Sample records for fiber size distribution

  1. Effects of Fiber Type and Size on the Heterogeneity of Oxygen Distribution in Exercising Skeletal Muscle

    PubMed Central

    Liu, Gang; Mac Gabhann, Feilim; Popel, Aleksander S.

    2012-01-01

    The process of oxygen delivery from capillary to muscle fiber is essential for a tissue with variable oxygen demand, such as skeletal muscle. Oxygen distribution in exercising skeletal muscle is regulated by convective oxygen transport in the blood vessels, oxygen diffusion and consumption in the tissue. Spatial heterogeneities in oxygen supply, such as microvascular architecture and hemodynamic variables, had been observed experimentally and their marked effects on oxygen exchange had been confirmed using mathematical models. In this study, we investigate the effects of heterogeneities in oxygen demand on tissue oxygenation distribution using a multiscale oxygen transport model. Muscles are composed of different ratios of the various fiber types. Each fiber type has characteristic values of several parameters, including fiber size, oxygen consumption, myoglobin concentration, and oxygen diffusivity. Using experimentally measured parameters for different fiber types and applying them to the rat extensor digitorum longus muscle, we evaluated the effects of heterogeneous fiber size and fiber type properties on the oxygen distribution profile. Our simulation results suggest a marked increase in spatial heterogeneity of oxygen due to fiber size distribution in a mixed muscle. Our simulations also suggest that the combined effects of fiber type properties, except size, do not contribute significantly to the tissue oxygen spatial heterogeneity. However, the incorporation of the difference in oxygen consumption rates of different fiber types alone causes higher oxygen heterogeneity compared to control cases with uniform fiber properties. In contrast, incorporating variation in other fiber type-specific properties, such as myoglobin concentration, causes little change in spatial tissue oxygenation profiles. PMID:23028531

  2. Mechanical and Impact Characterization of Poly-Dicyclopentadiene (p-DCPD) Matrix Composites Using Novel Glass Fibers and Sizings

    DTIC Science & Technology

    2016-08-01

    Matrix Composites Using Novel Glass Fibers and Sizings by Steven E Boyd Approved for public release; distribution is...Research Laboratory Mechanical and Impact Characterization of Poly-Dicyclopentadiene (p-DCPD) Matrix Composites Using Novel Glass Fibers and Sizings...p-DCPD) Matrix Composites Using Novel Glass Fibers and Sizings 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR

  3. Scanning fiber angle-resolved low coherence interferometry

    PubMed Central

    Zhu, Yizheng; Terry, Neil G.; Wax, Adam

    2010-01-01

    We present a fiber-optic probe for Fourier-domain angle-resolved low coherence interferometry for the determination of depth-resolved scatterer size. The probe employs a scanning single-mode fiber to collect the angular scattering distribution of the sample, which is analyzed using the Mie theory to obtain the average size of the scatterers. Depth sectioning is achieved with low coherence Mach–Zehnder interferometry. In the sample arm of the interferometer, a fixed fiber illuminates the sample through an imaging lens and a collection fiber samples the backscattered angular distribution by scanning across the Fourier plane image of the sample. We characterize the optical performance of the probe and demonstrate the ability to execute depth-resolved sizing with subwavelength accuracy by using a double-layer phantom containing two sizes of polystyrene microspheres. PMID:19838271

  4. Experimental approaches for exposure to sized glass fibers.

    PubMed Central

    Bernstein, D M; Drew, R T; Kuschner, M

    1980-01-01

    A number of studies have shown that glass fibers induce both malignant mesothelioma and fibrosis in rats and that these reactions may be primarily a function of the physical properties of the fiber. However, these studies were carried out with fibers having broad size distributions and used methods of administration which bear little resemblance to the way man is exposed. To better characterize the health effects of glass fibers, techniques have been developed to expose rats to glass fibers of defined sizes by intratracheal instillation of aqueous suspensions and by "nose only" inhalation exposure, and to determine the deposition, translocation, and ultimate fate of these fibers in the rat. The fibers have known size distributions with geometric mean diameters of 1.5 micrometers (sigma g = 1.1) and lengths of either 5 micrometers (sigma g = 1.49) or 60 micrometers (sigma g = 3.76). The fibers have been activated with neutron irradiation. Of the several resulting radionuclides, 65Zn appeared to be the most suitable for long-term clearance studies by use of in vivo whole body radioassay techniques. A fluidized bed aerosol generator has been developed to expose rats by "nose only" inhalation to approximately 500 fibers/cm3. The generator and exposure system permits reuse of fibers which pass through the exposure chamber and produces no significant alteration of the fiber size distribution. Rats were exposed by intratracheal instillations to 20 mg of the longer fibers and to equal numbers (2 mg) and equal mass (20 mg) of the shorter fibers. Through approximately 19 weeks little difference was observed in the whole rat clearance rate of long versus short fibers in the initial exposure group. Histopathology, however, showed differences at this time with the short fibers apparently successfully phagocytized by alveolar macrophages and cleared to the lymph nodes, while the long fibers were not. Images FIGURE 3. FIGURE 6. FIGURE 7. FIGURE 8. FIGURE 9. FIGURE 10. PMID:7389688

  5. Catalase-positive microperoxisomes in rat soleus and extensor digitorum longus muscle fiber types

    NASA Technical Reports Server (NTRS)

    Riley, Danny A.; Bain, James L. W.; Ellis, Stanley

    1988-01-01

    The size, distribution, and content of catalase-reactive microperoxisomes were investigated cytochemically in three types of muscle fibers from the soleus and the extensor digitorum longus (EDL) of male rats. Muscle fibers were classified on the basis of the mitochondrial content and distribution, the Z-band widths, and the size and shape of myofibrils as the slow-twitch oxidative (SO), the fast-twitch oxidative glycolytic (FOG), and the fast-twitch glycolytic (FG) fibers. It was found that both the EDL and soleus SO fibers possessed the largest microperoxisomes. A comparison of microperoxisome number per muscle fiber area or the microperoxisome area per fiber area revealed following ranking, starting from the largest number and the area-ratio values: soleus SO, EDL SO, EDL FOG, and EDL FG.

  6. Impacts of Cellulose Fiber Particle Size and Starch Type on Expansion During Extrusion Processing.

    PubMed

    Kallu, Sravya; Kowalski, Ryan J; Ganjyal, Girish M

    2017-07-01

    Objective of this study was to understand the impacts of cellulose fiber with different particle size distributions, and starches with different molecular weights, on the expansion of direct expanded products. Fiber with 3 different particle size distributions (<125, 150 to 250, 300 to 425 μm) and 4 types of starches representing different amylose contents (0%, 23%, 50%, and 70%) were investigated. Feed moisture content (18 ± 0.5 % w.b) and extruder temperature (140 °C) were kept constant and only the extruder screw speed was varied (100, 175, and 250 rpm) to achieve different specific mechanical energy inputs. Fiber particle size and starch type significantly influenced the various product parameters. In general, the smaller fiber particle size resulted in extrudate with higher expansion ratio. Starch with an amylose: amylopectin ratio of 23:77 resulted in highest expansion compared to the other starches, when no fiber was added. Interestingly, starch with 50:50, amylose: amylopectin ratio in combination with smaller fiber particles resulted in product with significantly greater expansion than the control starch extrudates. Aggregation of fiber and shrinkage of surface was observed in the Scanning Electron Microscope images at 10% fiber level. The results suggest the presence of active interactions between the cellulose fiber particles and corn starch molecules during the expansion process. A better understanding of these interactions can help in the development of high fiber extruded products with better expansion. © 2017 Institute of Food Technologists®.

  7. The effect of different physical activity levels on muscle fiber size and type distribution of lumbar multifidus. A biopsy study on low back pain patient groups and healthy control subjects.

    PubMed

    Mazis, N; Papachristou, D J; Zouboulis, P; Tyllianakis, M; Scopa, C D; Megas, P

    2009-12-01

    Previous studies examining the multifidus fiber characteristics among low back pain (LBP) patients have not considered the variable of physical activity. The present study sought to investigate the muscle fiber size and type distribution of the lumbar multifidus muscle among LBP patient groups with different physical activity levels and healthy controls. Sixty-four patients were assigned to one of three groups named according to the physical activity level, determined for each patient by the International Physical Activity Questionnaire. These were low (LPA), medium (MPA) and high (HPA) physical activity groups. A control group comprising of 17 healthy individuals was also recruited. Muscle biopsy samples were obtained from the multifidus muscle at the level L4-L5. contrast with the control group, LBP patient groups showed a significantly higher Type II fiber distribution as well as reduced diameter in both fiber types (P<0.05). The physical activity level did not have an effect on multifidus characteristics since no significant differences were observed in fiber type and diameter (P>0.05) among LPA, MPA and HPA patient groups. Various pathological conditions were detected which were more pronounced in LBP groups compared to the control (P<0.05). Males had a larger fiber diameter compared to females for both fiber types (P<0.05). The results showed that the level of physical activity did not affect muscle fiber size and type distribution among LBP patients groups. These findings suggest that not only inactivity but also high physical activity levels can have an adverse effect on the multifidus muscle fiber characteristics.

  8. Comparative investigations of the biodurability of mineral fibers in the rat lung.

    PubMed Central

    Muhle, H; Bellmann, B; Pott, F

    1994-01-01

    The biodurability of various glass fibers, rockwool, and ceramic fibers was examined in rat lungs and compared with natural mineral fibers. Experiments were based on studies that have shown that the biodurability of fibers is one of the essential factors of the carcinogenic potency of these materials. Sized fractions of fibers were instilled intratracheally into Wistar rats. The evenness of distribution of fibers in the lung was checked by scanning electron microscopy (SEM) or careful examination of the fiber suspension before treatment. After serial sacrifices up to 24 months after treatment, the fibers were analyzed by SEM following low temperature ashing of the lungs. Parameters measured included number of fibers, diameter, and length distribution at the various sacrifice dates, so that analyses could be made of the elimination kinetics of fibers from the lung in relation to fiber length (FL). Size selective plots of the fiber elimination correlated with fiber diameters enables the mechanism of the fiber elimination (dissolution, fiber breakage, physical clearance) to be interpreted. The half-time of fiber elimination from the lung ranges from about 10 days for wollastonite to more than 300 days for crocidolite. The biodurability of man-made vitreous fibers (MMVF) is between these values and is dependent on the chemical composition of the fibers and the diameter and length distribution. Results indicate that the in vivo durability of glass fibers is considerably longer than expected from extrapolation of published data on their in vitro dissolution rates. PMID:7882923

  9. Ultrathin fiber poly-3-hydroxybutyrate, modified by silicon carbide nanoparticles

    NASA Astrophysics Data System (ADS)

    Olkhov, A. A.; Krutikova, A. A.; Goldshtrakh, M. A.; Staroverova, O. V.; Iordanskii, A. L.; Ischenko, A. A.

    2016-11-01

    The article presents the results of studies the composite fibrous material based on poly-3-hydroxybutyrate (PHB) and nano-size silicon carbide obtained by the electrospinning method. Size distribution of the silicon carbide nanoparticles in the fiber was estimated by X-ray diffraction technique. It is shown that immobilization of the SiC nanoparticles to the PHB fibers contributes to obtaining essentially smaller diameter of fibers, high physical-mechanical characteristics and increasing resistance to degradation in comparison with the fibers of PHB.

  10. Effect of the chemical treatments on the characteristics of natural cellulose

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sosiati, H., E-mail: hsosiati@ugm.ac.id; Muhaimin, M.; Abdilah, P.

    2014-09-25

    In order to characterize the morphology and size distribution of the cellulose fibers, natural cellulose from kenaf bast fibers was extracted using two chemical treatments; (1) alkali-bleaching-ultrasonic treatment and (2) alkali-bleaching-hydrolysis. Solutions of NaOH, H{sub 2}O{sub 2} and H{sub 2}SO{sub 4} were used for alkalization, bleaching and hydrolysis, respectively. The hydrolyzed fibers were centrifuged at a rotation speed of 10000 rpm for 10 min to separate the nanofibers from the microfibers. The separation was repeated in 7 steps by controlling pH of the solution in each step until neutrality was reached. Fourier transform infrared (FTIR) spectroscopy was performed on themore » fibers at the final step of each treatment: i.e. either ultrasonic treated- or hydrolyzed microfibers. Their FTIR spectra were compared with FTIR spectrum of a reference commercial α-cellulose. Changes in morphology and size distribution of the treated fibers were examined by scanning electron microscopy (SEM). FTIR spectra of ultrasonic treated- and hydrolyzed microfibers nearly coincided with the FTIR spectrum of commercial α-cellulose, suggesting successful extraction of cellulose. Ultrasonic treatment for 6 h resulted in a specific morphology in which cellulose nanofibers (≥100 nm) were distributed across the entire surface of cellulose microfibers (∼5 μm). Constant magnetic stirring combined with acid hydrolysis resulted in an inhomogeneous size distribution of both cellulose rods (500 nm-3 μm length, 100–200 nm diameter) and particles 100–200 nm in size. Changes in morphology of the cellulose fibers depended upon the stirring time; longer stirring time resulted in shorter fiber lengths.« less

  11. Uncertainty quantification of fiber orientation distribution measurements for long-fiber-reinforced thermoplastic composites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharma, Bhisham N.; Naragani, Diwakar; Nguyen, Ba Nghiep

    Here, we present a detailed methodology for experimental measurement of fiber orientation distribution in injection-molded discontinuous fiber composites using the method of ellipses on two-dimensional cross sections. Best practices to avoid biases occurring during surface preparation and optical imaging of carbon-fiber-reinforced thermoplastics are discussed. We developed a marker-based watershed transform routine for efficient image segmentation and the separation of touching fiber ellipses. The sensitivity of the averaged orientation tensor to the image sample size is studied for the case of long-fiber thermoplastics. A Mori–Tanaka implementation of the Eshelby model is then employed to quantify the sensitivity of elastic stiffness predictionsmore » to biases in the fiber orientation distribution measurements.« less

  12. Uncertainty quantification of fiber orientation distribution measurements for long-fiber-reinforced thermoplastic composites

    DOE PAGES

    Sharma, Bhisham N.; Naragani, Diwakar; Nguyen, Ba Nghiep; ...

    2017-09-28

    Here, we present a detailed methodology for experimental measurement of fiber orientation distribution in injection-molded discontinuous fiber composites using the method of ellipses on two-dimensional cross sections. Best practices to avoid biases occurring during surface preparation and optical imaging of carbon-fiber-reinforced thermoplastics are discussed. We developed a marker-based watershed transform routine for efficient image segmentation and the separation of touching fiber ellipses. The sensitivity of the averaged orientation tensor to the image sample size is studied for the case of long-fiber thermoplastics. A Mori–Tanaka implementation of the Eshelby model is then employed to quantify the sensitivity of elastic stiffness predictionsmore » to biases in the fiber orientation distribution measurements.« less

  13. Laser Intensity Scaling Through Stimulated Scattering in Optical Fibers

    DTIC Science & Technology

    2001-12-17

    Stokes beams transmitted through a 300 m multimode fiber. ..................................127 Figure 58: Circles (squares) indicate the measured size...circles) and first order Stokes (squares) beams at the fiber facet. (b,c) Pump (left) and Stokes (right) intensity distributions for a 300 m and...75 m fiber respectively. .......................................................................................130 Figure 61: Double clad fiber

  14. Fat content in individual muscle fibers of lean and obese subjects.

    PubMed

    Malenfant, P; Joanisse, D R; Thériault, R; Goodpaster, B H; Kelley, D E; Simoneau, J A

    2001-09-01

    To examine skeletal muscle intracellular triglyceride concentration in different fiber types in relation to obesity. Skeletal muscle fiber type distribution and intracellular lipid content were measured in vastus lateralis samples obtained by needle biopsy from lean and obese individuals. Seven lean controls (body mass index (BMI) 23.0+/-3.3 kg/m(2); mean+/-s.d.) and 14 obese (BMI 33.7+/-2.7 kg/m(2)) individuals; both groups included comparable proportions of men and women. Samples were histochemically stained for the identification of muscle fiber types (myosin ATPase) and intracellular lipid aggregates (oil red O dye). The number and size of fat aggregates as well as their concentration within type I, IIA and IIB muscle fiber types were measured. The cellular distribution of the lipid aggregates was also examined. The size of fat aggregates was not affected by obesity but the number of lipid droplets within muscle fibers was twice as abundant in obese compared to lean individuals. This was seen in type I (298+/-135 vs 129+/-75; obese vs lean, P<0.05), IIA (132+/-67 vs 79+/-29; P<0.05), and IIB (103+/-63 vs 51+/-13; P<0.05) muscle fibers. A more central distribution of lipid droplets was observed in muscle fibers of obese compared to lean subjects (27.2+/-5.7 vs 19.7+/-6.4%; P<0.05). The higher number of lipid aggregates and the disposition to a greater central distribution in all fiber types in obesity indicate important changes in lipid metabolism and/or storage that are fiber type-independent.

  15. Concurrent measurements of size-segregated particulate sulfate, nitrate and ammonium using quartz fiber filters, glass fiber filters and cellulose membranes

    NASA Astrophysics Data System (ADS)

    Tian, Shili; Pan, Yuepeng; Wang, Jian; Wang, Yuesi

    2016-11-01

    Current science and policy requirements have focused attention on the need to expand and improve particulate matter (PM) sampling methods. To explore how sampling filter type affects artifacts in PM composition measurements, size-resolved particulate SO42-, NO3- and NH4+ (SNA) were measured on quartz fiber filters (QFF), glass fiber filters (GFF) and cellulose membranes (CM) concurrently in an urban area of Beijing on both clean and hazy days. The results showed that SNA concentrations in most of the size fractions exhibited the following patterns on different filters: CM > QFF > GFF for NH4+; GFF > QFF > CM for SO42-; and GFF > CM > QFF for NO3-. The different patterns in coarse particles were mainly affected by filter acidity, and that in fine particles were mainly affected by hygroscopicity of the filters (especially in size fraction of 0.65-2.1 μm). Filter acidity and hygroscopicity also shifted the peaks of the annual mean size distributions of SNA on QFF from 0.43-0.65 μm on clean days to 0.65-1.1 μm on hazy days. However, this size shift was not as distinct for samples measured with CM and GFF. In addition, relative humidity (RH) and pollution levels are important factors that can enhance particulate size mode shifts of SNA on clean and hazy days. Consequently, the annual mean size distributions of SNA had maxima at 0.65-1.1 μm for QFF samples and 0.43-0.65 μm for GFF and CM samples. Compared with NH4+ and SO42-, NO3- is more sensitive to RH and pollution levels, accordingly, the annual mean size distribution of NO3- exhibited peak at 0.65-1.1 μm for CM samples instead of 0.43-0.65 μm. These methodological uncertainties should be considered when quantifying the concentrations and size distributions of SNA under different RH and haze conditions.

  16. Distributed strain measurements using fiber Bragg gratings in small-diameter optical fiber and low-coherence reflectometry.

    PubMed

    Coric, Dragan; Lai, Marco; Botsis, John; Luo, Aiping; Limberger, Hans G

    2010-12-06

    Optical low coherence reflectometry and fiber Bragg gratings written in small diameter (50 micrometer) optical fibers were used for measurements of non-homogenous internal strain fields inside an epoxy specimen with sub-grating length resolution. The results were compared with measurements using Fiber Bragg gratings in standard size (125 micrometer) single mode fibers and show that smaller fibers are less intrusive at stress heterogeneities.

  17. Optimization of mechanical strength of titania fibers fabricated by direct drawing

    NASA Astrophysics Data System (ADS)

    Hanschmidt, Kelli; Tätte, Tanel; Hussainova, Irina; Part, Marko; Mändar, Hugo; Roosalu, Kaspar; Chasiotis, Ioannis

    2013-11-01

    Nanostructured polycrystalline titania (TiO2) microfibers were produced by direct drawing from visco-elastic alkoxide precursors. The fiber crystallinity and grain size were shown to depend on post-treatment calcination temperature. Tensile tests with individual fibers showed strong sensitivity of the elastic modulus and the tensile strength to microstructural details of the fibers. The elastic modulus of as-fabricated fibers increased about 10 times after calcination at 700 ∘C, while the strain at failure remained almost the same at ˜1.4 %. The highest tensile strength of more than 800 MPa was exhibited by nanoscale grained fibers with a bimodal grain size distribution consisting of rutile grains embedded into an anatase matrix. This structure is believed to have reduced the critical defect size, and thus increased the tensile strength. The resultant fibers showed properties that were appropriate for reinforcement of different matrixes.

  18. Self-organized dynamics in local load-sharing fiber bundle models.

    PubMed

    Biswas, Soumyajyoti; Chakrabarti, Bikas K

    2013-10-01

    We study the dynamics of a local load-sharing fiber bundle model in two dimensions under an external load (which increases with time at a fixed slow rate) applied at a single point. Due to the local load-sharing nature, the redistributed load remains localized along the boundary of the broken patch. The system then goes to a self-organized state with a stationary average value of load per fiber along the (increasing) boundary of the broken patch (damaged region) and a scale-free distribution of avalanche sizes and other related quantities are observed. In particular, when the load redistribution is only among nearest surviving fiber(s), the numerical estimates of the exponent values are comparable with those of the Manna model. When the load redistribution is uniform along the patch boundary, the model shows a simple mean-field limit of this self-organizing critical behavior, for which we give analytical estimates of the saturation load per fiber values and avalanche size distribution exponent. These are in good agreement with numerical simulation results.

  19. Appendix B: Summary of TEM Particle Size Distribution Datasets

    EPA Pesticide Factsheets

    As discussed in the main text (see Section 5.3.2), calculation of the concentration of asbestos fibers in each of the bins of potential interest requires particle size distribution data derived using transmission electron microscopy (TEM).

  20. Particle size, size distribution and morphological evaluation of glass fiber reinforced plastic (GRP) industrial by-product.

    PubMed

    Mazzoli, Alida; Moriconi, Giacomo

    2014-12-01

    The waste management of glass fiber reinforced polymer (GRP) materials, in particular those made with thermosetting resins, is a critical issue for the composites industry because these materials cannot be reprocessed. Therefore, most thermosetting GRP waste is presently sent to landfill, in spite of the significant environmental impact caused by their disposal in this way. The limited GRP waste recycling worldwide is mostly due to its intrinsic thermosetting properties, lack of characterization data and unavailability of viable recycling and recovery routes. One of the possibility for re-using GRP industrial by-product is in form of powder as a partial aggregate replacement or filler addition in cement based composites for applications in sustainable construction materials and technologies. However, the feasibility of this kind of reutilization strongly depends on the morphology and particle size distribution of a powder made up of polymer granules and glass fibers. In the present study, the use of image analysis method, based on scanning electron microscopy (SEM) and ImageJ processing program, is proposed in order to evaluate the morphology of the particles and measure the particle size and size distribution of fine GRP waste powder. The obtained results show a great potential of such a method in order to be considered as a standardized method of measurement and analysis in order to characterize the grain size and size distribution of GRP particles before exploiting any compatibility issue for its recycling management. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Particle size analysis in a turbid media with a single-fiber, optical probe while using a visible spectrometer

    DOEpatents

    Canpolat, Murat; Mourant, Judith R.

    2003-12-09

    Apparatus and method for measuring scatterer size in a dense media with only a single fiber for both light delivery and collection are disclosed. White light is used as a source and oscillations of the detected light intensities are measured as a function of wavelength. The maximum and minimum of the oscillations can be used to determine scatterer size for monodisperse distributions of spheres when the refractive indices are known. In addition several properties of the probe relevant to tissue diagnosis are disclosed including the effects of absorption, a broad distribution of scatterers, and the depth probed.

  2. Uncertainty quantification of fiber orientation distribution measurements for long-fiber-reinforced thermoplastic composites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharma, Bhisham N.; Naragani, Diwakar; Nguyen, Ba Nghiep

    We present a detailed methodology for experimental measurement of fiber orientation distribution (FOD) in injection-molded discontinuous fiber composites using the method of ellipses on 2D cross sections. Best practices to avoid biases occurring during surface preparation and optical imaging of carbon-fiber-reinforced thermoplastics are discussed. A marker-based watershed transform routine for efficient image segmentation and the separation of touching fiber ellipses is developed. The sensitivity of the averaged orientation tensor to the image sample size is studied for the case of long-fiber thermoplastics. A Mori-Tanaka implementation of the Eshelby model is then employed to quantify the sensitivity of elastic stiffness predictionsmore » to biases in the FOD measurements.« less

  3. A Perturbation Based Decomposition of Compound-Evoked Potentials for Characterization of Nerve Fiber Size Distributions.

    PubMed

    Szlavik, Robert B

    2016-02-01

    The characterization of peripheral nerve fiber distributions, in terms of diameter or velocity, is of clinical significance because information associated with these distributions can be utilized in the differential diagnosis of peripheral neuropathies. Electro-diagnostic techniques can be applied to the investigation of peripheral neuropathies and can yield valuable diagnostic information while being minimally invasive. Nerve conduction velocity studies are single parameter tests that yield no detailed information regarding the characteristics of the population of nerve fibers that contribute to the compound-evoked potential. Decomposition of the compound-evoked potential, such that the velocity or diameter distribution of the contributing nerve fibers may be determined, is necessary if information regarding the population of contributing nerve fibers is to be ascertained from the electro-diagnostic study. In this work, a perturbation-based decomposition of compound-evoked potentials is proposed that facilitates determination of the fiber diameter distribution associated with the compound-evoked potential. The decomposition is based on representing the single fiber-evoked potential, associated with each diameter class, as being perturbed by contributions, of varying degree, from all the other diameter class single fiber-evoked potentials. The resultant estimator of the contributing nerve fiber diameter distribution is valid for relatively large separations in diameter classes. It is also useful in situations where the separation between diameter classes is small and the concomitant single fiber-evoked potentials are not orthogonal.

  4. Comparison of directly compressed vitamin B12 tablets prepared from micronized rotary-spun microfibers and cast films.

    PubMed

    Sebe, István; Bodai, Zsolt; Eke, Zsuzsanna; Kállai-Szabó, Barnabás; Szabó, Péter; Zelkó, Romána

    2015-01-01

    Fiber-based dosage forms are potential alternatives of conventional dosage forms from the point of the improved extent and rate of drug dissolution. Rotary-spun polymer fibers and cast films were prepared and micronized in order to direct compress after homogenization with tabletting excipients. Particle size distribution of powder mixtures of micronized fibers and films homogenized with tabletting excipients were determined by laser scattering particle size distribution analyzer. Powder rheological behavior of the mixtures containing micronized fibers and cast films was also compared. Positron annihilation lifetime spectroscopy was applied for the microstructural characterization of micronized fibers and films. The water-soluble vitamin B12 release from the compressed tablets was determined. It was confirmed that the rotary spinning method resulted in homogeneous supramolecularly ordered powder mixture, which was successfully compressed after homogenization with conventional tabletting excipients. The obtained directly compressed tablets showed uniform drug release of low variations. The results highlight the novel application of micronized rotary-spun fibers as intermediate for further processing reserving the original favorable powder characteristics of fibrous systems.

  5. Synthesis of surface bound silver nanoparticles on cellulose fibers using lignin as multi-functional agent.

    PubMed

    Hu, Sixiao; Hsieh, You-Lo

    2015-10-20

    Lignin has proven to be highly effective "green" multi-functional binding, complexing and reducing agents for silver cations as well as capping agents for the synthesis of silver nanoparticles on ultra-fine cellulose fibrous membranes. Silver nanoparticles could be synthesized in 10min to be densely distributed and stably bound on the cellulose fiber surfaces at up to 2.9% in mass. Silver nanoparticle increased in sizes from 5 to 100nm and became more polydispersed in size distribution on larger fibers and with longer synthesis time. These cellulose fiber bound silver nanoparticles did not agglomerate under elevated temperatures and showed improved thermal stability. The presence of alkali lignin conferred moderate UV absorbing ability in both UV-B and UV-C regions whereas the bound silver nanoparticles exhibited excellent antibacterial activities toward Escherichia coli. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Distributed fiber-optic laser-ultrasound generation based on ghost-mode of tilted fiber Bragg gratings.

    PubMed

    Tian, Jiajun; Zhang, Qi; Han, Ming

    2013-03-11

    Active ultrasonic testing is widely used for medical diagnosis, material characterization and structural health monitoring. Ultrasonic transducer is a key component in active ultrasonic testing. Due to their many advantages such as small size, light weight, and immunity to electromagnetic interference, fiber-optic ultrasonic transducers are particularly attractive for permanent, embedded applications in active ultrasonic testing for structural health monitoring. However, current fiber-optic transducers only allow effective ultrasound generation at a single location of the fiber end. Here we demonstrate a fiber-optic device that can effectively generate ultrasound at multiple, selected locations along a fiber in a controllable manner based on a smart light tapping scheme that only taps out the light of a particular wavelength for laser-ultrasound generation and allow light of longer wavelengths pass by without loss. Such a scheme may also find applications in remote fiber-optic device tuning and quasi-distributed biochemical fiber-optic sensing.

  7. Automated quantitative muscle biopsy analysis system

    NASA Technical Reports Server (NTRS)

    Castleman, Kenneth R. (Inventor)

    1980-01-01

    An automated system to aid the diagnosis of neuromuscular diseases by producing fiber size histograms utilizing histochemically stained muscle biopsy tissue. Televised images of the microscopic fibers are processed electronically by a multi-microprocessor computer, which isolates, measures, and classifies the fibers and displays the fiber size distribution. The architecture of the multi-microprocessor computer, which is iterated to any required degree of complexity, features a series of individual microprocessors P.sub.n each receiving data from a shared memory M.sub.n-1 and outputing processed data to a separate shared memory M.sub.n+1 under control of a program stored in dedicated memory M.sub.n.

  8. Laboratory evaluation of airborne particulate control treatments for simulated aircraft crash recovery operations involving carbon fiber composite materials.

    PubMed

    Ferreri, Matthew; Slagley, Jeremy; Felker, Daniel

    2015-01-01

    This study compared four treatment protocols to reduce airborne composite fiber particulates during simulated aircraft crash recovery operations. Four different treatments were applied to determine effectiveness in reducing airborne composite fiber particulates as compared to a "no treatment" protocol. Both "gold standard" gravimetric methods and real-time instruments were used to describe mass per volume concentration, particle size distribution, and surface area. The treatment protocols were applying water, wetted water, wax, or aqueous film-forming foam (AFFF) to both burnt and intact tickets of aircraft composite skin panels. The tickets were then cut using a small high-speed rotary tool to simulate crash recovery operations. Aerosol test chamber. None. Airborne particulate control treatments. Measures included concentration units of milligrams per cubic meter of air, particle size distribution as described by both count median diameter and mass median diameter and geometric standard deviation of particles in micrometers, and surface area concentration in units of square micrometers per cubic centimeter. Finally, a Monte Carlo simulation was run on the particle size distribution results. Comparison was made via one-way analysis of variance. A significant difference (p < 0.0001) in idealized particle size distribution was found between the water and wetted water treatments as compared to the other treatments for burnt tickets. Emergency crash recovery operations should include a treatment of the debris with water or wetted water. The resulting increase in particle size will make respiratory protection more effective in protecting the response crews.

  9. Laboratory evaluation of airborne particulate control treatments for simulated aircraft crash recovery operations involving carbon fiber composite materials.

    PubMed

    Ferreri, Matthew; Slagley, Jeremy; Felker, Daniel

    2015-01-01

    This study compared four treatment protocols to reduce airborne composite fiber particulates during simulated aircraft crash recovery operations. Four different treatments were applied to determine effectiveness in reducing airborne composite fiber particulates as compared to a "no treatment" protocol. Both "gold standard" gravimetric methods and real-time instruments were used to describe mass per volume concentration, particle size distribution, and surface area. The treatment protocols were applying water, wetted water, wax, or aqueous film-forming foam (AFFF) to both burnt and intact tickets of aircraft composite skin panels. The tickets were then cut using a small high-speed rotary tool to simulate crash recovery operations. Aerosol test chamber. None. Airborne particulate control treatments. Measures included concentration units of milligrams per cubic meter of air, particle size distribution as described by both count median diameter and mass median diameter and geometric standard deviation of particles in micrometers, and surface area concentration in units of square micrometers per cubic centimeter. Finally, a Monte Carlo simulation was run on the particle size distribution results. Comparison was made via one-way analysis of variance. A significant difference (p<0.0001) in idealized particle size distribution was found between the water and wetted water treatments as compared to the other treatments for burnt tickets. Emergency crash recovery operations should include a treatment of the debris with water or wetted water. The resulting increase in particle size will make respiratory protection more effective in protecting the response crews.

  10. Study of distributed fiber-optic laser-ultrasound generation based on ghost-mode of tilted fiber Bragg gratings

    NASA Astrophysics Data System (ADS)

    Tian, Jiajun; Zhang, Qi; Han, Ming

    2013-05-01

    Fiber-optic ultrasonic transducers are an important component of an active ultrasonic testing system for structural health monitoring. Fiber-optic transducers have several advantages such as small size, light weight, and immunity to electromagnetic interference that make them much more attractive than the current available piezoelectric transducers, especially as embedded and permanent transducers in active ultrasonic testing for structural health monitoring. In this paper, a distributed fiber-optic laser-ultrasound generation based on the ghost-mode of tilted fiber Bragg gratings is studied. The influences of the laser power and laser pulse duration on the laser-ultrasound generation are investigated. The results of this paper are helpful to understand the working principle of this laser-ultrasound method and improve the ultrasonic generation efficiency.

  11. Distinct cellular distributions of Kv4 pore-forming and auxiliary subunits in rat dorsal root ganglion neurons.

    PubMed

    Matsuyoshi, Hiroko; Takimoto, Koichi; Yunoki, Takakazu; Erickson, Vickie L; Tyagi, Pradeep; Hirao, Yoshihiko; Wanaka, Akio; Yoshimura, Naoki

    2012-09-17

    Dorsal root ganglia contain heterogeneous populations of primary afferent neurons that transmit various sensory stimuli. This functional diversity may be correlated with differential expression of voltage-gated K(+) (Kv) channels. Here, we examine cellular distributions of Kv4 pore-forming and ancillary subunits that are responsible for fast-inactivating A-type K(+) current. Expression pattern of Kv α-subunit, β-subunit and auxiliary subunit was investigated using immunohistochemistry, in situ hybridization and RT-PCR technique. The two pore-forming subunits Kv4.1 and Kv4.3 show distinct cellular distributions: Kv4.3 is predominantly in small-sized C-fiber neurons, whereas Kv4.1 is seen in DRG neurons in various sizes. Furthermore, the two classes of Kv4 channel auxiliary subunits are also distributed in different-sized cells. KChIP3 is the only significantly expressed Ca(2+)-binding cytosolic ancillary subunit in DRGs and present in medium to large-sized neurons. The membrane-spanning auxiliary subunit DPP6 is seen in a large number of DRG neurons in various sizes, whereas DPP10 is restricted in small-sized neurons. Distinct combinations of Kv4 pore-forming and auxiliary subunits may constitute A-type channels in DRG neurons with different physiological roles. Kv4.1 subunit, in combination with KChIP3 and/or DPP6, form A-type K(+) channels in medium to large-sized A-fiber DRG neurons. In contrast, Kv4.3 and DPP10 may contribute to A-type K(+) current in non-peptidergic, C-fiber somatic afferent neurons. Copyright © 2012 Elsevier Inc. All rights reserved.

  12. Efficacy of screens in removing long fibers from an aerosol stream – sample preparation technique for toxicology studies

    PubMed Central

    Ku, Bon Ki; Deye, Gregory J.; Turkevich, Leonid A.

    2015-01-01

    Fiber dimension (especially length) and biopersistence are thought to be important variables in determining the pathogenicity of asbestos and other elongate mineral particles. In order to prepare samples of fibers for toxicology studies, it is necessary to develop and evaluate methods for separating fibers by length in the micrometer size range. In this study, we have filtered an aerosol of fibers through nylon screens to investigate whether such screens can efficiently remove the long fibers (L >20 μm, a typical macrophage size) from the aerosol stream. Such a sample, deficient in long fibers, could then be used as the control in a toxicology study to investigate the role of length. A well-dispersed aerosol of glass fibers (a surrogate for asbestos) was generated by vortex shaking a Japan Fibrous Material Research Association (JFMRA) glass fiber powder. Fibers were collected on a mixed cellulose ester (MCE) filter, imaged with phase contrast microscopy (PCM) and lengths were measured. Length distributions of the fibers that penetrated through various screens (10, 20 and 60 μm mesh sizes) were analyzed; additional study was made of fibers that penetrated through double screen and centrally blocked screen configurations. Single screens were not particularly efficient in removing the long fibers; however, the alternative configurations, especially the centrally blocked screen configuration, yielded samples substantially free of the long fibers. PMID:24417374

  13. Aging alters contractile properties and fiber morphology in pigeon skeletal muscle.

    PubMed

    Pistilli, Emidio E; Alway, Stephen E; Hollander, John M; Wimsatt, Jeffrey H

    2014-12-01

    In this study, we tested the hypothesis that skeletal muscle from pigeons would display age-related alterations in isometric force and contractile parameters as well as a shift of the single muscle fiber cross-sectional area (CSA) distribution toward smaller fiber sizes. Maximal force output, twitch contraction durations and the force-frequency relationship were determined in tensor propatagialis pars biceps muscle from young 3-year-old pigeons, middle-aged 18-year-old pigeons, and aged 30-year-old pigeons. The fiber CSA distribution was determined by planimetry from muscle sections stained with hematoxylin and eosin. Maximal force output of twitch and tetanic contractions was greatest in muscles from young pigeons, while the time to peak force of twitch contractions was longest in muscles from aged pigeons. There were no changes in the force-frequency relationship between the age groups. Interestingly, the fiber CSA distribution in aged muscles revealed a greater number of larger sized muscle fibers, which was verified visually in histological images. Middle-aged and aged muscles also displayed a greater amount of slow myosin containing muscle fibers. These data demonstrate that muscles from middle-aged and aged pigeons are susceptible to alterations in contractile properties that are consistent with aging, including lower force production and longer contraction durations. These functional changes were supported by the appearance of slow myosin containing muscle fibers in muscles from middle-aged and aged pigeons. Therefore, the pigeon may represent an appropriate animal model for the study of aging-related alterations in skeletal muscle function and structure.

  14. Fiber Bragg grating filter using evaporated induced self assembly of silica nano particles

    NASA Astrophysics Data System (ADS)

    Hammarling, Krister; Zhang, Renyung; Manuilskiy, Anatoliy; Nilsson, Hans-Erik

    2014-03-01

    In the present work we conduct a study of fiber filters produced by evaporation of silica particles upon a MM-fiber core. A band filter was designed and theoretically verified using a 2D Comsol simulation model of a 3D problem, and calculated in the frequency domain in respect to refractive index. The fiber filters were fabricated by stripping and chemically etching the middle part of an MM-fiber until the core was exposed. A mono layer of silica nano particles were evaporated on the core using an Evaporation Induced Self-Assembly (EISA) method. The experimental results indicated a broader bandwidth than indicated by the simulations which can be explained by the mismatch in the particle size distributions, uneven particle packing and finally by effects from multiple mode angles. Thus, there are several closely connected Bragg wavelengths that build up the broader bandwidth. The experimental part shows that it is possible by narrowing the particle size distributing and better control of the particle packing, the filter effectiveness can be greatly improved.

  15. Exposure to nanoscale particles and fibers during machining of hybrid advanced composites containing carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Bello, Dhimiter; Wardle, Brian L.; Yamamoto, Namiko; Guzman deVilloria, Roberto; Garcia, Enrique J.; Hart, Anastasios J.; Ahn, Kwangseog; Ellenbecker, Michael J.; Hallock, Marilyn

    2009-01-01

    This study investigated airborne exposures to nanoscale particles and fibers generated during dry and wet abrasive machining of two three-phase advanced composite systems containing carbon nanotubes (CNTs), micron-diameter continuous fibers (carbon or alumina), and thermoset polymer matrices. Exposures were evaluated with a suite of complementary instruments, including real-time particle number concentration and size distribution (0.005-20 μm), electron microscopy, and integrated sampling for fibers and respirable particulate at the source and breathing zone of the operator. Wet cutting, the usual procedure for such composites, did not produce exposures significantly different than background whereas dry cutting, without any emissions controls, provided a worst-case exposure and this article focuses here. Overall particle release levels, peaks in the size distribution of the particles, and surface area of released particles (including size distribution) were not significantly different for composites with and without CNTs. The majority of released particle surface area originated from the respirable (1-10 μm) fraction, whereas the nano fraction contributed 10% of the surface area. CNTs, either individual or in bundles, were not observed in extensive electron microscopy of collected samples. The mean number concentration of peaks for dry cutting was composite dependent and varied over an order of magnitude with highest values for thicker laminates at the source being >1 × 106 particles cm-3. Concentration of respirable fibers for dry cutting at the source ranged from 2 to 4 fibers cm-3 depending on the composite type. Further investigation is required and underway to determine the effects of various exposure determinants, such as specimen and tool geometry, on particle release and effectiveness of controls.

  16. Myosin isoforms and contractile properties of single fibers of human Latissimus Dorsi muscle.

    PubMed

    Paoli, Antonio; Pacelli, Quirico F; Cancellara, Pasqua; Toniolo, Luana; Moro, Tatiana; Canato, Marta; Miotti, Danilo; Reggiani, Carlo

    2013-01-01

    The aim of our study was to investigate fiber type distribution and contractile characteristics of Latissimus Dorsi muscle (LDM). Samples were collected from 18 young healthy subjects (9 males and 9 females) through percutaneous fine needle muscle biopsy. The results showed a predominance of fast myosin heavy chain isoforms (MyHC) with 42% of MyHC 2A and 25% of MyHC 2X, while MyHC 1 represented only 33%. The unbalance toward fast isoforms was even greater in males (71%) than in females (64%). Fiber type distribution partially reflected MyHC isoform distribution with 28% type 1/slow fibers and 5% hybrid 1/2A fibers, while fast fibers were divided into 30% type 2A, 31% type A/X, 4% type X, and 2% type 1/2X. Type 1/slow fibers were not only less abundant but also smaller in cross-sectional area than fast fibers. During maximal isometric contraction, type 1/slow fibers developed force and tension significantly lower than the two major groups of fast fibers. In conclusion, the predominance of fast fibers and their greater size and strength compared to slow fibers reveal that LDM is a muscle specialized mainly in phasic and powerful activity. Importantly, such specialization is more pronounced in males than in females.

  17. Modeling of Distributed Sensing of Elastic Waves by Fiber-Optic Interferometry

    PubMed Central

    Agbodjan Prince, Just; Kohl, Franz; Sauter, Thilo

    2016-01-01

    This paper deals with the transduction of strain accompanying elastic waves in solids by firmly attached optical fibers. Stretching sections of optical fibers changes the time required by guided light to pass such sections. Exploiting interferometric techniques, highly sensitive fiber-optic strain transducers are feasible based on this fiber-intrinsic effect. The impact on the actual strain conversion of the fiber segment’s shape and size, as well as its inclination to the elastic wavefront is studied. FEM analyses show that severe distortions of the interferometric response occur when the attached fiber length spans a noticeable fraction of the elastic wavelength. Analytical models of strain transduction are presented for typical transducer shapes. They are used to compute input-output relationships for the transduction of narrow-band strain pulses as a function of the mechanical wavelength. The described approach applies to many transducers depending on the distributed interaction with the investigated object. PMID:27608021

  18. Modeling of Distributed Sensing of Elastic Waves by Fiber-Optic Interferometry.

    PubMed

    Agbodjan Prince, Just; Kohl, Franz; Sauter, Thilo

    2016-09-06

    This paper deals with the transduction of strain accompanying elastic waves in solids by firmly attached optical fibers. Stretching sections of optical fibers changes the time required by guided light to pass such sections. Exploiting interferometric techniques, highly sensitive fiber-optic strain transducers are feasible based on this fiber-intrinsic effect. The impact on the actual strain conversion of the fiber segment's shape and size, as well as its inclination to the elastic wavefront is studied. FEM analyses show that severe distortions of the interferometric response occur when the attached fiber length spans a noticeable fraction of the elastic wavelength. Analytical models of strain transduction are presented for typical transducer shapes. They are used to compute input-output relationships for the transduction of narrow-band strain pulses as a function of the mechanical wavelength. The described approach applies to many transducers depending on the distributed interaction with the investigated object.

  19. Investigation on the durability of man-made vitreous fibers in rat lungs.

    PubMed Central

    Bellmann, B; Muhle, H; Kamstrup, O; Draeger, U F

    1994-01-01

    Two types of sized stonewool with median lengths of 6.7 and 10.1 microns and median diameters of 0.63 and 0.85 microns, and crocidolite with fibers of median length of 4.8 microns and median diameter of 0.18 microns were instilled intratracheally into female Wistar rats. A single dose of 2 mg in 0.3 ml saline was used for the stonewool samples and 0.1 mg in 0.3 ml saline for crocidolite. The evenness of distribution of fibers in the lung was checked by scanning electron microscopy (SEM). Five animals per group were sacrificed after 2 days, 1, 3, 6, and 12 months. After low-temperature ashing of the lungs about 200 fibers per animal were analyzed by SEM for length and diameter. The number and mass of fibers in the total lung were calculated. For the stonewool samples the decrease in the number of fibers in the lung ash followed approximately first order kinetics resulting in half-times of 90 and 120 days. The analysis of fiber number and diameter of different length fractions was used to estimate the contribution of three processes of fiber elimination: transport by macrophages for short fibers, breakage of fibers, and dissolution of fibers. (The process of transport by macrophages was found fastest for fibers with length < 2.5 microns). For the elimination of critical fibers with length > 5 microns, the breakage and dissolution were the most important processes. The breakage of fibers was predominant for one of the stonewool samples. The preferential type of the mechanism of fiber elimination is dependent on chemical composition and size distribution. PMID:7882927

  20. Time-dependent breakdown of fiber networks: Uncertainty of lifetime

    NASA Astrophysics Data System (ADS)

    Mattsson, Amanda; Uesaka, Tetsu

    2017-05-01

    Materials often fail when subjected to stresses over a prolonged period. The time to failure, also called the lifetime, is known to exhibit large variability of many materials, particularly brittle and quasibrittle materials. For example, a coefficient of variation reaches 100% or even more. Its distribution shape is highly skewed toward zero lifetime, implying a large number of premature failures. This behavior contrasts with that of normal strength, which shows a variation of only 4%-10% and a nearly bell-shaped distribution. The fundamental cause of this large and unique variability of lifetime is not well understood because of the complex interplay between stochastic processes taking place on the molecular level and the hierarchical and disordered structure of the material. We have constructed fiber network models, both regular and random, as a paradigm for general material structures. With such networks, we have performed Monte Carlo simulations of creep failure to establish explicit relationships among fiber characteristics, network structures, system size, and lifetime distribution. We found that fiber characteristics have large, sometimes dominating, influences on the lifetime variability of a network. Among the factors investigated, geometrical disorders of the network were found to be essential to explain the large variability and highly skewed shape of the lifetime distribution. With increasing network size, the distribution asymptotically approaches a double-exponential form. The implication of this result is that, so-called "infant mortality," which is often predicted by the Weibull approximation of the lifetime distribution, may not exist for a large system.

  1. Bioprinted chitosan-gelatin thermosensitive hydrogels using an inexpensive 3D printer.

    PubMed

    Roehm, Kevin D; Madihally, Sundararajan V

    2017-11-30

    The primary bottleneck in bioprinting cell-laden structures with carefully controlled spatial relation is a lack of biocompatible inks and printing conditions. In this regard, we explored using thermogelling chitosan-gelatin (CG) hydrogel as a novel bioprinting ink; CG hydrogels are unique in that it undergoes a spontaneous phase change at physiological temperature, and does not need post-processing. In addition, we used a low cost (<$800) compact 3D printer, and modified with a new extruder to print using disposable syringes and hypodermic needles. We investigated (i) the effect of concentration of CG on gelation characteristics, (ii) solution preparation steps (centrifugation, mixing, and degassing) on printability and fiber formation, (iii) the print bed temperature profiles via IR imaging and grid-based assessment using thermocouples, (iv) the effect of feed rate (10-480 cm min -1 ), flow rate (15-60 μl min -1 ) and needle height (70-280 μm) on fiber size and characteristics, and (v) the distribution of neuroblastoma cells in printed fibers, and the viability after five days in culture. We used agarose gel to create uniform print surfaces to maintain a constant gap with the needle tip. These results showed that degassing the solution, and precooling the solution was necessary for obtaining continuous fibers. Fiber size decreased from 760, to 243 μm as the feed rate increased from 10 to 100 cm min -1 . Bed temperature played the greatest role in fiber size, followed by feed rate. Increased needle height initially decreased fiber size but then increased showing an optimum. Cells were well distributed within the fibers and exhibited excellent viability and no contamination after 5 d. Overall we printed 3D, sterile, cell-laden structures with an inexpensive bioprinter and a novel ink, without post-processing. The bioprinter described here and the novel CG hydrogels have significant potential as an ink for bioprinitng various cell-laden structures.

  2. The critical size of focal articular cartilage defects is associated with strains in the collagen fibers.

    PubMed

    Heuijerjans, A; Wilson, W; Ito, K; van Donkelaar, C C

    2017-12-01

    The size of full-thickness focal cartilage defect is accepted to be predictive of its fate, but at which size threshold treatment is required is unclear. Clarification of the mechanism behind this threshold effect will help determining when treatment is required. The objective was to investigate the effect of defect size on strains in the collagen fibers and the non-fibrillar matrix of surrounding cartilage. These strains may indicate matrix disruption. Tissue deformation into the defect was expected, stretching adjacent superficial collagen fibers, while an osteochondral implant was expected to prevent these deformations. Finite element simulations of cartilage/cartilage contact for intact, 0.5 to 8mm wide defects and 8mm implant cases were performed. Impact, a load increase to 2MPa in 1ms, and creep loading, a constant load of 0.5MPa for 900s, scenarios were simulated. A composition-based material model for articular cartilage was employed. Impact loading caused low strain levels for all models. Creep loading increased deviatoric strains and collagen strains in the surrounding cartilage. Deviatoric strains increased gradually with defect size, but the surface area at which collagen fiber strains exceeded failure thresholds, abruptly increased for small increases of defect size. This was caused by a narrow distribution of collagen fiber strains resulting from the non-linear stiffness of the fibers. We postulate this might be the mechanism behind the existence of a critical defect size. Filling of the defect with an implant reduced deviatoric and collagen fiber strains towards values for intact cartilage. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. A meta-analysis of asbestos-related cancer risk that addresses fiber size and mineral type.

    PubMed

    Berman, D Wayne; Crump, Kenny S

    2008-01-01

    Quantitative estimates of the risk of lung cancer or mesothelioma in humans from asbestos exposure made by the U.S. Environmental Protection Agency (EPA) make use of estimates of potency factors based on phase-contrast microscopy (PCM) and obtained from cohorts exposed to asbestos in different occupational environments. These potency factors exhibit substantial variability. The most likely reasons for this variability appear to be differences among environments in fiber size and mineralogy not accounted for by PCM. In this article, the U.S. Environmental Protection Agency (EPA) models for asbestos-related lung cancer and mesothelioma are expanded to allow the potency of fibers to depend upon their mineralogical types and sizes. This is accomplished by positing exposure metrics composed of nonoverlapping fiber categories and assigning each category its own unique potency. These category-specific potencies are estimated in a meta-analysis that fits the expanded models to potencies for lung cancer (KL's) or mesothelioma (KM's) based on PCM that were calculated for multiple epidemiological studies in our previous paper (Berman and Crump, 2008). Epidemiological study-specific estimates of exposures to fibers in the different fiber size categories of an exposure metric are estimated using distributions for fiber size based on transmission electron microscopy (TEM) obtained from the literature and matched to the individual epidemiological studies. The fraction of total asbestos exposure in a given environment respectively represented by chrysotile and amphibole asbestos is also estimated from information in the literature for that environment. Adequate information was found to allow KL's from 15 epidemiological studies and KM's from 11 studies to be included in the meta-analysis. Since the range of exposure metrics that could be considered was severely restricted by limitations in the published TEM fiber size distributions, it was decided to focus attention on four exposure metrics distinguished by fiber width: "all widths," widths > 0.2 micro m, widths < 0.4 microm, and widths < 0.2 microm, each of which has historical relevance. Each such metric defined by width was composed of four categories of fibers: chrysotile or amphibole asbestos with lengths between 5 microm and 10 microm or longer than 10 microm. Using these metrics three parameters were estimated for lung cancer and, separately, for mesothelioma: KLA, the potency of longer (length > 10 microm) amphibole fibers; rpc, the potency of pure chrysotile (uncontaminated by amphibole) relative to amphibole asbestos; and rps, the potency of shorter fibers (5 microm < length < 10 microm) relative to longer fibers. For mesothelioma, the hypothesis that chrysotile and amphibole asbestos are equally potent (rpc = 1) was strongly rejected by every metric and the hypothesis that (pure) chrysotile is nonpotent for mesothelioma was not rejected by any metric. Best estimates for the relative potency of chrysotile ranged from zero to about 1/200th that of amphibole asbestos (depending on metric). For lung cancer, the hypothesis that chrysotile and amphibole asbestos are equally potent (rpc = 1) was rejected (p < or = .05) by the two metrics based on thin fibers (length < 0.4 microm and < 0.2 microm) but not by the metrics based on thicker fibers. The "all widths" and widths < 0.4 microm metrics provide the best fits to both the lung cancer and mesothelioma data over the other metrics evaluated, although the improvements are only marginal for lung cancer. That these two metrics provide equivalent (for mesothelioma) and nearly equivalent (for lung cancer) fits to the data suggests that the available data sets may not be sufficiently rich (in variation of exposure characteristics) to fully evaluate the effects of fiber width on potency. Compared to the metric with widths > 0.2 microm with both rps and rpc fixed at 1 (which is nominally equivalent to the traditional PCM metric), the "all widths" and widths < 0.4 microm metrics provide substantially better fits for both lung cancer and, especially, mesothelioma. Although the best estimates of the potency of shorter fibers (5 < length < 10 microm) is zero for the "all widths" and widths < 0.4 microm metrics (or a small fraction of that of longer fibers for the widths > 0.2 microm metric for mesothelioma), the hypothesis that these shorter fibers were nonpotent could not be rejected for any of these metrics. Expansion of these metrics to include a category for fibers with lengths < 5 microm did not find any consistent evidence for any potency of these shortest fibers for either lung cancer or mesothelioma. Despite the substantial improvements in fit over that provided by the traditional use of PCM, neither the "all widths" nor the widths < 0.4 microm metrics (or any of the other metrics evaluated) completely resolve the differences in potency factors estimated in different occupational studies. Unresolved in particular is the discrepancy in potency factors for lung cancer from Quebec chrysotile miners and workers at the Charleston, SC, textile mill, which mainly processed chrysotile from Quebec. A leading hypothesis for this discrepancy is limitations in the fiber size distributions available for this analysis. Dement et al. (2007) recently analyzed by TEM archived air samples from the South Carolina plant to determine a detailed distribution of fiber lengths up to lengths of 40 microm and greater. If similar data become available for Quebec, perhaps these two size distributions can be used to eliminate the discrepancy between these two studies.

  4. Potential release of fibers from burning carbon composites. [aircraft fires

    NASA Technical Reports Server (NTRS)

    Bell, V. L.

    1980-01-01

    A comprehensive experimental carbon fiber source program was conducted to determine the potential for the release of conductive carbon fibers from burning composites. Laboratory testing determined the relative importance of several parameters influencing the amounts of single fibers released, while large-scale aviation jet fuel pool fires provided realistic confirmation of the laboratory data. The dimensions and size distributions of fire-released carbon fibers were determined, not only for those of concern in an electrical sense, but also for those of potential interest from a health and environmental standpoint. Fire plume and chemistry studies were performed with large pool fires to provide an experimental input into an analytical modelling of simulated aircraft crash fires. A study of a high voltage spark system resulted in a promising device for the detection, counting, and sizing of electrically conductive fibers, for both active and passive modes of operation.

  5. Acousto-Optical Evaluation Of Fiber Size In Wood Pulp

    NASA Astrophysics Data System (ADS)

    Dion, J. L.; Garceau, J. J.; Morissette, J. C.

    1986-10-01

    In the pulp and paper industry, the problem of regular and fast evaluation of wood fiber characteristics such as length and specific area is an important one. With this in view, we have been studying an acousto-optical technique based on the acoustic agglomeration of fibers in a water suspension, where a stationary ultrasonic field is created at about 150 kHz. Under the influence of radiation forces, fibers re-orient themselves parallel to the nodal planes of acoustic pressure, and regroup or agglomerate in these planes in different characteristic times. These are mesured by means of the light scattered at small angles. We have found that these times depend on the size distribution of fibers, particularly length. We present results obtained with an assortment of fiber types, under various experimental conditions which indicate eventual applications in the automatic control of pulp production.

  6. Skeletal muscle fiber size and fiber type distribution in human cancer: Effects of weight loss and relationship to physical function.

    PubMed

    Toth, Michael J; Callahan, Damien M; Miller, Mark S; Tourville, Timothy W; Hackett, Sarah B; Couch, Marion E; Dittus, Kim

    2016-12-01

    Cancer patients frequently experience weight loss, with negative consequences for functionality and prognosis. The extent to which muscle atrophy contributes to weight loss, however, is not clear, as few studies have directly measured muscle fiber morphology in cancer patients. Whole body and regional tissue composition were measured, along with the cross-sectional area (CSA) and fiber type of mechanically-isolated, single muscle fibers, in 19 cancer patients (8 with a history of weight loss, 11 weight-stable) and 15 non-diseased controls. Whole body fat mass was reduced in cancer patients with a history of weight loss, but no differences in whole body or leg fat-free mass were apparent. In contrast, reductions (∼20%) in single muscle fiber CSA were found in both slow-twitch, myosin heavy chain (MHC) I and fast-twitch, MHC IIA fibers in both weight-stable patients and those with a history of weight loss. Fiber type distribution showed a shift towards a fast-twitch phenotype compared to controls, which may preserve muscle function in cancer patients despite atrophy, as positive relationships were found between the fractions of hybrid MHC IIAX and I/IIA fibers and 6-min walk performance. Our results suggest that, although not apparent from whole body or regional measurements, cancer is associated with reduced skeletal muscle fiber size independent of weight loss history and a shift towards fast-twitch fibers, phenotypes that resemble adaptations to muscle disuse. Copyright © 2016 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.

  7. Fibromyalgia is Associated With Altered Skeletal Muscle Characteristics Which May Contribute to Post-Exertional Fatigue in Post-Menopausal Women

    PubMed Central

    Srikuea, Ratchakrit; Symons, T. Brock; Long, Douglas E.; Lee, Jonah D.; Shang, Yu; Chomentowski, Peter J.; Yu, Guoqiang; Crofford, Leslie J.; Peterson, Charlotte A.

    2012-01-01

    Objective To identify muscle physiological properties that may contribute to post-exertional fatigue and malaise in women with fibromyalgia (FM). Methods Healthy postmenopausal women with (n=11) and without (n=11) fibromyalgia, age 51–70 years, participated in this study. Physical characteristics along with self-reported questionnaires were evaluated. Strength loss and tissue oxygenation in response to a fatiguing exercise protocol were used to quantify fatigability and the local muscle hemodynamic profile. Muscle biopsies were obtained to assess between-group differences in baseline muscle properties using histochemical, immunohistochemical and electron microscopic analyses. Results No significant difference in muscle fatigue in response to exercise was apparent between healthy controls and subjects with FM. However, self-reported fatigue and pain were correlated to prolonged loss of strength following 12-min of recovery in subjects with FM. Although there was no difference in percent SDH positive (type I) and SDH negative (type II) fibers or in mean fiber cross-sectional area between groups, subjects with FM showed greater size variability and altered fiber size distribution. Only in healthy controls, fatigue-resistance was strongly correlated with the size of SDH positive fibers and hemoglobin oxygenation. By contrast, subjects with FM with the highest percentage of SDH positive fibers recovered strength most effectively, which was correlated to capillary density. However, overall, capillary density was lower in subjects with FM. Conclusion Peripheral mechanisms i.e. altered muscle fiber size distribution and decreased capillary density may contribute to post-exertional fatigue in subjects with FM. Understanding these defects in fibromyalgic muscle may provide valuable insight for treatment. PMID:23124535

  8. Pore size distribution and supercritical hydrogen adsorption in activated carbon fibers

    NASA Astrophysics Data System (ADS)

    Purewal, J. J.; Kabbour, H.; Vajo, J. J.; Ahn, C. C.; Fultz, B.

    2009-05-01

    Pore size distributions (PSD) and supercritical H2 isotherms have been measured for two activated carbon fiber (ACF) samples. The surface area and the PSD both depend on the degree of activation to which the ACF has been exposed. The low-surface-area ACF has a narrow PSD centered at 0.5 nm, while the high-surface-area ACF has a broad distribution of pore widths between 0.5 and 2 nm. The H2 adsorption enthalpy in the zero-coverage limit depends on the relative abundance of the smallest pores relative to the larger pores. Measurements of the H2 isosteric adsorption enthalpy indicate the presence of energy heterogeneity in both ACF samples. Additional measurements on a microporous, coconut-derived activated carbon are presented for reference.

  9. Pore size distribution and supercritical hydrogen adsorption in activated carbon fibers.

    PubMed

    Purewal, J J; Kabbour, H; Vajo, J J; Ahn, C C; Fultz, B

    2009-05-20

    Pore size distributions (PSD) and supercritical H2 isotherms have been measured for two activated carbon fiber (ACF) samples. The surface area and the PSD both depend on the degree of activation to which the ACF has been exposed. The low-surface-area ACF has a narrow PSD centered at 0.5 nm, while the high-surface-area ACF has a broad distribution of pore widths between 0.5 and 2 nm. The H2 adsorption enthalpy in the zero-coverage limit depends on the relative abundance of the smallest pores relative to the larger pores. Measurements of the H2 isosteric adsorption enthalpy indicate the presence of energy heterogeneity in both ACF samples. Additional measurements on a microporous, coconut-derived activated carbon are presented for reference.

  10. Embedded 100 Gbps Photonic Components

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuznia, Charlie

    This innovation to fiber optic component technology increases the performance, reduces the size and reduces the power consumption of optical communications within dense network systems, such as advanced distributed computing systems and data centers. VCSEL technology is enabling short-reach (< 100 m) and >100 Gbps optical interconnections over multi-mode fiber in commercial applications.

  11. Dynamic stability of nano-fibers self-assembled from short amphiphilic A6D peptides

    NASA Astrophysics Data System (ADS)

    Nikoofard, Narges; Maghsoodi, Fahimeh

    2018-04-01

    Self-assembly of A6D amphiphilic peptides in explicit water is studied by using coarse-grained molecular dynamics simulations. It is observed that the self-assembly of randomly distributed A6D peptides leads to the formation of a network of nano-fibers. Two other simulations with cylindrical nano-fibers as the initial configuration show the dynamic stability of the self-assembled nano-fibers. As a striking feature, notable fluctuations occur along the axes of the nano-fibers. Depending on the number of peptides per unit length of the nano-fiber, flat-shaped bulges or spiral shapes along the nano-fiber axis are observed at the fluctuations. Analysis of the particle distribution around the nano-fiber indicates that the hydrophobic core and the hydrophilic shell of the nano-structure are preserved in both simulations. The size of the deformations and their correlation times are different in the two simulations. This study gives new insights into the dynamics of the self-assembled nano-structures of short amphiphilic peptides.

  12. Dynamic stability of nano-fibers self-assembled from short amphiphilic A6D peptides.

    PubMed

    Nikoofard, Narges; Maghsoodi, Fahimeh

    2018-04-07

    Self-assembly of A 6 D amphiphilic peptides in explicit water is studied by using coarse-grained molecular dynamics simulations. It is observed that the self-assembly of randomly distributed A 6 D peptides leads to the formation of a network of nano-fibers. Two other simulations with cylindrical nano-fibers as the initial configuration show the dynamic stability of the self-assembled nano-fibers. As a striking feature, notable fluctuations occur along the axes of the nano-fibers. Depending on the number of peptides per unit length of the nano-fiber, flat-shaped bulges or spiral shapes along the nano-fiber axis are observed at the fluctuations. Analysis of the particle distribution around the nano-fiber indicates that the hydrophobic core and the hydrophilic shell of the nano-structure are preserved in both simulations. The size of the deformations and their correlation times are different in the two simulations. This study gives new insights into the dynamics of the self-assembled nano-structures of short amphiphilic peptides.

  13. Brittle-to-ductile transition in a fiber bundle with strong heterogeneity.

    PubMed

    Kovács, Kornél; Hidalgo, Raul Cruz; Pagonabarraga, Ignacio; Kun, Ferenc

    2013-04-01

    We analyze the failure process of a two-component system with widely different fracture strength in the framework of a fiber bundle model with localized load sharing. A fraction 0≤α≤1 of the bundle is strong and it is represented by unbreakable fibers, while fibers of the weak component have randomly distributed failure strength. Computer simulations revealed that there exists a critical composition α(c) which separates two qualitatively different behaviors: Below the critical point, the failure of the bundle is brittle, characterized by an abrupt damage growth within the breakable part of the system. Above α(c), however, the macroscopic response becomes ductile, providing stability during the entire breaking process. The transition occurs at an astonishingly low fraction of strong fibers which can have importance for applications. We show that in the ductile phase, the size distribution of breaking bursts has a power law functional form with an exponent μ=2 followed by an exponential cutoff. In the brittle phase, the power law also prevails but with a higher exponent μ=9/2. The transition between the two phases shows analogies to continuous phase transitions. Analyzing the microstructure of the damage, it was found that at the beginning of the fracture process cracks nucleate randomly, while later on growth and coalescence of cracks dominate, which give rise to power law distributed crack sizes.

  14. Immunocytochemical localization of calretinin in the superficial layers of the cat superior colliculus.

    PubMed

    Hong, Soo-Kyung; Kim, Jee-Young; Jeon, Chang-Jin

    2002-11-01

    We localized calretinin-immunoreactive (IR) fibers and cells in the superior colliculus (SC) of the cat and studied the distribution and effect of enucleation on the distribution of this protein. Calretinin was localized with antibody immunocytochemistry. A dense plexus of anti-calretinin-IR fibers was found within the upper part of the superficial gray layer. Almost all of the labeled fibers were small diameter fibers with few varicosities. Monocular enucleation produced an almost complete reduction of calretinin-IR fibers in the SC contralateral to the enucleation. Furthermore, many calretinin-IR cells appeared in the contralateral SC. The newly appeared cells had small- to medium-sized vertical fusiform, oval or round, or stellate cell bodies. Two-color immunofluorescence revealed that no cells in the superficial layers expressed both calretinin and GABA. Many retinal ganglion cells were labeled after injections of retrograde axonal transport horseradish peroxidase (HRP) in the superficial layers. However, no large cells were double-labeled with calretinin and HRP. More than 95% of the double-labeled cells were small cells (<15 microm). Based on the retinal ganglion cell size, we believe that the vast majority of calretinin-IR retinocollicular fibers in cat SC are small gamma type cells that have W type physiologies.

  15. Polymer based nanocomposites with nanofibers and exfoliated clay

    NASA Technical Reports Server (NTRS)

    Meador, Michael A.; Reneker, Darrell H.

    2005-01-01

    Polymer solutions, containing clay sheets, were electrospun into nanofibers and microfibers that contained clay sheets inside. Controllable removal of polymer by plasma etching from the surface of fibers revealed the arrangement of clay. The shape, flexibility, size distribution and arrangement of clay sheets were observed by transmission and scanning electron microscopy. The clay sheets were partially aligned in big fibers with normal direction of clay sheets perpendicular to fiber axis. Crumpling of clay sheets inside fibers was observed when the fiber diameter was comparable to the lateral size of clay sheets. Single sheets of clay were observed both by catching clay sheets dispersed in water with electrospun nanofiber mats and by the deliberate removal of most of the polymer in the fibers. Thin, flexible gas barrier films, that are reasonably strong, were assembled from clay sheets and polymer nanofibers. Structure of composite films was characterized with scanning electron microscopy. Continuous film of clay sheets were physically attached to the surface of fiber mats. Spincoating film of polymer and clay sheets was reinforced by electrospun fiber scaffold. Certain alignment of clay sheets was observed in the vicinity of fibers.

  16. Adsorption Properties of Lignin-derived Activated Carbon Fibers (LACF)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Contescu, Cristian I.; Gallego, Nidia C.; Thibaud-Erkey, Catherine

    The object of this CRADA project between Oak Ridge National Laboratory (ORNL) and United Technologies Research Center (UTRC) is the characterization of lignin-derived activated carbon fibers (LACF) and determination of their adsorption properties for volatile organic compounds (VOC). Carbon fibers from lignin raw materials were manufactured at Oak Ridge National Laboratory (ORNL) using the technology previously developed at ORNL. These fibers were physically activated at ORNL using various activation conditions, and their surface area and pore-size distribution were characterized by gas adsorption. Based on these properties, ORNL did down-select five differently activated LACF materials that were delivered to UTRC formore » measurement of VOC adsorption properties. UTRC used standard techniques based on breakthrough curves to measure and determine the adsorption properties of indoor air pollutants (IAP) - namely formaldehyde and carbon dioxide - and to verify the extent of saturated fiber regenerability by thermal treatments. The results are summarized as follows: (1) ORNL demonstrated that physical activation of lignin-derived carbon fibers can be tailored to obtain LACF with surface areas and pore size distributions matching the properties of activated carbon fibers obtained from more expensive, fossil-fuel precursors; (2) UTRC investigated the LACF potential for use in air cleaning applications currently pursued by UTRC, such as building ventilation, and demonstrated their regenerability for CO2 and formaldehyde, (3) Both partners agree that LACF have potential for possible use in air cleaning applications.« less

  17. Time-dependent fiber bundles with local load sharing.

    PubMed

    Newman, W I; Phoenix, S L

    2001-02-01

    Fiber bundle models, where fibers have random lifetimes depending on their load histories, are useful tools in explaining time-dependent failure in heterogeneous materials. Such models shed light on diverse phenomena such as fatigue in structural materials and earthquakes in geophysical settings. Various asymptotic and approximate theories have been developed for bundles with various geometries and fiber load-sharing mechanisms, but numerical verification has been hampered by severe computational demands in larger bundles. To gain insight at large size scales, interest has returned to idealized fiber bundle models in 1D. Such simplified models typically assume either equal load sharing (ELS) among survivors, or local load sharing (LLS) where a failed fiber redistributes its load onto its two nearest flanking survivors. Such models can often be solved exactly or asymptotically in increasing bundle size, N, yet still capture the essence of failure in real materials. The present work focuses on 1D bundles under LLS. As in previous works, a fiber has failure rate following a power law in its load level with breakdown exponent rho. Surviving fibers under fixed loads have remaining lifetimes that are independent and exponentially distributed. We develop both new asymptotic theories and new computational algorithms that greatly increase the bundle sizes that can be treated in large replications (e.g., one million fibers in thousands of realizations). In particular we develop an algorithm that adapts several concepts and methods that are well-known among computer scientists, but relatively unknown among physicists, to dramatically increase the computational speed with no attendant loss of accuracy. We consider various regimes of rho that yield drastically different behavior as N increases. For 1/2< or =rho< or =1, ELS and LLS have remarkably similar behavior (they have identical lifetime distributions at rho=1) with approximate Gaussian bundle lifetime statistics and a finite limiting mean. For rho>1 this Gaussian behavior also applies to ELS, whereas LLS behavior diverges sharply showing brittle, weakest volume behavior in terms of characteristic elements derived from critical cluster formation. For 0

  18. Pore size engineering applied to the design of separators for nickel-hydrogen cells and batteries

    NASA Technical Reports Server (NTRS)

    Abbey, K. M.; Britton, D. L.

    1983-01-01

    Pore size engineering in starved alkaline multiplate cells involves adopting techniques to widen the volume tolerance of individual cells. Separators with appropriate pore size distributions and wettability characteristics (capillary pressure considerations) to have wider volume tolerances and an ability to resist dimensional changes in the electrodes were designed. The separators studied for potential use in nickel-hydrogen cells consist of polymeric membranes as well as inorganic microporous mats. In addition to standard measurements, the resistance and distribution of electrolyte as a function of total cell electrolyte content were determined. New composite separators consisting of fibers, particles and/or binders deposited on Zircar cloth were developed in order to engineer the proper capillary pressure characteristics in the separator. These asymmetric separators were prepared from a variety of fibers, particles and binders.

  19. Ophthalmic Diagnostics Using a New Dynamic Light Scattering Fiber Optic Probe

    NASA Technical Reports Server (NTRS)

    Ansari, Rafat R.; Suh, Kwang I.; Dellavecchia, Michael A.; Dubin, Stephen

    1995-01-01

    A new fiber optic probe is developed to study different parts of the eye. The probe positioned in front of an eye, delivers a low power light from a laser diode into the eye and guides the light which is back scattered by different components (aqueous humor, lens, and vitreous humor) of the eye through a receiving optical fiber to a photo detector. The probe provides rapid determination of macromolecular diffusivities and their respective size distributions in the eye lens and the gel-like material in the vitreous humor. We report alpha-crystalline size distributions, as a function of penetration depth, inside the lens and hyaluronic acid molecular size distribution in the vitreous body. In a clinical setting, the probe can be mounted on a slit-lamp apparatus simply by using a H-ruby lens holder. The capability of detecting cataracts, both nuclear and peripheral, in their early stages of formation, in a non invasive and quantitative fashion, has the potential in patient monitoring and in developing and testing new drugs or diet therapies to 'dissolve' or slow down the cataract formation before surgery is necessary. The ability to detect biochemical and macromolecular changes in the vitreous structure can be very useful in identifying certain diseases of the posterior chamber, e.g., posterior vitreous detachment.

  20. High resolution, high sensitivity, dynamic distributed structural monitoring using optical frequency domain reflectometry

    NASA Astrophysics Data System (ADS)

    Kreger, Stephen T.; Sang, Alex K.; Garg, Naman; Michel, Julia

    2013-05-01

    Fiber-optic ultrasonic transducers are an important component of an active ultrasonic testing system for structural health monitoring. Fiber-optic transducers have several advantages such as small size, light weight, and immunity to electromagnetic interference that make them much more attractive than the current available piezoelectric transducers, especially as embedded and permanent transducers in active ultrasonic testing for structural health monitoring. In this paper, a distributed fiber-optic laser-ultrasound generation based on the ghost-mode of tilted fiber Bragg gratings is studied. The influences of the laser power and laser pulse duration on the laser-ultrasound generation are investigated. The results of this paper are helpful to understand the working principle of this laser-ultrasound method and improve the ultrasonic generation efficiency.

  1. Physical properties of organic particulate UV-absorbers used in sunscreens. I. Determination of particle size with fiber-optic quasi-elastic light scattering (FOQELS), disc centrifugation, and laser diffractometry.

    PubMed

    Herzog, Bernd; Katzenstein, Armin; Quass, Katja; Stehlin, Albert; Luther, Helmut

    2004-03-01

    In this study microparticles consisting of a benzotriazole derivative, which are used as absorbers for UV radiation in cosmetic sunscreens, were investigated. The particles were micronized in presence of a dispersing agent by means of a ball milling process. According to the energy input different particle sizes were produced in the range of 0.16 to 4 microm. The particle sizes obtained after different stages of the micronization process were measured using fiber-optic quasi-elastic light scattering (FOQELS), disc centrifugation, and laser diffractometry. All methods showed satisfactory agreement over the whole range of sizes. With the FOQELS technique the particle size distribution could be resolved to sizes well below 0.1 microm.

  2. A Fiber Optic Probe for the Detection of Cataracts

    NASA Technical Reports Server (NTRS)

    Ansari, Rafat R.; Dhadwal, Harbans S.

    1993-01-01

    A compact fiber optic probe developed for on-orbit science experiments was used to detect the onset of cataracts, a capability that could eliminate physicians' guesswork and result in new drugs to 'dissolve' or slow down the cataract formation before surgery is necessary. The probe is based upon dynamic light scattering (DLS) principles. It has no moving parts, no apertures, and requires no optical alignment. It is flexible and easy to use. Results are presented for excised but intact human eye lenses. In a clinical setting, the device can be easily incorporated into a slit-lamp apparatus (ophthalmoscope) for complete eye diagnostics. In this set-up, the integrated fiber optic probe, the size of a pencil, delivers a low power cone of laser light into the eye of a patient and guides the light which is backscattered by the protein molecules of the lens through a receiving optical fiber to a photo detector. The non-invasive DLS measurements provide rapid determination of protein crystalline size and its size distribution in the eye lens.

  3. Study on selective laser sintering of glass fiber reinforced polystyrene

    NASA Astrophysics Data System (ADS)

    Yang, Laixia; Wang, Bo; Zhou, Wenming

    2017-12-01

    In order to improve the bending strength of Polystyrene (PS) sintered parts by selective laser sintering, Polystyrene/glass fiber (PS/GF) composite powders were prepared by mechanical mixing method. The size distribution of PS/GF composite powders was characterized by laser particle size analyzer. The optimum ratio of GF was determined by proportioning sintering experiments. The influence of process parameters on the bending strength of PS and PS/GF sintered parts was studied by orthogonal test. The result indicates that the particle size of PS/GF composite powder is mainly distributed in 24.88 μm~139.8 μm. When the content of GF is 10%, it has better strengthen effect. Finally, the article used the optimum parameter of the two materials to sinter prototype, it is found that the PS/GF prototype has the advantages of good accuracy and high strength.

  4. Pore size engineering applied to the design of separators for nickel-hydrogen cells and batteries

    NASA Technical Reports Server (NTRS)

    Abbey, K. M.; Britton, D. L.

    1983-01-01

    Pore size engineering in starved alkaline multiplate cells involves adopting techniques to widen the volume tolerance of individual cells. Separators with appropriate pore size distributions and wettability characteristics (capillary pressure considerations) to have wider volume tolerances and an ability to resist dimensional changes in the electrodes were designed. The separators studied for potential use in nickel-hydrogen cells consist of polymeric membranes as well as inorganic microporous mats. In addition to standard measurements, the resistance and distribution of electrolyte as a function of total cell electrolyte content were determined. New composite separators consisting of fibers, particles and/or binders deposited on Zircar cloth were developed in order to engineer the proper capillary pressure characteristics in the separator. These asymmetric separators were prepared from a variety of fibers, particles and binders. Previously announced in STAR as N83-24571

  5. The energy dissipative mechanisms of the particle-fiber interface in a textile composite

    NASA Astrophysics Data System (ADS)

    McAllister, Quinn Patrick

    Impact resistant fabrics comprised of woven high performance fibers (e.g., Kevlar) have exhibited improved energy dissipative capability with the inclusion of nano- to micrometer sized particles. Upon impact, the particles embed and gouge adjacent fiber surfaces. While the particle-fiber interactions appear to be a primary mechanism for the increase in energy dissipation, the fundamentals of the nano- to micrometer sized gouging response of high performance fibers and the dissipation of energy due to particle gouging have not been studied previously. In this research, nanoindentation and nanoscratching techniques, which exploit probe sizes in the range of nano- to micrometers, were used to study the particle-fiber contact and develop nanoscale structure-property relationships of single Kevlar fibers. Atomic force microscopy based methods were used to create high resolution stiffness maps of fiber cross-sections, the results of which indicated that the stiffness of Kevlar 49 fibers is independent of radial position, while Kevlar KM2 fibers exhibit a reduced stiffness "shell" region (up to ˜300-350 nm thick). Instrumented indentation was used to evaluate the local response of Kevlar fibers with respect to orientation and contact size. For radial indentation, modifications to the traditional indentation analysis were developed to account for fiber curvature and finite size effects. A critical contact size was established above which the fiber response was independent of indenter size. This "homogeneous" response was used to estimate the local material properties of the Kevlar fibers through the application of an analytical model for indentation of a transversely isotropic material. The local properties of both fibers differed from their previously measured bulk properties, which was likely due, at least in part, to the deformation mechanisms of the fiber microstructure during indentation. Nanoindentation and nanoscratch tests were then conducted to study the deformation mechanisms of the fiber microstructure associated with a nano- to micrometer sized gouge of the fiber surface. Relationships between the observed mechanisms and the measured friction and energy were developed, resulting in new insights into the relevant energy dissipation processes of the particle-fiber interface. The level of apparent friction increased with increasing levels of strain imparted on the fiber surface, reaching values of up to ˜300% of the previously reported Kevlar yarn-yarn friction. Increased levels of friction during impact of a fabric have been shown to increase the energy required for the relative yarn translations, increasing the number of fibers strained and failed in tension. The energy of a single gouge made using probes exhibiting contact geometries similar to a particle-fiber contact was on the order of just 1% of the energy required to fail a fiber in tension (calculated based on a particle gouge and fiber tensile strain over one particle diameter). In the case of multiple particles distributed within a fabric, an impact event will involve energy dissipation from particle gouging, transverse fiber compression, and fiber tensile failure, where the ratio of the total energies associated with each of these processes was estimated to be on the order of 0.2:1:1 (assuming a limit at a transverse compressive strain of 0.3). Therefore, both the energy and the friction associated with particle gouging can increase the energy dissipative capabilities of a fabric, where the maximum contribution of the particle-fiber interface is likely related to the fabric's energy dissipative mechanisms that depend on friction.

  6. Optical fiber sensors-based temperature distribution measurement in ex vivo radiofrequency ablation with submillimeter resolution.

    PubMed

    Macchi, Edoardo Gino; Tosi, Daniele; Braschi, Giovanni; Gallati, Mario; Cigada, Alfredo; Busca, Giorgio; Lewis, Elfed

    2014-01-01

    Radiofrequency thermal ablation (RFTA) induces a high-temperature field in a biological tissue having steep spatial (up to 6°C∕mm) and temporal (up to 1°C∕s) gradients. Applied in cancer care, RFTA produces a localized heating, cytotoxic for tumor cells, and is able to treat tumors with sizes up to 3 to 5 cm in diameter. The online measurement of temperature distribution at the RFTA point of care has been previously carried out with miniature thermocouples and optical fiber sensors, which exhibit problems of size, alteration of RFTA pattern, hysteresis, and sensor density worse than 1 sensor∕cm. In this work, we apply a distributed temperature sensor (DTS) with a submillimeter spatial resolution for the monitoring of RFTA in porcine liver tissue. The DTS demodulates the chaotic Rayleigh backscattering pattern with an interferometric setup to obtain the real-time temperature distribution. A measurement chamber has been set up with the fiber crossing the tissue along different diameters. Several experiments have been carried out measuring the space-time evolution of temperature during RFTA. The present work showcases the temperature monitoring in RFTA with an unprecedented spatial resolution and is exportable to in vivo measurement; the acquired data can be particularly useful for the validation of RFTA computational models.

  7. Strain distribution in thin concrete pavement panels under three-point loading to failure with pre-pulse-pump Brillouin optical time domain analysis (Presentation Video)

    NASA Astrophysics Data System (ADS)

    Bao, Yi; Cain, John; Chen, Yizheng; Huang, Ying; Chen, Genda; Palek, Leonard

    2015-04-01

    Thin concrete panels reinforced with alloy polymer macro-synthetic fibers have recently been introduced to rapidly and cost-effectively improve the driving condition of existing roadways by laying down a fabric sheet on the roadways, casting a thin layer of concrete, and then cutting the layer into panels. This study is aimed to understand the strain distribution and potential crack development of concrete panels under three-point loading. To this end, six full-size 6ft×6ft×3in concrete panels were tested to failure in the laboratory. They were instrumented with three types of single-mode optical fiber sensors whose performance and ability to measure the strain distribution and detect cracks were compared. Each optical fiber sensor was spliced and calibrated, and then attached to a fabric sheet using adhesive. A thin layer of mortar (0.25 ~ 0.5 in thick) was cast on the fabric sheet. The three types of distributed sensors were bare SM-28e+ fiber, SM-28e+ fiber with a tight buffer, and concrete crack cable, respectively. The concrete crack cable consisted of one SM-28e+ optical fiber with a tight buffer, one SM-28e+ optical fiber with a loose buffer for temperature compensation, and an outside protective tight sheath. Distributed strains were collected from the three optical fiber sensors with pre-pulse-pump Brillouin optical time domain analysis in room temperature. Among the three sensors, the bare fiber was observed to be most fragile during construction and operation, but most sensitive to strain change or micro-cracks. The concrete crack cable was most rugged, but not as sensitive to micro-cracks and robust in micro-crack measurement as the bare fiber. The ruggedness and sensitivity of the fiber with a tight buffer were in between the bare fiber and the concrete crack cable. The strain distribution resulted from the three optical sensors are in good agreement, and can be applied to successfully locate cracks in the concrete panels. It was observed that the three types of fibers were functional until the concrete panels have experienced inelastic deformation, making the distributed strain sensing technology promising for real applications in pavement engineering.

  8. Few-mode optical fiber based simultaneously distributed curvature and temperature sensing.

    PubMed

    Wu, Hao; Tang, Ming; Wang, Meng; Zhao, Can; Zhao, Zhiyong; Wang, Ruoxu; Liao, Ruolin; Fu, Songnian; Yang, Chen; Tong, Weijun; Shum, Perry Ping; Liu, Deming

    2017-05-29

    The few-mode fiber (FMF) based Brillouin sensing operated in quasi-single mode (QSM) has been reported to achieve the distributed curvature measurement by monitoring the bend-induced strain variation. However, its practicality is limited by the inherent temperature-strain cross-sensitivity of Brillouin sensors. Here we proposed and experimentally demonstrated an approach for simultaneously distributed curvature and temperature sensing, which exploits a hybrid QSM operated Raman-Brillouin system in FMFs. Thanks to the larger spot size of the fundamental mode in the FMF, the Brillouin frequency shift change of the FMF is used for curvature estimation while the temperature variation is alleviated through Raman signals with the enhanced signal-to-noise ratio (SNR). Within 2 minutes measuring time, a 1.5 m spatial resolution is achieved along a 2 km FMF. The worst resolution of the square of fiber curvature is 0.333 cm -2 while the temperature resolution is 1.301 °C at the end of fiber.

  9. SMASH - semi-automatic muscle analysis using segmentation of histology: a MATLAB application.

    PubMed

    Smith, Lucas R; Barton, Elisabeth R

    2014-01-01

    Histological assessment of skeletal muscle tissue is commonly applied to many areas of skeletal muscle physiological research. Histological parameters including fiber distribution, fiber type, centrally nucleated fibers, and capillary density are all frequently quantified measures of skeletal muscle. These parameters reflect functional properties of muscle and undergo adaptation in many muscle diseases and injuries. While standard operating procedures have been developed to guide analysis of many of these parameters, the software to freely, efficiently, and consistently analyze them is not readily available. In order to provide this service to the muscle research community we developed an open source MATLAB script to analyze immunofluorescent muscle sections incorporating user controls for muscle histological analysis. The software consists of multiple functions designed to provide tools for the analysis selected. Initial segmentation and fiber filter functions segment the image and remove non-fiber elements based on user-defined parameters to create a fiber mask. Establishing parameters set by the user, the software outputs data on fiber size and type, centrally nucleated fibers, and other structures. These functions were evaluated on stained soleus muscle sections from 1-year-old wild-type and mdx mice, a model of Duchenne muscular dystrophy. In accordance with previously published data, fiber size was not different between groups, but mdx muscles had much higher fiber size variability. The mdx muscle had a significantly greater proportion of type I fibers, but type I fibers did not change in size relative to type II fibers. Centrally nucleated fibers were highly prevalent in mdx muscle and were significantly larger than peripherally nucleated fibers. The MATLAB code described and provided along with this manuscript is designed for image processing of skeletal muscle immunofluorescent histological sections. The program allows for semi-automated fiber detection along with user correction. The output of the code provides data in accordance with established standards of practice. The results of the program have been validated using a small set of wild-type and mdx muscle sections. This program is the first freely available and open source image processing program designed to automate analysis of skeletal muscle histological sections.

  10. In-flight fiber optic acoustic emission sensor (FAESense) system for the real time detection, localization, and classification of damage in composite aircraft structures

    NASA Astrophysics Data System (ADS)

    Mendoza, Edgar; Prohaska, John; Kempen, Connie; Esterkin, Yan; Sun, Sunjian

    2013-05-01

    Acoustic emission sensing is a leading structural health monitoring technique use for the early warning detection of structural damage associated with impacts, cracks, fracture, and delaminations in advanced materials. Current AE systems based on electronic PZT transducers suffer from various limitations that prevent its wide dynamic use in practical avionics and aerospace applications where weight, size and power are critical for operation. This paper describes progress towards the development of a wireless in-flight distributed fiber optic acoustic emission monitoring system (FAESense™) suitable for the onboard-unattended detection, localization, and classification of damage in avionics and aerospace structures. Fiber optic AE sensors offer significant advantages over its counterpart electronic AE sensors by using a high-density array of micron-size AE transducers distributed and multiplex over long lengths of a standard single mode optical fiber. Immediate SHM applications are found in commercial and military aircraft, helicopters, spacecraft, wind mil turbine blades, and in next generation weapon systems, as well as in the petrochemical and aerospace industries, civil structures, power utilities, and a wide spectrum of other applications.

  11. Effect of micronization on the physicochemical properties of insoluble dietary fiber from citrus (Citrus junos Sieb. ex Tanaka) pomace.

    PubMed

    Ye, Fayin; Tao, Bingbing; Liu, Jia; Zou, Yan; Zhao, Guohua

    2016-04-01

    The aim of this work was to study the effect of micronization (mechanical and jet grindings) on the physicochemical properties of the insoluble dietary fiber from citrus pomace in comparison with ordinary grinding. The results showed that micronization treatment effectively pulverized the IDF-CP powders to micron scale and significantly increased the soluble dietary fiber content (p < 0.05). Compared with mechanical grinding, jet grinding was more effective in size reduction and resulted in IDF-CP powders with narrower particle size distributions. Micronized IDF-CP powders had smaller particle size, smoother surface, higher fluidity, cation-exchange capacity, and metal cation binding capacity values, but lower water holding capacity, oil holding capacity, and swelling capacity values. These functional properties were significantly dependent on surface area and particle size (D0.5). The present study suggested that micronization treatments could modify functional properties of IDF-CP powders, which promotes their use in food applications. © The Author(s) 2015.

  12. Effects of lint cleaning on lint trash particle size distribution

    USDA-ARS?s Scientific Manuscript database

    Cotton quality trash measurements used today typically yield a single value for trash parameters for a lint sample (i.e. High Volume Instrument – percent area; Advanced Fiber Information System – total count, trash size, dust count, trash count, and visible foreign matter). A Cotton Trash Identifica...

  13. Photonic jet subwavelength etching using a shaped optical fiber tip.

    PubMed

    Zelgowski, Julien; Abdurrochman, Andri; Mermet, Frederic; Pfeiffer, Pierre; Fontaine, Joël; Lecler, Sylvain

    2016-05-01

    We demonstrate that photonic jets (PJs) can be obtained in the vicinity of a shaped optical fiber and that they can be used to achieve subwavelength etchings. Only 10% of the power of a 30 W, 100 ns, near-infrared (1064 nm) Nd:YAG laser, commonly used for industrial laser processing, has been required. Etchings on a silicon wafer with a lateral feature size close to half-laser wavelength have been achieved using a shaped-tip optical fiber. This breakthrough has been carried out in ambient air by using a multimode 100/140 μm silica fiber with a shaped tip that generates a concentrated beam at their vicinity, a phenomenon referred to as a PJ, obtained for the first time without using microspheres. PJ achieved with a fiber tip, easier to manipulate, opens far-reaching benefits for all PJ applications. The roles of parameters such as laser fluence, tip shape, and mode excitation are discussed. A good correlation has been observed between the computed PJ intensity distribution and the etched marks' sizes.

  14. Identified motor terminals in Drosophila larvae show distinct differences in morphology and physiology

    NASA Technical Reports Server (NTRS)

    Lnenicka, G. A.; Keshishian, H.

    2000-01-01

    In Drosophila, the type I motor terminals innervating the larval ventral longitudinal muscle fibers 6 and 7 have been the most popular preparation for combining synaptic studies with genetics. We have further characterized the normal morphological and physiological properties of these motor terminals and the influence of muscle size on terminal morphology. Using dye-injection and physiological techniques, we show that the two axons supplying these terminals have different innervation patterns: axon 1 innervates only muscle fibers 6 and 7, whereas axon 2 innervates all of the ventral longitudinal muscle fibers. This difference in innervation pattern allows the two axons to be reliably identified. The terminals formed by axons 1 and 2 on muscle fibers 6 and 7 have the same number of branches; however, axon 2 terminals are approximately 30% longer than axon 1 terminals, resulting in a corresponding greater number of boutons for axon 2. The axon 1 boutons are approximately 30% wider than the axon 2 boutons. The excitatory postsynaptic potential (EPSP) produced by axon 1 is generally smaller than that produced by axon 2, although the size distributions show considerable overlap. Consistent with vertebrate studies, there is a correlation between muscle fiber size and terminal size. For a single axon, terminal area and length, the number of terminal branches, and the number of boutons are all correlated with muscle fiber size, but bouton size is not. During prolonged repetitive stimulation, axon 2 motor terminals show synaptic depression, whereas axon 1 EPSPs facilitate. The response to repetitive stimulation appears to be similar at all motor terminals of an axon. Copyright 2000 John Wiley & Sons, Inc.

  15. An optical fiber glass containing PbSe quantum dots

    NASA Astrophysics Data System (ADS)

    Cheng, Cheng; Jiang, Huilü; Ma, Dewei; Cheng, Xiaoyu

    2011-09-01

    An optical fiber material, sodium-aluminum-borosilicate glass doped with PbSe quantum dots (QDs) is synthesized by a high-temperature melting method. Crystallization, size distribution and absorption-photoluminescence (PL) of this material are observed by XRD, TEM, and spectrometer respectively. The obtained results indicate that the glass contains QDs in diameter of 6-13 nm depending on the heat-treatment temperature and with a higher doped concentration than those available. It shows an enhanced PL, widened FWHM (275-808 nm), obvious Stokes shift (20-110 nm), with the PL peak wavelength located within 1676-2757 nm depending on the size of QD. The glass is fabricated into an optical fiber in diameter of 10-70 μm and length of 1 m, with pliability and ductility similar to usual SiO 2 fibers. It can be easily fused and spliced with SiO 2 fibers due to a small difference of melting point between them. Characterized by high doped concentration and broad FWHM, this study suggests that the glass can be applied to designing novel broadband fiber amplifiers working in C-L waveband.

  16. Time-dependent fiber bundles with local load sharing. II. General Weibull fibers.

    PubMed

    Phoenix, S Leigh; Newman, William I

    2009-12-01

    Fiber bundle models (FBMs) are useful tools in understanding failure processes in a variety of material systems. While the fibers and load sharing assumptions are easily described, FBM analysis is typically difficult. Monte Carlo methods are also hampered by the severe computational demands of large bundle sizes, which overwhelm just as behavior relevant to real materials starts to emerge. For large size scales, interest continues in idealized FBMs that assume either equal load sharing (ELS) or local load sharing (LLS) among fibers, rules that reflect features of real load redistribution in elastic lattices. The present work focuses on a one-dimensional bundle of N fibers under LLS where life consumption in a fiber follows a power law in its load, with exponent rho , and integrated over time. This life consumption function is further embodied in a functional form resulting in a Weibull distribution for lifetime under constant fiber stress and with Weibull exponent, beta. Thus the failure rate of a fiber depends on its past load history, except for beta=1 . We develop asymptotic results validated by Monte Carlo simulation using a computational algorithm developed in our previous work [Phys. Rev. E 63, 021507 (2001)] that greatly increases the size, N , of treatable bundles (e.g., 10(6) fibers in 10(3) realizations). In particular, our algorithm is O(N ln N) in contrast with former algorithms which were O(N2) making this investigation possible. Regimes are found for (beta,rho) pairs that yield contrasting behavior for large N. For rho>1 and large N, brittle weakest volume behavior emerges in terms of characteristic elements (groupings of fibers) derived from critical cluster formation, and the lifetime eventually goes to zero as N-->infinity , unlike ELS, which yields a finite limiting mean. For 1/21 but with 0

  17. Time-dependent fiber bundles with local load sharing. II. General Weibull fibers

    NASA Astrophysics Data System (ADS)

    Phoenix, S. Leigh; Newman, William I.

    2009-12-01

    Fiber bundle models (FBMs) are useful tools in understanding failure processes in a variety of material systems. While the fibers and load sharing assumptions are easily described, FBM analysis is typically difficult. Monte Carlo methods are also hampered by the severe computational demands of large bundle sizes, which overwhelm just as behavior relevant to real materials starts to emerge. For large size scales, interest continues in idealized FBMs that assume either equal load sharing (ELS) or local load sharing (LLS) among fibers, rules that reflect features of real load redistribution in elastic lattices. The present work focuses on a one-dimensional bundle of N fibers under LLS where life consumption in a fiber follows a power law in its load, with exponent ρ , and integrated over time. This life consumption function is further embodied in a functional form resulting in a Weibull distribution for lifetime under constant fiber stress and with Weibull exponent, β . Thus the failure rate of a fiber depends on its past load history, except for β=1 . We develop asymptotic results validated by Monte Carlo simulation using a computational algorithm developed in our previous work [Phys. Rev. EPLEEE81063-651X 63, 021507 (2001)] that greatly increases the size, N , of treatable bundles (e.g., 106 fibers in 103 realizations). In particular, our algorithm is O(NlnN) in contrast with former algorithms which were O(N2) making this investigation possible. Regimes are found for (β,ρ) pairs that yield contrasting behavior for large N . For ρ>1 and large N , brittle weakest volume behavior emerges in terms of characteristic elements (groupings of fibers) derived from critical cluster formation, and the lifetime eventually goes to zero as N→∞ , unlike ELS, which yields a finite limiting mean. For 1/2≤ρ≤1 , however, LLS has remarkably similar behavior to ELS (appearing to be virtually identical for ρ=1 ) with an asymptotic Gaussian lifetime distribution and a finite limiting mean for large N . The coefficient of variation follows a power law in increasing N but, except for ρ=1 , the value of the negative exponent is clearly less than 1/2 unlike in ELS bundles where the exponent remains 1/2 for 1/2<ρ≤1 . For sufficiently small values 0<ρ≪1 , a transition occurs, depending on β , whereby LLS bundle lifetimes become dominated by a few long-lived fibers. Thus the bundle lifetime appears to approximately follow an extreme-value distribution for the longest lived of a parallel group of independent elements, which applies exactly to ρ=0 . The lower the value of β , the higher the transition value of ρ , below which such extreme-value behavior occurs. No evidence was found for limiting Gaussian behavior for ρ>1 but with 0<β(ρ+1)<1 , as might be conjectured from quasistatic bundle models where β(ρ+1) mimics the Weibull exponent for fiber strength.

  18. On the origin of fiber calcite crystals in moonmilk deposits.

    PubMed

    Cañaveras, Juan Carlos; Cuezva, Soledad; Sanchez-Moral, Sergio; Lario, Javier; Laiz, Leonila; Gonzalez, Juan Miguel; Saiz-Jimenez, Cesareo

    2006-01-01

    In this study, we show that moonmilk subaerial speleothems in Altamira Cave (Spain) consist of a network of fiber calcite crystals and active microbial structures. In Altamira moonmilks, the study of the typology and distribution of fiber crystals, extracellular polymeric substances, and microorganisms allowed us to define the initial stages of fiber crystal formation in recent samples as well as the variations in the microstructural arrangement in more evolved stages. Thus, we have been able to show the existence of a relationship among the different types of fiber crystals and their origins. This allowed us to outline a model that illustrates the different stages of formation of the moonmilk, developed on different substrata, concluding that microbes influence physicochemical precipitation, resulting in a variety of fiber crystal morphologies and sizes.

  19. Flight demonstration of aircraft fuselage and bulkhead monitoring using optical fiber distributed sensing system

    NASA Astrophysics Data System (ADS)

    Wada, Daichi; Igawa, Hirotaka; Tamayama, Masato; Kasai, Tokio; Arizono, Hitoshi; Murayama, Hideaki; Shiotsubo, Katsuya

    2018-02-01

    We have developed an optical fiber distributed sensing system based on optical frequency domain reflectometry (OFDR) that uses long-length fiber Bragg gratings (FBGs). This technique obtains strain data not as a point data from an FBG but as a distributed profile within the FBG. This system can measure the strain distribution profile with an adjustable high spatial resolution of the mm or sub-mm order in real-time. In this study, we applied this OFDR-FBG technique to a flying test bed that is a mid-sized jet passenger aircraft. We conducted flight tests and monitored the structural responses of a fuselage stringer and the bulkhead of the flying test bed during flights. The strain distribution variations were successfully monitored for various events including taxiing, takeoff, landing and several other maneuvers. The monitoring was effective not only for measuring the strain amplitude applied to the individual structural parts but also for understanding the characteristics of the structural responses in accordance with the flight maneuvers. We studied the correlations between various maneuvers and strains to explore the relationship between the operation and condition of aircraft.

  20. Elemental composition and size distribution of particulates in Cleveland, Ohio

    NASA Technical Reports Server (NTRS)

    King, R. B.; Fordyce, J. S.; Neustadter, H. E.; Leibecki, H. F.

    1975-01-01

    Measurements were made of the elemental particle size distribution at five contrasting urban environments with different source-type distributions in Cleveland, Ohio. Air quality conditions ranged from normal to air pollution alert levels. A parallel network of high-volume cascade impactors (5-state) were used for simultaneous sampling on glass fiber surfaces for mass determinations and on Whatman-41 surfaces for elemental analysis by neutron activation for 25 elements. The elemental data are assessed in terms of distribution functions and interrelationships and are compared between locations as a function of resultant wind direction in an attempt to relate the findings to sources.

  1. Elemental composition and size distribution of particulates in Cleveland, Ohio

    NASA Technical Reports Server (NTRS)

    Leibecki, H. F.; King, R. B.; Fordyce, J. S.; Neustadter, H. E.

    1975-01-01

    Measurements have been made of the elemental particle size distribution at five contrasting urban environments with different source-type distributions in Cleveland, Ohio. Air quality conditions ranged from normal to air pollution alert levels. A parallel network of high-volume cascade impactors (5-stage) were used for simultaneous sampling on glass fiber surfaces for mass determinations and on Whatman-41 surfaces for elemental analysis by neutron activation for 25 elements. The elemental data are assessed in terms of distribution functions and interrelationships and are compared between locations as a function of resultant wind direction in an attempt to relate the findings to sources.

  2. Flexible, planar-integrated, all-solid-state fiber supercapacitors with an enhanced distributed-capacitance effect.

    PubMed

    Liu, Bin; Tan, Dongsheng; Wang, Xianfu; Chen, Di; Shen, Guozhen

    2013-06-10

    Flexible and highly efficient energy storage units act as one of the key components in portable electronics. In this work, by planar-integrated assembly of hierarchical ZnCo₂O₄ nanowire arrays/carbon fibers electrodes, a new class of flexible all-solid-state planar-integrated fiber supercapacitors are designed and produced via a low-cost and facile method. The as-fabricated flexible devices exhibit high-efficiency, enhanced capacity, long cycle life, and excellent electrical stability. An enhanced distributed-capacitance effect is experimentally observed for the device. This strategy enables highly flexible new structured supercapacitors with maximum functionality and minimized size, thus making it possible to be readily applied in flexible/portable photoelectronic devices. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. High-density, microsphere-based fiber optic DNA microarrays.

    PubMed

    Epstein, Jason R; Leung, Amy P K; Lee, Kyong Hoon; Walt, David R

    2003-05-01

    A high-density fiber optic DNA microarray has been developed consisting of oligonucleotide-functionalized, 3.1-microm-diameter microspheres randomly distributed on the etched face of an imaging fiber bundle. The fiber bundles are comprised of 6000-50000 fused optical fibers and each fiber terminates with an etched well. The microwell array is capable of housing complementary-sized microspheres, each containing thousands of copies of a unique oligonucleotide probe sequence. The array fabrication process results in random microsphere placement. Determining the position of microspheres in the random array requires an optical encoding scheme. This array platform provides many advantages over other array formats. The microsphere-stock suspension concentration added to the etched fiber can be controlled to provide inherent sensor redundancy. Examining identical microspheres has a beneficial effect on the signal-to-noise ratio. As other sequences of interest are discovered, new microsphere sensing elements can be added to existing microsphere pools and new arrays can be fabricated incorporating the new sequences without altering the existing detection capabilities. These microarrays contain the smallest feature sizes (3 microm) of any DNA array, allowing interrogation of extremely small sample volumes. Reducing the feature size results in higher local target molecule concentrations, creating rapid and highly sensitive assays. The microsphere array platform is also flexible in its applications; research has included DNA-protein interaction profiles, microbial strain differentiation, and non-labeled target interrogation with molecular beacons. Fiber optic microsphere-based DNA microarrays have a simple fabrication protocol enabling their expansion into other applications, such as single cell-based assays.

  4. Interaction between carbon fibers and polymer sizing: Influence of fiber surface chemistry and sizing reactivity

    NASA Astrophysics Data System (ADS)

    Moosburger-Will, Judith; Bauer, Matthias; Laukmanis, Eva; Horny, Robert; Wetjen, Denise; Manske, Tamara; Schmidt-Stein, Felix; Töpker, Jochen; Horn, Siegfried

    2018-05-01

    Different aspects of the interaction of carbon fibers and epoxy-based polymer sizings are investigated, e.g. the wetting behavior, the strength of adhesion between fiber and sizing, and the thermal stability of the sizing layer. The influence of carbon fiber surface chemistry and sizing reactivity is investigated using fibers of different degree of anodic oxidation and sizings with different number of reactive epoxy groups per molecule. Wetting of the carbon fibers by the sizing dispersion is found to be specified by both, the degree of fiber activation and the sizing reactivity. In contrast, adhesion strength between fibers and sizing is dominated by the surface chemistry of the carbon fibers. Here, the number of surface oxygen groups seems to be the limiting factor. We also find that the sizing and the additional functionalities induced by anodic oxidation are removed by thermal treatment at 600 °C, leaving the carbon fiber in its original state after carbonization.

  5. Fluid Absorption and Release of Nonwovens and their Response to Compression

    NASA Astrophysics Data System (ADS)

    Bateny, Fatemeh

    Fluid handling is a key property in one of the major nonwoven applications in absorbent product such as wipes, hygiene products, and baby diapers. These products are subjected to various levels of compression in real-use. The aim of this study was to investigate the liquid absorption and release properties of nonwovens to establish the absorption structure-property relationship at various compression levels. A comprehensive methodology, considering various flow directions, was employed to establish the relationship by decoupling the effect of structural parameters and material properties in two phases of this study respectively. In the first phase, the mechanism of absorption by pore structure was investigated through considering various fiber cross-sectional size and shape, as well as heterogeneous layered structures having a pore size reduction and expansion. In the second phase, the mechanism of absorption by fiber and consequent swelling was evaluated in view of fluid diffusion into the rayon fibers in samples having different percentages of PET fiber (non-absorbent) and rayon fiber (absorbent). The analysis of absorption and release properties through the entire dissertation was based on the pore characteristics of the nonwovens by measuring the average pore sizes, pore size distribution, and solidity. The investigation revealed that the absorption and release properties of nonwovens are governed by their pore characteristics. In homogeneous non-layered nonwoven fabrics, maximum absorption is mainly governed by the available pore volume. Absorbency rate is determined according to pore size and the maximum rate of absorption is achieved at a specific range of pore sizes. This indicates that an in-depth understanding of the absorption and release properties brings about valuable information for the absorbent product engineering.

  6. Processing of oil palm empty fruit bunch as filler material of polymer recycles

    NASA Astrophysics Data System (ADS)

    Saepulloh, D. R.; Nikmatin, S.; Hardhienata, H.

    2017-05-01

    Oil palm empty fruit bunches (OPEFB) is waste from crude palm oil (CPO) processing plants. This research aims to process OPEFB to be a reinforcement polymer recycle with the mechanical milling method and identify each establishment molecular with the orbital hybridization theory. OPEFB fibers were synthesized using a mechanical milling until the size shortfiber and microfiber. Then do the biocomposite granular synthesis with single screw extruder. TAPPI chemical test shows levels of α-cellulose fibers amounted 41.68%. Based on density, the most optimum composition contained in the filler amounted 15% with the size is the microfiber. The test results of morphology with SEM showed deployment of filler OPEFB fiber is fairly equitable distributed. Regarding the molecular interaction between matrix with OPEFB fiber, described by the theory of orbital hybridization. But the explanation establishment of the bond for more complex molecules likes this from the side of the molecular orbital theory is necessary complete information of the hybrid levels.

  7. Characterization of exposures to nanoscale particles and fibers during solid core drilling of hybrid carbon nanotube advanced composites.

    PubMed

    Bello, Dhimiter; Wardle, Brian L; Zhang, Jie; Yamamoto, Namiko; Santeufemio, Christopher; Hallock, Marilyn; Virji, M Abbas

    2010-01-01

    This work investigated exposures to nanoparticles and nanofibers during solid core drilling of two types of advanced carbon nanotube (CNT)-hybrid composites: (1) reinforced plastic hybrid laminates (alumina fibers and CNT); and (2) graphite-epoxy composites (carbon fibers and CNT). Multiple real-time instruments were used to characterize the size distribution (5.6 nm to 20 microm), number and mass concentration, particle-bound polyaromatic hydrocarbons (b-PAHs), and surface area of airborne particles at the source and breathing zone. Time-integrated samples included grids for electron microscopy characterization of particle morphology and size resolved (2 nm to 20 microm) samples for the quantification of metals. Several new important findings herein include generation of airborne clusters of CNTs not seen during saw-cutting of similar composites, fewer nanofibers and respirable fibers released, similarly high exposures to nanoparticles with less dependence on the composite thickness, and ultrafine (< 5 nm) aerosol originating from thermal degradation of the composite material.

  8. Nano-modification to improve the ductility of cementitious composites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yeşilmen, Seda; Al-Najjar, Yazin; Balav, Mohammad Hatam

    2015-10-15

    Effect of nano-sized mineral additions on ductility of engineered cementitious composites (ECC) containing high volumes of fly ash was investigated at different hydration degrees. Various properties of ECC mixtures with different mineral additions were compared in terms of microstructural properties of matrix, fiber-matrix interface, and fiber surface to assess improvements in ductility. Microstructural characterization was made by measuring pore size distributions through mercury intrusion porosimetry (MIP). Hydration characteristics were assessed using thermogravimetric analysis/differential thermal analysis (TGA/DTA), and fiber-matrix interface and fiber surface characteristics were assessed using scanning electron microscopy (SEM) through a period of 90 days. Moreover, compressive and flexuralmore » strength developments were monitored for the same period. Test results confirmed that mineral additions could significantly improve both flexural strength and ductility of ECC, especially at early ages. Cheaper Nano-CaCO{sub 3} was more effective compared to nano-silica. However, the crystal structure of CaCO{sub 3} played a very important role in the range of expected improvements.« less

  9. Fiber size, type, and myosin heavy chain content in rhesus hindlimb muscles after 2 weeks at 2 G

    NASA Technical Reports Server (NTRS)

    Tavakol, Morteza; Roy, Roland R.; Kim, Jung A.; Zhong, Hui; Hodgson, John A.; Hoban-Higgins, Tana M.; Fuller, Charles A.; Edgerton, V. Reggie

    2002-01-01

    BACKGROUND: Fiber atrophy and an increase in the percentage of fast fibers have been observed in Rhesus leg muscles after spaceflight. Hypothesis: Hypergravity will result in muscle fiber hypertrophy and an increase in the percentage of slow fibers. METHODS: Open muscle biopsies were obtained from Rhesus soleus, medial gastrocnemius (MG), and tibialis anterior (TA) muscles before and after 14 d of centrifugation (2 G) and in time-matched controls. Cage activity levels were measured by telemetry. RESULTS: Based on monoclonal antibody binding for myosin heavy chains (MHC), the fastest region of soleus contained a higher proportion of type I+II (27 vs. 13%) and had a tendency for a lower proportion of type I (38 vs. 61%, p = 0.10) fibers after than before centrifugation. There was a higher proportion of type I+II fibers in post- vs. pre-2 G (10 vs. 0.6%) MG biopsies. Fiber type distribution and MHC composition were unaffected in the TA. Overall, mean fiber sizes were unaffected by centrifugation. Average cage activity levels were 36% lower during than before 2 G. CONCLUSIONS: Our hypothesis was rejected. The changes in the proportion of fibers expressing type I MHC are the reverse of that expected with chronic loading of extensors and, paradoxically, are similar to changes observed with chronic unloading, such as occurs during spaceflight, in this primate model. The data are consistent with the observed decrease in total daily activity levels.

  10. Evaluation and Analysis of the ANSI X3T9.5 (FDDI) PMD and Proposed SMF-PMD as Influenced by Various Fiber Link Characteristics

    NASA Technical Reports Server (NTRS)

    Wernicki, M. Chris

    1991-01-01

    The purpose of this project is to evaluate the operational parameters of the Kennedy Space Center (KSC) fiber optic cable plant. The evaluation is based on the Fiber Distributed Data Interface (FDDI) Physical Medium Dependent (PMD) and Single Mode Fiber (SMF) PMD standards. From the KSC fiber profile, it would be necessary to develop the modifications needed in existing FDDI PMD and proposed SMF-PMD standards to provide for FDDI implementation and operation at KSC. This analysis should examine the major factors that influence the operating conditions of the KSC fiber plant. These factors would include, but are not limited to the number and type of connectors, attenuation and dispersion characteristics of the fiber, non-standard fiber sizes, modal bandwidth, and many other relevant or significant fiber plant characteristics that effect FDDI characteristics. This analysis is needed to gain a better understanding of overall impact that each of these factors have on FDDI performance at KSC.

  11. Neuropeptide Y in the forebrain of the adult male cichlid fish Oreochromis mossambicus: distribution, effects of castration and testosterone replacement.

    PubMed

    Sakharkar, Amul J; Singru, Praful S; Sarkar, Koustav; Subhedar, Nishikant K

    2005-08-22

    We studied the organization of the neuropeptide Y (NPY)-immunoreactive system in the forebrain of adult male cichlid fish Oreochromis mossambicus and its response to castration and testosterone replacement by using morphometric methods. Immunoreactivity for NPY was widely distributed in the forebrain, and the pattern generally resembled that in other teleosts. Whereas immunoreactivity was conspicuous in the ganglia of nervus terminalis (NT; or nucleus olfactoretinalis), a weak reaction was detected in some granule cells in the olfactory bulb and in the cells of area ventralis telencephali pars lateralis (Vl). Moderately to intensely immunoreactive cells were distinctly seen in the nucleus entopeduncularis (NE), nucleus preopticus (NPO), nucleus lateralis tuberis (NLT), paraventricular organ (PVO), and midbrain tegmentum (MT). NPY fibers were widely distributed in the forebrain. Castration for 10/15 days resulted in a drastic loss of immunoreactivity in the cells of NE (P<0.001) and a significant decrease (P<0.01) in their cell nuclear size. However, cell nuclei of the NT neurons showed a significant increase in size. A highly significant reduction in the NPY-immunoreactive fiber density (P<0.001) was observed in several areas of the forebrain. Although testosterone replacement reversed these changes, fibers in some areas showed supranormal responses. Immunoreactive cells in Vl, NPO, NLT, PVO, and MT and fiber density in some other areas did not respond to castration. We suggest that the NPY-immunoreactive elements that respond to castration and testosterone replacement may serve as the substrate for processing the positive feedback action of the steroid hormone. (c) 2005 Wiley-Liss, Inc.

  12. Monolithic integrated optic fiber Bragg grating sensor interrogator

    NASA Astrophysics Data System (ADS)

    Mendoza, Edgar A.; Esterkin, Yan; Kempen, Cornelia; Sun, Songjian

    2010-04-01

    Fiber Bragg gratings (FBGs) are a mature sensing technology that has gained rapid acceptance in civil, aerospace, chemical and petrochemical, medicine, aviation and automotive industries. Fiber Bragg grating sensors can be use for a variety of measurements including strain, stress, vibration, acoustics, acceleration, pressure, temperature, moisture, and corrosion distributed at multiple locations within the structure using a single fiber element. The most prominent advantages of FBGs are: small size and light weight, multiple FBG transducers on a single fiber, and immunity to radio frequency interference. A major disadvantage of FBG technology is that conventional state-of-the-art fiber Bragg grating interrogation systems are typically bulky, heavy, and costly bench top instruments that are assembled from off-the-shelf fiber optic and optical components integrated with a signal electronics board into an instrument console. Based on the need for a compact FBG interrogation system, this paper describes recent progress towards the development of a miniature fiber Bragg grating sensor interrogator (FBG-TransceiverTM) system based on multi-channel monolithic integrated optic sensor microchip technology. The integrated optic microchip technology enables the monolithic integration of all of the functionalities, both passive and active, of conventional bench top FBG sensor interrogators systems, packaged in a miniaturized, low power operation, 2-cm x 5-cm small form factor (SFF) package suitable for the long-term structural health monitoring in applications where size, weight, and power are critical for operation.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yanping Guo; Abhishek Yadav; Tanju Karanfil

    Adsorption of trichloroethylene (TCE) and atrazine, two synthetic organic contaminants (SOCs) having different optimum adsorption pore regions, by four activated carbons and an activated carbon fiber (ACF) was examined. Adsorbents included two coconut-shell based granular activated carbons (GACs), two coal-based GACs (F400 and HD4000) and a phenol formaldehyde-based activated carbon fiber. The selected adsorbents had a wide range of pore size distributions but similar surface acidity and hydrophobicity. Single solute and preloading (with a dissolved organic matter (DOM)) isotherms were performed. Single solute adsorption results showed that (i) the adsorbents having higher amounts of pores with sizes about the dimensionsmore » of the adsorbate molecules exhibited higher uptakes, (ii) there were some pore structure characteristics, which were not completely captured by pore size distribution analysis, that also affected the adsorption, and (iii) the BET surface area and total pore volume were not the primary factors controlling the adsorption of SOCs. The preloading isotherm results showed that for TCE adsorbing primarily in pores <10 {angstrom}, the highly microporous ACF and GACs, acting like molecular sieves, exhibited the highest uptakes. For atrazine with an optimum adsorption pore region of 10-20 {angstrom}, which overlaps with the adsorption region of some DOM components, the GACs with a broad pore size distribution and high pore volumes in the 10-20 {angstrom} region had the least impact of DOM on the adsorption. 25 refs., 3 figs., 3 tabs.« less

  14. Compressive Behavior of Fiber-Reinforced Concrete with End-Hooked Steel Fibers.

    PubMed

    Lee, Seong-Cheol; Oh, Joung-Hwan; Cho, Jae-Yeol

    2015-03-27

    In this paper, the compressive behavior of fiber-reinforced concrete with end-hooked steel fibers has been investigated through a uniaxial compression test in which the variables were concrete compressive strength, fiber volumetric ratio, and fiber aspect ratio (length to diameter). In order to minimize the effect of specimen size on fiber distribution, 48 cylinder specimens 150 mm in diameter and 300 mm in height were prepared and then subjected to uniaxial compression. From the test results, it was shown that steel fiber-reinforced concrete (SFRC) specimens exhibited ductile behavior after reaching their compressive strength. It was also shown that the strain at the compressive strength generally increased along with an increase in the fiber volumetric ratio and fiber aspect ratio, while the elastic modulus decreased. With consideration for the effect of steel fibers, a model for the stress-strain relationship of SFRC under compression is proposed here. Simple formulae to predict the strain at the compressive strength and the elastic modulus of SFRC were developed as well. The proposed model and formulae will be useful for realistic predictions of the structural behavior of SFRC members or structures.

  15. Ultrafine particle and fiber production in micro-gravity

    NASA Technical Reports Server (NTRS)

    Webb, George W.

    1987-01-01

    The technique of evaporation and condensation of material in an inert gas is investigated for the purpose of preparing ultrafine particles (of order 10 nm in diameter) with a narrow distribution of sizes. Gravity-driven convection increases the rate of coalescence of the particles, leading to larger sizes and a broader distribution. Analysis and experimental efforts to investigate coalescence of particles are presented. The possibility of reducing coalescence in microgravity is discussed. An experimental test in reduced gravity to be performed in a KC135 aircraft is described briefly.

  16. Fiber optic light-scattering measurement system for evaluation of embryo viability: light-scattering characteristics from live mouse embryo

    NASA Astrophysics Data System (ADS)

    Itoh, Harumi; Arai, Tsunenori; Kikuchi, Makoto

    1997-06-01

    We measured angular distribution of the light scattering from live mouse embryo with 632.8nm in wavelength to evaluate the embryo viability. We aim to measure the mitochondrial density in human embryo which have relation to the embryo viability. We have constructed the light scattering measurement system to detect the mitochondrial density non-invasively. We have employed two optical fibers for the illumination and sensing to change the angle between these fibers. There were two dips on the scattering angular distribution from the embryo. These dips existed on 30 and 85 deg. We calculated the scattering angular pattern by Mie theory to fit the measured scattering estimated scattering size and density. The best fitting was obtained when the particle size and density were 0.9 micrometers and 1010 particles per ml, respectively. These values coincided with the approximated values of mitochondrial in the embryo. The measured light scattering may mainly originated from mitochondria in spite of the existence of the various scattering particles in the embryo. Since our simple scattering measurement may offer the mitochondrial density in the embryo, it might become the practical method of human embryo on in vitro fertilization-embryo transfer.

  17. Dynamics and mechanisms of asbestos-fiber aggregate growth in water

    NASA Astrophysics Data System (ADS)

    Wu, L.; Ortiz, C. P.; Jerolmack, D. J.

    2015-12-01

    Most colloidal particles including asbestos fibers form aggregates in water, when solution chemistry provides favorable conditions. To date, the growth of colloidal aggregates has been observed in many model systems under optical and scanning electron microscopy; however, all of these studies have used near-spherical particles. The highly elongated nature of asbestos fibers may cause anomalous aggregate growth and morphology, but this has never been examined. Although the exposure pathway of concern for asbestos is through the air, asbestos particles typically reside in soil that is at least partially saturated, and aggregates formed in the aqueous phase may influence the mobility of particles in the environment. Here we study solution-phase aggregation kinetics of asbestos fibers using a liquid-cell by in situ microscopy, over micron to centimeter length scales and from a tenth of a second to hours. We employ an elliptical particle tracking technique to determine particle trajectories and to quantify diffusivity. Experiments reveal that diffusing fibers join by cross linking, but that such linking is sometimes reversible. The resulting aggregates are very sparse and non-compact, with a fractal dimension that is lower than any previously reported value. Their morphology, growth rate and particle size distribution exhibit non-classical behavior that deviates significantly from observations of aggregates composed of near-spherical particles. We also perform experiments using synthetic colloidal particles, and compare these to asbestos in order to separate the controls of particle shape vs. material properties. This direct method for quantitatively observing aggregate growth is a first step toward predicting asbestos fiber aggregate size distributions in the environment. Moreover, many emerging environmental contaminants - such as carbon nanotubes - are elongated colloids, and our work suggests that theories for aggregate growth may need to be modified in order to model these particles.

  18. Realization of fiber optic displacement sensors

    NASA Astrophysics Data System (ADS)

    Guzowski, Bartlomiej; Lakomski, Mateusz

    2018-03-01

    Fiber optic sensors are very promising because of their inherent advantages such as very small size, hard environment tolerance and impact of electromagnetic fields. In this paper three different types of Intensity Fiber Optic Displacement Sensors (I-FODS) are presented. Three configurations of I-FODS were realized in two varieties. In the first one, the cleaved multimode optical fibers (MMF) were used to collect reflected light, while in the second variety the MMF ended with ball lenses were chosen. To ensure an accurate alignment of optical fibers in the sensor head the MTP C9730 optical fiber ferrules were used. In this paper the influence of distribution of transmitting and detecting optical fibers on sensitivity and linear range of operation of developed I-FODS were investigated. We have shown, that I-FODS with ball lenses receive average 10.5% more reflected power in comparison to the cleaved optical fibers and they increase linearity range of I-FODS by 33%. In this paper, an analysis of each type of the realized sensor and detailed discussion are given.

  19. Effects of high-speed homogenization and high-pressure homogenization on structure of tomato residue fibers.

    PubMed

    Hua, Xiao; Xu, Shanan; Wang, Mingming; Chen, Ying; Yang, Hui; Yang, Ruijin

    2017-10-01

    Tomato residue fibers obtained after derosination and deproteinization were processed by high-speed homogenization (HSH) and high-pressure homogenization (HPH), and their effects on fiber structure was investigated, respectively. Characterizations including particle size distribution, SEM, TEM and XRD were performed. HSH could break raw fibers to small particles of around 60μm, while HPH could reshape fibers to build network structure. Microfibrils were released and their nanostructure consisting of elementary fibrils was observed by TEM. XRD patterns indicated both HSH and HPH could hardly alter the nanostructure of the fibers. Physicochemical properties including expansibility, WHC and OHC were determined. Both HSH and HPH could increase the soluble fiber content by about 8%, but HSH-HPH combined processing did not show better result. Acid (4mol/L HCl) was used in replacement of water medium and the acidic degradation of fibers could be promoted by high speed shearing or high pressure processing. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Myoneural necrosis following high-frequency electrical stimulation of the cast-immobilized rabbit hindlimb

    NASA Technical Reports Server (NTRS)

    Friden, J.; Lieber, R. L.; Myers, R. R.; Powell, H. C.; Hargens, A. R.

    1989-01-01

    The morphological and physiological effects of 4 weeks of high-frequency electrical stimulation (1 h/day, 5 days/week) on cast-immobilized rabbit hindlimbs were investigated in the tibialis anterior muscle and peroneal nerve. In 2 out of 6 animals, high-frequency stimulation with immobilization caused muscle fiber death, internalization of muscle fiber nuclei, connective tissue proliferation, inflammatory response, altered fiber size distribution and variable staining intensities. The fast-twitch fibers were predominantly affected. Two of six peripheral nerves subjected to immobilization and stimulation showed severe damage. Tetanic forces were significantly reduced in the affected muscles. Therefore, the immobilization and high-frequency stimulation may be detrimental to myoneural structure and function and, thus, this combination of therapies should be applied conservatively.

  1. Ultrafine particle and fiber production in microgravity

    NASA Technical Reports Server (NTRS)

    Webb, George W. (Inventor)

    1988-01-01

    In a system and method for producing ultrafine particles and ultrafine fibers of a given source material by evaporating and condensing the material in a gas atmosphere that includes inert gas. A smaller, more narrow size distribution is accomplished by producing the particles and fibers in a microgravity environment in order to reduce particle coalescence caused by convection currents. Particle coalescence also is reduced in an Earth gravity environment by controlling the convection currents. Condensed particles are collected either by providing an electrostatic field or a spatially varying magnetic field or by causing the gas to move through a filter which collects the particles. Nonferromagnetic material fibers are produced and collected by electrodes which produce an electro- static field. Ferromagnetic particles are collected by spatially varying magnetic fields.

  2. Bimodal and multimodal plant biomass particle mixtures

    DOEpatents

    Dooley, James H.

    2013-07-09

    An industrial feedstock of plant biomass particles having fibers aligned in a grain, wherein the particles are individually characterized by a length dimension (L) aligned substantially parallel to the grain, a width dimension (W) normal to L and aligned cross grain, and a height dimension (H) normal to W and L, wherein the L.times.H dimensions define a pair of substantially parallel side surfaces characterized by substantially intact longitudinally arrayed fibers, the W.times.H dimensions define a pair of substantially parallel end surfaces characterized by crosscut fibers and end checking between fibers, and the L.times.W dimensions define a pair of substantially parallel top and bottom surfaces, and wherein the particles in the feedstock are collectively characterized by having a bimodal or multimodal size distribution.

  3. Characterization of SiC Fiber (SCS-6) Reinforced-Reaction-Formed Silicon Carbide Matrix Composites

    NASA Technical Reports Server (NTRS)

    Singh, M.; Dickerson, R. M.

    1996-01-01

    Silicon carbide fiber (SCS-6) reinforced-reaction-formed silicon carbide matrix composites were fabricated using a reaction-forming process. Silicon-2 at.% niobium alloy was used as an infiltrant instead of pure silicon to reduce the amount of free silicon in the matrix after reaction forming. The matrix primarily consists of silicon carbide with a bimodal grain size distribution. Minority phases dispersed within the matrix are niobium disilicide (NbSi2), carbon, and silicon. Fiber pushout tests on these composites determined a debond stress of approximately 67 MPa and a frictional stress of approximately 60 MPa. A typical four-point flexural strength of the composite is 297 MPa (43.1 KSi). This composite shows tough behavior through fiber pullout.

  4. Fetal development of the elastic-fiber-mediated enthesis in the human middle ear.

    PubMed

    Takanashi, Yoshitaka; Shibata, Shunichi; Katori, Yukio; Murakami, Gen; Abe, Shinichi; Rodríguez-Vázquez, Jose Francisco; Kawase, Tetsuaki

    2013-10-01

    In the human middle ear, the annular ligament of the incudostapedial joint and the insertions of the tensor tympani and stapedius muscles contain abundant elastic fibers; i.e., the elastic-fiber-mediated entheses. Hyaluronan also coexists with the elastic fibers. In the present study using immunohistochemistry, we demonstrated the distribution of elastin not only in the incudostapedial joint but also in the other two joints of the middle ear in adults and fetuses. In adults, the expression of elastin did not extend out of the annular ligament composed of mature elastic fibers but clearly overlapped with it. Electron microscopic observations of the annular ligament demonstrated a few microfibrils along the elastic fibers. Thus, in contrast to the vocal cord, the middle ear entheses seemed not to contain elaunin and oxytalan fibers. In mid-term fetuses (at approximately 15-16 weeks of gestation) before opening of the external acoustic meatus, the incudostapedial joint showed abundant elastic fibers, but the incudomalleolar and stapediovestibular joints did not. At this stage, hyaluronan was not colocalized, but distributed diffusely in loose mesenchymal tissues surrounding the ear ossicles. Therefore, fetal development of elastin and elastic fibers in the middle ear entheses is unlikely to require acoustic oscillation. In late-stage fetuses (25-30 weeks), whose ear ossicles were almost the same size as those in adults, we observed bundling and branching of elastic fibers. However, hyaluronan expression was not as strong as in adults. Colocalization between elastic fibers and hyaluronan appeared to be a result of postnatal maturation of the entheses. Copyright © 2013 Elsevier GmbH. All rights reserved.

  5. CHARACTERIZATION OF THE COMPLETE FIBER NETWORK TOPOLOGY OF PLANAR FIBROUS TISSUES AND SCAFFOLDS

    PubMed Central

    D'Amore, Antonio; Stella, John A.; Wagner, William R.; Sacks, Michael S.

    2010-01-01

    Understanding how engineered tissue scaffold architecture affects cell morphology, metabolism, phenotypic expression, as well as predicting material mechanical behavior have recently received increased attention. In the present study, an image-based analysis approach that provides an automated tool to characterize engineered tissue fiber network topology is presented. Micro-architectural features that fully defined fiber network topology were detected and quantified, which include fiber orientation, connectivity, intersection spatial density, and diameter. Algorithm performance was tested using scanning electron microscopy (SEM) images of electrospun poly(ester urethane)urea (ES-PEUU) scaffolds. SEM images of rabbit mesenchymal stem cell (MSC) seeded collagen gel scaffolds and decellularized rat carotid arteries were also analyzed to further evaluate the ability of the algorithm to capture fiber network morphology regardless of scaffold type and the evaluated size scale. The image analysis procedure was validated qualitatively and quantitatively, comparing fiber network topology manually detected by human operators (n=5) with that automatically detected by the algorithm. Correlation values between manual detected and algorithm detected results for the fiber angle distribution and for the fiber connectivity distribution were 0.86 and 0.93 respectively. Algorithm detected fiber intersections and fiber diameter values were comparable (within the mean ± standard deviation) with those detected by human operators. This automated approach identifies and quantifies fiber network morphology as demonstrated for three relevant scaffold types and provides a means to: (1) guarantee objectivity, (2) significantly reduce analysis time, and (3) potentiate broader analysis of scaffold architecture effects on cell behavior and tissue development both in vitro and in vivo. PMID:20398930

  6. A three-dimensional collagen-fiber network model of the extracellular matrix for the simulation of the mechanical behaviors and micro structures.

    PubMed

    Dong, Shoubin; Huang, Zetao; Tang, Liqun; Zhang, Xiaoyang; Zhang, Yongrou; Jiang, Yi

    2017-07-01

    The extracellular matrix (ECM) provides structural and biochemical support to cells and tissues, which is a critical factor for modulating cell dynamic behavior and intercellular communication. In order to further understand the mechanisms of the interactive relationship between cell and the ECM, we developed a three-dimensional (3D) collagen-fiber network model to simulate the micro structure and mechanical behaviors of the ECM and studied the stress-strain relationship as well as the deformation of the ECM under tension. In the model, the collagen-fiber network consists of abundant random distributed collagen fibers and some crosslinks, in which each fiber is modeled as an elastic beam and a crosslink is modeled as a linear spring with tensile limit, it means crosslinks will fail while the tensile forces exceed the limit of spring. With the given parameters of the beam and the spring, the simulated tensile stress-strain relation of the ECM highly matches the experimental results including damaged and failed behaviors. Moreover, by applying the maximal inscribed sphere method, we measured the size distribution of pores in the fiber network and learned the variation of the distribution with deformation. We also defined the alignment of the collagen-fibers to depict the orientation of fibers in the ECM quantitatively. By the study of changes of the alignment and the damaged crosslinks against the tensile strain, this paper reveals the comprehensive mechanisms of four stages of 'toe', 'linear', 'damage' and 'failure' in the tensile stress-strain relation of the ECM which can provide further insight in the study of cell-ECM interaction.

  7. Adaptation of rat soleus muscles to 4 wk of intermittent strain

    NASA Technical Reports Server (NTRS)

    Stauber, W. T.; Miller, G. R.; Grimmett, J. G.; Knack, K. K.

    1994-01-01

    The effect of repeated strains on rat soleus muscles was investigated by stretching active muscles 3 times/wk for 4 wk with two different methods of stretching. The adaptation of myofibers and noncontractile tissue was followed by histochemical techniques and computer-assisted image analysis. Muscle hypertrophy was seen in the slow-stretched muscles, which increased in mass by 13% and increased in myofiber cross-sectional area by 30%. In the fast-stretched muscle, mass increased by 10% but myofiber cross-sectional area actually decreased. This decrease in mean fiber area was the result of a population of very small fibers (population A) that coexisted with slightly smaller normal-sized fibers (population B). Fibers in population A did not have the distribution expected from atrophy compared with atrophic fibers from unloaded muscles; they were much smaller. In addition, there was a 44% increase in noncontractile tissue in the fast-stretched muscles. Thus, soleus muscles subjected to repeated strains respond differently to slow and fast stretching. Slow stretching results in typical muscle hypertrophy, whereas fast stretching produces somewhat larger muscles but with a mixture of small and normal-sized myofibers accompanied by a marked proliferation of noncontractile tissue.

  8. Stress-Dependent Matrix Cracking in 2D Woven SiC-Fiber Reinforced Melt-Infiltrated SiC Matrix Composites

    NASA Technical Reports Server (NTRS)

    Morscher, Gregory N.

    2003-01-01

    The matrix cracking of a variety of SiC/SiC composites has been characterized for a wide range of constituent variation. These composites were fabricated by the 2-dimensional lay-up of 0/90 five-harness satin fabric consisting of Sylramic fiber tows that were then chemical vapor infiltrated (CVI) with BN, CVI with SiC, slurry infiltrated with SiC particles followed by molten infiltration of Si. The composites varied in number of plies, the number of tows per length, thickness, and the size of the tows. This resulted in composites with a fiber volume fraction in the loading direction that ranged from 0.12 to 0.20. Matrix cracking was monitored with modal acoustic emission in order to estimate the stress-dependent distribution of matrix cracks. It was found that the general matrix crack properties of this system could be fairly well characterized by assuming that no matrix cracks originated in the load-bearing fiber, interphase, chemical vapor infiltrated Sic tow-minicomposites, i.e., all matrix cracks originate in the 90 degree tow-minicomposites or the large unreinforced Sic-Si matrix regions. Also, it was determined that the larger tow size composites had a much narrower stress range for matrix cracking compared to the standard tow size composites.

  9. Insight into interfacial effect on effective physical properties of fibrous materials. I. The volume fraction of soft interfaces around anisotropic fibers.

    PubMed

    Xu, Wenxiang; Wang, Han; Niu, Yanze; Bai, Jingtao

    2016-01-07

    With advances in interfacial properties characterization technologies, the interfacial volume fraction is a feasible parameter for evaluating effective physical properties of materials. However, there is a need to determine the interfacial volume fraction around anisotropic fibers and a need to assess the influence of such the interfacial property on effective properties of fibrous materials. Either ways, the accurate prediction of interfacial volume fraction is required. Towards this end, we put forward both theoretical and numerical schemes to determine the interfacial volume fraction in fibrous materials, which are considered as a three-phase composite structure consisting of matrix, anisotropic hard spherocylinder fibers, and soft interfacial layers with a constant dimension coated on the surface of each fiber. The interfacial volume fraction actually represents the fraction of space not occupied by all hard fibers and matrix. The theoretical scheme that adopts statistical geometry and stereological theories is essentially an analytic continuation from spherical inclusions. By simulating such three-phase chopped fibrous materials, we numerically derive the interfacial volume fraction. The theoretical and numerical schemes provide a quantitative insight that the interfacial volume fraction depends strongly on the fiber geometries like fiber shape, geometric size factor, and fiber size distribution. As a critical interfacial property, the present contribution can be further drawn into assessing effective physical properties of fibrous materials, which will be demonstrated in another paper (Part II) of this series.

  10. Data reduction and analysis of graphite fiber release experiments

    NASA Technical Reports Server (NTRS)

    Lieberman, P.; Chovit, A. R.; Sussholz, B.; Korman, H. F.

    1979-01-01

    The burn and burn/explode effects on aircraft structures were examined in a series of fifteen outdoor tests conducted to verify the results obtained in previous burn and explode tests of carbon/graphite composite samples conducted in a closed chamber, and to simulate aircraft accident scenarios in which carbon/graphite fibers would be released. The primary effects that were to be investigaged in these tests were the amount and size distribution of the conductive fibers released from the composite structures, and how these various sizes of fibers transported downwind. The structures included plates, barrels, aircraft spoilers and a cockpit. The heat sources included a propane gas burner and 20 ft by 20 ft and 40 ft by 60 ft JP-5 pool fires. The larger pool fire was selected to simulate an aircraft accident incident. The passive instrumentation included sticky paper and sticky bridal veil over an area 6000 ft downwind and 3000 ft crosswind. The active instrumentation included instrumented meteorological towers, movies, infrared imaging cameras, LADAR, high voltage ball gages, light emitting diode gages, microwave gages and flame velocimeter.

  11. Contributions and mechanisms of action of graphite nanomaterials in ultra high performance concrete

    NASA Astrophysics Data System (ADS)

    Sbia, Libya Ahmed

    Ultra-high performance concrete (UHPC) reaches high strength and impermeability levels by using a relatively large volume fraction of a dense binder with fine microstructure in combination with high-quality aggregates of relatively small particle size, and reinforcing fibers. The dense microstructure of the cementitions binder is achieved by raising the packing density of the particulate matter, which covers sizes ranging from few hundred nanometers to few millimeters. The fine microstructure of binder in UHPC is realized by effective use of pozzolans to largely eliminate the coarse crystalline particles which exist among cement hydrates. UHPC incorporates (steel) fibers to overcome the brittleness of its dense, finely structured cementitious binder. The main thrust of this research is to evaluate the benefits of nanmaterials in UHPC. The dense, finely structure cementitious binder as well as the large volume fraction of the binder in UHPC benefit the dispersion of nanomaterials, and their interfacial interactions. The relatively close spacing of nanomaterials within the cementitious binder of UHPC enables them to render local reinforcement effects in critically stressed regions such as those in the vicinity of steel reinforcement and prestressing strands as well as fibers. Nanomaterials can also raise the density of the binder in UHPC by extending the particle size distribution down to the few nanometers range. Comprehensive experimental studies supported by theoretical investigations were undertake in order to optimize the use of nanomaterials in UHPC, identity the UHPC (mechanical) properties which benefit from the introduction of nanomaterials, and define the mechanisms of action of nanomaterials in UHPC. Carbon nanofiber was the primary nanomaterial used in this investigation. Some work was also conducted with graphite nanoplates. The key hypotheses of the project were as follows: (i) nanomaterials can make important contributions to the packing density of the particulate matter in UHPC by extending the particle size distribution down to the few nanometers range; (ii) there are synergistic reinforcing actions of steel fibers and graphite nanomaterials in UHPC, which can be explained by their complementary spacing and also the benefit of nanomaterials to the interfacial bonding and pullout behavior of steel fibers; and (iii) nanomaterials make important contributions to the bonding and pullout behavior of prestressing strands and deformed bars in concrete, which can be attributed to the close spacing of nanomaterials within the highly stressed interfacial regions occurring in the vicinity of strands and reinforcing bars; steel fibers are loss effective in this regard due to the disturbance of their distribution and orientation in the vicinity of strands and bars. These hypotheses were successfully verified through the experimental and theoretical investigations conducted in this research.

  12. Hole-pin joining structure with fiber-round-hole distribution of lobster cuticle and biomimetic study.

    PubMed

    Chen, Bin; Fan, Jinghong; Gou, Jihua; Lin, Shiyun

    2014-12-01

    Observations of the cuticle of the Boston Spiny Lobster using scanning electron microscope (SEM) show that it is a natural biocomposite consisting of chitin fibers and sclerotic-protein matrix with hierarchical and helicoidal structure. The SEM images also indicate that there is a hole-pin joining structure in the cuticle. In this joining structure, the chitin fibers in the neighborhood of the joining holes continuously round the holes to form a fiber-round-hole distribution. The maximum pullout force of the fibers in the fiber-round-hole distribution, which is closely related to the fracture toughness of the cuticle, is investigated and compared with that of the fibers in non-fiber-round-hole distribution based on their representative models. It is revealed that the maximum pullout force of the fibers in the fiber-round-hole distribution is significantly larger than that of the fibers in the non-fiber-round-hole distribution, and that a larger diameter of the hole results in a larger difference in the maximum pullout forces of the fibers between the two kinds of the fiber distributions. Inspired by the fiber-round-hole distribution found in the cuticle, composite specimens with the fiber-round-hole distribution were fabricated with a special mold and process to mirror the fiber-round-hole distribution. The fracture toughness of the biomimetic composite specimens is tested and compared with that of the conventional composite specimens with the non-fiber-round-hole distribution. It is demonstrated that the fracture toughness of the biomimetic composite specimens with the fiber-round-hole distribution is significantly larger than that of the conventional composite specimens with the non-fiber-round-hole distribution. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Influence of fiber packing structure on permeability

    NASA Technical Reports Server (NTRS)

    Cai, Zhong; Berdichevsky, Alexander L.

    1993-01-01

    The study on the permeability of an aligned fiber bundle is the key building block in modeling the permeability of advanced woven and braided preforms. Available results on the permeability of fiber bundles in the literature show that a substantial difference exists between numerical and analytical calculations on idealized fiber packing structures, such as square and hexagonal packing, and experimental measurements on practical fiber bundles. The present study focuses on the variation of the permeability of a fiber bundle under practical process conditions. Fiber bundles are considered as containing openings and fiber clusters within the bundle. Numerical simulations on the influence of various openings on the permeability were conducted. Idealized packing structures are used, but with introduced openings distributed in different patterns. Both longitudinal and transverse flow are considered. The results show that openings within the fiber bundle have substantial effect on the permeability. In the longitudinal flow case, the openings become the dominant flow path. In the transverse flow case, the fiber clusters reduce the gap sizes among fibers. Therefore the permeability is greatly influenced by these openings and clusters, respectively. In addition to the porosity or fiber volume fraction, which is commonly used in the permeability expression, another fiber bundle status parameter, the ultimate fiber volume fraction, is introduced to capture the disturbance within a fiber bundle.

  14. Recent progress in distributed optical fiber Raman photon sensors at China Jiliang University

    NASA Astrophysics Data System (ADS)

    Zhang, Zaixuan; Wang, Jianfeng; Li, Yi; Gong, Huaping; Yu, Xiangdong; Liu, Honglin; Jin, Yongxing; Kang, Juan; Li, Chenxia; Zhang, Wensheng; Zhang, Wenping; Niu, Xiaohui; Sun, Zhongzhou; Zhao, Chunliu; Dong, Xinyong; Jin, Shangzhong

    2012-06-01

    A brief review of recent progress in researches, productions and applications of full distributed fiber Raman photon sensors at China Jiliang University (CJLU) is presented. In order to improve the measurement distance, the accuracy, the space resolution, the ability of multi-parameter measurements, and the intelligence of full distributed fiber sensor systems, a new generation fiber sensor technology based on the optical fiber nonlinear scattering fusion principle is proposed. A series of new generation full distributed fiber sensors are investigated and designed, which consist of new generation ultra-long distance full distributed fiber Raman and Rayleigh scattering photon sensors integrated with a fiber Raman amplifier, auto-correction full distributed fiber Raman photon temperature sensors based on Raman correlation dual sources, full distributed fiber Raman photon temperature sensors based on a pulse coding source, full distributed fiber Raman photon temperature sensors using a fiber Raman wavelength shifter, a new type of Brillouin optical time domain analyzers (BOTDAs) integrated with a fiber Raman amplifier for replacing a fiber Brillouin amplifier, full distributed fiber Raman and Brillouin photon sensors integrated with a fiber Raman amplifier, and full distributed fiber Brillouin photon sensors integrated with a fiber Brillouin frequency shifter. The Internet of things is believed as one of candidates of the next technological revolution, which has driven hundreds of millions of class markets. Sensor networks are important components of the Internet of things. The full distributed optical fiber sensor network (Rayleigh, Raman, and Brillouin scattering) is a 3S (smart materials, smart structure, and smart skill) system, which is easy to construct smart fiber sensor networks. The distributed optical fiber sensor can be embedded in the power grids, railways, bridges, tunnels, roads, constructions, water supply systems, dams, oil and gas pipelines and other facilities, and can be integrated with wireless networks.

  15. Membrane distributed-reflector laser integrated with SiOx-based spot-size converter on Si substrate.

    PubMed

    Nishi, Hidetaka; Fujii, Takuro; Takeda, Koji; Hasebe, Koichi; Kakitsuka, Takaaki; Tsuchizawa, Tai; Yamamoto, Tsuyoshi; Yamada, Koji; Matsuo, Shinji

    2016-08-08

    We demonstrate monolithic integration of a 50-μm-long-cavity membrane distributed-reflector laser with a spot-size converter, consisting of a tapered InP wire waveguide and an SiOx waveguide, on SiO2/Si substrate. The device exhibits 9.4-GHz/mA0.5 modulation efficiency with a 2.2-dB fiber coupling loss. We demonstrate 25.8-Gbit/s direct modulation with a bias current of 2.5 mA, resulting in a low energy cost of 132 fJ/bit.

  16. Compressive Behavior of Fiber-Reinforced Concrete with End-Hooked Steel Fibers

    PubMed Central

    Lee, Seong-Cheol; Oh, Joung-Hwan; Cho, Jae-Yeol

    2015-01-01

    In this paper, the compressive behavior of fiber-reinforced concrete with end-hooked steel fibers has been investigated through a uniaxial compression test in which the variables were concrete compressive strength, fiber volumetric ratio, and fiber aspect ratio (length to diameter). In order to minimize the effect of specimen size on fiber distribution, 48 cylinder specimens 150 mm in diameter and 300 mm in height were prepared and then subjected to uniaxial compression. From the test results, it was shown that steel fiber-reinforced concrete (SFRC) specimens exhibited ductile behavior after reaching their compressive strength. It was also shown that the strain at the compressive strength generally increased along with an increase in the fiber volumetric ratio and fiber aspect ratio, while the elastic modulus decreased. With consideration for the effect of steel fibers, a model for the stress–strain relationship of SFRC under compression is proposed here. Simple formulae to predict the strain at the compressive strength and the elastic modulus of SFRC were developed as well. The proposed model and formulae will be useful for realistic predictions of the structural behavior of SFRC members or structures. PMID:28788011

  17. Characterization of SiC (SCS-6) Fiber Reinforced Reaction-Formed Silicon Carbide Matrix Composites

    NASA Technical Reports Server (NTRS)

    Singh, Mrityunjay; Dickerson, Robert M.

    1995-01-01

    Silicon carbide (SCS-6) fiber reinforced-reaction formed silicon carbide matrix composites were fabricated using NASA's reaction forming process. Silicon-2 at a percent of niobium alloy was used as an infiltrant instead of pure silicon to reduce the amount of free silicon in the matrix after reaction forming. The matrix primarily consists of silicon carbide with a bi-modal grain size distribution. Minority phases dispersed within the matrix are niobium disilicide (NbSi2), carbon and silicon. Fiber push-out tests on these composites determined a debond stress of approx. 67 MPa and a frictional stress of approx. 60 MPa. A typical four point flexural strength of the composite is 297 MPa (43.1 KSi). This composite shows tough behavior through fiber pull out.

  18. Four channel Laser Firing Unit using laser diodes

    NASA Technical Reports Server (NTRS)

    Rosner, David, Sr.; Spomer, Edwin, Sr.

    1994-01-01

    This paper describes the accomplishments and status of PS/EDD's (Pacific Scientific/Energy Dynamics Division) internal research and development effort to prototype and demonstrate a practical four channel laser firing unit (LFU) that uses laser diodes to initiate pyrotechnic events. The LFU individually initiates four ordnance devices using the energy from four diode lasers carried over the fiber optics. The LFU demonstrates end-to-end optical built in test (BIT) capabilities. Both Single Fiber Reflective BIT and Dual Fiber Reflective BIT approaches are discussed and reflection loss data is presented. This paper includes detailed discussions of the advantages and disadvantages of both BIT approaches, all-fire and no-fire levels, and BIT detection levels. The following topics are also addressed: electronic control and BIT circuits, fiber optic sizing and distribution, and an electromechanical shutter type safe/arm device. This paper shows the viability of laser diode initiation systems and single fiber BIT for typing military applications.

  19. Common errors in textbook descriptions of muscle fiber size in nontrained humans.

    PubMed

    Chalmers, Gordon R; Row, Brandi S

    2011-09-01

    Exercise science and human anatomy and physiology textbooks commonly report that type IIB muscle fibers have the largest cross-sectional area of the three fiber types. These descriptions of muscle fiber sizes do not match with the research literature examining muscle fibers in young adult nontrained humans. For men, most commonly type IIA fibers were significantly larger than other fiber types (six out of 10 cases across six different muscles). For women, either type I, or both I and IIA muscle fibers were usually significantly the largest (five out of six cases across four different muscles). In none of these reports were type IIB fibers significantly larger than both other fiber types. In 27 studies that did not include statistical comparisons of mean fiber sizes across fiber types, in no cases were type IIB or fast glycolytic fibers larger than both type I and IIA, or slow oxidative and fast oxidative glycolytic fibers. The likely reason for mistakes in textbook descriptions of human muscle fiber sizes is that animal data were presented without being labeled as such, and without any warning that there are interspecies differences in muscle fiber properties. Correct knowledge of muscle fiber sizes may facilitate interpreting training and aging adaptations.

  20. Renal artery nerve distribution and density in the porcine model: biologic implications for the development of radiofrequency ablation therapies.

    PubMed

    Tellez, Armando; Rousselle, Serge; Palmieri, Taylor; Rate, William R; Wicks, Joan; Degrange, Ashley; Hyon, Chelsea M; Gongora, Carlos A; Hart, Randy; Grundy, Will; Kaluza, Greg L; Granada, Juan F

    2013-12-01

    Catheter-based renal artery denervation has demonstrated to be effective in decreasing blood pressure among patients with refractory hypertension. The anatomic distribution of renal artery nerves may influence the safety and efficacy profile of this procedure. We aimed to describe the anatomic distribution and density of periarterial renal nerves in the porcine model. Thirty arterial renal sections were included in the analysis by harvesting a tissue block containing the renal arteries and perirenal tissue from each animal. Each artery was divided into 3 segments (proximal, mid, and distal) and assessed for total number, size, and depth of the nerves according to the location. Nerve counts were greatest proximally (45.62% of the total nerves) and decreased gradually distally (mid, 24.58%; distal, 29.79%). The distribution in nerve size was similar across all 3 sections (∼40% of the nerves, 50-100 μm; ∼30%, 0-50 μm; ∼20%, 100-200 μm; and ∼10%, 200-500 μm). In the arterial segments ∼45% of the nerves were located within 2 mm from the arterial wall whereas ∼52% of all nerves were located within 2.5 mm from the arterial wall. Sympathetic efferent fibers outnumbered sensory afferent fibers overwhelmingly, intermixed within the nerve bundle. In the porcine model, renal artery nerves are seen more frequently in the proximal segment of the artery. Nerve size distribution appears to be homogeneous throughout the artery length. Nerve bundles progress closer to the arterial wall in the distal segments of the artery. This anatomic distribution may have implications for the future development of renal denervation therapies. Crown Copyright © 2013. Published by Mosby, Inc. All rights reserved.

  1. The relevance of light diffusion profiles for interstitial PDT using light-diffusing optical fibers

    NASA Astrophysics Data System (ADS)

    Stringasci, Mirian D.; Fortunato, Thereza C.; Moriyama, Lilian T.; Vollet Filho, José Dirceu; Bagnato, Vanderlei S.; Kurachi, Cristina

    2017-02-01

    Photodynamic therapy (PDT) is a technique used for several tumor types treatment. Light penetration on biological tissue is one limiting factor for PDT applied to large tumors. An alternative is using interstitial PDT, in which optical fibers are inserted into tumors. Cylindrical diffusers have been used in interstitial PDT. Light emission of different diffusers depends on the manufacturing process, size and optical properties of fibers, which make difficult to establish an adequate light dosimetry, since usually light profile is not designed for direct tissue-fiber contact. This study discusses the relevance of light distribution by a cylindrical diffuser into a turbid lipid emulsion solution, and how parts of a single diffuser contribute to illumination. A 2 cm-long cylindrical diffuser optical fiber was connected to a diode laser (630 nm), and the light spatial distribution was measured by scanning the solution with a collection probe. From the light field profile generated by a 1 mm-long intermediary element of a 20 mm-long cylindrical diffuser, recovery of light distribution for the entire diffuser was obtained. PDT was performed in rat healthy liver for a real treatment outcome analysis. By using computational tools, a typical necrosis profile generated by the irradiation with such a diffuser fiber was reconstructed. The results showed that it was possible predicting theoretically the shape of a necrosis profile in a healthy, homogeneous tissue with reasonable accuracy. The ability to predict the necrosis profile obtained from an interstitial illumination by optical diffusers has the potential improve light dosimetry for interstitial PDT.

  2. Mist collection on parallel fiber arrays

    NASA Astrophysics Data System (ADS)

    Labbé, Romain; Duprat, Camille

    2016-11-01

    Fog is an important source of fresh water in specific arid regions such as the Atacama Desert in Chile. The method used to collect water passively from fog, either for domestic consumption or research purposes, consists in erecting large porous fiber nets on which the mist droplets impact. The two main mechanisms involved with this process are the impact of the drops on the fibers and the drainage of the fluid from the net, while the main limiting factor is the clogging of the mesh by accumulated water. We consider a novel collection system, made of an array of parallel fibers, that we study experimentally with a wind mist tunnel. In addition, we develop theoretical models considering the coupling of wind flow, droplet trajectories and wetting of the fibers. We find that the collection efficiency strongly depends on the size and distribution of the drops formed on the fibers, and thus on the fibers diameter, inclination angle and wetting properties. In particular, we show that the collection efficiency is greater when large drops are formed on the fibers. By adjusting the fibers diameter and the inter-fiber spacing, we look for an optimal structure that maximizes the collection surface and the drainage, while avoiding flow deviations.

  3. Effect of thermal cycling on composites reinforced with two differently sized silica-glass fibers.

    PubMed

    Meriç, Gökçe; Ruyter, I Eystein

    2007-09-01

    To evaluate the effects of thermal cycling on the flexural properties of composites reinforced with two differently sized fibers. Acid-washed, woven, fused silica-glass fibers, were heat-treated at 500 degrees C, silanized and sized with one of two sizing resins (linear poly(butyl methacrylate)) (PBMA), cross-linked poly(methyl methacrylate) (PMMA). Subsequently the fibers were incorporated into a polymer matrix. Two test groups with fibers and one control group without fibers were prepared. The flexural properties of the composite reinforced with linear PBMA-sized fibers were evaluated by 3-point bend testing before thermal cycling. The specimens from all three groups were thermally cycled in water (12,000 cycles, 5/55 degrees C, dwell time 30 s), and afterwards tested by 3-point bending. SEM micrographs were taken of the fibers and of the fractured fiber reinforced composites (FRC). The reduction of ultimate flexural strength after thermal cycling was less than 20% of that prior to thermal cycling for composites reinforced with linear PBMA-sized silica-glass fibers. The flexural strength of the composite reinforced with cross-linked PMMA-sized fibers was reduced to less than half of the initial value. This study demonstrated that thermal cycling differently influences the flexural properties of composites reinforced with different sized silica-glass fibers. The interfacial linear PBMA-sizing polymer acts as a stress-bearing component for the high interfacial stresses during thermal cycling due to the flexible structure of the linear PBMA above Tg. The cross-linked PMMA-sizing, however, acts as a rigid component and therefore causes adhesive fracture between the fibers and matrix after the fatigue process of thermal cycling and flexural fracture.

  4. Optical fiber strain sensor for application in intelligent intruder detection systems

    NASA Astrophysics Data System (ADS)

    Stańczyk, Tomasz; Tenderenda, Tadeusz; Szostkiewicz, Lukasz; Bienkowska, Beata; Kunicki, Daniel; Murawski, Michal; Mergo, Pawel; Nasilowski, Tomasz

    2017-10-01

    Nowadays technology allows to create highly effective Intruder Detection Systems (IDS), that are able to detect the presence of an intruder within a defined area. In such systems the best performance can be achieved by combining different detection techniques in one system. One group of devices that can be applied in an IDS, are devices based on Fiber Optic Sensors (FOS). The FOS benefits from numerous advantages of optical fibers like: small size, light weight or high sensitivity. In this work we present a novel Microstructured Optical Fiber (MOF) characterized by increased strain sensitivity dedicated to distributed acoustic sensing for intelligent intruder detection systems. By designing the MOF with large air holes in close proximity to a fiber core, we increased the effective refractive index sensitivity to longitudinal strain. The presented fiber can be easily integrated in a floor system in order to detect any movement in the investigated area. We believe that sensors, based on the presented MOF, due to its numerous advantages, can find application in intelligent IDS.

  5. Biohybrid Fibro-Porous Vascular Scaffolds: Effect of Crosslinking on Properties

    PubMed Central

    Nozik, Danna; Patel, Harsh; Singh, Raj K.; Vohra, Yogesh K.

    2015-01-01

    Tubular grafts were fabricated from blends of polycaprolactone (PCL) and poly(glycolide -co-caprolactone) (PGC) polymers and coated with an extracellular matrix containing collagens, laminin, and proteoglycans, but not growth factors (HuBiogel™). Multifunctional scaffolds from polymer blends and membrane proteins provide the necessary biomechanics and biological functions for tissue regeneration. Two crosslinking agents, a natural crosslinker namely genipin (Gp) and a carbodiimide reagent namely 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC), were used for further stabilizing the protein matrix and the effect of crosslinking was evaluated for structural, morphological, mechanical properties using SEM, DSC and DMA. SEM images and fiber diameter distribution showed fiber-size between 0.2 µm to 1 µm with the majority of fiber diameters being under 500 nm, indicating upper range of protein fiber-sizes (for example, collagen fibers in extracellular matrix are in 50 to 500 nm diameter range). HB coating did not affect the mechanical properties, but increased its hydrophilicity of the graft. Overall data showed that PCL/PGC blends with 3:1 mass ratio exhibited mechanical properties comparable to those of human native arteries (tensile strength of 1–2 MPa and Young’s modulus of <10 MPa). Additionally, the effect of crosslinking on coating stability was investigated to assure the retention of proteins on scaffold for effective cell-matrix interactions. PMID:26082566

  6. Biohybrid Fibro-Porous Vascular Scaffolds: Effect of Crosslinking on Properties.

    PubMed

    Thomas, Vinoy; Nozik, Danna; Patel, Harsh; Singh, Raj K; Vohra, Yogesh K

    Tubular grafts were fabricated from blends of polycaprolactone (PCL) and poly(glycolide -co-caprolactone) (PGC) polymers and coated with an extracellular matrix containing collagens, laminin, and proteoglycans, but not growth factors (HuBiogel™). Multifunctional scaffolds from polymer blends and membrane proteins provide the necessary biomechanics and biological functions for tissue regeneration. Two crosslinking agents, a natural crosslinker namely genipin (Gp) and a carbodiimide reagent namely 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC), were used for further stabilizing the protein matrix and the effect of crosslinking was evaluated for structural, morphological, mechanical properties using SEM, DSC and DMA. SEM images and fiber diameter distribution showed fiber-size between 0.2 µm to 1 µm with the majority of fiber diameters being under 500 nm, indicating upper range of protein fiber-sizes (for example, collagen fibers in extracellular matrix are in 50 to 500 nm diameter range). HB coating did not affect the mechanical properties, but increased its hydrophilicity of the graft. Overall data showed that PCL/PGC blends with 3:1 mass ratio exhibited mechanical properties comparable to those of human native arteries (tensile strength of 1-2 MPa and Young's modulus of <10 MPa). Additionally, the effect of crosslinking on coating stability was investigated to assure the retention of proteins on scaffold for effective cell-matrix interactions.

  7. Oriented nanofibers embedded in a polymer matrix

    NASA Technical Reports Server (NTRS)

    Barrera, Enrique V. (Inventor); Lozano, Karen (Inventor); Rodriguez-Macias, Fernando J. (Inventor); Chibante, Luis Paulo Felipe (Inventor); Stewart, David Harris (Inventor)

    2011-01-01

    A method of forming a composite of embedded nanofibers in a polymer matrix is disclosed. The method includes incorporating nanofibers in a plastic matrix forming agglomerates, and uniformly distributing the nanofibers by exposing the agglomerates to hydrodynamic stresses. The hydrodynamic said stresses force the agglomerates to break apart. In combination or additionally elongational flow is used to achieve small diameters and alignment. A nanofiber reinforced polymer composite system is disclosed. The system includes a plurality of nanofibers that are embedded in polymer matrices in micron size fibers. A method for producing nanotube continuous fibers is disclosed. Nanofibers are fibrils with diameters of 100 nm, multiwall nanotubes, single wall nanotubes and their various functionalized and derivatized forms. The method includes mixing a nanofiber in a polymer; and inducing an orientation of the nanofibers that enables the nanofibers to be used to enhance mechanical, thermal and electrical properties. Orientation is induced by high shear mixing and elongational flow, singly or in combination. The polymer may be removed from said nanofibers, leaving micron size fibers of aligned nanofibers.

  8. Morphology and Dynamic Mechanical Properties of Diglycidyl Ether of Bisphenol-A Toughened with Carboxyl-Terminated Butadiene-Acrylonitrile

    NASA Technical Reports Server (NTRS)

    Hong, S. D.; Chung, S. Y.; Fedors, R. F.; Moacanin, J.; Gupta, A.

    1984-01-01

    The fracture toughness of an incorporation of a carboxyl-terminated butadiene acrylonitrile (CTBN) elastomer in diglycidyl ether bisphenol A (DGEBA) resin was investigated. Measurements of dynamic mechanical properties, scanning electron microscopy and small-angle X-ray scattering were carried out to characterize the state of cure, morphology and particle size and size distribution of the neat resins and their graphite fiber reinforced composites.

  9. Physical properties of peats as related to degree of decomposition

    Treesearch

    D.H. Boelter

    1969-01-01

    Important physical characteristics, such as water retention, water yield coefficient, and hydraulic conductivity, vary greatly for representative northern Minnesota peat materials. The differences are related to the degree of decomposition, which largely determines the porosity and pore size distribution. Fiber content (> 0.1 mm) and bulk density are properties...

  10. Distributed Fiber Optic Sensors for Earthquake Detection and Early Warning

    NASA Astrophysics Data System (ADS)

    Karrenbach, M. H.; Cole, S.

    2016-12-01

    Fiber optic cables placed along pipelines, roads or other infrastructure provide dense sampling of passing seismic wavefields. Laser interrogation units illuminate the fiber over its entire length, and strain at desired points along the fiber can be determined from the reflected signal. Single-mode optical fibers up to 50 km in length can provide a distributed acoustic sensing system (DAS) where the acoustic bandwidth of each channel is limited only by the round-trip time over the length of the cable (0.0005 s for a 50 km cable). Using a 10 m spatial resolution results in 4000 channels sampled at 2.5 kHz spanning a 40 km-long fiber deployed along a pipeline. The inline strain field is averaged along the fiber over a 10 m section of the cable at each desired spatial sample, creating a virtual sensor location. Typically, a dynamic strain sensitivity of sub-nanometers within each gauge along the entire length of the fiber can be achieved. This sensitivity corresponds to a particle displacement figure of approximately -90 dB ms-2Hz-½. Such a fiber optic sensor is not as sensitive as long-period seismometers used in earthquake networks, but given the large number of channels, small to medium-sized earthquakes can be detected, depending on distance from the array, and can be located with precision through arrival time inversions. We show several examples of earthquake recordings using distributed fiber optic arrays that were deployed originally for other purposes. A 480 km long section of a pipeline in Turkey was actively monitored with a DAS fiber optic system for activities in the immediate vicinity of the pipeline. The densely spaced sensor array along the pipeline detected earthquakes of 3.6 - 7.2 magnitude range, centered near Van, Turkey. Secondly, a fiber optic system located along a rail line near the Salton Sea in California was used to create a smaller scale fiber optic sensor array, on which earthquakes with magnitudes 2.2 - 2.7 were recorded from epicenters up to 65 km away. Our analysis shows that existing fiber optic installations along infrastructure could be combined to form a large aperture array with tens of thousands of channels for epicenter estimation and for early warning purposes, augmenting existing earthquake sensor networks.

  11. Fiber Optic Sensor Embedment Study for Multi-Parameter Strain Sensing

    PubMed Central

    Drissi-Habti, Monssef; Raman, Venkadesh; Khadour, Aghiad; Timorian, Safiullah

    2017-01-01

    The fiber optic sensors (FOSs) are commonly used for large-scale structure monitoring systems for their small size, noise free and low electrical risk characteristics. Embedded fiber optic sensors (FOSs) lead to micro-damage in composite structures. This damage generation threshold is based on the coating material of the FOSs and their diameter. In addition, embedded FOSs are aligned parallel to reinforcement fibers to avoid micro-damage creation. This linear positioning of distributed FOS fails to provide all strain parameters. We suggest novel sinusoidal sensor positioning to overcome this issue. This method tends to provide multi-parameter strains in a large surface area. The effectiveness of sinusoidal FOS positioning over linear FOS positioning is studied under both numerical and experimental methods. This study proves the advantages of the sinusoidal positioning method for FOS in composite material’s bonding. PMID:28333117

  12. Polarization characteristics of double-clad elliptical fibers.

    PubMed

    Zhang, F; Lit, J W

    1990-12-20

    A scalar variational analysis based on a Gaussian approximation of the fundamental mode of a double-clad elliptical fiber with a depressed inner cladding is studied. The polarization properties and graphic results are presented; they are given in terms of three parameters: the ratio of the major axis to the minor axis of the core, the ratio of the inner cladding major axis to the core major axis, and the difference between the core index and the inner cladding index. The variations of both the spot size and the field intensity with core ellipticity are examined. It is shown that high birefringence and dispersion-free orthogonal polarization modes can be obtained within the single-mode region and that the field intensity distribution may be more confined to the fiber center than in a single-clad elliptical fiber.

  13. Planum Temporale Asymmetries Correlate with Corpus Callosum Axon Fiber Density in Chimpanzees (Pan troglodytes)

    PubMed Central

    Hopkins, William D.; Pilger, John F.; Storz, Rachel; Ambrose, Alex; Hof, Patrick R.; Sherwood, Chet C.

    2012-01-01

    The corpus callosum (CC) is the major white matter tract that connects the two cerebral hemispheres. Some have theorized that individual differences in behavioral and brain asymmetries are linked to variation in the density of axon fibers that traverse different sections of the CC. In this study, we examined whether variation in axon fiber density in the CC was associated with variation in asymmetries in the planum temporale (PT) in a sample of 20 post-mortem chimpanzee brains. We further tested for sex differences in small and large CC fiber proportions and density in the chimpanzees. We found that the distribution of small and large fibers within the CC of chimpanzees follows a similar pattern to those reported in humans. We also found that chimpanzees with larger asymmetries in the PT had fewer large fibers in the posterior portion of the CC, particularly among females. As has been reported in human brains, the findings reported here indicate that individual differences in brain asymmetries are associated with variation in interhemispheric connectivity as manifest in axon fiber density and size. PMID:22766214

  14. Effects of fiber, matrix, and interphase on carbon fiber composite compression strength

    NASA Technical Reports Server (NTRS)

    Nairn, John A.; Harper, Sheila I.; Bascom, Willard D.

    1994-01-01

    The major goal of this project was to obtain basic information on compression failure properties of carbon fiber composites. To do this, we investigated fiber effects, matrix effects, and fiber/matrix interface effects. Using each of nine fiber types, we prepared embedded single-fiber specimens, single-ply specimens, and full laminates. From the single-fiber specimens, in addition to the standard fragmentation test analysis, we were able to use the low crack density data to provide information about the distribution of fiber flaws. The single-ply specimens provided evidence of a correlation between the size of kink band zones and the quality of the interface. Results of the laminate compression experiments mostly agreed with the results from single-ply experiments, although the ultimate compression strengths of laminates were higher. Generally, these experiments showed a strong effect of interfacial properties. Matrix effects were examined using laminates subjected to precracking under mixed-mode loading conditions. A large effect of precracking conditions on the mode 1 toughness of the laminates was found. In order to control the properties of the fiber/matrix interface, we prepared composites of carbon fiber and polycarbonate and subjected these to annealing. The changes in interfacial properties directly correlated with changes in compression strength.

  15. Carbon fiber plume sampling for large scale fire tests at Dugway Proving Ground. [fiber release during aircraft fires

    NASA Technical Reports Server (NTRS)

    Chovit, A. R.; Lieberman, P.; Freeman, D. E.; Beggs, W. C.; Millavec, W. A.

    1980-01-01

    Carbon fiber sampling instruments were developed: passive collectors made of sticky bridal veil mesh, and active instruments using a light emitting diode (LED) source. These instruments measured the number or number rate of carbon fibers released from carbon/graphite composite material when the material was burned in a 10.7 m (35 ft) dia JP-4 pool fire for approximately 20 minutes. The instruments were placed in an array suspended from a 305 m by 305 m (1000 ft by 1000 ft) Jacob's Ladder net held vertically aloft by balloons and oriented crosswind approximately 140 meters downwind of the pool fire. Three tests were conducted during which released carbon fiber data were acquired. These data were reduced and analyzed to obtain the characteristics of the released fibers including their spatial and size distributions and estimates of the number and total mass of fibers released. The results of the data analyses showed that 2.5 to 3.5 x 10 to the 8th power single carbon fibers were released during the 20 minute burn of 30 to 50 kg mass of initial, unburned carbon fiber material. The mass released as single carbon fibers was estimated to be between 0.1 and 0.2% of the initial, unburned fiber mass.

  16. Framework for cascade size calculations on random networks

    NASA Astrophysics Data System (ADS)

    Burkholz, Rebekka; Schweitzer, Frank

    2018-04-01

    We present a framework to calculate the cascade size evolution for a large class of cascade models on random network ensembles in the limit of infinite network size. Our method is exact and applies to network ensembles with almost arbitrary degree distribution, degree-degree correlations, and, in case of threshold models, for arbitrary threshold distribution. With our approach, we shift the perspective from the known branching process approximations to the iterative update of suitable probability distributions. Such distributions are key to capture cascade dynamics that involve possibly continuous quantities and that depend on the cascade history, e.g., if load is accumulated over time. As a proof of concept, we provide two examples: (a) Constant load models that cover many of the analytically tractable casacade models, and, as a highlight, (b) a fiber bundle model that was not tractable by branching process approximations before. Our derivations cover the whole cascade dynamics, not only their steady state. This allows us to include interventions in time or further model complexity in the analysis.

  17. Synthetic and non-synthetic anthropogenic fibers in a river under the impact of Paris Megacity: Sampling methodological aspects and flux estimations.

    PubMed

    Dris, Rachid; Gasperi, Johnny; Rocher, Vincent; Tassin, Bruno

    2018-03-15

    Processed fibers are highly present in our daily life and can be either natural, artificial (regenerated cellulose) and synthetic (made with petrochemicals). Their widespread use lead inevitably to a high contamination of environment. Previous studies focus on plastic particles regardless of their type or shape as long as they are comprised between 330μm and 5mm. On the contrary, this study focuses exclusively on fibers using a smaller mesh size net (80μm) to sample freshwater. Moreover, all processed organic fibers are considered, irrespective to their nature. First, the short term temporal variability of the fibers in the environment was assessed. While exposing the sampling net during 1min a coefficient of variation of approx. 45% (with n=6) was determined. It was of only 26% (n=6) when the exposure was of 3min. The assessment of the distribution through the section showed a possible difference in concentrations between the middle of the water surface and the river banks which could be attributed to the intense river traffic within the Paris Megacity. The vertical variability seems negligible as turbulence and current conditions homogenize the distribution of the fibers. A monthly monitoring showed concentrations of 100.6±99.9fibers·m -3 in the Marne River and of: 48.5±98.5, 27.9±26.3, 27.9±40.3 and 22.1±25.3fibers·m -3 from the upstream to downstream points in the Seine River. Once these concentrations are converted into fluxes, it seems that the impact generated by the Paris Megacity cannot be distinguished. Investigations on the role of sedimentation and deposition on the banks are required. This study helped fill some major knowledge gaps regarding the fibers in rivers, their sampling, occurrence, spatial-temporal distribution and fluxes. It is encouraged that future studies include both synthetic and none synthetic fibers. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. A New Generation Fiber Optic Probe: Characterization of Biological Fluids, Protein Crystals and Ophthalmic Diseases

    NASA Technical Reports Server (NTRS)

    Ansari, Rafat R.; Suh, Kwang I.

    1996-01-01

    A new fiber optic probe developed for determining transport properties of sub-micron particles in fluids experiments in a microgravity environment has been applied to characterize particulate dispersions/suspensions in various challenging environments which have been hitherto impossible. The probe positioned in front of a sample delivers a low power light (few nW - 3mW) from a laser and guides the light which is back scattered by the suspended particles through a receiving optical fiber to a photo detector and to a digital correlator. The probe provides rapid determination of macromolecular diffusivities and their respective size distributions. It has been applied to characterize various biological fluids, protein crystals, and ophthalmic diseases.

  19. Invited review: Practical feeding management recommendations to mitigate the risk of subacute ruminal acidosis in dairy cattle.

    PubMed

    Humer, E; Petri, R M; Aschenbach, J R; Bradford, B J; Penner, G B; Tafaj, M; Südekum, K-H; Zebeli, Q

    2018-02-01

    Rumen health is of vital importance in ensuring healthy and efficient dairy cattle production. Current feeding programs for cattle recommend concentrate-rich diets to meet the high nutritional needs of cows during lactation and enhance cost-efficiency. These diets, however, can impair rumen health. The term "subacute ruminal acidosis" (SARA) is often used as a synonym for poor rumen health. In this review, we first describe the physiological demands of cattle for dietary physically effective fiber. We also provide background information on the importance of enhancing salivary secretions and short-chain fatty acid absorption across the stratified squamous epithelium of the rumen; thus, preventing the disruption of the ruminal acid-base balance, a process that paves the way for acidification of the rumen. On-farm evaluation of dietary fiber adequacy is challenging for both nutritionists and veterinarians; therefore, this review provides practical recommendations on how to evaluate the physical effectiveness of the diet based on differences in particle size distribution, fiber content, and the type of concentrate fed, both when the latter is part of total mixed ration and when it is supplemented in partial mixed rations. Besides considering the absolute amount of physically effective fiber and starch types in the diet, we highlight the role of several feeding management factors that affect rumen health and should be considered to control and mitigate SARA. Most importantly, transitional feeding to ensure gradual adaptation of the ruminal epithelium and microbiota; monitoring and careful management of particle size distribution; controlling feed sorting, meal size, and meal frequency; and paying special attention to primiparous cows are some of the feeding management tools that can help in sustaining rumen health in high-producing dairy herds. Supplementation of feed additives including yeast products, phytogenic compounds, and buffers may help attenuate SARA, especially during stress periods when the risk of a deficiency of physically effective fiber in the diet is high, such as during early lactation. However, the usage of feed additives cannot fully compensate for suboptimal feeding management. Copyright © 2018 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  20. Oil sorption by lignocellulosic fibers

    Treesearch

    Beom-Goo Lee; James S. Han; Roger M. Rowell

    1999-01-01

    The oil sorption capacities of cotton fiber, kenaf bast fiber, kenaf core fiber, and moss fiber were compared after refining, extraction, and reduction in particle sizes. The tests were conducted on diesel oil in a pure form. Cotton fiber showed the highest capacity, followed by kenaf core and bast fibers. Wetting, extraction, and reduction in particle size all...

  1. Tailored interphase structure for improved strength and energy absorption of composites

    NASA Astrophysics Data System (ADS)

    Gao, Xiao

    Fiber reinforced polymeric composites are lightweight, high-strength and high impact-resistant materials used widely for various applications. It has been shown that the mechanical performance of composites are dependent on the interphase, a three-dimensional region of nanometer size in the vicinity of the fiber-matrix boundary that possesses properties different from those of either the fiber reinforcement or the matrix resin and governs the load transfer from matrix to fiber. This research conducts a systematic study on glass fiber-epoxy interphase structure by tailoring adhesion between constituents and the creation of textures to control strength and energy absorption through mechanical interlocking between glass fiber and epoxy matrix. Our objective is to establish the foundation for microstructural design and optimization of the composite's structural and impact performance. Two ways of roughening the glass fiber surface have been studied to create the mechanical interlocking between fiber and resin; the first technique involves forming in-situ islands on the glass fiber surface by using silane blends of Glycidoxypropyltrimethoxy silane (GPS) and Tetraethoxy silane (TEOS); the second technique applies a silane coupling agents based sizing with the incorporation of silica nanoparticles (Ludox TMA, 22 nm) onto the fiber surface. The microdroplet test was selected to characterize the influence of adhesion and mechanical interlocking effects on interphase properties of different sizing sized glass fiber reinforced epoxy systems. A suitable data reduction scheme enables the strength and specified energy absorbed due to debonding, dynamic sliding, and quasi-static sliding to be quantified. In order to validate the effect of tailored interphase structure, which is induced by creating mechanical interlocking between fiber and resin, on macroscopic composite properties, composite panels were made from these four different sizing sized glass fibers and tested using the punch shear test. The composite panel made from the hybrid sizing sized glass fiber exhibited improved strength and energy absorption consistent with the trends in micromechanical measurements. Through all failure stages under macromechanical testing, hybrid sizing sized glass fiber/epoxyamine composite panel shows an increase in the strength and total energy absorption by 13% and 26%, respectively, compared to the compatible sizing sized baseline. Both micromechanical and macromechanical tests demonstrate the significant influence of tailoring the interphase structure on improving the impact performance of the composites. The hybrid sizing with the incorporation of nanoparticles, in particular, can greatly improve the impact resistance (i.e. energy absorption) of composites without sacrificing its structural performance (i.e. strength).

  2. [Experimental study on particle size distributions of an engine fueled with blends of biodiesel].

    PubMed

    Lu, Xiao-Ming; Ge, Yun-Shan; Han, Xiu-Kun; Wu, Si-Jin; Zhu, Rong-Fu; He, Chao

    2007-04-01

    The purpose of this study is to obtain the particle size distributions of an engine fueled biodiesel and its blends. A turbocharged DI diesel engine was tested on a dynamometer. A pump of 80 L/min and fiber glass filters with diameter of 90 mm were used to sample engine particles in exhaust pipe. Sampling duration was 10 minutes. Particle size distributions were measured by a laser diffraction particle size analyzer. Results indicated that higher engine speed resulted in smaller particle sizes and narrower distributions. The modes on distribution curves and mode variation were larger with dry samples than with wet samples (dry: around 10 - 12 microm vs. wet: around 4 - 10 microm). At low speed, Sauter mean diameter d32 of dry samples was the biggest with B100, the smallest with diesel fuel, and among them with B20, while at high speed, d32 the biggest with B20, the smallest with B100, and in middle with diesel. Median diameter d(0.5) also reflected the results. Except for 2 000 r/min, d32 of wet with B20 is the biggest, the smallest with diesel, and in middle with B100. The large mode variation resulted in increase of d32.

  3. An experimental approach to the evaluation of the biopersistence of respirable synthetic fibers and minerals.

    PubMed Central

    Bernstein, D M; Mast, R; Anderson, R; Hesterberg, T W; Musselman, R; Kamstrup, O; Hadley, J

    1994-01-01

    The biopersistence of fibers and minerals in the respiratory tract is an important parameter in the toxicity of those materials. The biopersistence of respirable synthetic fibers and minerals in man can be most closely evaluated in an animal model. While acellular and in vitro systems are important for initial evaluation of solubility and durability, they cannot simulate the dynamics of inhalation deposition and clearance and the subsequent systemic reaction to fibers and minerals that occurs in the animal. To evaluate the biopersistence of synthetic fibers, male rats were exposed to a well defined rat respirable aerosol of man-made vitreous fibers (MMVF), 6 hr/day for 5 days. Following exposure, subgroups were sacrificed at intervals ranging from 1 hr to 52 weeks. Following sacrifice, the lungs were removed, weighed, and immediately frozen at 20 degrees C for subsequent digestion by low temperature plasma ashing. The number, size distribution, and chemical composition of the fibers in the aerosol and lung were determined. With this animal model the role of biopersistence in altering the geometry and clearance of fibers can be systematically evaluated. The model also can be applied for the evaluation of the biopersistence of nonfibrous minerals. PMID:7882920

  4. Computer design synthesis of a below knee-Syme prosthesis

    NASA Technical Reports Server (NTRS)

    Elangovan, P. T.; Ghista, D. N.; Alwar, R. S.

    1979-01-01

    A detailed design synthesis analysis of the BK Syme prosthesis is provided, to determine the socket's cutout orientation size and shape, cutout fillet shape, socket wall thickness distribution and the reinforced fiber distribution in the socket wall, for a minimally stressed structurally safe lightweight prosthesis. For analysis purposes, the most adverse socket loading is obtained at the push-off stage of gait; this loading is idealized as an axial in-plane loading on the bottom edge of the circular cylindrical socket shell whose top edge is considered fixed. Finite element stress analysis of the socket shell (with uniform and graded wall thickness) are performed for various orientations of the cutout and for various types of corner fillets. A lateral cutout with a streamline fillet is recommended. The wall material (i.e., thickness) distribution is determined so as to minimize the stresses, while ensuring that the wall material's stress limits are not exceeded. For such a maximally stressed lightweight socket shell, the panels in the neighborhood of the cutout are checked to ensure that they do not buckle under their acquired stresses. A fiber-reinforced laminated composite socket shell is also analyzed in order to recommend optimum variables in orientations and densities of reinforcing fibers.

  5. In Vitro Dissolution of Libby Amphibole, Amosite Asbestos, and MMVF Using Acid and Synthetic Lung Fluid Media.

    EPA Science Inventory

    Toxicity of inhaled fibers is dependent in part on biopersistence due to changes in size distribution after deposition and clearance in the respiratory tract. To model this in vivo behavior, respirable (PM2.5) Libby amphibole (LA) and amosite asbestos, and a reference material gl...

  6. Dystrophic Serotonergic Axons in Neurodegenerative Diseases

    PubMed Central

    Azmitia, Efrain C.; Nixon, Ralph

    2012-01-01

    Neurodegenerative diseases such as Parkinson's disease (PD), frontal lobe dementia (FLD) and Diffuse Lewy-Body dementia (DLBD) have diverse neuropathologic features. Here we report that serotonin fibers are dystrophic in the brains of individuals with these three diseases. In neuropathologically normal (control) brains (n=3), serotonin axons immunoreactive (IR) with antibodies against the serotonin transporter (5-HTT) protein were widely distributed in cortex (entorhinal and dorsolateral prefrontal), hippocampus and rostral brainstem. 5-HTT-IR fibers of passage appeared thick, smooth, and un-branched in medial forebrain bundle, medial lemniscus and cortex white matter. The terminal branches were fine, highly branched and varicose in substantia nigra, hippocampus and cortical gray matter. In the diseased brains, however, 5-HTT-IR fibers in the forebrain were reduced in number and were frequently bulbous, splayed, tightly clustered and enlarged. Morphometric analysis revealed significant differences in the size distribution of the 5-HTT-IR profiles in dorsolateral prefrontal area between neurodegenerative diseases and controls. Our observations provide direct morphologic evidence for degeneration of human serotonergic axons in the brains of patients with neurodegenerative diseases despite the limited size (n=3 slices for each region (3) from each brain (4), total slices was n=36) and lack of extensive clinical characterization of the analyzed cohort. This is the first report of dystrophic 5-HTT-IR axons in postmortem human tissue PMID:18502405

  7. Determination of the spectral dependence of reduced scattering and quantitative second-harmonic generation imaging for detection of fibrillary changes in ovarian cancer

    NASA Astrophysics Data System (ADS)

    Campbell, Kirby R.; Tilbury, Karissa B.; Campagnola, Paul J.

    2015-03-01

    Here, we examine ovarian cancer extracellular matrix (ECM) modification by measuring the wavelength dependence of optical scattering measurements and quantitative second-harmonic generation (SHG) imaging metrics in the range of 800-1100 nm in order to determine fibrillary changes in ex vivo normal ovary, type I, and type II ovarian cancer. Mass fractals of the collagen fiber structure is analyzed based on a power law correlation function using spectral dependence measurements of the reduced scattering coefficient μs' where the mass fractal dimension is related to the power. Values of μs' are measured using independent methods of determining the values of μs and g by on-axis attenuation measurements using the Beer-Lambert Law and by fitting the angular distribution of scattering to the Henyey-Greenstein phase function, respectively. Quantitativespectral SHG imaging on the same tissues determines FSHG/BSHG creation ratios related to size and harmonophore distributions. Both techniques probe fibril packing order, but the optical scattering probes structures of sizes from about 50-2000 nm where SHG imaging - although only able to resolve individual fibers - builds contrast from the assembly of fibrils. Our findings suggest that type I ovarian tumor structure has the most ordered collagen fibers followed by normal ovary then type II tumors showing the least order.

  8. Fabrication and optical characterization of silica optical fibers containing gold nanoparticles.

    PubMed

    de Oliveira, Rafael E P; Sjödin, Niclas; Fokine, Michael; Margulis, Walter; de Matos, Christiano J S; Norin, Lars

    2015-01-14

    Gold nanoparticles have been used since antiquity for the production of red-colored glasses. More recently, it was determined that this color is caused by plasmon resonance, which additionally increases the material's nonlinear optical response, allowing for the improvement of numerous optical devices. Interest in silica fibers containing gold nanoparticles has increased recently, aiming at the integration of nonlinear devices with conventional optical fibers. However, fabrication is challenging due to the high temperatures required for silica processing and fibers with gold nanoparticles were solely demonstrated using sol-gel techniques. We show a new fabrication technique based on standard preform/fiber fabrication methods, where nanoparticles are nucleated by heat in a furnace or by laser exposure with unprecedented control over particle size, concentration, and distribution. Plasmon absorption peaks exceeding 800 dB m(-1) at 514-536 nm wavelengths were observed, indicating higher achievable nanoparticle concentrations than previously reported. The measured resonant nonlinear refractive index, (6.75 ± 0.55) × 10(-15) m(2) W(-1), represents an improvement of >50×.

  9. Thermoluminescence characteristics of Ge-doped optical fibers with different dimensions for radiation dosimetry.

    PubMed

    Begum, Mahfuza; Rahman, A K M Mizanur; Abdul-Rashid, H A; Yusoff, Z; Begum, Mahbuba; Mat-Sharif, K A; Amin, Y M; Bradley, D A

    2015-06-01

    Important thermoluminescence (TL) properties of five (5) different core sizes Ge-doped optical fibers have been studied to develop new TL material with better response. These are drawn from same preform applying different speed and tension during drawing phase to produce Ge-doped optical fibers with five (5) different core sizes. The results of the investigations are also compared with most commonly used standard TLD-100 chips (LiF:Mg,Ti) and commercial multimode Ge-doped optical fiber (Yangtze Optical Fiber, China). Scanning Electron Microscope (SEM) and EDX analysis of the fibers are also performed to map Ge distribution across the deposited region. Standard Gamma radiation source in Secondary Standard Dosimetry Lab (SSDL) was used for irradiation covering dose range from 1Gy to 10Gy. The essential dosimetric parameters that have been studied are TL linearity, reproducibility and fading. Prior to irradiation all samples ∼0.5cm length are annealed at temperature of 400°C for 1h period to standardize their sensitivities and background. Standard TLD-100 chips are also annealed for 1h at 400°C and subsequently 2h at 100°C to yield the highest sensitivity. TL responses of these fibers show linearity over a wide gamma radiation dose that is an important property for radiation dosimetry. Among all fibers used in this study, 100μm core diameter fiber provides highest response that is 2.6 times than that of smallest core (20μm core) optical fiber. These fiber-samples demonstrate better response than commercial multi-mode optical fiber and also provide low degree of fading about 20% over a period of fifteen days for gamma radiation. Effective atomic number (Zeff) is found in the range (13.25-13.69) which is higher than soft tissue (7.5) however within the range of human-bone (11.6-13.8). All the fibers can also be re-used several times as a detector after annealing. TL properties of the Ge-doped optical fibers indicate promising applications in ionizing radiation dosimetry. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. A computational model for estimating recruitment of primary afferent fibers by intraneural stimulation in the dorsal root ganglia

    NASA Astrophysics Data System (ADS)

    Bourbeau, D. J.; Hokanson, J. A.; Rubin, J. E.; Weber, D. J.

    2011-10-01

    Primary afferent microstimulation has been proposed as a method for activating cutaneous and muscle afferent fibers to restore tactile and proprioceptive feedback after limb loss or peripheral neuropathy. Large populations of primary afferent fibers can be accessed directly by implanting microelectrode arrays in the dorsal root ganglia (DRG), which provide a compact and stable target for stimulating a diverse group of sensory fibers. To gain insight into factors affecting the number and types of primary afferents activated, we developed a computational model that simulates the recruitment of fibers in the feline L7 DRG. The model comprises two parts. The first part is a single-fiber model used to describe the current-distance relation and was based on the McIntyre-Richardson-Grill model for excitability. The second part uses the results of the singe-fiber model and published data on fiber size distributions to predict the probability of recruiting a given number of fibers as a function of stimulus intensity. The range of intensities over which exactly one fiber was recruited was approximately 0.5-5 µA (0.1-1 nC per phase); the stimulus intensity at which the probability of recruiting exactly one fiber was maximized was 2.3 µA. However, at 2.3 µA, it was also possible to recruit up to three fibers, albeit with a lower probability. Stimulation amplitudes up to 6 µA were tested with the population model, which showed that as the amplitude increased, the number of fibers recruited increased exponentially. The distribution of threshold amplitudes predicted by the model was similar to that previously reported by in vivo experimentation. Finally, the model suggested that medium diameter fibers (7.3-11.5 µm) may be recruited with much greater probability than large diameter fibers (12.8-16 µm). This model may be used to efficiently test a range of stimulation parameters and nerve morphologies to complement results from electrophysiology experiments and to aid in the design of microelectrode arrays for neural interfaces.

  11. Surface modification of carbon fibers by a polyether sulfone emulsion sizing for increased interfacial adhesion with polyether sulfone

    NASA Astrophysics Data System (ADS)

    Yuan, Haojie; Zhang, Shouchun; Lu, Chunxiang

    2014-10-01

    Interests on carbon fiber-reinforced thermoplastic composites are growing rapidly, but the challenges with poor interfacial adhesion have slowed their adoption. In this work, a polyether sulfone (PES) emulsion sizing was prepared successfully for increased interfacial adhesion of carbon fiber/PES composites. To obtain a high-quality PES emulsion sizing, the key factor, emulsifier concentration, was studied by dynamic light scattering technique. The results demonstrated that the suitable weight ratio of PES to emulsifier was 8:3, and the resulting PES emulsion sizing had an average particle diameter of 117 nm and Zeta potential of -52.6 mV. After sizing, the surface oxygen-containing functional groups, free energy and wettability of carbon fibers increased significantly, which were advantageous to promote molecular-level contact between carbon fiber and PES. Finally, short beam shear tests were performed to evaluate the interfacial adhesion of carbon fiber/PES composites. The results indicated that PES emulsion sizing played a critical role for the enhanced interfacial adhesion in carbon fiber/PES composites, and a 26% increase of interlaminar shear strength was achieved, because of the improved fiber surface wettability and interfacial compatibility between carbon fiber and PES.

  12. Evaluation of Mechanical Properties and Morphological Studies of Rice Husk (Treated/Untreated)-CaCO3 Reinforced Epoxy Hybrid Composites

    NASA Astrophysics Data System (ADS)

    Verma, Deepak; Joshi, Garvit; Gupta, Ayush

    2016-10-01

    Natural fiber reinforced composites are a very popular area of research because of the easy availability and biodegradability of these fibers. The manufacturing of natural fiber composite is done by reinforcing fibers in the particulate form, fiber form or in woven mat form. Natural fiber composites also utilize industrial wastes as a secondary reinforcements like fly ash, sludge etc. By keeping all these point of views in the present investigation the effect of rice husk flour (chemically treated/untreated) and micro sized calcium carbonate with epoxy resin have been evaluated. The diameter of rice husk flour was maintained at 600 µm through mechanical sieving machine. The husk flour was chemically treated with NaOH (5 % w/v). Mechanical properties like hardness, flexural impact and compression strength were evaluated and found to be superior in modified or chemically treated flour as compared to unmodified or untreated flour reinforced composites. Scanning electron microscopy (SEM) study was also undertaken for the developed composites. SEM study shows the distribution of the rice husk flour and calcium carbonate over the matrix.

  13. Characterization of aerosols and fibers emitted from composite materials combustion.

    PubMed

    Chivas-Joly, C; Gaie-Levrel, F; Motzkus, C; Ducourtieux, S; Delvallée, A; De Lagos, F; Nevé, S Le; Gutierrez, J; Lopez-Cuesta, J-M

    2016-01-15

    This work investigates the aerosols emitted during combustion of aircraft and naval structural composite materials (epoxy resin/carbon fibers and vinyl ester/glass fibers and carbon nanotubes). Combustion tests were performed at lab-scale using a modified cone calorimeter. The aerosols emitted have been characterized using various metrological devices devoted to the analysis of aerosols. The influence of the nature of polymer matrices, the incorporation of fibers and carbon nanotubes as well as glass reinforcements on the number concentration and the size distribution of airborne particles produced, was studied in the 5 nm-10 μm range. Incorporation of carbon fibers into epoxy resin significantly reduced the total particle number concentration. In addition, the interlaced orientation of carbon fibers limited the particles production compared to the composites with unidirectional one. The carbon nanotubes loading in vinyl ester resin composites influenced the total particles production during the flaming combustion with changes during kinetics emission. Predominant populations of airborne particles generated during combustion of all tested composites were characterized by a PN50 following by PN(100-500). Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Single optical fiber probe for optogenetics

    NASA Astrophysics Data System (ADS)

    Falk, Ryan; Habibi, Mohammad; Pashaie, Ramin

    2012-03-01

    With the advent of optogenetics, all optical control and visualization of the activity of specific cell types is possible. We have developed a fiber optic based probe to control/visualize neuronal activity deep in the brain of awake behaving animals. In this design a thin multimode optical fiber serves as the head of the probe to be inserted into the brain. This fiber is used to deliver excitation/stimulation optical pulses and guide a sample of the emission signal back to a detector. The major trade off in the design of such a system is to decrease the size of the fiber and intensity of input light to minimize physical damage and to avoid photobleaching/phototoxicity but to keep the S/N reasonably high. Here the excitation light, and the associated emission signal, are frequency modulated. Then the output of the detector is passed through a time-lens which compresses the distributed energy of the emission signal and maximizes the instantaneous S/N. By measuring the statistics of the noise, the structure of the time lens can be designed to achieve the global optimum of S/N. Theoretically, the temporal resolution of the system is only limited by the time lens diffraction limit. By adding a second detector, we eliminated the effect of input light fluctuations, imperfection of the optical filters, and back-reflection of the excitation light. We have also designed fibers and micro mechanical assemblies for distributed delivery and detection of light.

  15. Optical Fiber Chemical Sensor with Sol-Gel Derived Refractive Material as Transducer for High Temperature Gas Sensing in Clean Coal Technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shiquan Tao

    2006-12-31

    The chemistry of sol-gel derived silica and refractive metal oxide has been systematically studied. Sol-gel processes have been developed for preparing porous silica and semiconductor metal oxide materials. Micelle/reversed micelle techniques have been developed for preparing nanometer sized semiconductor metal oxides and noble metal particles. Techniques for doping metal ions, metal oxides and nanosized metal particles into porous sol-gel material have also been developed. Optical properties of sol-gel derived materials in ambient and high temperature gases have been studied by using fiber optic spectroscopic techniques, such as fiber optic ultraviolet/visible absorption spectrometry, fiber optic near infrared absorption spectrometry and fibermore » optic fluorescence spectrometry. Fiber optic spectrometric techniques have been developed for investigating the optical properties of these sol-gel derived materials prepared as porous optical fibers or as coatings on the surface of silica optical fibers. Optical and electron microscopic techniques have been used to observe the microstructure, such as pore size, pore shape, sensing agent distribution, of sol-gel derived material, as well as the size and morphology of nanometer metal particle doped in sol-gel derived porous silica, the nature of coating of sol-gel derived materials on silica optical fiber surface. In addition, the chemical reactions of metal ion, nanostructured semiconductor metal oxides and nanometer sized metal particles with gas components at room temperature and high temperatures have also been investigated with fiber optic spectrometric methods. Three classes of fiber optic sensors have been developed based on the thorough investigation of sol-gel chemistry and sol-gel derived materials. The first group of fiber optic sensors uses porous silica optical fibers doped with metal ions or metal oxide as transducers for sensing trace NH{sub 3} and H{sub 2}S in high temperature gas samples. The second group of fiber optic sensors uses sol-gel derived porous silica materials doped with nanometer particles of noble metals in the form of fiber or coating for sensing trace H{sub 2}, NH{sub 3} and HCl in gas samples at for applications ambient temperature. The third classes of fiber optic sensors use sol-gel derived semiconductor metal oxide coating on the surface of silica optical fiber as transducers for selectively sensing H{sub 2}, CH{sub 4} and CO at high temperature. In addition, optical fiber temperature sensors use the fluorescence signal of rare-earth metal ions doped porous silica optical fiber or the optical absorption signal of thermochromic metal oxide materials coated on the surface of silica optical fibers have also been developed for monitoring gas temperature of corrosive gas. Based on the results obtained from this project, the principle of fiber optic sensor techniques for monitoring matrix gas components as well as trace components of coal gasification derived syngas has been established. Prototype sensors for sensing trace ammonia and hydrogen sulfide in gasification derived syngas have been built up in our laboratory and have been tested using gas samples with matrix gas composition similar to that of gasification derived fuel gas. Test results illustrated the feasibility of these sensors for applications in IGCC processes.« less

  16. Micromechanical analysis of composites with fibers distributed randomly over the transverse cross-section

    NASA Astrophysics Data System (ADS)

    Weng, Jingmeng; Wen, Weidong; Cui, Haitao; Chen, Bo

    2018-06-01

    A new method to generate the random distribution of fibers in the transverse cross-section of fiber reinforced composites with high fiber volume fraction is presented in this paper. Based on the microscopy observation of the transverse cross-sections of unidirectional composite laminates, hexagon arrangement is set as the initial arrangement status, and the initial velocity of each fiber is arbitrary at an arbitrary direction, the micro-scale representative volume element (RVE) is established by simulating perfectly elastic collision. Combined with the proposed periodic boundary conditions which are suitable for multi-axial loading, the effective elastic properties of composite materials can be predicted. The predicted properties show reasonable agreement with experimental results. By comparing the stress field of RVE with fibers distributed randomly and RVE with fibers distributed periodically, the predicted elastic modulus of RVE with fibers distributed randomly is greater than RVE with fibers distributed periodically.

  17. Intracavity optical trapping with Ytterbium doped fiber ring laser

    NASA Astrophysics Data System (ADS)

    Sayed, Rania; Kalantarifard, Fatemeh; Elahi, Parviz; Ilday, F. Omer; Volpe, Giovanni; Maragò, Onofrio M.

    2013-09-01

    We propose a novel approach for trapping micron-sized particles and living cells based on optical feedback. This approach can be implemented at low numerical aperture (NA=0.5, 20X) and long working distance. In this configuration, an optical tweezers is constructed inside a ring cavity fiber laser and the optical feedback in the ring cavity is controlled by the light scattered from a trapped particle. In particular, once the particle is trapped, the laser operation, optical feedback and intracavity power are affected by the particle motion. We demonstrate that using this configuration is possible to stably hold micron-sized particles and single living cells in the focal spot of the laser beam. The calibration of the optical forces is achieved by tracking the Brownian motion of a trapped particle or cell and analysing its position distribution.

  18. Continuous dry dispersion of multi-walled carbon nanotubes to aerosols with high concentrations of individual fibers

    NASA Astrophysics Data System (ADS)

    Simonow, Barbara Katrin; Wenzlaff, Daniela; Meyer-Plath, Asmus; Dziurowitz, Nico; Thim, Carmen; Thiel, Jana; Jandy, Mikolaj; Plitzko, Sabine

    2018-06-01

    The assessment of the toxicity of airborne nanofibers is an important task. It relies on toxicological inhalation studies and validated exposure measurement techniques. Both require nanofiber-containing aerosols of known morphological composition and controlled fraction of individual fibers. Here, a dry powder dispersion method is presented that operates with mixtures of nanofibers and microscale beads. Aerosolization experiments of mixtures of multi-walled carbon nanotubes (MWCNTs) and glass beads that were continuously fed into a Venturi nozzle enabled high generation rates of aerosols composed of individual and agglomerate nanofiber structures. The aerosol process achieved good stability over more than 2 h with respect to concentration and aerodynamic size distribution. Its operation duration is limited only by the reservoir volume of the cyclone used to separate the beads from the aerosol. The aerosol concentration can be controlled by changing the mass ratio of MWCNTs and glass beads or by adapting the mass feed rate to the nozzle. For two agglomerated MWCNT materials, aerosol concentrations ranged from 1700 to 64,000 nano-objects per cm3. Comprehensive scanning electron microscope analysis of filter samples was performed to categorize and determine the morphological composition of the aerosol, its fiber content as well as fiber length and diameter distributions. High fractions of individual fibers of up to 34% were obtained, which shows the setup to be capable of dispersing also highly tangled MWCNT agglomerates effectively.

  19. Longitudinal residual stresses in boron fibers

    NASA Technical Reports Server (NTRS)

    Behrendt, D. R.

    1976-01-01

    A method of measuring the longitudinal residual stress distribution in boron fibers is presented. The residual stresses in commercial CVD boron on tungsten fibers of 102, 142, and 203 microns (4, 5.6, and 8 mil) diameters were determined. Results for the three sizes show a compressive stress at the surface 800 to -1400 MN/sq m 120 to -200 ksi), changing monotonically to a region of tensile stress within the boron. At approximately 25 percent of the original radius, the stress reaches a maximum tensile 600 to 1000 MN/sq m(90 to 150 ksi) and then decreases to compressive near the tungsten boride core. The core itself is under a compressive stress of approximately -1300 MN/sq m (-190 ksi). The effects of surface removal on core residual stress and core-initiated fracture are discussed.

  20. Microstructural Parameters in 8 MeV Electron-Irradiated BOMBYX MORI Silk Fibers by Wide-ANGLE X-Ray Scattering Studies (waxs)

    NASA Astrophysics Data System (ADS)

    Sangappa, Asha, S.; Sanjeev, Ganesh; Subramanya, G.; Parameswara, P.; Somashekar, R.

    2010-01-01

    The present work looks into the microstructural modification in electron irradiated Bombyx mori P31 silk fibers. The irradiation process was performed in air at room temperature using 8 MeV electron accelerator at different doses: 0, 25, 50 and 100 kGy. Irradiation of polymer is used to cross-link or degrade the desired component or to fix the polymer morphology. The changes in microstructural parameters in these natural polymer fibers have been computed using wide angle X-ray scattering (WAXS) data and employing line profile analysis (LPA) using Fourier transform technique of Warren. Exponential, Lognormal and Reinhold functions for the column length distributions have been used for the determination of crystal size, lattice strain and enthalpy parameters.

  1. Ultra-thin carbon-fiber paper fabrication and carbon-fiber distribution homogeneity evaluation method

    NASA Astrophysics Data System (ADS)

    Zhang, L. F.; Chen, D. Y.; Wang, Q.; Li, H.; Zhao, Z. G.

    2018-01-01

    A preparation technology of ultra-thin Carbon-fiber paper is reported. Carbon fiber distribution homogeneity has a great influence on the properties of ultra-thin Carbon-fiber paper. In this paper, a self-developed homogeneity analysis system is introduced to assist users to evaluate the distribution homogeneity of Carbon fiber among two or more two-value images of carbon-fiber paper. A relative-uniformity factor W/H is introduced. The experimental results show that the smaller the W/H factor, the higher uniformity of the distribution of Carbon fiber is. The new uniformity-evaluation method provides a practical and reliable tool for analyzing homogeneity of materials.

  2. Photon theory hypothesis about photon tunneling microscope's subwavelength resolution

    NASA Astrophysics Data System (ADS)

    Zhu, Yanbin; Ma, Junfu

    1995-09-01

    The foundation for the invention of the photon scanning tunneling microscope (PSTM) are the near field scanning optical microscope, the optical fiber technique, the total internal reflection, high sensitive opto-electronic detecting technique and computer technique etc. Recent research results show the subwavelength resolution of 1 - 3 nm is obtained. How to explain the PSTM has got such high subwavelength resolution? What value is the PSTM's limiting of subwavelength resolution? For resolving these problems this paper presented a photon theory hypothesis about PSTM that is based on the following two basic laws: (1) Photon is not only a carrier bringing energy and optical information, but also is a particle occupied fixed space size. (2) When a photon happened reflection, refraction, scattering, etc., only changed its energy and optical information carried, its particle size doesn't change. g (DOT) pphoton equals constant. Using these two basic laws to PSTM, the `evanescent field' is practically a weak photon distribution field and the detecting fiber tip diameter is practically a `gate' which size controlled the photon numbers into fiber tip. Passing through some calculation and inference, the following three conclusions can be given: (1) Under the PSTM's detection system sensitivity is high enough, the diameter D of detecting fiber tip and the near field detecting distance Z are the two most important factors to decide the subwavelength resolution of PSTM. (2) The limiting of PSTM's resolution will be given upon the conditions of D equals pphoton and Z equals pphoton, where pphoton is one photon size. (2) The final resolution limit R of PSTM will be lim R equals pphoton, D yields pphoton, Z yields pphoton.

  3. Impact of Aggregates Size and Fibers on basic Mechanical Properties of Asphalt Emulsion—Cement Concrete

    NASA Astrophysics Data System (ADS)

    Fu, Jun; Liu, Zhihong; Liu, Jie

    2018-01-01

    Asphalt Emulsion—Cement Concrete (AECC) is currently considered as a typical semi-flexibility material. One of the disadvantages of this material is brittle fracture and lacking ductility. This study aims at accelerating the basic mechanical properties of AECC using fibers and different aggregates size. The mix of AECC was introduced and the different content of fibers and aggregates size were studied. The results showed that the smaller aggregates size could improve the young’s modulus and compressive strength as well as fiber. The modulus-compressive strength ratio of fiber reinforced AECC is always below 500.

  4. Assessing local stromal alterations in human ovarian cancer subtypes via second harmonic generation microscopy and analysis

    NASA Astrophysics Data System (ADS)

    Campbell, Kirby R.; Campagnola, Paul J.

    2017-11-01

    The collagen architecture in all human ovarian cancers is substantially remodeled, where these alterations are manifested in different fiber widths, fiber patterns, and fibril size and packing. Second harmonic generation (SHG) microscopy has differentiated normal tissues from high-grade serous (HGS) tumors with high accuracy; however, the classification between low-grade serous, endometrioid, and benign tumors was less successful. We postulate this is due to known higher genetic variation in these tissues relative to HGS tumors, which are genetically similar, and this results in more heterogeneous collagen remodeling in the respective matrix. Here, we examine fiber widths and SHG emission intensity and directionality locally within images (e.g., 10×10 microns) and show that normal tissues and HGS tumors are more uniform in fiber properties as well as in fibril size and packing than the other tissues. Moreover, these distributions are in good agreement with phase matching considerations relating SHG emission directionality and intensity. The findings show that in addition to average collagen assembly properties the intrinsic heterogeneity must also be considered as another aspect of characterization. These local analyses showed differences not shown in pure intensity-based image analyses and may provide further insight into disease etiology of the different tumor subtypes.

  5. Effect of natural fibers on mechanical properties of green cement mortar

    NASA Astrophysics Data System (ADS)

    AL-Zubaidi, Aseel B.

    2018-05-01

    Natural fibers of banana, reed, palm and coconut were used to reinforce cement composite. Optical microscopy showed that the prepared fibers are different in size and morphology. Nearly equiaxed, ribbon-like and nearly cylindrical morphologies were observed. Each of the utilized natural fibers was incorporated in the cement matrix at 0, 0.25, 0.5, 0.75 and 1.0 wt% and cured for 28 days. The scanning electron micrographs for the 1.0 wt% -reinforced composite showed differences in porosity, grain size and shape. Each of the utilized fibers has different effect on the microstructure of the cement composite that depends on the fiber size and morphology. Water absorption, thermal conductivity, bending strength, hardness and compression strengths were measured for the reinforced cement composite. It is found that the final physical and mechanical properties of the set cement composite depend on the fiber content and fiber type through the differences in their sizes and morphologies.

  6. Improved Sectional Image Analysis Technique for Evaluating Fiber Orientations in Fiber-Reinforced Cement-Based Materials.

    PubMed

    Lee, Bang Yeon; Kang, Su-Tae; Yun, Hae-Bum; Kim, Yun Yong

    2016-01-12

    The distribution of fiber orientation is an important factor in determining the mechanical properties of fiber-reinforced concrete. This study proposes a new image analysis technique for improving the evaluation accuracy of fiber orientation distribution in the sectional image of fiber-reinforced concrete. A series of tests on the accuracy of fiber detection and the estimation performance of fiber orientation was performed on artificial fiber images to assess the validity of the proposed technique. The validation test results showed that the proposed technique estimates the distribution of fiber orientation more accurately than the direct measurement of fiber orientation by image analysis.

  7. Improved Sectional Image Analysis Technique for Evaluating Fiber Orientations in Fiber-Reinforced Cement-Based Materials

    PubMed Central

    Lee, Bang Yeon; Kang, Su-Tae; Yun, Hae-Bum; Kim, Yun Yong

    2016-01-01

    The distribution of fiber orientation is an important factor in determining the mechanical properties of fiber-reinforced concrete. This study proposes a new image analysis technique for improving the evaluation accuracy of fiber orientation distribution in the sectional image of fiber-reinforced concrete. A series of tests on the accuracy of fiber detection and the estimation performance of fiber orientation was performed on artificial fiber images to assess the validity of the proposed technique. The validation test results showed that the proposed technique estimates the distribution of fiber orientation more accurately than the direct measurement of fiber orientation by image analysis. PMID:28787839

  8. SiC (SCS-6) Fiber Reinforced-Reaction Formed SiC Matrix Composites: Microstructure and Interfacial Properties

    NASA Technical Reports Server (NTRS)

    Singh, M.; Dickerson, R. M.; Olmstead, Forrest A.; Eldridge, J. I.

    1997-01-01

    Microstructural and interfacial characterization of unidirectional SiC (SCS-6) fiber reinforced-reaction formed SiC (RFSC) composites has been carried out. Silicon-1.7 at.% molybdenum alloy was used as the melt infiltrant, instead of pure silicon, to reduce the activity of silicon in the melt as well as to reduce the amount of free silicon in the matrix. Electron microprobe analysis was used to evaluate the microstructure and phase distribution in these composites. The matrix is SiC with a bi-modal grain-size distribution and small amounts of MoSi2, silicon, and carbon. Fiber push-outs tests on these composites showed that a desirably low interfacial shear strength was achieved. The average debond shear stress at room temperature varied with specimen thickness from 29 to 64 MPa, with higher values observed for thinner specimens. Initial frictional sliding stresses showed little thickness dependence with values generally close to 30 MPa. Push-out test results showed very little change when the test temperature was increased to 800 C from room temperature, indicating an absence of significant residual stresses in the composite.

  9. Impact of carpet construction on fluid penetration: The case of blood.

    PubMed

    Feng, Chengcheng; Michielsen, Stephen; Attinger, Daniel

    2018-03-01

    Bloodstains and bloodstain patterns are often observed at crime scenes and their analysis through bloodstain pattern analysis (BPA) can assist in reconstructing crime scenes. However, most published work related to BPA only deals with hard, non-porous surfaces and none of the studies have carefully characterized carpets. Soft and porous carpets are often encountered at crime scenes since they are common in American homes accounting for 51% of total U.S. flooring market; this has motivated the research described herein. To assess fluid penetration into tufted carpers, a new method for determining porosity and pore size distribution in tufted carpets has been developed for bloodstains on carpet. In this study, three kinds of nylon carpet were used: a low, a medium and a high face-weight carpet. Each carpet had an antistain treatment, which was removed from half of each carpet by steam-cleaning with a pH 12 NaOH solution. This resulted in six carpet samples. Yarn twist, carpet weight, pile height, water contact angles on carpets, water contact angles on individual fibers, and fiber cross-sectional shapes were characterized. Porosity and pore size distribution were analyzed using confocal laser scanning microscopy (CLSM). Porcine blood was used as a human blood substitute at three liquid volumes (30μL, 10μL, and 2μL). Analysis showed that porous carpet construction and antistain finishing both affected penetration. The depth of blood penetration decreased with the increase of carpet face-weight but increased with increased drop height. The removal of antistain treatment increased blood penetration into the carpets and changed the pore size distribution. Effects of antistain treatment, porosity and pore size distribution of tufted carpet, and blood wicking behaviors on carpets were found to strongly affect blood penetration into the carpets. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Motor unit and muscle fiber type grouping after peripheral nerve injury in the rat.

    PubMed

    Gordon, Tessa; de Zepetnek, Joanne E Totosy

    2016-11-01

    Muscle unit (MU) fibers innervated by one motoneuron and corresponding muscle fiber types are normally distributed in a mosaic. We asked whether, 4-8months after common peroneal nerve transection and random surgical alignment of nerve stumps in rat tibialis anterior muscles 1) reinnervated MU muscle and muscle fiber type clumping is invariant and 2) slow and fast motoneurons regenerate their nerve fibers within original endoneurial pathways. MU contractile forces were recorded in vivo, the MUs classified into types according to their contractile speed and fatigability, and one MU subjected to alternate exhaustive stimulation-recovery cycles to deplete glycogen for histochemical MU fiber recognition and enumeration, and muscle fiber typing. MU muscle fibers occupied defined territories whose size increased with MU force and muscle fiber numbers in normal and reinnervated muscles. The reinnervated MU muscle fiber territories were significantly smaller, the fibers clumped within 1-3 groups in 90% of the MUs, and each fiber lying adjacent to another significantly more frequently. Most reinnervated slow muscle fibers were normally located in the deep muscle compartment but substantial numbers were located abnormally in the superficial compartment. Our findings that well reinnervated muscle fibers clump in small muscles contrast with our earlier findings of clumping in large muscles only when reinnervated MU numbers were significantly reduced. We conclude that fiber type clumping is predictive of muscle reinnervation in small but not large muscles. In the latter muscles, clumping is more indicative of sprouting after partial nerve injuries than of muscle reinnervation after complete nerve injuries. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Serendipitous occultations by kilometer size Kuiper Belt with MIOSOTYS

    NASA Astrophysics Data System (ADS)

    Doressoundiram, A.; Liu, C.-Y.; Maquet, L.; Roques, F.

    2017-09-01

    MIOSOTYS (Multi-object Instrument for Occultations in the SOlar system and TransitorY Systems) is a multi-fiber positioner coupled with a fast photometry camera. This is a visitor instrument mounted on the 193 cm telescope at the Observatoire de Haute-Provence, France and on the 123 cm telescope at the Calar Alto Observatory, Spain. Our immediate goal is to characterize the spatial distribution and extension of the Kuiper Belt, and the physical size distribution of TNOs. We present the observation campaigns during 2010-2013, objectives and observing strategy. We report the detection of potential candidates for occultation events of TNOs. We will discuss more specifically the method used to process the data and the modelling of diffraction patterns. We, finally present the results obtained concerning the distribution of sub-kilometer TNOs in the Kuiper Belt.

  12. New method for calculating the coupling coefficient in graded index optical fibers

    NASA Astrophysics Data System (ADS)

    Savović, Svetislav; Djordjevich, Alexandar

    2018-05-01

    A simple method is proposed for determining the mode coupling coefficient D in graded index multimode optical fibers. It only requires observation of the output modal power distribution P(m, z) for one fiber length z as the Gaussian launching modal power distribution changes, with the Gaussian input light distribution centered along the graded index optical fiber axis (θ0 = 0) without radial offset (r0 = 0). A similar method we previously proposed for calculating the coupling coefficient D in a step-index multimode optical fibers where the output angular power distributions P(θ, z) for one fiber length z with the Gaussian input light distribution launched centrally along the step-index optical fiber axis (θ0 = 0) is needed to be known.

  13. Fishnet statistics for probabilistic strength and scaling of nacreous imbricated lamellar materials

    NASA Astrophysics Data System (ADS)

    Luo, Wen; Bažant, Zdeněk P.

    2017-12-01

    Similar to nacre (or brick masonry), imbricated (or staggered) lamellar structures are widely found in nature and man-made materials, and are of interest for biomimetics. They can achieve high defect insensitivity and fracture toughness, as demonstrated in previous studies. But the probability distribution with a realistic far-left tail is apparently unknown. Here, strictly for statistical purposes, the microstructure of nacre is approximated by a diagonally pulled fishnet with quasibrittle links representing the shear bonds between parallel lamellae (or platelets). The probability distribution of fishnet strength is calculated as a sum of a rapidly convergent series of the failure probabilities after the rupture of one, two, three, etc., links. Each of them represents a combination of joint probabilities and of additive probabilities of disjoint events, modified near the zone of failed links by the stress redistributions caused by previously failed links. Based on previous nano- and multi-scale studies at Northwestern, the strength distribution of each link, characterizing the interlamellar shear bond, is assumed to be a Gauss-Weibull graft, but with a deeper Weibull tail than in Type 1 failure of non-imbricated quasibrittle materials. The autocorrelation length is considered equal to the link length. The size of the zone of failed links at maximum load increases with the coefficient of variation (CoV) of link strength, and also with fishnet size. With an increasing width-to-length aspect ratio, a rectangular fishnet gradually transits from the weakest-link chain to the fiber bundle, as the limit cases. The fishnet strength at failure probability 10-6 grows with the width-to-length ratio. For a square fishnet boundary, the strength at 10-6 failure probability is about 11% higher, while at fixed load the failure probability is about 25-times higher than it is for the non-imbricated case. This is a major safety advantage of the fishnet architecture over particulate or fiber reinforced materials. There is also a strong size effect, partly similar to that of Type 1 while the curves of log-strength versus log-size for different sizes could cross each other. The predicted behavior is verified by about a million Monte Carlo simulations for each of many fishnet geometries, sizes and CoVs of link strength. In addition to the weakest-link or fiber bundle, the fishnet becomes the third analytically tractable statistical model of structural strength, and has the former two as limit cases.

  14. Fiber study involving a polyimide matrix

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cano, R.J.; Rommel, M.; Hinkley, J.A.

    1996-12-31

    Mechanical properties are presented for eight different intermediate modulus carbon fiber/ polyimide matrix composites. Two unsized carbon fibers (Thornel T650-42 and Hercules IM9) and two sized carbon fibers (high temperature sized Thornel T650-42 HTS and epoxy sized Toray T1000) were prepregged on the NASA LaRC Multipurpose Tape Machine using the NASA LaRC developed polyimide resin matrix, LaRC{trademark}-PETI-5, and the DuPont developed Avitnid{reg_sign} R1-16. Composite panels fabricated from these prepregs were evaluated to determine their mechanical properties. The data show the effects of using sized fibers on the processing and mechanical properties of polyimide composites.

  15. Temporal and spatial evolution of nanosecond microwave-driven plasma

    NASA Astrophysics Data System (ADS)

    Chang, C.; Chen, X. Q.; Zhu, M.; Pu, Y. K.

    2018-06-01

    In this paper, a method for simultaneously acquiring the temporal and spatial evolution of characteristic plasma spectra in a single microwave pulse is proposed and studied. By using multi-sub-beam fiber bundles coupled with a spectrometer and EMICCD (Electron-multiplying intensified charge-coupled device), the spatial distribution and time evolution of characteristic spectra of desorbed gases at the dielectric/vacuum interface during nanosecond microwave-driven plasma discharge are observed. Arrays of small align tubes punctured with metal walls of feed horn are filled with separate fibers of matched sizes and equal lengths. The output ends of fibers arranged in a single longitudinal column are connected to the entrance slit of a spectrometer, where the optical spectrum inputs to a high-speed EMICCD, to detect the rapid-varying time and space spectra of nanosecond giga-watt microwave discharges. The evolution of spectral clusters of N2 (C-B), N2+ (B-X), and the hydrogen atoms is discovered and monitored. The whole duration of light emission is much longer than the microwave pulse, and the intensities of ion N2+ (B-X) spectra increase after microwave pulses with rise times of 25-50 ns. The brightness distribution of plasma spectra in different space is observed and approximately consistent with the simulated E-field distribution.

  16. Scaffold permeability as a means to determine fiber diameter and pore size of electrospun fibrinogen.

    PubMed

    Sell, Scott; Barnes, Catherine; Simpson, David; Bowlin, Gary

    2008-04-01

    The purpose of this study was to construct a flowmeter that could accurately measure the hydraulic permeability of electrospun fibrinogen scaffolds, providing insight into the transport properties of electrospun scaffolds while making the measurement of their topographical features (fiber diameter and pore size) more accurate. Three different concentrations of fibrinogen were used (100, 120, and 150 mg/mL) to create scaffolds with three different fiber diameters and pore sizes. The fiber diameters and pore sizes of the electrospun scaffolds were first analyzed with scanning electron microscopy and image analysis software. The permeability of each scaffold was measured with the flowmeter and used to calculate permeability-based fiber diameters and pore sizes, which were compared to values obtained through image analysis. Permeability measurement revealed scaffold permeability to increase with fibrinogen concentration, much like average fiber diameter and pore size. Comparison between the two measurement methods demonstrated the efficacy of the flowmeter as a way to measure scaffold features. Copyright 2007 Wiley Periodicals, Inc.

  17. Highly potent silver-organoalkoxysilane antimicrobial porous nanomembrane

    NASA Astrophysics Data System (ADS)

    Umar, Sirajo; Liu, Yuanfeng; Wu, Yiguang; Li, Guangtao; Ding, Jiabo; Xiong, Runsong; Chen, Jinchun

    2013-04-01

    We used a simple electrospinning technique to fabricate a highly potent silver-organoalkoxysilane antimicrobial composite from AgNO3-polyvinylpyrrolidone (PVP)/3-aminopropyltrimethoxysilane (APTMS)/tetraethoxysilane (TEOS) solution. Spectroscopic and microscopic analyses of the composite showed that the fibers contain an organoalkoxysilane `skeleton,' 0.18 molecules/nm2 surface amino groups, and highly dispersed and uniformly distributed silver nanoparticles (5 nm in size). Incorporation of organoalkoxysilanes is highly beneficial to the antimicrobial mat as (1) amino groups of APTMS are adhesive and biocidal to microorganisms, (2) polycondensation of APTMS and TEOS increases the membrane's surface area by forming silicon bonds that stabilize fibers and form a composite mat with membranous structure and high porosity, and (3) the organoalkoxysilanes are also instrumental to the synthesis of the very small-sized and highly dispersed silver metal particles in the fiber mat. Antimicrobial property of the composite was evaluated by disk diffusion, minimum inhibition concentration (MIC), kinetic, and extended use assays on bacteria (Escherichia coli, Bacillus anthracis, Staphylococcus aureus, and Brucella suis), a fungus (Aspergillus niger), and the Newcastle disease virus. The membrane shows quick and sustained broad-spectrum antimicrobial activity. Only 0.3 mg of fibers is required to achieve MIC against all the test organisms. Bacteria are inhibited within 30 min of contact, and the fibers can be used repeatedly. The composite is silver efficient and environment friendly, and its membranous structure is suitable for many practical applications as in air filters, antimicrobial linen, coatings, bioadhesives, and biofilms.

  18. Measurement of Libby Amphibole (LA) Elongated Particle Dissolution Rates and Alteration of Size/Shape Distributions in Support of Human Dosimetry Model Development and Relative Potency Determinations

    EPA Science Inventory

    To maximize the value of toxicological data in development of human health risk assessment models of inhaled elongated mineral particles, improvements in human dosimetry modeling are needed. In order to extend the dosimetry model of deposited fibers (Asgharian et aI., Johnson 201...

  19. Alterations of intrinsic tongue muscle properties with aging.

    PubMed

    Cullins, Miranda J; Connor, Nadine P

    2017-12-01

    Age-related decline in the intrinsic lingual musculature could contribute to swallowing disorders, yet the effects of age on these muscles is unknown. We hypothesized there is reduced muscle fiber size and shifts to slower myosin heavy chain (MyHC) fiber types with age. Intrinsic lingual muscles were sampled from 8 young adult (9 months) and 8 old (32 months) Fischer 344/Brown Norway rats. Fiber size and MyHC were determined by fluorescent immunohistochemistry. Age was associated with a reduced number of rapidly contracting muscle fibers, and more slowly contracting fibers. Decreased fiber size was found only in the transverse and verticalis muscles. Shifts in muscle composition from faster to slower MyHC fiber types may contribute to age-related changes in swallowing duration. Decreasing muscle fiber size in the protrusive transverse and verticalis muscles may contribute to reductions in maximum isometric tongue pressure found with age. Differences among regions and muscles may be associated with different functional demands. Muscle Nerve 56: E119-E125, 2017. © 2017 Wiley Periodicals, Inc.

  20. Scalable waveguide design for three-level operation in Neodymium doped fiber laser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pax, Paul H.; Khitrov, Victor V.; Drachenberg, Derrek R.

    We have constructed a double clad neodymium doped fiber laser operating on the three-level 4F 3/2 → 4I 9/2 transition. The laser has produced 11.5 W at 925 nm with 55% slope efficiency when pumped at 808 nm, comparable to the best previous results for a double-clad fiber configuration on this transition. Higher power pumping with both 808 nm and 880 nm sources resulted in an output of 27 W, albeit at lower slope efficiency. In both cases, output power was limited by available pump, indicating the potential for further power scaling. To suppress the stronger four-level 4F 3/2 →more » 4I 11/2 transition we developed a waveguide that provides spectral filtering distributed along the length of the fiber, based on an all-solid micro-structured optical fiber design, with resonant inclusions creating a leakage path to the cladding. Furthermore, the waveguide supports large mode areas and provides strong suppression at selectable wavelength bands, thus easing the restrictions on core and cladding sizes that limited power scaling of previous approaches.« less

  1. Scalable waveguide design for three-level operation in Neodymium doped fiber laser

    DOE PAGES

    Pax, Paul H.; Khitrov, Victor V.; Drachenberg, Derrek R.; ...

    2016-12-12

    We have constructed a double clad neodymium doped fiber laser operating on the three-level 4F 3/2 → 4I 9/2 transition. The laser has produced 11.5 W at 925 nm with 55% slope efficiency when pumped at 808 nm, comparable to the best previous results for a double-clad fiber configuration on this transition. Higher power pumping with both 808 nm and 880 nm sources resulted in an output of 27 W, albeit at lower slope efficiency. In both cases, output power was limited by available pump, indicating the potential for further power scaling. To suppress the stronger four-level 4F 3/2 →more » 4I 11/2 transition we developed a waveguide that provides spectral filtering distributed along the length of the fiber, based on an all-solid micro-structured optical fiber design, with resonant inclusions creating a leakage path to the cladding. Furthermore, the waveguide supports large mode areas and provides strong suppression at selectable wavelength bands, thus easing the restrictions on core and cladding sizes that limited power scaling of previous approaches.« less

  2. Influence of injection molding process parameters on fiber concentration distribution in long glass fiber reinforced polypropylene

    NASA Astrophysics Data System (ADS)

    Scantamburlo, Andrea; Gazzola, Luca; Sorgato, Marco; Lucchetta, Giovanni

    2018-05-01

    In parts manufactured by injection molding of long glass fiber reinforced polypropylene, the local fiber orientation, fiber concentration and fiber length distribution varies along both the thickness direction and the flow path. This heterogeneous microstructure significantly influences the mechanical properties variability in the molded parts. The aim of this work is to investigate the influence of the matrix viscosity, the injection speed and the mold geometry on the fiber concentration distribution. In particular, the factors involved in fiber-matrix separation and fiber pull-out during the injection phases were analyzed in order to understand the phenomenon.

  3. Fabrication, characterization, and modeling of piezoelectric fiber composites

    NASA Astrophysics Data System (ADS)

    Lin, Xiujuan; Zhou, Kechao; Button, Tim W.; Zhang, Dou

    2013-07-01

    Piezoelectric fiber composites (PFCs) with interdigitated electrodes have attracted increasing interest in a variety of industrial, commercial, and aerospace markets due to their unique flexibility, adaptability, and improved transverse actuation performance. Viscous plastic processing technique was utilized for the fabrication of PFCs with customized feature sizes. The assembly parameters showed great influence on the performance of PFCs, which was verified by the finite element analysis. The cracks were identified in the fibers underneath the electrode finger after several millions cycles due to the stress and electric field concentration. The electrode finger width was an important structural parameter and showed great influence on the actuation performance and the stress distribution in the PFCs. The finite element analysis revealed that wider electrode finger would be beneficial for reducing the risk of materials failure with slight influence on the actuation performance.

  4. All-optical non-mechanical fiber-coupled sensor for liquid- and airborne sound detection.

    NASA Astrophysics Data System (ADS)

    Rohringer, Wolfgang; Preißer, Stefan; Fischer, Balthasar

    2017-04-01

    Most fiber-optic devices for pressure, strain or temperature measurements are based on measuring the mechanical deformation of the optical fiber by various techniques. While excellently suited for detecting strain, pressure or structure-borne sound, their sensitivity to liquid- and airborne sound is so far not comparable with conventional capacitive microphones or piezoelectric hydrophones. Here, we present an all-optical acoustic sensor which relies on the detection of pressure-induced changes of the optical refractive index inside a rigid, millimeter-sized, fiber-coupled Fabry-Pérot interferometer (FPI). No mechanically movable or deformable parts take part in the signal transduction chain. Therefore, due to the absence of mechanical resonances, this sensing principle allows for high sensitivity as well as a flat frequency response over an extraordinary measurement bandwidth. As a fiber-coupled device, it can be integrated easily into already available distributed fiber-optic networks for geophysical sensing. We present characterization measurements demonstrating the sensitivity, frequency response and directivity of the device for sound and ultrasound detection in air and water. We show that low-frequency temperature and pressure drifts can be recorded in addition to acoustic sensing. Finally, selected application tests of the laser-based hydrophone and microphone implementation are presented.

  5. Long distance, distributed gas sensing based on micro-nano fiber evanescent wave quartz-enhanced photoacoustic spectroscopy

    NASA Astrophysics Data System (ADS)

    He, Ying; Ma, Yufei; Tong, Yao; Yu, Xin; Peng, Zhenfang; Gao, Jing; Tittel, Frank K.

    2017-12-01

    A long distance, distributed gas sensing using the micro-nano fiber evanescent wave (FEW) quartz enhanced photoacoustic spectroscopy technique was demonstrated. Such a sensor scheme has the advantages of higher detection sensitivity, distributed gas sensing ability, lower cost, and a simpler fabrication procedure compared to conventional FEW gas sensors using a photonic crystal fiber or a tapered fiber with chemical sputtering. A 3 km single mode fiber with multiple tapers and an erbium doped fiber amplifier with an output optical power of 700 mW were employed to perform long distance, distributed gas measurements.

  6. The formation of web-like connection among electrospun chitosan/PVA fiber network by the reinforcement of ellipsoidal calcium carbonate.

    PubMed

    Sambudi, Nonni Soraya; Kim, Minjeong G; Park, Seung Bin

    2016-03-01

    The electrospun fibers consist of backbone fibers and nano-branch network are synthesized by loading of ellipsoidal calcium carbonate in the mixture of chitosan/poly(vinyl alcohol) (PVA) followed by electrospinning. The synthesized ellipsoidal calcium carbonate is in submicron size (730.7±152.4 nm for long axis and 212.6±51.3 nm for short axis). The electrospun backbone fibers experience an increasing in diameter by loading of calcium carbonate from 71.5±23.4 nm to 281.9±51.2 nm. The diameters of branch fibers in the web-network range from 15 nm to 65 nm with most distributions of fibers are in 30-35 nm. Calcium carbonate acts as reinforcing agent to improve the mechanical properties of fibers. The optimum value of Young's modulus is found at the incorporation of 3 wt.% of calcium carbonate in chitosan/PVA fibers, which is enhanced from 15.7±3 MPa to 432.4±94.3 MPa. On the other hand, the ultimate stress of fibers experiences a decrease. This result shows that the fiber network undergoes changes from flexible to more stiff by the inclusion of calcium carbonate. The thermal analysis results show that the crystallinity of polymer is changed by the existence of calcium carbonate in the fiber network. The immersion of fibers in simulated body fluid (SBF) results in the formation of apatite on the surface of fibers. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. The muscle fiber type–fiber size paradox: hypertrophy or oxidative metabolism?

    PubMed Central

    van Wessel, T.; de Haan, A.; van der Laarse, W. J.

    2010-01-01

    An inverse relationship exists between striated muscle fiber size and its oxidative capacity. This relationship implies that muscle fibers, which are triggered to simultaneously increase their mass/strength (hypertrophy) and fatigue resistance (oxidative capacity), increase these properties (strength or fatigue resistance) to a lesser extent compared to fibers increasing either of these alone. Muscle fiber size and oxidative capacity are determined by the balance between myofibrillar protein synthesis, mitochondrial biosynthesis and degradation. New experimental data and an inventory of critical stimuli and state of activation of the signaling pathways involved in regulating contractile and metabolic protein turnover reveal: (1) higher capacity for protein synthesis in high compared to low oxidative fibers; (2) competition between signaling pathways for synthesis of myofibrillar proteins and proteins associated with oxidative metabolism; i.e., increased mitochondrial biogenesis via AMP-activated protein kinase attenuates the rate of protein synthesis; (3) relatively higher expression levels of E3-ligases and proteasome-mediated protein degradation in high oxidative fibers. These observations could explain the fiber type–fiber size paradox that despite the high capacity for protein synthesis in high oxidative fibers, these fibers remain relatively small. However, it remains challenging to understand the mechanisms by which contractile activity, mechanical loading, cellular energy status and cellular oxygen tension affect regulation of fiber size. Therefore, one needs to know the relative contribution of the signaling pathways to protein turnover in high and low oxidative fibers. The outcome and ideas presented are relevant to optimizing treatment and training in the fields of sports, cardiology, oncology, pulmonology and rehabilitation medicine. Electronic supplementary material The online version of this article (doi:10.1007/s00421-010-1545-0) contains supplementary material, which is available to authorized users. PMID:20602111

  8. Masseter function and skeletal malocclusion.

    PubMed

    Sciote, J J; Raoul, G; Ferri, J; Close, J; Horton, M J; Rowlerson, A

    2013-04-01

    The aim of this work is to review the relationship between the function of the masseter muscle and the occurrence of malocclusions. An analysis was made of the masseter muscle samples from subjects who underwent mandibular osteotomies. The size and proportion of type-II fibers (fast) decreases as facial height increases. Patients with mandibular asymmetry have more type-II fibers on the side of their deviation. The insulin-like growth factor and myostatin are expressed differently depending on the sex and fiber diameter. These differences in the distribution of fiber types and gene expression of this growth factor may be involved in long-term postoperative stability and require additional investigations. Muscle strength and bone length are two genetically determined factors in facial growth. Myosin 1H (MYOH1) is associated with prognathia in Caucasians. As future objectives, we propose to characterize genetic variations using "Genome Wide Association Studies" data and their relationships with malocclusions. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  9. Details of the Collagen and Elastin Architecture in the Human Limbal Conjunctiva, Tenon's Capsule and Sclera Revealed by Two-Photon Excited Fluorescence Microscopy.

    PubMed

    Park, Choul Yong; Marando, Catherine M; Liao, Jason A; Lee, Jimmy K; Kwon, Jiwon; Chuck, Roy S

    2016-10-01

    To investigate the architecture and distribution of collagen and elastin in human limbal conjunctiva, Tenon's capsule, and sclera. The limbal conjunctiva, Tenon's capsule, and sclera of human donor corneal buttons were imaged with an inverted two-photon excited fluorescence microscope. No fixation process was necessary. The laser (Ti:sapphire) was tuned at 850 nm for two-photon excitation. Backscatter signals of second harmonic generation (SHG) and autofluorescence (AF) were collected through a 425/30-nm and a 525/45-nm emission filter, respectively. Multiple, consecutive, and overlapping (z-stack) images were acquired. Collagen signals were collected with SHG, whereas elastin signals were collected with AF. The size and density of collagen bundles varied widely depending on depth: increasing from conjunctiva to sclera. In superficial image planes, collagen bundles were <10 μm in width, in a loose, disorganized arrangement. In deeper image planes (episclera and superficial sclera), collagen bundles were thicker (near 100 μm in width) and densely packed. Comparatively, elastin fibers were thinner and sparse. The orientation of elastin fibers was independent of collagen fibers in superficial layers; but in deep sclera, elastin fibers wove through collagen interbundle gaps. At the limbus, both collagen and elastin fibers were relatively compact and were distributed perpendicular to the limbal annulus. Two-photon excited fluorescence microscopy has enabled us to understand in greater detail the collagen and elastin architecture of the human limbal conjunctiva, Tenon's capsule, and sclera.

  10. Pulmonary Endpoints (Lung Carcinomas and Asbestosis) Following Inhalation Exposure to Asbestos

    PubMed Central

    Mossman, Brooke T.; Lippmann, Morton; Hesterberg, Thomas W.; Kelsey, Karl T.; Barchowsky, Aaron; Bonner, James C.

    2011-01-01

    Lung carcinomas and pulmonary fibrosis (asbestosis) occur in asbestos workers. Understanding the pathogenesis of these diseases is complicated because of potential confounding factors, such as smoking, which is not a risk factor in mesothelioma. The modes of action (MOA) of various types of asbestos in the development of lung cancers, asbestosis, and mesotheliomas appear to be different. Moreover, asbestos fibers may act differentially at various stages of these diseases, and have different potencies as compared to other naturally occurring and synthetic fibers. This literature review describes patterns of deposition and retention of various types of asbestos and other fibers after inhalation, methods of translocation within the lung, and dissolution of various fiber types in lung compartments and cells in vitro. Comprehensive dose-response studies at fiber concentrations inhaled by humans as well as bivariate size distributions (lengths and widths), types, and sources of fibers are rarely defined in published studies and are needed. Species-specific responses may occur. Mechanistic studies have some of these limitations, but have suggested that changes in gene expression (either fiber-catalyzed directly or by cell elaboration of oxidants), epigenetic changes, and receptor-mediated or other intracellular signaling cascades may play roles in various stages of the development of lung cancers or asbestosis. PMID:21534086

  11. Evolution of size distribution and structure of Si and SiO2 nanoparticles: laser-assisted formation and fragmentation

    NASA Astrophysics Data System (ADS)

    Eidelman, K.; Gudkov, D.; Segbefia, O.; Ageev, E.; Krivonosov, A.; Matuhina, A.

    2017-11-01

    In this work, Si and SiO2, nanoparticles (NPs) was prepared by pulsed laser ablation (PLA) in distilled water. The radiation of a ytterbium fiber laser (repetition rate f = 50 kHz, wavelength λ = 1064 nm and pulse duration τ = 8 ns and 100 ns) at different laser intensities was utilized to ablate the Si target (99.999%, cubic, 7×7 mm2) under liquid layer to synthesize and to fragment the silicon colloidal NPs. Studies of morphology and size distribution of silica NPs were conducted using Transmission Electron Microscopy (TEM). The NPs of crystalline and amorphous phases were founded. Most of the NPs in the nano colloids were found to have dimensions less than 100 nm, and a few of them were between 100 nm and 700 nm. Dependence of average NP size on the number of laser passes was revealed. The average size of the nanoparticles obtained by TEM was confirmed by dynamic light scattering (DLS) measurements.

  12. Effects of Styrene-Acrylic Sizing on the Mechanical Properties of Carbon Fiber Thermoplastic Towpregs and Their Composites.

    PubMed

    Bowman, Sean; Jiang, Qiuran; Memon, Hafeezullah; Qiu, Yiping; Liu, Wanshuang; Wei, Yi

    2018-03-01

    Thermoplastic towpregs are convenient and scalable raw materials for the fabrication of continuous fiber-reinforced thermoplastic matrix composites. In this paper, the potential to employ epoxy and styrene-acrylic sizing agents was evaluated for the making of carbon fiber thermoplastic towpregs via a powder-coating method. The protective effects and thermal stability of these sizing agents were investigated by single fiber tensile test and differential scanning calorimetry (DSC) measurement. The results indicate that the epoxy sizing agent provides better protection to carbon fibers, but it cannot be used for thermoplastic towpreg processing due to its poor chemical stability at high temperature. The bending rigidity of the tows and towpregs with two styrene-acrylic sizing agents was measured by cantilever and Kawabata methods. The styrene-acrylic sized towpregs show low torque values, and are suitable for further processing, such as weaving, preforming, and winding. Finally, composite panels were fabricated directly from the towpregs by hot compression molding. Both of the composite panels show superior flexural strength (>400 MPa), flexural modulus (>63 GPa), and interlaminar shear strength (>27 MPa), indicating the applicability of these two styrene-acrylic sizing agents for carbon fiber thermoplastic towpregs.

  13. Apoferritin fibers: a new template for 1D fluorescent hybrid nanostructures

    NASA Astrophysics Data System (ADS)

    Jurado, Rocío; Castello, Fabio; Bondia, Patricia; Casado, Santiago; Flors, Cristina; Cuesta, Rafael; Domínguez-Vera, José M.; Orte, Angel; Gálvez, Natividad

    2016-05-01

    Recently, research in the field of protein amyloid fibers has gained great attention due to the use of these materials as nanoscale templates for the construction of functional hybrid materials. The formation of apoferritin amyloid-like protein fibers is demonstrated herein for the first time. The morphology, size and stiffness of these one-dimensional structures are comparable to the fibers formed by β-lactoglobulin, a protein frequently used as a model in the study of amyloid-like fibrillar proteins. Nanometer-sized globular apoferritin is capable of self-assembling to form 1D micrometer-sized structures after being subjected to a heating process. Depending on the experimental conditions, fibers with different morphologies and sizes are obtained. The wire-like protein structure is rich in functional groups and allows chemical functionalization with diverse quantum dots (QD), as well as with different Alexa Fluor (AF) dyes, leading to hybrid fluorescent fibers with variable emission wavelengths, from green to near infrared, depending on the QD and AFs coupled. For fibers containing the pair AF488 and AF647, efficient fluorescence energy transfer from the covalently coupled donor (AF488) to acceptor tags (AF647) takes place. Apoferritin fibers are proposed here as a new promising template for obtaining hybrid functional materials.Recently, research in the field of protein amyloid fibers has gained great attention due to the use of these materials as nanoscale templates for the construction of functional hybrid materials. The formation of apoferritin amyloid-like protein fibers is demonstrated herein for the first time. The morphology, size and stiffness of these one-dimensional structures are comparable to the fibers formed by β-lactoglobulin, a protein frequently used as a model in the study of amyloid-like fibrillar proteins. Nanometer-sized globular apoferritin is capable of self-assembling to form 1D micrometer-sized structures after being subjected to a heating process. Depending on the experimental conditions, fibers with different morphologies and sizes are obtained. The wire-like protein structure is rich in functional groups and allows chemical functionalization with diverse quantum dots (QD), as well as with different Alexa Fluor (AF) dyes, leading to hybrid fluorescent fibers with variable emission wavelengths, from green to near infrared, depending on the QD and AFs coupled. For fibers containing the pair AF488 and AF647, efficient fluorescence energy transfer from the covalently coupled donor (AF488) to acceptor tags (AF647) takes place. Apoferritin fibers are proposed here as a new promising template for obtaining hybrid functional materials. Electronic supplementary information (ESI) available: TEM images of ferritin protein fiber formation, and apoferritin after 18 days of heat treatment; FLIM-PIE technique details; fluorescence emission spectra of apoferritin and β-lactoglobulin fibers functionalized with different QDs. See DOI: 10.1039/c6nr01044j

  14. Adhesion at the interface in cured graphite fiber epoxy-amine resin composites

    NASA Technical Reports Server (NTRS)

    Needles, Howard L.; Alger, Kenneth W.; Okamoto, Robert

    1987-01-01

    The effect of high temperature curing on the interface between unsized or epoxy-sized graphite fiber tow and epoxy-amine resin was examined by scanning electron microscopy of compression and freeze fractured specimens. Little or no adhesion was found between the unsized graphite fiber tows and the epoxy-amine resin on curing at 165 C for 17 hrs. Epoxy-sized graphite fibers showed a similar lack of adhesion between the fiber tows and the epoxy-amine resin at 3 and 17 hr cures, although good penetration of the resin into the sized fiber tows had occurred. Interfacial bond strengths for the composites could not be effectively measured by compression fracture of specimens.

  15. Cigarette Smoke Cadmium Breakthrough from Traditional Filters: Implications for Exposure

    PubMed Central

    Pappas, R. Steven; Fresquez, Mark R.; Watson, Clifford H.

    2015-01-01

    Cadmium, a carcinogenic metal, is highly toxic to renal, skeletal, nervous, respiratory, and cardiovascular systems. Accurate and precise quantification of mainstream smoke cadmium levels in cigarette smoke is important because of exposure concerns. The two most common trapping techniques for collecting mainstream tobacco smoke particulate for analysis are glass fiber filters and electrostatic precipitators. We observed that a significant portion of total cadmium passed through standard glass fiber filters that are used to trap particulate matter. We therefore developed platinum traps to collect the cadmium that passed through the filters and tested a variety of cigarettes with different physical parameters for quantities of cadmium that passed though the filters. We found less than 1% cadmium passed through electrostatic precipitators. In contrast, cadmium that passed through 92 mm glass fiber filters on a rotary smoking machine was significantly higher, ranging from 3.5% to 22.9% of total smoke cadmium deliveries. Cadmium passed through 44 mm filters typically used on linear smoking machines to an even greater degree, ranging from 13.6% to 30.4% of the total smoke cadmium deliveries. Differences in the cadmium that passed through from the glass fiber filters and electrostatic precipitator could be explained in part if cadmium resides in the smaller mainstream smoke aerosol particle sizes. Differences in particle size distribution could have toxicological implications and could help explain the pulmonary and cardiovascular cadmium uptake in smokers. PMID:25313385

  16. Fiber atrophy and hypertrophy in skeletal muscles of late middle-aged Fischer 344 x Brown Norway F1-hybrid rats.

    PubMed

    Hepple, Russell T; Ross, Karen D; Rempfer, Amanda B

    2004-02-01

    We examined young adult and late middle-aged male rats to test the hypothesis that gastrocnemius (a locomotor muscle) demonstrates reduced fiber size with aging, whereas soleus (a postural muscle) demonstrates atrophy of some fibers and compensatory hypertrophy in other fibers. Although body mass was greater in late middle-aged animals, mass was reduced in gastrocnemius but not soleus muscle. In another group of animals, physical activity was reduced by 34% in late middle-aged animals. Whereas mean fiber size was lower in gastrocnemius of late middle-aged animals, it was not different in soleus. Histograms revealed atrophied fibers (/=8000 micro m(2)) in soleus with aging. Atrophied fibers often demonstrated no subsarcolemmal mitochondrial staining, suggesting denervation, whereas hypertrophied fibers often demonstrated cytochrome oxidase deficiency, suggesting mitochondrial dysfunction. These results underscore the divergent influences (e.g., physical inactivity, denervation, mitochondrial dysfunction) affecting fiber size with aging.

  17. Few-mode fiber based distributed curvature sensor through quasi-single-mode Brillouin frequency shift.

    PubMed

    Wu, Hao; Wang, Ruoxu; Liu, Deming; Fu, Songnian; Zhao, Can; Wei, Huifeng; Tong, Weijun; Shum, Perry Ping; Tang, Ming

    2016-04-01

    We proposed and demonstrated a few-mode fiber (FMF) based optical-fiber sensor for distributed curvature measurement through quasi-single-mode Brillouin frequency shift (BFS). By central-alignment splicing FMF and single-mode fiber (SMF) with a fusion taper, a SMF-components-compatible distributed curvature sensor based on FMF is realized using the conventional Brillouin optical time-domain analysis system. The distributed BFS change induced by bending in FMF has been theoretically and experimentally investigated. The precise BFS response to the curvature along the fiber link has been calibrated. A proof-of-concept experiment is implemented to validate its effectiveness in distributed curvature measurement.

  18. Strain measurement in a concrete beam by use of the Brillouin-scattering-based distributed fiber sensor with single-mode fibers embedded in glass fiber reinforced polymer rods and bonded to steel reinforcing bars.

    PubMed

    Zeng, Xiaodong; Bao, Xiaoyi; Chhoa, Chia Yee; Bremner, Theodore W; Brown, Anthony W; DeMerchant, Michael D; Ferrier, Graham; Kalamkarov, Alexander L; Georgiades, Anastasis V

    2002-08-20

    The strain measurement of a 1.65-m reinforced concrete beam by use of a distributed fiber strain sensor with a 50-cm spatial resolution and 5-cm readout resolution is reported. The strain-measurement accuracy is +/-15 microepsilon (microm/m) according to the system calibration in the laboratory environment with non-uniform-distributed strain and +/-5 microepsilon with uniform strain distribution. The strain distribution has been measured for one-point and two-point loading patterns for optical fibers embedded in pultruded glass fiber reinforced polymer (GFRP) rods and those bonded to steel reinforcing bars. In the one-point loading case, the strain deviations are +/-7 and +/-15 microepsilon for fibers embedded in the GFRP rods and fibers bonded to steel reinforcing bars, respectively, whereas the strain deviation is +/-20 microepsilon for the two-point loading case.

  19. Distributed Fiber Optic Sensor for Early Detection of Rocky Slopes Movements

    NASA Astrophysics Data System (ADS)

    Minardo, Aldo; Picarelli, Luciano; Coscetta, Agnese; Zeni, Giovanni; Esposito, Giuseppe; Sacchi, Marco; Matano, Fabio; Caccavale, Mauro; Luigi, Zeni

    2014-05-01

    Distributed optical fiber sensors have in recent years gained considerable attention in structural and environmental monitoring due to specific advantages that, apart from the classical advantages common to all optical fiber sensors such as immunity to electromagnetic interferences, high sensitivity, small size and possibility to be embedded into the structures, multiplexing and remote interrogation capabilities [1], offer the unique feature of allowing the exploitation of a telecommunication grade optical fiber cable as the sensing element to measure deformation and temperature profiles over very long distances. In particular, distributed optical fiber sensors based on stimulated Brillouin scattering (SBS) through the so-called Brillouin Optical Time Domain Analysis (BOTDA), allow to measure strain and temperature profiles up to tens of kilometers with a strain accuracy of ±10µɛ and a temperature accuracy of ±1°C [2]. They have already been successfully employed in the monitoring of large civil and geotechnical structures such as bridges, tunnels, dams, pipelines allowing to identify and localize any kind of failures that can occur during their construction and operation [3,4]. In this paper we present the application of BOTDA to the monitoring of movements in a rocky slope, showing how the sensing optical fiber cable is able to detect the formation and follow the growth of fractures, and to identify their location along the slope, as well. The experimental results have been achieved on a test field located in the area of Naples (Italy), where a single mode optical fiber sensing cable has been deployed along a yellow tuffs slope, by spot gluing the cable with epoxy adhesive. In order to assess the validity of the proposed approach, a few existing cracks have been artificially enlarged and the magnitude and location of the induced strain peaks have been clearly identified by the sensing device. It should be emphasized that, due to the distributed nature of the sensor, no preliminary information about the possible displacement locations of rocks are required in advance. The sensing cable can be simply deployed in a zig-zag pattern path along the slope, for hundreds of meters, and the system will remotely detect and locate any displacements wherever they occur along the fiber cable path, so representing a powerful tool for early warning against possible rock slides. [1] J. M. López-Higuera, L. R. Cobo, A. Q. Incera, A. Cobo, " Fiber Optic Sensors in Structural Health Monitoring", Journal of Lightwave Technology, Vol. 29, pp.586-608, 2011. [2] A. Minardo, R. Bernini, L. Zeni, "Numerical analysis of single pulse and differential pulse-width pair BOTDA systems in the high spatial resolution regime", Optics Express, vol. 19, pp. 19233-19244, 2011. [3] A. Minardo, R. Bernini, L. Amato, L. Zeni, "Bridge monitoring using Brillouin fiber-optic sensors", IEEE Sensor Journal, Vol. 12 (1), pp. 145-150, 2012. [4] R. Bernini, A. Minardo, S. Ciaramella, V. Minutolo, L. Zeni, "Distributed strain measurement along a concrete beam via stimulated Brillouin scattering in optical fibers", International Journal of Geophysics, Vol. 2011, pp. 1-5, doi:10.1155/2011/710941, 2011.

  20. Muscle fiber type proportion and size is not altered in mcardle disease.

    PubMed

    Henning, Franclo; Cunninghame, Carol Anne; Martín, Miguel Angel; Rubio, Juan Carlos; Arenas, Joaquín; Lucia, Alejandro; HernáNdez-Laín, Aurelio; Kohn, Tertius Abraham

    2017-06-01

    McArdle disease is a metabolic myopathy that presents with exercise intolerance and episodic rhabdomyolysis. Excessive muscle recruitment has also been shown to be present during strenuous exercise, suggesting decreased power output. These findings could potentially be explained by either impaired contractility, decreased fiber size, or altered fiber type proportion. However, there is a paucity of data on the morphological features seen on muscle histology. We examined muscle biopsies of patients with McArdle disease from a Spanish cohort and compared the findings with healthy controls. We found no significant difference in the fiber type proportion or mean fiber size between McArdle patients and controls in the biceps brachii or vastus lateralis muscles. No alterations in muscle fiber type proportion or size were found on muscle histology of patients with McArdle disease. Future research should focus on assessment of muscle fiber contractility to investigate the functional impairment. Muscle Nerve 55: 916-918, 2017. © 2016 Wiley Periodicals, Inc.

  1. Pulmonary and pleural responses in Fischer 344 rats following short-term inhalation of a synthetic vitreous fiber. I. Quantitation of lung and pleural fiber burdens.

    PubMed

    Gelzleichter, T R; Bermudez, E; Mangum, J B; Wong, B A; Everitt, J I; Moss, O R

    1996-03-01

    The pleura is an important target tissue of fiber-induced disease, although it is not known whether fibers must be in direct contact with pleural cells to exert pathologic effects. In the present study, we determined the kinetics of fiber movement into pleural tissues of rats following inhalation of RCF-1, a ceramic fiber previously shown to induce neoplasms in the lung and pleura of rats. Male Fischer 344 rats were exposed by nose-only inhalation to RCF-1 at 89 mg/m3 (2645 WHO fibers/cc), 6 hr/day for 5 consecutive days. On Days 5 and 32, thoracic tissues were analyzed to determine pulmonary and pleural fiber burdens. Mean fiber counts were 22 x 10(6)/lung (25 x 10(3)/pleura) at Day 5 and 18 x 10(6)/lung (16 x 10(3)/pleura) at Day 32. Similar geometric mean lengths (GML) and diameters (GMD) of pulmonary fiber burdens were observed at both time points. Values were 5 microns for GML (geometric standard deviation GSD approximately 2.3) and 0.3 micron for GMD (GSD approximately 1.9), with correlations between length and diameter (tau) of 0.2-0.3. Size distributions of pleural fiber burdens at both time points were approximately 1.5 microns GML (GSD approximately 2.0) and 0.09 micron GMD (GSD approximately 1.5; tau approximately 0.2-0.5). Few fibers longer than 5 microns were observed at either time point. These findings demonstrate that fibers can rapidly translocate to pleural tissues. However, only short, thin (< 5 microns in length) fibers could be detected over the 32-day time course of the experiment.

  2. Efficiency of Sampling and Analysis of Asbestos Fibers on Filter Media: Implications for Exposure Assessment

    EPA Science Inventory

    To measure airborne asbestos and other fibers, an air sample must represent the actual number and size of fibers. Typically, mixed cellulose ester (MCE, 0.45 or 0.8 µm pore size) and to a much lesser extent, capillary-pore polycarbonate (PC, 0.4 µm pore size) membrane filters are...

  3. FIBER AND INTEGRATED OPTICS: Use of the offset method in an analysis of a non-Gaussian field distribution in single-mode fiber waveguides

    NASA Astrophysics Data System (ADS)

    Belov, A. V.; Kurkov, Andrei S.; Chikolini, A. V.

    1990-08-01

    An offset method is modified to allow an analysis of the distribution of fields in a single-mode fiber waveguide without recourse to the Gaussian approximation. A new approximation for the field is obtained for fiber waveguides with a step refractive index profile and a special analysis employing the Hankel transformation is applied to waveguides with a distributed refractive index. The field distributions determined by this method are compared with the corresponding distributions calculated from the refractive index of a preform from which the fibers are drawn. It is shown that these new approaches can be used to determine the dimensions of a mode spot defined in different ways and to forecast the dispersion characteristics of single-mode fiber waveguides.

  4. Glass Fiber Resin Composites and Components at Arctic Temperatures

    DTIC Science & Technology

    2015-06-01

    NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA THESIS Approved for public release; distribution is unlimited GLASS FIBER RESIN...3. REPORT TYPE AND DATES COVERED Master’s Thesis 4. TITLE AND SUBTITLE GLASS FIBER RESIN COMPOSITES AND COMPONENTS AT ARCTIC TEMPERATURES 5...public release; distribution is unlimited 12b. DISTRIBUTION CODE 13. ABSTRACT (maximum 200 words) Glass fiber reinforced composites (GFRC

  5. Looped back fiber mode for reduction of false alarm in leak detection using distributed optical fiber sensor.

    PubMed

    Chelliah, Pandian; Murgesan, Kasinathan; Samvel, Sosamma; Chelamchala, Babu Rao; Tammana, Jayakumar; Nagarajan, Murali; Raj, Baldev

    2010-07-10

    Optical-fiber-based sensors have inherent advantages, such as immunity to electromagnetic interference, compared to the conventional sensors. Distributed optical fiber sensor (DOFS) systems, such as Raman and Brillouin distributed temperature sensors are used for leak detection. The inherent noise of fiber-based systems leads to occasional false alarms. In this paper, a methodology is proposed to overcome this. This uses a looped back fiber mode in DOFS and voting logic is employed to considerably reduce the false alarm rate.

  6. Influence of Proportion and Size of Sugarcane Bagasse Fiber on the Properties of Sweet Potato Starch Foams

    NASA Astrophysics Data System (ADS)

    Cruz-Tirado, J. P.; Tapia-Blácido, Delia R.; Siche, Raúl

    2017-08-01

    The objective of this work was the proportion and size of cane bagasse fiber in the physical (density and thickness), mechanical (flexural strength and tensile at break) and thermal (TG and DTG) properties of trays made from sweet potato starch. A fiber size of 75-45 µm and a 2.5% ratio allowed to obtain trays with low thicknesses and densities, but with more compact structures that improved the mechanical properties of trays made from sweet potato starch alone. In addition, higher thermal stability and lower decomposition rate are shown for trays with fiber size 75-45 µm and ratios of 2.5% and 5%. These results show that the smaller fiber size improves the properties of the sweet potato starch trays and that these trays can be used to replace the expanded polymer (EPS) for use in dry foods.

  7. Effect of Sizings on the Durability of High Temperature Polymer Composites

    NASA Technical Reports Server (NTRS)

    Allred, Ronald E.; Shin, E. Eugene; Inghram, Linda; McCorkle, Linda; Papadopoulos, Demetrios; Wheeler, Donald; Sutter, James K.

    2003-01-01

    To increase performance and durability of high-temperature composite for potential rocket engine components, it is necessary to optimize wetting and interfacial bonding between high modulus carbon fibers and high-temperature polyimide resins. Sizing commercially supplied on most carbon fiber are not compatible with polyimides. In this study, the chemistry of sizing on two high modulus carbon fiber (M40J and M60J, Tiray) was characterized. A continuous desizling system that uses an environmentally friendly chemical-mechanical process was developed for tow level fiber. Composites were fabricated with fibers containing the manufacturer's sizing, desized, and further treated with a reactive finish. Results of room-temperature tests after thermal aging show that the reactive finish produces a higher strength and more durable interface compared to the manufacturer's sizing. When exposed to moisture blistering tests, however, the butter bonded composite displayed a tendency to delaminate, presumably due to trapping of volatiles.

  8. Real-time dissolution measurement of sized and unsized calcium phosphate glass fibers.

    PubMed

    Rinehart, J D; Taylor, T D; Tian, Y; Latour, R A

    1999-01-01

    The objective of this study was to develop an efficient "real time" measurement system able to directly measure, with microgram resolution, the dissolution rate of absorbable glass fibers, and utilize the system to evaluate the effectiveness of silane-based sizing as a means to delay the fiber dissolution process. The absorbable glass fiber used was calcium phosphate (CaP), with tetramethoxysilane selected as the sizing agent. E-glass fiber was used as a relatively nondegrading control. Both the unsized-CaP and sized-CaP degraded linearly at both the 37 degrees C and 60 degrees C test temperature levels used. No significant decrease in weight-loss rate was recorded when the CaP fiber tows were pretreated, using conventional application methods, with the tetramethoxysilane sizing for either temperature condition. The unsized-CaP and sized-CaP weight loss rates were each significantly higher at 60 than at 37 degrees C (both p < 0.02), as expected from dissolution kinetics. In terms of actual weight loss rate measured using our system for phosphate glass fiber, the unsized-CaP fiber we studied dissolved at a rate of 10.90 x 10(-09) and 41.20 x 10(-09) g/min-cm(2) at 37 degrees C and 60 degrees C, respectively. Considering performance validation of the developed system, the slope of the weight loss vs. time plot for the tested E-glass fiber was not significantly different compared to a slope equal to zero for both test temperatures. Copyright 1999 John Wiley & Sons, Inc.

  9. Slow-Twitch Fiber Proportion in Skeletal Muscle Correlates With Insulin Responsiveness

    PubMed Central

    McCurry, Melanie P.; Marino, Anna; South, Mark A.; Howell, Mary E. A.; Layne, Andrew S.; Ramsey, Michael W.; Stone, Michael H.

    2013-01-01

    Context: The metabolic syndrome, characterized by central obesity with dyslipidemia, hypertension, and hyperglycemia, identifies people at high risk for type 2 diabetes. Objective: Our objective was to determine how the insulin resistance of the metabolic syndrome is related to muscle fiber composition. Design: Thirty-nine sedentary men and women (including 22 with the metabolic syndrome) had insulin responsiveness quantified using euglycemic clamps and underwent biopsies of the vastus lateralis muscle. Expression of insulin receptors, insulin receptor substrate-1, glucose transporter 4, and ATP synthase were quantified with immunoblots and immunohistochemistry. Participants and Setting: Participants were nondiabetic, metabolic syndrome volunteers and sedentary control subjects studied at an outpatient clinic. Main Outcome Measures: Insulin responsiveness during an insulin clamp and the fiber composition of a muscle biopsy specimen were evaluated. Results: There were fewer type I fibers and more mixed (type IIa) fibers in metabolic syndrome subjects. Insulin responsiveness and maximal oxygen uptake correlated with the proportion of type I fibers. Insulin receptor, insulin receptor substrate-1, and glucose transporter 4 expression were not different in whole muscle but all were significantly less in the type I fibers of metabolic syndrome subjects when adjusted for fiber proportion and fiber size. Fat oxidation and muscle mitochondrial expression were not different in the metabolic syndrome subjects. Conclusion: Lower proportion of type I fibers in metabolic syndrome muscle correlated with the severity of insulin resistance. Even though whole muscle content was normal, key elements of insulin action were consistently less in type I muscle fibers, suggesting their distribution was important in mediating insulin effects. PMID:23515448

  10. Measurement of Heat Transfer in Unbonded Silica Fibrous Insulation and Comparison with Theory

    NASA Technical Reports Server (NTRS)

    Daryabeigi, Kamran; Knutson, Jeffrey R.; Cunnington, George R.

    2007-01-01

    Effective thermal conductivity of a high porosity unbonded silica fibrous insulation specimen was measured over a pressure range of 0.001 to 750 torr (0.1 to 101.3 x 10(exp 3) Pa), and with large temperature gradients maintained across the sample thickness: hot side temperature range of 360 to 1360 K, with the cold side at room temperature. The measurements were compared with the theoretical solution of combined radiation/conduction heat transfer. The previously developed radiation heat transfer model used in this study is based on a modified diffusion approximation, and uses deterministic parameters that define the composition and morphology of the medium: distributions of fiber size and orientation, fiber volume fractions, and the spectral complex refractive index of the fibers. The close agreement between experimental and theoretical data further verifies the theoretical model over a wide range of temperatures and pressures.

  11. Activation of corn cellulose with alcohols to improve its dissolvability in fabricating ultrafine fibers via electrospinning.

    PubMed

    Chen, Haizhen; Ni, Jinping; Chen, Jing; Xue, Wenwen; Wang, Jinggang; Na, Haining; Zhu, Jin

    2015-06-05

    Water and four small molecular alcohols are respectively used to activate corn cellulose (CN cellulose) with the aim to improve the dissolvability in DMAc/LiCl. Among all these activated agents, monohydric alcohols are found to produce the optimal effect of activation in the whole process including of activating, dissolving, and electrospinning of CN cellulose. Meanwhile, well distributed fibers with the diameter of 500nm-2μm are fabricated in electrospinning. Understanding the activation effect of monohydric alcohols with water and polyhydric alcohols, the most effective activated agent is ascertained with the characteristics of small molecular size, low viscosity, and single functionality. This work is definitely initiated to understand the critical principle of CN cellulose in dissolving. Accordingly, a feasible methodology is also established to prepare ultrafine cellulose fibers with good morphology in electrospinning. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Effect of Reinforcement Shape and Fiber Treatment on the Mechanical Properties of Oil Palm Empty Fruit Bunch-Polyethylene Composites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arif, M. F.; Yusoff, P. S. M. M.; Eng, K. K.

    2010-03-11

    High Density Polyethylene (HDPE) composites were fabricated using oil palm empty fruit bunch (EFB) as the reinforcing material. The effect of reinforcement shape on the tensile and flexural properties, that is 5 mm average length of short fiber and 325-400 {mu}m size distribution of particulate filler have been studied. Overall, EFB short fiber-HDPE composites yield higher mechanical properties compared to EFB particulate-HDPE composites. For both types of composites, considerable improvement showed in tensile and flexural modulus. However, the tensile strength decreased with increase in EFB content. Attempts to improve these properties using alkali and two types of silane, namely gamma-Methacryloxypropyltrimethoxysilanemore » (MTS) and vinyltriethoxysilane (VTS) were described. It is found that both types of silane enhanced the mechanical properties of composites. MTS showed better tensile strength compared to VTS. However, only marginal improvement obtained from alkali treatments.« less

  13. Supercontinuum as a light source for miniaturized endoscopes.

    PubMed

    Lu, M K; Lin, H Y; Hsieh, C C; Kao, F J

    2016-09-01

    In this work, we have successfully implemented supercontinuum based illumination through single fiber coupling. The integration of a single fiber illumination with a miniature CMOS sensor forms a very slim and powerful camera module for endoscopic imaging. A set of tests and in vivo animal experiments are conducted accordingly to characterize the corresponding illuminance, spectral profile, intensity distribution, and image quality. The key illumination parameters of the supercontinuum, including color rendering index (CRI: 72%~97%) and correlated color temperature (CCT: 3,100K~5,200K), are modified with external filters and compared with those from a LED light source (CRI~76% & CCT~6,500K). The very high spatial coherence of the supercontinuum allows high luminosity conduction through a single multimode fiber (core size~400μm), whose distal end tip is attached with a diffussion tip to broaden the solid angle of illumination (from less than 10° to more than 80°).

  14. A simple numerical model for membrane oxygenation of an artificial lung machine

    NASA Astrophysics Data System (ADS)

    Subraveti, Sai Nikhil; Sai, P. S. T.; Viswanathan Pillai, Vinod Kumar; Patnaik, B. S. V.

    2015-11-01

    Optimal design of membrane oxygenators will have far reaching ramification in the development of artificial heart-lung systems. In the present CFD study, we simulate the gas exchange between the venous blood and air that passes through the hollow fiber membranes on a benchmark device. The gas exchange between the tube side fluid and the shell side venous liquid is modeled by solving mass, momentum conservation equations. The fiber bundle was modelled as a porous block with a bundle porosity of 0.6. The resistance offered by the fiber bundle was estimated by the standard Ergun correlation. The present numerical simulations are validated against available benchmark data. The effect of bundle porosity, bundle size, Reynolds number, non-Newtonian constitutive relation, upstream velocity distribution etc. on the pressure drop, oxygen saturation levels etc. are investigated. To emulate the features of gas transfer past the alveoli, the effect of pulsatility on the membrane oxygenation is also investigated.

  15. How Muscle Structure and Composition Influence Meat and Flesh Quality

    PubMed Central

    Listrat, Anne; Lebret, Bénédicte; Louveau, Isabelle; Astruc, Thierry; Bonnet, Muriel; Lefaucheur, Louis; Picard, Brigitte; Bugeon, Jérôme

    2016-01-01

    Skeletal muscle consists of several tissues, such as muscle fibers and connective and adipose tissues. This review aims to describe the features of these various muscle components and their relationships with the technological, nutritional, and sensory properties of meat/flesh from different livestock and fish species. Thus, the contractile and metabolic types, size and number of muscle fibers, the content, composition and distribution of the connective tissue, and the content and lipid composition of intramuscular fat play a role in the determination of meat/flesh appearance, color, tenderness, juiciness, flavor, and technological value. Interestingly, the biochemical and structural characteristics of muscle fibers, intramuscular connective tissue, and intramuscular fat appear to play independent role, which suggests that the properties of these various muscle components can be independently modulated by genetics or environmental factors to achieve production efficiency and improve meat/flesh quality. PMID:27022618

  16. Observation and discrimination of the mode patterns in a micron-sized hollow optical fiber and its synthetic measurements: far-field micro-imaging technique

    NASA Astrophysics Data System (ADS)

    Yin, Jianping; Kim, Kihwan; Shim, Wooshik; Zhu, Yifu; Jhe, Wonho

    1998-08-01

    We report a far-field micro-imaging technique that is used for the observation and discrimination of the mode patterns in a micron-sized hollow optical fiber as well as for the synthetic measurement of the fiber. By using an M-20X microscope objective lens, we obtained images, magnified by a factor of about 460, from the mode patterns at an output end facet of the hollow fiber with relative measurement accuracy better than 3%. This method can be used for clear identification of the mode patterns in the hollow fiber and detailed study of the relationship between the excitation conditions and the excited modes in the hollow fiber. Moreover, it is useful for the measurement of the geometrical sizes of the hollow fiber end and for testing the coupling efficiencies of the core and cladding modes in their mixed mode pattern. In addition, this method can be also used in the generation of a dark hollow laser beam with 10-micrometers dark-spot size and the measurement of the focused- spot size of a Gaussian laser beam with about 1-micrometers diameter.

  17. Temperature regime and carbon dioxide enrichment alter cotton boll development and fiber properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reddy, K.R.; Davidonis, G.H.; Johnson, A.S.

    Temperature and atmospheric carbon dioxide concentration [CO{sub 2}] affect cotton (Gossypium hirsutum L.) growth and development, but the interaction of these two factors on bill and fiber properties has not been studied. An experiment was conducted in naturally lit plant growth chambers to determine the influence of temperature and atmospheric [CO{sub 2}] on cotton (cv. DPL-51) boll and fiber growth parameters. Five temperature regimes were evaluated: the 1995 temperature at Mississippi State, MS; the 1995 temperature minus 2 C; and the 1995 temperature plus 2, 5, and 7 C. Daily and seasonal variation and amplitudes were maintained. Atmospheric [CO{sub 2}]more » treatments were 360 (ambient) and 720 {micro}L L{sup {minus}1}. Boll number, boll growth, and fiber properties were measured. Boll size and maturation periods decreased as temperature increased. Boll growth increased with temperature to 25 C and then declined at the highest temperature. Boll maturation period, size, and growth rates were not affected by atmospheric [CO{sub 2}]. The most temperature-sensitive aspect of cotton development is boll retention. Almost no bolls were retained to maturity at 1995 plus 5 or 7 C, but squares and bolls were continuously produced even at those high temperatures. Therefore, the upper limit for cotton boll survival is 32 C, or 5 C warmer than the 1995 US Mid-South ambient temperatures. The 720 {micro}L L{sup {minus}1} atmospheric [CO{sub 2}] had about 40% more squares and bolls across temperatures than the 360 {micro}L L{sup {minus}1} [CO{sub 2}]. Fibers were longer when bolls grew at less than optimal temperatures (25 C) for boll growth. As temperature increased, fiber length distributions were more uniform. Fiber fineness and maturity increased linearly with the increase in temperature up to 26 C, but decreased at 32 C. Short-fiber content declined linearly from 17 to 26 C, but was higher at higher temperature. As for boll growth and developmental parameters, elevated atmospheric [CO{sub 2}] did not affect any of the fiber parameters. Changes in temperature, however, had a dramatic effect on boll set and fiber properties. The relationships between temperature and boll growth and developmental rate functions and fiber properties provide the necessary functional parameters to build fiber models under optimum water and nutrient conditions.« less

  18. A strategy for prediction of the elastic properties of epoxy-cellulose nanocrystal-reinforced fiber networks

    Treesearch

    Johnathan E. Goodsell; Robert J. Moon; Alionso Huizar; R. Byron Pipes

    2014-01-01

    The reinforcement potential of cellulose nanocrystal (CNC) additions on an idealized 2-dirmensional (2-D) fiber network structure consisting of micron sized fiber elements was investigated. The reinforcement mechanism considered in this study was through the stiffening of the micron sized fiber elements via a CNC-epoxy coating. A hierarchical analytical modeling...

  19. Distributed Fiber Optic Sensors For The Monitoring Of A Tunnel Crossing A Landslide

    NASA Astrophysics Data System (ADS)

    Minardo, Aldo; Picarelli, Luciano; Zeni, Giovanni; Catalano, Ester; Coscetta, Agnese; Zhang, Lei; DiMaio, Caterina; Vassallo, Roberto; Coviello, Roberto; Macchia, Giuseppe Nicola Paolo; Zeni, Luigi

    2017-04-01

    Optical fiber distributed sensors have recently gained great attention in structural and environmental monitoring due to specific advantages because they share all the classical advantages common to all optical fiber sensors such as immunity to electromagnetic interferences, high sensitivity, small size and possibility to be embedded into the structures, multiplexing and remote interrogation capabilities [1], but also offer the unique feature of allowing the exploitation of a telecommunication grade optical fiber cable as the sensing element to measure deformation and temperature profiles over long distances, without any added devices. In particular, distributed optical fiber sensors based on stimulated Brillouin scattering through the so-called Brillouin Optical Time Domain Analysis (BOTDA), allow to measure strain and temperature profiles up to tens of kilometers with a strain accuracy of ±10µɛ and a temperature accuracy of ±1°C. These sensors have already been employed in static and dynamic monitoring of a variety of structures resulting able to identify and localize many kind of failures [2,3,4]. This paper deals with the application of BOTDA to the monitoring of the deformations of a railway tunnel (200 m long) constructed in the accumulation of Varco d'Izzo earthflow, Potenza city, in the Southern Italian Apennine. The earthflow, which occurs in the tectonized clay shale formation called Varicoloured Clays, although very slow, causes continuous damage to buildings and infrastructures built upon or across it. The railway tunnel itself had to be re-constructed in 1992. Since then, the Italian National Railway monitored the structure by means of localized fissure-meters. Recently, thanks to a collaboration with the rail Infrastructure Manager (RFI), monitoring of various zones of the landslide including the tunnel is based on advanced systems, among which the optical fiber distributed sensors. First results show how the sensing optical fiber cable is able to detect the formation of localized strains and cracks, following the evolution of their width and identifying their location along the tunnel walls. It is worth noticing that the distributed nature of the sensor makes it possible to perform the monitoring with no preliminary information about the possible location of concentrated deformation. The sensing cable is simply glued to the tunnel walls and the system will remotely detect and locate any deformation and fracture wherever they occur along the fiber path, so representing a powerful early warning system. [1] J. M. López-Higuera, L. R. Cobo, A. Q. Incera, A. Cobo, "Fiber Optic Sensors in Structural Health Monitoring", Journal of Lightwave Technology, 29, 2011. [2] L. Zeni, L. Picarelli, B. Avolio, A. Coscetta, R. Papa, G. Zeni, C. Di Maio, R. Vassallo, A. Minardo, "Brillouin Optical Time Domain Analysis for Geotechnical Monitoring", Journal of Rock Mechanics and Geotechnical Engineering, 7, 2015 [3] A. Minardo, G. Porcaro, D. Giannetta, R. Bernini, L. Zeni, "Real-time monitoring of railway traffic using slope-assisted Brillouin distributed sensors", Applied Optics, 52, 2013 [4] A. Minardo, A. Coscetta, S. Pirozzi, R. Bernini, L. Zeni, "Experimental modal analysis of an aluminum rectangular plate by use of the slope-assisted BOTDA method", Smart Materials & Structures, 22, 2014

  20. Thermal stability relationships between PMR-15 resin and its composites

    NASA Technical Reports Server (NTRS)

    Bowles, Kenneth J.; Jayne, Douglas; Leonhardt, Todd A.; Bors, Dennis

    1993-01-01

    A study was conducted to investigate the relationship between the thermo-oxidative stability of PMR-15 matrix resin and the stability of graphite-fiber-reinforced composites that contain this resin as the matrix material. Three areas were investigated. The first was the effect of fiber/matrix interfacial bond strength on the isothermal aging weight loss of composites. By using type-A graphite fibers produced by Hercules, it was possible to study composites reinforced with fibers that were processed to receive different surface treatments. One of the fibers was untreated, a second fiber was treated by oxidation to enhance fiber/matrix bonding, and the third type of fiber was coated with an epoxy sizing. These treatments produced three significantly different interfacial bond strengths. The epoxy sizing on the third fiber was quickly oxidized from the bare fiber surfaces at 288, 316, and 343 C. The weight loss due to the removal of the sizing was constant at 1.5 percent. This initial weight loss was not observed in thermo-oxidative stability studies of composites. The PMR-15 matrix satisfactorily protected the reinforcemnt at all three temperatures.

  1. Fiber distributed feedback laser

    NASA Technical Reports Server (NTRS)

    Elachi, C.; Evans, G. A.; Yeh, C. (Inventor)

    1976-01-01

    Utilizing round optical fibers as communication channels in optical communication networks presents the problem of obtaining a high efficiency coupling between the optical fiber and the laser. A laser is made an integral part of the optical fiber channel by either diffusing active material into the optical fiber or surrounding the optical fiber with the active material. Oscillation within the active medium to produce lasing action is established by grating the optical fiber so that distributed feedback occurs.

  2. Narrow-band generation in random distributed feedback fiber laser.

    PubMed

    Sugavanam, Srikanth; Tarasov, Nikita; Shu, Xuewen; Churkin, Dmitry V

    2013-07-15

    Narrow-band emission of spectral width down to ~0.05 nm line-width is achieved in the random distributed feedback fiber laser employing narrow-band fiber Bragg grating or fiber Fabry-Perot interferometer filters. The observed line-width is ~10 times less than line-width of other demonstrated up to date random distributed feedback fiber lasers. The random DFB laser with Fabry-Perot interferometer filter provides simultaneously multi-wavelength and narrow-band (within each line) generation with possibility of further wavelength tuning.

  3. Quantum key distribution over an installed multimode optical fiber local area network.

    PubMed

    Namekata, Naoto; Mori, Shigehiko; Inoue, Shuichiro

    2005-12-12

    We have investigated the possibility of a multimode fiber link for a quantum channel. Transmission of light in an extremely underfilled mode distribution promises a single-mode-like behavior in the multimode fiber. To demonstrate the performance of the fiber link we performed quantum key distribution, on the basis of the BB84 four-state protocol, over 550 m of an installed multimode optical fiber local area network, and the quantum-bit-error rate of 1.09 percent was achieved.

  4. A Laboratory Investigation on Shear Strength Behavior of Sandy Soil: Effect of Glass Fiber and Clinker Residue Content

    NASA Astrophysics Data System (ADS)

    Bouaricha, Leyla; Henni, Ahmed Djafar; Lancelot, Laurent

    2017-12-01

    A study was undertaken to investigate the shear strength parameters of treated sands reinforced with randomly distributed glass fibers by carrying out direct shear test after seven days curing periods. Firstly, we studied the fiber content and fiber length effect on the peak shear strength on samples. The second part gives a parametric analysis on the effect of glass fiber and clinker residue content on the shear strength parameters for two types of uniform Algerian sands having different particle sizes (Chlef sand and Rass sand) with an average relative density Dr = 50%. Finally, the test results show that the combination of glass fiber and clinker residue content can effectively improve the shear strength parameters of soil in comparison with unreinforced soil. For instance, there is a significant gain for the cohesion and friction angle of reinforced sand of Chlef. Compared to unreinforced sand, the cohesion for sand reinforced with different ratios of clinker residue increased by 4.36 to 43.08 kPa for Chlef sand and by 3.1 to 28.64 kPa for Rass sand. The feature friction angles increased from 38.73° to 43.01° (+4.28°), and after the treatment, clinker residue content of soil evaluated to 5% (WRC = 5%).

  5. Melt electrospinning of poly(ε-caprolactone) scaffolds: phenomenological observations associated with collection and direct writing.

    PubMed

    Brown, Toby D; Edin, Fredrik; Detta, Nicola; Skelton, Anthony D; Hutmacher, Dietmar W; Dalton, Paul D

    2014-12-01

    Melt electrospinning and its additive manufacturing analogue, melt electrospinning writing (MEW), are two processes which can produce porous materials for applications where solvent toxicity and accumulation in solution electrospinning are problematic. This study explores the melt electrospinning of poly(ε-caprolactone) (PCL) scaffolds, specifically for applications in tissue engineering. The research described here aims to inform researchers interested in melt electrospinning about technical aspects of the process. This includes rapid fiber characterization using glass microscope slides, allowing influential processing parameters on fiber morphology to be assessed, as well as observed fiber collection phenomena on different collector substrates. The distribution and alignment of melt electrospun PCL fibers can be controlled to a certain degree using patterned collectors to create large numbers of scaffolds with shaped macroporous architectures. However, the buildup of residual charge in the collected fibers limits the achievable thickness of the porous template through such scaffolds. One challenge identified for MEW is the ability to control charge buildup so that fibers can be placed accurately in close proximity, and in many centimeter heights. The scale and size of scaffolds produced using MEW, however, indicate that this emerging process will fill a technological niche in biofabrication. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Shrinkage deformation of cement foam concrete

    NASA Astrophysics Data System (ADS)

    Kudyakov, A. I.; Steshenko, A. B.

    2015-01-01

    The article presents the results of research of dispersion-reinforced cement foam concrete with chrysotile asbestos fibers. The goal was to study the patterns of influence of chrysotile asbestos fibers on drying shrinkage deformation of cement foam concrete of natural hardening. The chrysotile asbestos fiber contains cylindrical fiber shaped particles with a diameter of 0.55 micron to 8 microns, which are composed of nanostructures of the same form with diameters up to 55 nm and length up to 22 microns. Taking into account the wall thickness, effective reinforcement can be achieved only by microtube foam materials, the so- called carbon nanotubes, the dimensions of which are of power less that the wall pore diameter. The presence of not reinforced foam concrete pores with perforated walls causes a decrease in its strength, decreases the mechanical properties of the investigated material and increases its shrinkage. The microstructure investigation results have shown that introduction of chrysotile asbestos fibers in an amount of 2 % by weight of cement provides the finely porous foam concrete structure with more uniform size closed pores, which are uniformly distributed over the volume. This reduces the shrinkage deformation of foam concrete by 50%.

  7. Improving agar electrospinnability with choline-based deep eutectic solvents.

    PubMed

    Sousa, Ana M M; Souza, Hiléia K S; Uknalis, Joseph; Liu, Shih-Chuan; Gonçalves, Maria P; Liu, LinShu

    2015-09-01

    Very recently our group has produced novel agar-based fibers by an electrospinning technique using water as solvent and polyvinyl alcohol (PVA) as co-blending polymer. Here, we tested the deep eutectic solvent (DES), (2-hydroxyethyl)trimethylammonium chloride/urea prepared at 1:2 molar ratio, as an alternative solvent medium for agar electrospinning. The electrospun materials were collected with an ethanol bath adapted to a previous electrospinning set-up. One weight percent agar-in-DES showed improved viscoelasticity and hence, spinnability, when compared to 1 wt% agar-in-water and pure agar nanofibers were successfully electrospun if working above the temperature of sol-gel transition (∼80 °C). By changing the solvent medium we decreased the PVA concentration (5 wt% starting solution) and successfully produced composite fibers with high agar contents (50/50 agar/PVA). Best composite fibers were formed with the 50/50 and 30/70 agar/PVA solutions. These fibers were mechanically resistant, showed tailorable surface roughness and diverse size distributions, with most of the diameters falling in the sub-micron range. Both nano and micro forms of agar fibers (used separately or combined) may have potential for the design of new and highly functional agar-based materials. Published by Elsevier B.V.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Padaki, S.; Drzal, L.T.

    The consolidation process in composites made out of powder impregnated tapes differs from that of other material forms because of the distribution of fiber and matrix in the unconsolidated state. A number of factors (e.g. time, pressure, particle size, volume fraction and viscosity) affect the efficiency of the consolidation of these tapes. This paper describes the development of a mathematical process model that describes the best set of parameters required for the consolidation of a given prepreg tape.

  9. Tapered holey fibers for spot-size and numerical-aperture conversion.

    PubMed

    Town, G E; Lizier, J T

    2001-07-15

    Adiabatically tapered holey fibers are shown to be potentially useful for guided-wave spot-size and numerical-aperture conversion. Conditions for adiabaticity and design guidelines are provided in terms of the effective-index model. We also present finite-difference time-domain calculations of downtapered holey fiber, showing that large spot-size conversion factors are obtainable with minimal loss by use of short, optimally shaped tapers.

  10. Mechanical properties and micro-morphology of fiber posts.

    PubMed

    Zicari, F; Coutinho, E; Scotti, R; Van Meerbeek, B; Naert, I

    2013-04-01

    To evaluate flexural properties of different fiber posts systems and to morphologically characterize their micro-structure. Six types of translucent fiber posts were selected: RelyX Post (3M ESPE), ParaPost Taper Lux (Colthéne-Whaledent), GC Fiber Post (GC), LuxaPost (DMG), FRC Postec Plus (Ivoclar-Vivadent), D.T. Light-Post (RTD). For each post system and size, ten specimens were subjected to a three-points bending test. Maximum fracture load, flexural strength and flexural modulus were determined using a universal loading device (5848 MicroTester(®), Instron). Besides, for each system, three intact posts of similar dimensions were processed for scanning electron microscopy to morphologically characterize the micro-structure. The following structural characteristics were analyzed: fibers/matrix ratio, density of fibers, diameter of fibers and distribution of fibers. Data were statistically analyzed with ANOVA. Type and diameter of posts were found to significantly affect the fracture load, flexural strength and flexural modulus (p<0.05). Regarding maximum fracture load, it was found to increase with post diameter, in each post system (p<0.001). Regarding flexural strength and flexural modulus, the highest values were recorded for posts with the smallest diameter (p<0.001). Finally, structural characteristics significantly varied among the post systems tested. However, any correlation has been found between flexural strength and structural characteristics. Flexural strength appeared not to be correlated to structural characteristics of fiber posts, but it may rather be affected by mechanical properties of the resin matrix and the interfacial adhesion between fibers and resin matrix. Copyright © 2013. Published by Elsevier Ltd.

  11. Polishing parameter optimization for end-surface of chalcogenide glass fiber connector

    NASA Astrophysics Data System (ADS)

    Guo, Fangxia; Dai, Shixun; Tang, Junzhou; Wang, Xunsi; Li, Xing; Xu, Yinsheng; Wu, Yuehao; Liu, Zijun

    2017-11-01

    We have investigated the optimization parameters for polishing end-surface of chalcogenide glass fiber connector in the paper. Six SiC abrasive particles of different sizes were used to polish the fiber in order of size from large to small. We analyzed the effects of polishing parameters such as particle sizes, grinding speeds and polishing durations on the quality of the fiber end surface and determined the optimized polishing parameters. We found that, high-quality fiber end surface can be achieved using only three different SiC abrasives. The surface roughness of the final ChG fiber end surface is about 48 nm without any scratches, spots and cracks. Such polishing processes could reduce the average insertion loss of the connector to about 3.4 dB.

  12. Highly thermally conductive and mechanically strong graphene fibers.

    PubMed

    Xin, Guoqing; Yao, Tiankai; Sun, Hongtao; Scott, Spencer Michael; Shao, Dali; Wang, Gongkai; Lian, Jie

    2015-09-04

    Graphene, a single layer of carbon atoms bonded in a hexagonal lattice, is the thinnest, strongest, and stiffest known material and an excellent conductor of heat and electricity. However, these superior properties have yet to be realized for graphene-derived macroscopic structures such as graphene fibers. We report the fabrication of graphene fibers with high thermal and electrical conductivity and enhanced mechanical strength. The inner fiber structure consists of large-sized graphene sheets forming a highly ordered arrangement intercalated with small-sized graphene sheets filling the space and microvoids. The graphene fibers exhibit a submicrometer crystallite domain size through high-temperature treatment, achieving an enhanced thermal conductivity up to 1290 watts per meter per kelvin. The tensile strength of the graphene fiber reaches 1080 megapascals. Copyright © 2015, American Association for the Advancement of Science.

  13. Comparison of fiber lasers based on distributed side-coupled cladding-pumped fibers and double-cladding fibers.

    PubMed

    Huang, Zhihe; Cao, Jianqiu; Guo, Shaofeng; Chen, Jinbao; Xu, Xiaojun

    2014-04-01

    We compare both analytically and numerically the distributed side-coupled cladding-pumped (DSCCP) fiber lasers and double cladding fiber (DCF) lasers. We show that, through optimization of the coupling and absorbing coefficients, the optical-to-optical efficiency of DSCCP fiber lasers can be made as high as that of DCF lasers. At the same time, DSCCP fiber lasers are better than the DCF lasers in terms of thermal management.

  14. Solution and interfacial behavior of modified silicone polymers and their interactions with solid substrates

    NASA Astrophysics Data System (ADS)

    Purohit, Parag

    Surface treatment is very important step in many applications such as fabric finishing, coatings, cosmetics and personal care. Silicone polymers are a class of organic/inorganic materials that show unique properties such as weak intermolecular forces and high flexibility enabling even a very high molecular weight chain to achieve optimal orientation on surfaces. Material properties such as softness, repellency, bounciness and friction can therefore be tailored by using appropriately modified silicone polymers. Despite wide applications, the underlying mechanisms of material modification are unknown and tailoring silicones for applications remains mostly empirical. Thus the objective of this research is to understand the solution and interfacial behavior of functionalized silicone polymers, which govern their performance in material modification. Modified silicones are simultaneously hydrophobic and oleophobic in nature and due to this nearly universal non-compatibility, the studies of these polymers present unusual challenges. Due to this incompatible nature, the functionalized silicone polymers were emulsified into O/W emulsions to study their solution and interfacial properties. The colloidal properties such as electrokinetic and droplet distribution of these emulsions are assumed to play an important role in the observed surface and physical properties of solid substrates (in present study, cellulosic substrates) as well the stability of emulsions itself. To understand the effects of modified silicones on cellulosic substrates a variety of techniques such as frictional analysis, scanning electron microscopy and atomic force microscopy that can probe from macro to nano level were used. It is hypothesized that the size distribution and charge of silicone emulsions as well as the physiochemical conditions such as pH, control silicone conformation which in turn affect the modification of the substrate properties. With bimodal droplet distribution of silicone emulsions, the nano-sized droplets can penetrate deeper into the substrate to provide bounciness, whereas macro-sized droplets can coat the top layer leading to friction reduction. It was observed that at pH 5.5 the silicone treatment resulted in charge reversal of fibers as opposed to treatment at pH 9.5. On a macroscopic scale 20% reduction in frictional coefficient of the fabric was observed after treatment with quaternized (cationically modified) silicones as compared to untreated fibers. It was also observed using AFM that the fibrils treated with quaternized silicones are uniform, well stacked and smoother than the untreated fibers. Spectroscopic analysis of treated fibers using Raman spectroscopy indicated a decrease in fiber stress as a function of modification of silicone polymer and the interaction pH. It is concluded that the protonated amine functional silicone (below pH 7) as well as the quaternized silicone interacts with the negatively charged cellulose fibers primarily through electrostatic interactions. It is proposed that this initial surface coating is a uniform thin film which allows further deposition of polymer from the emulsion. It was observed that at high pH the zetapotential of silicone emulsions decreases drastically and the nano emulsions turn turbid. It is proposed that the observed electrophoretic and nephelometric behavior at high pH is due to flocculation of nanosized droplets to micron size, which eventually leads to droplets coalescing and emulsion destabilization. It is also postulated that the nano emulsion possess a critical dilution concentration (CDC), above which dilution leads to rapid coalescence. This critical dilution phase was further confirmed through polarity parameter and excimer formation studies which show significantly different polymer and surfactant microstructures near the CDC. Hence it is concluded that the observed surface properties of the substrate obtained above the CDC are significantly different than those below the CDC. The results reveal the vital role of physiochemical parameters such as pH, droplet size, and concentration on the emulsion stability as well as the observed physical/chemical properties of the substrates.

  15. Electron tomography and nano-diffraction enabling the investigation of individual magnetic nanoparticles inside fibers of MR visible implants

    NASA Astrophysics Data System (ADS)

    Slabu, I.; Wirch, N.; Caumanns, T.; Theissmann, R.; Krüger, M.; Schmitz-Rode, T.; Weirich, T. E.

    2017-08-01

    Superparamagnetic iron oxide nanoparticles (SPIONPs) incorporated into the base material of implants are used as contrast agents in magnetic resonance imaging for the delineation of the implants from the surrounding tissue. However, the delineation quality is strongly related to the structural characteristics of the incorporated SPIONPs and their interparticle interaction as well as their interaction with the polymer matrix of the implant. Consequently, a profound knowledge of the formation of aggregates inside the polymer matrix, which are responsible for strong interparticle interactions, and of their structural characteristics, is required for controlling the magnetic resonance image quality of the implants. In this work, transmission electron microscopy methods such as electron tomography and nano-electron diffraction were used to depict SPIONP aggregates inside the melt-spin polyvinylidene fluoride fibers used for the assembly of implants and to determine the crystal structure of individual nanocrystals inside these aggregates, respectively. Using these techniques it was possible for the first time to characterize the aggregates inside the fibers of implants and to validate the magnetization measurements that have been previously used to assess the interaction phenomena inside the fibers of implants. With electron tomography, inhomogeneously sized distributed aggregates were delineated and 3D models of these aggregates were constructed. Furthermore, the distribution of the aggregates inside the fibers was verified by means of magnetic force microscopy. With nano-diffraction measurements, the SPIONP crystal structure inside the fibers of the implant could not be clearly assigned to that of magnetite (Fe3O4) or maghemite (γ-Fe2O3). Therefore, additional electron energy loss spectroscopy measurements were performed, which revealed the presence of both phases of Fe3O4 and γ-Fe2O3, probably caused by oxidation processes during the manufacture of the fibers by melt-spinning.

  16. Chromatin conformation in living cells: support for a zig-zag model of the 30 nm chromatin fiber

    NASA Technical Reports Server (NTRS)

    Rydberg, B.; Holley, W. R.; Mian, I. S.; Chatterjee, A.

    1998-01-01

    A new method was used to probe the conformation of chromatin in living mammalian cells. The method employs ionizing radiation and is based on the concept that such radiation induces correlated breaks in DNA strands that are in spatial proximity. Human dermal fibroblasts in G0 phase of the cell cycle and Chinese hamster ovary cells in mitosis were irradiated by X-rays or accelerated ions. Following lysis of the cells, DNA fragments induced by correlated breaks were end-labeled and separated according to size on denaturing polyacrylamide gels. A characteristic peak was obtained for a fragment size of 78 bases, which is the size that corresponds to one turn of DNA around the nucleosome. Additional peaks between 175 and 450 bases reflect the relative position of nearest-neighbor nucleosomes. Theoretical calculations that simulate the indirect and direct effect of radiation on DNA demonstrate that the fragment size distributions are closely related to the chromatin structure model used. Comparison of the experimental data with theoretical results support a zig-zag model of the chromatin fiber rather than a simple helical model. Thus, radiation-induced damage analysis can provide information on chromatin structure in the living cell. Copyright 1998 Academic Press.

  17. Heat and pH stability of alkali-extractable corn arabinoxylan and its xylanase-hydrolyzate and their viscosity behavior.

    PubMed

    Rumpagaporn, Pinthip; Kaur, Amandeep; Campanella, Osvaldo H; Patterson, John A; Hamaker, Bruce R

    2012-01-01

    In in vitro batch fermentations, both alkali-extractable corn arabinoxylan (CAX) and its xylanase-hydrolyzate (CH) were utilized by human fecal microbiota and produced similar short chain fatty acid (SCFA) contents and desirable long fermentation profiles with low initial gas production. Fortification of these arabinoxylans into processed foods would contribute desirable dietary fiber benefits to humans. Heat and pH stability, as well as viscosity behavior of CAX and CH were investigated. Size exclusion chromatography was used to analyze the molecular size distribution after treatment at different pH's and heating temperatures for different time periods. Treated under boiling and pressure cooking conditions at pH 3, CAX was degraded to a smaller molecular size, whereas the molecular size of the CH showed only a minor decrease. CAX and CH were mostly stable at neutral pH, except when CAX was treated under pressure for 60 min that slightly lowered molecular size. At 37 °C, neither CAX nor CH was adversely affected by treatment at low or neutral pH. The viscosities of solutions containing 5% and 10% of CAX were 48.7 and 637.0 mPa.s, respectively that were higher than those of solutions containing 5% and 10% of its hydrolyzate at shear rate 1 s⁻¹. The CAX solutions showed Newtonian flow behavior, whereas shear-thinning behavior was observed in CH solutions. In conclusion, the hydrolyzate of CAX has potential to be used in high fiber drinks due to its favorable fermentation properties, higher pH and heat stability, lower and shear-thinning viscosity, and lighter color than the native CAX. Arabinoxylan extracted by an alkali from corn bran is a soluble fiber with a desirable low initial and extended fermentation property. Corn arabinoxylan hydrolyzate using an endoxylanase was much more stable at different levels of acidity and heat than the native arabinoxylan, and showed lower solution viscosity and shear-thinning property that indicates its potential as an alternative functional dietary fiber for the beverage industry. © 2011 Institute of Food Technologists®

  18. Excitation efficiency of an optical fiber core source

    NASA Technical Reports Server (NTRS)

    Egalon, Claudio O.; Rogowski, Robert S.; Tai, Alan C.

    1992-01-01

    The exact field solution of a step-index profile fiber is used to determine the excitation efficiency of a distribution of sources in the core of an optical fiber. Previous results of a thin-film cladding source distribution to its core source counterpart are used for comparison. The behavior of power efficiency with the fiber parameters is examined and found to be similar to the behavior exhibited by cladding sources. It is also found that a core-source fiber is two orders of magnitude more efficient than a fiber with a bulk distribution of cladding sources. This result agrees qualitatively with previous ones obtained experimentally.

  19. Isolation and characterization of microcrystalline cellulose from roselle fibers.

    PubMed

    Kian, Lau Kia; Jawaid, Mohammad; Ariffin, Hidayah; Alothman, Othman Y

    2017-10-01

    In this study, microcrystalline cellulose (MCC) was extracted from roselle fiber through acid hydrolysis treatment and its properties were compared with those of commercially available MCC. The physicochemical and morphological characteristics, elemental composition, size distribution, crystallinity and thermal properties of the obtained MCC were analyzed in this work. Fourier transform infrared spectroscopy (FTIR) analysis provided clear evidence that the characteristic peak of lignin was absent in the spectrum of the MCC prepared from roselle fiber. Rough surface and slight aggregation of MCC were observed by scanning electron microscopy (SEM). Energy dispersive X-ray (EDX) analysis showed that pure MCC with small quantities of residues and impurities was obtained, with a similar elemental composition to that of commercial MCC. A mean diameter of approximately 44.28μm was measured for MCC by using a particle size analyzer (PSA). X-ray diffraction (XRD) showed the crystallinity increased from 63% in roselle pulp to 78% in roselle MCC, the latter having a slightly higher crystallinity than that of commercial MCC (74%). TGA and DSC results indicated that the roselle MCC had better thermal stability than the roselle pulp, whereas it had poorer thermal stability in comparison with commercial MCC. Thus, the isolated MCC from roselle fibers will be going to use as reinforcing element in green composites and may be a precursor for future roselle derived nanocellulose, and thus a promising subject in nanocomposite research. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Catalytic property of fiber media supported palladium containing alloy nanoparticles and electrospun ceramic fibers biodurability study

    NASA Astrophysics Data System (ADS)

    Shin, Hyeon Ung

    The nanoscale of the supporting fibers may provide enhancements such as restricting the migration of metal catalyst particles. In this work, palladium nanoparticle doped alumina fibers were electrospun into template submicron fibers. These fibers were calcined at temperatures between 650°C and 1150°C to vary the crystal structures of the calcined fibers with the Pd particle size. Higher calcination temperatures led to higher reaction temperatures from 250 to about 450°C for total conversion, indicating the effective reactivity of the fiber-supported catalysts decreased with increase in calcination temperature. Pd-Au alloy nanoparticle doped titania fibers were also fabricated using an electrospinning method and assembled into a fibrous porous medium structure by a vacuum molding process. In reactor tests, the fiber media with Pd-Au alloy nanoparticle catalyst had greater reactivity in conversion of NO and CO gases than that of fiber media with Pd monometallic catalyst alone, attributed to a lower activation energy of the Pd-Au catalyst particles. In carbon monoxide oxidation reaction tests, the results showed that the performance was optimal for a catalyst of composition Pd2Au1 molar ratio that was active at 125°C, which had higher dispersion of active components and better catalytic performance compared to monometallic particle Au/TiO 2 and Pd/TiO2 fiber media. Moreover, the improved reaction activity of Pd2Au1/TiO2 fiber medium was attributed to a decreased in the activation energy. Further experiments were conducted using the electrospun ceramic fibers biodurability study. The properties of nano-sized fiber structures have attracted the attention of recent research on ceramic nanostructures as nonwoven media for applications in hazardous chemical and high temperature environments. However, health and safety concerns of micro and nano scale ceramic materials have not been fully investigated. Little is known about the physicochemical effects of the properties of small alumina fibers, including fiber sizes, surface morphologies, crystalline, phases, and surface areas with respect to submicron sized alumina fibers formed by calcination of electrospun polymeric fibers. Therefore, in this work, sub-micron sized alumina fibers were fabricated by electrospinning and calcination of a polymer template fiber. In the calcination step, different controlled temperature heating cycles were conducted to obtain fibers of different crystalline structures. Their biodurabilities were evaluated in two types of artificial lung fluids (i.e., mimicking the airway and alveolar macrophages). Though the variation in the soak temperature, their dissolution half times were not significantly affected. The solubility half-times of the alumina fibers were shortest for fibers calcined at the fastest temperature ramp rate (though soak temperature did not have an effect).

  1. Effect of Rayleigh-scattering distributed feedback on multiwavelength Raman fiber laser generation.

    PubMed

    El-Taher, A E; Harper, P; Babin, S A; Churkin, D V; Podivilov, E V; Ania-Castanon, J D; Turitsyn, S K

    2011-01-15

    We experimentally demonstrate a Raman fiber laser based on multiple point-action fiber Bragg grating reflectors and distributed feedback via Rayleigh scattering in an ~22-km-long optical fiber. Twenty-two lasing lines with spacing of ~100 GHz (close to International Telecommunication Union grid) in the C band are generated at the watt level. In contrast to the normal cavity with competition between laser lines, the random distributed feedback cavity exhibits highly stable multiwavelength generation with a power-equalized uniform distribution, which is almost independent on power.

  2. Native Cellulose: Structure, Characterization and Thermal Properties

    PubMed Central

    Poletto, Matheus; Ornaghi Júnior, Heitor L.; Zattera, Ademir J.

    2014-01-01

    In this work, the relationship between cellulose crystallinity, the influence of extractive content on lignocellulosic fiber degradation, the correlation between chemical composition and the physical properties of ten types of natural fibers were investigated by FTIR spectroscopy, X-ray diffraction and thermogravimetry techniques. The results showed that higher extractive contents associated with lower crystallinity and lower cellulose crystallite size can accelerate the degradation process and reduce the thermal stability of the lignocellulosic fibers studied. On the other hand, the thermal decomposition of natural fibers is shifted to higher temperatures with increasing the cellulose crystallinity and crystallite size. These results indicated that the cellulose crystallite size affects the thermal degradation temperature of natural fibers. This study showed that through the methods used, previous information about the structure and properties of lignocellulosic fibers can be obtained before use in composite formulations. PMID:28788179

  3. Method of producing a ceramic fiber-reinforced glass-ceramic matrix composite

    NASA Technical Reports Server (NTRS)

    Bansal, Narottam P. (Inventor)

    1994-01-01

    A fiber-reinforced composite composed of a BaO-Al2O3-2SiO2 (BAS) glass ceramic matrix is reinforced with CVD silicon carbide continuous fibers. A slurry of BAS glass powders is prepared and celsian seeds are added during ball melting. The slurry is cast into tapes which are cut to the proper size. Continuous CVD-SiC fibers are formed into mats of the desired size. The matrix tapes and the fiber mats are alternately stacked in the proper orientation. This tape-mat stack is warm pressed to produce a 'green' composite. The 'green' composite is then heated to an elevated temperature to burn out organic constituents. The remaining interim material is then hot pressed to form a silicon carbide fiber-reinforced celsian (BAS) glass-ceramic matrix composite which may be machined to size.

  4. Effects of Porosity on Ultrasonic Characteristic Parameters and Mechanical Properties of Glass Fiber Reinforced Composites

    NASA Astrophysics Data System (ADS)

    Ma, Wen; Liu, Fushun

    Voids are inevitable in the fabrication of fiber reinforced composites and have a detrimental impact on mechanical properties of composites. Different void contents were acquired by applying different vacuum bag pressures. Ultrasonic inspection and ablation density method were adopted to measure the ultrasonic characteristic parameters and average porosity, the characterization of voids' distribution, shape and size were carried out through metallographic analysis. Effects of void content on the tensile, flexural and interlaminar shear properties and the ultrasonic characteristic parameters were discussed. The results showed that, as vacuum bag pressure went from -50kPa to -98kPa, the voids content decreased from 4.36 to 0.34, the ultrasonic attenuation coefficient decreased, but the mechanical strengths all increased.

  5. Multiwavelength generation in a random distributed feedback fiber laser using an all fiber Lyot filter.

    PubMed

    Sugavanam, S; Yan, Z; Kamynin, V; Kurkov, A S; Zhang, L; Churkin, D V

    2014-02-10

    Multiwavelength lasing in the random distributed feedback fiber laser is demonstrated by employing an all fiber Lyot filter. Stable multiwavelength generation is obtained, with each line exhibiting sub-nanometer line-widths. A flat power distribution over multiple lines is obtained, which indicates that the power between lines is redistributed in nonlinear mixing processes. The multiwavelength generation is observed both in first and second Stokes waves.

  6. Physicochemical and functional properties of coconut (Cocos nucifera L) cake dietary fibres: Effects of cellulase hydrolysis, acid treatment and particle size distribution.

    PubMed

    Zheng, Yajun; Li, Yan

    2018-08-15

    Effects of cellulase hydrolysis, acid treatment and particle size distribution on the structure, physicochemical and functional properties of coconut cake dietary fiber (DCCDF) were studied. Results showed that both the cellulase hydrolysis and acid treatment contributed to the structural modification of DCCDF as evident from XRD, FT-IR and SEM analysis. Moreover, the cellulase hydrolysis enhanced soluble carbohydrate content, water holding capacity (WHC) and swelling capacity (WSC), α-amylase inhibition activity (α-AAIR), glucose dialysis retardation index (GDRI) and cation-exchange capacity (CEC) of DCCDF; but it had undesirable effects on colour, oil holding capacity (OHC) and emulsifying capacity (EC). On other hand, acid treatment decreased the WHC, WSC and GDRI, but improved the colour, CEC, OHC and emulsion stability of DCCDF. Furthermore, the WHC, WSC and EC of DCCDF increased as the particle size reduced from 250 to 167 μm, while the GDRI, OHC, α-AAIR and emulsion stability decreased with decreasing particle size. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Distribution of CGRP and TRPV2 in Human Paranasal Sinuses.

    PubMed

    Sato, Tadasu; Sasahara, Nobuyuki; Kanda, Noriyuki; Sasaki, Yu; Yamaguma, Yu; Kokubun, Souichi; Yajima, Takehiro; Ichikawa, Hiroyuki

    2017-01-01

    Immunohistochemistry for protein gene product 9.5 (PGP 9.5), calcitonin gene-related peptide (CGRP) and the transient receptor potential cation channel subfamily V member 2 (TRPV2) was performed on human paranasal sinuses. It was found that in the paranasal sinuses, mucous membranes contain PGP 9.5-immunoreactive (PGP 9.5-IR) nerve fibers. Such nerve fibers terminated around large blood vessels as fine varicosities. Isolated PGP 9.5-IR nerve fibers were scattered beneath the epithelium. Glandular tissues were also innervated by PGP 9.5-IR nerve fibers. These fibers were numerous in the maxillary and ethmoid sinuses, and relatively rare in the frontal and sphenoid sinuses. CGRP-IR nerve fibers were common in the maxillary sinus whereas TRPV2-IR nerve fibers were abundant in the ethmoid sinus. They were located around large blood vessels in the lamina propria. Many subepithelial nerve fibers contained TRPV2 immunoreactivity in the ethmoid sinus. CGRP- and TRPV2-IR nerve fibers were very infrequent in the frontal and sphenoid sinuses. In the human trigeminal ganglion (TG), sensory neurons contained CGRP or TRPV2 immunoreactivity. CGRP-IR TG neurons were more common than TRPV2-IR TG neurons. CGRP-IR TG neurons were of various cell body sizes, whereas TRPV2-IR TG neurons were mostly medium-to-large. In addition, human spinal and principal trigeminal sensory nuclei contained abundant CGRP- and TRPV2-IR varicosities. This study indicates that CGRP- and TRPV2-containing TG neurons probably innervate the paranasal sinus mucosae, and project into spinal and principal trigeminal sensory nuclei. © 2016 S. Karger AG, Basel.

  8. Micromechanical Modeling of the Thermal Expansion of Graphite/copper Composites with Nonuniform Microstructure

    NASA Technical Reports Server (NTRS)

    Bednarcyk, Brett A.; Pindera, Marek-Jerzy

    1994-01-01

    Two micromechanical models were developed to investigate the thermal expansion of graphite/copper (Gr/Cu) composites. The models incorporate the effects of temperature-dependent material properties, matrix inelasticity, initial residual stresses due to processing history, and nonuniform fiber distribution. The first model is based on the multiple concentric cylinder geometry, with each cylinder treated as a two-phase composite with a characteristic fiber volume fractions. By altering the fiber volume fraction of the individual cylinders, unidirectional composites with radially nonuniform fiber distributions can be investigated using this model. The second model is based on the inelastic lamination theory. By varying the fiber content in the individual laminae, composites with nonuniform fiber distribution in the thickness direction can be investigated. In both models, the properties of the individual regions (cylinders or laminae) are calculated using the method of cells micromechanical model. Classical incremental plasticity theory is used to model the inelastic response of the copper matrix at the microlevel. The models were used to characterize the effects of nonuniform fiber distribution on the thermal expansion of Gr/Cu. These effects were compared to the effects of matrix plasticity, choice of stress-free temperature, and slight fiber misalignment. It was found that the radially nonuniform fiber distribution has little effect on the thermal expansion of Gr/Cu but could become significant for composites with large fiber-matrix transverse CTE and Young's modulus mismatch. The effect of nonuniform fiber distribution in the through-thickness direction of a laminate was more significant, but only approached that of the stress-free temperature for the most extreme cases that include large amounts of bending. Subsequent comparison with experimental thermal expansion data indicated the need for more accurate characterization of the graphite fiber thermomechanical properties. Correlation with cyclic data revealed the presence of a mechanism not considered in the developed models. The predicted response did, however, exhibit ratcheting behavior that has been observed experimentally in Gr/Cu. Finally, simulation of the actual fiber distribution of particular specimens had little effect on the predicted thermal expansion.

  9. Random distributed feedback fiber laser at 2.1  μm.

    PubMed

    Jin, Xiaoxi; Lou, Zhaokai; Zhang, Hanwei; Xu, Jiangming; Zhou, Pu; Liu, Zejin

    2016-11-01

    We demonstrate a random distributed feedback fiber laser at 2.1 μm. A high-power pulsed Tm-doped fiber laser operating at 1.94 μm with a temporal duty ratio of 30% was employed as a pump laser to increase the equivalent incident pump power. A piece of 150 m highly GeO2-doped silica fiber that provides a strong Raman gain and random distributed feedbacks was used to act as the gain medium. The maximum output power reached 0.5 W with the optical efficiency of 9%, which could be further improved by more pump power and optimized fiber length. To the best of our knowledge, this is the first demonstration of random distributed feedback fiber laser at 2 μm band based on Raman gain.

  10. Accumulation of severely atrophic myofibers marks the acceleration of sarcopenia in slow and fast twitch muscles.

    PubMed

    Rowan, Sharon L; Purves-Smith, Fennigje M; Solbak, Nathan M; Hepple, Russell T

    2011-08-01

    The age-related decline in muscle mass, known as sarcopenia, exhibits a marked acceleration in advanced age. Although many studies have remarked upon the accumulation of very small myofibers, particularly at advanced stages of sarcopenia, the significance of this phenomenon in the acceleration of sarcopenia has never been examined. Furthermore, although mitochondrial dysfunction characterized by a lack of cytochrome oxidase (COX) activity has been implicated in myofiber atrophy in sarcopenia, the contribution of this phenotype to the accumulation of severely atrophied fibers in aged muscles has never been determined. To this end, we examined the fiber size distribution in the slow twitch soleus (Sol) and fast twitch gastrocnemius (Gas) muscles between young adulthood (YA) and senescence (SEN). We also quantified the abundance of COX deficient myocytes and their size attributes to gain insight into the contribution of this phenotype to myofiber atrophy with aging. Our data showed that the progression of muscle atrophy, particularly its striking acceleration between late middle age and SEN, was paralleled by an accumulation of severely atrophic myofibers (≤ 1000 μm(2) in size) in both Sol and Gas. On the other hand, we observed no COX deficient myofibers in Sol, despite nearly 20% of the myofibers being severely atrophic. Similarly, only 0.17 ± 0.06% of all fibers in Gas were COX deficient, and their size was generally larger (2375 ± 319 μm(2)) than the severely atrophied myofibers noted above. Collectively, our results suggest that similar processes likely contribute to the acceleration of sarcopenia in both slow twitch and fast twitch muscles, and that COX deficiency is not a major contributor to this phenomenon. Copyright © 2011 Elsevier Inc. All rights reserved.

  11. Bilayered nanofibrous 3D hierarchy as skin rudiment by emulsion electrospinning for burn wound management.

    PubMed

    Pal, Pallabi; Dadhich, Prabhash; Srivas, Pavan Kumar; Das, Bodhisatwa; Maulik, Dhrubajyoti; Dhara, Santanu

    2017-08-22

    Mimicking skin extracellular matrix hierarchy, the present work aims to develop a bilayer skin graft comprising a porous cotton-wool-like 3D layer with membranous structure of PCL-chitosan nanofibers. Emulsion electrospinning with differential stirring periods of PCL-chitosan emulsion results in development of a bilayer 3D structure with varied morphology. The electrospun membrane has fiber diameter ∼274 nm and pore size ∼1.16 μm while fluffy 3D layer has fiber diameter ∼1.62 μm and pore size ∼62 μm. The 3D layer was further coated with collagen I isolated from Cirrhinus cirrhosus fish scales to improve biofunctionality. Surface coating with collagen I resulted in bundling the fibers together, thereby increasing their average diameter to 2.80 μm and decreasing pore size to ∼45 μm. The architecture and composition of the scaffold promotes efficient cellular activity where interconnected porosity with ECM resembling collagen I coating assists cellular adhesion, infiltration, and proliferation from initial days of fibroblast seeding, while keratinocytes migrate on the surface only without infiltrating in the membranous nanofiber layer. Anatomy of the scaffold arising due to variation in pore size distribution at different layers thereby facilitates compartmentalization and prevents initial cellular transmigration. The scaffold also assists in extracellular matrix protein synthesis and keratinocyte stratification in vitro. Further, the scaffold effectively integrates and attaches with third-degree burn wound margins created in rat models and accelerates healing in comparison to standard Tegaderm dressing™. The bilayer scaffold is thus a promising, readily available, cost-effective, off-the-shelf matrix as a skin substitute.

  12. Production and cross-sectional characterization of aligned co-electrospun hollow microfibrous bulk assemblies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Feng-Lei; The School of Materials, The University of Manchester, Manchester M13 9PL; CRUK-EPSRC Cancer Imaging Centre in Cambridge and Manchester

    2015-11-15

    The development of co-electrospun (co-ES) hollow microfibrous assemblies of an appreciable thickness is critical for many practical applications, including filtration membranes and tissue-mimicking scaffolds. In this study, thick uniaxially aligned hollow microfibrous assemblies forming fiber bundles and strips were prepared by co-ES of polycaprolactone (PCL) and polyethylene oxide (PEO) as shell and core materials, respectively. Hollow microfiber bundles were deposited on a fixed rotating disc, which resulted in non-controllable cross-sectional shapes on a macroscopic scale. In comparison, fiber strips were produced with tuneable thickness and width by additionally employing an x–y translation stage in co-ES. Scanning electron microscopy (SEM) imagesmore » of cross-sections of fiber assemblies were analyzed to investigate the effects of production time (from 0.5 h to 12 h), core flow rate (from 0.8 mL/h to 2.0 mL/h) and/or translation speed (from 0.2 mm/s to 5 mm/s) on the pores and porosity. We observed significant changes in pore size and shape with core flow rate but the influence of production time varied; five strips produced under the same conditions had reasonably good size and porosity reproducibility; pore sizes didn't vary significantly from strip bottom to surface, although the porosity gradually decreased and then returned to the initial level. - Highlights: • Hollow microfibrous assemblies based on co-electrospinning are demonstrated. • The thickness and width of co-electrospun strips were controllable. • Cross-sections of fibres had non-normally distributed pore sizes and shapes. • Cross-sections were significantly influenced by production time and flow rate. • Co-electrospun strips had reasonably good reproducible cross-sections.« less

  13. Modeling of Fibrin Gels Based on Confocal Microscopy and Light-Scattering Data

    PubMed Central

    Magatti, Davide; Molteni, Matteo; Cardinali, Barbara; Rocco, Mattia; Ferri, Fabio

    2013-01-01

    Fibrin gels are biological networks that play a fundamental role in blood coagulation and other patho/physiological processes, such as thrombosis and cancer. Electron and confocal microscopies show a collection of fibers that are relatively monodisperse in diameter, not uniformly distributed, and connected at nodal points with a branching order of ∼3–4. Although in the confocal images the hydrated fibers appear to be quite straight (mass fractal dimension Dm = 1), for the overall system 1

  14. Temperature measurement and damage detection in concrete beams exposed to fire using PPP-BOTDA based fiber optic sensors

    NASA Astrophysics Data System (ADS)

    Bao, Yi; Hoehler, Matthew S.; Smith, Christopher M.; Bundy, Matthew; Chen, Genda

    2017-10-01

    In this study, Brillouin scattering-based distributed fiber optic sensor is implemented to measure temperature distributions and detect cracks in concrete structures subjected to fire for the first time. A telecommunication-grade optical fiber is characterized as a high temperature sensor with pulse pre-pump Brillouin optical time domain analysis (PPP-BODTA), and implemented to measure spatially-distributed temperatures in reinforced concrete beams in fire. Four beams were tested to failure in a natural gas fueled compartment fire, each instrumented with one fused silica, single-mode optical fiber as a distributed sensor and four thermocouples. Prior to concrete cracking, the distributed temperature was validated at locations of the thermocouples by a relative difference of less than 9%. The cracks in concrete can be identified as sharp peaks in the temperature distribution since the cracks are locally filled with hot air. Concrete cracking did not affect the sensitivity of the distributed sensor but concrete spalling broke the optical fiber loop required for PPP-BOTDA measurements.

  15. Thermo-oxidative stability studies of PMR-15 polymer matrix composites reinforced with various fibers

    NASA Technical Reports Server (NTRS)

    Bowles, Kenneth J.

    1990-01-01

    An experimental study was conducted to measure the thermo-oxidative stability of PMR-15 polymer matrix composites reinforced with various fibers and to observe differences in the way they degrade in air. The fibers that were studied included graphite and the thermally stable Nicalon and Nextel ceramic fibers. Weight loss rates for the different composites were assessed as a function of mechanical properties, specimen geometry, fiber sizing, and interfacial bond strength. Differences were observed in rates of weight loss, matrix cracking, geometry dependency, and fiber-sizing effects. It was shown that Celion 6000 fiber-reinforced composites do not exhibit a straight-line Arrhenius relationship at temperatures above 316 C.

  16. Penny-shaped crack in a fiber-reinforced matrix. [elastostatics

    NASA Technical Reports Server (NTRS)

    Narayanan, T. V.; Erdogan, F.

    1974-01-01

    Using a slender inclusion model developed earlier, the elastostatic interaction problem between a penny-shaped crack and elastic fibers in an elastic matrix is formulated. For a single set and for multiple sets of fibers oriented perpendicularly to the plane of the crack and distributed symmetrically on concentric circles, the problem was reduced to a system of singular integral equations. Techniques for the regularization and for the numerical solution of the system are outlined. For various fiber geometries numerical examples are given, and distribution of the stress intensity factor along the crack border was obtained. Sample results showing the distribution of the fiber stress and a measure of the fiber-matrix interface shear are also included.

  17. Penny-shaped crack in a fiber-reinforced matrix

    NASA Technical Reports Server (NTRS)

    Narayanan, T. V.; Erdogan, F.

    1975-01-01

    Using the slender inclusion model developed earlier the elastostatic interaction problem between a penny-shaped crack and elastic fibers in an elastic matrix is formulated. For a single set and for multiple sets of fibers oriented perpendicularly to the plane of the crack and distributed symmetrically on concentric circles the problem is reduced to a system of singular integral equations. Techniques for the regularization and for the numerical solution of the system are outlined. For various fiber geometries numerical examples are given and distribution of the stress intensity factor along the crack border is obtained. Sample results showing the distribution of the fiber stress and a measure of the fiber-matrix interface shear are also included.

  18. Distributed Fiber-Optic Sensors for Vibration Detection

    PubMed Central

    Liu, Xin; Jin, Baoquan; Bai, Qing; Wang, Yu; Wang, Dong; Wang, Yuncai

    2016-01-01

    Distributed fiber-optic vibration sensors receive extensive investigation and play a significant role in the sensor panorama. Optical parameters such as light intensity, phase, polarization state, or light frequency will change when external vibration is applied on the sensing fiber. In this paper, various technologies of distributed fiber-optic vibration sensing are reviewed, from interferometric sensing technology, such as Sagnac, Mach–Zehnder, and Michelson, to backscattering-based sensing technology, such as phase-sensitive optical time domain reflectometer, polarization-optical time domain reflectometer, optical frequency domain reflectometer, as well as some combinations of interferometric and backscattering-based techniques. Their operation principles are presented and recent research efforts are also included. Finally, the applications of distributed fiber-optic vibration sensors are summarized, which mainly include structural health monitoring and perimeter security, etc. Overall, distributed fiber-optic vibration sensors possess the advantages of large-scale monitoring, good concealment, excellent flexibility, and immunity to electromagnetic interference, and thus show considerable potential for a variety of practical applications. PMID:27472334

  19. Distributed Fiber-Optic Sensors for Vibration Detection.

    PubMed

    Liu, Xin; Jin, Baoquan; Bai, Qing; Wang, Yu; Wang, Dong; Wang, Yuncai

    2016-07-26

    Distributed fiber-optic vibration sensors receive extensive investigation and play a significant role in the sensor panorama. Optical parameters such as light intensity, phase, polarization state, or light frequency will change when external vibration is applied on the sensing fiber. In this paper, various technologies of distributed fiber-optic vibration sensing are reviewed, from interferometric sensing technology, such as Sagnac, Mach-Zehnder, and Michelson, to backscattering-based sensing technology, such as phase-sensitive optical time domain reflectometer, polarization-optical time domain reflectometer, optical frequency domain reflectometer, as well as some combinations of interferometric and backscattering-based techniques. Their operation principles are presented and recent research efforts are also included. Finally, the applications of distributed fiber-optic vibration sensors are summarized, which mainly include structural health monitoring and perimeter security, etc. Overall, distributed fiber-optic vibration sensors possess the advantages of large-scale monitoring, good concealment, excellent flexibility, and immunity to electromagnetic interference, and thus show considerable potential for a variety of practical applications.

  20. Evaluation of Fiber Bragg Grating and Distributed Optical Fiber Temperature Sensors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCary, Kelly Marie

    Fiber optic temperature sensors were evaluated in the High Temperature Test Lab (HTTL) to determine the accuracy of the measurements at various temperatures. A distributed temperature sensor was evaluated up to 550C and a fiber Bragg grating sensor was evaluated up to 750C. HTTL measurements indicate that there is a drift in fiber Bragg sensor over time of approximately -10C with higher accuracy at temperatures above 300C. The distributed sensor produced some bad data points at and above 500C but produced measurements with less than 2% error at increasing temperatures up to 400C

  1. Review of animal/in vitro data on biological effects of man-made fibers.

    PubMed

    Ellouk, S A; Jaurand, M C

    1994-06-01

    This paper reviews the investigations with man-made fibers (MMF). Insulation woods: glasswool (GW), rockwool (RW), slagwool (SW), glass microfibers (GMF), glass filaments (GFiI), and refractory ceramic fibers (RCF) have been used in experimental animals and in in vitro cell systems. A large heterogeneous number of fibers, methods of fiber preparation, size selection, aerosolization, fiber size, and fiber burden measurement were noted, rendering difficult a comparison between results. By inhalation, RCF and asbestos used as positive controls produced a significant tumor increase. In some studies, a low tumor yield was found after inhalation of insulation wools; when all inhalation data were gathered, a significant tumor increase was found with GW. However, it is difficult to draw definitive conclusions on the potential of other fiber types because, in addition to the different compositions of the fibers, differences in fiber number and sizes existed, especially in comparison with asbestos. Moreover, experiments using inoculation, especially by the intraperitoneal route revealed a carcinogenic potential of all fibers types but GFiI and SW. In these two groups a small number of animals has been investigated and the fiber characteristics were sometimes irrelevant. So far, a relationship between the carcinogenic potency and fiber dimensions has been established. Other fiber parameters may be of importance (surface chemistry, biopersistence, fiber structure, for example) but further investigations are necessary to determine the correlations between these parameters and tumor incidence. In vitro experiments have emphasized the fiber characteristics identified in vivo as playing a role in the carcinogenic potency and should be developed as a better approach of the mechanistic effects of MMF.

  2. Polymer matrix and graphite fiber interface study

    NASA Technical Reports Server (NTRS)

    Adams, D. F.; Zimmerman, R. S.; Odom, E. M.

    1985-01-01

    Hercules AS4 graphite fiber, unsized, or with EPON 828, PVA, or polysulfone sizing, was combined with three different polymer matrices. These included Hercules 3501-6 epoxy, Hercules 4001 bismaleimide, and Hexcel F155 rubber toughened epoxy. Unidirectional composites in all twelve combinations were fabricated and tested in transverse tension and axial compression. Quasi-isotropic laminates were tested in axial tension and compression, flexure, interlaminar shear, and tensile impact. All tests were conducted at both room temperature, dry and elevated temperature, and wet conditions. Single fiber pullout testing was also performed. Extensive scanning electron microphotographs of fracture surfaces are included, along with photographs of single fiber pullout failures. Analytical/experimental correlations are presented, based on the results of a finite element micromechanics analysis. Correlations between matrix type, fiber sizing, hygrothermal environment, and loading mode are presented. Results indicate that the various composite properties were only moderately influenced by the fiber sizings utilized.

  3. Abrasive Particle Trajectories and Material Removal Non-Uniformity during CMP and Filtration Characteristics of CMP Slurries - A Simulation and Experimental Study

    NASA Astrophysics Data System (ADS)

    Rastegar, Vahid

    Nanoscale finishing and planarization are integral process steps in multilevel metallization designs for integrated circuit (IC) manufacturing since it is necessary to ensure local and global surface planarization at each metal layer before depositing the next layer. Chemical mechanical planarization (CMP) has been widely recognized as the most promising technology to eliminate topographic variation and has allowed the construction of multilevel interconnection structures with a more regularly stacked sequence, resulting in better device performance [1]. Understanding fundamental of the CMP mechanisms can offer guidance to the control and optimization of the polishing processes. CMP kinematics based on slurry distribution and particle trajectories have a significant impact on MRR profiles. In this work a mathematical model to describe particle trajectories during chemical mechanical polishing was developed and extended to account for the effect of larger particles, particle location changes due to slurry dispensing and in-situ conditioning. Material removal rate (MRR) and within wafer non-uniformity (WIWNU) were determined based on the calculated particle trajectory densities. Rotary dynamics and reciprocating motion were optimized to obtain best MRR uniformity. Edge-fast MRR profile was discussed based on mechanical aspect of CMP. Using the model, we also investigated the effect of variable rotational speeds of wafer and pad, and of large particles on WIWNU and scratch growth. It was shown that the presence of even a small portion of large particles can deteriorate the WIWNU significantly and also lead to more scratches. Furthermore, it was shown that the in-situ conditioning improves the uniformity of the polished wafers. Furthermore, a combined experimental and computational study of fibrous filters for removal of larger abrasive particles from aqueous dispersions, essential to minimize defects during chemical mechanical polishing, was performed. Dilute aqueous suspensions of colloidal ceria particles, of known size distribution, were filtered at different flow rates and the filter efficiencies were measured for different particle sizes and pH, then converted to single fiber efficiencies. The particle size distributions were also measured for the influent and effluent streams. In a series of numerical simulations, the Navier-Stokes equation was solved for a single fiber using the ANSYS-FLUENT computational fluid dynamics commercial package. For dilute suspensions, the motion of the dispersed particles in the size range of 35-600 nm and zeta potential range of -50 to 50 mV was tracked in the Lagrangian reference frame including the effects of hydrodynamic drag, lift, gravity, hydrodynamic retardation, Brownian, van der Waals and electric double layer forces. The electric double layer and van der Waals forces were incorporated in the calculations by developing a user defined function. Particular attention was given to the effects of Brownian excitations, as well as the electric double layer and van der Waals forces that have been neglected in many of the previous models on the overall fiber collection efficiency for different particle sizes and charges. Moreover, the effect of flow velocity on the fiber capture efficiency and residence time was investigated. The effect of velocity on minimum collection efficiency and most penetrating particle size was investigated. It was also shown that the CFD results are in a good agreement with the experimental results.

  4. Measurement of strain distribution in bonded joints by fiber Bragg gratings

    NASA Astrophysics Data System (ADS)

    Guemes, J. Alfredo; Diaz-Carrillo, Sebastian; Menendez, Jose M.

    1998-07-01

    Due to the small dimensions of the adhesive layer, the high non-uniformity of the strain field and the non linear elastic behavior of the adhesive material, the strain distribution at an adhesive joint can be predicted by FEM, but can not be experimentally obtained with classical approaches; only non standard procedures like Moire interferometry, or special artifacts like KGR extensometers may afford some insights on the behavior of the adhesive. Due to their small size, ensuring low perturbation of the strain field, and their innate ability to measure strain and strain gradient along the sensor, fiber Bragg gratings offer a good opportunity to solve this problem, and it is a good example of situations that may benefit from these new sensors. Fiber Bragg gratings may be placed or at the interface, within the adhesive layer, or embedded at the adherents, if these were made of composite material. Tests may be run at different temperatures, changing the adhesive characteristics from brittle to pseudoplastic without additional difficulties. When loading the joint, the strain field is obtained by analyzing the distorted spectrum of the reflected light pulse; the algorithm for doing it has already been published. A comparison with theoretical results is done, and the validity and utility of these sensors for this and similar applications is demonstrated.

  5. Effects of sustanon on the distribution of satellite cells and the morphology of skeletal muscle fibers during maturation.

    PubMed

    Allouh, Mohammed Z; Aldirawi, Mohammed H

    2012-03-01

    Sustanon is one of the most commonly used anabolic androgenic drugs to increase skeletal muscle mass and strength. This drug is a blend of four esterized testosterone derivatives: Testosterone propionate, testosterone phenylpropionate, testosterone isocaproate and testosterone decanoate. Little is known about the effects of this drug on skeletal muscle at the cellular level. This study aimed to investigate the influence of Sustanon on the morphology of skeletal muscle fibers and the distribution of myogenic stem cells known as Satellite Cells (SCs) during postnatal growth. We hypothesized that Sustanon-induced skeletal muscle hypertrophy is associated with an increase in the number of SCs. Robust immunocytochemical techniques and morphometric analyses were used to calculate the numbers of SCs and myonuclei within the pectoralis muscle of chickens. Also, DNA concentration and Pax7 protein levels were measured to confirm immunocytochemical findings. Sustanon significantly increased pectoralis mass and fiber size. All SC indices and the number of myonuclei increased significantly by Sustanon administration. In addition, greater DNA concentration and Pax7 protein expression were found in Sustanon-treated birds. This study indicates that Sustanon can induce avian skeletal muscle hypertrophy and that this is correlated with increased numbers of SCs and myonuclei.

  6. Properties of bio-based medium density fiberboard

    Treesearch

    Sangyeob Lee; Todd F. Shupe; Chung Y. Hse

    2006-01-01

    In order to utilize agricultural waste fibers as an alternative resource for composites, a number of variables were investigated to determine whether the mechanical and physical properties of agro-based fiberboard could be improved. Fibers were classified into four different mesh sizes and used to evaluated the effect of fiber size on the mechanical and physical...

  7. A Model for Fiber Length Attrition in Injection-Molded Long-Fiber Composites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    TuckerIII, Charles L.; Phelps, Jay H; El-Rahman, Ahmed Abd

    2013-01-01

    Long-fiber thermoplastic (LFT) composites consist of an engineering thermoplastic matrix with glass or carbon reinforcing fibers that are initially 10 to 13 mm long. When an LFT is injection molded, flow during mold filling orients the fibers and degrades the fiber length. Fiber orientation models for injection molding are well developed, and special orientation models for LFTs have been developed. Here we present a detailed quantitative model for fiber length attrition in a flowing fiber suspension. The model tracks a discrete fiber length distribution (FLD) at each spatial node. Key equations are a conservation equation for total fiber length, andmore » a breakage rate equation. The breakage rate is based on buckling of fibers due to hydrodynamic forces, when the fibers are in unfavorable orientations. The FLD model is combined with a mold filling simulation to predict spatial and temporal variations in fiber length distribution in a mold cavity during filling. The predictions compare well to experiments on a glassfiber/ PP LFT molding. Fiber length distributions predicted by the model are easily incorporated into micromechanics models to predict the stress-strain behavior of molded LFT materials. Author to whom correspondence should be addressed; electronic mail: ctucker@illinois.edu 1« less

  8. Development of an Opto-Acoustic Recanalization System Final Report CRADA No. 1314-96

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Silva, L. D.; Adam, H. R.

    The objective of the project was to develop an ischemic stroke treatient system that restores blood flow to the brain by removing occlusions using acoustic energy created by fiber optic delivery of laser light, a process called Opto Acoustic Recanalization (OAR). The key tasks of the project were to select a laser system, quantify temperature, pressure and particle size distribution, and develop a prototype device incorporating a feedback mechanism. System parameters were developed to cause emulsification while attempting to minimize particle size and collateral damage. The prototype system was tested in animal models and resulted in no visible collateral damage.

  9. Determination of Nerve Fiber Diameter Distribution From Compound Action Potential: A Continuous Approach.

    PubMed

    Un, M Kerem; Kaghazchi, Hamed

    2018-01-01

    When a signal is initiated in the nerve, it is transmitted along each nerve fiber via an action potential (called single fiber action potential (SFAP)) which travels with a velocity that is related with the diameter of the fiber. The additive superposition of SFAPs constitutes the compound action potential (CAP) of the nerve. The fiber diameter distribution (FDD) in the nerve can be computed from the CAP data by solving an inverse problem. This is usually achieved by dividing the fibers into a finite number of diameter groups and solve a corresponding linear system to optimize FDD. However, number of fibers in a nerve can be measured sometimes in thousands and it is possible to assume a continuous distribution for the fiber diameters which leads to a gradient optimization problem. In this paper, we have evaluated this continuous approach to the solution of the inverse problem. We have utilized an analytical function for SFAP and an assumed a polynomial form for FDD. The inverse problem involves the optimization of polynomial coefficients to obtain the best estimate for the FDD. We have observed that an eighth order polynomial for FDD can capture both unimodal and bimodal fiber distributions present in vivo, even in case of noisy CAP data. The assumed FDD distribution regularizes the ill-conditioned inverse problem and produces good results.

  10. Optical fibers for the distribution of frequency and timing references

    NASA Technical Reports Server (NTRS)

    Lutes, G. F.

    1981-01-01

    An optical fiber communications link was installed for the purpose of evaluating the applicability of optical fiber technology to the distribution of frequency and timing reference signals. It incorporated a 1.5km length of optical fiber cable containing two multimode optical fibers. The two fibers were welded together at one end of the cable to attain a path length of 3km. Preliminary measurements made on this link, including Allan variance and power spectral density of phase noise are reported.

  11. Infrared wavelength dependence of leaky mode losses and steady state distribution in W-type glass optical fibers

    NASA Astrophysics Data System (ADS)

    Djordjevich, Alexandar; Simović, Ana; Savović, Svetislav; Drljača, Branko

    2018-07-01

    Infrared wavelength dependence of leaky mode losses and steady state distribution (SSD) in W-type glass optical fibers (doubly clad fibers with three layers) is investigated in this paper for parametrically varied depths and widths of the fiber's intermediate optical layer. This enables a tailoring of configuration of the W-type fiber to suit an application at hand. We have shown that the proposed W-type fiber has better transmission characteristics at longer infrared wavelengths.

  12. Experimental and computational analysis of sound absorption behavior in needled nonwovens

    NASA Astrophysics Data System (ADS)

    Soltani, Parham; Azimian, Mehdi; Wiegmann, Andreas; Zarrebini, Mohammad

    2018-07-01

    In this paper application of X-ray micro-computed tomography (μCT) together with fluid simulation techniques to predict sound absorption characteristics of needled nonwovens is discussed. Melt-spun polypropylene fibers of different fineness were made on an industrial scale compact melt spinning line. A conventional batt forming-needling line was used to prepare the needled samples. The normal incidence sound absorption coefficients were measured using impedance tube method. Realistic 3D images of samples at micron-level spatial resolution were obtained using μCT. Morphology of fabrics was characterized in terms of porosity, fiber diameter distribution, fiber curliness and pore size distribution from high-resolution realistic 3D images using GeoDict software. In order to calculate permeability and flow resistivity of media, fluid flow was simulated by numerically solving incompressible laminar Newtonian flow through the 3D pore space of realistic structures. Based on the flow resistivity, the frequency-dependent acoustic absorption coefficient of the needled nonwovens was predicted using the empirical model of Delany and Bazley (1970) and its associated modified models. The results were compared and validated with the corresponding experimental results. Based on morphological analysis, it was concluded that for a given weight per unit area, finer fibers yield to presence of higher number of fibers in the samples. This results in formation of smaller and more tortuous pores, which in turn leads to increase in flow resistivity of media. It was established that, among the empirical models, Mechel modification to Delany and Bazley model had superior predictive ability when compared to that of the original Delany and Bazley model at frequency range of 100-5000 Hz and is well suited to polypropylene needled nonwovens.

  13. Gap junctions contain different amounts of cholesterol which undergo unique sequestering processes during fiber cell differentiation in the embryonic chicken lens.

    PubMed

    Biswas, Sondip K; Lo, Woo-Kuen

    2007-03-09

    To determine the possible changes in the distribution of cholesterol in gap junction plaques during fiber cell differentiation and maturation in the embryonic chicken lens. The possible mechanism by which cholesterol is removed from gap junction plaques is also investigated. Filipin cytochemistry in conjunction with freeze-fracture TEM was used to visualize cholesterol, as represented by filipin-cholesterol complexes (FCCs) in gap junction plaques. Quantitative analysis on the heterogeneous distribution of cholesterol in gap junction plaques was conducted from outer and inner cortical regions. A novel technique combining filipin cytochemistry with freeze-fracture replica immunogold labeling (FRIL) was used to label Cx45.6 and Cx56 antibodies in cholesterol-containing gap junctions. Filipin cytochemistry and freeze-fracture TEM and thin-section TEM were used to examine the appearance and nature of the cholesterol-containing vesicular structures associated with gap junction plaques. Chicken lens fibers contain cholesterol-rich, cholesterol-intermediate and cholesterol-free gap junction populations in both outer and inner cortical regions. Filipin cytochemistry and FRIL studies confirmed that cholesterol-containing junctions were gap junctions. Quantitative analysis showed that approximately 86% of gap junctions in the outer cortical zone were cholesterol-rich gap junctions, whereas approximately 81% of gap junctions in the inner cortical zone were cholesterol-free gap junctions. A number of pleiomorphic cholesterol-rich vesicles of varying sizes were often observed in the gap junction plaques. They appear to be involved in the removal of cholesterol from gap junction plaques through endocytosis. Gap junctions in the young fibers are enriched with cholesterol because they are assembled in the unique cholesterol-rich cell membranes in the lens. A majority of cholesterol-rich gap junctions in the outer young fibers are transformed into cholesterol-free ones in the inner mature fibers during fiber cell maturation. A distinct endocytotic process appears to be involved in removing cholesterol from the cholesterol-containing gap junctions, and it may play a major role in the transformation of cholesterol-rich gap junctions into cholesterol-free ones during fiber cell maturation.

  14. Effect of oil palm empty fruit bunches fibers reinforced polymer recycled

    NASA Astrophysics Data System (ADS)

    Hermawan, B.; Nikmatin, S.; Sudaryanto; Alatas, H.; Sukaryo, S. G.

    2017-07-01

    The aim of this research is to process the OPEFB to become fiber with various sizes which will be used as a filler of polymer matrix recycled acrylonitrile butadiene styrene (ABS). Molecular analysis and mechanical test have been done to understand the influence of fiber size toward material capability to receive outer deformation. Single screw extruder formed a biocomposites granular continued with injection moulding to shaped test pieces. Maleic anhydride was added as coupling agent between filler and matrix. Filler concentration were 10 and 20% in fiber size respectively with constant additif. Two kind of fiber glass (10%) were used as comparator. In order to analyze the results of the mechanical test Fisher least significant difference (LSD) in ANOVA method was performed (-with α=0,05-).

  15. The effect of viscoelasticity on the stress distribution of adhesively single-lap joint with an internal break in the composite adherends

    NASA Astrophysics Data System (ADS)

    Reza, Arash; Shishesaz, Mohammad

    2017-09-01

    The aim of this research is to study the effect of a break in the laminated composite adherends on stress distribution in the adhesively single-lap joint with viscoelastic adhesive and matrix. The proposed model involves two adherends with E-glass fibers and poly-methyl-methacrylate matrix that have been adhered to each other by phenolic-epoxy resin. The equilibrium equations that are based on shear-lag theory have been derived in the Laplace domain, and the governing differential equations of the model have been derived analytically in the Laplace domain. A numerical inverse Laplace transform, which is called Gaver-Stehfest method, has been used to extract desired results in the time domain. The results obtained at the initial time completely matched with the results of elastic solution. Also, a comparison between results obtained from the analytical and finite element models show a relatively good match. The results show that viscoelastic behavior decreases the peak of stress near the break. Finally, the effect of size and location of the break, as well as volume fraction of fibers, on the stress distribution in the adhesive layer is fully investigated.

  16. Fiber Bragg grating based temperature profiling in ferromagnetic nanoparticles-enhanced radiofrequency ablation

    NASA Astrophysics Data System (ADS)

    Jelbuldina, Madina; Korobeinyk, Alina V.; Korganbayev, Sanzhar; Inglezakis, Vassilis J.; Tosi, Daniele

    2018-07-01

    In this work, we report the real-time temperature profiling performed with a fiber Bragg grating (FBG) sensing system, applied to a ferromagnetic nanoparticles (NP)-enhanced radiofrequency ablation (RFA) for interventional cancer care. A minimally invasive RFA setup has been prepared and applied ex vivo on a liver phantom; NPs (with concentrations of 5 and 10 mg/mL) have been synthesized and injected within the tissue prior to ablation, in order to facilitate the heat distribution to the peripheral sides of the treated tissue. A network of 15 FBG sensors has been deployed in situ in order to detect the parenchymal temperature distribution and estimate the thermal profiles in real time during the ablation, highlighting the impact of the NPs on the RFA mechanism. The results confirm that NP-enhanced ablation with 5 mg/mL density shows a better heat penetration that a standard RFA achieving an almost double-sized lesion, while a higher density (10 mg/mL) does not improve the heat distribution. Thermal data are reported highlighting both spatial and temporal gradients, evaluating the capability of NPs to deliver sufficient heating to the peripheral sides of the tumor borders.

  17. Differences in interfacial bond strengths of graphite fiber-epoxy resin composites

    NASA Technical Reports Server (NTRS)

    Needles, H. L.

    1985-01-01

    The effect of epoxy-size and degree of cure on the interfacial bonding of an epoxy-amine-graphite fiber composite system is examined. The role of the fiber-resin interface in determining the overall mechanical properties of composites is poorly understood. A good interfacial adhesive bond is required to achieve maximum stress transfer to the fibers in composites, but at the same time some form of energy absorbing interfacial interaction is needed to achieve high fracture toughening. The incompatibility of these two processes makes it important to understand the nature and basic factors involved at the fiber-resin interface as stress is applied. The mechanical properties including interlaminar shear values for graphite fiber-resin composites are low compared to glass and boron-resin composites. These differences have been attributed to poor fiber-matrix adhesion. Graphite fibers are commonly subjected to post-treatments including application of organic sizing in order to improve their compatibility with the resin matrix and to protect the fiber tow from damage during processing and lay-up. In such processes, sized graphite fiber tow is impregnated with epoxy resin and then layed-up i nto the appropriate configuration. Following an extended ambient temperature cure, the graphite-resin composite structure is cured at elevated temperature using a programmed temperature sequence to cure and then cool the product.

  18. Surface free energy analysis of oil palm empty fruit bunches fiber reinforced biocomposites

    NASA Astrophysics Data System (ADS)

    Suryadi, G. S.; Nikmatin, S.; Sudaryanto; Irmansyah; Sukaryo, S. G.

    2017-05-01

    Study of the size effect of natural fiber from oil palm empty fruit bunches (OPEFB) as filler, onto the contact angle and surface free energy of fiber reinforced biocomposites has been done. The OPEFB fibers were prepared by mechanical milling and sieving to obtain various sizes of fiber (long-fiber, medium-fiber, short-fiber, and microparticle). The biocomposites has been produced by extrusion using single-screw extruder with EFB fiber as filler, recycled Acrylonitrile Butadiene Styrene (ABS) polymer as matrix, and primary antioxidant, acid scavanger, and coupling agent as additives. The obtained biocomposites in form of granular, were made into test piece by injection molding method. Contact angles of water, methanol, and hexane on the surface of biocomposites at room temperature were measured using Phoenix 300 Contact Angle Analyzer. The surface free energy (SFE) and their components were calculated using three previous known methods (Girifalco-Good-Fowkes-Young (GGFY), Owens-Wendt, and van Oss-Chaudhury-Good (vOCG)). The results showed that total SFE of Recycled ABS as control was about 24.38 mJ/m2, and SFE of biocomposites was lower than control, decreased with decreasing of EFB fiber size as biocomposites filler. The statistical analysis proved that there are no statistically significant differences in the value of the SFE calculated with the three different methods.

  19. Thermomechanical Characterization of SiC Fiber Tows and Implications for CMC

    NASA Technical Reports Server (NTRS)

    Yun, H. M.; DiCarlo, J. A.

    1999-01-01

    In order to better understand SiC fiber behavior within CMC microstructures, mechanical tests were performed on multifilament tows consisting of different types of as produced and pretreated fibers. Tensile strengths of tows and single fibers were measured at room temperature for nonstoichiometric Hi-Nicalon and ZMI fibers and for stoichiometric Hi-Nicalon-S, Tyranno SA. and Sylramic fibers. Based on simple bundle theory, measured strengths for as-produced and sized tows were in general agreement with the single fiber results. However, after sizing removal under inert conditions, tow strengths for the coarser grained stoichiometric fibers were typically lower than those predicted from individual fiber data. This effect is attributed to enhanced fiber-fiber mechanical interaction caused by sizing removal from the rough surfaces of these fibers. In support of this, tow strengths remained high for those fiber types with fine grains or excess surface carbon; and, when re-coated with a BN interphase coating, tow strengths for the coarser grained fibers returned to their as-produced values. When the tows were pretreated in air at intermediate temperatures, tow strengths decreased in a manner that could be correlated with the oxidation characteristics of each fiber type as measured by thermogravimetric analysis. The creep and rupture properties of Hi-Nicalon and Sylramic tows were also measured in air and argon from 1200 to 1400 C. Although displaying transient and environmental effects similar to single fibers, the tows crept faster at short times and slower at long times. This resulted in the tow rupture strengths at long time being much greater than the rupture strengths of single fibers. The CMC implications of the tow results are discussed, as well as the benefits and limitations of tow testing.

  20. The Influence of Sizings on the Durability of High-Temperature Polymer Composites

    NASA Technical Reports Server (NTRS)

    Allred, Ronald E.; Wesson, Sheldon P.; Shin, E. Eugene; Inghram, Linda; McCorkle, Linda; Papadopoulos, Demetrios; Wheeler, Donald; Sutter, James K.

    2004-01-01

    To increase performance and durability of high-temperature composites for potential rocket engine components, it is necessary to optimize wetting and interfacial bonding between high modulus carbon fibers and high-temperature polyimide resins. Sizings commercially supplied on most carbon fibers are not compatible with polyimides. In this study, the chemistry of sizings on two high-modulus carbon fibers (M40J and M60J, Toray) was characterized as was the chemistry of PMR-II-50 fluorinated polyimide resin. The carbon fibers were characterized using single filament wetting, scanning electron microscopy, fourier transform infrared spectroscopy, and x-ray photoelectron spectroscopic measurements. The polyimide matrix resins were coated onto glass filaments for characterization by wetting measurements. Surface energy components were obtained by wetting with nondispersive (methylene iodide), acidic (ethylene glycol), and basic (formamide) probes. A continuous desizing system that uses an environmentally friendly chemical-mechanical process was developed for tow level fiber. Composites were fabricated with fibers containing the manufacturer's sizing, desized, and further treated with a reactive finish. Results of room-temperature tests after thermal aging show that the reactive finish produces a higher strength and more durable interface compared to the manufacturer's sizing. When exposed to moisture blistering tests, however, the better bonded composite displayed a tendency to delaminate, presumably due to trapping of volatiles.

  1. Bottom-up approach for microstructure optimization of sound absorbing materials.

    PubMed

    Perrot, Camille; Chevillotte, Fabien; Panneton, Raymond

    2008-08-01

    Results from a numerical study examining micro-/macrorelations linking local geometry parameters to sound absorption properties are presented. For a hexagonal structure of solid fibers, the porosity phi, the thermal characteristic length Lambda('), the static viscous permeability k(0), the tortuosity alpha(infinity), the viscous characteristic length Lambda, and the sound absorption coefficient are computed. Numerical solutions of the steady Stokes and electrical equations are employed to provide k(0), alpha(infinity), and Lambda. Hybrid estimates based on direct numerical evaluation of phi, Lambda('), k(0), alpha(infinity), Lambda, and the analytical model derived by Johnson, Allard, and Champoux are used to relate varying (i) throat size, (ii) pore size, and (iii) fibers' cross-section shapes to the sound absorption spectrum. The result of this paper tends to demonstrate the important effect of throat size in the sound absorption level, cell size in the sound absorption frequency selectivity, and fibers' cross-section shape in the porous material weight reduction. In a hexagonal porous structure with solid fibers, the sound absorption level will tend to be maximized with a 48+/-10 microm throat size corresponding to an intermediate resistivity, a 13+/-8 microm fiber radius associated with relatively small interfiber distances, and convex triangular cross-section shape fibers allowing weight reduction.

  2. Approaches of using the beard testing method to obtain complete length distributions of the original samples

    USDA-ARS?s Scientific Manuscript database

    The fiber testing instruments such as HVI can rapidly measure fiber length by testing a tapered fiber beard of the sample. But these instruments that use the beard testing method only report a limited number of fiber length parameters instead of the complete length distribution that is important fo...

  3. Gut microbiota can transfer fiber characteristics and lipid metabolic profiles of skeletal muscle from pigs to germ-free mice.

    PubMed

    Yan, Honglin; Diao, Hui; Xiao, Yi; Li, Wenxia; Yu, Bing; He, Jun; Yu, Jie; Zheng, Ping; Mao, Xiangbing; Luo, Yuheng; Zeng, Benhua; Wei, Hong; Chen, Daiwen

    2016-08-22

    Obesity causes changes in microbiota composition, and an altered gut microbiota can transfer obesity-associated phenotypes from donors to recipients. Obese Rongchang pigs (RP) exhibited distinct fiber characteristics and lipid metabolic profiles in their muscle compared with lean Yorkshire pigs (YP). However, whether RP have a different gut microbiota than YP and whether there is a relationship between the microbiota and muscle properties are poorly understood. The present study was conducted to test whether the muscle properties can be transferred from pigs to germ-free (GF) mice. High-throughput pyrosequencing confirms the presence of distinct core microbiota between pig breeds, with alterations in taxonomic distribution and modulations in β diversity. RP displayed a significant higher Firmicutes/Bacteroidetes ratio and apparent genera differences compared with YP. Transplanting the porcine microbiota into GF mice replicated the phenotypes of the donors. RP and their GF mouse recipients exhibited a higher body fat mass, a higher slow-contracting fiber proportion, a decreased fiber size and fast IIb fiber percentage, and enhanced lipogenesis in the gastrocnemius muscle. Furthermore, the gut microbiota composition of colonized mice shared high similarity with their donor pigs. Taken together, the gut microbiota of obese pigs intrinsically influences skeletal muscle development and the lipid metabolic profiles.

  4. Transmural variation in elastin fiber orientation distribution in the arterial wall.

    PubMed

    Yu, Xunjie; Wang, Yunjie; Zhang, Yanhang

    2018-01-01

    The complex three-dimensional elastin network is a major load-bearing extracellular matrix (ECM) component of an artery. Despite the reported anisotropic behavior of arterial elastin network, it is usually treated as an isotropic material in constitutive models. Our recent multiphoton microscopy study reported a relatively uniform elastin fiber orientation distribution in porcine thoracic aorta when imaging from the intima side (Chow et al., 2014). However it is questionable whether the fiber orientation distribution obtained from a small depth is representative of the elastin network structure in the arterial wall, especially when developing structure-based constitutive models. To date, the structural basis for the anisotropic mechanical behavior of elastin is still not fully understood. In this study, we examined the transmural variation in elastin fiber orientation distribution in porcine thoracic aorta and its association with elastin anisotropy. Using multi-photon microscopy, we observed that the elastin fibers orientation changes from a relatively uniform distribution in regions close to the luminal surface to a more circumferential distribution in regions that dominate the media, then to a longitudinal distribution in regions close to the outer media. Planar biaxial tensile test was performed to characterize the anisotropic behavior of elastin network. A new structure-based constitutive model of elastin network was developed to incorporate the transmural variation in fiber orientation distribution. The new model well captures the anisotropic mechanical behavior of elastin network under both equi- and nonequi-biaxial loading and showed improvements in both fitting and predicting capabilities when compared to a model that only considers the fiber orientation distribution from the intima side. We submit that the transmural variation in fiber orientation distribution is important in characterizing the anisotropic mechanical behavior of elastin network and should be considered in constitutive modeling of an artery. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Study of Optical Fiber Sensors for Cryogenic Temperature Measurements.

    PubMed

    De Miguel-Soto, Veronica; Leandro, Daniel; Lopez-Aldaba, Aitor; Beato-López, Juan Jesus; Pérez-Landazábal, José Ignacio; Auguste, Jean-Louis; Jamier, Raphael; Roy, Philippe; Lopez-Amo, Manuel

    2017-11-30

    In this work, the performance of five different fiber optic sensors at cryogenic temperatures has been analyzed. A photonic crystal fiber Fabry-Pérot interferometer, two Sagnac interferometers, a commercial fiber Bragg grating (FBG), and a π-phase shifted fiber Bragg grating interrogated in a random distributed feedback fiber laser have been studied. Their sensitivities and resolutions as sensors for cryogenic temperatures have been compared regarding their advantages and disadvantages. Additionally, the results have been compared with the given by a commercial optical backscatter reflectometer that allowed for distributed temperature measurements of a single mode fiber.

  6. Study of Optical Fiber Sensors for Cryogenic Temperature Measurements

    PubMed Central

    Leandro, Daniel; Lopez-Aldaba, Aitor; Beato-López, Juan Jesus; Pérez-Landazábal, José Ignacio; Auguste, Jean-Louis; Jamier, Raphael; Roy, Philippe; Lopez-Amo, Manuel

    2017-01-01

    In this work, the performance of five different fiber optic sensors at cryogenic temperatures has been analyzed. A photonic crystal fiber Fabry-Pérot interferometer, two Sagnac interferometers, a commercial fiber Bragg grating (FBG), and a π-phase shifted fiber Bragg grating interrogated in a random distributed feedback fiber laser have been studied. Their sensitivities and resolutions as sensors for cryogenic temperatures have been compared regarding their advantages and disadvantages. Additionally, the results have been compared with the given by a commercial optical backscatter reflectometer that allowed for distributed temperature measurements of a single mode fiber. PMID:29189755

  7. Single-mode fiber systems for deep space communication network

    NASA Technical Reports Server (NTRS)

    Lutes, G.

    1982-01-01

    The present investigation is concerned with the development of single-mode optical fiber distribution systems. It is pointed out that single-mode fibers represent potentially a superior medium for the distribution of frequency and timing reference signals and wideband (400 MHz) IF signals. In this connection, single-mode fibers have the potential to improve the capability and precision of NASA's Deep Space Network (DSN). Attention is given to problems related to precise time synchronization throughout the DSN, questions regarding the selection of a transmission medium, and the function of the distribution systems, taking into account specific improvements possible by an employment of single-mode fibers.

  8. Distributed dual-parameter optical fiber sensor based on cascaded microfiber Fabry-Pérot interferometers

    NASA Astrophysics Data System (ADS)

    Xiang, Yang; Luo, Yiyang; Zhang, Wei; Liu, Deming; Sun, Qizhen

    2017-04-01

    We propose and demonstrate a distributed fiber sensor based on cascaded microfiber Fabry-Perot interferometers (MFPI) for simultaneous refractive index (SRI) and temperature measurement. By employing MFPI which is fabricated by taper-drawing the center of a uniform fiber Bragg grating (FBG) on standard fiber into a section of microfiber, dual parameters including SRI and temperature can be detected through demodulating the reflection spectrum of the MFPI. Further, wavelength-division-multiplexing (WDM) is applied to realize distributed dual-parameter fiber sensor by using cascaded MFPIs with different Bragg wavelengths. A prototype sensor system with 5 cascaded MFPIs is constructed to experimentally demonstrate the sensing performance.

  9. Grating-assisted polarization optical time-domain reflectometry for distributed fiber-optic sensing.

    PubMed

    Han, Ming; Wang, Yunjing; Wang, Anbo

    2007-07-15

    We report a novel type of polarization optical time-domain reflectometry (POTDR) for fully distributed fiber-optic sensing, in which the reflected optical signal is from a series of fiber Bragg gratings that are uniformly distributed along the fiber. Compared with a conventional POTDR that uses the Rayleigh backscattering, this grating-assisted POTDR can have a much better signal-to-noise ratio and consequently a better measurement resolution and a larger measurement range of the fiber birefringence. Experimental results have shown that the measurement resolution of the grating-assisted POTDR is almost an order of magnitude better than that of a conventional POTDR.

  10. Preparation of carbon fiber unsaturated sizing agent for enhancing interfacial strength of carbon fiber/vinyl ester resin composite

    NASA Astrophysics Data System (ADS)

    Jiao, Weiwei; Cai, Yemeng; Liu, Wenbo; Yang, Fan; Jiang, Long; Jiao, Weicheng; Wang, Rongguo

    2018-05-01

    The practical application of carbon fiber (CF) reinforced vinyl ester resin (VE) composite was hampered seriously by the poor interfacial adhesion property. In this work, a novel unsaturated sizing agent was designed and prepared to improve the interfacial strength by covalently bonding CF with VE matrix. The main component of the sizing agent, N-(4‧4-diaminodiphenyl methane)-2-hydroxypropyl methacrylate (DMHM), was synthesized and confirmed by FTIR and NMR. XPS results of sized carbon fiber (SCF) showed that DMHM has adhered to desized fiber surface and reacted with some active functional groups on the surface. The SCF was characterized by high surface roughness and surface energy (especially the polar component), which means better wettability by VE. As a result, the interface shear strength and interlaminar shear strength of SCF/VE composite were enhanced by 96.56% and 66.07% respectively compared with CF/VE composite, benefited mainly from the strong and tough interphase.

  11. Coherent optical monolithic phased-array antenna steering system

    DOEpatents

    Hietala, Vincent M.; Kravitz, Stanley H.; Vawter, Gregory A.

    1994-01-01

    An optical-based RF beam steering system for phased-array antennas comprising a photonic integrated circuit (PIC). The system is based on optical heterodyning employed to produce microwave phase shifting by a monolithic PIC constructed entirely of passive components. Microwave power and control signal distribution to the antenna is accomplished by optical fiber, permitting physical separation of the PIC and its control functions from the antenna. The system reduces size, weight, complexity, and cost of phased-array antenna systems.

  12. Photoacoustic imaging of early gastric cancer diagnosis based on long focal area ultrasound transducer

    NASA Astrophysics Data System (ADS)

    Wu, Huaqin; Li, Zuoran; Liu, Lantian; Li, Zhifang; Wu, Shulian; Li, Hui

    2017-06-01

    We illustrated a novel imaging method to diagnose gastric neoplasms via photoacoustic tomography (PAT). Depending on the structural characteristics of gastric cavity, we used column diffusion fiber to irradiate the stomach tissue through the esophagus, and the externally placed telecentric focus ultrasonic transducer detected photoacoustic signals from the gastric tissue. We reconstructed the distribution of light energy deposition of the simulated gastric tumor, and obtained the location and size information of gastric tumor.

  13. Single muscle fiber adaptations with marathon training.

    PubMed

    Trappe, Scott; Harber, Matthew; Creer, Andrew; Gallagher, Philip; Slivka, Dustin; Minchev, Kiril; Whitsett, David

    2006-09-01

    The purpose of this investigation was to characterize the effects of marathon training on single muscle fiber contractile function in a group of recreational runners. Muscle biopsies were obtained from the gastrocnemius muscle of seven individuals (22 +/- 1 yr, 177 +/- 3 cm, and 68 +/- 2 kg) before, after 13 wk of run training, and after 3 wk of taper. Slow-twitch myosin heavy chain [(MHC) I] and fast-twitch (MHC IIa) muscle fibers were analyzed for size, strength (P(o)), speed (V(o)), and power. The run training program led to the successful completion of a marathon (range 3 h 56 min to 5 h 35 min). Oxygen uptake during submaximal running and citrate synthase activity were improved (P < 0.05) with the training program. Muscle fiber size declined (P < 0.05) by approximately 20% in both fiber types after training. P(o) was maintained in both fiber types with training and increased (P < 0.05) by 18% in the MHC IIa fibers after taper. This resulted in >60% increase (P < 0.05) in force per cross-sectional area in both fiber types. Fiber V(o) increased (P < 0.05) by 28% in MHC I fibers with training and was unchanged in MHC IIa fibers. Peak power increased (P < 0.05) in MHC I and IIa fibers after training with a further increase (P < 0.05) in MHC IIa fiber power after taper. These data show that marathon training decreased slow-twitch and fast-twitch muscle fiber size but that it maintained or improved the functional profile of these fibers. A taper period before the marathon further improved the functional profile of the muscle, which was targeted to the fast-twitch muscle fibers.

  14. Review of animal/in vitro data on biological effects of man-made fibers.

    PubMed Central

    Ellouk, S A; Jaurand, M C

    1994-01-01

    This paper reviews the investigations with man-made fibers (MMF). Insulation woods: glasswool (GW), rockwool (RW), slagwool (SW), glass microfibers (GMF), glass filaments (GFiI), and refractory ceramic fibers (RCF) have been used in experimental animals and in in vitro cell systems. A large heterogeneous number of fibers, methods of fiber preparation, size selection, aerosolization, fiber size, and fiber burden measurement were noted, rendering difficult a comparison between results. By inhalation, RCF and asbestos used as positive controls produced a significant tumor increase. In some studies, a low tumor yield was found after inhalation of insulation wools; when all inhalation data were gathered, a significant tumor increase was found with GW. However, it is difficult to draw definitive conclusions on the potential of other fiber types because, in addition to the different compositions of the fibers, differences in fiber number and sizes existed, especially in comparison with asbestos. Moreover, experiments using inoculation, especially by the intraperitoneal route revealed a carcinogenic potential of all fibers types but GFiI and SW. In these two groups a small number of animals has been investigated and the fiber characteristics were sometimes irrelevant. So far, a relationship between the carcinogenic potency and fiber dimensions has been established. Other fiber parameters may be of importance (surface chemistry, biopersistence, fiber structure, for example) but further investigations are necessary to determine the correlations between these parameters and tumor incidence. In vitro experiments have emphasized the fiber characteristics identified in vivo as playing a role in the carcinogenic potency and should be developed as a better approach of the mechanistic effects of MMF. PMID:7925187

  15. Modified carbon fibers to improve composite properties. [sizing fibers for reduced electrical conductivity and adhesion during combustion

    NASA Technical Reports Server (NTRS)

    Shepler, R. E.

    1979-01-01

    Thin coatings, 5 to 10 wt. percent, were applied to PAN-based carbon fibers. These coatings were intended to make the carbon fibers less electrically conductive or to cause fibers to stick together when a carbon fiber/epoxy composite burned. The effectiveness of the coatings in these regards was evaluated in burn tests with a test rig designed to simulate burning, impact and wind conditions which might release carbon fibers. The effect of the coatings on fiber and composite properties and handling was also investigated. Attempts at sizing carbon fibers with silicon dioxide, silicon carbide and boron nitride meet with varying degrees of success; however, none of these materials provided an electrically nonconductive coating. Coatings intended to stick carbon fibers together after a composite burned were sodium silicate, silica gel, ethyl silicate, boric acid and ammonium borate. Of these, only the sodium silicate and silica gel provided any sticking together of fibers. The amount of sticking was insufficient to achieve the desired objectives.

  16. Effect of Manufacturing Method to Tensile Properties of Hybrid Composite Reinforced by Natural (Agel Leaf Fiber) and Glass Fibers

    NASA Astrophysics Data System (ADS)

    Nugroho, A.; Abdurohman, K.; Kusmono; Hestiawan, H.; Jamasri

    2018-04-01

    This paper described the effect of different type of manufacturing method to tensile properties of hybrid composite woven agel leaf fiber and glass fiber as an alternative of LSU structure material. The research was done by using 3 ply of woven agel leaf fiber (ALF) and 3 ply of glass fiber (wr200) while the matrix was using unsaturated polyester. Composite manufacturing method used hand lay-up and vacuum bagging. Tensile test conducted with Tensilon universal testing machine, specimen shape and size according to standard size ASTM D 638. Based on tensile test result showed that the tensile strength of agel leaf fiber composite with unsaturated polyester matrix is 54.5 MPa by hand lay-up and 84.6 MPa with vacuum bagging method. From result of tensile test, hybrid fiber agel composite and glass fiber with unsaturated polyester matrix have potential as LSU structure.

  17. Processing and Mechanical Properties of Macro Polyamide Fiber Reinforced Concrete

    PubMed Central

    Jeon, Joong Kyu; Kim, WooSeok; Jeon, Chan Ki; Kim, Jin Cheol

    2014-01-01

    This study developed a macro-sized polyamide (PA) fiber for concrete reinforcement and investigated the influence of the PA fiber on flexural responses in accordance with ASTM standards. PA fibers are advantageous compared to steel fibers that are corrosive and gravitated. The macro-sized PA fiber significantly improved concrete ductility and toughness. Unlike steel fibers, the PA fibers produced two peak bending strengths. The first-peaks occurred near 0.005 mm of deflection and decreased up to 0.5 mm of deflection. Then the bending strength increased up to second-peaks until the deflections reached between 1.0 and 1.5 mm. The averaged flexural responses revealed that PA fiber content did not significantly influence flexural responses before L/600, but had significant influence thereafter. Toughness performance levels were also determined, and the results indicated more than Level II at L/600 and Level IV at others. PMID:28788265

  18. Processing and Mechanical Properties of Macro Polyamide Fiber Reinforced Concrete.

    PubMed

    Jeon, Joong Kyu; Kim, WooSeok; Jeon, Chan Ki; Kim, Jin Cheol

    2014-11-26

    This study developed a macro-sized polyamide (PA) fiber for concrete reinforcement and investigated the influence of the PA fiber on flexural responses in accordance with ASTM standards. PA fibers are advantageous compared to steel fibers that are corrosive and gravitated. The macro-sized PA fiber significantly improved concrete ductility and toughness. Unlike steel fibers, the PA fibers produced two peak bending strengths. The first-peaks occurred near 0.005 mm of deflection and decreased up to 0.5 mm of deflection. Then the bending strength increased up to second-peaks until the deflections reached between 1.0 and 1.5 mm. The averaged flexural responses revealed that PA fiber content did not significantly influence flexural responses before L /600, but had significant influence thereafter. Toughness performance levels were also determined, and the results indicated more than Level II at L /600 and Level IV at others.

  19. Sensitivity optimization of ZnO clad-modified optical fiber humidity sensor by means of tuning the optical fiber waist diameter

    NASA Astrophysics Data System (ADS)

    Azad, Saeed; Sadeghi, Ebrahim; Parvizi, Roghaieh; Mazaheri, Azardokht; Yousefi, M.

    2017-05-01

    In this work, the multimode optical fiber size effects on the performances of the clad-modified fiber with ZnO nanorods relative humidity (RH) sensor were experimentally investigated. Simple and controlled chemical etching method through on line monitoring was used to prepare different fiber waist diameter with long length of 15 mm. More precisely, the competition behavior of sensor performances with varying fiber waist diameter was studied to find appropriate size of maximizing evanescent fields. The obtained results revealed that evanescent wave absorption coefficient (γ) enhanced more than 10 times compare to bare fiber at the proposed optimum fiber diameter of 28 μm. Also, high linearity and fast recovery time about 7 s was obtained at the proposed fiber waist diameter. Applicable features of the proposed sensor allow this device to be used for humidity sensing applications, especially to be applied in remote sensing technologies.

  20. Influence of botulinum toxin on rabbit jaw muscle activity and anatomy.

    PubMed

    Korfage, J A M; Wang, Jeffrey; Lie, S H J T J; Langenbach, Geerling E J

    2012-05-01

    Muscles can adapt their fiber properties to accommodate to new conditions. We investigated the extent to which a decrease in muscle activation can cause an adaptation of fiber properties in synergistic and antagonistic jaw muscles. Three months after the injection of botulinum toxin type A in one masseter (anterior or posterior) muscle changes in fiber type composition and fiber cross-sectional areas in jaw muscles were studied at the microscopic level. The injected masseter showed a steep increase in myosin type IIX fibers, whereas fast fibers decreased by about 50% in size. Depending on the injection site, both synergistic and antagonistic muscles showed a significant increase in the size of their fast IIA fibers, sometimes combined with an increased number of IIX fibers. Silencing the activity in the masseter not only causes changes in the fibers of the injected muscle but also leads to changes in other jaw muscles. Copyright © 2012 Wiley Periodicals, Inc.

  1. Characteristic properties of laser ablation of translucent targets

    NASA Astrophysics Data System (ADS)

    Platonov, V. V.; Kochurin, E. A.; Osipov, V. V.; Lisenkov, V. V.; Zubarev, N. M.

    2018-07-01

    This study reveals the characteristic features of the laser ablation of the solid Nd:Y2O3 targets, such as the dynamics of the laser plume, the crater depth, and the weight and size distribution of liquid melt droplets. The ablation was initiated by the ytterbium fiber laser radiation pulses with constant energy (0.67 J) and with different power densities. The dependence on the power density of such parameters as the injection time of drops, mass distribution of drops, crater depth, and productivity of synthesis of nonopowder was revealed. To explain the formation of deep craters a model was proposed, stating that the formation of liquid droplets is a consequence of the Kelvin–Helmholtz instability’s appearing and developing on the border between the liquid melt on the crater’s wall and the vapor flow from the crater. The increment of this instability and its characteristic size was determined.

  2. Rheumatoid myositis, myth or reality? A clinical, imaging and histological study.

    PubMed

    Ancuţa, Codrina; Pomîrleanu, Daniela Cristina; Anton, Carmen Rodica; Moraru, Eovelina; Anton, Emil; Chirieac, Rodica Marieta; Ancuţa, Eugen

    2014-01-01

    Rheumatoid myositis (RM) is still poorly characterized, albeit the concept of muscle involvement in rheumatoid arthritis (RA) is well-recognized as being driven by a wide range of causes including inflammation, drugs, impaired joint flexibility, sedentarism. To describe clinical, serological, imaging and histological pattern of RM. This is a retrospective study on eight RM selected from a cohort of one hundred and three RA systematically assessed for skeletal muscle involvement. Data collected included clinical, serum muscle enzymes, muscle imaging and biopsy (Hematoxylin-Eosin, modified Gömöri trichrome staining). Routine muscle histology indicated both non-specific muscle fiber damage (changes in fiber size and internal structure: pleomorphic mitochondria, dilated sarcotubular system, multiple internal or subsarcommal nuclei; abnormal fiber types distribution: trend towards type II; atrophy; degenerative/regenerative modifications) and the presence of inflammatory deposits in all patients (mild to moderate, patchy B- and T-cells infiltrates, mainly perivascular and endomysial, but also in the perimysial region classified as polymyositis-like deposits). High levels of serum muscle enzymes, abnormal EMG (short duration, small amplitude, polyphasic motor unit action potentials) without insertional activity and fibrillations, active inflammation on both Doppler ultrasound and MRI were commonly reported. Traditional analysis of muscle biopsy specimens (Hematoxylin-Eosin, modified Gömöri trichrome staining) is faraway unsatisfactory, only documenting changes in muscle fibers size, architecture, internal structure, and, possibly, detecting perivascular, perimysial or endomysial inflammatory deposits. Upcoming research should address the value of muscle imaging for the diagnosis and evaluation of treatment response and muscle function in rheumatoid myositis.

  3. Gas exchange efficiency of an oxygenator with integrated pulsatile displacement blood pump for neonatal patients.

    PubMed

    Schlanstein, Peter C; Borchardt, Ralf; Mager, Ilona; Schmitz-Rode, Thomas; Steinseifer, Ulrich; Arens, Jutta

    2014-01-01

    Oxygenators have been used in neonatal extracorporeal membrane oxygenation (ECMO) since the 1970s. The need to develop a more effective oxygenator for this patient cohort exists due to their size and blood volume limitations. This study sought to validate the next design iteration of a novel oxygenator for neonatal ECMO with an integrated pulsatile displacement pump, thereby superseding an additional blood pump. Pulsating blood flow within the oxygenator is generated by synchronized active air flow expansion and contraction of integrated silicone pump tubes and hose pinching valves located at the oxygenator inlet and outlet. The current redesign improved upon previous prototypes by optimizing silicone pump tube distribution within the oxygenator fiber bundle; introduction of an oval shaped inner fiber bundle core, and housing; and a higher fiber packing density, all of which in combination reduced the priming volume by about 50% (50 to 27 mL and 41 to 20 mL, respectively). Gas exchange efficiency was tested for two new oxygenators manufactured with different fiber materials: one with coating and one with smaller pore size, both capable of long-term use (OXYPLUS® and CELGARD®). Results demonstrated that the oxygen transfer for both oxygenators was 5.3-24.7 mlO2/min for blood flow ranges of 100-500 mlblood/min. Carbon dioxide transfer for both oxygenators was 3.7-26.3 mlCO2/min for the same blood flow range. These preliminary results validated the oxygenator redesign by demonstrating an increase in packing density and thus in gas transfer, an increase in pumping capacity and a reduction in priming volume.

  4. An evaluation of the reliability of muscle fiber cross-sectional area and fiber number measurements in rat skeletal muscle

    USDA-ARS?s Scientific Manuscript database

    Background: The reliability of estimating muscle fiber cross-sectional area (measure of muscle fiber size) and fiber number from only a subset of fibers in rat hindlimb muscle cross-sections has not been systematically evaluated. This study examined the variability in mean estimates of fiber cross-s...

  5. A Fully Nonmetallic Gas Turbine Engine Enabled by Additive Manufacturing of Ceramic Composites. Part III; Additive Manufacturing and Characterization of Ceramic Composites

    NASA Technical Reports Server (NTRS)

    Halbig, Michael C.; Grady, Joseph E.; Singh, Mrityunjay; Ramsey, Jack; Patterson, Clark; Santelle, Tom

    2015-01-01

    This publication is the third part of a three part report of the project entitled "A Fully Nonmetallic Gas Turbine Engine Enabled by Additive Manufacturing" funded by NASA Aeronautics Research Institute (NARI). The objective of this project was to conduct additive manufacturing to produce ceramic matrix composite materials and aircraft engine components by the binder jet process. Different SiC powders with median sizes ranging from 9.3 to 53.0 microns were investigated solely and in powder blends in order to maximize powder packing. Various infiltration approaches were investigated to include polycarbosilane (SMP-10), phenolic, and liquid silicon. Single infiltrations of SMP-10 and phenolic only slightly filled in the interior. When the SMP-10 was loaded with sub-micron sized SiC powders, the infiltrant gave a much better result of filling in the interior. Silicon carbide fibers were added to the powder bed to make ceramic matrix composite materials. Microscopy showed that the fibers were well distributed with no preferred orientation on the horizontal plane and fibers in the vertical plane were at angles as much as 45deg. Secondary infiltration steps were necessary to further densify the material. Two to three extra infiltration steps of SMP-10 increased the density by 0.20 to 0.55 g/cc. However, the highest densities achieved were 2.10 to 2.15 g/cc. Mechanical tests consisting of 4 point bend tests were conducted. Samples from the two CMC panels had higher strengths and strains to failure than the samples from the two nonfiber reinforced panels. The highest strengths were from Set N with 65 vol% fiber loading which had an average strength of 66 MPa. Analysis of the fracture surfaces did not reveal pullout of the reinforcing fibers. Blunt fiber failure suggested that there was not composite behavior. The binder jet additive manufacturing method was used to also demonstrate the fabrication of turbine engine vane components of two different designs and sizes. The binder jet method has benefits over the conventional manufacturing of CMCs in that prototype and production parts can be fabricated quickly and economically with no tooling and extensive hand layup.

  6. Non-destructive investigation of thermoplastic reinforced composites

    DOE PAGES

    Hassen, Ahmed; Taheri, Hossein; Vaidya, Uday

    2016-05-09

    This paper studies various manufacturing defects in glass fiber/Polypropylene (PP) composite parts and their methods of detection. Foreign Object Inclusion (FOI) of different shapes, sizes, and materials were placed in a glass fiber/PP panel made by compression molding. The paper aims to characterize the fiber orientation and fiber related defects such as fiber waviness in the composite specimen. Comprehensive investigation for different Non Destructive Evaluation (NDE) techniques, namely X-ray radiography and Ultrasonic Testing (UT) techniques to trace and characterize the embedded defects and the composite texture are presented. Conventional X-ray radiography successfully identified the fiber orientation in two dimension (2-D)more » plane; however, information for the sample depth was not captured. The radiography techniques showed low relative errors for the defect size measurements (maximum error was below 9.5%) when compared to the ultrasonic techniques. Ultrasonic techniques were able to map all the embedded artificial defects. Phase Array (PA) ultrasonic technique was able to precisely locate the FOI in the glass fiber/PP specimen. Nerveless, the shape and size of the defects were not accurately determined due to the high signal attenuation and distortion characteristics of the E-glass fiber.« less

  7. Multiple-Ring Digital Communication Network

    NASA Technical Reports Server (NTRS)

    Kirkham, Harold

    1992-01-01

    Optical-fiber digital communication network to support data-acquisition and control functions of electric-power-distribution networks. Optical-fiber links of communication network follow power-distribution routes. Since fiber crosses open power switches, communication network includes multiple interconnected loops with occasional spurs. At each intersection node is needed. Nodes of communication network include power-distribution substations and power-controlling units. In addition to serving data acquisition and control functions, each node acts as repeater, passing on messages to next node(s). Multiple-ring communication network operates on new AbNET protocol and features fiber-optic communication.

  8. Effects of wood fiber characteristics on mechanical properties of wood/polypropylene composites

    Treesearch

    Nicole M. Stark; Robert E. Rowlands

    2003-01-01

    Commercial wood flour, the most common wood-derived filler for thermoplastics, is produced in a mixture of particle sizes and generally has a lower aspect ratio than wood and other natural fibers. To understand how wood flour and fiber characteristics influence the mechanical properties of polypropylene composites, we first investigated the effect of different sizes of...

  9. The light transmission and distribution in an optical fiber coated with TiO2 particles.

    PubMed

    Wang, Wen; Ku, Young

    2003-03-01

    The light delivery and distribution phenomena along the optical fiber coated with the P-25 TiO(2) particles by dipping was investigated. The surface properties (coverage, roughness and thickness) of the TiO(2) layer coated on the optical fiber were characterized by SEM micrographs. For TiO(2) layer prepared from solutions containing less than 20 wt.% of TiO(2) slurry, the thickness of layer was increased linearly with the TiO(2) slurry content in solutions. The UV light intensity transmitted along a TiO(2)-coated optical fiber decreased more rapidly than that transmitted along a non-coated fiber. Based on the experimental results, the light intensity distribution around a coated optical fiber was modeled to determine the optimum configuration for the design of optical fiber reactors under various operational conditions. Copyright 2002 Elsevier Science Ltd.

  10. Laser absorption of carbon fiber reinforced polymer with randomly distributed carbon fibers

    NASA Astrophysics Data System (ADS)

    Hu, Jun; Xu, Hebing; Li, Chao

    2018-03-01

    Laser processing of carbon fiber reinforced polymer (CFRP) is a non-traditional machining method which has many prospective applications. The laser absorption characteristics of CFRP are analyzed in this paper. A ray tracing model describing the interaction of the laser spot with CFRP is established. The material model contains randomly distributed carbon fibers which are generated using an improved carbon fiber placement method. It was found that CFRP has good laser absorption due to multiple reflections of the light rays in the material’s microstructure. The randomly distributed carbon fibers make the absorptivity of the light rays change randomly in the laser spot. Meanwhile, the average absorptivity fluctuation is obvious during movement of the laser. The experimental measurements agree well with the values predicted by the ray tracing model.

  11. The impact of newly produced protein and dietary fiber rich fractions of yellow pea (Pisum sativum L.) on the structure and mechanical properties of pasta-like sheets.

    PubMed

    Muneer, Faraz; Johansson, Eva; Hedenqvist, Mikael S; Plivelic, Tomás S; Markedal, Keld Ejdrup; Petersen, Iben Lykke; Sørensen, Jens Christian; Kuktaite, Ramune

    2018-04-01

    Two fractions from pea (Pisum sativum L.), protein isolate (PPI) and dietary fiber (PF), were newly produced by extraction-fractionation method and characterized in terms of particle size distribution and structural morphology using SEM. The newly produced PPI and PF fractions were processed into pasta-like sheets with varying protein to fiber ratios (100/0, 90/10, 80/20, 70/30 and 50/50, respectively) using high temperature compression molding. We studied protein polymerization, molecular structure and protein-fiber interactions, as well as mechanical performance and cooking characteristics of processed PPI-PF blends. Bi-modal particle size distribution and chemical composition of the PPI and PF fractions influenced significantly the physicochemical properties of the pasta-like sheets. Polymerization was most pronounced for the 100 PPI, 90/10 and 80/20 PPI-PF samples as studied by SE-HPLC, and polymerization decreased with addition of the PF fraction. The mechanical properties, as strength and extensibility, were likewise the highest for the 100 PPI and 90/10 PPI-PF blends, while the E-modulus was similar for all the studied blends (around 38 MPa). The extensibility decreased with the increasing amount of PF in the blend. The highest amounts of β-sheets were found in the pasta-like sheets with high amounts of PPI (100, 90 and 80%), by FT-IR. An increase in PF fraction in the blend, resulted into the high amounts of unordered structures as observed by FT-IR, as well as in an increase in the molecular scattering distances observed by SAXS. The water uptake increased and cooking loss decreased with increased proportions of the PF fraction, and the consistency of 10 min cooked pasta-like sheets were alike al dente texture. The new knowledge obtained in this study on the use of extraction-fractionation method to produce novel PPI and PF fractions for developing innovative high nutritious food can be of a great importance. The obtained knowledge on the pea protein and fiber processing behaviour could greatly contribute to a better control of functional properties of various temperature-processed products from yellow pea. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Differences in muscle fiber size and associated energetic costs in phylogenetically paired tropical and temperate birds.

    PubMed

    Jimenez, Ana Gabriela; Williams, Joseph B

    2014-01-01

    Tropical and temperate birds provide a unique system to examine mechanistic consequences of life-history trade-offs at opposing ends of the pace-of-life spectrum; tropical birds tend to have a slow pace of life whereas temperate birds the opposite. Birds in the tropics have a lower whole-animal basal metabolic rate and peak metabolic rate, lower rates of reproduction, and longer survival than birds in temperate regions. Although skeletal muscle has a relatively low tissue-specific metabolism at rest, it makes up the largest fraction of body mass and therefore contributes more to basal metabolism than any other tissue. A principal property of muscle cells that influences their rate of metabolism is fiber size. The optimal fiber size hypothesis attempts to link whole-animal basal metabolic rate to the cost of maintaining muscle mass by stating that larger fibers may be metabolically cheaper to maintain since the surface area∶volume ratio (SA∶V) is reduced compared with smaller fibers and thus the amount of area to transport ions is also reduced. Because tropical birds have a reduced whole-organism metabolism, we hypothesized that they would have larger muscle fibers than temperate birds, given that larger muscle fibers have reduced energy demand from membrane Na(+)-K(+) pumps. Alternatively, smaller muscle fibers could result in a lower capacity for shivering and exercise. To test this idea, we examined muscle fiber size and Na(+)-K(+)-ATPase activity in 16 phylogenetically paired species of tropical and temperate birds. We found that 3 of the 16 paired comparisons indicated that tropical birds had significantly larger fibers, contrary to our hypothesis. Our data show that SA∶V is proportional to Na(+)-K(+)-ATPase activity in muscles of birds.

  13. Preparation and photocatalytic performance of fibrous Tb3+-doped TiO2 using collagen fiber as template

    NASA Astrophysics Data System (ADS)

    Luo, Ting; Wan, Xiang-Jun; Jiang, Shang-Xuan; Zhang, Li-Yuan; Hong, Zheng-Qu; Liu, Jiao

    2018-04-01

    Fibrous Tb3+-doped TiO2 were prepared using collagen fiber as template. Morphology, crystalline structure, surface area, element content, chemical composition and elemental chemical status, microstructure and element distribution of the prepared samples were characterized by using scanning electron microscopy, X-ray diffraction, specific surface area analysis, inductively coupled plasma atomic emission spectrometer, X-ray photoelectron spectroscopy, transmission electron microscope and element mapping, respectively. The photocatalytic activities were evaluated by following degradation of methyl orange. The results showed that the fiber structure of collagen template was fully preserved when the calcination temperature was 500-800 °C. However, with the increase of calcination temperature, crystallinity and average particle size were increased, and the photocatalytic performance was decreased. For 2% Tb3+-TiO2 calcined at 500 °C, the degradation rate of methyl orange reached 93.87% after 6 h when a high-pressure mercury lamp (150 W) was used as the light source for photocatalytic degradation. Titanium tanning agent performance was excellent, the yield of TiO2 was high, and the fiber structure was presented when 0.2 mol/L citric acid/sodium citrate buffer solution was used.

  14. The origins of public concern with taconite and human health: Reserve Mining and the asbestos case.

    PubMed

    Berndt, Michael E; Brice, William C

    2008-10-01

    Asbestos first became an issue to Minnesota's iron industry when it was revealed that mineral fibers similar to those in Reserve Mining's tailings were being found in drinking water for several communities that used Lake Superior as their primary water source. This discovery turned what had largely been an environmental court battle into a case concerning public health. The courts listened to much conflicting and uncertain scientific testimony on the size and distribution of the mineral fibers and on the potential health effects imposed by them. In April 1974, the plant was ordered to shut down by a federal judge but the company quickly appealed the decision. The appeals court granted a stay and ultimately ruled that the plant's closure could not be justified based on the unknown health effects of the mineral fibers since the consequences of such an action would have immediate and severe social and economic impacts. The plant was allowed to continue operation, but ordered to abate emissions to air around the plant and to switch to a land-based tailings disposal system. Much of the scientific uncertainty and public concern over mineral fibers in Minnesota's taconite industry remain today.

  15. Accumulation of microplastic on shorelines woldwide: sources and sinks.

    PubMed

    Browne, Mark Anthony; Crump, Phillip; Niven, Stewart J; Teuten, Emma; Tonkin, Andrew; Galloway, Tamara; Thompson, Richard

    2011-11-01

    Plastic debris <1 mm (defined here as microplastic) is accumulating in marine habitats. Ingestion of microplastic provides a potential pathway for the transfer of pollutants, monomers, and plastic-additives to organisms with uncertain consequences for their health. Here, we show that microplastic contaminates the shorelines at 18 sites worldwide representing six continents from the poles to the equator, with more material in densely populated areas, but no clear relationship between the abundance of miocroplastics and the mean size-distribution of natural particulates. An important source of microplastic appears to be through sewage contaminated by fibers from washing clothes. Forensic evaluation of microplastic from sediments showed that the proportions of polyester and acrylic fibers used in clothing resembled those found in habitats that receive sewage-discharges and sewage-effluent itself. Experiments sampling wastewater from domestic washing machines demonstrated that a single garment can produce >1900 fibers per wash. This suggests that a large proportion of microplastic fibers found in the marine environment may be derived from sewage as a consequence of washing of clothes. As the human population grows and people use more synthetic textiles, contamination of habitats and animals by microplastic is likely to increase.

  16. Architecturally defined scaffolds from synthetic collagen and elastin analogues for the fabrication of bioengineered tissues

    NASA Astrophysics Data System (ADS)

    Caves, Jeffrey Morris

    The microstructure and mechanics of collagen and elastin protein fiber networks dictate the mechanical responses of all soft tissues and related organ systems. In this project, we endeavored to meet or exceed native tissue biomechanical properties through mimicry of these extracellular matrix components with synthetic collagen fiber and a recombinant elastin-like protein polymer. Significantly, this work led to the development of a framework for the design and fabrication of protein-based tissue substitutes with enhanced strength, resilience, anisotropy, and more. We began with the development of a spinning process for scalable production of synthetic collagen fiber. Fiber with an elliptical cross-section of 53 +/- 14 by 21 +/- 3 mum and an ultimate tensile strength of 90 +/- 19 MPa was continuously produced at 60 meters per hour from an ultrafiltered collagen solution. The starting collagen concentration, flowrate, and needle size could be adjusted to control fiber size. The fiber was characterized with mechanical analysis, micro-differential scanning calorimetry, transmission electron microscopy, second harmonic generation analysis, and subcutaneous murine implant. We subsequently describe the scalable, semi-automated fabrication of elastin-like protein sheets reinforced with synthetic collagen fibers that can be positioned in a precisely defined three-dimensional hierarchical pattern. Multilamellar, fiber-reinforced elastic protein sheets were constructed with controlled fiber orientation and volume fraction. Structures were analyzed with scanning electron microscopy, transmission electron microscopy, and digital volumetric imaging. The effect of fiber orientation and volume fraction on Young's Modulus, yield stress, ultimate tensile stress, strain-to-failure, and resilience was evaluated in uniaxial tension. Increased fiber volume fraction and alignment with applied deformation significantly increased Young's Modulus, resilience, and yield stress. Highly extensible, elastic tissues display a functionally important mechanical transition from low to high modulus deformation at a strain dictated by the crimped microstructure of native collagen fiber. We report the fabrication of dense arrays of microcrimped synthetic collagen fiber embedded in elastin-like protein lamellae that mimic this aspect of tissue mechanics. Microcrimped fiber arrays were characterized with scanning electron microscopy, confocal laser scanning microscopy, and uniaxial tension analysis. Crimp wavelength was 143 +/- 5 mum. The degree of crimping was varied from 3.1% to 9.4%, and corresponded to mechanical modulus transitions at 4.6% and 13.3% strain. Up to 1000 cycles of tensile loading did not substantially alter microcrimp morphology. We designed and prototyped a series of small-diameter vascular grafts consisting of elastin-like protein reinforced with controlled volume fractions and orientations of collagen fiber. A pressure-diameter system was developed and implemented to study the effects of fiber distribution on graft mechanics. The optimal design satisfied target properties with suture retention strength of 173 +/- 4 g-f, burst strength of 1483 +/- 143 mm Hg, and compliance of 5.1 +/- 0.8 %/100 mm Hg.

  17. Distributed phase birefringence measurements based on polarization correlation in phase-sensitive optical time-domain reflectometers.

    PubMed

    Soto, Marcelo A; Lu, Xin; Martins, Hugo F; Gonzalez-Herraez, Miguel; Thévenaz, Luc

    2015-09-21

    In this paper a technique to measure the distributed birefringence profile along optical fibers is proposed and experimentally validated. The method is based on the spectral correlation between two sets of orthogonally-polarized measurements acquired using a phase-sensitive optical time-domain reflectometer (ϕOTDR). The correlation between the two measured spectra gives a resonance (correlation) peak at a frequency detuning that is proportional to the local refractive index difference between the two orthogonal polarization axes of the fiber. In this way the method enables local phase birefringence measurements at any position along optical fibers, so that any longitudinal fluctuation can be precisely evaluated with metric spatial resolution. The method has been experimentally validated by measuring fibers with low and high birefringence, such as standard single-mode fibers as well as conventional polarization-maintaining fibers. The technique has potential applications in the characterization of optical fibers for telecommunications as well as in distributed optical fiber sensing.

  18. Fiber optic reference frequency distribution to remote beam waveguide antennas

    NASA Technical Reports Server (NTRS)

    Calhoun, Malcolm; Kuhnle, Paul; Law, Julius

    1995-01-01

    In the NASA/JPL Deep Space Network (DSN), radio science experiments (probing outer planet atmospheres, rings, gravitational waves, etc.) and very long-base interferometry (VLBI) require ultra-stable, low phase noise reference frequency signals at the user locations. Typical locations for radio science/VLBI exciters and down-converters are the cone areas of the 34 m high efficiency antennas or the 70 m antennas, located several hundred meters from the reference frequency standards. Over the past three years, fiber optic distribution links have replaced coaxial cable distribution for reference frequencies to these antenna sites. Optical fibers are the preferred medium for distribution because of their low attenuation, immunity to EMI/IWI, and temperature stability. A new network of Beam Waveguide (BWG) antennas presently under construction in the DSN requires hydrogen maser stability at tens of kilometers distance from the frequency standards central location. The topic of this paper is the design and implementation of an optical fiber distribution link which provides ultra-stable reference frequencies to users at a remote BWG antenna. The temperature profile from the earth's surface to a depth of six feet over a time period of six months was used to optimize the placement of the fiber optic cables. In-situ evaluation of the fiber optic link performance indicates Allan deviation on the order of parts in 10(exp -15) at 1000 and 10,000 seconds averaging time; thus, the link stability degradation due to environmental conditions still preserves hydrogen maser stability at the user locations. This paper reports on the implementation of optical fibers and electro-optic devices for distributing very stable, low phase noise reference signals to remote BWG antenna locations. Allan deviation and phase noise test results for a 16 km fiber optic distribution link are presented in the paper.

  19. Fiber optic reference frequency distribution to remote beam waveguide antennas

    NASA Astrophysics Data System (ADS)

    Calhoun, Malcolm; Kuhnle, Paul; Law, Julius

    1995-05-01

    In the NASA/JPL Deep Space Network (DSN), radio science experiments (probing outer planet atmospheres, rings, gravitational waves, etc.) and very long-base interferometry (VLBI) require ultra-stable, low phase noise reference frequency signals at the user locations. Typical locations for radio science/VLBI exciters and down-converters are the cone areas of the 34 m high efficiency antennas or the 70 m antennas, located several hundred meters from the reference frequency standards. Over the past three years, fiber optic distribution links have replaced coaxial cable distribution for reference frequencies to these antenna sites. Optical fibers are the preferred medium for distribution because of their low attenuation, immunity to EMI/IWI, and temperature stability. A new network of Beam Waveguide (BWG) antennas presently under construction in the DSN requires hydrogen maser stability at tens of kilometers distance from the frequency standards central location. The topic of this paper is the design and implementation of an optical fiber distribution link which provides ultra-stable reference frequencies to users at a remote BWG antenna. The temperature profile from the earth's surface to a depth of six feet over a time period of six months was used to optimize the placement of the fiber optic cables. In-situ evaluation of the fiber optic link performance indicates Allan deviation on the order of parts in 10(exp -15) at 1000 and 10,000 seconds averaging time; thus, the link stability degradation due to environmental conditions still preserves hydrogen maser stability at the user locations. This paper reports on the implementation of optical fibers and electro-optic devices for distributing very stable, low phase noise reference signals to remote BWG antenna locations. Allan deviation and phase noise test results for a 16 km fiber optic distribution link are presented in the paper.

  20. Voltammetric detection of biological molecules using chopped carbon fiber.

    PubMed

    Sugawara, Kazuharu; Yugami, Asako; Kojima, Akira

    2010-01-01

    Voltammetric detection of biological molecules was carried out using chopped carbon fibers produced from carbon fiber reinforced plastics that are biocompatible and inexpensive. Because chopped carbon fibers normally are covered with a sizing agent, they are difficult to use as an electrode. However, when the surface of a chopped carbon fiber was treated with ethanol and hydrochloric acid, it became conductive. To evaluate the functioning of chopped carbon fibers, voltammetric measurements of [Fe(CN)(6)](3-) were carried out. Redoxes of FAD, ascorbic acid and NADH as biomolecules were recorded using cyclic voltammetry. The sizing agents used to bundle the fibers were epoxy, polyamide and polyurethane resins. The peak currents were the greatest when using the chopped carbon fibers that were created with epoxy resins. When the electrode response of the chopped carbon fibers was compared with that of a glassy carbon electrode, the peak currents and the reversibility of the electrode reaction were sufficient. Therefore, the chopped carbon fibers will be useful as disposable electrodes for the sensing of biomolecules.

  1. Infrared fiber optic sensor for measurements of nonuniform temperature distributions

    NASA Astrophysics Data System (ADS)

    Belotserkovsky, Edward; Drizlikh, S.; Zur, Albert; Bar-Or, O.; Katzir, Abraham

    1992-04-01

    Infrared (IR) fiber optic radiometry of thermal surfaces offers several advantages over refractive optics radiometry. It does not need a direct line of sight to the measured thermal surface and combines high capability of monitoring small areas with high efficiency. These advantages of IR fibers are important in the control of nonuniform temperature distributions, in which the temperature of closely situated points differs considerably and a high spatial resolution is necessary. The theoretical and experimental transforming functions of the sensor during scanning of an area with a nonuniform temperature distribution were obtained and their dependence on the spacial location of the fiber and type of temperature distribution were analyzed. Parameters such as accuracy and precision were determined. The results suggest that IR fiber radiometric thermometry may be useful in medical applications such as laser surgery, hyperthermia, and hypothermia.

  2. A multicore optical fiber for distributed sensing

    NASA Astrophysics Data System (ADS)

    Sun, Xiaoguang; Li, Jie; Burgess, David T.; Hines, Mike; Zhu, Beyuan

    2014-06-01

    With advancements in optical fiber technology, the incorporation of multiple sensing functionalities within a single fiber structure opens the possibility to deploy dielectric, fully distributed, long-length optical sensors in an extremely small cross section. To illustrate the concept, we designed and manufactured a multicore optical fiber with three graded-index (GI) multimode (MM) cores and one single mode (SM) core. The fiber was coated with both a silicone primary layer and an ETFE buffer for high temperature applications. The fiber properties such as geometry, crosstalk and attenuation are described. A method for coupling the signal from the individual cores into separate optical fibers is also presented.

  3. Nearly-octave wavelength tuning of a continuous wave fiber laser

    PubMed Central

    Zhang, Lei; Jiang, Huawei; Yang, Xuezong; Pan, Weiwei; Cui, Shuzhen; Feng, Yan

    2017-01-01

    The wavelength tunability of conventional fiber lasers are limited by the bandwidth of gain spectrum and the tunability of feedback mechanism. Here a fiber laser which is continuously tunable from 1 to 1.9 μm is reported. It is a random distributed feedback Raman fiber laser, pumped by a tunable Yb doped fiber laser. The ultra-wide wavelength tunability is enabled by the unique property of random distributed feedback Raman fiber laser that both stimulated Raman scattering gain and Rayleigh scattering feedback are available at any wavelength. The dispersion property of the gain fiber is used to control the spectral purity of the laser output. PMID:28198414

  4. Distributed strain measurement in a rectangular plate using an array of optical fiber sensors

    NASA Technical Reports Server (NTRS)

    Claus, R. O.; Wade, J. C.

    1984-01-01

    Single mode optical fiber waveguide has been used to determine the two-dimensional strain distribution on a simply supported rectangular plate. Each of the fifty individual fibers in the rectangular grid array attached to one surface of the plate yields a measurement of the strain integrated along the length of that fiber on the specimen. By using similar sensor information from all of the fibers, both the functional form and the amplitude of the distribution may be determined. Limits on the dynamic range and spatial resolution are indicated. Applications in the measurement of internal strain and the monitoring of physically small critical-structural components are suggested.

  5. Microwave assisted reconstruction of optical interferograms for distributed fiber optic sensing.

    PubMed

    Huang, Jie; Hua, Lei; Lan, Xinwei; Wei, Tao; Xiao, Hai

    2013-07-29

    This paper reports a distributed fiber optic sensing technique through microwave assisted separation and reconstruction of optical interferograms in spectrum domain. The approach involves sending a microwave-modulated optical signal through cascaded fiber optic interferometers. The microwave signal was used to resolve the position and reflectivity of each sensor along the optical fiber. By sweeping the optical wavelength and detecting the modulation signal, the optical spectrum of each sensor can be reconstructed. Three cascaded fiber optic extrinsic Fabry-Perot interferometric sensors were used to prove the concept. Their microwave-reconstructed interferogram matched well with those recorded individually using an optical spectrum analyzer. The application in distributed strain measurement has also been demonstrated.

  6. Storage and long-distance distribution of telecommunications-band polarization entanglement generated in an optical fiber.

    PubMed

    Li, Xiaoying; Voss, Paul L; Chen, Jun; Sharping, Jay E; Kumar, Prem

    2005-05-15

    We demonstrate storage of polarization-entangled photons for 125 micros, a record storage time to date, in a 25-km-long fiber spool, using a telecommunications-band fiber-based source of entanglement. With this source we also demonstrate distribution of polarization entanglement over 50 km by separating the two photons of an entangled pair and transmitting them individually over separate 25-km fibers. The measured two-photon fringe visibilities were 82% in the storage experiment and 86% in the distribution experiment. Preservation of polarization entanglement over such long-distance transmission demonstrates the viability of all-fiber sources for use in quantum memories and quantum logic gates.

  7. Research on distributed optical fiber sensing data processing method based on LabVIEW

    NASA Astrophysics Data System (ADS)

    Li, Zhonghu; Yang, Meifang; Wang, Luling; Wang, Jinming; Yan, Junhong; Zuo, Jing

    2018-01-01

    The pipeline leak detection and leak location problem have gotten extensive attention in the industry. In this paper, the distributed optical fiber sensing system is designed based on the heat supply pipeline. The data processing method of distributed optical fiber sensing based on LabVIEW is studied emphatically. The hardware system includes laser, sensing optical fiber, wavelength division multiplexer, photoelectric detector, data acquisition card and computer etc. The software system is developed using LabVIEW. The software system adopts wavelet denoising method to deal with the temperature information, which improved the SNR. By extracting the characteristic value of the fiber temperature information, the system can realize the functions of temperature measurement, leak location and measurement signal storage and inquiry etc. Compared with traditional negative pressure wave method or acoustic signal method, the distributed optical fiber temperature measuring system can measure several temperatures in one measurement and locate the leak point accurately. It has a broad application prospect.

  8. Intramuscular variations of proteome and muscle fiber type distribution in semimembranosus and semitendinosus muscles associated with pork quality.

    PubMed

    Kim, Gap-Don; Yang, Han-Sul; Jeong, Jin-Yeon

    2018-04-01

    Proteome analysis was performed to understand intramuscular variations in muscle fiber distribution in semimembranosus (SM) and semitendinosus (ST) muscles associated with pork quality. Fifteen SM and ST muscles were separated into dark and light portions. The relative area of oxidative fiber was higher (P < .0001) in dark portion than that in light portion, while glycolytic fiber types were distributed primarily (P < .01) in light portions regardless of muscle types. Myosin-1, myosin-4, troponin complex (fast), myosin light chains, and metabolic enzymes responsible for fast-twitch glycolytic types were overexpressed in light portions (P < .05). However, myosin-2, myosin-7, myoglobin, and mitochondrial oxidative metabolic enzymes were closely related to slow-twitch oxidative fibers. These resulted in high pH, redness, and tenderness but low lightness and drip loss of pork quality. In conclusion, differentially expressed muscle proteins are associated with fiber type (oxidative vs. glycolytic) distribution, resulting in intramuscular variations of pork quality. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. The Processing and Mechanical Properties of High Temperature/High Performance Composites. Book 5. Processing and Miscellaneous Properties

    DTIC Science & Technology

    1993-04-01

    tensile fiber stress of 150-300 MPa, too little compared to measured fiber strengths of 3-4 GPa. A final possibility is that of nonuniform inelastic...flow of the matrix as a result of a spatially nonuniform distribution of porosity; this leads to a nonuniform distribution of forces along the fiber...the damage with the specific mechanism being fiber bending. The effects due to nonuniform inelastic flow (i.e., fiber bending) can be thought to occur

  10. Fiber Optic Feed

    DTIC Science & Technology

    1990-11-06

    Naval Research Laboratory IIK Washington, DC,20375 5000 NRL Memorandum Report 6741 0 N Fiber Optic Feed DENZIL STILWELL, MARK PARENT AND LEw GOLDBERG...SUBTITLE S. FUNDING NUMBERS Fiber Optic Feed 53-0611-A0 6. AUTHOR(S) P. D. Stilwell, M. G. Parent, L. Goldberg 7. PERFORMING ORGANIZATION NAME(S) AND...DISTRIBUTION CODE Approved for public release; distribution unlimited. 13. ABSTRACT (Maximum 200 words) This report details a Fiber Optic Feeding

  11. Compensated Fiber-Optic Frequency Distribution Equipment

    DTIC Science & Technology

    2010-11-01

    fiber optic links have been developed and deployed, providing stability sufficient to transfer hydrogen maser-derived frequency references in intra...effectively compensate for the added noise and instability of an inter-facility fiber - optic frequency distribution link , it is important to understand the...dispersion (the variation in group velocity as a function of optical wavelength) may also affect the performance of the fiber optic link , when link

  12. Carbon fiber reinforcements for sheet molding composites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ozcan, Soydan; Paulauskas, Felix L.

    A method of processing a carbon fiber tow includes the steps of providing a carbon fiber tow made of a plurality of carbon filaments, depositing a sizing composition at spaced-apart sizing sites along a length of the tow, leaving unsized interstitial regions of the tow, and cross-cutting the tow into a plurality of segments. Each segment includes at least a portion of one of the sizing sites and at least a portion of at least one of the unsized regions of the tow, the unsized region including and end portion of the segment.

  13. Immunohistochemical localization of serotonin- and substance P-containing fibers around respiratory muscle motoneurons in the nucleus ambiguus of the cat.

    PubMed

    Holtman, J R

    1988-07-01

    Retrograde tracing with a fluorescent dye (Fast Blue) combined with immunohistochemistry was used to determine if the putative neurotransmitters, serotonin and substance P, are present around posterior cricoarytenoid muscle motoneurons. Fast Blue was injected into the posterior cricoarytenoid muscle of the larynx. Following a 14-21 day survival time to allow for transport of the dye, the animals were perfusion fixed and the brainstem was removed for analysis under the fluorescence microscope. Retrogradely labeled cell bodies containing Fast Blue were found within the nucleus ambiguus from 0.5 to 3.0 mm rostral to obex. These motoneurons ranged in size from 23 to 38 micron. The same tissue sections containing labeled posterior cricoarytenoid muscle motoneurons were then used to determine the distribution of serotonin and substance P around these motoneurons using the indirect immunofluorescence technique. A dense network of serotonin-containing immunoreactive fibers was found around posterior cricoarytenoid muscle motoneurons. The fibers contained varicosities which were in close proximity, actually appearing to surround these motoneurons. Substance P immunoreactive fibers and varicosities were also found around posterior cricoarytenoid muscle motoneurons. The density and pattern of distribution of the substance P immunoreactivity was similar to that of the serotonin immunoreactivity. These results suggest that these putative neurotransmitters may be involved in influencing the activity of posterior cricoarytenoid muscle motoneurons. Serotonin and substance P are also present around other respiratory motoneurons such as phrenic motoneurons. Therefore, these two neurotransmitters may have a more general role in influencing respiratory motor outflow.

  14. Responses of neuromuscular systems under gravity or microgravity environment.

    PubMed

    Ishihara, Akihiko; Kawano, Fuminori; Wang, Xiao Dong; Ohira, Yoshinobu

    2004-11-01

    Hindlimb suspension of rats induces induces fiber atrophy and type shift of muscle fibers. In contrast, there is no change in the cell size or oxidative enzyme activity of spinal motoneurons innervating muscle fibers. Growth-related increases in the cell size of muscle fibers and their spinal motoneurons are inhibited by hindlimb suspension. Exposure to microgravity induces atrophy of fibers (especially slow-twitch fibers) and shift of fibers from slow- to fast-twitch type in skeletal muscles (especially slow, anti-gravity muscles). In addition, a decrease in the oxidative enzyme activity of spinal motoneurons innervating slow-twitch fibers and of sensory neurons in the dorsal root ganglion is observed following exposure to microgravity. It is concluded that neuromuscular activities are important for maintaining metabolism and function of neuromuscular systems at an early postnatal development and that gravity effects both efferent and afferent neural pathways.

  15. Droplets on bent fibers

    NASA Astrophysics Data System (ADS)

    Weyer, Floriane; Pan, Zhao; Pitt, William; Truscott, Tadd; Vandewalle, Nicolas

    Droplets on fibers are part of our everyday lives. Many phenomena involve drops and fibers such as the formation of dew droplets on a spiderweb, the trapping of water droplets on cactus spines or the motion of droplets on wetted moss hairs. These topics have been widely studied. In particular, Lorenceau et al. determined the critical volume of a water droplet hanging on a horizontal fiber. Here, we address a similar question : we try to find out the maximum droplet size on bent fibers, which are able to hold significantly more water than horizontal fibers. Indeed, we noticed that, in nature, some specific plants can hold large rain droplets thanks to their Y-shaped leaves. We try to mimic these structures with nylon fibers, of different diameters, bent with various angles. For each set-up, the critical water volume is determined. Finally, we propose models of the physics involved in determining droplet size that could be implemented in future fiber-based microfluidic devices.

  16. Tensile creep behavior of polycrystalline alumina fibers

    NASA Technical Reports Server (NTRS)

    Yun, H. M.; Goldsby, J. C.

    1993-01-01

    Tensile creep studies were conducted on polycrystalline Nextel 610 and Fiber FP alumina fibers with grain sizes of 100 and 300 nm, respectively. Test conditions were temperatures from 800 to 1050 C and stresses from 60 to 1000 MPa. For both fibers, only a small primary creep portion occurred followed by steady-state creep. The stress exponents for steady-state creep of Nextel 610 and Fiber FP were found to be about 3 and 1, respectively. At lower temperatures, below 1000 C, the finer grained Nextel 610 had a much higher 0.2 percent creep strength for 100 hr than the Fiber FP; while at higher temperatures, Nextel 610 had a comparable creep strength to the Fiber FP. The stress and grain size dependencies suggest Nextel 610 and Fiber FP creep rates are due to grain boundary sliding controlled by interface reaction and Nabarro-Herring mechanisms, respectively.

  17. Fracture toughness testing of polymer matrix composites

    NASA Technical Reports Server (NTRS)

    Grady, Joseph E.

    1992-01-01

    A review of the interlaminar fracture indicates that a standard specimen geometry is needed to obtain consistent fracture toughness measurements in polymer matrix composites. In general, the variability of measured toughness values increases as the toughness of the material increases. This variability could be caused by incorrect sizing of test specimens and/or inconsistent data reduction procedures. A standard data reduction procedure is therefore needed as well, particularly for the tougher materials. Little work has been reported on the effects of fiber orientation, fiber architecture, fiber surface treatment or interlaminar fracture toughness, and the mechanisms by which the fibers increase fracture toughness are not well understood. The little data that is available indicates that woven fiber reinforcement and fiber sizings can significantly increase interlaminar fracture toughness.

  18. High-power ultralong-wavelength Tm-doped silica fiber laser cladding-pumped with a random distributed feedback fiber laser

    PubMed Central

    Jin, Xiaoxi; Du, Xueyuan; Wang, Xiong; Zhou, Pu; Zhang, Hanwei; Wang, Xiaolin; Liu, Zejin

    2016-01-01

    We demonstrated a high-power ultralong-wavelength Tm-doped silica fiber laser operating at 2153 nm with the output power exceeding 18 W and the slope efficiency of 25.5%. A random distributed feedback fiber laser with the center wavelength of 1173 nm was employed as pump source of Tm-doped fiber laser for the first time. No amplified spontaneous emissions or parasitic oscillations were observed when the maximum output power reached, which indicates that employing 1173 nm random distributed feedback fiber laser as pump laser is a feasible and promising scheme to achieve high-power emission of long-wavelength Tm-doped fiber laser. The output power of this Tm-doped fiber laser could be further improved by optimizing the length of active fiber, reflectivity of FBGs, increasing optical efficiency of pump laser and using better temperature management. We also compared the operation of 2153 nm Tm-doped fiber lasers pumped with 793 nm laser diodes, and the maximum output powers were limited to ~2 W by strong amplified spontaneous emission and parasitic oscillation in the range of 1900–2000 nm. PMID:27416893

  19. High-power ultralong-wavelength Tm-doped silica fiber laser cladding-pumped with a random distributed feedback fiber laser.

    PubMed

    Jin, Xiaoxi; Du, Xueyuan; Wang, Xiong; Zhou, Pu; Zhang, Hanwei; Wang, Xiaolin; Liu, Zejin

    2016-07-15

    We demonstrated a high-power ultralong-wavelength Tm-doped silica fiber laser operating at 2153 nm with the output power exceeding 18 W and the slope efficiency of 25.5%. A random distributed feedback fiber laser with the center wavelength of 1173 nm was employed as pump source of Tm-doped fiber laser for the first time. No amplified spontaneous emissions or parasitic oscillations were observed when the maximum output power reached, which indicates that employing 1173 nm random distributed feedback fiber laser as pump laser is a feasible and promising scheme to achieve high-power emission of long-wavelength Tm-doped fiber laser. The output power of this Tm-doped fiber laser could be further improved by optimizing the length of active fiber, reflectivity of FBGs, increasing optical efficiency of pump laser and using better temperature management. We also compared the operation of 2153 nm Tm-doped fiber lasers pumped with 793 nm laser diodes, and the maximum output powers were limited to ~2 W by strong amplified spontaneous emission and parasitic oscillation in the range of 1900-2000 nm.

  20. Distributed optical fiber dynamic magnetic field sensor based on magnetostriction.

    PubMed

    Masoudi, Ali; Newson, Trevor P

    2014-05-01

    A distributed optical fiber sensor is introduced which is capable of quantifying multiple magnetic fields along a 1 km sensing fiber with a spatial resolution of 1 m. The operation of the proposed sensor is based on measuring the magnetorestrictive induced strain of a nickel wire attached to an optical fiber. The strain coupled to the optical fiber was detected by measuring the strain-induced phase variation between the backscattered Rayleigh light from two segments of the sensing fiber. A magnetic field intensity resolution of 0.3 G over a bandwidth of 50-5000 Hz was demonstrated.

  1. Adsorption of aromatic compounds by carbonaceous adsorbents: a comparative study on granular activated carbon, activated carbon fiber, and carbon nanotubes.

    PubMed

    Zhang, Shujuan; Shao, Ting; Kose, H Selcen; Karanfil, Tanju

    2010-08-15

    Adsorption of three aromatic organic compounds (AOCs) by four types of carbonaceous adsorbents [a granular activated carbon (HD4000), an activated carbon fiber (ACF10), two single-walled carbon nanotubes (SWNT, SWNT-HT), and a multiwalled carbon nanotube (MWNT)] with different structural characteristics but similar surface polarities was examined in aqueous solutions. Isotherm results demonstrated the importance of molecular sieving and micropore effects in the adsorption of AOCs by carbonaceous porous adsorbents. In the absence of the molecular sieving effect, a linear relationship was found between the adsorption capacities of AOCs and the surface areas of adsorbents, independent of the type of adsorbent. On the other hand, the pore volume occupancies of the adsorbents followed the order of ACF10 > HD4000 > SWNT > MWNT, indicating that the availability of adsorption site was related to the pore size distributions of the adsorbents. ACF10 and HD4000 with higher microporous volumes exhibited higher adsorption affinities to low molecular weight AOCs than SWNT and MWNT with higher mesopore and macropore volumes. Due to their larger pore sizes, SWNTs and MWNTs are expected to be more efficient in adsorption of large size molecules. Removal of surface oxygen-containing functional groups from the SWNT enhanced adsorption of AOCs.

  2. Adsorption of SO2 on bituminous coal char and activated carbon fiber

    USGS Publications Warehouse

    DeBarr, Joseph A.; Lizzio, Anthony A.; Daley, Michael A.

    1997-01-01

    The SO2 adsorption behaviors of activated carbons produced from Illinois coal and of commercially prepared activated carbon fibers (ACFs) were compared. There was no relation between surface area of coal-based carbons and SO2 adsorption, whereas adsorption of SO2 on the series of ACFs was inversely proportional to N2 BET surface area. Higher surface area ACFs had wider pores and adsorbed less SO2; thus, pore size distribution is thought to play a significant role in SO2 adsorption for these materials. Oxidation with HNO3 and/or H2SO4, followed by heat treatment at 700−925°C to remove carbon−oxygen complexes, resulted in increased SO2 adsorption for both coal chars and ACFs. This behavior was explained by an increase in the available number of free sites, previously occupied by oxygen and now available for SO2 adsorption. The use of nitrogen-containing functional groups on ACFs of proper pore size shows promise for further increasing SO2 adsorption capacities. Knowledge of the relationship among the number of free sites, pore size, and surface chemistry on corresponding SO2 adsorption should lead to the development of more efficient adsorbents prepared from either coal or ACFs.

  3. Photoelastic Studies of Internal Stress Distributions of Unidirectional Composites.

    DTIC Science & Technology

    1980-12-01

    MMR9 rR-80 56 ___ _ - 𔃽 4. TiTLEand Subtitle) 5. TYPE OF RPOBT & PERIOD COVERED /f Fina1,eprt - _OTOELASIIC UDIES OF LNTERNAL TRESS i11 Sep 79 1-ll...34 verre a, If t nece, e.ry and Identify by block number) ..... ’Io-dimensional phutoelastli, models were used to determine internal taading-. and...The same matrix was used in preparing unidirectional proto- type composite 3pecimens with glass fibers (G filament size.) Six layers of glass roving

  4. Gap junctions are selectively associated with interlocking ball-and-sockets but not protrusions in the lens.

    PubMed

    Biswas, Sondip K; Lee, Jai Eun; Brako, Lawrence; Jiang, Jean X; Lo, Woo-Kuen

    2010-11-09

    Ball-and-sockets and protrusions are specialized interlocking membrane domains between lens fibers of all species studied. Ball-and-sockets and protrusions are similar in their shape, size, and surface morphology, and are traditionally believed to play a key role in maintaining fiber-to-fiber stability. Here, we evaluate the hypothesis that ball-and-sockets and protrusions possess important structural and functional differences during fiber cell differentiation and maturation. Intact lenses of leghorn chickens (E7 days to P62 weeks old) and rhesus monkeys (1.5-20 years old) were studied with SEM, freeze-fracture TEM, freeze-fracture immunogold labeling (FRIL), and filipin cytochemistry for membrane cholesterol detection. SEM showed that ball-and-sockets were distributed along the long and short sides of hexagonal fiber cells, whereas protrusions were located along the cell corners, from superficial to deep cortical regions in both chicken and monkey lenses. Importantly, by freeze-fracture TEM, we discovered the selective association of gap junctions with all ball-and-sockets examined, but not with protrusions, in both species. In the embryonic chicken lens (E18), the abundant distribution of ball-and-socket gap junctions was regularly found in an approximate zone extending at least 300 μm deep from the equatorial surface of the superficial cortical fibers. Many ball-and-socket gap junctions often protruded deeply into neighboring cells. However, in the mature fibers of monkey lenses, several ball-and-sockets exhibited only partial occupancy of gap junctions with disorganized connexons, possibly due to degradation of gap junctions during fiber maturation and aging. FRIL analysis confirmed that both connexin46 (Cx46) and connexin50 (Cx50) antibodies specifically labeled ball-and-socket gap junctions, but not protrusions. Furthermore, filipin cytochemistry revealed that the ball-and-socket gap junctions contained different amounts of cholesterol (i.e., cholesterol-rich versus cholesterol-free) as seen with the filipin-cholesterol-complexes (FCC) in different cortical regions during maturation. In contrast, the protrusions contained consistently high cholesterol amounts (i.e., 402 FCCs/μm2 membrane) which were approximately two times greater than that of the cholesterol-rich gap junctions (i.e., 188 FCCs/μm2 membrane) found in ball-and-sockets. Gap junctions are regularly associated with all ball-and-sockets examined in metabolically active young cortical fibers, but not with protrusions, in both chicken and monkey lenses. Since these unique gap junctions often protrude deeply into neighboring cells to increase membrane surface areas, they may significantly facilitate cell-to-cell communication between young cortical fiber cells. In particular, the large number of ball-and-socket gap junctions found near the equatorial region may effectively facilitate the flow of outward current toward the equatorial surface for internal circulation of ions in the lens. In contrast, a consistent distribution of high concentrations of cholesterol in protrusions would make the protrusion membrane less deformable and would be more suitable for maintaining fiber-to-fiber stability during visual accommodation. Thus, the ball-and-sockets and protrusions are two structurally and functionally distinct membrane domains in the lens.

  5. Gap junctions are selectively associated with interlocking ball-and-sockets but not protrusions in the lens

    PubMed Central

    Biswas, Sondip K.; Lee, Jai Eun; Brako, Lawrence; Jiang, Jean X.

    2010-01-01

    Purpose Ball-and-sockets and protrusions are specialized interlocking membrane domains between lens fibers of all species studied. Ball-and-sockets and protrusions are similar in their shape, size, and surface morphology, and are traditionally believed to play a key role in maintaining fiber-to-fiber stability. Here, we evaluate the hypothesis that ball-and-sockets and protrusions possess important structural and functional differences during fiber cell differentiation and maturation. Methods Intact lenses of leghorn chickens (E7 days to P62 weeks old) and rhesus monkeys (1.5–20 years old) were studied with SEM, freeze-fracture TEM, freeze-fracture immunogold labeling (FRIL), and filipin cytochemistry for membrane cholesterol detection. Results SEM showed that ball-and-sockets were distributed along the long and short sides of hexagonal fiber cells, whereas protrusions were located along the cell corners, from superficial to deep cortical regions in both chicken and monkey lenses. Importantly, by freeze-fracture TEM, we discovered the selective association of gap junctions with all ball-and-sockets examined, but not with protrusions, in both species. In the embryonic chicken lens (E18), the abundant distribution of ball-and-socket gap junctions was regularly found in an approximate zone extending at least 300 μm deep from the equatorial surface of the superficial cortical fibers. Many ball-and-socket gap junctions often protruded deeply into neighboring cells. However, in the mature fibers of monkey lenses, several ball-and-sockets exhibited only partial occupancy of gap junctions with disorganized connexons, possibly due to degradation of gap junctions during fiber maturation and aging. FRIL analysis confirmed that both connexin46 (Cx46) and connexin50 (Cx50) antibodies specifically labeled ball-and-socket gap junctions, but not protrusions. Furthermore, filipin cytochemistry revealed that the ball-and-socket gap junctions contained different amounts of cholesterol (i.e., cholesterol-rich versus cholesterol-free) as seen with the filipin-cholesterol-complexes (FCC) in different cortical regions during maturation. In contrast, the protrusions contained consistently high cholesterol amounts (i.e., 402 FCCs/μm2 membrane) which were approximately two times greater than that of the cholesterol-rich gap junctions (i.e., 188 FCCs/μm2 membrane) found in ball-and-sockets. Conclusions Gap junctions are regularly associated with all ball-and-sockets examined in metabolically active young cortical fibers, but not with protrusions, in both chicken and monkey lenses. Since these unique gap junctions often protrude deeply into neighboring cells to increase membrane surface areas, they may significantly facilitate cell-to-cell communication between young cortical fiber cells. In particular, the large number of ball-and-socket gap junctions found near the equatorial region may effectively facilitate the flow of outward current toward the equatorial surface for internal circulation of ions in the lens. In contrast, a consistent distribution of high concentrations of cholesterol in protrusions would make the protrusion membrane less deformable and would be more suitable for maintaining fiber-to-fiber stability during visual accommodation. Thus, the ball-and-sockets and protrusions are two structurally and functionally distinct membrane domains in the lens. PMID:21139982

  6. Modeling of fiber orientation in viscous fluid flow with application to self-compacting concrete

    NASA Astrophysics Data System (ADS)

    Kolařík, Filip; Patzák, Bořek

    2013-10-01

    In recent years, unconventional concrete reinforcement is of growing popularity. Especially fiber reinforcement has very wide usage in high performance concretes like "Self Compacting Concrete" (SCC). The design of advanced tailor-made structures made of SCC can take advantage of anisotropic orientation of fibers. Tools for fiber orientation predictions can contribute to design of tailor made structure and allow to develop casting procedures that enable to achieve the desired fiber distribution and orientation. This paper deals with development and implementation of suitable tool for prediction of fiber orientation in a fluid based on the knowledge of the velocity field. Statistical approach to the topic is employed. Fiber orientation is described by a probability distribution of the fiber angle.

  7. Influence of the UV-induced fiber loss on the distributed feedback fiber lasers

    NASA Astrophysics Data System (ADS)

    Fan, Wei; Chen, Bai; Qiao, Qiquan; Chen, Jialing; Lin, Zunqi

    2003-06-01

    It was found that the output power of the distributed feedback fiber lasers would be improved after annealing or left unused for several days after the laser had been fabricated, and the output of the fundamental mode would not increase but be clamped while the ±1 order modes would be predominant with the enhancement of the coupling coefficient during the fabrication. The paper discussed the influence of UV-induced fiber loss on the fiber phase-shifted DFB lasers. Due to the gain saturation and fiber internal loss, which included the temperament loss and permanent loss, there was an optimum coupling coefficient for the DFB fiber lasers that the higher internal fiber loss corresponded to the lower optimum values of coupling coefficient.

  8. Temperature Measurement and Damage Detection in Concrete Beams Exposed to Fire Using PPP-BOTDA Based Fiber Optic Sensors.

    PubMed

    Bao, Yi; Hoehler, Matthew S; Smith, Christopher M; Bundy, Matthew; Chen, Genda

    2017-10-01

    In this study, distributed fiber optic sensors based on pulse pre-pump Brillouin optical time domain analysis (PPP-BODTA) are characterized and deployed to measure spatially-distributed temperatures in reinforced concrete specimens exposed to fire. Four beams were tested to failure in a natural gas fueled compartment fire, each instrumented with one fused silica, single-mode optical fiber as a distributed sensor and four thermocouples. Prior to concrete cracking, the distributed temperature was validated at locations of the thermocouples by a relative difference of less than 9 %. The cracks in concrete can be identified as sharp peaks in the temperature distribution since the cracks are locally filled with hot air. Concrete cracking did not affect the sensitivity of the distributed sensor but concrete spalling broke the optical fiber loop required for PPP-BOTDA measurements.

  9. Surface-enhanced Raman scattering of amorphous silica gel adsorbed on gold substrates for optical fiber sensors

    NASA Astrophysics Data System (ADS)

    Degioanni, S.; Jurdyc, A. M.; Cheap, A.; Champagnon, B.; Bessueille, F.; Coulm, J.; Bois, L.; Vouagner, D.

    2015-10-01

    Two kinds of gold substrates are used to produce surface-enhanced Raman scattering (SERS) of amorphous silica obtained via the sol-gel route using tetraethoxysilane Si(OC2H5)4 (TEOS) solution. The first substrate consists of a gold nanometric film elaborated on a glass slide by sputter deposition, controlling the desired gold thickness and sputtering current intensity. The second substrate consists of an array of micrometer-sized gold inverted pyramidal pits able to confine surface plasmon (SP) enhancing electric field, which results in a distribution of electromagnetic energy inside the cavities. These substrates are optically characterized to observe SPR with, respectively, extinction and reflectance spectrometries. Once coated with thin layers of amorphous silica (SiO2) gel, these samples show Raman amplification of amorphous SiO2 bands. This enhancement can occur in SERS sensors using amorphous SiO2 gel as shells, spacers, protective coatings, or waveguides, and represents particularly a potential interest in the field of Raman distributed sensors, which use the amorphous SiO2 core of optical fibers as a transducer to make temperature measurements.

  10. Natural carcinogenic fiber and pleural plaques assessment in a general population: A cross-sectional study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ledda, Caterina, E-mail: cledda@unict.it

    Natural carcinogenic fibers are asbestos and asbestiform fibers present as a natural component of soils or rocks. These fibers are released into the environment resulting in exposure of the general population. Environmental contamination by fibers are those cases occurred in: rural regions of Turkey, in Mediterranean countries and in other sites of the world, including northern Europe, USA and China. Fluoro-edenite(FE) is a natural mineral species first isolated in Biancavilla, Sicily. The fibers are similar in size and morphology to some amphibolic asbestos fibers, whose inhalation can cause chronic inflammation and cancer. The aim of the current study is tomore » assess the presence and features of pleural plaques (PPs) in Biancavilla's general population exposed to FE through a retrospective cross-sectional study. All High-Resolution Computed Tomography (HRCT) chest scans carried out between June 2009 and June 2015 in Biancavilla municipality hospital site (exposed subjects) were reviewed. The exposed groups were 1:1 subjects, matched according to age and sex distributions, with unexposed subjects (n.1.240) randomly selected among HRCT chest scans carried out in a Hospital 30 km away from Biancavilla. Subjects from Biancavilla with PPs were significantly more numerous than the control group ones (218 vs 38). Average age of either group was >60 years; the age of exposed subjects was significantly (p=0.0312) lesser than the unexposed group. In exposed subjects, in most PPs thickness ranged between 2 and 4.9 cm(38%, n=83); while in unexposed ones PPs thickness was less than 2 cm (55%, n=21). As to the size of PPs in exposed subjects, in most cases it ranged between 1 cm and 24% of chest wall (53%, n=116); while in unexposed ones the size of PPs was lesser than 1 cm (23%, n=58). Among exposed subjects, 36 cases (17%) PPs were detected with calcification, whereas in unexposed ones only three (8%) presented calcification. 137 lung parenchymal abnormalities were observed in exposed group; whereas, 12 lung parenchymal involvement were registered in unexposed subjects. The RR for PPs is 6,74 CI 95% (4,47–9,58) p<0,0001 in the exposed population. These findings, suggested the urge to extend the screening on the possible involvement of the respiratory tract to all Biancavilla's population, particularly in those aged more than 30. Besides, it seems essential to start indoor monitoring Biancavilla's municipality. - Highlights: • High risk for pleural plaques in people exposed to fluoro-edenite. • Naturally carcinogenic fibers increase the risk of parenchymal abnormalities. • It is important to organize an extended screening to all Biancavilla's population.« less

  11. Study of buffer substrate and Arenga wood fiber size on hydroponic Kailan (Brassica alboglabra)

    NASA Astrophysics Data System (ADS)

    Harjoko, D.; Anggraheny, M. D.; Arniputri, R. B.

    2018-03-01

    Kailan is a kind of vegetable that has high economic value, however its prospect is not well developed. One of obstacles in Kailan cultivation is the limitation of fertile soil, that can be solved by using hydroponic substrate. Considering its amount and potential, the fiber waste of Arenga wood was selected as substrate candidate. For that, this research aims to study the growth and yield of Kailan with different soaking treatment using buffer solution and size of Arenga wood fiber in the hydroponic substrate. Research was conducted at Green House Laboratory, Faculty of Agriculture Sebelas Maret University Surakarta from February to May 2017. The treatments were soaking buffer solution with EC 1.2 mScm-1; 1.4 mScm-1; and 1.6 mScm-1 and the size of Arenga fiber <1 cm, 1-2 cm and 2-3 cm. In this experiment, sand media was used as control. Result show that, soaking in 1.6 mScm-1 EC buffer solution with Arenga fiber size lower than 3 cm gives higher root volume compared to other treatments combination.

  12. Comparative fiber evaluation of the mesdan aqualab microwave moisture measurement instrument

    USDA-ARS?s Scientific Manuscript database

    Moisture is a key cotton fiber parameter, as it can impact the fiber quality and the processing of cotton fiber. The Mesdan Aqualab is a microwave-based fiber moisture measurement instrument for samples with moderate sample size. A program was implemented to determine the capabilities of the Aqual...

  13. Distributed Weak Fiber Bragg Grating Vibration Sensing System Based on 3 × 3 Fiber Coupler

    NASA Astrophysics Data System (ADS)

    Li, Wei; Zhang, Jian

    2018-06-01

    A novel distributed weak fiber Bragg gratings (FBGs) vibration sensing system has been designed to overcome the disadvantages of the conventional methods for optical fiber sensing networking, which are: low signal intensity in the usually adopted time-division multiplexing (TDM) technology, insufficient quantity of multiplexed FBGs in the wavelength-division multiplexing (WDM) technology, and that the mixed WDM/TDM technology measures only the physical parameters of the FBG locations but cannot perform distributed measurement over the whole optical fiber. This novel system determines vibration events in the optical fiber line according to the intensity variation of the interference signals between the adjacent weak FBG reflected signals and locates the vibration points accurately using the TDM technology. It has been proven by tests that this system performs vibration signal detection and demodulation in a way more convenient than the conventional methods for the optical fiber sensing system. It also measures over the whole optical fiber, therefore, distributed measurement is fulfilled, and the system locating accuracy is up to 20 m, capable of detecting any signals of whose drive signals lower limit voltage is 0.2 V while the frequency range is 3 Hz‒1 000 Hz. The system has the great practical significance and application value for perimeter surveillance systems.

  14. USING PARTIAL LEAST SQUARES REGRESSION TO OBTAIN COTTON FIBER LENGTH DISTRIBUTIONS FROM THE BEARD TESTING METHOD

    USDA-ARS?s Scientific Manuscript database

    The beard testing method for measuring cotton fiber length is based on the fibrogram theory. However, in the instrumental implementations, the engineering complexity alters the original fiber length distribution observed by the instrument. This causes challenges in obtaining the entire original le...

  15. [Experimental study on characteristics of biodiesel exhausted particle].

    PubMed

    Ge, Yun-shan; He, Chao; Han, Xiu-kun; Wu, Si-jin; Lu, Xiao-ming

    2007-07-01

    A particle emission experiment of a direct-injection turbocharged diesel engine with biodiesel and diesel was carried out. A pump of 80 L/min and fiber glass filters with diameter of 90 mm was used to sample engine particles in exhaust pipe. The size distribution, soluble organic fraction (SOF) and 16 polycyclic aromatic hydrocarbons (PAHs) of particles were analyzed by a laser diffraction particle size analyzer and GC-MS. The results indicate that the volume weighted size distribution of biodiesel particle is single-peak and its median diameter d(0.5) and mean diameter d32 are decreased with the increasing speed. At the high speed the d32 and d(0.5) of biodiesel are larger than those of diesel, and quite the contrary at the low speed. SOF mass concentration and mass percentage of biodiesel are 12.3 - 31.5 mg/m3 and 38.2% - 58.0% respectively, which are much higher than those of diesel. The total PAHs emission concentration of biodiesel is 2.9 - 4.7 microg/m3 lower than that of diesel as much as 29.1% - 92.4%.

  16. Effect of texture dispersion on the effective biaxial modulus of fiber-textured hexagonal, tetragonal, and orthorhombic films

    NASA Astrophysics Data System (ADS)

    Wu, Huaping; Wu, Linzhi; Du, Shanyi

    2008-04-01

    The effective biaxial modulus (Meff) of fiber-textured hexagonal, tetragonal, and orthorhombic films is estimated by using the Voigt-Reuss-Hill and Vook-Witt grain-interaction models. The orientation distribution function with Gaussian distributions of the two Euler angles θ and ϕ is adopted to analyze the effect of texture dispersion degree on Meff. Numerical results that are based on ZnO, BaTiO3, and yttrium barium copper oxide (YBCO) materials show that the Vook-Witt average of Meff is identical to the Voigt-Reuss-Hill average of Meff for the (001) plane of ideally fiber-textured hexagonal and tetragonal films. The ϕ distribution has no influence on Meff of the (hkl)-fiber-textured hexagonal film at any θ distribution in terms of the isotropy in the plane perpendicular to the [001] direction. Comparably, tetragonal and orthorhombic films represent considerable actions of ϕ dispersion on Meff, and the effect of ϕ dispersion on Meff of a (001)-fiber-textured YBCO film is smaller than that for a (001)-fiber-textured BaTiO3 film since the shear anisotropic factor in the (001) shear plane of a YBCO film more closely approaches 1. Enhanced θ and ϕ distributions destroy the perfect fiber textures, and as a result, the films exhibit an evolution from ideal (hkl) fiber textures to random textures with varying full widths at half maximums of θ and ϕ.

  17. Distributed strain measurement and possible breakage detection of optical-fiber-embedded composite structure using slope-assisted Brillouin optical correlation-domain reflectometry

    NASA Astrophysics Data System (ADS)

    Lee, Heeyoung; Ochi, Yutaka; Matsui, Takahiro; Matsumoto, Yukihiro; Tanaka, Yosuke; Nakamura, Hitoshi; Mizuno, Yosuke; Nakamura, Kentaro

    2018-07-01

    Slope-assisted Brillouin optical correlation-domain reflectometry (SA-BOCDR) is a recently developed structural health monitoring technique for measurements of strain, temperature, and loss distributions along optical fibers. Although the basic operational principle of this method has been clarified, no measurements using optical fibers embedded in actual structures have been reported. As a first step towards such practical applications, in this study, we present an example of an SA-BOCDR-based diagnosis using a composite structure with carbon fiber-reinforced plastics. The system’s output agrees well with the actual strain distributions. We were also able to detect the breakage of the embedded fiber, thus demonstrating the promise of SA-BOCDR for practical applications.

  18. All fiber-coupled, long-term stable timing distribution for free-electron lasers with few-femtosecond jitter

    PubMed Central

    Şafak, K.; Xin, M.; Callahan, P. T.; Peng, M. Y.; Kärtner, F. X.

    2015-01-01

    We report recent progress made in a complete fiber-optic, high-precision, long-term stable timing distribution system for synchronization of next generation X-ray free-electron lasers. Timing jitter characterization of the master laser shows less than 170-as RMS integrated jitter for frequencies above 10 kHz, limited by the detection noise floor. Timing stabilization of a 3.5-km polarization-maintaining fiber link is successfully achieved with an RMS drift of 3.3 fs over 200 h of operation using all fiber-coupled elements. This all fiber-optic implementation will greatly reduce the complexity of optical alignment in timing distribution systems and improve the overall mechanical and timing stability of the system. PMID:26798814

  19. The Effects of Fiber Inclusion on Pet Food Sensory Characteristics and Palatability.

    PubMed

    Koppel, Kadri; Monti, Mariana; Gibson, Michael; Alavi, Sajid; Donfrancesco, Brizio Di; Carciofi, Aulus Cavalieri

    2015-02-16

    The objectives of this study were to determine (a) the influence of fiber on the sensory characteristics of dry dog foods; (b) differences of coated and uncoated kibbles for aroma and flavor characteristics; (c) palatability of these dry dog foods; and (d) potential associations between palatability and sensory attributes. A total of eight fiber treatments were manufactured: a control (no fiber addition), guava fiber (3%, 6%, and 12%), sugar cane fiber (9%; large and small particle size), and wheat bran fiber (32%; large and small particle size). The results indicated significant effects of fibers on both flavor and texture properties of the samples. Bitter taste and iron and stale aftertaste were examples of flavor attributes that differed with treatment, with highest intensity observed for 12% guava fiber and small particle size sugar cane fiber treatments. Fracturability and initial crispness attributes were lowest for the sugar cane fiber treatments. Flavor of all treatments changed after coating with a palatant, increasing in toasted, brothy, and grainy attributes. The coating also had a masking effect on aroma attributes such as stale, flavor attributes such as iron and bitter taste, and appearance attributes such as porosity. Palatability testing results indicated that the control treatment was preferred over the sugar cane or the wheat bran treatment. The treatment with large sugarcane fiber particles was preferred over the treatment with small particles, while both of the wheat bran treatments were eaten at a similar level. Descriptive sensory analysis data, especially textural attributes, were useful in pinpointing the underlying characteristics and were considered to be reasons that may influence palatability of dog foods manufactured with inclusion of different fibers.

  20. Epithelial innervation of human cornea: a three-dimensional study using confocal laser scanning fluorescence microscopy.

    PubMed

    Guthoff, Rudolf F; Wienss, Holger; Hahnel, Christian; Wree, Andreas

    2005-07-01

    Evaluation of a new method to visualize distribution and morphology of human corneal nerves (Adelta- and C-fibers) by means of fluorescence staining, confocal laser scanning microscopy, and 3-dimensional (3D) reconstruction. Trephinates of corneas with a diagnosis of Fuchs corneal dystrophy were sliced into layers of 200 microm thickness using a Draeger microkeratome (Storz, Germany). The anterior lamella was stained with the Life/Dead-Kit (Molecular Probes Inc.), examined by the confocal laser scanning microscope "Odyssey XL," step size between 0.5 and 1 microm, and optical sections were digitally 3D-reconstructed. Immediate staining of explanted corneas by the Life/Dead-Kit gave a complete picture of the nerves in the central human cornea. Thin nerves running parallel to the Bowman layer in the subepithelial plexus perforate the Bowman layer orthogonally through tube-like structures. Passing the Bowman layer, Adelta- and C-fibers can be clearly distinguished by fiber diameter, and, while running in the basal epithelial plexus, by their spatial arrangement. Adelta-fibers run straight and parallel to the Bowman layer underneath the basal cell layer. C-fibers, after a short run parallel to the Bowman layer, send off multiple branches penetrating epithelial cell layers orthogonally, ending blindly in invaginations of the superficial cells. In contrast to C-fibers, Adelta-fibers show characteristic bulbous formations when kinking into the basal epithelial plexus. Ex-vivo fluorescence staining of the cornea and 3D reconstructions of confocal scans provide a fast and easily reproducible tool to visualize nerves of the anterior living cornea at high resolution. This may help to clarify gross variations of nerve fiber patterns under various clinical and experimental conditions.

  1. Nanoparticulate hollow TiO2 fibers as light scatterers in dye-sensitized solar cells: layer-by-layer self-assembly parameters and mechanism.

    PubMed

    Rahman, Masoud; Tajabadi, Fariba; Shooshtari, Leyla; Taghavinia, Nima

    2011-04-04

    Hollow structures show both light scattering and light trapping, which makes them promising for dye-sensitized solar cell (DSSC) applications. In this work, nanoparticulate hollow TiO(2) fibers are prepared by layer-by-layer (LbL) self-assembly deposition of TiO(2) nanoparticles on natural cellulose fibers as template, followed by thermal removal of the template. The effect of LbL parameters such as the type and molecular weight of polyelectrolyte, number of dip cycles, and the TiO(2) dispersion (amorphous or crystalline sol) are investigated. LbL deposition with weak polyelectrolytes (polyethylenimine, PEI) gives greater nanoparticle deposition yield compared to strong polyelectrolytes (poly(diallyldimethylammonium chloride), PDDA). Decreasing the molecular weight of the polyelectrolyte results in more deposition of nanoparticles in each dip cycle with narrower pore size distribution. Fibers prepared by the deposition of crystalline TiO(2) nanoparticles show higher surface area and higher pore volume than amorphous nanoparticles. Scattering coefficients and backscattering properties of fibers are investigated and compared with those of commercial P25 nanoparticles. Composite P25-fiber films are electrophoretically deposited and employed as the photoanode in DSSC. Photoelectrochemical measurements showed an increase of around 50% in conversion efficiency. By employing the intensity-modulated photovoltage and photocurrent spectroscopy methods, it is shown that the performance improvement due to addition of fibers is mostly due to the increase in light-harvesting efficiency. The high surface area due to the nanoparticulate structure and strong light harvesting due to the hollow structure make these fibers promising scatterers in DSSCs. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Stress distribution of oval and circular fiber posts in amandibular premolar: a three-dimensional finite element analysis

    PubMed Central

    Kilic, Kerem; Esim, Emir; Aslan, Tugrul; Kilinc, Halil Ibrahim; Yildirim, Sahin

    2013-01-01

    PURPOSE The aim of the present study was to evaluate the effects of posts with different morphologies on stress distribution in an endodontically treated mandibular premolar by using finite element models (FEMs). MATERIALS AND METHODS A mandibular premolar was modeled using the ANSYS software program. Two models were created to represent circular and oval fiber posts in this tooth model. An oblique force of 300 N was applied at an angle of 45° to the occlusal plane and oriented toward the buccal side. von Mises stress was measured in three regions each for oval and circular fiber posts. RESULTS FEM analysis showed that the von Mises stress of the circular fiber post (426.81 MPa) was greater than that of the oval fiber post (346.34 MPa). The maximum distribution of von Mises stress was in the luting agent in both groups. Additionally, von Mises stresses accumulated in the coronal third of root dentin, close to the post space in both groups. CONCLUSION Oval fiber posts are preferable to circular fiber posts in oval-shaped canals given the stress distribution at the post-dentin interface. PMID:24353882

  3. Cytotoxicity of silica-glass fiber reinforced composites.

    PubMed

    Meriç, Gökçe; Dahl, Jon E; Ruyter, I Eystein

    2008-09-01

    Silica-glass fiber reinforced polymers can be used for many kinds of dental applications. The fiber reinforcement enhances the mechanical properties of the polymers, and they have good esthetic attributes. There is good initial bonding of glass fibers to polymers via an interface made from silane coupling agents. The aim of this in vitro study was to determine the cytotoxicity of two polymers reinforced with two differently sized silica-glass fibers before and after thermal cycling. Cytotoxicity of the polymers without fibers was also evaluated. Two different resin mixtures (A and B) were prepared from poly(vinyl chloridecovinylacetate) powder and poly(methyl methacrylate) (PMMA) dissolved in methyl methacrylate and mixed with different cross-linking agents. The resin A contained the cross-linking agents ethylene glycol dimethacrylate and 1,4-butanediol dimethacrylate, and for resin B diethylene glycol dimethacrylate was used. Woven silica-glass fibers were used for reinforcement. The fibers were sized with either linear poly(butyl methacrylate)-sizing or cross-linking PMMA-sizing. Cytotoxicity was evaluated by filter diffusion test (ISO 7405:1997) of newly made and thermocycled test specimens. Extracts were prepared according to ISO 10993-12 from newly made and from thermocycled specimens and tested by the MTT assay. The results from the experiments were statistically analyzed by one-way ANOVA and Tukey's test (rho<0.05). The filter diffusion test disclosed no change in staining intensity at the cell-test sample contact area indicating non-cytotoxicity in all experimental groups. Cell viability assessed by MTT assay was more than 90% in all experimental groups. All are non-cytotoxic. It can be concluded that correctly processed heat polymerized silica-glass fiber reinforced polymers induced no cytotoxicity and that thermocycling did not alter this property.

  4. Matrix cracking with irregular fracture fronts as observed in fiber reinforced ceramic composites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, K.X.; Yeh, C.P.; Wyatt, K.W.

    1998-01-01

    As a result of matrix cracking in fiber reinforced composites, fracture planforms assume a wide variation of profiles due to the fact that fiber bridging strongly affects the behavior of local crack fronts. This observation raises the question on the legitimacy of commonly used penny-shaped crack solutions when applied to fiber reinforced composites. Accordingly, investigation of the effects of fracture front profiles on mechanical responses is the thrust of this paper. The authors start with the solution of a penny-shaped crack in a unidirectional, fiber reinforced composite, which demonstrates necessity of considering wavy fracture fronts in fiber reinforced composites. Amore » theoretical framework for fiber reinforced composites with irregular fracture fronts due to matrix cracking is then established via a micromechanics model. The difference between small crack-size matrix cracking and large crack-size matrix cracking is investigated in detail. It is shown that the bridging effect is insignificant when matrix crack size is small and solution of effective property are obtained using Mori-Tanaka`s method by treating cracks and reinforcing fibers as distinct, but interacting phases. When the crack size becomes large, the bridging effects has to be taken into consideration. With bridging tractions obtained in consistency with the micromechanics solution, and corresponding crack energy backed out, the effective properties are obtained through a modification of standard Mori-Tanaka`s treatment of multiphase composites. Analytical solutions show that the generalization of a crack density of a penny-shaped planform is insufficient in describing the effective responses of fiber-reinforced composites with matrix cracking. Approximate solutions that account for the effects of the irregularity of crack planforms are given in closed forms for several irregular crack planforms, including cracks of cross rectangle, polygon and rhombus.« less

  5. Unified nano-mechanics based probabilistic theory of quasibrittle and brittle structures: I. Strength, static crack growth, lifetime and scaling

    NASA Astrophysics Data System (ADS)

    Le, Jia-Liang; Bažant, Zdeněk P.; Bazant, Martin Z.

    2011-07-01

    Engineering structures must be designed for an extremely low failure probability such as 10 -6, which is beyond the means of direct verification by histogram testing. This is not a problem for brittle or ductile materials because the type of probability distribution of structural strength is fixed and known, making it possible to predict the tail probabilities from the mean and variance. It is a problem, though, for quasibrittle materials for which the type of strength distribution transitions from Gaussian to Weibullian as the structure size increases. These are heterogeneous materials with brittle constituents, characterized by material inhomogeneities that are not negligible compared to the structure size. Examples include concrete, fiber composites, coarse-grained or toughened ceramics, rocks, sea ice, rigid foams and bone, as well as many materials used in nano- and microscale devices. This study presents a unified theory of strength and lifetime for such materials, based on activation energy controlled random jumps of the nano-crack front, and on the nano-macro multiscale transition of tail probabilities. Part I of this study deals with the case of monotonic and sustained (or creep) loading, and Part II with fatigue (or cyclic) loading. On the scale of the representative volume element of material, the probability distribution of strength has a Gaussian core onto which a remote Weibull tail is grafted at failure probability of the order of 10 -3. With increasing structure size, the Weibull tail penetrates into the Gaussian core. The probability distribution of static (creep) lifetime is related to the strength distribution by the power law for the static crack growth rate, for which a physical justification is given. The present theory yields a simple relation between the exponent of this law and the Weibull moduli for strength and lifetime. The benefit is that the lifetime distribution can be predicted from short-time tests of the mean size effect on strength and tests of the power law for the crack growth rate. The theory is shown to match closely numerous test data on strength and static lifetime of ceramics and concrete, and explains why their histograms deviate systematically from the straight line in Weibull scale. Although the present unified theory is built on several previous advances, new contributions are here made to address: (i) a crack in a disordered nano-structure (such as that of hydrated Portland cement), (ii) tail probability of a fiber bundle (or parallel coupling) model with softening elements, (iii) convergence of this model to the Gaussian distribution, (iv) the stress-life curve under constant load, and (v) a detailed random walk analysis of crack front jumps in an atomic lattice. The nonlocal behavior is captured in the present theory through the finiteness of the number of links in the weakest-link model, which explains why the mean size effect coincides with that of the previously formulated nonlocal Weibull theory. Brittle structures correspond to the large-size limit of the present theory. An important practical conclusion is that the safety factors for strength and tolerable minimum lifetime for large quasibrittle structures (e.g., concrete structures and composite airframes or ship hulls, as well as various micro-devices) should be calculated as a function of structure size and geometry.

  6. Fracture Toughness of Carbon Fiber Composites Containing Various Fiber Sizings and a Puncture Self-Healing Thermoplastic Matrix

    NASA Technical Reports Server (NTRS)

    Cano, Roberto J.; Grimsley, Brian W.; Ratcliffe, James G.; Gordon, Keith L.; Smith, Joseph G.; Siochi, Emilie J.

    2015-01-01

    Ongoing efforts at NASA Langley Research Center (LaRC) have resulted in the identification of several commercially available thermoplastic resin systems which self-heal after ballistic impact and through penetration. One of these resins, polybutylene graft copolymer (PBg), was selected as a matrix for processing with unsized carbon fibers to fabricate reinforced composites for further evaluation. During process development, data from thermo-physical analyses was utilized to determine a processing cycle to fabricate laminate panels, which were analyzed by photo microscopy and acid digestion. The process cycle was further optimized based on these results to fabricate panels for mechanical property characterization. The results of the processing development effort of this composite material, as well as the results of the mechanical property characterization, indicated that bonding between the fiber and PBg was not adequate. Therefore, three sizings were investigated in this work to assess their potential to improve fiber/matrix bonding compared to previously tested unsized IM7 fiber. Unidirectional prepreg was made at NASA LaRC from three sized carbon fibers and utilized to fabricate test coupons that were tested in double cantilever beam configurations to determine GIc fracture toughness.

  7. How Well Does Carbon Handle Stress? - A Brief Overview of Carbons in Structural Applications

    DTIC Science & Technology

    2004-06-09

    strong-- PAN fibers… or weak-- aerogel be stiff—pitch carbon fibers...or flexible--Grafoil 4 A2705V2004. Approved for public release; distribution...distribution unlimited Carbon Fiber Reinforcement Aeronautics • Carbon-epoxy and carbon-phenolic are used in military aircraft . 39 A2705V2004. Approved...performance aircraft Gossamer Albatross Gossamer Penguin Voyager 40 A2705V2004. Approved for public release; distribution unlimited Carbon Fiber

  8. Self-healing ring-based WDM-PON

    NASA Astrophysics Data System (ADS)

    Zhou, Yang; Gan, Chaoqin; Zhu, Long

    2010-05-01

    In this paper, a survivable ring-based wavelength-division-multiplexing (WDM)-passive optical network (PON) for fiber protection is proposed. Protections for feeder fiber and distributed fiber are independent in the scheme. Optical line terminal (OLT) and optical network units (ONUs) can automatically switch to protection link when fiber failure occurs. Protection distributed fiber is not required in the scheme. Cost-effective components are used in ONUs to minimize costs of network. A simulation study is performed to demonstrate the scheme. Its result shows good performance of upstream and downstream signals.

  9. Fiber optic sensors; Proceedings of the Meeting, Cannes, France, November 26, 27, 1985

    NASA Technical Reports Server (NTRS)

    Arditty, Herve J. (Editor); Jeunhomme, Luc B. (Editor)

    1986-01-01

    The conference presents papers on distributed sensors and sensor networks, signal processing and detection techniques, temperature measurements, chemical sensors, and the measurement of pressure, strain, and displacements. Particular attention is given to optical fiber distributed sensors and sensor networks, tactile sensing in robotics using an optical network and Z-plane techniques, and a spontaneous Raman temperature sensor. Other topics include coherence in optical fiber gyroscopes, a high bandwidth two-phase flow void fraction fiber optic sensor, and a fiber-optic dark-field microbend sensor.

  10. High-speed wavelength-division multiplexing quantum key distribution system.

    PubMed

    Yoshino, Ken-ichiro; Fujiwara, Mikio; Tanaka, Akihiro; Takahashi, Seigo; Nambu, Yoshihiro; Tomita, Akihisa; Miki, Shigehito; Yamashita, Taro; Wang, Zhen; Sasaki, Masahide; Tajima, Akio

    2012-01-15

    A high-speed quantum key distribution system was developed with the wavelength-division multiplexing (WDM) technique and dedicated key distillation hardware engines. Two interferometers for encoding and decoding are shared over eight wavelengths to reduce the system's size, cost, and control complexity. The key distillation engines can process a huge amount of data from the WDM channels by using a 1 Mbit block in real time. We demonstrated a three-channel WDM system that simultaneously uses avalanche photodiodes and superconducting single-photon detectors. We achieved 12 h continuous key generation with a secure key rate of 208 kilobits per second through a 45 km field fiber with 14.5 dB loss.

  11. Solution properties and spectroscopic characterization of polymeric precursors to SiNCB and BN ceramic materials

    NASA Astrophysics Data System (ADS)

    Cortez, E.; Remsen, E.; Chlanda, V.; Wideman, T.; Zank, G.; Carrol, P.; Sneddon, L.

    1998-06-01

    Boron Nitride, BN, and composite SiNCB ceramic fibers are important structural materials because of their excellent thermal and oxidative stabilities. Consequently, polymeric materials as precursors to ceramic composites are receiving increasing attention. Characterization of these materials requires the ability to evaluate simultaneous molecular weight and compositional heterogeneity within the polymer. Size exclusion chromatography equipped with viscometric and refractive index detection as well as coupled to a LC-transform device for infrared absorption analysis has been employed to examine these heterogeneities. Using these combined approaches, the solution properties and the relative amounts of individual functional groups distributed through the molecular weight distribution of SiNCB and BN polymeric precursors were characterized.

  12. Raman measurements of Kevlar-29 fiber pull-out test at different strain levels

    NASA Astrophysics Data System (ADS)

    Wang, Quan; Lei, Zhenkun; Kang, Yilan; Qiu, Wei

    2008-11-01

    This paper adopted Kevlar-29 fiber monofilament embedding technology to prepare fiber/ epoxy resin tensile specimen. The specimen was pulled on a homemade and portable mini-loading device. At the same time micro-Raman spectroscopy is introduced to detect the distributions of stress on the embedded fiber at different strain levels. The characteristic peak shift of the 1610 cm-1 in Raman band has a linear relationship with the strain or stress. The experimental results show that the fiber axial stress decreases gradually from the embedded fiber-start to the embedded fiber-end at the same strain level. At different strain levels, the fiber axial stress increases along with the applied load. It reveals that there is a larger fiber axial stress distribution under a larger strain level. And the stress transfer is realized gradually from the embedded fiber-start to the fiber-end. Stress concentration exists in the embedded fiber-end, which is a dangerous region for interfacial debonding easily.

  13. Study on Energy Absorption Capacity of Steel-Polyester Hybrid Fiber Reinforced Concrete Under Uni-axial Compression

    NASA Astrophysics Data System (ADS)

    Chella Gifta, C.; Prabavathy, S.

    2018-05-01

    This work presents the energy absorption capacity of hybrid fiber reinforced concrete made with hooked end steel fibers (0.5 and 0.75%) and straight polyester fibers (0.5, 0.8, 1.0 and 2.0%). Compressive toughness (energy absorption capacity) under uni-axial compression was evaluated on 100 × 200 mm size cylindrical specimens with varying steel and polyester fiber content. Efficiency of the hybrid fiber reinforcement is studied with respect to fiber type, size and volume fractions in this investigation. The vertical displacement under uni-axial compression was measured under the applied loads and the load-deformation curves were plotted. From these curves the toughness values were calculated and the results were compared with steel and polyester as individual fibers. The hybridization of 0.5% steel + 0.5% polyester performed well in post peak region due to the addition of polyester fibers with steel fibers and the energy absorption value was 23% greater than 0.5% steel FRC. Peak stress values were also higher in hybrid series than single fiber and based on the results it is concluded that hybrid fiber reinforcement improves the toughness characteristics of concrete without affecting workability.

  14. Study on the effect of carbon nanotube coating on the refractive index sensing sensitivity of fiber modal interferometer

    NASA Astrophysics Data System (ADS)

    Zhang, Ya-nan; Xie, Wen-ge; Wang, Jianzhang; Wang, Pengzhao

    2018-01-01

    Refractive index sensing of liquid is important in the domain of chemistry and biology. Fiber optical sensors provide an excellent way to measure the refractive index due to their feasible integration to other fiber optics components, high sensitivity, small size, and distributed sensing. However, conventional optical sensors have different shortages. To find a practical way to measure the refractive index of liquid, this paper intended to combine Carbon Nanotube (CNT) with non-core fiber (NCF) to prepare a kind of modal interferometer sensor and to explore the effect of CNT coating on refractive index sensing properties of the modal interferometer. Firstly, a structure of single mode non-core single mode (SNS) fiber with a CNT film coating was proposed and simulated. The simulation results showed that the CNT coating could improve the refractive index sensitivity of the interferometer sensor. Then in the experiment part, the CNT solution was fabricated and deposited onto the NCF, and a refractive index sensing system was built to examine the property of the CNT-coated SNS interferometer sensor. During the experiment, the influence factors of sensitivity were summarized by testing the sensing performance under different conditions, and it was demonstrated that the CNT coating could improve the contrast of the interference spectrum, and also had the possibility to increase the refractive index sensitivity of the interferometer sensor.

  15. Influence of fiber architecture on the elastic an d inelastic response of metal matrix composites

    NASA Technical Reports Server (NTRS)

    Arnold, Steven M.; Pindera, Marek-Jerzy; Wilt, Thomas E.

    1995-01-01

    This three part paper focuses on the effect of fiber architecture (i.e., shape and distribution) on the elastic and inelastic response of metal matrix composites. The first part provides an annotative survey of the literature, presented as a historical perspective, dealing with the effects of fiber shape and distribution on the response of advanced polymeric matrix and metal matrix composites. Previous investigations dealing with both continuously and discontinuously reinforced composites are included. A summary of the state-of-the-art will assist in defining new directions in this quickly reviving area of research. The second part outlines a recently developed analytical micromechanics model that is particularly well suited for studying the influence of these effects on the response of metal matrix composites. This micromechanics model, referred to as the generalized method of cells (GMC), is capable of predicting the overall, inelastic behavior of unidirectional, multi-phased composites given the properties of the constituents. In particular, the model is sufficiently general to predict the response of unidirectional composites reinforced by either continuous or discontinuous fibers with different inclusion shapes and spatial arrangements in the presence of either perfect or imperfect interfaces and/or interfacial layers. Recent developments regarding this promising model, as well as directions for future enhancements of the model's predictive capability, are included. Finally, the third pan provides qualitative results generated using GMC for a representative titanium matix composite system, SCS-6/TlMETAL 21S. Results are presented that correctly demonstrate the relative effects of fiber arrangement and shape on the longitudinal and transverse stress-strain and creep response, with both strong and weak fiber/matrix interfacial bonds. The fiber arrangements include square, square diagonal, hexagonal and rectangular periodic arrays, as well as a random array. The fiber shapes include circular, square and cross-shaped cross sections. The effect of fiber volume fraction on the observed stress-strain response is also discussed, as the thus-far poorly documented strain rate sensitivity effect. In addition to the well documented features of architecture dependent response of continuously reinforced two-phase MMC's, new results involving continuous multi-phase internal architectures are presented. Specifically, stress strain and creep response of composites with different size fibers having different internal arrangements and bond strengths are investigated with the aim of determining the feasibility of using this approach to enhance the transverse toughness and creep resistance of TMC's.

  16. Bend-insensitive distributed sensing in singlemode-multimode-singlemode optical fiber structure by using Brillouin optical time-domain analysis.

    PubMed

    Xu, Pengbai; Dong, Yongkang; Zhang, Juwang; Zhou, Dengwang; Jiang, Taofei; Xu, Jinlong; Zhang, Hongying; Zhu, Tao; Lu, Zhiwei; Chen, Liang; Bao, Xiaoyi

    2015-08-24

    We propose a bend-insensitive distributed Brillouin optical fiber sensing by using a singlemode-multimode-singlemode optical fiber structure for the first time to the best of our knowledge. The sensing fiber is a graded-index multimode fiber (GI-MMF) sandwiched by two standard single-mode fibers (SMFs) with central-alignment splicing at the interface between GI-MMF and SMF to excite the fundamental mode in GI-MMF. The sensing system can resist a minimal bend radius of 1.25mm while maintain the measurement performance, with which the measured coefficients of strain and temperature are 421.6MHz/% and 0.826MHz/°C, respectively. We also demonstrate that the higher-order modes excited in GI-MMF can be easily influenced by bending, so that exciting the fundamental mode is essential for bend-insensitive distributed sensing.

  17. Formation of anisotropic hollow-fiber membranes via thermally induced phase separation

    NASA Astrophysics Data System (ADS)

    Batarseh, Melanie Turkett

    The goal of this research project was to study the formation of anisotropic hollow fiber membranes via thermally induced phase separation (TIPS). This objective included developing a fundamental knowledge of the factors that contribute to anisotropy and studying how anisotropy can be controlled via operational parameters in hollow fiber spinning. The objective was met by creating a model to simulate the mass and heat transfer in the fiber wall during spinning and by experimentally varying spinning parameters and observing the affect on the membrane microstructure. The TIPS membrane formation process consists of forming a homogeneous solution of polymer and diluent and extruding the solution through a spinneret to form a hollow fiber. The fiber is cooled in an air gap followed by a quench bath, which results in phase separation of the solution into a diluent-rich phase dispersed in a continuous polymer-rich liquid phase. The diluent-rich domains grow in size until the polymer-rich phase crystallizes. Then the diluent is removed, and the spaces left behind become the pores of the microporous membrane. Therefore, the size of the diluent-rich domains when the polymer solidifies is related to the size of the pores in the finished membrane. Increasing the polymer concentration of the homogeneous solution or increasing the cooling rate of the phase separated solution decreases the domain size, and thus decreases pore size. An anisotropic membrane, which has a gradation of pore size from small pores at the feed-side to large pores at the permeate-side, can be formed by creating a concentration gradient or a cooling rate gradient across the membrane. In hollow fiber spinning, a concentration gradient can be created by allowing diluent to evaporate from the outside wall of the fiber in the air gap, and a cooling rate gradient can be created by quenching the fiber in a liquid bath. The spinning model calculates concentration and temperature profiles across the hollow fiber wall over time. The model results indicate that spinning temperature, air velocity, and air gap length have a significant effect on the concentration profile in the wall, and spinning temperature and quench temperature have a significant effect on the cooling rate profile. Experimental results indicate that increasing the air gap length from 5 to 50 cm. or increasing the quench temperature from 298 to 323 K has a significant effect on the anisotropic structure of the hollow fiber.

  18. Mode coupling in 340 μm GeO2 doped core-silica clad optical fibers

    NASA Astrophysics Data System (ADS)

    Djordjevich, Alexandar; Savović, Svetislav

    2017-03-01

    The state of mode coupling in 340 μm GeO2 doped core-silica clad optical fibers is investigated in this article using the power flow equation. The coupling coefficient in this equation was first tuned such that the equation could correctly reconstruct previously reported measured output power distributions. It was found that the GeO2 doped core-silica clad optical fiber showed stronger mode coupling than both, glass and popular plastic optical fibers. Consequently, the equilibrium as well as steady state mode distributions were achieved at shorter fiber lengths in GeO2 doped core-silica clad optical fibers.

  19. Temperature measurements in an ytterbium fiber amplifier up to the mode instability threshold

    NASA Astrophysics Data System (ADS)

    Beier, F.; Heinzig, M.; Sattler, Bettina; Walbaum, Till; Haarlammert, N.; Schreiber, T.; Eberhardt, R.; Tünnermann, A.

    2016-03-01

    We report on the measurement of the longitudinal temperature distribution in a fiber amplifier fiber during high power operation. The measurement signal of an optical frequency domain reflectometer is coupled to an ytterbium doped amplifier fiber via a wavelength division multiplexer. The longitudinal temperature distribution was examined for different pump powers with a sub mm resolution. The results show even small temperature variations induced by slight changes of the environmental conditions along the fiber. The mode instability threshold of the fiber under investigation was determined to be 480W and temperatures could be measured overall the measured output power values.

  20. Influence of the power law index on the fiber breakage during injection molding by numerical simulations

    NASA Astrophysics Data System (ADS)

    Desplentere, Frederik; Six, Wim; Bonte, Hilde; Debrabandere, Eric

    2013-04-01

    In predictive engineering for polymer processes, the proper prediction of material microstructure from known processing conditions and constituent material properties is a critical step forward properly predicting bulk properties in the finished composite. Operating within the context of long-fiber thermoplastics (LFT, length > 15mm) this investigation concentrates on the influence of the power law index on the final fiber length distribution within the injection molded part. To realize this, the Autodesk Simulation Moldflow Insight Scandium 2013 software has been used. In this software, a fiber breakage algorithm is available from this release on. Using virtual material data with realistic viscosity levels allows to separate the influence of the power law index on the fiber breakage from the other material and process parameters. Applying standard settings for the fiber breakage parameters results in an obvious influence on the fiber length distribution through the thickness of the part and also as function of position in the part. Finally, the influence of the shear rate constant within the fiber breakage model has been investigated illustrating the possibility to fit the virtual fiber length distribution to the possible experimentally available data.

  1. Fiber-type distribution in insect leg muscles parallels similarities and differences in the functional role of insect walking legs.

    PubMed

    Godlewska-Hammel, Elzbieta; Büschges, Ansgar; Gruhn, Matthias

    2017-10-01

    Previous studies have demonstrated that myofibrillar ATPase (mATPase) enzyme activity in muscle fibers determines their contraction properties. We analyzed mATPase activities in muscles of the front, middle and hind legs of the orthopteran stick insect (Carausius morosus) to test the hypothesis that differences in muscle fiber types and distributions reflected differences in their behavioral functions. Our data show that all muscles are composed of at least three fiber types, fast, intermediate and slow, and demonstrate that: (1) in the femoral muscles (extensor and flexor tibiae) of all legs, the number of fast fibers decreases from proximal to distal, with a concomitant increase in the number of slow fibers. (2) The swing phase muscles protractor coxae and levator trochanteris, have smaller percentages of slow fibers compared to the antagonist stance muscles retractor coxae and depressor trochanteris. (3) The percentage of slow fibers in the retractor coxae and depressor trochanteris increases significantly from front to hind legs. These results suggest that fiber-type distribution in leg muscles of insects is not identical across leg muscles but tuned towards the specific function of a given muscle in the locomotor system.

  2. Improved capacitance characteristics of electrospun ACFs by pore size control and vanadium catalyst.

    PubMed

    Im, Ji Sun; Woo, Sang-Wook; Jung, Min-Jung; Lee, Young-Seak

    2008-11-01

    Nano-sized carbon fibers were prepared by using electrospinning, and their electrochemical properties were investigated as a possible electrode material for use as an electric double-layer capacitor (EDLC). To improve the electrode capacitance of EDLC, we implemented a three-step optimization. First, metal catalyst was introduced into the carbon fibers due to the excellent conductivity of metal. Vanadium pentoxide was used because it could be converted to vanadium for improved conductivity as the pore structure develops during the carbonization step. Vanadium catalyst was well dispersed in the carbon fibers, improving the capacitance of the electrode. Second, pore-size development was manipulated to obtain small mesopore sizes ranging from 2 to 5 nm. Through chemical activation, carbon fibers with controlled pore sizes were prepared with a high specific surface and pore volume, and their pore structure was investigated by using a BET apparatus. Finally, polyacrylonitrile was used as a carbon precursor to enrich for nitrogen content in the final product because nitrogen is known to improve electrode capacitance. Ultimately, the electrospun activated carbon fibers containing vanadium show improved functionality in charge/discharge, cyclic voltammetry, and specific capacitance compared with other samples because of an optimal combination of vanadium, nitrogen, and fixed pore structures.

  3. Microplastic pollution in lakes and lake shoreline sediments - A case study on Lake Bolsena and Lake Chiusi (central Italy).

    PubMed

    Fischer, Elke Kerstin; Paglialonga, Lisa; Czech, Elisa; Tamminga, Matthias

    2016-06-01

    Rivers and effluents have been identified as major pathways for microplastics of terrestrial sources. Moreover, lakes of different dimensions and even in remote locations contain microplastics in striking abundances. This study investigates concentrations of microplastic particles at two lakes in central Italy (Lake Bolsena, Lake Chiusi). A total number of six Manta Trawls have been carried out, two of them one day after heavy winds occurred on Lake Bolsena showing effects on particle distribution of fragments and fibers of varying size categories. Additionally, 36 sediment samples from lakeshores were analyzed for microplastic content. In the surface waters 2.68 to 3.36 particles/m(3) (Lake Chiusi) and 0.82 to 4.42 particles/m(3) (Lake Bolsena) were detected, respectively. Main differences between the lakes are attributed to lake characteristics such as surface and catchment area, depth and the presence of local wind patterns and tide range at Lake Bolsena. An event of heavy winds and moderate rainfall prior to one sampling led to an increase of concentrations at Lake Bolsena which is most probable related to lateral land-based and sewage effluent inputs. The abundances of microplastic particles in sediments vary from mean values of 112 (Lake Bolsena) to 234 particles/kg dry weight (Lake Chiusi). Lake Chiusi results reveal elevated fiber concentrations compared to those of Lake Bolsena what might be a result of higher organic content and a shift in grain size distribution towards the silt and clay fraction at the shallow and highly eutrophic Lake Chiusi. The distribution of particles along different beach levels revealed no significant differences. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Quasi-distributed and wavelength selective addressing of optical micro-resonators based on long period fiber gratings.

    PubMed

    Farnesi, D; Chiavaioli, F; Baldini, F; Righini, G C; Soria, S; Trono, C; Conti, G Nunzi

    2015-08-10

    A novel all-in-fiber method for coupling light to high-Q silica whispering gallery mode (WGM) optical micro-resonators is presented, which is based on a pair of long period fiber gratings (LPGs) written in the same silica fiber, along with a thick fiber taper (15-18 μm in waist) in between the LPGs. The proposed coupling structure is robust and can be replicated many times along the same fiber simply cascading LPGs with different bands. Typical Q-factors of the order of 10(8) and total coupling efficiency up to 60% were measured collecting the resonances of microspheres or microbubbles at the fiber end. This approach uniquely allows quasi-distributed and wavelength selective addressing of different micro-resonators along the same fiber.

  5. Apparatus for Sizing and Rewinding Graphite Fibers

    NASA Technical Reports Server (NTRS)

    Wilson, M. L.; Stanfield, C. E.

    1986-01-01

    Equipment ideally suited for research and development of new sizing solutions. Designed expecially for applying thermoplastic sizing solutions to graphite tow consisting of 3,000 to 12,000 filaments per tow, but accommodates other solutions, filament counts, and materials other than graphite. Closed system containing highly volatile methylene chloride vapors. Also ventilation system directly over resin reservoir. Concept used to apply sizing compounds on fiber tows or yarn-type reinforcement materials used in composite technology. Sizing solutions consist of compounds compatible with thermosets as well as thermoplastics.

  6. Multi-peak structure of generation spectrum of random distributed feedback fiber Raman lasers.

    PubMed

    Vatnik, I D; Zlobina, E A; Kablukov, S I; Babin, S A

    2017-02-06

    We study spectral features of the generation of random distributed feedback fiber Raman laser arising from two-peak shape of the Raman gain spectral profile realized in the germanosilicate fibers. We demonstrate that number of peaks can be calculated using power balance model considering different subcomponents within each Stokes component.

  7. Optimum fiber distribution in singlewall corrugated fiberboard

    Treesearch

    Millard W. Johnson; Thomas J. Urbanik; William E. Denniston

    1979-01-01

    Determining optimum distribution of fiber through rational design of corrugated fiberboard could result in significant reductions in fiber required to meet end-use conditions, with subsequent reductions in price pressure and extension of the softwood timber supply. A theory of thin plates under large deformations is developed that is both kinematically and physically...

  8. Research of distributed-fiber-optic pressure sensor

    NASA Astrophysics Data System (ADS)

    Lu, Xiao Ming; Ren, Xin; Chen, Yu-bao; Che, Rensheng

    1991-08-01

    The paper discribed the principle and method of distributed fiber optic pressure sensor utilizing OTDR technique. The relativity of the microbend loss and bend radius of the multimode optical fiber is discussed ,and its experimental curve is given. In this paper ,a new type of OTDR measuring system using single-chip microcomputer is introduced as well

  9. The Effect of General Statistical Fiber Misalignment on Predicted Damage Initiation in Composites

    NASA Technical Reports Server (NTRS)

    Bednarcyk, Brett A.; Aboudi, Jacob; Arnold, Steven M.

    2014-01-01

    A micromechanical method is employed for the prediction of unidirectional composites in which the fiber orientation can possess various statistical misalignment distributions. The method relies on the probability-weighted averaging of the appropriate concentration tensor, which is established by the micromechanical procedure. This approach provides access to the local field quantities throughout the constituents, from which initiation of damage in the composite can be predicted. In contrast, a typical macromechanical procedure can determine the effective composite elastic properties in the presence of statistical fiber misalignment, but cannot provide the local fields. Fully random fiber distribution is presented as a special case using the proposed micromechanical method. Results are given that illustrate the effects of various amounts of fiber misalignment in terms of the standard deviations of in-plane and out-of-plane misalignment angles, where normal distributions have been employed. Damage initiation envelopes, local fields, effective moduli, and strengths are predicted for polymer and ceramic matrix composites with given normal distributions of misalignment angles, as well as fully random fiber orientation.

  10. Deconstructing three-dimensional (3D) structure of absorptive glass mat (AGM) separator to tailor pore dimensions and amplify electrolyte uptake

    NASA Astrophysics Data System (ADS)

    Rawal, Amit; Rao, P. V. Kameswara; Kumar, Vijay

    2018-04-01

    Absorptive glass mat (AGM) separator is a vital technical component in valve regulated lead acid (VRLA) batteries that can be tailored for a desired application. To selectively design and tailor the AGM separator, the intricate three-dimensional (3D) structure needs to be unraveled. Herein, a toolkit of 3D analytical models of pore size distribution and electrolyte uptake expressed via wicking characteristics of AGM separators under unconfined and confined states is presented. 3D data of fiber orientation distributions obtained previously through X-ray micro-computed tomography (microCT) analysis are used as key set of input parameters. The predictive ability of pore size distribution model is assessed through the commonly used experimental set-up that usually apply high level of compressive stresses. Further, the existing analytical model of wicking characteristics of AGM separators has been extended to account for 3D characteristics, and subsequently, compared with the experimental results. A good agreement between the theory and experiments pave the way to simulate the realistic charge-discharge modes of the battery by applying cyclic loading condition. A threshold criterion describing the invariant behavior of pore size and wicking characteristics in terms of maximum permissible limit of key structural parameters during charge-discharge mode of the battery has also been proposed.

  11. Effect of polishing conditions on terminating optical connectors with spherical convex polished ends

    NASA Astrophysics Data System (ADS)

    Lin, Samuel I.-En

    2002-01-01

    Increased demand for fiber-optic technology has created significant growth in the sales of interconnection devices such as fiber-optic connectors, cable assemblies, and adapters. To ensure good connector performance during actual use, several process parameters related to geometric and optical characteristics of the connector must be thoroughly understood during the manufacturing stage. The experimental design has been used here to see the influence of applied pressure and time on the fiber end geometry as well as optical performance. The mathematical model is also applied to explain the phenomena of the present fiber undercut-reflectance relation. By a proper choice of polishing film grit size and processing conditions, it is possible to obtain fiber connectors with less fiber undercut and better return loss. Influences of film grit size and rubber-pad thickness on the reflectance and the fiber undercut are also presented.

  12. Finite Element Analysis of the Endodontically-treated Maxillary Premolars restored with Composite Resin along with Glass Fiber Insertion in Various Positions.

    PubMed

    Navimipour, Elmira Jafari; Firouzmandi, Maryam; Mirhashemi, Fatemeh Sadat

    2015-04-01

    This study evaluated the effect of three methods of glass fiber insertion on stress distribution pattern and cusp movement of the root-filled maxillary premolars using finite element method (FEM) analysis. A three-dimensional (3 D) FEM model of a sound upper premolar tooth and four models of root-filled upper premolars with mesiocclusodistal (MOD) cavities were molded and restored with: (1) Composite resin only (NF); (2) Composite resin along with a ribbon of glass fiber placed in the occlusal third (OF); (3) Composite resin along with a ribbon of glass fiber placed circumferentially in the cervical third (CF), and (4) Composite resin along with occlusal and circumferential fibers (OCF). A static vertical load was applied to calculate the stress distributions. Structural analysis program by Solidworks were used for FEM analysis. Von-Mises stress values and cusp movements induced by occlusal loading were evaluated. Maximum Von-Mises stress of enamel occurred in sound tooth, followed by NF, CF, OF and OCF. Maximum Von-Mises stress of dentin occurred in sound tooth, followed by OF, OCF, CF and NF. Stress distribution patterns of OF and OCF were similar. Maximum overall stress values were concentrated in NF. Although stress distribution patterns of NF and CF were found as similar, CF showed lower stress values. Palatal cusp movement was more than buccal cusp in all of the models. The results of our study indicated that while the circumferential fiber had little effect on overall stress concentration, it provided a more favorable stress distribution pattern in cervical region. The occlusal fiber reduced the average stress in the entire structure but did not reduce cuspal movement. Incorporating glass fiber in composite restorations may alter the stress state within the structure depending on fiber position.

  13. Functional electrospun polystyrene nanofibers incorporating α-, β-, and γ-cyclodextrins: comparison of molecular filter performance.

    PubMed

    Uyar, Tamer; Havelund, Rasmus; Hacaloglu, Jale; Besenbacher, Flemming; Kingshott, Peter

    2010-09-28

    Electrospinning has been used to successfully create polystyrene (PS) nanofibers containing either of three different types of cyclodextrin (CD); α-CD, β-CD, and γ-CD. These three CDs are chosen because they have different sized cavities that potentially allow for selective inclusion complex (IC) formation with molecules of different size or differences in affinity of IC formation with one type of molecule. The CD containing electrospun PS nanofibers (PS/CD) were initially characterized by scanning electron microscopy (SEM) to determine the uniformity of the fibers and their fiber diameter distributions. X-ray photoelectron spectroscopy (XPS) was used to quantitatively determine the concentration of each CD on the different fiber surfaces. Static time-of-flight secondary ion mass spectrometry (static-ToF-SIMS) showed the presence of each type of CD on the PS nanofibers by the detection of both the CD sodium adduct molecular ions (M + Na+) and lower molecular weight oxygen containing fragment ions. The comparative efficiency of the PS/CD nanofibers/nanoweb for removing phenolphthalein, a model organic compound, from solution was determined by UV-vis spectrometry, and the kinetics of phenolphthalein capture was shown to follow the trend PS/α-CD > PS/β-CD > PS/γ-CD. Direct pyrolysis mass spectrometry (DP-MS) was also performed to ascertain the relative binding strengths of the phenolphthalein for the CD cavities, and the results showed the trend in the interaction strength was β-CD > γ-CD > α-CD. Our results demonstrate that nanofibers produced by electrospinning that incorporate cyclodextrins with different sized cavities can indeed filter organic molecules and can potentially be used for filtration, purification, and/or separation processes.

  14. Development of Metal Oxide Nanostructure-based Optical Sensors for Fossil Fuel Derived Gases Measurement at High Temperature

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Kevin P.

    2015-02-13

    This final technical report details research works performed supported by a Department of Energy grant (DE-FE0003859), which was awarded under the University Coal Research Program administrated by National Energy Technology Laboratory. This research program studied high temperature fiber sensor for harsh environment applications. It developed two fiber optical sensor platform technology including regenerative fiber Bragg grating sensors and distributed fiber optical sensing based on Rayleigh backscattering optical frequency domain reflectometry. Through the studies of chemical and thermal regenerative techniques for fiber Bragg grating (FBG) fabrication, high-temperature stable FBG sensors were successfully developed and fabricated in air-hole microstructured fibers, high-attenuation fibers,more » rare-earth doped fibers, and standard telecommunication fibers. By optimizing the laser processing and thermal annealing procedures, fiber grating sensors with stable performance up to 1100°C have been developed. Using these temperature-stable FBG gratings as sensor platform, fiber optical flow, temperature, pressure, and chemical sensors have been developed to operate at high temperatures up to 800°C. Through the integration of on-fiber functional coating, the use of application-specific air-hole microstructural fiber, and application of active fiber sensing scheme, distributed fiber sensor for temperature, pressure, flow, liquid level, and chemical sensing have been demonstrated with high spatial resolution (1-cm or better) with wide temperature ranges. These include the demonstration of 1) liquid level sensing from 77K to the room temperature, pressure/temperature sensing from the room temperature to 800C and from the 15psi to 2000 psi, and hydrogen concentration measurement from 0.2% to 10% with temperature ranges from the room temperature to 700°C. Optical sensors developed by this program has broken several technical records including flow sensors with the highest operation temperature up to 750°C, first distributed chemical measurements at the record high temperature up to 700°C, first distributed pressure measurement at the record high temperature up to 800°C, and the fiber laser sensors with the record high operation temperature up to 700°C. The research performed by this program dramatically expand the functionality, adaptability, and applicability of distributed fiber optical sensors with potential applications in a number of high-temperature energy systems such as fossil-fuel power generation, high-temperature fuel cell applications, and potential for nuclear energy systems.« less

  15. Neuronal nitric oxide synthase immunopositive neurons in cat claustrum--a light and electron microscopic study.

    PubMed

    Hinova-Palova, Dimka; Edelstein, Lawrence; Paloff, Adrian; Hristov, Stanislav; Papantchev, Vassil; Ovtscharoff, Wladimir

    2008-08-01

    Nitric oxide is a unique neurotransmitter, which participates in many physiological and pathological processes in the organism. Nevertheless there are little data about the neuronal Nitric Oxide Synthase immunoreactive (nNOS-ir) neurons and fibers in the dorsal claustrum (DC) of a cat. In this respect the aims of this study were: (1) to demonstrate nNOS-ir in the neurons and fibers of the DC; (2) to describe their light microscopic morphology and distribution; (3) to investigate and analyze the ultrastructure of the nNOS-ir neurons, fibers and synaptic terminals; (4) to verify whether the nNOS-ir neurons consist a specific subpopulation of claustral neurons; (5) to verify whether the nNOS-ir neurons have a specific pattern of organization throughout the DC. For demonstration of the nNOS-ir the Avidin-Biotin-Peroxidase Complex method was applied. Immunopositive for nNOS neurons and fibers were present in all parts of DC. On the light microscope level nNOS-ir neurons were different in shape and size. According to the latter they were divided into three groups-small (with diameter under 15 microm), medium-sized (with diameter from 16 to 20 microm) and large (with diameter over 21 microm). Some of nNOS-ir neurons were lightly-stained while others were darkly-stained. On the electron microscope level the immunoproduct was observed in neurons, dendrites and terminal boutons. Different types of nNOS-ir neurons differ according to their ultrastructural features. Three types of nNOS-ir synaptic boutons were found. As a conclusion we hope that the present study will contribute to a better understanding of the functioning of the DC in cat and that some of the data presented could be extrapolated to other mammals, including human.

  16. Improved distribution of small molecules and viral vectors in the murine brain using a hollow fiber catheter

    PubMed Central

    Seunguk, Oh; Odland, Rick; Wilson, Scott R.; Kroeger, Kurt M.; Liu, Chunyan; Lowenstein, Pedro R.; Castro, Maria G.; Hall, Walter A.; Ohlfest, John R.

    2008-01-01

    Object A hollow fiber catheter was developed to improve the distribution of drugs administered via direct infusion into the central nervous system (CNS). It is a porous catheter that significantly increases the surface area of brain tissue into which a drug is infused. Methods Dye was infused into the mouse brain through convection-enhanced delivery (CED) using a 28-gauge needle compared with a 3-mm-long hollow fiber catheter. To determine whether a hollow fiber catheter could increase the distribution of gene therapy vectors, a recombinant adenovirus expressing the firefly luciferase reporter was injected into the mouse striatum. Gene expression was monitored using in vivo bioluminescent imaging. To assess the distribution of gene transfer, an adenovirus expressing green fluorescent protein was injected into the striatum using a hollow fiber catheter or a needle. Results Hollow fiber catheter—mediated infusion increased the volume of brain tissue labeled with dye by 2.7 times relative to needle-mediated infusion. In vivo imaging revealed that catheter-mediated infusion of adenovirus resulted in gene expression that was 10 times greater than that mediated by a needle. The catheter appreciably increased the area of brain transduced with adenovirus relative to a needle, affecting a significant portion of the injected hemisphere. Conclusions The miniature hollow fiber catheter used in this study significantly increased the distribution of dye and adenoviral-mediated gene transfer in the mouse brain compared with the levels reached using a 28-gauge needle. Compared with standard single-port clinical catheters, the hollow fiber catheter has the advantage of millions of nanoscale pores to increase surface area and bulk flow in the CNS. Extending the scale of the hollow fiber catheter for the large mammalian brain shows promise in increasing the distribution and efficacy of gene therapy and drug therapy using CED. PMID:17886557

  17. Gauss-Kronrod-Trapezoidal Integration Scheme for Modeling Biological Tissues with Continuous Fiber Distributions

    PubMed Central

    Hou, Chieh; Ateshian, Gerard A.

    2015-01-01

    Fibrous biological tissues may be modeled using a continuous fiber distribution (CFD) to capture tension-compression nonlinearity, anisotropic fiber distributions, and load-induced anisotropy. The CFD framework requires spherical integration of weighted individual fiber responses, with fibers contributing to the stress response only when they are in tension. The common method for performing this integration employs the discretization of the unit sphere into a polyhedron with nearly uniform triangular faces (finite element integration or FEI scheme). Although FEI has proven to be more accurate and efficient than integration using spherical coordinates, it presents three major drawbacks: First, the number of elements on the unit sphere needed to achieve satisfactory accuracy becomes a significant computational cost in a finite element analysis. Second, fibers may not be in tension in some regions on the unit sphere, where the integration becomes a waste. Third, if tensed fiber bundles span a small region compared to the area of the elements on the sphere, a significant discretization error arises. This study presents an integration scheme specialized to the CFD framework, which significantly mitigates the first drawback of the FEI scheme, while eliminating the second and third completely. Here, integration is performed only over the regions of the unit sphere where fibers are in tension. Gauss-Kronrod quadrature is used across latitudes and the trapezoidal scheme across longitudes. Over a wide range of strain states, fiber material properties, and fiber angular distributions, results demonstrate that this new scheme always outperforms FEI, sometimes by orders of magnitude in the number of computational steps and relative accuracy of the stress calculation. PMID:26291492

  18. A Gauss-Kronrod-Trapezoidal integration scheme for modeling biological tissues with continuous fiber distributions.

    PubMed

    Hou, Chieh; Ateshian, Gerard A

    2016-01-01

    Fibrous biological tissues may be modeled using a continuous fiber distribution (CFD) to capture tension-compression nonlinearity, anisotropic fiber distributions, and load-induced anisotropy. The CFD framework requires spherical integration of weighted individual fiber responses, with fibers contributing to the stress response only when they are in tension. The common method for performing this integration employs the discretization of the unit sphere into a polyhedron with nearly uniform triangular faces (finite element integration or FEI scheme). Although FEI has proven to be more accurate and efficient than integration using spherical coordinates, it presents three major drawbacks: First, the number of elements on the unit sphere needed to achieve satisfactory accuracy becomes a significant computational cost in a finite element (FE) analysis. Second, fibers may not be in tension in some regions on the unit sphere, where the integration becomes a waste. Third, if tensed fiber bundles span a small region compared to the area of the elements on the sphere, a significant discretization error arises. This study presents an integration scheme specialized to the CFD framework, which significantly mitigates the first drawback of the FEI scheme, while eliminating the second and third completely. Here, integration is performed only over the regions of the unit sphere where fibers are in tension. Gauss-Kronrod quadrature is used across latitudes and the trapezoidal scheme across longitudes. Over a wide range of strain states, fiber material properties, and fiber angular distributions, results demonstrate that this new scheme always outperforms FEI, sometimes by orders of magnitude in the number of computational steps and relative accuracy of the stress calculation.

  19. Distribution of continuous variable quantum entanglement at a telecommunication wavelength over 20  km of optical fiber.

    PubMed

    Feng, Jinxia; Wan, Zhenju; Li, Yuanji; Zhang, Kuanshou

    2017-09-01

    The distribution of continuous variable (CV) Einstein-Podolsky-Rosen (EPR)-entangled beams at a telecommunication wavelength of 1550 nm over single-mode fibers is investigated. EPR-entangled beams with quantum entanglement of 8.3 dB are generated using a single nondegenerate optical parametric amplifier based on a type-II periodically poled KTiOPO 4 crystal. When one beam of the generated EPR-entangled beams is distributed over 20 km of single-mode fiber, 1.02 dB quantum entanglement can still be measured. The degradation of CV quantum entanglement in a noisy fiber channel is theoretically analyzed considering the effect of depolarized guided acoustic wave Brillouin scattering in optical fibers. The theoretical prediction is in good agreement with the experimental results.

  20. Kilowatt-level cladding light stripper for high-power fiber laser.

    PubMed

    Yan, Ping; Sun, Junyi; Huang, Yusheng; Li, Dan; Wang, Xuejiao; Xiao, Qirong; Gong, Mali

    2017-03-01

    We designed and fabricated a high-power cladding light stripper (CLS) by combining a fiber-etched CLS with a cascaded polymer-recoated CLS. The etched fiber reorganizes the numerical aperture (NA) distribution of the cladding light, leading to an increase in the leakage power and a flatter distribution of the leakage proportion in the cascaded polymer-recoated fiber. The index distribution of the cascaded polymer-recoated fiber is carefully designed to ensure an even leakage of cladding light. More stages near the index of 1.451 are included to disperse the heat. The CLS is capable of working consistently under 1187 W of cladding light with an attenuation of 26.59 dB, and the highest local temperature is less than 35°C.

  1. Vulnerability of OFDR-based distributed sensors to radiations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rizzolo, S.; Dipartimento di Fisica e Chimica, Universita di Palermo, Viale delle Scienze Parco d'Orleans II, Ed. 17, 90128 Palermo; Areva Centre Technique, Boulevard de l'Industrie, 71200, Le Creusot

    2015-07-01

    Silica-based optical fibers have recently attracted much interest for their use in harsh environments such as the ones encountered in space, military or high energy physics applications. Small size, fast response, light weight and immunity to electromagnetic fields are favorable advantages that often become decisive for fiber sensing to be chosen over other conventional sensing technologies. As an important and representative example, Fukushima's accident highlighted weaknesses in the safety of nuclear power plants. Since, one of the strategic research axis of the nuclear industry is devoted to the development of novel technologies and sensors to enhance and reinforce the safetymore » in nuclear power plants, especially in the case of accidental conditions associated with a strong increase of the constraints applied to the fiber-based system. The objective of this research field is to develop classes of distributed fiber-based sensors using scattering-based techniques, powerful solutions for various measurands measurement. Optical fiber properties, indeed, depend on several external parameters such as temperature, strain and therefore the fiber itself can be used as the sensitive element. Different classes of fiber-based sensing techniques have been recently investigated such as Fiber Bragg Gratings (FBGs) for discrete measurements and Brillouin, Raman and Rayleigh [8,9] scattering based techniques for distributed measurements of various environmental parameters. Whereas Brillouin and Raman sensor resolutions remain in the range of one meter, the advantage of Rayleigh scattering based technique is that it offers very high spatial resolution from 1 cm down to few μm over several hundred meters of fiber length down to few meters respectively. For nuclear industry, integrating fibers-based sensors has to improve the performances (resolution, operating range,...) of security systems in current nuclear power plants (NPPs) and offers new alternative technologies that may overcome the issues identified for next generation of NPPs. Such integration will only be possible if the OFDR based systems are able to resist to the constraints associated with industrial environments, one of the most constraining being the presence of high level of radiations. In this work, we carry out a systematic study to highlight the OFDR interest and sensitivity to probe the optical samples at high irradiation dose levels. The responses of five optical fibers types, from radiation hardened to radiation sensitive ones, are investigated to explore the influence of both the material compositions and the γ-irradiation on the ODFR sensors. Using these samples, we should highlight the influence of the core dopant concentration on the observed radiation-induced changes as well as the difference observed when the cladding is either radiation resistant or radiation sensitive. Our samples were irradiated using a {sup 60}Co source facility reaching total doses varying from 1 MGy up to a maximum of 10 MGy. All the measurements are performed after diverse months from irradiation to study permanents effects induced from these high γ-rays doses. We'll present at the conference all the experimental results acquired and use them to estimate the potential of OFDR-based systems for operation in radiation environments. (authors)« less

  2. Matching skidder size to wood harvested to increase hardwood fiber availability: a case study

    Treesearch

    Chris B. LeDoux

    2000-01-01

    Integrating what we know about growing trees with what we know about harvesting them can increase the economic availability of wood fiber and add value to future crops. Results for the oak/hickory forest type in West Virginia show that up to 1,736.61 ft³/ac. of wood fiber can be harvested 10 years sooner than usual by simply matching the size of the machine to...

  3. Electrospun Superhydrophobic Organic/Inorganic Composite Nanofibrous Membranes for Membrane Distillation.

    PubMed

    Li, Xiong; Yu, Xufeng; Cheng, Cheng; Deng, Li; Wang, Min; Wang, Xuefen

    2015-10-07

    Electrospun superhydrophobic organic/inorganic composite nanofibrous membranes exhibiting excellent direct contact membrane distillation (DCMD) performance were fabricated by a facile route combining the hydrophobization of silica nanoparticles (SiO2 NPs) and colloid electrospinning of the hydrophobic silica/poly(vinylidene fluoride) (PVDF) matrix. Benefiting from the utilization of SiO2 NPs with three different particle sizes, the electrospun nanofibrous membranes (ENMs) were endowed with three different delicate nanofiber morphologies and fiber diameter distribution, high porosity, and superhydrophobic property, which resulted in excellent waterproofing and breathability. Significantly, structural attributes analyses have indicated the major contributing role of fiber diameter distribution on determining the augment of permeate vapor flux through regulating mean flow pore size (MFP). Meanwhile, the extremely high liquid entry pressure of water (LEPw, 2.40 ± 0.10 bar), robust nanofiber morphology of PVDF immobilized SiO2 NPs, remarkable mechanical properties, thermal stability, and corrosion resistance endowed the as-prepared membranes with prominent desalination capability and stability for long-term MD process. The resultant choreographed PVDF/silica ENMs with optimized MFP presented an outstanding permeate vapor flux of 41.1 kg/(m(2)·h) and stable low permeate conductivity (∼2.45 μs/cm) (3.5 wt % NaCl salt feed; ΔT = 40 °C) over a DCMD test period of 24 h without membrane pores wetting detected. This result was better than those of typical commercial PVDF membranes and PVDF and modified PVDF ENMs reported so far, suggesting them as promising alternatives for MD applications.

  4. Nano polypeptide particles reinforced polymer composite fibers.

    PubMed

    Li, Jiashen; Li, Yi; Zhang, Jing; Li, Gang; Liu, Xuan; Li, Zhi; Liu, Xuqing; Han, Yanxia; Zhao, Zheng

    2015-02-25

    Because of the intensified competition of land resources for growing food and natural textile fibers, there is an urgent need to reuse and recycle the consumed/wasted natural fibers as regenerated green materials. Although polypeptide was extracted from wool by alkaline hydrolysis, the size of the polypeptide fragments could be reduced to nanoscale. The wool polypeptide particles were fragile and could be crushed down to nano size again and dispersed evenly among polymer matrix under melt extrusion condition. The nano polypeptide particles could reinforce antiultraviolet capability, moisture regain, and mechanical properties of the polymer-polypeptide composite fibers.

  5. Distributed transverse stress measurement along an optic fiber using polarimetric OFDR.

    PubMed

    Wei, Changjiang; Chen, Hongxin; Chen, Xiaojun; Chen, David; Li, Zhihong; Yao, X Steve

    2016-06-15

    We report a novel polarimetric optical frequency domain reflectometer (P-OFDR) that can simultaneously measure both space-resolved transverse stresses and light back-reflections along an optic fiber with sub-mm spatial resolution. By inducing transversal stresses and optical back-reflections at multiple points along a length of optic fiber, we demonstrate that our system can unambiguously distinguish the stresses from the back-reflections of a fiber with a fiber length longer than 800 m, a spatial resolution of 0.5 mm, a maximum stress level of up to 200 kpsi (1379 Mpa), a minimum stress of about 10 kpsi (69 Mpa), and a stress measurement uncertainty of 10%. We show that our P-OFDR can clearly identify the locations and magnitudes of the stresses inside a fiber coil induced during a fiber winding process. The P-OFDR can be used for fiber health monitoring for critical fiber links, fiber gyro coil characterization, and other distributed fiber sensing applications.

  6. Surface modification and characterization of basalt fibers as potential reinforcement of concretes

    NASA Astrophysics Data System (ADS)

    Iorio, M.; Santarelli, M. L.; González-Gaitano, G.; González-Benito, J.

    2018-01-01

    Basalt fibers were surface treated with silane coupling agents as a method to enhance the adhesion and durability of fiber-matrix interfaces in concrete based composite materials. In particular, this work has been focused on the study of basalt fibers chemical coatings with aminosilanes and their subsequent characterization. Surface treatments were carried out after removing the original sizing applied by manufacturer and pretreating them with an activation process of surface silanol regeneration. Different samples were considered to make convenient comparisons: as received fibers (commercial), calcinated fibers (without commercial sizing), activated samples (calcinated fibers subjected to an acid process for hydroxyl regeneration), and silanized fibers with γ-aminopropiltriethoxysilane, γ-aminopropilmethyldiethoxysilane and a mixture of 50% by weight of both silanes. A deep characterization was carried out in terms of structure using X-ray diffraction, XRD, and Fourier transform infrared spectroscopy, FTIR, thermal properties by thermogravimetric analysis, TGA, coupled with single differential thermal analysis, SDTA, and morphology by scanning electron microscopy, SEM, and atomic force microscopy, AFM.

  7. Exercise effects on the size and metabolic properties of soleus fibers in hindlimb-suspended rats

    NASA Technical Reports Server (NTRS)

    Graham, Scot C.; Roy, Roland R.; West, Steve P.; Thomason, Don; Baldwin, Kenneth M.

    1989-01-01

    The effects of four-week-long hind-limb suspension (HS) of rats on the size the soleus muscle fibers and the activity of succinate dehydrogenase (SDH) in dark and light ATPase fibers were investigated together with the efficacy of an endurance exercise (EX) program (daily treadmill exercise for 1.5 h/day at 20 m/min and a 30-percent grade) in ameliorating HS-induced changes. It was found that, in comparison to age-matched controls, the soleus wet weight decreased by 69 and 30 percent in HS and HS-EX rats, respectively, and the percent of dark ATPase fibers increased from 10 percent in controls to 19 and 17 percent, respectively. The values of the integrated fiber activity (activity/min times muscle area) showed a net loss of SDH in both the light and dark ATPase fibers of HS rats, but only in the light ATPase fibers of the HS-EX rats, indicating that exercise ameliorated but did not prevent the muscle fiber atrophy induced by HS.

  8. Stress-rupture behavior of small diameter polycrystalline alumina fibers

    NASA Technical Reports Server (NTRS)

    Yun, Hee Mann; Goldsby, Jon C.; Dicarlo, James A.

    1993-01-01

    Continuous length polycrystalline alumina fibers are candidates as reinforcement in high temperature composite materials. Interest therefore exists in characterizing the thermomechanical behavior of these materials, obtaining possible insights into underlying mechanisms, and understanding fiber performance under long term use. Results are reported on the time-temperature dependent strength behavior of Nextel 610 and Fiber FP alumina fibers with grain sizes of 100 and 300 nm, respectively. Below 1000 C and 100 hours, Nextel 610 with the smaller grain size had a greater fast fracture and rupture strength than Fiber FP. The time exponents for stress-rupture of these fibers were found to decrease from approximately 13 at 900 C to below 3 near 1050 C, suggesting a transition from slow crack growth to creep rupture as the controlling fracture mechanism. For both fiber types, an effective activation energy of 690 kJ/mol was measured for rupture. This allowed stress-rupture predictions to be made for extended times at use temperatures below 1000 C.

  9. Size and metabolic properties of fibers in rat fast-twitch muscles after hindlimb suspension

    NASA Technical Reports Server (NTRS)

    Roy, Roland R.; Bello, Maureen A.; Bouissou, Phillip; Edgerton, V. Reggie

    1987-01-01

    The effect of hind-limb suspension (HS) on single fibers of the medial gastrocnemius (MG) and the tibialis anterior (TA) muscles were studied in rats. Fiber area and the activities of succinate dehydrogenase (SDH) and alpha-glycerophosphate dehydrogenase (GPD) were determined in tissue sections using an image analysis system. After 28 days of HS, the MG atrophied 28 percent, whereas the TA weight was maintained. Both dark- and light-ATPase fibers in the deep region of the MG had decreased cross-sectional areas following HS, with the atrophic response being twice as great in the light-ATPase fibers than in the dark-ATPase fibers. Following HS, mean SDH activities of both fiber types were significantly lower in the MG and TA than in the CON; by contrast, mean GPD activities were either maintained at the CON level or were higher in both MG and TA muscles. The data suggest an independence of the mechanisms determining the muscle fiber size and the metabolic adaptations associated with HS.

  10. A Multiscale Progressive Failure Modeling Methodology for Composites that Includes Fiber Strength Stochastics

    NASA Technical Reports Server (NTRS)

    Ricks, Trenton M.; Lacy, Thomas E., Jr.; Bednarcyk, Brett A.; Arnold, Steven M.; Hutchins, John W.

    2014-01-01

    A multiscale modeling methodology was developed for continuous fiber composites that incorporates a statistical distribution of fiber strengths into coupled multiscale micromechanics/finite element (FE) analyses. A modified two-parameter Weibull cumulative distribution function, which accounts for the effect of fiber length on the probability of failure, was used to characterize the statistical distribution of fiber strengths. A parametric study using the NASA Micromechanics Analysis Code with the Generalized Method of Cells (MAC/GMC) was performed to assess the effect of variable fiber strengths on local composite failure within a repeating unit cell (RUC) and subsequent global failure. The NASA code FEAMAC and the ABAQUS finite element solver were used to analyze the progressive failure of a unidirectional SCS-6/TIMETAL 21S metal matrix composite tensile dogbone specimen at 650 degC. Multiscale progressive failure analyses were performed to quantify the effect of spatially varying fiber strengths on the RUC-averaged and global stress-strain responses and failure. The ultimate composite strengths and distribution of failure locations (predominately within the gage section) reasonably matched the experimentally observed failure behavior. The predicted composite failure behavior suggests that use of macroscale models that exploit global geometric symmetries are inappropriate for cases where the actual distribution of local fiber strengths displays no such symmetries. This issue has not received much attention in the literature. Moreover, the model discretization at a specific length scale can have a profound effect on the computational costs associated with multiscale simulations.models that yield accurate yet tractable results.

  11. Assessment of Carbon Fiber Electrical Effects

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The risks associated with the use of carbon fiber composites in civil aircraft are discussed along with the need for protection of civil aircraft equipment from fire-released carbon fibers. The size and number of carbon fibers released in civil aircraft crash fires, the downwind dissemination of the fibers, their penetration into buildings and equipment, and the vulnerability of electrical/electronic equipment to damage by the fibers are assessed.

  12. Distributed condition monitoring techniques of optical fiber composite power cable in smart grid

    NASA Astrophysics Data System (ADS)

    Sun, Zhihui; Liu, Yuan; Wang, Chang; Liu, Tongyu

    2011-11-01

    Optical fiber composite power cable such as optical phase conductor (OPPC) is significant for the development of smart grid. This paper discusses the distributed cable condition monitoring techniques of the OPPC, which adopts embedded single-mode fiber as the sensing medium. By applying optical time domain reflection and laser Raman scattering, high-resolution spatial positioning and high-precision distributed temperature measurement is executed. And the OPPC cable condition parameters including temperature and its location, current carrying capacity, and location of fracture and loss can be monitored online. OPPC cable distributed condition monitoring experimental system is set up, and the main parts including pulsed fiber laser, weak Raman signal reception, high speed acquisition and cumulative average processing, temperature demodulation and current carrying capacity analysis are introduced. The distributed cable condition monitoring techniques of the OPPC is significant for power transmission management and security.

  13. Sorption and modeling of mass transfer of toxic chemical vapors in activated-carbon fiber-cloth adsorbers

    USGS Publications Warehouse

    Lordgooei, M.; Sagen, J.; Rood, M.J.; Rostam-Abadi, M.

    1998-01-01

    A new activated-carbon fiber-cloth (ACFC) adsorber coupled with an electrothermal regenerator and a cryogenic condenser was designed and developed to efficiently capture and recover toxic chemical vapors (TCVs) from simulated industrial gas streams. The system was characterized for adsorption by ACFC, electrothermal desorption, and cryogenic condensation to separate acetone and methyl ethyl ketone from gas streams. Adsorption dynamics are numerically modeled to predict system characteristics during scale-up and optimization of the process in the future. The model requires diffusivities of TCVs into an activated-carbon fiber (ACF) as an input. Effective diffusivities of TCVs into ACFs were modeled as a function of temperature, concentration, and pore size distribution. Effective diffusivities for acetone at 65 ??C and 30-60 ppmv were measured using a chromatography method. The energy factor for surface diffusion was determined from comparison between the experimental and modeled effective diffusivities. The modeled effective diffusivities were used in a dispersive computational model to predict mass transfer zones of TCVs in fixed beds of ACFC under realistic conditions for industrial applications.

  14. [Synthesis and characterization of chromium doped Y3Al5O12 compound pigment].

    PubMed

    Yue, Shi-Juan; Su, Xiao; Jiang, Han-Jie; Liu, Shao-Xuan; Hong, You-Li; Zhang, Kai; Huang, Wan-Xias; Xiong, Zu-Jiang; Zhao, Ying; Liu, Cui-Ge; Wei, Yong-Ju; Meng, Tao; Xu, Yi-Zhuang; Wu, Jin-Guang

    2012-09-01

    The authors synthesized a new kind of green pigment via co-precipitation method by doping Y3Al5O12 with Cr+. The size of the pigment particles is around 200 nm as observed under scanning electron microscope. XRD results demonstrate that the pigment crystalline form of the pigment is yttrium alluminium garnet. UV-Vis spectra were used to investigate the coordination states and transition behavior of the doping ions. In addition, the colour feature was measured by CIE L* a* b* chroma value. The pigment was blended with polypropylene and then polypropylene fiber was produced using the polypropelene-pigment composite via molten spinning process. The distribution of the pigment particles in the polypropylene fibers was characterized by Xray computed tomography (CT) technique on the Beijing synchrotron radiation facility. The result states that the composite oxide pigment particles are homogeneously dispersed in the polypropylene fibers. The pigments are stable, non-toxic to the environment, and may be applied in non-aqueous dyeing to reduce waste water emitted by textile dyeing and printing industry.

  15. A continuum mechanics-based musculo-mechanical model for esophageal transport

    NASA Astrophysics Data System (ADS)

    Kou, Wenjun; Griffith, Boyce E.; Pandolfino, John E.; Kahrilas, Peter J.; Patankar, Neelesh A.

    2017-11-01

    In this work, we extend our previous esophageal transport model using an immersed boundary (IB) method with discrete fiber-based structural model, to one using a continuum mechanics-based model that is approximated based on finite elements (IB-FE). To deal with the leakage of flow when the Lagrangian mesh becomes coarser than the fluid mesh, we employ adaptive interaction quadrature points to deal with Lagrangian-Eulerian interaction equations based on a previous work (Griffith and Luo [1]). In particular, we introduce a new anisotropic adaptive interaction quadrature rule. The new rule permits us to vary the interaction quadrature points not only at each time-step and element but also at different orientations per element. This helps to avoid the leakage issue without sacrificing the computational efficiency and accuracy in dealing with the interaction equations. For the material model, we extend our previous fiber-based model to a continuum-based model. We present formulations for general fiber-reinforced material models in the IB-FE framework. The new material model can handle non-linear elasticity and fiber-matrix interactions, and thus permits us to consider more realistic material behavior of biological tissues. To validate our method, we first study a case in which a three-dimensional short tube is dilated. Results on the pressure-displacement relationship and the stress distribution matches very well with those obtained from the implicit FE method. We remark that in our IB-FE case, the three-dimensional tube undergoes a very large deformation and the Lagrangian mesh-size becomes about 6 times of Eulerian mesh-size in the circumferential orientation. To validate the performance of the method in handling fiber-matrix material models, we perform a second study on dilating a long fiber-reinforced tube. Errors are small when we compare numerical solutions with analytical solutions. The technique is then applied to the problem of esophageal transport. We use two fiber-reinforced models for the esophageal tissue: a bi-linear model and an exponential model. We present three cases on esophageal transport that differ in the material model and the muscle fiber architecture. The overall transport features are consistent with those observed from the previous model. We remark that the continuum-based model can handle more realistic and complicated material behavior. This is demonstrated in our third case where a spatially varying fiber architecture is included based on experimental study. We find that this unique muscle fiber architecture could generate a so-called pressure transition zone, which is a luminal pressure pattern that is of clinical interest. This suggests an important role of muscle fiber architecture in esophageal transport.

  16. Graphite coated PVA fibers as the reinforcement for cementitious composites

    NASA Astrophysics Data System (ADS)

    Zhang, Yunhua; Zhang, Zhipeng; Liu, Zhichao

    2018-02-01

    A new preconditioning method was developed to PVA fibers as the reinforcement in cement-based materials. Virgin PVA fibers exhibits limited adhesion to graphite powders due to the presence of oil spots on the surface. Mixing PVA fibers with a moderately concentrated KMnO4-H2SO4 solution can efficiently remove the oil spots by oxidation without creating extra precipitate (MnO2) associated with the reduction reaction. This enhances the coating of graphite powders onto fiber surface and improves the mechanical properties of PVA fiber reinforced concrete (PVA-FRC). Graphite powders yields better fiber distribution in the matrix and reduces the fiber-matrix bonding, which is beneficial in uniformly distributing the stress among embedded fibers and creating steady generation and propagation of tight microcracks. This is evidenced by the significantly enhanced strain hardening behavior and improved flexural strength and toughness.

  17. Postnatal development of autonomic and sensory innervation of thoracic hairy skin in the rat. A histochemical, immunocytochemical, and radioenzymatic study.

    PubMed

    Schotzinger, R J; Landis, S C

    1990-05-01

    Histochemical, immunocytochemical, and radioenzymatic techniques were used to examine the neurotransmitter-related properties of the innervation of thoracic hairy skin in rats during adulthood and postnatal development. In the adult, catecholamine-containing fibers were associated with blood vessels and piloerector muscles, and ran in nerve bundles throughout the dermis. The distribution of tyrosine hydroxylase (TH)-immunoreactive (IR) fibers was identical. Neuronal fibers displaying neuropeptide Y (NPY) immunoreactivity were seen in association with blood vessels. Double-labeling studies suggested that most, if not all, NPY-IR fibers were also TH-IR and likewise most, if not all, vessel-associated TH-IR fibers were also NPY-IR. Calcitonin gene-related peptide (CGRP)-IR fibers were observed near and penetrating into the epidermis, in close association with hair follicles and blood vessels, and in nerve bundles. A similar distribution of substance P (SP)-IR fibers was evident. In adult animals treated as neonates with the sympathetic neurotoxin 6-hydroxydopamine, a virtual absence of TH-IR and NPY-IR fibers was observed, whereas the distribution of CGRP-IR and SP-IR fibers appeared unaltered. During postnatal development, a generalized increase in the number, fluorescence intensity, and varicose morphology of neuronal fibers displaying catecholamine fluorescence, NPY-IR, CGRP-IR, and SP-IR was observed. By postnatal day 21, the distribution of the above fibers had reached essentially adult levels, although the density of epidermal-associated CGRP-IR and SP-IR fibers was significantly greater than in the adult. The following were not evident in thoracic hairy skin at any timepoint examined: choline acetyltransferase activity, acetylcholinesterase histochemical staining or immunoreactivity, fibers displaying immunoreactivity to vasoactive intestinal peptide, cholecystokinin, or leucine-enkephalin. The present study demonstrates that the thoracic hairy skin in developing and adult rats receives an abundant sympathetic catecholaminergic and sensory innervation, but not a cholinergic innervation.

  18. Spaceflight and growth effects on muscle fibers in the rhesus monkey

    NASA Technical Reports Server (NTRS)

    Bodine-Fowler, Sue C.; Roy, Roland R.; Rudolph, William; Haque, Naz; Kozlovskaia, Inessa B.; Edgerton, V. R.

    1992-01-01

    The effect of a 14-day spaceflight onboard Cosmos 2044 on selected morphological and metabolic properties of single muscle fibers was investigated in a nonhuman primate, Macaca mulatta. It is concluded that the 14-day spaceflight had little impact on fiber size in the soleus (S) and medial gastrocnemius (MG) muscles, whereas it appeared to be a slight decrease in sized in the tibialis anterior (TA). The mean fiber size in the postflight biopsies increased relative to preflight values. The mean fiber succinate dehydrogenase activity was found to decrease in the MG, whereas there was no apparent effect of spaceflight on the s and ta muscles. The differences in response of the S, MG, and TA to spaceflight in monkeys vs rats may be related to a species responsiveness to spaceflight, the manner in which the animals were restrained, and/or the possibility that the ankle musculature was able to function against a load while in space.

  19. Research on fiber-optic cantilever-enhanced photoacoustic spectroscopy for trace gas detection

    NASA Astrophysics Data System (ADS)

    Chen, Ke; Zhou, Xinlei; Gong, Zhenfeng; Yu, Shaochen; Qu, Chao; Guo, Min; Yu, Qingxu

    2018-01-01

    We demonstrate a new scheme of cantilever-enhanced photoacoustic spectroscopy, combining a sensitivity-improved fiber-optic cantilever acoustic sensor with a tunable high-power fiber laser, for trace gas detection. The Fabry-Perot interferometer based cantilever acoustic sensor has advantages such as high sensitivity, small size, easy to install and immune to electromagnetic. Tunable erbium-doped fiber ring laser with an erbium-doped fiber amplifier is used as the light source for acoustic excitation. In order to improve the sensitivity for photoacoustic signal detection, a first-order longitudinal resonant photoacoustic cell with the resonant frequency of 1624 Hz and a large size cantilever with the first resonant frequency of 1687 Hz are designed. The size of the cantilever is 2.1 mm×1 mm, and the thickness is 10 μm. With the wavelength modulation spectrum and second-harmonic detection methods, trace ammonia (NH3) has been measured. The gas detection limits (signal-to-noise ratio = 1) near the wavelength of 1522.5 nm is achieved to be 3 ppb.

  20. A technique to measure strain distributions in single wood pulp fibers

    Treesearch

    Laurence Mott; Stephen M. Shaler; Leslie H. Groom

    1996-01-01

    Environmental scanning electron microscopy (ESEM) and digital image correlation (DIC) were used to measure microstrain distributions on the surface of wood pulp fibers. A loading stage incorporating a fiber gripping system was designed and built by the authors. Fitted to the tensile substage of an ESEM or a Polymer Laboratories MINIMAT tester, it provided a reliable...

  1. The Effects of Fiber Inclusion on Pet Food Sensory Characteristics and Palatability

    PubMed Central

    Koppel, Kadri; Monti, Mariana; Gibson, Michael; Alavi, Sajid; Donfrancesco, Brizio Di; Carciofi, Aulus Cavalieri

    2015-01-01

    Simple Summary The results from this research indicate that fibers have an effect on extruded pet food texture and palatability. These results may help pet food companies select ingredients for successful product formulations. Abstract The objectives of this study were to determine (a) the influence of fiber on the sensory characteristics of dry dog foods; (b) differences of coated and uncoated kibbles for aroma and flavor characteristics; (c) palatability of these dry dog foods; and (d) potential associations between palatability and sensory attributes. A total of eight fiber treatments were manufactured: a control (no fiber addition), guava fiber (3%, 6%, and 12%), sugar cane fiber (9%; large and small particle size), and wheat bran fiber (32%; large and small particle size). The results indicated significant effects of fibers on both flavor and texture properties of the samples. Bitter taste and iron and stale aftertaste were examples of flavor attributes that differed with treatment, with highest intensity observed for 12% guava fiber and small particle size sugar cane fiber treatments. Fracturability and initial crispness attributes were lowest for the sugar cane fiber treatments. Flavor of all treatments changed after coating with a palatant, increasing in toasted, brothy, and grainy attributes. The coating also had a masking effect on aroma attributes such as stale, flavor attributes such as iron and bitter taste, and appearance attributes such as porosity. Palatability testing results indicated that the control treatment was preferred over the sugar cane or the wheat bran treatment. The treatment with large sugarcane fiber particles was preferred over the treatment with small particles, while both of the wheat bran treatments were eaten at a similar level. Descriptive sensory analysis data, especially textural attributes, were useful in pinpointing the underlying characteristics and were considered to be reasons that may influence palatability of dog foods manufactured with inclusion of different fibers. PMID:26479141

  2. Simultaneous measurement of dynamic strain and temperature distribution using high birefringence PANDA fiber Bragg grating

    NASA Astrophysics Data System (ADS)

    Zhu, Mengshi; Murayama, Hideaki

    2017-04-01

    New approach in simultaneous measurement of dynamic strain and temperature has been done by using a high birefringence PANDA fiber Bragg grating sensor. By this technique, we have succeeded in discriminating dynamic strain and temperature distribution at the sampling rate of 800 Hz and the spatial resolution of 1 mm. The dynamic distribution of strain and temperature were measured with the deviation of 5mm spatially. In addition, we have designed an experimental setup by which we can apply quantitative dynamic strain and temperature distribution to the fiber under testing without bounding it to a specimen.

  3. Performance analysis for IEEE 802.11 distributed coordination function in radio-over-fiber-based distributed antenna systems.

    PubMed

    Fan, Yuting; Li, Jianqiang; Xu, Kun; Chen, Hao; Lu, Xun; Dai, Yitang; Yin, Feifei; Ji, Yuefeng; Lin, Jintong

    2013-09-09

    In this paper, we analyze the performance of IEEE 802.11 distributed coordination function in simulcast radio-over-fiber-based distributed antenna systems (RoF-DASs) where multiple remote antenna units (RAUs) are connected to one wireless local-area network (WLAN) access point (AP) with different-length fiber links. We also present an analytical model to evaluate the throughput of the systems in the presence of both the inter-RAU hidden-node problem and fiber-length difference effect. In the model, the unequal delay induced by different fiber length is involved both in the backoff stage and in the calculation of Ts and Tc, which are the period of time when the channel is sensed busy due to a successful transmission or a collision. The throughput performances of WLAN-RoF-DAS in both basic access and request to send/clear to send (RTS/CTS) exchange modes are evaluated with the help of the derived model.

  4. Distributed gas detection system and method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Challener, William Albert; Palit, Sabarni; Karp, Jason Harris

    A distributed gas detection system includes one or more hollow core fibers disposed in different locations, one or more solid core fibers optically coupled with the one or more hollow core fibers and configured to receive light of one or more wavelengths from a light source, and an interrogator device configured to receive at least some of the light propagating through the one or more solid core fibers and the one or more hollow core fibers. The interrogator device is configured to identify a location of a presence of a gas-of-interest by examining absorption of at least one of themore » wavelengths of the light at least one of the hollow core fibers.« less

  5. Heavyweight cement concrete with high stability of strength parameters

    NASA Astrophysics Data System (ADS)

    Kudyakov, Konstantin; Nevsky, Andrey; Danke, Ilia; Kudyakov, Aleksandr; Kudyakov, Vitaly

    2016-01-01

    The present paper establishes regularities of basalt fibers distribution in movable cement concrete mixes under different conditions of their preparation and their selective introduction into mixer during the mixing process. The optimum content of basalt fibers was defined as 0.5% of the cement weight, which provides a uniform distribution of fibers in the concrete volume. It allows increasing compressive strength up to 51.2% and increasing tensile strength up to 28.8%. Micro-structural analysis identified new formations on the surface of basalt fibers, which indicates the good adhesion of hardened cement paste to the fibers. Stability of concrete strength parameters has significantly increased with introduction of basalt fibers into concrete mix.

  6. Use of Two Dimensional Semi-denaturing Detergent Agarose Gel Electrophoresis to Confirm Size Heterogeneity of Amyloid or Amyloid-like Fibers.

    PubMed

    Hanna-Addams, Sarah; Wang, Zhigao

    2018-04-26

    Amyloid or amyloid-like fibers have been associated with many human diseases, and are now being discovered to be important for many signaling pathways. The ability to readily detect the formation of these fibers under various experimental conditions is essential for understanding their potential function. Many methods have been used to detect the fibers, but not without some drawbacks. For example, electron microscopy (EM), or staining with Congo Red or Thioflavin T often requires purification of the fibers. On the other hand, semi-denaturing detergent agarose gel electrophoresis (SDD-AGE) allows detection of the SDS-resistant amyloid-like fibers in the cell extracts without purification. In addition, it allows the comparison of the size difference of the fibers. More importantly, it can be used to identify specific proteins within the fibers by Western blotting. It is less time consuming and more easily accessible to a wider number of labs. SDD-AGE results often show variable degree of heterogeneity. It raises the question whether part of the heterogeneity results from the dissociation of the protein complex during the electrophoresis in the presence of SDS. For this reason, we have employed a second dimension of SDD-AGE to determine if the size heterogeneity seen in SDD-AGE is truly a result of fiber heterogeneity in vivo and not a result of either degradation or dissociation of some of the proteins during electrophoresis. This method allows fast, qualitative confirmation that the amyloid or amyloid-like fibers are not partially dissociating during the SDD-AGE process.

  7. Influence of retainer design on two-unit cantilever resin-bonded glass fiber reinforced composite fixed dental prostheses: an in vitro and finite element analysis study.

    PubMed

    Keulemans, Filip; De Jager, Niek; Kleverlaan, Cornelis J; Feilzer, Albert J

    2008-10-01

    The aim of this study was to evaluate in vitro the influence of retainer design on the strength of two-unit cantilever resin-bonded glass fiber-reinforced composite (FRC) fixed dental prostheses (FDP). Four retainer designs were tested: a proximal box, a step-box, a dual wing, and a step-box-wing. Of each design on 8 human mandibular molars, FRC-FDPs of a premolar size were produced. The FRC framework was made of resin impregnated unidirectional glass fibers (Estenia C&B EG Fiber, Kuraray) and veneered with hybrid resin composite (Estenia C&B, Kuraray). Panavia F 2.0 (Kuraray) was used as resin luting cement. FRC-FDPs were loaded to failure in a universal testing machine. One-way ANOVA and Tukey's post-hoc test were used to evaluate the data. The four designs were analyzed with finite element analysis (FEA) to reveal the stress distribution within the tooth/restoration complex. Significantly lower fracture strengths were observed with inlay-retained FDPs (proximal box: 300 +/- 65 N; step-box: 309 +/- 37 N) compared to wing-retained FDPs (p < 0.05) (step-box-wing: 662 +/- 99 N; dual wing: 697 +/- 67 N). Proximal-box-, step-box-, and step-box-wing-retained FDPs mainly failed with catastrophic cusp fracture (proximal box 100%, step-box 100%, and step-box-wing 75%), while dual-wing-retained FDPs mainly failed at the adhesive interface and/or due to pontic failure (75%). FEA showed more favorable stress distributions within the tooth/restoration complex for dual wing retainers. A dual-wing retainer is the optimal design for replacement of a single premolar by means of a two-unit cantilever FRC-FDPs.

  8. Femtosecond laser fabrication of fiber based optofluidic platform for flow cytometry applications

    NASA Astrophysics Data System (ADS)

    Serhatlioglu, Murat; Elbuken, Caglar; Ortac, Bulend; Solmaz, Mehmet E.

    2017-02-01

    Miniaturized optofluidic platforms play an important role in bio-analysis, detection and diagnostic applications. The advantages of such miniaturized devices are extremely low sample requirement, low cost development and rapid analysis capabilities. Fused silica is advantageous for optofluidic systems due to properties such as being chemically inert, mechanically stable, and optically transparent to a wide spectrum of light. As a three dimensional manufacturing method, femtosecond laser scanning followed by chemical etching shows great potential to fabricate glass based optofluidic chips. In this study, we demonstrate fabrication of all-fiber based, optofluidic flow cytometer in fused silica glass by femtosecond laser machining. 3D particle focusing was achieved through a straightforward planar chip design with two separately fabricated fused silica glass slides thermally bonded together. Bioparticles in a fluid stream encounter with optical interrogation region specifically designed to allocate 405nm single mode fiber laser source and two multi-mode collection fibers for forward scattering (FSC) and side scattering (SSC) signals detection. Detected signal data collected with oscilloscope and post processed with MATLAB script file. We were able to count number of events over 4000events/sec, and achieve size distribution for 5.95μm monodisperse polystyrene beads using FSC and SSC signals. Our platform shows promise for optical and fluidic miniaturization of flow cytometry systems.

  9. Alpine Skiing With total knee ArthroPlasty (ASWAP): metabolism, inflammation, and skeletal muscle fiber characteristics.

    PubMed

    Kristensen, M; Pötzelsberger, B; Scheiber, P; Bergdahl, A; Hansen, C N; Andersen, J L; Narici, M; Salvioli, S; Conte, M; Müller, E; Dela, F

    2015-08-01

    We investigated the effect of alpine skiing for 12 weeks on skeletal muscle characteristics and biomarkers of glucose homeostasis and cardiovascular risk factors. Twenty-three patients with a total knee arthroplasty (TKA) were studied 2.9 ± 0.9 years (mean ± SD) after the operation. Fourteen patients participated in the intervention group (IG) and nine in the control group (CG). Blood samples and muscle biopsies were obtained before (PRE) and 7.3 ± 0.8 days after (POST) the intervention, and blood samples again after a retention (RET) phase of 8 weeks. With skiing, glucose homeostasis improved in IG (decrease in fasting insulin, increase in muscle glycogen) but not in CG. Fiber type distribution and size, as well as capillary density and number of capillaries around the fibers (CAF), were not different between the operated and the non-operated leg in either group. The relative number of type I fibers increased with skiing in IG with no change in CG. Inflammatory biomarkers, plasma lipids, and mitochondrial proteins and activity did not change. Alpine skiing is metabolically beneficial and can be used as a training modality by elderly people with TKA. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  10. Numerical simulation of actuation behavior of active fiber composites in helicopter rotor blade application

    NASA Astrophysics Data System (ADS)

    Paik, Seung Hoon; Kim, Ji Yeon; Shin, Sang Joon; Kim, Seung Jo

    2004-07-01

    Smart structures incorporating active materials have been designed and analyzed to improve aerospace vehicle performance and its vibration/noise characteristics. Helicopter integral blade actuation is one example of those efforts using embedded anisotropic piezoelectric actuators. To design and analyze such integrally-actuated blades, beam approach based on homogenization methodology has been traditionally used. Using this approach, the global behavior of the structures is predicted in an averaged sense. However, this approach has intrinsic limitations in describing the local behaviors in the level of the constituents. For example, the failure analysis of the individual active fibers requires the knowledge of the local behaviors. Microscopic approach for the analysis of integrally-actuated structures is established in this paper. Piezoelectric fibers and matrices are modeled individually and finite element method using three-dimensional solid elements is adopted. Due to huge size of the resulting finite element meshes, high performance computing technology is required in its solution process. The present methodology is quoted as Direct Numerical Simulation (DNS) of the smart structure. As an initial validation effort, present analytical results are correlated with the experiments from a small-scaled integrally-actuated blade, Active Twist Rotor (ATR). Through DNS, local stress distribution around the interface of fiber and matrix can be analyzed.

  11. A Hybrid Approach to Composite Damage and Failure Analysis Combining Synergistic Damage Mechanics and Peridynamics

    DTIC Science & Technology

    2016-09-30

    far from uniform . The final nonuniform distribution of fibers consists of clustered regions and resin pockets. The clustered fiber regions promote...period. Approach and Results A novel procedure has been devised to create nonuniform fiber distributions from the initial fiber bundle (with...used in simulations to produce nonuniform configurations. 2 . , •• ... . .. ·~ · . .. 000 8oa~.f𔄂oo o0~&mt~ go ... ·~· %(1 "’ ,~o ooif-l /j

  12. Real-time distributed fiber microphone based on phase-OTDR.

    PubMed

    Franciscangelis, Carolina; Margulis, Walter; Kjellberg, Leif; Soderquist, Ingemar; Fruett, Fabiano

    2016-12-26

    The use of an optical fiber as a real-time distributed microphone is demonstrated employing a phase-OTDR with direct detection. The method comprises a sample-and-hold circuit capable of both tuning the receiver to an arbitrary section of the fiber considered of interest and to recover in real-time the detected acoustic wave. The system allows listening to the sound of a sinusoidal disturbance with variable frequency, music and human voice with ~60 cm of spatial resolution through a 300 m long optical fiber.

  13. Distributed measurement of birefringence dispersion in polarization-maintaining fibers

    NASA Astrophysics Data System (ADS)

    Tang, Feng; Wang, Xiang-Zhao; Zhang, Yimo; Jing, Wencai

    2006-12-01

    A new method to measure the birefringence dispersion in high-birefringence polarization-maintaining fibers is presented using white-light interferometry. By analyzing broadening of low-coherence interferograms obtained in a scanning Michelson interferometer, the birefringence dispersion and its variation along different fiber sections are acquired with high sensitivity and accuracy. Birefringence dispersions of two PANDA fibers at their operation wavelength are measured to be 0.011 ps/(km nm) and 0.018 ps/(km nm), respectively. Distributed measurement capability of the method is also verified experimentally.

  14. Ripple distribution for nonlinear fiber-optic channels.

    PubMed

    Sorokina, Mariia; Sygletos, Stylianos; Turitsyn, Sergei

    2017-02-06

    We demonstrate data rates above the threshold imposed by nonlinearity on conventional optical signals by applying novel probability distribution, which we call ripple distribution, adapted to the properties of the fiber channel. Our results offer a new direction for signal coding, modulation and practical nonlinear distortions compensation algorithms.

  15. Power Scaling Fiber Amplifiers Using Very-Large-Mode-Area Fibers

    DTIC Science & Technology

    2016-02-23

    fiber lasers are limited to below 1kW due to limited mode size and thermal issues, particularly thermal mode instability (TMI). Two comprehensive models...accurately modeling very- large-mode-area fiber amplifiers while simultaneously including thermal lensing and TMI. This model was applied to investigate...expected resilience to TMI. 15. SUBJECT TERMS Fiber amplifier, high power laser, thermal mode instability, large-mode-area fiber, ytterbium-doped

  16. The other fiber, the other fabric, the other way

    NASA Astrophysics Data System (ADS)

    Stephens, Gary R.

    1993-02-01

    Coaxial cable and distributed switches provide a way to configure high-speed Fiber Channel fabrics. This type of fabric provides a cost-effective alternative to a fabric of optical fibers and centralized cross-point switches. The fabric topology is a simple tree. Products using parallel busses require a significant change to migrate to a serial bus. Coaxial cables and distributed switches require a smaller technology shift for these device manufacturers. Each distributed switch permits both medium type and speed changes. The fabric can grow and bridge to optical fibers as the needs expand. A distributed fabric permits earlier entry into high-speed serial operations. For very low-cost fabrics, a distributed switch may permit a link configured as a loop. The loop eliminates half of the ports when compared to a switched point-to-point fabric. A fabric of distributed switches can interface to a cross-point switch fabric. The expected sequence of migration is: closed loops, small closed fabrics, and, finally, bridges, to connect optical cross-point switch fabrics. This paper presents the concept of distributed fabrics, including address assignment, frame routing, and general operation.

  17. State-of-the-art fiber optics for short distance frequency reference distribution

    NASA Astrophysics Data System (ADS)

    Lutes, G. F.; Primas, L. E.

    1989-05-01

    A number of recently developed fiber-optic components that hold the promise of unprecedented stability for passively stabilized frequency distribution links are characterized. These components include a fiber-optic transmitter, an optical isolator, and a new type of fiber-optic cable. A novel laser transmitter exhibits extremely low sensitivity to intensity and polarization changes of reflected light due to cable flexure. This virtually eliminates one of the shortcomings in previous laser transmitters. A high-isolation, low-loss optical isolator has been developed which also virtually eliminates laser sensitivity to changes in intensity and polarization of reflected light. A newly developed fiber has been tested. This fiber has a thermal coefficient of delay of less than 0.5 parts per million per deg C, nearly 20 times lower than the best coaxial hardline cable and 10 times lower than any previous fiber-optic cable. These components are highly suitable for distribution systems with short extent, such as within a Deep Space Communications Complex. Here, these new components are described and the test results presented.

  18. Three-Axis Distributed Fiber Optic Strain Measurement in 3D Woven Composite Structures

    NASA Technical Reports Server (NTRS)

    Castellucci, Matt; Klute, Sandra; Lally, Evan M.; Froggatt, Mark E.; Lowry, David

    2013-01-01

    Recent advancements in composite materials technologies have broken further from traditional designs and require advanced instrumentation and analysis capabilities. Success or failure is highly dependent on design analysis and manufacturing processes. By monitoring smart structures throughout manufacturing and service life, residual and operational stresses can be assessed and structural integrity maintained. Composite smart structures can be manufactured by integrating fiber optic sensors into existing composite materials processes such as ply layup, filament winding and three-dimensional weaving. In this work optical fiber was integrated into 3D woven composite parts at a commercial woven products manufacturing facility. The fiber was then used to monitor the structures during a VARTM manufacturing process, and subsequent static and dynamic testing. Low cost telecommunications-grade optical fiber acts as the sensor using a high resolution commercial Optical Frequency Domain Reflectometer (OFDR) system providing distributed strain measurement at spatial resolutions as low as 2mm. Strain measurements using the optical fiber sensors are correlated to resistive strain gage measurements during static structural loading. Keywords: fiber optic, distributed strain sensing, Rayleigh scatter, optical frequency domain reflectometry

  19. State-of-the-art fiber optics for short distance frequency reference distribution

    NASA Technical Reports Server (NTRS)

    Lutes, G. F.; Primas, L. E.

    1989-01-01

    A number of recently developed fiber-optic components that hold the promise of unprecedented stability for passively stabilized frequency distribution links are characterized. These components include a fiber-optic transmitter, an optical isolator, and a new type of fiber-optic cable. A novel laser transmitter exhibits extremely low sensitivity to intensity and polarization changes of reflected light due to cable flexure. This virtually eliminates one of the shortcomings in previous laser transmitters. A high-isolation, low-loss optical isolator has been developed which also virtually eliminates laser sensitivity to changes in intensity and polarization of reflected light. A newly developed fiber has been tested. This fiber has a thermal coefficient of delay of less than 0.5 parts per million per deg C, nearly 20 times lower than the best coaxial hardline cable and 10 times lower than any previous fiber-optic cable. These components are highly suitable for distribution systems with short extent, such as within a Deep Space Communications Complex. Here, these new components are described and the test results presented.

  20. Effect of fiber distribution and realignment on the nonlinear and inhomogeneous mechanical properties of human supraspinatus tendon under longitudinal tensile loading.

    PubMed

    Lake, Spencer P; Miller, Kristin S; Elliott, Dawn M; Soslowsky, Louis J

    2009-12-01

    Tendon exhibits nonlinear stress-strain behavior that may be partly due to movement of collagen fibers through the extracellular matrix. While a few techniques have been developed to evaluate the fiber architecture of other soft tissues, the organizational behavior of tendon under load has not been determined. The supraspinatus tendon (SST) of the rotator cuff is of particular interest for investigation due to its complex mechanical environment and corresponding inhomogeneity. In addition, SST injury occurs frequently with limited success in treatment strategies, illustrating the need for a better understanding of SST properties. Therefore, the objective of this study was to quantitatively evaluate the inhomogeneous tensile mechanical properties, fiber organization, and fiber realignment under load of human SST utilizing a novel polarized light technique. Fiber distributions were found to become more aligned under load, particularly during the low stiffness toe-region, suggesting that fiber realignment may be partly responsible for observed nonlinear behavior. Fiber alignment was found to correlate significantly with mechanical parameters, providing evidence for strong structure-function relationships in tendon. Human SST exhibits complex, inhomogeneous mechanical properties and fiber distributions, perhaps due to its complex loading environment. Surprisingly, histological grade of degeneration did not correlate with mechanical properties.

  1. High-density fiber optic biosensor arrays

    NASA Astrophysics Data System (ADS)

    Epstein, Jason R.; Walt, David R.

    2002-02-01

    Novel approaches are required to coordinate the immense amounts of information derived from diverse genomes. This concept has influenced the expanded role of high-throughput DNA detection and analysis in the biological sciences. A high-density fiber optic DNA biosensor was developed consisting of oligonucleotide-functionalized, 3.1 mm diameter microspheres deposited into the etched wells on the distal face of a 500 micrometers imaging fiber bundle. Imaging fiber bundles containing thousands of optical fibers, each associated with a unique oligonucleotide probe sequence, were the foundation for an optically connected, individually addressable DNA detection platform. Different oligonucleotide-functionalized microspheres were combined in a stock solution, and randomly dispersed into the etched wells. Microsphere positions were registered from optical dyes incorporated onto the microspheres. The distribution process provided an inherent redundancy that increases the signal-to-noise ratio as the square root of the number of sensors examined. The representative amount of each probe-type in the array was dependent on their initial stock solution concentration, and as other sequences of interest arise, new microsphere elements can be added to arrays without altering the existing detection capabilities. The oligonucleotide probe sequences hybridize to fluorescently-labeled, complementary DNA target solutions. Fiber optic DNA microarray research has included DNA-protein interaction profiles, microbial strain differentiation, non-labeled target interrogation with molecular beacons, and single cell-based assays. This biosensor array is proficient in DNA detection linked to specific disease states, single nucleotide polymorphism (SNP's) discrimination, and gene expression analysis. This array platform permits multiple detection formats, provides smaller feature sizes, and enables sensor design flexibility. High-density fiber optic microarray biosensors provide a fast, reversible format with the detection limit of a few hundred molecules.

  2. Lung Cancer Risk Associated with Regulated and Unregulated Chrysotile Asbestos Fibers.

    PubMed

    Hamra, Ghassan B; Richardson, David B; Dement, John; Loomis, Dana

    2017-03-01

    Regulation of asbestos fibers in the workplace is partly determined by which fibers can be visually counted. However, a majority of fibers are too short and thin to count this way and are, consequently, not subject to regulation. We estimate lung cancer risk associated with asbestos fibers of varying length and width. We apply an order-constrained prior both to leverage external information from toxicological studies of asbestos health effects. This prior assumes that risk from asbestos fibers increases with increasing length and decreases with increasing width. When we apply a shared mean for the effect of all asbestos fiber exposure groups, the rate ratios for each fiber group per unit exposure appear mostly equal. Rate ratio estimates for fibers of diameter <0.25 μm and length <1.5 and 1.5-5.0 μm are the most precise. When applying an order-constrained prior, we find that estimates of lung cancer rate ratio per unit of exposure to unregulated fibers 20-40 and >40 μm in the thinnest fiber group are similar in magnitude to estimates of risk associated with long fibers in the regulated fraction of airborne asbestos fibers. Rate ratio estimates for longer fibers are larger than those for shorter fibers, but thicker and thinner fibers do not differ as the toxicologically derived prior had expected. Credible intervals for fiber size-specific risk estimates overlap; thus, we cannot conclude that there are substantial differences in effect by fiber size. Nonetheless, our results suggest that some unregulated asbestos fibers may be associated with increased incidence of lung cancer.

  3. Effect of configuration and some processing variables on the properties of wood fiber-polyethylene composites

    Treesearch

    Chin-Yin Hwang; Chung-Yun Hse; Elvin T. Choong

    1999-01-01

    Chemical compositions and fiber measurement of virgin and recycled fibers from three sources were determined. Results revealed that virgin southern pine fiber had highest alcohol-benzene extractive and lignin contents and lowest holo- and alpha-cellulose content among the three fiber types. Fiber length distribution of virgin fiber was less sensitive to disintegration...

  4. Design of Nanomaterial Synthesis by Aerosol Processes

    PubMed Central

    Buesser, Beat; Pratsinis, Sotiris E.

    2013-01-01

    Aerosol synthesis of materials is a vibrant field of particle technology and chemical reaction engineering. Examples include the manufacture of carbon blacks, fumed SiO2, pigmentary TiO2, ZnO vulcanizing catalysts, filamentary Ni, and optical fibers, materials that impact transportation, construction, pharmaceuticals, energy, and communications. Parallel to this, development of novel, scalable aerosol processes has enabled synthesis of new functional nanomaterials (e.g., catalysts, biomaterials, electroceramics) and devices (e.g., gas sensors). This review provides an access point for engineers to the multiscale design of aerosol reactors for the synthesis of nanomaterials using continuum, mesoscale, molecular dynamics, and quantum mechanics models spanning 10 and 15 orders of magnitude in length and time, respectively. Key design features are the rapid chemistry; the high particle concentrations but low volume fractions; the attainment of a self-preserving particle size distribution by coagulation; the ratio of the characteristic times of coagulation and sintering, which controls the extent of particle aggregation; and the narrowing of the aggregate primary particle size distribution by sintering. PMID:22468598

  5. Design of nanomaterial synthesis by aerosol processes.

    PubMed

    Buesser, Beat; Pratsinis, Sotiris E

    2012-01-01

    Aerosol synthesis of materials is a vibrant field of particle technology and chemical reaction engineering. Examples include the manufacture of carbon blacks, fumed SiO(2), pigmentary TiO(2), ZnO vulcanizing catalysts, filamentary Ni, and optical fibers, materials that impact transportation, construction, pharmaceuticals, energy, and communications. Parallel to this, development of novel, scalable aerosol processes has enabled synthesis of new functional nanomaterials (e.g., catalysts, biomaterials, electroceramics) and devices (e.g., gas sensors). This review provides an access point for engineers to the multiscale design of aerosol reactors for the synthesis of nanomaterials using continuum, mesoscale, molecular dynamics, and quantum mechanics models spanning 10 and 15 orders of magnitude in length and time, respectively. Key design features are the rapid chemistry; the high particle concentrations but low volume fractions; the attainment of a self-preserving particle size distribution by coagulation; the ratio of the characteristic times of coagulation and sintering, which controls the extent of particle aggregation; and the narrowing of the aggregate primary particle size distribution by sintering.

  6. Measuring the wetting angle and perimeter of single wood pulp fibers : a modified method

    Treesearch

    John H. Klungness

    1981-01-01

    In pulp processing development it is often necessary to measure the effect of a process variable on individual pulp fiber wettability. Such processes would include drying of market pulps, recycling of secondary fibers, and surface modification of fibers as in sizing. However, if wettability is measured on a fiber sheet surface, the results are confounded by...

  7. Effects of glass scraps powder and glass fiber on mechanical properties of polyester composites

    NASA Astrophysics Data System (ADS)

    Sonsakul, K.; Boongsood, W.

    2017-11-01

    One concern in bus manufacturing is the high cost of glass fiber reinforced in polyester composites parts. The composites of glass fiber and polyester are low elongation and high strength, and glass scraps powder displays high hardness and good chemical compatibility with the polymer matrix and glass fiber. This research aimed to study the effects of glass scraps powder and glass fiber on mechanical performance of polyester composites. Glass fiber was randomly oriented fiber and used as new. Glass scraps were obtained from a bus factory and crushed to powder sizes of 120 and 240 μm by a ball mill. Polyester composites were prepared using Vacuum Infusion Process (VIP).Polyester reinforced with 3 layers of glass fiber was an initial condition. Then, one layer of glass fiber was replaced with glass scraps powder. Flexural strength, tensile strength, impact strength and hardness of the polyester composites were determined. Hardness was increased with a combination of smaller size and higher volume of glass scraps powder. Pictures of specimens obtained by using scanning electron microscope (SEM) confirmed that the powder of glass scraps packed in the layers of glass fiber in polyester composites.

  8. Computation of the Distribution of the Fiber-Matrix Interface Cracks in the Edge Trimming of CFRP

    NASA Astrophysics Data System (ADS)

    Wang, Fu-ji; Zhang, Bo-yu; Ma, Jian-wei; Bi, Guang-jian; Hu, Hai-bo

    2018-04-01

    Edge trimming is commonly used to bring the CFRP components to right dimension and shape in aerospace industries. However, various forms of undesirable machining damage occur frequently which will significantly decrease the material performance of CFRP. The damage is difficult to predict and control due to the complicated changing laws, causing unsatisfactory machining quality of CFRP components. Since the most of damage has the same essence: the fiber-matrix interface cracks, this study aims to calculate the distribution of them in edge trimming of CFRP, thereby to obtain the effects of the machining parameters, which could be helpful to guide the optimal selection of the machining parameters in engineering. Through the orthogonal cutting experiments, the quantitative relation between the fiber-matrix interface crack depth and the fiber cutting angle, cutting depth as well as cutting speed is established. According to the analysis on material removal process on any location of the workpiece in edge trimming, the instantaneous cutting parameters are calculated, and the formation process of the fiber-matrix interface crack is revealed. Finally, the computational method for the fiber-matrix interface cracks in edge trimming of CFRP is proposed. Upon the computational results, it is found that the fiber orientations of CFRP workpieces is the most significant factor on the fiber-matrix interface cracks, which can not only change the depth of them from micrometers to millimeters, but control the distribution image of them. Other machining parameters, only influence the fiber-matrix interface cracks depth but have little effect on the distribution image.

  9. Prediction of Tensile Behavior of UHSFRC Considering the Flow Field in the Placing Dominated by Shear Flow.

    PubMed

    Moon, Joon-Shik; Kang, Su-Tae

    2018-01-26

    Considering the case of fabricating a UHSFRC (ultra-high strength fiber-reinforced concrete) beam with the method of one end placing and self-flowing to the other end, it was intended to simulate the variation of the fiber orientation distribution according to the flow distance and the variation of the resultant tensile behaviors. Then the validity of the simulation approach was shown by comparing the simulated results with experimental ones. A three-point bending test with a notched beam was adopted for the experiment and a finite element analysis was performed to obtain the simulated results for the bending test considering the flow-dependent tensile behavior of the UHSFRC. From the simulation for the fiber orientation distribution according to the flow distance, it could be found that the major change in the fiber orientation distribution took place within a short flow distance and most of the fibers became nearly aligned to the flow direction. After some flow distance, there was a not-so-remarkable variation in the fiber orientation distribution that could influence the tensile behavior of the composite. For this flow region, the consistent flexural test results, regardless of flow distance, demonstrate the reliability of the simulation.

  10. Enhancement of accuracy in shape sensing of surgical needles using optical frequency domain reflectometry in optical fibers.

    PubMed

    Parent, Francois; Loranger, Sebastien; Mandal, Koushik Kanti; Iezzi, Victor Lambin; Lapointe, Jerome; Boisvert, Jean-Sébastien; Baiad, Mohamed Diaa; Kadoury, Samuel; Kashyap, Raman

    2017-04-01

    We demonstrate a novel approach to enhance the precision of surgical needle shape tracking based on distributed strain sensing using optical frequency domain reflectometry (OFDR). The precision enhancement is provided by using optical fibers with high scattering properties. Shape tracking of surgical tools using strain sensing properties of optical fibers has seen increased attention in recent years. Most of the investigations made in this field use fiber Bragg gratings (FBG), which can be used as discrete or quasi-distributed strain sensors. By using a truly distributed sensing approach (OFDR), preliminary results show that the attainable accuracy is comparable to accuracies reported in the literature using FBG sensors for tracking applications (~1mm). We propose a technique that enhanced our accuracy by 47% using UV exposed fibers, which have higher light scattering compared to un-exposed standard single mode fibers. Improving the experimental setup will enhance the accuracy provided by shape tracking using OFDR and will contribute significantly to clinical applications.

  11. Effect of fiber post length and abutment height on fracture resistance of endodontically treated premolars prepared for zirconia crowns.

    PubMed

    Lin, Jie; Matinlinna, Jukka Pekka; Shinya, Akikazu; Botelho, Michael George; Zheng, Zhiqiang

    2018-04-01

    The purpose of this study was to compare the fracture resistance, mode of fracture, and stress distribution of endodontically treated teeth prepared with three different fiber post lengths and two different abutment heights, using both experimental and finite element (FE) approaches. Forty-eight human maxillary premolars with two roots were selected and endodontically treated. The teeth were randomly distributed into six equally sized groups (n = 8) with different combinations of post lengths (7.5, 11, and 15 mm) and abutment heights (3 and 5 mm). All the teeth restored with glass fiber post (Rely X Fiber Post, 3M ESPE, USA) and a full zirconia crown. All the specimens were thermocycled and then loaded to failure at an oblique angle of 135°. Statistical analysis was performed for the effects of post length and abutment height on failure loads using ANOVA and Tukey's honestly significant difference test. In addition, corresponding FE models of a premolar restored with a glass fiber post were developed to examine mechanical responses. The factor of post length (P < 0.01) had a significant effect on failure load. The abutment height (P > 0.05) did not have a significant effect on failure load. The highest mean fracture resistance was recorded for the 15 mm post length and 5 mm abutment height test group, which was significantly more resistant to fracture than the 7.5 mm post and 5 mm abutment height group (P < 0.05). The FE analysis showed the peak compression and tension stress values of 7.5 mm post length were higher than that of 11 and 15 mm post length. The stress value of remaining tooth decreased as the post length was increased. Within the limitations of this experimental and FE analysis study, increasing the post length inside the root of endodontically treated premolar teeth restored with glass-fiber posts increase the fracture resistance to non-axial forces. Failure mode is more favorable with reduced abutment heights.

  12. Exposures to nanoparticles and fibers during injection molding and recycling of carbon nanotube reinforced polycarbonate composites.

    PubMed

    Boonruksa, Pongsit; Bello, Dhimiter; Zhang, Jinde; Isaacs, Jacqueline A; Mead, Joey L; Woskie, Susan R

    2017-07-01

    In this study, the characteristics of airborne particles generated during injection molding and grinding processes of carbon nanotube reinforced polycarbonate composites (CNT-PC) were investigated. Particle number concentration, size distribution, and morphology of particles emitted from the processes were determined using real-time particle sizers and transmission electron microscopy. The air samples near the operator's breathing zone were collected on filters and analyzed using scanning electron microscope for particle morphology and respirable fiber count. Processing and grinding during recycling of CNT-PC released airborne nanoparticles (NPs) with a geometric mean (GM) particle concentration from 4.7 × 10 3 to 1.7 × 10 6 particles/cm 3 . The ratios of the GM particle concentration measured during the injection molding process with exhaust ventilation relative to background were up to 1.3 (loading), 1.9 (melting), and 1.4 (molding), and 101.4 for grinding process without exhaust ventilation, suggesting substantial NP exposures during these processes. The estimated mass concentration was in the range of 1.6-95.2 μg/m 3 . Diverse particle morphologies, including NPs, NP agglomerates, particles with embedded or protruding CNTs and fibers, were observed. No free CNTs were found during any of the investigated processes. The breathing zone respirable fiber concentration during the grinding process ranged from non-detectable to 0.13 fiber/cm 3 . No evidence was found that the emissions were affected by the number of recycling cycles. Institution of exposure controls is recommended during these processes to limit exposures to airborne NPs and CNT-containing fibers.

  13. Metro-access integrated network based on optical OFDMA with dynamic sub-carrier allocation and power distribution.

    PubMed

    Zhang, Chongfu; Zhang, Qiongli; Chen, Chen; Jiang, Ning; Liu, Deming; Qiu, Kun; Liu, Shuang; Wu, Baojian

    2013-01-28

    We propose and demonstrate a novel optical orthogonal frequency-division multiple access (OFDMA)-based metro-access integrated network with dynamic resource allocation. It consists of a single fiber OFDMA ring and many single fiber OFDMA trees, which transparently integrates metropolitan area networks with optical access networks. The single fiber OFDMA ring connects the core network and the central nodes (CNs), the CNs are on demand reconfigurable and use multiple orthogonal sub-carriers to realize parallel data transmission and dynamic resource allocation, meanwhile, they can also implement flexible power distribution. The remote nodes (RNs) distributed in the user side are connected by the single fiber OFDMA trees with the corresponding CN. The obtained results indicate that our proposed metro-access integrated network is feasible and the power distribution is agile.

  14. Three Hierarchies in Skeletal Muscle Fibre Classification Allotype, Isotype and Phenotype

    NASA Technical Reports Server (NTRS)

    Hoh, Joseph F. Y.; Hughes, Suzanne; Hugh, Gregory; Pozgaj, Irene

    1991-01-01

    Immunocytochemical analyses using specific anti-myosin antibodies of mammalian muscle fibers during regeneration, development, and after denervation have revealed two distinct myogenic components determining fiber phenotype. The jaw-closing muscles of the cat contain superfast fibers which express a unique myosin not found in limb muscles. When superfast muscle is transplanted into a limb muscle bed, regenerating myotubes synthesize superfast myosin independent of innervation. Reinnervation by the nerve to a fast muscle leads to the expression of superfast and not fast myosin, while reinnervation by the nerve to a slow muscle leads to the expression of a slow myosin. When limb muscle is transplanted into the jaw muscle bed, only limb myosins are synthesized. Thus jaw and limb muscles belong to distinct allotypes, each with a unique range of phenotype options, the expressions of which may be modulated by the nerve. Primary and secondary myotubes in developing jaw and limb muscles are observed to belong to different categories characterized by different patterns of myosin gene expression. By taking into consideration the pattern of myosins synthesized and the changes in fiber size after denervation, 3 types of primary (fast, slow, and intermediate) fibers can be distinguished in rat fast limb muscles. All primaries synthesize slow myosin soon after their formation, but this is withdrawn in fast and intermediate primaries at different times. After neonatal denervation, slow and intermediate primaries express slow primaries hypertrophy with other fibers atrophy. In the mature rat, the number of slow fibers in the EDL is less than the number of slow primaries. Upon denervation, hypertrophic slow fibers matching the number and topographic distribution of slow primaries appear, suggesting that a subpopulation of the slow primaries acquire the fast phenotype during adult life, but reveal their original identity as slow primaries in response to denervation by hypertrophying and synthesizing slow myosin. It is proposed that within each muscle allotype, the various isotypes of primary and secondary fibers are myogenically determined, and are derived from different lineage of myoblasts.

  15. Risk assessment due to environmental exposures to fibrous particulates associated with taconite ore.

    PubMed

    Wilson, Richard; McConnell, Ernest E; Ross, M; Axten, Charles W; Nolan, Robert P

    2008-10-01

    In the early 1970s, it became a concern that exposure to the mineral fibers associated taconite ore processed in Silver Bay, Minnesota would cause asbestos-related disease including gastrointestinal cancer. At that time data gaps existed which have now been significantly reduced by further research. To further our understanding of the types of airborne fibers in Silver Bay we undertook a geological survey of their source the Peter Mitchell Pit, and found that there are no primary asbestos minerals at a detectable level. However we identified two non-asbestos types of fibrous minerals in very limited geological locales. Air sampling useful for risk assessment was done to determine the type, concentrations and size distribution of the population of airborne fibers around Silver Bay. Approximately 80% of the airborne fibers have elemental compositions consistent with cummingtonite-grunerite and the remaining 20% have elemental compositions in the tremolite-actinolite series. The mean airborne concentration of both fiber types is less than 0.00014 fibers per milliliter that is within the background level reported by the World Health Organization. We calculate the risk of asbestos-related mesothelioma and lung cancer using a variety of different pessimistic assumptions. (i) that all the non-asbestos fibers are as potent as asbestos fibers used in the EPA-IRIS listing for asbestos; with a calculated risk of asbestos-related cancer for environmental exposure at Silver Bay of 1 excess cancer in 28,500 lifetimes (or 35 excess cancers per 1,000,000 lifetimes) and secondly that taconite associated fibers are as potent as chrysotile the least potent form of asbestos. The calculated risk is less than 0.77 excess cancer case in 1,000,000 lifetimes. Finally, we briefly review the epidemiology studies of grunerite asbestos (amosite) focusing on the exposure conditions associated with increased risk of human mesothelioma.

  16. Microstructural, Chemical and Mechanical Characterization of Polymer-Derived Hi-Nicalon Fibers with Surface Coatings

    NASA Technical Reports Server (NTRS)

    Bansal, Narottam P.; Chen, Yuan L.

    1998-01-01

    Room temperature tensile strengths of as-received Hi-Nicalon fibers and those having BN/SiC, p-BN/SiC, and p-B(Si)N/SiC surface coatings, deposited by chemical vapor deposition, were measured using an average fiber diameter of 13.5 microns. The Weibull statistical parameters were determined for each fiber. The average tensile strength of uncoated Hi-Nicalon on was 3.19 +/- 0.73 GPa with a Weibull modulus of 5.41. Strength of fibers coated with BN/SiC did not change. However, coat with p-BN/SiC and p-B(Si)N/SiC surface layers showed strength loss of approx. 10 and 35 percent, respectively, compared with as-received fibers. The elemental compositions of the fibers and the coatings were analyzed using scanning Auger microprobe and energy dispersive x-ray spectroscopy. The BN coating was contaminated with a large concentration of carbon and some oxygen. In contrast, p-BN, p-B(Si)N, and SiC coatings did not show any contamination. Microstructural analyses of the fibers and the coatings were done by scanning electron microscopy (SEM), transmission electron microscopy (TEM), and selected area electron diffraction. Hi-Nicalon fiber consists of the P-SIC nanocrystals ranging in size from 1 to 30 nm embedded in an amorphous matrix. TEM analysis of the BN coating revealed four distinct layers with turbostatic structure. The p-BN layer was turbostratic and showed considerable preferred orientation. The p-B(Si)N was glassy and the silicon and boron were uniformly distributed. The silicon carbide coating was polycrystalline with a columnar structure along the growth direction. The p-B(Si)N/SiC coatings were more uniform, less defective and of better quality than the BN/SiC or the p-BN/SiC coatings.

  17. Age-related structural alterations in human skeletal muscle fibers and mitochondria are sex specific: relationship to single-fiber function.

    PubMed

    Callahan, Damien M; Bedrin, Nicholas G; Subramanian, Meenakumari; Berking, James; Ades, Philip A; Toth, Michael J; Miller, Mark S

    2014-06-15

    Age-related loss of skeletal muscle mass and function is implicated in the development of disease and physical disability. However, little is known about how age affects skeletal muscle structure at the cellular and ultrastructural levels or how such alterations impact function. Thus we examined skeletal muscle structure at the tissue, cellular, and myofibrillar levels in young (21-35 yr) and older (65-75 yr) male and female volunteers, matched for habitual physical activity level. Older adults had smaller whole muscle tissue cross-sectional areas (CSAs) and mass. At the cellular level, older adults had reduced CSAs in myosin heavy chain II (MHC II) fibers, with no differences in MHC I fibers. In MHC II fibers, older men tended to have fewer fibers with large CSAs, while older women showed reduced fiber size across the CSA range. Older adults showed a decrease in intermyofibrillar mitochondrial size; however, the age effect was driven primarily by women (i.e., age by sex interaction effect). Mitochondrial size was inversely and directly related to isometric tension and myosin-actin cross-bridge kinetics, respectively. Notably, there were no intermyofibrillar or subsarcolemmal mitochondrial fractional content or myofilament ultrastructural differences in the activity-matched young and older adults. Collectively, our results indicate age-related reductions in whole muscle size do not vary by sex. However, age-related structural alterations at the cellular and subcellular levels are different between the sexes and may contribute to different functional phenotypes in ways that modulate sex-specific reductions in physical capacity with age. Copyright © 2014 the American Physiological Society.

  18. Welding-fume-induced transmission loss in tapered optical fibers

    NASA Astrophysics Data System (ADS)

    Yi, Ji-Haeng

    2015-09-01

    This paper presents a method for sensing welding fumes in real time. This method is based on the results of nanoparticle-induced optical-fiber loss experiments that show that the losses are determined by the nanoparticle density and the taper waist. The tapered fiber is obtained by applying heat radiated from hot quartz, and monitoring is done in real time. First, the durability of the tapered fiber during the welding process is proven. Then, the loss is categorized by using the sizes of welding fume particles. The sensitivity to welding fumes increases with increasing size of the particles; consequently, the dimension of the taper waist decreases.

  19. Optimization of ultrasonic-assisted preparation of dietary fiber from corn pericarp using response surface methodology.

    PubMed

    Wang, Anna; Wu, Ligen; Li, Xiulin

    2013-09-01

    Corn pericarp, which is an industrial waste of corn starch production, is an important source of dietary fiber in cereals, with claimed health benefits. However, they used to be discarded or utilized as animal feed. The application of pre-ultrasound treatment is critical for achieving rapid preparation of desired components from plant materials and for preserving structural and molecular properties of these compounds. Ultrasonic-assisted preparation was used to produce dietary fiber from corn pericarp using response surface methodology. The optimal particle size of corn pericarp (mesh size 40), the ratio of liquid to solid (25 mL g⁻¹), ultrasonic power (180 W) and ultrasonic time (80 min) were determined based on response surface methodology analysis. The interaction effects of particle size of corn pericarp and ultrasonic time had a highlysignificant effect on the yield of dietary fiber, and a significant effect was shown by ultrasonic power and ultrasonic time. The maximum yield of dietary fiber was 86.84%, which agreed closely with the predicted value. Using ultrasonic-assisted preparation, it may be possible to enhance the yield of dietary fiber from corn pericarp. © 2013 Society of Chemical Industry.

  20. Distributed feedback fiber laser based on a fiber Bragg grating inscribed using the femtosecond point-by-point technique

    NASA Astrophysics Data System (ADS)

    Skvortsov, M. I.; Wolf, A. A.; Dostovalov, A. V.; Vlasov, A. A.; Akulov, V. A.; Babin, S. A.

    2018-03-01

    A distributed feedback (DFB) fiber laser based on a 32-mm long pi-phase-shifted fiber Bragg grating inscribed using the femtosecond point-by-point technique in a single-mode erbium-doped optical fiber (CorActive EDF-L 1500) is demonstrated. The lasing power of the DFB laser reaches 0.7 mW at a wavelength of 1550 nm when pumped with a laser diode at a wavelength of 976 nm and power of 525 mW. The width of the lasing spectrum is 17 kHz. It is shown that the pi-phase-shifted fiber Bragg grating fs-inscribed in a non-PM fiber provides the selection of the single polarization mode of the DFB laser. DFB laser formation in a highly doped non-photosensitive optical fiber (CoreActive SCF-ER60-8/125-12) is also demonstrated.

  1. Development of moldable carbonaceous materials for ablative rocket nozzles.

    NASA Technical Reports Server (NTRS)

    Lockhart, R. J.; Bortz, S. A.; Schwartz, M. A.

    1972-01-01

    Description of a materials system developed for use as low-cost ablative nozzles for NASA's 260-in. solid rocket motor. Petroleum coke and carbon black fillers were employed; high density was achieved by controlling particle size distribution. An alumina catalyzed furfuryl ester resin which produced high carbon residues after pyrolysis was employed as the binder. Staple carbon fibers improved the strength and crack resistance of molded bodies. In static firing tests of two subscale nozzles, this material compared favorably in erosion rate with several other ablative systems.

  2. The ultra-structural organization of the elastic network in the intra- and inter-lamellar matrix of the intervertebral disc.

    PubMed

    Tavakoli, J; Elliott, D M; Costi, J J

    2017-08-01

    The inter-lamellar matrix (ILM)-located between adjacent lamellae of the annulus fibrosus-consists of a complex structure of elastic fibers, while elastic fibers of the intra-lamellar region are aligned predominantly parallel to the collagen fibers. The organization of elastic fibers under low magnification, in both inter- and intra-lamellar regions, was studied by light microscopic analysis of histologically prepared samples; however, little is known about their ultrastructure. An ultrastructural visualization of elastic fibers in the inter-lamellar matrix is crucial for describing their contribution to structural integrity, as well as mechanical properties of the annulus fibrosus. The aims of this study were twofold: first, to present an ultrastructural analysis of the elastic fiber network in the ILM and intra-lamellar region, including cross section (CS) and in-plane (IP) lamellae, of the AF using Scanning Electron Microscopy (SEM) and second, to -compare the elastic fiber orientation between the ILM and intra-lamellar region. Four samples (lumbar sheep discs) from adjacent sections (30μm thickness) of anterior annulus were partially digested by a developed NaOH-sonication method for visualization of elastic fibers by SEM. Elastic fiber orientation and distribution were quantified relative to the tangential to circumferential reference axis. Visualization of the ILM under high magnification revealed a dense network of elastic fibers that has not been previously described. Within the ILM, elastic fibers form a complex network, consisting of different size and shape fibers, which differed to those located in the intra-lamellar region. For both regions, the majority of fibers were oriented near 0° with respect to tangential to circumferential (TCD) direction and two minor symmetrical orientations of approximately±45°. Statistically, the orientation of elastic fibers between the ILM and intra-lamellar region was not different (p=0.171). The present study used extracellular matrix partial digestion to address significant gaps in understanding of disc microstructure and will contribute to multidisciplinary ultrastructure-function studies. Visualization of the intra-lamellar matrix under high magnification revealed a dense network of elastic fibers that has not been previously described. The present study used extracellular matrix partial digestion to address significant gaps in understanding of disc microstructure and will contribute to multidisciplinary ultrastructure-function studies. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  3. Crystal preferred orientations of minerals from mantle xenoliths in alkali basaltic rocks form the Catalan Volcanic Zone (NE Spain)

    NASA Astrophysics Data System (ADS)

    Fernández-Roig, Mercè; Galán, Gumer; Mariani, Elisabetta

    2015-04-01

    Mantle xenoliths in alkali basaltic rocks from the Catalan Volcanic Zone, associated with the Neogene-Quaternary rift system in NE Spain, are formed of anhydrous spinel lherzolites and harzburgites with minor olivine websterites. Both peridotites are considered residues of variable degrees of partial melting, later affected by metasomatism, especially the harzburgites. These and the websterites display protogranular microstructures, whereas lherzolites show continuous variation between protogranular, porphyroclastic and equigranular forms. Thermometric data of new xenoliths indicate that protogranular harzburgites, lherzolites and websterites were equilibrated at higher temperatures than porphyroclastic and equigranular lherzolites. Mineral chemistry also indicates lower equilibrium pressure for porphyroclastic and equigranular lherzolites than for the protogranular ones. Crystal preferred orientations (CPOs) of olivine and pyroxenes from these new xenoliths were determined with the EBSD-SEM technique to identify the deformation stages affecting the lithospheric mantle in this zone and to assess the relationships between the deformation fabrics, processes and microstructures. Olivine CPOs in protogranular harzburgites, lherzolites and a pyroxenite display [010]-fiber patterns characterized by a strong point concentration of the [010] axis normal to the foliation and girdle distribution of [100] and [001] axes within the foliation plane. Olivine CPO symmetry in porphyroclastic and equigranular lherzolites varies continuously from [010]-fiber to orthorhombic and [100]-fiber types. The orthorhombic patterns are characterized by scattered maxima of the three axes, which are normal between them. The rare [100]-fiber patterns display strong point concentration of [100] axis, with normal girdle distribution of the other two axes, which are aligned with each other. The patterns of pyroxene CPOs are more dispersed than those of olivine, especially for clinopyroxene, but there is good correlation between the [100] olivine axis and the [001] pyroxene axis in most protogranular peridotites. However, the [001] axes of the three silicates are parallel in equigranular and some porphyroclastic lherzolites. CPOs and misorientation axes indicate deformation by dislocation creep accommodated mainly by the [100](010) slip system for olivine and the [001](100), [001](010) for orthopyroxene. Also, subsidiary slip systems for olivine are [100]{0kl}, [001](100), [100](001) in porphyroclastic and equigranular lherzolites. The fabric strength of the three main silicates are consistent, all of them decreasing with grain size reduction. These results indicate that the lithospheric mantle in this area was affected by several deformation stages that took place at decreasing temperature and pressure. An earlier stage is preserved in protogranular peridotites and a pyroxenite, with olivine [010]-fiber patterns and consistent deformation of pyroxenes. It could be related to axial shortening, transpression and/or subsequent recovery and annealing. Later deformation stages would be recorded by most porphyroclastic and equigranular lherzolites characterized by orthorhombic and [100]-fiber patterns for olivine, and transitions between them and with the [010]-fiber one. These samples would come most likely from an active shear zone at shallower upper mantle depth, where deformation at higher strain rates would explain the olivine [100]-fiber symmetry. Transient deformation patterns for olivine, grain size reduction along with weakening of the fabric strength could be due to dynamic recrystallization through grain boundary migration and subgrain rotation mechanisms.

  4. Feasibility study for distributed dose monitoring in ionizing radiation environments with standard and custom-made optical fibers

    NASA Astrophysics Data System (ADS)

    Van Uffelen, Marco; Berghmans, Francis; Brichard, Benoit; Borgermans, Paul; Decréton, Marc C.

    2002-09-01

    Optical fibers stimulate much interest since many years for their potential use in various nuclear environments, both for radiation tolerant and EMI-free data communication as well as for distributed sensing. Besides monitoring temperature and stress, measuring ionizing doses with optical fibers is particularly essential in applications such as long-term nuclear waste disposal monitoring, and for real-time aging monitoring of power and signal cables installed inside a reactor containment building. Two distinct options exist to perform optical fiber dosimetry. First, find an accurate model for a restricted application field that accounts for all the parameters that influence the radiation response of a standard fiber, or second, develop a dedicated fiber with a response that will solely depend on the deposited energy. Using various models presented in literature, we evaluate both standard commercially available and custom-made optical fibers under gamma radiation, particularly for distributed dosimetry applications with an optical time domain reflectometer (OTDR). We therefore present the radiation induced attenuation at near-infrared telecom wavelengths up to MGy total dose levels, with dose rates ranging from about 1 Gy/h up to 1 kGy/h, whereas temperature was raised step-wise from 25 °C to 85 °C. Our results allow to determine and compare the practical limitations of distributed dose measurements with both fiber types in terms of temperature sensitivity, dose estimation accuracy and spatial resolution.

  5. Applications of micro-SAXS/WAXS to study polymer fibers

    NASA Astrophysics Data System (ADS)

    Riekel, C.

    2003-01-01

    Instrumentation and selected applications for X-ray microdiffraction experiments on polymer and biopolymer fibers at the European Synchrotron Radiation Facility (ESRF) microfocus beamline are reviewed. Combined SAXS/WAXS experiments can be performed on single fibers with a beam size down to about 5 μm. WAXS experiments can be performed down to about 2 μm and in exceptional cases down to 0.1 μm beam size. The instrumental possibilities are demonstrated for the production line of spider silk.

  6. Compact 3D photonic crystals sensing platform with 45 degree angle polished fibers

    NASA Astrophysics Data System (ADS)

    Guo, Yuqing; Chen, Lu; Zhu, Jiali; Ni, Haibin; Xia, Wei; Wang, Ming

    2017-07-01

    Three dimensional photonic crystals are a kind of promising sensing materials in biology and chemistry. A compact structure, consists of planner colloidal crystals and 45 degree angle polished fiber, is proposed as a platform for accurate, fast, reliable three dimensional photonic crystals sensing in practice. This structure show advantages in compact size for integration and it is ease for large scale manufacture. Reflectivity of the 45 degree angle polished surface with and without a layer of Ag film are simulated by FDTD simulation. Refractive index sensing properties as well as mode distribution of this structure consists of both polystyrene opal and silica inverse opal film is investigated, and an experimental demonstration of silica inverse opal film is performed, which shows a sensitivity of 733 nm/RIU. Different kinds of three dimensional photonic crystals can also be applied in this structure for particular purpose.

  7. Advances in high power linearly polarized fiber laser and its application

    NASA Astrophysics Data System (ADS)

    Zhou, Pu; Huang, Long; Ma, Pengfei; Xu, Jiangming; Su, Rongtao; Wang, Xiaolin

    2017-10-01

    Fiber lasers are now attracting more and more research interest due to their advantages in efficiency, beam quality and flexible operation. Up to now, most of the high power fiber lasers have random distributed polarization state. Linearlypolarized (LP) fiber lasers, which could find wide application potential in coherent detection, coherent/spectral beam combining, nonlinear frequency conversion, have been a research focus in recent years. In this paper, we will present a general review on the achievements of various kinds of high power linear-polarized fiber laser and its application. The recent progress in our group, including power scaling by using power amplifier with different mechanism, high power linearly polarized fiber laser with diversified properties, and various applications of high power linear-polarized fiber laser, are summarized. We have achieved 100 Watt level random distributed feedback fiber laser, kilowatt level continuous-wave (CW) all-fiber polarization-maintained fiber amplifier, 600 watt level average power picosecond polarization-maintained fiber amplifier and 300 watt level average power femtosecond polarization-maintained fiber amplifier. In addition, high power linearly polarized fiber lasers have been successfully applied in 5 kilowatt level coherent beam combining, structured light field and ultrasonic generation.

  8. Hierarchical structural health monitoring system combining a fiber optic spinal cord network and distributed nerve cell devices

    NASA Astrophysics Data System (ADS)

    Minakuchi, Shu; Tsukamoto, Haruka; Takeda, Nobuo

    2009-03-01

    This study proposes novel hierarchical sensing concept for detecting damages in composite structures. In the hierarchical system, numerous three-dimensionally structured sensor devices are distributed throughout the whole structural area and connected with the optical fiber network through transducing mechanisms. The distributed "sensory nerve cell" devices detect the damage, and the fiber optic "spinal cord" network gathers damage signals and transmits the information to a measuring instrument. This study began by discussing the basic concept of the hierarchical sensing system thorough comparison with existing fiber optic based systems and nerve systems in the animal kingdom. Then, in order to validate the proposed sensing concept, impact damage detection system for the composite structure was proposed. The sensor devices were developed based on Comparative Vacuum Monitoring (CVM) system and the Brillouin based distributed strain sensing was utilized to gather the damage signals from the distributed devices. Finally a verification test was conducted using prototype devices. Occurrence of barely visible impact damage was successfully detected and it was clearly indicated that the hierarchical system has better repairability, higher robustness, and wider monitorable area compared to existing systems utilizing embedded optical fiber sensors.

  9. Fiber diameter distributions in the chinchilla's ampullary nerves

    NASA Technical Reports Server (NTRS)

    Hoffman, Larry F.; Honrubia, Vicente

    2002-01-01

    A morphometric study of the chinchilla's ampullary nerves was conducted to produce an unbiased accounting of the diameter distribution of their constituent fibers. Diameter analyses were determined from 1 microm plastic-embedded nerve sections taken at a plane immediately proximal to the sensory epithelium. We found these nerves to be composed of 2094+/-573 fibers, having diameters that ranged from 0.5 to 8 microm. The distributions of diameters were positively skewed, where approximately 75% of the fibers were found to have diameters less than 3.5 microm. An analysis of the spatial distribution of diameters within the nerve section revealed that the lateralmost areas of the nerve contained larger fractions of fibers within the smallest diameter quintiles, and the central area harbored greater proportions of the larger diameter quintiles. However, significant fractions of all quintiles were found in all areas. These data were integrated with available data of Fernandez et al. (1998) to produce diameter estimates of calyx, dimorphic, and bouton morphology subpopulations. In view of a general relationship between diameter, innervation locus, and an afferent's physiologic characteristics, these data provide the basis for developing a perspective for the in situ distribution of afferent response dynamics.

  10. A review of experimental evidence for the carcinogenicity of man-made vitreous fibers.

    PubMed

    Davis, J M

    1986-01-01

    This paper reviews experimental studies on the carcinogenicity of man-made vitreous fibers. Long-term inhalation studies using several animal species and dust preparations of fibrous glass, rock wool or slag wool have produced little evidence of pulmonary fibrosis or pulmonary tumors. While some intratracheal injection studies found almost no pathological changes in lung tissue, some showed that pulmonary fibrosis can occur. Only one intratracheal injection study has reported that vitreous fibers can be carcinogenic; in contrast, many workers have reported that, following intrapleural or intraperitoneal injection, man-made vitreous fibers are highly carcinogenic, and tumor production appears to be closely related to fiber size. In vitro tests confirm that vitreous fibers can be toxic and can cause neoplastic transformation of cultured cells. The discrepancies between some experimental studies probably result from the relatively high solubility of most vitreous fibers. It seems likely that, while these fibers can survive in body cavities long enough to cause tumor production, they dissolve in lung tissue fast enough to have relatively little harmful effect. Rock-wool fibers appear more durable than glass- or slag-wool fibers, and, with similar fiber numbers and sizes in any dust cloud, this material is the most likely to have harmful potential.

  11. Porosity characterization of biodegradable porous poly (L-lactic acid) electrospun nanofibers

    NASA Astrophysics Data System (ADS)

    Valipouri, Afsaneh; Gharehaghaji, Ali Akbar; Alirezazadeh, Azam; Ravandi, Seyed Abdolkarim Hosseini

    2017-12-01

    Poly-L lactic acid (PLLA) is one of the mostly used fibers in biomedical applications as a biodegradable and biocompatible material. Porosity and fiber diameter distribution are governing factors that determine the performance of nanofibers. Present work aims at investigating the process parameters that are affecting porosity and diameter distribution of PLLA nanofibers. PLLA nanofibers were fabricated through electrospinning method using the solution of PLLA polymer/dichloromethane (DCM). Nanofibers with various fiber diameter distribution and porosity were made by changing of process parameters such as spinning distance (5, 10 and 15 cm), voltage (11 and 15 kV), solution concentration (10, 11 and 12 wt%) and feeding rate (0.3, 0.4 and 0.7 ml h-1). Image processing techniques (with Matlab R2017), surface analysis (with Mountainsmap7) and diameter distribution analysis (with Measurement software) were used to examine surface morphology of samples. The results showed that the fiber diameter distribution becomes wider with increasing the applied voltage and reducing the spinning distance. In the other hand, coarse fibers possessed larger pores while having irregular and fewer pores in comparison to fine fibers. The most uniform nano-web with high porous nanofibers was attained by the choice of the process parameters at the voltage of 11 kV, spinning distance of 15 cm, feeding rate of 0.4 ml h-1 and solution concentration of 10 wt%.

  12. Cylindrically distributing optical fiber tip for uniform laser illumination of hollow organs

    NASA Astrophysics Data System (ADS)

    Buonaccorsi, Giovanni A.; Burke, T.; MacRobert, Alexander J.; Hill, P. D.; Essenpreis, Matthias; Mills, Timothy N.

    1993-05-01

    To predict the outcome of laser therapy it is important to possess, among other things, an accurate knowledge of the intensity and distribution of the laser light incident on the tissue. For irradiation of the internal surfaces of hollow organs, modified fiber tips can be used to shape the light distribution to best suit the treatment geometry. There exist bulb-tipped optical fibers emitting a uniform isotropic distribution of light suitable for the treatment of organs which approximate a spherical geometry--the bladder, for example. For the treatment of organs approximating a cylindrical geometry--e.g. the oesophagus--an optical fiber tip which emits a uniform cylindrical distribution of light is required. We report on the design, development and testing of such a device, the CLD fiber tip. The device was made from a solid polymethylmethacrylate (PMMA) rod, 27 mm in length and 4 mm in diameter. One end was shaped and 'silvered' to form a mirror which reflected the light emitted from the delivery fiber positioned at the other end of the rod. The shape of the mirror was such that the light fell with uniform intensity on the circumferential surface of the rod. This surface was coated with BaSO4 reflectance paint to couple the light out of the rod and onto the surface of the tissue.

  13. Fiber Optic Laser Accelerometer

    DTIC Science & Technology

    2007-11-06

    embodiment of a fiber laser accelerometer 10. The fiber laser accelerometer 10 includes a fiber laser 12. Fiber laser 12 can be either a Fabry - Perot type...cavity fiber laser or a distributed feedback fiber laser. In a 4 Attorney Docket No. 97966 Fabry - Perot type fiber laser, the laser cavity is a length...type of signal. A receiver 26 receives the phase shifted signal. Receiver 26 is capable of demodulating and detecting the signal from the fiber laser by

  14. Physiologically Distributed Loading Patterns Drive the Formation of Zonally Organized Collagen Structures in Tissue-Engineered Meniscus.

    PubMed

    Puetzer, Jennifer L; Bonassar, Lawrence J

    2016-07-01

    The meniscus is a dense fibrocartilage tissue that withstands the complex loads of the knee via a unique organization of collagen fibers. Attempts to condition engineered menisci with compression or tensile loading alone have failed to reproduce complex structure on the microscale or anatomic scale. Here we show that axial loading of anatomically shaped tissue-engineered meniscus constructs produced spatial distributions of local strain similar to those seen in the meniscus when the knee is loaded at full extension. Such loading drove formation of tissue with large organized collagen fibers, levels of mechanical anisotropy, and compressive moduli that match native tissue. Loading accelerated the development of native-sized and aligned circumferential and radial collagen fibers. These loading patterns contained both tensile and compressive components that enhanced the major biochemical and functional properties of the meniscus, with loading significantly improved glycosaminoglycan (GAG) accumulation 200-250%, collagen accumulation 40-55%, equilibrium modulus 1000-1800%, and tensile moduli 500-1200% (radial and circumferential). Furthermore, this study demonstrates local changes in mechanical environment drive heterogeneous tissue development and organization within individual constructs, highlighting the importance of recapitulating native loading environments. Loaded menisci developed cartilage-like tissue with rounded cells, a dense collagen matrix, and increased GAG accumulation in the more compressively loaded horns, and fibrous collagen-rich tissue in the more tensile loaded outer 2/3, similar to native menisci. Loaded constructs reached a level of organization not seen in any previous engineered menisci and demonstrate great promise as meniscal replacements.

  15. NASA Tech Briefs, November 2004

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Topics include: Multifunction Imaging and Spectroscopic Instrument; Position-Finding Instrument Built Around a Magnetometer; Improved Measurement of Dispersion in an Optical Fiber; Probe for Sampling of Interstitial Fluid From Bone; Neuropsychological Testing of Astronauts; Method of Calibration for a Large Cathetometer System; Four-Channel PC/104 MIL-STD-1553 Circuit Board; Improved Method of Locating Defects in Wiring Insulation; Strobe Traffic Lights Warn of Approaching Emergency Vehicles; Improved Timing Scheme for Spaceborne Precipitation Radar; Concept for Multiple-Access Free-Space Laser Communications; Variable Shadow Screens for Imaging Optical Devices; Verifying Diagnostic Software; Initial Processing of Infrared Spectral Data; Activity-Centric Approach to Distributed Programming; Controlling Distributed Planning; New Material for Surface-Enhanced Raman Spectroscopy; Treated Carbon Nanofibers for Storing Energy in Aqueous KOH; Advanced Infant Car Seat Would Increase Highway Safety; Development of Biomorphic Flyers; Second-Generation Six-Limbed Experimental Robot; Miniature Linear Actuator for Small Spacecraft; Process for Making Single-Domain Magnetite Crystals; A New Process for Fabricating Random Silicon Nanotips; Resin-Transfer-Molding of a Tool Face; Improved Phase-Mask Fabrication of Fiber Bragg Gratings; Tool for Insertion of a Fiber-Optic Terminus in a Connector; Nanofluidic Size-Exclusion Chromatograph; Lightweight, Low-CTE Tubes Made From Biaxially Oriented LCPs; Using Redundancy To Reduce Errors in Magnetometer Readings; Compact Instrument for Measuring Profile of a Light Beam; Multilayer Dielectric Transmissive Optical Phase Modulator; Second-Generation Multi-Angle Imaging Spectroradiometer; Real-Time Adaptive Color Segmentation by Neural Networks; Research and Development in Optical Communications; Tests of Multibeam Scintillation Mitigation on Laser Uplinks; and Spaceborne Infrared Atmospheric Sounder.

  16. Ultra-low-loss optical fiber nanotapers.

    PubMed

    Brambilla, Gilberto; Finazzi, Vittoria; Richardson, David

    2004-05-17

    Optical fiber tapers with a waist size larger than 1microm are commonplace in telecommunications and sensor applications. However the fabrication of low-loss optical fiber tapers with subwavelength diameters was previously thought to be impractical due to difficulties associated with control of the surface roughness and diameter uniformity. In this paper we show that very-long ultra-low-loss tapers can in fact be produced using a conventional fiber taper rig incorporating a simple burner configuration. For single-mode operation, the optical losses we achieve at 1.55microm are one order of magnitude lower than losses previously reported in the literature for tapers of a similar size. SEM images confirm excellent taper uniformity. We believe that these low-loss structures should pave the way to a whole range of fiber nanodevices.

  17. Engineering Design Handbook. Discontinuous Fiberglass Reinforced Thermoplastics

    DTIC Science & Technology

    1981-04-01

    Fiberglass Type and Form Glass fibers are...Hall, Ltd. Figure 2-11. Stress vs Volume of Glass Fiber for Nylon and Polypropylene Glass Fiber E glass 12 Mm diam. Fibreglass Ltd Size ref...good dispersion of fiberglass in the end product with pelletized feed stocks. Glass fiber attrition is minimized with the dry blend technique,

  18. The influence of glass fibers on elongational viscosity studied by means of optical coherence tomography and X-ray computed tomography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aigner, M., E-mail: michael.aigner@jku.at; Köpplmayr, T., E-mail: thomas.koepplmayr@jku.at, E-mail: Christian.lang@jku.at; Lang, C., E-mail: thomas.koepplmayr@jku.at, E-mail: Christian.lang@jku.at

    2014-05-15

    We report on the flow characteristics of glass-fiber-reinforced polymers in elongational rheometry. Unlike polymers with geometrically isotropic fillers, glass-fiber-reinforced polymers exhibit flow behavior and rheology that depend heavily on the orientation, the length distribution and the content of the fibers. One of the primary objectives of this study was to determine the effect of fiber orientation, concentration and distribution on the entrance pressure drop by means of optical coherence tomography (OCT), full-field optical coherence microscopy (FF-OCM), and X-ray computed tomography (X-CT). Both pressure drop and melt flow were analyzed using a special elongation die (Thermo Scientific X-Die [3]) for inlinemore » measurements. Samples with a variety of fiber volume fractions, fiber lengths and processing temperatures were measured.« less

  19. UV Polymerization of Hydrodynamically Shaped Fibers

    DTIC Science & Technology

    2011-01-01

    using passive wall structures was used to shape a prepolymer stream, which was subsequently polymerized using UV exposure. The shape designed using flow...simulations was maintained, and the size of the fibers was controlled using the ratio of the flow rates of the sheath and the prepolymer . The fibers... prepolymer fluids. This microfluidic approach for production of fibers with defined cross-sectional shape can produce fibers for further development

  20. Reduced muscle fiber force production and disrupted myofibril architecture in patients with chronic rotator cuff tears.

    PubMed

    Mendias, Christopher L; Roche, Stuart M; Harning, Julie A; Davis, Max E; Lynch, Evan B; Sibilsky Enselman, Elizabeth R; Jacobson, Jon A; Claflin, Dennis R; Calve, Sarah; Bedi, Asheesh

    2015-01-01

    A persistent atrophy of muscle fibers and an accumulation of fat, collectively referred to as fatty degeneration, commonly occur in patients with chronic rotator cuff tears. The etiology of fatty degeneration and function of the residual rotator cuff musculature have not been well characterized in humans. We hypothesized that muscles from patients with chronic rotator cuff tears have reduced muscle fiber force production, disordered myofibrils, and an accumulation of fat vacuoles. The contractility of muscle fibers from biopsy specimens of supraspinatus muscles of 13 patients with chronic full-thickness posterosuperior rotator cuff tears was measured and compared with data from healthy vastus lateralis muscle fibers. Correlations between muscle fiber contractility, American Shoulder and Elbow Surgeons (ASES) scores, and tear size were analyzed. Histology and electron microscopy were also performed. Torn supraspinatus muscles had a 30% reduction in maximum isometric force production and a 29% reduction in normalized force compared with controls. Normalized supraspinatus fiber force positively correlated with ASES score and negatively correlated with tear size. Disordered sarcomeres were noted, along with an accumulation of lipid-laden macrophages in the extracellular matrix surrounding supraspinatus muscle fibers. Patients with chronic supraspinatus tears have significant reductions in muscle fiber force production. Force production also correlates with ASES scores and tear size. The structural and functional muscle dysfunction of the residual muscle fibers is independent of the additional area taken up by fibrotic tissue. This work may help establish future therapies to restore muscle function after the repair of chronically torn rotator cuff muscles. Copyright © 2015 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.

  1. Fiber in the Local Loop: The Role of Electric Utilities

    NASA Astrophysics Data System (ADS)

    Meehan, Charles M.

    1990-01-01

    Electric utilities are beginning to make heavy use of fiber for a number of applications beyond transmission of voice and data among operating centers and plant facilities which employed fiber on the electric transmission systems. These additional uses include load management and automatic meter reading. Thus, utilities are beginning to place fiber on the electric distribution systems which, in many cases covers the same customer base as the "local loop". This shift to fiber on the distribution system is due to the advantages offered by fiber and because of congestion in the radio bands used for load management. This shift to fiber has been facilitated by a regulatory policy permitting utilities to lease reserve capacity on their fiber systems on an unregulated basis. This, in turn, has interested electric utilities in building fiber to their residential and commercial customers for voice, data and video. This will also provide for sophisticated load management systems and, possibly, generation of revenue.

  2. Phase sensitive distributed vibration sensing based on ultraweak fiber Bragg grating array using double-pulse

    NASA Astrophysics Data System (ADS)

    Liu, Tao; Wang, Feng; Zhang, Xuping; Zhang, Lin; Yuan, Quan; Liu, Yu; Yan, Zhijun

    2017-08-01

    A distributed vibration sensing technique using double-optical-pulse based on phase-sensitive optical time-domain reflectometry (ϕ-OTDR) and an ultraweak fiber Bragg grating (UWFBG) array is proposed for the first time. The single-mode sensing fiber is integrated with the UWFBG array that has uniform spatial interval and ultraweak reflectivity. The relatively high reflectivity of the UWFBG, compared with the Rayleigh scattering, gains a high signal-to-noise ratio for the signal, which can make the system achieve the maximum detectable frequency limited by the round-trip time of the probe pulse in fiber. A corresponding experimental ϕ-OTDR system with a 4.5 km sensing fiber integrated with the UWFBG array was setup for the evaluation of the system performance. Distributed vibration sensing is successfully realized with spatial resolution of 50 m. The sensing range of the vibration frequency can cover from 3 Hz to 9 kHz.

  3. Strain transfer analysis of optical fiber based sensors embedded in an asphalt pavement structure

    NASA Astrophysics Data System (ADS)

    Wang, Huaping; Xiang, Ping

    2016-07-01

    Asphalt pavement is vulnerable to random damage, such as cracking and rutting, which can be proactively identified by distributed optical fiber sensing technology. However, due to the material nature of optical fibers, a bare fiber is apt to be damaged during the construction process of pavements. Thus, a protective layer is needed for this application. Unfortunately, part of the strain of the host material is absorbed by the protective layer when transferring the strain to the sensing fiber. To account for the strain transfer error, in this paper a theoretical analysis of the strain transfer of a three-layered general model has been carried out by introducing Goodman’s hypothesis to describe the interfacial shear stress relationship. The model considers the viscoelastic behavior of the host material and protective layer. The effects of one crack in the host material and the sensing length on strain transfer relationship are been discussed. To validate the effectiveness of the strain transfer analysis, a flexible asphalt-mastic packaged distributed optical fiber sensor was designed and tested in a laboratory environment to monitor the distributed strain and appearance of cracks in an asphalt concrete beam at two different temperatures. The experimental results indicated that the developed strain transfer formula can significantly reduce the strain transfer error, and that the asphalt-mastic packaged optical fiber sensor can successfully monitor the distributed strain and identify local cracks.

  4. Acceleration Strain Transducer with Increased Sensitivity

    DTIC Science & Technology

    2009-09-22

    utilizing a fiber laser sensor. The fiber laser accelerometer 10 includes a fiber laser 12. Fiber laser 12 can be either a Fabry - Perot type cavity...fiber laser or a distributed feedback fiber laser. In a Fabry - Perot type fiber laser, the laser cavity is a length of erbium- doped optical fiber...designs can produce the same type of signal. A receiver 26 receives the phase shifted signal. Receiver 26 is capable of demodulating and detecting

  5. Novel fiber optic sensor probe with a pair of highly reflected connectors and a vessel of water absorption material for water leak detection.

    PubMed

    Cho, Tae-Sik; Choi, Ki-Sun; Seo, Dae-Cheol; Kwon, Il-Bum; Lee, Jung-Ryul

    2012-01-01

    The use of a fiber optic quasi-distributed sensing technique for detecting the location and severity of water leakage is suggested. A novel fiber optic sensor probe is devised with a vessel of water absorption material called as water combination soil (WCS) located between two highly reflected connectors: one is a reference connector and the other is a sensing connector. In this study, the sensing output is calculated from the reflected light signals of the two connectors. The first reflected light signal is a reference and the second is a sensing signal which is attenuated by the optical fiber bending loss due to the WCS expansion absorbing water. Also, the bending loss of each sensor probe is determined by referring to the total number of sensor probes and the total power budget of an entire system. We have investigated several probe characteristics to show the design feasibility of the novel fiber sensor probe. The effects of vessel sizes of the probes on the water detection sensitivity are studied. The largest vessel probe provides the highest sensitivity of 0.267 dB/mL, while the smallest shows relatively low sensitivity of 0.067 dB/mL, and unstable response. The sensor probe with a high output value provides a high sensitivity with various detection levels while the number of total installable sensor probes decreases.

  6. Distribution of TRPV1 and TRPV2 in the human stellate ganglion and spinal cord.

    PubMed

    Kokubun, Souichi; Sato, Tadasu; Ogawa, Chikara; Kudo, Kai; Goto, Koju; Fujii, Yuki; Shimizu, Yoshinaka; Ichikawa, Hiroyuki

    2015-03-17

    Immunohistochemistry for the transient receptor potential cation channel subfamily V member 1 (TRPV1) and 2 (TRPV2) was performed on the stellate ganglion and spinal cord in human cadavers. In the stellate ganglion, 25.3% and 16.2% of sympathetic neurons contained TRPV1- and TRPV2-immunoreactivity, respectively. The cell size analysis also demonstrated that proportion of TRPV1- or TRPV2-immunoreactive (-IR) neurons among large (>600 μm(2)) sympathetic neurons (TRPV1, 30.7%; TRPV2, 27.0%) was higher than among small (<600 μm(2)) sympathetic neurons (TRPV1, 22.0%; TRPV2, 13.6%). The present study also demonstrated that 10.0% of sympathetic neurons in the stellate ganglion had pericellular TRPV2-IR nerve fibers. Fourteen percent of large neurons and 7.8% of small neurons were surrounded by TRPV2-IR nerve fibers. TRPV2-immunoreactivity was also detected in about 40% of neuronal cell bodies with pericellular TRPV2-IR nerve fibers. In the lateral horn of the human thoracic spinal cord, TRPV2-immunoreactivity was expressed by some neurons and many varicose fibers surrounding TRPV2-immunonegative neurons. TRPV2-IR pericellular fibers in the stellate ganglion may originate from the lateral horn of the spinal cord. There appears to be TRPV1- or TRPV2-IR sympathetic pathway in the human stellate ganglion and spinal cord. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  7. A wide-band fiber optic frequency distribution system employing thermally controlled phase compensation

    NASA Technical Reports Server (NTRS)

    Johnson, Dean; Calhoun, Malcolm; Sydnor, Richard; Lutes, George

    1993-01-01

    An active wide-band fiber optic frequency distribution system employing a thermally controlled phase compensator to stabilize phase variations induced by environmental temperature changes is described. The distribution system utilizes bidirectional dual wavelength transmission to provide optical feedback of induced phase variations of 100 MHz signals propagating along the distribution cable. The phase compensation considered differs from earlier narrow-band phase compensation designs in that it uses a thermally controlled fiber delay coil rather than a VCO or phase modulation to compensate for induced phase variations. Two advantages of the wide-band system over earlier designs are (1) that it provides phase compensation for all transmitted frequencies, and (2) the compensation is applied after the optical interface rather than electronically ahead of it as in earlier schemes. Experimental results on the first prototype shows that the thermal stabilizer reduces phase variations and Allan deviation by a factor of forty over an equivalent uncompensated fiber optic distribution system.

  8. Properties of discontinuous S2-glass fiber-particulate-reinforced resin composites with two different fiber length distributions.

    PubMed

    Huang, Qiting; Garoushi, Sufyan; Lin, Zhengmei; He, Jingwei; Qin, Wei; Liu, Fang; Vallittu, Pekka Kalevi; Lassila, Lippo Veli Juhana

    2017-10-01

    To investigate the reinforcing efficiency and light curing properties of discontinuous S2-glass fiber-particulate reinforced resin composite and to examine length distribution of discontinuous S2-glass fibers after a mixing process into resin composite. Experimental S2-glass fiber-particulate reinforced resin composites were prepared by mixing 10wt% of discontinuous S2-glass fibers, which had been manually cut into two different lengths (1.5 and 3.0mm), with various weight ratios of dimethacrylate based resin matrix and silaned BaAlSiO 2 filler particulates. The resin composite made with 25wt% of UDMA/SR833s resin system and 75wt% of silaned BaAlSiO 2 filler particulates was used as control composite which had similar composition as the commonly used resin composites. Flexural strength (FS), flexural modulus (FM) and work of fracture (WOF) were measured. Fractured specimens were observed by scanning electron microscopy. Double bond conversion (DC) and fiber length distribution were also studied. Reinforcement of resin composites with discontinuous S2-glass fibers can significantly increase the FS, FM and WOF of resin composites over the control. The fibers from the mixed resin composites showed great variation in final fiber length. The mean aspect ratio of experimental composites containing 62.5wt% of particulate fillers and 10wt% of 1.5 or 3.0mm cutting S2-glass fibers was 70 and 132, respectively. No difference was found in DC between resin composites containing S2-glass fibers with two different cutting lengths. Discontinuous S2-glass fibers can effectively reinforce the particulate-filled resin composite and thus may be potential to manufacture resin composites for high-stress bearing application. Copyright © 2017. Published by Elsevier Ltd.

  9. Fiber-Optic Distribution Of Pulsed Power To Multiple Sensors

    NASA Technical Reports Server (NTRS)

    Kirkham, Harold

    1996-01-01

    Optoelectronic systems designed according to time-sharing scheme distribute optical power to multiple integrated-circuit-based sensors in fiber-optic networks. Networks combine flexibility of electronic sensing circuits with advantage of electrical isolation afforded by use of optical fibers instead of electrical conductors to transmit both signals and power. Fiber optics resist corrosion and immune to electromagnetic interference. Sensor networks of this type useful in variety of applications; for example, in monitoring strains in aircraft, buildings, and bridges, and in monitoring and controlling shapes of flexible structures.

  10. Coatings influencing thermal stress in photonic crystal fiber laser

    NASA Astrophysics Data System (ADS)

    Pang, Dongqing; Li, Yan; Li, Yao; Hu, Minglie

    2018-06-01

    We studied how coating materials influence the thermal stress in the fiber core for three holding methods by simulating the temperature distribution and the thermal stress distribution in the photonic-crystal fiber laser. The results show that coating materials strongly influence both the thermal stress in the fiber core and the stress differences caused by holding methods. On the basis of the results, a two-coating PCF was designed. This design reduces the stress differences caused by variant holding conditions to zero, then the stability of laser operations can be improved.

  11. Source polarization effects in an optical fiber fluorosensor

    NASA Technical Reports Server (NTRS)

    Egalon, Claudio O.; Rogowski, Robert S.

    1992-01-01

    The exact field solution of a step-index profile fiber was used to determine the injection efficiency of a thin-film distribution of polarized sources located in the cladding of an optical fiber. Previous results for random source orientation were confirmed. The behavior of the power efficiency, P(eff), of a polarized distribution of sources was found to be similar to the behavior of a fiber with sources with random orientation. However, for sources polarized in either the x or y direction, P(eff) was found to be more efficient.

  12. Small Artery Elastin Distribution and Architecture-Focus on Three Dimensional Organization.

    PubMed

    Hill, Michael A; Nourian, Zahra; Ho, I-Lin; Clifford, Philip S; Martinez-Lemus, Luis; Meininger, Gerald A

    2016-11-01

    The distribution of ECM proteins within the walls of resistance vessels is complex both in variety of proteins and structural arrangement. In particular, elastin exists as discrete fibers varying in orientation across the adventitia and media as well as often resembling a sheet-like structure in the case of the IEL. Adding to the complexity is the tissue heterogeneity that exists in these structural arrangements. For example, small intracranial cerebral arteries lack adventitial elastin while similar sized arteries from skeletal muscle and intestinal mesentery exhibit a complex adventitial network of elastin fibers. With regard to the IEL, several vascular beds exhibit an elastin sheet with punctate holes/fenestrae while in others the IEL is discontinuous and fibrous in appearance. Importantly, these structural patterns likely sub-serve specific functional properties, including mechanosensing, control of external forces, mechanical properties of the vascular wall, cellular positioning, and communication between cells. Of further significance, these processes are altered in vascular disorders such as hypertension and diabetes mellitus where there is modification of ECM. This brief report focuses on the three-dimensional wall structure of small arteries and considers possible implications with regard to mechanosensing under physiological and pathophysiological conditions. © 2016 John Wiley & Sons Ltd.

  13. The effect of nanoparticle enhanced sizing on the structural health monitoring sensitivity and mechanical properties of carbon fiber composites

    NASA Astrophysics Data System (ADS)

    Bowland, Christopher C.; Nguyen, Ngoc A.; Naskar, Amit K.

    2018-03-01

    With current carbon composites being introduced into new commercial market sectors, there is an opportunity to develop multifunctional composites, which are poised to be the next generation of composites that will see future commercial applications. This multifunctional attribute can be achieved via integrated nanomaterials, which are currently under-utilized in real-world applications despite significant research efforts focused on their synthesis. This research utilizes a simple, scalable approach to integrate various nanomaterials into carbon fiber composites by embedding the nanomaterials in the epoxy fiber sizing. Illustrated in this work is the effect of silicon carbide nanoparticle concentrations and dimensions on the structural health monitoring sensitivity of unidirectional carbon fiber composites. Additionally, the nanoparticles contribute to the overall damping property of the composites thus enabling tunable damping through simple variations in nanoparticle concentration and size. Not only does this nanoparticle sizing offer enhanced sensitivity and tunable damping, but it also maintains the mechanical integrity and performance of the composites, which demonstrates a truly multifunctional composite. Therefore, this research establishes an efficient route for combining nanomaterials research with real-world multifunctional composite applications using a technique that is easily scalable to the commercial level and is compatible with a wide range of fibers and nanomaterials.

  14. Increasing the pore sizes of bone-mimetic electrospun scaffolds comprised of polycaprolactone, collagen I and hydroxyapatite to enhance cell infiltration

    PubMed Central

    Phipps, Matthew C.; Clem, William C.; Grunda, Jessica M.; Clines, Gregory A.; Bellis, Susan L.

    2012-01-01

    Bone-mimetic electrospun scaffolds consisting of polycaprolactone (PCL), collagen I and nanoparticulate hydroxyapatite (HA) have previously been shown to support the adhesion, integrin-related signaling and proliferation of mesenchymal stem cells (MSCs), suggesting these matrices serve as promising degradable substrates for osteoregeneration. However, the small pore sizes in electrospun scaffolds hinder cell infiltration in vitro and tissue-ingrowth into the scaffold in vivo, limiting their clinical potential. In this study, three separate techniques were evaluated for their capability to increase the pore size of the PCL/col I/nanoHA scaffolds: limited protease digestion, decreasing the fiber packing density during electro-spinning, and inclusion of sacrificial fibers of the water-soluble polymer PEO. The PEO sacrificial fiber approach was found to be the most effective in increasing scaffold pore size. Furthermore, the use of sacrificial fibers promoted increased MSC infiltration into the scaffolds, as well as greater infiltration of endogenous cells within bone upon placement of scaffolds within calvarial organ cultures. These collective findings support the use of sacrificial PEO fibers as a means to increase the porosity of complex, bone-mimicking electrospun scaffolds, thereby enhancing tissue regenerative processes that depend upon cell infiltration, such as vascularization and replacement of the scaffold with native bone tissue. PMID:22014462

  15. Using vertebral movement and intact paraspinal muscles to determine the distribution of intrafusal fiber innervation of muscle spindle afferents in the anesthetized cat.

    PubMed

    Reed, William R; Cao, Dong-Yuan; Ge, Weiqing; Pickar, Joel G

    2013-03-01

    Increasing our knowledge regarding intrafusal fiber distribution and physiology of paraspinal proprioceptors may provide key insights regarding proprioceptive deficits in trunk control associated with low back pain and lead to more effective clinical intervention. The use of vertebral movement as a means to reliably stretch paraspinal muscles would greatly facilitate physiological study of paraspinal muscle proprioceptors where muscle tendon isolation is either very difficult or impossible. The effects of succinylcholine (SCh) on 194 muscle spindle afferents from lumbar longissimus or multifidus muscles in response to computer-controlled, ramp-and-hold movements of the L(6) vertebra were investigated in anesthetized cats. Paraspinal muscles were stretched by moving the L(6) vertebra 1.5-1.7 mm in the dorsal-ventral direction. Initial frequency (IF), dynamic difference (DD), their changes (∆) following SCh injection (100-400 μg kg(-1)), and post-SCh dynamic difference (SChDD) were measured. Muscle spindle intrafusal fiber terminations were classified as primary or secondary fibers as well as bag(1) (b(1)c), bag(2) (b(2)c), b(1)b(2)c, or chain (c) fibers. Intrafusal fiber subpopulations were distinguished using logarithmic transformation of SChDD and ∆IF distributions as established by previous investigators. Increases in DD indicate strength of b(1)c influence while increases in IF indicate strength of b(2)c influence. Out of 194 afferents, 46.9 % of afferents terminated on b(2)c fibers, 46.4 % on b(1)b(2)c fibers, 1 % on b(1)c fibers, and 5.7 % terminated on c fibers. Based on these intrafusal fiber subpopulation distributions, controlled vertebral movement can effectively substitute for direct tendon stretch and allow further investigation of paraspinal proprioceptors in this anatomically complex body region.

  16. Use it or Lose It: Tonic Activity of Slow Motoneurons Promotes Their Survival and Preferentially Increases Slow Fiber-Type Groupings in Muscles of Old Lifelong Recreational Sportsmen

    PubMed Central

    Mosole, Simone; Carraro, Ugo; Kern, Helmut; Loefler, Stefan; Zampieri, Sandra

    2016-01-01

    Histochemistry, immuno-histochemistry, gel electrophoresis of single muscle fibers and electromyography of aging muscles and nerves suggest that: i) denervation contributes to muscle atrophy, ii) impaired mobility accelerates the process, and iii) lifelong running protects against loss of motor units. Recent corroborating results on the muscle effects of Functional Electrical Stimulation (FES) of aged muscles will be also mentioned, but we will in particular discuss how and why a lifelong increased physical activity sustains reinnervation of muscle fibers. By analyzing distribution and density of muscle fibers co-expressing fast and slow Myosin Heavy Chains (MHC) we are able to distinguish the transforming muscle fibers due to activity related plasticity, to those that adapt muscle fiber properties to denervation and reinnervation. In muscle biopsies from septuagenarians with a history of lifelong high-level recreational activity we recently observed in comparison to sedentary seniors: 1. decreased proportion of small-size angular myofibers (denervated muscle fibers); 2. considerable increase of fiber-type groupings of the slow type (reinnervated muscle fibers); 3. sparse presence of muscle fibers co-expressing fast and slow MHC. Immuno-histochemical characteristics fluctuate from those with scarce fiber-type modulation and groupings to almost complete transformed muscles, going through a process in which isolated fibers co-expressing fast and slow MHC fill the gaps among fiber groupings. Data suggest that lifelong high-level exercise allows the body to adapt to the consequences of the age-related denervation and that it preserves muscle structure and function by saving otherwise lost muscle fibers through recruitment to different slow motor units. This is an opposite behavior of that described in long term denervated or resting muscles. These effects of lifelong high level activity seems to act primarily on motor neurons, in particular on those always more active, i.e., on the slow motoneurons. The preferential reinnervation that follows along decades of increased activity maintains neuron and myofibers. All together the results open interesting perspectives for applications of FES and electroceuticals for rejuvenation of aged muscles to delay functional decline and loss of independence that are unavoidable burdens of advanced aging. Trial Registration: ClinicalTrials.gov: NCT01679977 PMID:28078066

  17. Use it or Lose It: Tonic Activity of Slow Motoneurons Promotes Their Survival and Preferentially Increases Slow Fiber-Type Groupings in Muscles of Old Lifelong Recreational Sportsmen.

    PubMed

    Mosole, Simone; Carraro, Ugo; Kern, Helmut; Loefler, Stefan; Zampieri, Sandra

    2016-09-15

    Histochemistry, immuno-histochemistry, gel electrophoresis of single muscle fibers and electromyography of aging muscles and nerves suggest that: i) denervation contributes to muscle atrophy, ii) impaired mobility accelerates the process, and iii) lifelong running protects against loss of motor units. Recent corroborating results on the muscle effects of Functional Electrical Stimulation (FES) of aged muscles will be also mentioned, but we will in particular discuss how and why a lifelong increased physical activity sustains reinnervation of muscle fibers. By analyzing distribution and density of muscle fibers co-expressing fast and slow Myosin Heavy Chains (MHC) we are able to distinguish the transforming muscle fibers due to activity related plasticity, to those that adapt muscle fiber properties to denervation and reinnervation. In muscle biopsies from septuagenarians with a history of lifelong high-level recreational activity we recently observed in comparison to sedentary seniors: 1. decreased proportion of small-size angular myofibers (denervated muscle fibers); 2. considerable increase of fiber-type groupings of the slow type (reinnervated muscle fibers); 3. sparse presence of muscle fibers co-expressing fast and slow MHC. Immuno-histochemical characteristics fluctuate from those with scarce fiber-type modulation and groupings to almost complete transformed muscles, going through a process in which isolated fibers co-expressing fast and slow MHC fill the gaps among fiber groupings. Data suggest that lifelong high-level exercise allows the body to adapt to the consequences of the age-related denervation and that it preserves muscle structure and function by saving otherwise lost muscle fibers through recruitment to different slow motor units. This is an opposite behavior of that described in long term denervated or resting muscles. These effects of lifelong high level activity seems to act primarily on motor neurons, in particular on those always more active, i.e., on the slow motoneurons. The preferential reinnervation that follows along decades of increased activity maintains neuron and myofibers. All together the results open interesting perspectives for applications of FES and electroceuticals for rejuvenation of aged muscles to delay functional decline and loss of independence that are unavoidable burdens of advanced aging. ClinicalTrials.gov: NCT01679977.

  18. Shape Distribution of Fragments from Microsatellite Impact Tests

    NASA Technical Reports Server (NTRS)

    Liou, J.C.; Hanada, T.

    2009-01-01

    Fragment shape is an important factor for conducting reliable orbital debris damage assessments for critical space assets, such as the International Space Station. To date, seven microsatellite impact tests have been completed as part of an ongoing collaboration between Kyushu University and the NASA Orbital Debris Program Office. The target satellites ranged in size from 15 cm 15 cm 15 cm to 20 cm 20 cm 20 cm. Each target satellite was equipped with fully functional electronics, including circuits, battery, and transmitter. Solar panels and multi-layer insulation (MLI) were added to the target satellites of the last two tests. The impact tests were carried out with projectiles of different sizes and impact speeds. All fragments down to about 2 mm in size were collected and analyzed based on their three orthogonal dimensions, x, y, and z, where x is the longest dimension, y is the longest dimension in the plane perpendicular to x, and z is the longest dimension perpendicular to both x and y. Each fragment was also photographed and classified by shape and material composition. This data set serves as the basis of our effort to develop a fragment shape distribution. Two distinct groups can be observed in the x/y versus y/z distribution of the fragments. Objects in the first group typically have large x/y values. Many of them are needle-like objects originating from the fragmentation of carbon fiber reinforced plastic materials used to construct the satellites. Objects in the second group tend to have small x/y values, and many of them are box-like or plate-like objects, depending on their y/z values. Each group forms the corresponding peak in the x/y distribution. However, only one peak can be observed in the y/z distribution. These distributions and how they vary with size, material type, and impact parameters will be described in detail within the paper.

  19. Distributed Humidity Sensing in PMMA Optical Fibers at 500 nm and 650 nm Wavelengths.

    PubMed

    Liehr, Sascha; Breithaupt, Mathias; Krebber, Katerina

    2017-03-31

    Distributed measurement of humidity is a sought-after capability for various fields of application, especially in the civil engineering and structural health monitoring sectors. This article presents a method for distributed humidity sensing along polymethyl methacrylate (PMMA) polymer optical fibers (POFs) by analyzing wavelength-dependent Rayleigh backscattering and attenuation characteristics at 500 nm and 650 nm wavelengths. Spatially resolved humidity sensing is obtained from backscatter traces of a dual-wavelength optical time domain reflectometer (OTDR). Backscatter dependence, attenuation dependence as well as the fiber length change are characterized as functions of relative humidity. Cross-sensitivity effects are discussed and quantified. The evaluation of the humidity-dependent backscatter effects at the two wavelength measurements allows for distributed and unambiguous measurement of relative humidity. The technique can be readily employed with low-cost standard polymer optical fibers and commercial OTDR devices.

  20. Quality control considerations for size exclusion chromatography with online ICP-MS: a powerful tool for evaluating the size dependence of metal-organic matter complexation.

    PubMed

    McKenzie, Erica R; Young, Thomas M

    2013-01-01

    Size exclusion chromatography (SEC), which separates molecules based on molecular volume, can be coupled with online inductively coupled plasma mass spectrometry (ICP-MS) to explore size-dependent metal-natural organic matter (NOM) complexation. To make effective use of this analytical dual detector system, the operator should be mindful of quality control measures. Al, Cr, Fe, Se, and Sn all exhibited columnless attenuation, which indicated unintended interactions with system components. Based on signal-to-noise ratio and peak reproducibility between duplicate analyses of environmental samples, consistent peak time and height were observed for Mg, Cl, Mn, Cu, Br, and Pb. Al, V, Fe, Co, Ni, Zn, Se, Cd, Sn, and Sb were less consistent overall, but produced consistent measurements in select samples. Ultrafiltering and centrifuging produced similar peak distributions, but glass fiber filtration produced more high molecular weight (MW) peaks. Storage in glass also produced more high MW peaks than did plastic bottles.

Top