensitive experimental plant was developed, and glass fibers of diameter 6.5, 10, 18, 150µm, as well as polyethylene fibers of thickness 0.2-0.06mm, were tested. It turned out that the signals emitted by fracture of fibers made of different dielectric materials ( d < 20µm) are qualitatively the same in shape and have a negative phase of length 100-400µs and a much longer positive phase. An electric signal induced by a fiber thinner than a human hair by an order of magnitude was recorded for the first time. Unexpectedly, the average values of amplitudes of signals for fibers significantly different in diameter turned out to be close to each other. This can be explained by the well-known fact that the number of fragments in fracture increases with the glass strength (a scale effect). The potentialities of the method for measuring electric signals in studying the spectra of fiber vibrations were discovered.

  10. The PERDaix detector

    NASA Astrophysics Data System (ADS)

    Bachlechner, Andreas; Beischer, Bastian; Greim, Roman; Kirn, Thomas; Mai, Carsten; Yearwood, Gregorio Roper; Schael, Stefan; Schug, David; Tholen, Heiner; Wienkenhöver, Jens

    2012-12-01

    The PERDaix (Proton Electron Radiation Detector Aix-la-Chapelle) detector is designed to measure charged particles in cosmic rays. It can distinguish particle species up to 5 GV rigidity. PERDaix was flown on the BEXUS-11 balloon on 23rd November 2010. The detector has the dimensions of 246×400×859 mm3, a geometrical acceptance of 32 cm2sr, a low weight of 40 kg and a low power consumption of 60 W. The spectrometer consists of a time-of-flight system, a scintillating fiber tracking detector, a permanent magnet and a transition radiation detector. Silicon photomultipliers are used as photodetectors in the time-of-flight and the tracker system.

  11. Earth radiation budget measurement from a spinning satellite: Conceptual design of detectors

    NASA Technical Reports Server (NTRS)

    Sromovsky, L. A.; Revercomb, H. E.; Suomi, V. E.

    1975-01-01

    The conceptual design, sensor characteristics, sensor performance and accuracy, and spacecraft and orbital requirements for a spinning wide-field-of-view earth energy budget detector were investigated. The scientific requirements for measurement of the earth's radiative energy budget are presented. Other topics discussed include the observing system concept, solar constant radiometer design, plane flux wide FOV sensor design, fast active cavity theory, fast active cavity design and error analysis, thermopile detectors as an alternative, pre-flight and in-flight calibration plane, system error summary, and interface requirements.

  12. A selective pyroelectric detector of millimeter-wave radiation with an ultrathin resonant meta-absorber

    NASA Astrophysics Data System (ADS)

    Paulish, A. G.; Kuznetsov, S. A.

    2016-11-01

    The results of experimental investigations of spectral and amplitude-frequency characteristics for a discrete wavelength-selective pyroelectric detector operating in the millimetric band are presented. The high spectral selectivity is attained due to integrating the detector with a resonant meta-absorber designed for a close-to-unity absorptivity at 140 GHz. It is demonstrated that the use of this meta-absorber provides an opportunity to construct small-sized and inexpensive multispectral polarization-sensitive systems for radiation detection in the range of millimeter and submillimeter waves.

  13. Modeling of radiation damage recovery in particle detectors based on GaN

    NASA Astrophysics Data System (ADS)

    Gaubas, E.; Ceponis, T.; Pavlov, J.

    2015-12-01

    The pulsed characteristics of the capacitor-type and PIN diode type detectors based on GaN have been simulated using the dynamic and drift-diffusion models. The drift-diffusion current simulations have been implemented by employing the commercial software package Synopsys TCAD Sentaurus. The bipolar drift regime has been analyzed. The possible internal gain in charge collection through carrier multiplication processes determined by impact ionization has been considered in order to compensate carrier lifetime reduction due to radiation defects introduced into GaN material of detector.

  14. Ultraviolet radiation detector to obtain the rate of particles at different heights

    NASA Astrophysics Data System (ADS)

    Ponce, E.; Flores, E.; Conde, R.

    2016-10-01

    The nature and origin of cosmic rays remains one of the greatest puzzles of modern astrophysics after more than 50 years since their first registration. Several ground experiments have reported the rate registered at its height of operation. To continue with the study of cosmic rays, we propose obtain the rate at different heights in the Earth's atmosphere, developing a small and portable ultraviolet radiation detector, consisting of a scintillation plastic, a PMT, and a fast DAQ system. In this work we present the design and construction of the UV detector and the rate recorded in the Sierra Negra Volcano near Puebla, Mexico (4200 m.a.s.l).

  15. Evaluation of radiation interference in the Voyager Sun Sensor's cadmium sulfide detector

    NASA Technical Reports Server (NTRS)

    Clarke, T. C.; Divita, E. L.

    1978-01-01

    The simulation of radiation interference effects and the results of a radiation interference test on two Voyager Sun Sensor prototype detector assemblies are reported. The derivation of test levels and requirements are discussed and show that cobalt 60 gamma radiation is an effective and practical simulator of the ionization dose rate effects induced by high-energy electron flux incident on the spacecraft at a rate of 3.7 x 10 to the 8th e/sq cm-sec (10 rad(Si)/s) during closest approach to Jupiter. The test results provide information that is used to confirm an analytic correlation, and to predict satisfactory performance of a spacecraft sun sensing device having stringent angular resolution requirements. The measured detector response shows that at dose rates incident on the detector elements of 2 rad(Si)/sec, which is four times that expected during Jupiter encounter, the radiation-induced angle error is almost an order of magnitude less than that allowed by the acceptance criteria.

  16. Advanced data readout technique for Multianode Position Sensitive Photomultiplier Tube applicable in radiation imaging detectors

    NASA Astrophysics Data System (ADS)

    Popov, V.

    2011-01-01

    Most of the best performing PSPMT tubes from Hamamatsu and Burle are designed with a pad-matrix anode layout. However, for obtaining a high resolution, a small-sized anode photomultiplier tubes are preferable; these tubes may have 64, 256 or 1024 anodes per tube. If the tubes are used in array to get a larger area detector, the number of analog channels may range from hundreds to thousands. Multichannel analog readout requires special electronics ICs, ASICs etc., which are attached to multichannel DAQ system. As a result, the data file and data processing time will be increased. Therefore, this readout could not be performed in a small project. Usually, most of radiation imaging applications allow the use of analog data processing in front-end electronics, significantly reducing the number of the detector's output lines to data acquisition without reducing the image quality. The idea of pad-matrix decoupling circuit with gain correction was invented and intensively tested in JLab. Several versions of PSPMT readout electronics were produced and studied. All developments were done and optimized specifically for radiation imaging projects. They covered high resolution SPECT, high speed PET, fast neutron imaging, and single tube and multi tube array systems. This paper presents and discusses the summary of the observed results in readout electronics evaluation with different PSPMTs and radiation imaging systems, as well as the advantages and limitations of the developed approach to radiation imaging detectors readout.

  17. Experimental investigation of the factors influencing temperature dependence of radiation-induced attenuation in optical fiber

    NASA Astrophysics Data System (ADS)

    Jin, Jing; Xu, Raomei; Liu, Jixun; Song, Ningfang

    2014-03-01

    The effects of transmission wavelength, total dose and light source power on temperature dependence of radiation-induced attenuation (RIA) in Ge-P co-doped fibers were investigated. Three fibers irradiated up to total dose of 100 Gy and 10,000 Gy were used as test samples. A test system for temperature dependence of RIA was built up. The influence of transmission wavelength, total dose and light power on temperature sensitivity and linearity of RIA in three irradiated fibers were researched. The test results show that temperature sensitivity and linearity of RIA in optical fibers could be improved by adjusting total dose and selecting transmission wavelength. The light source power does not have obvious influence on temperature sensitivity and linearity. The Ge-P co-doped fiber at 850 nm transmission wavelength with higher total dose is a very promising candidate for fiber-optic temperature sensor.

  18. Experimental investigation of the radiation shielding efficiency of a MCP detector in the radiation environment near Jupiter's moon Europa

    NASA Astrophysics Data System (ADS)

    Tulej, M.; Meyer, S.; Lüthi, M.; Lasi, D.; Galli, A.; Piazza, D.; Desorgher, L.; Reggiani, D.; Hajdas, W.; Karlsson, S.; Kalla, L.; Wurz, P.

    2016-09-01

    Neutral Ion Mass spectrometer (NIM) is one of the instruments in the Particle Environmental Package (PEP) designed for the JUICE mission of ESA to the Jupiter system. NIM, equipped with a sensitive MCP ion detector, will conduct detailed measurements of the chemical composition of Jovian icy moons exospheres. To achieve high sensitivity of the instrument, radiation effects due to the high radiation background (high-energy electrons and protons) around Jupiter have to be minimised. We investigate the performance of an Al-Ta-Al composite stack as a potential shielding against high-energy electrons. Experiments were performed at the PiM1 beam line of the High Intensity Proton Accelerator Facilities located at the Paul Scherrer Institute, Villigen, Switzerland. The facility delivers a particle beam containing e-, μ- and π- with momentum from 17.5 to 345 MeV/c (Hajdas et al., 2014). The measurements of the radiation environment generated during the interaction of primary particles with the Al-Ta-Al material were conducted with dedicated beam diagnostic methods and with the NIM MCP detector. In parallel, modelling studies using GEANT4 and GRAS suites were performed to identify products of the interaction and predict ultimate fluxes and particle rates at the MCP detector. Combination of experiment and modelling studies yields detailed characterisation of the radiation fields produced by the interaction of the incident e- with the shielding material in the range of the beam momentum from 17.5 to 345 MeV/c. We derived the effective MCP detection efficiency to primary and secondary radiation and effective shielding transmission coefficients to incident high-energy electron beam in the range of applied beam momenta. This study shows that the applied shielding attenuates efficiently high-energy electrons. Nevertheless, owing to nearly linear increase of the bremsstrahlung production rate with incident beam energy, above 130 MeV their detection rates measured by the MCP

  19. Electrodrift purification of materials for room temperature radiation detectors

    DOEpatents

    James, Ralph B.; Van Scyoc, III, John M.; Schlesinger, Tuviah E.

    1997-06-24

    A method of purifying nonmetallic, crystalline semiconducting materials useful for room temperature radiation detecting devices by applying an electric field across the material. The present invention discloses a simple technology for producing purified ionic semiconducting materials, in particular PbI.sub.2 and preferably HgI.sub.2, which produces high yields of purified product, requires minimal handling of the material thereby reducing the possibility of introducing or reintroducing impurities into the material, is easy to control, is highly selective for impurities, retains the stoichiometry of the material and employs neither high temperatures nor hazardous materials such as solvents or liquid metals. An electric field is applied to a bulk sample of the material causing impurities present in the sample to drift in a preferred direction. After all of the impurities have been transported to the ends of the sample the current flowing through the sample, a measure of the rate of transport of mobile impurities, falls to a low, steady state value, at which time the end sections of the sample where the impurities have concentrated are removed leaving a bulk sample of higher purity material. Because the method disclosed here only acts on the electrically active impurities, the stoichiometry of the host material remains substantially unaffected.

  20. Electrodrift purification of materials for room temperature radiation detectors

    DOEpatents

    James, R.B.; Van Scyoc, J.M. III; Schlesinger, T.E.

    1997-06-24

    A method of purifying nonmetallic, crystalline semiconducting materials useful for room temperature radiation detecting devices by applying an electric field across the material is disclosed. The present invention discloses a simple technology for producing purified ionic semiconducting materials, in particular PbI{sub 2} and preferably HgI{sub 2}, which produces high yields of purified product, requires minimal handling of the material thereby reducing the possibility of introducing or reintroducing impurities into the material, is easy to control, is highly selective for impurities, retains the stoichiometry of the material and employs neither high temperatures nor hazardous materials such as solvents or liquid metals. An electric field is applied to a bulk sample of the material causing impurities present in the sample to drift in a preferred direction. After all of the impurities have been transported to the ends of the sample the current flowing through the sample, a measure of the rate of transport of mobile impurities, falls to a low, steady state value, at which time the end sections of the sample where the impurities have concentrated are removed leaving a bulk sample of higher purity material. Because the method disclosed here only acts on the electrically active impurities, the stoichiometry of the host material remains substantially unaffected. 4 figs.

  1. Variable filtered photographic film as a radiation detector for environmental radiation monitoring

    NASA Astrophysics Data System (ADS)

    Majid, Zafri Azran Abdul; Junet, Laila Kalidah; Hazali, Norazlanshah; Abdullah, Abdul Adam; Hanafiah, Megat Ahmad Kamal Megat

    2013-05-01

    Environmental radiation is an ionising radiation that present in the natural environment which mostly originates from cosmic rays and radionuclide agents in the environment. This may lead the population to be exposed to the radiation. Therefore, the environmental radiation needs to be observed cautiously to minimize the impact of radiation. However, there is no specific or proper monitoring device that provides an outdoor environmental radiation monitoring. Hence, a new outdoor environmental radiation monitoring device was developed. A photographic film has been chosen as a dosimeter. The purpose of this study was to prove the covered photographic film attached with variable filter can be used to develop environmental radiation monitoring device to detect the ionising radiation. The filter used was variable thickness of plastic, aluminium (Al) and lead (Pb). The result from the study showed that the mean optical density (OD) values for medium speed film are in the range 0.41 to 0.73, and for fast speed film the OD values are in the range 0.51 to 1.35. The OD values decreased when the filter was attached. This has proven that the photographic film can be used to detect radiation and fast speed film was more sensitive compared to medium speed film.

  2. Measuring radiation induced changes in the error rate of fiber optic data links

    NASA Astrophysics Data System (ADS)

    Decusatis, Casimer; Benedict, Mel

    1996-12-01

    The purpose of this work is to investigate the effects of ionizing (gamma) radiation exposure on the bit error rate (BER) of an optical fiber data communication link. While it is known that exposure to high radiation dose rates will darken optical fiber permanently, comparatively little work has been done to evaluate modern dose rates. The resulting increase in fiber attenuation over time represents an additional penalty in the link optical power budget, which can degrade the BER if it is not accounted for in the link design. Modeling the link to predict this penalty is difficult, and it requires detailed information about the fiber composition that may not be available to the link designer. We describe a laboratory method for evaluating the effects of moderate dose rates on both single-mode and multimode fiber. Once a sample of fiber has been measured, the data can be fit to a simple model for predicting (at least to first order) BER as a function of radiation dose for fibers of similar composition.

  3. A novel radiation detector for removing scattered radiation in chest radiography: Monte Carlo simulation-based performance evaluation

    NASA Astrophysics Data System (ADS)

    Roh, Y. H.; Yoon, Y.; Kim, K.; Kim, J.; Kim, J.; Morishita, J.

    2016-10-01

    Scattered radiation is the main reason for the degradation of image quality and the increased patient exposure dose in diagnostic radiology. In an effort to reduce scattered radiation, a novel structure of an indirect flat panel detector has been proposed. In this study, a performance evaluation of the novel system in terms of image contrast as well as an estimation of the number of photons incident on the detector and the grid exposure factor were conducted using Monte Carlo simulations. The image contrast of the proposed system was superior to that of the no-grid system but slightly inferior to that of the parallel-grid system. The number of photons incident on the detector and the grid exposure factor of the novel system were higher than those of the parallel-grid system but lower than those of the no-grid system. The proposed system exhibited the potential for reduced exposure dose without image quality degradation; additionally, can be further improved by a structural optimization considering the manufacturer's specifications of its lead contents.

  4. Radiation detectors based on laser sintered Bi 4Ge 3O 12 ceramics

    NASA Astrophysics Data System (ADS)

    Macedo, Zélia Soares; da Silva, Ronaldo Santos; Valerio, Mário Ernesto Giroldo; Hernandes, Antonio Carlos

    2004-06-01

    Laser sintered bismuth germanate (Bi 4Ge 3O 12) ceramics were investigated from the point of view of its potential use in radiation detector devices. The light output, density of trap centers and radiation damage were comparatively discussed for laser sintered ceramic, conventional ceramic and single crystal. The scintillator efficiency of the laser sintered ceramics was 13% higher than that observed for furnace sintered ceramics and the radiation damage levels were the same for both samples up to a dose of 3200 Gy of β radiation. The thermoluminescence results of the samples irradiated with UV and β-rays provided strong indicatives that the inter-grain defects have the same nature of the bulk defects and do not contribute with new traps in the temperature range studied. Furthermore, the density of trapping centers in the laser sintered material was 50% lower than in the conventionally sintered ceramics.

  5. Modeling the response of thermoluminescence detectors exposed to low- and high-LET radiation fields.

    PubMed

    Olko, Pawel; Bilski, Pawel; Budzanowski, Maciej; Waligórski, Michael Patrick Russell; Reitz, Guenther

    2002-12-01

    Lithium fluoride thermoluminescence (TL) detectors, with different Li composition (Li-6 and Li-7) and various activators (LiF:Mg,Ti, LiF:Mg,Cu,P), are widely used for dosimetry in space. The primary radiation field in space is composed of fast electrons, protons and heavy charged particles (HCP). By its interaction with the structures of the spacecraft, this field may be modified inside the crew cabin. Therefore, calibration of TL detectors against a dose of gamma-rays is not sufficient for relating the TL readout to absorbed dose or to quantities relevant in radiation protection, without suitable correction. We introduce and calculate the detection efficiency, eta, relative to gamma-ray dose, of lithium fluoride detectors after proton and heavy charged particle (HCP) irradiation. We calculate eta for MCP-N (LiF:Mg,Cu,P) and for MTS-N (LiF:Mg,Ti) using microdosimetric models. The microdosimetric distributions used in these models (for HCP of charges between Z=1 to Z=8 and in the energy range between 0.3 MeV/amu and 20 MeV/amu) are calculated using an analytical model, based on the results of Monte Carlo simulated charged particle tracks using the MOCA-14 code. The ratio etaMCP-N/etaMTS-N for protons of stopping power (in water) below 10 keV/microm lies in the range between 0.65 and 1.0 and for HCP with Z>1--between 0.3 and 0.6. The stopping power of the particle is found not to be a unique parameter to scale the response of TL detectors. The combination of response of LiF:Mg,Cu,P and LiF:Mg,Cu,P detectors can be more suitable for a dose correction in space radiation fields.

  6. Comparison of Direct Normal Irradiance Derived from Silicon and Thermopile Global Hemispherical Radiation Detectors: Preprint

    SciTech Connect

    Myers, D. R.

    2010-01-01

    Concentrating solar applications utilize direct normal irradiance (DNI) radiation, a measurement rarely available. The solar concentrator industry has begun to deploy numerous measurement stations to prospect for suitable system deployment sites. Rotating shadowband radiometers (RSR) using silicon photodiodes as detectors are typically deployed. This paper compares direct beam estimates from RSR to a total hemispherical measuring radiometer (SPN1) multiple fast thermopiles. These detectors simultaneously measure total and diffuse radiation from which DNI can be computed. Both the SPN1 and RSR-derived DNI are compared to DNI measured with thermopile pyrheliometers. Our comparison shows that the SPN1 radiometer DNI estimated uncertainty is somewhat greater than, and on the same order as, the RSR DNI estimates for DNI magnitudes useful to concentrator technologies.

  7. A high rate, low radiation length Micro-Vertex-Detector for the P¯ANDA experiment

    NASA Astrophysics Data System (ADS)

    Stockmanns, Tobias

    2011-09-01

    The Micro-Vertex-Detector (MVD) of the P¯ANDA experiment is the innermost tracking detector. Its most challenging task is the identification of D-meson pairs by their delayed decay point which is about 100- 500 μm from the production point. In addition to the necessary high spatial resolution, it needs a time resolution on the order of 10 ns, a moderate radiation hardness, an untriggered readout of hit data up to 500 MBit/s and a low radiation length. To meet these challenging requirements an intense R&D program is ongoing on all parts of the MVD. This article gives an overview of the ongoing technical developments with a focus on the pixel part of the project.

  8. Simulation of active-edge pixelated CdTe radiation detectors

    NASA Astrophysics Data System (ADS)

    Duarte, D. D.; Lipp, J. D.; Schneider, A.; Seller, P.; Veale, M. C.; Wilson, M. D.; Baker, M. A.; Sellin, P. J.

    2016-01-01

    The edge surfaces of single crystal CdTe play an important role in the electronic properties and performance of this material as an X-ray and γ-ray radiation detector. Edge effects have previously been reported to reduce the spectroscopic performance of the edge pixels in pixelated CdTe radiation detectors without guard bands. A novel Technology Computer Aided Design (TCAD) model based on experimental data has been developed to investigate these effects. The results presented in this paper show how localized low resistivity surfaces modify the internal electric field of CdTe creating potential wells. These result in a reduction of charge collection efficiency of the edge pixels, which compares well with experimental data.

  9. Evaluation of the radiation field in the future circular collider detector

    NASA Astrophysics Data System (ADS)

    Besana, M. I.; Cerutti, F.; Ferrari, A.; Riegler, W.; Vlachoudis, V.

    2016-11-01

    The radiation load on a detector at a 100 TeV proton-proton collider, that is being investigated within the future circular collider (FCC) study, is presented. A first concept of the detector has been modeled and relevant fluence and dose distributions have been calculated using the fluka Monte Carlo code. Distributions of fluence rates are discussed separately for charged particles, neutrons and photons. Dose and 1 MeV neutron equivalent fluence, for the accumulated integrated luminosity, are presented. The peak values of these quantities in the different subdetectors are highlighted, in order to define the radiation tolerance requirements for the choice of possible technologies. The effect of the magnetic field is also discussed. Two shielding solutions have been conceived to minimize the backscattering from the forward calorimeters to the muon chambers and the forward tracking stations. The two possible designs are presented and their effectiveness is discussed.

  10. Radiation detector using a bulk high T[sub c] superconductor

    DOEpatents

    Artuso, J.F.; Franks, L.A.; Hull, K.L.; Symko, O.G.

    1993-12-07

    A radiation detector is provided, wherein a bulk high T[sub c] superconducting sample is placed in a magnetic field and maintained at a superconducting temperature. Photons of incident radiation will cause localized heating in superconducting loops of the sample destroying trapped flux and redistributing the fluxons, and reducing the critical current of the loops. Subsequent cooling of the sample in the magnetic field will cause trapped flux redistributed Abrikosov fluxons and trapped Josephson fluxons. The destruction and trapping of the fluxons causes changes in the magnetization of the sample inducing currents in opposite directions in a pickup coil which is coupled by an input coil to an rf SQUID. 4 figures.

  11. Cosmic radiation dose in aircraft--a neutron track etch detector.

    PubMed

    Vuković, B; Radolić, V; Miklavcić, I; Poje, M; Varga, M; Planinić, J

    2007-01-01

    Cosmic radiation bombards us at high altitude by ionizing particles. The radiation environment is a complex mixture of charged particles of solar and galactic origin, as well as of secondary particles produced in interaction of the galactic cosmic particles with the nuclei of atmosphere of the Earth. The radiation field at aircraft altitude consists of different types of particles, mainly photons, electrons, positrons and neutrons, with a large energy range. The non-neutron component of cosmic radiation dose aboard ATR 42 and A 320 aircrafts (flight level of 8 and 11 km, respectively) was measured with TLD-100 (LiF:Mg,Ti) detectors and the Mini 6100 semiconductor dosimeter. The estimated occupational effective dose for the aircraft crew (A 320) working 500 h per year was 1.64 mSv. Other experiments, or dose rate measurements with the neutron dosimeter, consisting of LR-115 track detector and boron foil BN-1 or 10B converter, were performed on five intercontinental flights. Comparison of the dose rates of the non-neutron component (low LET) and the neutron one (high LET) of the radiation field at the aircraft flight level showed that the neutron component carried about 50% of the total dose. The dose rate measurements on the flights from the Middle Europe to the South and Middle America, then to Korea and Japan, showed that the flights over or near the equator region carried less dose rate; this was in accordance with the known geomagnetic latitude effect.

  12. Heavy ion radiation damage in double-sided silicon strip detectors

    NASA Astrophysics Data System (ADS)

    Livingston, K.; Woods, P. J.; Davinson, T.; Shotter, A. C.

    1996-02-01

    A 252Cf fission fragment source was used to produce heavy-ion radiation damage in a double-sided silicon strip detector. It was found that a good quality fission fragment spectrum (as determined by the peak to valley ration {N L}/{N V}) could not be achieved for radiation incident on the p + face of the detector. However, for radiation incident on the n + face, the ratio {N L}/{N V} remained adequate up to an accumulated dose of ˜4×10 6 fragments mm -2. For the measurement of alphas, typical resolution deteriorated from an initial 30 keV FWHM to 50 keV FWHM at a dose of ˜8×10 6 fragments mm -2 for incident on the n + face, and ˜6×10 6 for radiation incident on the p + face. The interstrip resistance in one region of the n + face broke down completely after a relatively small radiation doses incident on that face. Further investigation of this is still required.

  13. High-speed, multi-channel detector readout electronics for fast radiation detectors

    SciTech Connect

    Hennig, Wolfgang

    2012-06-22

    In this project, we are developing a high speed digital spectrometer that a) captures detector waveforms at rates up to 500 MSPS b) has upgraded event data acquisition with additional data buffers for zero dead time operation c) moves energy calculations to the FPGA to increase spectrometer throughput in fast scintillator applications d) uses a streamlined architecture and high speed data interface for even faster readout to the host PC These features are in addition to the standard functions in our existing spectrometers such as digitization, programmable trigger and energy filters, pileup inspection, data acquisition with energy and time stamps, MCA histograms, and run statistics. In Phase I, we upgraded one of our existing spectrometer designs to demonstrate the key principle of fast waveform capture using a 500 MSPS, 12 bit ADC and a Xilinx Virtex-4 FPGA. This upgraded spectrometer, named P500, performed well in initial tests of energy resolution, pulse shape analysis, and timing measurements, thus achieving item (a) above. In Phase II, we are revising the P500 to build a commercial prototype with the improvements listed in items (b)-(d). As described in the previous report, two devices were built to pursue this goal, named the Pixie-500 and the Pixie-500 Express. The Pixie-500 has only minor improvements from the Phase I prototype and is intended as an early commercial product (its production and part of its development were funded outside the SBIR). It also allows testing of the ADC performance in real applications.The Pixie-500 Express (or Pixie-500e) includes all of the improvements (b)-(d). At the end of Phase II of the project, we have tested and debugged the hardware, firmware and software of the Pixie-500 Express prototype boards delivered 12/3/2010. This proved substantially more complex than anticipated. At the time of writing, all hardware bugs have been fixed, the PCI Express interface is working, the SDRAM has been successfully tested and the SHARC

  14. Parasitic Effects Affecting Responsivity of Sub-THz Radiation Detector Built of a MOSFET

    NASA Astrophysics Data System (ADS)

    Kopyt, P.; Salski, B.; Marczewski, J.; Zagrajek, P.; Lusakowski, J.

    2015-11-01

    In this paper, an analysis of parasitic elements that are found in all typical metal-oxide-semiconductor field-effect transistors (MOSFETs) has been performed from a viewpoint of a designer of sub-THz radiation detectors. A simplified model of the extrinsic MOSFET device has been proposed. Typical values of its parameters have been assumed. The authors have also built a model of the MOSFET's channel (intrinsic device) employing the standard transmission line approach and defining a Z-matrix of the circuit in order to facilitate its integration with the parasitic elements. The full effective circuit model of the MOSFET has been employed to analyze the behavior of the detector when subjected to sub-THz radiation delivered through the Gate and Source pads. Finally, predictions of the responsivity of an example detector built of a typical MOSFET integrated with a patch antenna fabricated on a 40-μm-thick silicon membrane have been compared with measurements of several structures employing MOSFETs of various channel widths. Good agreement between the predictions and the measurements has been demonstrated, which indicates that despite its simplicity, the presented model can significantly help to better understand operation of MOSFET-based detectors and also to use the existing silicon-based manufacturing processes.

  15. Transition Radiation Detector in the D0 colliding beam experiment at Fermilab

    SciTech Connect

    Piekarz, H.

    1995-04-01

    The construction, operation and response of the Transition Radiation Detector (TRD) at DO colliding beam experiment at Fermilab are presented. The use of the TRD signal to enhance electron identification and hadronic rejection in the multiparticle background characteristic for the antiproton-proton interactions at the center-of-mass energy of 1.8 TeV is also described and results are discussed.

  16. The Effects of High Temperature and Nuclear Radiation on the Optical Transmission of Silica Optical Fibers

    NASA Astrophysics Data System (ADS)

    Hawn, David P.

    Distributed measurements made with fiber optic instrumentation have the potential to revolutionize data collection for facility monitoring and process control in industrial environments. Dozens of sensors etched into a single optical fiber can be used to instrument equipment and structures so that dozens of spatially distributed temperature measurements, for example, can be made quickly using one optical fiber. Optically based sensors are commercially available to measure temperature, strain, and other physical quantities that can be related to strain, such as pressure and acceleration. Other commercially available technology eliminates the need to etch discrete sensors into an optical fiber and allows temperature measurements to be made along the length of an ordinary silica fiber. Distributed sensing with optical instrumentation is commonly used in the petroleum industry to measure the temperature and pressure profiles in down hole applications. The U.S. Department of Energy is interested in extending the distributed sensing capabilities of optical instrumentation to high temperature reactor radiation environments. For this technology extension to be possible, the survivability of silica optical fibers needed to be determined in this environment. In this work the optical attenuation added to silica optical fiber exposed simultaneously to reactor radiation and temperatures to 1000°C was experimentally determined. Optical transmission measurements were made in-situ from 400nm-2300nm. For easy visualization, all of the results generated in this work were processed into movies that are available publicly [1]. In this investigation, silica optical fibers were shown to survive optically and mechanically in a reactor radiation environment to 1000°C. For the combined high temperature reactor irradiation experiments completed in this investigation, the maximum attenuation increase in the low-OH optical fibers was around 0.5db/m at 1550nm and 0.6dB/m at 1300nm. The

  17. Radiation-resistant erbium-doped-nanoparticles optical fiber for space applications.

    PubMed

    Thomas, Jérémie; Myara, Mikhaël; Troussellier, Laurent; Burov, Ekaterina; Pastouret, Alain; Boivin, David; Mélin, Gilles; Gilard, Olivier; Sotom, Michel; Signoret, Philippe

    2012-01-30

    We demonstrate for the first time a radiation-resistant Erbium-Doped Fiber exhibiting performances that can fill the requirements of Erbium-Doped Fiber Amplifiers for space applications. This is based on an Aluminum co-doping atom reduction enabled by Nanoparticules Doping-Process. For this purpose, we developed several fibers containing very different erbium and aluminum concentrations, and tested them in the same optical amplifier configuration. This work allows to bring to the fore a highly radiation resistant Erbium-doped pure silica optical fiber exhibiting a low quenching level. This result is an important step as the EDFA is increasingly recognized as an enabling technology for the extensive use of photonic sub-systems in future satellites.

  18. Application of Cerenkov radiation generated in plastic optical fibers for therapeutic photon beam dosimetry.

    PubMed

    Jang, Kyoung Won; Yagi, Takahiro; Pyeon, Cheol Ho; Yoo, Wook Jae; Shin, Sang Hun; Jeong, Chiyoung; Min, Byung Jun; Shin, Dongho; Misawa, Tsuyoshi; Lee, Bongsoo

    2013-02-01

    A Cerenkov fiber-optic dosimeter (CFOD) is fabricated using plastic optical fibers to measure Cerenkov radiation induced by a therapeutic photon beam. We measured the Cerenkov radiation generated in optical fibers in various irradiation conditions to evaluate the usability of Cerenkov radiation for a photon beam therapy dosimetry. As a results, the spectral peak of Cerenkov radiation was measured at a wavelength of 515 nm, and the intensity of Cerenkov radiation increased linearly with increasing irradiated length of the optical fiber. Also, the intensity peak of Cerenkov radiation was measured in the irradiation angle range of 30 to 40 deg. In the results of Monte Carlo N-particle transport code simulations, the relationship between fluxes of electrons over Cerenkov threshold energy and energy deposition of a 6 MV photon beam had a nearly linear trend. Finally, percentage depth doses for the 6 MV photon beam could be obtained using the CFOD and the results were compared with those of an ionization chamber. Here, the mean dose difference was about 0.6%. It is anticipated that the novel and simple CFOD can be effectively used for measuring depth doses in radiotherapy dosimetry.

  19. W-band photonic-wireless link with a Schottky diode envelope detector and bend insensitive fiber.

    PubMed

    Rommel, Simon; Cavalcante, Lucas C P; Quintero, Alexander G; Mishra, Arvind K; Vegas Olmos, J J; Monroy, Idelfonso Tafur

    2016-05-30

    The performance and potential of a W-band radio-over-fiber link is analyzed, including a characterization of the wireless channel. The presented setup focuses on minimizing complexity in the radio frequency domain, using a passive radio frequency transmitter and a Schottky diode based envelope detector. Performance is experimentally validated with carriers at 75-87GHz over wireless distances of 30-70m. Finally the necessity for and impact of bend insensitive fiber for on-site installation are discussed and experimentally investigated.

  20. Effect of radiation-induced color centers absorption in optical fibers on fiber optic gyroscope for space application

    NASA Astrophysics Data System (ADS)

    Jin, Jing; Li, Ya; Zhang, Zu-Chen; Wu, Chun-Xiao; Song, Ning-Fang

    2016-08-01

    The effects of color centers’ absorption on fibers and interferometric fiber optical gyroscopes (IFOGs) are studied in the paper. The irradiation induced attenuation (RIA) spectra of three types of polarization-maintaining fibers (PMFs), i.e., P-doped, Ge-doped, and pure silica, irradiated at 100 Gy and 1000 Gy are measured in a wavelength range from 1100 nm to 1600 nm and decomposed according to the Gaussian model. The relationship of the color centers absorption intensity with radiation dose is investigated based on a power model. Furthermore, the effects of all color centers’ absorption on RIA and mean wavelength shifts (MWS) at 1300 nm and 1550 nm are discussed respectively. Finally, the random walk coefficient (RWC) degradation induced from RIA and the scale factor error induced by MWS of the IFOG are simulated and tested at a wavelength of 1300 nm. This research will contribute to the applications of the fibers in radiation environments. Project supported by the Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry, China.

  1. Control of electric field in CdZnTe radiation detectors by above-bandgap light

    SciTech Connect

    Franc, J.; Dědič, V.; Rejhon, M.; Zázvorka, J.; Praus, P.; Touš, J.; Sellin, P. J.

    2015-04-28

    We have studied the possibility of above bandgap light induced depolarization of CdZnTe planar radiation detector operating under high flux of X-rays by Pockels effect measurements. In this contribution, we show a similar influence of X-rays at 80 kVp and LED with a wavelength of 910 nm irradiating the cathode on polarization of the detector due to an accumulation of a positive space charge of trapped photo-generated holes. We have observed the depolarization of the detector under simultaneous cathode-site illumination with excitation LED at 910 nm and depolarization above bandgap LED at 640 nm caused by trapping of drifting photo-generated electrons. Although the detector current is quite high during this depolarization, we have observed that it decreases relatively fast to its initial value after switching off the depolarizing light. In order to get detailed information about physical processes present during polarization and depolarization and, moreover, about associated deep levels, we have performed the Pockels effect infrared spectral scanning measurements of the detector without illumination and under illumination in polarized and optically depolarized states.

  2. Geant4 simulations of STIX Caliste-SO detector's response to solar X-ray radiation

    NASA Astrophysics Data System (ADS)

    Barylak, Jaromir; Barylak, Aleksandra; Mrozek, Tomasz; Steślicki, Marek; Podgórski, Piotr; Netzel, Henryka

    Spectrometer/Telescope for Imaging X-rays (STIX) is a part of Solar Orbiter (SO) science payload. SO will be launched in October 2018, and after three years of cruise phase, it will reach orbit with perihelion distance of 0.3 a.u. STIX is a Fourier imager equipped with pairs of grids that comprise the flare hard X-ray tomograph. Similar imager types were already used in the past (eq. RHESSI, Yohkoh/HXT), but STIX will incorporate Moiré modulation and a new type of pixelized detectors with CdTe sensor. We developed a method of modeling these detectors' response matrix (DRM) using the Geant4 simulations of X-ray photons interactions with CdTe crystals. Taking into account known detector effects (Fano noise, hole tailing etc.) we modeled the resulting spectra with high accuracy. Comparison of Caliste-SO laboratory measurements of 241Am decay spectrum with our results shows a very good agreement. The modeling based on the Geant4 simulations significantly improves our understanding of detector response to X-ray photons. Developed methodology gives opportunity for detailed simulation of whole instrument response with complicated geometry and secondary radiation from cosmic ray particles taken into account. Moreover, we are developing the Geant4 simulations of aging effects which decrease detector's performance.

  3. Calculations of the interference of annihilation radiations with positron spectra in a Ge detector

    NASA Astrophysics Data System (ADS)

    Avignone, F. T.; Noma, H.; Moltz, D. M.; Toth, K. S.

    1981-10-01

    The distortion of the Kurie plots of allowed positron spectra due to annihilation radiations was calculated by a simple Monte-Carlo technique for a small intrinsic Ge detector. The experimentally observed non-linearity near the end point is accurately reproduced by the calculations. Corrections were calculated for 15 theoretical allowed spectra with end-point energies ranging from 2.5 to 10 MeV for one small detector 1.6 cm in diameter and 0.7 cm thick and one larger detector 4.0 cm in diameter and 1.0 cm thick. The major effect of this interference is to shift the end-point up in energy from 182 keV at 2.5 MeV and to 204 keV at 9 MeV in the small detector and from 279 keV at 2.5 MeV and to 321 keV at 9 MeV in the larger detector. The method was used to correct the end-point energies of the two positron branches in the decay of 82Sr. The corrected data give values of (3.19 ± 0.02) and (2.42 ± 0.02) MeV. The resulting Q-value is (4.21 ± 0.02) MeV.

  4. Study of resistive micromegas detectors in a mixed neutron and photon radiation environment

    NASA Astrophysics Data System (ADS)

    Alexopoulos, T.; Iakovidis, G.; Tsipolitis, G.

    2012-05-01

    The Muon ATLAS Micromegas Activity (MAMMA) focuses on the development and testing of large-area muon detectors based on the bulk-Micromegas technology. These detectors are candidates for the upgrade of the ATLAS Muon System in view of the luminosity upgrade of Large Hadron Collider at CERN (sLHC). They will combine trigger and precision measurement capability in a single device. A novel protection scheme using resistive strips above the readout electrode has been developed. The response and sparking properties of resistive Micromegas detectors were successfully tested in a mixed (neutron and gamma) high radiation environment supplied by the Tandem accelerator at the N.C.S.R. Demokritos in Athens. Monte-Carlo studies have been employed to study the effect of 5.5 MeV neutrons impinging on Micromegas detectors. The response of the Micromegas detectors on the photons originating from the inevitable neutron inelastic scattering on the surrounding materials of the experimental facility was also studied.

  5. High-energy proton radiation damage of high-purity germanium detectors

    NASA Technical Reports Server (NTRS)

    Pehl, R. H.; Varnell, L. S.; Metzger, A. E.

    1978-01-01

    Quantitative studies of radiation damage in high-purity germanium gamma-ray detectors due to high-energy charged particles have been carried out; two 1.0 cm thick planar detectors were irradiated by 6 GeV/c protons. Under proton bombardment, degradation in the energy resolution was found to begin below 7 x 10 to the 7th protons/sq cm and increased proportionately in both detectors until the experiment was terminated at a total flux of 5.7 x 10 to the 8th protons/sq cm, equivalent to about a six year exposure to cosmic-ray protons in space. At the end of the irradiation, the FWHM resolution measured at 1332 keV stood at 8.5 and 13.6 keV, with both detectors of only marginal utility as a spectrometer due to the severe tailing caused by charge trapping. Annealing these detectors after proton damage was found to be much easier than after neutron damage.

  6. Lessons learned from the Radiation measurements of the Mars Science Lab Radiation Assessment Detector (MSL-RAD)

    NASA Astrophysics Data System (ADS)

    Reitz, Guenther; Ottolenghi, Andrea

    2016-07-01

    The Radiation Assessment Detector (RAD) was designed to characterize the radiation environment on the Mars surface and to contribute to an improved assessment of radiation risk for a future human mission to Mars. The flight was chosen to cover a period of solar maximum activity to allow besides the measurement of the galactic cosmic rays an intense study of exposures by solar particle events. The Mars Science Laboratory spacecraft (MSL), containing the Curiosity rover, in which RAD was integrated, was launched to Mars on November 26, 2011. Although not part of the mission planning, RAD was operated already during the 253 day and 560 million km cruise to Mars and made the first time detailed measurements of a radiation environment comparable to that inside a future spacecraft carrying humans to Mars and in other deep space missions. Exactly 100 years after the discovery of cosmic rays on August 7, 1912 RAD makes the first observation of the radiation environment on the surface of another planet and is still gathering data until today. Meanwhile the maximum activity of the current solar cycle has been passed and the solar activity is decreasing. Unfortunately the present solar cycle was an unexpected weak cycle. As a matter of fact only very small solar particle events could be observed during the still ongoing RAD measurements. The paper highlights the achievements of RAD by presenting selected data measured during the cruise and on the Mars surface and describes its impact on predictive models for health risks of astronauts during space missions.

  7. The effect of high dose rate transient gamma radiation on high-energy optical fibers

    NASA Astrophysics Data System (ADS)

    Akinci, A.; Bowden, M. D.; Cheeseman, M. C.; Knowles, S. L.; Meister, D. C.; Pecak, S. N.; Simmons Potter, K.

    2009-08-01

    High power laser systems have a number of uses in a variety of scientific and defense applications, for example laser induced breakdown spectroscopy (LIBS) or laser-triggered switches. In general, high power optical fibers are used to deliver the laser energy from the source to the target in preference to free space beams. In certain cases, such as nuclear reactors, these optical systems are expected to operate in ionizing radiation environments. In this paper, a variety of modern, currently available commercial off-the-shelf (COTS) optical fiber designs have been assessed for successful operation in the transient gamma radiation environment produced by the HERMES III accelerator at Sandia National Laboratories, USA. The performance of these fibers was evaluated for high (~1 MW) and low (<1 W) optical power transmission during high dose rate, high total dose gamma irradiation. A significant reduction in low optical power transmission to 32% of maximum was observed for low OH- content fibers, and 35% of maximum for high OH- fibers. The high OH- fibers were observed to recover to 80% transmission within 1 μs and 100% transmission within 1 ms. High optical power transmission losses followed generally similar trends to the low optical power transmission losses, though evidence for an optical power dependent recovery was observed. For 10-20 mJ, 15 ns laser pulses, around 46% was transmitted coincident with the radiation pulse, recovering to 70% transmission within 40 ns of the radiation pulse. All fibers were observed to completely recover within a few minutes for high optical powers. High optical power densities in excess of 1 GW/cm2 were successfully transmitted during the period of highest loss without any observed damage to the optical fibers.

  8. Radiation measurement platform for balloon flights based on the TriTel silicon detector telescope

    NASA Astrophysics Data System (ADS)

    Zabori, Balazs; Hirn, Attila; Pazmandi, Tamas; Apathy, Istvan; Szanto, Peter; Deme, Sandor

    Several measurements have been performed on the cosmic radiation field from the surface of the Earth up to the maximum altitudes of research airplanes. However the cosmic radiation field is not well known between 15 km and 30 km. Our experiment idea based on to study the radiation environment in the stratosphere. The main technical goals of our experiment were to test at first time the TriTel 3D silicon detector telescope system for future ISS missons and to develop a balloon technology platform for advanced cosmic radiation and dosimetric measurements. The main scientific goals were to give an assessment of the cosmic radiation field at the altitude of the BEXUS balloons, to use the TriTel system to determine dosimetric and radiation quantities during the ballon flight and to intercompare the TriTel and Pille results to provide a correction factor definition method for the Pille ISS measurements. To fulfil the scientific and technological objectives several different dosimeter systems were included in the experiment: an advanced version of the TriTel silicon detector telescope, Geiger-Müller counters, Pille passive thermoluminescent dosimeters and Solid State Nuclear Track Detectors. The experiment was built by students from Hungarian universities and flew on board the BEXUS stratospheric balloon in Northern Sweden (from ESRANGE Space Center). The float altitude was approximately 28.6 km and the total flight time was about 4 hours. The active instruments measured in real time and the ground team received the collected data continuously during the mission. The main technical goals were received since the operation of the TriTel experienced no failures and the experiment worked as it expected. This paper presents the scientific goals and results. From the TriTel measurements the deposited energy spectra, the Linear Energy Transfer spectra, the average quality factor of the cosmic radiation as well as the absorbed dose and the dose equivalent were determined for the

  9. Twisted pair of optic fibers for background removal in radiation fields.

    PubMed

    Liu, P Z Y; Suchowerska, N; McKenzie, D R

    2013-08-01

    In many situations in which an optic fiber carries a signal through a radiation field, an unwanted background signal is produced consisting of fluorescent and/or Cerenkov light. This presents a major problem in the measurement of the light signal, for example, in scintillation dosimetry of medical therapeutic beams. In this paper, we demonstrate a new method of measuring and removing the background signal through the use of a twisted pair of optic fibers. The twisted pair consists of a fiber carrying the scintillation signal that is twisted with a second optic fiber to form a double helix. The two twisted fibers will experience the same radiation environment provided the periodicity of the twist is correlated to the dose rate gradient. An expression for the required twist periodicity is presented. A scintillation dosimeter with a twisted pair optic fiber was tested in a megavoltage beam and found to accurately measure its beam characteristics. The twisted pair approach is not restricted to medical applications and can be used in many situations in which optical signals are carried through radiation fields.

  10. Fabrication of polytetrafluoroethylene/carbon fiber composites using radiation crosslinking

    NASA Astrophysics Data System (ADS)

    Oshima, Akihiro; Udagawa, Akira; Tanaka, Shigeru

    2001-07-01

    A fabrication method for fiber-reinforced plastic (FRP) composites based on carbon fibers and polytetrafluoroethylene (PTFE) which was crosslinked by electron beam (EB) irradiation under specific conditions was studied. Though the fabricated composite showed high mechanical properties compared with a ready-made PTFE composite (non-crosslinked PTFE with 5˜20 wt% filler), mechanical properties of laminated panels were a bit poor compared with those of usual FRP. It was found that the toughness of the PTFE matrix is poor in the composite. On the other hand, the one-ply sheet of carbon fibers and crosslinked PTFE composite showed good mechanical properties for sheet-shape materials. The wettability of the obtained crosslinked PTFE composite is hardly changed by crosslinking and reinforcement.

  11. Measurement of the optical fiber numeric aperture exposed to thermal and radiation aging

    NASA Astrophysics Data System (ADS)

    Vanderka, Ales; Bednarek, Lukas; Hajek, Lukas; Latal, Jan; Poboril, Radek; Zavodny, Petr; Vasinek, Vladimir

    2016-12-01

    This paper deals with the aging of optical fibers influenced by temperature and radiation. There are analyzed changes in the structure of the optical fiber, related to the propagation of light in the fiber structure. In this case for numerical aperture. For experimental measurement was used MM fiber OM1 with core diameter 62.5 μm, cladding diameter 125 μm in 2.8 mm secondary coating. Aging of the optical fiber was achieved with dry heat and radiation. For this purpose, we were using a temperature chamber with a stable temperature of 105 °C where the cables after two months. Cables were then irradiated with gamma radiation 60Co in doses of 1.5 kGy and then 60 kGy. These conditions simulated 50 years aging process of optical cables. According to European Standard EN 60793-1-43:2015 was created the automatic device for angular scan working with LabVIEW software interface. Numerical aperture was tested at a wavelength of 850 nm, with an output power 1 mW. Scanning angle was set to 50° with step 0.25°. Numerical aperture was calculated from the position where power has fallen from maximal power at e2 power. The measurement of each sample was performed 10 hours after thermal and radiation aging. The samples were subsequently tested after six months from the last irradiation. In conclusion, the results of the experiment were analyzed and compared.

  12. Radiation-induced crosslinking of polyacrylonitrile fibers and the subsequent regulative effect on the preoxidation process

    NASA Astrophysics Data System (ADS)

    Liu, Weihua; Wang, Mouhua; Xing, Zhe; Qi, Yingna; Wu, Guozhong

    2012-06-01

    To investigate the radiation effect on polyacrylonitrile (PAN) fibers as well as on the preoxidation process, PAN fibers were irradiated by γ-rays at room temperature at 50-500 kGy in vacuum and then were thermally oxidized in air. Gel fraction determination indicated that γ irradiation led to the predominant crosslinking of PAN fibers, with G values (the number of event per 100 eV absorbed) of G(X)=0.28 and G(S)=0.16 for chain crosslinking and scission, respectively. It was found that irradiation caused a slight change in the crystal structure and tensile strength at low dose. Radiation led to a reduction of the onset temperature of cyclization reaction and moderated the exothermic behavior. The density of the PAN fibers after thermal oxidation was used to evaluate the preoxidation extent. It was proven that radiation could significantly accelerate the preoxidation process and consequently shortened the preoxidation time. Radiation crosslinking may have potential application in the production of PAN-based carbon fibers.

  13. Fiber Optic Cable Assemblies for Space Flight 2: Thermal and Radiation Effects

    NASA Technical Reports Server (NTRS)

    Ott, Melanie N.

    1998-01-01

    Goddard Space Flight Center is conducting a search for space flight worthy fiber optic cable assemblies that will benefit all projects at all of the NASA centers. This paper is number two in a series of papers being issued as a result of this task to define and qualify space grade fiber optic cable assemblies. Though to qualify and use a fiber optic cable in space requires treatment of the cable assembly as a system, it is very important to understand the design and behavior of its parts. This paper addresses that need, providing information on cable components shrinkage testing and radiation testing results from recent experiments at Goddard Space Flight Center.

  14. Intermodal Čerenkov radiation in a higher-order-mode fiber.

    PubMed

    Cheng, Ji; Pedersen, Martin E V; Charan, Kriti; Wang, Ke; Xu, Chris; Grüner-Nielsen, Lars; Jakobsen, Dan

    2012-11-01

    We demonstrate an intermodal Čerenkov radiation effect in a higher-order-mode (HOM) fiber with a mode crossing (i.e., two guided modes having the same propagation constant at the same wavelength). A frequency-shifted soliton in the vicinity of the mode-crossing wavelength emits a phase-matched dispersive wave in a different propagation mode. We develop a theoretical explanation for this nonlinear optical effect and demonstrate that the mode crossing in HOM fibers can be utilized to achieve simultaneous wavelength and mode conversion; the strength of this intermodal nonlinear interaction can be tuned by controlled fiber bending.

  15. Characterization of wave physics in acoustic metamaterials using a fiber optic point detector

    NASA Astrophysics Data System (ADS)

    Ganye, Randy; Chen, Yongyao; Liu, Haijun; Bae, Hyungdae; Wen, Zhongshan; Yu, Miao

    2016-06-01

    Due to limitations of conventional acoustic probes, full spatial field mapping (both internal and external wave amplitude and phase measurements) in acoustic metamaterials with deep subwavelength structures has not yet been demonstrated. Therefore, many fundamental wave propagation phenomena in acoustic metamaterials remain experimentally unexplored. In this work, we realized a miniature fiber optic acoustic point detector that is capable of omnidirectional detection of complex spatial acoustic fields in various metamaterial structures over a broadband spectrum. By using this probe, we experimentally characterized the wave-structure interactions in an anisotropic metamaterial waveguide. We further demonstrated that the spatial mapping of both internal and external acoustic fields of metamaterial structures can help obtain important wave propagation properties associated with material dispersion and field confinement, and develop an in-depth understanding of the waveguiding physics in metamaterials. The insights and inspirations gained from our experimental studies are valuable not only for the advancement of fundamental metamaterial wave physics but also for the development of functional metamaterial devices such as acoustic lenses, waveguides, and sensors.

  16. Optimizing ZnS/6LiF scintillators for wavelength-shifting-fiber neutron detectors

    SciTech Connect

    Crow, Lowell; Funk, Loren L; Hannan, Bruce W; Hodges, Jason P; Riedel, Richard A; Wang, Cai-Lin

    2016-01-01

    In this paper we compare the performance of grooved and flat ZnS/6LiF scintillators in a wavelength shifting-fiber (WLSF) detector. Flat ZnS/6LiF scintillators with the thickness L=0.2-0.8 mm were characterized using photon counting and pulse-height analysis and compared to a grooved scintillator of approximately 0.8 mm thick. While a grooved scintillator considerably increases the apparent thickness of the scintillator to neutrons for a given coating thickness, we find that the flat scintillators perform better than the grooved scintillators in terms of both light yield and neutron detection efficiency. The flat 0.8-mm-thick scintillator has the highest light output, and it is 52% higher compared with a grooved scintillator of same thickness. The lower light output of the grooved scintillator as compared to the flat scintillator is consistent with the greater scintillator-WLSF separation and the much larger average emission angle of the grooved scintillator. We also find that the average light cone width, or photon travel-length as measured using time-of-flight powder diffraction of diamond and vanadium, decreases with increasing L in the range of L=0.6-0.8 mm. This result contrasts with the traditional Swank diffusion model for micro-composite scintillators, and could be explained by a decrease in photon diffusion-coefficient or an increase in micro-particle content in the flat scintillator matrix for the thicker scintillators.

  17. Results from a prototype Lead-Scintillating Fiber Calorimeter for use as a STAR Forward Detector

    NASA Astrophysics Data System (ADS)

    Shanmuganathan, Prashanth; STAR Collaboration

    2016-09-01

    Forward instrumentation consisting of hadronic as well as electromagnetic calorimeters will achieve several physics goals at RHIC. Examples include studying the internal structure of nucleons and properties of nuclear matter through measurement of forward jets and long-range correlations. Earlier studies that pixelized AGS E864 lead-scintillating fiber calorimeter cells (10 cm2x117 cm) into a three by three array of 3.3 cm2 pixels showed that neutral pions can be reconstructed to E >15 GeV and hadronic shower shapes can be distinguished from EM shower shapes with 90% confidence. In this contribution, we compare the light collection efficiency from total internal reflective light guides with that of a Fresnel lens system; light signals for both guide types are recorded using photomultiplier tubes (PMT) and silicon photomultipliers (SiPM). The Fresnel lens system allows better magnetic shielding of PMTs from the STAR magnet fringe field and focuses light into the small sensitive area of the SiPM. A prototype of these designs consisting of a two by three array of cells (54 pixels) was mounted on the east side of the STAR detector during Run16 and 80 million events from Au+Au collisions at √{sNN} =200 GeV were recorded. In this talk, we will present comparisons

  18. Plume attenuation of laser radiation during high power fiber laser welding

    NASA Astrophysics Data System (ADS)

    Shcheglov, P. Yu; Uspenskiy, S. A.; Gumenyuk, A. V.; Petrovskiy, V. N.; Rethmeier, M.; Yermachenko, V. M.

    2011-06-01

    The results of an in-situ plume-laser interaction measurement during welding of mild steel with a 5 kW ytterbium fiber laser are reported. A measurement of the attenuation of probe laser beam passing through the plume has allowed to estimate the plume characteristics like the size of the extinction area and the spatial distribution of the extinction coefficient. The power loss of the fiber laser radiation propagating through the whole plume length was calculated. Together with a measured temporal characteristics of extinction the result indicates a significant decreasing of the laser radiation stability, which can lead to the formation of the macroscopic welding defects.

  19. Diagnostics of Electron Beams Based on Cherenkov Radiation in an Optical Fiber

    NASA Astrophysics Data System (ADS)

    Vukolov, A. V.; Novokshonov, A. I.; Potylitsyn, A. P.; Uglov, S. R.

    2017-02-01

    The use of an optical fiber in which Cherenkov radiation is generated instead of a metal wire for scanning a beam profile allows a compact and noise-proof device for diagnostics of charged particle beams in a wide energy range to be developed. Results of experimental investigation of the yield of Vavilov-Cherenkov radiation generated in optical fibers with thickness in the range from 0.125 to 1 mm by electrons with energy of 5.7 MeV are presented.

  20. Development of 2D imaging of SXR plasma radiation by means of GEM detectors

    NASA Astrophysics Data System (ADS)

    Chernyshova, M.; Czarski, T.; Jabłoński, S.; Kowalska-Strzeciwilk, E.; Poźniak, K.; Kasprowicz, G.; Zabołotny, W.; Wojeński, A.; Byszuk, A.; Burza, M.; Juszczyk, B.; Zienkiewicz, P.

    2014-11-01

    Presented 2D gaseous detector system has been developed and designed to provide energy resolved fast dynamic plasma radiation imaging in the soft X-Ray region with 0.1 kHz exposure frequency for online, made in real time, data acquisition (DAQ) mode. The detection structure is based on triple Gas Electron Multiplier (GEM) amplification structure followed by the pixel readout electrode. The efficiency of detecting unit was adjusted for the radiation energy region of tungsten in high-temperature plasma, the main candidate for the plasma facing material for future thermonuclear reactors. Here we present preliminary laboratory results and detector parameters obtained for the developed system. The operational characteristics and conditions of the detector were designed to work in the X-Ray range of 2-17 keV. The detector linearity was checked using the fluorescence lines of different elements and was found to be sufficient for good photon energy reconstruction. Images of two sources through various screens were performed with an X-Ray laboratory source and 55Fe source showing a good imaging capability. Finally offline stream-handling data acquisition mode has been developed for the detecting system with timing down to the ADC sampling frequency rate (~13 ns), up to 2.5 MHz of exposure frequency, which could pave the way to invaluable physics information about plasma dynamics due to very good time resolving ability. Here we present results of studied spatial resolution and imaging properties of the detector for conditions of laboratory moderate counting rates and high gain.

  1. Integrated four-channel all-fiber up-conversion single-photon-detector with adjustable efficiency and dark count

    NASA Astrophysics Data System (ADS)

    Zheng, Ming-Yang; Shentu, Guo-Liang; Ma, Fei; Zhou, Fei; Zhang, Hai-Ting; Dai, Yun-Qi; Xie, Xiuping; Zhang, Qiang; Pan, Jian-Wei

    2016-09-01

    Up-conversion single photon detector (UCSPD) has been widely used in many research fields including quantum key distribution, lidar, optical time domain reflectrometry, and deep space communication. For the first time in laboratory, we have developed an integrated four-channel all-fiber UCSPD which can work in both free-running and gate modes. This compact module can satisfy different experimental demands with adjustable detection efficiency and dark count. We have characterized the key parameters of the UCSPD system.

  2. Diffuser for intravessels radiation based on plastic fiber

    NASA Astrophysics Data System (ADS)

    Pich, Justyna; Grobelny, Andrzej; Beres-Pawlik, Elzbieta

    2006-03-01

    Laser radiation is used in such contemporary medicine as: sport medicine, gynecology etc. Because of many radiations inside the system, there is a need of an element, which allows to supply the place of illness with energy. The dimensions of this element are often small and the one that meets these conditions is diffuser.

  3. Scattered radiation in flat-detector based cone-beam CT: analysis of voxelized patient simulations

    NASA Astrophysics Data System (ADS)

    Wiegert, Jens; Bertram, Matthias

    2006-03-01

    This paper presents a systematic assessment of scattered radiation in flat-detector based cone-beam CT. The analysis is based on simulated scatter projections of voxelized CT images of different body regions allowing to accurately quantify scattered radiation of realistic and clinically relevant patient geometries. Using analytically computed primary projection data of high spatial resolution in combination with Monte-Carlo simulated scattered radiation, practically noise-free reference data sets are computed with and without inclusion of scatter. The impact of scatter is studied both in the projection data and in the reconstructed volume for the head, thorax, and pelvis regions. Currently available anti-scatter grid geometries do not sufficiently compensate scatter induced cupping and streak artifacts, requiring additional software-based scatter correction. The required accuracy of scatter compensation approaches increases with increasing patient size.

  4. Radiation effects and propagation in optical fibers and components

    SciTech Connect

    Gedam, S.G.

    1987-01-01

    The power series expansion method was used to solve the wave equation in step-index optical fiber. The cut off frequencies were calculated using 200 coefficients. The cutoff frequencies of TM modes were found to differ from those of TE modes. This difference, which is the error due to the approximations made, was calculated as a function of the relative refractive index difference. A polarization control system was designed to be used in a coherent optical communication system, to restore the state of polarization (SOP) of the light output of a singlemode fiber. Rotating quarter wave and half wave plates were used to compensate for the changes in SOP. The sensitivity of the system was greatly improved by utilizing the heterodyne principle. The effects of neutron irradiation were studied on fiber optic materials (glasses), optical fibers, and photodetectors. In case of the heavy metal fluoride glasses, a red shift was found in the UV edge, which increased with neutron fluence. A very small amount of recovery was observed after three weeks. The shift could be due to the occurrence of color centers on irradiation and/or due to the shift in the Urbach edge itself.

  5. The iQID camera: An ionizing-radiation quantum imaging detector.

    PubMed

    Miller, Brian W; Gregory, Stephanie J; Fuller, Erin S; Barrett, Harrison H; Barber, H Bradford; Furenlid, Lars R

    2014-12-11

    We have developed and tested a novel, ionizing-radiation Quantum Imaging Detector (iQID). This scintillation-based detector was originally developed as a high-resolution gamma-ray imager, called BazookaSPECT, for use in single-photon emission computed tomography (SPECT). Recently, we have investigated the detector's response and imaging potential with other forms of ionizing radiation including alpha, neutron, beta, and fission fragment particles. The confirmed response to this broad range of ionizing radiation has prompted its new title. The principle operation of the iQID camera involves coupling a scintillator to an image intensifier. The scintillation light generated by particle interactions is optically amplified by the intensifier and then re-imaged onto a CCD/CMOS camera sensor. The intensifier provides sufficient optical gain that practically any CCD/CMOS camera can be used to image ionizing radiation. The spatial location and energy of individual particles are estimated on an event-by-event basis in real time using image analysis algorithms on high-performance graphics processing hardware. Distinguishing features of the iQID camera include portability, large active areas, excellent detection efficiency for charged particles, and high spatial resolution (tens of microns). Although modest, iQID has energy resolution that is sufficient to discriminate between particles. Additionally, spatial features of individual events can be used for particle discrimination. An important iQID imaging application that has recently been developed is real-time, single-particle digital autoradiography. We present the latest results and discuss potential applications.

  6. The iQID Camera: An Ionizing-Radiation Quantum Imaging Detector

    DOE PAGES

    Miller, Brian W.; Gregory, Stephanie J.; Fuller, Erin S.; ...

    2014-06-11

    We have developed and tested a novel, ionizing-radiation Quantum Imaging Detector (iQID). This scintillation-based detector was originally developed as a high-resolution gamma-ray imager, called BazookaSPECT, for use in single-photon emission computed tomography (SPECT). Recently, we have investigated the detectors response and imaging potential with other forms of ionizing radiation including alpha, neutron, beta, and fission fragment particles. The detector’s response to a broad range of ionizing radiation has prompted its new title. The principle operation of the iQID camera involves coupling a scintillator to an image intensifier. The scintillation light generated particle interactions is optically amplified by the intensifier andmore » then re-imaged onto a CCD/CMOS camera sensor. The intensifier provides sufficient optical gain that practically any CCD/CMOS camera can be used to image ionizing radiation. Individual particles are identified and their spatial position (to sub-pixel accuracy) and energy are estimated on an event-by-event basis in real time using image analysis algorithms on high-performance graphics processing hardware. Distinguishing features of the iQID camera include portability, large active areas, high sensitivity, and high spatial resolution (tens of microns). Although modest, iQID has energy resolution that is sufficient to discrimate between particles. Additionally, spatial features of individual events can be used for particle discrimination. An important iQID imaging application that has recently been developed is single-particle, real-time digital autoradiography. In conclusion, we present the latest results and discuss potential applications.« less

  7. The iQID Camera: An Ionizing-Radiation Quantum Imaging Detector

    SciTech Connect

    Miller, Brian W.; Gregory, Stephanie J.; Fuller, Erin S.; Barrett, Harrison H.; Barber, Bradford H.; Furenlid, Lars R.

    2014-06-11

    We have developed and tested a novel, ionizing-radiation Quantum Imaging Detector (iQID). This scintillation-based detector was originally developed as a high-resolution gamma-ray imager, called BazookaSPECT, for use in single-photon emission computed tomography (SPECT). Recently, we have investigated the detectors response and imaging potential with other forms of ionizing radiation including alpha, neutron, beta, and fission fragment particles. The detector’s response to a broad range of ionizing radiation has prompted its new title. The principle operation of the iQID camera involves coupling a scintillator to an image intensifier. The scintillation light generated particle interactions is optically amplified by the intensifier and then re-imaged onto a CCD/CMOS camera sensor. The intensifier provides sufficient optical gain that practically any CCD/CMOS camera can be used to image ionizing radiation. Individual particles are identified and their spatial position (to sub-pixel accuracy) and energy are estimated on an event-by-event basis in real time using image analysis algorithms on high-performance graphics processing hardware. Distinguishing features of the iQID camera include portability, large active areas, high sensitivity, and high spatial resolution (tens of microns). Although modest, iQID has energy resolution that is sufficient to discrimate between particles. Additionally, spatial features of individual events can be used for particle discrimination. An important iQID imaging application that has recently been developed is single-particle, real-time digital autoradiography. In conclusion, we present the latest results and discuss potential applications.

  8. The iQID camera: An ionizing-radiation quantum imaging detector

    NASA Astrophysics Data System (ADS)

    Miller, Brian W.; Gregory, Stephanie J.; Fuller, Erin S.; Barrett, Harrison H.; Bradford Barber, H.; Furenlid, Lars R.

    2014-12-01

    We have developed and tested a novel, ionizing-radiation Quantum Imaging Detector (iQID). This scintillation-based detector was originally developed as a high-resolution gamma-ray imager, called BazookaSPECT, for use in single-photon emission computed tomography (SPECT). Recently, we have investigated the detector's response and imaging potential with other forms of ionizing radiation including alpha, neutron, beta, and fission fragment particles. The confirmed response to this broad range of ionizing radiation has prompted its new title. The principle operation of the iQID camera involves coupling a scintillator to an image intensifier. The scintillation light generated by particle interactions is optically amplified by the intensifier and then re-imaged onto a CCD/CMOS camera sensor. The intensifier provides sufficient optical gain that practically any CCD/CMOS camera can be used to image ionizing radiation. The spatial location and energy of individual particles are estimated on an event-by-event basis in real time using image analysis algorithms on high-performance graphics processing hardware. Distinguishing features of the iQID camera include portability, large active areas, excellent detection efficiency for charged particles, and high spatial resolution (tens of microns). Although modest, iQID has energy resolution that is sufficient to discriminate between particles. Additionally, spatial features of individual events can be used for particle discrimination. An important iQID imaging application that has recently been developed is real-time, single-particle digital autoradiography. We present the latest results and discuss potential applications.

  9. Development of the microstrip silicon detector for imaging of fast processes at a synchrotron radiation beam

    NASA Astrophysics Data System (ADS)

    Aulchenko, V.; Pruuel, E.; Shekhtman, L.; Ten, K.; Tolochko, B.; Zhulanov, V.

    2017-02-01

    In situ imaging of explosions allows to study material properties under very high pressures and temperatures. Synchrotron radiation (SR) is a powerful tool for such studies because of its unique time structure. Flashes of X-rays from individual bunches in a storage ring are so short that an object under study does not move more than 1-10 μm during exposure. If a detector is able to store images synchronously with bunches of an SR source the time resolution of such method will be determined by the duration of SR flash from individual bunch. New beam line at the VEPP-4M storage ring will allow to get X-Ray flux from each bunch close to 106 photons/channel where channel area is 0.05×0.5 mm2 and average beam energy is about 30 keV. Bunches in the machine can be grouped into trains with 20 ns time gap. In order to meet these requirements a new detector development was started based on Si microstrip technology. The detector with a new dedicated front-end chip will be able to record images with maximum signal equivalent to 106 photons/channel, with signal to noise ratio of ∼103, spatial resolution of 50 μm and maximum frame rate of 50 MHz. The detector has to drive very high peak and average currents without affecting the front-end chip, therefore a specific design of Si sensor should be developed. The front-end chip has to provide signal measurements with the dynamic range of about 104 or more and recording of the signal to an analogue memory with the rate of 50 MHz. The concept of such detector is discussed in the paper. The results of the simulations of the main detector parameters and the results of the first measurements with the prototype sensors are presented.

  10. Light scattering apparatus and method for determining radiation exposure to plastic detectors

    DOEpatents

    Hermes, Robert E.

    2002-01-01

    An improved system and method of analyzing cumulative radiation exposure registered as pits on track etch foils of radiation dosimeters. The light scattering apparatus and method of the present invention increases the speed of analysis while it also provides the ability to analyze exposure levels beyond that which may be properly measured with conventional techniques. Dosimeters often contain small plastic sheets that register accumulated damage when exposed to a radiation source. When the plastic sheet from the dosimeter is chemically etched, a track etch foil is produced wherein pits or holes are created in the plastic. The number of these pits, or holes, per unit of area (pit density) correspond to the amount of cumulative radiation exposure which is being optically measured by the apparatus. To measure the cumulative radiation exposure of a track etch foil a high intensity collimated beam is passed through foil such that the pits and holes within the track etch foil cause a portion of the impinging light beam to become scattered upon exit. The scattered light is focused with a lens, while the primary collimated light beam (unscattered light) is blocked. The scattered light is focused by the lens onto an optical detector capable of registering the optical power of the scattered light which corresponds to the cumulative radiation to which the track etch foil has been exposed.

  11. Signal and noise analysis of a-Si:H radiation detector-amplifier system

    SciTech Connect

    Cho, Gyuseong.

    1992-03-01

    Hydrogenated amorphous silicon (a-Si:H) has potential advantages in making radiation detectors for many applications because of its deposition capability on a large-area substrate and its high radiation resistance. Position-sensitive radiation detectors can be made out of a 1d strip or a 2-d pixel array of a Si:H pin diodes. In addition, signal processing electronics can be made by thin-film transistors on the same substrate. The calculated radiation signal, based on a simple charge collection model agreed well with results from various wave length light sources and 1 MeV beta particles on sample diodes. The total noise of the detection system was analyzed into (a) shot noise and (b) 1/f noise from a detector diode, and (c) thermal noise and (d) 1/f noise from the frontend TFT of a charge-sensitive preamplifier. the effective noise charge calculated by convoluting these noise power spectra with the transfer function of a CR-RC shaping amplifier showed a good agreement with the direct measurements of noise charge. The derived equations of signal and noise charge can be used to design an a-Si:H pixel detector amplifier system optimally. Signals from a pixel can be readout using switching TFTs, or diodes. Prototype tests of a double-diode readout scheme showed that the storage time and the readout time are limited by the resistances of the reverse-biased pixel diode and the forward biased switching diodes respectively. A prototype charge-sensitive amplifier was made using poly-Si TFTs to test the feasibility of making pixel-level amplifiers which would be required in small-signal detection. The measured overall gain-bandwidth product was {approximately}400 MHz and the noise charge {approximately}1000 electrons at a 1 {mu}sec shaping time. When the amplifier is connected to a pixel detector of capacitance 0.2 pF, it would give a charge-to-voltage gain of {approximately}0.02 mV/electron with a pulse rise time less than 100 nsec and a dynamic range of 48 dB.

  12. Comparison of Martian Surface Radiation Predictions to the Measurements of Mars Science Laboratory Radiation Assessment Detector (MSL/RAD)

    NASA Astrophysics Data System (ADS)

    Kim, M. H. Y.; Cucinotta, F.; Zeitlin, C. J.; Hassler, D.; Ehresmann, B.; Rafkin, S. C.; Wimmer-Schweingruber, R. F.; Böttcher, S. I.; Boehm, E.; Guo, J.; Kohler, J.; Martin-Garcia, C.; Reitz, G.; Posner, A.

    2014-12-01

    For the analysis of radiation risks to astronauts and planning exploratory space missions, detailed knowledge of particle spectra is an important factor. Detailed measurements of the energetic particle radiation environment on the surface of Mars have been made by the Mars Science Laboratory Radiation Assessment Detector (MSL-RAD) on the Curiosity rover since August 2012, and particle fluxes for a wide range of ion species (up to several hundred MeV/u) and high energy neutrons (8 - 1000 MeV) have been available for the first 200 sols. Although the data obtained on the surface of Mars for 200 sols are limited in the narrow energy spectra, the simulation results using the Badhwar-O'Neill galactic cosmic ray (GCR) environment model and the high-charge and energy transport (HZETRN) code are compared to the data. For the nuclear interactions of primary GCR through Mars atmosphere and Curiosity rover, the quantum multiple scattering theory of nuclear fragmentation (QMSFRG) is used, which includes direct knockout, evaporation and nuclear coalescence. Daily atmospheric pressure measurements at Gale Crater by the MSL Rover Environmental Monitoring Station are implemented into transport calculations for describing the daily column depth of atmosphere. Particles impinging on top of the Martian atmosphere reach the RAD after traversing varying depths of atmosphere that depend on the slant angles, and the model accounts for shielding of the RAD by the rest of the instrument. Calculations of stopping particle spectra are in good agreement with the RAD measurements for the first 200 sols by accounting changing heliospheric conditions and atmospheric pressure. Detailed comparisons between model predictions and spectral data of various particle types provide the validation of radiation transport models, and thus increase the accuracy of the predictions of future radiation environments on Mars. These contributions lend support to the understanding of radiation health risks to

  13. Comparison of Martian Surface Radiation Predictions to the Measurements of Mars Science Laboratory Radiation Assessment Detector (MSL/RAD)

    NASA Technical Reports Server (NTRS)

    Kim, Myung-Hee Y.; Cucinotta, Francis A.; Zeitlin, Cary; Hassler, Donald M.; Ehresmann, Bent; Rafkin, Scot C. R.; Wimmer-Schweingruber, Robert F; Boettcher, Stephan; Boehm, Eckart; Guo, Jingnan; Koehler, Jan; Martin, Cesar; Reitz, Guenther; Posner, Erik

    2014-01-01

    For the analysis of radiation risks to astronauts and planning exploratory space missions, detailed knowledge of particle spectra is an important factor. Detailed measurements of the energetic particle radiation environment on the surface of Mars have been made by the Mars Science Laboratory Radiation Assessment Detector (MSL-RAD) on the Curiosity rover since August 2012, and particle fluxes for a wide range of ion species (up to several hundred MeV/u) and high energy neutrons (8 - 1000 MeV) have been available for the first 200 sols. Although the data obtained on the surface of Mars for 200 sols are limited in the narrow energy spectra, the simulation results using the Badhwar-O'Neill galactic cosmic ray (GCR) environment model and the high-charge and energy transport (HZETRN) code are compared to the data. For the nuclear interactions of primary GCR through Mars atmosphere and Curiosity rover, the quantum multiple scattering theory of nuclear fragmentation (QMSFRG) is used, which includes direct knockout, evaporation and nuclear coalescence. Daily atmospheric pressure measurements at Gale Crater by the MSL Rover Environmental Monitoring Station are implemented into transport calculations for describing the daily column depth of atmosphere. Particles impinging on top of the Martian atmosphere reach the RAD after traversing varying depths of atmosphere that depend on the slant angles, and the model accounts for shielding of the RAD by the rest of the instrument. Calculations of stopping particle spectra are in good agreement with the RAD measurements for the first 200 sols by accounting changing heliospheric conditions and atmospheric pressure. Detailed comparisons between model predictions and spectral data of various particle types provide the validation of radiation transport models, and thus increase the accuracy of the predictions of future radiation environments on Mars. These contributions lend support to the understanding of radiation health risks to

  14. Gamma-radiation-induced degradation of actively pumped single-mode ytterbium-doped optical fibers

    NASA Astrophysics Data System (ADS)

    Singleton, B.; Petrosky, J.; Pochet, M.; Usechak, N. G.; Francis, S. A.

    2014-03-01

    The integration of optical components into the digital processing units of satellite subsystems has the potential to remove interconnect bottlenecks inherent to the volume, mass, complexity, reliability and crosstalk issues of copper-based interconnects. Assuming on-board high-bandwidth communications will utilize passive optical fibers as a communication channel, this work investigates the impact of gamma irradiation from a Co-60 source on both passive optical fibers and ytterbium-doped single-mode fibers operated as amplifiers for a 1060-nm light source. Standard optical patch cables were evaluated along with active Yb-doped double-clad fibers. Varied exposure times and signal transmission wavelengths were used to investigate the degradation of the fibers exposed to total doses above 100 krad (Si). The effect on the amplified signal gain was studied for the Yb-doped fibers. The increased attenuation in the fibers across a broad wavelength range in response to multiple levels of gamma radiation exposure along with the effect that the increased attenuation has on the actively pumped Yb-doped fiber amplifier performance, is discussed.

  15. New BNL 3D-Trench Electrode Si Detectors for Radiation Hard Detectors for sLHC and for X-ray Applications

    SciTech Connect

    Li Z.

    2011-05-11

    A new international-patent-pending (PCT/US2010/52887) detector type, named here as 3D-Trench electrode Si detectors, is proposed in this work. In this new 3D electrode configuration, one or both types of electrodes are etched as trenches deep into the Si (fully penetrating with SOI or supporting wafer, or non-fully penetrating into 50-90% of the thickness), instead of columns as in the conventional ('standard') 3D electrode Si detectors. With trench etched electrodes, the electric field in the new 3D electrode detectors are well defined without low or zero field regions. Except near both surfaces of the detector, the electric field in the concentric type 3D-Trench electrode Si detectors is nearly radial with little or no angular dependence in the circular and hexangular (concentric-type) pixel cell geometries. In the case of parallel plate 3D trench pixels, the field is nearly linear (like the planar 2D electrode detectors), with simple and well-defined boundary conditions. Since each pixel cell in a 3D-Trench electrode detector is isolated from others by highly doped trenches, it is an electrically independent cell. Therefore, an alternative name 'Independent Coaxial Detector Array', or ICDA, is assigned to an array of 3D-Trench electrode detectors. The electric field in the detector can be reduced by a factor of nearly 10 with an optimal 3D-Trench configuration where the junction is on the surrounding trench side. The full depletion voltage in this optimal configuration can be up to 7 times less than that of a conventional 3D detector, and even a factor of two less than that of a 2D planar detector with a thickness the same as the electrode spacing in the 3D-Trench electrode detector. In the case of non-fully penetrating trench electrodes, the processing is true one-sided with backside being unprocessed. The charge loss due to the dead space associated with the trenches is insignificant as compared to that due to radiation-induced trapping in sLHC environment

  16. Effects of high energy radiation on the mechanical properties of epoxy graphite fiber reinforced composites

    NASA Technical Reports Server (NTRS)

    Gilbert, R. D.; Fornes, R. E.; Memory, J. D.

    1983-01-01

    The effects of high energy radiation on mechanical properties and on the molecular and structural properties of graphite fiber reinforced composites are assessed so that durability in space applications can be predicted. A listing of composite systems irradiated along with the maximum radiation dose applied and type of mechanical tests performed is shown. These samples were exposed to 1/2 MeV electrons.

  17. Detector control system for the ATLAS Transition Radiation Tracker: architecture and development techniques

    NASA Astrophysics Data System (ADS)

    Banaś, ElŻbieta; Hajduk, Zbigniew; Olszowska, Jolanta

    2012-05-01

    The ATLAS Transition Radiation Tracker (TRT) is the outermost of the three sub-systems of the ATLAS Inner Detector at the Large Hadron Collider at CERN. With ~300000 drift tube proportional counters (straws) filled with stable gas mixture and high voltage biased it provides precise quasi-continuous tracking and particles identification. Safe, coherent and efficient operation of the TRT is fulfilled with the help of the Detector Control System (DCS) running on 11 computers as PVSS (industrial SCADA) projects. Standard industrial and custom developed server applications and protocols are used for reading hardware parameters. Higher level control system layers based on the CERN JCOP framework allow for automatic control procedures, efficient error recognition and handling and provide a synchronization mechanism with the ATLAS data acquisition system. Different data bases are used to store the detector online parameters, the configuration parameters and replicate a subset of them used to flag data quality for physics reconstruction. The TRT DCS is fully integrated with the ATLAS Detector Control System.

  18. Atmospheric measurements by Medipix-2 and Timepix Ionizing Radiation Imaging Detectors on BEXUS stratospheric balloon campaigns

    NASA Astrophysics Data System (ADS)

    Urbar, Jaroslav; Scheirich, Jan; Jakubek, Jan

    2010-05-01

    Results of the first two experiments using semiconductor pixel detectors of the Medipix family for cosmic ray imaging in the stratospheric environment are presented. The original detecting device was based on the hybrid pixel detectors of Medipix-2 and Timepix developed at CERN with USB interface developed at Institute of Experimental and Applied Physics of Czech Technical University in Prague. The detectors were used in tracking mode allowing them to operate as an "active nuclear emulsion". The actual flight time of BEXUS7 with Medipix-2 on 8th October 2008 was over 4 hours, with 2 hours at stable floating altitude of 26km. BEXUS9 measurements of similar duration by Timepix, Medipix-2 and ST-6 Geiger telescope instruments took place in arctic atmosphere below 24km altitude on 11th October 2009. This balloon platform is quite ideal for such in-situ measurements. Not only because of the high altitudes reached, but also due to its slow ascent velocity for statistically relevant sampling of the ambient environment for improving cosmic ray induced ionisation rate model inputs. The flight opportunity for BEXUS student projects was provided by Education department of the European Space Agency (ESA) and Eurolaunch - Collaboration of Swedish National Space Board (SNSB) and German Space Agency (DLR). The scientific goal was to check energetic particle type altitudinal dependencies, also testing proper detector calibration by detecting fluxes of ionizing radiation, while evaluating instrumentation endurance and performance.

  19. A search for a heavy Majorana neutrino and a radiation damage simulation for the HF detector

    NASA Astrophysics Data System (ADS)

    Wetzel, James William

    A search for heavy Majorana neutrinos is performed using an event signature defined by two same-sign muons accompanied by two jets. This search is an extension of previous searches, (L3, DELPHI, CMS, ATLAS), using 19.7 fb -1 of data from the 2012 Large Hadron Collider experimental run collected by the Compact Muon Solenoid experiment. A mass window of 40-500 GeV/ c2 is explored. No excess events above Standard Model backgrounds is observed, and limits are set on the mixing element squared, |VmuN|2, as a function of Majorana neutFnrino mass. The Hadronic Forward (HF) Detector's performance will degrade as a function of the number of particles delivered to the detector over time, a quantity referred to as integrated luminosity and measured in inverse femtobarns (fb-1). In order to better plan detector upgrades, the CMS Forward Calorimetry Task Force (FCAL) group and the CMS Hadronic Calorimeter (HCAL) group have requested that radiation damage be simulated and the subsequent performance of the HF subdetector be studied. The simulation was implemented into both the CMS FastSim and CMS FullSim simulation packages. Standard calorimetry performance metrics were computed and are reported. The HF detector can expect to perform well through the planned delivery of 3000 fb-1.

  20. Characterization of GaAs:Cr-based Timepix detector using synchrotron radiation and charged particles

    NASA Astrophysics Data System (ADS)

    Smolyanskiy, P.; Chelkov, G.; Guskov, A.; Dedovich, D.; Kozhevnikov, D.; Kruchonak, U.; Leyva Fabelo, A.; Zhemchugov, A.

    2016-12-01

    The interest in the use of high resistivity gallium arsenide compensated by chromium (GaAs:Cr) for photon detection has been growing steadily due to its numerous advantages over silicon. At the same time, the prospects of this material as a sensor for pixel detectors in nuclear and high energy physics are much less studied. In this paper we report the results of characterization of the Timepix detectors hybridized with GaAs:Cr sensors of various thickness using synchrotron radiation and various charged particles, including alphas and heavy ions. The energy and spatial resolution have been determined. Interesting features of GaAs:Cr specific to the detector response to an extremely dense energy deposit by heavy ions have been observed for the first time. The long-term stability of the detector has been evaluated based on the measurements performed over one year. Possible limitation of GaAs:Cr as a sensor for high flux X-ray imaging is discussed.

  1. Next Generation Semiconductor-Based Radiation Detectors Using Cadmium Magnesium Telluride

    SciTech Connect

    Trivedi, Sudhir B; Kutcher, Susan W; Palsoz, Witold; Berding, Martha; Burger, Arnold

    2014-11-17

    The primary objective of Phase I was to perform extensive studies on the purification, crystal growth and annealing procedures of CdMgTe to gain a clear understanding of the basic material properties to enable production of detector material with performance comparable to that of CdZnTe. Brimrose utilized prior experience in the growth and processing of II-VI crystals and produced high purity material and good quality single crystals of CdMgTe. Processing techniques for these crystals including annealing, mechanical and chemical polishing, surface passivation and electrode fabrication were developed. Techniques to characterize pertinent electronic characteristics were developed and gamma ray detectors were fabricated. Feasibility of the development of comprehensive defect modeling in this new class of material was demonstrated by our partner research institute SRI International, to compliment the experimental work. We successfully produced a CdMgTe detector that showed 662 keV gamma response with energy resolution of 3.4% (FWHM) at room temperature, without any additional signal correction. These results are comparable to existing CdZnTe (CZT) technology using the same detector size and testing conditions. We have successfully demonstrated detection of gamma-radiation from various isotopes/sources, using CdMgTe thus clearly proving the feasibility that CdMgTe is an excellent, low-cost alternative to CdZnTe.

  2. 3D finite element model for writing long-period fiber gratings by CO2 laser radiation.

    PubMed

    Coelho, João M P; Nespereira, Marta; Abreu, Manuel; Rebordão, José

    2013-08-12

    In the last years, mid-infrared radiation emitted by CO2 lasers has become increasing popular as a tool in the development of long-period fiber gratings. However, although the development and characterization of the resulting sensing devices have progressed quickly, further research is still necessary to consolidate functional models, especially regarding the interaction between laser radiation and the fiber's material. In this paper, a 3D finite element model is presented to simulate the interaction between laser radiation and an optical fiber and to determine the resulting refractive index change. Dependence with temperature of the main parameters of the optical fiber materials (with special focus on the absorption of incident laser radiation) is considered, as well as convection and radiation losses. Thermal and residual stress analyses are made for a standard single mode fiber, and experimental results are presented.

  3. 3D Finite Element Model for Writing Long-Period Fiber Gratings by CO2 Laser Radiation

    PubMed Central

    Coelho, João M. P.; Nespereira, Marta; Abreu, Manuel; Rebordão, José

    2013-01-01

    In the last years, mid-infrared radiation emitted by CO2 lasers has become increasing popular as a tool in the development of long-period fiber gratings. However, although the development and characterization of the resulting sensing devices have progressed quickly, further research is still necessary to consolidate functional models, especially regarding the interaction between laser radiation and the fiber's material. In this paper, a 3D finite element model is presented to simulate the interaction between laser radiation and an optical fiber and to determine the resulting refractive index change. Dependence with temperature of the main parameters of the optical fiber materials (with special focus on the absorption of incident laser radiation) is considered, as well as convection and radiation losses. Thermal and residual stress analyses are made for a standard single mode fiber, and experimental results are presented. PMID:23941908

  4. Delivery of 1.9μm laser radiation using air-core Bragg fibers

    NASA Astrophysics Data System (ADS)

    Frank, Milan; Jelínek, Michal; Kubeček, Václav; Podrazký, Ondřej; Kašík, Ivan; Matějec, Vlastimil

    2016-12-01

    In this paper we have investigated Bragg fibers for the 1.94 μm laser- radiation delivery generated by a thulium fiber laser with a maximal continuous output power 50W. For such investigation laboratory-designed and fabricated hollow-core Bragg fibers have been employed with different diameters of 5, 40, 56 and 73 μm surrounded by three pairs of circular Bragg layers. Fundamental optical characteristics such as overall transmittance, attenuation coefficient, bending losses, and delivered spatial beam profiles at the wavelength of 1.94 μm for all tested fibers are reported and summarized in this contribution. In the case of laser radiation delivery with the intensity of 65 kW/cm2, the lowest attenuation coefficient of 1.278 dB/m was determined for the Bragg fiber with the inner air-core diameter of 56 μm. Moreover, the bending losses for a small bend diameter of 15 mm reached 0.177 dB only. However delivered laser radiation was highly multimode character.

  5. Measurement of Cerenkov radiation induced by the gamma-rays of Co-60 therapy units using wavelength shifting fiber.

    PubMed

    Jang, Kyoung Won; Shin, Sang Hun; Kim, Seon Geun; Kim, Jae Seok; Yoo, Wook Jae; Ji, Young Hoon; Lee, Bongsoo

    2014-04-21

    In this study, a wavelength shifting fiber that shifts ultra-violet and blue light to green light was employed as a sensor probe of a fiber-optic Cerenkov radiation sensor. In order to characterize Cerenkov radiation generated in the developed wavelength shifting fiber and a plastic optical fiber, spectra and intensities of Cerenkov radiation were measured with a spectrometer. The spectral peaks of light outputs from the wavelength shifting fiber and the plastic optical fiber were measured at wavelengths of 500 and 510 nm, respectively, and the intensity of transmitted light output of the wavelength shifting fiber was 22.2 times higher than that of the plastic optical fiber. Also, electron fluxes and total energy depositions of gamma-ray beams generated from a Co-60 therapy unit were calculated according to water depths using the Monte Carlo N-particle transport code. The relationship between the fluxes of electrons over the Cerenkov threshold energy and the energy depositions of gamma-ray beams from the Co-60 unit is a near-identity function. Finally, percentage depth doses for the gamma-ray beams were obtained using the fiber-optic Cerenkov radiation sensor, and the results were compared with those obtained by an ionization chamber. The average dose difference between the results of the fiber-optic Cerenkov radiation sensor and those of the ionization chamber was about 2.09%.

  6. Measurement of a high electrical quality factor in a niobium resonator for a gravitational radiation detector

    NASA Technical Reports Server (NTRS)

    Folkner, W. M.; Moody, M. V.; Richard, J.-P.

    1989-01-01

    The mechanical and electrical quality factors of a 10-g niobium resonator were measured at 4.4 K and were found to be 8.1 x 10 to the 6th, and 3.8 x 10 to the 6th, respectively. The value for the electrical quality factor is high enough for a system operating at 50 mK at a sensitivity level of one phonon. The resonator's low damping properties make it suitable for use as a transducer for a cryogenic three-mode gravitational radiation detector. A practical design is given for the mounting of the resonator on a 2400-kg aluminum-bar detector. Projections are made for the sensitivity of a 2400-kg bar instrumented as a three-mode system with this resonator inductively coupled to a SQUID.

  7. Very Low-Power Consumption Analog Pulse Processing ASIC for Semiconductor Radiation Detectors

    SciTech Connect

    Wessendorf, K.O.; Lund, J.C.; Brunett, B.A.; Laguna, G.R.; Clements, J.W.

    1999-08-23

    We describe a very-low power consumption circuit for processing the pulses from a semiconductor radiation detector. The circuit was designed for use with a cadmium zinc telluride (CZT) detector for unattended monitoring of stored nuclear materials. The device is intended to be battery powered and operate at low duty-cycles over a long period of time. This system will provide adequate performance for medium resolution gamma-ray pulse-height spectroscopy applications. The circuit incorporates the functions of a charge sensitive preamplifier, shaping amplifier, and peak sample and hold circuit. An application specific integrated circuit (ASIC) version of the design has been designed, built and tested. With the exception of the input field effect transistor (FET), the circuit is constructed using bipolar components. In this paper the design philosophy and measured performance characteristics of the circuit are described.

  8. An HEMT-Based Cryogenic Charge Amplifier for Sub-kelvin Semiconductor Radiation Detectors

    NASA Astrophysics Data System (ADS)

    Phipps, A.; Sadoulet, B.; Juillard, A.; Jin, Y.

    2016-07-01

    We present the design and noise performance of a fully cryogenic (T=4 K) high-electron mobility transistor (HEMT)-based charge amplifier for readout of sub-kelvin semiconductor radiation detectors. The amplifier is being developed for use in direct detection dark matter searches such as the cryogenic dark matter search and will allow these experiments to probe weakly interacting massive particle masses below 10 GeV/c^2 while retaining background discrimination. The amplifier dissipates ≈ 1 mW of power and provides an open loop voltage gain of several hundreds. The measured noise performance is better than that of JFET-based charge amplifiers and is dominated by the noise of the input HEMT. An optimal filter calculation using the measured closed loop noise and typical detector characteristics predicts a charge resolution of σ _q=106 eV (35 electrons) for leakage currents below 4 × 10^{-15} A.

  9. The response of a silicon diode designed for use as a detector for direct solar radiation

    NASA Astrophysics Data System (ADS)

    Macome, M. A.; Mlatho, J. S. P.; McPherson, M.

    2007-11-01

    A low-cost direct solar radiation detector (DSRD) has been designed, characterized and calibrated. The detector was made of a simple silicon diode and then characterized with respect to spectral response, polar response and environmental stability. It was calibrated by using an Eppley normal incidence pyrheliometer (NIP) mounted on an Eppley power driven sun tracker (ST) whose axis is parallel to the Earth's axis of rotation. The DSRD and the NIP were mounted together on the ST. The results indicate that the DSRD follows the NIP very closely and can therefore be used in its place. The correlation between the DSRD and the NIP data is good with a correlation factor close to unity and a root mean square value close to zero.

  10. Characterization of methyl methacrylate grafting onto preirradiated biodegradable lignocellulose fiber by gamma-radiation.

    PubMed

    Khan, Ferdous

    2005-01-14

    Gamma-radiation-induced graft copolymerization of methyl methacrylate onto natural lignocellulose (jute) fiber was carried out by the preirradiation method in an aqueous medium by using octylphenoxy-polyethoxyethanol as an emulsifier. The different factors that influenced the graft copolymer reaction process were investigated. In the case of radiation-dose-dependent grafting, samples irradiated in the presence of air produced up to 73% graft weight compared to 53% obtained in the case of irradiation in a nitrogen environment. By assuming Arrhenius reaction kinetics, the activation energy (E(a)) of the grafting reaction process was evaluated for different reaction temperatures. Moreover, the graft copolymer reaction was controlled by incorporating a homopolymer-inhibiting agent and three different chain-transfer agents in the reaction medium. The mechanical and thermal properties of jute fiber 'as received' and jute-graft-poly(methyl methacrylate) were also investigated. The results showed that the percentage of grafting with jute fiber has a significant effect on the properties. The kinetic parameters were evaluated from TGA thermograms by using Broido's method in the temperature range 240-350 degrees C. Scanning electron micrographs show that the structural changes on the surface of jute fibers were induced by graft copolymerization of methyl methacrylate monomer. Fiber-fiber surface friction was measured in terms of the average maximum load and the kinetic friction. SEM of jute-graft-poly(methyl methacrylate).

  11. SoftWare for Optimization of Radiation Detectors, SWORD Version 5.0.

    SciTech Connect

    STRICKMAN, MARK S.

    2013-10-23

    Version 05 SoftWare for Optimization of Radiation Detectors (SWORD) is a framework to allow easy simulation and evaluation of radiation detection systems. It is targeted at system designers, who want to evaluate and optimize system parameters without actually building hardware first, at sponsors who need to evaluate proposed or actual system designs independent of the supplier, without having access to actual hardware, and at operators who want to use simulation to evaluate observed phenomena. SWORD is vertically integrated and modular. It allows users to define their own radiation detection instruments by building them from basic geometric “objects” and assigning those objects materials, detection, and/or radioactive emission properties. This process is accomplished by a CAD-like graphical user interface, in which objects may be defined, translated, rotated, grouped, arrayed, and/or nested to produce compound objects. In addition to providing the ability to build a detection system model from scratch, SWORD provides a library of “standard” detector design objects that can be used “as is” or modified by the user.

  12. Influence of solvothermal synthesis conditions in BiSI nanostructures for application in ionizing radiation detectors

    NASA Astrophysics Data System (ADS)

    Aguiar, I.; Mombrú, M.; Pérez Barthaburu, M.; Bentos Pereira, H.; Fornaro, L.

    2016-02-01

    BiSI belongs to the A V B VI C VII chalcohalides group of compounds. These compounds show several interesting properties such as ferroelectricity, piezoelectricity along the c axis, and photoconductivity. Moreover, BiSI is a potential semiconductor material for room-temperature gamma and x-ray detection, given its band gap of 1.57 eV and its high density, 6.41 g cm-3. In this work we present BiSI nanostructures synthesized by the solvothermal method with the intention of using them for ionizing radiation detection. The solvent was varied to study its influence in morphology, particle size and size distribution. Three different conditions were tested, using either water, monoethylene glycol and a mixture of both solvents. Nanostructures were characterized by XRD to determine the phase obtained and reaction completeness; TEM was used to observe nanostructures morphology, size, size distribution and crystallinity; and finally FT-IR diffuse reflectance was used to study monoethylene glycol presence in the samples. Nanorods in the range of 100-200 nm width were obtained in all samples, but round nanoparticles of around 10 nm in diameter were also detected in samples synthesized only with monoethylene glycol. Samples synthesized in monoethylene glycol were used to fabricate pellets to construct detectors. The detectors responded to ionizing radiation and a resistivity in the order of 1013 Ω cm was estimated. This work proposes, to our knowledge, the first study of BiSI for its application in ionizing radiation detection.

  13. Evaluation of a 3D diamond detector for medical radiation dosimetry

    NASA Astrophysics Data System (ADS)

    Kanxheri, K.; Servoli, L.; Oh, A.; Munoz Sanchez, F.; Forcolin, G. T.; Murphy, S. A.; Aitkenhead, A.; Moore, C. J.; Morozzi, A.; Passeri, D.; Bellini, M.; Corsi, C.; Lagomarsino, S.; Sciortino, S.

    2017-01-01

    Synthetic diamond has several properties that are particularly suited to applications in medical radiation dosimetry. It is tissue equivalent, not toxic and shows a high resistance to radiation damage, low leakage current and stability of response. It is an electrical insulator, robust and realizable in small size; due to these features there are several examples of diamond devices, mainly planar single-crystalline chemical vapor depositation (sCVD) diamond, used for relative dose measurement in photon beams. Thanks to a new emerging technology, diamond devices with 3-dimensional structures are produced by using laser pulses to create graphitic paths in the diamond bulk. The necessary bias voltage to operate such detector decreases considerably while the signal response and radiation resistance increase. In order to evaluate the suitability of this new technology for measuring the dose delivered by radiotherapy beams in oncology a 3D polycrystalline (pCVD) diamond detector designed for single charged particle detection has been tested and the photon beam profile has been studied. The good linearity and high sensitivity to the dose observed in the 3D diamond, opens the way to the possibility of realizing a finely segmented device with the potential for dose distribution measurement in a single exposure for small field dosimetry that nowadays is still extremely challenging.

  14. Controllable passive detectors for study of the radiation environment in space and the atmosphere.

    PubMed

    Akopova, A B

    1998-01-01

    We propose to study the radiation environment on board different flight vehicles: cosmos-type satellites, orbital stations, Space Shuttles and civil (sonic and supersonic) aircraft. These investigations will be carried out with single type of passive detector, namely, nuclear photoemulsions (NPE) with adjustable threshold of particle detection within broad range of linear energy transfer (LET) that is done by means of the technique of selective development of NPE exposed in space. These investigations will allow, one to determine: integral spectra of LET of charged particles of cosmic ray (CR) over a wide range from 2.0 to 5 x 10(4) MeV/cm in biological tissue; differential energy spectra of fast neutrons (1-20 MeV); estimation of absorbed and equivalent doses from charged and neutral component CR; charge and energy spectra of low energy nuclei (E < or = 100 MeV) with Z > or = 2 having in view the extreme hazard radiation to biological objects and microelectronic schemes taken on board inside and outside of these different flight vehicles with exposures from several days to several months. The investigation of radiation environment on board the airplanes depending on the flight parameters will be conducted using emulsions of different sensitivity without any controlling of threshold sensitivity (Akopova et al., 1996). The proposed detector can be used in the joint experiments on the new International Cosmic Station "Alpha".

  15. Response of a hybrid pixel detector (MEDIPIX3) to different radiation sources for medical applications

    NASA Astrophysics Data System (ADS)

    Chumacero, E. Miguel; De Celis Alonso, B.; Martínez Hernández, M. I.; Vargas, G.; Moreno Barbosa, F.; Moreno Barbosa, E.

    2014-11-01

    The development in semiconductor CMOS technology has enabled the creation of sensitive detectors for a wide range of ionizing radiation. These devices are suitable for photon counting and can be used in imaging and tomography X-ray diagnostics. The Medipix[1] radiation detection system is a hybrid silicon pixel chip developed for particle tracking applications in High Energy Physics. Its exceptional features (high spatial and energy resolution, embedded ultra fast readout, different operation modes, etc.) make the Medipix an attractive device for applications in medical imaging. In this work the energy characterization of a third-generation Medipix chip (Medipix3) coupled to a silicon sensor is presented. We used different radiation sources (strontium 90, iron 55 and americium 241) to obtain the response curve of the hybrid detector as a function of energy. We also studied the contrast of the Medipix as a measure of pixel noise. Finally we studied the response to fluorescence X rays from different target materials (In, Pd and Cd) for the two data acquisition modes of the chip; single pixel mode and charge summing mode.

  16. Radiation hardness and precision timing study of silicon detectors for the CMS High Granularity Calorimeter (HGC)

    NASA Astrophysics Data System (ADS)

    Currás, Esteban; Fernández, Marcos; Gallrapp, Christian; Gray, Lindsey; Mannelli, Marcello; Meridiani, Paolo; Moll, Michael; Nourbakhsh, Shervin; Scharf, Christian; Silva, Pedro; Steinbrueck, Georg; Fatis, Tommaso Tabarelli de; Vila, Iván

    2017-02-01

    The high luminosity upgraded LHC or Phase-II is expected to increase the instantaneous luminosity by a factor of 10 beyond the LHC's design value, expecting to deliver 250 fb-1 per year for a further 10 years of operation. Under these conditions the performance degradation due to integrated radiation dose will need to be addressed. The CMS collaboration is planning to upgrade the forward calorimeters. The replacement is called the High Granularity Calorimeter (HGC) and it will be realized as a sampling calorimeter with layers of silicon detectors interleaved. The sensors will be realized as pad detectors with sizes of less that ∼1.0 cm2 and an active thickness between 100 and 300 μm depending on the position, respectively, the expected radiation levels. For an integrated luminosity of 3000 fb-1, the electromagnetic calorimetry will sustain integrated doses of 1.5 MGy (150 Mrads) and neutron fluences up to 1016 neq/cm2. A radiation tolerance study after neutron irradiation of 300, 200, and 100 μm n-on-p and p-on-n silicon pads irradiated to fluences up to 1.6×1016 neq/cm2 is presented. The properties of these diodes studied before and after irradiation were leakage current, capacitance, charge collection efficiency, annealing effects and timing capability. The results of these measurements validate these sensors as candidates for the HGC system.

  17. Response of a hybrid pixel detector (MEDIPIX3) to different radiation sources for medical applications

    SciTech Connect

    Chumacero, E. Miguel; De Celis Alonso, B.; Martínez Hernández, M. I.; Vargas, G.; Moreno Barbosa, E.; Moreno Barbosa, F.

    2014-11-07

    The development in semiconductor CMOS technology has enabled the creation of sensitive detectors for a wide range of ionizing radiation. These devices are suitable for photon counting and can be used in imaging and tomography X-ray diagnostics. The Medipix[1] radiation detection system is a hybrid silicon pixel chip developed for particle tracking applications in High Energy Physics. Its exceptional features (high spatial and energy resolution, embedded ultra fast readout, different operation modes, etc.) make the Medipix an attractive device for applications in medical imaging. In this work the energy characterization of a third-generation Medipix chip (Medipix3) coupled to a silicon sensor is presented. We used different radiation sources (strontium 90, iron 55 and americium 241) to obtain the response curve of the hybrid detector as a function of energy. We also studied the contrast of the Medipix as a measure of pixel noise. Finally we studied the response to fluorescence X rays from different target materials (In, Pd and Cd) for the two data acquisition modes of the chip; single pixel mode and charge summing mode.

  18. RADIATION-RESISTANT FIBER OPTIC STRAIN SENSORS FOR SNS TARGET INSTRUMENTATION

    SciTech Connect

    Blokland, Willem; Bryan, Jeff; Riemer, Bernie; Sangrey, Robert L; Wendel, Mark W; Liu, Yun

    2016-01-01

    Measurement of stresses and strains in the mercury tar-get vessel of the Spallation Neutron Source (SNS) is important to understand the structural dynamics of the target. This work reports the development of radiation-resistant fiber optic strain sensors for the SNS target in-strumentation.

  19. Radiation hardness study of Silicon Detectors for the CMS High Granularity Calorimeter (HGCAL)

    NASA Astrophysics Data System (ADS)

    Currás, E.; Mannelli, M.; Moll, M.; Nourbakhsh, S.; Steinbrueck, G.; Vila, I.

    2017-02-01

    The high luminosity LHC (HL-LHC or Phase-II) is expected to increase the instantaneous luminosity of the LHC by a factor of about five, delivering 0~25 fb ‑1 per year between 2025 and 2035. Under these conditions the performance degradation of detectors due to integrated radiation dose/fluence will need to be addressed. The CMS collaboration is planning to upgrade many detector components, including the forward calorimeters. The replacement for the existing endcap preshower, electromagnetic and hadronic calorimeters is called the High Granularity Calorimeter (HGCAL) and it will be realized as a sampling calorimeter, including 40 layers of silicon detectors totalling 600 m2. The sensors will be realized as pad detectors with cell size between 0.5 and 1.0 cm2 and an active thickness between 100 μm and 300 μm depending on their location in the endcaps. The thinner sensors will be used in the highest radiation environment. For an integrated luminosity of 3000 fb ‑1, the electromagnetic calorimeter will have to sustain a maximum integrated dose of 1.5 MGy and neutron fluences of 1.0×1016 neq/cm2. A tolerance study after neutron irradiation of 300 μm, 200 μm, 100 μm and 50 μm n-on-p and p-on-n silicon pads irradiated to fluences up to 1.6×1016 neq/cm2 is presented. The main properties of these diodes have been studied before and after irradiation: leakage current, capacitance, charge collection efficiency with laser and sensitivity to minimum ionizing particles with radioactive source (90Sr). The results show a good performance even after the most extreme irradiation.

  20. Physics studies with ICARUS and a hybrid ionization and scintillation fiber detector

    SciTech Connect

    Cline, D.B.

    1992-01-01

    We discuss the physics possibilities for the ICARUS detector currently being tested at CERN. The physics potential goes from a massive proton decay detector to the study of solar neutrinos. In addition, the detection of [nu][sub [mu