Tunable dual-wavelength fiber laser based on an MMI filter in a cascaded Sagnac loop interferometer
NASA Astrophysics Data System (ADS)
Ma, Lin; Kang, Zexin; Qi, Yanhui; Jian, Shuisheng
2014-04-01
A widely tunable dual-wavelength erbium-doped fiber laser based on a cascaded Sagnac loop interferometer incorporating a multimode interference filter is proposed and experimentally demonstrated in this paper. The mode selection is implemented by using the cascaded Sagnac loop interferometer with two segments of polarization maintaining fibers, and the wavelength tuning was achieved by using the refractive index characteristic of multimode interference effects. The tunable dual-wavelength fiber laser has a wavelength tuning of about 40 nm with a signal-to-noise ratio of more than 50 dB.
The effect of delay line on the performance of a fiber optic interferometric sensor
NASA Astrophysics Data System (ADS)
Lin, Yung-Li; Lin, Ken-Huang; Lin, Wuu-Wen; Chen, Mao-Hsiung
2007-09-01
The optical fiber has the features of low loss and wide bandwidth; it has replaced the coaxial cable as the mainstream of the communication system in recent years. Because of its high sensitivity characteristic, the interferometer is usually applied to long distance, weak signal detection. In general, if the area to be monitored is located far away, the weak signal will make it uneasy to detect. An interferometer is used for phase detection. Thus, the hydrophone which is based on interferometric fiber optic sensor has extremely high sensitivity. Sagnac interferometric hydrophone has low noise of marine environment, which is more suitably used to detect underwater acoustic signal than that of a Mach-Zehnder interferometer. In this paper, we propose the configuration of dual Sagnac interferometer, and use the mathematical methods to drive and design optimal two delay fiber lengths, which can enlarge the dynamic range of underwater acoustic detection. In addition, we also use software simulation to design optimal two delay fiber lengths. The experimental configuration of dual Sagnac interferometer with two optical delay line is shown as Fig. 1. The maximum and minimum measurable phase signal value of dual Sagnac interferometer (L II=2 km, L 4=222.2 m), shown in Fig. 3. The fiber optic sensor head is of mandrel type. The acoustic window is made of silicon rubbers. It was shown that we can increase their sensitivities by increasing number of wrapping fiber coils. In our experiment, the result shows that among all the mandrel sensor heads, the highest dynamic range is up to 37.6 +/- 1.4 dB, and its sensitivity is -223.3 +/-1.7 dB re V / 1μ Pa. As for the configuration of the optical interferometers, the intensity of the dual Sagnac interferometer is 20 dB larger than its Sagnac counterpart. Its dynamic range is above 66 dB where the frequency ranges is between 50 ~ 400 Hz, which is 24 dB larger than that of the Sagnac interferometer with the sensitivity of -192.0 dB re V / l μPa. In addition, by using software simulation to design optimal lengths of delay fibers, we can increase the dynamic range of interferometer on underwater acoustic detection. This paper verifies that, by means of adjusting the length of these two delay fibers, we can actually increase the dynamic range of acoustic signal detection.
Son, Jaebum; Lee, Min-Kyoung; Jeong, Myung Yung; Kim, Chang-Seok
2010-01-01
In the sensing applications of optical fiber grating, it is necessary to reduce the transmission-type polarization dependence to isolate the sensing parameter. It is experimentally shown that the polarization-dependent spectrum of acousto-optic long-period fiber grating sensors can be suppressed in the transmission port of a π-shifted Sagnac loop interferometer. General expressions for the transmittance and reflectance are derived for transmission-type, reflection-type, and partially reflecting/transmitting-type polarization-dependent optical devices. The compensation of polarization dependence through the counter propagation in the Sagnac loop interferometer is quantitatively measured for a commercial in-line polarizer and an acousto-optic long-period fiber grating sensor. PMID:22399884
Arrayed waveguide Sagnac interferometer.
Capmany, José; Muñoz, Pascual; Sales, Salvador; Pastor, Daniel; Ortega, Beatriz; Martinez, Alfonso
2003-02-01
We present a novel device, an arrayed waveguide Sagnac interferometer, that combines the flexibility of arrayed waveguides and the wide application range of fiber or integrated optics Sagnac loops. We form the device by closing an array of wavelength-selective light paths provided by two arrayed waveguides with a single 2 x 2 coupler in a Sagnac configuration. The equations that describe the device's operation in general conditions are derived. A preliminary experimental demonstration is provided of a fiber prototype in passive operation that shows good agreement with the expected theoretical performance. Potential applications of the device in nonlinear operation are outlined and discussed.
Golub, Ilya; Exir, Hourieh
2013-05-01
We present a left-right symmetry restoring method, which removes the detrimental birefringence in the single-mode fiber Sagnac interferometer, achieved with the aid of a half waveplate oriented at a specific angle. We show theoretically and demonstrate experimentally that adding a π-shift between clockwise and counterclockwise propagating, horizontally (in fiber loop plane) polarized field components, the Sagnac loop mirror's reflection becomes independent on birefringence of an element placed in the loop.
2016-09-01
Thanks to the elegant reciprocal geometry of the Sagnac interferometer, many sources of drift that would present in other polarimetry techniques were...interferometers. And is 2 orders of magnitude better than competing polarimetry -based Faraday techniques. Couple a Rb Vapor cell to the Sagnac interferometer
Wu, Chuang; Tse, Ming-Leung Vincent; Liu, Zhengyong; Guan, Bai-Ou; Lu, Chao; Tam, Hwa-Yaw
2013-09-01
We propose and demonstrate a highly sensitive in-line photonic crystal fiber (PCF) microfluidic refractometer. Ultrathin C-shaped fibers are spliced in-between the PCF and standard single-mode fibers. The C-shaped fibers provide openings for liquid to flow in and out of the PCF. Based on a Sagnac interferometer, the refractive index (RI) response of the device is investigated theoretically and experimentally. A high sensitivity of 6621 nm/RIU for liquid RI from 1.330 to 1.333 is achieved in the experiment, which agrees well with the theoretical analysis.
Partial Discharge Ultrasound Detection Using the Sagnac Interferometer System
Li, Xiaomin; Gao, Yan; Zhang, Hongjuan; Wang, Dong; Jin, Baoquan
2018-01-01
Partial discharge detection is crucial for electrical cable safety evaluation. The ultrasonic signals frequently generated in the partial discharge process contains important characteristic information. However, traditional ultrasonic transducers are easily subject to strong electromagnetic interference in environments with high voltages and strong magnetic fields. In order to overcome this problem, an optical fiber Sagnac interferometer system is proposed for partial discharge ultrasound detection. Optical fiber sensing and time-frequency analysis of the ultrasonic signals excited by the piezoelectric ultrasonic transducer is realized for the first time. The effective frequency band of the Sagnac interferometer system was up to 175 kHz with the help of a designed 10 kV partial discharge simulator device. Using the cumulative histogram method, the characteristic ultrasonic frequency band of the partial discharges was between 28.9 kHz and 57.6 kHz for this optical fiber partial discharge detection system. This new ultrasound sensor can be used as an ideal ultrasonic source for the intrinsically safe detection of partial discharges in an explosive environment. PMID:29734682
Glucose sensor realized with photonic crystal fiber-based Sagnac interferometer
NASA Astrophysics Data System (ADS)
An, Guowen; Li, Shuguang; An, Yinghong; Wang, Haiyang; Zhang, Xuenan
2017-12-01
A compact glucose sensor is proposed by using a short length of photonic crystal fiber inserted in a Sagnac loop interferometer. Spectrum shift in response to the RI of glucose solution with a high average sensitivity of 22 130 nm/RIU is achieved, equivalent to 0.76 mg/dL of glucose in water, which is lower than 70 mg/dL for efficient detection of hypoglycemia episodes. And the simplicity of the fiber structure makes the sensor production very cost effective. We aimed to provide a potential effective method for glucose detection in patients with hypoglycemia.
Interferometric Fiber Optic Sensors
Lee, Byeong Ha; Kim, Young Ho; Park, Kwan Seob; Eom, Joo Beom; Kim, Myoung Jin; Rho, Byung Sup; Choi, Hae Young
2012-01-01
Fiber optic interferometers to sense various physical parameters including temperature, strain, pressure, and refractive index have been widely investigated. They can be categorized into four types: Fabry-Perot, Mach-Zehnder, Michelson, and Sagnac. In this paper, each type of interferometric sensor is reviewed in terms of operating principles, fabrication methods, and application fields. Some specific examples of recently reported interferometeric sensor technologies are presented in detail to show their large potential in practical applications. Some of the simple to fabricate but exceedingly effective Fabry-Perot interferometers, implemented in both extrinsic and intrinsic structures, are discussed. Also, a wide variety of Mach-Zehnder and Michelson interferometric sensors based on photonic crystal fibers are introduced along with their remarkable sensing performances. Finally, the simultaneous multi-parameter sensing capability of a pair of long period fiber grating (LPG) is presented in two types of structures; one is the Mach-Zehnder interferometer formed in a double cladding fiber and the other is the highly sensitive Sagnac interferometer cascaded with an LPG pair. PMID:22736961
Kim, Hyunjin; Sampath, Umesh; Song, Minho
2015-01-01
Fiber Bragg grating sensors are placed in a fiber-optic Sagnac loop to combine the grating temperature sensors and the fiber-optic mandrel acoustic emission sensors in single optical circuit. A wavelength-scanning fiber-optic laser is used as a common light source for both sensors. A fiber-optic attenuator is placed at a specific position in the Sagnac loop in order to separate buried Bragg wavelengths from the Sagnac interferometer output. The Bragg wavelength shifts are measured with scanning band-pass filter demodulation and the mandrel output is analyzed by applying a fast Fourier transform to the interference signal. This hybrid-scheme could greatly reduce the size and the complexity of optical circuitry and signal processing unit, making it suitable for low cost multi-stress monitoring of large scale power systems. PMID:26230700
Pelivanov, Ivan; Buma, Takashi; Xia, Jinjun; Wei, Chen-Wei; O'Donnell, Matthew
2014-01-01
Laser ultrasonic (LU) inspection represents an attractive, non-contact method to evaluate composite materials. Current non-contact systems, however, have relatively low sensitivity compared to contact piezoelectric detection. They are also difficult to adjust, very expensive, and strongly influenced by environmental noise. Here, we demonstrate that most of these drawbacks can be eliminated by combining a new generation of compact, inexpensive fiber lasers with new developments in fiber telecommunication optics and an optimally designed balanced probe scheme. In particular, a new type of a balanced fiber-optic Sagnac interferometer is presented as part of an all-optical LU pump-probe system for non-destructive testing and evaluation of aircraft composites. The performance of the LU system is demonstrated on a composite sample with known defects. Wide-band ultrasound probe signals are generated directly at the sample surface with a pulsed fiber laser delivering nanosecond laser pulses at a repetition rate up to 76 kHz rate with a pulse energy of 0.6 mJ. A balanced fiber-optic Sagnac interferometer is employed to detect pressure signals at the same point on the composite surface. A- and B-scans obtained with the Sagnac interferometer are compared to those made with a contact wide-band polyvinylidene fluoride transducer. PMID:24737921
Achievements and perspectives of fiber gyros
NASA Astrophysics Data System (ADS)
Boehm, Manfred
1986-01-01
After evaluating the development history and current status of fiber-optic gyros employing the Sagnac effect, attention is given to a novel class of inertial fiber-optic motion devices having their basis in the Kennedy-Thorndike (1932) interferometry experiments. These devices promise high performance strapdown inertial navigation systems that dispense with accelerometers. The prospective performance of such devices is discussed in light of an analysis of Sagnac, Michelson, and Kennedy-Thorndike interferometers.
Rotation Sensing with Trapped Ions
2016-09-01
Sagnac effect can be used to measure the rotational velocity Ω of a reference frame by observing the phase shift of an interferometer in that frame whose...sensitivity of interferometric gyroscopes. For photons, optical fibers (or ring laser cavities) allow many effective round-trips through the Sagnac...interferometer, thereby increasing the effective area A by 2 times the number of round trips (M) without increasing the actual area of the apparatus. This
NASA Astrophysics Data System (ADS)
Zhang, Jun; Wu, Weiran; Rao, Qi; Zhou, Kejiang
2018-05-01
Tunable fiber lasers are a promising light source in all-optical wavelength conversion, fiber grating sensing and optical add-drop multiplexing. In order to achieve a tunable wavelength in the output, optical filters are indispensable for the construction of tunable fiber lasers. Recently, much attention has been given to developing high-performance filters. This paper proposes an environment-insensitive filter based on a Sagnac interferometer which was designed by an all-polarization-maintaining fiber with linear birefringence. According to the Sagnac interferometer, we derived the transfer function of an environment-insensitive filter. Based on this principle, it is shown that the device is able to implement a precision filtering function that can be used in a fiber laser’s optical resonant cavity. The experiment results demonstrated the effectiveness of this structure.
NASA Technical Reports Server (NTRS)
Hesse, J.; Sohler, W.
1984-01-01
A survey of the developments in the field of fiber optics sensor technology is presented along with a discussion of the advantages of optical measuring instruments as compared with electronic sensors. The two primary types of fiber optics sensors, specifically those with multiwave fibers and those with monowave fibers, are described. Examples of each major sensor type are presented and discussed. Multiwave detectors include external and internal fiber optics sensors. Among the monowave detectors are Mach-Zender interferometers, Michelson interferometers, Sagnac interferometers (optical gyroscopes), waveguide resonators, and polarimeter sensors. Integrated optical sensors and their application in spectroscopy are briefly discussed.
NASA Astrophysics Data System (ADS)
Qu, Feng; Liu, Xiaoming; Zhao, Jianhui
2004-05-01
A power equalization using an asymmetric nonlinear amplifying Sagnac interferometer (NASI) for ASK modulation is studied numerically. A nonreciprocal phase bias was proposed to be introduced into the structure. The nonreciprocal phase bias reduces not only the demanding for amplifier power or fiber non-linearity, but also increase the dynamic input power range. The power equalization is demonstrated for RZ modulation by nonlinear phase analysis and eye diagram simulation.
Lee, Hwi Don; Jung, Eun Joo; Jeong, Myung Yung; Chen, Zhongping; Kim, Chang-Seok
2014-01-01
A novel linearized interrogation method is presented for a Fourier domain mode-locked (FDML) fiber Bragg grating (FBG) sensor system. In a high speed regime over several tens of kHz modulations, a sinusoidal wave is available to scan the center wavelength of an FDML wavelength-swept laser, instead of a conventional triangular wave. However, sinusoidal wave modulation suffers from an exaggerated non-uniform wavelength-spacing response in demodulating the time-encoded parameter to the absolute wavelength. In this work, the calibration signal from a polarization-maintaining fiber Sagnac interferometer shares the FDML wavelength-swept laser for FBG sensors to convert the time-encoded FBG signal to the wavelength-encoded uniform-spacing signal. PMID:24489440
Sagnac-interferometer-based fresnel flow probe.
Tselikov, A; Blake, J
1998-10-01
We used a near-diffraction-limited flow or light-wave-interaction pipe to produce a Sagnac-interferometer-based Fresnel drag fluid flowmeter capable of detecting extremely small flow rates. An optimized design of the pipe along with the use of a state-of-the-art Sagnac interferometer results in a minimum-detectable water flow rate of 2.4 nl/s [1 drop/(5 h)]. The flowmeter's capability of measuring the water consumption by a small plant in real time has been demonstrated. We then designed an automated alignment system that finds and maintains the optimum fiber-coupling regime, which makes the applications of the Fresnel-drag-based flowmeters practical, especially if the length of the interaction pipe is long. Finally, we have applied the automatic alignment technique to an air flowmeter.
Wang, Lutang; Fang, Nian; Wu, Chunxu; Qin, Haijuan; Huang, Zhaoming
2014-01-01
A novel fiber-optic acoustic sensor using an erbium-doped fiber amplifier (EDFA)-based fiber ring laser and a balanced Sagnac interferometer for acoustic sensing of the partial discharge (PD) in power transformers is proposed and demonstrated. As a technical background, an experimental investigation on how the variations of the fiber birefringence affect the sensor performances was carried out, and the results are discussed. The operation principles are described, and the relevant formulas are derived. The analytical results show that an EDFA-based fiber ring laser operating in chaotic mode can provide a degree of polarization (DOP) tunable light beam for effectively suppressing polarization fading noises. The balanced Sagnac interferometer can eliminate command intensity noises and enhance the signal-to-noise ratio (SNR). Furthermore, it inherently operates at the quadrature point of the response curve without any active stabilizations. Several experiments are conducted for evaluating the performances of the sensor system, as well as for investigating the ability of the detection of high-frequency acoustic emission signals. The experimental results demonstrate that the DOP of the laser beam can be continuously tuned from 0.2% to 100%, and the power fluctuation in the whole DOP tuning range is less than 0.05 dBm. A high-frequency response up to 300 kHz is reached, and the high sensing sensitivity for detections of weak corona discharges, as well as partial discharges also is verified. PMID:24824371
NASA Astrophysics Data System (ADS)
Zakhidov, É. A.; Kasymdzhanov, M. A.; Mirtadzhiev, F. M.; Tartakovskiĭ, G. Kh; Khabibullaev, P. K.
1988-12-01
A study was made of the influence of the Kerr nonlinearity of a fiber waveguide on fluctuations of the output signal from a fiber-optic interferometer. The intensity fluctuations were modeled using the radiation from a pulsed high-power laser with a controlled intensity and pulse profile. Interferograms of the output radiation were obtained for different interferometer configurations. A comparison of the experiment and theory made it possible to explain the observed changes in the signal and to estimate the phase noise due to the Kerr nonlinearity in the investigated fiber waveguide.
A tension insensitive PbS fiber temperature sensor based on Sagnac interferometer
NASA Astrophysics Data System (ADS)
Fu, Xing-hu; Zhang, Jiang-peng; Yang, Kai-li; Dong, Yan-hua; Wen, Jian-xiang; Fu, Guang-wei; Bi, Wei-hong
2017-03-01
In this paper, a tension insensitive PbS fiber temperature sensor based on Sagnac interferometer is proposed and demonstrated. The sensing mechanism of tension and temperature is analyzed. The relationships between the interference spectrum, temperature and tension are analyzed, respectively. The experimental temperature range is 36—70 °C. The experimental results show that the interference spectrum is red shifted, and its sensitivity is 53.89 pm/°C. In tension experiment, the tension range is 0—1 400 μɛ. The experimental results show that there is no wavelength shift in the interference spectrum. The sensor is immune to tension cross-sensitivity compared with other sensors. It can be used for temperature testing in aerospace, chemistry and pharmacy.
Study of Optical Fiber Sensors for Cryogenic Temperature Measurements.
De Miguel-Soto, Veronica; Leandro, Daniel; Lopez-Aldaba, Aitor; Beato-López, Juan Jesus; Pérez-Landazábal, José Ignacio; Auguste, Jean-Louis; Jamier, Raphael; Roy, Philippe; Lopez-Amo, Manuel
2017-11-30
In this work, the performance of five different fiber optic sensors at cryogenic temperatures has been analyzed. A photonic crystal fiber Fabry-Pérot interferometer, two Sagnac interferometers, a commercial fiber Bragg grating (FBG), and a π-phase shifted fiber Bragg grating interrogated in a random distributed feedback fiber laser have been studied. Their sensitivities and resolutions as sensors for cryogenic temperatures have been compared regarding their advantages and disadvantages. Additionally, the results have been compared with the given by a commercial optical backscatter reflectometer that allowed for distributed temperature measurements of a single mode fiber.
Study of Optical Fiber Sensors for Cryogenic Temperature Measurements
Leandro, Daniel; Lopez-Aldaba, Aitor; Beato-López, Juan Jesus; Pérez-Landazábal, José Ignacio; Auguste, Jean-Louis; Jamier, Raphael; Roy, Philippe; Lopez-Amo, Manuel
2017-01-01
In this work, the performance of five different fiber optic sensors at cryogenic temperatures has been analyzed. A photonic crystal fiber Fabry-Pérot interferometer, two Sagnac interferometers, a commercial fiber Bragg grating (FBG), and a π-phase shifted fiber Bragg grating interrogated in a random distributed feedback fiber laser have been studied. Their sensitivities and resolutions as sensors for cryogenic temperatures have been compared regarding their advantages and disadvantages. Additionally, the results have been compared with the given by a commercial optical backscatter reflectometer that allowed for distributed temperature measurements of a single mode fiber. PMID:29189755
Planar location of the simulative acoustic source based on fiber optic sensor array
NASA Astrophysics Data System (ADS)
Liang, Yi-Jun; Liu, Jun-feng; Zhang, Qiao-ping; Mu, Lin-lin
2010-06-01
A fiber optic sensor array which is structured by four Sagnac fiber optic sensors is proposed to detect and locate a simulative source of acoustic emission (AE). The sensing loops of Sagnac interferometer (SI) are regarded as point sensors as their small size. Based on the derived output light intensity expression of SI, the optimum work condition of the Sagnac fiber optic sensor is discussed through the simulation of MATLAB. Four sensors are respectively placed on a steel plate to structure the sensor array and the location algorithms are expatiated. When an impact is generated by an artificial AE source at any position of the plate, the AE signal will be detected by four sensors at different times. With the help of a single chip microcomputer (SCM) which can calculate the position of the AE source and display it on LED, we have implemented an intelligent detection and location.
NASA Astrophysics Data System (ADS)
Huttner, S. H.; Danilishin, S. L.; Barr, B. W.; Bell, A. S.; Gräf, C.; Hennig, J. S.; Hild, S.; Houston, E. A.; Leavey, S. S.; Pascucci, D.; Sorazu, B.; Spencer, A. P.; Steinlechner, S.; Wright, J. L.; Zhang, T.; Strain, K. A.
2017-01-01
Speedmeters are known to be quantum non-demolition devices and, by potentially providing sensitivity beyond the standard quantum limit, become interesting for third generation gravitational wave detectors. Here we introduce a new configuration, the sloshing-Sagnac interferometer, and compare it to the more established ring-Sagnac interferometer. The sloshing-Sagnac interferometer is designed to provide improved quantum noise limited sensitivity and lower coating thermal noise than standard position meter interferometers employed in current gravitational wave detectors. We compare the quantum noise limited sensitivity of the ring-Sagnac and the sloshing-Sagnac interferometers, in the frequency range, from 5 Hz to 100 Hz, where they provide the greatest potential benefit. We evaluate the improvement in terms of the unweighted noise reduction below the standard quantum limit, and by finding the range up to which binary black hole inspirals may be observed. The sloshing-Sagnac was found to give approximately similar or better sensitivity than the ring-Sagnac in all cases. We also show that by eliminating the requirement for maximally-reflecting cavity end mirrors with correspondingly-thick multi-layer coatings, coating noise can be reduced by a factor of approximately 2.2 compared to conventional interferometers.
Construction of a Fiber Optic Gradient Hydrophone Using a Michelson Configuration.
1986-03-27
Michelson interferometers; * Fabry - Perot interferometers; • Intermode interferometers; • Sagnac interferometers. Of these, the first two categories show the...most promise for hydrophone applications. The Fabry - Perot design is an excellent tool for precision length measurements but is extremely sensitive to...Pa was measured. Using the demodulation technique in Mills, [Ref. 13: pp. 94-95], one can make a comparison to the USRD type G63 stan- dard pressure
NASA Astrophysics Data System (ADS)
Shi, Min; Li, Shuguang; Chen, Hailiang
2018-06-01
A high-sensitivity temperature sensor based on photonic crystal fiber Sagnac interferometer is proposed and studied. All holes of the PCF are filled with ethanol with capillarity. The cladding air holes are uniform arrangements. The two air holes around the core are removed to form new core modes with high birefringence. The sensitivities of the temperature can be up to -8.7657 and 16.8142 nm/°C when temperature rises from 45 to 75 °C and the fiber length is 5.05 cm. And when temperature rises from 10 to 45 °C, the sensitivity can reach -7.848 and 16.655 nm/°C with fiber length 2.11 cm. The performance of the selective-filled and the fully-filled PCF with temperature from 45 to 75 °C and fiber length 5.05 cm are analyzed and compared. The fully filling can better achieve PCF's sensing performance. The simple structure and high sensitivities make the temperature sensor easy to achieve. The temperature sensor with high sensitivities and good linearity has great application value for environmental temperature detecting.
Chronology of Fabry-Perot Interferometer Fiber-Optic Sensors and Their Applications: A Review
Islam, Md. Rajibul; Ali, Muhammad Mahmood; Lai, Man-Hong; Lim, Kok-Sing; Ahmad, Harith
2014-01-01
Optical fibers have been involved in the area of sensing applications for more than four decades. Moreover, interferometric optical fiber sensors have attracted broad interest for their prospective applications in sensing temperature, refractive index, strain measurement, pressure, acoustic wave, vibration, magnetic field, and voltage. During this time, numerous types of interferometers have been developed such as Fabry-Perot, Michelson, Mach-Zehnder, Sagnac Fiber, and Common-path interferometers. Fabry-Perot interferometer (FPI) fiber-optic sensors have been extensively investigated for their exceedingly effective, simple fabrication as well as low cost aspects. In this study, a wide variety of FPI sensors are reviewed in terms of fabrication methods, principle of operation and their sensing applications. The chronology of the development of FPI sensors and their implementation in various applications are discussed. PMID:24763250
Three-color Sagnac source of polarization-entangled photon pairs.
Hentschel, Michael; Hübel, Hannes; Poppe, Andreas; Zeilinger, Anton
2009-12-07
We demonstrate a compact and stable source of polarization-entangled pairs of photons, one at 810 nm wavelength for high detection efficiency and the other at 1550 nm for long-distance fiber communication networks. Due to a novel Sagnac-based design of the interferometer no active stabilization is needed. Using only one 30 mm ppKTP bulk crystal the source produces photons with a spectral brightness of 1.13 x 10(6) pairs/s/mW/THz with an entanglement fidelity of 98.2%. Both photons are single-mode fiber coupled and ready to be used in quantum key distribution (QKD) or transmission of photonic quantum states over large distances.
He, Haijun; Shao, Liyang; Qian, Heng; Zhang, Xinpu; Liang, Jiawei; Luo, Bin; Pan, Wei; Yan, Lianshan
2017-03-20
A novel demodulation method for Sagnac loop interferometer based sensor has been proposed and demonstrated, by unwrapping the phase changes with birefringence interrogation. A temperature sensor based on Sagnac loop interferometer has been used to verify the feasibility of the proposed method. Several tests with 40 °C temperature range have been accomplished with a great linearity of 0.9996 in full range. The proposed scheme is universal for all Sagnac loop interferometer based sensors and it has unlimited linear measurable range which overwhelming the conventional demodulation method with peak/dip tracing. Furthermore, the influence of the wavelength sampling interval and wavelength span on the demodulation error has been discussed in this work. The proposed interrogation method has a great significance for Sagnac loop interferometer sensor and it might greatly enhance the availability of this type of sensors in practical application.
Optical Fiber Sensors Based on Fiber Ring Laser Demodulation Technology
Xie, Wen-Ge; Wang, Peng-Zhao; Wang, Jian-Zhang
2018-01-01
A review for optical fiber sensors based on fiber ring laser (FRL) demodulation technology is presented. The review focuses on the principles, main structures, and the sensing performances of different kinds of optical fiber sensors based on FRLs. First of all, the theory background of the sensors has been discussed. Secondly, four different types of sensors are described and compared, which includes Mach–Zehnder interferometer (MZI) typed sensors, Fabry–Perot interferometer (FPI) typed sensors, Sagnac typed sensors, and fiber Bragg grating (FBG) typed sensors. Typical studies and main properties of each type of sensors are presented. Thirdly, a comparison of different types of sensors are made. Finally, the existing problems and future research directions are pointed out and analyzed. PMID:29419745
Optical Fiber Sensors Based on Fiber Ring Laser Demodulation Technology.
Xie, Wen-Ge; Zhang, Ya-Nan; Wang, Peng-Zhao; Wang, Jian-Zhang
2018-02-08
A review for optical fiber sensors based on fiber ring laser (FRL) demodulation technology is presented. The review focuses on the principles, main structures, and the sensing performances of different kinds of optical fiber sensors based on FRLs. First of all, the theory background of the sensors has been discussed. Secondly, four different types of sensors are described and compared, which includes Mach-Zehnder interferometer (MZI) typed sensors, Fabry-Perot interferometer (FPI) typed sensors, Sagnac typed sensors, and fiber Bragg grating (FBG) typed sensors. Typical studies and main properties of each type of sensors are presented. Thirdly, a comparison of different types of sensors are made. Finally, the existing problems and future research directions are pointed out and analyzed.
NASA Astrophysics Data System (ADS)
Das, Goutam
This thesis studies experimentally and theoretically a few designs of multiwavelength fiber lasers. Four different configurations are proposed and demonstrated; all of which can operate at room temperatures. An elliptical core erbium-doped fiber is used as the gain medium, which is single mode along the minor axis and multimode along the major axis. The principle of operation is based on the anisotropic gain effect of an elliptical core erbium-doped fiber. Stable multiwavelength operation is achieved at room temperatures. A polarization controller is used to control and select the lasing wavelengths. The stability of the lasing lines, in the presence of anisotropic gain effects, has been examined. The maximum number of stable lasing lines that may be obtained depends on the number of modes supported by the erbium-doped fiber. The effects of the dimensions of the fiber are also studied. A ring resonator is formed using an elliptical core erbium-doped fiber. The basic theoretical expression for the threshold pump power for each lasing line is developed. The theoretical results are in excellent agreement with the values obtained experimentally. The dependence of the separations between the lasing wavelengths on the dimensions of the erbium-doped fiber is examined. A theoretical study of a Sagnac loop interferometer and its applications in a passive ring resonator is reported. A ring resonator is formed by using the Sagnac loop filter in the cavity. The experimental results show that the separations between the lasing wavelengths may be controlled by adjusting the birefringence of the Sagnac loop interferometer. These experimental results agree with the theoretical findings. Similarly, another resonator is formed using a Sagnac loop reflector and a broadband reflector in a Fabry-Perot configuration. An optical switch is made, where two wavelengths may be switched by using a polarization controller in the cavity. To study the stability of the lasing wavelengths, the outputs of the lasers are monitored for a few hours using an optical spectrum analyzer with a resolution bandwidth of 0.06 nm. The experimental results show that intensity fluctuations of the lasing lines of less than 0.2 dB are possible with no changes in wavelength. High concentrations of erbium in the fiber degrade the stability of the lasing wavelengths resulting in greater intensity fluctuations. The lasers may be made to lase in the C band or L band by adjusting the length of the erbium-doped fiber in the cavity.
Optical polarimetry for noninvasive glucose sensing enabled by Sagnac interferometry.
Winkler, Amy M; Bonnema, Garret T; Barton, Jennifer K
2011-06-10
Optical polarimetry is used in pharmaceutical drug testing and quality control for saccharide-containing products (juice, honey). More recently, it has been proposed as a method for noninvasive glucose sensing for diabetic patients. Sagnac interferometry is commonly used in optical gyroscopes, measuring minute Doppler shifts resulting from mechanical rotation. In this work, we demonstrate that Sagnac interferometers are also sensitive to optical rotation, or the rotation of linearly polarized light, and are therefore useful in optical polarimetry. Results from simulation and experiment show that Sagnac interferometers are advantageous in optical polarimetry as they are insensitive to net linear birefringence and alignment of polarization components.
A fiber optic multi-stress monitoring system for power transformer
NASA Astrophysics Data System (ADS)
Kim, Dae-gil; Sampath, Umesh; Kim, Hyunjin; Song, Minho
2017-04-01
A fiber-optic multi-stress monitoring system which uses 4 FBG sensors and a fiber-optic mandrel acoustic emission sensor is proposed. FBG sensors and a mandrel sensor measure different types of stresses occurring in electrical power transformer, such as temperature and acoustic signals. The sensor system uses single broadband light source to address the outputs of both sensors using single fiber-optic circuitry. An athermal-packaged FBG is used to supply quasi-coherent light for the Sagnac interferometer demodulation which processes the mandrel sensor output. The proposed sensor system could simplify the optical circuit for the multi-stress measurements and enhance the cost-effectiveness of the sensor system.
1989-01-11
EFFECT OF BANK-TO-TURN VERSUS SKID-TO-TURN STEERING ON THE MANOEUVRABILITY OF AUTONOMOUS PRECISION GUIDED MUUNITION AGAINST GROUND TARGETS by B.J.Damen...space. Basic Relationships of an Interferometer Gyro The Sagnac effect in the fiber optic gyro causes a phase shift in the sensor col during rotation with... a read-out coupler and an.avalanche photodiode for optical detection. The opto module is rigidly connected with the sensor module via a fiber link
High-sensitivity fiber optic acoustic sensors
NASA Astrophysics Data System (ADS)
Lu, Ping; Liu, Deming; Liao, Hao
2016-11-01
Due to the overwhelming advantages compared with traditional electronicsensors, fiber-optic acoustic sensors have arisen enormous interest in multiple disciplines. In this paper we present the recent research achievements of our group on fiber-optic acoustic sensors. The main point of our research is high sensitivity interferometric acoustic sensors, including Michelson, Sagnac, and Fabry-Pérot interferometers. In addition, some advanced technologies have been proposed for acoustic or acoustic pressure sensing such as single-mode/multimode fiber coupler, dual FBGs and multi-longitudinal mode fiber laser based acoustic sensors. Moreover, our attention we have also been paid on signal demodulation schemes. The intensity-based quadrature point (Q-point) demodulation, two-wavelength quadrature demodulation and symmetric 3×3 coupler methodare discussed and compared in this paper.
Quantum Strategies: Proposal to Experimentally Test a Quantum Economics Protocol
2009-04-09
fact that this al- gorithm requires only bipartite entangled states what makes it feasible to implement, and a key focus of a larger program in quantum...passes through what is effectively a huge Mach-Zender fiber-interferometer bounded by the Sagnac loop and PPBS1- is affected by this time-varying...strategy, no matter what the other players do. As we noted above, this means that there is no (classical) correlated equilibrium other than the Nash
Modeling and Experimental Study of Fracture-Based Wellbore Strengthening
NASA Astrophysics Data System (ADS)
Zhong, Ruizhi
Measuring physical dimensions has always been one of the challenges for optical metrology. Specifically, the thickness is often a prerequisite piece of information for other optical properties when characterizing components and materials. For example, when measuring the index of refraction of materials using interferometric methods, the direct measurement is optical path length difference. To acquire index of refraction with high accuracy, the thickness must be predetermined with correspondingly high accuracy as well. In this dissertation, a prototype low-coherence interferometer system is developed through several design iterations to measure the absolute thickness map of a plane-parallel samples in a nondestructive manner. The prototype system is built with all off-the-shelf components in a configuration that combines a Twyman-Green interferometer and a Sagnac interferometer. The repeatability and accuracy of the measured thickness are characterized to be less than one micrometer. Based on the information acquired from the development of the prototype system, a permanent low-coherence interferometer system is designed and built to achieve a higher accuracy in thickness measurements, on the level of a hundred nanometers. A comprehensive uncertainty model is established for the thickness measurement using the low-coherence interferometer system. Additionally, this system is also capable of measuring the topography of both surfaces of the sample, as well as the wedge of the sample. This low-coherence dimensional metrology uses only the reflection signals from the sample surfaces. Thus, the measured physical dimensions are independent of the index of refraction, transparency, transmission, or homogeneity of the sample. In addition, a laser Sagnac interferometer is designed and built by repurposing the test arm of the low-coherence interferometer. The laser Sagnac interferometer provides a non-contact bulk index of refraction metrology for solid materials. The uncertainty model for the index of refraction measurement is detailed with analytical solutions. The laser Sagnac interferometer requires relatively simple sample preparation and fast turn-around time, which is suitable for applications in optical material research.
NASA Astrophysics Data System (ADS)
Udd, Eric
2016-05-01
On September 29, 1977 the first written disclosure of a closed loop fiber optic gyro was witnessed and signed off by four people at McDonnell Douglas Astronautics Company in Huntington Beach, California. Over the next ten years a breadboard demonstration unit, and several prototypes were built. In 1987 the fundamental patent for closed loop operation began a McDonnell Douglas worldwide licensing process. Internal fiber optic efforts were redirected to derivative sensors and inventions. This included development of acoustic, strain and distributed sensors as well as a Sagnac interferometer based secure fiber optic communication system and the new field of fiber optic smart structures. This paper provides an overview of these activities and transitions.
Pulsed Sagnac polarization-entangled photon source with a PPKTP crystal at telecom wavelength.
Jin, Rui-Bo; Shimizu, Ryosuke; Wakui, Kentaro; Fujiwara, Mikio; Yamashita, Taro; Miki, Shigehito; Terai, Hirotaka; Wang, Zhen; Sasaki, Masahide
2014-05-19
We demonstrate pulsed polarization-entangled photons generated from a periodically poled KTiOPO(4) (PPKTP) crystal in a Sagnac interferometer configuration at telecom wavelength. Since the group-velocity-matching (GVM) condition is satisfied, the intrinsic spectral purity of the photons is much higher than in the previous scheme at around 800 nm wavelength. The combination of a Sagnac interferometer and the GVM-PPKTP crystal makes our entangled source compact, stable, highly entangled, spectrally pure and ultra-bright. The photons were detected by two superconducting nanowire single photon detectors (SNSPDs) with detection efficiencies of 70% and 68% at dark counts of less than 1 kcps. We achieved fidelities of 0.981 ± 0.0002 for |ψ(-)〉 and 0.980 ± 0.001 for |ψ(+)〉 respectively. This GVM-PPKTP-Sagnac scheme is directly applicable to quantum communication experiments at telecom wavelength, especially in free space.
Optical logic gates based on electro-optic modulation with Sagnac interferometer.
Li, Qiliang; Zhu, Mengyun; Li, Dongqiang; Zhang, Zhen; Wei, Yizhen; Hu, Miao; Zhou, Xuefang; Tang, Xianghong
2014-07-20
In this work, we present a new structure to realize optical logic operation in a Sagnac interferometer with electro-optical modulation. In the scheme, we divide two counterpropagation signals in a Sagnac loop to two different arms with the electro-optical crystal by using two circulators. Lithium niobate materials whose electro-optical coefficient can be as large as 32.2×10(-12) m/V make up the arms of the waveguides. Using the transfer matrix of the fiber coupler, we analyze the propagation of signals in this system and obtain the transmission characteristic curves and the extinction ratio. The results indicate that this optical switching has a high extinction ratio of about 60 dB and an ultrafast response time of 2.036 ns. In addition, the results reveal that the change of the dephasing between the two input signals and the modification of the modulation voltage added to the electro-optical crystal leads to the change of the extinction ratio. We also conclude that, in cases of the dephasing of two initial input signals Δφ=0, we can obtain the various logical operations, such as the logical operations D=A¯·B, D=A·B¯, C=A+B, and D=A⊕B in ports C and D of the system by adjusting the modulation voltage. When Δφ≠0, we obtain the arithmetic operations D=A+B, C=A⊕B, D=A·B¯, and C=A¯·B in ports C and D. This study is significant for the design of all optical networks by adjusting the modulation voltage.
A chevron beam-splitter interferometer
NASA Technical Reports Server (NTRS)
Breckinridge, J. B.
1979-01-01
Fully tilt compensated double-pass chevron beam splitter, that removes channelling effects and permits optical phase tuning, is wavelength independent and allows small errors in alignment that are not tolerated in Michelson, Machzender, or Sagnac interferometers. Device is very useful in experiments where background vibration affects conventional interferometers.
Fiber-Optic Ultrasound Sensors for Smart Structures Applications
2000-01-25
Introduction 1 1.1 Objectives 1 1.2 Relevance to Air Force 1 1.3 Fiber Optics Ultrasound Sensors 2 2. Research Accomplishments 2 2.1 Fabry - Perot ...fiber-optic ultrasound receivers: - Fabry - Perot (FOFP) sensors, - Sagnac Ultrasound Sensor (SUS), and - Bragg-Grating Ultrasound (BGU) sensors. We...ultrasound receivers with excellent normal-incidence response can be configured as local ( Fabry - Perot ) or non-local (Sagnac) sensors. The Sagnac
A note on the Sagnac effect for matter beams
NASA Astrophysics Data System (ADS)
Ruggiero, Matteo Luca; Tartaglia, Angelo
2015-05-01
We study the Sagnac effect for matter beams, in order to estimate the kinematic corrections to the basic formula, deriving from the position and the extent of the interferometer, and discuss the analogy with the Aharonov-Bohm effect. We show that the formula for the Sagnac time delay is the same for matter and light beams in arbitrary stationary space-times, provided that a suitable condition on the speed of the beams is fulfilled. Hence, the same results obtained for light beams apply to matter beams.
Group refractive index quantification using a Fourier domain short coherence Sagnac interferometer.
Montonen, Risto; Kassamakov, Ivan; Lehmann, Peter; Österberg, Kenneth; Hæggström, Edward
2018-02-15
The group refractive index is important in length calibration of Fourier domain interferometers by transparent transfer standards. We demonstrate accurate group refractive index quantification using a Fourier domain short coherence Sagnac interferometer. Because of a justified linear length calibration function, the calibration constants cancel out in the evaluation of the group refractive index, which is then obtained accurately from two uncalibrated lengths. Measurements of two standard thickness coverslips revealed group indices of 1.5426±0.0042 and 1.5434±0.0046, with accuracies quoted at the 95% confidence level. This agreed with the dispersion data of the coverslip manufacturer and therefore validates our method. Our method provides a sample specific and accurate group refractive index quantification using the same Fourier domain interferometer that is to be calibrated for the length. This reduces significantly the requirements of the calibration transfer standard.
Analysis of the Sagnac interference imaging spectrometer with a variable optical path difference
NASA Astrophysics Data System (ADS)
Ai, Jingjing; Gao, Peng; Hu, Xiaochen; Zhang, Chunmin; Wang, Xia
2018-03-01
The Sagnac interference imaging spectrometer with a variable optical path difference (OPD) is proposed in this paper, which employs two wedge prisms coupled with a modified Sagnac interferometer, and produces a variable OPD through the moving wedge prism. Compared with the conventional imaging spectrometer, the Sagnac interference imaging spectrometer shows its advantages of miniaturization and insensitive to the non-uniform variation of the moving speed and the environment vibration. The exact expression of the OPD as a function of different parameters is derived, and the influences of the moving displacement, wedge angle and acute angles on the OPD are analyzed and discussed within the scope of engineering design. This study provides an important theoretical and practical guidance for the engineering of the Sagnac interference imaging spectrometer.
NDT of fiber-reinforced composites with a new fiber-optic pump–probe laser-ultrasound system☆
Pelivanov, Ivan; Buma, Takashi; Xia, Jinjun; Wei, Chen-Wei; O’Donnell, Matthew
2014-01-01
Laser-ultrasonics is an attractive and powerful tool for the non-destructive testing and evaluation (NDT&E) of composite materials. Current systems for non-contact detection of ultrasound have relatively low sensitivity compared to contact peizotransducers. They are also expensive, difficult to adjust, and strongly influenced by environmental noise. Moreover, laser-ultrasound (LU) systems typically launch only about 50 firings per second, much slower than the kHz level pulse repetition rate of conventional systems. As demonstrated here, most of these drawbacks can be eliminated by combining a new generation of compact, inexpensive, high repetition rate nanosecond fiber lasers with new developments in fiber telecommunication optics and an optimally designed balanced probe beam detector. In particular, a modified fiber-optic balanced Sagnac interferometer is presented as part of a LU pump–probe system for NDT&E of aircraft composites. The performance of the all-optical system is demonstrated for a number of composite samples with different types and locations of inclusions. PMID:25302156
NASA Astrophysics Data System (ADS)
Ding, Zhenming; Wang, Zhaokun; Zhao, Chunliu; Wang, Dongning
2018-05-01
In this paper, we propose and experimentally demonstrate a tunable erbium-doped fiber laser (EDFL) with Sagnac interference loop with 45° angle shift spliced polarization maintaining fibers (PMFs). In the Sagnac loop, two PMFs with similar lengths. The Sagnac loop outputs a relatively complex interference spectrum since two beams transmitted in clockwise and counterclockwise encounter at the 3 dB coupler, interfere, and form two interference combs when the light transmitted in the Sagnac loop. The laser will excite and be stable when two interference lines in these two interference combs overlap together. Then by adjusting the polarization controller, the wide wavelength tuning is realized. Experimental results show that stable single wavelength laser can be realized in the wavelength range of 1585 nm-1604 nm under the pump power 157.1 mW. The side-mode suppression ratio is not less than 53.9 dB. The peak power fluctuation is less than 0.29 dB within 30 min monitor time and the side-mode suppression ratio is great than 57.49 dB when the pump power is to 222.7 mW.
Switchable dual-wavelength fiber laser based on PCF Sagnac loop and broadband FBG
NASA Astrophysics Data System (ADS)
Chen, Weiguo; Lou, Shuqin; Feng, Suchun; Wang, Liwen; Li, Honglei; Guo, Tieying; Jian, Shuisheng
2009-11-01
Switchable dual-wavelength fiber laser with photonic crystal fiber (PCF) Sagnac loop and broadband fiber Bragg grating (BFBG) at room temperature is demonstrated. By adjusting the polarization controller (PC) appropriately, the laser can be switched between the stable single- and dual-wavelength lasing operations by exploiting polarization hole burning (PHB) and spectral hole burning effects (SHB).
Analysis of Acousto-Optic Errors in Laser Gyroscopes.
1982-12-01
2 2 Sagnac’s Interferometer ................................ 4 3 Harress ’ Prism Ring.................................... 5 4...years before Sagnac’s experiment, Harress , a German graduate student formed a ring of partially reflecting prisms to measure the dispersive properties of...glass (Figure 3). Harress noticed a fringe shift when he rotated the ring, and he assumed that the shift was caused by the *dragging" of the light
Sagnac secret sharing over telecom fiber networks.
Bogdanski, Jan; Ahrens, Johan; Bourennane, Mohamed
2009-01-19
We report the first Sagnac quantum secret sharing (in three-and four-party implementations) over 1550 nm single mode fiber (SMF) networks, using a single qubit protocol with phase encoding. Our secret sharing experiment has been based on a single qubit protocol, which has opened the door to practical secret sharing implementation over fiber telecom channels and in free-space. The previous quantum secret sharing proposals were based on multiparticle entangled states, difficult in the practical implementation and not scalable. Our experimental data in the three-party implementation show stable (in regards to birefringence drift) quantum secret sharing transmissions at the total Sagnac transmission loop distances of 55-75 km with the quantum bit error rates (QBER) of 2.3-2.4% for the mean photon number micro?= 0.1 and 1.7-2.1% for micro= 0.3. In the four-party case we have achieved quantum secret sharing transmissions at the total Sagnac transmission loop distances of 45-55 km with the quantum bit error rates (QBER) of 3.0-3.7% for the mean photon number micro= 0.1 and 1.8-3.0% for micro?= 0.3. The stability of quantum transmission has been achieved thanks to our new concept for compensation of SMF birefringence effects in Sagnac, based on a polarization control system and a polarization insensitive phase modulator. The measurement results have showed feasibility of quantum secret sharing over telecom fiber networks in Sagnac configuration, using standard fiber telecom components.
A novel Sagnac imaging polarization spectrometer
NASA Astrophysics Data System (ADS)
Gao, Peng; Ai, Jingjing; Wang, Xia; Zhang, Chunmin
2017-06-01
A novel Sagnac imaging polarization spectrometer based on a modified Sagnac interferometer (MSI) with a moving wedge prism is proposed in this paper, and it is a framing instrument with the advantages of miniaturization, variable optical path difference (OPD) and large field of view. The construction and split-beam principle of the system are described detailedly, and the exact expressions of the OPD and lateral displacement changing with different parameters are obtained. The variations of the OPD and lateral displacement as a function of the wedge angle and moving displacement are simulated, and the influences of the wedge angle on the OPD and lateral displacement are very small, while most effects come from the moving displacement. In order to obtain a larger OPD and lateral displacement, the wedge angle is controlled in a range of [ 45 ° , 50 ° ] . In addition, the influences of the dispersion effect of the glass plate on the OPD and lateral displacement are analyzed and discussed, and the suitable material choice for the MSI can reduce the influence of the dispersion effect on the OPD, which also allows the system construction spanning the spectral range of [480 nm, 960 nm]. In comparison with the conventional Sagnac interferometer with a large optical path difference (LOPDSI), the spectral resolution of the MSI can be made much higher if choosing suitable parameters. This study provides a theoretical and practical guidance for the design and engineering of the Sagnac imaging polarization spectrometer.
Demonstration of a Corner-cube-interferometer LWIR Hyperspectral Imager
NASA Astrophysics Data System (ADS)
Renhorn, Ingmar G. E.; Svensson, Thomas; Cronström, Staffan; Hallberg, Tomas; Persson, Rolf; Lindell, Roland; Boreman, Glenn D.
2010-01-01
An interferometric long-wavelength infrared (LWIR) hyperspectral imager is demonstrated, based on a Michelson corner-cube interferometer. This class of system is inherently mechanically robust, and should have advantages over Sagnac-interferometer systems in terms of relaxed beamsplitter-coating specifications, and wider unvignetted field of view. Preliminary performance data from the laboratory prototype system are provided regarding imaging, spectral resolution, and fidelity of acquired spectra.
Fabry-Perot cavity cascaded sagnac loops for temperature and strain measurements
NASA Astrophysics Data System (ADS)
Shangguan, Chunmei; Zhang, Wen; Hei, Wei; Luo, Fei; Zhu, Lianqing
2018-04-01
The fabrication process and temperature and strain characterizations of an all-fiber sensor are presented. The sensing structure based on a Fabry-Perot cavity (FPC) and sagnac loops was proposed and experimentally demonstrated for measurements of temperature and strain. The FPC consists of a micropiece of chemical etched multimode fiber end face, welded with another single mode fiber. Then, the sagnac loops composed of polarization maintaining fiber was connected to the FPC. The sensor was fabricated and tested for temperature and strain. Experimental results show that sensitivity of temperature and strain is 0.71 ± 0.03 nm / ° C and 1.30 ± 0.01 pm / μɛ, respectively; the linearity are 0.9970 and 0.9996, respectively.
Large dynamic range pressure sensor based on two semicircle-holes microstructured fiber.
Liu, Zhengyong; Htein, Lin; Lee, Kang-Kuen; Lau, Kin-Tak; Tam, Hwa-Yaw
2018-01-08
This paper presents a sensitive and large dynamic range pressure sensor based on a novel birefringence microstructured optical fiber (MOF) deployed in a Sagnac interferometer configuration. The MOF has two large semicircle holes in the cladding and a rectangular strut with germanium-doped core in the center. The fiber structure permits surrounding pressure to induce large effective index difference between the two polarized modes. The calculated and measured group birefringence of the fiber are 1.49 × 10 -4 , 1.23 × 10 -4 , respectively, at the wavelength of 1550 nm. Experimental results shown that the pressure sensitivity of the sensor varied from 45,000 pm/MPa to 50,000 pm/MPa, and minimum detectable pressure of 80 Pa and dynamic range of better than 116 dB could be achieved with the novel fiber sensor. The proposed sensor could be used in harsh environment and is an ideal candidate for downhole applications where high pressure measurement at elevated temperature up to 250 °C is needed.
Application of the fibre-optic interferometer as a rotational seismograph type AFORS
NASA Astrophysics Data System (ADS)
Kurzych, Anna; Jaroszewicz, Leszek R.; Krajewski, Zbigniew; Teisseyre, Krzysztof P.; Kowalski, Jerzy K.
2014-12-01
In this article we show a fibre-optic device based on the Sagnac effect designed for measuring rotational motions which appear during seismic events. The experimental investigations of presented Autonomous Fiber-Optical Rotational Seismographs indicate that such devices keep the accuracy no less than 5.1·10-9 to 5.5·10-8 rad/s in the frequency band from 0.83 Hz to 106.15 Hz. Furthermore, their operations are controlled fully remotely via Internet. We present the comparison of results obtained by such system in the field test with a mechanical rotational seismometer which is mounted simultaneously in the seismological observatory in Książ, Poland.
Two kinds of novel tunable Thulium-doped fiber laser
NASA Astrophysics Data System (ADS)
Ma, Xiaowei; Chen, Daru; Feng, Gaofeng; Yang, Junyong
2014-11-01
Two kinds of tunable Thulium-doped fiber laser (TDFL) respectively using a Sagnac loop mirror and a novel tunable multimode interference (MMI) fiber filter are experimentally demonstrated. The TDFL with the Sagnac loop mirror made by a 145.5-cm polarization-maintaining fiber (PMF) can operate with stable dual-wavelength lasing or tunable single-wavelength lasing around 1860nm. Both stable dual-wavelength and tunable single-wavelength lasing are achieved by adjusting a polarization controller in the Sagnac loop mirror. The TDFL with a novel tunable MMI fiber filter formed by splicing a segment of a special no-core fiber that is an all silica fiber without fiber core to single mode fibers can achieve tuning range from 1813.52 nm to 1858.70 nm. The no-core fiber with a large diameter of 200 μm is gradually vertically covered by refractive index matching liquid, which leads to a wavelength tuning of the transmission peak of the MMI fiber filter. The relationship between the refractive index of the refractive index matching liquid and the peak wavelength shift of the MMI fiber filter is also discussed. Using the MMI fiber filter, a Thulium-doped fiber laser with a tuning range of 45.18 nm is demonstrated.
NASA Astrophysics Data System (ADS)
Ruan, Juan; Zhang, Wei-Gang; Zhang, Hao; Geng, Peng-Cheng; Bai, Zhi-Yong
2013-06-01
A novel tunable comb filter composed of a single-mode/multimode/polarization-maintaining-fiber-based Sagnac fiber loop is proposed and experimentally demonstrated. The filter tunability is achieved by rotating the polarization controller. The spectral shift is dependent on rotation direction and the position of the polarization controller. In addition, the adjustable range achieved by rotating the half-wave-plate polarization controller is twice higher than that of the quarter-wave-plate one.
Modulated Source Interferometry with Combined Amplitude and Frequency Modulation
NASA Technical Reports Server (NTRS)
Gutierrez, Roman C. (Inventor)
1998-01-01
An improved interferometer is produced by modifying a conventional interferometer to include amplitude and/or frequency modulation of a coherent light source at radio or higher frequencies. The phase of the modulation signal can be detected in an interfering beam from an interferometer and can be used to determine the actual optical phase of the beam. As such, this improvement can be adapted to virtually any two-beam interferometer, including: Michelson, Mach-Zehnder, and Sagnac interferometers. The use of an amplitude modulated coherent tight source results in an interferometer that combines the wide range advantages of coherent interferometry with the precise distance measurement advantages of white light interferometry.
Nonlocal polarization interferometer for entanglement detection
Williams, Brian P.; Humble, Travis S.; Grice, Warren P.
2014-10-30
We report a nonlocal interferometer capable of detecting entanglement and identifying Bell states statistically. This is possible due to the interferometer's unique correlation dependence on the antidiagonal elements of the density matrix, which have distinct bounds for separable states and unique values for the four Bell states. The interferometer consists of two spatially separated balanced Mach-Zehnder or Sagnac interferometers that share a polarization-entangled source. Correlations between these interferometers exhibit nonlocal interference, while single-photon interference is suppressed. This interferometer also allows for a unique version of the Clauser-Horne-Shimony-Holt Bell test where the local reality is the photon polarization. In conclusion, wemore » present the relevant theory and experimental results.« less
The MIDAS Instrument Design and Characterization
NASA Astrophysics Data System (ADS)
Honniball, C. I.; Wright, R.; Lucey, P. G.
2016-10-01
The Miniaturized Infrared detector of Atmospheric Species (MIDAS) utilizes an uncooled microbolometer coupled with a Sagnac interferometer. MIDAS will be used to detect and quantify atmospheric constituents for a variety of science applications.
Investigation of propagation dynamics of truncated vector vortex beams.
Srinivas, P; Perumangatt, C; Lal, Nijil; Singh, R P; Srinivasan, B
2018-06-01
In this Letter, we experimentally investigate the propagation dynamics of truncated vector vortex beams generated using a Sagnac interferometer. Upon focusing, the truncated vector vortex beam is found to regain its original intensity structure within the Rayleigh range. In order to explain such behavior, the propagation dynamics of a truncated vector vortex beam is simulated by decomposing it into the sum of integral charge beams with associated complex weights. We also show that the polarization of the truncated composite vector vortex beam is preserved all along the propagation axis. The experimental observations are consistent with theoretical predictions based on previous literature and are in good agreement with our simulation results. The results hold importance as vector vortex modes are eigenmodes of the optical fiber.
Optimization of a Fabry-Perot Q-switch fiber optic laser
NASA Astrophysics Data System (ADS)
Armas Rivera, Ivan; Beltrán Pérez, Georgina; Kuzin, Evgene; Castillo Mixcóatl, Juan; Muñoz Aguirre, Severino
2013-11-01
Optical fiber Q-Switch lasers have been used in a variety of application areas in science as well as in industry owing to their multiple characteristics. A possible application is that owing to their high output power they can be used as pumping sources for supercontinuum generation. Such source can be employed in optical coherence tomography (OCT) focused to dermatology. Therefore it is important to develop sources with emission wavelength that are not injurious to human skin. In the present work erbium doped fiber (EDF) was used owing that its emission wavelength (1550 nm) is adequate for this purpose. The most efficient way of achieving high power in a Q-Switch laser is optimizing all the parameters involved in the pulses generation, such as pumping power, active medium length and modulation frequency. The results show that using a fiber length of 7 meters is possible to get 10 μJ of energy, a peak power of 140 W, an average power of 27.5mW with temporal widths of 500 ns. The laser uses an acousto-optic device to modulate the internal loses inside the cavity. As highly reflecting mirrors, a Sagnac Interferometer and a Fiber Bragg Grating was employed.
Generation of singular optical beams from fundamental Gaussian beam using Sagnac interferometer
NASA Astrophysics Data System (ADS)
Naik, Dinesh N.; Viswanathan, Nirmal K.
2016-09-01
We propose a simple free-space optics recipe for the controlled generation of optical vortex beams with a vortex dipole or a single charge vortex, using an inherently stable Sagnac interferometer. We investigate the role played by the amplitude and phase differences in generating higher-order Gaussian beams from the fundamental Gaussian mode. Our simulation results reveal how important the control of both the amplitude and the phase difference between superposing beams is to achieving optical vortex beams. The creation of a vortex dipole from null interference is unveiled through the introduction of a lateral shear and a radial phase difference between two out-of-phase Gaussian beams. A stable and high quality optical vortex beam, equivalent to the first-order Laguerre-Gaussian beam, is synthesized by coupling lateral shear with linear phase difference, introduced orthogonal to the shear between two out-of-phase Gaussian beams.
A LWIR hyperspectral imager using a Sagnac interferometer and cooled HgCdTe detector array
NASA Astrophysics Data System (ADS)
Lucey, Paul G.; Wood, Mark; Crites, Sarah T.; Akagi, Jason
2012-06-01
LWIR hyperspectral imaging has a wide range of civil and military applications with its ability to sense chemical compositions at standoff ranges. Most recent implementations of this technology use spectrographs employing varying degrees of cryogenic cooling to reduce sensor self-emission that can severely limit sensitivity. We have taken an interferometric approach that promises to reduce the need for cooling while preserving high resolution. Reduced cooling has multiple benefits including faster system readiness from a power off state, lower mass, and potentially lower cost owing to lower system complexity. We coupled an uncooled Sagnac interferometer with a 256x320 mercury cadmium telluride array with an 11 micron cutoff to produce a spatial interferometric LWIR hyperspectral imaging system operating from 7.5 to 11 microns. The sensor was tested in ground-ground applications, and from a small aircraft producing spectral imagery including detection of gas emission from high vapor pressure liquids.
Features extraction algorithm about typical railway perimeter intrusion event
NASA Astrophysics Data System (ADS)
Zhou, Jieyun; Wang, Chaodong; Liu, Lihai
2017-10-01
Research purposes: Optical fiber vibration sensing system has been widely used in the oil, gas, frontier defence, prison and power industries. But, there are few reports about the application in railway defence. That is because the surrounding environment is complicated and there are many challenges to be overcomed in the optical fiber vibration sensing system application. For example, how to eliminate the effects of vibration caused by train, the natural environments such as wind and rain and how to identify and classify the intrusion events. In order to solve these problems, the feature signals of these events should be extracted firstly. Research conclusions: (1) In optical fiber vibration sensing system based on Sagnac interferometer, the peak-to-peak value, peak-to-average ratio, standard deviation, zero-crossing rate, short-term energy and kurtosis may serve as feature signals. (2) The feature signals of resting state, climbing concrete fence, breaking barbed wire, knocking concrete fence and rainstorm have been extracted, which shows significant difference among each other. (3) The research conclusions can be used in the identification and classification of intrusion events.
Electro-Optic Modulator and Method
An optical intensity modulator which uses a Sagnac interferometer having an electro - optic phase modulator therein. An electric modulation signal is...modulating the optical signals by the electrical signal, the electro - optic effect in the modulator phase shifts the optical signals with respect to one another
Performance Enhancement Of A Low Cost Multimode Fiber Optic Rotation Sensor
NASA Astrophysics Data System (ADS)
Fredricks, Ronald J.; Johnson, Dean R.
1989-02-01
Several fiber optic Sagnac interferometers employing multimode fiber of both high and ffedimiNrrumbers and simple LED light sources, have been designed and built by the authors over the past two years. New results showing improved performance fran that reported at the August '87 SPIE are given in this paper. The ratios of maximum unambiguous rate signal to random 3a drift signal are now in the range 50-150 a performance enhancement of between 4 and 10. We have found that a step index ring rather than a grajled Index one is necess for good driftperformance and that best results are obtained when all the other ring elements (PZT coary il and I/O slitter are also fabricated fram step index fiber. The 3a drifts in our 200 meter 10 cm diameter breadboards, in particular, are around 1°/sec. Using high V number fiber (100 pm/0.29 NA) no static mode mixers are required to desensitize this relatively short sense coil fram environmental pertubations. With unambiguous maxi rum rates on the order of ±200°/sec using simple detection of the MT fundamental signal the performance of these breadboard systems is now as good or better than many law cost "Coriolis" type rate sensors on the market.
1982-03-01
Gyroscopes .... ....... 2 1.2 Sagnac’s Interferometer ....... ........ . . 4 1.3 Harress ’ Ring Interferometer ....... ...... 5 1.4 Michelson & Gale...graduate student, Harress , performed an experi- ment in which he attempted to measure the dispersion properties of glass. Figure 1.3 shows Harress ...8217 experiment. The results from his experiment did not agree-with data obtained from other methods, and Harress did not live long enough to find the discrepancy
CW-pumped telecom band polarization entangled photon pair generation in a Sagnac interferometer.
Li, Yan; Zhou, Zhi-Yuan; Ding, Dong-Sheng; Shi, Bao-Sen
2015-11-02
Polarization entangled photon pair source is widely used in many quantum information processing applications such as teleportation, quantum communications, quantum computation and high precision quantum metrology. We report on the generation of a continuous-wave pumped 1550 nm polarization entangled photon pair source at telecom wavelength using a type-II periodically poled KTiOPO(4) (PPKTP) crystal in a Sagnac interferometer. Hong-Ou-Mandel (HOM) interference measurement yields signal and idler photon bandwidth of 2.4 nm. High quality of entanglement is verified by various kinds of measurements, for example two-photon interference fringes, Bell inequality and quantum states tomography. The source can be tuned over a broad range against temperature or pump power without loss of visibilities. This source will be used in our future experiments such as generation of orbital angular momentum entangled source at telecom wavelength for quantum frequency up-conversion, entanglement based quantum key distributions and many other quantum optics experiments at telecom wavelengths.
NASA Astrophysics Data System (ADS)
Sierra-Calderon, A.; Rodriguez-Novelo, J. C.; Gamez-Aviles, E.; May-Alarcon, M.; Toral-Cruz, H.; Alvarez-Chavez, J. A.
2016-09-01
The spectral noise characteristic and relative intensity noise of an all fibre Sagnac interferometer system consisting of a 980nm pump source at 130mW maximum output power, a 980/1550nm wavelength division multiplexer, a 10m-piece of Erbium-doped fibre, a fibre Bragg grating (FBG) centered at 1.548um, an optical circulator at 1550nm and a 50/50 fibre coupler, were measured with an optical spectrum analyzer (OSA) for fine tuning for a range of temperature between 5 and 180 degrees Celsius in step of 1 degree Celsius. At the probing end, a high-bi piece of fibre and a Peltier were employed for temperature variation of the system. Spectral and temperature response of the noise reduction due to temperature variation was performed remotely using and Arduino micro-controller and a DS18B20 digital sensor, into a local area network. Full optical and thermal characterization of the system will be included in the presentation.
Yin, Mojuan; Huang, Shenghong; Lu, Baole; Chen, Haowei; Ren, Zhaoyu; Bai, Jintao
2013-09-20
A high-slope-efficiency single-frequency (SF) ytterbium-doped fiber laser, based on a Sagnac loop mirror filter (LMF), was demonstrated. It combined a simple linear cavity with a Sagnac LMF that acted as a narrow-bandwidth filter to select the longitudinal modes. And we introduced a polarization controller to restrain the spatial hole burning effect in the linear cavity. The system could operate at a stable SF oscillating at 1064 nm with the obtained maximum output power of 32 mW. The slope efficiency was found to be primarily dependent on the reflectivity of the fiber Bragg grating. The slope efficiency of multi-longitudinal modes was higher than 45%, and the highest slope efficiency of the single longitudinal mode we achieved was 33.8%. The power stability and spectrum stability were <2% and <0.1%, respectively, and the signal-to-noise ratio measured was around 60 dB.
NASA Astrophysics Data System (ADS)
London, Yosef; Diamandi, Hilel Hagai; Zadok, Avi
2017-04-01
An opto-electronic radio-frequency oscillator that is based on forward scattering by the guided acoustic modes of a standard single-mode optical fiber is proposed and demonstrated. An optical pump wave is used to stimulate narrowband, resonant guided acoustic modes, which introduce phase modulation to a co-propagating optical probe wave. The phase modulation is converted to an intensity signal at the output of a Sagnac interferometer loop. The intensity waveform is detected, amplified, and driven back to modulate the optical pump. Oscillations are achieved at a frequency of 319 MHz, which matches the resonance of the acoustic mode that provides the largest phase modulation of the probe wave. Oscillations at the frequencies of competing acoustic modes are suppressed by at least 40 dB. The linewidth of the acoustic resonance is sufficiently narrow to provide oscillations at a single longitudinal mode of the hybrid cavity. Competing longitudinal modes are suppressed by at least 38 dB as well. Unlike other opto-electronic oscillators, no radio-frequency filtering is required within the hybrid cavity. The frequency of oscillations is entirely determined by the fiber opto-mechanics.
NASA Astrophysics Data System (ADS)
Bayliss, Stephen Carlton
An essential component in an ever-expanding global nuclear economy is the nondestructive assay (NDA) of nuclear materials. Accurate accounting of these materials helps to insure the safe handling and disposal of them and the accurate monitoring of these materials can help prevent their diversion. A particularly useful and important NDA technique has proven to be isothermal calorimetry. With state-of-the-art calorimeters, heat rates as low as a few milliwatts can be measured, which correspond to approximately one gram of plutonium or one milligram of tritium; two materials of particular interest. In addition, calorimetry is relatively insensitive to the matrix of the sample. This work reports on the development of a calorimeter technique based on fiber optics, which can greatly increase the sensitivity of the calorimeter compared with present day devices. Specifically, this device uses an optical fiber configuration based on the Sagnac interferometer. Fundamentally, the optical fiber is replacing the resistive wire used in conventional calorimeters. The optical fiber is wrapped around two "thermels;" a reference and a sample thermel; the thermal sample to be measured is placed in the sample thermel. The light within the optical fiber of the sample arm experiences a change in phase due to the change in the index of refraction caused by the thermal load. When this light mixes with the light from the reference arm, a change in the light intensity results. An electro-optic receiver converts the time-varying light intensity to a time-varying voltage output. It is this voltage output that is stored and analyzed. A prototype fiber calorimeter has been built and proved capable of measuring heat loads in the microwatt regime. This sensitivity represents a factor of a one thousand-fold improvement over conventional calorimeters. This would allow plutonium samples as small as one milligram to be measured and microgram quantities of tritium. In addition, gram quantities of 93% enriched uranium could be measured for the first time using calorimetry. This device has not been optimized with respect to background interferences (room thermal loads and acoustics), but indications are that the sensitivity could be improved further with more development.
High-sensitivity rotation sensing with atom interferometers using Aharonov-Bohm effect
NASA Astrophysics Data System (ADS)
Özcan, Meriac
2006-02-01
In recent years there has been significant activity in research and development of high sensitivity accelerometers and gyroscopes using atom interferometers. In these devices, a fringe shift in the interference of atom de Broglie waves indicates the rotation rate of the interferometer relative to an inertial frame of reference. In both optical and atomic conventional Sagnac interferometers, the resultant phase difference due to rotation is independent of the wave velocity. However, we show that if an atom interforemeter is enclosed in a Faraday cage which is at some potential, the phase difference of the counter-propagating waves is proportional to the inverse square of the particle velocity and it is proportional to the applied potential. This is due to Aharonov-Bohm effect and it can be used to increase the rotation sensitivity of atom interferometers.
Towards a fully integrated optical gyroscope using whispering gallery modes resonators
NASA Astrophysics Data System (ADS)
Amrane, T.; Jager, J.-B.; Jager, T.; Calvo, V.; Léger, J.-M.
2017-11-01
Since the developments of lasers and the optical fibers in the 70s, the optical gyroscopes have been subject to an intensive research to improve both their resolution and stability performances. However the best optical gyroscopes currently on the market, the ring laser gyroscope and the interferometer fiber optic gyroscope are still macroscopic devices and cannot address specific applications where size and weight constraints are critical. One solution to overcome these limitations could be to use an integrated resonator as a sensitive part to build a fully Integrated Optical Resonant Gyroscope (IORG). To keep a high rotation sensitivity, which is usually degraded when downsizing this kind of optical sensors based on the Sagnac effect, the resonator has to exhibit a very high quality factor (Q): as detailed in equation (1) where the minimum rotation rate resolution for an IORG is given as a function of the resonator characteristics (Q and diameter D) and of the global system optical system characteristics (i.e. SNR and bandwidth B), the higher the Q×D product, the lower the resolution.
Sagnac effect and Ritz ballistic hypothesis (Review)
NASA Astrophysics Data System (ADS)
Malykin, G. B.
2010-12-01
It is shown that the Ritz ballistic hypothesis, which is based on the vector summation of the speed of light with the velocity of the radiation source, contradicts the fact of existence of the Sagnac effect. Based on a particular example of a three-mirror ring interferometer, it is shown that the application of the Ritz ballistic hypothesis leads to an obvious calculation error, namely, to the appearance of a difference in the propagation times of counterpropagating waves in the absence of rotation. A review is given of experiments and of results of processing of astronomical observations and discussions devoted to testing the Ritz ballistic hypothesis. A number of other physical phenomena that refute the Ritz ballistic hypothesis are considered.
NASA Astrophysics Data System (ADS)
Wang, Bingjie; Pi, Shaohua; Sun, Qi; Jia, Bo
2015-05-01
An improved classification algorithm that considers multiscale wavelet packet Shannon entropy is proposed. Decomposition coefficients at all levels are obtained to build the initial Shannon entropy feature vector. After subtracting the Shannon entropy map of the background signal, components of the strongest discriminating power in the initial feature vector are picked out to rebuild the Shannon entropy feature vector, which is transferred to radial basis function (RBF) neural network for classification. Four types of man-made vibrational intrusion signals are recorded based on a modified Sagnac interferometer. The performance of the improved classification algorithm has been evaluated by the classification experiments via RBF neural network under different diffusion coefficients. An 85% classification accuracy rate is achieved, which is higher than the other common algorithms. The classification results show that this improved classification algorithm can be used to classify vibrational intrusion signals in an automatic real-time monitoring system.
Ultraspectral imaging for propulsion test monitoring
NASA Astrophysics Data System (ADS)
Otten, Leonard John, III; Jones, Bernard A.; Prinzing, Philip; Swantner, William H.; Rafert, Bruce
2002-02-01
Under a NASA Stennis Space Center (SSC) SBIR, technologies required for an imaging spectral radiometer with wavenumber spectral resolution and milliradian spatial resolution that operates over the 8 micrometers to 12 micrometers (LWIR), and 3 micrometers to 5 micrometers (MWIR) bands, for use in a non-intrusive monitoring static rocket firing application are being investigated. The research is based on a spatially modulated Fourier transform spectral imager to take advantage of the inherent benefits in these devices in the MWIR and LWIR. The research verified optical techniques that could be merged with a Sagnac interferometer to create conceptual designs for an LWIR imaging spectrometer that has a 0.4 cm-1 spectral resolution using an available HgCdTe detector. These same techniques produce an MWIR imaging spectrometer with 1.5 cm-1 spectral resolution based on a commercial InSb array. Initial laboratory measurements indicate that the modeled spectral resolution is being met. Applications to environmental measurement applications under standard temperatures can be undertaken by taking advantage of several unique features of the Sagnac interferometer in being able to decouple the limiting aperature from the spectral resolution.
Photonic crystal fiber sensing characteristics research based on alcohol asymmetry filling
NASA Astrophysics Data System (ADS)
Shi, Fu-quan; Luo, Yan; Li, Hai-tao; Peng, Bao-jin
2018-02-01
A new type of Sagnac fiber temperature sensor based on alcohol asymmetric filling photonic crystal fiber is proposed. First, the corrosion of photonic crystal fiber and the treatment of air hole collapse are carried out. Then, the asymmetric structure of photonic crystal fiber is filled with alcohol, and then the structure is connected to the Sagnac interference ring. When the temperature changes, the thermal expansion effect of filling alcohol will lead to the change of birefringence of photonic crystal fiber, so that the interference spectrum of the sensor will drift along with the change of temperature. The experimental results show that the interference red shift will occur with the increase of temperature, and the temperature sensitivity is 0.1864nm/ °C. The sensor has high sensitivity to temperature. At the same time, the structure has the advantages of high stability, anti electromagnetic interference and easy to build. It provides a new method for obtaining birefringence in ordinary photonic crystal fibers.
Composite-Light-Pulse Technique for High-Precision Atom Interferometry
NASA Astrophysics Data System (ADS)
Berg, P.; Abend, S.; Tackmann, G.; Schubert, C.; Giese, E.; Schleich, W. P.; Narducci, F. A.; Ertmer, W.; Rasel, E. M.
2015-02-01
We realize beam splitters and mirrors for atom waves by employing a sequence of light pulses rather than individual ones. In this way we can tailor atom interferometers with improved sensitivity and accuracy. We demonstrate our method of composite pulses by creating a symmetric matter-wave interferometer which combines the advantages of conventional Bragg- and Raman-type concepts. This feature leads to an interferometer with a high immunity to technical noise allowing us to devise a large-area Sagnac gyroscope yielding a phase shift of 6.5 rad due to the Earth's rotation. With this device we achieve a rotation rate precision of 120 nrad s-1 Hz-1 /2 and determine the Earth's rotation rate with a relative uncertainty of 1.2%.
Interferometric architectures based All-Optical logic design methods and their implementations
NASA Astrophysics Data System (ADS)
Singh, Karamdeep; Kaur, Gurmeet
2015-06-01
All-Optical Signal Processing is an emerging technology which can avoid costly Optical-electronic-optical (O-E-O) conversions which are usually compulsory in traditional Electronic Signal Processing systems, thus greatly enhancing operating bit rate with some added advantages such as electro-magnetic interference immunity and low power consumption etc. In order to implement complex signal processing tasks All-Optical logic gates are required as backbone elements. This review describes the advances in the field of All-Optical logic design methods based on interferometric architectures such as Mach-Zehnder Interferometer (MZI), Sagnac Interferometers and Ultrafast Non-Linear Interferometer (UNI). All-Optical logic implementations for realization of arithmetic and signal processing applications based on each interferometric arrangement are also presented in a categorized manner.
A variable partially polarizing beam splitter.
Flórez, Jefferson; Carlson, Nathan J; Nacke, Codey H; Giner, Lambert; Lundeen, Jeff S
2018-02-01
We present designs for variably polarizing beam splitters. These are beam splitters allowing the complete and independent control of the horizontal and vertical polarization splitting ratios. They have quantum optics and quantum information applications, such as quantum logic gates for quantum computing and non-local measurements for quantum state estimation. At the heart of each design is an interferometer. We experimentally demonstrate one particular implementation, a displaced Sagnac interferometer configuration, that provides an inherent instability to air currents and vibrations. Furthermore, this design does not require any custom-made optics but only common components which can be easily found in an optics laboratory.
A variable partially polarizing beam splitter
NASA Astrophysics Data System (ADS)
Flórez, Jefferson; Carlson, Nathan J.; Nacke, Codey H.; Giner, Lambert; Lundeen, Jeff S.
2018-02-01
We present designs for variably polarizing beam splitters. These are beam splitters allowing the complete and independent control of the horizontal and vertical polarization splitting ratios. They have quantum optics and quantum information applications, such as quantum logic gates for quantum computing and non-local measurements for quantum state estimation. At the heart of each design is an interferometer. We experimentally demonstrate one particular implementation, a displaced Sagnac interferometer configuration, that provides an inherent instability to air currents and vibrations. Furthermore, this design does not require any custom-made optics but only common components which can be easily found in an optics laboratory.
Fiber Bragg grating ring resonators under rotation for angular velocity sensing.
Campanella, C E; De Leonardis, F; Passaro, V M N
2015-05-20
In this paper we investigate the possibility of using hybrid resonators based on fiber Bragg grating ring resonators (FBGRRs) and π-shifted FBGRRs (i.e., defective FBGRRs) as rotation sensitive elements for gyroscope applications. In particular, we model the conventional fiber Bragg grating (FBG) with the coupled mode theory by taking into account how the Sagnac effect, induced by the rotation, modifies the eigenvalues, the photonic band gap, and the spectral response of the FBG. Then, on the basis of the FBG model under rotation conditions, the spectral responses of the FBGRR and π-FBGRR have been evaluated, confirming that the Sagnac effect manifests itself with a spectral shift of the eigensolutions. This physical investigation can be exploited for opening new ways in the optical gyroscope platforms.
NASA Astrophysics Data System (ADS)
Zhang, Xuyan; Zhang, Zhiyao; Wang, Shubing; Liang, Dong; Li, Heping; Liu, Yong
2018-03-01
We propose and demonstrate an approach that can achieve high-resolution quantization by employing soliton self-frequency shift and spectral compression. Our approach is based on a bi-directional comb-fiber architecture which is composed of a Sagnac-loop-based mirror and a comb-like combination of N sections of interleaved single-mode fibers and high nonlinear fibers. The Sagnac-loop-based mirror placed at the terminal of a bus line reflects the optical pulses back to the bus line to achieve additional N-stage spectral compression, thus single-stage soliton self-frequency shift (SSFS) and (2 N - 1)-stage spectral compression are realized in the bi-directional scheme. The fiber length in the architecture is numerically optimized, and the proposed quantization scheme is evaluated by both simulation and experiment in the case of N = 2. In the experiment, a quantization resolution of 6.2 bits is obtained, which is 1.2-bit higher than that of its uni-directional counterpart.
NASA Astrophysics Data System (ADS)
Zoiros, Kyriakos E.; Vardakas, John S.; Tsigkas, Marios
2010-07-01
The instantaneous frequency deviation of the pulses switched from a semiconductor optical amplifier (SOA)-assisted Sagnac interferometer is theoretically studied and analyzed. By using explicit expressions for the phase response and its temporal derivative and applying a numerical model, a set of curves is obtained that allows us to investigate and assess the dependence of the function of interest on the critical operational parameters. From their interpretation, the basic design rules that must govern them in order for its profile to acquire a form suitable for practical exploitation are extracted. These suggest that the combination of the energy of the driving control pulses and the small signal gain of the SOA must be such that the latter is biased to operate up to the medium saturation regime. Moreover, the width of these pulses must not exceed 10% of their allocated time slot, while the role of the loop asymmetry and the SOA carrier lifetime is found to be less significant. If these conditions are satisfied, then it is feasible to make out of most of the considered interferometric configuration's phase response variation per time increment while being employed as a switching module.
NASA Astrophysics Data System (ADS)
Liu, Haoliang; McLaughlin, Ryan; Sun, Dali; Valy Vardeny, Z.
2018-04-01
Coupling of spins and phonons in ferromagnets (FM) may persist up to mm length scale, thus generating macroscopic spatially distributed spin accumulation along the direction of an applied thermal gradient to an FM slab. This typical feature of transverse spin Seebeck effect (TSSE) has been demonstrated so far using electrical detection methods in FM films, in particular in a patterned structure, in which FM stripes grown onto a substrate perpendicular to the applied thermal gradient direction are electrically and magnetically isolated. Here we report optically detected TSSE response in isolated FM stripes based on permalloy deposited on SiN substrate, upon the application of a thermal gradient. For these measurements we used the magneto-optic Kerr effect measured by an ultrasensitive Sagnac interferometer microscope that is immune to thermo-electrics artefacts. We found that the optical TSSE coefficient in the NiFe stripes geometry is about one order of magnitude smaller than that in the continuous NiFe film, which is due to the limited phonons path in the FM stripes along the thermal gradient direction. Our results further confirm the existence of TSSE response in conducting FM compounds.
Anomalous amplification of a homodyne signal via almost-balanced weak values.
Liu, Wei-Tao; Martínez-Rincón, Julián; Viza, Gerardo I; Howell, John C
2017-03-01
We propose precision measurements of ultra-small angular velocities of a mirror within a modified Sagnac interferometer, where the counter-propagating beams are spatially separated, using the recently proposed technique of almost-balanced weak values amplification (ABWV) [Phys. Rev. Lett.116, 100803 (2016)PRLTAO0031-900710.1103/PhysRevLett.116.100803]. The separation between the two beams provides additional amplification with respect to using collinear beams in a Sagnac interferometer. Within the same setup, the weak-value amplification technique is also performed for comparison. Much higher amplification factors can be obtained using the almost-balanced weak values technique, with the best one achieved in our experiments being as high as 1.2×107. In addition, the amplification factor monotonically increases with decreasing of the post-selection phase for the ABWV case in our experiments, which is not the case for weak-value amplification (WVA) at small post-selection phases. Both techniques consist of measuring the angular velocity. The sensitivity of the ABWV technique is ∼38 nrad/s per averaged pulse for a repetition rate of 1 Hz and ∼33 nrad/s per averaged pulse for the WVA technique.
Quantum-projection-noise-limited interferometry with coherent atoms in a Ramsey-type setup
DOE Office of Scientific and Technical Information (OSTI.GOV)
Doering, D.; McDonald, G.; Debs, J. E.
2010-04-15
Every measurement of the population in an uncorrelated ensemble of two-level systems is limited by what is known as the quantum projection noise limit. Here, we present quantum-projection-noise-limited performance of a Ramsey-type interferometer using freely propagating coherent atoms. The experimental setup is based on an electro-optic modulator in an inherently stable Sagnac interferometer, optically coupling the two interfering atomic states via a two-photon Raman transition. Going beyond the quantum projection noise limit requires the use of reduced quantum uncertainty (squeezed) states. The experiment described demonstrates atom interferometry at the fundamental noise level and allows the observation of possible squeezing effectsmore » in an atom laser, potentially leading to improved sensitivity in atom interferometers.« less
New Frontiers at the Interface of General Relativity and Quantum Optics
NASA Astrophysics Data System (ADS)
Feiler, C.; Buser, M.; Kajari, E.; Schleich, W. P.; Rasel, E. M.; O'Connell, R. F.
2009-12-01
In the present paper we follow three major themes: (i) concepts of rotation in general relativity, (ii) effects induced by these generalized rotations, and (iii) their measurement using interferometry. Our journey takes us from the Foucault pendulum via the Sagnac interferometer to manifestations of gravito-magnetism in double binary pulsars and in Gödel’s Universe. Throughout our article we emphasize the emerging role of matter wave interferometry based on cold atoms or Bose-Einstein condensates leading to superior inertial sensors. In particular, we advertise recent activities directed towards the operation of a coherent matter wave interferometer in an extended free fall.
Time-reversal symmetry-breaking superconductivity in epitaxial bismuth/nickel bilayers.
Gong, Xinxin; Kargarian, Mehdi; Stern, Alex; Yue, Di; Zhou, Hexin; Jin, Xiaofeng; Galitski, Victor M; Yakovenko, Victor M; Xia, Jing
2017-03-01
Superconductivity that spontaneously breaks time-reversal symmetry (TRS) has been found, so far, only in a handful of three-dimensional (3D) crystals with bulk inversion symmetry. We report an observation of spontaneous TRS breaking in a 2D superconducting system without inversion symmetry: the epitaxial bilayer films of bismuth and nickel. The evidence comes from the onset of the polar Kerr effect at the superconducting transition in the absence of an external magnetic field, detected by the ultrasensitive loop-less fiber-optic Sagnac interferometer. Because of strong spin-orbit interaction and lack of inversion symmetry in a Bi/Ni bilayer, superconducting pairing cannot be classified as singlet or triplet. We propose a theoretical model where magnetic fluctuations in Ni induce the superconducting pairing of the [Formula: see text] orbital symmetry between the electrons in Bi. In this model, the order parameter spontaneously breaks the TRS and has a nonzero phase winding number around the Fermi surface, thus making it a rare example of a 2D topological superconductor.
In-Line Fiber Optic Interferometric Sensors in Single-Mode Fibers
Zhu, Tao; Wu, Di; Liu, Min; Duan, De-Wen
2012-01-01
In-line fiber optic interferometers have attracted intensive attention for their potential sensing applications in refractive index, temperature, pressure and strain measurement, etc. Typical in-line fiber-optic interferometers are of two types: Fabry-Perot interferometers and core-cladding-mode interferometers. It's known that the in-line fiber optic interferometers based on single-mode fibers can exhibit compact structures, easy fabrication and low cost. In this paper, we review two kinds of typical in-line fiber optic interferometers formed in single-mode fibers fabricated with different post-processing techniques. Also, some recently reported specific technologies for fabricating such fiber optic interferometers are presented. PMID:23112608
White light Sagnac interferometer—a common (path) tale of light
NASA Astrophysics Data System (ADS)
Schwartz, Eyal
2017-11-01
White or polychromatic light sources are vastly abundant in nature and lie in our most basic understanding of the theory of light, beginning from stars like our Sun and extending to every common household light bulb or street lamp. In this paper, I present concepts of white light interferometery using a common-path Sagnac interferometer, manifested in a straightforward laboratory experiment. I further show the use of this as a Fourier transform spectrometer while presenting a basic overview of the theoretical concepts and spectrum of different light sources obtained experimentally. This work, both experimentally and analytically, is suitable for upper-level undergraduate physics or engineering courses where electromagnetic theory and optics are discussed. The experiment and theory presents important deep concepts and aspects in modern optics and physics that every science student should acquire.
Observation of the quantum paradox of separation of a single photon from one of its properties
NASA Astrophysics Data System (ADS)
Ashby, James M.; Schwarz, Peter D.; Schlosshauer, Maximilian
2016-07-01
We report an experimental realization of the quantum paradox of the separation of a single photon from one of its properties (the so-called "quantum Cheshire cat"). We use a modified Sagnac interferometer with displaced paths to produce appropriately pre- and postselected states of heralded single photons. Weak measurements of photon presence and circular polarization are performed in each arm of the interferometer by introducing weak absorbers and small polarization rotations and analyzing changes in the postselected signal. The absorber is found to have an appreciable effect only in one arm of the interferometer, while the polarization rotation significantly affects the signal only when performed in the other arm. We carry out both sequential and simultaneous weak measurements and find good agreement between measured and predicted weak values. In the language of Aharonov et al. and in the sense of the ensemble averages described by weak values, the experiment establishes the separation of a particle from one its properties during the passage through the interferometer.
Lenzner, Matthias; Diels, Jean -Claude
2017-03-09
A spectrometer based on a Sagnac interferometer, where one of the mirrors is replaced by a transmission grating, is introduced. Since the action of a transmission grating is reversible, both directions experience the same diffraction at a given wavelength. At the output, the crossed wavefronts are imaged onto a camera, where their Fizeau fringe pattern is recorded. Each spectral element produces a unique spatial frequency, hence the Fourier transform of the recorded interferogram contains the spectrum. Since the grating is tuned to place zero spatial frequency at a selected wavelength, the adjoining spectrum is heterodyned with respect to this wavelength.more » This spectrum can then be discriminated at a high spectral resolution from relatively low spatial frequencies. The spectrometer can be designed without moving parts for a relatively narrow spectral range or with a rotatable grating. As a result, the latter version bears the potential to be calibrated without a calibrated light source.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lenzner, Matthias; Diels, Jean -Claude
A spectrometer based on a Sagnac interferometer, where one of the mirrors is replaced by a transmission grating, is introduced. Since the action of a transmission grating is reversible, both directions experience the same diffraction at a given wavelength. At the output, the crossed wavefronts are imaged onto a camera, where their Fizeau fringe pattern is recorded. Each spectral element produces a unique spatial frequency, hence the Fourier transform of the recorded interferogram contains the spectrum. Since the grating is tuned to place zero spatial frequency at a selected wavelength, the adjoining spectrum is heterodyned with respect to this wavelength.more » This spectrum can then be discriminated at a high spectral resolution from relatively low spatial frequencies. The spectrometer can be designed without moving parts for a relatively narrow spectral range or with a rotatable grating. As a result, the latter version bears the potential to be calibrated without a calibrated light source.« less
Observation of an optical spring with a beam splitter
NASA Astrophysics Data System (ADS)
Cripe, Jonathan; Danz, Baylee; Lane, Benjamin; Lorio, Mary Catherine; Falcone, Julia; Cole, Garrett D.; Corbitt, Thomas
2018-05-01
We present the experimental observation of an optical spring without the use of an optical cavity. The optical spring is produced by interference at a beamsplitter and, in principle, does not have the damping force associated with optical springs created in detuned cavities. The experiment consists of a Michelson-Sagnac interferometer (with no recycling cavities) with a partially reflective GaAs microresonator as the beamsplitter that produces the optical spring. Our experimental measurements at input powers of up to 360 mW show the shift of the optical spring frequency as a function of power and are in excellent agreement with theoretical predictions. In addition, we show that the optical spring is able to keep the interferometer stable and locked without the use of external feedback.
White Light Sagnac Interferometer for Snapshot Multispectral Imaging (Preprint)
2009-01-01
normalized difference vegetation index ( NDVI ) provided in Fig. 12 (b). The NDVI is calculated by ( ) ( ) ( )( ) ( ) , ,2 , ,3 , , ,2 , ,3 I l n I l n NDVI ... NDVI . Conversely, if the leaf has little to no chlorophyll, order 3 will have nearly equal reflected energy compared to order 2, yielding a low NDVI ...This is observed in the NDVI image, where the upper left portion of the scene (quadrant 2) contains the unhealthy leaf, while the lower right region
Time-reversal symmetry-breaking superconductivity in epitaxial bismuth/nickel bilayers
Gong, Xinxin; Kargarian, Mehdi; Stern, Alex; ...
2017-03-31
Superconductivity that spontaneously breaks time-reversal symmetry (TRS) has been found, so far, only in a handful of three-dimensional (3D) crystals with bulk inversion symmetry. We report an observation of spontaneous TRS breaking in a 2D superconducting system without inversion symmetry: the epitaxial bilayer films of bismuth and nickel. The evidence comes from the onset of the polar Kerr effect at the superconducting transition in the absence of an external magnetic field, detected by the ultrasensitive loop-less fiber-optic Sagnac interferometer. Because of strong spin-orbit interaction and lack of inversion symmetry in a Bi/Ni bilayer, superconducting pairing cannot be classified as singletmore » or triplet.We propose a theoretical model where magnetic fluctuations in Ni induce the superconducting pairing of the d xy ± id x2-y2 orbital symmetry between the electrons in Bi. In this model, the order parameter spontaneously breaks the TRS and has a nonzero phase winding number around the Fermi surface, thus making it a rare example of a 2D topological superconductor.« less
Vernier effect-based multiplication of the Sagnac beating frequency in ring laser gyroscope sensors
NASA Astrophysics Data System (ADS)
Adib, George A.; Sabry, Yasser M.; Khalil, Diaa
2018-02-01
A multiplication method of the Sagnac effect scale factor in ring laser gyroscopes is presented based on the Vernier effect of a dual-coupler passive ring resonator coupled to the active ring. The multiplication occurs when the two rings have comparable lengths or integer multiples and their scale factors have opposite signs. In this case, and when the rings have similar areas, the scale factor is multiplied by ratio of their length to their length difference. The scale factor of the presented configuration is derived analytically and the lock-in effect is analyzed. The principle is demonstrated using optical fiber rings and semiconductor optical amplifier as gain medium. A scale factor multiplication by about 175 is experimentally measured, demonstrating larger than two orders of magnitude enhancement in the Sagnac effect scale factor for the first time in literature, up to the authors' knowledge.
Characterization and limits of a cold-atom Sagnac interferometer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gauguet, A.; Canuel, B.; Leveque, T.
2009-12-15
We present the full evaluation of a cold-atom gyroscope based on atom interferometry. We have performed extensive studies to determine the systematic errors, scale factor and sensitivity. We demonstrate that the acceleration noise can be efficiently removed from the rotation signal, allowing us to reach the fundamental limit of the quantum projection noise for short term measurements. The technical limits to the long term sensitivity and accuracy have been identified, clearing the way for the next generation of ultrasensitive atom gyroscopes.
Observation of an optical spring with a beam splitter.
Cripe, Jonathan; Danz, Baylee; Lane, Benjamin; Lorio, Mary Catherine; Falcone, Julia; Cole, Garrett D; Corbitt, Thomas
2018-05-01
We present the experimental observation of an optical spring without the use of an optical cavity. The optical spring is produced by interference at a beam splitter and, in principle, does not have the damping force associated with optical springs created in detuned cavities. The experiment consists of a Michelson-Sagnac interferometer (with no recycling cavities) with a partially reflective GaAs microresonator as the beam splitter that produces the optical spring. Our experimental measurements at input powers of up to 360 mW show the shift of the optical spring frequency as a function of power and are in excellent agreement with theoretical predictions. In addition, we show that the optical spring is able to keep the interferometer stable and locked without the use of external feedback.
New methods of multimode fiber interferometer signal processing
NASA Astrophysics Data System (ADS)
Vitrik, Oleg B.; Kulchin, Yuri N.; Maxaev, Oleg G.; Kirichenko, Oleg V.; Kamenev, Oleg T.; Petrov, Yuri S.
1995-06-01
New methods of multimode fiber interferometers signal processing are suggested. For scheme of single fiber multimode interferometers with two excited modes, the method based on using of special fiber unit is developed. This unit provides the modes interaction and further sum optical field filtering. As a result the amplitude of output signal is modulated by external influence on interferometer. The stabilization of interferometer sensitivity is achieved by using additional special modulation of output signal. For scheme of single fiber multimode interferometers with excitation of wide mode spectrum, the signal of intermode interference is registered by photodiode matrix and then special electronic unit performs correlation processing. For elimination of temperature destabilization, the registered signal is adopted to multimode interferometers optical signal temperature changes. The achieved parameters for double mode scheme: temporary stability--0.6% per hour, sensitivity to interferometer length deviations--3,2 nm; for multimode scheme: temperature stability--(0.5%)/(K), temporary nonstability--0.2% per hour, sensitivity to interferometer length deviations--20 nm, dynamic range--35 dB.
Near-common-path interferometer for imaging Fourier-transform spectroscopy in wide-field microscopy
Wadduwage, Dushan N.; Singh, Vijay Raj; Choi, Heejin; Yaqoob, Zahid; Heemskerk, Hans; Matsudaira, Paul; So, Peter T. C.
2017-01-01
Imaging Fourier-transform spectroscopy (IFTS) is a powerful method for biological hyperspectral analysis based on various imaging modalities, such as fluorescence or Raman. Since the measurements are taken in the Fourier space of the spectrum, it can also take advantage of compressed sensing strategies. IFTS has been readily implemented in high-throughput, high-content microscope systems based on wide-field imaging modalities. However, there are limitations in existing wide-field IFTS designs. Non-common-path approaches are less phase-stable. Alternatively, designs based on the common-path Sagnac interferometer are stable, but incompatible with high-throughput imaging. They require exhaustive sequential scanning over large interferometric path delays, making compressive strategic data acquisition impossible. In this paper, we present a novel phase-stable, near-common-path interferometer enabling high-throughput hyperspectral imaging based on strategic data acquisition. Our results suggest that this approach can improve throughput over those of many other wide-field spectral techniques by more than an order of magnitude without compromising phase stability. PMID:29392168
NASA Astrophysics Data System (ADS)
Bulushev, A. G.; Dianov, Evgenii M.; Kuznetsov, A. V.; Okhotnikov, O. G.; Paramonov, Vladimir M.; Tsarev, Vladimir A.
1990-05-01
A study was made of the use of single-mode fiber ring interferometers in narrowing the emission lines of semiconductor lasers and increasing the optical radiation power. Efficient coupling of radiation, emitted by a multifrequency injection laser with an external resonator, into a fiber ring interferometer was achieved both under cw and mode-locking conditions. Matching of the optical lengths of the external resonator and the fiber interferometer made it possible to determine the mode width for this laser. A method for generation of optical pulses in a fiber ring interferometer from cw frequency modulated radiation was developed.
FIBER OPTICS: Polarization phase nonreciprocity in all-fiber ring interferometers
NASA Astrophysics Data System (ADS)
Andreev, A. Ts; Vasilev, V. D.; Kozlov, V. A.; Kuznetsov, A. V.; Senatorov, A. A.; Shubochkin, R. L.
1993-08-01
The polarization phase nonreciprocity in all-fiber ring interferometers based on single-mode optical fibers was studied experimentally. The results confirm existing theoretical models. Experimentally, it was possible to use fiber ring interferometers to measure the extinction coefficients of optical fiber polarizers. The largest extinction coefficients found for optical-fiber polarizers were 84 dB (for the wavelength 0.82 μm) and 86 dB (1.3 μm).
Xu, Ming; Yang, Wan; Hong, Tao; Kang, TangZhen; Ji, JianHua; Wang, Ke
2017-06-01
Ultrafast all-optical flip-flop based on a passive micro Sagnac waveguide ring is studied through theoretical analysis and numerical simulation in this paper. The types of D, R-S, J-K, and T flip-flop are designed by controlling the cross-phase modulation effect of lights in this special microring. The high nonlinearity of the hollow-core photonic crystal fiber is implanted on a chip to shorten the length of the ring and reduce input power. By sensible management, the pulse width ratio of the input and the control signal, problems of pulse narrowing, and residual pedestal at the out port are solved. The parameters affecting the performance of flip-flops are optimized. The results show that the all-optical flip-flops have stable performance, low power consumption, high transmission rate (up to 100 Gb/s), and response time in picosecond order. The small size microwaveguide structure is suitable for photonic integration.
NASA Astrophysics Data System (ADS)
Song, Huaqing; Wang, Qi; Wang, Dongdong; Li, Li
2018-03-01
In this paper, we demonstrated passively Q-switched wavelength-tunable 1-μm fiber lasers utilizing few-layer black phosphorus saturable absorbers. The few-layer BP was deposited onto the tapered fibers by an optically driven process. The wavelength tunability was achieved with a fiber Sagnac loop comprised of a piece of polarization maintaining fiber and a polarization controller. Stable Q-switching laser operations were observed at wavelengths ranging from 1040.5 to 1044.6 nm at threshold pump power of 220 mW. Maximal pulse energy of 141.27 nJ at a repetition rate of 63 kHz was recorded under pump power of 445 mW.
NASA Astrophysics Data System (ADS)
Chen, Wei-Guo; Lou, Shu-Qin; Wang, Li-Wen; Li, Hong-Lei; Guo, Tieying; Jian, Shui-Sheng
2010-03-01
The switchable dual-wavelength erbium-doped fiber laser (EDFL) with a two-mode photonic crystal fiber (PCF) loop mirror and a chirped fiber Bragg grating (CFBG) at room temperature is proposed and experimentally demonstrated. The two-mode PCF loop mirror is formed by inserting a piece of two-mode PCF into a Sagnac loop mirror, with the air-holes of the PCF intentionally collapsing at the splices. By adjusting the state of the polarization controller (PC) appropriately, the laser can be switched between the stable single- and dual-wavelength operations by means of the polarization hole burning (PHB) and spectral hole burning (SHB) effects.
Sagnac interferometry with coherent vortex superposition states in exciton-polariton condensates
NASA Astrophysics Data System (ADS)
Moxley, Frederick Ira; Dowling, Jonathan P.; Dai, Weizhong; Byrnes, Tim
2016-05-01
We investigate prospects of using counter-rotating vortex superposition states in nonequilibrium exciton-polariton Bose-Einstein condensates for the purposes of Sagnac interferometry. We first investigate the stability of vortex-antivortex superposition states, and show that they survive at steady state in a variety of configurations. Counter-rotating vortex superpositions are of potential interest to gyroscope and seismometer applications for detecting rotations. Methods of improving the sensitivity are investigated by targeting high momentum states via metastable condensation, and the application of periodic lattices. The sensitivity of the polariton gyroscope is compared to its optical and atomic counterparts. Due to the large interferometer areas in optical systems and small de Broglie wavelengths for atomic BECs, the sensitivity per detected photon is found to be considerably less for the polariton gyroscope than with competing methods. However, polariton gyroscopes have an advantage over atomic BECs in a high signal-to-noise ratio, and have other practical advantages such as room-temperature operation, area independence, and robust design. We estimate that the final sensitivities including signal-to-noise aspects are competitive with existing methods.
NASA Astrophysics Data System (ADS)
Salceda-Delgado, G.; Martinez-Rios, A.; Sierra-Hernandez, J. M.; Rodríguez-Carreón, V. C.; Toral-Acosta, D.; Selvas-Aguilar, R.; Álvarez-Tamayo, R. I.; Castillo-Guzman, A. A.; Rojas-Laguna, R.
2018-03-01
A straightforward and versatile method for switching from single to different multiwavelength laser emission in ring cavity fiber lasers is proposed and demonstrated experimentally. The method is based on using the changeable interference pattern from an optical fiber modal Michelson interferometer as a wavelength selective filter into the ring cavity laser. The interferometer is constructed using a bi-conical tapered fiber and a single-mode fiber segment, with these being spliced together to form an optical fiber tip probe. When the length of the single-mode fiber piece is modified, the phase difference between the interfering modes of the interferometer causes a change in the interferometer free spectral range. As a consequence, the laser intra-cavity losses lead to gain competition, which allows us to adjust the number of simultaneously generated laser lines. A multiwavelength reconfiguration of the laser from one up to a maximum of eight emission lines was obtained, with a maximum SNR of around 47 dBm.
NASA Technical Reports Server (NTRS)
Ni, Wei-Tou; Shy, Jow-Tsong; Tseng, Shiao-Min; Shao, Michael
1992-01-01
A propasal to study the second order light deflection in the solar gravitational field is presented. It is proposed to use 1 to 2 W frequency stabilized lasers on two microspacecraft about 0.25 degree apart in the sky with apparent positions near the Sun, and observe the relative angle of two spacecraft using ground based fiber linked interferometers with 10 km baseline to determine the second order relativistic light deflection effects. The first two years of work would emphasize the establishment of a prototype stabilized laser system and fiber linked interferometer. The first year, a prototype fiber linked interferometer would be set up to study the phase noise produced by external perturbations to fiber links. The second year, a second interferometer would be set up. The cancellation of phase drift due to fiber links of both interferometers in the same environment would be investigated.
Cold Atom Optics on Ground and in Space
NASA Astrophysics Data System (ADS)
Rasel, E. M.
Microgravity is the ultimate laboratory environment for experiments in fundamental physics based on cold atoms. The talk will give a survey of recent activities on atomic quantum sensors and atom lasers. Inertial atomic quantum sensors are a promising and complementary technique for experiments in fundamental physics. Pioneering experiments at Yale [1,2] and Stanford [3] displayed recently the fascinating potential of matter-wave interferometers for precision measurements. The talk will present the status of a transportable matter-wave sensor under development at the Institut für Quantenoptik in Hannover: CASI. CASI stands for Cold Atom Sagnac Interferometer. The use of cold atoms makes it possible to realise compact devices with sensitivities competitive with classical state-of-the-art sensors. CASI's projected sensitivity is about 10-9 rad/ssurd Hz at the projection noise limit. The heart of our set-up will be a 15cm-long Mach-Zehnder interferometer formed by coherently splitting the atoms with Raman-type interactions. CASI is designed as a movable device, that it can be compared with other matter-wave sensors such as the cold caesium atom gyroscope at the BNM-SYRTE in Paris [4]. CASI is intimately connected with HYPER, an European initiative to send four atom interferometers in space hosted on a drag-free satellite. Main emphasis of the mission is placed on the mapping of the Earth's Lense-Thirring effect. Tests of the Equivalence Principle is under consideration as an alternative goal of high scientific value. HYPER was selected three years ago by the European Space Agency (ESA) as candidate for a future small-satellite mission within the next 10 to 15 years and is supported with detailed feasibility studies [5]. The latest status of the mission will be given. [1] T.L. Gustavson, A. Landragin, M.A, Kasevich, Rotation sensing with a dual atom-interferometer Sagnac gyroscope, Class. Quantum Grav. 17, 2385-2398 (2000) [2] J.M. McGuirk, G.T. Foster, J.B. Fixler, M.J. Snadden, M.A. Kasevich, Sensitive absolute-gravity gradiometry using atom interferometry, Phys. Rev. A 65, 033608-1 (2002) [3] A. Peters, K.Y. Chung, S. Chu, High-precision gravity measurements using atom interferometry, Metrologia 38, 25-61 (2001) [4] F. Yver-Leduc, P. Cheinet, J. Fils, A. Clairon, N. Dimarcq, D. Holleville, P. Bouyer, and A. Landragin. A. J. Opt. B : Quant. Semiclass. Opt. 5, S136 (2003) [5] http://sci.esa.int/home/hyper/index.cfm
Optofluidic in-fiber interferometer based on hollow optical fiber with two cores.
Yuan, Tingting; Yang, Xinghua; Liu, Zhihai; Yang, Jun; Li, Song; Kong, Depeng; Qi, Xiuxiu; Yu, Wenting; Long, Qunlong; Yuan, Libo
2017-07-24
We demonstrate a novel integrated optical fiber interferometer for in-fiber optofluidic detection. It is composed of a specially designed hollow optical fiber with a micro-channel and two cores. One core on the inner surface of the micro-channel is served as sensing arm and the other core in the annular cladding is served as reference arm. Fusion-and-tapering method is employed to couple light from a single mode fiber to the hollow optical fiber in this device. Sampling is realized by side opening a microhole on the surface of the hollow optical fiber. Under differential pressure between the end of the hollow fiber and the microhole, the liquids can form steady microflows in the micro-channel. Simultaneously, the interference spectrum of the interferometer device shifts with the variation of the concentration of the microfluid in the channel. The optofluidic in-fiber interferometer has a sensitivity of refractive index around 2508 nm/RIU for NaCl. For medicine concentration detection, its sensitivity is 0.076 nm/mmolL -1 for ascorbic acid. Significantly, this work presents a compact microfluidic in-fiber interferometer with a micro-channel which can be integrated with chip devices without spatial optical coupling and without complex manufacturing procedure of the waveguide on the chips.
An extrinsic fiber Fabry-Perot interferometer for dynamic displacement measurement
NASA Astrophysics Data System (ADS)
Pullteap, S.; Seat, H. C.
2015-03-01
A versatile fiber interferometer was proposed for high precision measurement. The sensor exploited a double-cavity within the unique sensing arm of an extrinsic-type fiber Fabry-Perot interferometer to produce the quadrature phase-shifted interference fringes. Interference signal processing was carried out using a modified zero-crossing (fringe) counting technique to demodulate two sets of fringes. The fiber interferometer has been successfully employed for dynamic displacement measurement under different displacement profiles over a range of 0.7 μm to 140 μm. A dedicated computer incorporating the demodulation algorithm was next used to interpret these detected data as well as plot the displacement information with a resolution of λ/64. A commercial displacement sensor was employed for comparison purposes with the experimental data obtained from the fiber interferometer as well as to gauge its performance, resulting in the maximum error of 2.8% over the entire displacement range studied.
Diffraction of V-point singularities through triangular apertures.
Ram, B S Bhargava; Sharma, Anurag; Senthilkumaran, P
2017-05-01
In this paper we present experimental studies on diffraction of V-point singularities through equilateral and isosceles right triangular apertures. When V-point index, also called Poincare-Hopf index (η), of the optical field is +1, the diffraction disintegrates it into two monstars/lemons. When V-point index η is -1, diffraction produces two stars. The diffraction pattern, unlike phase singularity, is insensitive to polarity of the polarization singularity and the intensity pattern remains invariant. Higher order V-point singularities are generated using Sagnac interferometer and it is observed that the diffraction disintegrates them into lower order C-points.
Distributed optical fiber vibration sensor based on Sagnac interference in conjunction with OTDR.
Pan, Chao; Liu, Xiaorui; Zhu, Hui; Shan, Xuekang; Sun, Xiaohan
2017-08-21
A real-time distributed optical fiber vibration sensing prototype based on the Sagnac interference in conjunction with the optical time domain reflectometry (OTDR) was developed. The sensing mechanism for single- and multi-points vibrations along the sensing fiber was analyzed theoretically and demonstrated experimentally. The experimental results show excellent agreement with the theoretical models. It is verified that single-point vibration induces a significantly abrupt and monotonous power change in the corresponding position of OTDR trace. As to multi-points vibrations, the detection of the following vibration is influenced by all previous ones. However, if the distance between the adjacent two vibrations is larger than half of the input optical pulse width, abrupt power changes induced by them are separate and still monotonous. A time-shifting differential module was developed and carried out to convert vibration-induced power changes to pulses. Consequently, vibrations can be located accurately by measuring peak or valley positions of the vibration-induced pulses. It is demonstrated that when the width and peak power of input optical pulse are set to 1 μs and 35 mW, respectively, the position error is less than ± 0.5 m in a sensing range of more than 16 km, with the spatial resolution of ~110 m.
Vibration sensing using a tapered bend-insensitive fiber based Mach-Zehnder interferometer.
Xu, Yanping; Lu, Ping; Qin, Zengguang; Harris, Jeremie; Baset, Farhana; Lu, Ping; Bhardwaj, Vedula Ravi; Bao, Xiaoyi
2013-02-11
In this study, a novel fiber-optic sensor consisting of a tapered bend-insensitive fiber based Mach-Zehnder interferometer is presented to realize damped and continuous vibration measurement. The double cladding structure and the central coating region of the in-fiber interferometer ensure an enhanced mechanical strength, reduced external disturbance, and a more uniform spectrum. A damped vibration frequency range of 29-60 Hz as well as continuous vibration disturbances ranging from 1 Hz up to 500 kHz are successfully demonstrated.
Tunable thulium-doped fiber laser based on an abrupt-tapered in-fiber interferometer
NASA Astrophysics Data System (ADS)
Hernández-Arriaga, M. V.; Durán-Sánchez, M.; Ibarra-Escamilla, B.; Álvarez-Tamayo, R. I.; Santiago-Hernández, H.; Bello-Jiménez, M.; Kuzin, E. A.
2017-11-01
An experimental study of an all-fiber tunable thulium-doped fiber laser based on an abrupt-tapered in-fiber interferometer is presented. A microfiber filter with length of 6 mm and diameter of 20 μm is used to achieve single laser wavelength tuning in a range of 19.4 nm and dual-wavelength laser operation at 1761.8 and 1793.4 nm with a channel spacing of 31.6 nm. The abrupt-tapered structure allows multi-modal interference at the air-cladding interface. The proposed in-fiber interferometer exhibits characteristics of low cost and simple fabrication, making it suitable for practical applications in wavelength filtering and wavelength selection in all-fiber lasers.
Optical refractometer based on an asymmetrical twin-core fiber Michelson interferometer.
Zhou, Ai; Zhang, Yanhui; Li, Guangping; Yang, Jun; Wang, Yuzhuo; Tian, Fengjun; Yuan, Libo
2011-08-15
We report and demonstrate an optical refractometer based on a compact fiber Michelson interferometer. The Michelson interferometer is composed of an asymmetrical twin-core fiber containing a central core and a side core. By chemically etching a segment of the twin-core fiber until the side core is exposed, the effective index of the side core in the etched region is sensitive to the environmental refractive index, which leads to a shift of the transmission spectrum of the Michelson interferometer. The experimental results show that such a device has a refractive index resolution of more than 800 nm/refractive index unit in the range of 1.34-1.37. © 2011 Optical Society of America
NASA Astrophysics Data System (ADS)
Chen, Xinwei; He, Shengnan; Li, Dandan; Wang, Kai; Fan, Yan'en; Wu, Shuai
2014-11-01
We present an optical fiber voltage sensor by Michelsion interferometer (MI) employing a Fabry-Perot (F-P) interferometer and the DC phase tracking (DCPT) signal processing method. By mounting a MI fabricated by an optical fiber coupler on a piezoelectric (PZT) transducer bar, a dynamic strain would be generated to change the optical path difference (OPD) of the interferometer when the measured voltage was applied on the PZT. Applying an F-P interferometer to demodulate the optical intensity variation output of the MI, the voltage can be obtained. The experiment results show that the relationship between the optical intensity variation and the voltage applied on the PZT is approximately linear. Furthermore, the phase generate carrier (PGC) algorithm was applied to demodulate the output of the sensor also.
All-fiber Mach-Zehnder type interferometers formed in photonic crystal fiber
NASA Astrophysics Data System (ADS)
Choi, Hae Young; Kim, Myoung Jin; Lee, Byeong Ha
2007-04-01
We propose simple and compact methods for implementing all-fiber interferometers. The interference between the core and the cladding modes of a photonic crystal fiber (PCF) is utilized. To excite the cladding modes from the fundamental core mode of a PCF, a coupling point or region is formed by using two methods. One is fusion splicing two pieces of a PCF with a small lateral offset, and the other is partially collapsing the air-holes in a single piece of PCF. By making another coupling point at a different location along the fiber, the proposed all-PCF interferometer is implemented. The spectral response of the interferometer is investigated mainly in terms of its wavelength spectrum. The spatial frequency of the spectrum was proportional to the physical length of the interferometer and the difference between the modal group indices of involved waveguide modes. For the splicing type interferometer, only a single spatial frequency component was dominantly observed, while the collapsing type was associated with several components at a time. By analyzing the spatial frequency spectrum of the wavelength spectrum, the modal group index differences of the PCF were obtained from to . As potential applications of the all-PCF interferometer, strain sensing is experimentally demonstrated and ultra-high temperature sensing is proposed.
Photonic crystal fiber modal interferometer based on thin-core-fiber mode exciter.
Miao, Yinping; Ma, Xixi; Wu, Jixuan; Song, Binbin; Zhang, Hao; Liu, Bo; Yao, Jianquan
2015-11-10
A thin-core-fiber excited photonic crystal fiber modal interferometer has been proposed and experimentally demonstrated. By employing a thin-core fiber as the mode exciter, both of the core and cladding modes propagate in the photonic crystal fiber and interfere with each other. The experimental results show that the transmission dips corresponding to different-order modes have various strain responses with opposite shift directions. The strain sensitivity could be improved to 58.57 pm/με for the applied strain from 0 to 491 με by utilizing the wavelength interval between the dips with opposite shift directions. Moreover, due to the pure silica property of the employed photonic crystal fiber, the proposed fiber modal interferometer exhibits a low-temperature sensitivity of about 0.56 pm/°C within a temperature range from 26.4°C (room temperature) to 70°C. Additionally, the proposed fiber modal interferometer has several advantages, such as good stability, compact structure, and simple fabrication. Therefore, it is more applicable for strain measurement with reducing temperature cross-sensitivity.
An interferometer having fused optical fibers, and apparatus and method using the interferometer
NASA Technical Reports Server (NTRS)
Hellbaum, Richard F. (Inventor); Claus, Richard O. (Inventor); Murphy, Kent A. (Inventor); Gunther, Michael F. (Inventor)
1992-01-01
An interferometer includes a first optical fiber coupled to a second optical fiber by fusing. At a fused portion, the first and second optical fibers are cut to expose respective cores. The cut or fused end of the first and second optical fibers is arranged to oppose a diaphragm or surface against which a physical phenomenon such as pressure or stress, is applied. In a first embodiment, a source light which is generally single-mode monochromatic, coherent light, is input to the first optical fiber and by evanescence, effectively crosses to the second optical fiber at the fused portion. Source light from the second optical fiber is reflected by the diaphragm or surface, and received at the second optical fiber to generate an output light which has an intensity which depends upon interference of reference light based on the source light, and the reflected light reflected from the diaphragm or surface. The intensity of the output light represents a positional relationship or displacement between the interferometer and the diaphragm or surface.
Highly sensitive force sensor based on balloon-like interferometer
NASA Astrophysics Data System (ADS)
Wu, Yue; Xiao, Shiying; Xu, Yao; Shen, Ya; Jiang, Youchao; Jin, Wenxing; Yang, Yuguang; Jian, Shuisheng
2018-07-01
An all-fiber highly sensitive force sensor based on modal interferometer has been presented and demonstrated. The single-mode fiber (SMF) with coating stripped is designed into a balloon-like shape to form a modal interferometer. Due to the bent SMF, the interference occurs between the core mode and cladding modes. With variation of the force applied to the balloon-like interferometer, the bending diameter changes, which caused the wavelength shift of the modal interference. Thus the measurement of the force variation can be achieved by monitoring the wavelength shift. The performances of the interferometer with different bending diameter are experimentally investigated, and the maximum force sensitivity of 24.9 pm/ μ N can be achieved with the bending diameter 14 mm ranging from 0 μ N to 1464.12 μ N. Furthermore, the proposed fiber sensor exhibits the advantages of easy fabrication and low cost, making it a suitable candidate in the optical fiber sensing field.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mao, Shuai; Hu, Peng-Cheng, E-mail: hupc@hit.edu.cn; Ding, Xue-Mei, E-mail: X.M.Ding@outlook.com
A fiber-coupled displacement measuring interferometer capable of determining of the posture of a reflective surface of a measuring mirror is proposed. The newly constructed instrument combines fiber-coupled displacement and angular measurement technologies. The proposed interferometer has advantages of both the fiber-coupled and the spatially beam-separated interferometer. A portable dual-position sensitive detector (PSD)-based unit within this proposed interferometer measures the parallelism of the two source beams to guide the fiber-coupling adjustment. The portable dual PSD-based unit measures not only the pitch and yaw of the retro-reflector but also measures the posture of the reflective surface. The experimental results of displacement calibrationmore » show that the deviations between the proposed interferometer and a reference one, Agilent 5530, at two different common beam directions are both less than ±35 nm, thus verifying the effectiveness of the beam parallelism measurement. The experimental results of angular calibration show that deviations of pitch and yaw with the auto-collimator (as a reference) are less than ±2 arc sec, thus proving the proposed interferometer’s effectiveness for determination of the posture of a reflective surface.« less
Frequency stabilization for space-based missions using optical fiber interferometry.
McRae, Terry G; Ngo, Silvie; Shaddock, Daniel A; Hsu, Magnus T L; Gray, Malcolm B
2013-02-01
We present measurement results for a laser frequency reference, implemented with an all-optical fiber Michelson interferometer, down to frequencies as low as 1 mHz. Optical fiber is attractive for space-based operations as it is physically robust, small and lightweight. The small free spectral range of fiber interferometers also provides the possibility to prestabilize two lasers on two distant spacecraft and ensures that the beatnote remains within the detector bandwidth. We demonstrate that these fiber interferometers are viable candidates for future laser-based gravity recovery and climate experiment missions requiring a stability of 30 Hz/√Hz over a 10 mHz-1 Hz bandwidth.
Ultra-sensitive wide dynamic range temperature sensor based on in-fiber Lyot interferometer
NASA Astrophysics Data System (ADS)
Nikbakht, Hamed; Poorghdiri Isfahani, Mohamad Hosein; Latifi, Hamid
2017-04-01
An in-fiber Lyot interferometer for temperature measurement is presented. The sensor utilizes high temperature-dependence of the birefringence in Panda polarization maintaining fibers to achieve high resolution in temperature measurements. Temperature variation modulates the phase difference between the polarization modes propagating in different modes of the Panda fiber. The Lyot interferometer produces a spectrum which varies with the phase difference. Therefore, by monitoring this spectrum a high resolution of 0.003°C was achieved. A fiber Bragg grating is added to the setup to expand its dynamic range. This sensor does not need complicated fabrication process and can be implemented in many applications.
NASA Astrophysics Data System (ADS)
Stedman, G. E.; Schreiber, K. U.; Bilger, H. R.
2003-07-01
The possibility of detecting the Lense-Thirring field generated by the rotating earth (also rotating laboratory masses) is reassessed in view of recent dramatic advances in the technology of ring laser gyroscopes. This possibility is very much less remote than it was a decade ago. The effect may contribute significantly to the Sagnac frequency of planned instruments. Its discrimination and detection will require an improved metrology, linking the ring to the celestial reference frame, and a fuller study of dispersion- and backscatter-induced frequency pulling. Both these requirements have been the subject of recent major progress, and our goal looks feasible.
Measuring correlations in non-separable vector beams using projective measurements
NASA Astrophysics Data System (ADS)
Subramanian, Keerthan; Viswanathan, Nirmal K.
2017-09-01
Doubts regarding the completeness of quantum mechanics as raised by Einstein, Podolsky and Rosen(EPR) have predominantly been resolved by resorting to a measurement of correlations between entangled photons which clearly demonstrate violation of Bell's inequality. This article is an attempt to reconcile incompatibility of hidden variable theories with reality by demonstrating experimentally a violation of Bell's inequality in locally correlated systems whose two degrees of freedom, the spin and orbital angular momentum, are maximally correlated. To this end we propose and demonstrate a linear, achromatic modified Sagnac interferometer to project orbital angular momentum states which we combine with spin projections to measure correlations.
NASA Astrophysics Data System (ADS)
Sanz-Felipe, Á.; Martín, J. C.
2017-11-01
The performance of a fiber-based modal interferometer as lateral stress sensor has been analyzed, both for static and periodic forces applied on it. The central fiber of the interferometer is a photonic crystal fiber. Forces are applied on it perpendicular to its axis, so that they squeeze it. In static situations, changes in the transmission spectrum of the interferometer are studied as a function of the charges applied. Measurements with several interferometers have been carried out in order to analyze the influence of its length and of its splices' transmission on the device operation, looking for optimization of its linearity and sensibility. The effect of periodic charges, as an emulation of vibrations, has also been studied. The analysis is centered on the frequency dependence of the response. In linear regime (small enough periodic charges), the results obtained are satisfactorily explained by treating the central fiber of the interferometer as a mechanical resonator whose vibration modes coincide with the ones of a cylinder with clamped ends. In nonlinear regime, period doubling and other anharmonic behaviors have been observed.
Snapshot imaging Fraunhofer line discriminator for detection of plant fluorescence
NASA Astrophysics Data System (ADS)
Gupta Roy, S.; Kudenov, M. W.
2015-05-01
Non-invasive quantification of plant health is traditionally accomplished using reflectance based metrics, such as the normalized difference vegetative index (NDVI). However, measuring plant fluorescence (both active and passive) to determine photochemistry of plants has gained importance. Due to better cost efficiency, lower power requirements, and simpler scanning synchronization, detecting passive fluorescence is preferred over active fluorescence. In this paper, we propose a high speed imaging approach for measuring passive plant fluorescence, within the hydrogen alpha Fraunhofer line at ~656 nm, using a Snapshot Imaging Fraunhofer Line Discriminator (SIFOLD). For the first time, the advantage of snapshot imaging for high throughput Fraunhofer Line Discrimination (FLD) is cultivated by our system, which is based on a multiple-image Fourier transform spectrometer and a spatial heterodyne interferometer (SHI). The SHI is a Sagnac interferometer, which is dispersion compensated using blazed diffraction gratings. We present data and techniques for calibrating the SIFOLD to any particular wavelength. This technique can be applied to quantify plant fluorescence at low cost and reduced complexity of data collection.
Mach-Zehnder atom interferometer inside an optical fiber
NASA Astrophysics Data System (ADS)
Xin, Mingjie; Leong, Wuiseng; Chen, Zilong; Lan, Shau-Yu
2017-04-01
Precision measurement with light-pulse grating atom interferometry in free space have been used in the study of fundamental physics and applications in inertial sensing. Recent development of photonic band-gap fibers allows light for traveling in hollow region while preserving its fundamental Gaussian mode. The fibers could provide a very promising platform to transfer cold atoms. Optically guided matter waves inside a hollow-core photonic band-gap fiber can mitigate diffraction limit problem and has the potential to bring research in the field of atomic sensing and precision measurement to the next level of compactness and accuracy. Here, we will show our experimental progress towards an atom interferometer in optical fibers. We designed an atom trapping scheme inside a hollow-core photonic band-gap fiber to create an optical guided matter waves system, and studied the coherence properties of Rubidium atoms in this optical guided system. We also demonstrate a Mach-Zehnder atom interferometer in the optical waveguide. This interferometer is promising for precision measurements and designs of mobile atomic sensors.
NASA Astrophysics Data System (ADS)
Chen, Weiguo; Lou, Shuqin; Wang, Liwen; Li, Honglei; Guo, Tieying; Jian, Shuisheng
2009-08-01
The compact Mach-Zehnder interferometer is proposed by splicing a section of photonic crystal fiber (PCF) and two pieces of single mode fiber (SMF) with the air-holes of PCF intentionally collapsed in the vicinity of the splices. The depedence of the fringe spacing on the length of PCF is investigated. Based on the Mach-Zehnder interferometer as wavelength-selective filter, a switchable dual-wavelength fiber ring laser is demonstrated with a homemade erbiumdoped fiber amplifier (EDFA) as the gain medium at room temperature. By adjusting the states of the polarization controller (PC) appropriately, the laser can be switched among the stable single-and dual -wavelength lasing operations by exploiting polarization hole burning (PHB) effect.
A Fiber Interferometer for the Magnetized Shock Experiment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yoo, Christian
2012-08-30
The Magnetized Shock Experiment (MSX) at Los Alamos National Laboratory requires remote diagnostics of plasma density. Laser interferometry can be used to determine the line-integrated density of the plasma. A multi-chord heterodyne fiber optic Mach-Zehnder interferometer is being assembled and integrated into the experiment. The advantage of the fiber coupling is that many different view chords can be easily obtained by simply moving transmit and receive fiber couplers. Several such fiber sets will be implemented to provide a time history of line-averaged density for several chords at once. The multiple chord data can then be Abel inverted to provide radiallymore » resolved spatial profiles of density. We describe the design and execution of this multiple fiber interferometer.« less
A Fiber Interferometer for the Magnetized Shock Experiment
NASA Astrophysics Data System (ADS)
Yoo, C. B.; Gao, K. W.; Weber, T. E.; Intrator, T. P.
2012-10-01
The Magnetized Shock Experiment (MSX) at Los Alamos National Laboratory requires remote diagnostics of plasma density. Laser interferometry can be used to determine the line-integrated density of the plasma. A multi-chord heterodyne fiber optic Mach-Zehnder interferometer is being assembled and integrated into the experiment. The advantage of the fiber coupling is that many different view chords can be easily obtained by simply moving transmit and receive fiber couplers. Several such fiber sets will be implemented to provide a time history of line-averaged density for several chords at once. The multiple chord data can then be Abel inverted to provide radially resolved spatial profiles of density. We describe the design and execution of this multiple fiber interferometer.
Fiber optic geophysical sensors
Homuth, Emil F.
1991-01-01
A fiber optic geophysical sensor in which laser light is passed through a sensor interferometer in contact with a geophysical event, and a reference interferometer not in contact with the geophysical event but in the same general environment as the sensor interferometer. In one embodiment, a single tunable laser provides the laser light. In another embodiment, separate tunable lasers are used for the sensor and reference interferometers. The invention can find such uses as monitoring for earthquakes, and the weighing of objects.
A reflective hydrogen sensor based on fiber ring laser with PCF modal interferometer
NASA Astrophysics Data System (ADS)
Zhang, Ya-Nan; Zhang, Aozhuo; Han, Bo; E, Siyu
2018-06-01
A new hydrogen sensor based on a fiber ring laser with a photonic crystal fiber (PCF) modal interferometer is proposed. The reflective PCF modal interferometer, which is fabricated by forming two collapse regions on the two ends of PCF with a fusion discharge technique, is utilized as the sensing head and filter. Particularly, the Pd/WO3 hydrogen-sensitive thin film is coated on the PCF for hydrogen sensing. The combination of the fiber ring laser and PCF modal interferometer gives the sensor a high signal-to-noise ratio and an improved detection limit. Experimental results show that the sensing system can achieve a hydrogen sensitivity of 1.28 nm/%, a high signal-to-noise ratio (∼30 dB), a narrow full width at half maximum (∼0.05 nm), and low detection limit of 0.0133%.
NASA Astrophysics Data System (ADS)
Huang, Xinyue; Li, Xueming; Yang, Jianchun; Tao, Chuanyi; Guo, Xiaogang; Bao, Hebin; Yin, Yanjun; Chen, Huifei; Zhu, Yuhua
2017-04-01
Ammonia is an important indicator among environmental monitoring parameters. In this work, thin-core fiber Mach-Zehnder interferometer deposited with poly (acrylic acid) (PAA), poly (allyamine hydrochloride) (PAH) and single-walled carbon nanotubes (SWCNTs-COOH) sensing film for the detection of ammonia gas has been presented. The thin-core fiber modal interferometer was made by fusion splicing a small section of thin-core fiber (TCF) between two standard single mode fibers (SMF). A beam propagation method (BPM) is employed for the design of proposed interferometer and numerical simulation. Based on the simulation results, interferometer with a length of 2 cm of thin-core fiber is fabricated and experimentally studied. (PAH/PAA)2 + [PAH/(PAA + SWCNTs-COOH)]8 film is deposited on the outer surface of thin-core fiber via layer-by-layer (LbL) self-assembly technique. The gas sensor coated with (PAH/PAA)2 + [PAH/(PAA + SWCNTs-COOH)]8 film towards NH3 gas exposure at concentrations range from 1 to 960 ppm are analyzed and the sensing capability is demonstrated by optical spectrum analyzer (OSA). Experimental results show that the characteristic wavelength shift has an approximately linear relationship in the range 1-20 ppm, which is in accordance with the numerical simulation. Thus, this paper reveals the potential application of this sensor in monitoring low concentration NH3 gas.
Fiber optic geophysical sensors
Homuth, E.F.
1991-03-19
A fiber optic geophysical sensor is described in which laser light is passed through a sensor interferometer in contact with a geophysical event, and a reference interferometer not in contact with the geophysical event but in the same general environment as the sensor interferometer. In one embodiment, a single tunable laser provides the laser light. In another embodiment, separate tunable lasers are used for the sensor and reference interferometers. The invention can find such uses as monitoring for earthquakes, and the weighing of objects. 2 figures.
A refractive index sensor based on taper Michelson interferometer in multimode fiber
NASA Astrophysics Data System (ADS)
Fu, Xinghu; Zhang, Jiangpeng; Wang, Siwen; Fu, Guangwei; Liu, Qiang; Jin, Wa; Bi, Weihong
2016-11-01
A refractive index sensor based on taper Michelson interferometer in multimode fiber is proposed. The Hydrofluoric acid corrosion processing is studied in the preparation of single cone multimode optical fiber sensor. The taper Michelson interferometer is fabricated by changing corrosion time. The relationship between fiber sensor feature and corrosion time is analyzed. The experimental results show that the interference spectrum shift in the direction of short wave with the increase of the refractive index. The refractive index sensitivity can reach 115.8008 nm/RIU. Thereby, it can be used in detecting the refractive index in different areas including the environmental protection, health care and food production.
Quantum and classical properties of soliton propagation in optical fibers
NASA Astrophysics Data System (ADS)
Krylov, Dmitriy
2001-05-01
Quantum and classical aspects of nonlinear optical pulse propagation in optical fibers are studied with the emphasis on temporal solitons. The theoretical and experimental investigation focuses on phenomena that can fundamentally limit transmission and detection of optical signals in fiber-optic communication systems that employ solitons. In transmission experiments the first evidence is presented that a pre-chirped high-order soliton pulse propagating in a low anomalous dispersion optical fiber will irreversibly break up into an ordered train of fundamental (N = 1) solitons. The experimental results confirm previous analytical predictions and show excellent agreement with numerical simulations. This phenomenon presents a fundamental limitation on systems that utilize dispersion-management or pre-chirping of optical pulses, and has to be taken into consideration when designing such systems. The experiments also show that the breakup process can be repeated by cascading two independent breakup stages. Each stage accepts a single input pulse and produces two independent pulses. The stages are cascaded to produce a one-to-four breakup. Solitons are also shown to be ideally suited for investigating non-classical properties of light. Based on the general quantum theory of optical pulse propagation, a new scheme for generating amplitude-squeezed solitons is designed and implemented in a highly asymmetric fiber Sagnac interferometer. A record reduction of 5.7dB (73%) and, with correction for linear losses, 7.0dB (81%) in photon-number fluctuations below the shot-noise level is measured by direct detection. The same scheme is also shown to generate significant classical noise reduction and is limited by Raman effects in fiber. Such large squeezing levels can be employed in practical fiber optic communication systems to achieve noiseless amplification and better signal to noise ratios in direct detection. The photon number states can also be used in quantum non- demolition measurements and quantum communications. Amplitude squeezing is shown to be present in the normal- dispersion regime where no soliton formation is possible. In this case, a noise reduction of 1.7dB (33%) and, with correction for linear losses, 2.5dB (47%) below the shot- noise level is measured. The dependence of noise behavior on dispersion is investigated both experimentally and theoretically.
Erbium-doped fiber ring laser with SMS modal interferometer for hydrogen sensing
NASA Astrophysics Data System (ADS)
Zhang, Ya-nan; Zhang, Lebin; Han, Bo; Peng, Huijie; Zhou, Tianmin; Lv, Ri-qing
2018-06-01
A hydrogen sensor based on erbium-doped fiber ring laser with modal interferometer is proposed. A single mode-multimode-single mode (SMS) modal interferometer structure coated with Pd/WO3 film is used as the sensing head, due to that it is easy to be fabricated and low cost. The sensing structure is inserted into an erbium-doped fiber ring laser in order to solve the problem of spectral confusion and improve the detection limit of the hydrogen sensor based on the SMS modal interferometer. The SMS sensing structure is acted as a fiber band-pass filter. When hydrogen concentration around the sensor is changed, it will induce the refractive index and strain variations of the Pd/WO3 film, and then shift the resonant spectrum of the SMS modal interferometer as well as the laser wavelength of the fiber ring laser. Therefore, the hydrogen concentration can be measured by monitoring the wavelength shift of the laser, which has high intensity and narrow full width half maximum. Experimental results demonstrate that the sensor has high sensitivity of 1.23 nm/%, low detection limit of 0.017%, good stability and excellent repeatability.
Kowal, Dominik; Urbanczyk, Waclaw; Mergo, Pawel
2018-01-01
In this paper we present an all-fiber interferometric sensor for the simultaneous measurement of strain and temperature. It is composed of a specially fabricated twin-core fiber spliced between two pieces of a single-mode fiber. Due to the refractive index difference between the two cores in a twin-core fiber, a differential interference pattern is produced at the sensor output. The phase response of the interferometer to strain and temperature is measured in the 850–1250 nm spectral range, showing zero sensitivity to strain at 1000 nm. Due to the significant difference in sensitivities to both parameters, our interferometer is suitable for two-parameter sensing. The simultaneous response of the interferometer to strain and temperature was studied using the two-wavelength interrogation method and a novel approach based on the spectral fitting of the differential phase response. As the latter technique uses all the gathered spectral information, it is more reliable and yields the results with better accuracy. PMID:29558386
NASA Astrophysics Data System (ADS)
Zhang, Ya-nan; Xie, Wen-ge; Wang, Jianzhang; Wang, Pengzhao
2018-01-01
Refractive index sensing of liquid is important in the domain of chemistry and biology. Fiber optical sensors provide an excellent way to measure the refractive index due to their feasible integration to other fiber optics components, high sensitivity, small size, and distributed sensing. However, conventional optical sensors have different shortages. To find a practical way to measure the refractive index of liquid, this paper intended to combine Carbon Nanotube (CNT) with non-core fiber (NCF) to prepare a kind of modal interferometer sensor and to explore the effect of CNT coating on refractive index sensing properties of the modal interferometer. Firstly, a structure of single mode non-core single mode (SNS) fiber with a CNT film coating was proposed and simulated. The simulation results showed that the CNT coating could improve the refractive index sensitivity of the interferometer sensor. Then in the experiment part, the CNT solution was fabricated and deposited onto the NCF, and a refractive index sensing system was built to examine the property of the CNT-coated SNS interferometer sensor. During the experiment, the influence factors of sensitivity were summarized by testing the sensing performance under different conditions, and it was demonstrated that the CNT coating could improve the contrast of the interference spectrum, and also had the possibility to increase the refractive index sensitivity of the interferometer sensor.
NASA Astrophysics Data System (ADS)
Dianov, Evgenii M.; Kuznetsov, A. V.; Makarenko, A. Yu; Okhotnikov, O. G.; Prokhorov, A. M.; Shcherbakov, E. A.
1990-12-01
Single-mode fiber waveguides were used in constructing a Michelson interferometer with a 50-km difference between its arm lengths. An analysis was made of its resolving power as a function of the parameters of the optical part and of the characteristics of the electronic apparatus used in the system. The width of a spectral emission line of a semiconductor laser with a distributed Rayleigh fiber resonator was determined.
Non-coaxial superposition of vector vortex beams.
Aadhi, A; Vaity, Pravin; Chithrabhanu, P; Reddy, Salla Gangi; Prabakar, Shashi; Singh, R P
2016-02-10
Vector vortex beams are classified into four types depending upon spatial variation in their polarization vector. We have generated all four of these types of vector vortex beams by using a modified polarization Sagnac interferometer with a vortex lens. Further, we have studied the non-coaxial superposition of two vector vortex beams. It is observed that the superposition of two vector vortex beams with same polarization singularity leads to a beam with another kind of polarization singularity in their interaction region. The results may be of importance in ultrahigh security of the polarization-encrypted data that utilizes vector vortex beams and multiple optical trapping with non-coaxial superposition of vector vortex beams. We verified our experimental results with theory.
NASA Astrophysics Data System (ADS)
Wang, Tongxin; Luo, Yanhua; Peng, Gang-Ding; Zhang, Qijin
2012-02-01
Bragg grating in a single-mode photosensitive polymer optical fiber (POF) with benzil dimethyl ketal (BDK)-doped in core has been inscribed through the Sagnac ring interference method. The Bragg wavelength of grating is about 1570nm. The stress and strain response of fiber Bragg grating (FBG) has been studied respectively. By fitting the experimental result, the strain sensitivity of FBG in POF has been found to be almost same to that of conventional silica fiber Bragg gratings. However, the stress sensitivity of FBG in POF is measured to be 421pm/MPa, which is 28 times higher than FBG in silica fiber. And such high stress sensitivity makes Bragg grating in a single-mode BDK-doped POF appear to be very attractive for constructing stress sensor with high resolution.
Smith, D T; Pratt, J R; Howard, L P
2009-03-01
We have developed a fiber-optic interferometer optimized for best performance in the frequency range from dc to 1 kHz, with displacement linearity of 1% over a range of +/- 25 nm, and noise-limited resolution of 2 pm. The interferometer uses a tunable infrared laser source (nominal 1550 nm wavelength) with high amplitude and wavelength stability, low spontaneous self-emission noise, high sideband suppression, and a coherence control feature that broadens the laser linewidth and dramatically lowers the low-frequency noise in the system. The amplitude stability of the source, combined with the use of specially manufactured "bend-insensitive" fiber and all-spliced fiber construction, results in a robust homodyne interferometer system, which achieves resolution of 40 fm Hz(-1/2) above 20 Hz and approaches the shot-noise-limit of 20 fm Hz(-1/2) at 1 kHz for an optical power of 10 microW, without the need for differential detection. Here we describe the design and construction of the interferometer, as well as modes of operation, and demonstrate its performance.
Huang, Xinyue; Li, Xueming; Yang, Jianchun; Tao, Chuanyi; Guo, Xiaogang; Bao, Hebin; Yin, Yanjun; Chen, Huifei; Zhu, Yuhua
2017-01-01
Ammonia is an important indicator among environmental monitoring parameters. In this work, thin-core fiber Mach-Zehnder interferometer deposited with poly (acrylic acid) (PAA), poly (allyamine hydrochloride) (PAH) and single-walled carbon nanotubes (SWCNTs-COOH) sensing film for the detection of ammonia gas has been presented. The thin-core fiber modal interferometer was made by fusion splicing a small section of thin-core fiber (TCF) between two standard single mode fibers (SMF). A beam propagation method (BPM) is employed for the design of proposed interferometer and numerical simulation. Based on the simulation results, interferometer with a length of 2 cm of thin-core fiber is fabricated and experimentally studied. (PAH/PAA)2 + [PAH/(PAA + SWCNTs-COOH)]8 film is deposited on the outer surface of thin-core fiber via layer-by-layer (LbL) self-assembly technique. The gas sensor coated with (PAH/PAA)2 + [PAH/(PAA + SWCNTs-COOH)]8 film towards NH3 gas exposure at concentrations range from 1 to 960 ppm are analyzed and the sensing capability is demonstrated by optical spectrum analyzer (OSA). Experimental results show that the characteristic wavelength shift has an approximately linear relationship in the range 1–20 ppm, which is in accordance with the numerical simulation. Thus, this paper reveals the potential application of this sensor in monitoring low concentration NH3 gas. PMID:28378783
NASA Astrophysics Data System (ADS)
Zhang, Teng; Danilishin, Stefan L.; Steinlechner, Sebastian; Barr, Bryan W.; Bell, Angus S.; Dupej, Peter; Gräf, Christian; Hennig, Jan-Simon; Houston, E. Alasdair; Huttner, Sabina H.; Leavey, Sean S.; Pascucci, Daniela; Sorazu, Borja; Spencer, Andrew; Wright, Jennifer; Strain, Kenneth A.; Hild, Stefan
2017-03-01
With the recent detection of gravitational waves (GWs), marking the start of the new field of GW astronomy, the push for building more sensitive laser-interferometric gravitational wave detectors (GWDs) has never been stronger. Balanced homodyne detection (BHD) allows for a quantum-noise (QN) limited readout of arbitrary light field quadratures, and has therefore been suggested as a vital building block for upgrades to Advanced LIGO and third-generation observatories. In terms of the practical implementation of BHD, we develop a full framework for analyzing the static optical high-order modes (HOMs) occurring in the BHD paths related to the misalignment or mode matching at the input and output ports of the laser interferometer. We find the effects of HOMs on the quantum-noise limited sensitivity is independent of the actual interferometer configuration; e.g. Michelson and Sagnac interferometers are affected in the same way. We show that misalignment of the output ports of the interferometer (output misalignment) only affects the high-frequency part of the quantum-noise limited sensitivity (detection noise). However, at low frequencies, HOMs reduce the interferometer response and the radiation pressure noise (back-action noise) by the same amount and hence the quantum-noise limited sensitivity is not negatively affected in that frequency range. We show that the misalignment of the laser into the interferometer (input misalignment) produces the same effect as output misalignment and additionally decreases the power inside the interferometer. We also analyze dynamic HOM effects, such as beam jitter created by the suspended mirrors of the BHD. Our analyses can be directly applied to any BHD implementation in a future GWD. Moreover, we apply our analytical techniques to the example of the speed meter proof-of-concept experiment under construction in Glasgow. We find that for our experimental parameters, the performance of our seismic isolation system in the BHD paths is compatible with the design sensitivity of the experiment.
Sun, Dandan; Wang, Guanjun
2017-01-01
A compact and label-free optical fiber sensor based on a taper interferometer cascaded with a fiber Bragg grating (FBG) is proposed and experimentally demonstrated for detection of a breast cancer biomarker (HER2). The tapered fiber-optic interferometer is extremely sensitive to the ambient refractive index (RI). In addition, being insensitive to the RI variation, the FBG can be applied as a temperature thermometer due to its independent response to the temperature. Surface functionalization to the sensor is carried out to achieve specific targeting of the unlabeled biomarkers. The result shows that the proposed sensor presents a low limit-of-detection (LOD) of 2 ng/mL, enabling its potentials of application in early diagnosis on the breast cancer. PMID:29113127
Narrow-band generation in random distributed feedback fiber laser.
Sugavanam, Srikanth; Tarasov, Nikita; Shu, Xuewen; Churkin, Dmitry V
2013-07-15
Narrow-band emission of spectral width down to ~0.05 nm line-width is achieved in the random distributed feedback fiber laser employing narrow-band fiber Bragg grating or fiber Fabry-Perot interferometer filters. The observed line-width is ~10 times less than line-width of other demonstrated up to date random distributed feedback fiber lasers. The random DFB laser with Fabry-Perot interferometer filter provides simultaneously multi-wavelength and narrow-band (within each line) generation with possibility of further wavelength tuning.
Optical fiber interferometer for the study of ultrasonic waves in composite materials
NASA Technical Reports Server (NTRS)
Claus, R. O.; Zewekh, P. S.; Turner, T. M.; Wade, J. C.; Rogers, R. T.; Garg, A. O.
1981-01-01
The possibility of acoustic emission detection in composites using embedded optical fibers as sensing elements was investigated. Optical fiber interferometry, fiber acoustic sensitivity, fiber interferometer calibration, and acoustic emission detection are reported. Adhesive bond layer dynamical properties using ultrasonic interface waves, the design and construction of an ultrasonic transducer with a two dimensional Gaussian pressure profile, and the development of an optical differential technique for the measurement of surface acoustic wave particle displacements and propagation direction are also examined.
Toward unstained cytology and complete blood counts at the point of care (Conference Presentation)
NASA Astrophysics Data System (ADS)
Zuluaga, Andres F.; Pierce, Mark C.; MacAulay, Calum E.
2017-02-01
Cytology tests, whether performed on body fluids, aspirates, or scrapings are commonly used to detect, diagnose, and monitor a wide variety of health conditions. Complete blood counts (CBCs) quantify the number of red and white blood cells in a blood volume, as well as the different types of white blood cells. There is a critical unmet need for an instrument that can perform CBCs at the point of care (POC), and there is currently no product in the US that can perform this test at the bedside. We have developed a system that is capable of tomographic images with sub-cellular resolution with consumer-grade broadband (LED) sources and CMOS detectors suitable for POC implementation of CBC tests. The systems consists of cascaded static Michelson and Sagnac interferometers that map phase (encoding depth) and a transverse spatial dimension onto a two-dimensional output plane. Our approach requires a 5 microliter sample, can be performed in 5 minutes or less, and does not require staining or other processing as it relies on intrinsic contrast. We will show results directly imaging and differentiating unstained blood cells using supercontinuum fiber lasers and LEDs as sources and CMOS cameras as sensors. We will also lay out the follow up steps needed, including image segmentation, analysis and classification, to verify performance and advance toward CBCs that can be performed bedside and do not require CLIA-certified laboratories.
High-Visibility Photonic Crystal Fiber Interferometer as Multifunctional Sensor
Cárdenas-Sevilla, G.A.; Fávero, Fernando C.; Villatoro, Joel
2013-01-01
A photonic crystal fiber (PCF) interferometer that exhibits record fringe contrast (∼40 dB) is demonstrated along with its sensing applications. The device operates in reflection mode and consists of a centimeter-long segment of properly selected PCF fusion spliced to single mode optical fibers. Two identical collapsed zones in the PCF combined with its modal properties allow high-visibility interference patterns. The interferometer is suitable for refractometric and liquid level sensing. The measuring refractive index range goes from 1.33 to 1.43 and the maximum resolution is ∼1.6 × 10−5. PMID:23396192
Nano-displacement sensor based on photonic crystal fiber modal interferometer.
Dash, Jitendra Narayan; Jha, Rajan; Villatoro, Joel; Dass, Sumit
2015-02-15
A stable nano-displacement sensor based on large mode area photonic crystal fiber (PCF) modal interferometer is presented. The compact setup requires simple splicing of a small piece of PCF with a single mode fiber (SMF). The excitation and recombination of modes is carried out in a single splice. The use of a reflecting target creates an extra cavity that discretizes the interference pattern of the mode interferometer, boosting the displacement resolution to nanometer level. The proposed modal interferometric based displacement sensor is highly stable and shows sensitivity of 32 pm/nm.
Optical Fiber-Tip Sensors Based on In-Situ µ-Printed Polymer Suspended-Microbeams.
Yao, Mian; Ouyang, Xia; Wu, Jushuai; Zhang, A Ping; Tam, Hwa-Yaw; Wai, P K A
2018-06-05
Miniature optical fiber-tip sensors based on directly µ-printed polymer suspended-microbeams are presented. With an in-house optical 3D μ-printing technology, SU-8 suspended-microbeams are fabricated in situ to form Fabry⁻Pérot (FP) micro-interferometers on the end face of standard single-mode optical fiber. Optical reflection spectra of the fabricated FP micro-interferometers are measured and fast Fourier transform is applied to analyze the cavity of micro-interferometers. The applications of the optical fiber-tip sensors for refractive index (RI) sensing and pressure sensing, which showed 917.3 nm/RIU to RI change and 4.29 nm/MPa to pressure change, respectively, are demonstrated in the experiments. The sensors and their optical µ-printing method unveil a new strategy to integrate complicated microcomponents on optical fibers toward 'lab-on-fiber' devices and applications.
Design of an Fiber-Coupled Laser Heterodyne Interferometer for the FLARE
NASA Astrophysics Data System (ADS)
Frank, Samuel; Yoo, Jongsoo; Ji, Hantao; Jara-Almonte, Jon
2016-10-01
The FLARE (Facility for Laboratory Reconnection Experiments), which is currently under construction at PPPL, requires a complete set of laboratory plasma diagnostics. The Langmuir probes that will be used in the device to gather local density data require a reliable interferometer system to serve as baseline for density measurement calibration. A fully fiber-coupled infrared laser heterodyne interferometer has been designed in order to serve as the primary line-integrated electron density diagnostic. Thanks to advances in the communications industry many fiber optic devices and phase detection methods have advanced significantly becoming increasingly reliable and inexpensive. Fully fiber coupling a plasma interferometer greatly simplifies alignment procedures needed since the only free space laser path needing alignment is through the plasma itself. Fiber-coupling also provides significant resistance to vibrational noise, a common problem in plasma interferometry systems. This device also uses a greatly simplified phase detection scheme in which chips, originally developed for the communications industry, capable of directly detecting the phase shift of a signal with high time resolution. The design and initial performance of the system will be discussed.
Dong, Bo; Zhou, Da-Peng; Wei, Li; Liu, Wing-Ki; Lit, John W Y
2008-11-10
A novel lateral force sensor based on a core-offset multi-mode fiber (MMF) interferometer is reported. High extinction ratio can be obtained by misaligning a fused cross section between the single-mode fiber (SMF) and MMF. With the variation of the lateral force applied to a short section of the MMF, the extinction ratio changes while the interference phase remains almost constant. The change of the extinction ratio is independent of temperature variations. The proposed force sensor has the advantages of temperature- and phase-independency, high extinction ratio sensitivity, good repeatability, low cost, and simple structure. Moreover, the core-offset MMF interferometer is expected to have applications in fiber filters and tunable phase-independent attenuators.
Resolving the depth of fluorescent light by structured illumination and shearing interferometry
NASA Astrophysics Data System (ADS)
Schindler, Johannes; Elmaklizi, Ahmed; Voit, Florian; Hohmann, Ansgar; Schau, Philipp; Brodhag, Nicole; Krauter, Philipp; Frenner, Karsten; Kienle, Alwin; Osten, Wolfgang
2016-03-01
A method for the depth-sensitive detection of fluorescent light is presented. It relies on a structured illumination restricting the excitation volume and on an interferometric detection of the wave front curvature. The illumination with two intersecting beams of a white-light laser separated in a Sagnac interferometer coupled to the microscope provides a coarse confinement in lateral and axial direction. The depth reconstruction is carried out by evaluating shearing interferograms produced with a Michelson interferometer. This setup can also be used with spatially and temporally incoherent light as emitted by fluorophores. A simulation workflow of the method was developed using a combination of a solution of Maxwell's equations with the Monte Carlo method. These simulations showed the principal feasibility of the method. The method is validated by measurements at reference samples with characterized material properties, locations and sizes of fluorescent regions. It is demonstrated that sufficient signal quality can be obtained for materials with scattering properties comparable to dental enamel while maintaining moderate illumination powers in the milliwatt range. The depth reconstruction is demonstrated for a range of distances and penetration depths of several hundred micrometers.
Jiang, Junfeng; Liu, Tiegen; Zhang, Yimo; Liu, Lina; Zha, Ying; Zhang, Fan; Wang, Yunxin; Long, Pin
2005-03-15
A parallel demodulation system for extrinsic Fabry-Perot interferometer (EFPI) and fiber Bragg grating (FBG) sensors is presented that is based on a Michelson interferometer and combines the methods of low-coherence interference and Fourier transform spectrum. Signals from EFPI and FBG sensors are obtained simultaneously by scanning one arm of a Michelson interferometer, and an algorithm model is established to process the signals and retrieve both the wavelength of the FBG and the cavity length of the EFPI at the same time, which are then used to determine the strain and temperature.
Ummy, M A; Madamopoulos, N; Joyo, A; Kouar, M; Dorsinville, R
2011-02-14
We propose and demonstrate a simple dual port tunable from the C- to the L-band multi-wavelength fiber laser based on a SOA designed for C-band operation and fiber loop mirrors. The laser incorporates a polarization maintaining fiber in one of the fiber loop mirrors and delivers multi-wavelength operation at 9 laser lines with a wavelength separation of ~2.8 nm at room temperature. We show that the number of lasing wavelengths increases with the increase of the bias current of the SOA. Wavelength tunability from the C to L-band is achieved by exploiting the gain compression of a SOA. Stable multi-wavelength operation is achieved at room temperature without temperature compensation techniques, with measured power and the wavelength stability within < ±0.5 dB and ±0.1 nm, respectively.
Enhancement of fiber-optic low-coherence Fabry-Pérot interferometer with ZnO ALD films
NASA Astrophysics Data System (ADS)
Hirsch, Marzena; Listewnik, Paulina; Jedrzejewska-Szczerska, Małgorzata
2018-04-01
In this paper investigation of the enhanced fiber-optic low coherence Fabry-Pérot interferometer with zinc oxide (ZnO) film deposited by atomic layer deposition (ALD) was presented. Model of the interferometer, which was constructed of single-mode optical fiber with applied ZnO ALD films, was built. The interferometer was also examined by means of experiment. Measurements were performed for both reflective and transmission modes, using wavelengths of 1300 nm and 1500 nm. The measurements with the air cavity showed the best performance in terms of a visibility of the interference signal can be achieved for small cavity lengths ( 50μm) in both configurations. Combined with the enhancement of reflectance of the interferometer mirrors due to the ALD film, proposed construction could be successfully applied in refractive index (RI) sensor that can operate with improved visibility of the signal even in 1.3-1.5 RI range as well as with small volume samples, as shown by the modeling.
Tilt sensor based on intermodal photonic crystal fiber interferometer
NASA Astrophysics Data System (ADS)
Zhang, Xiaotong; Ni, Kai; Zhao, Chunliu; Ye, Manping; Jin, Yongxing
2014-09-01
A tilt sensor based on an intermodal photonic crystal fiber (PCF) interferometer is demonstrated. The sensor consists of a tubular filled with NaCl aqueous solutions and an intermodal PCF interferometer, which is formed by using a short PCF with two single-mode fibers (SMFs) spliced at both ends, and the air-holes in the splice regions are fully collapsed. The intermodal PCF interferometer is fixed in a rigid glass tubular with a slant orientation, and a half of the PCF is immersed in the NaCl aqueous solutions, while the other half is exposed in air. When tilting the tubular, the length of the PCF immersed changes so that the transmission spectrum moves. Therefore, by monitoring the wavelength shift, the tilt angle can be achieved. In the experiment, a 0.8-cm-length intermodal PCF interferometer was adopted. The sensitivity of the proposed sensor was obtained from -1.5461 nm/° to -30.1244 nm/° when measuring from -35.1° to 37.05°.
Compact all-fiber interferometer system for shock acceleration measurement
NASA Astrophysics Data System (ADS)
Zhao, Jiang; Pi, Shaohua; Hong, Guangwei; Zhao, Dong; Jia, Bo
2013-08-01
Acceleration measurement plays an important role in a variety of fields in science and engineering. In particular, the accurate, continuous and non-contact recording of the shock acceleration profiles of the free target surfaces is considered as a critical technique in shock physics. Various kinds of optical interferometers have been developed to monitor the motion of the surfaces of shocked targets since the 1960s, for instance, the velocity interferometer system for any reflector, the fiber optic accelerometer, the photonic Doppler velocimetry system and the displacement interferometer. However, most of such systems rely on the coherent quasi-monochromatic illumination and discrete optic elements, which are costly in setting-up and maintenance. In 1996, L. Levin et al reported an interferometric fiber-optic Doppler velocimeter with high-dynamic range, in which fiber-coupled components were used to replace the discrete optic elements. However, the fringe visibility of the Levin's system is low because of the coupled components, which greatly limits the reliability and accuracy in the shock measurement. In this paper, a compact all-fiber interferometer system for measuring the shock acceleration is developed and tested. The advantage of the system is that not only removes the non-interfering light and enhances the fringe visibility, but also reduces polarization induced signal fading and the polarization induced phase shift. Moreover, it also does not require a source of long coherence length. The system bases entirely on single-mode fiber optics and mainly consists of a polarization beam splitter, a faraday rotator, a depolarizer and a 3×3 single-mode fiber coupler which work at 1310 nm wavelength. The optical systems of the interferometer are described and the experimental results compared with a shock acceleration calibration system with a pneumatic exciter (PneuShockTM Model 9525C by The Modal Shop) are reported. In the shock acceleration test, the interferometer system measured shock acceleration with peak accelerations of ~100,000 m/s2 and the durations of ~0.2 ms which are conformed to the results of the shock acceleration calibration system. The measured relative error of the acceleration is within 3%.
Šmíd, Radek; Čížek, Martin; Mikel, Břetislav; Číp, Ondřej
2015-01-12
We present a method of noise suppression of laser diodes by an unbalanced Michelson fiber interferometer. The unstabilized laser source is represented by compact planar waveguide external cavity laser module, ORIONTM (Redfern Integrated Optics, Inc.), working at 1540.57 nm with a 1.5-kHz linewidth. We built up the unbalanced Michelson interferometer with a 2.09 km-long arm based on the standard telecommunication single-mode fiber (SMF-28) spool to suppress the frequency noise by the servo-loop control by 20 dB to 40 dB within the Fourier frequency range, remaining the tuning range of the laser frequency.
Liao, C R; Hu, T Y; Wang, D N
2012-09-24
We demonstrate a fiber in-line Fabry-Perot interferometer cavity sensor for refractive index measurement. The interferometer cavity is formed by drilling a micro-hole at the cleaved fiber end facet, followed by fusion splicing. A micro-channel is inscribed by femtosecond laser micromachining to vertically cross the cavity to allow liquid to flow in. The refractive index sensitivity obtained is ~994 nm/RIU (refractive index unit). Such a device is simple in configuration, easy for fabrication and reliable in operation due to extremely low temperature cross sensitivity of ~4.8 × 10(-6) RIU/°C.
Lu, Ping; Harris, Jeremie; Xu, Yanping; Lu, Yuangang; Chen, Liang; Bao, Xiaoyi
2012-11-15
Simultaneous measurements of refractive index (RI) and temperature are proposed and experimentally demonstrated by using a tapered bend-resistant fiber interferometer. Different phase shifts of an inner and outer cladding mode of the fiber interferometer are measured to determine the temperature compensated RI of a glycerol solution. The temperature coefficients of the inner and outer cladding modes are -0.0253 rad/°C and -0.0523 rad/°C, and the RI coefficients are 4.0403 rad/RIU and 44.823 rad/RIU, respectively. The minimum errors of temperature and RI are 0.6°C and 0.001 RIU, respectively.
Single and double superimposing interferometer systems
Erskine, David J.
2000-01-01
Interferometers which can imprint a coherent delay on a broadband uncollimated beam are described. The delay value can be independent of incident ray angle, allowing interferometry using uncollimated beams from common extended sources such as lamps and fiber bundles, and facilitating Fourier Transform spectroscopy of wide angle sources. Pairs of such interferometers matched in delay and dispersion can measure velocity and communicate using ordinary lamps, wide diameter optical fibers and arbitrary non-imaging paths, and not requiring a laser.
NASA Technical Reports Server (NTRS)
Adamovsky, Grigory; Lekki, John; Lock, James A.
2002-01-01
The dynamic response of a fiber optic Bragg grating to mechanical vibrations is examined both theoretically and experimentally. The theoretical expressions describing the consequences of changes in the grating's reflection spectrum are derived for partially coherent beams in an interferometer. The analysis is given in terms of the dominant wavelength, optical bandwidth, and optical path difference of the interfering signals. Changes in the reflection spectrum caused by a periodic stretching and compression of the grating were experimentally measured using an unbalanced Michelson interferometer, a Michelson interferometer with a non-zero optical path difference. The interferometer's sensitivity to changes in dominant wavelength of the interfering beams was measured as a function of interferometer unbalance and was compared to theoretical predictions. The theoretical analysis enables the user to determine the optimum performance for an unbalanced interferometer.
Wang, Qi; Yan, Dongchao; Cui, Binbin; Guo, Zixuan
2017-01-01
An hourglass in-fiber air microcavity Fabry-Perot interferometer is proposed in this paper, and its second reflecting surface of in-fiber microcavity is designed to be a concave reflector with the best curvature radius in order to improve the spectral characteristics. Experimental results proved that the extinction ratio of Fabry-Perot interferometer with cavity length of 60 μm and concave reflector radius of 60 μm is higher than for a rectangular Fabry-Perot interferometer with cavity length of 60 μm (14 dB: 11 dB). Theory and numerical simulation results show that the strain sensitivity of sensor can be improved by reducing the microcavity wall thickness and microcavity diameter, and when the in-fiber microcavity length is 40 μm, the microcavity wall thickness is 10 μm, the microcavity diameter is 20 μm, and the curvature radius of reflective surface II is 50 μm, the interference fringe contrast of is greater than 0.97, an Axial-pull sensitivity of 20.46 nm/N and resolution of 1 mN can be achieved in the range of 0–1 N axial tension. The results show that the performance of hourglass in-fiber microcavity interferometer is far superior to that of the traditional Fabry-Perot interferometer. PMID:28587221
NASA Astrophysics Data System (ADS)
Hirsch, Marzena; Wierzba, Paweł; Jedrzejewska-Szczerska, Małgorzata
2016-11-01
We examine the application of selected thin dielectric films, deposited by atomic layer deposition (ALD), in a low coherence fiber-optic Fabry-Pérot interferometer designed for sensing applications. Such films can be deposited on the end-face of a single mode optical fiber (SMF-28) in order to modify the reflectivity of the Fabry-Pérot cavity, to provide protection of the fibers from aggressive environments or to create a multi-cavity interferometric sensor. Spectral reflectance of films made from zinc oxide (ZnO), titanium dioxide (TiO2), aluminum oxide (Al2O3) and boron nitride (BN) was calculated for various thickness of the films and compared. The results show that the most promising materials for use in fiber-optic Fabry-Pérot interferometer are TiO2 and ZnO, although Al2O3 is also suitable for this application.
Naeem, Khurram; Kwon, Il-Bum; Chung, Youngjoo
2017-01-01
We present a fiber-optic multibeam Mach-Zehnder interferometer (m-MZI) for simultaneous multi-parameter measurement. The m-MZI is comprised of a section of photonic crystal fiber integrated with two independent cores of distinct construction and birefringence properties characterized for torsion, strain and temperature sensing. Due to the presence of small core geometry and use of a short fiber length, the sensing device demonstrates inter-modal interference in the small core alongside the dominant inter-core interference between the cores for each of the orthogonal polarizations. The output spectrum of the device is characterized by the three-beam interference model and is polarization-dependent. The two types of interferometers present in the fiber m-MZI exhibit distinct sensitivities to torsion, strain and temperature for different polarizations, and matrix coefficients allowing simultaneous measurement of the three sensing parameters are proposed in experiment. PMID:28085046
Noise properties of a corner-cube Michelson interferometer LWIR hyperspectral imager
NASA Astrophysics Data System (ADS)
Bergstrom, D.; Renhorn, I.; Svensson, T.; Persson, R.; Hallberg, T.; Lindell, R.; Boreman, G.
2010-04-01
Interferometric hyperspectral imagers using infrared focal plane array (FPA) sensors have received increasing interest within the field of security and defence. Setups are commonly based upon either the Sagnac or the Michelson configuration, where the former is usually preferred due to its mechanical robustness. However, the Michelson configuration shows advantages in larger FOV due to better vignetting performance and improved signal-to-noise ratio and cost reduction due to relaxation of beamsplitter specifications. Recently, a laboratory prototype of a more robust and easy-to-align corner-cube Michelson hyperspectral imager has been demonstrated. The prototype is based upon an uncooled bolometric FPA in the LWIR (8-14 μm) spectral band and in this paper the noise properties of this hyperspectral imager are discussed.
Generation of vector beams using a double-wedge depolarizer: Non-quantum entanglement
NASA Astrophysics Data System (ADS)
Samlan, C. T.; Viswanathan, Nirmal K.
2016-07-01
Propagation of horizontally polarized Gaussian beam through a double-wedge depolarizer generates vector beams with spatially varying state of polarization. Jones calculus is used to show that such beams are maximally nonseparable on the basis of even (Gaussian)-odd (Hermite-Gaussian) mode parity and horizontal-vertical polarization state. The maximum nonseparability in the two degrees of freedom of the vector beam at the double wedge depolarizer output is verified experimentally using a modified Sagnac interferometer and linear analyser projected interferograms to measure the concurrence 0.94±0.002 and violation of Clauser-Horne-Shimony-Holt form of Bell-like inequality 2.704±0.024. The investigation is carried out in the context of the use of vector beams for metrological applications.
High heralding-efficiency of near-IR fiber coupled photon pairs for quantum technologies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dixon, P. Ben; Murphy, Ryan; Rosenberg, Danna
We report on the development and use of a high heralding-efficiency, single-mode-fiber coupled telecom-band source of entangled photons for quantum technology applications. The source development efforts consisted of theoretical and experimental efforts and we demonstrated a correlated-mode coupling efficiency of 97% 2%, the highest efficiency yet achieved for this type of system. We then incorporated these beneficial source development techniques in a Sagnac configured telecom-band entangled photon source that generates photon pairs entangled in both time/energy and polarization degrees of freedom. We made use of these highly desirable entangled states to investigate several promising quantum technologies.
NASA Astrophysics Data System (ADS)
Zhang, Liang; Tian, Ming; Dong, Lei
2017-10-01
In order to improve the detection distance and the sensitivity, we propose a novel distributed optical fiber sensing system. This system is composed of bidirectional pumping fiber Raman amplifier and unbalanced fiber Mach-Zehnder interferometer. Based on the interference mechanism of phase sensitive optical time domain reflectometer (φ-OTDR), the system can get the sensing information of the whole optical fiber by analyzing the backward scattered light. The interferometer is used as the demodulator of the sensing system, which consists of a 3×3 coupler and two faraday rotator mirrors. By means of the demodulator, the signal light is divided into three beams with fixed phase difference. To deal with these three signals, we can get the vibration information directly on the optical fiber. Through experimental study, this system has a high sensitivity. The maximum sensing length and the spatial resolution of the φ-OTDR system are 100 km and 10 m. The signal to noise ratio about 18 dB is achieved.
A multi-core fiber based interferometer for high temperature sensing
NASA Astrophysics Data System (ADS)
Zhou, Song; Huang, Bo; Shu, Xuewen
2017-04-01
In this paper, we have verified and implemented a Mach-Zehnder interferometer based on seven-core fiber for high temperature sensing application. This proposed structure is based on a multi-mode-multi-core-multi-mode fiber structure sandwiched by a single mode fiber. Between the single-mode and multi-core fiber, a 3 mm long multi-mode fiber is formed for lead-in and lead-out light. The basic operation principle of this device is the use of multi-core modes, single-mode and multi-mode interference coupling is also utilized. Experimental results indicate that this interferometer sensor is capable of accurate measurements of temperatures up to 800 °C, and the temperature sensitivity of the proposed sensor is as high as 170.2 pm/°C, which is much higher than the current existing MZI based temperature sensors (109 pm/°C). This type of sensor is promising for practical high temperature applications due to its advantages including high sensitivity, simple fabrication process, low cost and compactness.
Xia, Ji; Wang, Qi; Liu, Xu; Luo, Hong
2015-01-01
An optical fiber current sensor based on Fabry-Perot interferometer using a fiber Bragg grating demodulation is proposed. Magnetic fluid is used as a sensitive medium in fiber optical Fabry-Perot (F-P) cavity for the optical characteristic of magnetic-controlled refractive index. A Fiber Bragg grating (FBG) is connected after the F-P interferometer which is used to reflect the optical power at the Bragg wavelength of the interference transmission spectrum. The corresponding reflective power of the FBG will change with different external current intensity, due to the shift on the interference spectrum of the F-P interferometer. The sensing probe has the advantages of convenient measurement for its demodulation, low cost and high current measurement accuracy on account of its sensing structure. Experimental results show that an optimal sensitivity of 0.8522 nw/A and measurement resolution of 0.001 A is obtained with a FBG at 1550 nm with 99% reflectivity. PMID:26184201
Xia, Ji; Wang, Qi; Liu, Xu; Luo, Hong
2015-07-09
An optical fiber current sensor based on Fabry-Perot interferometer using a fiber Bragg grating demodulation is proposed. Magnetic fluid is used as a sensitive medium in fiber optical Fabry-Perot (F-P) cavity for the optical characteristic of magnetic-controlled refractive index. A Fiber Bragg grating (FBG) is connected after the F-P interferometer which is used to reflect the optical power at the Bragg wavelength of the interference transmission spectrum. The corresponding reflective power of the FBG will change with different external current intensity, due to the shift on the interference spectrum of the F-P interferometer. The sensing probe has the advantages of convenient measurement for its demodulation, low cost and high current measurement accuracy on account of its sensing structure. Experimental results show that an optimal sensitivity of 0.8522 nw/A and measurement resolution of 0.001 A is obtained with a FBG at 1550 nm with 99% reflectivity.
Tunable optical filter based on Sagnac phase-shift using single optical ring resonator
NASA Astrophysics Data System (ADS)
Seraji, Faramarz E.; Asghari, Fatemeh
2010-02-01
In this paper, a single optical ring resonator connected to a Sagnac loop is used to demonstrate theoretically a novel narrow band optical filter response that is based on Sagnac phase-shift Δ φ. The given filter structure permits the Sagnac rotation to control the filter response. It is shown that by changing the Sagnac rotation rate, we can tune the filter response for desired bandwidths. To increase the wavelength selectivity of the filter, the Sagnac phase-shift should be as small as possible that is limited by the loop length. For Δ φ=0.1 rad, the obtained FWHM is 2.63 MHz for tuning loop length of 2 m. The simulation response agrees fairly with the recently reported experimental result.
Modeling of low-finesse, extrinsic fiber optic Fabry-Perot white light interferometers
NASA Astrophysics Data System (ADS)
Ma, Cheng; Tian, Zhipeng; Wang, Anbo
2012-06-01
This article introduces an approach for modeling the fiber optic low-finesse extrinsic Fabry-Pérot Interferometers (EFPI), aiming to address signal processing problems in EFPI demodulation algorithms based on white light interferometry. The main goal is to seek physical interpretations to correlate the sensor spectrum with the interferometer geometry (most importantly, the optical path difference). Because the signal demodulation quality and reliability hinge heavily on the understanding of such relationships, the model sheds light on optimizing the sensor performance.
NASA Astrophysics Data System (ADS)
Chen, Weiping P.; Wang, Dongning N.; Xu, Ben; Wang, Zhaokun K.; Zhao, Chun-Liu
2017-05-01
We demonstrate an optical Fabry-Perot interferometer fiber tip sensor based on a glass microsphere glued at the etched end of a multimode fiber. The fiber device is miniature and robust, with a convenient reflection mode of operation, a high temperature sensitivity of 202.6 pm/°C within the range from 5°C to 90°C, a good refractive index sensitivity of ˜119 nm/RIU within the range from 1.331 to 1.38, and a gas pressure sensitivity of 0.19 dB/MPa.
NASA Astrophysics Data System (ADS)
Chen, W. G.; Lou, S. Q.; Feng, S. C.; Wang, L. W.; Li, H. L.; Guo, T. Y.; Jian, S. S.
2009-11-01
Switchable multi-wavelength fiber ring laser with an in-fiber Mach-Zehnder interferometer incorporated into the ring cavity serving as wavelength-selective filter at room temperature is demonstrated. The filter is formed by splicing a section of few-mode photonic crystal fiber (PCF) and two segments of single mode fiber (SMF) with the air-holes on the both sides of PCF intentionally collapsed in the vicinity of the splices. By adjusting the states of the polarization controller (PC) appropriately, the laser can be switched among the stable single-, dual- and triple-wavelength lasing operations by exploiting polarization hole burning (PHB) effect.
Olivier, Serge; Delage, Laurent; Reynaud, Francois; Collomb, Virginie; Trouillon, Michel; Grelin, Jerome; Schanen, Isabelle; Minier, Vincent; Broquin, Jean-Emmanuel; Ruilier, Cyril; Leone, Bruno
2007-02-20
We present a three-telescope space-based interferometer prototype dedicated to high-resolution imaging. This project, named multiaperture fiber-linked interferometer (MAFL), was founded by the European Space Agency. The aim of the MAFL project is to propose, design, and implement for the first time to the best of our knowledge all the optical functions required for the global instrument on the same integrated optics (IO) component for controlling a three-arm interferometer and to obtain reliable science data. The coherent transport from telescopes to the IO component is achieved by means of highly birefringent optical fiber. The laboratory bench is presented, and the results are reported allowing us to validate the optical potentiality of the IO component in this frame. The validation measurements consist of the throughput of this optical device, the performances of metrological servoloop, and the instrumental contrasts and phase closure of the science fringes.
Distributed Fiber-Optic Sensors for Vibration Detection
Liu, Xin; Jin, Baoquan; Bai, Qing; Wang, Yu; Wang, Dong; Wang, Yuncai
2016-01-01
Distributed fiber-optic vibration sensors receive extensive investigation and play a significant role in the sensor panorama. Optical parameters such as light intensity, phase, polarization state, or light frequency will change when external vibration is applied on the sensing fiber. In this paper, various technologies of distributed fiber-optic vibration sensing are reviewed, from interferometric sensing technology, such as Sagnac, Mach–Zehnder, and Michelson, to backscattering-based sensing technology, such as phase-sensitive optical time domain reflectometer, polarization-optical time domain reflectometer, optical frequency domain reflectometer, as well as some combinations of interferometric and backscattering-based techniques. Their operation principles are presented and recent research efforts are also included. Finally, the applications of distributed fiber-optic vibration sensors are summarized, which mainly include structural health monitoring and perimeter security, etc. Overall, distributed fiber-optic vibration sensors possess the advantages of large-scale monitoring, good concealment, excellent flexibility, and immunity to electromagnetic interference, and thus show considerable potential for a variety of practical applications. PMID:27472334
Distributed Fiber-Optic Sensors for Vibration Detection.
Liu, Xin; Jin, Baoquan; Bai, Qing; Wang, Yu; Wang, Dong; Wang, Yuncai
2016-07-26
Distributed fiber-optic vibration sensors receive extensive investigation and play a significant role in the sensor panorama. Optical parameters such as light intensity, phase, polarization state, or light frequency will change when external vibration is applied on the sensing fiber. In this paper, various technologies of distributed fiber-optic vibration sensing are reviewed, from interferometric sensing technology, such as Sagnac, Mach-Zehnder, and Michelson, to backscattering-based sensing technology, such as phase-sensitive optical time domain reflectometer, polarization-optical time domain reflectometer, optical frequency domain reflectometer, as well as some combinations of interferometric and backscattering-based techniques. Their operation principles are presented and recent research efforts are also included. Finally, the applications of distributed fiber-optic vibration sensors are summarized, which mainly include structural health monitoring and perimeter security, etc. Overall, distributed fiber-optic vibration sensors possess the advantages of large-scale monitoring, good concealment, excellent flexibility, and immunity to electromagnetic interference, and thus show considerable potential for a variety of practical applications.
Šmíd, Radek; Čížek, Martin; Mikel, Břetislav; Číp, Ondřej
2015-01-01
We present a method of noise suppression of laser diodes by an unbalanced Michelson fiber interferometer. The unstabilized laser source is represented by compact planar waveguide external cavity laser module, ORIONTM (Redfern Integrated Optics, Inc.), working at 1540.57 nm with a 1.5-kHz linewidth. We built up the unbalanced Michelson interferometer with a 2.09 km-long arm based on the standard telecommunication single-mode fiber (SMF-28) spool to suppress the frequency noise by the servo-loop control by 20 dB to 40 dB within the Fourier frequency range, remaining the tuning range of the laser frequency. PMID:25587980
A 100 mW-level single-mode switchable dual-wavelength erbium-doped fiber laser
NASA Astrophysics Data System (ADS)
Cheng, Jianqun; Zhang, Liaolin; Sharafudeen, Kaniyarakkal; Qiu, Jianrong
2013-10-01
A switchable dual-wavelength CW erbium-doped fiber laser with two cascaded fiber Bragg gratings has been proposed and demonstrated experimentally at room temperature. The laser uses a linear resonant cavity configuration incorporating a Sagnac loop with a polarization controller (PC) and can switch flexibly to output a single wavelength or dual wavelengths based on the polarization hole burning (PHB) effect. The slope efficiency and maximum output power can reach 23% and 96 mW, respectively. The two lasing peaks of the laser, with a narrow linewidth output and an optical signal-to-noise ratio of more than 50 dB, are located in the C and L bands of the optical communication window, respectively. The laser shows good stability with respect to the wavelength and output power.
Photonic crystal fiber in-line Mach-Zehnder interferometer for explosive detection.
Tao, Chuanyi; Wei, Heming; Feng, Wenlin
2016-02-08
We report a photonic crystal fiber (PCF) in-line Mach-Zehnder interferometer used as a gas sensor device which exhibits high sensitivity to the explosive trinitrotoluene (TNT). The interferometric sensor head is formed by embedding a segment of large-mode-area/grapefruit PCF between standard single-mode fibers via butt coupling, which produces two small air gaps in between terminated fiber ends with ceramic ferrule connectors as coupling regions, which also serve as inlet/outlet for the gas. The spectral response of the interferometer is investigated in terms of its wavelength spectrum. The selectivity to TNT vapor is achieved by immobilizing a molecular recognition ployallylamine layer on the inner surface of the holey region of the PCF. The TNT-induced variations of the interference fringes are measured and the sensing capability of the proposed sensor is demonstrated experimentally.
Qiu, Sun-jie; Chen, Ye; Xu, Fei; Lu, Yan-qing
2012-03-01
We fabricate a simple, compact, and stable temperature sensor based on a liquid-sealed photonic crystal fiber (PCF) in-line nonpolarimetric modal interferometer. Different from other reported PCF devices, it does not need expensive polarimetric devices, and the liquid is sealed in one fiber. The device consists of a stub of isopropanol-filled PCF spliced between standard single-mode fibers. The temperature sensitivity (-166 pm/°C) increases over an order of magnitude compared with those of the previous sensors based on air-sealed PCF interferometers built via fusion splicing with the same mechanism. In addition, the refractive index sensitivity also increases. Higher temperature sensitivity can be realized by infiltrating some liquid having a higher thermo-optic coefficient into the microholes of the PCF. © 2012 Optical Society of America
High-sensitivity pressure sensor based on fiber Mach-Zehnder interferometer
NASA Astrophysics Data System (ADS)
Wu, Yue; Xu, Yao; Yang, Yuguang; Jin, Wenxing; Jiang, Youchao; Shen, Ya; Jian, Shuisheng
2017-10-01
In this paper we propose and experimentally demonstrate an optical fiber structure sensor based on a Mach-Zehnder interferometer for pressure measurement. The fiber sensor is composed of a single-mode-no-core-single-mode structure, a section of capillary pure silica tube and refractive index matching fluid (RIMF). As the pressure decreases, the sealed air in the tube expands and the liquid level of the RIMF increases, which causes a wavelength shift of the interferometer. The measurement of the pressure variation can thus be achieved by monitoring the wavelength shift. The experimental results agree well with the numerical simulation, and a maximum pressure sensitivity of 266.6 nm Mpa-1 is achieved experimentally. Furthermore, the proposed fiber sensor has the potential to obtain higher sensitivity by enlarging the length of the air cavity.
Torsion sensing setup based on a Mach-Zehnder interferometer with photonics crystal fiber
NASA Astrophysics Data System (ADS)
Pacheco-Chacon, Eliana I.; Gallegos-Arellano, E.; Sierra-Hernandez, Juan M.; Rojas-Laguna, Roberto; Estudillo-Ayala, Julian M.; Hernandez, Emmanuel; Jauregui-Vazquez, D.; Hernandez-Garcia, J. C.
2017-02-01
A torsion experimental sensing setup based on a Mach-Zehnder interferometer (MZI) with photonics crystal fiber is presented. The MZI was fabricated by fusion splicing a piece of photonic crystal fiber (PCF) between two segments of a single-mode fiber (SMF). Here, a spectral MZI fringe shifting is induced by applying torsion over the SMF-PCF-SMF. As a result a torsion sensitivity of 35.79 pm/ and a high visibility of 10 dB were achieved. Finally, it is shown that the sensing arrangement is compact and robust.
Switchable multiwavelength thulium-doped fiber ring lasers
NASA Astrophysics Data System (ADS)
Zhao, Shui; Lu, Ping; Liu, Deming; Zhang, Jiangshan
2013-08-01
Two kinds of thulium-doped fiber ring lasers based on a spatial mode beating filter and comb filtering effect are presented and experimentally demonstrated, which all show multiwavelength laser spectrum around 2 μm. In the implementation of the first type of experiment configuration by the use of a piece of multimode fiber (MMF) as a spatial mode beating filter, dual-,triple-, and quadruple-wavelengths appeared whose extinction noise ratio is 25 dB by adjusting the angle of polarization controller. Different wavelength spaces are obtained by inserting different lengths of MMF. The second type is achieved by inserting a Sagnac loop mirror, which was constructed by a 3-dB coupler and a piece of polarization maintaining fiber. Seven stable wavelengths with channel spacing of 0.65 nm and an extinction ratio of 35 dB was achieved. These systems are simple and easy to construct, which can be useful for 2 μm wavelength-division-multiplexed applications.
Fiber-Optic Temperature Sensor Using a Thin-Film Fabry-Perot Interferometer
NASA Technical Reports Server (NTRS)
Beheim, Glenn
1997-01-01
A fiber-optic temperature sensor was developed that is rugged, compact, stable, and can be inexpensively fabricated. This thin-film interferometric temperature sensor was shown to be capable of providing a +/- 2 C accuracy over the range of -55 to 275 C, throughout a 5000 hr operating life. A temperature-sensitive thin-film Fabry-Perot interferometer can be deposited directly onto the end of a multimode optical fiber. This batch-fabricatable sensor can be manufactured at a much lower cost than can a presently available sensor, which requires the mechanical attachment of a Fabry-Perot interferometer to a fiber. The principal disadvantage of the thin-film sensor is its inherent instability, due to the low processing temperatures that must be used to prevent degradation of the optical fiber's buffer coating. The design of the stable thin-film temperature sensor considered the potential sources of both short and long term drifts. The temperature- sensitive Fabry-Perot interferometer was a silicon film with a thickness of approx. 2 microns. A laser-annealing process was developed which crystallized the silicon film without damaging the optical fiber. The silicon film was encapsulated with a thin layer of Si3N4 over coated with aluminum. Crystallization of the silicon and its encapsulation with a highly stable, impermeable thin-film structure were essential steps in producing a sensor with the required long-term stability.
Noncontact photoacoustic imaging by using a modified optical-fiber Michelson interferometer
NASA Astrophysics Data System (ADS)
Lu, Jiao; Gao, Yingzhe; Ma, Zhenhe; Wang, Bo; Wang, Yi
2016-03-01
We demonstrate a noncontact photoacoustic imaging (PAI) system in which an optical interferometer is used for ultrasound detection. The system is based on a modified optical-fiber Michelson interferometer that measures the surface displacement caused by photoacoustic pressure. A synchronization method is utilized to keep its high sensitivity to reduce the influence of ambient vibrations. The system is experimentally verified by imaging of a phantom. The experimental results indicate that the proposed system can be used for noncontact PAI with high resolution and high bandwidth.
Durán-Sánchez, Manuel; Prieto-Cortés, Patricia; Salceda-Delgado, Guillermo; Castillo-Guzmán, Arturo A.; Selvas-Aguilar, Romeo; Ibarra-Escamilla, Baldemar; Kuzin, Evgeny A.
2017-01-01
An all-fiber curvature laser sensor by using a novel modal interference in-fiber structure is proposed and experimentally demonstrated. The in-fiber device, fabricated by fusion splicing of multimode fiber and double-clad fiber segments, is used as wavelength filter as well as the sensing element. By including a multimode fiber in an ordinary modal interference structure based on a double-clad fiber, the fringe visibility of the filter transmission spectrum is significantly increased. By using the modal interferometer as a curvature sensitive wavelength filter within a ring cavity erbium-doped fiber laser, the spectral quality factor Q is considerably increased. The results demonstrate the reliability of the proposed curvature laser sensor with advantages of robustness, ease of fabrication, low cost, repeatability on the fabrication process and simple operation. PMID:29182527
Álvarez-Tamayo, Ricardo I; Durán-Sánchez, Manuel; Prieto-Cortés, Patricia; Salceda-Delgado, Guillermo; Castillo-Guzmán, Arturo A; Selvas-Aguilar, Romeo; Ibarra-Escamilla, Baldemar; Kuzin, Evgeny A
2017-11-28
An all-fiber curvature laser sensor by using a novel modal interference in-fiber structure is proposed and experimentally demonstrated. The in-fiber device, fabricated by fusion splicing of multimode fiber and double-clad fiber segments, is used as wavelength filter as well as the sensing element. By including a multimode fiber in an ordinary modal interference structure based on a double-clad fiber, the fringe visibility of the filter transmission spectrum is significantly increased. By using the modal interferometer as a curvature sensitive wavelength filter within a ring cavity erbium-doped fiber laser, the spectral quality factor Q is considerably increased. The results demonstrate the reliability of the proposed curvature laser sensor with advantages of robustness, ease of fabrication, low cost, repeatability on the fabrication process and simple operation.
NASA Astrophysics Data System (ADS)
Xiang, Yang; Luo, Yiyang; Zhang, Wei; Liu, Deming; Sun, Qizhen
2017-04-01
We propose and demonstrate a distributed fiber sensor based on cascaded microfiber Fabry-Perot interferometers (MFPI) for simultaneous refractive index (SRI) and temperature measurement. By employing MFPI which is fabricated by taper-drawing the center of a uniform fiber Bragg grating (FBG) on standard fiber into a section of microfiber, dual parameters including SRI and temperature can be detected through demodulating the reflection spectrum of the MFPI. Further, wavelength-division-multiplexing (WDM) is applied to realize distributed dual-parameter fiber sensor by using cascaded MFPIs with different Bragg wavelengths. A prototype sensor system with 5 cascaded MFPIs is constructed to experimentally demonstrate the sensing performance.
Huang, Jie; Lan, Xinwei; Luo, Ming; Xiao, Hai
2014-07-28
This paper reports a spatially continuous distributed fiber optic sensing technique using optical carrier based microwave interferometry (OCMI), in which many optical interferometers with the same or different optical path differences are interrogated in the microwave domain and their locations can be unambiguously determined. The concept is demonstrated using cascaded weak optical reflectors along a single optical fiber, where any two arbitrary reflectors are paired to define a low-finesse Fabry-Perot interferometer. While spatially continuous (i.e., no dark zone), fully distributed strain measurement was used as an example to demonstrate the capability, the proposed concept may also be implemented on other types of waveguide or free-space interferometers and used for distributed measurement of various physical, chemical and biological quantities.
Radio-frequency low-coherence interferometry.
Fernández-Pousa, Carlos R; Mora, José; Maestre, Haroldo; Corral, Pablo
2014-06-15
A method for retrieving low-coherence interferograms, based on the use of a microwave photonics filter, is proposed and demonstrated. The method is equivalent to the double-interferometer technique, with the scanning interferometer replaced by an analog fiber-optics link and the visibility recorded as the amplitude of its radio-frequency (RF) response. As a low-coherence interferometry system, it shows a decrease of resolution induced by the fiber's third-order dispersion (β3). As a displacement sensor, it provides highly linear and slope-scalable readouts of the interferometer's optical path difference in terms of RF, even in the presence of third-order dispersion. In a proof-of-concept experiment, we demonstrate 20-μm displacement readouts using C-band EDFA sources and standard single-mode fiber.
Ahn, T-J; Kim, D
2005-10-03
A novel differential mode delay (DMD) measurement technique for a multimode optical fiber based on optical frequency domain reflectometry (OFDR) has been proposed. We have obtained a high-resolution DMD value of 0.054 ps/m for a commercial multimode optical fiber with length of 50 m by using a modified OFDR in a Mach-Zehnder interferometer structure with a tunable external cavity laser and a Mach-Zehnder interferometer instead of Michelson interferometer. We have also compared the OFDR measurement results with those obtained using a traditional time-domain measurement method. DMD resolution with our proposed OFDR technique is more than an order of magnitude better than a result obtainable with a conventional time-domain method.
Choi, Heejin; Wadduwage, Dushan; Matsudaira, Paul T.; So, Peter T.C.
2014-01-01
A depth resolved hyperspectral imaging spectrometer can provide depth resolved imaging both in the spatial and the spectral domain. Images acquired through a standard imaging Fourier transform spectrometer do not have the depth-resolution. By post processing the spectral cubes (x, y, λ) obtained through a Sagnac interferometer under uniform illumination and structured illumination, spectrally resolved images with depth resolution can be recovered using structured light illumination algorithms such as the HiLo method. The proposed scheme is validated with in vitro specimens including fluorescent solution and fluorescent beads with known spectra. The system is further demonstrated in quantifying spectra from 3D resolved features in biological specimens. The system has demonstrated depth resolution of 1.8 μm and spectral resolution of 7 nm respectively. PMID:25360367
Ikuta, Rikizo; Kobayashi, Toshiki; Kawakami, Tetsuo; Miki, Shigehito; Yabuno, Masahiro; Yamashita, Taro; Terai, Hirotaka; Koashi, Masato; Mukai, Tetsuya; Yamamoto, Takashi; Imoto, Nobuyuki
2018-05-21
Long-lifetime quantum storages accessible to the telecom photonic infrastructure are essential to long-distance quantum communication. Atomic quantum storages have achieved subsecond storage time corresponding to 1000 km transmission time for a telecom photon through a quantum repeater algorithm. However, the telecom photon cannot be directly interfaced to typical atomic storages. Solid-state quantum frequency conversions fill this wavelength gap. Here we report on the experimental demonstration of a polarization-insensitive solid-state quantum frequency conversion to a telecom photon from a short-wavelength photon entangled with an atomic ensemble. Atom-photon entanglement has been generated with a Rb atomic ensemble and the photon has been translated to telecom range while retaining the entanglement by our nonlinear-crystal-based frequency converter in a Sagnac interferometer.
Photonic crystal fiber Fabry-Perot interferometers with high-reflectance internal mirrors
NASA Astrophysics Data System (ADS)
Fan, Rong; Hou, Yuanbin; Sun, Wei
2015-06-01
We demonstrated an in-line micro fiber-optic Fabry-Perot interferometer with an air cavity which was created by multi-step fusion splicing a muti-mode photonic crystal fiber (MPCF) to a standard single mode fiber (SMF). The fringe visibility of the interference pattern was up to 20 dB by reshaping the air cavity. Experimental results showed that such a device could be used as a highly sensitive strain sensor with the sensitivity of 4.5 pm/μɛ. Moreover, it offered some other outstanding advantages, such as the extremely compact structure, easy fabrication, low cost, and high accuracy.
NASA Astrophysics Data System (ADS)
Aref, Seyed Hashem
2017-11-01
In this letter, the sensitivity to strain, curvature, and temperature of a sensor based on in-line fiber Mach-Zahnder interferometer (IFMZI) is studied and experimentally demonstrated. The sensing structure is simply a section of single mode fiber sandwiched between two abrupt tapers to achieve a compact IFMZI. The phase of interferometer changes with the measurand interaction, which is the basis for considering this structure for sensing. The physical parameter sensitivity of IFMZI sensor has been evaluated using differential white light interferometry (DWLI) technique as a phase read-out system. The differential configuration of the IFMZI sensor is used to achieve a high phase resolving power of ±0.062° for read-out interferometer by means of omission of phase noise of environment perturbations. The sensitivity of the sensor to the strain, curvature, and temperature has been measured 0.0199 degree/με, 757.00 degree/m-1, and 3.25 degree/°C, respectively.
NASA Astrophysics Data System (ADS)
Cabib, Dario; Lavi, Moshe; Gil, Amir; Milman, Uri
2011-06-01
Since the early '90's CI has been involved in the development of FTIR hyperspectral imagers based on a Sagnac or similar type of interferometer. CI also pioneered the commercialization of such hyperspectral imagers in those years. After having developed a visible version based on a CCD in the early '90's (taken on by a spin-off company for biomedical applications) and a 3 to 5 micron infrared version based on a cooled InSb camera in 2008, it is now developing an LWIR version based on an uncooled camera for the 8 to 14 microns range. In this paper we will present design features and expected performance of the system. The instrument is designed to be rugged for field use, yield a relatively high spectral resolution of 8 cm-1, an IFOV of 0.5 mrad., a 640x480 pixel spectral cube in less than a minute and a noise equivalent spectral radiance of 40 nW/cm2/sr/cm-1 at 10μ. The actually measured performance will be presented in a future paper.
NASA Astrophysics Data System (ADS)
Zhang, Yinan; Huang, Jie; Lan, Xinwei; Yuan, Lei; Xiao, Hai
2014-06-01
This paper presents an approach for simultaneous measurement of temperature and pressure using miniaturized fiber inline sensors. The approach utilizes the cascaded optical fiber inline intrinsic Fabry-Perot interferometer and extrinsic Fabry-Perot interferometer as temperature and pressure sensing elements, respectively. A CO2 laser was used to create a loss between them to balance their reflection power levels. The multiplexed signals were demodulated using a Fast Fourier transform-based wavelength tracking method. Experimental results showed that the sensing system could measure temperature and pressure unambiguously in a pressure range of 0 to 6.895×105 Pa and a temperature range from 20°C to 700°C.
ALISEO on MIOSat: an imaging interferometer for earth observation
NASA Astrophysics Data System (ADS)
Barducci, A.; Castagnoli, F.; Castellini, G.; Guzzi, D.; Marcoionni, P.; Pippi, I.
2017-11-01
The Italian Space Agency (ASI) decided to perform an low cost Earth observation mission based on a new mini satellite named MIOsat which will carry various technological payloads. Among them an imaging interferometer designed and now ready to be assembled and tested by our Institute. The instrument, named ALISEO (Aerospace Leap-frog Imaging Stationary interferometer for Earth Observation), operates in the common-path Sagnac configuration, and it does not utilize any moving part to scan the phase delays between the two interfering beams. The sensor acquires target images modulated by a pattern of autocorrelation functions of the energy coming from each scene pixel, and the resulting fringe pattern remains spatially fixed with respect to the instrument's field-of-view. The complete interferogram of each target location is retrieved by introducing a relative source-observer motion, which allows any image pixels to be observed under different viewing-angles and experience discrete path differences. The paper describes the main characteristics of the imaging interferometer as well as the overall optical configuration and the electronics layout. Moreover some theoretical issues concerning sampling theory in "common path" imaging interferometry are investigated. The experimental activity performed in laboratory is presented and its outcomes are analysed. Particularly, a set of measurements has been carried out using both standard (certificate) reflectance tiles and natural samples of different volcanic rocks. An algorithm for raw data pre-processing aimed at retrieving the at-sensor radiance spectrum is introduced and its performance is addressed by taking into account various issues such as dark signal subtraction, spectral instrument response compensation, effects of vignetting, and Fourier backtransform. Finally, examples of retrieved absolute reflectance of several samples are sketched at different wavelengths.
A fiber-Bragg-grating sensor interrogation system using in-fiber Fabry-Pérot interferometer
NASA Astrophysics Data System (ADS)
Wang, Ting-ting; Wang, Ming
2011-11-01
A fiber-Bragg-grating sensor interrogation system using a in-fiber Fabry-Pérot interferometer (IFFPI) is presented. The IFFPI was formed by splicing together a conventional single-mode fiber and a photonic crystal fiber with simple arcdischarge technique. The ellipsoidal air-cavity between the two fibers forms Fabry-Pérot cavity. The diffraction loss can be very low due to the focusing of reentrant and very short cavity length, thus resulting in high visibility and long period. The IFFPI is used as the filter component of the interrogation system. The resolving wavelength can achieve 2pm by using an Er-doped ring FBG laser in the experimental system. The advantages of this system are an all-fiber design, temperature insensitivity, quasistatic and dynamic operation, potential high speed and large range demodulation.
Optical fiber Fabry-Perot interferometer with pH sensitive hydrogel film for hazardous gases sensing
NASA Astrophysics Data System (ADS)
Zheng, Yangzi; Chen, Li Han; Chan, Chi Chiu; Dong, Xinyong; Yang, Jingyi; Tou, Zhi Qiang; So, Ping Lam
2015-09-01
An optical fiber Fabry-Perot interferometer (FPI) coated with polyvinyl alcohol/poly-acrylic acid (PVA/PAA) hydrogel film for toxic gases measurement has been developed. Splicing a short section of hollow core fiber between two single mode fibers forms the FPI. Dip-coated pH-sensitive PVA/PAA hydrogel film on the fiber end performs as a receptor for binding of volatile acids or ammonia, which makes the sensing film swelling or shrinking and results in the dip wavelength shift of the FPI. By demodulating the evolution of reflection spectrum for various concentrations of volatile acids, a sensitivity of 20.8 nm/ppm is achieved with uniform linearity.
Optical fiber sensors for high temperature harsh environment applications
NASA Astrophysics Data System (ADS)
Xiao, Hai; Wei, Tao; Lan, Xinwei; Zhang, Yinan; Duan, Hongbiao; Han, Yukun; Tsai, Hai-Lung
2010-04-01
This paper summarizes our recent research progresses in developing optical fiber harsh environment sensors for various high temperature harsh environment sensing applications such as monitoring of the operating conditions in a coal-fired power plant and in-situ detection of key gas components in coal-derived syngas. The sensors described in this paper include a miniaturized inline fiber Fabry-Perot interferometer (FPI) fabricated by one-step fs laser micromachining, a long period fiber grating (LPFG) and a fiber inline core-cladding mode interferometer (CMMI) fabricated by controlled CO2 laser irradiations. Their operating principles, fabrication methods, and applications for measurement of various physical and chemical parameters in a high temperature and high pressure coexisting harsh environment are presented.
Dual-optical-response photonic crystal fibre interferometer for multi-parameter sensing
NASA Astrophysics Data System (ADS)
Villatoro, Joel; Minkovich, Vladimir P.; Zubia, Joseba
2014-05-01
An all-fiber mode interferometer consisting of a short segment of photonic crystal fiber (PCF) fusion spliced to standard single mode optical fiber and pressed on localized regions is proposed for multi-parameter sensing. In our configuration, the physical parameter being sensed changes the fringe contrast (or visibility) of the interference pattern and also causes a shift to the same. To achieve this dual effect the device is pressed on localized regions over a few millimeters. In this manner we introduce losses and effective refractive index changes to the interference modes, hence visibility and shift to the interference pattern. Our interferometer is suitable for monitoring diverse physical parameters such as weight, force, pressure, load, etc. The advantage is that no temperature or power fluctuations compensation is required.
NASA Astrophysics Data System (ADS)
Yoon, Min-Seok; Jun, Naram; Lee, Sang Bae; Han, Young-Geun
2014-05-01
A reflective in-line modal interferometer based on a polarization-maintaining photonic crystal fiber (PM-PCF) with two exterior air holes is proposed for simultaneous measurement of chemical vapor and temperature. After fusion-splicing the PM-PCF with a standard single-mode fiber, we collapse all of air holes in the PM-PCF resulting in two types of interference patterns between the core and the cladding modes in the PM-PCF depending on two polarization states. Since two large air holes at the facet of the proposed modal interferometer are left open, a chemical vapor can be infiltrated into the voids. Different sensitivities corresponding to input polarization states are utilized for discrimination between chemical vapor and temperature sensitivities.
The Sagnac effect and its interpretation by Paul Langevin
NASA Astrophysics Data System (ADS)
Pascoli, Gianni
2017-11-01
The French physicist Georges Sagnac is nowdays frequently cited by the engineers who work on devices such as ring-laser gyroscopes. These systems operate on the principle of the Sagnac effect. It is less known that Sagnac was a strong opponent to the theory of special relativity proposed by Albert Einstein. He set up his experiment to prove the existence of the aether discarded by the Einsteinian relativity. An accurate explanation of the phenomenon was provided by Paul Langevin in 1921.
Muñoz-Matutano, G.; Barrera, D.; Fernández-Pousa, C.R.; Chulia-Jordan, R.; Seravalli, L.; Trevisi, G.; Frigeri, P.; Sales, S.; Martínez-Pastor, J.
2016-01-01
New optical fiber based spectroscopic tools open the possibility to develop more robust and efficient characterization experiments. Spectral filtering and light reflection have been used to produce compact and versatile fiber based optical cavities and sensors. Moreover, these technologies would be also suitable to study N-photon correlations, where high collection efficiency and frequency tunability is desirable. We demonstrated single photon emission of a single quantum dot emitting at 1300 nm, using a Fiber Bragg Grating for wavelength filtering and InGaAs Avalanche Photodiodes operated in Geiger mode for single photon detection. As we do not observe any significant fine structure splitting for the neutral exciton transition within our spectral resolution (46 μeV), metamorphic QD single photon emission studied with our all-fiber Hanbury Brown & Twiss interferometer could lead to a more efficient analysis of entangled photon sources at telecom wavelength. This all-optical fiber scheme opens the door to new first and second order interferometers to study photon indistinguishability, entangled photon and photon cross correlation in the more interesting telecom wavelengths. PMID:27257122
Aligning Arrays of Lenses and Single-Mode Optical Fibers
NASA Technical Reports Server (NTRS)
Liu, Duncan
2004-01-01
A procedure now under development is intended to enable the precise alignment of sheet arrays of microscopic lenses with the end faces of a coherent bundle of as many as 1,000 single-mode optical fibers packed closely in a regular array (see Figure 1). In the original application that prompted this development, the precise assembly of lenses and optical fibers serves as a single-mode spatial filter for a visible-light nulling interferometer. The precision of alignment must be sufficient to limit any remaining wavefront error to a root-mean-square value of less than 1/10 of a wavelength of light. This wavefront-error limit translates to requirements to (1) ensure uniformity of both the lens and fiber arrays, (2) ensure that the lateral distance from the central axis of each lens and the corresponding optical fiber is no more than a fraction of a micron, (3) angularly align the lens-sheet planes and the fiber-bundle end faces to within a few arc seconds, and (4) axially align the lenses and the fiber-bundle end faces to within tens of microns of the focal distance. Figure 2 depicts the apparatus used in the alignment procedure. The beam of light from a Zygo (or equivalent) interferometer is first compressed by a ratio of 20:1 so that upon its return to the interferometer, the beam will be magnified enough to enable measurement of wavefront quality. The apparatus includes relay lenses that enable imaging of the arrays of microscopic lenses in a charge-coupled-device (CCD) camera that is part of the interferometer. One of the arrays of microscopic lenses is mounted on a 6-axis stage, in proximity to the front face of the bundle of optical fibers. The bundle is mounted on a separate stage. A mirror is attached to the back face of the bundle of optical fibers for retroreflection of light. When a microscopic lens and a fiber are aligned with each other, the affected portion of the light is reflected back by the mirror, recollimated by the microscopic lens, transmitted through the relay lenses and the beam compressor/expander, then split so that half goes to a detector and half to the interferometer. The output of the detector is used as a feedback control signal for the six-axis stage to effect alignment.
Interferometric fiber-optic temperature sensor with spiral polarization couplers
NASA Astrophysics Data System (ADS)
Cortés, R.; Khomenko, A. V.; Starodumov, A. N.; Arzate, N.; Zenteno, L. A.
1998-09-01
A fiber optic temperature sensor, for which the changes in modal birefringence of a short section of a long birefringent fiber are monitored remotely, is described. It employs a white light interferometer, which is formed by two concatenated spiral polarization mode couplers. A new method for white light interferometer output signal processing is described which provides a high accuracy absolute temperature measurement even in discontinuous operation of the sensor. Experimental results are presented for temperature measurements over a 100°C range with resolution of 3×10 -3 °C.
Squeezed pulsed light from a fiber ring interferometer
NASA Technical Reports Server (NTRS)
Bergman, K.; Haus, H. A.
1992-01-01
Observation of squeezed noise, 5 +/- 0.3 dB below the shot noise level, generated with pulses in a fiber ring interferometer is reported. The interferometric geometry is used to separate the pump pulse from the squeezed vacuum radiation. A portion of the pump is reused as the local oscillator in a homodyne detection. The pump fluctuations are successfully subtracted and shot noise limited performance is achieved at low frequencies (35-85 KHz). A possible utilization of the generated squeezed vacuum in improving a fiber gyro's signal to noise ratio is discussed.
In-fiber Fabry-Perot refractometer assisted by a long-period grating.
Mosquera, L; Sáez-Rodriguez, D; Cruz, J L; Andrés, M V
2010-02-15
We present an optical fiber refractometer based on a Fabry-Perot interferometer defined by two fiber Bragg gratings and an intracavity long-period grating that makes the light confined in the resonator interact with the surrounding medium. The external refractive index is monitored by the resonant frequencies of the Fabry-Perot interferometer, which can be measured either in transmission or in reflection. In this first experiment, wavelength shifts measured with a resolution of 0.1 pm have allowed one to establish a refractive index detection limit of 2.1x10(-5).
Simple interrogator for optical fiber-based white light Fabry-Perot interferometers.
Yu, Zhihao; Tian, Zhipeng; Wang, Anbo
2017-02-15
In this Letter, we present the design of a simple signal interrogator for optical fiber-based white light Fabry-Perot (F-P) interferometers. With the hardware being composed of only a flat fused silica wafer and a CCD camera, this interrogator translates the spectral interference into a spatial interference pattern, and then demodulates the F-P cavity length with the use of a relatively simple demodulation algorithm. The concept is demonstrated experimentally in a fiber optic sensor with a sapphire wafer as the F-P cavity.
An atom interferometer inside a hollow-core photonic crystal fiber
Xin, Mingjie; Leong, Wui Seng; Chen, Zilong; Lan, Shau-Yu
2018-01-01
Coherent interactions between electromagnetic and matter waves lie at the heart of quantum science and technology. However, the diffraction nature of light has limited the scalability of many atom-light–based quantum systems. We use the optical fields in a hollow-core photonic crystal fiber to spatially split, reflect, and recombine a coherent superposition state of free-falling 85Rb atoms to realize an inertia-sensitive atom interferometer. The interferometer operates over a diffraction-free distance, and the contrasts and phase shifts at different distances agree within one standard error. The integration of phase coherent photonic and quantum systems here shows great promise to advance the capability of atom interferometers in the field of precision measurement and quantum sensing with miniature design of apparatus and high efficiency of laser power consumption. PMID:29372180
Huerta-Mascotte, Eduardo; Sierra-Hernandez, Juan M; Mata-Chavez, Ruth I; Jauregui-Vazquez, Daniel; Castillo-Guzman, Arturo; Estudillo-Ayala, Julian M; Guzman-Chavez, Ana D; Rojas-Laguna, Roberto
2016-06-10
In this paper, an all-fiber Mach-Zehnder interferometer (MZI) based on a non-zero dispersion-shifted fiber (NZ-DSF) is presented. The MZI was implemented by core-offset fusion splicing one section of a NZ-DSF fiber between two pieces of single mode fibers (SMFs). Here, the NZ-DSF core and cladding were used as the arms of the MZI, while the core-offset sections acted as optical fiber couplers. Thus, a MZI interference spectrum with a fringe contrast (FC) of about 20 dB was observed. Moreover, its response spectrum was experimentally characterized to the torsion parameter and a sensitivity of 0.070 nm/° was achieved. Finally, these MZIs can be implemented in a compact size and low cost.
Huerta-Mascotte, Eduardo; Sierra-Hernandez, Juan M.; Mata-Chavez, Ruth I.; Jauregui-Vazquez, Daniel; Castillo-Guzman, Arturo; Estudillo-Ayala, Julian M.; Guzman-Chavez, Ana D.; Rojas-Laguna, Roberto
2016-01-01
In this paper, an all-fiber Mach-Zehnder interferometer (MZI) based on a non-zero dispersion-shifted fiber (NZ-DSF) is presented. The MZI was implemented by core-offset fusion splicing one section of a NZ-DSF fiber between two pieces of single mode fibers (SMFs). Here, the NZ-DSF core and cladding were used as the arms of the MZI, while the core-offset sections acted as optical fiber couplers. Thus, a MZI interference spectrum with a fringe contrast (FC) of about 20 dB was observed. Moreover, its response spectrum was experimentally characterized to the torsion parameter and a sensitivity of 0.070 nm/° was achieved. Finally, these MZIs can be implemented in a compact size and low cost. PMID:27294930
Processing of Signals from Fiber Bragg Gratings Using Unbalanced Interferometers
NASA Technical Reports Server (NTRS)
Adamovsky, Grigory; Juergens, Jeff; Floyd, Bertram
2005-01-01
Fiber Bragg gratings (FBG) have become preferred sensory structures in fiber optic sensing system. High sensitivity, embedability, and multiplexing capabilities make FBGs superior to other sensor configurations. The main feature of FBGs is that they respond in the wavelength domain with the wavelength of the returned signal as the indicator of the measured parameter. The wavelength is then converted to optical intensity by a photodetector to detect corresponding changes in intensity. This wavelength-to-intensity conversion is a crucial part in any FBG-based sensing system. Among the various types of wavelength-to-intensity converters, unbalanced interferometers are especially attractive because of their small weight and volume, lack of moving parts, easy integration, and good stability. In this paper we investigate the applicability of unbalanced interferometers to analyze signals reflected from Bragg gratings. Analytical and experimental data are presented.
Canuteson, E L; Zumberge, M
1996-07-01
In an absolute gravity meter, a laser interferometer measures the position of a test mass that is falling ina vacuum. The calculated value of gravity is the average acceleration of the mass during a set ofdrops. Since systematic accelerations of the optical system will bias the measured value of gravity,various interferometer geometries have been implemented in the past to isolate the optical system fromground motion. We have developed and tested a low-finesse fiber-optic extrinsic Fabry-Perotinterferometer that is fixed to the mass of a critically damped seismometer in which the effects ofsystematic ground motion and acoustic vibrations are reduced.
Photonic Crystal Fiber Mach-Zehnder Interferometer for Refractive Index Sensing
Wang, Jian-Neng; Tang, Jaw-Luen
2012-01-01
We report on a refractive index sensor using a photonic crystal fiber (PCF) interferometer which was realized by fusion splicing a short section of PCF (Blaze Photonics, LMA-10) between two standard single mode fibers. The fully collapsed air holes of the PCF at the spice regions allow the coupling of PCF core and cladding modes that makes a Mach-Zehnder interferometer. The transmission spectrum exhibits sinusoidal interference pattern which shifts differently when the cladding/core surface of the PCF is immersed with different RI of the surrounding medium. Experimental results using wavelength-shift interrogation for sensing different concentrations of sucrose solution show that a resolution of 1.62 × 10−4–8.88 × 10−4 RIU or 1.02 × 10−4–9.04 × 10−4 RIU (sensing length for 3.50 or 5.00 cm, respectively) was achieved for refractive indices in the range of 1.333 to 1.422, suggesting that the PCF interferometer are attractive for chemical, biological, biochemical sensing with aqueous solutions, as well as for civil engineering and environmental monitoring applications. PMID:22736988
Photonic crystal fiber Mach-Zehnder interferometer for refractive index sensing.
Wang, Jian-Neng; Tang, Jaw-Luen
2012-01-01
We report on a refractive index sensor using a photonic crystal fiber (PCF) interferometer which was realized by fusion splicing a short section of PCF (Blaze Photonics, LMA-10) between two standard single mode fibers. The fully collapsed air holes of the PCF at the spice regions allow the coupling of PCF core and cladding modes that makes a Mach-Zehnder interferometer. The transmission spectrum exhibits sinusoidal interference pattern which shifts differently when the cladding/core surface of the PCF is immersed with different RI of the surrounding medium. Experimental results using wavelength-shift interrogation for sensing different concentrations of sucrose solution show that a resolution of 1.62 × 10(-4)-8.88 × 10(-4) RIU or 1.02 × 10(-4)-9.04 × 10(-4) RIU (sensing length for 3.50 or 5.00 cm, respectively) was achieved for refractive indices in the range of 1.333 to 1.422, suggesting that the PCF interferometer are attractive for chemical, biological, biochemical sensing with aqueous solutions, as well as for civil engineering and environmental monitoring applications.
Investigation on a fiber optic accelerometer based on FBG-FP interferometer
NASA Astrophysics Data System (ADS)
Lin, Chongyu; Luo, Hong; Xiong, Shuidong; Li, Haitao
2014-12-01
A fiber optic accelerometer based on fiber Bragg grating Fabry-Perot (FBG-FP) interferometer is presented. The sensor is a FBG-FP cavity which is formed with two weak fiber Bragg gratings (FBGs) in a single-mode fiber. The reflectivity of the two FBGs is 9.42% and 7.74% respectively, and the fiber between them is 10 meters long. An optical demodulation system was set up to analyze the reflected light of FBG-FP cavity. Acceleration signals of different frequencies and intensities were demodulated correctly and stably by the system. Based on analyzing the optical spectrum of weak FBG based FBG-FP cavity, we got the equivalent length of FBG-FP cavity. We used a path-matching Michelson interferometer (MI) to demodulate the acceleration signal. The visibility of the interference fringe we got was 41%~42% while the theory limit was 50%. This indicated that the difference of interferometer's two arms and the equivalent length of FBG-FP cavity were matched well. Phase generated carrier (PGC) technology was used to eliminate phase fading caused by random phase shift and Faraday rotation mirrors (FRMs) were used to eliminate polarization-induced phase fading. The accelerometer used a compliant cylinder design and its' sensitivity and frequency response were analyzed and simulated based on elastic mechanics. Experiment result showed that the accelerometer had a flat frequency response over the frequency range of 31-630Hz. The sensitivity was about 31dB (0dB=1rad/g) with fluctuation less than 1.5dB.
Guillen Bonilla, José Trinidad; Guillen Bonilla, Alex; Rodríguez Betancourtt, Verónica M.; Guillen Bonilla, Héctor; Casillas Zamora, Antonio
2017-01-01
The application of the sensor optical fibers in the areas of scientific instrumentation and industrial instrumentation is very attractive due to its numerous advantages. In the industry of civil engineering for example, quasi-distributed sensors made with optical fiber are used for reliable strain and temperature measurements. Here, a quasi-distributed sensor in the frequency domain is discussed. The sensor consists of a series of low-finesse Fabry-Perot interferometers where each Fabry-Perot interferometer acts as a local sensor. Fabry-Perot interferometers are formed by pairs of identical low reflective Bragg gratings imprinted in a single mode fiber. All interferometer sensors have different cavity length, provoking frequency-domain multiplexing. The optical signal represents the superposition of all interference patterns which can be decomposed using the Fourier transform. The frequency spectrum was analyzed and sensor’s properties were defined. Following that, a quasi-distributed sensor was numerically simulated. Our sensor simulation considers sensor properties, signal processing, noise system, and instrumentation. The numerical results show the behavior of resolution vs. signal-to-noise ratio. From our results, the Fabry-Perot sensor has high resolution and low resolution. Both resolutions are conceivable because the Fourier Domain Phase Analysis (FDPA) algorithm elaborates two evaluations of Bragg wavelength shift. PMID:28420083
Guillen Bonilla, José Trinidad; Guillen Bonilla, Alex; Rodríguez Betancourtt, Verónica M; Guillen Bonilla, Héctor; Casillas Zamora, Antonio
2017-04-14
The application of the sensor optical fibers in the areas of scientific instrumentation and industrial instrumentation is very attractive due to its numerous advantages. In the industry of civil engineering for example, quasi-distributed sensors made with optical fiber are used for reliable strain and temperature measurements. Here, a quasi-distributed sensor in the frequency domain is discussed. The sensor consists of a series of low-finesse Fabry-Perot interferometers where each Fabry-Perot interferometer acts as a local sensor. Fabry-Perot interferometers are formed by pairs of identical low reflective Bragg gratings imprinted in a single mode fiber. All interferometer sensors have different cavity length, provoking frequency-domain multiplexing. The optical signal represents the superposition of all interference patterns which can be decomposed using the Fourier transform. The frequency spectrum was analyzed and sensor's properties were defined. Following that, a quasi-distributed sensor was numerically simulated. Our sensor simulation considers sensor properties, signal processing, noise system, and instrumentation. The numerical results show the behavior of resolution vs. signal-to-noise ratio. From our results, the Fabry-Perot sensor has high resolution and low resolution. Both resolutions are conceivable because the Fourier Domain Phase Analysis (FDPA) algorithm elaborates two evaluations of Bragg wavelength shift.
Integration and initial operation of the multi-component large ring laser structure ROMY
NASA Astrophysics Data System (ADS)
Schreiber, Karl Ulrich; Igel, Heiner; Wassermann, Joachim; Gebauer, André; Simonelli, Andrea; Bernauer, Felix; Donner, Stefanie; Hadziioannou, Celine; Egdorf, Sven; Wells, Jon-Paul
2017-04-01
Rotation sensing for the geosciences requires a high sensor resolution of the order of 10 pico- radians per second or even less. An optical Sagnac interferometer offers this sensitivity, provided that the scale factor can be made very large. We have designed and built a multi- component ring laser system, consisting of 4 individual large ring lasers, each covering an area of more than 62 square m. The rings are orientated in the shape of a tetrahedron, so that all 3 spatial directions are covered, allowing also for some redundancy. We report on the initial operation of the free running gyroscopes in their underground facility in order to establish a performance estimate for the ROMY ring laser structure. Preliminary results suggest that the quantum noise limit is lower than that of the G ring laser.
Optically guided atom interferometer tuned to magic wavelength
NASA Astrophysics Data System (ADS)
Akatsuka, Tomoya; Takahashi, Tadahiro; Katori, Hidetoshi
2017-11-01
We demonstrate an atom interferometer operating on the 1S0-3P0 clock transition of 87Sr atoms in a “magic” optical guide, where the light shift perturbations of the guiding potential are canceled. As a proof-of-principle demonstration, a Mach-Zehnder interferometer is set horizontally to map the acceleration introduced by the focused optical guide. This magic guide interferometer on the clock transition is applicable to atomic elements where magic wavelengths can be found. Possible applications of the magic guide interferometer, including a hollow-core fiber interferometer and gradiometer, are discussed.
Geng, Youfu; Li, Xuejin; Tan, Xiaoling; Deng, Yuanlong; Yu, Yongqin
2013-07-15
In this paper, an in-line comb filter with flat-top spectral response is proposed and constructed based on a cascaded all-solid photonic bandgap fiber modal interferometer. It consists of two short pieces of all-solid photonic bandgap fiber and two standard single-mode fibers as lead fibers with core-offset splices between them. The theoretical and experimental results demonstrated that by employing a cut and resplice process on the central position of all-solid photonic bandgap fiber, the interference spectra are well tailored and flat-top spectral profiles could be realized by the controllable offset amount of the resplice. The channel position also could be tuned by applying longitudinal torsion with up to 4 nm tuning range. Such a flat-top fiber comb filter is easy-to-fabricate and with a designable passband width and flat-top profile.
Highly versatile in-reflection photonic crystal fibre interferometer
NASA Astrophysics Data System (ADS)
Jha, Rajan; Villatoro, Joel; Kreuzer, Mark; Finazzi, Vittoria; Pruneri, Valerio
2009-10-01
We report a simple and highly versatile photonic crystal fiber (PCF) interferometer that operates in reflection mode. The device consists of a short section of PCF fusion spliced at the distal end of a standard single mode fiber. The air-holes of the PCF are intentionally collapsed over a microscopic region around the splice. The collapsed region broadens the propagating mode because of diffraction. This allows the coupling and recombination of two PCF modes. Depending on the PCF structure two core modes or a core and a cladding mode can be excited. In either case the devices exhibit sinusoidal interference patterns with fringe spacing depending on the PCF length. The interferometers are highly stable over time and can operate at high temperatures with minimal degradation. The interferometers are suitable for highresolution sensing of strain, refractive index (biosensing), gases, volatile organic compounds, etc.
Fiber optic sensor based on Mach-Zehnder interferometer for securing entrance areas of buildings
NASA Astrophysics Data System (ADS)
Nedoma, Jan; Fajkus, Marcel; Martinek, Radek; Mec, Pavel; Novak, Martin; Bednarek, Lukas; Vasinek, Vladimir
2017-10-01
Authors of this article focused on the utilization of fiber optic sensors based on interferometric measurements for securing entrance areas of buildings such as windows and doors. We described the implementation of the fiber-optic interferometer (type Mach-Zehnder) into the window frame or door, sensor sensitivity, analysis of the background noise and methods of signal evaluation. The advantage of presented solution is the use of standard telecommunication fiber standard G.652.D, high sensitivity, immunity of sensor to electromagnetic interference (EMI) and passivity of the sensor regarding power supply. Authors implemented the Graphical User Interface (GUI) which offers the possibility of remote monitoring presented sensing solution.
Chen, Jiageng; Liu, Qingwen; He, Zuyuan
2017-09-04
We developed a multiplexed strain sensor system with high resolution using fiber Fabry-Perot interferometers (FFPI) as sensing elements. The temporal responses of the FFPIs excited by rectangular laser pulses are used to obtain the strain applied on each FFPI. The FFPIs are connected by cascaded couplers and delay fiber rolls for the time-domain multiplexing. A compact optoelectronic system performing closed-loop cyclic interrogation is employed to improve the sensing resolution and the frequency response. In the demonstration experiment, 3-channel strain sensing with resolutions better than 0.1 nε and frequency response higher than 100 Hz is realized.
Fiber optic smart structures and skins V; Proceedings of the Meeting, Boston, MA, Sept. 8, 9, 1992
NASA Technical Reports Server (NTRS)
Claus, Richard O. (Editor); Rogowski, Robert S. (Editor)
1993-01-01
The present conference discusses the materials used in applications of fiber-optics (F-O) to smart structures, extrinsic Fabry-Perot interferometric F-O sensors, sapphire F-O sensors, two-mode F-O sensors with photoinduced refractive index, an F-O accelerometer using two-mode fibers, and embedded F-O acoustic sensors for flaw detection. Also discussed are an optoelectronic smart structure interface, F-O sensors for simultaneous detection of strain and temperature, an optical Mach-Zehnder interferometer for smart skins, a split-cavity cross-coupled extrinsic fiber interferometer, and an embedded Bragg grating F-O sensor for composite flexbeams, an Er-doped ring-laser strain sensor.
Fiber in-line Mach-Zehnder interferometer based on an inner air-cavity for high-pressure sensing.
Talataisong, W; Wang, D N; Chitaree, R; Liao, C R; Wang, C
2015-04-01
We demonstrate a fiber in-line Mach-Zehnder interferometer based on an inner air-cavity with open micro-channel for high-pressure sensing applications. The inner air-cavity is fabricated by combining femtosecond laser micromachining and the fusion splicing technique. The micro-channel is drilled on the top of the inner air-cavity to allow the high-pressure gas to flow in. The fiber in-line device is miniature, robust, and stable in operation and exhibits a high pressure sensitivity of ∼8,239 pm/MPa.
Development of an optical fiber interferometer for detection of surface flaws in aluminum
NASA Technical Reports Server (NTRS)
Gilbert, John A.
1991-01-01
The main objective was to demonstrate the potential of using an optical fiber interferometer (OFI) to detect surface flaws in aluminum samples. Standard ultrasonic excitation was used to generate Rayleigh surface waves. After the waves interacted with a defect, the modified responses were detected using the OFI and the results were analyzed for time-of-flight and frequency content to predict the size and location of the flaws.
The low coherence Fabry-Pérot interferometer with diamond and ZnO layers
NASA Astrophysics Data System (ADS)
Majchrowicz, D.; Den, W.; Hirsch, M.
2016-09-01
The authors present a fiber-optic Fabry-Pérot interferometer built with the application of diamond and zinc oxide (ZnO) thin layers. Thin ZnO films were deposited on the tip of a standard telecommunication single-mode optical fiber (SMF- 28) while the diamond layer was grown on the plate of silicon substrate. Investigated ZnO layers were fabricated by atomic layer deposition (ALD) and the diamond films were deposited using Microwave Plasma Enhanced Chemical Vapor Deposition (μPE CVD) system. Different thickness of layers was examined. The measurements were performed for the fiber-optic Fabry-Pérot interferometer working in the reflective mode. Spectra were registered for various thicknesses of ZnO layer and various length of the air cavity. As a light source, two superluminescent diodes (SLD) with central wavelength of 1300 nm and 1550 nm were used in measurement set-up.
Pressure sensing of Fabry-Perot interferometer with a microchannel demodulated by a FBG
NASA Astrophysics Data System (ADS)
Yu, Yongqin; Chen, Xue; Huang, Quandong; Du, Chenlin; Ruan, Shuangchen
2015-07-01
A novel and compact fiber-probe pressure sensor was demonstrated based on micro Fabry-Perot interferometer (FPI). The device was fabricated by splicing both ends of a short section simplified hollow-core photonic crystal fiber (SHCPCF) with single mode fibers (SMFs), and then a micro channel was drilled by femtosecond laser micromachining in the SHC-PCF to significantly enhance the pressure sensitivity. The pressure sensing characteristics based on micro-FPI have been investigated by measuring the signals through the demodulation of phase since the external signal imposing on the interferometer will induce the phase change of interference signal. Then a FBG was cascaded to demodulate the signal. A micro FPI demonstrates a maximum pressure sensitivity of 32 dB/MPa, while a low temperature cross-sensitivity of 0.27 KPa/°C. Hence it may have potential for pressure applications in harsh environment.
Speckle interferometry using fiber optic phase stepping
NASA Technical Reports Server (NTRS)
Mercer, Carolyn R.; Beheim, Glenn
1989-01-01
A system employing closed-loop phase-stepping is used to measure the out-of-plane deformation of a diffusely reflecting object. Optical fibers are used to provide reference and object beam illumination for a standard two-beam speckle interferometer, providing set-up flexibility and ease of alignment. Piezoelectric fiber-stretchers and a phase-measurement/servo system are used to provide highly accurate phase steps. Intensity data is captured with a charge-injection-device camera, and is converted into a phase map using a desktop computer. The closed-loop phase-stepping system provides 90 deg phase steps which are accurate to 0.02 deg, greatly improving this system relative to open-loop interferometers. The system is demonstrated on a speckle interferometer, measuring the rigid-body translation of a diffusely reflecting object with an accuracy + or - 10 deg, or roughly + or - 15 nanometers. This accuracy is achieved without the use of a pneumatically mounted optics table.
Zhu, Tao; Zhou, Liming; Liu, Min; Zhang, Jingdong; Shi, Leilei
2015-10-28
The traditional electrical field sensing can be realized by utilizing electro-optic materials or liquid crystals, and has limitations of easy breakdown, free assembly and difficult measurement of low-frequency. Here, we propose a new method to realize safe measurement of spatial dynamic electric field by using a micro fiber interferometer integrated with gold nanofilm. The energy of the electric charge received through antenna forms the intrinsic electric field with two micro electrodes, one of which is the 120 nm gold film vibration beam micromachined by femtosecond lasers and integrated with the micro fiber. The change of the intrinsic electric field force due to the spatial electric field will cause the vibration of the film beam. By demodulating the output signal of the micro fiber interferometer, the electric field can be measured. We demonstrate the detectable frequency ranges from tens of Hz to tens of KHz, and the minimum electric field intensity is ~200 V/m at 1 KHz. Our electric field measurement technology combining optical fiber interference with gold nanostructures shows the advantages of security, high sensitivity, compact size, and multiplexed multi-point and remote detection.
Zhu, Tao; Zhou, Liming; Liu, Min; Zhang, Jingdong; Shi, Leilei
2015-01-01
The traditional electrical field sensing can be realized by utilizing electro-optic materials or liquid crystals, and has limitations of easy breakdown, free assembly and difficult measurement of low-frequency. Here, we propose a new method to realize safe measurement of spatial dynamic electric field by using a micro fiber interferometer integrated with gold nanofilm. The energy of the electric charge received through antenna forms the intrinsic electric field with two micro electrodes, one of which is the 120 nm gold film vibration beam micromachined by femtosecond lasers and integrated with the micro fiber. The change of the intrinsic electric field force due to the spatial electric field will cause the vibration of the film beam. By demodulating the output signal of the micro fiber interferometer, the electric field can be measured. We demonstrate the detectable frequency ranges from tens of Hz to tens of KHz, and the minimum electric field intensity is ~200 V/m at 1 KHz. Our electric field measurement technology combining optical fiber interference with gold nanostructures shows the advantages of security, high sensitivity, compact size, and multiplexed multi-point and remote detection. PMID:26507680
Seat, H C; Chawah, P; Cattoen, M; Sourice, A; Plantier, G; Boudin, F; Chéry, J; Brunet, C; Bernard, P; Suleiman, M
2012-07-15
This Letter describes a dual-amplitude modulation technique incorporated into a double reflection extrinsic-type fiber Fabry-Perot interferometer to measure periodic, nonperiodic as well as quasi-static displacements. The modulation scheme simultaneously maintains the interference signal pair in quadrature and provides a reference signal for displacements inferior to a quarter of the source wavelength. The control and phase demodulation of the interferometer carried out via software enable quasi-real-time measurement and facilitates sensor alignment. The sensor system can be exploited in the low frequency range from 10(-3) to ∼500 Hz and has a resolution better than 2.2 nm, targeting applications in geophysics.
Single-mode fiber, velocity interferometry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krauter, K. G.; Jacobson, G. F.; Patterson, J. R.
2011-04-15
In this paper, we describe a velocity interferometer system based entirely on single-mode fiber optics. This paper includes a description of principles used in developing the single-mode velocity interferometry system (SMV). The SMV design is based on polarization-insensitive components. Polarization adjusters are included to eliminate the effects of residual birefringence and polarization dependent losses in the interferometers. Characterization measurements and calibration methods needed for data analysis and a method of data analysis are described. Calibration is performed directly using tunable lasers. During development, we demonstrated its operation using exploding-foil bridge-wire fliers up to 200 m/s. In a final test, wemore » demonstrated the SMV in a gas gun experiment up to 1.2 km/sec. As a basis for comparison in the gas gun experiment, we used another velocimetry technique that is also based on single-mode fiber optics: photonic Doppler velocimetry (PDV). For the gas gun experiment, we split the light returned from a single target spot and performed a direct comparison of the homodyne (SMV) and heterodyne (PDV) techniques concurrently. The two techniques had a negligible mean difference and a 1.5% standard deviation in the one-dimensional shock zone. Within one interferometer delay time after a sudden Doppler shift, a SMV unencumbered by multimode-fiber dispersion exhibits two color beats. These beats have the same period as PDV beats--this interference occurs between the ''recently'' shifted and ''formerly unshifted'' paths within the interferometer. We believe that recognizing this identity between homodyne and heterodyne beats is novel in the shock-physics field. SMV includes the conveniences of optical fiber, while removing the time resolution limitations associated with the multimode delivery fiber.« less
Single-mode fiber, velocity interferometry.
Krauter, K G; Jacobson, G F; Patterson, J R; Nguyen, J H; Ambrose, W P
2011-04-01
In this paper, we describe a velocity interferometer system based entirely on single-mode fiber optics. This paper includes a description of principles used in developing the single-mode velocity interferometry system (SMV). The SMV design is based on polarization-insensitive components. Polarization adjusters are included to eliminate the effects of residual birefringence and polarization dependent losses in the interferometers. Characterization measurements and calibration methods needed for data analysis and a method of data analysis are described. Calibration is performed directly using tunable lasers. During development, we demonstrated its operation using exploding-foil bridge-wire fliers up to 200 m/s. In a final test, we demonstrated the SMV in a gas gun experiment up to 1.2 km/sec. As a basis for comparison in the gas gun experiment, we used another velocimetry technique that is also based on single-mode fiber optics: photonic Doppler velocimetry (PDV). For the gas gun experiment, we split the light returned from a single target spot and performed a direct comparison of the homodyne (SMV) and heterodyne (PDV) techniques concurrently. The two techniques had a negligible mean difference and a 1.5% standard deviation in the one-dimensional shock zone. Within one interferometer delay time after a sudden Doppler shift, a SMV unencumbered by multimode-fiber dispersion exhibits two color beats. These beats have the same period as PDV beats-this interference occurs between the "recently" shifted and "formerly unshifted" paths within the interferometer. We believe that recognizing this identity between homodyne and heterodyne beats is novel in the shock-physics field. SMV includes the conveniences of optical fiber, while removing the time resolution limitations associated with the multimode delivery fiber. © 2011 American Institute of Physics
Okamoto, Ryo; O’Brien, Jeremy L.; Hofmann, Holger F.; Takeuchi, Shigeki
2011-01-01
Quantum information science addresses how uniquely quantum mechanical phenomena such as superposition and entanglement can enhance communication, information processing, and precision measurement. Photons are appealing for their low-noise, light-speed transmission and ease of manipulation using conventional optical components. However, the lack of highly efficient optical Kerr nonlinearities at the single photon level was a major obstacle. In a breakthrough, Knill, Laflamme, and Milburn (KLM) showed that such an efficient nonlinearity can be achieved using only linear optical elements, auxiliary photons, and measurement [Knill E, Laflamme R, Milburn GJ (2001) Nature 409:46–52]. KLM proposed a heralded controlled-NOT (CNOT) gate for scalable quantum computation using a photonic quantum circuit to combine two such nonlinear elements. Here we experimentally demonstrate a KLM CNOT gate. We developed a stable architecture to realize the required four-photon network of nested multiple interferometers based on a displaced-Sagnac interferometer and several partially polarizing beamsplitters. This result confirms the first step in the original KLM “recipe” for all-optical quantum computation, and should be useful for on-demand entanglement generation and purification. Optical quantum circuits combining giant optical nonlinearities may find wide applications in quantum information processing, communication, and sensing. PMID:21646543
NASA Technical Reports Server (NTRS)
Fleming, K. J.; Crump, O. B.
1994-01-01
VISAR (Velocity Interferometer System for Any Reflector) is a specialized Doppler interferometer system that is gaining world-wide acceptance as the standard for shock phenomena analysis. The VISAR's large power and cooling requirements, and the sensitive and complex nature of the interferometer cavity have restricted the traditional system to the laboratory. This paper describes the new portable VISAR, its peripheral sensors, and the role it played in optically measuring ground shock of and underground nuclear detonation. The Solid State VISAR uses a prototype diode pumped Nd:YAG laser and solid state detectors that provide a suitcase-size system with low power requirements. A special window and sensors were developed for fiber optic coupling (1 kilometer long) to the VISAR. The system has proven itself as a reliable, easy to use instrument that is capable of field test use and rapid data reduction using only a notebook personal computer (PC).
NASA Astrophysics Data System (ADS)
Zhou, Yuxin; Wang, Xin; Tang, Zijuan; Lou, Shuqin
2018-05-01
In this paper, a switchable multi-wavelength erbium-doped fiber ring laser based on a tapered in-line Mach–Zehnder interferometer is proposed. The in-line Mach–Zehnder interferometer is fabricated by splicing a large-core fiber between two segments of single mode fibers, in which the first splicing point is tapered and the second splicing point is connected directly. By carefully rotating the polarization controller, switchable single-, dual-, triple- and quad-wavelength lasing outputs can be obtained with a side mode suppression ratio higher than 50 dB. The maximal peak power difference of multi-wavelength lasing is 3.67 dB, demonstrating a good power equalization performance. Furthermore, the proposed laser is proven to be very stable at room temperature. The wavelength shifts and peak power fluctuations are less than 0.02 nm and 1.3 dB over half an hour. In addition, stable quintuple-wavelength lasing with a side mode suppression ratio higher than 50 dB can also be realized when the filter length is changed.
High-performance multi-channel fiber-based absolute distance measuring interferometer system
NASA Astrophysics Data System (ADS)
Deck, Leslie L.
2009-08-01
I describe the principle of operation and performance of a fiber-based absolute distance measuring interferometer system with 60 independent simultaneous channels. The system was designed for demanding applications requiring passive, electrically immune sensors with an extremely long MTTF. In addition to providing better than 0.3nm measurement repeatability at 5KHz for all channels, the system demonstrated absolute distance uncertainty of less than 5nm over a 500 micron measurement range.
Zhou, Jiaao; Xia, Li; Cheng, Rui; Wen, Yongqiang; Rohollahnejad, Jalal
2016-01-15
The optical unbalanced Mach-Zehnder interferometer (UMZI) has attracted significant interests for interrogation of FBG sensors owing to its excellent advantages in sensitivity, resolution, and demodulation speed. But this method is still limited to dynamic measurements due to its poor stability and reliability when used for quasi-static detections. Here, we propose for the first time, to the best of our knowledge, a radio-frequency unbalanced M-Z interferometer (RF-UMZI) for interrogation of FBG sensors, which, owing to its operation in an incoherent rather than a coherent regime, provides an ideal solution for the existing stability problem of the conventional UMZI, with remarkable features of adjustable resolution and potentially extremely high sensitivity. A dispersion compensation fiber (DCF) and single-mode fiber (SMF) with a small length difference are served as the two unbalanced arms of the RF interferometer. The induced differential chromatic dispersion transfers the wavelength shift of the FBG to the change of the RF phase difference between the two interferometric carriers, which ultimately leads to the variation of the RF signal intensity. An interrogation of a strain-turned FBG was accomplished and a maximum sensitivity of 0.00835 a.u./με was obtained, which can easily be further improved by more than two orders of magnitude through various fiber dispersion components. Finally, the stability of the interrogation was tested.
Temperature insensitive bending sensor based on in-line Mach-Zehnder interferometer
NASA Astrophysics Data System (ADS)
Chen, Xue; Yu, Yongqin; Xu, Xiaomei; Huang, Quandong; Ou, Zhilong; Wang, Jishun; Yan, Peiguang; Du, Chenlin
2014-09-01
A simple and compact fiber bending sensor based on the Mach-Zehnder interferometer was proposed. A photonic crystal fiber (PCF) with a length of 10 mm was spliced by collapsing air holes with two conventional single mode fibers to consist of an all fiber bending sensor. The sensitivity of 0.53 nm/m-1 was obtained at 1586 nm for the curvature range from 0 to 8.514 m-1. The temperature sensitivity was very low. The measurement error due to the temperature effect was about 8.68×10-3 m-1/°c, and the temperature effect in the curvature measurement could be ignored. This device can avoid the cross sensitivity of the temperature in the curvature measurement.
Distributed fiber sensing system with wide frequency response and accurate location
NASA Astrophysics Data System (ADS)
Shi, Yi; Feng, Hao; Zeng, Zhoumo
2016-02-01
A distributed fiber sensing system merging Mach-Zehnder interferometer and phase-sensitive optical time domain reflectometer (Φ-OTDR) is demonstrated for vibration measurement, which requires wide frequency response and accurate location. Two narrow line-width lasers with delicately different wavelengths are used to constitute the interferometer and reflectometer respectively. A narrow band Fiber Bragg Grating is responsible for separating the two wavelengths. In addition, heterodyne detection is applied to maintain the signal to noise rate of the locating signal. Experiment results show that the novel system has a wide frequency from 1 Hz to 50 MHz, limited by the sample frequency of data acquisition card, and a spatial resolution of 20 m, according to 200 ns pulse width, along 2.5 km fiber link.
Research on the fiber Bragg grating sensor for the shock stress measurement
Deng, Xiangyang; Chen, Guanghua; Peng, Qixian; Li, Zeren; Meng, Jianhua; Liu, Jun
2011-01-01
A fiber Bragg grating (FBG) sensor with an unbalanced Mach-Zehnder fiber interferometer for the shock stress measurement is proposed and demonstrated. An analysis relationship between the shock stress and the central reflection wavelength shift of the FBG is firstly derived. In this sensor, the optical path difference of the unbalanced Mach-Zehnder fiber interferometer is ∼3.1 mm and the length of the FBG is 2 mm. An arctangent function reduction method, which can avoid sine function's insensitive zone where the shock stress measurement has a reduced accuracy, is presented. A shock stress measurement of water driven by one stage gun (up to 1.4 GPa), with good theoretical accuracy (∼10%), is launched. PMID:22047282
Quan, Mingran; Tian, Jiajun; Yao, Yong
2015-11-01
An ultra-high sensitivity open-cavity Fabry-Perot interferometer (FPI) gas refractive index (RI) sensor based on the photonic crystal fiber (PCF) and Vernier effect is proposed and demonstrated. The sensor is prepared by splicing a section of PCF to a section of fiber tube fused with a section of single mode fiber. The air holes running along the cladding of the PCF enable the gas to enter or leave the cavity freely. The reflection beam from the last end face of the PCF is used to generate the Vernier effect, which significantly improves the sensitivity of the sensor. Experimental results show that the proposed sensor can provide an ultra-high RI sensitivity of 30899 nm/RIU. This sensor has potential applications in fields such as gas concentration analyzing and humidity monitoring.
NASA Astrophysics Data System (ADS)
Deng, Dashen; Feng, Wenlin; Wei, Jianwei; Qin, Xiang; Chen, Rong
2017-11-01
A novel fiber-optic hydrogen sulfide sensor based on a thin-core Mach-Zehnder fiber modal interferometer (TMZFI) is demonstrated and fabricated. This in-line interferometer is composed of a short section of thin-core fiber sandwiched between two standard single mode fibers, and the fast response to hydrogen sulfide is achieved via the construction of tungsten sulfide film on the outside surface of the TMZFI using the dip-coating and calcination technique. The fabricated sensing nanofilm is characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM), high resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS) spectrometer, Fourier transform infrared (FTIR) and spectroscopic analysis technology, etc. Experimental results showed that the WS2 sensing film has a hexagonal structure with a compact and porous morphology. The XPS and FTIR indicate that the existence of two elements (W and S) is demonstrated. With the increasing concentration of hydrogen sulfide, the interference spectra appear blue shift. In addition, a high sensitivity of 18.37 pm/ppm and a good linear relationship are obtained within a measurement range from 0 to 80 ppm. In addition, there is an excellent selectivity for H2S, which has also been proved by the surface adsorption energy results of tungsten sulfide with four gases (H2S, N2, O2 and CO2) by using the density functional theory calculations. This interferometer has the advantages of simple structure, high sensitivity and easy manufacture, and could be used in the safety monitoring field of hydrogen sulfide gas.
NASA Astrophysics Data System (ADS)
Huang, Jun; Huang, Shenneng; Shen, Changyu; Jin, Yongxing
2018-02-01
A design for simultaneous bending-curvature and temperature measurement using a fiber Bragg grating (FBG) inserted between two peanut-shaped structures is presented. The peanut-shaped structure is fabricated in the single-mode fiber by a fusion splicer and then connected with another peanut-shaped structure to form a Mach-Zehnder interferometer (MZI). By measuring the wavelength variation of the MZI and FBG in the spectral response of this configuration, simultaneous bending-curvature and temperature measurement is obtained. The experiment results show that curvature sensitivity is -27.58 nm / m ? 1 and FBG is 0.03869 and 0.01217 nm / ° C.
NASA Astrophysics Data System (ADS)
Sun, Xiao-Yan; Chu, Dong-Kai; Dong, Xin-Ran; Zhou, Chu; Li, Hai-Tao; Luo-Zhi; Hu, You-Wang; Zhou, Jian-Ying; Cong-Wang; Duan, Ji-An
2016-03-01
A High sensitive refractive index (RI) sensor based on Mach-Zehnder interferometer (MZI) in a conventional single-mode optical fiber is proposed, which is fabricated by femtosecond laser transversal-scanning inscription method and chemical etching. A rectangular cavity structure is formed in part of fiber core and cladding interface. The MZI sensor shows excellent refractive index sensitivity and linearity, which exhibits an extremely high RI sensitivity of -17197 nm/RIU (refractive index unit) with the linearity of 0.9996 within the refractive index range of 1.3371-1.3407. The experimental results are consistent with theoretical analysis.
Temperature-independent refractometer based on a tapered photonic crystal fiber interferometer
NASA Astrophysics Data System (ADS)
Ni, Kai; Chan, Chi Chiu; Dong, Xinyong; Poh, C. L.; Li, Tao
2013-03-01
A temperature-independent refractometer by using a tapered photonic crystal fiber (PCF) based Mach-Zehnder interferometer (MZI) is proposed and experimentally demonstrated. It is fabricated by sandwiching a tapered PCF of 29 mm long between two standard single mode fibers (SMFs) with the fully collapsed air holes of the PCF in the fusion splicing region. It has been found that tapering the PCF greatly enhances the sensitivity of the refractometer. A maximum sensitivity of 1529 nm/RIU (refractive index unit) is achieved within the range from 1.3355 to 1.413. The refractometer is nearly temperature-insensitive due to the ultra low temperature dependence of the used.
NASA Astrophysics Data System (ADS)
Zboril, Ondrej; Nedoma, Jan; Cubik, Jakub; Novak, Martin; Bednarek, Lukas; Fajkus, Marcel; Vasinek, Vladimir
2016-04-01
Interferometric sensors are very accurate and sensitive sensors that due to the extreme sensitivity allow sensing vibration and acoustic signals. This paper describes a new method of implementation of Mach-Zehnder interferometer for sensing of vibrations caused by touching on the window panes. Window panes are part of plastic windows, in which the reference arm of the interferometer is mounted and isolated inside the frame, a measuring arm of the interferometer is fixed to the window pane and it is mounted under the cover of the window frame. It prevents visibility of the optical fiber and this arrangement is the basis for the safety system. For the construction of the vibration sensor standard elements of communication networks are used - optical fiber according to G.652D and 1x2 splitters with dividing ratio 1:1. Interferometer operated at a wavelength of 1550 nm. The paper analyses the sensitivity of the window in a 12x12 measuring points matrix, there is specified sensitivity distribution of the window pane.
Ultralow chirp photonic crystal fiber Mach-Zehnder interferometer.
Carvalho, William O F; Spadoti, Danilo H; Silvestre, Enrique; Beltran-Mejia, Felipe
2018-05-20
A photonic crystal fiber Mach-Zehnder interferometer design was optimized to obtain high performance and ultralow chirp. Two long-period gratings were used to excite the cladding modes, and the rich structure of the cladding was tailored to obtain a slightly chirped free spectral range, as required by the Telecommunication Standardization Sector of the International Telecommunication Union (ITU-T) Norm G.694.1. Finally, a fabrication tolerance analysis was performed. The advantages of the proposed device are an ultralow chirp, high bandwidth, and fabrication robustness tolerance.
Compact portable diffraction moire interferometer
Deason, Vance A.; Ward, Michael B.
1989-01-01
A compact and portable moire interferometer used to determine surface deformations of an object. The improved interferometer is comprised of a laser beam, optical and fiber optics devices coupling the beam to one or more evanescent wave splitters, and collimating lenses directing the split beam at one or more specimen gratings. Observation means including film and video cameras may be used to view and record the resultant fringe patterns.
Jiang, Junfeng; Liu, Tiegen; Zhang, Yimo; Liu, Lina; Zha, Ying; Zhang, Fan; Wang, Yunxin; Long, Pin
2006-01-20
A parallel demodulation system for extrinsic Fabry-Perot interferometer (EFPI) and fiber Bragg grating (FBG) sensors is presented, which is based on a Michelson interferometer and combines the methods of low-coherence interference and a Fourier-transform spectrum. The parallel demodulation theory is modeled with Fourier-transform spectrum technology, and a signal separation method with an EFPI and FBG is proposed. The design of an optical path difference scanning and sampling method without a reference light is described. Experiments show that the parallel demodulation system has good spectrum demodulation and low-coherence interference demodulation performance. It can realize simultaneous strain and temperature measurements while keeping the whole system configuration less complex.
Thin-film-based optical fiber Fabry-Perot interferometer used for humidity sensing.
Peng, Jiankun; Qu, Yapeng; Wang, Weijia; Sun, Tengpeng; Yang, Minghong
2018-04-20
A thin-film-based optical fiber Fabry-Perot interferometer that consists of ZrO 2 and SiO 2 porous thin films is designed and fabricated by electron beam physical vapor deposition. Since the SiO 2 porous thin film has the capability of water adsorption, the proposed Fabry-Perot interferometer is appropriate to detect humidity. Experimental results show that the prepared sensor has a humidity detection range from 0.06% RH to 70% RH. A cycling test shows that the humidity sensor has a responding or recover time of 4 s and good repeatability among different humidity environments. Especially, the proposed humidity sensor is insensitive to temperature variation and suitable for the detection of low relative humidity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hitachi, K., E-mail: hitachi.kenichi@lab.ntt.co.jp; Ishizawa, A.; Mashiko, H.
2015-06-08
We report the stabilization of the carrier-envelope offset (CEO) frequency of an Er-doped fiber laser with a collinear 2f-to-3f self-referencing interferometer. The interferometer is implemented by a dual-pitch periodically poled lithium niobate ridge waveguide with two different quasi-phase matching pitch sizes. We obtain a 52-dB signal-to-noise ratio in the 100-kHz resolution bandwidth of a heterodyne beat signal, which is sufficient for frequency stabilization. We also demonstrate that the collinear geometry is robust against environmental perturbation by comparing in-loop and out-of-loop Allan deviations when the in-loop CEO frequency is stabilized with a phase-locked loop circuit.
Sagnac delay in the Kerr-dS spacetime: Implications for Mach's principle
NASA Astrophysics Data System (ADS)
Karimov, R. Kh.; Izmailov, R. N.; Garipova, G. M.; Nandi, K. K.
2018-02-01
Relativistic twin paradox can have important implications for Mach's principle. It has been recently argued that the behavior of the time asynchrony (different aging of twins) between two flying clocks along closed loops can be attributed to the existence of an absolute spacetime, which makes Mach's principle unfeasible. In this paper, we shall revisit, and support, this argument from a different viewpoint using the Sagnac delay. This is possible since the above time asynchrony is known to be exactly the same as the Sagnac delay between two circumnavigating light rays re-uniting at the orbiting source/receiver. We shall calculate the effect of mass M and cosmological constant Λ on the delay in the general case of Kerr-de Sitter spacetime. It follows that, in the independent limits M→ 0, spin a→ 0 and Λ → 0, while the Kerr-dS metric reduces to Minkowski metric, the clocks need not tick in consonance since there will still appear a non-zero observable Sagnac delay. While we do not measure spacetime itself, we do measure the Sagnac effect, which signifies an absolute substantive Minkowski spacetime instead of a void. We shall demonstrate a completely different limiting behavior of Sagnac delay, heretofore unknown, between the case of non-geodesic and geodesic source/observer motion.
Measurement of the thickness of the lens with the use of all fiber low-coherence interferometer
NASA Astrophysics Data System (ADS)
Józwik, Michalina; Stepień, Karol; Lipiński, Stanisław; Budnicki, Dawid; Napierała, Marek; Nasiłowski, Tomasz
2015-12-01
In this paper we present experimental results of measurements of the lens thickness carried out using all fiber low coherence interferometer. A new interferometric device for measuring the thickness of the lens using optical fibers has been developed in response to market demand. It ensures fast, non-contact and accurate measurement. This work focuses above all on the conducting tests to determine the repeatability of the measurement and to verify the ability of using this method in industrial conditions. The system uses a Mach-Zehnder interferometer in which one of the arms is the reference part and the second arm containing the test element is the measurement part. The measurement rate and the easiness of placement of the test lens in the system give the possibility to automate the measurement process. We present the measurement results, which show that the use of low-coherence interferometry allows achieving high measurement accuracy and meeting other industrial needs.
Transverse load sensor based on Mach-Zehnder interferometer constructed by a bowknot type taper
NASA Astrophysics Data System (ADS)
Lou, Weimin; Shentu, Fengying; Wang, Youqing; Shen, Changyu; Dong, Xinyong
2018-01-01
A transverse load fiber sensor based on Mach-Zehnder interferometer constructed by a Bowknot-type taper between a single mode fiber (SMF) and a polarization maintaining fiber (PMF) was proposed. Due to the polarization maintaining fiber's birefringence, intensities of the two peaks which are corresponding to the fast and slow axis modes changed with the transverse load applied on the PMF. The experimental results showed that the structure with a 2 cm-long PMF has the sensitivities of 104.52 and -102.94 dB/(N/mm) for the fast and slow axis spectral dip wavelengths of 1485 and 1545 nm in the interference pattern, respectively, which are almost 7 times higher than that of the current similar existing transverse load sensor.
Fiber sensor for non-contact estimation of vital bio-signs
NASA Astrophysics Data System (ADS)
Sirkis, Talia; Beiderman, Yevgeny; Agdarov, Sergey; Beiderman, Yafim; Zalevsky, Zeev
2017-05-01
Continuous noninvasive measurement of vital bio-signs, such as cardiopulmonary parameters, is an important tool in evaluation of the patient's physiological condition and health monitoring. On the demand of new enabling technologies, some works have been done in arterial pulse monitoring using optical fiber sensors. In this paper, we introduce a novel device based on single mode in-fibers Mach-Zehnder interferometer (MZI) to detect heartbeat, respiration and pulse wave velocity (PWV). The introduced interferometer is based on a new implanted scheme. It replaces the conventional MZI realized by inserting of discontinuities in the fiber to break the total internal reflection and scatter/collect light. The proposed fiber sensor was successfully incorporated into shirt to produce smart clothing. The measurements obtained from the smart clothing could be obtained in comfortable manner and there is no need to have an initial calibration or a direct contact between the sensor and the skin of the tested individual.
Ultralow-frequency-noise stabilization of a laser by locking to an optical fiber-delay line.
Kéfélian, Fabien; Jiang, Haifeng; Lemonde, Pierre; Santarelli, Giorgio
2009-04-01
We report the frequency stabilization of an erbium-doped fiber distributed-feedback laser using an all-fiber-based Michelson interferometer of large arm imbalance. The interferometer uses a 1 km SMF-28 optical fiber spool and an acousto-optic modulator allowing heterodyne detection. The frequency-noise power spectral density is reduced by more than 40 dB for Fourier frequencies ranging from 1 Hz to 10 kHz, corresponding to a level well below 1 Hz2/Hz over the entire range; it reaches 10(-2) Hz2/Hz at 1 kHz. Between 40 Hz and 30 kHz, the frequency noise is shown to be comparable to the one obtained by Pound-Drever-Hall locking to a high-finesse Fabry-Perot cavity. Locking to a fiber delay line could consequently represent a reliable, simple, and compact alternative to cavity stabilization for short-term linewidth reduction.
Fiber optic interferometer as a security element
NASA Astrophysics Data System (ADS)
Nedoma, Jan; Zboril, Ondrej; Fajkus, Marcel; Cubik, Jakub; Zavodny, Petr; Novak, Martin; Bednarek, Lukas; Martinek, Radek; Vasinek, Vladimir
2016-04-01
Interferometric sensors can be categorized as highly sensitive and precise devices with series inconsiderable benefits from the possibility of using standard telecommunication fibers. They can be measured even small changes in the deformation of shapes in time, changes in temperature, pressure, voltage, vibration, electric field, etc. The basic idea, which is described in this article is the usage of the interferometer as a security and monitoring component, which offers a solution for securing of closed spaces, especially before unwanted entries. Its primary task is to detect intrusions - disrupting the integrity of the transparent window area due to vibration response. The base of the solution is a Mach-Zehnder interferometer, which consists of two arms in the power distribution ratio of 1:1, consisting of the SM optical fiber excited by a DFB laser. The interferometer is working on the wavelength of 1550 nm. The resulting signal is registered as a result of interference of optical beams from the reference and sensor arm. Realized measuring scheme was terminated optical receiver comprising PbSe detector. Below described experimental measurements have shown that implemented interferometer has a sufficient value of the signal to noise ratio (SNR) and is able to detect very weak signals in a wide frequency range from tens of Hz to kHz units. The signal was processed by applications developed for the amplitude-frequency spectrum. Evaluated was the maximum amplitude of the signal and compared to the noise. The results were verified by retesting the assembled prototype.
Compact portable diffraction moire interferometer
Deason, V.A.; Ward, M.B.
1988-05-23
A compact and portable moire interferometer used to determine surface deformations of an object. The improved interferometer is comprised of a laser beam, optical and fiber optics devices coupling the beam to one or more evanescent wave splitters, and collimating lenses directing the split beam at one or more specimen gratings. Observations means including film and video cameras may be used to view and record the resultant fringe patterns. 7 figs.
Fiber optic system design for vehicle detection and analysis
NASA Astrophysics Data System (ADS)
Nedoma, Jan; Zboril, Ondrej; Fajkus, Marcel; Zavodny, Petr; Kepak, Stanislav; Bednarek, Lukas; Martinek, Radek; Vasinek, Vladimir
2016-04-01
Fiber optic interferometers belong to a group of highly sensitive and precise devices enabling to measure small changes in the deformation shapes, changes in pressure, temperature, vibration and so on. The basis of their activity is to evaluate the number of fringes over time, not changes in the intensity of the optical signal. The methodology described in the article is based on using the interferometer to monitor traffic density. The base of the solution is a Mach-Zehnder interferometer operating with single-mode G.652 optical fiber at the wavelength of 1550 nm excited by a DFB laser. The power distribution of the laser light into the individual arms of the interferometer is in the ratio 1:1. Realized measuring scheme was terminated by an optical receiver including InGaAs PIN photodiode. Registered signal from the photodetector was through 8 Hz high pass filter fed to the measuring card that captures the analog input voltage using an application written in LabView development environment. The interferometer was stored in a waterproof box and placed at the side of the road. Here panned individual transit of cars in his environs. Vertically across the road was placed in contact removable belt simulating a retarder, which was used when passing cars to create sufficient vibration response detecting interferometer. The results demonstrated that the individual vehicles passing around boxing showed characteristic amplitude spectra, which was unique for each object, and had sufficient value signal to noise ratio (SNR). The signal was processed by applications developed for the amplitude-frequency spectrum. Evaluated was the maximum amplitude of the signal and compared to the noise. The results were verified by repeated transit of the different types of cars.
Coherence-length-gated distributed optical fiber sensing based on microwave-photonic interferometry.
Hua, Liwei; Song, Yang; Cheng, Baokai; Zhu, Wenge; Zhang, Qi; Xiao, Hai
2017-12-11
This paper presents a new optical fiber distributed sensing concept based on coherent microwave-photonics interferometry (CMPI), which uses a microwave modulated coherent light source to interrogate cascaded interferometers for distributed measurement. By scanning the microwave frequencies, the complex microwave spectrum is obtained and converted to time domain signals at known locations by complex Fourier transform. The amplitudes of these time domain pulses are a function of the optical path differences (OPDs) of the distributed interferometers. Cascaded fiber Fabry-Perot interferometers (FPIs) fabricated by femtosecond laser micromachining were used to demonstrate the concept. The experimental results indicated that the strain measurement resolution can be better than 0.6 µε using a FPI with a cavity length of 1.5 cm. Further improvement of the strain resolution to the nε level is achievable by increasing the cavity length of the FPI to over 1m. The tradeoff between the sensitivity and dynamic range was also analyzed in detail. To minimize the optical power instability (either from the light source or the fiber loss) induced errors, a single reflector was added in front of an individual FPI as an optical power reference for the purpose of compensation.
NASA Astrophysics Data System (ADS)
Bykovskii, Iu. A.; Kul'Chin, Iu. N.; Obukh, V. F.; Smirnov, V. L.
1990-08-01
The correlated tuning of the speckle pattern in the radiation field of a single-fiber multimode interferometer is investigated experimentally and analytically in the presence of external action. It is found that correlated changes in the speckle pattern are observed in both the near and the far emission fields of the waveguide. An expression is obtained which provides a way to determine the maximum size of the speckle correlation region. The use of spatial filtering for isolating the effect of correlated speckle pattern tuning is suggested. It is shown that the use of a spatial filter makes it possible to increase the efficiency of fiber-optic transducers.
Levitated optomechanics with a fiber Fabry-Perot interferometer
NASA Astrophysics Data System (ADS)
Pontin, A.; Mourounas, L. S.; Geraci, A. A.; Barker, P. F.
2018-02-01
In recent years, quantum phenomena have been experimentally demonstrated on variety of optomechanical systems ranging from micro-oscillators to photonic crystals. Since single photon couplings are quite small, most experimental approaches rely on the realization of high finesse Fabry-Perot cavities in order to enhance the effective coupling. Here we show that by exploiting a, long path, low finesse fiber Fabry-Perot interferometer ground state cooling can be achieved. We model a 100 m long cavity with a finesse of 10 and analyze the impact of additional noise sources arising from the fiber. As a mechanical oscillator we consider a levitated microdisk but the same approach could be applied to other optomechanical systems.
All-digital signal-processing open-loop fiber-optic gyroscope with enlarged dynamic range.
Wang, Qin; Yang, Chuanchuan; Wang, Xinyue; Wang, Ziyu
2013-12-15
We propose and realize a new open-loop fiber-optic gyroscope (FOG) with an all-digital signal-processing (DSP) system where an all-digital phase-locked loop is employed for digital demodulation to eliminate the variation of the source intensity and suppress the bias drift. A Sagnac phase-shift tracking method is proposed to enlarge the dynamic range, and, with its aid, a new open-loop FOG, which can achieve a large dynamic range and high sensitivity at the same time, is realized. The experimental results show that compared with the conventional open-loop FOG with the same fiber coil and optical devices, the proposed FOG reduces the bias instability from 0.259 to 0.018 deg/h, and the angle random walk from 0.031 to 0.006 deg/h(1/2), moreover, enlarges the dynamic range to ±360 deg/s, exceeding the maximum dynamic range ±63 deg/s of the conventional open-loop FOG.
Ummy, M A; Madamopoulos, N; Razani, M; Hossain, A; Dorsinville, R
2012-10-08
We propose and demonstrate a simple compact, inexpensive, SOA-based, dual-wavelength tunable fiber laser, that can potentially be used for photoconductive mixing and generation of waves in the microwave and THz regions. A C-band semiconductor optical amplifier (SOA) is placed inside a linear cavity with two Sagnac loop mirrors at its either ends, which act as both reflectors and output ports. The selectivity of dual wavelengths and the tunability of the wavelength difference (Δλ) between them is accomplished by placing a narrow bandwidth (e.g., 0.3 nm) tunable thin film-based filter and a fiber Bragg grating (with bandwidth 0.28 nm) inside the loop mirror that operates as the output port. A total output power of + 6.9 dBm for the two wavelengths is measured and the potential for higher output powers is discussed. Optical power and wavelength stability are measured at 0.33 dB and 0.014 nm, respectively.
Shao, Zhihua; Qiao, Xueguang; Rong, Qiangzhou; Su, Dan
2015-08-01
A type of wave-breaking-free mode-locked dual-wavelength square pulse was experimentally observed in a figure-eight erbium-doped fiber laser with ultra-large net-anomalous dispersion. A 2.7 km long single-mode fiber (SMF) was incorporated as a nonlinear optical loop mirror (NOLM) and provided largely nonlinear phase accumulation and anomalous dispersion, which enhanced the four-wave-mixing effect to improve the stability of the dual-wavelength operation. In the NOLM, the long SMF with small birefringence supported the Sagnac interference as a filter to manage the dual-wavelength lasing. The dual-wavelength operation was made switchable by adjusting the intra-cavity polarization loss and phase delay corresponding to two square pulses. When the pump power was increased, the duration of the square pulse increased continuously while the peak pulse power gradually decreased. This square-type pulse can potentially be utilized for signal transmission and sensing.
NASA Astrophysics Data System (ADS)
Chatterjee, Julius
This dissertation demonstrates a fiber-optic phase shifted Fabry-Perot interferometer (PS-FPI) as a sensor using modal demultiplexing. Single wavelength Fabry-Perot interferometers suffer from fringe ambiguity and loss of sensitivity at fringe extremes. These hindrances cause it to be a secondary choice when being selected for a measurement task at hand, and more often than not, white light based sensors are selected in favor of the single wavelength Fabry-Perot sensors. This work aims to introduce a technique involving the demultiplexing of the propagating linearly polarized (LP) modes in few mode fibers to obtain two fringe systems from the same sensing cavity. This results in a few-mode interferometer that effectively has two to three orders of magnitude higher perturbation sensitivity than a conventional few mode interferometer for the same sensing region. In this work, two different modal demultiplexing techniques (MD) are used to demodulate the propagating modes and to obtain two fringe sets. These output fringe sets are shifted in phase with respect to each other by a phase shift due to the propagation of the modes in the fiber-optic layout. A method of controlling this phase shift by straining a length of a two mode fiber located separate from the PS-FPI cavity is demonstrated and corresponding changes in phase shifts are shown. The results show a controllable phase shift for both the MD techniques, which is useful in sensing by permitting quadrature demodulation of interferometric fringes and also results in a novel few-mode sensing system having more than two orders of magnitude sensitivity than conventional few-mode devices.
Fiber-Optic Sensor Would Monitor Growth of Polymer Film
NASA Technical Reports Server (NTRS)
Beamesderfer, Michael
2005-01-01
A proposed optoelectronic sensor system would measure the increase in thickness of a film of parylene (a thermoplastic polymer made from para-xylene) during growth of the film in a vapor deposition process. By enabling real-time monitoring of film thickness, the system would make it possible to identify process conditions favorable for growth and to tailor the final thickness of the film with greater precision than is now possible. The heart of the sensor would be a pair of fiber-optic Fabry-Perot interferometers, depicted schematically in the figure. (In principle, a single such interferometer would suffice. The proposal calls for the use of two interferometers for protective redundancy and increased accuracy.) Each interferometer would include a light source, a fiber-optic coupler, and photodetectors in a control box outside the deposition chamber. A single-mode optical fiber for each interferometer would run from inside the control box to a fused-silica faceplate in a sensor head. The sensory tips of the optical fibers would be polished flush with the free surface of the faceplate. In preparation for use, the sensor head would be mounted with a hermetic seal in a feed-through port in the deposition chamber, such that free face of the faceplate and the sensory tips of the optical fibers would be exposed to the deposition environment. During operation, light would travel along each optical fiber from the control box to the sensor head. A small portion of the light would be reflected toward the control box from the end face of each fiber. Once growth of the parylene film started, a small portion of the light would also be reflected toward the control box from the outer surface of the film. In the control box, the two reflected portions of the light beam would interfere in one of the photodetectors. The difference between the phases of the interfering reflected portions of the light beam would vary in proportion to the increasing thickness of the film and the known index of refraction of the film, causing the photodetector reading to vary in proportion to a known sinusoidal function of film thickness. Electronic means of monitoring this variation and the corresponding variation in phase and thickness are well established in the art of interferometry. Hence, by tracking the cumulative change in phase difference from the beginning of deposition, one could track the growing thickness of the film to within a small fraction of a wavelength of light.
Tunable double-clad ytterbium-doped fiber laser based on a double-pass Mach-Zehnder interferometer
NASA Astrophysics Data System (ADS)
Meng, Yichang; Zhang, Shumin; Wang, Xinzhan; Du, Juan; Li, Hongfei; Hao, Yanping; Li, Xingliang
2012-03-01
We have demonstrated an adjustable double-clad Yb 3+-doped fiber laser using a double-pass Mach-Zehnder interferometer. The laser is adjustable over a range of 40 nm from 1064 nm to 1104 nm. By adjusting the state of the polarization controller, which is placed in the double-pass Mach-Zehnder interferometer, we obtained central lasing wavelengths that can be accurately tuned with controllable spacing between different tunable wavelengths. The laser has a side mode suppression ratio of 42 dB, the 3 dB spectral width is less than 0.2 nm, and the slope efficiencies at 1068 nm, 1082 nm and 1098 nm are 23%, 32% and 26%, respectively. In addition, we have experimentally observed tunable multi-wavelengths lasing output.
Multicore fibre technology: the road to multimode photonics
NASA Astrophysics Data System (ADS)
Bland-Hawthorn, J.; Min, Seong-Sik; Lindley, Emma; Leon-Saval, Sergio; Ellis, Simon; Lawrence, Jon; Beyrand, Nicolas; Roth, Martin; Löhmannsröben, Hans-Gerd; Veilleux, Sylvain
2016-07-01
For the past forty years, optical fibres have found widespread use in ground-based and space-based instruments. In most applications, these fibres are used in conjunction with conventional optics to transport light. But photonics offers a huge range of optical manipulations beyond light transport that were rarely exploited before 2001. The fundamental obstacle to the broader use of photonics is the difficulty of achieving photonic action in a multimode fibre. The first step towards a general solution was the invention of the photonic lantern1 in 2004 and the delivery of high-efficiency devices (< 1 dB loss) five years on2. Multicore fibres (MCF), used in conjunction with lanterns, are now enabling an even bigger leap towards multimode photonics. Until recently, the single-moded cores in MCFs were not sufficiently uniform to achieve telecom (SMF-28) performance. Now that high-quality MCFs have been realized, we turn our attention to printing complex functions (e.g. Bragg gratings for OH suppression) into their N cores. Our first work in this direction used a Mach-Zehnder interferometer (near-field phase mask) but this approach was only adequate for N=7 MCFs as measured by the grating uniformity3. We have now built a Sagnac interferometer that gives a three-fold increase in the depth of field sufficient to print across N >= 127 cores. We achieved first light this year with our 500mW Sabre FRED laser. These are sophisticated and complex interferometers. We report on our progress to date and summarize our first-year goals which include multimode OH suppression fibres for the Anglo-Australian Telescope/PRAXIS instrument and the Discovery Channel Telescope/MOHSIS instrument under development at the University of Maryland.
Optical system and method for gas detection and monitoring
NASA Technical Reports Server (NTRS)
Polzin, Kurt A. (Inventor); Sinko, John Elihu (Inventor); Korman, Valentin (Inventor); Witherow, William K. (Inventor); Hendrickson, Adam Gail (Inventor)
2011-01-01
A free-space optical path of an optical interferometer is disposed in an environment of interest. A light beam is guided to the optical interferometer using a single-mode optical fiber. The light beam traverses the interferometer's optical path. The light beam guided to the optical path is combined with the light beam at the end of the optical path to define an output light. A temporal history of the output light is recorded.
NASA Astrophysics Data System (ADS)
Liang, Yijun; Qu, Dandan; Deng, Hu
2013-08-01
A type of Michelson interferometer with two optical fiber loop reflectors acoustic emission sensor is proposed in the article to detect the vibrations produced by ultrasonic waves propagating in a solid body. Two optical fiber loop reflectors are equivalent to the sensing arm and the reference arm instead of traditional Michelson interferometer end reflecter Theoretical analyses indicate that the sensitivity of the system has been remarkably increased because of the decrease of the losses of light energy. The best operating point of optical fiber sensor is fixed by theoretical derivation and simulation of computer, and the signal frequency which is detected by the sensor is the frequency of input signal. PZT (Piezoelectric Ceramic) is powered by signal generator as known ultrasonic source, The Polarization controller is used to make the reflected light interference,The fiber length is changed by adjusting the DC voltage on the PZT with the fiber loop to make the sensor system response that ΔΦ is closed to π/2. the signal basis frequency detected by the sensor is the frequency of the input signal. Then impacts the surface of the marble slab with home-made mechanical acoustic emission source. And detect it. and then the frequency characteristic of acoustic emission signal is obtained by Fourier technique. The experimental results indicate that the system can identify the frequency characteristic of acoustic emission signal, and it can be also used to detect the surface feeble vibration which is generated by ultrasonic waves propagating in material structure.
Lan, Chengming; Zhou, Wensong; Xie, Yawen
2018-04-16
This work proposes a 3D shaped optic fiber sensor for ultrasonic stress waves detection based on the principle of a Mach–Zehnder interferometer. This sensor can be used to receive acoustic emission signals in the passive damage detection methods and other types of ultrasonic signals propagating in the active damage detection methods, such as guided wave-based methods. The sensitivity of an ultrasonic fiber sensor based on the Mach–Zehnder interferometer mainly depends on the length of the sensing optical fiber; therefore, the proposed sensor achieves the maximum possible sensitivity by wrapping an optical fiber on a hollow cylinder with a base. The deformation of the optical fiber is produced by the displacement field of guided waves in the hollow cylinder. The sensor was first analyzed using the finite element method, which demonstrated its basic sensing capacity, and the simulation signals have the same characteristics in the frequency domain as the excitation signal. Subsequently, the primary investigations were conducted via a series of experiments. The sensor was used to detect guided wave signals excited by a piezoelectric wafer in an aluminum plate, and subsequently it was tested on a reinforced concrete beam, which produced acoustic emission signals via impact loading and crack extension when it was loaded to failure. The signals obtained from a piezoelectric acoustic emission sensor were used for comparison, and the results indicated that the proposed 3D fiber optic sensor can detect ultrasonic signals in the specific frequency response range.
Xie, Yawen
2018-01-01
This work proposes a 3D shaped optic fiber sensor for ultrasonic stress waves detection based on the principle of a Mach–Zehnder interferometer. This sensor can be used to receive acoustic emission signals in the passive damage detection methods and other types of ultrasonic signals propagating in the active damage detection methods, such as guided wave-based methods. The sensitivity of an ultrasonic fiber sensor based on the Mach–Zehnder interferometer mainly depends on the length of the sensing optical fiber; therefore, the proposed sensor achieves the maximum possible sensitivity by wrapping an optical fiber on a hollow cylinder with a base. The deformation of the optical fiber is produced by the displacement field of guided waves in the hollow cylinder. The sensor was first analyzed using the finite element method, which demonstrated its basic sensing capacity, and the simulation signals have the same characteristics in the frequency domain as the excitation signal. Subsequently, the primary investigations were conducted via a series of experiments. The sensor was used to detect guided wave signals excited by a piezoelectric wafer in an aluminum plate, and subsequently it was tested on a reinforced concrete beam, which produced acoustic emission signals via impact loading and crack extension when it was loaded to failure. The signals obtained from a piezoelectric acoustic emission sensor were used for comparison, and the results indicated that the proposed 3D fiber optic sensor can detect ultrasonic signals in the specific frequency response range. PMID:29659540
A heterodyne interferometer for high-performance industrial metrology
NASA Astrophysics Data System (ADS)
Schuldt, Thilo; Gohlke, Martin; Weise, Dennis; Johann, Ulrich; Peters, Achim; Braxmaier, Claus
2008-11-01
We developed a compact, fiber-coupled heterodyne interferometer for translation and tilt metrology. Noise levels below 5 pm/√Hz in translation and below 10 nrad/√Hz in tilt measurement, both for frequencies above 10-2 Hz, were demonstrated in lab experiments. While this setup was developed with respect to the LISA (Laser Interferometer Space Antenna) space mission current activities focus on its adaptation for dimensional characterization of ultra-stable materials and industrial metrology. The interferometer is used in high-accuracy dilatometry measuring the coefficient of thermal expansion (CTE) of dimensionally highly stable materials such as carbon-fiber reinforced plastic (CFRP) and Zerodur. The facility offers the possibility to measure the CTE with an accuracy better 10-8/K. We also develop a very compact and quasi-monolithic sensor head utilizing ultra-low expansion glass material which is the basis for a future space-qualifiable interferometer setup and serves as a prototype for a sensor head used in industrial environment. For high resolution 3D profilometry and surface property measurements (i. e. roughness, evenness and roundness), a low-noise (<=1nm/√ Hz) actuator will be implemented which enables a scan of the measurement beam over the surface under investigation.
Fiber-optic push-pull sensor systems
NASA Technical Reports Server (NTRS)
Gardner, David L.; Brown, David A.; Garrett, Steven L.
1991-01-01
Fiber-optic push-pull sensors are those which exploit the intrinsically differential nature of an interferometer with concommitant benefits in common-mode rejection of undesired effects. Several fiber-optic accelerometer and hydrophone designs are described. Additionally, the recent development at the Naval Postgraduate School of a passive low-cost interferometric signal demodulator permits the development of economical fiber-optic sensor systems.
Khan, Md Rajibur Rahaman; Kang, Shin-Won
2016-07-09
In this paper, we propose a temperature/thermal sensor that contains a Rhodamine-B sensing membrane. We applied two different sensing methods, namely, fiber-optic pulse width modulation (PWM) and an interdigitated capacitor (IDC)-based temperature sensor to measure the temperature from 5 °C to 100 °C. To the best of our knowledge, the fiber-optic PWM-based temperature sensor is reported for the first time in this study. The proposed fiber-optic PWM temperature sensor has good sensing ability; its sensitivity is ~3.733 mV/°C. The designed temperature-sensing system offers stable sensing responses over a wide dynamic range, good reproducibility properties with a relative standard deviation (RSD) of ~0.021, and the capacity for a linear sensing response with a correlation coefficient of R² ≈ 0.992 over a wide sensing range. In our study, we also developed an IDC temperature sensor that is based on the capacitance variation principle as the IDC sensing element is heated. We compared the performance of the proposed temperature-sensing systems with different fiber-optic temperature sensors (which are based on the fiber-optic wavelength shift method, the long grating fiber-optic Sagnac loop, and probe type fiber-optics) in terms of sensitivity, dynamic range, and linearity. We observed that the proposed sensing systems have better sensing performance than the above-mentioned sensing system.
Refractive Index Measurement of Fibers Through Fizeau Interferometry
2013-08-01
15. SUBJECT TERMS composite, transparent, refractive index, refractometry , interferometer 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF...transparent fibers has long presented a significant challenge. Abbe refractometry , the typical measurement technique for bulk materials and liquids
NASA Astrophysics Data System (ADS)
Luo, Zhi-Chao; Luo, Ai-Ping; Xu, Wen-Cheng
2011-08-01
We propose and demonstrate a novel tunable and switchable all-fiber comb filter by employing a polarization beam splitter (PBS)-based two-stage cascaded Mach-Zehnder (M-Z) interferometer. The proposed comb filter consists of a rotatable polarizer, a fiber PBS, a non-3-dB coupler and a 3-dB coupler. By simply adjusting the polarization state of the input light, the dual-function of channel spacing tunable and wavelength switchable (interleaving) operations can be efficiently obtained. The theoretical analysis is verified by the experimental results. A comb filter with both the channel spacing tunable from 0.18 nm to 0.36 nm and the wavelength switchable functions is experimentally demonstrated.
Zhang, Wenlu; Chen, Fengyi; Ma, Wenwen; Rong, Qiangzhou; Qiao, Xueguang; Wang, Ruohui
2018-04-16
A fringe visibility enhanced fiber-optic Fabry-Perot interferometer based ultrasonic sensor is proposed and experimentally demonstrated for seismic physical model imaging. The sensor consists of a graded index multimode fiber collimator and a PTFE (polytetrafluoroethylene) diaphragm to form a Fabry-Perot interferometer. Owing to the increase of the sensor's spectral sideband slope and the smaller Young's modulus of the PTFE diaphragm, a high response to both continuous and pulsed ultrasound with a high SNR of 42.92 dB in 300 kHz is achieved when the spectral sideband filter technique is used to interrogate the sensor. The ultrasonic reconstructed images can clearly differentiate the shape of models with a high resolution.
Double-pass Mach-Zehnder fiber interferometer pH sensor.
Tou, Zhi Qiang; Chan, Chi Chiu; Hong, Jesmond; Png, Shermaine; Eddie, Khay Ming Tan; Tan, Terence Aik Huang
2014-04-01
A biocompatible fiber-optic pH sensor based on a unique double-pass Mach-Zehnder interferometer is proposed. pH responsive poly(2-hydroxyethyl methacrylate-co-2-(dimethylamino)ethyl methacrylate) hydrogel coating on the fiber swells/deswells in response to local pH, leading to refractive index changes that manifest as shifting of interference dips in the optical spectrum. The pH sensor is tested in spiked phosphate buffer saline and demonstrates high sensitivity of 1.71 nm/pH, pH 0.004 limit of detection with good responsiveness, repeatability, and stability. The proposed sensor has been successfully applied in monitoring the media pH in cell culture experiments to investigate the relationship between pH and cancer cell growth.
NASA Astrophysics Data System (ADS)
Zhang, Na; Xu, Wei; You, Shanhong; Yu, Cheungchuen; Yu, Changyuan; Dong, Bo; Li, Kunpu
2018-03-01
A novel fiber-optic sensing structure based on miniaturized modal interferometer (MMI) for simultaneous refractive index (RI), strain and temperature measurement is proposed. It is mainly based on Mach-Zehnder interferometer (MZI) and formed by introducing a down taper between two adjacent up tapers in one single mode fiber (SMF). Experimental results demonstrate a RI sensitivity of 131.93 nm/RIU, a strain sensitivity of 0.0007 nm/ με and a temperature sensitivity of 0.0878 nm/°C respectively. The sensor is merely made of SMF which is cheap and available, and the whole fabrication process contains only cleaving and splicing and can be well controlled by a commercial fiber splicer.
NASA Astrophysics Data System (ADS)
Gang, Tingting; Hu, Manli; Qiao, Xueguang; Li, JiaCheng; Shao, Zhihua; Tong, Rongxin; Rong, Qiangzhou
2017-01-01
A fiber-optic interferometer is proposed and demonstrated experimentally for ultrasonic detection. The sensor consists of a compact Michelson interferometer (MI), which is fixed in a tilted-tube end-face (45°). Thin gold films are used for the reflective coatings of two arms and one of the interference arms is etched serving as the sensing arm. The spectral sideband filter technique is used to interrogate the continuous and pulse ultrasonic signals (with frequency of 300 KHz). Furthermore, because of the asymmetrical structure of the sensor, it presents strong direction-dependent ultrasonic sensitivity, such that the sensor can be considered a vector detector. The experimental results show that the sensor is highly sensitive to ultrasonic signals, and thus it can be a candidate for ultrasonic imaging of seismic physical models.
NASA Astrophysics Data System (ADS)
Wonko, R.; Moś, J. E.; Stasiewicz, K. A.; Jaroszewicz, L. R.
2017-05-01
Optical fiber vibration sensors are an appropriate alternative for piezoelectric devices, which are electromagnetic sensitive to the external conditions. Most of the vibration sensors demonstrated in previous publications resist to different interferometers or Bragg's gratings. Such sensors require a long time of stabilization of an optical signal, because they are vulnerable to undesirable disturbance. In majority, time response of an optical sensor should be instantaneous, therefore we have proposed an in- line vibration sensing passive element based on a tapered fiber. Micrometer sized optical fiber tapers are attractive for many optical areas due to changes process of boundary conditions. Such phenomena allow for a sensitive detection of the modulation phase. Our experiment shows that a singlemode, adiabatic tapered fiber enables detecting an acoustic vibration. In this study, we report on Mach- Zehnder (MZ) interferometer as a vibration sensor which was composed of two 50/50 couplers at 1550 nm. In the reference arm we used a 4 meter singlemode optical fiber (SMF28), while in the arm under test we placed tapered optical fibers attached to a metal plate, put directly on speaker. Researches carried out on different tapered fibers which diameter of a taper waist was in the range from 5 μm to 25 μm, and each taper was characterized by optical losses less than 0,5 dB. The measured phase changes were over a frequency from 100 Hz to 1 kHz and an amplitude in the range from 100 mVpp to 1 Vpp. Although on account of a limited space we have showed only the results for 100 Hz. Nevertheless, experimental results show that this sensing system has a wide frequency response range from a few hertz to one of kilohertz, however for some conditions, a standard optical fiber showed better result.
NASA Astrophysics Data System (ADS)
Kang, Shouxin; Zhang, Hao; Liu, Bo; Lin, Wei; Zhang, Ning; Miao, Yinping
2016-01-01
A dual-parameter sensor based on a fiber-optic interferometer consisting of a non-adiabatic fiber taper and a long-period fiber grating (LPFG) integrated with magnetic nanoparticle fluids has been proposed and experimentally demonstrated. Due to the Mach-Zehnder interference induced by the concatenation of the fiber taper and long-period grating, an interferometric spectrum could be acquired within the transmission resonance spectral envelope of the LPFG. Thanks to different magnetic field and temperature sensitivities of difference interference dips, simultaneous measurement of the magnetic field intensity and environmental temperature could be achieved. Moreover, due to the variation in coupling coefficients of the fiber taper and the LPFG in response to the change of the applied magnetic field intensity, some of the interference dips would exhibit opposite magnetic-field-intensity-dependent transmission loss variation behavior. Magnetic field intensity and temperature sensitivities of 0.017 31 dB Oe-1 and 0.0315 dB K-1, and -0.024 55 dB Oe-1 and -0.056 28 dB K-1 were experimentally acquired for the experimentally monitored interference dips.
Partially reduced graphene oxide based FRET on fiber-optic interferometer for biochemical detection
NASA Astrophysics Data System (ADS)
Yao, B. C.; Wu, Y.; Yu, C. B.; He, J. R.; Rao, Y. J.; Gong, Y.; Fu, F.; Chen, Y. F.; Li, Y. R.
2016-03-01
Fluorescent resonance energy transfer (FRET) with naturally exceptional selectivity is a powerful technique and widely used in chemical and biomedical analysis. However, it is still challenging for conventional FRET to perform as a high sensitivity compact sensor. Here we propose a novel ‘FRET on Fiber’ concept, in which a partially reduced graphene oxide (prGO) film is deposited on a fiber-optic modal interferometer, acting as both the fluorescent quencher for the FRET and the sensitive cladding for optical phase measurement due to refractive index changes in biochemical detection. The target analytes induced fluorescence recovery with good selectivity and optical phase shift with high sensitivity are measured simultaneously. The functionalized prGO film coated on the fiber-optic interferometer shows high sensitivities for the detections of metal ion, dopamine and single-stranded DNA (ssDNA), with detection limits of 1.2 nM, 1.3 μM and 1 pM, respectively. Such a prGO based ‘FRET on fiber’ configuration, bridging the FRET and the fiber-optic sensing technology, may serve as a platform for the realization of series of integrated ‘FRET on Fiber’ sensors for on-line environmental, chemical, and biomedical detection, with excellent compactness, high sensitivity, good selectivity and fast response
Partially reduced graphene oxide based FRET on fiber-optic interferometer for biochemical detection
Yao, B. C.; Wu, Y.; Yu, C. B.; He, J. R.; Rao, Y. J.; Gong, Y.; Fu, F.; Chen, Y. F.; Li, Y. R.
2016-01-01
Fluorescent resonance energy transfer (FRET) with naturally exceptional selectivity is a powerful technique and widely used in chemical and biomedical analysis. However, it is still challenging for conventional FRET to perform as a high sensitivity compact sensor. Here we propose a novel ‘FRET on Fiber’ concept, in which a partially reduced graphene oxide (prGO) film is deposited on a fiber-optic modal interferometer, acting as both the fluorescent quencher for the FRET and the sensitive cladding for optical phase measurement due to refractive index changes in biochemical detection. The target analytes induced fluorescence recovery with good selectivity and optical phase shift with high sensitivity are measured simultaneously. The functionalized prGO film coated on the fiber-optic interferometer shows high sensitivities for the detections of metal ion, dopamine and single-stranded DNA (ssDNA), with detection limits of 1.2 nM, 1.3 μM and 1 pM, respectively. Such a prGO based ‘FRET on fiber’ configuration, bridging the FRET and the fiber-optic sensing technology, may serve as a platform for the realization of series of integrated ‘FRET on Fiber’ sensors for on-line environmental, chemical, and biomedical detection, with excellent compactness, high sensitivity, good selectivity and fast response PMID:27010752
NASA Astrophysics Data System (ADS)
He, Wei; Zhu, Lianqing; Dong, Mingli; Lou, Xiaoping; Luo, Fei
2018-04-01
This paper proposes and tests a ring cavity-based, erbium-doped fiber laser that incorporates a Mach-Zehnder interferometer and tunable filter. A four-m-long erbium-doped fiber was selected as the gain medium. The all-fiber Mach-Zehnder interferometer was composed of two 2 × 2 optical couplers, and the tunable filter was used as wavelength reflector. A lasing threshold of 103 mW was used in the experiment, and the tunable laser with stable single and dual wavelengths was implemented by adjusting the tunable filter. The channel spacing was 0.6 nm within the range 1539.4-1561.6 nm, where the power difference between the lines was less than 0.4 dB. The side-mode suppression ratio was higher than 36 dB and the 3 dB linewidth was 0.02 nm. When a single-wavelength laser was implemented at 1557.4 nm, the power fluctuations were lower than 0.34 dB within 20 min of scan time. When lasers at wavelengths of 1558.6 nm and 1559.2 nm were simultaneously applied, the power shifts were lower than 0.29 dB and 0.43 dB, respectively, at room temperature.
Miniaturized fiber inline Fabry-Perot interferometer for chemical sensing.
DOT National Transportation Integrated Search
2010-01-01
This paper demonstrates the chemical sensing capability of a miniaturized fiber inline Fabry-Prot sensor fabricated by femtosecond : laser. Its accessible cavity enables the device to measure the refractive index within the cavity. The refractive i...
Asymmetrical dual tapered fiber Mach-Zehnder interferometer for fiber-optic directional tilt sensor.
Lee, Cheng-Ling; Shih, Wen-Cheng; Hsu, Jui-Ming; Horng, Jing-Shyang
2014-10-06
This work proposes a novel, highly sensitive and directional fiber tilt sensor that is based on an asymmetrical dual tapered fiber Mach-Zehnder interferometer (ADTFMZI). The fiber-optic tilt sensor consists of two abrupt tapers with different tapered waists into which are incorporated a set of iron spheres to generate an asymmetrical strain in the ADTFMZI that is correlated with the tilt angle and the direction of inclination. Owing to the asymmetrical structure of the dual tapers, the proposed sensor can detect the non-horizontal/horizontal state of a structure and whether the test structure is tilted to clockwise or counterclockwise by measuring the spectral responses. Experimental results show that the spectral wavelengths are blue-shifted and red-shifted when the sensor tilts to clockwise (-θ) and counterclockwise ( + θ), respectively. Tilt angle sensitivities of about 335 pm/deg. and 125 pm/deg. are achieved in the -θ and + θ directions, respectively, when the proposed sensing scheme is utilized.
Fiber ring laser sensor based on Fabry-Perot cavity interferometer for temperature sensing
NASA Astrophysics Data System (ADS)
Zou, Hui; Ma, Lei; Xiong, Hui; Zhang, Yunshan; Li, Yong Tao
2018-01-01
A ring laser temperature sensor based on a novel reflective fiber Fabry-Perot (F-P) interferometer air cavity is proposed and experimentally demonstrated. The reflective F-P air cavity, which consists of a segment of glass capillary inserted between two single-mode fibers, is utilized as a sensing element as well as as a filter in the fiber ring cavity. As temperature increases, the reflection spectra of the F-P sensor move towards the longer wavelength, and then cause lasing wavelength shifts. By monitoring the variation of lasing wavelength, we obtain a temperature sensor system with a high temperature sensitivity of 0.249 nm °C-1, a narrow 3 dB bandwidth of 0.1514 nm, and a high signal-to-noise ratio of 52 dB. Moreover, it is convenient to fabricate the sensor head, and the stability is very good, giving it a wide range of applications.
Temperature-independent refractometer based on fiber-optic Fabry-Perot interferometer
NASA Astrophysics Data System (ADS)
Li, Jiacheng; Qiao, Xueguang; Wang, Ruohui; Rong, Qiangzhou; Bao, Weijia; Shao, Zhihua; Yang, Tingting
2016-04-01
A miniature fiber-optic refractometer based on Fabry-Perot interferometer (FPI) has been proposed and experimentally demonstrated. The sensing head consists of a short section of photonics crystal fiber (PCF) spliced to a single mode fiber (SMF), in which the end-face of the PCF is etched to remove holey structure with hydrofluoric (HF) acid. A Fabry-Perot interference spectrum is achieved based on the reflections from the fusion splicing interface and the end-face of the core of PCF. The interference fringe is sensitive to the external refractive index (RI) with an intensity-referenced sensitivity of 358.27 dB/RIU ranging from 1.33 to 1.38. The sensor has also been implemented for the concentration measurement of λ-phage DNA solution. In addition, the dip intensity is insensitive to the ambient temperature variation, making it a good candidate for temperature-independent bio-sensing area.
Schmidt, M; Werther, B; Fuerstenau, N; Matthias, M; Melz, T
2001-04-09
A fiber-optic extrinsic Fabry-Perot interferometer strain sensor (EFPI-S) of ls = 2.5 cm sensor length using three-wavelength digital phase demodulation is demonstrated to exhibit <50 pm displacement resolution (<2nm/m strain resolution) when measuring the cross expansion of a PZT-ceramic plate. The sensing (single-mode downlead-) and reflecting fibers are fused into a 150/360 microm capillary fiber where the fusion points define the sensor length. Readout is performed using an improved version of the previously described three-wavelength digital phase demodulation method employing an arctan-phase stepping algorithm. In the resent experiments the strain sensitivity was varied via the mapping of the arctan - lookup table to the 16-Bit DA-converter range from 188.25 k /V (6 Volt range 1130 k ) to 11.7 k /Volt (range 70 k ).
Shao, Jing; Sun, Junqiang
2012-08-15
We propose and experimentally demonstrate a simple and flexible photonic scheme for generation and modulation of ultrawideband (UWB) using a phase modulator and a fiber delay interferometer (DI)-based multichannel frequency discrimination. By introducing a Gaussian signal to the phase modulator, the UWB polarity-switchable doublet pulses can be achieved by combining the pair of UWB monocycle pulses with inverted polarities at the DI outputs under proper time delay. Furthermore, the pulse shape modulation, pulse position modulation, and on-off keying can be performed by coding the electrical data patterns and adjusting the time delay between the two monocycle pulses. Only a laser source introduced in the architecture guarantees the excellent dispersion tolerance over 75 km optical fiber link for UWB pulse sequence, which has potential application in future high-speed UWB impulse radio over optical fiber access networks.
Xiong, Qiao; Tong, Xinglin; Deng, Chengwei; Zhang, Cui; Wang, Pengfei; Zheng, Zhiyuan; Liu, Fang
2018-05-13
A novel Mach-Zehnder interferometer using eccentric-core fiber (ECF) design for optical coherence tomography (OCT) is proposed and demonstrated. Instead of the commercial single-mode fiber (SMF), the ECF is used as one interference arm of the implementation. Because of the offset location of the eccentric core, it is sensitive to directional bending and the optical path difference (OPD) of two interference arms can be adjusted with high precision. The birefringence of ECF is calculated and experimentally measured, which demonstrates the polarization sensitivity of the ECF proposed in the paper is similar to that of SMF. Such a structure can replace the reference optical delay line to form an all-fiber passive device. A mirror is used as a sample for analyzing the ECF bending responses of the system. Besides, four pieces of overlapping glass slides as sample are experimentally measured as well.
Schmidt, M; Fürstenau, N
1999-05-01
A three-wavelength-based passive quadrature digital phase-demodulation scheme has been developed for readout of fiber-optic extrinsic Fabry-Perot interferometer vibration, acoustic, and strain sensors. This scheme uses a superluminescent diode light source with interference filters in front of the photodiodes and real-time arctan calculation. Quasi-static strain and dynamic vibration sensing with up to an 80-kHz sampling rate is demonstrated. Periodic nonlinearities owing to dephasing with increasing fringe number are corrected for with a suitable algorithm, resulting in significant improvement of the linearity of the sensor characteristics.
Fiber Fabry-Perot interferometer sensor for measuring resonances of piezoelectric elements
NASA Astrophysics Data System (ADS)
da Silva, Ricardo E.; Oliveira, Roberson A.; Pohl, Alexandre A. P.
2011-05-01
The development of a fiber extrinsic Fabry-Perot interferometer for measuring vibration amplitude and resonances of piezoelectric elements is reported. The signal demodulation method based on the use of an optical spectrum analyzer allows the measurement of displacements and resonances with high resolution. The technique consists basically in monitoring changes in the intensity or the wavelength of a single interferometric fringe at a point of high sensitivity in the sensor response curve. For sensor calibration, three signal processing techniques were employed. Vibration amplitude measurement with 0.84 nm/V sensitivity and the characterization of the piezo resonance is demonstrated.
Masoudi, Ali; Belal, Mohammad; Newson, Trevor P
2013-09-01
A Brillouin-based distributed optical fiber dynamic strain sensor is described which converts strain-induced Brillouin frequency shift into optical intensity variations by using an imbalanced Mach-Zhender interferometer. A 3×3 coupler is used at the output of this interferometer to permit differentiate and cross multiply demodulation. The demonstrated sensor is capable of probing dynamic strain disturbances over 2 km of sensing length every 0.5 s up to a strain of 10 mε with an accuracy of ±50 με and spatial resolution of 1.3 m.
Interferometric sensor based on the polarization-maintaining fibers
NASA Astrophysics Data System (ADS)
Cubik, Jakub; Kepak, Stanislav; Doricak, Jan; Vašinek, Vladimir; Liner, Andrej; Papes, Martin
2012-01-01
The interferometers composed of optical fibers are due to its high sensitivity capable of to measure various influences affecting the fiber. These influences may be bending or different sorts of fiber deformations, vibration, temperature, etc. In this case the vibration is the measured quantity, which is evaluated by analyzing the interference fringes representing changes in the fiber. Was used a Mach-Zehnder interferometer composed of the polarization maintaining elements. The polarization maintaining elements were used because of high sensitivity to polarization state inside the interferometer. The light was splitted into the two optical paths, where the first one is the reference fiber and it is separated from the actual phenomenon, and the second one is measuring fiber, which is directly exposed to vibration transmission from the underlying surface. The light source was narrowband DFB laser serating at a wavelength of 1550nm and as a detector an InGaAs PIN photodiode were used in this measurement. The electrical signal from the photodiode was amplified and fed into the measuring card. On the incoming signal the FFT was applied, which performs the transformation into the frequency domain and the results were further evaluated by software. We were evaluating the characteristic frequencies and their amplitude ratios. The frequency responses are unique for a given phenomenon, thus it is possible to identify recurring events by the characteristic frequencies and their amplitude ratios. The frequency range was limited by the properties of the used speaker, by the frequency characteristics of the filter in the amplifier and used resonant element. For the experiment evaluation the repeated impact of the various spherical objects on the surface board was performed and measured. The stability of amplitude and frequency and also the frequency range was verified in this measurement.
Effect of MMF stub on the sensitivity of a photonic crystal fiber interferometer sensor at 1550 nm
NASA Astrophysics Data System (ADS)
Dhara, P.; Singh, Vinod K.
2015-01-01
A simple photonic crystal fiber (PCF) based Mach-Zehnder interferometric sensor is reported for sensing the refractive index and level of liquid. The sensing head is formed by all-fiber in-line single mode-multi mode-photonic crystal-single mode fiber structure using the fusion splicing method. The interferometric pattern, observed in the PCF interferometer using monochromatic source and temperature sensing arrangement, is novel and reported for the first time to the best of our knowledge. The refractive index sensitivity of the interferometric device is increased by using multimode fiber. The output intensity at the end of lead-out single mode fiber decreases with increase in refractive index of surrounding. The index sensitivities of the interferometric devices are 440.32 μw/RIU, 267.48 μw/RIU and 195.36 μw/RIU with sensing length 2.10 cm, 5.50 cm and 7.20 cm respectively. A 7.20 cm longed PCF sensor exhibits liquid level sensitivities -1.032 μw/cm, -1.197 μw/cm, and -1.489 μw/cm for three different liquid respectively.
NASA Astrophysics Data System (ADS)
Wang, Weiying; Dong, Xinran; Chu, Dongkai; Hu, Youwang; Sun, Xiaoyan; Duan, Ji-An
2018-05-01
A high refractive index (RI) sensor based on an in-line Mach-Zehnder mode interferometer (MZI) is proposed. The sensor was realized by splicing a 2-cm length of cladding-etched thin core fiber (TCF) between two single mode fibers (SMFs). The TCF-structured MZI exhibited good fringe visibility as high as 15 dB in air and the high RI sensitivity attained a value of 1143.89 nm/RIU at a RI of 1.447. The experimental data revealed that the MZI has high RI sensitivity after HF etching realizing 2599.66 nm/RIU. Studies were performed on the temperature characteristics of the device. It is anticipated that this high RI sensor will be deployed in new and diverse applications in the chemical and biological fields.
UW Imaging of Seismic-Physical-Models in Air Using Fiber-Optic Fabry-Perot Interferometer.
Rong, Qiangzhou; Hao, Yongxin; Zhou, Ruixiang; Yin, Xunli; Shao, Zhihua; Liang, Lei; Qiao, Xueguang
2017-02-17
A fiber-optic Fabry-Perot interferometer (FPI) has been proposed and demonstrated for the ultrasound wave (UW) imaging of seismic-physical models. The sensor probe comprises a single mode fiber (SMF) that is inserted into a ceramic tube terminated by an ultra-thin gold film. The probe performs with an excellent UW sensitivity thanks to the nanolayer gold film, and thus is capable of detecting a weak UW in air medium. Furthermore, the compact sensor is a symmetrical structure so that it presents a good directionality in the UW detection. The spectral band-side filter technique is used for UW interrogation. After scanning the models using the sensing probe in air, the two-dimensional (2D) images of four physical models are reconstructed.
Tapered fiber Mach-Zehnder interferometers for vibration and elasticity sensing applications.
Chen, Nan-Kuang; Hsieh, Yu-Hsin; Lee, Yi-Kun
2013-05-06
We demonstrate the optical measurements of heart-beat pulse rate and also elasticity of a polymeric tube, using a tapered fiber Mach-Zehnder interferometer. This device has two abrupt tapers in the Er/Yb codoped fiber and thus fractional amount of core mode is converted into cladding modes at the first abrupt taper. The core and cladding modes propagate through different optical paths and meet again at the second abrupt taper to produce interferences. The mechanical vibration signals generated by the blood vessels and by an inflated polymeric tube can perturb the optical paths of resonant modes to move around the resonant wavelengths. Thus, the cw laser signal is modulated to become pulses to reflect the heart-beat pulse rate and the elasticity of a polymeric tube, respectively.
Temperature-independent curvature sensor based on tapered photonic crystal fiber interferometer
NASA Astrophysics Data System (ADS)
Ni, Kai; Li, Tao; Hu, Limin; Qian, Wenwen; Zhang, Quanyao; Jin, Shangzhong
2012-11-01
A temperature-independent highly-sensitive curvature sensor by using a tapered-photonic crystal fiber (PCF)-based Mach-Zehnder interferometer (MZI) is proposed and experimentally demonstrated. It is fabricated by sandwiching a tapered-PCF between two standard single mode fibers (SMFs) with the air holes of the PCF in the fusion splicing region being fully collapsed. The tapering of PCF is found to enhance the sensitivity significantly. Large curvature sensitivities of 2.81 dB/m-1 and 8.35 dB/m-1 are achieved in the measurement ranges of 0.36-0.87 m-1 and 0.87-1.34 m-1, respectively, with the resolution of 0.0012 m-1 being guaranteed. The proposed sensor also shows negligible temperature sensitivity less than 0.006 dB/°C.
Zhang, Nan; Li, Kaiwei; Cui, Ying; Wu, Zhifang; Shum, Perry Ping; Auguste, Jean-Louis; Dinh, Xuan Quyen; Humbert, Georges; Wei, Lei
2018-02-13
All-in-fiber optofluidics is an analytical tool that provides enhanced sensing performance with simplified analyzing system design. Currently, its advance is limited either by complicated liquid manipulation and light injection configuration or by low sensitivity resulting from inadequate light-matter interaction. In this work, we design and fabricate a side-channel photonic crystal fiber (SC-PCF) and exploit its versatile sensing capabilities in in-line optofluidic configurations. The built-in microfluidic channel of the SC-PCF enables strong light-matter interaction and easy lateral access of liquid samples in these analytical systems. In addition, the sensing performance of the SC-PCF is demonstrated with methylene blue for absorptive molecular detection and with human cardiac troponin T protein by utilizing a Sagnac interferometry configuration for ultra-sensitive and specific biomolecular specimen detection. Owing to the features of great flexibility and compactness, high-sensitivity to the analyte variation, and efficient liquid manipulation/replacement, the demonstrated SC-PCF offers a generic solution to be adapted to various fiber-waveguide sensors to detect a wide range of analytes in real time, especially for applications from environmental monitoring to biological diagnosis.
NASA Astrophysics Data System (ADS)
Yoo, Jongsoo; Jara-Almonte, J.; Majeski, S.; Frank, S.; Ji, H.; Yamada, M.
2016-10-01
FLARE (Facility for Laboratory Reconnection Experiments) will be operated as a flexible user facility, and so a complete set of research diagnostics is under development, including magnetic probe arrays, Langmuir probes, Mach probes, spectroscopic probes, and a laser interferometer. In order to accommodate the various requirements of users, large-scale (1 m), variable resolution (0.5-4 cm) magnetic probes have been designed, and are currently being prototyped. Moreover, a fully fiber-coupled laser interferometer has been designed to measure the line-integrated electron density. This fiber-coupled interferometer system will reduce the complexity of alignment processes and minimize maintenance of the system. Finally, improvements to the electrostatic probes and spectroscopic probes currently used in the Magnetic Reconnection Experiment (MRX) are discussed. The specifications of other subsystems, such as integrators and digitizers, are also presented. This work is supported by DoE Contract No. DE-AC0209CH11466.
Single mode fiber and twin-core fiber connection technique for in-fiber integrated interferometer
NASA Astrophysics Data System (ADS)
Yuan, Tingting; Zhang, Xiaotong; Guan, Chunying; Yang, Xinghua; Yuan, Libo
2015-09-01
A novel twin-core fiber connector has been made by two side-polished fibers. By using side polishing technique, we present a connector based on the twin-core fiber (TCF) and two D-shaped single-core fibers. After simple alignment and splicing, all fiber miniaturizing connector can be obtained. Two cores can operate independently and are non-interfering. The coupling loss of this connector is low and the fabrication technologies are mature. The connector device could be used for sensors or particle trapping.
Single-photon test of hyper-complex quantum theories using a metamaterial.
Procopio, Lorenzo M; Rozema, Lee A; Wong, Zi Jing; Hamel, Deny R; O'Brien, Kevin; Zhang, Xiang; Dakić, Borivoje; Walther, Philip
2017-04-21
In standard quantum mechanics, complex numbers are used to describe the wavefunction. Although this has so far proven sufficient to predict experimental results, there is no theoretical reason to choose them over real numbers or generalizations of complex numbers, that is, hyper-complex numbers. Experiments performed to date have proven that real numbers are insufficient, but the need for hyper-complex numbers remains an open question. Here we experimentally probe hyper-complex quantum theories, studying one of their deviations from complex quantum theory: the non-commutativity of phases. We do so by passing single photons through a Sagnac interferometer containing both a metamaterial with a negative refractive index, and a positive phase shifter. To accomplish this we engineered a fishnet metamaterial to have a negative refractive index at 780 nm. We show that the metamaterial phase commutes with other phases with high precision, allowing us to place limits on a particular prediction of hyper-complex quantum theories.
Single-photon test of hyper-complex quantum theories using a metamaterial
DOE Office of Scientific and Technical Information (OSTI.GOV)
Procopio, Lorenzo M.; Rozema, Lee A.; Wong, Zi Jing
In standard quantum mechanics, complex numbers are used to describe the wavefunction. Although this has so far proven sufficient to predict experimental results, there is no theoretical reason to choose them over real numbers or generalizations of complex numbers, that is, hyper-complex numbers. Experiments performed to date have proven that real numbers are insufficient, but the need for hyper-complex numbers remains an open question. Here we experimentally probe hyper-complex quantum theories, studying one of their deviations from complex quantum theory: the non-commutativity of phases. We do so by passing single photons through a Sagnac interferometer containing both a metamaterial withmore » a negative refractive index, and a positive phase shifter. In order to accomplish this we engineered a fishnet metamaterial to have a negative refractive index at 780 nm. Here, we show that the metamaterial phase commutes with other phases with high precision, allowing us to place limits on a particular prediction of hyper-complex quantum theories.« less
Single-photon test of hyper-complex quantum theories using a metamaterial
Procopio, Lorenzo M.; Rozema, Lee A.; Wong, Zi Jing; ...
2017-04-21
In standard quantum mechanics, complex numbers are used to describe the wavefunction. Although this has so far proven sufficient to predict experimental results, there is no theoretical reason to choose them over real numbers or generalizations of complex numbers, that is, hyper-complex numbers. Experiments performed to date have proven that real numbers are insufficient, but the need for hyper-complex numbers remains an open question. Here we experimentally probe hyper-complex quantum theories, studying one of their deviations from complex quantum theory: the non-commutativity of phases. We do so by passing single photons through a Sagnac interferometer containing both a metamaterial withmore » a negative refractive index, and a positive phase shifter. In order to accomplish this we engineered a fishnet metamaterial to have a negative refractive index at 780 nm. Here, we show that the metamaterial phase commutes with other phases with high precision, allowing us to place limits on a particular prediction of hyper-complex quantum theories.« less
Single-photon test of hyper-complex quantum theories using a metamaterial
Procopio, Lorenzo M.; Rozema, Lee A.; Wong, Zi Jing; Hamel, Deny R.; O'Brien, Kevin; Zhang, Xiang; Dakić, Borivoje; Walther, Philip
2017-01-01
In standard quantum mechanics, complex numbers are used to describe the wavefunction. Although this has so far proven sufficient to predict experimental results, there is no theoretical reason to choose them over real numbers or generalizations of complex numbers, that is, hyper-complex numbers. Experiments performed to date have proven that real numbers are insufficient, but the need for hyper-complex numbers remains an open question. Here we experimentally probe hyper-complex quantum theories, studying one of their deviations from complex quantum theory: the non-commutativity of phases. We do so by passing single photons through a Sagnac interferometer containing both a metamaterial with a negative refractive index, and a positive phase shifter. To accomplish this we engineered a fishnet metamaterial to have a negative refractive index at 780 nm. We show that the metamaterial phase commutes with other phases with high precision, allowing us to place limits on a particular prediction of hyper-complex quantum theories. PMID:28429711
Spin-orbit beams for optical chirality measurement
NASA Astrophysics Data System (ADS)
Samlan, C. T.; Suna, Rashmi Ranjan; Naik, Dinesh N.; Viswanathan, Nirmal K.
2018-01-01
Accurate measurement of chirality is essential for the advancement of natural and pharmaceutical sciences. We report here a method to measure chirality using non-separable states of light with geometric phase-gradient in the circular polarization basis, which we refer to as spin-orbit beams. A modified polarization Sagnac interferometer is used to generate spin-orbit beams wherein the spin and orbital angular momentum of the input Gaussian beam are coupled. The out-of-phase interference between counter-propagating Gaussian beams with orthogonal spin states and lateral-shear or/and linear-phase difference between them results in spin-orbit beams with linear and azimuthal phase gradient. The spin-orbit beams interact efficiently with the chiral medium, inducing a measurable change in the center-of-mass of the beam, using the polarization rotation angle and hence the chirality of the medium are accurately calculated. Tunable dynamic range of measurement and flexibility to introduce large values of orbital angular momentum for the spin-orbit beam, to improve the measurement sensitivity, highlight the techniques' versatility.
Time-division multiplexing of polarization-insensitive fiber-optic Michelson interferometric sensors
NASA Astrophysics Data System (ADS)
Huang, S. C.; Lin, W. W.; Chen, M. H.
1995-06-01
A system of time-division multiplexing of polarization-insensitive fiber-optic Michelson interferometric sensors that uses Faraday rotator mirror elements is demonstrated. This system is constructed with conventional low-birefringence single-mode fiber and is able to solve the polarization-fading problem by a combination of Faraday rotator mirrors with unbalanced Michelson interferometers. The system is lead-fiber insensitive and has potentials for practical field applications.
Fiber Optic-Based Refractive Index Sensing at INESC Porto
Jorge, Pedro A. S.; Silva, Susana O.; Gouveia, Carlos; Tafulo, Paula; Coelho, Luis; Caldas, Paulo; Viegas, Diana; Rego, Gaspar; Baptista, José M.; Santos, José L.; Frazão, Orlando
2012-01-01
A review of refractive index measurement based on different types of optical fiber sensor configurations and techniques is presented. It addresses the main developments in the area, with particular focus on results obtained at INESC Porto, Portugal. The optical fiber sensing structures studied include those based on Bragg and long period gratings, on micro-interferometers, on plasmonic effects in fibers and on multimode interference in a large spectrum of standard and microstructured optical fibers. PMID:22969405
NASA Astrophysics Data System (ADS)
Tan, Jianchang; Feng, Guoying; Zhang, Shulin; Liang, Jingchuan; Li, Wei; Luo, Yun
2018-07-01
A dual spherical single-mode-multimode-single-mode (DSSMS) optical fiber temperature sensor based on a Mach–Zehnder interferometer (MZI) was designed and implemented in this paper. Theoretical and experimental results indicated that the LP01 mode in the core and the LP09 mode excited by the spherical structure were maintained and transmitted via multimode fiber and interfered at the second spherical structure, resulting in the interference spectrum. An increase or decrease in temperature can cause significant red-shift or blue-shift of the spectrum, respectively. The linearity of the spectral shift due to the temperature change is ~0.999, the sensitivity at 30 °C–540 °C is ~37.372 pm °C‑3, and at ‑25 °C–25 °C is ~37.28 pm °C‑1. The reproducibility error of this all-fiber temperature sensor at 30 °C–540 °C is less than 0.15%. Compared with the optical fiber sensor with a tapered structure and fiber core offset structure, this MZI-based DSSMS optical fiber temperature sensor has higher mechanical strength. Moreover, benefiting from low-cost and environmentally friendly materials, it is expected to be a novel micro-nano all-fiber sensor.
NASA Astrophysics Data System (ADS)
Kumar, Santosh; Swaminathan, S.
2016-04-01
The efficient application of electro-optic effect in lithium niobate based Mach-Zehnder interferometer (MZI) to construct the temperature sensor is used. An experimental set up for liquid temperature sensor is proposed. Temperature dependence of the bending loss light energy in multimode micro-plastic optical fiber (m-POF) and electro-optic effect of MZI are used. The performance of sensor at different temperatures is measured. It is seen that the light output of MZI switches from one port to the other port as temperature of liquid changes from 0°C to 100°C.
A Fiber-Optic Sensor for Leak Detection in a Space Environment
NASA Technical Reports Server (NTRS)
Sinko, John E.; Korman, Valentin; Hendrickson, Adam; Polzin, Kurt A.
2009-01-01
A miniature fiber-optic, laser-based, interferometric leak detector is presented for application as a means to detect on-orbit gas leaks. The sensor employs a fiber-coupled modified Michelson interferometer to detect gas leaks by measuring an increase in gas density in the sensing region. Monitoring changes in the fringe pattern output by the interferometer allows for direct measurement of the gas density in the sensing region and, under the assumption of an equation of state, this can be used to obtain a pressure measurement. Measurements obtained over a pressure range from 20 mtorr to 760 torr using a prototypical interferometer on working gases of air, nitrogen, argon, and helium generally exhibit agreement with a theoretical prediction of the pressure increase required before an interference fringe completely moves over the detector. Additional measurements performed on various gases demonstrate the range of detectable species, measuring sub-torr pressure changes in the process. A high-fidelity measurement places the ultimate pressure resolution for this particular sensor configuration in the 10 mtorr range. Time-resolved data prove the capability of this sensor to detect fast gas flow phenomena associated with transients and pressure waves.
High-visibility photonic crystal fiber interferometer for ultrasensitive refractometric sensing
NASA Astrophysics Data System (ADS)
Cárdenas-Sevilla, Guillermo A.; Fávero, Fernando C.; Finazzi, Vittoria; Villatoro, Joel; Pruneri, Valerio
2011-09-01
A simple and compact photonic crystal fiber (PCF) interferometer that operates in reflection mode is proposed for refractive index (RI) sensing. The device consists of a ~12mm-long stub of commercially available PCF (LMA-10) fusion spliced to standard optical fiber (SMF-28). The device reflection spectrum exhibits interference patterns with fringe contrast up to 40 dB. One of the excited modes in the PCF is sensitive to external RI therefore the device can be useful for refractrometry. The shift of the interference pattern can be monitored as a function of the external index. In the operating range, from 1.33 to 1.43, the maximum shift is less than the interferometer period, so there is no-ambiguity in the measurements. The maximum sensitivity and resolution achieved were 735 nm per RI units and 7×10-5, respectively. Another approach to measure the external RI consists of monitoring the reflection power located at the quadrature point of the inference pattern in a properly selected wavelength. Consequently the measuring range is narrower but the resolution is higher, up ~7×10-6, thanks to the high fringe contrast.
NASA Astrophysics Data System (ADS)
Sun, Chunran; Dong, Yue; Wang, Muguang; Jian, Shuisheng
2018-03-01
The detection of liquid level and temperature based on a fiber ring cavity laser sensing configuration is presented and demonstrated experimentally. The sensing head contains a fiber Bragg grating (FBG) and a single-mode-cladding-less-single-mode multimode interferometer, which also functions as wavelength-selective components of the fiber laser. When the liquid level or temperature is applied on the sensing head, the pass-band peaks of both multimode interference (MMI) filter and FBG filter vary and the two output wavelengths of the laser shift correspondingly. In the experiment, the corresponding sensitivities of the liquid level with four different refractive indices (RI) in the deep range from 0 mm to 40 mm are obtained and the sensitivity enhances with the RI of the liquid being measured. The maximum sensitivity of interferometer is 106.3 pm/mm with the RI of 1.391. For the temperature measurement, a sensitivity of 10.3 pm/°C and 13.8 pm/°C are achieved with the temperature ranging from 0 °C to 90 °C corresponding to the two lasing wavelengths selective by the MMI filter and FBG, respectively. In addition, the average RI sensitivity of 155.77 pm/mm/RIU is also obtained in the RI range of 1.333-1.391.
All-fiber hybrid photon-plasmon circuits: integrating nanowire plasmonics with fiber optics.
Li, Xiyuan; Li, Wei; Guo, Xin; Lou, Jingyi; Tong, Limin
2013-07-01
We demonstrate all-fiber hybrid photon-plasmon circuits by integrating Ag nanowires with optical fibers. Relying on near-field coupling, we realize a photon-to-plasmon conversion efficiency up to 92% in a fiber-based nanowire plasmonic probe. Around optical communication band, we assemble an all-fiber resonator and a Mach-Zehnder interferometer (MZI) with Q-factor of 6 × 10(6) and extinction ratio up to 30 dB, respectively. Using the MZI, we demonstrate fiber-compatible plasmonic sensing with high sensitivity and low optical power.
NASA Astrophysics Data System (ADS)
Zhang, Ya-nan; Wu, Qilu; Peng, Huijie; Zhao, Yong
2016-12-01
A highly-sensitive and temperature-robust photonic crystal fiber (PCF) modal interferometer coated with Pd/WO3 film was fabricated and studied, aiming for real-time monitoring of dissolved hydrogen concentration in transformer oil. The sensor probe was fabricated by splicing two segments of a single mode fiber (SMF) with both ends of the PCF. Since the collapse of air holes in the PCF in the interfaces between SMF and PCF, a SMF-PCF-SMF interferometer structure was formed. The Pd/WO3 film was fabricated by sol-gel method and coated on the surface of the PCF by dip-coating method. When the Pd/WO3 film is exposed to hydrogen, both the length and cladding refractive index of the PCF would be changed, resulting in the resonant wavelength shift of the interferometer. Experimental results showed that the hydrogen measurement sensitivity of the proposed sensor can reach 0.109 pm/(μl/l) in the transformer oil, with the measurement range of 0-10 000 μl/l and response time less than 33 min. Besides, the proposed sensor was temperature-insensitive without any compensation process, easy to fabricate without any tapering, polishing, or etching process, low cost and quickly response without any oil-gas separation device. All these performances satisfy the actual need of real-time monitoring of dissolved hydrogen concentration in the transformer oil.
Zhang, Ya-Nan; Wu, Qilu; Peng, Huijie; Zhao, Yong
2016-12-01
A highly-sensitive and temperature-robust photonic crystal fiber (PCF) modal interferometer coated with Pd/WO 3 film was fabricated and studied, aiming for real-time monitoring of dissolved hydrogen concentration in transformer oil. The sensor probe was fabricated by splicing two segments of a single mode fiber (SMF) with both ends of the PCF. Since the collapse of air holes in the PCF in the interfaces between SMF and PCF, a SMF-PCF-SMF interferometer structure was formed. The Pd/WO 3 film was fabricated by sol-gel method and coated on the surface of the PCF by dip-coating method. When the Pd/WO 3 film is exposed to hydrogen, both the length and cladding refractive index of the PCF would be changed, resulting in the resonant wavelength shift of the interferometer. Experimental results showed that the hydrogen measurement sensitivity of the proposed sensor can reach 0.109 pm/(μl/l) in the transformer oil, with the measurement range of 0-10 000 μl/l and response time less than 33 min. Besides, the proposed sensor was temperature-insensitive without any compensation process, easy to fabricate without any tapering, polishing, or etching process, low cost and quickly response without any oil-gas separation device. All these performances satisfy the actual need of real-time monitoring of dissolved hydrogen concentration in the transformer oil.
Collinear interferometer with variable delay for carrier-envelope offset frequency measurement
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pawlowska, Monika; Ozimek, Filip; Fita, Piotr
2009-08-15
We demonstrate a novel scheme for measuring the carrier-envelope offset frequency in a femtosecond optical frequency comb. Our method is based on a common-path interferometer with a calcite Babinet-Soleil compensator employed to control the delay between the two interfering beams of pulses. The large delay range (up to 8 ps) of our device is sufficient for systems that rely on spectral broadening in microstructured fibers. We show an experimental proof that the stability of a common-path arrangement is superior to that of the standard interferometers.
Collinear interferometer with variable delay for carrier-envelope offset frequency measurement
NASA Astrophysics Data System (ADS)
Pawłowska, Monika; Ozimek, Filip; Fita, Piotr; Radzewicz, Czesław
2009-08-01
We demonstrate a novel scheme for measuring the carrier-envelope offset frequency in a femtosecond optical frequency comb. Our method is based on a common-path interferometer with a calcite Babinet-Soleil compensator employed to control the delay between the two interfering beams of pulses. The large delay range (up to 8 ps) of our device is sufficient for systems that rely on spectral broadening in microstructured fibers. We show an experimental proof that the stability of a common-path arrangement is superior to that of the standard interferometers.
Direct Measurement of Large, Diffuse, Optical Structures
NASA Technical Reports Server (NTRS)
Saif, Babak N.; Keski-Kuha, Ritva; Feinberg, Lee; Wyant, J. C.; Atkinson, C.
2004-01-01
Digital Speckle Pattern Interferometry (DSPI) is a well-established method for the measurement of diffuse objects in experimental mechanics. DSPIs are phase shifting interferometers. Three or four bucket temporal phase shifting algorithms are commonly used to provide phase shifting. These algorithms are sensitive to vibrations and can not be used to measure large optical structures far away from the interferometer. In this research a simultaneous phase shifted interferometer, PhaseCam product of 4D Technology Corporation in Tucson Arizona, is modified to be a Simultaneous phase shifted Digital Speckle Pattern Interferometer (SDSPI). Repeatability, dynamic range, and accuracy of the SDSPI are characterized by measuring a 5 cm x 5 cm carbon fiber coupon.
NASA Astrophysics Data System (ADS)
Zhao, Xuefeng; Cui, Yanjun; Wei, Heming; Kong, Xianglong; Zhang, Pinglei; Sun, Changsen
2013-06-01
In this paper, a novel kind of steel rebar corrosion monitoring technique for steel reinforced concrete structures is proposed, designed, and tested. The technique is based on the fiber optical white light interferometer (WLI) sensing technique. Firstly, a feasibility test was carried out using an equal-strength beam for comparison of strain sensing ability between the WLI and a fiber Bragg grating (FBG). The comparison results showed that the sensitivity of the WLI is sufficient for corrosion expansion strain monitoring. Then, two WLI corrosion sensors (WLI-CSs) were designed, fabricated, and embedded into concrete specimens to monitor expansion strain caused by steel rebar corrosion. Their performance was studied in an accelerated electrochemical corrosion test. Experimental results show that expansion strain along the fiber optical coil winding area can be detected and measured accurately by the proposed sensor. The advantages of the proposed monitoring technique allow for quantitative corrosion expansion monitoring to be executed in real time for reinforced concrete structures and with low cost.
Fiber-optic projected-fringe digital interferometry
NASA Technical Reports Server (NTRS)
Mercer, Carolyn R.; Beheim, Glenn
1990-01-01
A phase-stepped projected-fringe interferometer was developed which uses a closed-loop fiber-optic phase-control system to make very accurate surface profile measurements. The closed-loop phase-control system greatly reduces phase-stepping error, which is frequently the dominant source of error in digital interferometers. Two beams emitted from a fiber-optic coupler are combined to form an interference fringe pattern on a diffusely reflecting object. Reflections off of the fibers' output faces are used to create a phase-indicating signal for the closed-loop optical phase controller. The controller steps the phase difference between the two beams by pi/2 radians in order to determine the object's surface profile using a solid-state camera and a computer. The system combines the ease of alignment and automated data reduction of phase-stepping projected-fringe interferometry with the greatly improved phase-stepping accuracy of our closed-loop phase-controller. The system is demonstrated by measuring the profile of a plate containing several convex surfaces whose heights range from 15 to 25 micron high.
A High-Quality Mach-Zehnder Interferometer Fiber Sensor by Femtosecond Laser One-Step Processing
Zhao, Longjiang; Jiang, Lan; Wang, Sumei; Xiao, Hai; Lu, Yongfeng; Tsai, Hai-Lung
2011-01-01
During new fiber sensor development experiments, an easy-to-fabricate simple sensing structure with a trench and partially ablated fiber core is fabricated by using an 800 nm 35 fs 1 kHz laser. It is demonstrated that the structure forms a Mach-Zehnder interferometer (MZI) with the interference between the laser light passing through the air in the trench cavity and that in the remained fiber core. The fringe visibilities are all more than 25 dB. The transmission spectra vary with the femtosecond (fs) laser ablation scanning cycle. The free spectral range (FSR) decreases as the trench length increases. The MZI structure is of very high fabrication and sensing repeatability. The sensing mechanism is theoretically discussed, which is in agreement with experiments. The test sensitivity for acetone vapor is about 104 nm/RIU, and the temperature sensitivity is 51.5 pm/°C at 200 ∼ 875 °C with a step of 25 °C. PMID:22346567
Partially reduced graphene oxide based FRET on fiber optic interferometer for biochemical detection
NASA Astrophysics Data System (ADS)
Yao, B. C.; Wu, Y.; Yu, C. B.; He, J. R.; Rao, Y. J.; Gong, Y.; Chen, Y. F.; Li, Y. R.
2017-04-01
An all-fiber graphene oxide (GO) based 'FRET on Fiber' concept is proposed and applied in biochemical detections. This method is of both good selectivity and high sensitivity, with detection limits of 1.2 nM, 1.3 μM and 1 pM, for metal ion, dopamine and single-stranded DNA (ssDNA), respectively.
Distributed vibration fiber sensing system based on Polarization Diversity Receiver
NASA Astrophysics Data System (ADS)
Zhang, Junan; Jiang, Peng; Hu, Zhengliang; Hu, Yongming
2016-10-01
In this paper, we propose a distributed vibration fiber sensing system based on Polarization Diversity Receiver(PDR). We use Acoustic Optical Modulator(AOM) to generate pulse light and an unbalanced M-Z interferometer to generate two pulse light with a certain time delay in the same period. As the pulse lights propagating in fibers, the Backward Rayleigh scattering lights will interfere with each other. The vibration on the fiber will change the length and refractive index of fiber which results in the change of the phase of the interference signal. Hence, one arm of the M-Z interferometer is modulated by a sinusoidal phase-generated carrier(PGC) signal, and PGC demodulation algorithm has been used to acquire phase information from the Backward Rayleigh scattering lights. In order to overcome the influence of polarization-induced fading and enhance Signal Noise Ratio(SNR), we set a PDR before the photo detector. The Polarization Diversity Receiver segregates the interfere light into two lights with orthogonal states of polarization. Hence, there is always one channel has a better interfere light signal. The experiments are presented to verify the effectiveness of the distributed vibration fiber sensing system proposed.
Salceda-Delgado, G.; Martinez-Rios, A.; Selvas-Aguilar, R.; Álvarez-Tamayo, R. I.; Castillo-Guzman, A.; Ibarra-Escamilla, B.; Durán-Ramírez, V. M.; Enriquez-Gomez, L. F.
2017-01-01
A compact, highly sensitive optical fiber displacement and curvature radius sensor is presented. The device consists of an adiabatic bi-conical fused fiber taper spliced to a single-mode fiber (SMF) segment with a flat face end. The bi-conical taper structure acts as a modal coupling device between core and cladding modes for the SMF segment. When the bi-conical taper is bent by an axial displacement, the symmetrical bi-conical shape of the tapered structure is stressed, causing a change in the refractive index profile which becomes asymmetric. As a result, the taper adiabaticity is lost, and interference between modes appears. As the bending increases, a small change in the fringe visibility and a wavelength shift on the periodical reflection spectrum of the in-fiber interferometer is produced. The displacement sensitivity and the spectral periodicity of the device can be adjusted by the proper selection of the SMF length. Sensitivities from around 1.93 to 3.4 nm/mm were obtained for SMF length between 7.5 and 12.5 cm. Both sensor interrogations, wavelength shift and visibility contrast, can be used to measure displacement and curvature radius magnitudes. PMID:28574421
Salceda-Delgado, G; Martinez-Rios, A; Selvas-Aguilar, R; Álvarez-Tamayo, R I; Castillo-Guzman, A; Ibarra-Escamilla, B; Durán-Ramírez, V M; Enriquez-Gomez, L F
2017-06-02
A compact, highly sensitive optical fiber displacement and curvature radius sensor is presented. The device consists of an adiabatic bi-conical fused fiber taper spliced to a single-mode fiber (SMF) segment with a flat face end. The bi-conical taper structure acts as a modal coupling device between core and cladding modes for the SMF segment. When the bi-conical taper is bent by an axial displacement, the symmetrical bi-conical shape of the tapered structure is stressed, causing a change in the refractive index profile which becomes asymmetric. As a result, the taper adiabaticity is lost, and interference between modes appears. As the bending increases, a small change in the fringe visibility and a wavelength shift on the periodical reflection spectrum of the in-fiber interferometer is produced. The displacement sensitivity and the spectral periodicity of the device can be adjusted by the proper selection of the SMF length. Sensitivities from around 1.93 to 3.4 nm/mm were obtained for SMF length between 7.5 and 12.5 cm. Both sensor interrogations, wavelength shift and visibility contrast, can be used to measure displacement and curvature radius magnitudes.
Highly Sensitive and Wide-Dynamic-Range Multichannel Optical-Fiber pH Sensor Based on PWM Technique.
Khan, Md Rajibur Rahaman; Kang, Shin-Won
2016-11-09
In this study, we propose a highly sensitive multichannel pH sensor that is based on an optical-fiber pulse width modulation (PWM) technique. According to the optical-fiber PWM method, the received sensing signal's pulse width changes when the optical-fiber pH sensing-element of the array comes into contact with pH buffer solutions. The proposed optical-fiber PWM pH-sensing system offers a linear sensing response over a wide range of pH values from 2 to 12, with a high pH-sensing ability. The sensitivity of the proposed pH sensor is 0.46 µs/pH, and the correlation coefficient R² is approximately 0.997. Additional advantages of the proposed optical-fiber PWM pH sensor include a short/fast response-time of about 8 s, good reproducibility properties with a relative standard deviation (RSD) of about 0.019, easy fabrication, low cost, small size, reusability of the optical-fiber sensing-element, and the capability of remote sensing. Finally, the performance of the proposed PWM pH sensor was compared with that of potentiometric, optical-fiber modal interferometer, and optical-fiber Fabry-Perot interferometer pH sensors with respect to dynamic range width, linearity as well as response and recovery times. We observed that the proposed sensing systems have better sensing abilities than the above-mentioned pH sensors.
Highly Sensitive and Wide-Dynamic-Range Multichannel Optical-Fiber pH Sensor Based on PWM Technique
Khan, Md. Rajibur Rahaman; Kang, Shin-Won
2016-01-01
In this study, we propose a highly sensitive multichannel pH sensor that is based on an optical-fiber pulse width modulation (PWM) technique. According to the optical-fiber PWM method, the received sensing signal’s pulse width changes when the optical-fiber pH sensing-element of the array comes into contact with pH buffer solutions. The proposed optical-fiber PWM pH-sensing system offers a linear sensing response over a wide range of pH values from 2 to 12, with a high pH-sensing ability. The sensitivity of the proposed pH sensor is 0.46 µs/pH, and the correlation coefficient R2 is approximately 0.997. Additional advantages of the proposed optical-fiber PWM pH sensor include a short/fast response-time of about 8 s, good reproducibility properties with a relative standard deviation (RSD) of about 0.019, easy fabrication, low cost, small size, reusability of the optical-fiber sensing-element, and the capability of remote sensing. Finally, the performance of the proposed PWM pH sensor was compared with that of potentiometric, optical-fiber modal interferometer, and optical-fiber Fabry–Perot interferometer pH sensors with respect to dynamic range width, linearity as well as response and recovery times. We observed that the proposed sensing systems have better sensing abilities than the above-mentioned pH sensors. PMID:27834865
Lee, Jin-Hyuk; Kim, Dae-Hyun
2014-10-01
A sensor of a biomimetic robot has to measure very small environmental changes such as, nanometer scale strains or displacements. Fiber optic sensor can be also one of candidates for the biomimetic sensor because the sensor is like thread and the shape of the sensor is similar to muscle fiber. A fiber optic interferometer, which is an optical-based sensor, can measure displacement precisely, so such device has been widely studied for the measurement of displacement on a nanometer-scale. Especially, a Quadrature Phase-Shifted Fiber Fabry-Pérot interferometer (QPS-FFPI) uses phase-information for this measurement, allowing it to provide a precision result with high resolution. In theory, the QPS-FFPI generates two sinusoidal signals of which the phase difference should be 90 degrees for the exact measurement of the displacement. In order to guarantee the condition of the phase difference, the relative adjustment of the cavities of the optical fibers is required. However, with such precise adjustment it is very hard to fix the proper difference of the two cavities for quadrature-phase-shifting. In this paper, a dual-cavity FFPI is newly proposed to measure the displacement on a nanometer-scale with a specific type of signal processing. In the signal processing, a novel phase-compensation algorithm is applied to force the phase difference to be exactly 90 degrees without any physical adjustment. As a result, the paper shows that the phase-compensated dual-cavity FFPI can effectively measure nanometer-scale displacement with high resolution under dynamic conditions.
Photonic crystal fiber refractive-index sensor based on multimode interferometry
NASA Astrophysics Data System (ADS)
Gong, Zhenfeng; Zhang, Xinpu; Liu, Yun; Liu, Zigeng; Peng, Wei
2014-11-01
We report a type of multimode fiber interferometers (MMI) formed in photonic crystal fiber (PCF). To excite the cladding modes from the fundamental core mode of a PCF, a coupling point is formed. To form the coupling point, we used the method that is blowing compressed gas into the air-holes and discharging at one point, and the air-holes in this point will expand due to gas expansion in the discharge process. By placing two coupling points in series, a very simple all-fiber MMI can be implemented. The detailed fabrication process is that the one end of the PCF is tightly sealed by a short section of single mode fiber (SMF) spliced to the PCF. The other end of the PCF is sealed into a gas chamber and the opened air holes are pressurized. The PCF is then heated locally by the fusion splicer and the holes with higher gas pressure will expand locally where two bubbles formed. We tested the RI responses of fabricated sensors at room temperature by immersing the sensor into solutions with different NaCl concentration. Experimental results show that as refractive-index (RI) increases, the resonance wavelength of the MMI moves toward longer wavelengths. The sensitivity coefficients are estimated by the linear fitting line, which is 46nm/RIU, 154mn/RIU with the interferometer lengths (IL) of 3mm and 6mm. The interferometer with larger IL has higher RI sensitivity. The temperature cross-sensitivity of the sensor is also tested. The temperature sensitivity can be as low as -16.0pm/°C.
Composite material embedded fiber-optic Fabry-Perot strain rosette
NASA Astrophysics Data System (ADS)
Valis, Thomas; Hogg, Dayle; Measures, Raymond M.
1990-12-01
A fiber-optic strain rosette is embedded in Kevlar/epoxy. The individual arms of the rosette are fiber Fabry-Perot interferometers operated in reflection-mode with gauge (i.e., cavity) lengths of approximately 5 mm. Procedures for manufacturing the cavities, and bending the fibers, to form a strain rosette are described. Experimental results showing 2D interlaminar strain-tensor measurement are presented. The sensor is also tested as a surface adhered device.
Practical gigahertz quantum key distribution robust against channel disturbance.
Wang, Shuang; Chen, Wei; Yin, Zhen-Qiang; He, De-Yong; Hui, Cong; Hao, Peng-Lei; Fan-Yuan, Guan-Jie; Wang, Chao; Zhang, Li-Jun; Kuang, Jie; Liu, Shu-Feng; Zhou, Zheng; Wang, Yong-Gang; Guo, Guang-Can; Han, Zheng-Fu
2018-05-01
Quantum key distribution (QKD) provides an attractive solution for secure communication. However, channel disturbance severely limits its application when a QKD system is transferred from the laboratory to the field. Here a high-speed Faraday-Sagnac-Michelson QKD system is proposed that can automatically compensate for the channel polarization disturbance, which largely avoids the intermittency limitations of environment mutation. Over a 50 km fiber channel with 30 Hz polarization scrambling, the practicality of this phase-coding QKD system was characterized with an interference fringe visibility of 99.35% over 24 h and a stable secure key rate of 306 k bits/s over seven days without active polarization alignment.
Frequency-modulated laser ranging sensor with closed-loop control
NASA Astrophysics Data System (ADS)
Müller, Fabian M.; Böttger, Gunnar; Janeczka, Christian; Arndt-Staufenbiel, Norbert; Schröder, Henning; Schneider-Ramelow, Martin
2018-02-01
Advances in autonomous driving and robotics are creating high demand for inexpensive and mass-producible distance sensors. A laser ranging system (Lidar), based on the frequency-modulated continuous-wave (FMCW) method is built in this work. The benefits of an FMCW Lidar system are the low-cost components and the performance in comparison to conventional time-of-flight Lidar systems. The basic system consists of a DFB laser diode (λ= 1308 nm) and an asymmetric fiber-coupled Mach-Zehnder interferometer with a fixed delay line in one arm. Linear tuning of the laser optical frequency via injection current modulation creates a beat signal at the interferometer output. The frequency of the beat signal is proportional to the optical path difference in the interferometer. Since the laser frequency-to-current response is non-linear, a closed-loop feed-back system is designed to improve the tuning linearity, and consequently the measurement resolution. For fast active control, an embedded system with FPGA is used, resulting in a nearly linear frequency tuning, realizing a narrow peak in the Fourier spectrum of the beat signal. For free-space measurements, a setup with two distinct interferometers is built. The fully fiber-coupled Mach-Zehnder reference interferometer is part of the feed-back loop system, while the other - a Michelson interferometer - has a free-space arm with collimator lens and reflective target. A resolution of 2:0 mm for a 560 mm distance is achieved. The results for varying target distances show high consistency and a linear relation to the measured beat-frequency.
On-fiber plasmonic interferometer for multi-parameter sensing
Zhang, Zhijian; Chen, Yongyao; Liu, Haijun; ...
2015-01-01
We demonstrate a novel miniature multi-parameter sensing device based on a plasmonic interferometer fabricated on a fiber facet in the optical communication wavelength range. This device enables the coupling between surface plasmon resonance and plasmonic interference in the structure, which are the two essential mechanisms for multi-parameter sensing. We experimentally show that these two mechanisms have distinctive responses to temperature and refractive index, rendering the device the capability of simultaneous temperature and refractive index measurement on an ultra-miniature form factor. A high refractive index sensitivity of 220 nm per refractive index unit (RIU) and a high temperature sensitivity of –60more » pm/ °C is achieved with our device.« less
Scalable boson sampling with time-bin encoding using a loop-based architecture.
Motes, Keith R; Gilchrist, Alexei; Dowling, Jonathan P; Rohde, Peter P
2014-09-19
We present an architecture for arbitrarily scalable boson sampling using two nested fiber loops. The architecture has fixed experimental complexity, irrespective of the size of the desired interferometer, whose scale is limited only by fiber and switch loss rates. The architecture employs time-bin encoding, whereby the incident photons form a pulse train, which enters the loops. Dynamically controlled loop coupling ratios allow the construction of the arbitrary linear optics interferometers required for boson sampling. The architecture employs only a single point of interference and may thus be easier to stabilize than other approaches. The scheme has polynomial complexity and could be realized using demonstrated present-day technologies.
High-temperature measurement by using a PCF-based Fabry-Perot interferometer
NASA Astrophysics Data System (ADS)
Xu, Lai-Cai; Deng, Ming; Duan, De-Wen; Wen, Wei-Ping; Han, Meng
2012-10-01
A new method for fabricating a fiber-optic Fabry-Perot interferometer (FPI) for high-temperature sensing is presented. The sensor is fabricated by fusion splicing a short section of endlessly single-mode photonic crystal fiber (ESM-PCF) to the cleaved end facet of a single-mode fiber (SMF) with an intentional complete collapse at the splice joint. This procedure not only provides easier, faster and cheaper technology for FPI sensors but also yields the FPI exhibiting an accurate and stable sinusoidal interference fringe with relatively high signal-to-noise ratio (SNR). The high-temperature response of the FPI sensors were experimentally studied and the results show that the sensor allows linear and stable measurement of temperatures up to 1100 °C with a sensitivity of ˜39.1 nm/°C for a cavity length of 1377 um, which makes it attractive for aeronautics and metallurgy areas.
Optical fiber sensors for materials and structures characterization
NASA Technical Reports Server (NTRS)
Lindner, D. K.; Claus, R. O.
1991-01-01
The final technical report on Optical Fiber Sensors for Materials and Structures Characterization, covering the period August 1990 through August 1991 is presented. Research programs in the following technical areas are described; sapphire optical fiber sensors; vibration analysis using two-mode elliptical core fibers and sensors; extrinsic Fabry-Perot interferometer development; and coatings for fluorescent-based sensor. Research progress in each of these areas was substantial, as evidenced by the technical publications which are included as appendices.
Effects of Langmuir-Blodgett-film gas sensors with integrated optical interferometers
NASA Astrophysics Data System (ADS)
Fushen, Chen; Yunqi, Liu; Yu, Xu; Qu, Liang
1996-10-01
Novel Langmuir-Blodgett-film toxic-gas sensors that have a Ti:LiNbO 3 integrated optical Mach-Zehnder interferometer structure are experimentally investigated. The gas-sensing properties of the sensors are obtained for NO 2, Cl2, NH3, and H2S by means of the detection of optical output changes. All the optical connections are made with optical fiber pigtails.
NASA Astrophysics Data System (ADS)
Rzhanov, Yu A.; Grigor'yants, A. V.; Balkareĭ, Yu I.; Elinson, M. I.
1990-04-01
A detailed qualitative description is given of the formation and propagation of leading edges of transverse traveling pulses in a bistable semiconductor interferometer with competing concentration and thermal mechanisms of nonlinear refraction. It is shown that, depending on the laser pumping rate and the heat transfer conditions, two types of traveling pulses may exist with elevated and reduced transmission. Each of these may be initiated by a local change in the input intensity of any sign. When the interferometer is pumped by a spatially inhomogeneous, (for example, Gaussian) beam, periodic spontaneous initiation of both types of traveling pulses may take place at the periphery or in the center of a beam. Traveling pulses are modeled numerically under various interferometer pumping conditions.
Highly compact fiber Fabry-Perot interferometer: A new instrument design
NASA Astrophysics Data System (ADS)
Nowakowski, B. K.; Smith, D. T.; Smith, S. T.
2016-11-01
This paper presents the design, construction, and characterization of a new optical-fiber-based, low-finesse Fabry-Perot interferometer with a simple cavity formed by two reflecting surfaces (the end of a cleaved optical fiber and a plane, reflecting counter-surface), for the continuous measurement of displacements of several nanometers to several tens of millimeters. No beam collimation or focusing optics are required, resulting in a displacement sensor that is extremely compact (optical fiber diameter 125 μm), is surprisingly tolerant of misalignment (more than 5°), and can be used over a very wide range of temperatures and environmental conditions, including ultra-high-vacuum. The displacement measurement is derived from interferometric phase measurements using an infrared laser source whose wavelength is modulated sinusoidally at a frequency f. The phase signal is in turn derived from changes in the amplitudes of demodulated signals, at both the modulation frequency, f, and its harmonic at 2f, coming from a photodetector that is monitoring light intensity reflected back from the cavity as the cavity length changes. Simple quadrature detection results in phase errors corresponding to displacement errors of up to 25 nm, but by using compensation algorithms discussed in this paper, these inherent non-linearities can be reduced to below 3 nm. In addition, wavelength sweep capability enables measurement of the absolute surface separation. This experimental design creates a unique set of displacement measuring capabilities not previously combined in a single interferometer.
Dynamic frequency-domain interferometer for absolute distance measurements with high resolution
NASA Astrophysics Data System (ADS)
Weng, Jidong; Liu, Shenggang; Ma, Heli; Tao, Tianjiong; Wang, Xiang; Liu, Cangli; Tan, Hua
2014-11-01
A unique dynamic frequency-domain interferometer for absolute distance measurement has been developed recently. This paper presents the working principle of the new interferometric system, which uses a photonic crystal fiber to transmit the wide-spectrum light beams and a high-speed streak camera or frame camera to record the interference stripes. Preliminary measurements of harmonic vibrations of a speaker, driven by a radio, and the changes in the tip clearance of a rotating gear wheel show that this new type of interferometer has the ability to perform absolute distance measurements both with high time- and distance-resolution.
Imaging Stellar Surfaces with an Agile 12-Telescopes Visible Interferometer for the VLTI
NASA Astrophysics Data System (ADS)
Woillez, Julien
2018-04-01
Imaging stellar surfaces with an optical interferometer requires a large number of telescopes and the extensive use of the bootstrapping technique to reach the high spatial frequencies where the surface details are revealed. An idea would use all 6 dual-star delay lines of VLTI to deploy an agile 12-telescopes single-mode visible interferometer on the Paranal mountain. The concept relies on single-mode fiber technologies that have been demonstrated by the `OHANA and `OHANA IKI projects. We present the expected performance of this concept and explore its potential for the study of stellar surfaces.
Wang, Linglan; Yan, Yuchao; Ma, Huilian; Jin, Zhonghe
2016-04-20
New developments are made in the resonant fiber optic gyro (RFOG), which is an optical sensor for the measurement of rotation rate. The digital signal processing system based on the phase modulation technique is capable of detecting the weak frequency difference induced by the Sagnac effect and suppressing the reciprocal noise in the circuit, which determines the detection sensitivity of the RFOG. A new technique based on the sinusoidal wave modulation and square wave demodulation is implemented, and the demodulation curve of the system is simulated and measured. Compared with the past technique using sinusoidal modulation and demodulation, it increases the slope of the demodulation curve by a factor of 1.56, improves the spectrum efficiency of the modulated signal, and reduces the occupancy of the field-programmable gate array resource. On the basis of this new phase modulation technique, the loop is successfully locked and achieves a short-term bias stability of 1.08°/h, which is improved by a factor of 1.47.
Characteristics of silicon-based Sagnac optical switches using magneto-optical micro-ring array
NASA Astrophysics Data System (ADS)
Ni, Shuang; Wu, Baojian; Liu, Yawen
2018-01-01
The miniaturization and integration of optical switches are necessary for photonic switching networks and the utilization of magneto optical effects is a promising candidate. We propose a Sagnac optical switch chip based on the principle of nonreciprocal phase shift (NPS) of the magneto-optical (MO) micro-ring (MOMR) array, composed of SiO2/Si/Ce:YIG/SGGG. The MO switching function is realized by controlling the drive current in the snake-like metal microstrip circuit layered on the MOMRs. The transmission characteristics of the Sagnac MO switch chip dependent on magnetization intensity, waveguide coupling coefficient and waveguide loss are simulated. By optimizing the coupling coefficients, we design an MO switch using two serial MOMRs with a circumference of 38.37 μm, and the 3dB bandwidth and the extinction ratio are respectively up to 1.6 nm and 50dB for the waveguide loss coefficient of ?. And the switching magnetization can be further reduced by increasing the number of parallel MOMRs. The frequency response of the MO Sagnac switch is analyzed as well.
Image Reconstruction from Data Collected with an Imaging Interferometer
NASA Astrophysics Data System (ADS)
DeSantis, Z. J.; Thurman, S. T.; Hix, T. T.; Ogden, C. E.
The intensity distribution of an incoherent source and the spatial coherence function at some distance away are related by a Fourier transform, via the Van Cittert-Zernike theorem. Imaging interferometers measure the spatial coherence of light propagated from the incoherently illuminated object by combining light from spatially separated points to measure interference fringes. The contrast and phase of the fringe are the amplitude and phase of a Fourier component of the source’s intensity distribution. The Fiber-Coupled Interferometer (FCI) testbed is a visible light, lab-based imaging interferometer designed to test aspects of an envisioned ground-based interferometer for imaging geosynchronous satellites. The front half of the FCI testbed consists of the scene projection optics, which includes an incoherently backlit scene, located at the focus of a 1 m aperture f/100 telescope. The projected light was collected by the back half of the FCI testbed. The collection optics consisted of three 11 mm aperture fiber-coupled telescopes. Light in the fibers was combined pairwise and dispersed onto a sensor to measure the interference fringe as a function of wavelength, which produces a radial spoke of measurements in the Fourier domain. The visibility function was sampled throughout the Fourier domain by recording fringe data at many different scene rotations and collection telescope separations. Our image reconstruction algorithm successfully produced images for the three scenes we tested: asymmetric pair of pinholes, U.S. Air Force resolution bar target, and satellite scene. The bar target reconstruction shows detail and resolution near the predicted resolution limit. This research was developed with funding from the Defense Advanced Research Projects Agency (DARPA). The views, opinions and/or findings expressed are those of the author(s) and should not be interpreted as reflecting the official views or policies of the Department of Defense or the U.S. Government.
Test of multi-object exoplanet search spectral interferometer
NASA Astrophysics Data System (ADS)
Zhang, Kai; Wang, Liang; Jiang, Haijiao; Zhu, Yongtian; Hou, Yonghui; Dai, Songxin; Tang, Jin; Tang, Zhen; Zeng, Yizhong; Chen, Yi; Wang, Lei; Hu, Zhongwen
2014-07-01
Exoplanet detection, a highlight in the current astronomy, will be part of puzzle in astronomical and astrophysical future, which contains dark energy, dark matter, early universe, black hole, galactic evolution and so on. At present, most of the detected Exoplanets are confirmed through methods of radial velocity and transit. Guo shoujing Telescope well known as LAMOST is an advanced multi-object spectral survey telescope equipped with 4000 fibers and 16 low resolution fiber spectrographs. To explore its potential in different astronomical activities, a new radial velocity method named Externally Dispersed Interferometry (EDI) is applied to serve Exoplanet detection through combining a fixed-delay interferometer with the existing spectrograph in medium spectral resolution mode (R=5,000-10,000). This new technology has an impressive feature to enhance radial velocity measuring accuracy of the existing spectrograph through installing a fixed-delay interferometer in front of spectrograph. This way produces an interference spectrum with higher sensitivity to Doppler Effect by interference phase and fixed delay. This relative system named Multi-object Exoplanet Search Spectral Interferometer (MESSI) is composed of a few parts, including a pair of multi-fiber coupling sockets, a remote control iodine subsystem, a multi-object fixed delay interferometer and the existing spectrograph. It covers from 500 to 550 nm and simultaneously observes up to 21 stars. Even if it's an experimental instrument at present, it's still well demonstrated in paper that how MESSI does explore an effective way to build its own system under the existing condition of LAMOST and get its expected performance for multi-object Exoplanet detection, especially instrument stability and its special data reduction. As a result of test at lab, inside temperature of its instrumental chamber is stable in a range of +/-0.5degree Celsius within 12 hours, and the direct instrumental stability without further observation correction is equivalent to be +/-50m/s every 20mins.
NASA Astrophysics Data System (ADS)
Makowska, A.; Markiewicz, K.; Szostkiewicz, L.; Kolakowska, A.; Fidelus, J.; Stanczyk, T.; Wysokinski, K.; Budnicki, D.; Ostrowski, L.; Szymanski, M.; Makara, M.; Poturaj, K.; Tenderenda, T.; Mergo, P.; Nasilowski, T.
2018-02-01
Sensors based on fiber optics are irreplaceable wherever immunity to strong electro-magnetic fields or safe operation in explosive atmospheres is needed. Furthermore, it is often essential to be able to monitor high temperatures of over 500°C in such environments (e.g. in cooling systems or equipment monitoring in power plants). In order to meet this demand, we have designed and manufactured a fiber optic sensor with which temperatures up to 900°C can be measured. The sensor utilizes multi-core fibers which are recognized as the dedicated medium for telecommunication or shape sensing, but as we show may be also deployed advantageously in new types of fiber optic temperature sensors. The sensor presented in this paper is based on a dual-core microstructured fiber Michelson interferometer. The fiber is characterized by strongly coupled cores, hence it acts as an all-fiber coupler, but with an outer diameter significantly wider than a standard fused biconical taper coupler, which significantly increases the coupling region's mechanical reliability. Owing to the proposed interferometer imbalance, effective operation and high-sensitivity can be achieved. The presented sensor is designed to be used at high temperatures as a result of the developed low temperature chemical process of metal (copper or gold) coating. The hermetic metal coating can be applied directly to the silica cladding of the fiber or the fiber component. This operation significantly reduces the degradation of sensors due to hydrolysis in uncontrolled atmospheres and high temperatures.
NASA Astrophysics Data System (ADS)
Tian, Jiajun; Jiao, Yuzhu; Ji, Shaobo; Dong, Xiaolong; Yao, Yong
2018-04-01
We propose and demonstrate a fiber sensor for simultaneous temperature and strain measurements. The proposed sensor is implemented by a cascaded-cavity Fabry-Perot (FP) fiber interferometer. The two cascaded FP cavities comprise a micro-air-cavity in a hollow-core tube fiber and a micro-silica-cavity in a standard single-mode fiber. To separate the interference spectrum of each FP cavity, the total spectrum is filtered in the frequency domain through band-pass filters, whose central frequencies were predesigned based on the relationship between the spatial frequency and free spectral range of each FP cavity. The different cross-sectional areas and thermal-optic coefficients of the two FP cavities confer different sensitivities to temperature and strain. Both parameters were measured simultaneously by tracking the wavelength shifts in the filtered interference spectra of the FP cavities. Moreover, the temperature-strain cross-sensitivity was compensated by solving a sensitivity-coefficient matrix equation for the two cavities, using the calibrated temperatures and strains. Other advantages of the proposed sensor are simple fabrication and an all-fiber structure. Owing to these properties, the proposed sensor is potentially applicable to real sensing applications.
Distributed measurement of birefringence dispersion in polarization-maintaining fibers
NASA Astrophysics Data System (ADS)
Tang, Feng; Wang, Xiang-Zhao; Zhang, Yimo; Jing, Wencai
2006-12-01
A new method to measure the birefringence dispersion in high-birefringence polarization-maintaining fibers is presented using white-light interferometry. By analyzing broadening of low-coherence interferograms obtained in a scanning Michelson interferometer, the birefringence dispersion and its variation along different fiber sections are acquired with high sensitivity and accuracy. Birefringence dispersions of two PANDA fibers at their operation wavelength are measured to be 0.011 ps/(km nm) and 0.018 ps/(km nm), respectively. Distributed measurement capability of the method is also verified experimentally.
[Optical-fiber Fourier transform spectrometer].
Liu, Yong; Li, Bao-sheng; Liu, Yan; Zhai, Yu-feng; Wang, An
2006-10-01
A novel Fourier transform spectrum analyzer based on a single mode fiber Mach-Zehnder interferometer is reported. An optical fiber Fourier transform spectrometer, with bulk optics components replaced by fiber optical components and with the moving mirror replaced by a piezoelectric element fiber stretcher was constructed. The output spectrum of a LD below threshold was measured. Experiment result agrees with that by using grating spectrum analyzer, showing the feasibility of the optic fiber Fourier transform spectrometer for practical spectrum measurement. Spectrum resolution -7 cm(-1) was obtained in our experiment. The resolution can be further improved by increasing the maximum optical path difference.
A Hot-Polymer Fiber Fabry–Perot Interferometer Anemometer for Sensing Airflow
Lee, Cheng-Ling; Liu, Kai-Wen; Luo, Shi-Hong; Wu, Meng-Shan; Ma, Chao-Tsung
2017-01-01
This work proposes the first hot-polymer fiber Fabry–Perot interferometer (HPFFPI) anemometer for sensing airflow. The proposed HPFFPI is based on a single-mode fiber (SMF) endface that is attached to a UV-cured polymer to form an ultracompact fiber Fabry–Perot microcavity. The proposed polymer microcavity was heated using a low-cost chip resistor with a controllable dc driving power to achieve a desired polymer’s steady-state temperature (T) that exceeds the T of the surrounding environment. The polymer is highly sensitive to variations of T with high repeatability. When the hot polymer was cooled by the measured flowing air, the wavelength fringes of its optical spectra shifted. The HPFFPI anemometers have been experimentally evaluated for different cavity lengths and heating power values. Experimental results demonstrate that the proposed HPFFPI responses well in terms of airflow measurement. A high sensitivity of 1.139 nm/(m/s) and a good resolution of 0.0088 m/s over the 0~2.54 m/s range of airflow were achieved with a cavity length of 10 μm and a heating power of 0.402 W. PMID:28869510
Improving the accuracy of a dual-comb interferometer by suppressing the relative linewidth
NASA Astrophysics Data System (ADS)
Zhu, Zebin; Xu, Guangyao; Ni, Kai; Zhou, Qian; Wu, Guanhao
2018-04-01
We present a compact system of synchronization for two fiber-based optical frequency comb lasers. We use a free-running continuous wave laser as an intermediary to obtain the relative noise of two combs and employ an intra-cavity electro-optic modulator (EOM) to achieve active phase feedback for fast synchronization. The EOM bandwidth is 150 kHz and the relative linewidth is suppressed markedly from 300 kHz to sub-hertz values. The relative effective timing jitter of the two pulse trains is also decreased from 680 fs to 25 fs. The proposed method shows promise for developing a high-performance, low-cost, fiber-based dual-comb interferometer for ranging or spectroscopy.
NASA Astrophysics Data System (ADS)
Wang, Fuyin; Xie, Jiehui; Hu, Zhengliang; Xiong, Shuidong; Luo, Hong; Hu, Yongming
2014-05-01
Study of fiber optic extrinsic Fabry-Pérot sensors utilizing state-of-the-art MEMS technology mostly focus on sensor fabrication for various applications, while the signal interrogation is still insatiable to current application. In this paper, we propose a white light path matched differential interferometer dynamic sensing system utilizing phase generated carrier demodulation scheme. A step motor with a movable mirror and a fiber-wound piezoelectric transducer string are used to act path matching and phase modulation respectively. Experimental results show that the sensing signal could be correctly recovered with low distortion and the phase noise spectrum level is less than -100 dB re. rad/√Hz above 2.5 kHz.
NASA Astrophysics Data System (ADS)
Díaz, Camilo A. R.; Marques, Carlos A. F.; Domingues, M. Fátima F.; Ribeiro, Moisés. R. N.; Neto, Anselmo F.; Pontes, Maria J.; André, Paulo S.; Antunes, Paulo F. C.
2018-02-01
This paper presents a simple, compact, stable and inexpensive in-line solution based on catastrophic fuse effect micro-cavity interferometers for edge-filter strain interrogation of a fiber Bragg grating sensor. By using a commercial spliced machine and recycling damage fiber for the catastrophic fuse effect it is possible to construct a micro-cavity with high contrast of more than 20dB, and acceptable half free spectra range (FSR) around 13nm of interrogation range. The strain from 0 to 1440μStrain of the FBG sensor is measured with evidences of high repeatability and stability. Future work will investigate the use of the proposed method for applications requiring higher interrogation rates.
Photonic sensors review recent progress of fiber sensing technologies in Tianjin University
NASA Astrophysics Data System (ADS)
Liu, Tiegen; Liu, Kun; Jiang, Junfeng; Li, Enbang; Zhang, Hongxia; Jia, Dagong; Zhang, Yimo
2011-03-01
The up to date progress of fiber sensing technologies in Tianjin University are proposed in this paper. Fiber-optic temperature sensor based on the interference of selective higher-order modes in circular optical fiber is developed. Parallel demodulation for extrinsic Fabry-Perot interferometer (EFPI) and fiber Bragg grating (FBG) sensors is realized based on white light interference. Gas concentration detection is realized based on intra-cavity fiber laser spectroscopy. Polarization maintaining fiber (PMF) is used for distributed position or displacement sensing. Based on the before work and results, we gained National Basic Research Program of China on optical fiber sensing technology and will develop further investigation in this area.
Development of a novel polymeric fiber-optic magnetostrictive metal detector.
Hua, Wei-Shu; Hooks, Joshua Rosenberg; Wu, Wen-Jong; Wang, Wei-Chih
2010-01-01
The purpose this paper is the development a novel polymeric fiber-optic magnetostrictive metal detector, using a fiber-optic Mach-Zehnder interferometer and polymeric magnetostrictive material. Metal detection is based on the strain-induced optical path length change steming from the ferromagnetic material introduced in the magnetic field. Varied optical phase shifts resulted largely from different metal objects. In this paper, the preliminary results on the different metal material detection will be discussed.
Physically motivated correlation formalism in hyperspectral imaging
NASA Astrophysics Data System (ADS)
Roy, Ankita; Rafert, J. Bruce
2004-05-01
Most remote sensing data-sets contain a limiting number of independent spatial and spectral measurements, beyond which no effective increase in information is achieved. This paper presents a Physically Motivated Correlation Formalism (PMCF) ,which places both Spatial and Spectral data on an equivalent mathematical footing in the context of a specific Kernel, such that, optimal combinations of independent data can be selected from the entire Hypercube via the method of "Correlation Moments". We present an experimental and computational analysis of Hyperspectral data sets using the Michigan Tech VFTHSI [Visible Fourier Transform Hyperspectral Imager] based on a Sagnac Interferometer, adjusted to obtain high SNR levels. The captured Signal Interferograms of different targets - aerial snaps of Houghton and lab-based data (white light , He-Ne laser , discharge tube sources) with the provision of customized scan of targets with the same exposures are processed using inverse imaging transformations and filtering techniques to obtain the Spectral profiles and generate Hypercubes to compute Spectral/Spatial/Cross Moments. PMCF answers the question of how optimally the entire hypercube should be sampled and finds how many spatial-spectral pixels are required for a particular target recognition.
Limits on amplification by Aharonov-Albert-Vaidman weak measurement
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koike, Tatsuhiko; Tanaka, Saki
2011-12-15
We analyze the amplification by the Aharonov-Albert-Vaidman weak quantum measurement on a Sagnac interferometer [Dixon et al., Phys. Rev. Lett. 102, 173601 (2009)] up to all orders of the coupling strength between the measured system and the measuring device. The amplifier transforms a small tilt of a mirror into a large transverse displacement of the laser beam. The conventional analysis has shown that the measured value is proportional to the weak value, so that the amplification can be made arbitrarily large in the cost of decreasing output laser intensity. It is shown that the measured displacement and the amplification factormore » are in fact not proportional to the weak value and rather vanish in the limit of infinitesimal output intensity. We derive the optimal overlap of the pre- and postselected states with which the amplification become maximum. We also show that the nonlinear effects begin to arise in the performed experiments so that any improvements in the experiment, typically with an amplification greater than 100, should require the nonlinear theory in translating the observed value to the original displacement.« less
Ultrashort vortex from a Gaussian pulse - An achromatic-interferometric approach.
Naik, Dinesh N; Saad, Nabil A; Rao, D Narayana; Viswanathan, Nirmal K
2017-05-24
The more than a century old Sagnac interferometer is put to first of its kind use to generate an achromatic single-charge vortex equivalent to a Laguerre-Gaussian beam possessing orbital angular momentum (OAM). The interference of counter-propagating polychromatic Gaussian beams of beam waist ω λ with correlated linear phase (ϕ 0 ≥ 0.025 λ) and lateral shear (y 0 ≥ 0.05 ω λ ) in orthogonal directions is shown to create a vortex phase distribution around the null interference. Using a wavelength-tunable continuous-wave laser the entire range of visible wavelengths is shown to satisfy the condition for vortex generation to achieve a highly stable white-light vortex with excellent propagation integrity. The application capablitiy of the proposed scheme is demonstrated by generating ultrashort optical vortex pulses, its nonlinear frequency conversion and transforming them to vector pulses. We believe that our scheme for generating robust achromatic vortex (implemented with only mirrors and a beam-splitter) pulses in the femtosecond regime, with no conceivable spectral-temporal range and peak-power limitations, can have significant advantages for a variety of applications.
Upper limit on NUT charge from the observed terrestrial Sagnac effect
NASA Astrophysics Data System (ADS)
Kulbakova, A.; Karimov, R. Kh; Izmailov, R. N.; Nandi, K. K.
2018-06-01
The exact Sagnac delay in the Kerr–Taub–NUT (Newman–Unti–Tamburino) spacetime is derived in the equatorial plane for non-geodesic as well as geodesic circular orbits. The resulting formula, being exact, can be directly applied to motion in the vicinity of any spinning object including black holes but here we are considering only the terrestrial case since observational data are available. The formula reveals that, in the limit of spin , the delay does not vanish. This fact is similar to the non-vanishing of Lense–Thirring precession under even though the two effects originate from different premises. Assuming a reasonable input that the Kerr–Taub–NUT corrections are subsumed in the average residual uncertainty in the measured Sagnac delay, we compute upper limits on the NUT charge n. It is found that the upper limits on n are far larger than the Earth’s gravitational mass, which has not been detected in observations, implying that the Sagnac effect cannot constrain n to smaller values near zero. We find a curious difference between the delays for non-geodesic and geodesic clock orbits and point out its implication for the well known ‘twin paradox’ of special relativity.
High-Sensitivity Fiber-Optic Ultrasound Sensors for Medical Imaging Applications
Wen, H.; Wiesler, D.G.; Tveten, A.; Danver, B.; Dandridge, A.
2010-01-01
This paper presents several designs of high-sensitivity, compact fiber-optic ultrasound sensors that may be used for medical imaging applications. These sensors translate ultrasonic pulses into strains in single-mode optical fibers, which are measured with fiber-based laser interferometers at high precision. The sensors are simpler and less expensive to make than piezoelectric sensors, and are not susceptible to electromagnetic interference. It is possible to make focal sensors with these designs, and several schemes are discussed. Because of the minimum bending radius of optical fibers, the designs are suitable for single element sensors rather than for arrays. PMID:9691368
Multi-chord fiber-coupled interferometer with a long coherence length laser
NASA Astrophysics Data System (ADS)
Merritt, Elizabeth C.; Lynn, Alan G.; Gilmore, Mark A.; Hsu, Scott C.
2012-03-01
This paper describes a 561 nm laser heterodyne interferometer that provides time-resolved measurements of line-integrated plasma electron density within the range of 1015-1018 cm-2. Such plasmas are produced by railguns on the plasma liner experiment, which aims to produce μs-, cm-, and Mbar-scale plasmas through the merging of 30 plasma jets in a spherically convergent geometry. A long coherence length, 320 mW laser allows for a strong, sub-fringe phase-shift signal without the need for closely matched probe and reference path lengths. Thus, only one reference path is required for all eight probe paths, and an individual probe chord can be altered without altering the reference or other probe path lengths. Fiber-optic decoupling of the probe chord optics on the vacuum chamber from the rest of the system allows the probe paths to be easily altered to focus on different spatial regions of the plasma. We demonstrate that sub-fringe resolution capability allows the interferometer to operate down to line-integrated densities of the order of 5 × 1015 cm-2.
Zhang, Pinglei; Wei, Heming; Guo, Jingjing; Sun, Changsen
2016-10-01
Ground settlement (GS) is one of the causes that destroy the durability of reinforced concrete structures. It could lead to a deterioration in the structural basement and increase the risk of collapse. The methods used for GS monitoring were mostly electronic-based sensors for reading the changes in resistance, resonant frequencies, etc. These sensors often bear low accuracy in the long term. Our published work demonstrated that a fiber-optic low-coherent interferometer configured in a Michelson interferometer was designed as a GS sensor, and a micro-meter resolution in the room environment was approached. However, the designed GS sensor, which in principle is based on a hydraulic connecting vessel, has to suffer from a tilt degeneration problem due to a strictly vertical requirement in practical installment. Here, we made a design for the GS sensor based on its robust tilt performance. The experimental tests show that the sensor can work well within a ±5° tilt. This could meet the requirements in most designed GS sensor installment applications.
NASA Astrophysics Data System (ADS)
Tang, Jianguan; Li, Liang; Guo, Huiyong; Yu, Haihu; Wen, Hongqiao; Yang, Minghong
2017-04-01
A distributed acoustic sensing system (DAS) with low-coherence ASE and Michelson interferometer based on continuous width-band ultra-weak fiber Bragg grating (UW-FBG) array is proposed and experimentally demonstrated. The experimental result shows that the proposed system has better performance in detecting acoustic waves than the conventional hydrophone.
Optical network of silicon micromachined sensors
NASA Astrophysics Data System (ADS)
Wilson, Mark L.; Burns, David W.; Zook, J. David
1996-03-01
The Honeywell Technology Center, in collaboration with the University of Wisconsin and the Mobil Corporation, and under funding from this ARPA sponsored program, are developing a new type of `hybrid' micromachined silicon/fiber optic sensor that utilizes the best attributes of each technology. Fiber optics provide a noise free method to read out the sensor without electrical power required at the measurement point. Micromachined silicon sensor techniques provide a method to design many different types of sensors such as temperature, pressure, acceleration, or magnetic field strength and report the sensor data using FDM methods. Our polysilicon resonant microbeam structures have a built in Fabry-Perot interferometer that offers significant advantages over other configurations described in the literature. Because the interferometer is an integral part of the structure, the placement of the fiber becomes non- critical, and packaging issues become considerably simpler. The interferometer spacing are determined by the thin-film fabrication processes and therefore can be extremely well controlled. The main advantage, however, is the integral vacuum cavity that ensures high Q values. Testing results have demonstrated relaxed alignment tolerances in packaging these devices, with an excellent Signal to Noise Ratio. Networks of 16 or more sensors are currently being developed. STORM (Strain Transduction by Optomechanical Resonant Microbeams) sensors can also provide functionality and self calibration information which can be used to improve the overall system reliability. Details of the sensor and network design, as well as test results, are presented.
NASA Astrophysics Data System (ADS)
Kumar, Naveen; Kumar, Ashish
2018-07-01
A novel single-mode single-fiber (SMSF) MZI formed by cascading of two non-adiabatic fiber tapers, with stable and repeatable spectrum, has been found to be useful in sensing applications in recent times. A multimode interference based novel simulation approach is proposed to predict the sensing characteristics of SMSF-MZI and is validated with experimental observation. The proposed method includes solving of simultaneous non-homogenous equations for determining the amplitudes of the interfering modes excited in the tapered section of the interferometer. The simulated fringe pattern and the experimental spectral response converge to some important comprehension reported for the first time. A linear shift in output spectral response, of SMSF-MZI, due to change in optical path length induced by temperature/strain etc., is likely to be characterized by three modes interference occurring in the interference region of the interferometer. Whereas if the spectral shift starts saturating at moderately higher temperature/strain, then the formation of interference fringes are possibly governed by two modes interference. Further, it was also explained that a SMSF-MZI with variable fringe widths in its spectral pattern exhibits higher sensitivity than that of the SMSF-MZI having wavelength spectrum with uniform free spectral range. These findings are useful in selecting and predicting the sensitivity of a given SMSF-MZI, based on its spectrum, for sensing applications.
NASA Technical Reports Server (NTRS)
Hsieh, Cheng; O'Donnell, Timothy P.
1991-01-01
The dimensional stability of low-density high specific-strength metal-matrix composites (including 30 vol pct SiC(p)/SXA 24-T6 Al, 25 vol pct SiC(p)/6061-T6 Al, 40 vol pct graphite P100 fiber/6061 Al, 50 vol pct graphite P100 fiber/6061 Al, and 40 vol pct P100 graphite fiber/AZ91D Mg composites) and an Al-Li-Mg metal alloy was evaluated using a specially designed five-strut optical test bench structure. The structure had 30 thermocouple locations, one retroreflector, one linear interferometer multilayer insulation, and various strip heaters. It was placed in a 10 exp -7 torr capability vacuum chamber with a laser head positioned at a window port, and a laser interferometer system for collecting dimensional change data. It was found that composite materials have greater 40-C temporal dimensional stability than the AL-Li-Mg alloy. Aluminum-based composites demonstrated better 40-C temporal stability than Mg-based composites.
Liu, Tianqi; Wang, Jing; Liao, Yipeng; Wang, Xin; Wang, Shanshan
2018-04-30
An all-fiber Mach-Zehnder interferometer (MZI) for two quasi-continuous points' temperature sensing in seawater is proposed. Based on the beam propagation theory, transmission spectrum is designed to present two sets of clear and independent interferences. Following this design, MZI is fabricated and two points' temperature sensing in seawater are demonstrated with sensitivities of 42.69pm/°C and 39.17pm/°C, respectively. By further optimization, sensitivity of 80.91pm/°C can be obtained, which is 3-10 times higher than fiber Bragg gratings and microfiber resonator, and higher than almost all similar MZI based temperature sensors. In addition, factors affecting sensitivities are also discussed and verified in experiment. The two points' temperature sensing demonstrated here show advantages of simple and compact construction, robust structure, easy fabrication, high sensitivity, immunity to salinity and tunable distance of 1-20 centimeters between two points, which may provide references for macroscopic oceanic research and other sensing applications based on MZIs.
Statkiewicz-Barabach, Gabriela; Olszewski, Jacek; Mergo, Pawel; Urbanczyk, Waclaw.
2017-01-01
We present a comprehensive study of an in-line Mach-Zehnder intermodal interferometer fabricated in a boron-doped two-mode highly birefringent microstructured fiber. We observed different interference signals at the output of the interferometer, related to the intermodal interference of the fundamental and the first order modes of the orthogonal polarizations and a beating of the polarimetric signal related to the difference in the group modal birefringence between the fundamental and the first order modes, respectively. The proposed interferometer was tested for measurements of hydrostatic pressure and temperature for different alignments of the input polarizer with no analyzer at the output. The sensitivities to hydrostatic pressure of the intermodal interference signals for x- and y-polarizations had an opposite sign and were equal to 0.229 nm/MPa and −0.179 nm/MPa, respectively, while the temperature sensitivities for both polarizations were similar and equal 0.020 nm/°C and 0.019 nm/°C. In the case of pressure, for the simultaneous excitation of both polarization modes, we observed a displacement of intermodal fringes with a sensitivity depending on the azimuth of the input polarization state, as well as on the displacement of their envelope with a sensitivity of 2.14 nm/MPa, accompanied by a change in the fringes visibility. Such properties of the proposed interferometer allow for convenient adjustments to the pressure sensitivity of the intermodal fringes and possible applications for the simultaneous interrogation of temperature and pressure. PMID:28718796
High-temperature fiber-optic Fabry-Perot interferometric sensors.
Ding, Wenhui; Jiang, Yi; Gao, Ran; Liu, Yuewu
2015-05-01
A photonic crystal fiber (PCF) based high-temperature fiber-optic sensor is proposed and experimentally demonstrated. The sensor head is a Fabry-Perot cavity manufactured with a short section of endless single-mode photonic crystal fiber (ESM PCF). The interferometric spectrum of the Fabry-Perot interferometer is collected by a charge coupled device linear array based micro spectrometer. A high-resolution demodulation algorithm is used to interrogate the peak wavelengths. Experimental results show that the temperature range of 1200 °C and the temperature resolution of 1 °C are achieved.
High-temperature fiber-optic Fabry-Perot interferometric sensors
NASA Astrophysics Data System (ADS)
Ding, Wenhui; Jiang, Yi; Gao, Ran; Liu, Yuewu
2015-05-01
A photonic crystal fiber (PCF) based high-temperature fiber-optic sensor is proposed and experimentally demonstrated. The sensor head is a Fabry-Perot cavity manufactured with a short section of endless single-mode photonic crystal fiber (ESM PCF). The interferometric spectrum of the Fabry-Perot interferometer is collected by a charge coupled device linear array based micro spectrometer. A high-resolution demodulation algorithm is used to interrogate the peak wavelengths. Experimental results show that the temperature range of 1200 °C and the temperature resolution of 1 °C are achieved.
Tian, Jiajun; Lu, Zejin; Quan, Mingran; Jiao, Yuzhu; Yao, Yong
2016-09-05
We report a fast response microfluidic Fabry-Perot (FP) interferometer refractive index (RI) fiber sensor based on a concave-core photonic crystal fiber (CPCF), which is formed by directly splicing a section CPCF with a section of single mode fiber. The CPCF is made by cleaving a section of multimode photonic crystal fiber with an axial tension. The shallow concave-core of CPCF naturally forms the FP cavity with a very short cavity length. The inherent large air holes in the cladding of CPCF are used as the open channels to let liquid sample come in and out of FP cavity. In order to shorten the liquid channel length and eliminate the harmful reflection from the outside end face of the CPCF, the CPCF is cleaved with a tilted tensile force. Due to the very small cavity capacity, the short length and the large sectional area of the microfluidic channels, the proposed sensor provides an easy-in and easy-out structure for liquids, leading to great decrement of the measuring time. The proposed sensor exhibits fast measuring speed, the measuring time is less than 359 and 23 ms for distilled water and pure ethanol, respectively. We also experimentally study and demonstrate the superior performances of the sensor in terms of high RI sensitivity, good linear response, low temperature cross-sensitivity and easy fabrication.
Optical fiber extrinsic Fabry-Perot interferometer sensors for ultrasound detection
NASA Astrophysics Data System (ADS)
Sun, Qingguo; Chen, Na; Ding, Yuetong; Chen, Zhenyi; Wang, Tingyun
2009-11-01
In this paper, a new method is proposed to fabricate an optical fiber extrinsic Fabry-Perot interferometer (EFPI) as an ultrasonic sensor. An acoustic emission detecting system is constructed based on multiple EFPI sensors and demodulation circuit. Ultrasound detection experiments were done from both traditional piezoelectric transducer (PZT) and high voltage discharge. In the experiments, strong ultrasound signals were detected in both cases. The signal attenuation related to the distance and the angle between the acoustic emission source and the FP sensor are obtained. The results indicate that the receiving angle of the FP sensor is nearly 90° and the maximum detection distance in the air is more than 200cm. Furthermore, four sensors are used to locate the position of the ultrasound source produced by high voltage discharge.
Xu, Ben; Yang, Yi; Jia, Zhenbao; Wang, D N
2017-06-26
A compact and high sensitivity sensor with a fiber-tip structure is proposed and demonstrated for simultaneously liquid refractive index (RI) and temperature sensing. The device is fabricated by inserting a tiny segment of capillary tube between single-mode fibers (SMFs) to form two cascaded Fabry-Perot interferometers (FPIs). The theoretical and experimental results demonstrate that the ambient liquid RI and temperature can be simultaneously determined by the intensity and shift of the resonant wavelength in the reflection spectrum. Our proposed device has the highest RI sensitivity of ~216.37 dB/RIU at the RI value of 1.30; a high spatial resolution owing to its compact size (with dimension <400 μm) makes it promising for high precision bio/chemical sensing applications.
Portable fiber optic coupled Doppler interferometer system for detonation and shock wave diagnostics
NASA Technical Reports Server (NTRS)
Fleming, Kevin J.
1993-01-01
Testing and analysis of shock wave characteristics such as detonators and ground shock propagation frequently require a method of measuring velocity and displacement of the surface of interest. One method of measurement is Doppler interferometry. The VISAR (Velocity Interferometer System for Any Reflector) uses Doppler interferometry and has gained wide acceptance as the preferred tool for shock measurement. An important asset of VISAR is that it measures velocity and displacement nonintrusively.
Interferometric measurement of refractive index modification in a single mode microfiber
NASA Astrophysics Data System (ADS)
Ahmed, Farid; Ahsani, Vahid; Jun, Martin B. G.
2017-02-01
Efficient and cost effective measurement of the refractive index profile in an optical fiber is a significant technical job to design and manufacture in-fiber photonic devices and communication systems. For instance, to design fiber gratings, it is required to estimate the refractive index modulation to be inscribed by the fabrication apparatus such as ultraviolet or infrared lasers. Mach-Zehnder interferometer (MZI) based quantification of refractive index change written in single mode microfiber by femtosecond laser radiation is presented in this study. The MZI is constructed by splicing a microfiber (core diameter: 3.75 μm, cladding diameter: 40 μm) between standard single mode fibers. To measure the RI inscribed by infrared femtosecond laser, 200 μm length of the core within the MZI was scanned with laser radiation. As the higher index was written within 200 μm length of the core, the transmission spectrum of the interferometer displayed a corresponding red shift. The observed spectral shift was used to calculate the amount of refractive index change inscribed by the femtosecond irradiation. For the MZI length of 3.25 mm, and spectral shift of 0.8 nm, the calculated refractive index was found to be 0.00022. The reported results display excellent agreement between theory and experimental findings. Demonstrated method provides simple yet very effective on-site measurement of index change in optical fibers. Since the MZI can be constructed in diverse fiber types, this technique offers flexibility to quantify index change in various optical fibers.
Advanced Optical Fiber Communication Systems.
1993-02-28
feedback (DFB) laser and a fiber Fabry - Perot (FFP) interferometer for optical frequency discrimination. After the photodetector and amplification, a...filter, an envelope detector, and an integrator; these three components function in tandem as a phase demodulator . We have analyzed the nonlinearities...down-converter and FSK demodulator extract the desired video signals. The measured carrier-to-noise ratio (CNR) at the photodiode must be approximately
Recovering Signals from Optical Fiber Interferometric Sensors
1991-06-01
GROUP SUB* GROUp Demodulation-, optical fiber, fi ber optic, sensors, passive -homodyne demodulation, symmetric demodul -ation, asymmetric demodulation...interferomeler without feedback control or modulation ofl th laser itself and without requiring the use of electronics withi -n the interferometer. One of...the 3x3 coupler permits Passive Homodyne Demodulation -of the phase-modulated signals provided by the interferometcr without feedback control or
Pressure sensor based on the fiber-optic extrinsic Fabry-Perot interferometer
NASA Astrophysics Data System (ADS)
Yu, Qingxu; Zhou, Xinlei
2011-03-01
Pressure sensors based on fiber-optic extrinsic Fabry-Perot interferometer (EFPI) have been extensively applied in various industrial and biomedical fields. In this paper, some key improvements of EFPI-based pressure sensors such as the controlled thermal bonding technique, diaphragm-based EFPI sensors, and white light interference technology have been reviewed. Recent progress on signal demodulation method and applications of EFPI-based pressure sensors has been introduced. Signal demodulation algorithms based on the cross correlation and mean square error (MSE) estimation have been proposed for retrieving the cavity length of EFPI. Absolute measurement with a resolution of 0.08 nm over large dynamic range has been carried out. For downhole monitoring, an EFPI and a fiber Bragg grating (FBG) cascade multiplexing fiber-optic sensor system has been developed, which can operate in temperature 300 °C with a good long-term stability and extremely low temperature cross-sensitivity. Diaphragm-based EFPI pressure sensors have been successfully used for low pressure and acoustic wave detection. Experimental results show that a sensitivity of 31 mV/Pa in the frequency range of 100 Hz to 12.7 kHz for aeroacoustic wave detection has been obtained.
Wu, Chuang; Liu, Zhengyong; Zhang, A Ping; Guan, Bai-Ou; Tam, Hwa-Yaw
2014-09-08
We report an open-cavity optical fiber Fabry-Pérot interferometer (FPI) capable of measuring refractive index with very low temperature cross-sensitivity. The FPI was constructed by splicing a thin piece of C-shaped fiber between two standard single-mode fibers. The refractive index (RI) response of the FPI was characterized using water-ethanol mixtures with RI in the range of 1.33 to 1.36. The RI sensitivity was measured to be 1368 nm/RIU at the wavelength of 1600 nm with good linearity. Thanks to its all-glass structure, the FPI exhibits very low temperature cross-sensitivity of 3.04 × 10⁻⁷ RIU/°C. The effects of cavity length on the performance of the sensor were also studied. A shorter cavity gives rise to broader measurement range while offering larger detection limit, and vice versa. What's more, the effect of material dispersion of analyte on the sensitivity of open-cavity FPIs was identified for the first time. The sensor is compact in size and easy to fabricate. It is potentially useful for label-free optical sensing of chemical and biological samples.
NASA Astrophysics Data System (ADS)
Selvas-Aguilar, R.; Martínez-Rios, A.; Anzueto-Sánchez, G.; Castillo-Guzmán, A.; Hernández-Luna, M. C.; Robledo-Fava, R.
2014-10-01
We present a wavelength tuning of an Erbium-Doped Fiber Ring Laser (EDFRL) based in a Mach-Zehnder fiber interferometer (MZFI) that consists on two tapers fabricated on commercial SMF28 from Corning as an intracavity filter. The MZFI spectral interference pattern is modified by external refractive index changes that alter the light transmission characteristics. In this work, the fiber device is immersed into a glycerol solution with higher dispersion in its refractive index in relation with temperature. Since the temperature sensitiveness of the glycerol is much higher than that of the fiber in a temperature range from 25-110 °C, therefore, the spectral changes are mainly due to the dispersion of glycerol refractive index when heat increases. Also, when this device is inserted into the EDFRL cavity, the gain spectrum of the EDF is modified accordingly and the changes, which can be controlled in an electrical heater, allow the tuning of the laser wavelength determined by the interference fringes. A wavelength shift as high as 180 pm/°C and a tunable range of 12 nm are obtained. The side mode suppression ratio (SMSR) of the fiber laser is around 25-30 dB depending on the notch filtering position. The insertion losses of the filter are below 0.3 dB and the measured wavelength shift has a quasilinear dependence as a function of temperature in the 80-110 °C. This method is very simple, portable and inexpensive over traditional methods to tune a fiber laser.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ding, Wenhui; Jiang, Yi; Gao, Ran, E-mail: bitjy@bit.edu.cn
A photonic crystal fiber (PCF) based high-temperature fiber-optic sensor is proposed and experimentally demonstrated. The sensor head is a Fabry-Perot cavity manufactured with a short section of endless single-mode photonic crystal fiber (ESM PCF). The interferometric spectrum of the Fabry-Perot interferometer is collected by a charge coupled device linear array based micro spectrometer. A high-resolution demodulation algorithm is used to interrogate the peak wavelengths. Experimental results show that the temperature range of 1200 °C and the temperature resolution of 1 °C are achieved.
Ahn, T; Moon, S; Youk, Y; Jung, Y; Oh, K; Kim, D
2005-05-30
A novel mode analysis method and differential mode delay (DMD) measurement technique for a multimode optical fiber based on optical frequency domain reflectometry has been proposed for the first time. We have used a conventional OFDR with a tunable external cavity laser and a Michelson interferometer. A few-mode optical multimode fiber was prepared to test our proposed measurement technique. We have also compared the OFDR measurement results with those obtained using a traditional time-domain measurement method.
Highly stable multi-wavelength erbium-doped fiber linear laser based on modal interference
NASA Astrophysics Data System (ADS)
Herrera-Piad, L. A.; Jauregui-Vazquez, D.; Lopez-Dieguez, Y.; Estudillo-Ayala, J. M.; Hernandez-Garcia, J. C.; Sierra-Hernandez, J. M.; Bianchetti, M.; Rojas-Laguna, R.
2018-03-01
We report a linear fiber laser cavity based on an all-fiber Fabry-Perot interferometer and bi-tapered optical fiber for multi-wavelength emission generation. Curvature and strain are used to operate the laser system and the number of lines as well, the emission regions are stronger related to the physical effect applied, due to the phase alteration between the multiple fiber optic modes involved. The original laser emissions present zero wavelength variations, minimal power fluctuations and small spacing mode (1 nm). Additionally, a nonlinear fiber was employed trying to improve the performance of the multiple lasing lines. This system offers a low implementation cost, compactness and good laser parameters.
Simultaneous measurement of temperature and strain based on composite long-period fiber grating
NASA Astrophysics Data System (ADS)
Tong, Chengguo; Hu, Qihao; He, Jiang; Chen, XuDong; Geng, Tao; Bao, Zhanjing; Li, Zixuan; Yang, Wenlei; Sun, Weimin
2016-11-01
Long period fiber grating is a kind of transmission type optical fiber grating. Due to the advantages such as low insertion loss, wide bandwidth, low-level reflection, high sensitivity, low cost and ease of compactness, LPFGs have been widely applied in optical fiber sensing and optical fiber communication. The Mode coupling of LPFG is the coupling between the fiber core mode and the cladding mode in the same transmission direction. If the ordinary LPFG is combined with bitaper or taper, we can effectively change the original LPFG's transmission spectrum to obtain the composite LPFG, which can stimulate new resonant peaks in the original wavelength-dependent transmission loss of the grating basis, thus applying to the dual-parameter simultaneously measuring field. We report a novel all-fiber narrow-bandwidth intermodal Mach- Zehnder interferometer (MZI) based on a long-period fiber grating (LPFG) combined with a fiber bitaper. The LPFG is written by high-frequency CO2 laser pulses, and the bitaper is connected in series with the LPFG, forming the Mach- Zehnder interferometer (MZI). Experimental results indicate that the MZI has good temperature sensitivity, The temperature sensitivity of the two loss peaks are 55.35pm/°C and 48.18pm/°C respectively. The strain sensitivity of the two loss peaks are 3.35pm/μɛ and -4.925pm/μɛ respectively. By using the different temperature and strain response characteristics of the loss peaks, the temperature and strain measurement can be realized simultaneously. the proposed device has good repeatability and stability, which would be a promising candidate for precise dual-parameter sensing application.
Continuously active interferometer stabilization and control for time-bin entanglement distribution
Toliver, Paul; Dailey, James M.; Agarwal, Anjali; ...
2015-02-10
In this study, we describe a new method enabling continuous stabilization and fine-level phase control of time-bin entanglement interferometers. Using this technique we demonstrate entangled photon transmission through 50 km of standard single-mode fiber. This technique reuses the entangled-pair generation pump which is co-propagated with the transmitted entangled photons. In addition, the co-propagating pump adds minimal noise to the entangled photons which are characterized by measuring a two-photon interference fringe.
Robust interferometric frequency lock between cw lasers and optical frequency combs.
Benkler, Erik; Rohde, Felix; Telle, Harald R
2013-02-15
A transfer interferometer is presented which establishes a versatile and robust optical frequency locking link between a tunable single frequency laser and an optical frequency comb. It enables agile and continuous tuning of the frequency difference between both lasers while fluctuations and drift effects of the transfer interferometer itself are widely eliminated via common mode rejection. Experimental results will be presented for a tunable extended-cavity 1.5 μm laser diode locked to an Er-fiber based frequency comb.
Childs, Paul; Wong, Allan C L; Fu, H Y; Liao, Yanbiao; Tam, Hwayaw; Lu, Chao; Wai, P K A
2010-12-20
We measured the hydrostatic pressure dependence of the birefringence and birefringent dispersion of a Sagnac interferometric sensor incorporating a length of highly birefringent photonic crystal fiber using Fourier analysis. Sensitivity of both the phase and chirp spectra to hydrostatic pressure is demonstrated. Using this analysis, phase-based measurements showed a good linearity with an effective sensitivity of 9.45 nm/MPa and an accuracy of ±7.8 kPa using wavelength-encoded data and an effective sensitivity of -55.7 cm(-1)/MPa and an accuracy of ±4.4 kPa using wavenumber-encoded data. Chirp-based measurements, though nonlinear in response, showed an improvement in accuracy at certain pressure ranges with an accuracy of ±5.5 kPa for the full range of measured pressures using wavelength-encoded data and dropping to within ±2.5 kPa in the range of 0.17 to 0.4 MPa using wavenumber-encoded data. Improvements of the accuracy demonstrated the usefulness of implementing chirp-based analysis for sensing purposes.
NASA Astrophysics Data System (ADS)
Li, L.; Tong, X. L.; Zhou, C. M.; Wen, H. Q.; Lv, D. J.; Ling, K.; Wen, C. S.
2011-03-01
A sensor has been fabricated by the integration of a fiber Bragg gating sensor (FBGs) with a fiber Fabry-Perot (F-P) sensor fabricated by etching method. In the integrated sensor, the FBG was used to measure temperature, while the fiber Fabry-Perot interferometer sensor (FFPIs) was used for strain measurement. Wavelength decoding for FBG and peak tracking for FFPI was employed for demodulation, respectively. The result showed that the temperature and strain sensitivity for the integrated sensor is ~ 2.7 pm/ μɛand ~ 9.3 pm/°C, respectively.
Dynamic Strain Measured by Mach-Zehnder Interferometric Optical Fiber Sensors
Her, Shiuh-Chuan; Yang, Chih-Min
2012-01-01
Optical fibers possess many advantages such as small size, light weight and immunity to electro-magnetic interference that meet the sensing requirements to a large extent. In this investigation, a Mach-Zehnder interferometric optical fiber sensor is used to measure the dynamic strain of a vibrating cantilever beam. A 3 × 3 coupler is employed to demodulate the phase shift of the Mach-Zehnder interferometer. The dynamic strain of a cantilever beam subjected to base excitation is determined by the optical fiber sensor. The experimental results are validated with the strain gauge. PMID:22737010
Simple refractometer based on in-line fiber interferometers
NASA Astrophysics Data System (ADS)
Esteban, Ó.; Martínez Manuel, R.; Shlyagin, M. G.
2015-09-01
A very simple but accurate optical fiber refractometer based on the Fresnel reflection in the fiber tip and two in-line low-reflective mirrors for light intensity referencing is reported. Each mirror was generated by connecting together 2 fiber sections with FC/PC and FC/APC connectors using the standard FC/PC mating sleeve. For the sensor interrogation, a standard DFB diode laser pumped with a sawtooth-wave current was used. A resolution of 6 x 10-4 was experimentally demonstrated using different liquids. A simple sensor construction and the use of low cost components make the reported system interesting for many applications.
NASA Astrophysics Data System (ADS)
Prieto-Cortés, P.; Álvarez-Tamayo, R. I.; Durán-Sánchez, M.; Castillo-Guzmán, A.; Salceda-Delgado, G.; Ibarra-Escamilla, B.; Kuzin, E. A.; Barcelata-Pinzón, A.; Selvas-Aguilar, R.
2018-02-01
We report an in-fiber structure based on the use of a multimode fiber segment and a double cladding fiber segment, and its application as spectral filter in an erbium-doped fiber laser for selection and tuning of the laser line wavelength. The output transmission of the proposed device exhibit spectrum modulation of the input signal with free spectral range of 21 nm and maximum visibility enhanced to more than 20 dB. The output spectrum of the in-fiber filter is wavelength displaced by bending application which allows a wavelength tuning of the generated laser line in a range of 12 nm. The use of the proposed in-fiber structure is demonstrated as a reliable, simple, and low-cost wavelength filter for tunable fiber lasers design and optical instrumentation applications.
Interferometer design and controls for pulse stacking in high power fiber lasers
NASA Astrophysics Data System (ADS)
Wilcox, Russell; Yang, Yawei; Dahlen, Dar; Xu, Yilun; Huang, Gang; Qiang, Du; Doolittle, Lawrence; Byrd, John; Leemans, Wim; Ruppe, John; Zhou, Tong; Sheikhsofla, Morteza; Nees, John; Galvanauskas, Almantas; Dawson, Jay; Chen, Diana; Pax, Paul
2017-03-01
In order to develop a design for a laser-plasma accelerator (LPA) driver, we demonstrate key technologies that enable fiber lasers to produce high energy, ultrafast pulses. These technologies must be scalable, and operate in the presence of thermal drift, acoustic noise, and other perturbations typical of an operating system. We show that coherent pulse stacking (CPS), which requires optical interferometers, can be made robust by image-relaying, multipass optical cavities, and by optical phase control schemes that sense pulse train amplitudes from each cavity. A four-stage pulse stacking system using image-relaying cavities is controlled for 14 hours using a pulse-pattern sensing algorithm. For coherent addition of simultaneous ultrafast pulses, we introduce a new scheme using diffractive optics, and show experimentally that four pulses can be added while a preserving pulse width of 128 fs.
Sapphire Fabry-Perot high-temperature sensor study
NASA Astrophysics Data System (ADS)
Yao, Yi-qiang; Liang, Wei-long; Gui, Xinwang; Fan, Dian
2017-04-01
A new structure sapphire fiber Fabry-Perot (F-P) high-temperature sensor based on sapphire wafer was proposed and fabricated. The sensor uses the sapphire fiber as a transmission waveguide, the sapphire wafer as an Fabry-Perot (F-P) interferometer and the new structure of "Zirconia ferrule-Zirconia tube" as the sensor fixing structure of the sensor. The reflection spectrum of the interferometer was demodulated by a serial of data processing including FIR bandpass filter, FFT (Fast Fourier Transformation) estimation and LSE (least squares estimation) compensation to obtain more precise OPD. Temperature measurement range is from 20 to 1000°C in experiment. The experimental results show that the sensor has the advantages of small size, low cost, simple fabrication and high repeatability. It can be applied for longterm, stable and high-precision high temperature measurement in harsh environments.
Microinterferometer transducer
Corey, III, Harry S.
1979-01-01
An air-bearing microinterferometer transducer is provided for increased accuracy, range and linearity over conventional displacement transducers. A microinterferometer system is housed within a small compartment of an air-bearing displacement transducer housing. A movable cube corner reflector of the interferometer is mounted to move with the displacement gauging probe of the transducer. The probe is disposed for axial displacement by means of an air-bearing. Light from a single frequency laser is directed into an interferometer system within the transducer housing by means of a self-focusing fiber optic cable to maintain light coherency. Separate fringe patterns are monitored by a pair of fiber optic cables which transmit the patterns to a detecting system. The detecting system includes a bidirectional counter which counts the light pattern fringes according to the direction of movement of the probe during a displacement gauging operation.
Novel method of detecting movement of the interference fringes using one-dimensional PSD.
Wang, Qi; Xia, Ji; Liu, Xu; Zhao, Yong
2015-06-02
In this paper, a method of using a one-dimensional position-sensitive detector (PSD) by replacing charge-coupled device (CCD) to measure the movement of the interference fringes is presented first, and its feasibility is demonstrated through an experimental setup based on the principle of centroid detection. Firstly, the centroid position of the interference fringes in a fiber Mach-Zehnder (M-Z) interferometer is solved in theory, showing it has a higher resolution and sensitivity. According to the physical characteristics and principles of PSD, a simulation of the interference fringe's phase difference in fiber M-Z interferometers and PSD output is carried out. Comparing the simulation results with the relationship between phase differences and centroid positions in fiber M-Z interferometers, the conclusion that the output of interference fringes by PSD is still the centroid position is obtained. Based on massive measurements, the best resolution of the system is achieved with 5.15, 625 μm. Finally, the detection system is evaluated through setup error analysis and an ultra-narrow-band filter structure. The filter structure is configured with a one-dimensional photonic crystal containing positive and negative refraction material, which can eliminate background light in the PSD detection experiment. This detection system has a simple structure, good stability, high precision and easily performs remote measurements, which makes it potentially useful in material small deformation tests, refractivity measurements of optical media and optical wave front detection.
Georges Sagnac: A life for optics
NASA Astrophysics Data System (ADS)
Darrigol, Olivier
2014-12-01
Georges Sagnac is mostly known for the optical effect in rotating frames that he demonstrated in 1913. His scientific interests were quite diverse: they included photography, optical illusions, X-ray physics, radioactivity, the blue of the sky, anomalous wave propagation, interferometry, strioscopy, and acoustics. An optical theme nonetheless pervaded his entire œuvre. Within optics, an original theory of the propagation of light motivated most of his investigations, from an ingenious explanation of the Fresnel drag, through the discovery of the Sagnac effect, to his quixotic defense of an alternative to relativity theory. Optical analogies efficiently guided his work in other domains. Optics indeed was his true passion. He saw himself as carrying the torch of the two great masters of French optics, Augustin Fresnel and Hippolyte Fizeau. In this mission he overcame his poor health and labored against the modernist tide, with much success originally and bitter isolation in the end. xml:lang="fr"
Filterless frequency-octupling mm-wave generation by cascading Sagnac loop and DPMZM
NASA Astrophysics Data System (ADS)
Zhang, Wu; Wen, Aijun; Gao, Yongsheng; Shang, Shuo; Zheng, Hanxiao; He, Hongye
2017-12-01
In this paper, a filterless photonic frequency-octupling scheme is presented. It is implemented by cascading a Sagnac loop with an intensity modulator (IM) in it and a dual-parallel Mach-Zehnder modulator (DPMZM) in series. The Sagnac loop is used to get the ±2nd-order sidebands of LO signal. The following DPMZM is utilized to obtain the ±4th-order sidebands. By photo-detecting the ±4th-order sidebands, mm-wave signal with the eightfold frequency of LO signal can be obtained. The scheme is verified by experiments, and a 32-GHz mm-wave signal is produced with the assistance of a 4-GHz LO signal. A 20-dB optical sideband suppression ratio (OSSR) and a 17-dB electrical spurious suppression ratio (ESSR) are realized, and no extra deterioration of phase noise is observed. Besides, the verification of the frequency tunability is implemented in the experiment.
NASA Astrophysics Data System (ADS)
Wu, Jiayang; Moein, Tania; Xu, Xingyuan; Moss, David J.
2018-04-01
We demonstrate advanced integrated photonic filters in silicon-on-insulator (SOI) nanowires implemented by cascaded Sagnac loop reflector (CSLR) resonators. We investigate mode splitting in these standing-wave (SW) resonators and demonstrate its use for engineering the spectral profile of on-chip photonic filters. By changing the reflectivity of the Sagnac loop reflectors (SLRs) and the phase shifts along the connecting waveguides, we tailor mode splitting in the CSLR resonators to achieve a wide range of filter shapes for diverse applications including enhanced light trapping, flat-top filtering, Q factor enhancement, and signal reshaping. We present the theoretical designs and compare the CSLR resonators with three, four, and eight SLRs fabricated in SOI. We achieve versatile filter shapes in the measured transmission spectra via diverse mode splitting that agree well with theory. This work confirms the effectiveness of using CSLR resonators as integrated multi-functional SW filters for flexible spectral engineering.
Measurement of Quantum Interference in a Silicon Ring Resonator Photon Source.
Steidle, Jeffrey A; Fanto, Michael L; Preble, Stefan F; Tison, Christopher C; Howland, Gregory A; Wang, Zihao; Alsing, Paul M
2017-04-04
Silicon photonic chips have the potential to realize complex integrated quantum information processing circuits, including photon sources, qubit manipulation, and integrated single-photon detectors. Here, we present the key aspects of preparing and testing a silicon photonic quantum chip with an integrated photon source and two-photon interferometer. The most important aspect of an integrated quantum circuit is minimizing loss so that all of the generated photons are detected with the highest possible fidelity. Here, we describe how to perform low-loss edge coupling by using an ultra-high numerical aperture fiber to closely match the mode of the silicon waveguides. By using an optimized fusion splicing recipe, the UHNA fiber is seamlessly interfaced with a standard single-mode fiber. This low-loss coupling allows the measurement of high-fidelity photon production in an integrated silicon ring resonator and the subsequent two-photon interference of the produced photons in a closely integrated Mach-Zehnder interferometer. This paper describes the essential procedures for the preparation and characterization of high-performance and scalable silicon quantum photonic circuits.
A self-mixing based ring-type fiber-optic acoustic sensor
NASA Astrophysics Data System (ADS)
Wang, Lutang; Wu, Chunxu; Fang, Nian
2014-07-01
A novel, simple fiber-optic acoustic sensor consisting of a self-mixing effect based laser source and a ring-type interferometer is presented. With weak external optical feedbacks, the acoustic wave signals can be detected by measuring the changes of oscillating frequency of the laser diode, induced by the disturbances of sensing fiber, with the ring-type interferometer. The operation principles of the sensor system are explored in-depth and the experimental researches are carried out. The acoustic wave signals produced by various actions, such as by pencil broken, mental pin free falling and PZT are detected for evaluating the sensing performances of the experimental system. The investigation items include the sensitivity as well as frequency responses of the sensor system. An experiment for the detection of corona discharges is carried out, which occur in a high-voltage environment between two parallel copper electrodes, under different humidity levels. The satisfied experimental results are obtained. These experimental results well prove that our proposed sensing system has very high sensitivity and excellent high frequency responses characteristics in the detections of weak, high-frequency acoustic wave signals.
A Fiber-Optic Sensor for Acoustic Emission Detection in a High Voltage Cable System
Zhang, Tongzhi; Pang, Fufei; Liu, Huanhuan; Cheng, Jiajing; Lv, Longbao; Zhang, Xiaobei; Chen, Na; Wang, Tingyun
2016-01-01
We have proposed and demonstrated a Michelson interferometer-based fiber sensor for detecting acoustic emission generated from the partial discharge (PD) of the accessories of a high-voltage cable system. The developed sensor head is integrated with a compact and relatively high sensitivity cylindrical elastomer. Such a sensor has a broadband frequency response and a relatively high sensitivity in a harsh environment under a high-voltage electric field. The design and fabrication of the sensor head integrated with the cylindrical elastomer is described, and a series of experiments was conducted to evaluate the sensing performance. The experimental results demonstrate that the sensitivity of our developed sensor for acoustic detection of partial discharges is 1.7 rad/(m⋅Pa). A high frequency response up to 150 kHz is achieved. Moreover, the relatively high sensitivity for the detection of PD is verified in both the laboratory environment and gas insulated switchgear. The obtained results show the great potential application of a Michelson interferometer-based fiber sensor integrated with a cylindrical elastomer for in-situ monitoring high-voltage cable accessories for safety work. PMID:27916900
NASA Astrophysics Data System (ADS)
Chen, Feifei; Jiang, Yi; Zhang, Liuchao; Jiang, Lan; Wang, Sumei
2018-04-01
A compact microhole-induced fiber optic inline Mach-Zehnder interferometer (MZI) is demonstrated for measurements of refractive index (RI) and magnetic field. Inline MZIs with different etched diameters, different interaction lengths and different sizes of microholes are fabricated and assessed. The optical transmission spectra of the inline MZIs immersed into a series of liquids are characterized and analysed. Experimental results show that liquid RI sensitivity as high as 539.8436 nm RIU-1 in the RI range of 1.3352-1.4113 RIU is achieved and also exhibits good linearity with a correlation coefficient >93%. An inline MZI is also fabricated to be a magnetic field sensor by using magnetic fluid material. The experimental results show that this magnetic field sensor has a high sensitivity of -275.6 pm Oe-1. The inline MZI-based fiber optic sensors possess many advantages, such as small size, simple fabrication, high sensitivity and good linearity, which has a wide application potential in chemical, biological and environmental sensing fields.
NASA Astrophysics Data System (ADS)
Nedoma, Jan; Fajkus, Marcel; Martinek, Radek; Zboril, Ondrej; Bednarek, Lukas; Novak, Martin; Witas, Karel; Vasinek, Vladimir
2017-05-01
Fiber-optic sensors (FOS), today among the most widespread measuring sensors and during various types of measuring, are irreplaceable. Among the distinctive features include immunity to electromagnetic interference, passivity regarding power supply and high sensitivity. One of the representatives FOS is the interferometric sensors working on the principle of interference of light. Authors of this article focused on the analysis of the detection material as resonant pads for attaching the measuring arm of the interferometer when sensing mechanical vibrations (low frequencies). A typical example is the use of interferometer sensors in automobile traffic while sensing a vibration response from the roadway while passing the cars. For analysis was used sensor with Mach-Zehnder interferometer. Defined were different detection materials about different size and thickness. We analyzed the influence on the sensitivity (amplitude response) of the interferometer. Based on the results we have defined the best material for sensing mechanical vibrations. The signal was processed by applications created in LabView development environment. The results were verified by repeated testing in laboratory conditions.
Yadav, T K; Narayanaswamy, R; Abu Bakar, M H; Kamil, Y Mustapha; Mahdi, M A
2014-09-22
We demonstrate refractive index sensors based on single mode tapered fiber and its application as a biosensor. We utilize this tapered fiber optic biosensor, operating at 1550 nm, for the detection of protein (gelatin) concentration in water. The sensor is based on the spectroscopy of mode coupling based on core modes-fiber cladding modes excited by the fundamental core mode of an optical fiber when it transitions into tapered regions from untapered regions. The changes are determined from the wavelength shift of the transmission spectrum. The proposed fiber sensor has sensitivity of refractive index around 1500 nm/RIU and for protein concentration detection, its highest sensitivity is 2.42141 nm/%W/V.
Microwave assisted reconstruction of optical interferograms for distributed fiber optic sensing.
Huang, Jie; Hua, Lei; Lan, Xinwei; Wei, Tao; Xiao, Hai
2013-07-29
This paper reports a distributed fiber optic sensing technique through microwave assisted separation and reconstruction of optical interferograms in spectrum domain. The approach involves sending a microwave-modulated optical signal through cascaded fiber optic interferometers. The microwave signal was used to resolve the position and reflectivity of each sensor along the optical fiber. By sweeping the optical wavelength and detecting the modulation signal, the optical spectrum of each sensor can be reconstructed. Three cascaded fiber optic extrinsic Fabry-Perot interferometric sensors were used to prove the concept. Their microwave-reconstructed interferogram matched well with those recorded individually using an optical spectrum analyzer. The application in distributed strain measurement has also been demonstrated.
Fiber-Optic Magnetic-Field-Strength Measurement System for Lightning Detection
NASA Technical Reports Server (NTRS)
Gurecki, Jay; Scully, Robert; Davis, Allen; Kirkendall, Clay; Bucholtz, Frank
2011-01-01
A fiber-optic sensor system is designed to measure magnetic fields associated with a lightning stroke. Field vector magnitudes are detected and processed for multiple locations. Since physical limitations prevent the sensor elements from being located in close proximity to highly conductive materials such as aluminum, the copper wire sensor elements (3) are located inside a 4-cubic-in. (.66-cubic-cm) plastic housing sensor head and connected to a fiber-optic conversion module by shielded cabling, which is limited to the shortest length feasible. The signal path between the conversion module and the avionics unit which processes the signals are fiber optic, providing enhanced immunity from electromagnetic radiation incident in the vicinity of the measurements. The sensors are passive, lightweight, and much smaller than commercial B-dot sensors in the configuration which measures a three-dimensional magnetic field. The system is expandable, and provides a standard-format output signal for downstream processing. Inside of the sensor head, three small search coils, each having a few turns on a circular form, are mounted orthogonally inside the non-metallic housing. The fiber-optic conversion module comprises three interferometers, one for each search coil. Each interferometer has a high bandwidth optical phase modulator that impresses the signal received from its search coil onto its output. The output of each interferometer travels by fiber optic cable to the avionics unit, and the search coil signal is recovered by an optical phase demodulator. The output of each demodulator is fed to an analog-to-digital converter, whose sampling rate is determined by the maximum expected rate of rise and peak signal magnitude. The output of the digital processor is a faithful reproduction of the coil response to the incident magnetic field. This information is provided in a standard output format on a 50-ohm port that can be connected to any number of data collection and processing instruments and/or systems. The measurement of magnetic fields using fiber-optic signal processing is novel because it eliminates limitations of a traditional B-dot system. These limitations include the distance from the sensor to the measurement device, the potential for the signal to degrade or be corrupted by EMI from lightning, and the size and weight of the sensor and associated plate.
Terrestrial Sagnac delay constraining modified gravity models
NASA Astrophysics Data System (ADS)
Karimov, R. Kh.; Izmailov, R. N.; Potapov, A. A.; Nandi, K. K.
2018-04-01
Modified gravity theories include f(R)-gravity models that are usually constrained by the cosmological evolutionary scenario. However, it has been recently shown that they can also be constrained by the signatures of accretion disk around constant Ricci curvature Kerr-f(R0) stellar sized black holes. Our aim here is to use another experimental fact, viz., the terrestrial Sagnac delay to constrain the parameters of specific f(R)-gravity prescriptions. We shall assume that a Kerr-f(R0) solution asymptotically describes Earth's weak gravity near its surface. In this spacetime, we shall study oppositely directed light beams from source/observer moving on non-geodesic and geodesic circular trajectories and calculate the time gap, when the beams re-unite. We obtain the exact time gap called Sagnac delay in both cases and expand it to show how the flat space value is corrected by the Ricci curvature, the mass and the spin of the gravitating source. Under the assumption that the magnitude of corrections are of the order of residual uncertainties in the delay measurement, we derive the allowed intervals for Ricci curvature. We conclude that the terrestrial Sagnac delay can be used to constrain the parameters of specific f(R) prescriptions. Despite using the weak field gravity near Earth's surface, it turns out that the model parameter ranges still remain the same as those obtained from the strong field accretion disk phenomenon.
Digital phase demodulation for low-coherence interferometry-based fiber-optic sensors
NASA Astrophysics Data System (ADS)
Liu, Y.; Strum, R.; Stiles, D.; Long, C.; Rakhman, A.; Blokland, W.; Winder, D.; Riemer, B.; Wendel, M.
2018-03-01
We describe a digital phase demodulation scheme for low-coherence interferometry-based fiber-optic sensors by employing a simple generation of phase-shifted signals at the interrogation interferometer. The scheme allows a real-time calibration process and offers capability of measuring large variations (up to the coherence of the light source) at the bandwidth that is only limited by the data acquisition system. The proposed phase demodulation method is analytically derived and its validity and performance are experimentally verified using fiber-optic Fabry-Perot sensors for measurement of strains and vibrations.
DNA based thin solid films and its application to optical fiber temperature sensor
NASA Astrophysics Data System (ADS)
Hong, Seongjin; Jung, Woohyun; Kim, Taeoh; Oh, Kyunghwan
2017-04-01
Temperature dependent refractive index of DNA-cetyltrimethylammonium chloride (CTMA) thin-solid-film was measured 20 to 90° to obtain its thermo-optic coefficient of -3.6×10-4 (dn/dT). DNA- CTMA film has high thermosoptic coefficient than other polymers. The film was deposited on coreless silica fiber (CSF) to serve as a multimode interferometer optical fiber temperature sensor. It is immersed in a water that changed temperature from 40 to 90°. It has sensitivity of 0.25nm/℃.
On a two-pass scheme without a faraday mirror for free-space relativistic quantum cryptography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kravtsov, K. S.; Radchenko, I. V.; Korol'kov, A. V.
2013-05-15
The stability of destructive interference independent of the input polarization and the state of a quantum communication channel in fiber optic systems used in quantum cryptography plays a principal role in providing the security of communicated keys. A novel optical scheme is proposed that can be used both in relativistic quantum cryptography for communicating keys in open space and for communicating them over fiber optic lines. The scheme ensures stability of destructive interference and admits simple automatic balancing of a fiber interferometer.
NASA Astrophysics Data System (ADS)
Zhao, Yong; Xia, Feng; Hu, Hai-feng; Chen, Mao-qing
2017-11-01
A novel refractive index (RI) sensor based on photonic crystal fiber Mach-Zehnder interferometer (PCF-MZI) was proposed. It was realized by cascading a section of PCF with half-taper collapse regions (HTCRs) between two single mode fibers (SMFs). The relationship between RI sensitivity and interference length of the PCF-MZI was firstly investigated. Both simulation and experimental results showed that RI sensitivity increased with the increase of interference length. Afterwards, influence of HTCR parameters on RI sensitivity was experimentally investigated to further improve the sensitivity. With intensification of arc discharge intensity in HTCR fabrication process, HTCR with larger maximum taper diameter and longer collapsed region length was obtained, which enhanced evanescent field of the PCF-MZI and then generated higher RI sensitivity. Consequently, a high RI sensitivity of 181.96 nm/refractive index unit (RIU) was achieved in the RI range of 1.3333-1.3574. Increasing arc discharge intensity in HTCR fabrication process has the capacity to improve RI sensitivity of PCF-MZI and meanwhile provides higher mechanical strength and longer sensor life compared to the traditional method of tapering the fiber, which improves the RI sensitivity at the cost of reducing mechanical strength of the sensor. This PCF-MZI was characterized by high RI sensitivity, ease of fabrication, high mechanical strength, and robustness.
Fixing methods for the use of optical fibers in interferometric arrangements
NASA Astrophysics Data System (ADS)
Cubik, Jakub; Kepak, Stanislav; Fajkus, Marcel; Zboril, Ondrej; Nedoma, Jan; Davidson, Alan; Vasinek, Vladimir
2016-12-01
Today interferometric sensors are among the most accurate available thanks to their inherent high sensitivity. These highly versatile sensors may be used to measure phenomena such as temperature, strain, fluid level, flow, vibration, stress, etc. This article concentrates on the composition of fiber-optic interferometers, in particular the Mach-Zehnder type. The Mach-Zehnder type is composed of two arms, one for measurement and a second serving as a reference. When light enters the interferometer, ideally the phase of the light is shifted only in the measurement arm while the phase in the second arm remains unchanged. Interference occurs when the light recombining at the output and the resulting light intensity is proportional to the measurand. A major issue in the application of fiber based sensors is laying and fixing the fibers effectively in real life environments. Different approaches are necessary for both arms. The reference arm should as far as possible be isolated from the measurand. In this paper, various isolating materials are considered, however there are almost unlimited materials that may be used for isolation purposes. Conventional construction methods and materials were used such as aluminum tubing, flexible PVC tubing, double sided tape, steel clinches, superglue, PVC strips and PVC strips filled by silicon.
Refractive index sensor based on lateral-offset of coreless silica interferometer
NASA Astrophysics Data System (ADS)
Baharin, Nur Faizzah; Azmi, Asrul Izam; Abdullah, Ahmad Sharmi; Mohd Noor, Muhammad Yusof
2018-02-01
A compact, cost-effective and high sensitivity fiber interferometer refractive index (RI) sensor based on symmetrical offset coreless silica fiber (CSF) configuration is proposed, optimized and demonstrated. The sensor is formed by splicing a section of CSF between two CSF sections in an offset manner. Thus, two distinct optical paths are created with large index difference, the first path through the connecting CSF sections and the second path is outside the CSF through the surrounding media. RI sensing is established from direct interaction of light with surrounding media, hence high sensitivity can be achieved with a relatively compact sensor length. In the experimental work, a 1.5 mm sensor demonstrates RI sensitivity of 750 nm/RIU for RI range between 1.33 and 1.345. With the main attributes of high sensitivity and compact size, the proposed sensor can be further developed for related applications including blood diagnosis, water quality control and food industries.
Optical cascaded Fabry-Perot interferometer hydrogen sensor based on vernier effect
NASA Astrophysics Data System (ADS)
Li, Yina; Zhao, Chunliu; Xu, Ben; Wang, Dongning; Yang, Minghong
2018-05-01
An optical cascaded Fabry-Perot interferometer hydrogen sensor based on vernier effect has been proposed and achieved. The proposed sensor, which total length is ∼594 μm, is composed of a segment of large mode area fiber (LMAF) and a segment of hollow-core fiber (HCF). The proposed sensor is coated with the Pt-loaded WO3/SiO2 powder which will result in the increase of local temperature of the sensor head when exposed to hydrogen atmosphere. Thus the hydrogen sensor can be achieved by monitoring the change of resonant envelope wavelength. The hydrogen sensitivity is -1.04 nm/% within the range of 0 % -2.4 % which is greatly improved because of the vernier effect. The response time is ∼80 s. Due to its compact configuration, the proposed sensor provides a feasible and miniature structure to achieve detection of hydrogen.
Coated Fused Silica Fibers for Enhanced Sensitivity Torsion Pendulum
NASA Technical Reports Server (NTRS)
Numata, Kenji; Horowitz, Jordan; Camp, Jordan
2007-01-01
In order to investigate the fundamental thermal noise limit of a torsion pendulum using a fused silica fiber, we systematically measured and modeled the mechanical losses of thin fused silica fibers coated by electrically conductive thin metal films. Our results indicate that it is possible to achieve a thermal noise limit for coated silica lower by a factor between 3 and 9, depending on the silica diameter, compared to the best tungsten fibers available. This will allow a corresponding increase in sensitivity of torsion pendula used for weak force measurements, including the gravitational constant measurement and ground-based force noise testing for the Laser Interferometer Space Antenna (LISA) mission.
A 20fs synchronization system for lasers and cavities in accelerators and FELs
NASA Astrophysics Data System (ADS)
Wilcox, R. B.; Byrd, J. M.; Doolittle, L. R.; Huang, G.; Staples, J. W.
2010-02-01
A fiber-optic RF distribution system has been developed for synchronizing lasers and RF plants in short pulse FELs. Typical requirements are 50-100fs rms over time periods from 1ms to several hours. Our system amplitude modulates a CW laser signal, senses fiber length using an interferometer, and feed-forward corrects the RF phase digitally at the receiver. We demonstrate less than 15fs rms error over 12 hours, between two independent channels with a fiber path length difference of 200m and transmitting S-band RF. The system is constructed using standard telecommunications components, and uses regular telecom fiber.
Multimode fiber tip Fabry-Perot cavity for highly sensitive pressure measurement.
Chen, W P; Wang, D N; Xu, Ben; Zhao, C L; Chen, H F
2017-03-23
We demonstrate an optical Fabry-Perot interferometer fiber tip sensor based on an etched end of multimode fiber filled with ultraviolet adhesive. The fiber device is miniature (with diameter of less than 60 μm), robust and low cost, in a convenient reflection mode of operation, and has a very high gas pressure sensitivity of -40.94 nm/MPa, a large temperature sensitivity of 213 pm/°C within the range from 55 to 85 °C, and a relatively low temperature cross-sensitivity of 5.2 kPa/°C. This device has a high potential in monitoring environment of high pressure.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Buttler, William T.; Lamoreaux, Steven K.
2010-08-10
We formalize the physics of an optical heterodyne accelerometer that allows measurement of low and high velocities from material surfaces under high strain. The proposed apparatus incorporates currently common optical velocimetry techniques used in shock physics, with interferometric techniques developed to self-stabilize and passively balance interferometers in quantum cryptography. The result is a robust telecom-fiber-based velocimetry system insensitive to modal and frequency dispersion that should work well in the presence of decoherent scattering processes, such as from ejecta clouds and shocked surfaces.
Noncontact acousto-ultrasonics using laser generation and laser interferometric detection
NASA Technical Reports Server (NTRS)
Green, Robert E., Jr.; Huber, Robert D.
1991-01-01
A compact, portable fiber-optic heterodyne interferometer designed to detect out-of-plane motion on surfaces is described. The interferometer provides a linear output for displacements over a broad frequency range and can be used for ultrasonic, acoustic emission, and acousto-ultrasonic (AU) testing. The interferometer in conjunction with a compact pulsed Nd:YAG laser represents a noncontact testing system. This system was tested to determine its usefulness for the AU technique. The results obtained show that replacement of conventional piezoelectric transducers (PZT) with a laser generation/detection system make it possible to carry out noncontact AU measurements. The waveforms recorded were 5 MHZ PZT-generated ultrasound propagating through an aluminum block, detection of the acoustic emission event, and laser AU waveforms from graphite-epoxy laminates and a filament-wound composite.
Cryptographic robustness of a quantum cryptography system using phase-time coding
DOE Office of Scientific and Technical Information (OSTI.GOV)
Molotkov, S. N.
2008-01-15
A cryptographic analysis is presented of a new quantum key distribution protocol using phase-time coding. An upper bound is obtained for the error rate that guarantees secure key distribution. It is shown that the maximum tolerable error rate for this protocol depends on the counting rate in the control time slot. When no counts are detected in the control time slot, the protocol guarantees secure key distribution if the bit error rate in the sifted key does not exceed 50%. This protocol partially discriminates between errors due to system defects (e.g., imbalance of a fiber-optic interferometer) and eavesdropping. In themore » absence of eavesdropping, the counts detected in the control time slot are not caused by interferometer imbalance, which reduces the requirements for interferometer stability.« less
Quantitative phase imaging using grating-based quadrature phase interferometer
NASA Astrophysics Data System (ADS)
Wu, Jigang; Yaqoob, Zahid; Heng, Xin; Cui, Xiquan; Yang, Changhuei
2007-02-01
In this paper, we report the use of holographic gratings, which act as the free-space equivalent of the 3x3 fiber-optic coupler, to perform full field phase imaging. By recording two harmonically-related gratings in the same holographic plate, we are able to obtain nontrivial phase shift between different output ports of the gratings-based Mach-Zehnder interferometer. The phase difference can be adjusted by changing the relative phase of the recording beams when recording the hologram. We have built a Mach-Zehnder interferometer using harmonically-related holographic gratings with 600 and 1200 lines/mm spacing. Two CCD cameras at the output ports of the gratings-based Mach-Zehnder interferometer are used to record the full-field quadrature interferograms, which are subsequently processed to reconstruct the phase image. The imaging system has ~12X magnification with ~420μmx315μm field-of-view. To demonstrate the capability of our system, we have successfully performed phase imaging of a pure phase object and a paramecium caudatum.
Digital signal processing for velocity measurements in dynamical material's behaviour studies.
Devlaminck, Julien; Luc, Jérôme; Chanal, Pierre-Yves
2014-03-01
In this work, we describe different configurations of optical fiber interferometers (types Michelson and Mach-Zehnder) used to measure velocities during dynamical material's behaviour studies. We detail the algorithms of processing developed and optimized to improve the performance of these interferometers especially in terms of time and frequency resolutions. Three methods of analysis of interferometric signals were studied. For Michelson interferometers, the time-frequency analysis of signals by Short-Time Fourier Transform (STFT) is compared to a time-frequency analysis by Continuous Wavelet Transform (CWT). The results have shown that the CWT was more suitable than the STFT for signals with low signal-to-noise, and low velocity and high acceleration areas. For Mach-Zehnder interferometers, the measurement is carried out by analyzing the phase shift between three interferometric signals (Triature processing). These three methods of digital signal processing were evaluated, their measurement uncertainties estimated, and their restrictions or operational limitations specified from experimental results performed on a pulsed power machine.
NASA Astrophysics Data System (ADS)
Zheng, Shijie; Zhu, Yinian; Krishnaswamy, Sridhar
2012-04-01
Fiber-optic accelerometers have attracted great attention in recent years due to the fact that they have many advantages over electrical counterparts because all-fiber accelerometers have the capabilities for multiplexing to reduce cabling and to transmit signals over a long distance. They are also immune to electromagnetic interference. We propose and develop a compact and robust photonic crystal fiber (PCF) Mach-Zehnder interferometer (MZI) that can be implemented as an accelerometer for measurements of vibration and displacement. To excite core mode to couple out with cladding modes, two long-period gratings (LPGs) with identical transmission spectra are needed to be written in an endless single-mode PCF using a CO2 laser. The first LPG can couple a part of core mode to several cladding modes. After the light beams travel at different speeds over a certain length of the core and cladding, the cladding modes will be recoupled back to the core when they meet the second LPG, resulting in interference between the core mode and cladding modes. Dynamic strain is introduced to the PCF-MZI fiber segment that is bonded onto a spring-mass system. The shift of interference fringe can be measured by a photodetector, and the transformed analog voltage signal is proportional to the acceleration of the sensor head. Based on simulations of the PCF-MZI accelerometer, we can get a sensitivity of ~ 0.08 nm/g which is comparable with fiber Bragg grating (FBG) accelerometers. The proposed accelerometer has a capability of temperature insensitivity; therefore, no thermal-compensation scheme is required. Experimental results indicate that the PCF-MZI accelerometer may be a good candidate sensor for applications in civil engineering infrastructure and aeronautical platforms.
Maintenance-free operation of WDM quantum key distribution system through a field fiber over 30 days
NASA Astrophysics Data System (ADS)
Yoshino, Ken-ichiro; Ochi, Takao; Fujiwara, Mikio; Sasaki, Masahide; Tajima, Akio
2013-12-01
Maintenance-free wavelength-division-multiplexing quantum key distribution for 30 days was achieved through a 22-km field fiber. Using polarization-independent interferometers and stabilization techniques, we attained a quantum bit error rate as low as 1.70% and a key rate as high as 229.8 kbps, making the record of total secure key of 595.6 Gbits accumulated over an uninterrupted operation period.
Miniature fiber Fabry-Perot sensors based on fusion splicing
NASA Astrophysics Data System (ADS)
Zhu, Jia-li; Wang, Ming; Yang, Chun-di; Wang, Ting-ting
2013-03-01
Fiber-optic Fabry-Perot (F-P) sensors are widely investigated because they have several advantages over conventional sensors, such as immunity to electromagnetic interference, ability to operate under bad environments, high sensitivity and the potential for multiplexing. A new method to fabricate micro-cavity Fabry-Perot interferometer is introduced, which is fusion splicing a section of conventional single-mode fiber (SMF) and a section of hollow core or solid core photonic crystal fiber (PCF) together to form a micro-cavity at the splice joint. The technology of fusion splicing is discussed, and two miniature optical fiber sensors based on Fabry-Perot interference using fusion splicing are presented. The two sensors are completely made of fused silica, and have good high-temperature capability.
Magnetic Field Measurements Based on Terfenol Coated Photonic Crystal Fibers
Quintero, Sully M. M.; Martelli, Cicero; Braga, Arthur M. B.; Valente, Luiz C. G.; Kato, Carla C.
2011-01-01
A magnetic field sensor based on the integration of a high birefringence photonic crystal fiber and a composite material made of Terfenol particles and an epoxy resin is proposed. An in-fiber modal interferometer is assembled by evenly exciting both eigenemodes of the HiBi fiber. Changes in the cavity length as well as the effective refractive index are induced by exposing the sensor head to magnetic fields. The magnetic field sensor has a sensitivity of 0.006 (nm/mT) over a range from 0 to 300 mT with a resolution about ±1 mT. A fiber Bragg grating magnetic field sensor is also fabricated and employed to characterize the response of Terfenol composite to the magnetic field. PMID:22247655
NASA Astrophysics Data System (ADS)
Bhattachryya, Arunava; Kumar Gayen, Dilip; Chattopadhyay, Tanay
2013-04-01
All-optical 4-bit binary to binary coded decimal (BCD) converter has been proposed and described, with the help of semiconductor optical amplifier (SOA)-assisted Sagnac interferometric switches in this manuscript. The paper describes all-optical conversion scheme using a set of all-optical switches. BCD is common in computer systems that display numeric values, especially in those consisting solely of digital logic with no microprocessor. In many personal computers, the basic input/output system (BIOS) keep the date and time in BCD format. The operations of the circuit are studied theoretically and analyzed through numerical simulations. The model accounts for the SOA small signal gain, line-width enhancement factor and carrier lifetime, the switching pulse energy and width, and the Sagnac loop asymmetry. By undertaking a detailed numerical simulation the influence of these key parameters on the metrics that determine the quality of switching is thoroughly investigated.
A FBG pulse wave demodulation method based on PCF modal interference filter
NASA Astrophysics Data System (ADS)
Zhang, Cheng; Xu, Shan; Shen, Ziqi; Zhao, Junfa; Miao, Changyun; Bai, Hua
2016-10-01
Fiber optic sensor embedded in textiles has been a new direction of researching smart wearable technology. Pulse signal which is generated by heart beat contains vast amounts of physio-pathological information about the cardiovascular system. Therefore, the research for textile-based fiber optic sensor which can detect pulse wave has far-reaching effects on early discovery and timely treatment of cardiovascular diseases. A novel wavelength demodulation method based on photonic crystal fiber (PCF) modal interference filter is proposed for the purpose of developing FBG pulse wave sensing system embedded in smart clothing. The mechanism of the PCF modal interference and the principle of wavelength demodulation based on In-line Mach-Zehnder interferometer (In-line MZI) are analyzed in theory. The fabricated PCF modal interferometer has the advantages of good repeatability and low temperature sensitivity of 3.5pm/°C from 25°C to 60°C. The designed demodulation system can achieve linear demodulation in the range of 2nm, with the wavelength resolution of 2.2pm and the wavelength sensitivity of 0.055nm-1. The actual experiments' result indicates that the pulse wave can be well detected by this demodulation method, which is in accordance with the commercial demodulation instrument (SM130) and more sensitive than the traditional piezoelectric pulse sensor. This demodulation method provides important references for the research of smart clothing based on fiber grating sensor embedded in textiles and accelerates the developments of wearable fiber optic sensors technology.
An integrated optical sensor for measuring glucose concentration
NASA Astrophysics Data System (ADS)
Liu, Y.; Hering, P.; Scully, M. O.
1992-01-01
We used an optical sensor combined with a Mach-Zehnder interferometric waveguide and optical fibers to measure slight changes of aqueous sugar concentrations. The merits of this sensor are simplicity, reliability, high sensitivity and continuous monitoring. The technique is based on the fact that the refractive index of sugar solution changes with the concentration of sugar. In the experiment, one arm of the interferometer is clad with glue and is thus isolated from the sugar solution. The other one is exposed to the sugar solution. A single mode fiber is directly glued onto the interferometric waveguide, to guide the light into the interferometer. If the concentration of sugar covering the waveguide changes, the phase of propagating light in the exposed arm will be changed, while the phase in the other arm is fixed. Hence the output intensity from the interferometer is directly related to the concentration of the sugar solution. The result of this experiment yields the relation between the sugar concentration and output signal. From 0% to 1% concentration of sugar solution, there is only a 1.4×10-3 refractive index difference. Two sets of experimental data have been obtained, showing a linear relation between the sugar concentration and the output signal from our sensor. This sensor could be used for continuous monitoring of blood sugar in the human body.
NASA Astrophysics Data System (ADS)
Wanser, Keith H.
1988-06-01
In order to understand the various phenomenon in fiber gyroscopes, we have developed a unified theory of polarization and vector coherence theory for fiber optics, using propagator techniques, which is valid for arbitrarily large relative polarization phase delays, arbitrary source polarization properties, in combination with birefringent phase modulation. The propagator representation makes clear the multi-path nature of the polarization effects, similar to the multiple scattering of waves, and an example illustrating this point is given. A "master" equation has been obtained for fiber gyroscopes which i s sufficiently general to permit modeling of the many parasitic effects and their interactions, as well as allow realistic assessment of methods for their reduction. As a result of the development of the propagator approach, several interesting results have been found. One important issue is the performance and characterization of the polarizer used in the fiber gyro. A theorem has been shown that "not all polarizers are created equal", even though they have equal extinction ratios. We have found that the fiber gyroscope probes properties of polarizers that cannot be probed without an interferometer that is equivalent to a ring interferometer. It has been found that there is a considerable difference in performance between two polarizers having the same extinction ratio, but one short, the other long, depending on the birefringence and mode coupling. This leads to an extended classification of polarizer properties beyond an ordinary Jones matrix. A new bound on polarizer performance using the propagator approach is given. Another important issue with fiber optic gyroscopes is drift as a function of temperature. Those familiar with testing of fiber gyroscopes are well aware of the often bizarre (highly non monotonic) drift behaviour as a function of temperature. It is shown how temperature drift can be related to the location of various types of birefringence in the gyro coil using a realistic coil model. The propagator for this coil model is also obtained.
Fiber Fabry-Perot sensors for detection of partial discharges in power transformers.
Yu, Bing; Kim, Dae Woong; Deng, Jiangdong; Xiao, Hai; Wang, Anbo
2003-06-01
A diaphragm-based interferometric fiberoptic sensor that uses a low-coherence light source was designed and tested for on-line detection of the acoustic waves generated by partial discharges inside high-voltage power transformers. The sensor uses a fused-silica diaphragm and a single-mode optical fiber encapsulated in a fused-silica glass tube to form an extrinsic Fabry-Perot interferometer, which is interrogated by low-coherence light. Test results indicate that these fiber optic acoustic sensors are capable of faithfully detecting acoustic signals propagating inside transformer oil with high sensitivity and wide bandwidth.
Digital phase demodulation for low-coherence interferometry-based fiber-optic sensors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Y.; Strum, R.; Stiles, D.
In this paper, we describe a digital phase demodulation scheme for low-coherence interferometry-based fiber-optic sensors by employing a simple generation of phase-shifted signals at the interrogation interferometer. The scheme allows a real-time calibration process and offers capability of measuring large variations (up to the coherence of the light source) at the bandwidth that is only limited by the data acquisition system. Finally, the proposed phase demodulation method is analytically derived and its validity and performance are experimentally verified using fiber-optic Fabry–Perot sensors for measurement of strains and vibrations.
Digital phase demodulation for low-coherence interferometry-based fiber-optic sensors
Liu, Y.; Strum, R.; Stiles, D.; ...
2017-11-20
In this paper, we describe a digital phase demodulation scheme for low-coherence interferometry-based fiber-optic sensors by employing a simple generation of phase-shifted signals at the interrogation interferometer. The scheme allows a real-time calibration process and offers capability of measuring large variations (up to the coherence of the light source) at the bandwidth that is only limited by the data acquisition system. Finally, the proposed phase demodulation method is analytically derived and its validity and performance are experimentally verified using fiber-optic Fabry–Perot sensors for measurement of strains and vibrations.
Liu, Yi; Wu, Guoqiang; Gao, Renxi; Qu, Shiliang
2017-02-01
A fiber inline Mach-Zehnder interferometer (MZI) based on a microcavity with two symmetric openings in single-multi-single mode fiber (SMSF) structure is proposed. By using the finite difference beam propagation method (FD-BPM), the interference spectrum simulation result shows that the MZI can still have high-quality interference even if the microcavity deviates along the radial direction for 3 μm. Therefore, it allows a larger fabrication tolerance and tremendously decreases the fabrication difficulty. Then a microcavity with two symmetric openings in SMSF was fabricated by using femtosecond laser-induced water breakdown. The insertion loss of the microcavity immerged in water is only -8 dB, and the MZ interference peak contrast in the transmission spectrum reaches more than 30 dB. The MZI based on the microcavity in SMSF can be used as a practical liquid refractive index sensor as its high-quality interference spectrum, ultrahigh sensitivity (9756.75 nm/RIU), high refractive index resolution (2×10-5 RIU), good linearity (99.93%), and low-temperature crosstalk (0.04 nm/°C).
Yan, Lu; Gui, Zhiguo; Wang, Guanjun; An, Yongquan; Gu, Jinyu; Zhang, Meiqin; Liu, Xinglin; Wang, Zhibin; Wang, Gao; Jia, Pinggang
2017-01-01
A high-sensitivity, low-cost, ultrathin, hollow fiber micro bubble structure was proposed; such a bubble can be used to develop a high-sensitivity strain sensor based on a Fabry–Perot interferometer (FPI). The micro bubble is fabricated at the fiber tip by splicing a glass tube to a single mode fiber (SMF) and then the glass tube is filled with gas in order to expand and form a micro bubble. The sensitivity of the strain sensor with a cavity length of about 155 μm and a bubble wall thickness of about 6 μm was measured to be up to 8.14 pm/με. PMID:28282960
Yan, Lu; Gui, Zhiguo; Wang, Guanjun; An, Yongquan; Gu, Jinyu; Zhang, Meiqin; Liu, Xinglin; Wang, Zhibin; Wang, Gao; Jia, Pinggang
2017-03-09
A high-sensitivity, low-cost, ultrathin, hollow fiber micro bubble structure was proposed; such a bubble can be used to develop a high-sensitivity strain sensor based on a Fabry-Perot interferometer (FPI). The micro bubble is fabricated at the fiber tip by splicing a glass tube to a single mode fiber (SMF) and then the glass tube is filled with gas in order to expand and form a micro bubble. The sensitivity of the strain sensor with a cavity length of about 155 μm and a bubble wall thickness of about 6 μm was measured to be up to 8.14 pm/μϵ.
A compact fiber optics-based heterodyne combined normal and transverse displacement interferometer.
Zuanetti, Bryan; Wang, Tianxue; Prakash, Vikas
2017-03-01
While Photonic Doppler Velocimetry (PDV) has become a common diagnostic tool for the measurement of normal component of particle motion in shock wave experiments, this technique has not yet been modified for the measurement of combined normal and transverse motion, as needed in oblique plate impact experiments. In this paper, we discuss the design and implementation of a compact fiber-optics-based heterodyne combined normal and transverse displacement interferometer. Like the standard PDV, this diagnostic tool is assembled using commercially available telecommunications hardware and uses a 1550 nm wavelength 2 W fiber-coupled laser, an optical focuser, and single mode fibers to transport light to and from the target. Two additional optical probes capture first-order beams diffracted from a reflective grating at the target free-surface and deliver the beams past circulators and a coupler where the signal is combined to form a beat frequency. The combined signal is then digitized and analyzed to determine the transverse component of the particle motion. The maximum normal velocity that can be measured by this system is limited by the equivalent transmission bandwidth (3.795 GHz) of the combined detector, amplifier, and digitizer and is estimated to be ∼2.9 km/s. Sample symmetric oblique plate-impact experiments are performed to demonstrate the capability of this diagnostic tool in the measurement of the combined normal and transverse displacement particle motion.
Blood pulse wave velocity and pressure sensing via fiber based and free space based optical sensors
NASA Astrophysics Data System (ADS)
Sirkis, Talia; Beiderman, Yevgeny; Agdarov, Sergey; Beiderman, Yafim; Zalevsky, Zeev
2017-02-01
Continuous noninvasive measurement of vital bio-signs, such as cardiopulmonary parameters, is an important tool in evaluation of the patient's physiological condition and health monitoring. On the demand of new enabling technologies, some works have been done in continuous monitoring of blood pressure and pulse wave velocity. In this paper, we introduce two techniques for non-contact sensing of vital bio signs. In the first approach the optical sensor is based on single mode in-fibers Mach-Zehnder interferometer (MZI) to detect heartbeat, respiration and pulse wave velocity (PWV). The introduced interferometer is based on a new implanted scheme. It replaces the conventional MZI realized by inserting of discontinuities in the fiber to break the total internal reflection and scatter/collect light. The proposed fiber sensor was successfully incorporated into shirt to produce smart clothing. The measurements obtained from the smart clothing could be obtained in comfortable manner and there is no need to have an initial calibration or a direct contact between the sensor and the skin of the tested individual. In the second concept we show a remote noncontact blood pulse wave velocity and pressure measurement based on tracking the temporal changes of reflected secondary speckle patterns produced in human skin when illuminated by a laser beams. In both concept experimental validation of the proposed schemes is shown and analyzed.
NASA Astrophysics Data System (ADS)
Zhang, Xueliang; Meng, Zhou; Hu, Zhengliang; Yang, Huayong; Song, Zhangqi; Hu, Yongming
2008-12-01
A polarization maintaining fiber (PMF) magnetic field sensor based on a digital phase generated carrier (PGC) technology is presented. A magnetic sensor constructed with two magnetostrictive strips attached on the sensing fiber is joined in the sensing arm of a fiber Michelson interferometer. The fiber optic interferometric system is made of all PMF, which inhibits the polarization-induced signal fading. The light source is a fiber laser which can be modulated directly. The PGC metnod is used to demodulate magnetic field signal avoiding phase induced interferometric signal fading, and ensure the sensing partto be all fiber structure. A fiber optic magnetic field sensor with appreciate size for the fiber optic hydrophone towed array is obtained, which can be used to sense the enviromental magnetic field along the sensing direction.This sensor is a good choice for the directional angle measurement through sensing the Earth magnetic field in the array shape measurement of a fiber optic hydrophone towed array.
OHANA, the Optical Hawaiian Array for Nanoradian Astronomy. Towards kilometric infrared arrays
NASA Astrophysics Data System (ADS)
Perrin, G.
Optical/Infrared Interferometry has become a mature technique with more and more astrophysical results in the past years. For historical and technical reasons, the traditional field of investigation of interferometers is stellar physics. With the advent of large telescopes and adaptive optics, more resolving and more sensitive interferometers are within reach with the promise to widen the target list. In particular, extragalactic sources will benefit from this revolution. A prototype instrument, 'OHANA, is described here. 'OHANA uses single-mode fibers to turn the large telescopes of the Mauna Kea summit into a large near-infrared kilometric array.
NASA Astrophysics Data System (ADS)
Filatov, Yuri V.; Shalymov, Egor V.; Venediktov, Vladimir Yu.; Dmitrieva, Anna D.
2016-10-01
The parameters of whispering gallery modes resonators can be significantly modified under the action of external factors, for instance, in the case of resonator movement. The effects, which take place in the moving resonators of whispering gallery modes, can be employed for measuring of the angular velocity. In this work we was compared the influence of centrifugal forces and the Sagnac effect on the eigenfrequencies (wavelengths) of whispering gallery modes resonators. Also work is devoted mutual relationships of the effects.
Kuzmenko, Paul J.; Davis, Donald T.
1994-01-01
A miniature fiber optic hydrophone based on the principles of a Fabry-Perot interferometer. The hydrophone, in one embodiment, includes a body having a shaped flexible bladder at one end which defines a volume containing air or suitable gas, and including a membrane disposed adjacent a vent. An optic fiber extends into the body with one end terminating in spaced relation to the membrane. Acoustic waves in the water that impinge on the bladder cause the pressure of the volume therein to vary causing the membrane to deflect and modulate the reflectivity of the Fabry-Perot cavity formed by the membrane surface and the cleaved end of the optical fiber disposed adjacent to the membrane. When the light is transmitted down the optical fiber, the reflected signal is amplitude modulated by the incident acoustic wave. Another embodiment utilizes a fluid filled volume within which the fiber optic extends.
NASA Astrophysics Data System (ADS)
Zhang, Shuqin; Dong, Xinyong; Li, Tao; Chan, Chi Chiu; Shum, Perry P.
2013-08-01
Simultaneous measurement of relative humidity and temperature has been realized by using an optical fiber sensor formed by cascading a photonic crystal fiber (PCF)-based in-fiber Mach-Zehnder interferometer (MZI) and a fiber Bragg grating (FBG). The PCF-MZI was fabricated by using a short PCF fusion-spliced between two single-mode fibers with its air holes in the cladding area being collapsed in the splicing regions. It was then coated with a layer of polyvinyl alcohol (PVA), whose refractive index is sensitive to humidity. Because the PCF-MZI and FBG have different responses to humidity and temperature, simultaneous measurement has been achieved with resolutions of 0.13% RH and 1.0 °C for humidity and temperature, respectively. The relative humidity measurement range is up to 30%-95% RH.
NASA Technical Reports Server (NTRS)
Kersten, Ralf T. (Editor)
1990-01-01
Recent advances in fiber-optic sensor (FOS) technology are examined in reviews and reports. Sections are devoted to components for FOSs, special fibers for FOSs, interferometry, FOS applications, and sensing principles and influence. Particular attention is given to solder glass sealing technology for FOS packaging, the design of optical-fiber current sensors, pressure and temperature effects on beat length in highly birefringent optical fibers, a pressure FOS based on vibrating-quartz-crystal technology, remote sensing of flammable gases using a fluoride-fiber evanescent probe, a displacement sensor with electronically scanned white-light interferometer, the use of multimode laser diodes in low-coherence coupled-cavity interferometry, electronic speckle interferometry compensated for environmentally induced phase noise, a dual-resolution noncontact vibration and displacement sensor based on a two-wavelength source, and fiber optics in composite materials.
Research on dual-parameter optical fiber sensor based on thin-core fiber and spherical structure
NASA Astrophysics Data System (ADS)
Tong, Zhengrong; Wang, Xue; Zhang, Weihua; Xue, Lifang
2018-04-01
A novel dual-parameter optical fiber sensor is proposed and experimentally demonstrated. The proposed sensor is based on a fiber in-line Mach-Zehnder interferometer, which is fabricated by sandwiching a section of thin-core fiber between two spherical structures made of single-mode fibers. The transmission spectrum exhibits the response of the interference between the core and the different cladding modes. Due to the different wavelength shifts of the two selected dips, the simultaneous measurement of temperature and the surrounding refractive index can be achieved. The measured temperature sensitivities are 0.067 nm/°C and 0.050 nm/°C, and the refractive index sensitivities are -119.9 nm/RIU and -69.71 nm/RIU, respectively. In addition, the compact size, simple fabrication and cost-effectiveness of the fiber sensor are also advantages.
Scanning fiber angle-resolved low coherence interferometry
Zhu, Yizheng; Terry, Neil G.; Wax, Adam
2010-01-01
We present a fiber-optic probe for Fourier-domain angle-resolved low coherence interferometry for the determination of depth-resolved scatterer size. The probe employs a scanning single-mode fiber to collect the angular scattering distribution of the sample, which is analyzed using the Mie theory to obtain the average size of the scatterers. Depth sectioning is achieved with low coherence Mach–Zehnder interferometry. In the sample arm of the interferometer, a fixed fiber illuminates the sample through an imaging lens and a collection fiber samples the backscattered angular distribution by scanning across the Fourier plane image of the sample. We characterize the optical performance of the probe and demonstrate the ability to execute depth-resolved sizing with subwavelength accuracy by using a double-layer phantom containing two sizes of polystyrene microspheres. PMID:19838271
Multichannel Dynamic Fourier-Transform IR Spectrometer
NASA Astrophysics Data System (ADS)
Balashov, A. A.; Vaguine, V. A.; Golyak, Il. S.; Morozov, A. N.; Khorokhorin, A. I.
2017-09-01
A design of a multichannel continuous scan Fourier-transform IR spectrometer for simultaneous recording and analysis of the spectral characteristics of several objects is proposed. For implementing the design, a multi-probe fiber is used, constructed from several optical fibers connected into a single optical connector and attached at the output of the interferometer. The Fourier-transform spectrometer is used as a signal modulator. Each fiber is individually mated with an investigated sample and a dedicated radiation detector. For the developed system, the radiation intensity of the spectrometer is calculated from the condition of the minimum spectral resolution and parameters of the optical fibers. Using the proposed design, emission spectra of a gas-discharge neon lamp have been recorded using a single fiber 1 mm in diameter with a numerical aperture NA = 0.22.
NASA Astrophysics Data System (ADS)
Baselt, Tobias; Taudt, Christopher; Nelsen, Bryan; Lasagni, Andrés. Fabián.; Hartmann, Peter
2017-06-01
The optical properties of the guided modes in the core of photonic crystal fibers (PCFs) can be easily manipulated by changing the air-hole structure in the cladding. Special properties can be achieved in this case such as endless singlemode operation. Endlessly single-mode fibers, which enable single-mode guidance over a wide spectral range, are indispensable in the field of fiber technology. A two-dimensional photonic crystal with a silica central core and a micrometer-spaced hexagonal array of air holes is an established method to achieve endless single-mode properties. In addition to the guidance of light in the core, different cladding modes occur. The coupling between the core and the cladding modes can affect the endlessly single-mode guides. There are two possible ways to determine the dispersion: measurement and calculation. We calculate the group velocity dispersion (GVD) of different cladding modes based on the measurement of the fiber structure parameters, the hole diameter and the pitch of a presumed homogeneous hexagonal array. Based on the scanning electron image, a calculation was made of the optical guiding properties of the microstructured cladding. We compare the calculation with a method to measure the wavelength-dependent time delay. We measure the time delay of defined cladding modes with a homemade supercontinuum light source in a white light interferometric setup. To measure the dispersion of cladding modes of optical fibers with high accuracy, a time-domain white-light interferometer based on a Mach-Zehnder interferometer is used. The experimental setup allows the determination of the wavelengthdependent differential group delay of light travelling through a thirty centimeter piece of test fiber in the wavelength range from VIS to NIR. The determination of the GVD using different methods enables the evaluation of the individual methods for characterizing the cladding modes of an endlessly single-mode fiber.
NASA Astrophysics Data System (ADS)
Kurzych, Anna; Jaroszewicz, Leszek R.; Kowalski, Jerzy K.
2017-05-01
A relatively young field of study named Rotational Seismology caused a highly interest in an investigation of rotational movements generated by earthquakes, explosions, and ambient vibrations. It includes a wide range of scientific branches. However, this field needs to apply appropriate rotational sensors which should fulfill restrict technical requirements. The presented in this work system FOSREM (Fibre-Optic System for Rotational Events and Phenomena Monitoring) seems to be a promising rotational sensor for such investigation. FOSREM works by measuring the Sagnac effect and generally consists of two basic elements: optical sensor and electronic part. Regarding to its theoretical sensitivity equals 2·10-8 rad/s/Hz1/2, it enables to measure rotation in a wide range of signal amplitude (10-8 rad/s ÷ 10 rad/s) and frequency (DC ÷ 328.12 Hz). Moreover, FOSREM is mobile and remotely controlled via Internet using a special designed software.
Wei, Heming; Krishnaswamy, Sridhar
2017-05-01
Fiber Bragg grating (FBG) dynamic strain sensors using both an erbium-based fiber ring laser configuration and a reflective semiconductor optical amplifier (RSOA)-based linear laser configuration are investigated theoretically and experimentally. Fiber laser models are first presented to analyze the output characteristics of both fiber laser configurations when the FBG sensor is subjected to dynamic strains at high frequencies. Due to differences in the transition times of erbium and the semiconductor (InP/InGaAsP), erbium-doped fiber amplifier (EDFA)- and RSOA-based fiber lasers exhibit different responses and regimes of stability when the FBG is subjected to dynamic strains. The responses of both systems are experimentally verified using an adaptive photorefractive two-wave mixing (TWM) spectral demodulation technique. The experimental results show that the RSOA-FBG fiber linear cavity laser is stable and can stably respond to dynamic strains at high frequencies. An example application using a multiplexed TWM interferometer to demodulate multiple FBG sensors is also discussed.
Stroboscopic Imaging Interferometer for MEMS Performance Measurement
2007-07-15
Optical Iocusing L.aser Fiber Optics I) c 0 Mim er Collimator - C d Microcope lcam. indo Cold Objcclive Splitte FingerCCD "Mount irnro MEMS PicL zStack...Electronics and Photonics Laboratory: Microelectronics, VLSI reliability, failure analysis, solid-state device physics, compound semiconductors
NASA Astrophysics Data System (ADS)
Qi, Yanwen; Zhang, Siyao; Feng, Shengfei; Wang, Xinke; Sun, Wenfeng; Ye, Jiasheng; Han, Peng; Zhang, Yan
2018-01-01
A sensitive, real-time seven core optical fiber based Mach-Zehnder interferometer (MZI) sensor for liquid refractive index detection is proposed, fabricated and characterized. A trapezoid body with an inverted wedge shape groove in the center is used to design the MZI. The two ends of the trapezoid body play the roles of micro-prisms, and the middle parts of the trapezoid body and the groove play the roles of reference and sensing arms. A series of performance tests were carried out by immersing the sensor in different kinds of solutions to verify the universal applicability of the sensor. The MZI sensor is as small as only 43 μm × 8 μm, and at the same time with sensitivity of 1616 nm/RIU. Nominally, we realized a completely integrated optical sensing system. And, this system actually could be the building block of more powerful integrated chemical sensing chip for health, security and industry application.
NASA Astrophysics Data System (ADS)
Ushakov, Nikolai; Liokumovich, Leonid
2014-05-01
Measurement of a wafer thickness is of a great value for fabrication and interrogation of MEMS/MOEMS devices, as well as conventional optical fiber sensors. In the current paper we investigate the abilities of the wavelength-scanning interferometry techniques for registering the baseline of an extrinsic fiber Fabry-Perot interferometer (EFPI) with the cavity formed by the two sides of a silicon plate. In order to enhance the resolution, an improved signal processing algorithm was developed. Various experiments, including contact and non-contact measurement of a silicon wafer thickness were performed, with the achieved resolutions from 10 to 20 pm. This enables one to use the described approach for high-precision measurement of geometric parameters of micro electro (electro-optic) mechanical systems for their characterization, utilization in sensing tasks and fabrication control. An ability of a Si plate-based EFPI interrogated by the developed technique to capture temperature variations of about 4 mK was demonstrated.
NASA Astrophysics Data System (ADS)
Ahmad, H.; Jasim, A. A.
2017-07-01
A compact coupled microfiber Mach-Zehnder interferometer (CM-MZI) is proposed and experimentally demonstrated for C-band region multi-wavelength tuning and switching in a fiber laser. The CM-MZI is fabricated using a 9 μm single tapered silica optical microfiber fabricated by flame-drawing technique and exploits multi-mode interference to produce spatial mode beating and suppress mode competition of the homogeneous gain medium. The output wavelength spacing is immune to changes in the external environment, but can be changed from 1.5 nm to 1.4 nm by slightly modifying the path-length difference of the CM-MZI. The proposed laser is capable of generating single, dual, triple, quintuple, and sextuple stabilize wavelengths outputs over a range of more than 32 nm using polarization rotation (PR) and macro-bending. The lasers having a 3 dB line-width of less than ∼30 pm and peak-to-floor of about 55 dB at a pump power of 38 mW.
Fiber optic interferometry for industrial process monitoring and control applications
NASA Astrophysics Data System (ADS)
Marcus, Michael A.
2002-02-01
Over the past few years we have been developing applications for a high-resolution (sub-micron accuracy) fiber optic coupled dual Michelson interferometer-based instrument. It is being utilized in a variety of applications including monitoring liquid layer thickness uniformity on coating hoppers, film base thickness uniformity measurement, digital camera focus assessment, optical cell path length assessment and imager and wafer surface profile mapping. The instrument includes both coherent and non-coherent light sources, custom application dependent optical probes and sample interfaces, a Michelson interferometer, custom electronics, a Pentium-based PC with data acquisition cards and LabWindows CVI or LabView based application specific software. This paper describes the development evolution of this instrument platform and applications highlighting robust instrument design, hardware, software, and user interfaces development. The talk concludes with a discussion of a new high-speed instrument configuration, which can be utilized for high speed surface profiling and as an on-line web thickness gauge.
Mid infrared MEMS FTIR spectrometer
NASA Astrophysics Data System (ADS)
Erfan, Mazen; Sabry, Yasser M.; Mortada, Bassem; Sharaf, Khaled; Khalil, Diaa
2016-03-01
In this work we report, for the first time to the best of our knowledge, a bulk-micromachined wideband MEMS-based spectrometer covering both the NIR and the MIR ranges and working from 1200 nm to 4800 nm. The core engine of the spectrometer is a scanning Michelson interferometer micro-fabricated using deep reactive ion etching (DRIE) technology. The spectrum is obtained using the Fourier Transform techniques that allows covering a very wide spectral range limited by the detector responsivity. The moving mirror of the interferometer is driven by a relatively large stroke electrostatic comb-drive actuator. Zirconium fluoride (ZrF4) multimode optical fibers are used to connect light between the white light source and the interferometer input, as well as the interferometer output to a PbSe photoconductive detector. The recorded signal-to-noise ratio is 25 dB at the wavelength of 3350 nm. The spectrometer is successfully used in measuring the absorption spectra of methylene chloride, quartz glass and polystyrene film. The presented solution provides a low cost method for producing miniaturized spectrometers in the near-/mid-infrared.
Unconditionally stable finite-difference time-domain methods for modeling the Sagnac effect
NASA Astrophysics Data System (ADS)
Novitski, Roman; Scheuer, Jacob; Steinberg, Ben Z.
2013-02-01
We present two unconditionally stable finite-difference time-domain (FDTD) methods for modeling the Sagnac effect in rotating optical microsensors. The methods are based on the implicit Crank-Nicolson scheme, adapted to hold in the rotating system reference frame—the rotating Crank-Nicolson (RCN) methods. The first method (RCN-2) is second order accurate in space whereas the second method (RCN-4) is fourth order accurate. Both methods are second order accurate in time. We show that the RCN-4 scheme is more accurate and has better dispersion isotropy. The numerical results show good correspondence with the expression for the classical Sagnac resonant frequency splitting when using group refractive indices of the resonant modes of a microresonator. Also we show that the numerical results are consistent with the perturbation theory for the rotating degenerate microcavities. We apply our method to simulate the effect of rotation on an entire Coupled Resonator Optical Waveguide (CROW) consisting of a set of coupled microresonators. Preliminary results validate the formation of a rotation-induced gap at the center of a transfer function of a CROW.
2 GHz clock quantum key distribution over 260 km of standard telecom fiber.
Wang, Shuang; Chen, Wei; Guo, Jun-Fu; Yin, Zhen-Qiang; Li, Hong-Wei; Zhou, Zheng; Guo, Guang-Can; Han, Zheng-Fu
2012-03-15
We report a demonstration of quantum key distribution (QKD) over a standard telecom fiber exceeding 50 dB in loss and 250 km in length. The differential phase shift QKD protocol was chosen and implemented with a 2 GHz system clock rate. By careful optimization of the 1 bit delayed Faraday-Michelson interferometer and the use of the superconducting single photon detector (SSPD), we achieved a quantum bit error rate below 2% when the fiber length was no more than 205 km, and of 3.45% for a 260 km fiber with 52.9 dB loss. We also improved the quantum efficiency of SSPD to obtain a high key rate for 50 km length.
NASA Astrophysics Data System (ADS)
Min, Li; Zhang, Xiaolei; Zhang, Faxiang; Sun, Zhihui; Li, ShuJuan; Wang, Meng; Wang, Chang
2017-10-01
In order to satisfy hydroelectric generating set low-frequency vibration monitoring, the design of Passive low-frequency vibration monitoring system based on Optical fiber sensing in this paper. The hardware of the system adopts the passive optical fiber grating sensor and unbalanced-Michelson interferometer. The software system is used to programming by Labview software and finishing the control of system. The experiment show that this system has good performance on the standard vibration testing-platform and it meets system requirements. The frequency of the monitoring system can be as low as 0.2Hz and the resolution is 0.01Hz.
Tapered-fiber-based refractive index sensor at an air/solution interface.
Lu, Ping; Harris, Jeremie; Wang, Xiaozhen; Lin, Ganbin; Chen, Liang; Bao, Xiaoyi
2012-10-20
An approach to achieve refractive index sensing at an air and aqueous glycerol solution interface is proposed using a tapered-fiber-based microfiber Mach-Zehnder interferometer (MFMZI). Compared to a surrounding uniform medium of air or solutions, the spectral interference visibility of the MFMZI at the air/solution interface is significantly reduced due to a weak coupling between the fundamental cladding mode and high-order asymmetric cladding modes, which are extremely sensitive to the external refractive index. The MFMZI is experimentally demonstrated as an evanescent wave refractive index sensor to measure concentrations of glycerol solutions by monitoring average power attenuation of the tapered fiber.
PCF-based Fabry-Perot interferometric sensor for strain measurement under high-temperature
NASA Astrophysics Data System (ADS)
Deng, Ming; Tang, Chang-Ping; Zhu, Tao; Rao, Yun-Jiang
2011-05-01
We report a simple and robust all-fiber in-line Fabry-Perot interferometer (FPI) with bubble cavity, which is fabricated by directly splicing a mutimode photonic crystal fiber to a conventional single mode fiber by using a commercial splicer. The fabrication process only involves fusion splicing and cleaving. The high-temperature strain characteristic of such a device is evaluated and experimental results shows that this FPI can be used as an ideal sensor for precise strain measurement under high temperatures of up to 750°C. Therefore, such a FPI sensor may find important applications in aeronautics or metallurgy areas.
Compact photonic crystal fiber refractometer based on modal interference
NASA Astrophysics Data System (ADS)
Wong, Wei Chang; Chan, Chi Chiu; Tou, Zhi Qiang; Chen, Li Han; Leong, Kam Chew
2011-05-01
A compact photonic crystal fiber (PCF) refractometer based on modal interference has been proposed by the use of commercial fusion splicer to collapse the holes of PCF to form a Mach Zehnder interferometer by splitting the fundamental core mode into cladding and core modes in the PCF. Collapsed of holes was done at the interface between the single mode fiber and PCF, and the PCF's end. The shift of the interference fringes was measured when the sensor was placed into different refractive index liquid. High linear sensitivity of 253.13nm/RIU with resolution of 3.950×10-5RIU was obtained.
A Radio-Frequency-over-Fiber link for large-array radio astronomy applications
NASA Astrophysics Data System (ADS)
Mena, J.; Bandura, K.; Cliche, J.-F.; Dobbs, M.; Gilbert, A.; Tang, Q. Y.
2013-10-01
A prototype 425-850 MHz Radio-Frequency-over-Fiber (RFoF) link for the Canadian Hydrogen Intensity Mapping Experiment (CHIME) is presented. The design is based on a directly modulated Fabry-Perot (FP) laser, operating at ambient temperature, and a single-mode fiber. The dynamic performance, gain stability, and phase stability of the RFoF link are characterized. Tests on a two-element interferometer built at the Dominion Radio Astrophysical Observatory for CHIME prototyping demonstrate that RFoF can be successfully used as a cost-effective solution for analog signal transport on the CHIME telescope and other large-array radio astronomy applications.
Kuzmenko, P.J.; Davis, D.T.
1994-05-10
A miniature fiber optic hydrophone based on the principles of a Fabry-Perot interferometer is disclosed. The hydrophone, in one embodiment, includes a body having a shaped flexible bladder at one end which defines a volume containing air or suitable gas, and including a membrane disposed adjacent a vent. An optical fiber extends into the body with one end terminating in spaced relation to the membrane. Acoustic waves in the water that impinge on the bladder cause the pressure of the volume therein to vary causing the membrane to deflect and modulate the reflectivity of the Fabry-Perot cavity formed by the membrane surface and the cleaved end of the optical fiber disposed adjacent to the membrane. When the light is transmitted down the optical fiber, the reflected signal is amplitude modulated by the incident acoustic wave. Another embodiment utilizes a fluid filled volume within which the fiber optic extends. 2 figures.
Fiber optic sensor for monitoring a density of road traffic
NASA Astrophysics Data System (ADS)
Nedoma, Jan; Fajkus, Marcel; Martinek, Radek; Mec, Pavel; Novak, Martin; Jargus, Jan; Vasinek, Vladimir
2017-10-01
Authors of this article have focused on the use of fiber-optic technology in the car traffic. The article describes the use of fiber-optic interferometer for the purpose of the dynamic calculation of traffic density and inclusion the vehicle into the traffic lane. The objective is to increase safety and traffic flow. Presented solution is characterized by the non-destructive character to the road - sensor no need built into the roadway. The sensor works with standard telecommunications fibers of the G.652 standard. Other hallmarks are immunity to electromagnetic interference (EMI) and passivity of concerning the power supply. The massive expansion of optical cables within telecommunication needs along roads offers the possibility of connecting to the existing telecommunications fiber-optic network without a converter. Information can be transmitted at distances of several km up to tens km by this fiber-optic network. Set of experimental measurements in real traffic flow verified the functionality of presented solution.
Humidity sensor based on intracavity sensing of fiber ring laser
NASA Astrophysics Data System (ADS)
Shi, Jia; Xu, Wei; Xu, Degang; Wang, Yuye; Zhang, Chao; Yan, Chao; Yan, Dexian; He, Yixin; Tang, Longhuang; Zhang, Weihong; Yao, Jianquan
2017-10-01
A humidity sensor based on the intracavity sensing of a fiber ring laser is proposed and experimentally demonstrated. In the fiber ring laser, a humidity-sensitive fiber-optic multimode interferometer (MMI), fabricated by the single-mode-no-core-single-mode (SNCS) fiber coated with Agarose, works as the wavelength-selective filter for intracavity wavelength-modulated humidity sensing. The experiment shows that the lasing wavelength of the fiber laser has a good linear response to ambient humidity from 35%RH to 95%RH. The humidity sensitivity of -68 pm/%RH is obtained with a narrow 3 dB bandwidth less than 0.09 nm and a high signal-to-noise ratio (SNR) ˜60 dB. The time response of the sensor has been measured to be as fast as 93 ms. The proposed sensor possesses a good stability and low temperature cross-sensitivity.
NASA Astrophysics Data System (ADS)
Elsmann, Tino; Habisreuther, Tobias; Graf, Albrecht; Rothhardt, Manfred; Bartelt, Hartmut
2013-05-01
We demonstrate the inscription of fiber Bragg gratings in single crystalline sapphire using the second harmonic of a Ti:Sa-amplified femtosecond laser system. With the laser wavelength of 400 nm first order gratings were fabricated. The interferometric inscription was performed out using the Talbot interferometer. This way, not only single gratings but also multiplexed sensor arrays were realized. For evaluating of the sensor signals an adapted multimodal interrogation setup was build up, because the sapphire fiber is an extreme multimodal air clad fiber. Due to the multimodal reflection spectrum, different peak functions have been tested to evaluate the thermal properties of the grating. The temperature sensors were tested for high temperature applications up to 1200°C with a thermal sensitivity in the order of 25 pm/K which is more than the doubled of that one reached with Bragg gratings in conventional silica fibers.
Measurement of morphing wing deflection by a cross-coherence fiber optic interferometric technique
NASA Astrophysics Data System (ADS)
Tomić, Miloš C.; Djinović, Zoran V.; Scheerer, Michael; Petricevic, Slobodan J.
2018-01-01
A fiber-optic interferometric technique aimed at measuring the deflection of aircrafts’ morphing wings is presented. The wing deflection induces a strain in the sensing fiber optic coils that are firmly fixed onto the wing. A change of the phase angle of the light propagating through the fiber is measured by an ‘all-in-fiber’ Michelson interferometer based on a 3 × 3 fiber-optic coupler. Two light sources of different coherence lengths and wavelengths are simultaneously used to ensure a wide measurement range and high accuracy. A new technique for determination of the zero deflection point using the cross-correlation of the two interferograms is proposed. The experiments performed on a specimen made of a carbon-fiber-reinforced plastic honeycomb structure demonstrated a relative uncertainty <1% and a precision of about 0.06° in the measuring range ±5° of the morphing wing deflection.
NASA Technical Reports Server (NTRS)
Parker, Jr., Allen R (Inventor); Chan, Hon Man (Inventor); Piazza, Anthony (Nino) (Inventor); Richards, William Lance (Inventor)
2014-01-01
A method and system for multiplexing a network of parallel fiber Bragg grating (FBG) sensor-fibers to a single acquisition channel of a closed Michelson interferometer system via a fiber splitter by distinguishing each branch of fiber sensors in the spatial domain. On each branch of the splitter, the fibers have a specific pre-determined length, effectively separating each branch of fiber sensors spatially. In the spatial domain the fiber branches are seen as part of one acquisition channel on the interrogation system. However, the FBG-reference arm beat frequency information for each fiber is retained. Since the beat frequency is generated between the reference arm, the effective fiber length of each successive branch includes the entire length of the preceding branch. The multiple branches are seen as one fiber having three segments where the segments can be resolved. This greatly simplifies optical, electronic and computational complexity, and is especially suited for use in multiplexed or branched OFS networks for SHM of large and/or distributed structures which need a lot of measurement points.
NASA Astrophysics Data System (ADS)
Granot, Er'el; Zaibel, Reuven; Narkiss, Niv; Ben-Ezra, Shalva; Chayet, Haim; Shahar, Nir; Sternklar, Shmuel; Tsadka, Sagie; Prucnal, Paul R.
2005-12-01
In this paper we investigate the wavelength conversion and regeneration properties of a tunable all-optical signal regenerator (TASR). In the TASR, the wavelength conversion is done by a semiconductor optical amplifier, which is incorporated in an asymmetric Sagnac loop (ASL). We demonstrate both theoretically and experimentally that the ASL regenerates the incident signal's bit pattern, reduces its noise, increases the extinction ratio (which in many aspects is equivalent to noise reduction) and improves its bit-error rate. We also demonstrate the general behavior of the TASR with a numerical simulation.
Geng, Zihan; Xie, Yiwei; Zhuang, Leimeng; Burla, Maurizio; Hoekman, Marcel; Roeloffzen, Chris G H; Lowery, Arthur J
2017-10-30
We report a photonic integrated circuit implementation of an optical clock multiplier, or equivalently an optical frequency comb filter. The circuit comprises a novel topology of a ring-resonator-assisted asymmetrical Mach-Zehnder interferometer in a Sagnac loop, providing a reconfigurable comb filter with sub-GHz selectivity and low complexity. A proof-of-concept device is fabricated in a high-index-contrast stoichiometric silicon nitride (Si 3 N 4 /SiO 2 ) waveguide, featuring low loss, small size, and large bandwidth. In the experiment, we show a very narrow passband for filters of this kind, i.e. a -3-dB bandwidth of 0.6 GHz and a -20-dB passband of 1.2 GHz at a frequency interval of 12.5 GHz. As an application example, this particular filter shape enables successful demonstrations of five-fold repetition rate multiplication of optical clock signals, i.e. from 2.5 Gpulses/s to 12.5 Gpulses/s and from 10 Gpulses/s to 50 Gpulses/s. This work addresses comb spectrum processing on an integrated platform, pointing towards a device-compact solution for optical clock multipliers (frequency comb filters) which have diverse applications ranging from photonic-based RF spectrum scanners and photonic radars to GHz-granularity WDM switches and LIDARs.
NASA Astrophysics Data System (ADS)
Gabrieli, A.; Wright, R.; Porter, J. N.; Lucey, P. G.; Crites, S.; Garbeil, H.; Pilger, E. J.; Wood, M.
2015-12-01
The ability to quantify volcanic SO2 and image the spatial distribution in plumes either by day or by night would be beneficial to volcanologists. In this project, a newly developed remote sensing long-wave thermal infrared imaging hyperspectral sensor, was tested. The system employs a Sagnac interferometer and an uncooled microbolometer in rapid scanning configuration. This instrument is able to collect hyperspectral images of the scene between 8 and 14 and for each pixel a spectrum containing 50 samples can be retrieved. Images are spectrally and radiometrically calibrated using an IR source with a narrow band filter and two black bodies. The sensitivity of the system was studied by using a gas cell containing various known concentrations of SO2, which are representative of those found in volcanic plumes. Measured spectra were compared with theoretical spectra obtained from MODTRAN5 with the same viewing geometry and spectral resolution as the sensor. The MODTRAN5 calculations were carried out using a radiative transfer algorithm which accounts for the transmission and emission both inside and outside of the gas cell. These preliminary results and field measurements at Kīlauea volcano, Hawai'i will be discussed demonstrating the performance of the system and the ability of retrieving SO2 plume concentrations.
Atomic Interferometric Gravitational-Wave Space Observatory (AIGSO)
NASA Astrophysics Data System (ADS)
Gao, Dong-Feng; Wang, Jin; Zhan, Ming-Sheng
2018-01-01
We propose a space-borne gravitational-wave detection scheme, called atom interferometric gravitational-wave space observatory (AIGSO). It is motivated by the progress in the atomic matter-wave interferometry, which solely utilizes the standing light waves to split, deflect and recombine the atomic beam. Our scheme consists of three drag-free satellites orbiting the Earth. The phase shift of AIGSO is dominated by the Sagnac effect of gravitational-waves, which is proportional to the area enclosed by the atom interferometer, the frequency and amplitude of gravitational-waves. The scheme has a strain sensitivity < {10}-20/\\sqrt{{Hz}} in the 100 mHz-10 Hz frequency range, which fills in the detection gap between space-based and ground-based laser interferometric detectors. Thus, our proposed AIGSO can be a good complementary detection scheme to the space-borne laser interferometric schemes, such as LISA. Considering the current status of relevant technology readiness, we expect our AIGSO to be a promising candidate for the future space-based gravitational-wave detection plan. Supported by the National Key Research Program of China under Grant No. 2016YFA0302002, the National Science Foundation of China under Grant Nos. 11227803 and 91536221, and the Strategic Priority Research Program of the Chinese Academy of Sciences under Grant No. XDB21010100
High-power electro-optic switch technology based on novel transparent ceramic
NASA Astrophysics Data System (ADS)
Xue-Jiao, Zhang; Qing, Ye; Rong-Hui, Qu; Hai-wen, Cai
2016-03-01
A novel high-power polarization-independent electro-optic switch technology based on a reciprocal structure Sagnac interferometer and a transparent quadratic electro-optic ceramic is proposed and analyzed theoretically and experimentally. The electro-optic ceramic is used as a phase retarder for the clockwise and counter-clockwise polarized light, and their polarization directions are adjusted to their orthogonal positions by using two half-wave plates. The output light then becomes polarization-independent with respect to the polarization direction of the input light. The switch characteristics, including splitter ratios and polarization states, are theoretically analyzed and simulated in detail by the matrix multiplication method. An experimental setup is built to verify the analysis and experimental results. A new component ceramic is used and a non-polarizing cube beam splitter (NPBS) replaces the beam splitter (BS) to lower the ON/OFF voltage to 305 V and improve the extinction ratio by 2 dB. Finally, the laser-induced damage threshold for the proposed switch is measured and discussed. It is believed that potential applications of this novel polarization-independent electro-optic switch technology will be wide, especially for ultrafast high-power laser systems. Project supported by the National Natural Science Foundation of China (Grant Nos. 61137004, 61405218, and 61535014).